

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.


HILGARD'S DESIGN FOR A STEEL ARCH BRIDGE AT MINNEAPOLIS.
The question as to which design of bridge shall be adopted to take the place of the present suspension bridge in Minneapolis is still pending between the city of Minneapolis and the Minneapolis Mill Co., a corporation which controls the greater part of the large water power of the Mississippi and the milling interests. The power of the Mississippi and the milling interests. The
city proposed, and by act of the legislature was authorized, to construct a stone arch viaduct across the river above the Falls•of St. Anthony, as the present suspension bridge has become insufficient to accommodate all the traffic on the principal thoroughfare between East Minneapolis and the business center of the city. The Minneapolis Mill Co., fearing detrimental effects which the sinking of the foundations and the presence of four stone piers in the river bed may have upon their interests, enjoined the city in time, and thus prevented her from proceeding in the construction of the bridge. Hereupon the city offered a compromise, proposing to upon the city offered a compromise, proposing to
substitute the stone arch viaduct by a steel arch substitute the stone arch viaduct by a steel arch
bridge of two deck spans of 260 feet each, with but one pier in the middle of the river. The Minneapolis Mill Co., however, in order not to lose any right to clain damage in the event of the one pier being built, still maintained the granted injunction, requesting that a bridge be built without any that a bridge be built without any pier whatever in the
seems that the question will have to be decided by court.
These circumstances gave origin to the desion of the to the design of the one span steel arch bridge as proposed
by Mr. K. Emil Hilby Mr. K. Emil Hilgard, a civil engineer,
until lately, of the until lately, of the St. Paul \& Northern Pacific Railway Co., of Minneapolis. The plan was submitted to the Minneapolis Mill Co., and
has been favorably considered. The design is a splendid one, and we take pleasure in presenting it to our readers. The following particulars are from the Minneapolis Tribune.
The bridge across the river proper is 540 feet long, and intended to join and match the succession of short
spans covering the Union Depot tracks at the west end. The intended width of the bridge is 80 feet from out side to outside, thus providing for two separate road ways in the center of the bridge, each 24 feet wide and two separate sidewalks of 12 feet width in clear each one at each outside of the bridge. Each roadway to have a street car track, and to leave ample space besides for two large teams. One roadway is to space besides for two large teams. One roadway is to
serve for traffic in an easterly direction, the other for such in a westerly. The whole floor surface, by means of posts, floor beams, and sec ondary longitudinal girders. is partly supported hy, but to the greater extent is suspended from, a set of four braced steel arched trusses, two of which are coupled between the two roadways, and the others to be placed between each roadway and the adjacent sidewalk, leaving thus the latter supported by the bracket end of the floor beam.
Between the two center trusses is room for a walk to be used by persons, cars, persons in repairing the or other mains. Under this walk placed a frost proof conduit, in the shape of a square box, which is to receive all the water, gas, and in sulated electric mains which will have to be carried across the river. : This arrangement of trusses, as shown in a plan of the section of the bridge, wouldirender possible, should it prove desirable, the erection of one half of the full width of the bridge at first, along side of the present suspension bridge, and of the other half after the removal o the latter, thus per mitting the use of one sidewalk of 12 feet and one road way of 24 feet in width while the sus pension bridge is in use or being taken down.

The bridge, as pro

posed by Mr. Hilgard, is in the greater part of the type termed "through bridge," which means that the head room above the passing teams is not unlimited. The unobstructed, clear head room varies from 16 feet toward the ends of the bridge, where the arch rises above the road way, to upward of 25 feet in the center of the span. The arch proper is of the pin-connected type, and has a span of 520 feet from end pin to end pin. The ratio of rise to span is as one to ten. This ratio might easily be changed into a more "economical" one, as $1: 9$ or $1: 8$, without much changing the appearance of the whole structure. The roadway, for the sake of appearance and drainage as well, is shown with a slight camber, amounting to five feet in the center. The steel arch proper is 16 feet high at the ends and 10 feet high in the center. As shown in plan of section, the construction of the floorsurface provides for pine block pavement of usual type for teams, and granite between and next adjoining the street car tracks. For the sidewalks cement plates are proposed, the latter, as well as the stone blocks, to be solidly embedded in sand and gravel. A thorough drainage of the whole bridge surface and under the pine blocks in particular is also designed, such as to make the bridge floor first-class and durable in every respect. It is proposed to light the bridge by means of a few chandeliers carrying electric globes.
The advantages claimed for the design are the folowing :
It dispenses with all and every foundation to be put in the river bed proper (which might or might not in volve a great many difficulties and expenses). A bridge of the kind Mr. Hilgard suggests will in no way interfere with the judiciously guarded interests of the Minneapolis water power, as it leaves the conditions of the river exactly as they are at present. It will make a solid and rigid structure, adapted to carrying the heaviest traffic that ever passed over a first-class city bridge. A bridge of any other system than the suspension or cantilever, and yet belonging to the type called deck bridge, while it would, if practical, have the advantage of an unlimited head room above the passing teams, is utterly impracticable, both from an engineer ing and from an æsthetic point of view, unless at least one pier is put in the river bed proper. A suspension bridge, as well as cantilever, ought to be avoided, from professional and financial reasons. The practically unavoidable necessity, incurred in the adoption of a through bridge, of having two separate roadways, has been emphasized; but this objection is at variance with what has been considered desirable, or even necessary, on the largest bridges in New York, St. Louis, etc., where the traffic in each direction is confined to a separate part of the bridge.

## New Method of Making Water Gas.

The Glasgow Engineer says that a new method of making water gas at an extremely low cost was the subject of a recent communication to the French Academy of Science, and that " the matter has caused much anxious attention, not only in France, but all over Europe and in England as well." It is of weighty importance, not only to gas but also to iron makers, if it accomplishes what is predicted of it. A jet of superheated steam is directed into a retort full of incandescent coke. The oxygen unites with carbon to form carbonic acid, and hydrogen is liberated. So far nothing new. The gases are led to a second retort filled with some refractory substance kept red hot, by which a glowing surface is exposed to the gases. At the same time, superheated steam is introduced. This seizes upon the carbonic oxide to form dioxide, and more hydrogen is liberated. A milk of lime bath removes the carbonic dioxide, and the pure hydrogen is led to a reservoir. One ton of coke in this process produces about 69,000 feet of gas, which is about eleven times the quantity usually produced by the expenditure of a ton of coal. This reduces the cost to little, if anything, more than that of natural gas, when the difficulty of controlling the latter is taken into the account. This is for heating purposes. Inventors are at work devising the best methods of carbureting it, and Boulogne-sur-Seine is to be lighted with it next winter.

The Relative Value of Natural Gas and Coal.

## Of Pittsburg coal 55.4 pounds contain the same num

 ber of heat units as 1,000 cubic feet of natural gas. With coal at $\$ 1.20$ per ton, 1,000 feet of natural gas would then be worth $31 / 3$ cents. But by tests made by the Westinghouse Air Brake Company, $1 \cdot 18$ cubic feet of natural gas evaporated one pound of water from $190^{\circ}$ Fah., with the same boiler under which one pound of the best coal evaporated 10.38 pounds of water. That is, one pound coal equals $12 \cdot 25$ cubic feet of gas, or 1,000 feet gas equal $81 \frac{32}{49}$ pounds coal. This difference results from the expenditure of heat necessary to raise solid fuel to the gaseous state, which must be done before combustion can take place. In a house grate the loss on this score from using coal would be more than in a large furnace of a factory. Hence, the greater economy in the use of natural gas is in houses and small establishments.
## Šrientifir Americam.

HSTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 361.BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.
One copy, one year. postage included....
One copy, six months, postage included.
${ }^{83} 98$
Clubs.-One extra copy of THE SCIENTIPIC AMMRICAN will be supplied
gratis for every club of tive subscribers at
same Rat
Remit by postal. or express money order. Address
MUNN CO., Ytil Broadway, corner oi Franklin Street, New York.

The Scientific American Supplement is a distinct paper from the SCIENTIFIC Amprican. THE SUPPLEMENT
is issued weekly.
Every number contains 16 octavo pages. uniform in size


 The safest way to remit is by draft, postal order, express money order, or
rekistered letter.
Address MUN $\&$ CO., 361 Broadway, corner of Franklin Street, New York

Scientific American Export Edition.


NEW YORK, SATURDAY, OCTOBER 23, 1886.

table of contents of
SCIENTIFIC AMERICAN SUPPLEMENT
No. 564.
For the Week Ending October 23, 1886.
Price 10 cents. For sale by all newsdealere.
 - BoTANY.-Ornamental Grasses.-A description of a number of ${ }_{\text {species of of different genera of this family }}$






- Engineering and mathematics.-A New Ellipsograph





 Ui MISCELLANEOUS. - Development of Insect....................






GB
13

the
3011 l him.

## TWINE.

Few persons have an idea of the enormous consumption of twine in this country. One of the greatest demands for the article comes from the farmers, who consume thirty-five thousand tons annually upon the self-binding harvesters. Allowing five pounds to the mile, this would be equal to a string long enough to go more than six times round the earth. It takes a length of about three feet of twine to tie a bundle a length of about three feet of twine to tie a bundle
of straw. The farmer sits on his machine, drives of straw. The farmer sits on his machine, drives
alone through his grain field, and without any assistance cuts, bundles, and ties twelve acres of wheat grain per day. To such perfection as this has that unconscionable patent monopolist, the American inventor, reduced mechanism for doing farm labormonopolist in the judgment of the farmer, because the inventor demands a bonus of perhaps ten dollars a machine as his patent fee. This winter, no doubt, our grateful farmer will, as usual, join the hue and cry for the repeal of the patent laws.
The twine used on the self-binder is generally made either of Sisal or Manila hemp. The Sisal is the cheaper material, but is not so strong or durable as the Manila. In some twines a mixture of the two is employed. For binder purposes, the twine should have sixteen turns to the foot, and a length of three feet would have a breaking strength of not less than seventy pounds. The twine must be carefully made, free from swells or knots, or it will not run smoothly through the knotting device of the binder. The average consumption of twine on a binder harvester is two pounds per acre. About twelve hundred feet of twine per acre are required. It costs the feet of twine per acre are required. It
The Manila hemp makes much the better twine, being stronger, smoother, and more durable; the raw material costs more, and its twine sells for more than Sisal hemp, but the Manila twine goes further, and is actually cheaper in use for the farmer; but this fact however is not appreciated by him, and he sticks to the Sisal twine because offered a little less per pound than the better article of Manila. Then, again, the than the better article of Manila. Then, again, the
Sisal twine breaks much oftener while running through Sisal twine breaks much oftener while running through
the binder than the Manila. At every break the farmer must stop his machine, and spend ten or twenty minntes to fix up. He never thinks of charging his lost time against his poor twine. As long as he gets it for a cent or two less than the better article he is perfectly satisfied, no matter if it does bother

Woolen Manufactures in Japan.
Although it appears that there is no probability of wool being grown in Japan, as the only sheep in that country are animals reared with great trouble as curiosities, it is said that woolen manufactures will probably be carried on to advantage there. The Japanese of the upper classes are very generally adopting European clothing; and though this is now principally made by native tailors, all the cloth comes rom abroad, especially from Vermont and other New England States. Woolen fabrics are being used very rtinsively among the rich, and before long the same people. The Japanese government and nation see that there is a fair field for starting woolen manufactures in their country; and, taking into consideration he imitative faculties of this people, and the low rate of wages at which they are content to work, they are likely soon to become proficient in manufacuring too, if they can get the wool, especially as they have shown themselves to be capable of using achinery and other aids to labor which twenty years o were unknown to them. If wool could be imprted, a great industry might be established. The ool of New Zealand and Australia is said to be more suitable than that grown in America for manucturing cloth for Japan, on account of its greater rodus, and as this latter country has so many arketable commodities in Australasia, the commerial relations between Japan and those colonies, it is thought, might be developed advantageously by a mutual exchange of produce.

Piston A rea and Heating Surface
However much change may be effected in the type of a locomotive, certain proportions appear to be incapable of alteration without doing harm; $21 / 2$ square feet of heating surface ought to be provided for each quare inch of piston area, or, what comes to the ame thing, the area of one piston multiplied by 5 will give the proper heating surface. Thus, the area f a 17 inch piston is 227 square inches, and $227 \times 5=$ 1,135 square feet. An 18 inch cylinder has an area of $254 \cdot 4$ inches, and $254 \cdot 4 \times 5=1,272$. In like manner the proper surface for 19 inch cylinders is 1,417 square feet. Of course, this is not to be regarded as a hard and fast rule, but it will be found that it is quite in accord with the best locomotive practice of the day, and that when n attempt has been made to reduce the proportion, the engines have not proved good steamers with heavy

## PHOTOGRAPHIC NOTES

Enlarging for Newspapers.-Since the introduction of cuts in daily newspapers has become so regular,
different methods have been pursued to quickly reproduce by means of photography any important daily incidents.
Reporters frequently carry small cameras, such as the vest camera and others, with them, and often capture on the sensitive plate accurate views of the subjects they are interested in. The method now pursued in one of the largest offices is to employ a special photographer, who develops immediately the sensitive plate as soon as it arrives ; then in a wet state places it in a magic lantern, and projects the negative image downward upon a large sheet of paper placed on a table at which is seated an artist who quickly sketches over all the light portions with his pencil ; these portions fortunately are those which need to be reproduced in black lines. From the enlarged sketch, after it is inked and embellished, reduced electrotypes are produced by the usual process of photo-engraving rapidly.
Directions for Stripping Films from Paper.-A special combined film laid on paper, and styled the "American stripping film," has been prepared by the Eastman Dry Plate and Film Co., by means of which, with a little trouble, negatives equal to glass are readily produced, and at the same time the necessity for carrying around a lot of the latter material is avoided. It is specially advised that this particular paper be developed with the ferrous oxalate developer, since the toning qualities of the pyro developer (most generally preferred) are apt to interfere with the successful separation of the film from the paper.
The editor of the Photographic News having experimented in this direction, advises the use of the pyro and soda or potash developer.

## Electric Light Wire Legislation Needed.

Mr. I. N. Miller, of Cincinnati, writing to the Electrician, says: The electric light companies are stringing over housetops and on poles, throughout almost every city of 10,000 inhabitants in the United States, what is called "underwriters' approved wire." The name is supposed to be a first-class recommendation for the wire, and serves as a cloak to cover a multitude of evils. The board of underwriters probably approved the use of this wire throughout buildings, but they certainly never recommended or approved its use outdoors, where it would be subject to moisture.
Careful experiments made by immersing 12 inches of this wire in a $6 \times 8$ glass jar filled with water, the ends of the wire extending above the jar so that the water would come in contact with the covering only, shows the following insulating properties :

## After 1 minute's time...................resistance, 115,000 ohms. After 3 minutes' time.... ............. resistance, 4,170 ohms. <br> After 3 minutes' time.... .............. resistance, 4,170 ohms. After 5 minutes' time...................esistance, 1,770 ohms.

.resistance, 280 ohms.
One hundred cells of battery were used in making the tests, one pole of the battery being connected
with the water in the jar, the other pole with the with the water in the jar, the other pole with the copper conductor.
Experience has proved beyond the possibility of a doubt that it is just as fatal to life to come in contact with the covering of the wire when it is wet as it would be to come in contact with the naked copper wire. Two men have recently lost their lives in this city by accidentally touching the covering of an electric light wire when it was damp. The Western Union Telegraph office and the jewelry store of Duhme \& Co., in this city, were set on fire at about five o'clock in the evening during a light rain by some one throwing a short piece of wire from a building in such a manner as to make a contact between
an electric light wire and a telegraph wire. The an electric light wire and a telegraph wire. The
electric light company has compromised with the electric light company has compromised with the
widows of the two men who lost theirlives, and the probabilities are that they paid out a sum sufficient to replace all their present wires with well insulated ones. It has not taken them long to see the folly of using uninsulated wires, and they are now renewing the plant with insulated wire. Notwithstanding the fact that the use of uninsulated or "underwriters'
wire" has within the past two years caused the death of at least 100 persons, and destroyed property to the amount of over one-half million dollars in the United States, yet we see the new companies all over the country following in the footsteps of the older ones, and subjecting themselves to heavy damages that may result from loss of life and property.
To make matters worse, they attempt to construct their lines parallel with and on the same side of streets with telegraph and telephone wires, and thus bring about litigation that costs them, to commence with, fourfold more than it would have cost to string well insulated wire.
It is apparent to any one that where two sets of wires are strung parallel, one above or below the other, they will come in contact with each other during storms or fires; in fact, it is impossible to prevent frequent contacts. Whenever there is a contact,
it means a fired telegraph office or telephone exchange, possibly death to some employe. Every residence or business block that has a wire of any kind connected with it is liable to be set on fire at any moment by a contact between the various wires which form such a network throughout every city. Telephone employes inform us that it is a very common thing now to find telephones that have been set on fire at night and burned up, the charred remains having fallen to the floor.
It does seem that enough lives have been sacrificed, enough property destroyed, and money lost to bring the stockholders of electric light companies to their senses; but still the ruinous policy is followed, and there will probably be no relief or change until the various States take up the subject and enact suitabl legislation, and not only enact it, but enforce it.

How shall the water pipes in a house be run and a ranged?
This is, so far as subsequent annoyance owing to the constant necessity of repairs is concerned, one of the most important matters connected with the water sup ply of a house, and far too little attention is in the majority of cases paid to it by architects and builders. In the first place, it is important that all lead, and also tin lined and block tin, pipes be well fastened to boards or narrow strips of wood nailed to walls or ceilings Vertical lead pipes should be supported by soldered hard metal tacks to the lead pipes, and fastening them with screws to the board. All sagging is thus effectively prevented, provided the supports are not placed too far apart. Horizontal or graded lead pipes should be firmly supported wherever possible throughout their entire course by strips of wood on which they rest, and must be kept in place by brass bands or clamps. Sometimes it is necessary to fasten horizontal lead pipes to boards nailed to the underside of ceilings. In such a case, the supports must be placed very close to-gether-say every two feet. If insufficiently fastened lead pipes are soon dragged down by their own weight besides being affected by changes of temperature, for when hot water passes through the pipe it causes the pipe to lengthen, and hence to sag, while lead does not return to its original shape on cooling. Once out of line, pipes become air-bound, or freeze in winter, and
Hot and cold water pipes should be kept at least one-half inch, and better one inch, apart to prevent loss of heat from one to the other; and where they run in the same direction, must be fastened truly parallel to each other. Faucets, and in particular ground key and self-closing bibs, should not be placed at the end of a line of supply pipe, where this can be avoided, but should be taken from the side of the pipe, and the pipe suitably continued so as to form a small air chamber.
In arranging a system of service pipes in a dwelling the cardinal rule should always be observed that all lines of supply pipes be so graded that they may be readily and completely emptied at some stop and waste cock or draw-off faucet when the water is shut off from the house. This is very important in the case of severe cold weather to prevent the freezing of pipes, and is an absolutely necessary condition in the case of all houses left empty during the winter months, such as summer and seaside residences, etc. In this connec tion it may be well to state that no check valves should, as a rule, be used in lines of supply pipes. Where used their number and location should be remembered and noted by the house owners, for such check valves inWilliam Paul Gerhard, in Good Housekeeping.

## The Proper Construction of Stone Houses.

There is no more prolific source of trouble, both to builders and owners of stone houses, than that caused by water penetrating the walls and getting in over the windows after a heavy rain.
The causes producing this trouble being well known, it would seem an easy matter to overcome them, and all sorts of suggestions to that end have been made, but so far with noeffect.
The present time, therefore, would seem an oppor tune one in which to offer a practical solution of this trouble, and that is the purpose of this article. The underlying cause of all this trouble is hast to finish the building ; hence, the first thing to be done, and without which all else is practically use less, is to "make haste slowly." Time should be given the mortar to harden, the building to settle, and the cracks to show before the pointing is done No stone house should be pointed the same year it is built, for two reasons: First, the cement used in pointing forms a barrier to the evaporation of the moisture in the mortar in which the stone is laid, and prevents it from drying. The pointing, while keeping the moisture from coming out, will not pre vent the frost from going in and freezing the mortar this will produce an expansion, which causes the pointing to lose its grip on the mortar, and creates innumerable crevices through which the water easily
finds its way. Secondly, all stone buildings, even
when built in the most careful manner, have a tendency to settle. This settlement cracks the pointing. In many cases these cracks are so fine as to be scarcely visible, especially if some distance from the ground. But no cracks are too small for water to penetrate, driven by the force given it by the wind from an open sweep of miles, as it has in many parts of this country. It is absolutely essential, therefore, that the mortar should have time to evaporate all its moisture and become thoroughly dry, and the building time to settle, before pointing.
Houses built with stone, and having all the windows arched solidly through the entire thickness of the wall with brick, seldom have water dropping from the soffit of the frame; for if any water should beat through the stonework or cracks in the same, the bricks, having power to absorb so much of the water, hold it while the rain lasts, and after it is over evaporate it to the outer air.
When impracticable to use brick over the windows, from architectural or other reasons, a piece of sheet lead, going through the entire thickness of the wall, and extending about one foot each side of the window, and turned up two inches on the inside, will hold the water until it evaporates.
A style of architecture much in use at this time necessitates exposed gables. These gables are usually finished so late in the season that the mortar has not time to dry before the frost sets in, and in consequence the mortar freezes. Mortar once frozen loses its adhesiveness, and therefore has no life in it. The proper and only safe plan is to use Portland cement and sand (no lime) in all gables. This will set in onetenth the time of lime mortar, and will be hard and dry before frost comes.
All stone gables that rise above the roof, and are only protected by stone coping, should have a sheet of lead to cover the entire wall put on under the coping. This lead should project over the inside of the wall, and be turned down over the flashing of the roof. By this means, all water that gets through the joints of the coping will be carried off. In conclusion, with care and a proper observance of the natural laws governing the materials used in its construction, a stone building can be built in the present day just as tight as years ago, when people did not expect to excavate the cellar in the spring and move into the finished house in the fall.-The Builder.

Orthochromatic Photo Plates.
According to the Photographische Mitarbeiter, the ollowing is the recipe for orthochromatic gelatine plates as given by Dr. Mallmann and Ch. Scolik. The plates are first dusted with a soft camel's hair brush, and placed in a bath containing :

Water $200 \mathrm{c} . \mathrm{cm}$.
in which they are allowed to remain for two minutes. They are then taken out, and after draining are immersed in the following solution :

## Erythrosin solution (1 to 1,000)........................ $25 \mathrm{c.cm}$. Ammonia ..... .... ................................... 4 ".

or 1 to $1 \frac{1}{4}$ minutes, the dish to be kept covered and in motion. Both baths can be used for a dozen plates, but after the seventh or eighth $1 \mathrm{c} . \mathrm{cm}$. ammonia should be added to both solutions. The plates are then taken out, and allowed to dry in a perfectly dark room. This is accomplished in about three hours. Care should be taken against overheating. With these plates the alkaline pyrogallic developer should be used. If the oxalate of iron developer be employed, veiling is the result.

## Moses Albert Slaven.

On Tuesday, September 14, 1886, this well known engineer and contractor died at his home in this city. He was a native of Canada, and was forty years old. He went to California, and did much work in San Francisco as a master builder. Coming to this city, he, with this brother and others, founded the American Contracting and Dredging Company, that is now working its contract with the Panama Canal Company for the removal of $30,000,000$ cubic meters of soil, about one-fourth of the entire excavation. The progress of this work and the dredging machinery have been described in these columns.

## Milk as an Odor Absorbent.

Those dairymen who do not believe in the power of milk to rapidly absorb and become contaminated by surrounding noxious smells will do well to try the following simple test, the results of which will, doubtless, immediately convince the most skeptical Take a wide bowl or soup plate to the cow stable when you go to milk; pour into it a pint of fresh milk, set it on the floor or at the height of a milk stool, so as to expose it fully to the air of the stable, behind and close to the cows. If the day is close and heavy and the milk is cold, and the stable not cleaned out and aired, the result will be surprising. Take it to the house or any where a way from the stable, and try to drink it.

## sEAL LOCK.

The invention herewith illustrated consists mainly of a seal for car doors, provided with a receiving wire or holder for retaining the seal after it is broken. The holder is placed in line with the hinge of the hasp, and the seal is applied to lugs attached to the plate and hasp as shown. These lugs are correspondingly perforated for the passage of the sealing wire, the perforations being countersunk to form opposing cutting edges, so that the opening of the hasp will cut the sealing wire. The holder is attached at one end to the plate of the hinge and at the other to the hinge pintle, so that it requires no extra attachment, except a staple, to hold its lower portion. In applying the seal,

the wire is passed through the perforations and tied next to the lugs. The ends of the wire are then brought out, one on each side of the holder, and the seal applied outside of the latter. The seal is then closed with pinchers, which at the same time impress into the seal a figure indicating the station at which the car is locked. When the hasp is opened, the wire is cut and the seal drops to the bottom of the holder, where it will be retained. In case the car is opened several times, there will be as many seals upon the holder, each with a different mark, so that the seals show the number of times and places at which the car was opened
This invention has been patented by Mr. S. E. Allen, of Winston, N. C


## metallic spring FOR SUSPENDERS.

The spring is formed of wire bent to form two parallel series of flat loops, as clearly shown in the engraving. The shoulder strap is secured to the upper loop, and the ends or button pieces are provided with a hook, by which they are connected with the lower loop. This forms an elastic and durable spring of neat appearance.
This invention has been patented by Mr. John M. Sauder of Harrisburg, Pa.

## IMPROVED PAIL EAR

This pail ear provides a support by which the milkman can readily hold the pail while milking, thereby preventing it from coming in contact with the ground, and also guarding against its being tipped over. The ear is formed of sheet metal, bent and perforated as shown in the enlarged view, Fig. 2. The curved arm


## WING'S IMPROVED PAIL EAR.

projects outward away from the pail, and forms a convenient support, which may be received upon the knees of the milkman, and which will readily sustain the pail without the necessity of exerting a great pressure upon the sides. This pressure, in the case
of sheet metal pails, is destructive, besides involving an undesirable amount of labor in holding the pail while milking. The vertical apertured ears receive the bail by which the pail is carried.
This invention has been patented by Mr. George S . Wing, of Alexander, N. Y.

## Compression of Water.

For the measurement of very high pressures, M. E. H. Amagat has adopted the principle of the manometer with differential pistons. In order to obtain accurate results, the condition had to be realized of maintaining the pistons in complete action while keeping them perfectly airtight. The reading of the volumes of compressed fluid was effected by the process already indicated by Prof. Tait, of Edinburgh. Water and ether have been studied at zero and at the two respective temperatures of $20^{\circ}$ and $40^{\circ} \mathrm{C}$. Respecting the variation with pressure, it is shown that the coefficient diminishes gradually with the increase of pressure, and this takes place throughout the whole scal6 of pressures, contrary to the opinion of some physicists. At 3,000 atmospheres the volume of water was reduced one-tenth, and its coefficient of compressibility onehalf.

## CAR COUPLING.

The drawhead herewith illustrated is provided with a recess in its top and with apertures in the bottom. Swinging upon a transverse pin in the top of the drawtread is an angle piece, provided at its angle with inclined side lugs. On top of the drawhead is a plate, shaped as represented in the engraving, and having a downwardly projecting lug, formed with a longitudinal slot and groove to receive the angle piece. The front of the plate is perforated to receive the coupling pin. This plate and pin are supported in a raised position, as shown in the right hand view, by the lower end of the grooved lug resting on a shoulder formed on the angle piece. The en-


HOOVER'S CAR COUPLING.
tering link of the other car strikes the front end of the angle piece and swings it inward, allowing the top piece and its pin fto drop and couple the cars. This is shown in the left hand view. When the plate is raised, the angle piece automatically swings under the lug and adjusts the parts ready for coupling. Just back of the hole for the pin in the top plate is a downwardly projecting arm, of such length as to rest upon and hold the link in a horizontal position, to insure its easy entrance into the opposite drawhead. The plate may be operated from any desired place on the car by attaching a chain to the eye secured to its top. This coupling, which is the invention of Mr . George W. Hoover, of Keithsburg, Ill., is very simple in construction, and automatic in operation.

## New Retting Process for Flax.

M. Parsy, at a recent meeting of the Industrial So ciety of the North of France, published a very interesting paper on his new method of retting flax, according to which the pectose that envelops the cellulose fibers in the green plant is transformed into pectic acid, which constitutes in retted flax the brilliant part of the fiber. This transformation can also be effected by placing the flax in a closed vessel (autoclave), in which water at $150^{\circ} \mathrm{C}$. is introduced for the space of a few minutes only, and which is followed by steam at the same temperature. The whole operation only lasts one and a half hours, during which the flax loses from 20 to 25 per cent of its weight, as by the ordinary retting process, but on leaving the apparatus it contains less water, and is consequently more easily dried. M. Parsy can, by modifying the process, give the bluish or yellowish color to flax. For the blue he employs the water of a preceding operation, slightly acidulated by the organic acids of the flax which go in solution ; for the yellow he employs water slightly alkaline. At the same sitting another gentleman came forward, stating that he was also the inventor of a new retting process, of which, no doubt, we shall hear at some future time.

## CAR COUPLING.

The car coupling herewith illustrated is the invention of Mr. H. A. Springer, of El Moro, Colorado. In a recess in the end sill of the car are placed two similar drawbars, whose forward portions are held apart by a block, as shown in Fig. 2, and whose rear ends are brought together and pinned to the end of a drawbolt provided with the usual spring. The buffer block is made with mortises to receive the drawbars, to which it is detachably secured by a pin. The face of the buffer is concaved and the sides of the top are extended to receive apertures, in which extra pins are carried. The front of the drawbars is supported by a carrier which is pressed upward by a

springers car coupling.
spring and is adapted to slide upon the vertical sides of a yoke suspended from beneath the car. This coupler will couple as well upon a curved as a straight track, as the eyes in the drawbars will regis ter at almost any angle; the tapering points of the bars, together with the concaved face of the buffer, admit of ready coupling when one car is higher than the other. Should a drawbar break, another can easily be put in its place. The coupling pin is not liable to breakage, as the strain is distributed along its length.

## Disasters at Sea.

Twenty-six shipwrecks were reported during the first week of September last, twenty-two being British owned. Four were British steamers. Off the British Isles, nine vessels (all British, including three steamers) went down. Out of twenty collision cases reported, three vessels (two British and one Swedish) sank, the British sinking off the British Isles. Four vessels were destroyed by fire. Total wrecks for year, 932.

## SOLDERING CASE.

This case forms a compact and convenient receptacle for the various articles constituting a solderer's kit. Formed in the top of the block is a compartment to hold the solder, and also a groove extending along one side to receive the shank of the soldering iron. Pivoted to the top is a lid which, when placed parallel with the block, serves to hold the solder and soldering iron in place, and which, when turned to one side, allows either the solder or iron to be removed. When not in use, the acid bottle is held in a recess in the upper end of the block, but when needed it is placed in a hole in the upper face of the block. As here illustrated, the acid bottle is secured in the end of a piece pivoted at its opposite end in a right angle recess formed in one corner of the block. The pivoted end of this piece is beveled, so that when the bottle is needed it may be urned to an upright position. When not needed, the piece is folded down parallel with the block, as indi-


MORNINGSTAR'S SOLDERING CASE.
cated by the dotted lines. Upon one edge of block is a hook for holding the heated soldering iron. This useful soldering case is the invention of Mr . Sylvanus Morningstar, of Newhamburg, Ontario, Canada.

## Cast Glass Rails.

Friedrich Siemens, of Dresden, has succeeded in casting glass in the same way as metal is cast, and obtain ing an article corresponding to cast metal. This cast glass is hard, not dearer in production than cast iron, and has the advantage of transparency, so that all flaws can be detected before it is applied to practical use. It will be much less exposed to injury from atmospheric influences than iron. The process of production is not difficult, the chief feature being rapid cooling. The hardness and resisting power of this cast glass are so great that ex periments are being just now carried out at the Sie mens glass foundry at Dres den with the purpose of ascertaining whether the material could be em ployed for rails on rail ways.
A sample of these glass sleepers recently tested at the Anderston Foundry Company (Limited), Glas gow, resisted a falling weight of $33 / 4$ cwt., falling upon a rail placed upon the sleeper set in sand ballast, commencing at 6 inches and rising by succeeding increments of 6 inches up to 9 feet 6 inches --the maximum elevation to which the test ram could be elevated-without effect until the blow had been repeated for the sixth time. Cast iron sleepers are expected to withstand a similar test up to 7 feet
only.' The cost of glass sleepers will be considerably less than that of either cast iron or steel, while the material is practically imperishable as regards climatic changes and influences, or the ravages of such insects as the white ant.

## FLOODS IN INDIA.

West of the River Jumna, the Northwestern State Railway runs parallel to the Himalayas for some hundreds of miles, and crosses all the five rivers of the Punjab. The country between the hills and the railway is more or less subject to floods throughout the whole of this distance. In the neighborhood of Umballa there are several mountain torrents whose wide sandy beds are dry for nine months of the year, but during the remainingmonths, whenever there is heavy rain in the lower ranges of the Himalayas, they become broad, rapid rivers, which are eventually lost in the sands of the Bikanir deserts.
The railway crosses the beds of these streams on iron girder bridges, apparently wide enough to carry off the waters of any flood. On the 3d of July an extraordinary spate came down the 'Markunda and other neighboring rivers between Umballa and the Jumna, and as the bridges were unable.to pass all the water, the floods spread all over the country. The railway embankment, which is generally eight or ten feet high, acted as a dam and kept the water back, so that it accumulated, and at last ran over the top of the bank in places. Wherever this happened, a breach in the embankment was invariably caused. Some of the smaller bridges, and culverts, too, were washed away, and holes twenty feet deep scoured out in the places where they had been. In one place there was an almost con-


Fig. 1.-TUNNELING BY FREEZING.
was suspended ; but the mails had to be got through The sketch represents the English mail en route for Simla being carried on trollies over the damaged portions of the line. The railway was not the only suf ferer ; the Grand Trunk Road, which runs parallel to


Fig. 3.
it, was destroyed in places, and many villages were wholly or partially washed away
To restore through traffic, it has been necessary to
the breaches, the repair of which will take a considerable time. The above account is by Captain William Pitt, R.E., who has also furnished the sketch.-London Graphic.

TUNNELING BY FREEZING.
Pootsch's ingenious system of sinking mine shafts through watery earth by freezing the latter is already known to our readers. An attentive exami nation of the frozen strata having shown that their respective slopes had but little influence upon the total hold of the mass, it was concluded that no special difficulty would be met with in applying this method of the driving of a tunnel. This opinion has held good in practice, and, although merely the principle of the method has been employed in the tunnel that has just been opened at Stockholm (Fig. 1), we have here an interesting example of the practical solution of the question of tunneling in shifting earth. The tunnel in question is designed to unite two quarters of the northern part of the city that are separated by.the crest of a hill which renders communication between them particularly difficult. In order to overcome this differyy, Capt. Lindmark, of the Swedish Engineers, proposed to tunnel the hill. The total length of the work is 755 feet, the width is 13 feet at the springings, and the height $121 / 2$ feet under the key. In order to avoid taking possession of private property at the approaches to the mouths, the line was carried in the direction of the axis of a street; but this latter was already laid out and was quite narrow, and in certain parts, especially near the western extremity, the foundations of the tunnel came under those of the houses (Fig. 2). Such a work therefore presented peculiar features, and required the greatest precaution in order to prevent the subsidence of the structures above.
The direction heading at the base of the tunnel was for the most part "excavated in granite by means of dynamite. The widening out of the western part of the work met with no serious obstacles, but it was entirely otherwise with the eastern. The ground met with near the mouth consisted of coarse gravel intermingled with blocks of stone and cemented with a clay that became liquid through infiltrations of water, and caused the sand to flow through even the smallest apertures. Moreover, at fifteen yards from the mouth, the line passed under two five-story houses (Fig. 2), built upon the opposite sides of the hill, and at so slight a distance from each other that the archbutments of the tunnel had to be built under their foundations, which latter extended down to within ten feet of the arch.
Mr. Lindmark, in the first place, thought of the method devised by the Austrian engineer Rziha, which consists in supporting the sides of the excavation with two centerings, one consisting of voussoirs of Vignole rails connected by bolts and stays, and the other of rails connected by bolts and stays, and the other of

wo tons, and each giving one horse power for one hour. On Sept. 13 the battery gave a current of 120 volts and 28 amperes, which was maintained constant until Dover was nearly reached on the return journey, when it had fallen to 24 amperes. The boat. which was designed and built by Mr. Skelton, of Mill wall, measures 37 ft . by 6 ft .10 in . It carried a party of ten, among whom was Mr. Reckenzaun and Mr. Stephens, of the firm of Stephens, Smith \& Co., who have sup plied the machinery. The noticeable feature in this trip, as in all previous experiments with electric boats, was the perfect stillness of its passage through the water. It is remarkable that the wonderful superiority in this respect over the noisy, puffing steam launch should not already have led to the general use of this method of propulsion for purposes of pleasure.

## A Small Locomotive.

Probably one of the smallest and most perfect working models of a locomotive is now on exhibition at the American Institute Fair; it is only one thirty-second the size of the ordinary engine, and yet every detail is accurately represented on this standard. The engine was designed and built by Mr. F. Van Fleet, of Wil liamsport, Pa., during such time as he could spare from mercantile pursuits, and is a rare example of fine mechanical skill. The building occupied from three to four hours a day for two and a half years. Mr. Van Fleet's only mechanical training was obtained during two years spent at Cornell University; he never worked in a shop, nor has he had any practical experi ence with machinery, so that the mechanical perfection of his work as shown by his locomotive indicates much genius. His knowledge of the locomotive was obtained by several years of study of books and close examination of engines of various patterns. The miniature locomotive is not copied from any of the large ones but contains their best features, and constitutes Mr Van Fleet's ideal of a locomotive.
All the work was performed with hand tools-taps, dies, files, etc.-the only machine used being an ordinary foot lathe. All the valves and pistons were ground, the latter so accurately that, although they will slide of their own weight, they form a steam-tight fit with the cylinders. This accuracy of fit was neces sary, since the smallest leak, where the pipes were so minute, would prevent the working of the engine. Some of the pipes measure only one-sixteenth of an inch in diameter outside, and have a bore of one thir ty-second of an inch. These were made of thin sheet copper, which was drawn through dies until the proper size was attained, when the meeting edges were sol dered.
The length of the engine and tender is 19 inches, the former being 12 inches; the height is $51 / 2$ inches, and in diameter by threequarters inch stroke. Steam enters the cylinders through ports one-sixteenth by three-eighths of an inch, and makes its exit through ports three thirty-seconds by three-eighth of an inch. These ports are opened and closed by slide valves one-quarter of an inch wide and three eighths of an inch long. The driving wheels are $21 / 4$ inches in diameter, the truck wheels three-quarters, and the tank wheels thirteen-sixteenths. The main rods are $23 / 4$ inches long, and the side rods $27 / 8$ inches long and one-eighth inch in width. The boiler is $11 / 2$ inches in diameter and 10 inches long, including the extended smoke box ; the fire box is $21 / 2$ inches long by $11 / 2$ wide. One large flue extends through the boiler, it being necessary to make it this way, since the draught the tubes found in the ordinary locomotive been fol lowed. The boiler is built of brass lagged with wood and jacketed with Russia iron bound with German sil ver straps. The steam dome is 1 inch in diameter and $11 / 2$ in height, and is provided with two safety valves, a "pop" and lever, and with the usual whistle. The boiler will safely bear a steam pressure of 125 pounds, although the steam gauge, which is one-quarter of an inch in diameter, and whose face is illuminated by a genuine lamp placed directly in front of it, will only indicate up to 100 pounds. The engine is equipped with a perfect "Sellers improved injector" $11 / 4$ inches long by one-eighth of an inch in diameter. It is also fitted with a full Westinghouse air brake system, both automatic and straight, on drivers and tank. The air pump is $13 / 8$ inches long and three-sixteenths in diameter. The driver brake cylinders are three-eighths of an inch long and one-quarter in diameter. The steel links are $\frac{11}{16}$ inch long, and have a slot three thirty seconds of an inch wide; the link block one-eighth by three-sixteenths inch. All the nuts are hexagonal, and there are 120 threads to the inch in the bolts. The stack is one-half inch in diameter by two in height, and is provided with a headlight five-eighths inch in diameter ; one filling of this lamp with oil will illuminate the track for one hour. The signal lamps are one-half inch long, and will burn twenty minutes. The engine is provided with a very perfect steam reversing gear designed by Mr. Van Fleet. The weight of the engine
is about 15 pounds. It'can be fired and run the same is about 15 pounds. It'can be fired and run the same
oil, coal, or coke. Lubrication is provided by oil cups one thirty-second inch bore.
In constructing this locomotive, no complete drawngs were made; the separate parts were taken up, fitted in place, and finished, only such drawings of the details being made as were found necessary. The engine is beautifully finished, and the skill of the builder is shown by the perfection and accuracy of each part, even those which are partially hidden showing the same care and skill. The materials entering into the construction of the engine are gold, silver, German silver, brass, copper, steel, iron, and nickel.

## Seeing and Thinking.

Some men, remarks a contemporary, would walk through a machine shop and see nothing but lathes, planers, and other machine tools, together with a lot of unfinished castings and pieces of machinery. Such men never improve methods of doing work. They never think of a better way to do a job. They plod along, thinking chiefly of killing time until pay day. Now and then a man comes along who sees things differently. No matter what object meets his eye, the sight of it suggests something. Perhaps the object is nothing but a piece of scrap iron lyingon a junk heap. No matter, our "observing man" sees the whole of that piece of iron, and it stirs up numberless thoughts and calculations as to how that piece was worn out, and what made it wear in that particular manner, and how it could have been made to wear much longer. Perhaps the observing man finds an awkward tool expensively employed in doing a job in an indifferent manner. Our seeing man realizes in an instant the disadvantages of that particular tool, and at once sets to better the matter. A piece of bent iron, a twisted wire, or some commonplace object often gives the impressive mechanic a clew to some point upon which he has been studying for a long time. These men are the ones who make improvements. They are the kind of men needed, and all men should follow their example of trying to see all there is in everything which comes to view, no matter how insignificant or commonplace it is.

Destruction of our Birds.
Twenty to thirty years ago, it was not an unusual sight to see even the scarlet tanager, a bright red bird with black wings and tail, flitting from tree to tree in the heart of our cities like a fiery meteor in the sun light, and to find their nests, built very lightly of straws and similar material, on the horizontal limbs of our shade trees. But they were killed off and driven back to the woods long before the advent of bird millinery as a fashion. They were, indeed, a "shining mark," and everybody wanted a specimen, or thought they did, until at the present time the scarlet tanager is really a very rare bird throughout the New England States.
The Baltimore oriole, so named because the colors of the bird, black and yellow, resembled those of Lord Baltimore, has almost met the same fate, as it has done duty in ornamenting thousands of ladies' bonnets within the past five years. Four years ago, this bird was quite plenty on the elms of Boston and suburbs. The hanging nests, made of hemp, old twine, etc., were quite common. But the past season showed a great change. These birds have been shot so ruthessly, both while here and at the South, and during the migration, that hardly a pair could be found during the breeding season of 1886. The ragged nests are occasionally seen, belonging to years gone by, as it sometimes takes the storms of many winters to beat them to the ground. If the different societies organized to protect our native birds do their whole duty, these beautifully plumaged insectivorous birds will soon be ome common once more.

Jos. M. Wade.
Agreement Relating to Unpatented Inventions.
A partner persuaded his copartner to agree to pay the expenses of experiments to perfect an invention made by a third person, in consideration of a share in the results. The firm paid the expenses of the experiments, and afterward the first mentioned partner and the inventor took out a patent for the invention in their joint names, to exclusion of the other partner. The New York Court of Appeals held (Burr vs. De la Vergne) that the copartner could maintain an action to compel his associate to carry out the agreement. The court further held that the agreement was not void under the United States statute requiring every patent or any interest therein to be assigned by an instrument in writing, on the ground that the agree ment related to an inchoate invention not perfected or patentable at the time the agreement was made.

Prof. Edward Orton gives the following as the harges for use of natural gas at Bowling Green: For house lights, 20 to 30 cents per month; cooking and heating stoves, $\$ 3$ per month in winter. At Findlay For cooking stoves, $\$ 1$ per month is charged; for siting room stoves, $\$ 1.50$ per month ; for grates, $\$ 2$ and $\$ 2.50$ per month; for house lights, 15 to 30 cents per month; for boilers, $\$ 150$ and upward per year.

## ©arrespondence.

## mage of the Sun as a Measure

To the Editor of the Scientific A merican:
I noticed in the Scientific American for October 2, 1886, the following communication from a Mr . Shields, of Coopwood, Miss., in which he gives a method for determining the permanent length of an inch as a unit of measure: "Take a plain mirror, on the equator, at noon on any certain day, and get the size of the sun's disk, which will be about an inch. This will be the same size on any meridian at noon, and unchangeable."
I would beg leave to state some objections to his method of arriving at this standard unit of length :
1st. According to the theory of contraction, the sun's diameter is diminished about 220 feet per year, or about 4 miles per century. Therefore, the diameter of the sun is not a constant quantity. This fact alone would make it theoretically not correct.
2 d . If you tried to find the exact diameter of the sun's image in a mirror by traveling around the equator, it would vary, because the sun is not always exactly vertical on all parts of the equator. It is only vertical on two points.
3d. The personal equation with different persons would vary, and therefore render the unit of length derived in this way variable.
York, Pa., Oct. 7, 1886.

## Lime and Cement.

To the Editor of the Scientific American:

- In your issue of the 9 th inst., page 231, you print an article entitled "Cement in Ireland," signed by one Robert Mallet, F.R.S., in which he states that Henri Sainte-Claire Deville, theillustrious French chemist, in the course of certain recent researches discovered that some certain compounds of hydrate of lime and hydrate of magnesia afford a cement of eminently hydraulic qualities, setting rapidly under water; that the natural dolomites, if calcined at a very low red heat and ground to powder, produce, without any other treatment, a fast setting hydraulic cement, which becomes so hard that it may be employed as an artificial stone.
Mr. Mallet further adds: "The process which has been given to the world by Deville is hampered by no patent."
The process is not confined strictly to dolomitic rocks. Any magnesian limestone will answer the purpose fully, so Mr. Mallet states. Every few years some one discovers (!) that an eminently hydraulic cement can be produced from pure magnesian limestone; and, singularly enough, the discovery is invariably given to the world free. It is never " hampered with a patent."
This story generally follows in the wake of the sea serpent story that we always like so well to read about. It is always fresh, always inspiring.
Probably three-fourths of the quicklime manufactured in this country is derived from the magnesian limestone formations. When this stone is calcined sufficiently to expel the carbonic acid, it is called quicklime; and when water is applied it gives off heat, expands, and falls to powder. It is then a hydrate of lime and hydrate of magnesia.
In this condition it is mixed with sand and water, and becomes mortar for masonry and plastering. The lime and magnesia are not chemically combined. It is simply a mechanical combination when in a pure state. They are both bases, containing no acid with which to form a salt.
Taken singly or together, neither of them contains the slightest trace of any setting or hardening properties.

They are, however, the bases that when intimately mixed with certain proportions of silica or silicic acid, and subjected to a high heat, produce silicates of lime or lime and magnesia, i. e., a hydraulic cement.
When water is applied to these silicates, they crystallize and harden, whether in air or water, and will not dissolve by the action of water, while pure lime and magnesia, either singly or as a dolomite, will dissolve in water-will be taken up and held in solution. This result cannot be changed by any manner of calcination or subsequent manipulation.
Not long ago an article appeared in one of the trade journals stating that "the only way to produce silicate of lime was to mix common white or quicklime and sand together with water, and pile it up in a heap, and at the expiration of two or three weeks the whole mass would have become silicate of lime." This idea seems to be quite prevalent, but its absurdity is easily exposed ; for, no matter how old the mortar may be, if the lime was pure and white, a few days' immersion will dissolve the mortar, thus proving conclusively that there is no chemical combination between the sand and lime.

A true silicate of lime cannot be dissolved by water. Impure limes, such as the gray or brown limes, always contain silica. Five to six per cent will not prevent active slaking, and the resultant mortar will contain 15 to 18 per cent of true silicates, and even this amount
will tend greatly to the hardening of the mortar. It was probably through the use of these impure limes that people have been led to imagine that pure limes contain inherent setting properties-a theory
that never has and never can be sustained. U. C. that never has and neve
Buffalo, Oct. 12, 1886 .

## The Total Solar Eclipse of 1886 .

A correspondent of the London Times gives a brief general account of the results of the recent British expedition to Grenada, South America, from which we take the following
In the eclipse observations secured in Grenada and Carriacou, a distinct advance has been made. New facts have been acquired, old views have been satisfactorily tested, new instrumental methods have been studied, and records of the general phenomena have been secured.
As to the new facts. For these we have to refer to the work of Prof. Tacchini, at Boulogne. No one was other appearances visible during the eclipse. This he did with a 6 inch; and so soon as the clouds permitted after the eclipse, he observed the spectrum of the prominences by the ordinary method. He found that the prominences seen under these two different conditions and by means of such different methods were not the same. He also noted that the prominences seen during the eclipse itself had the same characters as the socalled." white" prominences which he observed in 1883 at the Caroline Islands. These appear whiter and dimmer as the distance from the photosphere increases. These observations have been very closely examined by Prof. Tacchini and Mr. Lockyer, with the result that both these solar observers are now prepared to ascribe these new phenomena to the descent of relatively cool material.
It is difficult to overestimate the importance of this result from the point of view of solar theory. The determination of the direction of the currents in the solar atmosphere is indeed so important that it was included in the programme of the observations to be made by Mr. Turner with his 4 inch finder, but no certain results were secured by this means, as the structure of the corona was apparently unusually complicated. In the spectroscope, however, one long streamer was observed to be much brighter near the limb. This is not absolutely conclusive evidence, but it has its value.
To return, however, to Prof. [Tacchini's other observations. He found that the prominences which were visible both during totality and by the ordinary method presented very different appearances, so that we are driven to the conclusion that by the latter we only see part of the phenomena. This entirely ac-
cords with Mr. Lockyer's recently published cords with Mr. Lockyer's recently published views, in which it is suggested that the metallic prominences seen near spots are really mixed up and down rushes, with probably an excess of the cooler descending material. Thus, for instance, the metallic prominences observed by the ordinary method after the eclipse were
found to be only the central portions of those observed found to be only the central portions of those observed
during totality, the part visible only during totality forming a whitish fringe round the more incandescent center. Another very important observation was Young to the existence of a thin stratum which was supposed to contain all the vapors the absorption of which is registered by the Fraunhofer lines, was found to be due solely to the great reduction in the intensity of the light reflected by the earth's atmosphere allowing the spectrum of the higher regions to be seen the moment the lowest stratum of the corona was covered by the moon. This is carrying the unveiling of the spectral effects by the increasing darkness recorded in the Egyptian eclipse to its furthest limit, and it harmonizes all the observations of this kind made since
the eclipse of 1870 . About twenty photographs of the corona have been
obtained in all, and five photographs of the chromoobtained in all, and five photographs of the chromo-
sphere and lower regions of the corona. Mr. Maunder obtained seven of the corona, and could have obtained more, at Carriacou. Captain Darwin obtained six, and Dr. Schuster, we believe, five, at Prickly Point. Of the photographs, seven spectra, two with the solar spectrum on the same plate-the only ones worth any-thing-have also been secured by Mr. Maunder.
Among the records obtained on this occasion must be classed the disk observations, now for the first time point of a disk observation is that an observer is by its aid able to observe the outlying solar appendages under the best conditions, so far as the sensitiveness of the eye is concerned. For ten minutes before totality the observer is blindfolded, and at the moment of totality he is led to a small aperture through which,
the bandage over his eyes having been removed, he sees a black disk some forty feet away, which shuts off the moon and the brighter interior portion of the solar atmosphere. The eye, therefore, being thus shielded, is in the best position to pick up faint streamers ex-
tending beyond the borders of the disk, and to note tending beyond the borders
Streamers were thus noted at Grenada, extending far
beyond the limits seen in the ordinary way, but the air was so saturated with aqueous vapor and incipient cloud, even where substantial clouds did not make their appearance, that the failure of any of the observers to see the equatorial extension observed by Prof. Newcomb in the clear sky of Wyoming, at an elevation of 7,000 feet, in 1878 , by no means proves that the extension was not there. The question of the continual existence of an extension of matter of some sort or other in the plane of the sun's equator must be sort or other in the plane of
held to be still sub judice.

## Damaskeening.

The figuration presented by the surface of steel and iron guns, small arms, etc., and also the plain brown or black surface of modern steel guns, is known as "damaskeening," and is produced by treatment with weak acids, which act unequally upon the different parts of the metal under treatment, the harder portions of the ritetal becoming covered with a thicker film of carbon than the softer portions. The color of these thin films varies from light brown to black, according to the more or less prolonged treatment with the acids. If the figuration is not sufficiently elaborate, owing to the metal not having sufficient fiber, and to the fiber being too straight and regular to produce the desired effect, it is customary for the makers of fowling pieces and other light goods to paint or stencil a pattern on the surface of the metal with the acid, and in this way the figuration can be made as effective as desired. The solutions largely used at many works are as follows : For steel, sulphur 1 oz., uncture or steer 1 oz., iliric acid 1 oz ., sulphuric acid $1 / 4 \mathrm{oz}$., mercuric chloride $1 / 2$ oz., copper sulphate $1 / 2 \mathrm{oz}$., spirit of niter 1 oz ., water 1 qt.; for iron, tincture of steel $1 / 2$ oz., nitric acid $11 / 4 \mathrm{dr}$., mercuric chloride 1 dr ., copper sulphate $1 / 2 \mathrm{dr}$., spirits of wine 6 dr ., water 8 oz . The solution used at Woolwich and Elswick for steel guns, etc., is as follows : Tincture of steel 2 oz ., nitric acid 1 oz ., copper sulphate 1 oz ., spirit of niter $11 / 2 \mathrm{oz}$., spirits of wine $11 / 2 \mathrm{oz}$., water 1 gal. This is a much better solution, and works remarkably well; it is smeared over the parts, and when dry another coat is put on. This will produce a brown color ; but if it is not dark enough, the operation must be repeated until the desired tint is obtained. Six coats are sufficient to make the surface black. The acid is then killed by washing with soda solution, and the surface rubbed with a hard brush or "file card " until smooth, after which it is rubbed with oily waste. For iron there is nothing better than mercuric chloride or antimony chloride, dissolved in water, with a little spirit of wine added to help it to dry. The action of these reagents will be readily understood by those acquainted with elementary chemistry, and it is therefore unnecessary to describe them. All the weights given are avoirdupois.

## Water Power in Cities.

Some idea of the large amount of water required to drive even a small motor may be gained from the following by James Emerson, in the American Engineer : Ordinarily, 60 gallons in each 24 hours is the allotment per each inhabitant for cities. Some one has estimated the average under which the water of cities is distributed to be 60 feet, undoubtedly an overestimate, for though in exceptional cases there are places where the head is from one to two hundred feet, is far more often the case that the upper rooms of hotels and residences in cities cannot be supplied from the pipes, and particularly so since the erection of the lofty structures now so common. But as a working point, suppose the average to be 60 feet; 0.1469 cubic foot of water per second, or about 66 gallons per minute, falling 60 feet, equal one horse power, or six gallons more than the allowance for an individual for 24 hours, is required each minute to produce one horse power, or, if used ten hours per day, the supply for six hundred inhabitants.
For an actual horse power necessary to drive a printing press or other machine a quantity of watersufficient to supply from twelve to twenty-five hundred persons will be required, that is, if the said machine is driven ten hours per day. Can cities afford to furnish such a supply, and more particularly so where the water is pumped? For, for every horse power distributed to various parts of a city through small pipes, valves, and abrupt turns, at least two horse power are expended at the pumping station. There are other obstacles that cannot be overcome. Where the water is taken from a lake, as it is at Chicago and Milwaukee, the city authorities have control, but in most cases the supply is taken from rivers, ponds, or lakes owned by manufacturing companies, and though such water may be taken for domestic purposes, not one drop would be allowed to be rented for pewer.
There are exceptional cases where cities acquire the entire supply in anticipation of increased population, and for the time being there is a surplus that may be used for power instead of running to waste. In such cases a simple turbine or impact wheel will be found by far the mosteconomical in first cost and use of water. It will be desirable, however, to place them where their humming will not become unpleasant.

POLARIZED LIGHT
PRACTICAL APPLICATIONS OF THE POLARISCOPE. by aEo. m. Hopilins.
vi.

The practical applications of the polariscope are few but important. In chemistry, its most prominent use is in the determination of sugars. In medicine, it finds an application in the examination of diabetic urine. In geology and mineralogy, it is of utility in determining the origin and nature of rocks and minerals. In photometry, it forms the basis of several photometers. In photography, the polariscope, or at least a part of it -the Nicol prism -has been employed for reducing the glare of highly illuminated objects. In a similar way, the Nicol prism has been used for extending the field uf visiun in a rüg. portant part of the water telescope. It has also been used to some advantage in viewing paintings unfavorably situated in galleries. In the trades, the polariscope $h$ as proved useful in detecting strains in glass. By opticians, it has for
WHEATSTONE'S POLAR CLOCK.
years been recognized as a test for the It has also proved of creat utility to the microscopist in the microscopic examination of structures.
One of the most curious uses of polarized light is the indication of the time of day. Sir Charles Wheatstone devised a polar clock in which a Nicol prism in connection with atmospheric polarization is made to indicate the time of day. Several forms of this instrument have been made; one of them is shown in Figs. 1 and 2.* Atmospheric polarization, according to Professor Tyndall, is due to the reflection of light from the fine particles of matter floating in the air. By examining the sky on a clear day by means of a Nicol prism and a plate of selenite or other crystal, polarization will be detected without difficulty. The brightest effects are noticed at a point $90^{\circ}$ from the sun. By directing a Nicol prism to the north pole of the heavens-a position always at right angles to the sun, or approximately so-and turning it round, the colors of the crystal plate, viewed through the prism, will change in a definite order, or, if the position of the Nicol be fixed, the movement of the sun will produce similar changes of color. The polar clock is based upon this principle.
The inventor de scribes this instru ment as follows: "At the extremity of a vertical pillar is fixed, within a brass ring, a glass disk, so inclined that its plane is perpendicular to is perpendicular to
the polar axis of the the polar axis of the
earth. On the lower earth. On the lower
half of this disk is a half of this disk is a
graduated semicircle, divided into twelve parts (each of which is again subdivided into five or ten parts), and against the divisions the hours of the day are marked, com mencing and terminating with VI. Within the fixed of ground glass. Any strain in the article examine brass ring containing the glass dial plate, the broad end of a conical tube is so fitted that it freely moves round its own axis ; this broad end is closed by another glass disk, in the center of which is a small star
or other figure, formed of thin films of selenite, exhibiting, when examined with polarized light, strongly contrasted colors; and a hand is painted in such a position as to be a prolongation of one of the principal sections of the crystalline films. At the smaller end of the conical tube a Nicol prism is fixed so that either of its diagonals shall be $45^{\circ}$ from the principal section of the selenite films. The instrument being so fixed that the axis of the conical tube shall coincide with the polar axis of the earth, and the eye of the observer being placed to the Nicol prism, it will be remarked that the selenite star will in general be richly colored; but as the tube is turned on its axis the colors will vary in intensity, and in two positions will entirely disappear. In one of these positions, a smaller circular disk in the center of the star will be a certain color (red for instance), while in the other position it will exhibit the complementary color. This effect is obtained by placing the principal section of the small central disk $221 / 2^{\circ}$ from that of the other films of selenite which form the star. The rule to as certain the time by this instrument is as follows: The tube must be turned round by the hand of the observer until the colored star entirely disappears, while the disk in the center remains red; the hand will then point accurately to the hour
"The accuracy with which the solar time may be in dicated by this means will depend on the exactness with which the plane of polarization can be determined. One degree of change in the plane corresponds with our minutes of solar time."
In Fig. $\delta$ is shown the tourmalin tongs, the simplest polariscope known. It consists of two plates of tour malin, cut parallel to the optic axis of the crystal, and mounted in cells arranged to turn in eyes formed at the extremities of the looped wire. When the plates are parallel, light passes through them; but when they are ar ranged at right angles with each other, the light is com pletely extinguished. If a plate of crystal, a Brazilian pebble spectacle lens for example, be placed between the tourmalins arranged in this way, the light will again pass, showing that it has been depolarized by the rock crystal.
This has been accepted as an infallible test of the genuineness of lenses of this class. In the hands of an expert it is undoubtedly valuable, but glass lense may be put under strain by heating them and allow ing them to cool rather quickly. They will then, to some degree, act on the polarized bean like the true crystal.
This form of polariscope is useful in the examination of crystals generally, but on account of the natural dark color of the tourmalin, the utility of the instru ment is limited.
In Fig. 5 is shown a polariscope designed for the ex amination of large objects, such as glassware, etc. It consists of a bundle of 16 glass plates, about 20 or 24 in . square, arranged with reference to the Nicol prism employed as an analyzer at an angle of $35^{\circ} 25^{\prime}$. Behind the series of plates is hinged a boardcovered with black velvet, which may be raised up parallel with the glass plates when it is desired to polarize the beam by reflection.
The analyzer, a Nicol prism, is mounted in a revolu ble tube, supported by the small adjustable standard Articles to be examined are placed on the small table between the polarizer and analyzer.
The light for the polariscope should be taken through either a white paper or cloth screen or a plat will exhibit itself by its depolarizing effect on the po arized beam.

THE forests of Ohio occupy about seventeen per cent

## The Coal Stealing Industry.

"Anthracite coal will not melt, evaporate, or blow away while in transit over a railroad," said an officer of one of the great coal-carrying companies at Scranton, the other day. "But there never was a train loaded with coal yet that reached its destination with the weight of coal it started with by a good many tons. Every station along a coal-carrying road has its com


LONGITUDINAL SECTION OF POLAR CLOCK.
plement of coal thieves. Many of them were formerly engaged in the business of selling coal to others, the stocking of their yards being the result of coal pilfered rom the company. This peculiar style of dealing in coal, it has been learned, was carried on systematically in some places for years.
"But in spite of the ying railroads is still something enormous. The thieves are so shrewd and so systematic in all their operations that they can relieve a train of many tons of its cargo in the course of a few minutes.
"At one station alone on the Erie road, not less than thirty tons of coal are taken from the cars every day, or rather every night, as the operations are carried on rations are carried
"Trainmen have their customers along the line, and as the trains pass by certain places agreed upon, a ew lumps are tossed off daily, and many a


TOURMALIN TONGS. off daily, and many a
ton of coal is thus disposed of from every train."

## Disposal of Hotel Sewage.

An esteemed correspondent who has recently passed some time at the Manhattan Beach Hotel, at Manhat$\tan$ Beach, L. I., writes that the system of sewage disposal in operation there is very successful. He does not think any system could work any more satisfactorily than does this one, designed by Mr. J. J. Powers, a Brooklyn plumber. He says :
"The sewage (excreta and house water exclusively) flows by pipes (of such moderate size as to insure a speedy flow) into wooden water-tight tanks, where, by the use of such cheap material as charcoal and copperas, the whole mass, ninety per cent of which is water, is economically and thoroughly disinfected and deodorized, the solids being precipitated, while the liquids flow in a clear and harmless stream to the sea. The process works automatically and easily; there is no smell, even close to the settling tanks, and few of the hundreds of thousands who visit those wonderful caravansaries have any comprehension of how largely the welfare and business of the whole island depends upon this common sense of the entire area of the State.
invention of one clear-headed, fair-minded sanitarian. The solid portions of the sewage are disinfected and drained, and are removed as frequently as is necessary; the product (called native guano), a. dark-colored poudrette, is used upon the lawns, and with magical effect, and when sold brings $\$ 20$ a ton."-Sanitary News.

## the quadrumana.

## p. gratacap.

No group of animals has from the earliest days at tracted more curious attention than the monkeys. Their grotesque mimicry of man, their innate proclivi ties to mischief, their unconscious humor, their agility, have drawn to them the interest of the populace, while their structural affinities and their enigmatical relations to the human race have evoked from science a pasient study, which, as directed by differ ent notives, leaves the quadrumana to day ". 'exed question" in the discussion of anima evolution.
The old Egyptians placed their images in their elaborate pantheon, the mystical Hindoos built dwellings for them, the Romans taught themselves anatomy by their dissection, the Arabs looked upon them as the progeny of Satan, the ancient dwellers in Mexico wrought their figures in frieze and ornament, and to day sightseers linger longest where, in our menageries, they gambol and chatter; while over their problematic claim to be con sidered man's lineal ancestors the savants and doctors fight unweariedly. Perhap the first mention of these interesting creatures we have found among the ancients, and the one most familiar, is in the chronicle of Hanno, the Carthaginian voyager, who visited, over 2,000 years ago, the west coast of Africa. He speaks of finding the "goutlai" on an island, whom he and his men chased, but could not overtake, and at last only secured three females, who bit and scratched their captors so vigorously that they had to be slain, and their skins were afterward kept in the temple of Juno at Car thage. Hanno speaks of these strange inhabitants as wild men, with hairy wo men, and he doubtless met a colony or pack of anthropoid apes.
Pliny writes: "On the Indian Mountains to the south, in the land of the Catharcludi, there are satyrs. These are the swiftest of creatures, sometimes going on all fours, sometimes upright like men, and they are so active that they can only be captured when old or sick."
In the past geological stages of the earth's history, monkeys were much more widely distributed than to day, and among the forests of France and England they flourished in nimble groups, where now only careful protection insures their immunity from decline and death. The quadrumana belong to the warm regions of the globe. They live chiefly within the tropical limits, though reaching northward from Africa into Europe at Gibraltar, where a Uracaque has effected a settlement among its rocks and ledges ; and again another species in Asia has extended its habitat to Japan, while as an extra limital example they reach in South America to Paraguay. They are all included, without exception, between $37^{\circ}$ north and $35^{\circ}$ south latitude. They exhibit the greatest fortitude under colder conditions upon the mountain sides of their natural domains, and are occasionally met at elevations which are surprising.
A species does not cover a wide geographical area, but is distinctly limited. The orang-outang is found in Borneo and Eastern Sumatra; the chimpanzee and the gorilla on the west coast of Africa ;

liar to Africa, though aberrant forms are found upon the Philippine Islands. The New World monkeys are confined almost altogether to South America, though some species penetrate the northern continent as far as Tampico, and naturalists are yet expectant that in unTampico, and naturalists are yet expectant that in un-
explored recesses of Central America new species may
the tailless gibbons upon the Bay of Bengal, in Sumatra, Java. Among the Semnopitheci, as Sir Emerson Tennent says(quoted by Murray), " each separate species has appropriated to itself a different district of the wooded country, and seldom encroaches on the domain of its neighbors," being found in Ceylon, India,


MR. CROWLEY, OF CENTRAL PARK MENAGERIE, N. Y. homogeneous.
be discovered. The New World monkeys spread over a wider territory and furnish the greatest number of mammalian species within their region, the mammalian fauna of South America being singularly meager and

The natural home of the monkey is among the trees. Here he leaps with a buoyant delight that defies description or portraiture, swinging, hanging, with innumerable gesticulations and grimaces he passes from bough to bough, and will traverse long distances in this way with a grace and ease that has been the admiration of writers and artists, whereas, when put upon a level ground, his slow, aimless, and ungainly movements only excite ridicule and dis gust.

The technical definition of the quadrumana, or the four-handed (quatuor four, manus hand) animals, is easily un derstood and remembered. They form the thirteenth order of mammals, are comprised with man among the primates, and are distinguished by having the in nermost toe of the hind limb separated from the other toes, and is opposable to them, so that the hind feet become prehensile hands, the innermost toe of the fore limbs (thumb), if present, also usually opposable to the other digits. The
and left, and the molars similarly four The divisions of thisorder are very natural, and, as pointed out or defined by Owen, are : 1st. The Strepsorhina or twisted nos tril group, including the true lemurs, cen tering in Madagascar. 2d. The Platy rhina, or group with nostrils placed far apart, thumb of fore feet, if present, not opposable to other digits, embracing solely the South American monkeys. 3d. The Catarrhina, with nostriis oblique, close together, thumbs all opposable ; the high est section, among which are placed the anthropoid apes, without tails; while in other members of this section this member has lost the prehensility which among the Strepsorhines and Platyrhines makes it the most efficient instrument for locomotion.
It would be of interest to review even briefly some of the characters of the attractive lemurs, whose haunts are in the fruit-laden forests of Madagascar, where in the deepest seclusion they form their bands and move with gliding and noiseless activity among the highest branches; or describe some of the singular spider monkeys, howling monkeys, capuchins, and squirrel monkeys of South America. But we must attempt to explain the state of hat interesting question asked so commonly, Have we come from monkeys? and then acquaint the reader with some facts about the chimpanzee and the orang-outang. whose admirable portraits accompany this notice. To make even these points intelligible may exceed our limits.
The question of the origin of the human race has attracted attention for ages, and naturally it was long ago suggested that some connection between men and monkeys might be discovered leading to more distinct ideas on this subject. Dar win epitomized th views of earlier in vestigators, and add ed many new lines o fertile study and sug gestion. Structural ly, men and the quadrumana belon to the same orderthe primates ; and $\mathbf{i}$ is insisted that thi
structural resemblance predicates a similar structura origin or some common progenitor. The popular misapprehension that writers holding this view suppose that man is a lineal offshoot or child, through intermediate links, of our anthropoid apes is quite unjust to science. Our physical frame is most heterogeneously so to speak, allied to the entire monkey race. We can claim, anatomically, no direct descent from any known species. As Urwart says :
'Some of the lower apes resemble man more than they do the anthropoid ones in the length of the arm and hand compared with that of the spine; while in the length of the leg without the foot, compared with that of the arm without the hand, he is equaled only by certain lemurs. The baboons (the lowest of the anthropoids) exceed all the higher apes in resemblance to man in the sigmoid curvature of the spine," and in many other particulars, unnecessary to mention here Some, indeed, of the New World monkeys approach man in some respects nearer than the Old, and again and again it has been shown that the child monkey is nearer the child man than the adult monkey is to the adult man-a significant divergence through age. In fact, the aggregate features of the human frame, when compared with their closest correspondences among the quadrumana, establish between man and these a network of intercrossed relationships.
Hence the proposition is, that man has issued from the group of the quadrumana genealogically at some far distant period, and descended from a creature Which resuited in a ine of descent of which man, as at present made, represented the climax. At the same time the close likeness of the anthropoid apes to man is very obvious, and some recent cases of hairy and tailed men might be regarded as reversions to a simian ancestry. However, the proposition cannot be, or has not been, absolutely proved. It rests upon an inherent probability based upon a study of evolution in other branches of animal life, and is bound up logically in what has been called the monistic view of creation, viz., that a single impulse at a moment of time, however it may be regarded, has started a vital growth in nature, which, progressing and widening under the con trol of fixed laws, peopled the worid with all its pas and present irhabitants without invoking at any mo ment, in the long train of sequences thus inaugurated any special act of creation. Naturally, man is but one though the highest, of the occupants of this globe, and is subjected to the same law of origin.

$$
\begin{aligned}
& \text { Was war ein Gott der nur von aussen stiesse } \\
& \text { Im Kreis das All am Finger laufen liesse, } \\
& \text { Im zm ziemt's die Welt im Innern zu bewegen, } \\
& \text { Natur in Sich. Sich in Natur zu hegen, } \\
& \text { So dass was in Ihm lebt und webt und ist, }
\end{aligned}
$$ Nie Seine Kraft, nie Sein Geist vermist, Goethe

So far as regards man's physical characters, his psychic part is less easily to be imagined as derivative from the brutal and sensual disposition of the quadrumana. As Hartmann says

A great chasm between man and anthropoids is constituted, as I believe, by the fact that the human race is capable of education, and is able to acquire the high est mental culture, while the most intelligent anthropoid can only receive a certain mechanical training."
The anthropoid apes are the gibbons, gorilla, orangoutang, and chimpanzee. The orang-outangs, of which an admirable group, mounted by Mr. Hornaday, the hunter and writer, is now in the American Museum of Natural History, and is shown in our artist's vivid drawing, inhabit the islands of Sumatra and Borneo They live in the dense forests in the low, swampy dis tricts, traveling with considerable speed through the summits of the trees, and avoiding the drier hill country. Their name simply means woodman, indicative of their habits. They are hunted by the natives and sold to the Chinese. They inhabit the topmost parts of the trees, making rude and shallow cradles of leaves and twigs, in which they sleep, rising from their beds at 9 A.M. and retiring at 5 P.M. Except at night, they seldom descend to the ground. Their gait is awkward, and they display none of the agility of the chimpanzee or gibbon. Their long arms are possessed of great strength, and amid the durion trees, whose fruit they love, they can be seen performing feats requiring great muscular strength. As many as four species have been enumerated by some writers, and only one by others. Those figured in our illustration are not commonly, or not at all, seen in books. The fleshy disk in the male is a striking feature, and would seem to justify a specific distinction. They are slow, inert, and generally timid, but in close quarters, or thoroughly aroused, fight with ferocity.
The chimpanzee inhabits the west tropical coast of Africa, and is a species made familiar to our public by the general favorite, Crowley, under.care of Mr. Conklin, at the Central Park Menagerie. This interesting fellow has divided with Jumbo the favors of popularity, and certainly with his antics and devices affords capital amusement to the sightseers who throng about his cage.
The disposition of the chimpanzee under captivity varies greatly, some being recorded as gentle and uniformly amiable, others uncertain, capricious, and .vio-
lent. Mr. Crowley's expression of face is very rueful at times, and changes from a laughable state of lugubrious contemplation to one of whimsical curiosity in the appendages and property of his visitors. With his keeper, Mr. Cooke, he seems generally mild and loving, but his malice breaks out occasionally against some teasing spectator, and he bounds and rages with impotent struggles, suggesting very unpleasant consequences if the offenders were within his reach. He has been taught to use a spoon, and sits in a most comic manner at a table with a gravity and absurd aspect of comfortable etirement that is irresistible
The gorilla has been successfully kept in captivity in Berlin at the Aquarium, and gained an excellent name or friendliness and docility. A famous specimen kept there died of galloping consumption in 1877. The chimpanzee Urafuca was also an inmate of the Berlin Aquarium, and was greatly prized for her gentleness and general amiability. Of her death, Hartmann writes:
"She put her arms round Schopf's neck when he came , to visit her, looked at him placidly, kissed him three times, stretched out her hand to him, and died." The real pathos of this incident, more than a hundred tales about monkey cleverness, would reconcile us to acknowledging a relationship with these remarkable creatures.

THE WATER TOWER AT VICTORIA, TEXAS.
We are indebted to Mr. R. W. Stayton, of Victoria, Texa.s for photographs of the water tower at that


## THE WATER TOWER AT VICTORIA, TEXAS

place, together with the following interesting particulars of its partial collapse
" On the 20th of August this place was visited by a very severe cyclone, the wind reaching the velocity of about 80 miles per hour. We have a system of waterworks with a reservoir or standpipe 16 feet in diameter and 100 feet in height; the iron is one-half inch thick for the first 70 feet and three-sixteenths inch the re maining 30 feet. This pipe was erected with all the care and skill used in the construction of a steam boiler. During the storm this pipe was swayed to and fro, and the sides swerved in and out like some huge animal striving for breath, and finally collapsed as you see it in accompanying picture. The question among some of us is whether this collapse was induced or caused by the vibration or by the creation of a par tial vacuum from the violent wind passing over the top exhausting the air within, having nothing within to withstand the outer pressure, there being only 70 feet of water in the pipe at the time. I claim that the collapse was caused by the wind creating a partial vacuum, and others claim that it was caused by vibration alone. The upper edge of pipe, just where the points of iron are riveted on, is re-enforced by a heavy angle iron. I send you three different views of the standpipe.
In reply to our correspondent, we would say: The collapse of the standpipe seems to have been on the side from which the greatest pressure of wind occurred, as by inspection of the photograph the trees near the standpipe, which were probably overthrown at the
same time as the collapse, all lie in one direction, and that coincident with the direction of compression in the standpipe. From our inspection, the tornado was not central over the standpipe, but far enough on one side to give it the full force of its gyration. This in our opinion precludes the possibility of a vacuum being the cause of the collapse.
The thinness of the iron, three-sixteenths inch, and its great proportional area exposed to the force of the wind, will no doubt readily account for its swaying, buckling, and final collapse, if we only take into eriasideration the force of the wind in pounds per ${ }^{\text {a }}$, dare foo' of exposed area.

Tornado winds blow at a rate of from 90 to 100 miles per hour, and exert a force of from 40 to 60 pounds per square foot of area.

The mean area exposed above the water line, all of only three-sixteenths inch iron, may safely be taken at 300 square feet, which at 40 pounds per foot would amount to 12,000 pounds, or 6 net tons pressure on the windward side, with no support on the inside; while the leeward side was supported in tension by the small partial vacuum of a lee wind, which is equal to. the slight vacuum or draught caused by blowing across an orifice, as the other parties claim. We are confident that lateral pressure caused the collapse of the standpipe.

## decision relating to patents.

U. S. Circuit Court.-District of Connecticut CELLULOID MANUFACTURING COMPANY $v$. COMSTOCK \& CHENEY COMPANY.
hyatt patent-CElluloid covering for piano
Shipman, J.
It has always been the law that a patentable invention, although new and useful, must be the result of something more than and different from mechanical skill.
The existence of novelty and utility in a patented thing has been potent in the determination of the question of its patentability. (McCormick v. Seymour 2 Blatchf., 240 ; Furbush v. Cook, 2 Fisher, 288 ; Middleton Tool Co. v. Judd, 3 Fisher, 141.)
The decision in Hollister v. Benedict \& Burnham Manufacturing Company (113 U. S., 59; S. C., 5 Sup. Ct. Rep., 717) makes independent evidence of the existence of inventive skill, apart from inferences of such existence which may be drawn from novelty and utility, to be of greater importance than has been understood heretofore.
There was the creative faculty of invention in the abandonment of the ineffectual and mechanical attempt to make single celluloid keys in imitation of ivory single keys, and in the conception of the idea of covering a whole keyboard with a singlecelluloid sheet.
The patent in suit having been declared void for want of novelty by another court (Celluloid Manufacturing Company v. Tower, 26 Fed. Rep., 451), from which decision a notice of appeal to the Supreme Court had been given, a stay of the accounting was asked in this case; but as the facts in this case had features not brought out in the other case, held that there was no adequate reason for astay of the accounting.
Motion for rehearing denied.

## A Sweet Posy.

Take two moss rosebuds, half open, a spray of rose mary, and half a dozen of the flower heads of levender to which add a cluster or two of mignonette, three old clove carnations, a small bunch of white jasmine, and a few leaves of the sweet scented verbena (Aloysia citriodora). If to the above you add a half opened old Provence or cabbage rose, so much the better ; and the result will be a sweet posy that a duchess might like to have near her, and which, if tastefully put together, will delight the eyes as well as the nose. This sort of sweet posy was far more common in the days of our great-grandmothers than now. You will notice how careful the late R. Caldecott was to give his sweetest of early eighteenth century maids a dainty little posy to sniff at as they cross their tiny feet and sit demurely in the fine old Chippendale chairs he must have liked, or he would not have drawn them so well.
Well made pot pourri is delicious in winter, but during summer time every room in every house which has a garden ought to be full of fresh flower fragrance, leaving the mummied odors for the winter of our discontent. You must not for a moment fancy that the above recipe for a sweet posy is a bit of literary labor out of my own head, so to say. The truth is, I found it written inside the cover of an old herbal, and to-day I tested its efficiency, and having found it not wanting, I offer it to every Lady Corisande who reads the Garden.

The capital stock of the American Bell Telephone Company is ten millions of dollars; and the capital stock of the various sub or license companies is fiftyfour millions of dollars, or in all sixty-four millions of dollars. The Bell stock sells in market at nearly double its face value. The aggregate of the license companies' stock sells for about one-half its face value.

## TORRICELLI's PRINCIPLE AND MERCURT FOUNTAIN

 t. o'CONOR SLOANE, ph.d.In a preceding article of this series, a variation on a well known experiment was described, in which a plate of glass was held against the mouth of an in verted tumbler full of water by atmospheric pressure Those of our readers who tried the experiment probably found that the plate of glass was in very unstable equilibrium. It trembles as it holds its position, ready to fall on a slight impulse. By creating a partial vacuum within the glass, by means of a column of water, the plate will adhere strongly to it.
A piece of glass or a perfectly flat piece of thin board will answer for the purpose. A hole is perforated so as to pass through the center, and a short glass tube is fitted therein. If a glass plate is used, the hole can be drilled with a broken file and spirits of turpentine in a lathe or rapidly rotating bit stock. A piece of rubber tubing is slipped over the end of the tube as it projects from the plate. A wineglass or tumbler with a very true edge and a bowl or receptacle for water complete the requirements. The glass is first filled as full as possible of water. By immersion in the bowl, the glass and rubber tubes are also filled, and the lower end of the rubber tubing is pinched or corked so as to close it. The plate is now placed over the mouth of the glass, the tube is released or uncorked, care being taken to keep its open end under water while and after opening it. On raising the glass above the water and inverting it, the plate, when it is a couple of feet above the water bowl, will be found to adhere with considerable tenacity. If the tubing is long enough, it may be raised to any height, and will adhere the harder the higher it is raised. The column of water establishes a partial exhaustion or suction. Its weight is not supported by the glass, but by the air. The glass supports a portion of the weight of the atmospheric column. The air, pressing upwardsagainst the plate, holds it in position.
A very good way to conduct this experiment is to do it over a wash basin. The wineglass and tubing may all be immersed together, the plate put over the mouth of the glass while all are under water, and the glass then may be lifted up and held over the water without fear of the plate falling off.
The pressure on the plate is a function of the area of the glass and of the relative height of the water column used as a measurer of atmospheric pressure. The experiment is interesting, as proving that water will not always escape from an opening. If a second hole were made in the plate, air would bubble in, but. no water would run out. For this reason hose that is used for the suction pipe of pumps is stiffened by a metal helix, or coiled rod or wire, within it, so as to be incapable of collapsing.
From early times, the principle of suction, so called, has been applied to pumps. It was found that water would only rise about thirty-three feet above its level under the efferts of suction. As soon as Pascal and Torricelli had reasoned out the existence of weight in the atmosphere as the cause of water rising in an exhausted tube, the corollary that a column of mercury could only rise to one-thirteenth of this height necessarily followed. A column of mercury one inch in height will produce the same pressure per square inch that a column of water thirteen inches high develops. Availing ourselves of this principle, a comparatively low column of mercury may be made to produce quite a strong hydraulic pressure, and will drive a jet of water far above its own level.
A simple apparatus for this experiment nay be made from a bottle, a funnel, and some tubing. A straight piece of glass tubing is drawn out in an alcohol lamp or Bunsen gas burner to a fine straight or Bunsen gas burner to a fine straight
jet. Another piece has one end bent around and up. Both pieces are passed through apertures in a cork, as shown in the cut. A funnel is attached to the bent one, the bottle is filled with water, and the cork is tightly placed in position in the neck of the bottle. One finger is placed over the end of the jet tube, and mercury is poured into the funnel. This creates a strong pressure. The finger is removed from the tube, when a strong jet of water springs into the air, rising several feet above its source, and presenting the somewhat paradoxical effect of a fountain throwing water above the level of its'reservoir. A six inch column of mercury will throw water in this way to a height of four or five feet. As the pressure is so strong, it is sometimes necessary or advisable to hold the cork down, lest it should be blown out.
A simple bent tube, with a bulb and jet, shaped as is the one seen in the foreground, may be substituted for the bottle and tubes. A more compact arrangement may be made by a glass blower. The general construction is shown in the cut. A funnel bulb and a plain bulb are blown upon a tube which is bent into

U shape between them. For jet a piece of capillary tube of the section and size indicated is employed. A small glass cock comes between the jet and the water bulb.
To use it, it is partially filled with water, until the lower bulb is full. The cock is then closed and mer cury poured in until the upper bulb is full of the metal, or nearly so. Then, on turning the cock, a jet of water is thrown up, it may be nearly to the ceiling of an ordinary room. A good size for the bulbs is two inches in diameter. Strong tubing must be used


## mercury fountain. i.

for the rest of it. A mercury column of six or eight inches in height may be allowed for.
In handling mercury, care is requisite on account of its weight. It often introduces the element of in stability, where water would be safely held. If it is scattered about, it is not only annoying, but injures gold articles. Hence, in working with it, all jewelry, watch chains, or watches should be removed.

Mileage of the Circulation.
In preparing lectures on vital or animal mechanics
and twenty miles per year. Supposing, therefore that a man who has lived eighty-four years could have one blood corpuscle floating all that time round his circulating channels-as a planet circulates round a sun-that corpuscle would have performed at the close of the time named the grand tour of five mil lions one hundred and fifty thousand eight hundred and eight miles. The heat generated by friction in this motion of the blood we may take as included in the normal constant of ninety-eight and four-fifths deg. Fah. What the excess would be when, as in fever, the rate of passage may extend to over double the normal, or fourteen miles an hour, at full tension, can only at present be estimated on data which have to be formulated, and are, therefore, inexact. But here a most important field is open for inquiry, and includes the questions: 1. Is the excess of febrile heat in pyrexia due to increased pulsation at full tension? 2. Is the increased motion due to the high temperature? 3. Are both dependent on one common cause? We really know nothing about pyrexia until these questions are determined. A pigeon lives always at what in the human subject would be the highest pyrexia. Its temperature is $108^{\circ} \mathrm{Fah}$. ; its arterial pulsations are 140 beats per minute; and it has a surface of body presenting the fullest resistance to conduction. Does this truly pyrexial animal owe its normal high temperature to its rapid circulation? Does its high temperature give rise to its rapid circulation? Or, are the heat and motion dependent on one common

## Effect of Light and Water Colors.

Mr. William Simpson records in the London Times the results of an experiment in which washes of color have been exposed for fifteen years, and portions of the same wash preserved from the light, so that they can now be compared. The list embraces thirty-one pigments, including the most of those generally used by water color artists. The washes were made in stripes upon cards; and the cards afterward were cut in two, so that the exposed and unexposed tints could be compared exactly where they were separated. The exposed slips were pasted on a sheet of paper, and placed in a frame, which was hung on a shutter of a window with an east light. Here they remained for fifteen years.
The following is the list of colors, with Mr. Simpson's remarks: Yellow ocher unchanged; Indian yellow has faded considerably; lemon yellow is not perceptibly affected; gamboge has faded; Newman's permanent yellow unchanged; cadmium yellow, this has not faded, but has seemingly become of a browner tinge. Chrome yellow faded considerably ; the slip not exposed seems to have become more orange, but, unfort unately, I had not noted at the time which chrome had been used. Rrown pink :has faded, but it has stood better than might have been expected from its reputation. Emerald green scarcely changed. Burnt sienna unchanged. Vandyke brown unchanged. Sepia, this shows a very slight tendency to fade. Roman sepia, this may have faded also, but, like the common sepia, the change is not very perceptible. Burnt umber unchanged. Bister unchanged. Brown madder, this color has lost a little of its redness. Light red unchanged. Vermilion shows no change. Indian red unchanged. Crimson lake, this color has all but disappeared from the paper; at one side where the color was laid on deeper a brown streak still remains. Carmine, this, like the lake, has entirely gone, but where the carmine was laid on deeper, a faint brown streak is still left. Madder lake, this color has stood well, but it is now a little less red, and more of a purple. Purple madder, like the other madders, this has stood, but seems to be changed very slightly in tone Cyanine blue, seemingly unchanged. Prussian blue unchanged. French blue very slightly faded. Cobalt, I can detect no change in this valuable pigment. Ultramarine is, of course, unchanged. Newman's azure is unchanged. Indigo, where there was a rather deep wash of this color the exposed slip shows now an exceedingly light tint of gray; in fact, it has nearly left the paper white, but has not vanished so completely as the crim-
RICELLI'S PRINCIPLE. MERCURY FOUNTAIN. II. nd the carmine.
practical points of new or renewed study have come before me, some of which are, I think, deserving of brief notice. One of these is the question of the mileage of the blood current of a healthy adult man, in whom the current shall be traversing the conduits of the circulation under the direction of sixty-nine strokes of the heart per minute, at the assumed propulsion of nine feet at each left ventricular pressure.
The distance traversed would, I estimate, be at the rate of two hundred and seven yards per minute, or seven miles per hour, or one hundred and sixty-eight miles per day, or sixty-one thousand three hundred

A circular has been issued from the Navy Department directed to all inventors of torpedoes or those interested in the subject, inviting them to communicate with Commodore Sicard, Chief of Ordnance. Seventy five thousand dollars was appropriated at the last session of Congress for the purchase, manufacture, or testing of torpedoes, and a board of naval officers, of which Captain A. P. Cooke is president was appointed several weeks ago to examine and test such torpedoes several weeks ago to
as may be submitted.

## ENGINEERING INVENTIONS

A car coupling has been patented by Messrs. John B. Stone and John Pennington, of Pewa mo, Mich. Within recesses of the drawheads are U-
shaped latohes which have cross pieces at their outer shaped latohes which have cross pieces at their outer
ends, the parts being readily replaced in case repair is necessary, no springs being required, and the strain o the coupling pin being relieved by the latches.
A governor connection has been patent ed by Mr. Robert J. Hotchkiss, of Downsville, N. Y Combined with the governor shaft is a toothed wheel
with two or more series of teeth of different diameters winions for engaging the teeth, and means for inpart pinions for engaging the teeth, and means for inpart-
ing motion from the engine to one or the other of the ing motion from the engine to one or the other of the
pinions, in order to change the speed without changin the adjustment of the governor or increasing or diminishing the steam supply.
A car coupling has been patented by Mr. Charles R. Harris, of Philadelpha, Pa. Accora
ing to this invention the drawhead has a perpendich ing to this invention, the drawhead has a perpendicu
lar opening, and there is a spring actuated coupling pin arranged to move in a horizontal line, and released to be thrown to place within the drawhead when the
cars come together, the device being one which can be cars come together, the device being one which can be
used with the ordinary coupling with the employment of a special form of link.

## mechanical invention.

A shaft coupling has been patented by Mr. Benjamin F . Applegate, of New Albany, Ind. Hal pled, having interlocking driving shoulders, and co pled, having interiocking driving shoulders, and one
half clutch having peripheral screw threads and an internally screw threaded sleeve engaging the threads of the other half clutch, with other novel features, making lost motion or back lash, and with which wear fron
long use may be readily taken up.

## agricultural inventions.

A harrow has been patented by Mr. Yiley Cox, of Boise City, Idaho Ter. It is formed of
two sections, so arranged that the forward ends of each two sections, so arranged that the forward ends of each
are practically in the center of the sulky, together in are practically in the center of the sulky, together
operitio forming amost a solid harrow rame, ,o th
one section will in part brace or support the other.

A fertilizer distributer has been patent ed by Mr. Peyton A. Lee, of Coushatta, La. It is adapted for use in connection with the running gear of an
ordinary wagon, the bed being driven from the drive wheel, and a breaking roller journaled in the sides of
the main frame to break or disintegrate the manure, defiectors being pivoted for adjustment to distribute or drint he fertilizer in wide or narrow rows as may be sired.

## miscellaneous inventions,

A necktie fastener has been patented by Mr. James French, of New York city. It is formed with an opening or passage for a portion of the tie, so
the fastening of this portion secures the fastener in the fastening of this portion secures the fastener in place, avoiding stit
fastener separately.
A weatherboarding attachment for try squares has been patented by Mr. William T. Seargeant,
of Marshall, Mo. It is a double legged meatilis ccriber,
formed with a means for attachment to the stock of the formed with a means for attachment to the stock of the
square, and carrying a scribing point, making a device which is cheap, durable, and efficient.
A soap dish has been patented by Mr. George H. Laxton, of Jersey City, N. J. It is so made
that it can be hung ap on pegs, placed and held on the that it can be hung up on pegs, placed and held on the
edge of a wash tub or stood upon a level surface, having corrugations
A combined button hook and cork screw has been patented by Messr. Louis B. Prahar
and Charles S. Shepard, of Brooklyn, N. Y. The invention covers several methods of hinging a corkscrew
to a button hook in a simple manner, whereby it can be conveniently carried in the pocket.
A bicycle stand has been patented by Mr. Albert W. Gump, of Dayton, O . Its construction
is such that, while it may be compactly folded for trans is such that, while it may be compactly folded for transportation, it is readily adjustable to hold a aicycle in
either an upright or an inverted position, or it can be either an upright or an inverted position,
conveniently set up to form a camp stool.
A rein holder has been patented by Mr. Neal McGoldrick, of Brooklyn, N. Y. It consists of
two rigid jaws and two pivoted and spring actuated ${ }^{t}$ wor rigid jaws and two pivoted and spring actuated jaws, one orposite ach of the ripid jaws, the device be ing also provided with a clamp bo
A medicine chest has been patented by Mr. Terry J. Hutton, of Fergus Falls, Minn. The in
vention consists in a peculiarly partitioned and convention consists in a peccliarly partitioned and con-
structed chest of a fat shape, composed mainly of upper
and lower chest sections hinged togethei and provided and lower chest sections hinged together and provided with various conveniences.
An infant's toilet table has been patented by Hannah Crocker, of Plainffield, N. J. The
whole table is a low one, convenient for use by the nurse when having the child on her lap, and consists in nurse when having the child on her lap, and consists in
a combination of attached tables of peculiar construc-

A chaff , guide for grain lseparators ha been patented by Mr. Daniel O.Dockendorf, of Sheldon, Ia. It consists of perforated plates with hooked fingers, and other novel features, intended to carry all coarse
foreign matters beyond the shoe, so that the chaff will be prevented from carrying grain with it to the stackers.
A wheel hub has been patented by Mr Andrew W. Lane, of Janesville, Cal. It is formed of
iron, in two halves, with flanges having radial ribs for iron, in two halves, with flanges having radial ribs for
receiving the inner ends of the spokes, it being adapted for hubs of wagon wheels of all kinds, and the hub and box fastening being adapted for use in all climates,

A revolving target has been patented A Mr. William H. Adams, of Fort McIntosh, Laredo, Texas. The invention consists principally of a revolvng center frame constructed to receive several targe
rames, which may be easily detached from the frame frames, which may
and replaced therein.
A gravity latch has been patented by Mr. Uriah D. Mihills, of Fond du Lac, Wis. It has but Mr. Uriah D. Minills, of Fond du Lac, Wis. It has but
few parts. and is simply made, but can be used for either a mortise or rim lock, and is reversible without disturbing the tumbler and follower, the latch and key being the only parts required to be reversed.
A chair has been patented by Mr. Daniel Smith, of Santa Roosa, Cal. The invention consists of a simple and inexpensive rocker frame, which may be applied to ordinary chairs of any size to make rockers of
them, the rocking motion being given by springs, the them, the rocking motion being given by springs, the
A bill file has been patented by Mr. Joseph Gottschalk, of Baltimore, Md. This invention relates to that class of paper flles in which are used movable puncturing and transfer wires, and covers
novel devices by which the wires may be held apart novel devices by which the wires may be held apart
when adjusted, with other novel features of construc when
tion.
A revolving show frame has been patented by Mr. William H. Genung, of Madison, O. It con-
dists of a hollow post fitted to a spindle journaled on a sists of a hollow post fitted to a spindle journaled on a
suitable base, containing mechanism by which the spinsuitable base, containing mechanism by which the spin-
dee and poost are rotated, the post carrying hinged arms and cords, on which is fastened a fabric cover to which goods may be attached.
A composition for preserving food has een patented by Mr. William Radam, of Austin, Tex.
 igned for preserving fruits, vegetables, meats, and ther perishable articles.
A chair has been patented by Mr. George J. Shults, of Avoca, N. Y. It has a pivoted back, corposed of upper and lower sections jointed together section is made to move bodily forward in an approxmately upright position, 'with other novel features de-

A bundle carrier for self-binding har vesters has been patented by Mr. Charles F. Morgan, of
Taylor, Minn. The construction is such that when the desired number of bundles has been received upon the platform the driver can, by a foot lever, cause them to lide to the ground, the platform itself returning to position to ain receive bundles
A submerged force pump has been patnted by Mr. Lawrence A. Kelly, of East Oakland, Cal. It has hollow piston rods pivotally connected with a
centrally pivoted oscillating hand lever, the valves riscentrally pivoted osciliating hand ever, the valves ris-
ing and falling as the pistons work up and down, the ng and falling as the pistons work up and down, the
water in thepiston rods flowing back when the pump is ot operated, so there is no liability of freezing.
A water conductor and receiver has een patented by Mr. William H. McKenzie, of Waver-
, o . It is a novel construction of sheet tin, zinc, or ly, $o$. It is a novel construction of sheet tin, zinc, or
similar substance for collecting the condensed moisture on store and other windows, and providing a holder to
recive the same being allso useful to receive water run. receive the same, being also useful to re
ing off when the windows are cleaned.
A wire fence gate has been patented by Mr. Theodor Ruediger, of Chaska, Minn. The ends htter can be closed up to a post, in such positions as it is desired to have a gate. This invention provides devices hereby such vertical bar can
o or detached from the post.
A compound for protecting walls has been patented by Mr. Frederick M. Ruschhaupt, of Milwaukee, IWis. It consists of variable proportions of ii, sulphur, and gasoline or benzine, to be prepared and applied according to the porosity of the
A sweat pad for horse collars has been patented by Mr. James H. Philpott, of Rising City, Neb.
The design includes a leather or thin flexible top pad, The design includes a leather or thin flexible top pad,
with thicker suffed side cloth sweat pads attached, so hat the hames will lie close to the horse's neck, and the pad, being thin on top, will take but little from e size of the collar.
A motor has been patented by Mr. William Lay, of omaha, Texas. This invention covers a
novel form of propeller for boats, in which the paddles novel form of propeller for boats, in which the padades
are mounted to turn on a crank eccentrically, so they nater projected out as hey withdrawn they rise the dip of 1 water, and be withdrawn as they rise,
blades being readily regulated as desired.
A tree and post supporter has been pat ented by Mima Wrightsman, of Harper, Kansas. It
consists of a pair of arms pivoted to each other and dapted to grasp a tree or post to be set, and provided with teeth or pins which may be drven int the ground to hold the tr
A tooth separator has been patented by Mr. Henry A. Parr, of New York city. The device conists of an angular bar, with an end tapered to a point, and arms curved into semicircular form, making parallee
sockets, the arms having screw threads, making a device by the use of which teeth can be readily separated or pread apart to any desired extent.
A pencil sharpener has been patented y Mr. William P. Marston, of Toronto, Ontario, Canaverse bars bent at an angle to the plane of the plate, the dges of the bars forming a series of cutting edges on
 cially designed for sharpening slate pencils.
A clothes drier has been patented by
hollow supporting stand is a vertically adjustabl they will be free to turn about their central supports and the parts may be adjusted to any position desired, without liability to wabble.
A drag saw has been patented by Mr. Jered P. Cyphers, of Holton, Mich. Its construction is such that the saw may be driven and the various ad-
justments brought about by a single operator, the de justments brought about by a single operator, the de-
sired elevation and a proper and uniform motion given sired elevation and a proper and uniform motion given
to the saw, the log being advanced the requisite disto the saw, the log
tance with each cut.
A castrating instrument has been pat ented by Mr. James Trullinger, of Silverton, Oregon. consists of a serrated cutting blade arranged to coact with a serrated jaw, the blade carrying a block or ja corrugated to it he corrugations of the malin jaw, and
a knife of novel construction being pivotally connected the serrated cutting blade.
A bell alarm for elevator cars has been patented by Mr. John W. Metz, of Manchester, $O$. It
construction is such that the person running the ele construction is such that the person running the ele-
vator is automatically notified every time the floor of the.building is reached, and persons desiring to ride up and down are also notifed that the car is just arrivin at or departing from the floor.
A hoisting machine has been patented by Mr. Friedrich H. A. Peters, of Detroit, Mich. The on the main hoisting drum, with devices for operating the pawls, and \a brake attachment, the construction being novel in many details, and the machine durable nd effective in operation
A fireproof attachment for wooden beam ceilings has been patented by Mr. Dennis $O^{\circ}$ Connor. of New York city. It consists of blocks of baked
clay or other suitable material, formed with groove flanges, inclines, and shoulders, for convenient attach ment, and so made as to cost but little more than ordi
nary lath and plaster. nary lath and plaster.
A protector for washboards has been patented by Mr. Elbert E. Alderman, of Portville, N
Y. It can be attached to any washboard, and is de signed to protect the front of the washwoman's clothe from the spattering water, while by its yielding and re acting movement it permits the body to descend far
An and the prope $h$
An animal trap has been patented by Mr. Richard Matthai, of San Francisco, Cal. It is
simple device to place in the burrows or runways gophersand other burrowing animals. It has no sharp points or prongs, but spring arms are held open by
disk, which, being struck by the gopher, the arms grass the body of the animal.
A tether has been patented by Mr. James H. Taylor, of Greenville, S. C. By this invention
the rope by which the animal is held is so connected that the animal will be given a free, wide range, but no be in danger of being caught by slack rope, while the
arrangement is such that the main strain on the standarrangement is such that the main strain on the stand ard is at a point near the ground.
A screw propeller has been patented by Mr. Cotesworth P. Wetherill, of Woodville, Miss. The relatively to the axial line of the shaft of the whell, and forwardy in the direction of the motion ahead produc ed by the propeller, in a manner intended to give less

A button has been patented by Mr. Pierre e. Raymona, of Grenoble, France. It is a novel
form of spring button, intended not to differ materially in appearancefrom an ordinary button, but more especially designed for use as a glove fastener, in which case
the searate parts are applied on opposite lepels of the the separate parts are appied on opposite lapels of the
glove, when the buttoning is effected by pressing the ts together in position
A swinging countershaft frame and belt tightener has been patented by Mr. Gustav H. W. Sim mon, of St.Louis, Mo. Its construction is such that by
moving a weight away from or toward a pivotal support of a lever the desired strain or tension is brought upon the belt, according to the requirements of the work, the device a
A dry ore amalgamator and separator has been patented by Mr. Otto Matzke, of Gunnison,
Col. Its operation is such as to give a jerky recipro cating motion to the amalgamating trough, whereby the crushed ore is carried successively over the mercury
contained in several compartments, the construction contained in several compartments, the construction
and arrangement of parts differing from previous ma

A washing machine has been patented by Mr. George Mowry, of Derby Station, Pa. This in vention relates to machines in which a rocking rubbe is used, having a semicircular bottom on which are
semi-circular transerese strips or ribs, so that the clothes are not thrown about and beaten, but arerubbed between the
the rubber.

A portable roof has been patented by Mr. Clark McE. Keeler, of Haskins, O . It consists o a vertical post with feet and braces, anda roof formed and down on the posts, with means for raising and being designed for temporary uses by farmers and outdoor workmen.
A weather strip for windows, etc., has city. It consists of a fexible strip of rubber or similar material, to project from one part of the joint to be closed, and entering at its projecting end within a fute the parting strips and sashes of the window and meet

A broom has been patented by $\mathbf{M r}$ William A. Nixon, of Maple Rapids, Mich. This in vention covers a pair of metallic frames, secured to op-
posite sides of the broom, with a socket for receiving a
acted catch carried by one of the brush holding frames, he handle being calculated to facilitate frequent re-

A fiber machine has been patented by Mr. James Kennedy, of Kingston, Jamaica, W. I. This invention consists partly in making the scraping block in such manner that the feeding may take place frofn the side of the machine, and permit the stalks, leayes,
etc., to be drawn outward, thereby making a positive etc., to be drawn outward, thereby making a positive
feed, the scraper block being supported by spring arged to prevent recoil and vibrating action.

A baling press has been patented by Mr. George Ertel, of Quincy, Ill. It is for baling hay,
traw, and other material, and is so constructed that it traw, and other material, and is so constructed that it may be fed either at the top or at one side, and may be perated when fed from the top without closing the top feed door, or arranged so that ether of the top or side the plunger.
A bench stop has been patented by Mr. George B. Gardner of Lynn, Mass. It consists of main plate, with grips, dogs, and other novel features the bench, whereby two men may use the same side of the bench, on different work, making a readily portable nd convenient appliance for carpenters and other woodworkers.
A winding stop for main springs has It is anted by Mr. Charles Morlet, of Jersey City, N. and breaking of watch mainsprings, and has a winding wheel revolving with the arbor, and a toothed wheel revolving with such wheel on the arbor, with a pin on the arrel adapted to engage the teeth of the toothed wheel, and several other novel features.
A wire stretcher has been patented by Mr. William N. Huling, of Lampasas, Texas. It conists of a stretcher frame composed of side bars and a ross bar, a hinged loop on one end of the side pieces nd a rotary shaitt at the other, with ratchet, pawl, and ing broken wires, making a stretcher which costs but ng broken wires, making a stretcher
little and is not liable to get out of order
A fire and burglar alarm has been patnted by Messrs. Leander E. Thomas and Ira Wood, of sm , with a lever rigidly fixed to an escapement lever nd a cord formed with a loop which is passed through n eye and carries a be set in an
matically.
Drawers designed to act as a support Wille spine form the subject of a patent issued to Mr. William R. Standen, of New York eity. The invention sections of the band are cut so that when adjusted the band will conform to the general contour of the body,
the back of the band being permanently closed, and the back of the band being permanently closed, and
the adjustment as to size being made from the front.
Parquet flooring forms the subject of a patent issued to Emile F. Guerin, of Paris, France. The bards or strips for the flooring have grooves in their ends which serve to receive metal tongues that are secur-
ed to the side edges of the beams, thus making a flooring $d$ to the side edges of the beams, thus making a flooring in which no nail or screw heads will be visible, and in
which the boards can contract and expand without which the boards can
warping or throwing.
A vehicle spring coupling has been patnted by Mr. Frederick W. Wurster, of Brooklyn, N. Ceceive the closed ends of U -bolts or clips, are yokes uniting the arms of the clips below the spring, and niting the arms of the clips below the spring, and
lamping nuts on the clip arms, to facilitate the attachent of the spring and improve the construction of the oupling.
A yellow coloring matter has been patanted by Mr. Fritz Bender, of Muhlheim, Hesse, Ger-
nany. It is a brown powder which dissolves easily in old water, the solution being colored red by ammonia or soda lye and precipitated by hydrochloric acid, being soluble in concentrated sulphuric acid with a brilliant violet color, and to be fixed on cotton without any ordant with a bright yellow shade
A mop holder has been patented by Mr. George W. Fuller, of Westmoreland, N. Y. It has an ecentric spring lever for opening and closing the bail or from and towardithe crosshead of the holder, and made of stout spring wire freely coiled around side runnions on the handle, in a form that admits of solid d strong construction.
A pump has been patented by Messrs. dam R. Brown and Wiiliam H. Bell, of Simpsonville, Ky. Its construction is such that the valves will be socmerged while the piston and pump cylinder will be
located at the top of the well or cistern, and also procated at the top of the well or cistern, and also pro-
vides for the balancing of the column of water in the discharge pipe of the pump, so as to reduce the labor of pumping.

A saddle fastening has been patented by Mr. Winfield S. Lapham, of Clemmons, Col. The addle strap and girth connections, for hold ing riding or pack saddles to animals, the device being simple and nexpensive, allowing the saddle to be fastened and unfastened quickly, and to be tightened when necessary without requiring the rider to leave the saddle.
A sandpapering and polishing machine as been patented by Mr. Thomas B. Marshall, of
idney, Ohio The invention covers a wheel upon the ace of which are springs covered with felting and sackg, above which is a band of sand paper or a sand and, the sacking and band being secured to the face of the wheel, making a device whereby a flat, oval.
and concave surface may be sandpupered and polished and concave surface may be
with the grain of the wood.
An electric water level indicator has een patented by Mr. Charles H. Wickersham, of Potts-
rise and fall of water in inchesand fractions of an Inch,
and provides for an annuncintor for indicating at a dis
tant point the variations in water level beyond the pre scribed limits, and also to indicate in which one of sev ral boilers the water is too high or too low.
A hair crimper has been patented by Dina and Rudolph Jordan, of New York city. It consists of two shanks pivoted at one end and connected by a spring clasp at the opposite end, the face of one
shank having a groove and the face of the other fitting in the groove, making a device by which the air may be in the groove, making a device by which the air may b
conveniently held in the crimper as long as desirable to form a perfect curl.

A bolt has been patented by Mr. Henry A. Brown, of Toledo, $\mathbf{O}$. It is a round bolt threaded a one end to receive a nut, and having an oblong counter simk head, to be received in a countersink or recess of
similar form in the tire or other metal work where the bolt is to be used, thus preventing the bolt from revolv ing while the nut is turned on or off, and avoiding the weakening of the metal by making a round countersink

A headstall for stock has been patented by Mr. Francis M. Medling, of Rutherford Depot, Tenn. It is so made as to carry a spring with points that res apon the nose of the animal in a way that will not in terfere with its ability to graze or drink, but, on a the points will prick the nose and detertheanimal from accomplishing its object

A stethoscope has been patented by Mr. Louis D. Radzinsky, of McKeesport, Pa. Its cup conductor of external sounds, and it has a peculiarl constructed tambourine, or drum, whereby the sound from different regions of the chest or other part
of the body are intensified, the earmuffs being also of soft rubber, with an ear canicula of hard rubber o similar material.
An incubator has been'patented by Mr Frank Rosebrook, of Elmira, N. Y. Combined with the boiler is a hot water tank divided by partitions into channels that conduct the water frst to the outside o necting the hot water tank and the boiler, and wate pans resting upon the pipes, making an improved ar angement for the uniform distribution of heat neces sary for hatching.
A gas heating attachment for reversi ble sad irons has been patented by Mr. Henry C. Fox vansville, Ind. This invention provides a burne ncreased consumption of gas,"and for a more perfect general distribution of the Hame over the interior sur also applicable to cylinders or other hollow bodies re quiring to be heated on their interior
A ditching machine has been patented by Mr. John C. Sage, of Gainesville, Ga. It is mounted on a car, with a vertically adjustable crosspiece carrying plows, with movable carriages and conveyer frames ends vertically, and flanged conveyer belts and means for rotating them, the machine being calculated fo digging ditches, excavating the bound calculated for nd similar work.
A harness hook has 'been patented by Mr. John H. O'Donnell, of Winnipeg, Mauitoba, Cana da. It is intended especially for use as a check rein
hook, the base, by which the hook is secured to the hook, the base, by which the hook is secured to the
saddle, having at its forward end a lateral notch to receive the free end of a latch hook or open link pivoted to turn in a plane at right angles to that of the hook proper, so the rein cannot be released until the link is adjusted to open position.
A straw-board lining machine has been patented by Mr. Arnold W. Schlichte, of New York sever the web which constitutes the lining material be tween each sheet of board after the material has been pasted and pressed to place upon the board, the parts being so arranged that sheets of board of varying size
may be used without changing the adjustment of the machine.
A burglar-proof safe has been patented by Messrs. John W. Norris, of Chicago, Ill., and Tho mas M. Brintnall, of Maryville, Mo. The invention the safe door by dovetail joints, providing a construc tion to connect the bolt-carrying devices without the introduction of screws or threaded bolts, and making the bolt-carrying devices.
A watch has been patented by Mr Domingo T. Garcia, of Guadalajara, Mexico. It ha of the wheels having more teeth than the other, a pinion engaging the teeth of both crown wheels, with a crown cape wheel on its shaft, with other novel features, very accurate.
A clock has likewise been patented by he principle of differential gearing. It has but ffew parts, two toothed wheels being mounted on the same shaft, one fixed and the other loose, an escapement an chor pallet engaging with both wheels, the loose es capement wheel having part of its face cut out and a cir eatures, the use of the usual multiplying train being dispensed with.
A parasol for children's carriages has been patented by Mr. John McAuliffe, of Jersey City N. J. A notcr.ed runner is held on a clamp attachable with a notched collar supporting the braces, a cord from the upper end of the stick passing through the runner and a spring on the stick engaging with a slot in the runner, so the parasol can be supported in an angular position, and opened and closed from the top or out side.

Busimess and Personal.
The charge for Insertion under this head is one Dollar a line for each insertion; about eight words to a line. as early as Thursday norning to appear in next issue.

Engineers, capitalists. Illustrated working models of Friciol Muns. Garaam Nons, so John St., N.Y. $\underset{\text { Friction }}{\substack{\text { and } \\ \text { N. J. }}}$
All Books and App. cheap. School Electricity, N. Y For Sale-An A 1 refr. telescope, $41 / 4$ inch, by Byrne, ey City.
State rights on patent uterine supporter, No. 350,246, sale. Mrs. M. F. Hayres, Atho Center, Mass. Brain Work
equires for its successful and pleasurable pursuit a full, niform, and continuous supply of pure, rich blood to lood becomes foul with bile, the brain is poisoned and verstimulated with the excess of blood, which the irriated heart sends to it with frantic impulses. Dizziness, eaviness, loss of memory, impossibility of application and preserve not only the brain,'butthe whole system, in the best working order, Dr. Pierce's "Golden Medical iscovery" will be found invaluable.
Second-hand Tools For Sale by Poole \& Hunt, Baltinore, Md.-One planing machine, will plane $85 /$ wide,
$7^{\prime \prime}$ high, and $16^{\prime} 6^{\prime \prime}$ long; one planing machine, will lane $30^{\prime \prime}$ wide, $26^{\prime \prime}$ high, and $5^{\prime}$ ' ${ }^{\prime \prime}$ long; one planing one double epared chasing lathe, will swing 24'" dia., $8^{\prime}$
$6^{\prime \prime}$ long; onedrill grinding machine; one small punching nd shearing machine, with flywheel and clutch starting

Haswell's Engineer's Pocket-Book. By Charles H. aswell, Civil, Marine, and Mechanical Engineer. Giving Tables, Rules, and Formulas pertaining to Mechan-
ics, Mathematics, and Physics, Architecture, Masonry, ics, Ma Vematics, Mills. Limes, Mortars, Cements, etc. 900
Steam Vessels
pages, leather, pocket-book form, $\$ 4.00$. For sale by
ald pages, leather, pocket-book form, ${ }^{\text {\$4. }}$.
Munn \& Co., 361 Broadway, New York.
A Mussulman gentleman, resident of Lucknow, India, wants employment in America. He is a matriculated cholar of Englisb, a professor of Persian and Arabic philosophy and religion. A poet of his own language
(Urder). For full particulars and testimonials apply to Mirza Mohamed Hadi Katra Azam Beg-Nakhas, P. o Mansurnagar, Lucknow.
Woodworking Machinery of all kinds. The Bentel Margedant Co., 116 Fourth St., Hamilton, o.
Foreman for machine tool department of a large sta-
tionary and portable engine works. Must be a draughtstionary and portable engine works. Must be a draughtsman and familiar with valve movements and high speed To the right person there is an opportunity to secure the position of superintendent of the establishment. Adress. stating age, T. E. J., P. O. box 773, New York.
Blake's Improved Belt Studs are the strongest and weed \& Co., 83 Chambers St . Nubber Be
Engines and boilers, 为 to 4 H. P. Washburn Engine o., Medina, 0

A Catechism on the Locomotive. By M. N. Forney. ith 19 plates, 227 engravings, and 600 pages. 82.50. Sent New York.
Concrete Apparatus, etc. Ernest Ransome, S. F., Cal. The Knowles Steam Pump Works, 44 Washington ued a new catalogue, in which are many new and improved forms of Pumping Machinery of the single and aplex, steam and power type. This
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. Guild \& Garrison's Steam Pump Works, Brooklyn, N. Y. Pump

Nickel Plating.-Sole manufacturers cast nickel anLest pure nickel salts, polishing compositions, etc. $\$ 100$ Sole manufacturers of the new Dip Lacquer Kristaline Complete outtft for plating, etc. Hanson, Van Winkle \&
Co., Newark, N. J., and 92 and 94 Liberty St., New York. Iron Planer, Lathe, Drill, and other machine tools of and Send for catalogue of Scientific Books for sale by
Gunn \& Co., 361 Broadway, N. Y. Free on application. Timber Gaining Machine. All kinds Wood WorkSupplement Catalogue.-Persons in pursuit of inforation of any special engineering, mechanical. or scien entific Amprican Supplement sent to them free The Supplement contains lengthy articles embracing the whole range of engineering, mechanics, and physical
science. Address Munn \& Co., Publishers, New York. The Improved Hydraulic Jacks, Punches, and Tube Friction Clutch Pulle, Ti Tight and Slack Barrel Machinery a specialty. John
Greenwood \& Co., Rochester, N.Y. See illus. adv., p. 28. Belting, Hose, and Packing of all kinds. Manufacturers' supplies
Chambers St., N. $\mathbf{Y}$.

Catarrh Cured.
clergyman, after years of suffering from that loathsome isease, catarrh, and vainly trying every known remedy,
t last found a prescription which completely cured and ved him from death. Any sufferer from this dreadfu disease sending a self-addressed stamped envelope to
Dr. Jawrence, 212 East 9th St., New York, will receive the recipe free of charge.
Lick Telescope and all sm
Gun and Machine Makers' Screwdrivers, drop forged Wrint Steel. Billings \& Spencer Co., Hartford, Ct. Wrinkles and Recipes. Compiled from the Scienti-
ic Ambrican. A collection of practical suggestions processes, and directions, for the Mechanic, Engineer, Farmer, and Housekeeper. With a Color Tempering
Scale, and numerous wood engravings. Revised by Prof Thurston and Vander Weyde, and Engineers Buel and
Rose. 12mo, cloth, $\$ 2.00$. For sale by Munn \& Co., 361 Rose. 12mo, cloth,
Broadway, New Yor

## 

## HINTS TO CORRESPONDENTS. <br>  <br> (1) W. T. T. says : Please oblige an old

 subscriber with the receipt to prevent awnings and cotton goods from mildewing. Also a receipt to make 41/2 oz. sugar of lead, dissolved in 3 gals. water. the clear liquid only, and add to it 2 dr . isinglass, previously dissolved in warm water, taking care to mis thoroughly. Steep the goods well, and dry withou wringing. 2. In 80 parts of water heated to abou $30^{\circ}$ C. melt 3 parts of gelatine and 6 of castor oilsoap; then add 3 parts gum lac, stirring the liquid antil entirely dissolved. Withdraw from the fire, and
add to the mixture, little by little 6 parts of add to the mixture, little by little, 6 parts of powdered
alum atirring all the whila. The linuid, thinczone in
forming an insoluble alum soap, which is intimately incorporated with the gelatine and thegum lac. Spread over the stuff with a bristle brush.
(2) F. P. M. asks how many " crowoot "gravity cells 5 inches by 6 inches it will require they are to be connected. A. Assuming the cells to give one volt each, and to be of 2.00 ohms resistance,
512 such cells arranged in eight parallel series of 64 12 such cells arranged in eight parallel se
ach would supply a 16 candle power lamp.
(3) E. C. E. asks: 1. Can you give me good recipelifor liquid stove polish, such as stove pound, turpentine 1 gill, water 1 gill, sugar 1 ounce . A recipe for a glossy and quick drying furniture polish not having much color. A. Dissolve 4 ounces best shellac in 2 pints of 95 per cent alcohol; add to this 2 pints of linseed oil and 1 pint of spirits of turpentine; when mixed, add 4 ounces of sulphuric ethe and 4 ounces ammonia water; mix thoroughly, shake when used, and apply with a sponge lightly. 3. A safe
and; quick liquid for cleaning silverware?
A. The best thing to use is two teaspoonfuls of ammonia, dissolved in a quart of hot soap suds. 4. A solvent for cellulose. A. Cellulose dissolves compl
ammoniacal solution of oxide of copper.

## TO INVENTORS

An experience of forty years, and the preparation of nore than one hundred thousand applications for pa tents at home and abroad, enable us to understand the
aws and practice on both continents, and to possess unequaled facilities for procuring patents everywhere. A synopsis of the patent laws of the United States and all
oreigncountries contemplating the securing of patents, either at homeo $o$ which are low, in accordance with the times and our ex tensive facilities for conducting the business. Address
MUNN \& CO., office ScIENTIFIC AMERICAN, 361 BroadMUNN \& CO.. offlat
way, New York.

## INDEX OF INVENTIONS

## For which Letters Patent of the

 United States were GrantedOctober 5, 1886,

## AND EACH BEARING THAT DATE

[See note at end of list about copies of these
Aerostat, dirigible, A. H. Hamon.................... 350,30
Agricultural machines, seat for, W. E. Ja
Alarm. See Burglar alarm. Fire alarm.
Animal trap, R. Matthai.................
Animals, ear mark for, A. W. Burrows...
Axle box, S. H. Barrett
Axle boxeses, back collar for, E. Partridge................. 3 350,100
Bag turning machine, S. T. Lockwood...............30,204, 350,46
Band for packages. I. E. Palmer..................... 350.149
Barrel cover, W. W. Hodsden................... 350.247
Barrel swing, W. E. Kinert. .....................................350.370,
Basket cover, J. H. Marvil............37,
Batteries, protective coating for the electrodes
of, L. A. W. Desruelles......................................
Batteries, utilization of the residual liquids from,
Batery. S. See Elecetric battery.
Bed, W. R. Hartigan...........
Bed bottom, spring. W. A. Mooney...................... 350,458
Bed spring, E. R. Yauger.
Bell, W. E. T. Merrill....
Bell cord, electric, H. B. C
Belting. G. H. Blakesley.
Bicycle stand, A. W. Gump ................................ 350.100 30.24
Bird cages, food holder for, J. W. Klett............. 350,31
Bit. See Bride bit.
Bleaching compound, c.
Block. See Tackle block.
Blower for stoves and freplaces, adjustable, J. L.
Gobeille....................................
Boiler attachment, E. F. Barber...
Boiler furnace. steam, G. Hasecos
Bolt, H. A. Brown..................
Boiler furnace, ste
Bolt, H. A. Brown

Boneblack revivifier, J. F. Stillman

Bottle stopperer, F. J. Deverall. 350,450
350,353
Music box.
Box covers, device for detaching. J. C. Ingersoll.. 350,369
Bracket. See Steam boiler bracket.
Brake. See Car brake.
Breeching hook, H. K. Porter........................ 350,392
Brick drying kiln, C. D. Page.................... 350,317


euilaings automatically, appinance for c.............. 850,451
enings in, C. A. Tucker..................... 850,402
Bung, F. Threm......................................... 350,402
Burglar alarm, W. B. Clarke.................. 350,118
Burner. See Vapor burner.
Burner. See Vapor burner.
Bustle. W. Brown................................... 350,111
Buttonhonoles, machine for making, A. Helwig..........................30.241
350,211
Camera. See Photographic camer
an.

Car coupling, C. R. Harris
ar coupling, H. A. Springer.
ar coupling, Stone \& Penning
Car spring, R. Vose.......
ar starter, W. H. Vail
ar ventilators, automatic air pressure regulato
for, H. E. Jacobs.......................
ar wheel, N. P. Bowle
ar wheel, J. G. Hill.

 | 350,309 |
| :--- |
| 350,107 |

mons.
Carpet and weather strip combined, P. E. Re
nolds.......................
Carriage, baby, I. I. Smith.
Carriakes, parasol for children's, J. McAuliffe...... 350,301
Carrier. See Trace and rein carrier.
Cartridge, E. Amodeo-Salvator..................... 350,
Cartrige box. E. Amodeo-Salvator............
Case
Caster, A. C. Frankel................................. 350 ,
D. O'Connor......................................... 350,267
350........... 315
hair. D. Smith.............................................. 350,274
hange gate, J. M. Bishop.
hest. See Medicine chest.
Chimneys, ete., apparatus for climbing. J. Brown. 350.289

B. Be. See Insulating clamp.

Clip iron and brace for carriages, combined, Bean
\& Grant............................................ 350,103
Clock, primary electric, C. A. Hussey............... 350,431
Clock, secondary electric, ©. A. Hussey........ 850,33
Clocks,
Clocks, case for secondary electric, , A. A. Hus....... 350,43
Clocks, electric winding device for, Weisgerber \&
Clocks, electric winding device for, Weisgerber \&
Himmer................................. 350,177
od crusher and leveler, D. Lubin................... 350,205
Clothes drier, J. V. Fleck....
Clothes line support. C. G.
onfee mill, F. Krater
Coloring matter, red. F. Bender.
Coloring matter, yellow, F. Bender......................
Convertible table, lounge, and desk, D. Crowley.
Convertible table, lounge, and desk, D. Crowley.
Cork puller, J. A. Hurley..........................
Poupling. See Car coupling. Insulating coupling
Pipe coupling. Vehicle spring coupling.
rank motion, devlee for passing the dead center
of a, J. Curran..........................................................350,411
Crusher. See Clod crusher. $\quad$ fultivators, hitching attachment for, G. W. Ply-
mell................... ................................................ 350
Cut-off valve, F. Schumann..............
Cutter. See Cigar (cutter. Feed cutter. Weed
cutter.
Derrick. G. Rounds................................... 350,2
Digger. See Post hole digger.
Ditching machine, J. . . Sage...... .... ............ 350,2

Door securer, Kirchner \& Washburn............................................30,437
Door securer, J. E. White.. ................32
Door sill, L. C. Gillett................................. 350,427
Draught equalizer, C. A. Brown................. 350,288
Drier. See Clothes drier.
Drill. See Glass drill. Twist drill.
Drill. See Glass drill. Twist drill.
Drop feed lubricator, W. P. Prillips.............. 350.212
Dint
Dust collector, G. Bigler. ............................
Dynamo machines, belt controller for, B. F. Rad-
ford.....
ford........................
Egg case, S. D.G. Niles...
lectric arc light, G. M.

| Electric battery, H. B. Cox.......................... 350,294 |
| :--- |
| Elevator carmunication, A. E. Doll alarm for, J. W. Metz............ 850,299 |
| 50,146 |

Engine. See Rotary ingic Sta
por engine.
Excelsior and material for wood pulp for paper
making, machine for making, J. E. Goodwin... 350,35
Expansion joint. T. W. Duffy.................. 350,42
Extractor. See Cork extractor. Stump extrac-
Extractor. See Cork extractor. Stump extrac-
tor.
Feed cutter, J. Schoepfin............................ 350,

Fences. machine for building and re..................................
Fertilizer distributer, P. A. Lee....................
Fertilizer distributer, broadcast, J. W. Spangler
Fire alarm, automatic, A. Meisenheimer.
Fire alarm system, automatic electric, Frost
Lake...................................................

W. Frost................

50,154
350,154
350,442
50,140
0,140
0,299
0,2990,159
0,000
0,119

| 350,423 |
| :--- |
| 350,258 | 350,258

350,164

350,381 350,428 | 330.126 |
| :---: |
| 30. 231 |

|  |  |  |  |
| :---: | :---: | :---: | :---: |
|  | ${ }_{\text {Pamp, Prown }}$ |  |  |
|  |  |  |  |
| aee. See Eoler furanee. |  |  |  |
| (e) | Rad |  |  |
| Gases detecorr for marsh nad oth | Rail |  |  |
| Gatee see Change gate. swinging |  |  |  |
|  | Railway |  |  |
| enator. See steam | Rallm | Water level indicator, eleectric, ©. . . . wi |  |
| ernor |  |  | (enter |
| $\qquad$ <br> dorf | Railways by cables, operating, J. Stewart Rake and tedder, combined, C. McIntire. | Wells |  |
| ${ }^{30}$ |  |  | tars, ece |
| 30, |  |  | , |
|  |  |  |  |
|  | $\pm$ | Wrench. See Pipe wrench. of Zinct tron its ores br means of gase, extracting, |  |
| Hammer, | ${ }_{\text {Ro}}$ | - | CATALOGUES FREE TO AMU |
|  |  |  |  |
|  |  | design |  |
| Harre |  |  |  |
| Hare |  |  |  |
|  |  |  | ESSENTIAL ELEMENTS OF PLANTS. |
|  |  |  | on in th |
| $\stackrel{\text { He }}{ }$ |  | E MA |  |
| Hea | 50,468 |  | NT, No. ${ }^{24.4}$ Price |
|  |  |  |  |
| F. P . A. |  |  |  |
| ater |  | Hear restorer, A. W. Johnson. |  |
| sham holder. Rein holder. |  |  |  |
| .. |  |  |  |
| Hook. See Breeching hook. Harness hook. |  | Targets, flying or so-called bird, Cleveland Target Company. |  |
| 30,41 |  |  | EDUCATION OF THE AMERICAN |
|  |  |  |  |
| making machine, vacuum, Pischon \& Pfennig 350,270 |  |  |  |
|  |  |  |  |
|  | Skylikht framerorkt, C. w. Strand................30.4 |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  | Phoertisements. |  |
|  | $\left\{\begin{array}{l} \text { spor } \\ \text { spri } \end{array}\right.$ |  |  |
|  | Squas |  |  |
|  |  | mha abe are chare |  |
| min, reanerative | Stameme |  |  |
|  |  | Teediveatyputiation ion |  |
| (ex and door bell, combined, J. B. Brome |  |  |  |
|  | stee |  |  |
|  |  |  |  |
|  |  |  |  |
| Her ores, |  |  |  |
| ms, shuttl | stocter |  |  |
| ricator. |  |  | ECULES. |
|  | Stopper. F.J. Deverall. ......................... ${ }^{30}$ |  |  |
|  |  | UUTES.-AN |  |
|  |  | corem |  |
| Middlings purifier, U. H. Odell | Stram | And |  |
| Mop holiere, , G. W. Fuluer...... | stul |  |  |
|  |  |  |  |
|  | s | allic Boer miesm. |  |
|  | Smytan |  | $b_{i f}$ |
|  |  |  |  |
| ${ }_{\text {and }}^{350.147}$ |  |  |  |
| or piston rods, metallic, J. .C.C.C.apman. 380.116 |  |  |  |
|  |  |  |  |
| tin |  |  |  |
| ${ }_{\substack{\text { Pana } \\ \text { Pavemen }}}$ |  | 7 |  |
| Peanuts, machine for cleaning, $\mathbf{t}$. M . smith...... 30.3036 |  |  | 1 NORS寝 |
|  | Threshold and weather strip, H. J. Beams.................................. 350, |  |  |
|  |  |  |  |
| 35,315 |  |  |  |
| 30,246 | Toboegan, J, F. Fergusiso........................ 30,1,123 |  |  |
|  |  |  |  |
|  |  |  |  |
|  | Tree |  |  |
|  | Truct |  |  |
| ning |  | AL WOOLCO., ATRES'N. |  |
| 350163 <br> 30.233 | Upers. machine tor stretching, A. F. Preston...... 30,4 |  |  |
|  |  |  |  |
| ture of, J. Pedder |  |  | eit |
|  |  |  |  |
|  |  | cistion |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

## LEADINC BOOKS

## Chemical Technology.















 facture, Sizing, etc., sent free and free of postage to any on
in any part of the worta who will furnish his adaress.
HENRY CAREY BAIRD \& CO., Industrial Publishers, Booksellers \& importer
$\mathbf{8 1 0}$ Walnut Street, Philadelphia, Pa., U. S. A

 FOREIGN PATENTS,

'I'heir Cost Reduced. The expenses attending the procuring of patents in

most foreign countries having been considerably re-
duced the obstacle of cost is no longer in the way of a
large proportion of our inventors patenting their inven-
tions abroad
CANA IDA.-The cost of a patent in Canada is even
less than the cost of a United States patent, and the
former includes the Provinces of Ontaric. Quebec, New
Brunswick, Nova Scotia, British Columbia, and Mani-
toba.
The number of our patentees who avall themselves of
the cheap and easy method now offered for obtaining
patents in Canada is very large, and is steadily increaspatents in Canada is very large, and is steadily increas
ing.
ENGLAND.-The new English law which went intal ENGILA ND.-The new English law which went int
torce on Jan. ist. 1885, enab es parties to secure patente in Great Britain on very moderate terms. ABritish pa-
tent includes England, Scotland, Wales, Ireland and the Channel Islands. Great Britain is the acknowledged
financial aud commercial center of the world. and her goods are sent to every quarter of the globe. A good
invention is like y to realize as much for the patentee in Enzland as bis United States patent produces for for almost every patentee in this country to secure a pa
tent in Great Britaiu, where his rights are as well pro tected as in the United States.
OINHER COUN'IRIES. ${ }^{\text {Patents }}$ are also obtaine on very reasonable terms in France, Belgium, Germany,
Austria, Russia. Italy. Spain (the latter includes Cuba
and all the other Australia, and the other British Colonies. publishers of The Scientific American to establish
competent and trustworthy agencies in all the principal competent and trustworthy agencies in all the principal
foreign countries, and it has always been thetr aim to
have the business of their clients promptly and properly done and their interests faithfully guarded. A pamphlet containing a synopssis of the patent laws
of all countries, including the cost for each, and othe information useful to persons contemplating the prothis office. © CO., Editors and Proprietors of THE SCI entipic American, cordialy invite all persons desiring
any information reative to patents, or the registry of trade-marks. in this country or abroad, to call at thei
offices, 361 Broadway. Examination of inventions, sultation, and advice free. Inquiries by mail promptly answered.

$$
\text { ress, } \underset{\text { Publishers and Patent Sol }}{\text { MUNN \& Col }}
$$ Branch Offices: No. 622 and broadway, New York

$\prod_{\text {knife }} \mathrm{E} \mathrm{D}_{\text {par }}^{\text {Instantrelief. Finalcure and never }}$ and aili powel trat saive or suppository. especially constiver, kidney
ed like


PIPE COVERINGS
Absolutely Fire Proof. BRAIDED PACKING, MILL BOARD, SHEATHING, CEMENT, FIBRE AND SPECIALTIES STEWART'S ANTT-INCRUSTATION SOLDTION

HOISTING ENGINES



HARRISON CONVEYOR! Handing Grain, Coal, Sand, Clay, Tan: Bark, Cinders, Ores, Seeds, \&C.

ICE\&REFRIGERATING -1 $\square$ GAS ENGINES. Mamentuwaw Wwitw wawaw ECONOMIC. MOTOR CO:





## Dos IDGRHYIDG OGzer




SLATE ROOF COVERINGS.--BY JOHN


\& New Catalogue of Valuable Papers


THE "ALLARD" SPIRAL SCREW DRIVER. FOR LIGHT AND RAPID WORK.

RUBBER BELTING, PACKING, HOSE. VULCANIVED RUBEER FABRICS
 For Mechanical Purposes.
Aim IBPezize IEIOEO A Specialty.
R MATS,
RUBBER MATTING
AND STAIR TREADS
NEW YORK BELTIING \& PACKING CO., 15 PARK ROW, N. Y.

10 the steel manufacturers




















Hads. will be compared in two classes.
Hismen
Sicm




E, F, GRELL, ${ }^{\text {HAMERORG, }}$
$\qquad$

## WORKSHOP RECEIPTS.


 SRCOND SERIES.-ind.





竍 S Send for our complete Catalogue of books, free to NTIT In ordering single volumes, be particular to men-




## 

GONSUMPTION BJRED



## CURE Finime

Restore the Hearing, and perform the work of the natural
drume Invisible, comfortanle and always in position. All





## $\$ 10.00$ to $\$ 50.00$

## GUNS 

 WIRE APPARATUS FOR LABORA








## NO MISREPRESENTATION.

Our Petroleum Lanterns have the
finest lenses and the lamps are univaled for powerful white light Choice collection of views colored and plain. Send for Catalogue to QUEEN\&COO

(H)
A New Drill Chuck THE HARTFORD.

 Hrriford, Convek $\mathbf{C O}$
 HARRIS-CORLISSENGINE Wth Haris Pat. Improvenents. frou 10 tot,000 E.P Manual. By

## PATENTS.

MESSRS. MUNN \& CO., in connection with the pubii-
cation of the SCIENTIFIC American, continue to examine improve
In this line of business they have had forty one years experience, and now have unequaled facilities for the prosecution of Applications for Patents in the United Co. also attend to the preparation of Caveats, Copyrights for Books, Labels, Reissues, Assignments, and Reports
on In fringements of Patents. All business intrusted to them is done with
A pamphlet sert free of charge, on application, con-
taining full in formation about patents and how opro cure them, directions concervink Labels, Copyrights
Design, Patent, Appeas, Reisisues, Infringements, As
signments, Rejected Cases, Hints on the Sale of Pa signments,
tents, etc. tent Laws showing the cont and method of sed sec
patents in all the principal countries of the worla. MUNN \& CO., Solicitors of Patents, 361 Broadway, New York

## ऊु THE STANDARD

ASBESTOS CEMENT FELTING ASBESTOS ARR CHAMBER, ASBESTOS LOCOMOTIVE LAGGING,


Samples and Hllustrated Pamphlet "Steam Saving and Fire-Proof Materials" Free by Mail.

 MASSEY, ;ole Maker, 15 South Jefferson Street, Chicago, ill


## A EATR OFIERE

If you will put a JENKINS BROS. VALVE on the worst place you can find, where you cannot keep other Valves tight, and if it is not perfectly tight or does not hold Steam, Oils, Acids,
or other fluids longer than any other Valve, you may return it, and your money will be refunded. To avoid imposition, see that valves are stamped "J enkins Bros." JENKINS BROS.,


SAWS Wanted 50,000 Sawyers and SAW
 MACHINERY AND EDUCATION-A




Write for Circular and tell us what you want

TELESCOPPES Spectucles, Barometers, Thermome
Trantingion of Pow,

## WIRE ROPE

Trenton Iron Co.


LIGHTNING RODS.-DESCRIPTION OF




STEAM ENGINES.
Dred. ing M Mnchinery
Flour.
Fing
Fine Wailer whachineens, Tur
York Wfo 0 , York, Pa, U.S.A
HYDRAULIC FLANGED HEADS,
OF IRON or STEEL, for BOILER and TANK MAKERS. Unequaled for Strength and Uniformity THE DICKSON MANUFACTURING CO.

BCRANTOIN, PA. 57 Oliver Street, Boston.

##  <br> 95 MILK ST., BOSTON, MASS.

This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787.
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor.
The Poonlar science News for October

 POPULAR SCIENCE NEWS COMPANY,


## OROSDYU

## ฐ̌riemtific Ammericau

The Most Popalar Scientific Paper in the World. Only $\$ 3.00$ a Year, including Postage. Weekly.
This widely circulated and splendidy Illustrated
paper is publisked weekly. Every number contains sixeen pages of useful info ation and a large number of original engravings of new inventions and discoveries,
representing Engineering Works, Steam Machinery representing Engineering Works, Steam Machinery
New Inventions, Novelties in Mechanics, Manufictures, Chemistry, Electricity Telegraphy, Pbotography, Architecture, Agriculture, Horticulture, Natural History, etc. All Classes of Readers ind in the SCIENTIFIC American a popular resme the best scientific inormation of the day; and it is the aim of the publishers
to present it in an attractive form, a avoling as much as possible abstruse terms. To every intelligent mind, this journal affords a constant supply of instructive reading. It is promotive of knowledge and progress in
every community where it circulates. Terms of Subscription - 0 ne co TIFIC AMERICAN will be sent for one year- 52 numberspostage prepaid, to any subscriber in the United States or Canada, on receipt of three dollars by the pub-
lishers; six months, $\$ 1.50$; three months, $\$ 1.00$. Clubs.-One extra copy of the SCIENTIFIC A MERT-
CAN will be supplied gratisfor everycluDof five subscribers at $\$ 3.00$ each; additional copies at same proportionate
rate.
The safest way to remit is by Postal Order, Draft, or Express Money Order. Money carefully placed inside
of envelopes, securely sealed, and correctly addressed, seldom goes astray, but is at the sender's risk. Address all letters and make all orders, drafts, etc., payMIUMNX \& CO., 361 Broadway, New York.

## 

Scientific American Supplement.
This Scientifio American. but is uniform therewith size, every number containing sixteen large pages. weekly, and includes a very wide range of contents. It all the the most recent papers by eminent writers in all the princtpal departments of Science and the Natural History, Geography, Archæology. Astronomy, Chemistry, Electricity, Light. Heat, Mechanical Engineering, Steam and Railway Engineering, Mining, Ship Building, Marine Engineering, Photogriphy, echnology, Manufacturing industies, Sanitary Enmy, Biography, Medicine, etc. A vast amount of fresh and valuable information pertaining to these and allied subjects is
The most important Manufactures at home and abroad are represented Price for the SUPPIEMLENT for the United States and Canada. 85.00 a year, or one copy of the SCIENTIFIC AMor one year for $\$ 7.00$. Address and remit by postal order. express mones order, or check,

MUNN \& Co.. 361 Bro
Publishers Scientific American. The Foreign subscriners- - Under the facilities of
the Postal Union, the Scientific American is now sent by post direct from New York, with regularity, to subscribers in Great Britain. India. Australia. and all other Russia, and all other European States; Japan, Brazil, Mexico, and all States of Central and South America. 84, gola, for SCiEntific Amirican, one year ; \$9, gold, or both Scientific Amprican and Supplement for
one year. This includes pcstage, which we pay. Remit ne year. This includes pcstage, which we pay. Remit
y postal or express money order, or draft to order of MUNN \& CO., 361 Broudway, New York.
PRINTING INKES
THE "Scientific American "is printed with CHAS.
ENEUJOHNSON \& CO. INE. Tenth and Lom
Sts., Phila., and 47 Rose St., opp. Duane St, N. Y

