
a WeEkLY Journal 0f Practical inforniation, art, science, mechanics, Chemistry, and manufactures.

EXPERIMENTS WITH THE SCIENTIFIC TOP. by aeo. m. Hopkins.
sufficient friction is applied to it to prevent it from \mid twisted chainwork. Occasionally one part of the figure rotating with the top. In this case each perforation will appear to turn in one direction while another A scientific top and a few experiments adapted to it of the disk forms a circle, and the circles formed by part turns in the opposite direction. Some of these were described in the last issue of this journal. Several other experiments, possessing more or less interest, are illustrated by the annezed engravings.

The ability of the heavy top to run for a long time and maintain an equable motion renders it particularly serviceable in experiments requiring uniformity of action.

Two experiments in sound are illustrated: Fig. 1 showing the adaptation of a simple siren to the top, and Fig. 2 Savart's wheel. The siren consists of a disk of pasteboard, having four concentric rows of $3 / 8$ inch holes, there being 12 holes in the inner row, 15 in the next, 18 in the next, and 24 in the outer row. The disk is varnished with shellac to render it waterproof. It is mounted on a chuck fitted to the tapering hole of the top spindle. When the disk is rapidly rotated by the top, and a jet of air is blown upon either row of holes through a flexible tube provided with a small glass or metallic nozzle, a musical sound will be produced by the air pulsations caused by the interruptions of the air jet by the perforated disk. The sounds produced by the different rows of holes are those of the perfect major chord. A large number of experiments with this simple siren are described in Prof. A. M. Mayer's interesting little book on sound. Savart's wheel is simply a toothed disk fitted to the chu and adapted to be rotated by the top. When the disk is turned very slowly, with the edge of a card held against the teeth, a series of little taps are heard,

THE CHAMELEON TOP. which do not at all resemble a mu sical sound; but when the wheel is revolved rapidly by the top, the contact of the card with its periphery produces a sound that may fairly be called musical, the sound being composed of the rapidly repeated taps.

In Figure 3 is shown a disk similar to that used for the siren, but having double the number of holes in each circular row. The holes are $1 / 8$ inch in diameter The dianeter The disk is blackened to render the effects more conspicuous, and the hole in the center of the disk is eyeleted to prevent wear. A metal disk, secured to a disk, secured to a tapering spindle
fitted into the top fitted into the top
spindle, carries a spindle, carries a
crank pin $\frac{8}{88}$ inch from the axis of rotation. The eyelet of the disk is placed loosely on this crank pin, and when the crank is revolved by the top the disk is gyrated; every part of its surface being made to travel in a circular path $3 / 8$ inch in diameter, when figures are shown in Figs. 4 and 5. A similar experiment, developed in a different way, is shown in Fig. 7. The black cardboard disk is provided with a central eyelet, which receives the crank pin, as in the case of the perforated disk. On each of two diametrical lines crossing each other at right angles are formed pairs of holes, in which are cemented silvered glass beads or bright spherical steel buttons. The latter were used on the disk illustrated. They are symmetrically arranged, so that the inner four may follow each other in the same path, and the outer four may follow 'each other in a path of their own.
By treating this disk after the manner of the perforated disk above described, many brilliant and surprising effects may be produced.
By holding one edge of the disk lightly between the thumb and finger, so that it will not revolve, but will be made to gyrate by the little crank, each button will describe a $3 / 8$ inch circle, or a small oval, or an ellipse, as shown in Fig. 7. By allowing the disk to slip slowly between the thumb and finger, a series of double scrolls will be produced, as shown in Fig. 8.
By varying the speed of rotation by the application of more or less friction to the disk, a great variety of intricate and beautiful figures are produced. Examples are shown in Figs. 9,
 many chain links interlocked. By allowing the disk allowing the edge of the gyrating disk to strike the to revolve at different speeds very complicated figures finger once during each gyration. The luminous curve

In Fig. 1 is is shown In Fig. 16 is shown a cardboard disk mounted loosely on the top spindle and provided with two series of black radial bars, the inner series having 13 bars, the outer series having 12 bars. To the chuck inserted in the spindle is secured a black disk having four radial slits.
When the top is revolved and the lower disk is retarded, some very curious illusions will be produced. At times one part of the lower disk will appear to remain stationary, while the other part will appear to revolve. Again, the two series of radial bars will appear to rotate in opposite directions. Viewed in another way, they appear curved.
By replacing the slitted disk with the perforated disk (Fig. 3), and arranging the perforated disk so that it may be retarded by the friction of the finger, some curious effects will be seen. The different rows of holes will appear to advance and recede (Continued on
page 244.)

§rimutifir elmerican.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.

O. D. MUNN.

A. е. BEACH

TERMS FOR THE SCIENTIFIC AMERICAN. One copy. one year. postage included....
One copy, six months, postage included.

The Scientific American Supplement

 registered letter. Address MUNN., 361 Broadway, corner of Franklin Street,
Scientific American Export Edition. The SCIENTIFIC AMERICAN Export Edition is a large and splendid peri-
odical, issued once a monthi Each number contains about one handred
large quarto pages. profusely illustrate, embracing (1.) Most of the plates

NEW YORK, SATURDAY, OCTOBER 16, 1886.

Contents.	
(Illustrated articles are marked with an asterisk.)	
Anaconda, large................ ${ }^{248}$ Balloon trip from Cherbourg to	Passenger depot of the Erie Rail-
Books and publications, new.....: 251	Patents, points on............... 247
	tographic notes................. 241
ba	Photography,
riages, car	
Coal formation, n	
Cocoa palms as ligh	Rafters, lengths and bevels of, instrument for obtainin${ }^{*}$ or
	2
cines of the pad	
earless, the ${ }_{243}^{241}$ \qquad	cialism, Petroleum V. Nasby
Game carrier	Steamers, fast, at low ost....... 241
Highways. public, us	Stethoscope, vibratí
Home a, the incentive	ddiole, Stililiman's ${ }^{\text {\% }}$.......... 248
en	die,
ntions, index	
Inventions, miscellaneous......... 251	Toboggan improved ${ }^{\text {a }}$.............. ${ }^{248}$
Lamps, electric, for coal miners..	Tool, riveting, Stevens'......... ${ }^{242}$
s, stop	9
ning experiments, submarine.	Top, ${ }_{\text {with }}$ scientilin
Nitrate of soda................	Tree growth after gi
ural history notes........... 250	
tes and queries................. 251	Wages, rise of, the century's...... ${ }^{240}$
concentrator, Camaneil's* ... 242	Women, scievtifc......... 244

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT NO. 568.

THE "FERE" MONSTER MORTAR.

Some details have come to hand concerning the new Fere gun from which the French expect so much. It is, we learn, a mortar of unusual size, throwing twelve shells with more than ordinary precision for its type. The shells are a trifle over three feet in length, and contain an explosive said to possess extraordinary power of destruction. At a recent trial at Malmaison, the superiority of this gun over all others of its class was clearly shown, if the reports are trustworthy. It
tore up masses of rock and shattered steel plates which would have proved an effective barrier to similarly constructed guns with which the military world is fami liar. To the purely military mind perhaps the work it did when confronted with earthworks is the most inte resting and important, for earthworks protected by steel armor have come to be looked upon as an effective defense, at least against all manner of mortar attack, even if impotent against the modern rifle at short range. The explosive projectiles of the Fere gun tore away the steel plating protecting a well constructed earthwork, and transformed into an indistinguishabl wass the mounds that were expected to smother it.
The noise from the explosion of these shells is said to be terrific ; and while, heretofore, the bark of the
mortar shell has been regarded as worse than its bite mortar shell has been regarded as worse than its bite
before earthworks or heavy masonry, the Fere gun would seem to reverse this order of things, its sting be ing even more direful than its song. The reader will recall the great promise and little performance of Admira Porter's mortar flotilla before Forts Philip and JackFarra in Mississippi, during the civil war. Admira Farragut waited patiently, or rather impatiently, with his fleet of gunboats lying idle in the tideway, while Porter essayed to reduce these works with his mortar play. Under so skillful in officer as Porter, the mortar boats may safely be said to have been placed most advantageously for the attack. A terrific fire of bombs was maintained for hours, and a very showe no great harm was done. The defending batteries were only temporarily silenced; and when the storm ceased, the gunners, who had been under shelter, re-
turned to their stations, and it wasseen that the aggressive power of the forts had not been perceptibly impaired. Satisfied of the impotence of mortar attack, Farragut now opened on the forts with his heavy guns, fough this way up the river, and took New Orleans.
Now, the Fere gun, it is alleged, is far more destruc range is short, and this will naturally tend to restrict its use. If the enemy would considerately abstain from using his big field pieces while it was in play, it might, perhaps, do great execution; but should he, while out of range of its projectiles, let drive at such a battery, it could not, save under
tageous conditions, be worked at all.
It will be remembered how great was the disappoint ment of the French in 1870 with the performance of the mitrailleuse. It was a terrible engine of execution at close quarters, but these conditions were not always present; and when they were, the destructive work of the German long-range field pieces preceding the act
onset often resulted in rendering them valueless.

The Century's Rise of wages.

Discussing wages, in one of his lectures before the students of Harvard University, Professor Thompson gives many facts of curious interest. In 1793 the
Schuylkill and Susquehana Canal Company Schuylkill and Susquehanna Canal Company adver
tised for workmen, offering $\$ 5$ a month for the winter months, and $\$ 6$ for summer, with board and lodging. The next year there was a debate in the House of Representatives which brought out the fact that soldiers the proposal to raise it to $\$ 4$, said that in his State men were hired for $£ 18$ a year, or $\$ 4$ a month, with board and clothing. Mr. Wadsw :th of Pennsylvania said: "In the States north of Pennsylvania, the wages of the common laborer are not, upon the whole, superior to those of the common soldier." In 1797 a Rhode Island farmer hired a good farm hand at $\$ 3$ a month; and $\$ 5$ a month was paid to those who got employment for the eight busy months of the farmer's year.
A strong boy could be had at that time in Connecti cut at $\$ 1$ a month through those months, and he earn ed it by working from daybreak until eight or nine o'clock at night. He could buy a coarse cotton shirt with the earnings of three such months. The farmers could pay no better, for the price they got for produce was wretched. Butter sold at eight cents a pound and when it rose suddenly to ten cents, several farmers wives and daughters went out of their minds with the excitement. Women picked the wool off the bushes and briers, where the sheep had left it, and spun and knit it into mittens to earn $\$ 1$ a year by this toilsome
business. They hired out as help for twenty-five cents a month and their board.
By a day's hard work at the spinning wheel a woman and girl together could earn twelve cents. As late as 1821 the best farm hands could be had for twenty-fiv cents a day, or twice as much in mowing time Mathew
Carey, in his letters on the Charities of Philadelphia
(1829), gives a painful picture of the working classes at that time. Every avenue to employment was choked with applicants. Men left the cities to find work on the canals at from sixty to seventy-five cents a day, and to encounter the malaria, which laid them low in numbers. The highest wages paid to women was twenty-five cents a day; and even the women who made clothes for the arsenal were paid by the Government at no high rates. When the ladies of the city begged for an improvement of this rate, the Secretary hesitated, lest it should disarrange the relations of capital and labor throughout the city. Poor people died of cold and want every winter in the city, and the fact seeims to have made an impression only on benevolently disposed persons like Mr. Carey.

Nature the Great Teacher.
In his new book, "Nature's Teachings," the Rev. J. G. Wood has discussed a subject not before handled at length. Its object is to show how man's implements and mechanical devices have been anticipated in nature. He asserts that there is no invention of man which is not anticipated, that all his mechanical devices have been used in nature for countless centuries. He claims that the great discoverers of the future will be those who carefully study the natural world. The burr stones of mills are. a copy of molar teeth. The hoofs of a horse are made of parallel plates like a carriage spring. The finest file made by man is a rough affair when compared with a Dutch rush used by cabinet makers. The jaws of the turtle and tortoise are natural scissors. Rodents have chisel teeth, and hippopotami have adzteeth, which are constantly repaired as they are worn. The carpenter's plane is anicipated by the jaws of a bee. The woodpecker has powerful little hammer. The diving bell only imitates the work of the water spider. This insect, although as easily drowned as any other, spends a great part of its life under water. Having constructed a snall cell under the water, it clasps a bubble of air between its last pair of legs, and dives down to the entrance of its cell, into which the bubble is put. A proportionate amount of water is thus displaced, and when all of it is expelled, the little animal takes up ts abode in this subaqueous retreat.
In laying its eggs on the water, the gnat combines them in a mass shaped somewhat like a lifeboat. It is impossible to sink it without tearing it to pieces. The iron mast of a modern ship is strengthened by deep ribs running along its interior. A porcupine quill is strengthened by similar ribs. When engiheers found that hollow beams were stronger than solid ones, they only discovered a principle which had been used in nature for centuries before the creation of man. A wheat straw, if solid, could not support a heavy head.' The bones of the higher animals, if solid, would have to be a great deal heavier to bear the weight which they have to support. The framework f a ship resembles the skeleton of a herring, and he who would improve aerial navigation might study the keleton of a bird with advantage. Palissy made a careful study of the shells by the seaside, in order to learn the best method of fortifying a town.
The ship worm feeds on wood, and gradually tunnels its way through any submerged timber. It also lines its burrow with a hard, shelly coating. Brunel, taking a hint from this, was the first to succeed in ubaquatic tunneling. The Eddystone Lighthouse is bnilt on the plan of a tree trunk, and fastened to the rock in a manner somewhat similar to the way a tree is fastened to the soil. It is supposed that the first idea of a suspension bridge was suggested by the creepers of a tropical forest.
Mr. Wood gives an interesting account of the origin of the plan for the Crystal Palace. Mr. Paxton, a gardener, having noticed the structure of the great leaves of the Victoria Regia, a plant which had been introduced into England a few years previous, struck the plan of copying in iron the ribs of the leaf and filling the remaining space, which correspords to the celluar portions of the leaf, with glass. Thus, by copying nature, an obscure gardener became Sir Joseph Paxton, the great architect.-Wilmington Collegian.

Remarkable Tree Growth after Girdling.
M. E. S. writes that on his farm in Vermont, in June, 1884, he attempted to kill a poplar tree by girdling. He removed a strip of bark about three inches wide entirely around the tree, at a place about four feet from the ground, scraping off the pulp that had formed between the wood and bark that year. The wood thus left bare seasoned over that summer, but the tree did not die, and has coninued to grow till the present time, above the place where the bark was. removed, but has not grown any below that. The measurements are given as $261 / 2$ inches in circumferance above the place where the bark was removed, and 21 inches circumference below. The tree did not put out leaves quite as soon as the other trees near it, but it blossomed as full as any of the poplars around, and is said to be looking as of the poplars arou.
healthy as they are.

PHOTOGRAPHIC NOTES.

To Prevent the Curling of Prints on Albumen Paper. -In the October number of the St. Louis Photographer we find the following practical hints on the above subject, suggested by Mr. John Vansant :
The great and forcible contraction which occurs in prints made on sensitized albumen paper, when they are dried after having been wet, can be prevented by the following very simple means: After having the prints fixed and all the hyposulphite sodium removed by sufficient washing, drain them well and press the water well out, then immediately immerse one by one in a solution of pure glycerine in distilled water, about 1 part of glycerine to 5 parts of water. Let them soak in this till thoroughly saturated; then remove them separately, and absorb the superfluous fluid by gentle pressure between clean sheets of white blotting paper. They can then be laid out flat, where they will dry without much shrinking, and be found smooth, soft, and with little or no tendency to curl.
These prints can then be mounted dry with paste or gelatine, and burnished as usual. The cards will remain perfectly flat.
To Remove Yellow Discoloration from Bromide Prints.-Should it occur after oxalate of iron development, I have found the best agent to be oxalic acid, about 3 grains to an ounce of distilled water. After fixing and washing out all the hyposulphite of sodium, soak the prints for a few minutes, or until the whites are bleached, in the oxalic acid solution. Then wash again thoroughly to remove the acid. This acid seems to have very little effect on the dark parts of the picture, and it can be applied in solution as above stated, successfully, to bleach the prints even after they have been dried.
Retouching Negatives.-In the same journal, J. H. Farmer gives the following advice on retouching:
Many photographers are in the habit of grinding their negatives. It is a great mistake. It is not necessary to either varnish, grind, or prepare your negative in any way. Simply use a metallic lead, and work right on the gelatine surface. The very finest effects can be obtained in this way.
To Change a Blue Print to Black.-Dissolve a bean of caustic potash in 5 ounces of water, soak the blue print therein until it fades to pale yellow. Wash. Dissolve a heaped teaspoonful of tannic acid in half a pint of water. Put in the yellow prints. Leave in until darkened to the color desired. Then wash thoroughly.

Phosphorescent Photography.*

In observing Mont Blanc after sunset, in the beginning of September, 1883, M. Ch. Zengler was impressed with the fact that the greenish blue light could be perceived as late as $10 \mathrm{~h} .30 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. This led him to think that the ice on the summit, mixed with the debris of carbonate of lime, emitted a light similar in color to that of the water of Lake Leman, and that it would be possible to fix the image of the mountain, during the night time, by the phosphorescent light of the ice, which ice he found to be a highly actinic body.
On his return he performed an experiment consisting in projecting images by a photographic camera and lenses upon a plate of glass covered with Balmain's luminous paint, spread evenly over the surface, as if a photographic plate was to be covered with collodion.
After an exposure of a few seconds' duration, he took the plate from the camera into a dark room and
placed it in contact with a photographic dry plate. placed it in contact with a photographic dry plate. After one hour's contact in darkness, he found that the image of the object appeared in all its detail, just as in the case of an ordinary exposure.
From his observations in Geneva, M. Zengler thought that carbonate of lime that had received the rays of a bright sun during the day might emit invisible, but very actinic, rays. Following out this order of ideas, he performed an experiment during the night of May 17, 1884, the sky being clouded. An exposure of the plate, about midnight, upon the terrace of the Astronomo-Physical Observatory of Prague, for a period of fifteen minutes, gave reasonably good images of towers and surrounding buildings, after a contact of the phosphorescent plate with the photographic plate, prolonged up to the morning of the following day. From this the author concluded that radiations were emitted, even by isolated bodies, that at midnight were quite actinic in the absence of all other light.
M. Zengler repeated, later, these experiments, using printed paper which he had exposed during the daytime to strong sunlight. After an hour's exposure, he placed it in contact with ordinary sensitized paper in the camera. In a few hours the impression of the paper was effected in such a way that development was not required, fixing alone being necessary, the letters appearing in plain black. M. Zengler has applied this method to copying printed notes.

These experiments led to the conclusion that light * Paper presented at the seance of the Academy of Sciences, Paris, Angust 30, 1886, by M. Ch. V. Zengler.
could bej absorbed and slowly radiated afterward, and that images of bodies invisible in darkness could be fixed by simple contact or by photographic apparatus. The question then arose whether a number of the heavenly bodies, which are illuminated;during greater or less periods, did not radiate back this light when they were immersed in darkness, in the form of actinic light, just as walls illuminated in the daytime gave up during night the light absorbed. If this surmise was correct, celestial chart makers could take advantage of it, for with a telescope of 8 inches aperture and 41 inches focus, a few seconds would suffice to print the phosphorescent plate, and to show stars even of the ninth degree of magnitude, when in darkness the phosphorescent plate thus acted on was brought into contact with a gelatino-bromide plate. Quite recently the author has experimented with fluorescent bodies and with bodies sensitive to actinic light, such as uranates and nitrates of uranium ; he thus obtained latent images that could be developed after several months had elapsed, provided that during this period they were kept in darkness and in perfectly dry air.
In conclusion, the images of many bodies can be obtained in darkness when, like carbonate of lime paper, etc., they possess the property of slowly giving out light absorbed during an exposure. Thus objects can be reproduced which up to the present time remained quite invisible to the eye, by making long exposures with lenses or mirrors of very short focus upon plates covered with phosphorescent or fluorescent substances, and by printing in darkness and for a long enough time upon a more or less sensitive bromide plate, either collodion or emulsion coated.

The Fearless.

This vessel, which is at present being fitted out by the Barrow Shipbuilding Company, from whose yard she was launched in March last, is the first of a very formidable type of torpedo cruisers which are being built for the English navy. The Fearless is expected to be ready for active service about November next. The vessel is 220 feet between perpendiculars, 34 feet extreme breadth, and 19 feet 9 inches depth of hold. Her displacement is 1,430 tons on a mean draught of 13 feet 6 inches, when completely equipped with armament, stores, and coal on board. She is propelled by twin screws, each screw being driven by an independent pair of engines of the collective power of 1,600 horses, giving an aggregate indicated horse power of 3,200 horses for both pairs of engines. The speed indicated by the Admiralty when the vessel was designed was $161 / 2$ knots, but the builders are confident that a much higher rate of speed will be attained during the forthcoming trials.
The gun armament consists of four 5 inch B. L. R. ages, eiounted on Vavasseur's central pivoted carri ner guns. The torpedo armament consists of eleven torpedo tubes, or air guns, one fitted on the bow under water, and the others ranged along the upper deck. The gunners, when working the guns, are protected by shields revolving with the carriages, and those work ing the torpedo tubes are protected by steel plating in way of each torpedo port. Four air-compressing engines are fitted in the vessel for supplying motive power to the torpedoes, and for ejecting them. There are also two electric search lights of 20,000 candle power, supplied by a dyuamo. The Fearless being unarmored, her safety as a war cruiser is secured by the engines, boilers, steering arrangements, magazines, and other vital parts being placed below the load water line in watertight compartments with a protective steel deck fitted over them. She can be steered from three different places, and, when in action, all her men can be put out of sight. The vessel is built of steel, and particular
strength with lightness.

The Care of Carriages.

The editor of the Wagon Maker in a recent interview with a prominent Chicago carriage builder gained the following information relative to the care of all painted vehicles.
The Jehu's Decalogue or Ten Commandments, as he terms his ten "Don'ts," runs as follows :

1. Don't forget that the preservation of the colors of painting and lining of a carriage depends in a great measure upon the way in which it is housed. The barn should be airy and dry, with a moderate admission of light, otherwise the colors will be affected. Do not let the vehicle be rolled near a brick wall, as the dampness of the wall will fade the colors and destroy the varnish. Direct sunlight should not strike upon it through the windows, which should therefore be curtained or otherwise screened. The coach house should not be connected with the stable or next the manure pit, since the ammonia fumes rising from the stalings will do more to crack and ruin varnish, and ruin colors of paint and lining, than all other causes put together.
2. Don't be in too great a hurry to use your vehicle when you have it delivered-either at first or after it when you have it delivered-either at first or after it
has been revarnished. The change of temperature from
the factory to your coach house may-especially if you have been in a hurry to get possession of it-affect the varnish. Let it stand unused for some few days, washing it with cold water, drying off carefully, and letting it stand in the shade where cold air will circulate freely. This will insure the hardening and briliancy of the varnish.
3. Don't use the same sponge and chamois leather for washing the panels and under parts and wheels of a carriage. When washing a carriage, keep it out of the sun. Take care not to wet the linings, if cleaning off with a hose. For washing the body panels use a large, soft sponge, well saturated, which squeeze over the panels, so that the dirt will flow off with the water as it runs down. Use a second sponge for the under parts and wheels, and carefully dry each part with its special chamois.
4. Don't allow mud to dry on a new or newly varnished carriage ; spots and stains will be the invariable result if you do.
5. Don't use a spoke brush for cleaning the wheels and under parts of vehicles, even when you are tolerably confident that all mud has been removed. If any grit is left on either wheel or brush, it will scratch off the varnish and spoil the gloss as badly as if sandpaper had been used to do the work.
6. Don't allow water to dry of itself on a varnished surface, as this will produce stains. Remove all moist ure with the chamois leather only, after the soft sponge has been used.
7. Don't use hot water or soap on a varnished surface.
. Don't let leather-top carriages lie long unused with the top down, but raise it occasionally, taking off the strain on the leather and web-stay by slightly "easing " the joints. Frequently unroil the aprons also. If the leather is enameled, it may be washed occasionally with weak, soapy water-not first scrubbed with wetted soap-and the lather then removed with the 9.
8. Don't omit to take precaution against moths in cushions and linings. In the case of a close carriage, set a saucer of spirits of turpentine and camphor on the floor, draw up all the glasses and close the doors. This will prevent moths from doing damage, and often cure when neglect has to be remedied.
9. Don't neglect to examine the axles frequently. See that they are well oiled, and that the washers are in good ord. When they require oil, use sperm oil, such as is always in the sewing machine drawer. Sweet oil will gum up, and should never be used. When putting on the axle nuts, be careful to fit the thread properly, not crossing or straining it. Occasionally inspect the entire vehicle. If a bolt or a clip seems getting loose, tighten it up at once with the wrench. If the tires of the wheels slacken, so that the joints of the felloes can be seen, have them shrunk at once; and whenever any little repair becomes necessary or even advisable, have it done at once, and by some one who knows how to do it.

Fast Steamers at Low Cost.

A new company has been formed to run steamers between Liverpool and the Isle of Man. The island is distant about 75 miles from Liverpool, and about equidistant from England, Ireland, and Scotland, and has of late years become one of the most important seaside resorts in the United Kingdom, the passenger traffic having increased to such an extent that there are frequently four or five boats dispatched with passengers from Liverpool to the island the same day. The company has arranged a conditional contract for two firstclass screw steamers, handsomely fitted and furnished, having triple expansion engines of about 1,500 horse power, and to be fitted with bilge keels, which prevent rolling to a great extent. The dimensions will be : Length, 225 ft ; breath, 30 ft ; depth, $131 / 2 \mathrm{ft}$; which dimensions and power are largely in excess of the present screw steamers on this station, and the company further intend building a first-class winter or spare boat of smaller dimensions.
Messrs. Russell \& Co , of Port Glasgow and Greenock, commenced the first steamer on the first of October, and she is to be ready for her station by next Easter. As an example of the low prices at which steamers may be had now, we may state that the contract price for the large steamers, which are to be built according to Lloyd's highest class as well as to the Board of Trade requirements, and to steam at 17 to 18 miles an hour, is only $£ 18,500$ each, subject to any alterations that may be considered necessary by the directors, and the price of the spare or winter steamer, the plans and pecifications for which are now being prepared, will be about $£ 10,000$.

What Makes Vinegar Sharp.

George Adams, in 1747, said that some people have magined that the sharpness of vinegar is occasioned by the eels striking their pointed tails against the tongue and palate ; but it is very certain that the sourest vinegar has none of those eels, and that its pungency is entirely owing to the pointed figure of its gency is entirely owing
salts, which float therein.

instrument for obtaining lengths and bevels

 OF RAFTERS.This instrument consists of a rectangular frame, A hinged to which is the board, G, and the straight edge, H , and attached to which is the protractor, E. These parts are arranged and graduated as shown in the engraving. The instrument is used for obtaining the length of rafters-forinstance, for a building 8 feet wide -by placing a square on the graduation, b, at 4 feet, which is the distance from the center of the building to the outside, and adjusting the board, G, to the desired pitch of the roof on the protractor, E. Where

CONLEES INSTRUMENT FOR OBTAINING LENGTHS AND BEVELS OF RAFTERS.
the square touches one of the lines, d, on the board, the distance from there to zero indicates the length of the common rafter; and by following the respective line, d, across the board to the straight edge, which is set say at 45°, then the intersection of the lines, d, at the graduation, e, of the straight edge gives the length on the scale, e, of the hip rafter. By following the line, c, which) intersects the line, d, and scale, e, down to the scale, a, then the latter indicates the length of the jack rafter. The instrument is also adapted for accurately and quickly obtaining the bevels for jack, common, and hip rafters, and for obtaining the bevel across the face of the staff for splay or hopper work, and also the miter across the edge of or hopper work, and also the
stuff for splay or hopper work.

This useful instrument is the invention of Mr. Harrison Conlee, of Petersburg, Ill.

ORE CONCENTRATOR.

The object of this invention, which has been patented by Mr. John D. Channell, of Nevada City, California, is to provide an ore concentrator simple in construction, and which will effectively concentrate the heavy and light particles of the precious metals. The main driving shaft extends along one side of the machine, and at each end is provided with a beveled gear engaging with a similar gear on an upright shaft. At the upper ends of these shafts are cranks and pins, to which are attached rods securely fastened to the which are attached rods securely fastened to the
frame carrying the belt. The belt frame hangs on four swings, and is easily given a rotary motion. At the lower ends of these swing rods are screws, whereby the belt frame can be adjusted up or down, so as to bring the belt „perfectly level. There are four large and twelve

CHANNELL'S ORE CONCENTRATOR.
small rollers over which the belt travels. The one at clamp the rails down firmly to the ties. The ends of the head of the machine drives the belt by means of these rails are connected to each other by tie rods. a screw gear and vibrating connection. The next roller carries the! belt down into ajbox containing water, where the gold and other metals are washed off. The next roller acts as a tightener and also raises the belt higher than the end one, so that the sand and water will not run back under the machine. The fourth large roller is at the rear of the machine. The twelve small rollers are placed under the belt on top of the frame, to give a smooth surface to the belt.

The machine is run by a driving pulley placed at

Near each beveled end of the splice rails is applied to the main rails a grip (Figs. 2 and 3), which consists of a plate bent to form a recess in which the main rail rests, while the opposite end parts of the grip lie loosely in recesses between upper and lower blocks bolted to the adjacent ties of the track. In the end of one block is threaded a screw, whose inner end may be forced against the adjacent end of the grip. In one end of the other block slides a heavy pin, out-
side of the head of which is a spiral spring, which
about the center of the main shaft. The feed gear is worked by means of a belt on cone pulleys, as shown in the engraving.
The pulp or sand from the battery is delivered to the machine through a hole in the center of the distributer, and is spread evenly over the belt. The water distributer on the front furnishes an extra supply to more effectually wash out the sand.
Each edge of the rubber belt is provided with a rubber tube or hose, of such size as to prevent the water and sand from running off. This construction insures durability, as the flexibility of the belt allows it to easily pass over the rollers without danger of breaking.

It will be seen that this concentrator is simple in construction, and does not require a thoroughly experienced person to operate it. The easy rotary motion of the belt carries gold sulphurets and all heavy metals to the bottom, and holds them there while the sand is washed away. As this rotary motion is smooth and continuous, the belt can be run faster than in those machines baving a those machines baving a vibrating movement, while
it washes the sand away it washes the sand away
quicker and saves lighter and finer dust. It also requires a minimum amount of power to work it. Tests have shown the advantages of this machine in the grip can be brought about parallel with the rail by quantity of metal saved, the rapidity of its operation, and small power required.

RAILWAY TRACK SYSTEM.

The object of this invention is to obviate, by means of a simple and efficient system of railway track construction, the difficulties which arise in maintaining the rails of a track, as ordinarily constructed, in proper surface and to correct gauge. The ends of the main rails are turned outward where splice rails are laid, as represented in Fig. 1. The splice rails are beveled at the ends, so as to lie closely to the inner sides of the main ones, and form therewith continuous rails, and are located at places where the accumulation of the "waves"-which cause "creeping"-in the rails would reach a dangerous limit, as at crossings at grade, at the base of heavy inclines, and at frogs and draw bridges. The ends of the main rails are set close together, no separation being made to allow for expansion, as in the usual construction, and are connected by fish plates which do not allow for lengthwise movement of the rails. The spikes are not driven as far as possible, a space of about half an inch (Fig. 4) being left between their heads and the rail flanges, which are not notched to receive the spikes. The splice rails have notches in their flanges through which spikes are driven so. that their heads
may be compressed by a properly arranged screw. The recess of the grip is a little wider than the rail base, so that, when the pin is forced inward by the screw, the grip will be turned to cause diagonally opposite edges to clasp the rail and prevent its backward movement, while allowing a forward movement.
To release the rail for any purpose, the recess in the To release the rail for any purpose, the recess in the

NOONAN'S RAILWAY TRACK SYSTEM.

 properly turning the screws. The ties are entirely covered with dirt, as shown in the background of Fig. 1. This covering does not interfere with the lengthwise movement of the rails, while it holds the ties solidly in the roadbed. Although this system is especially intended for use with dirt roadbeds, it may be adopted when the ties are ballasted with sand, stone, or other material.This invention has been patented by Mr. Philip Noonan, of Edgard, La.

RIVETING TOOL

The construction of this tool is very clearly shown in the figure herewith presented. On one end of the shank or body portion is a punch about the size of an ordinary copper rivet, and on the other end is a suitable boss to receive the blows of a hammer. One end of the head piece has a concavity shaped to give a proper form to the upset end of the rivet, and at the other end is a boss for striking upon. To use the tool, the parts to be united by rivets are first pierced by the punch, when the rivet is inserted and the usual washer put on. The projecting end of the rivet is then placed in the hole in the shank of the tool, when the stroke of a hammer forces the washer down tightly to the work. The concavity is then placed over the end of the rivet, which is then upset and given a neat convexed finish by blows delivered upon the opposite end of the head piece. The punch may be made removable, and the hole in the shank may be formed in a removable sleeve, to adapt the tool for use in setting rivets of various sizes.

stevens' Riveting tool.
This handy riveting tool is the invention of Mr . James H. Stevens, of Grover, Col.

Aluminum Tin.

The applications of aluminum are now considerable, and M. Bourbouze, a French physicist, has added to their number by employing an alloy of the metal with tin for the internal parts of optical instruments in place of brass. The alloy he employs consists of 10 parts of tin and 100 parts of aluminum. It is white, ike aluminum, and has a density of $2 \cdot 85$, which is a little higher than that of pure aluminum. It is, therefore, comparatively light, which is an advantage for apparatus where lightness is desired. It can be soldered as easily as brass, without special means, and it is even more unalterable than aluminum to reagents.

IMPROVED TOBOGGAN.

The slats forming the bottom of the toboggan are made with their middle parts raised longitudinally and rounded, and with flat flanges along their side edges, forming a ribbed surface. The slats are secured to the cross pieces by nails, screws, or rivets passing through the side flanges as shown in the cross sectional view, Fig. 2. The slats may also be held by screws passing through the cross pieces and into their thicker middle parts. The forward ends of the slats are curved to give the usual shape to the front end

CLAPP \& AINSWORTH'S IMPROVED TOBOGGAN.
of the toboggan. The hand rails are supported by projections on the upper sides of the end parts of the cross pieces. The forward ends of the side bars are left free to give the requisite elasticity to that end of the toboggan. The front corners of the toboggan are connected with the side bars by cords in the ordinary way. This construction forms a bearing surface free from screw or rivet heads or countersinks to cause friction and scratch the ice, and will polish easily and quicsily. It is claimed that this toboggan will run faster and wear longer than those made in the usual manner. This invention has been patented by Messrs. B. W. Clapp and S. Ainsworth, of 75 Putnam Street, Saratoga Springs, N. Y.

GAME CARRIER.

Mr. James H. Stevens, of Grover, Colorado, has $\begin{aligned} & \text { Rankin \& Blackmore have hitherto designed thei } \\ & \text { diagonal framings of cast iron, box section, but in }\end{aligned}$ recently patented an inexpensive device by which this case they are of solid forged malleable iron, with game can be conveniently and safely carried from an round flanges at thecylinder end, and T heads for atmmunition pouch or belt. It consists essentially of a \mid tachment to the main framings, which, by the way, heavy steel wire, bent as shown in the engraving. The edge of the holder or pouch is secured to the nner part of the carrier in any approved way. The ends of a strap, by which the combined carrier and holder is swung from the shoulder of the sportsman, are attached to eyes formed by the upper parts of the wire. These eyes are large enough to allow the heads of game to be passed through them into the spaces between the wires, which are small enough to hold the game by their necks. About at the middle of each side of the carrier is a hook, which, when closed, serves as a brace for the sides of the carrier and also as a support for a small quantity of game, which is thus held as high as possible from the ground, to prevent it dangling about the sportsman's legs. By slightly modifying the construction, this carrier can be applied to an ordinary cartridge belt.

ENGINES OF THE PADDLE STEAMER OZONE.

We give a perspective view, from Engineering, of the engines of the paddle steamer Ozone, constructed by Messrs. Rankin \& Blackmore, of Greenock.
The Ozone was built to the order of the Bay Excursion Company, of Melbourne. The Ozone is 260 feet long between perpendiculars, and has a moulded breadth of 28 feet, and a depth of 11 feet 2 inches, with a plate keel, and the accommodation on her three decks is so arranged that she could, on a push, carry the enormous number of 3,000 passengers.
The engines of the Ozone are of the direct-acting diagonal compound type, and are of 314 nominal horse power (Clyde rule), having two cylinders inches and 85 inches in diameter, the stroke being 5 feet 6 inches. In designing these engines, Messrs. Rankin \& Blackmore's effort was to make the machinery as light as possible, consistent with ample strength, and to this end the almost universal exhaust steam jacket round the high pressure cylinder was dispensed with, a jacket being substituted, thus effecting a considerable saving of weight. The exhaust pipe from the low pressure cylinder to the condenser is also made of copper, as against the usual practice of cast iron ; and the condenser itself is a cylindrical casting with light malleable iron doors lying snugly beneath the diagonal framings. Messrs.

feed and bilge pumps, are worked from the piston rod cross heads by means of drag links and bell cranks arranged so that the various buckets and plungers serve to counterbalance, to a considerable extent, the weight of the high and low pressure cylinder pistons, thus practically doing a way with the unpleasant jerk so noticeable in many paddle boats. The water for condensing the exhaust steam is circulated through the condenser tubes by one of Gwynne's "Invincible" pumping engines, capable of discharging over 3,000 allons per minute.
The paddle shafting is all forged of. "double wrought" iron for extra strength, and the paddle wheels are of the ordinary description, each having nine feathering loats of wood. The diameter of the wheels is 21 ft .10 in. over all, and $471 / 2$ revolutions were easily obtained; but owing to the unusual severity of the specified trial (viz., four consecutive runs between the Cloch and Cumbrae lights, $15 \cdot 744$ statute miles), and the firemen not being accustomed to forced draught, the average number of revolutions on the trial trip was half a revolution less, ©iz., 47, and resulted in a clear mile of additional speed over the 20 miles guaranteed; for the time taken to run the "lights" was exactly a mean of 45 minutes, or as nearly as possible 21 miles per hour, the engines indicating 2,680 horse power.
This gratifying result was very much due to the saving of weight effected by the adoption of the "navy" boilers in conjunction with forced draught supplied by two of Capell's fans driven by Chandler's high speed engines, which worked very quietly and satisfactorily, giving an air pressure equal to $11 / 2 \mathrm{in}$. of water with ease, but on trial $1 / 8 \mathrm{in}$. only was required, thus leaving a liberal margin for the 'inferior Australian coal, which from their extensive colonial connection Messrs. Rankin \& Blackmore have found requires much larger boiler power than is necessary with our own good steam coal.
There are six steel boilers in the Ozone, 7 ft .9 in . in diameter and 15 ft . long, with a working pressure of 90 lb .

An agreeable illustration of the capacity of the feminine mind to grapple with the abstractions of science was afforded in the recent annual meeting of the American Science Association, whose proceedings were illuminated by the personal participation of several lady members. A paper by Mrs. Nuttall Pinart was read, in the section of anthropology, containing some analyses of Mexican inscriptions. The novelty of her interpretation consists in interpreting the Mexican symbols as phonetics and not as ideograms, thus completely revolutionizing the previous conceptions on this subject. Her method has been applied to the deciphering of calendar and sacrificial stones of Mexico, and was suggested by the presence on these of phonetic symbols occurring in picture writings. This so-called calendar stone Mrs. Pinart believes to be the market stone of the city of Mexico. It regulated the time of holding the market days; and perhaps the division of the Mexican year rested upon these times. It also gives evidence to the existence of a communistic government.
In the section of chemistry, Mrs. Helen C. De S. Abbott read a paper upon the proximate composition of a bark from Honduras, known as "chichipati," which contains a new camphor and a yellow coloring matter, chichipatin, apparently of value as a dye and substitute for fustic. The same lady also presented some considerations of the relations of the chemical constituents of plants to their morphology and evolion, maintaining that the chemical constituents follow parallel lines with the evolutionary course of plant forms. In the section of economic science, a paper was read, written by Mrs. John Lucas, of New Jersey, upon silk culture; and finally, in the section of mathematics and astronomy, Anna Winlock's views were read on "the limitations in the use of Taylor's theorem for the computation of the precessions of close polar stars."-American Analyst.

The Incentive to Giwn a Home.

The Manufacturer and Builder thinks that the man who is working to secure a small piece of property substitutes a new and distinct ambition for a remote and vague one. Day dreams about large estates and princely incomes may be very amusing, but they are not half so profitable as a vision of a lot 100 by 200 , with a snug little dwelling house upon it. With this before him, a man will rise early and retire late, turning his hand cheerfully to any and every kind of work. He will have a motive for rigorous economy which will make it a pleasure. He will have the vision of the last payment before him as a perpetual motive to moderation in passions, economy in expenses, abstinence from expensive pleasures and from expensive companions. Thus it will come to pass that a judicious debt, incurred at the beginning of a journeyman's or laborer's career, will become his good genius, watching over him, inciting him to all industry and to self-government. Every laboring man ought to own his house. The first duty of the workingman should be to convert The first duty of the working
his earnings into real estate.

EXPERIMENTS WITH the scientific top.

(Continued from first page.)
in a very erratic way. Figs. 12 to 15 inclusive illustrate the well known and very interesting toy known as the chameleon top. This top is shown in this connection, as the beautiful experiments which have been adapted to it may be transferred with great advantage to the heavier top. Fig. 12 shows the top itself, with the black sector lifted out of its normal position to the black sector lifted out of its normal positi.
show the colored segments on the face of the top.
When the top is spun with the black sector restin on its face, a great variety of changes of hue may be produced by retarding the sector, by touching the metallic radially ribbed disk attached to its center. This operation causes it to shift its position on the top, and expose the different colored segments in suc-

radial disks.
cession. Persistence of vision causes the segments to appear as circular bands of color, which constantly wange.
When the colored paper ellípses shown in Fig. 13 are thrown upon the top and touched by the finger, the colors are curiously blended.
The tricolored disk shown in Fig. 14 is to be supported loosely on one of the wires shown in Fig. 15. This disk, when revolved, yields some very pretty effects. The wires shown in Fig. 15, when inserted in the hollow top spindle and revolved, produce the figures shown in the upper portion of the engraving, appearing like phantom vases, bowls, etc.
When this experiment is adapted to the large top, the wires are replaced by thin nickel plated tubes, inserted in wooden pins fitted to the spindle of the top. The tubes are provided at their upper ends with small spherical knobs.
In addition to the experiments described, there are In addition to the experiments described, there are
of course many others of equal interest which may be performed by means of a heavy top.
The spinning device shown and described in the first
paper has been adapted to a large gyroscope.

A STOP MOTION FOR LOOMS.

The invention herewith illustrated provides a construction by which the belt is automatically shifted and the loom stopped in case the shuttle fails to leave the box. Fig. 1 shows a front view of the lay of the loom, or the swinging frame, by the movement of which the weft threads are laid parallel to each other

MEGSON'S STOP MOTION FOR LOOMS.
against the cloth previously woven, Fig. 2 being a cross sectional and Fig. 3 a plan view of the lay; Fig. 4 showing a plan of the under side of the breast beam. The lay, A , is mounted to swing between the side pieces of the base frame in the usual manner, toward and from the breast beam, also secured on the base. On the upper part, of the lay is the shuttle race, C , with the boxes. C^{\prime}, for receiving the shuttle, D, the front of
the outer end of the lay in such a manner as to swing toward and from the back of the lay, the lever being pushed inward by a spring, F^{\prime}. In lugs on the front of the lay is journaled the shaft, J , the middle of which is supported by a forked piece, J ', between the prongs of which projects a dagger, K, that acts against the bunter, O, and a supplementary bunter, N. Arms, L, project upward from the shaft, their heads resting against the outer swinging ends of the levers, E, and springs, I, being coiled around the ends of the shaft, each having one end resting against the adjacent arm in such way as to press the arms against the levers. E. From the under side of the breast beam, B', jaws, M, project downward, to which the supplementary bunter is pivoted, a spiral spring, P, being secured to the supplementary bunter.
In operation, should the shuttle fail to enter the box, one of the prongs of the dagger, K , will strike the ordinary bunter in such way that the belt will be shifted and the loom stopped. By the previous method of construction, if a shuttle of a single shuttle loom should fail to leave its box while a pattern was being förmed by the harness, and the loom was allowed to run, both the take-up and the pattern chain would require adjusting, and with a loom employing more than one shuttle the warp threads would be broken.
This invention has been patented by Mr. John Meg son, of Adams, Mass.

Nitrate of Soda.

Extensive deposits of nitrate of soda exist at Antofagasta, Taltal, and other places in the desert of Atacama, but the chief center of production is the newly acquired province of Tarapaca, which is described as one immense bed of this valuable salt. At the present time the nitrate business appears to be passing through a series of crises which is the result of two distinct causes. A commission appointed by the United States Government to inquire into the industrial and commercial condition of the Central and South American States, writing on the subject of the nitrate deposits, says that, in 1875, the Peruvian Government appropriated the nitrate deposits of Tarapaca, and compelled the proprietors of works to hold them under leases from the Peruvian Government, and to produce nitrate subject to the payment of a royalty, but the production was limited to a certain specified quantity per annum. The object of the Peruvian Government in appropriating the nitrate deposits, and in limiting the production, was to prevent nitrate conipeting with guano as a fertilizer.
When Chili took possession of Tarapaca, the works belonging to the Peruvian Government were sold, those which had been seized, but not paid for, were re stored to their rightful owners, and the production of nitrate was declared to be free. A considerable impetus was thus given to the production, which was already in excess of the demand, when, rather more than a year ago, a sudden collapse in a large consuming market brought about a crisis in the nitrate business. About three years ago the beet growers commenced to use nitrate as a fertilizer. The roots attained an enor mous size, and the quantity produced per acre far exceeded that obtained by any other fertilizer. Experience, however, soon demonstrated that, although the beet 'roots attained an unprecedented size under the influence of nitrate as a compost, it was at the expense of the saccharine matter contained in the root, and it was also discovered that the salt had a deleterious effect upon the sugar in the act of granulation, and even upon the sugar itself.
The result of this discovery has been the refusal of the best sugar producers to purchase roots to which nitrate had been applied. To meet this altered condition of affairs, the nitrate producers combined not to produce more than $10,000,000$ quintals per annum ; and with the object of finding a new outlet for their production, the owners of nitrate works agreed to offer a prize of $£ 1,000$ to the discoverer of a new use for nitrate, and they also purposed distributing among agricultural societies, institutes, and schools 500 tons of salt for experimental purposes. A considerable quantity of iodine, for which practically there is an unlimited mar ket, is obtained from nitrate, but as it is a residual product, the quantity obtained obeys the laws of production of nitrate. The iodine is held in solution in the water in which the nitrate earth is boiled and washed, and the reagent used is sulphuric acid. The total value of the nitrate of soda exported in 1883 amounted to $£ 6,409,000$, of which the United Kingdom took $£ 5,888,-$ 000 , and the United States $£ 168,000$. The total value of the iodine exported in 1883 was $£ 597,000$, of which $£ 90,000$ went to the United States and $£ 355,000$ to the United Kingdom.

Referring to a carpenter who was seriously injured from the falling of an insecure scaffold, the American Builder adds: "It seems too bad, with the genius this country affords, that it cannot find some one who will invent a scaffold which will prevent the fearful loss of life which is daily occurring through the carelessness of those who build the ordinary joist and board affair."

Cabbage Flies and Worms.

From the address of President William Saunders, before the Entomological Society of Southern Ontario, we learn that the cabbage crop has been materially injured by the ravages of the cabbage Anthomyia, Anthomyia brassicce, a two-winged fly, which in the larval state burrows in the center of the stem of the young plant and causes its death. This cabbage insect is a native of Europe, is very troublesome in Britain, and has been known as a very destructive insect in this country for about thirty years, but nothing is known either of the date or the method of its introduction. The flies appear in the spring, and deposit their eggs upon the stems of the young cabbages about or a little below the surface of the ground. The eggs hatch in about ten days, when the young larvæ usually bore into the interior and work their way down toward the root; sometimes they merely gnaw grooves on the outer surface of the stem, and by this find their way to the roots, on which they feed. When full grown they change to yellowish red chrysalids in the earth, from which the flies shortly escape, the whole period of their life history, thus briefly traced, occupying about eight weeks. Usually, the plants attacked soon wilt and finally die. It is believed that there are two or three broods of these insects during the year.
Several remedies have been recommended, such as dipping the roots and stems of the young plants in strong lye, or a mixture of earth and cow dung diluted with water, or a thick mixture of soot and water. Any bitter or alkaline substance which would adhere well to the outer surface would probably deter the flies from depositing their eggs. Lime added to the soil, in the proportion of 100 to 150 bushels to the acre, after plowing, and well harrowed in so as to keep it near the surface, has proved a very effectual preventive measure; or even where the insects are at work upon the plants, if the earth is scraped away from about the stem of each, and a handful of lime dusted around it, and the soil again drawn up to the stem, the plants will sometimes recover. Coal dust, gas lime, and stimulating artificial manures have also been recommended.
The cabbage has also suffered from injuries caused by the common cabbage worm, the green caterpillar of the cabbage butterfly, which feeds upon the foliage, and often disfigures it to such an extent as to render it unmarketable. The habit of this caterpillar, feeding as it does among the folds of the leaves, makes it extremely difficult to reach with any sort of poison without at the same time rendering the cabbage unfit for use.

PYRETHRUM, OR INSECT POWDER.
Pyrethrum, or insect powder, which is the powdered flowers of Pyrethrum cinnerariofolium, has been used with good effect, either dusted on the plants or
mixed with water and applied to them with a syringe, and this remedy is not in any way objectionable or poisonous. The pyrethrum plant is in my experience quite hardy in Ontario, has stood the severe cold of the past two winters without injury, and flowered freely. It is easily raised fromseed, and being a perennial species, when once established it will continue to flower for an indefinite number of years. The flowers, collected when just about to expand, dried, and powdered, are very efficient as a general insecticide.

During the past year or two, many interesting experiments have been made and valuable results obtained in the way of artificially introducing disease among communities of caterpillars, a sort of caterpillar plague or pestilence, which carries them off by thousands. There is a very fatal disease which appears from time to time among silkworms, the larvæ of Bombyx mori, when bred for the production of silk, a disease which spreads so rapidly that it frequently destroys entire broods of caterpillars within a few days. So destructive has it been, that it is estimated
that the silk crop in Europe is injured to the extent of that the silk crop in Europe is injured to the extent of
many millions of dollars annually. During the past ten years it is believed to have reduced the income of silk breeders twenty-five per cent, and in 1879 was said to be the main cause of the great falling off in the silk crop of that year, which was only about onefourth of the amount ordinarily produced. The celebrated Pasteur investigated this disease, and found it to proceed from the presence of an exceedingly minute form of bacteria, so excessively small that it has been estimated that it would require eight millions of them to cover the head of an ordinary pin. When water containing these minute-organisms is sprinkled on the leaves on which the silkworms are fed, they are found to be rapidly infected and capable of communicating this pestilential disease to others with which they are associated. The bacteria may be preserved
in a torpid condition without loss of effectiveness for in a torpid condition without loss of effectiveness for
at least a year, probably for several years, and that without any particular care, and when required for use can be rapilly propagated in a suitable fluid.
In my address to you last year, I referred to a similar form of disease which had occurred among cut worms, so abundant in clover fields in the Ottawa dis-
trict; and in 1878 and 1879 to a similar trouble among
the forest tent caterpillars, at that time so abundant. Now, I am glad to be able to report a similar disease
among the cabbage worms, and to indicate to you some practical results arising from investigations regarding its nature and mode of operation.
Throughout most of the State of Illinois and in some parts of Michigan, it was observed last autumn that a large proportion of the cabbage worms sickened and died. Hundreds of their bodies were to be seen rotting on the cabbage leaves, or shrunken and dried to a blackened fragment. This was soon brought under the notice of the State Entomologist of Illinois, Professor S. A. Forbes, a most careful and indefatigable observer, who at once proceeded to investigate the cause of this caterpillar plague. He found the disease at first to be very unevenly distributed, some isolated fields showing no trace of it, while others not far distant were fairly reeking with death and decay; but as the season advanced it spread in every direction, until in some districts almost every worm perished. He says: "We can conceive something of the significance of this disease if we imagine the terror and dread which would seize mahkind if such a plague should suddenly assail human life. Whole towns would be depopulated, and the dead would rot in the streets by hundreds. There would be no escape for any, because the contagion would be conveyed by the very food and drink by which life was sustained."
On dissecting specimens of the dead caterpillars, the microscope showed their intestines to be full of undigested food, and swarming with a species of micrococcus, which appeared in the form of excessively minute spheres about one twenty-five thousandth of an inch in diameter, sometimes single, sometimes in pairs, and occasionally in strings of from four to eight. He
found that these minute organisms could be readily cultivated in beef broth, and that a single drop of fluid from a diseased worm introduced into a vesse of such broth would in two or three days render the whole contents milky with myriads upon myriads of these microscopic organisms, precisely the same as those taken from the diseased larvæ. He also found by experiment that the disease could be communicated to other species of caterpillars. Experiments continued during the present year have shown that by propagating this form of bacteria in the manner de scribed, and mixing a pint of a well charged culture with a barrel of water, and syringing cabbages with this fluid, the disease may be introduced, thus furnishing us with another means of defense agains some of these injurious insects.

Telephonic Induction.

Mr. Preeces paper on "Induction between Wire and Wire," lately read before the British Association, revealed a somewhat alarming extent of electri cal induction. In Gray's Inn Road a telegraph wire suffered induction from a telegraph cable 80 feet below in the ground. The complaints induced Mr . Preece to arrange experiments on a larger scale. In
Newcastle, induction was noticeable at 3,000 Newcastle, induction was noticeable at 3,000 feet dis-
tance. Experiments on the Durham-Darlington lines, and two other parallel lines, the one $101 / 4$ miles east, the other $51 / 4$ miles west, proved that on a Sunday when all other traffic was stopped, a peculiar signal given on the central wires of 18 miles length could distinctly be heard at the four corners of the two other parallel wires, and, moreover, Morse signals were heard which could only come from a line 40 miles away. Two other lines were therefore selected; one
from Newcastle 55 miles long, with 10 wires, the other from Gretna, 40 miles long, with 17 wires, the two being about parallel and 40 miles distant from one another. The wail produced by intermittent in creasing and decreasing currents by means of a special commutator in the one line was sadly audible in the other. Mr. Preece did not consider these tests
conclusive evidence of induction, because earth was used as return lead, although the respective line terminals were most carefully insulated. Another series of experiments is, therefore, now being carried on, with gutta percha wires bent so as to form squares, of a side of $1 / 4$ mile length. Two such squares have been placed on the ground $1 / 4$ mile apart; and what is intrusted to a telephone inserted in the one closed circuit can be listened to in the other. If facts of this kind become known, the telephone will not gain in favor. Cables are not much better, perhaps; signals given in the one cable to the Scilly Islands have is further in the other cable half a mile away. It copper wire to Wales. Professor Silvanus Thompson objected to the term induction, which has become the household explanation for a good many different
troubles. As the earth was used in Mr. Preece's tests, and perfect insulation is a practical impossibility, the lines of force tapped at any two points must neces-
sarily indicate current variations. Mr. Preece pro tested against having characterized the phenomena as induction phenomena. It was remarked that at the electrical tramway line at Giant's Causeway, a tele graph wire is only 28 feet from the conductor rail, and
no induction effects have ever been complained of,
although the postal authorities had to be satisfied about a great many points before agreeing to have the two lines so near one another. A test experiment was further suggested. Let us take three parallel wires, the one for the signals, the other two on the same side of the first for listening with the tele phone at the one terminal ; if we have to deal with conduction, it cannot make any difference whether or not we join the two other wires by auxiliary wires, so that they form one complete telephone circuit; if t is induction, a difference must result.
Mr. Preece further related how he had found a piece of a needle, suspected of being in his daughter's hand, when Professor Hughes' induction balance and Bell's contrivance, with which he localized the bullet in President Garfield's body, had failed. Mr. Preece strongly magnetized a steel needle of the same size as the one which had broken in his daughter's hand. Suspending this by a paper stirrup, he observed a deflection when the needle was near the hand, and succeeded in localizing the steel piece in the palm, so that an operation could be performed a fortnight after the accident, yielding a piece of the refractory needle $1 / 2$ inch long.

New Theory of Coal Formation.

The Bulletin de la Ceramique points out that the theory enunciated by M. De Grand' Eury is opposed to the idea that large trees and shrubs produced coal and in further support thereof it is stated that the carboniferous flora consisted of plants deficient in substances necessary for producing coal-the investigation of M. Gaston de Saporta on this point indicating that this vegetation consisted of a relatively thin circle of wood and of a large quantity of a softer substance. Brogniart and Elie de Beaumont attri bute the formation of coal to the transformation of the close herbaceous vegetation which surrounded the larger forest trees and plants. Similar noinions have been expressed by M. Ponchet and other savants ; so that M. Grand' Eury has more or less eminent authorities for his statement that a calculation of the accumulation of trees, etc., necessary for the conversion into even a thin coal bed of a forest suddenly buried under water, or gradually letting its residue gather on the ground, leads to an evidently erroneous result, so greatly is it necessary to exaggerate either the mass of vegetable matter or the duration of the process of coal formation. Even admitting for a moment that coal is produced by the decomposition of trees, M. Grand' Eury asks how it can be maintained that wood, in losing its moisture, has become liquid. Wood is known to contain a good deal of water, and coal has only traces of it. While he regards it as certain that coal was at one time liquid, and gradually assumed a solid shape, he considers that coal beds were formerly beds of naphtha and bituminous petroleum, produced by the decomposition of inferior aquatic vegetation under the influence of heat and dampness. As a proof of this assertion, he quotes the fact that the porous minerals found at the bottom of coal pits are impreg nated in their pores with naphtha and petroleum. This is at once detected by their odor ; and it is therefore argued that this raphtha could only have been absorbed during the first state of coal formation. It is further remarked that this theory serves to explain the formation of petroleum, asphalt, and other bituminous springs, which are found at various depths, and even at the bottom of some lakes. A porous soil would allow of filtration; and hence M. Fongas has remarked that in calcareous districts the coal foundis usually of somewhat poor quality.

Photo Printing on silk.

In the Photographische Mitarbeiter the following ecipe for preparing silk for printing from is given :

No. 1 is mixed with No. 2, well shaken, and filtered. The older the mixture, the better it is for use. In this bath the silk is thoroughly immersed, and allowed to remain for three minutes, when it is taken out and hung up to dry.
Sensitizing solution is composed of a silver one to en, acidified with nitric acid.

Toning Bath.

No. 2.
$\begin{aligned} & \text { Sulphocyanide of ammonium................. } 20 \text { grammes. } \\ & \text { Water..... } 500 \mathrm{cc} \text { cm. }\end{aligned}$
No. 1, after shaking, is mixed with No. 2. In a few days the mixture will become clear, when it is ready or use. It is preferable to dilute with from two to for use. It is preferable to dilute with from two to
four times the quantity of water. Fixing and washing
as usual. as usual.

A CHEAP TYPE WRITER.

The accompanying engraving represents an improved type writer, which is remarkably simple in construction and easy to operate. The paper enters at the front, passes under spring fingers, over a rubber feed roll-one end of which is provided with a milled head, by which it may be turned-and then over a flat type bar. Just above this bar is a rod formed on its upper surface with teeth spaced to correspond with the spacing of the printed letters. Sliding upon this rod are two lugs, formed upon a thin cast plate, whose outer segmental portion is marked with the letters of the alphabet, numerals, and punctuation marks. In the center of this segment is pivoted a second one, carrying a curved rubber strip, form ed with letters, tc., upon its under surface. This segment is also formed with holes, which are radi ally in line with the rubber letters. Pivoted to the plate is a lever, pivoted at its outer end to an arm provided with a horizonta
stone built on columns o brickwork which are sup ported on platforms, each constructed on four wooden piles. The side of the building is covered with Cameret tin and white pine sheathing, matched and planed on both sides and double beaded. Rendle's system of glazing is used for all the extensive skylights, and the main front of the building is covered in with ornamental galvanized iron.
The construction of the roof is shown in our engraving of the sectional view. The main and side trusses are stiffened longitudinally with trussed purlins and latticed struts, and the roof is covered with tin laid on 114 in . yellow pine boards.
All the tin is painted with one coat of paint on the felt side and two coats on the outside, and the pin adapted to enter between the teeth of the rod. The NEW PASSENGER DEPOT OF THE ERIE RAILROAD./wood work is finished in three coats of olive lever also carries two downwardly projecting pins, one The extensive passenger train shed and depot shown green. of which, when the lever is depressed by means of a in the engraving are now in course of erection for the finger bar mounted upon the outer ends of the rod and extending across the machine, forces the letter under it down upon the paper, while the other, whose point is conical, enters one of the holes and serves to guide the first pin.

This simple construction prevents the rubber between the letters from being forced down, and, at the same time, renders unnecessary the accurate stopping before any particular letter of the pointer which is attached to and by which the type plate is moved. This pointer moves over the segment having the characters marked upon it, and can be rapidly shifted from letter to letter by one hand of the operator, the other hand pressing down the finger bar as each letter is indicated, this movement also shifting the type along the distance of one space. By pressing upon a thumb piece attached to the left hand end of the finger bar, the type can be moved along one space without any type making an impression. The strik ing of a bell notifies the operator that the end of the line has been reached. The free end of the plate is then elevated, when it can be moved back to begin another line, the paper being advanced any desired distance by turn desired distance by turn-
ing the feed roll. Attached to the plate are two inking pads, upon which the type segment bears. The constant movement of the type over these pads insures the thorough inking of each character.

Provision is made for easily regulating the length of the printed lines The machine has extremely few parts, not one of which is delicate or liable to get out of order.

Further partic ulars concerning this type writer may be obtained from World Type Writing Machine Company, 113 Prospect Street, Boston, Mass.

In Egypt an engine specially constructed to use petroleum as fuel is drawing trains on the railway between Alexandria and Cairo.

in the engraving are now in course of erection for the
New York, Lake Erie, and Western Railroad on the Pavonia Avenue Jersey City The work is carried from the designs of the company's architect, Mr. G. E Archer, under the superintendence of Mr. C. W. Buchholz, the Chief Engineer of the department of Bridges and Buildings.
The train shed is 600 feet long and 140 wide, and is constructed in an unusually substantial manner. Iron standards or columns forming the main support of the structure are erected at distances apart of 25 ft of the structure are erected at distances apart of 25 ft
 roof.

The passengers' depot, which will be shortly erected It will be handsome elevation overlooking , office, two expres rooms, waiting room, and a general waiting room measuring $66 \mathrm{ft} . \times 100 \mathrm{ft}$. On the upper floor are to be the company's offices, arranged to be approached from a gal lery extending around the general waiting room, which will reach the whole length of the building to the

It is calculated that the total cost of the two build of which $\$ 75,000$ will be expended on the train shed. Cocoa Palms as Lightning Conductors.
In a recent article the Ceylon Obsevver refers to the power of the cocoa nut palm to conduct lightning. Sir Emerson Tennent long ago pointed out that this tree acts as a conductor in protecting houses from lightning, and in one instance 500 palms were struck in a single plantation during a succession of thunder storms in April, 1859. But the trees themselves suffer terribly in the process, for however slightly they may be touched by the electric fluid, they die. Sometimes only the edges of the branches are singed, at others a few leaves turned brown alone show where the tree was touched, yet however slight the apparent effect, in course of time the tree withers gradually and dies.
In conclusion the journal quoted inquires why it is that cocoa nut palms which hay merely had their external parts their foliage, almost impercep tibly singed should be as much doomed to death as those which have had their vital parts permeated by the lightning, the fatal result being only protracted in the one case while it is instan taneous in the other.

The "Noble Forehead" Fallacy.

It is popularly supposed that the high forehead is essential to a good brain, and intellectual superiority is usually associated with the conception of a "twostoried brow." Dr. Wm. H. Mays ably combats this idea in the Western Lancet. He says:
"The size of the forehead depends much on the line of growth of the hair that limits it. A man may have what is called a low forehead; but if the hair could be removed to the height of four or five inches, the same individual would present as fine a specimen of the traditional "noble forehead" as could be wished, a perfect "dome of thought," particularly if the frontal sinuses happened to be large or protuberant. Again, a low forehead has ever been held a sign of beauty in woman, and has certainly never been regarded as an impeachment of her mental capacity. The truth is, the front part of the brain has very little to do with the intellectual process. It is the posterior lobes of the brain with which the higher faculties of the mind are associated. Gower assigns to the frontal lobes, excepting their lower and hinder portions, a negative position as regards psychical importance. Only man possesses posterior or occipital lobes; they are the latest achievements in the long line of cerebral development. In the higher apes they may be found in a very rudimentary condition; the lower mammals possess frontal or anterior lobes only. In the lower savages, and in congenital idiots, the occipital lobes are often ill developed, approaching the brute type, giving a flattened appearance to the back of the head. In the Stockton Asylum are several interesting idiots, some of whom, while possessing quite respectable foreheads, show a striking deficiency of back head. The neck and back of the head are in one line, and it is worth remarking what a foolish appearance such a contour gives an individual. When you see a lack of the rounded sweep or projection of the back of the head above the neck, you will find with it a low order of intellect. The idea that a high forehead is, taken alone, the index of mental superiority is as baseless as any of the exploded propositions of phrenology, with which pseudo-science it deserves to be classed."

EXPERIMENTS IN PNEUMATICS WITH A STEAM VACUUM.
 t. o'conor sloane, ph.d.

From the two preceding articles in this series it will be seen that several experiments usually performed with an air pump can by simpler apparatus be shown almost or equally as well. It is proposed in the present paper to extend the list. After such a series as given has been followed in this work by the experimenter successfully, he will have little difficulty in going still

CARTESIAN DIVER IN VACUO

further, and by a little ingenuity will be able to execute a full set of vacuum experiments.

The existence of air in the pores of wood has already been shown. Striking as the experiment is, the air and its movements are unseen until it enters the water. It is interesting to watch the expansion and expulsion of air from a transparent vessel. A test tube is nearly filled with water and inverted in the cylinder or bottle that held the piece of wood in the former experiment. The cylinder should be almost completely filled with water. Under these conditions the inverted test tube sinks to the bottom, and reststhere, with a small bubble of air in its upper end. The boiling flask is connected and a vacuum produced. As the vacuum grows greater the small residue of air in the test tube ex-
pands, the tube grows lighter, and suddenly, when enough water has been expelled by expansion of the air, ascends to the surface
The air continues to expand, and begins to bubble out of its lower and open end. This is the action that takes place in the pores of the wood, and, just as in that case, a surprising volume of air will escape. On the readmission of air the test tube fills again, preserving a still smaller air space, and sinks at once. Each pore within the wood acts as the test tube does, and the latter experiment may be accepted as a magnified representation of the first one. As a further illustration of the expulsion of air from porous bodies, a piece of chalk may be placed in water and a vacuum pro duced. Air will escape from it, just as from wood.

POROSITY OF BOILING EXPANSION
WOOD

The porosity of wood may be illustrated by the use of the flask alone. A round stick is thrust through a short piece of rubber tubing, so as to make a tight joint in the neck of the boiling flask. The latter contains a little water, and is boiled, and while boiling the stick is introduced with its end under the water, the rubber making a tight joint between it and the neck of the flask. As the steam condenses, air will begin to steam through the stick from the outer atmosphere, and out of its lower end into the flask. After all is cool, the stick can be easily withdrawn. The ease with which it comes out shows how the vacuum has been destroyed by the air thus drawn in.
To illustrate the effect of a reduction of pressure on the boiling point, a small flask should be three-quarters filled with water, which is to be heated to a temperature a little short of boiling. All is quiescent until a vacuum is produced by connecting the boiling flask to it, and operating as described. As soon as the reduction of pressure has gone far enough, the water in the small flask begins to boil.

- In many of the experiments, the close observer will notice the appearance of minute bubbles in the water in the cylinder of the experimental vessel. These must not be confounded with the steam bubbles seen in this last experiment. The minute bubbles are not steam but are due to dissolved gas-nitrogen, carbonic acid and probably somewhat less oxygen.
Another example of the expansion of air may be executed by the aid of the small flask. It is fitted with a tube that protrudes to a length sufficient to reach nearly to the bottom of the boiling flask when inverted over it. The small flask is thus inverted while empty, the tube passing through the cork of the boiling flask. The cork of the latter has its plug removed, otherwise The cork of the latter has its plug removed, otherwise
all is tight. The water in the lower flask is boiled, and, all is tight. The water in the lower flask is boiled, and
after full expulsion of the air, is plugged. As the vacuum begins to be felt, the air bubbles out of the immersed end of the tube with great rapidity. When all has come that will, the plug is withdrawn. The water immediately rushes into and partially fills the upper flask. This condition is shown in the cut. A second vacuum is produced. As this is more than the preceding, more air will be withdrawn from the upper flask. By repeating this often enough, almost all the air may be expelled from the inverted flask.
The balloon already used may be borrowed, to show the elasticity of air. Most of its contents are expelled, and it is suspended from a rod or sealed tube passed through the cork of the boiling flask. It is sufficient to drop the balloon into the flask. Its attachment to the tube is a matter of convenience for its extraction. In either case its neck is tightly tied, so as to make it air tight. All being arranged, the water is boiled, the cork is plugged, and the vacuum is produced. The balloon slowly expands, and assumes a globular shape. When air is readmitted by withdrawing the plug, it suddenly collapses. When inflated, it will be much larger than the neck of the flask, and might be cited as a parallel case to the apples in the dumpling.
The last experiment illustrated is the familiar one acoustics. The transmission of sound through space is dependent on the existence of some material sub-
tance. In the case of its transmission, waves are formed by the vibrations of the sounding body, and these waves affect the organs of hearing. Solids, liquids, and gases convey sound. A solid, to act thus, must be elastic and tense or solid.
A short piece of India rubber tubing is slipped over the end of the glass rod or sealed tube used in the ast experiment. A bell, small enough to pass through the neck of the boiling flask, is attached to the end of the tube by a pin. The other opening in the cork is plugged. The water is boiled, the cork is slowly placed in the neck, and the lamp removed. As soon as cool, the bell may be rung by shaking the flask. No sound whatever will be heard if the boiling was long enough and hard enough to expel the air. The India rubber, though elastic in one sense of the word, is too loose or limp to convey sound waves.
In the future some more examples of this class of experiments may be given. By consulting text-books, more especially the older ones, hints for experiments in pneumatics may be found. An egg, by a large rubber tube, may be cushioned in the neck of the flask, a pin hole having previously been made in its inner end. Before resting it there, the water must be boiled. If the fit is good enough to hermetically close the flask, so that a vacuum is produced, and if the smaller end be placed downward, its contents will be expelled partially, at least, by the expansion of the air bubble. If a second pin hole is made in the upper end, the contents will be driven out much faster. A sharp edged metallic tube, fitted to the neck by a large rubber tube, will core an apple. While the water is boiling, an apple is screwed down on it ; and if the vacuum is good enough, the core will be drawn violently down into the flask. The tube protruding from the flask must be long enough to go completely through the apple.
No difficulty will be encountered in these experiments if good rubber corks are used and rubber tube joinings between separate glass tubes are avoided.

Points on Patents.

One of the most common errors that inventors fall nto is the mistaking of mere mechanical skill for invention; and one of the most puzzling things the examiner in the Patent Office and the judge on the bench are confronted with is the necessity of determining just where mechanical skill ends and invention begins.
Another error prevailing very commonly among inventors and others is that an individual or corporation has the right to manufacture a patented article, provided it is for their own use, and not made for sale. This is not so. The law gives the patentee the exclusive monopoly for seventeen years to make, use, and vend.
Another error of inventors, although not so common as those above, is that the object for which a machine is constructed, or the use to which it is to be put, is what the patent is granted for. This maybe true, to a very limited extent, where the article thus produced is a new article of manufacture ; but, generally, the patent is for the mechanical arrangement

balloon in vacuo. acoustic paradox.
whereby the desired result is obtained, and not for the esult itself, and the use of such patented machine for an entirely different purpose is an infringement of the patent. The granting of the patent carries with the exclusive use of the machine, no matter for what purpose.-C. N. Woodward, in Wood and Iron.

Waterprôofing Cloths.

The following mixture is given by a correspondent n L'Industrie Textile as suitable for waterproofing all kinds of woven fabrics: Linseed oil, 77.0 ; acetate of lead, 1.845 ; litharge, 10.0 ; amber earth, 0.4 ; vegetable wax, 1.3 ; soap powder, 1.2 ; Manila gum, 0.7 ; lamp black, $4 \cdot 0$; essence of turpentine, 2.0 ; India rubber varnish, $1: 555$; total, 100.

A Large Anaconda.

An anaconda, 15 feet long, the largest, it is said, that ever came hither, arrived last week, and was almost immediately dispatched to the Philadelphia Zoological Garden, where it now is. Mr. Frank Thompson, the dealer in wild animals, who imported it, exhibited it to the writer in his headquarters at 411 East 56 th St. An attendant knocked off the top of a large box which lay upon the floor, and the monster was seen in his entirety, the great folds of the body, of a light brown color, marked with dark circles, lying tier upon tier from the bottom to the top of the box. No soonerwas the light let in upon him than he began to move his head from side to side and shoot out his forked tongue threateningly.
"I want to examine his mouth," said the dealer, " to see if there is any appearance of canker, for it is of such corroding humors that these reptiles usually die." Saying this, the dealer eyed the monster for a moment intently, and the latter returned the look with inter est. Suddenly the dealer, a powerful man, thrust for ward his right hand and seized the huge neck with an iron grip, and the great mouth was opened wide in anger. There was no appearance of cancerous growth, and the wary dealer, letting go his hold, dodged to one side, and the blow aimed at him by the reptile fell short. Before he could get ready for another, the top of the box was jammed down upon him. It was curi ous to note the effect the sight of the anaconda had upon the kangaroo and other animals in the adjoining cages. They seemed beside themselves with "fright jumping hither and thither; the eyes of the former almost starting from the sockets.
The anaconda is found almost exclusively about the Amazon watershed, and is essentially a water snake, living in or near the water. The boas come from the same locality, but are distinctly land animals. Wallace and Bates (the latter is now secretary of the Royal Geographical Society), in their voyage up the Amazon, some forty years ago, had their chicken coop, which hung over the stern of the vessel, torn to pieces and robbed by an anaconda one night while they lay at anchor, and they aver that this reptile will take any kind of an animal off a vessel's deck if he can reach it.
He lies hid in the water where animals are wont to come at night to drink, and when a favorable opportunity presents itself, darts his head forward, seizes his prey with his teeth, and then, dragging it into the water, he winds himself around, crushes, and then devours it.

THE " SADDLE SULKY."

The essential feature in the construction of the sulky represented in the accompanying engraving consists in so curving the axle as to admit the rear of the horse between the wheels, thus permitting the horse to turn upon his center of motion, thereby making riding in such a vehicle very safe. In many respects it is like riding in a saddle on wheels, as it is to all intents and purposes a part of the horse. The inventor claims that a vehicle of this nature will be of marked value, particularly for riding over rough roads, or where ordinary vehicles cannot be used, as there would be absolutely no danger. From the engraving it will be seen that the front of the seat of the sulky is supported upon a spring perch, rising and curving backward from curving backward from
the shafts, the rear porthe shafts, the rear por-
tion being held upon flat tion being held upon flat
springs secured to the curved bow uniting the ends of the shaft. This construction especially pro motes the comfort of the rider, and avoids the unpleasant motion usually experienced in two-wheeled vehicles. The sulky is very light, and at the same time exceedingly strong, since the axles are firmly secured to the continuous shaft, and well braced.
The sulky here shown is intended for exercising horses, but we are informed that a still lighter model for trotting purposes is made, similar to the small diagram, wherein the axle makes a continuous arch under the seat over the rear of the horse. This form, the inventor claims. prevents very largely the slewing usually experienced in turning around the curves of a track, thereby tending to increase the speed of the horse and lower the record.
This sulky has been recently patented by Charles F. Stillman, M.D., of 142 Broadway, New York City, and is being manufactured by Brewster \& Co., of Broadis being manufactured
way and 47 th Street.

STILLMAN'S "SADDLE•SULKY"

uninterrupted travel. But the legislature had not the power, neither had the municipal authorities, as against the adjoining owner, to confer upon any person the right to make use of the highway for any other purpose than to pass and repass, without the consent of
the owner of the fee. the owner of the fee.
gators. In addition to these apparitions, we ascertained the presence of a radiant corresponding to the star Beta of the Swan, which was situated upon the limit of the zone covered by our balloon.
A large number of stars emanated from this center and in an irregular manner. The phenomena lasted for a quarter of an hour. These stars were seen with

A BALLOON TRIP FROM CHERBOURG TO LONDON.
A young and already celebrated aeronaut, Mr. F. Lhoste, has twice in the past made a trip through the air from Boulogne to England, but these interesting expeditions could have been successful only through his alternate utilization of superposed currents. These nnurire du Bureau des Longitudes as correspondin Channel, from Cherbourg as a starting point, through a S.S.W. wind, which is one that is well established and frequent in these quarters. He and his traveling companon, Mr. J. Mangot, succeeded in their very first ascent in putting into execution the bold project that they had previously announced. Among the means employed by these explorers for traveling in a balloon over the sea, we consider as very important the use of a float for converting the balloon into a captive one, and the use of a cone anchor, permitting of the re ception of water hoisted up from the ocean with a pail, since the sun at daybreak tends to cause the balloon to rise into the higher regions, and to make it lose, through expansion, a portion of the gas that it contains, With these several methods of an choring one's self to the sea and taking in ballast, it is not impossible to undertake long balloon trips over the ocean. Messrs. Lhoste and Mangot
have been good enough to give us a complete account \mid with centers of emanation distributed over all parts of of their fine voyage, and we shall allow them to do the talking, but not before offering them all the congratulations that they merit :
On the 29th of July, the wind being favorable, the inflation of our balloon, the Torpilleur, was begun at Cherbourg, at 6 o'clock in the evening, and was finished at 11. The arranging of the paraphernalia took half an hour. These comprised (as explained by one of us at a meeting of the Congress of Learned Societies on the 29th of April, 1886, presided over by Mr. Faye) the following : (1) A helix placed under the car, and revolved by the aeronauts; (2) a triangular sail, that started from the center and extended to a yard 15 feet in length, fastened horizon tally to.our ring ; (3) a guide rope, 260 feet in length; (4) a cylindro-conical float, $51 / 2$ feet in length and $81 / 2$ inches in diameter; (5) a conical reser voir of a capacity of 85 gallons, and capable of serving as an anchor; (6) two pails at tached to an endless rope, 525 feet in length ; (7) a sheath ing of cork around the car, to render the latter unsinkable (8) ten bags, each containing 44 pounds of sand ; and (9) all the necessary instruments.
At half past 11 we gave the signal for starting, and rose slowly to an altitude of 1,300 feet, which we succeeded in keeping until half past two o'clock in the morning Scarcely had we left the road stead when we saw that the navy was making efforts to follow our balloon by means of the Mangin electric light projector.
Despite the skill of the officers who had this important experiment in charge, we have learned with pleasure that the rays that swept the heavens never once met with us. Such want of success of men who are used to looking for torpedo boats shows how advantageous balloons would prove for approaching a given point.

The amount of ballast thrown out during the first four hours of our trip was 130 pounds, our route re aining perfectly regular. During this part of the voyage, the sky was remarkably clear around the balloon; but the horizon, on the contrary, was

Fig. 2.-The balloon torpillede, with its float trailing in the water.

Fig. 1.-ROUTE TAKEN BY MESSRS. LHOSTE AND MANGOT IN THEIR BALLOON TRIP FROM FRANCE TO ENGLAND. the celestial globe. In fact, we saw several quite brilliant shooting stars start from various points of the firmament. These sporadic meteors were white, and their mean brilliancy was that of stars of the second magnitude. We saw seven of them. The last, toward 2 o'clock in the morning, was the most brilliant of all. It left a luminous train, from which seemed to start several brilliant points, as would do the various fragments of a single sphere falling to the surface of the globe. This fire ball remained in sight for at least four seconds, and must have dropped over the ocean, so that there is little chance of its fragments having been
collected. But the light was observed by a few navi-
difficulty, so that it was almost impossible to get at the number of them. Some of them shot forth at the same moment, and we saw seven or eight simultaneously.
We did not see Venus until more than an hour after she had risen. The aurora was very intense, but the bright ness of the coming day worked no prejudice to the effect pro duced by the planet. Her as pect was truly admirable. Her brilliancy was compara ble to that of an electric beacon, and much exceeded that of the Isle of Wight.

Well knowing that the appearance of daylight would give us a dangerous increase of ascensional force, we ma neuvered from half past 3 o'clock in the morning to circumvent the sun's influence. For the purpose of getting to the surface of the sea, we set the helix in motion. Despite the inconvenience of operating it, the balloon was brought within 160 feet of the waves without the loss of the least amount of gas.
ith centers of emanation distributed over all parts of The float was at once let down to the surface, and as
oon as it filled with water, through the orifices with which it was provided, the tension that it exerted upon its cable rendered the maneuvering easier. So we took advantage of this to set our sail.
It was then that, to our great satisfaction, we saw that we were approaching the Isle of Wight with a velocity of nine knots an hour. The resistance of the float had made us lose a notable portion of our speed, and for the purpose of making this up and obtaining a lateral direction, we trimmed our sail. The latter at once bellied, thus proving that it was acting despite its dimensions, which were small relatively to the per pendicular section of the balloon. We soon perceived that the heat of the approaching day was producing so per ceptible an inflation that our float, notwithstanding its weight of 130 pounds, was skippingover the waves. Now was the moment to put in execution the last part of our plan, and to take sea water aboard as supplementary ballast. This maneuver permits of lowering the balloon at will, and bringing it within a few yards of the surface of the sea, as shown in Fig. 2.
Upon approaching the coast, our float was hauled up, after first emptying it by means of the inverting rope. Thanks to such lightening of the balloon, we rose to a height of 3,200 feet, and entered England to the west of the city of Bognor, at forty minutes past four in the morning. The limpidness and transparency of the water not far from the coast were sur prising. The bottom, which was formed of rocks strewed over sand, partially covered with long seaweeds, could be seen very distinctly.
The effect of our sail had been sufficient to cause us to deviate from the course taken in the first part of the voyage but, when given its liberty again, the balloon had resumed its first route in slightly ascending toward the north.
The sun having finally made its appearance, we rose to an altitude of 4,200 feet. As it was our intention to proceed to London, we looked attentively in the direction N.N.E. to see whether we
nence, and thus great advances are made in both
could distinguish either Westminster Palace or the dome of St. Paul's, which is 350 feet in height. We soon recognized the outlines of these gigantic structures. It was about 5 o'clock in the morning. Soon afterward, we saw outlined in the distance the immense course of the Thames, from its mouth as far as to beyond Windsor Castle. Keeping ourselves in the right path, we preserved our horizontality as far as to the Crystal Palace, which we left to the right.
Fearing that we might miss London and ascend toward the sources of the Thames, we opened the valve in order to bring ourselves toward London Bridge through a lower current
This maneuver was thoroughly successful, and the great river was crossed at an altitude of 800 feet in the vicinity of the Tower. Having reascended to an altitude of 1,100 feet, we allowed ourselves to be carried along by a S.S.W. wind, which caused us to cross the city near St. Paul's, the Artillery Grounds, Victoria Park, and the entire north part of the city.
Seeing that we were leaving London, we began to descend, and, despite the violence of the wind, found it possible to stop without accident in a beautiful meadow on the banks of the river Lee. We were at Totenham Station, a charming village to the northeast of the metropolitan district.-La Nature.

Electric Lamps for Coal Miners.

The London Colliery Manager strongly urges the adoption of electric lanterns in place of the ordinary mining safety lamps. A portable electric lamp can now be made, possessing the following features: Weight, about three pounds only ; illuminating power, five candles ; size and shape, similar to present ${ }^{\circ}$ lamps; duration of light, ten hours ; cost of repairs, charges for battery and materials, one penny for ten hours. It will be seen that in these respects there is nothing to prevent its immediate adoption, and the entire displacement of the present lamps, and even candles, in many mines where they are still in use.
A strong argument in favor of the continued use of candles in slightly gaseous mines is that they give a better light than the safety lamps, and throw a stronger light on the roof. But this argument is entirely overthrown by the electric lamp, for its illuminating power is some fifteen or twenty times as much as a Clanny lamp, and about ten times that of the ordinary miner's candle.
The small globe which contains the incandescent are can also be placed on the top of the lamp, throwing its light all around as easily as in any other position.
The electricity in this lamp is supplied by a primary battery.
While it is satisfactory to hear that the weight is only three pounds, and therefore but little heavier than present lamps, which are generally about $21 / 2$ pounds, it would surely be a mistake to allow that consideration to stand in the way of the adoption of consideration to stand in the way of the adoption of
a lamp which offers so many and great advantages, a lamp which offers so many and great advantages,
and we should not hesitate to waive the objection if and we should not hesitate to waive the objection if
the weight were six pounds, though it would certainly be less convenient to carry for firemen and others who have much walking in the mine.
It has been said that the cost of a number of lamps would not exceed twenty shillings earh, and that, if manufxctured in very large quantities, the cost would be considerably less.
In respect to the consequence of breaking a lamp in gas, there is admittedly a spark exposed at the precise moment of breaking the vacuum globe; but this immediately dies out, and electrictens anticipate no danger from it, in even the most explosive atmosphere.
The present lamps may receive many jars and shocks, and even be dropped to the ground, with out serious injury, and frequently without putting out the light; but it is to be doubted whether their future rival, the electric, will be equally obliging, although, in this respect, much may possibly be done by constructive modifications.
The heat of the portable electric lamp is quite inconsiderable, and to hold it aslant or to splash it with water will in no way damage it. These are valuable features, and there are many others. Its light will neither affect nor be affected by the purity of the surrounding air, and it must very much in crease the comfort and health of miners to remove from a large mine several hundreds of the present lamps, which, burning not only a large quantity of oil daily, but many of them also burning a large quantity of fire damp, though then giving less light rather than more, have an effect on the atmosphere which may not be noticeable with a thermometer or a chemist's appliances, but that much reduces the comfort and health of the miners, and would be gladly dispensed with by men working in hot places.
The electric lamp has also all the advantages which attach to a superior light. Nearly every kind of work may with it be more efficiently performed, especially the cleaning of the coal before loading. The dangers
of hanging roofs and sides are brought into promi-

afety and economy.

It must be said for the present lamps that their ight gives warning of the presence, in dangerous quantities, of noxious gases, and thus wards off a possibility of suffocation; and that when the existing chief security for pure air is removed, the mainte nance of an adequate ventilation may be neglected, and injury to health caused thereby to the miners. But though a very convincing witness of impure air be then silenced, another will yet remain, for happily the fire damp of mines is usually accompanied by a smell which the practiced miner can readily distinguish. And, further, it must be conceded that if it is thought necessary to retain in a mine a few "safety lamps" in the hands of the firemen, the chance of an explosion emanating from a safety lamp will be less ened in at least the same proportion as the number of such lamps. But for our part, we would go to the full extent, and not retain one of the present lamps except as gas indicators for use in shot firing, and then only failing the practicability of other indicators.
We believe the adoption of electric lamps will no give rise to neglect of ventilation, but quite the reverse, for, as we have suggested, the necessity of limiting the maximum velocity of the air currents will be removed, and in the majority of large mines very large air roads have been formed, and only an increased water gauge will be needed to circulate a much larger ventilation. This may well be the next step in the onward march of the mining art.
Let us see, then, the picture which is conjured up by these thoughts for the morrow. A mine most brightly illuminated, which has not the odor of burning oil, which has no lamp stations, no lamp keys, no caution boards, but with an increased ventilation and higher air velocities, which imply no danger, but cause a purer and cooler atmosphere, and are the re sult of more powerful ventilating machinery with out outlay on the already large airways. To com plete the pleasant prospect, one thing is needed, the economical substitute for present explosives, which shall be without danger in the midst of coal dust or fire damp. The causes which lead to devastating ex plosions and the wholesale slaughter of the worker will then, we may hope, be altogether overcome, and thr man will feel free from the incubus which now eve threatens him, and will know that his safety depends much more than formerly on his own watchfulness. The chief agencies through which a slight flaw at some point or the gross carelessness of some one man may now jeopardize hundreds of lives will then be in gree measure counteracted.

NATURAL HISTORY NOTES.

Two large dog-faced baboons (Cynocephalus anubis F. Cuv.) arrived at Central Park recently, and are now on public exhibition in the monkey house. They come from Nubia, Abyssinia, and are very rare. The mythological symbol called "Anubis," one of the Egyptian deities, representing a man with a dog's head, is taken in part from this species of baboon They are even larger than Remus Crowley, the chimpanzee; and with a view of making a pleasant break in his life of solitude by the introduction of agree able companions, the dog-faced baboons were brought up to the door of his cage. Mr. Crowley was seated at his table eating his porridge, with a napkin neatly tied around his neck, as is his custom when at meals, and was in the act of conveying a tablespoonful of the porridge to his mouth when he caught sight of the visitors from Africa, who, seated in a movable cage, were regarding him with looks of polite surprise. In an instant, he wrapped his arms around the bowl of porridge, leapt from his arm chair, and fled to the further corner of his cage, where, with the big wooden spoon held aloft, he assumed a threatening attitude This inhospitable conduct on the part of Mr. Crow ley was responded to with fierce barks by the baboons without, who showed their teeth savagely and gave other evidence of a desire to make Mr. Crowley's nearer acquaintance. Under the circumstances it was thought best to put the baboons in a separate cage.
Two very large cranes (Grus americana), not befor seen here, have been place d in the sea lion pen. They are about $41 / 2$ feet in height, and hence larger even than the sand hill crane. One is in full plumage and white, while the other is of a beautiful light brown.
A pair of mule deer (Cerous macrotis) are the most recent arrivals in the deer park. Their great ears, coarse hair, and big-jointed limbs give them a striking appearance. They are dark gray in color and he tips of their tails are black, while that of the Virginian deer is white. When full grown, these deer will stand nearly five feet high at the withers. The irst deer of this variety ever in Europe reached the
London Zoological Gardens in 1879, being sent thither London Zoological Gardens in 1879, being sent thithe
through Mr. Conklin, the superintendent of the Cenral Park menagerie.
The copperhead snake (Ancistroden contortrix) has now with her a litter of young copperheads curiously spotted and striped.

A pair of caique (Caica melanocephala), a species of "parrakeet," as the paroquet is now called by naturalists, was recently presented to the city, and are now to be seen in the parrot house. This is the first time they have been on public exhibition here Their coloring is very striking; head black, throat lemon colored, back of neck orange, breast white, back and tail green. Their habitat is Demerara; and sitting, as they constantly do, close together on the perch, they keep up a constant chatter.
A pair of Upland geese (Bernicla magellanicus) have also arrived. These geese are found only near the Straits of Magellan and the Falkland Islands, which regions being colder than this, no trouble is anticipated in acclimating them. The male is white, with breast and under parts barred with black, while the female is brown with black bars. They breed freely while caged, differing in this respect from most wild birds.
Six pythons, each ten feet long, recently came here from India, and, though intended for the Central Park collection, could not be accepted through lack of funds, and four of them were lately sent to the Philadelphia Zoological Garden. They are of the class Pythonida molurus, the same as that supposed to have been slain by Apollo. It is the same description, too, which Virgil describes as attacking Laocoon, the Trojan priest of Apollo, who urged his comrades not to admit the wooden horse of the Greeks through the walls of Troy, which in reality contained a band of armed men, and led to the discomfiture of he Trojans.
Professor Torrey, in his "Theory of the Fine Arts," complains that the famousstatue of "Laocoon," epresenting Laocoon and his two sons within the olds of two pythons, as pictured by Virgil, is defec tive because of the misconception by the artist of the instincts of the python in biting. Mr. Frank Thompson, on the other hand, who imported the pythons recently shipped to Philadelphia, and who has hunted them in Africa and India, tells the writer that Professor Torrey is in error as to this. Taking one from a box at his headquarters at 411 East 56th Street, recently, he exhibited its teeth, or rather the python did it for him. Both jaws were seen to contain a myriad of serrated teeth, and Mr. Thompson's right hand, which is now gashed about the thumb, is a striking illustration of the fact that the python can and does bite. He bites to secure his prey, and holds on until his folds are securely wrapped about it. Then he kills it by constriction. The python is not difficult to capture, and he tells the following story of his last hunt for it in Java: The Malay attendant having found a hole among the rocks where he believed a python lay hid, filled his turban with sand, which he spread out before it. The next morning, the sand showing the monster to have gone out and returned, a trap was made of bamboo and placed immediately against the mouth of the lair, and the following night a great python crept in and was easily secured.

Petroleam v. Nasby on Socialism.

I hate a capitalist, no matter how he becum one. I hate the meenspirited, grovelin retch wich will work ten or more hours a day, deprivin hisself uv beer, and terbacker, and cards, and bilyards, and hos racin, and sich, savin peny by peny til he hez ground enough out of the world to hev a shop uv his own, and to em ploy other men to slave fur him, and thus go on akumulatin til heowns things. Such men are monopoists, and the enemies of labor, and grinders.
I hold that the possession of a ten dolar bil makes a monopolist, and al sich shood be crushed. Ez hevin a ten dolar bil makes a man a monopolist, his monopolism increases jist in proporshen to the ten dolar bils he hez. The owner of a factory is a enemy to the human rase, and ez for the man who bilds a railroad, he

Is a monster uv such hidgus meen,
 That to be hated need but to be seen,

My hatred of rail road managers is intens. It commenst with the first time I wuz droped off the hind platform uv a trane for not payin fare, and hez increst with every repetishun uv the ofense, which generally happens every time I want to go anywhere. I lothe the ralerode monopolist.
A grindin monopolist is any man wich has anything. Whenever a man hez saved anything, he becomes a capitalist, and ez capitalists are dangerous to labor, he should be made to divide it up so ez to be on a ekality with them wich never saved nothing.
The mechanic or workingman wich saves so ez to own a house or a farm becomes a capitalist, and consekently a grindin monopolist, and ez accumolashens are dangerous to labor, wat he hez shud be confiskated and divided up among us wich hezn anything. Property is a crime.
I ain't jist shoor that I hev got the socialistic doctrine down fine enuff, but I think these definishuns will do, espeshly when you howl em under a reg flag to luvers uv humanity wich is chuck full of stale beer.

ENGINEERING INVENTIONS.

A cable grip has been patented by Mr. Lewis B. White, of New York city. It is operated by compressed air, a piston from the cylinder containing
which operates a rod having lateral projections, and which operates a rod having ateral projections, anter
connected with cable gripping jaws, constructed after a novel plan, that is calculated to grip and release the cable rapididy, and hold it firmly and securely.
A steam engine has been patented by Mr. Herman Knebel. of Birmingham, Ala. It is a rotary engine, with a shaft provided with a piston having
head, with steam channels opening at their inner ends on opposite sides of the head, and extended thence outward in opposite directions, making an engine which may be revolved in either direction, and which avoids dead centers by causing the crank pin or eccentric po tion to serve as a piston head.

agricultural invention

A plow has been patented by Mr. Jona than M. Woodley, of Clio, S. C. The invention consists
in an adjustable and reversible wedgeshaped block for use with an adjustable breast part which carries the sweep or shovel, the whole forming a plow gange adapt ed to suit plows of difierent lengths, and serving to sweep or shovel into the ground.

miscellaneots inventions.

An ore separator has been patented by Mr. Henry C. Krause, of Lake Linden, Mich. Its con struction is such as to allow a graduated supply of water
to the pan, and in such way that the valuable minera to the pan, and in such way that the valuable mineral
will be separated or graded into different sizes, the machine being economical in the use of water, and being imple and not expensive
A clothes line pulley has been patented by Messrs. John S. Collins and Edmund J. Lyons, of
Brooklyn, N. Y. A forked bracket attached to a base plate carries a larger and smaller pulley, the line pass ing around the former and over the latter, which are so controlled by a crank that the line will be he
and can be readily put up and taken down.
A coffin platform for graves has been patented by Mr. Seth Baker, of Colorado Springs, Col. It consists of a frame with sockets, and standards with
transverse sockets, etc., whereby coffins can be readily placed over and conveniently lowered into the graves placed over and conveniently lowered into the graves,
while at the same time hiding the open mouths of the graves.

A spool holder for sewing machines has Ill. It is a friction device intended to prevent the spoo II . It is a friction device intended to prevent the spoo
from revolving more rapidly than is required, thus pre venting the undue unwinding of the thread, it being
adapted to be placed upon the spool spindle with the adapted to be placed upon the spool spindle with the spool resting upon the fabric layer
An alarm for poison receptacles has Deen patentéd by Mr. Oscar F. Frost, of Monmouth, Me. It has a clamping plate and loop supporting a
bell, which is hung in such way that when the bottle or bell, which is hung in such way that when the bottle or alarm will be rung that will give notice of the dangerous nature of the contents.
A coffee pot has been patented by Mr Joseph M. Lawrence, of Houston, Texas. It has a false
bottom and tubes extending upward therefrom and communicating with the upper parts of two chambers with other novel features, whereby the water heated will be forced up through the tubes and -discharged
continuously into the receptacle containing the coffee.
A wagon bed hoist has been patented by Mr. James S. Jones, of Crutchfield, Ky. It consists of a windlass provided with a clamp, by which it may
be temporarily secured to the wagon bed or bottom of be temporarily secured to the wagon bed or bottom of
the wagon box, with sheaves secured to the ceiling the wagon box, with sheaves secured to the ceiling of
upper floor joists of the carriage house, for receiving rope in hoisting the wagon bed.
A hog pen has been patented by Mr Lewis F. Chenoweth, of Millerton, Kan. The inven
tion covers an improved construction in various parts and details, whereby water or fluid feed may be placed in the trough from the outside, and whereby the ani mals in different compartments can feed from the
feed box and trough without disturbing each other.

A process of and apparatus for coating Brooklyn, Y . The invention provides for coating Brooklyn, N. Y. The invention provides for coating
the material by projecting upon one or both sides a fine spray of the coating material, as wax, paratine, etc. and maintaining the apparatus and material in a heated
condition to insure uniform spraying over the entire condition
surface.
A fruit evaporator has been patented by Mr. Arthur C. Penniman, of San. Jose, Cal. The
construction is such that the fruit trays are subjected to more intense heat at the bottom of the oven, and are then carried by wheels to a cooler upper part, to give a door at the end of the revolution, where fresh trays

A nut lock has been patented by Mr. Aaron C. Vaughan, of Shane's Crossing, \mathbf{O}. The body portion of a nut is cut entirely through with a slit paral-
lel to the axis of the bolt, and a portion of the part thus cut is depressed so as to act as a stout spring to bear against the othernut when screwed up, causing a strain ing off together.
An electric motor and generator has been patented by Mr. William Hansell, of Nevada,
Iowa. They are mounted on a se common to both, Iowa. They are mounted on a a common to both,
and have their armatures both carried by the same shaft, with fixed pole pieces and removable electro or permanent magnets, arranged so they may be changed for
others, the apparatus being intended for demonstration in schools, for medical use, and a variety of pur poses.

Business and Personal.
The charge for Insertion under this head is One Dollar co line for each insertion; about eight words to a line. as early as Thursday morning to appear in next issue.

Second-hand Tools For Sale by Poole \& Hunt, Balti-Second-hand Tools For sale by Poole \& Hunt, Bali,
more, Md.-One planing machine, will plane $35 j^{\prime \prime}$ wide, " high, and $16^{\prime} 6^{\prime \prime}$ long; one planing muchine, will
plane $30^{\prime \prime}$ wide, $26^{\prime \prime}$ high, and $5^{\prime} 6^{\prime \prime}$ long; one planing machine, will plane $24^{\prime \prime}$ wide, $22^{\prime \prime}$ high, and 5 feet long;
one double geared chasing lathe, will swing $24^{\prime \prime}$ dia.., 8^{\prime} $6^{\prime \prime}$ long; one drill grinding machine; one small punching and shearing mand
Magic Lanterns and Stereopticons of all kinds and prices. Views illustrating every subject for public ex-
hibitions, Sunday schools, colleges, and home entertainment. 136 page illustrated catalogue free. McAllister, Equatorial Mountings, Reflecting Telescopes, et
"Of earthly goods, the best is a good wife;
How many wives who to-day are almost distracted because of their many ailments, all tending to make home unhappy, would become the best of all earthly goods in
they kot rid of their troubles by using Dr. Pierce's they kot rid of their troubles by using Dr. Pierce's
"Favorite Prescription," which is an unfalling remedy for those diseases and weaknesses which afficict the fe--
male sex! Send ten cents in stamps for Dr. Plerce's male sex! Send ten cents in stamps for Dr. Plerce's
complete treatise on these diseases, illustrated by numcomplete treatise on these diseases, illustrated by num-
erous wood cuts and colored plates. Address Worid's erous wood cuts and colored plates. Address
Dispensary Medical Association, Buffalo, N. Y.
Agents wanted all over the United States to sell par Ant spool holder for sewing machines. Sample and cir-
ular sent to any address on receipt of 20 cents. Address Iar sent to any address on receipt of 294
Feuhaus, Belleville, II. P. O. box 894
A Mussulman gentleman, resident of Lucknow, India, wants employment in America. He is a matriculated scholar of English, a professor of Persian and Arabie
philosophy and religion. A poet of his own language philosophy and religion. A poet of his own language
Urder). For full particulars and testimonials apply to
Mirza Mohamed Hadi Katra Azam Beg-Nakhas, P. O. (Urder). For full particulars and testimonials apply to
Mirza Mohamed Hadi Katra Azam Beg-Nakhas, P. O.

For Sale.

The powerful hydraulic dredge boat G. W. R. Bayley,
now lying at Port Eads, La. Capacity, 2,000 cubic yards now lying at Port Eads, La. Capacity, 2,000 cubic yards
of sand or 4,000 of mud in 10 hours. Also two powerfal of sand or 4,000 of mud in 10 hours. Also two powerf 01
tug boats. All in perfect order. Inquire at Room 709 Woodworking Machinery of all kinds. The Bentel \& Margedant Co., 116 Fourth St., Hamilton, 0 .
Foreman for machine tool department of a large staionary and portable engine works. Must be a draughts-
man and familiar with valve movements and high speed an and familiar with valve movements and high speed o the right person there is an opportunityto secure Eus. stating age, T. E. J., P. O. box 773, New York Eureka scroll sawing machine for sale ; been run for
5 days; taken for deb 5 dass : taken for debt; good as new. Pri
cash. Address "Eureka," Worcester, Mass.
Blake's Improved Belt Studs are the strongest and weed \& $\mathrm{Co}, 83$ Chambers St., New York.
Engines and boilers, 为 to 4 H. P. Washburn Engine For Sale-The machinery, tools, plating apparatus, and raw material of a manufacturing establishment, now
working on orders in brass and other metals. Very low orking on orders in brass and od
rent, including steam power. Adc
P. O. box 285, New Brunswick, N. J.
A Catechism on the Locomotive. By M. N. Forney. on receipt of the price by Munn \& Co., 361 Broadway, w Yor
Concrete Apparatus, etc. Ernest Ransome, S. F., Cal. The Knowles Steam Pump Works, 44 Washington St., Boston, and 93 Liberty St., New York, have just isforms of Pumping Machinery of the single and duplex, steam and power type. Thi
mailed free of charge on application
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N.J. Machinery for Light Manufacturing, on hand and
built to order. E. E. Garvin \& Co, 139 Center St., N. Y. Guild \& Garrison's Steam Pump Works, Brooklyn,
v. Y. Pumps for liquids, air, and gases. New catalogue ow ready
Nickel Plating.-Sole manufacturers cast nickel andes, pure nickel salts, polishing compositions, etc. $\$ 100$ Sittle Wonder. A perfect electro Plating Machine. Complete outflt for plating, etc. Hanson, Van Winkle \&
Co., Newark, N. J., and 92 and 94 Liberty St., New York. Iron Planer, Lathe, Drill, and other machine tools of odern design. New Haven Mfg. Co., New Haven, Conn. Send Pessare Regulator and stem Send for catalogue of Scientific Books for sale
Kunn \& Co., 361 Broadway, N. Y. Free on application. Timber Gaining Machine. All kinds Wood Work gg Machinery. C. B. Rogers \& Co., Norwich, Conn. Iron and Steel Wire, Wire Rope, Wire Rope Tram-
tays. Trenton Iron Company, Trenton, N. J. Supplement Catalogue.-Persons in pursuit of infor ation of any special engineering, mechanical, or scienfifc subject, can have catalogue of contents of the SciThe SUPPLement contains lengthyarticles embracing ience. Address Munn \& Co.. Publishers, New York. Iron, Steel, and Copper Drop Forgings of every deRul. Bilings spencer Co., Hartfora, Conn. Rubber Belting, all sizes, 771/2 per cent regular list.
All kinds of Rubber Goods at low prices. John W. All kinds of Rubber Goods at low
We are sole manufacturers of the Fibrous Asbestos Removable Pipe and Boiler Coverings. We make pure
sbestos goods of all kinds. The Chalmers-Spence Co 19 East 8th Street, New York.
Universal\& Independent2 Jaw Chucks for brass work, box \& round body. Cushman Chuck Co., Hartford,ct. Steam Hammers, Improved Hydraulic Jacks, and Tu
cxpanders. R. Dudgeon, 24 Columbia St., New York. Safety Elevators, steam and belt power ; quick and
smooth. D. Frisbie \& Co., 112 Liberty St., New York.

60,000 Emerson's 1886 Book of superior saws, with Supplement, sent free to all Sawyers and Lumbermen.
Address Emerson, Smith \& Co., Limited, Beaver Falls, Address Eme
Pa., U. S. A.
Emery, Walrus Leather, English Bull Neck and Pol ishers' ${ }^{\text {Supp }}$ New York.
"How to Keep Boilers Clean." Send your addres Stewart's Anti-Incrustation Solution. See next issue
Astronomical Telescopes, from $6^{\prime \prime}$ to largest size. Observatory Domes, all sizes. Warner \& Swasey, Cleve
land, o .

Split Pulleys at low prices, and of same strength and appearance as Whole Pulleys. Yocom \& Son's Shafting
Works, Drinker St., Philadelphia, Pa.

NEW BOOKS AND PUBLICATIONS

The AGe of Electricitr. By Park Chas. Scribner's Sons. Pp. 381. Il lustrated.
The general supposition with regard to a book on works are on the market, would be that it is not needed Yet on perusal it at once is evident that a useful and attractive work is presented. The first chapters are devoted to the history of the subject, the honors
being distributed with a very impartial hand. The da being distributed with a very impartial hand. The day
has gone by for all progress in the science to be a has gone by for all progress in the science to be at
tributed to one or two investigators. The theory of the chemical and mechanical generation of electricity tricity and magnetism. This comprises about one-fourt of the book. The economical applications are next con sidered, such as the electrio light, motors, electrolysis telegraphy, and telephony. A chapter on the induc tion coil, and another on applications of electricity to war, medicine railways etc., concludes the text. The work ends with a short index. Designed for popular use, the matter summarized above is treated in a lighter styje than usual. By varied allusions to history, myth
ology, and literature, the book is made much more ology, and heresting than is usual in its class. The much more interesting than is usual in its class. The most recent tention.'The cuts and illustrations are numerous. Some are new, and some we recognize as very old acquaint ances. The treatment of the subjects of potential and
of different arrangements of battery cells, the illus trations being derived from vessels of water, and his allusion, also illustrated by cuts, to Gilbert's (of Pina fore fame) "Silver churn and the magnet," are worthy well disposed of. The description of Volta's pile not so far from clear. The greatmanet Prof far from clear. The great magnet of Professor Henry is
said to have had a core 728 feet long-evidently meaning coil. We should have been pleased also to have see the parody on Tennyson's Bugle Song attributed directly to its author, most amiable as well as most profound of philosophers, J. Clerk-Maxwell.: The author's
allusion to Daniel Drawbaugh, and indeed his whole allusion to Daniel Drawbaugh, and indeed his whole
treatment of the Bell telephone controversy, is characterized by a due degree of moderation, when his own part in the telephone suits is borne in mind.

HINTS TO CORRESPONDENTS.
Names and Address must accompany all letters,
or no attention will be paid thereto. This is for our
or no attention will be paid thereto. This is for our
information, and not for publication.
References to former articles or answers should References to former articles or answers should
give date of paper and page or number of quaetion
Inq uiries not answerd rin reasonable time should
be repeated; correspondents will bear in mind that be repeated; correspondents will bear in mind tha
gome answers require not ait little research, and
though we endeavor to reply to all, either by lette
or in this department, each must take his turn.
Special w ritten

(1) L. J. M. writes : I am using a var nish on small pocket memorandum books which re and packed together, they adhere, which is very object and packed together, they adhere, which is very object-
ionable. Is there anything that I can put in the varnish to make them dry quickly? A. Use 6 oz. mastic, in drops: 3 oz. coarsely powdered glass, separated from
the dust by a sieve; 32 oz . spirits of wine of 40°. Place the ingredients in a sand bath over a fire, and let them boil, stirring well. When thoroughly mixed, introduce oz. spirits of turpentine, boil for half an hour, remov Great care in manipulation is requisite to avoid nflagration. Use a closed fire and watch incessantly
(2) H. B. asks : Are the sections of a Gramme electric machine's armature wound on back nets? A. All sections are wound in the same direction
no 2. Please give me the approximate surface speed of dy namo armatures, and does it differ in large and small machines ? A. It varies from 100 feet up to severa thousand feet per minute. It is greater in large ma-
chines. 3. What is the best mode to adopt in charging a Leyden jar with an induction coil ? A. Attach ng a Leyden jar with an induction coil \& A. Attach
the ball to one terminal and the outer coating to the other, and carry a wire from the outer coating to within few inches of the ball. This distance will determin
ng distance.
(3) A. B. C. asks : Will a magnet be he layers of magnet wire are largely increased in number? Is a voluminous or intense current required luminous paint? A. The number of convolution should be in proportion to the battery. Too long and
fine a wire will oppose such resistance as to reduce the current. Also the outer layers will have less effect than the inner, owing to their remoteness from the ore. The current should be strong, which is a funcion of intensity and resistance. Sulphide of calcium

TO INVENTORS.

ore than one hundred thousand the preparation of ents at home and abroad, enable us to understand the aws and practice on both continents, and to possess unqualed facilities for procuring patents everywhere. A
ynopsis of the patent laws of the United States and all reign countries may be had on application, and persons ontemplating the securing of patents, either at home or
broad, are invited to write to this office for prices, which are low. in accordance with the times and our ex-
tensive facilities for conducting the business. Address UNN \& CO office Scientific American, 361 BroadMUNN \& CO., of
way, New York.
INDEX OF INVENTIONS
For which Letters Patent of the United States were Granted, September 28, 1886,

AND EACH BEARING THAT DATE.

[See noteat end of listabout copies of these patents.]

Avertising medium and card or ticket holder, combined, Southland \& Warren............. 350
 Algin and other and burglar alarm. products, E. C. C. Stan

 Algin andford.
Amalgam
rm rest, E. A. Bennett...................................349,778 349,974
Automatic sprinkler, 1t B. Stone....................... 349,764
Awning, metallic, E. O. Pohl................. 34,810
Axle box, car, H. Still.................................. 349,762
Axle lubricator, car, Frechette \& Girard (r)...... 10.767
Bag. See Paper bag.
Baking furnace and oven, B. B. Van Derveer...... 349,771
Raling
Baling press, G. Erte
Bandage, supporting, E. H. Hart...... 349,793
Barrel, tumbling, A. W. Getchell...................... 349,936
Bed bottom, J. C. Peacock et al............... 35014
340,

Bench dog, B. B. Hoopes..99996
Bench stop, . B. Gardner.................... 34981
Blast furnaces, tuyere pipe for, F. W. Gordon.... 349,441
Board. See Wash board.
Boiler. See Sectional steam boiler. Steam boiler.
Boiler. See Sectional stea
Traction engine boiler.

Boot and shoe crimping machine, L. Knetzger..... 350,065
Boring cylinders, apparatus for, Watson \& Wil-
Bottle stopper.. 349,9631
Box. See Axle box. Egg box. Journal box.
Letter box. Paper box. Tool box. Bracelet, L. Lenau
Bracket. See Shelf bracket.
Brake. See Car brake. Vehicle brake. Brick kiln, L. Simpson.. 3499,71 3466
3noch or badge for clubs, Phill:ps \& Shipton.... 350,079
 Burner. See Fire guard burner. Vapor burner.
Button, T. W. G. Cook............................... 350,042
Button, M. D. Shipman...............350,019, 350,020 Button, M. D. Shipman350,019, 350,020
Button fastener, A. E. Muller................ 350,074
Buttonhook and corkscrew, combined, Prahar \& Shepard.. 349, 350
3able arip. T. B. White......
an. See Oil can.

Car coupling, W. Johns	350,060
Car coupling, R. Jones	350,061. 350,062
Car coupling, M. H. K	8
Car coupling, D. Lippy	349,226

Car wheel, J. J. Billingsley...........................

arpet sweeper, Bissell \& Dre

arriage steat, C. Me cover for, J. T.

Cart, road, W. B. Getty........
Cartridge loader, H. H. Slinn.

Caster, trun prumb.
Casting compound ingots, mould for, J. Hling-
worth.....
worth...................
349,886
350,088
3

Chair. G. J. Shults....................... 349,907
Cheese knife, W. McGiven et al....................... 349,732
China tiring apparatus, S. S. Frackelton........... 349,935
hina iring apparatus, S. S. Frackelton.......................................39,795
Churn, D. B. Soper................75
349,854
Cigarette tubes, apparatus for manufacturing, A. ${ }^{349,785}$
E. Decoufle..........
Clamp. See Gaff clamp.
leasp. See Garment clasp.
Clock, p. T. Garcia..39,878
Closet. See Water closet.
Cloth, finishing imperfectly woven, N. T. Mash... 350.008
Cloth, machine for winding, J. E. Windle 349,774
lotht tentering machine, R. S. Matteson........ 350,09
Coffee, spice, etc., mill for grinding, Clark \& Claw-
son............................ 49,693
ooffins, device for locking, J. Q. A. Bennett......... 350,032
Collar fastener, horse, R. T. Lombard.......... 349,943
Compasses, draughting, F. N. Gardner........

Cornstalk cutter. W. R. Stafford
Corset, J. A. Anderson.
Cotton gin, F. D. Child.
Coupling. See Car coupling. Hose coupling. Shaft coupling. Thill cou pling.
Crushing and grinding mill, J G. Kirker Cuff holder, Richardson \& Bark
Cultivator, wheel. A. C Baker.
Cultivators, harrow attachnent for, W. H. Hob
son
Cutter. See Cornstalk cutter. Feed cutter.
Cutting holes in wood or other materials, nathine Damper, R. S. T. Cissel.
Digger. See Potato digger.
Dish, soap, G. H. Laxton...
Display rack for parasols, etc..........................
Door hanger, sliding, B. G. Wedd
Doubling machines, stop motion mechanism for
J. Holroyd............
Drawers, W. R. Standen.

Drilling machine, \mathbf{t}. L. Mansfleld.
Drum, heating, J. W. Davis
Drum, heating, J. W. Dav
Dust collector, w. Ince..
Egg beater, G. H. Thomas
Egg box, E. C. Bower.......
Electric machine, compound wound dynamo, E
Electric machine, dynamo, J. Jenkins. Electric machine, dynamo, R. Kenne
Electric motor, E. T. \& D. Higham... Electric motor, R. Vogler....
Electric motor, dynamo, E. Electric motor, dynamo.
Electric subway. J. M. Jagel. Electrical conductors, coup
Perkins..
 C. G. Perkins.
Elevator, Frisbie

Elevator buckets, making, C. C. Scaife Elevator indicator. E. Marshall. Embroidering machine, C. Guttinger.
End gate lock, wagon, D. D. Whitney Engine. See Gas engine. Gas motor engine. Mo-
tor engine. Steam engine. Steam and gas gine. Traction engine.
Engine frame jig, I. Skinner. Engine. frame jín, IL Skinner. Envelope counting machinery. A. A. A. Rheutan........ turing from wood, J. E. Goodwin Extension handle, J. A. Ack
Fan, rotary, P. Murray, Jr. Feed cutter, F. Hamachek Fence, w. Kelly
Fence gate, wire, T. Ruediger..
Fertilizer distributer, J. Hilliar
Fertilizerer, root, J. Buhrer..
Fiber machine, J. Kennedy
Fiber machine, J. Kennee.
File, bill, J. Gottschalk...
Fire and burglar alarm, Thom
Fire escape, T. B. Woodward..
Fire escape ladder. J. P. Dunn.
Fire guard burner and extlnguisher, safety, F. W B. Smith.................
Fireplace front, J. H. Smas.

Frame. See Show frame.
Furnace. See Baking furnace. Blast furnace.
Hot air furnace. Steam generator furvace. Vapor burning furnace. Warm air furnace. Gaff clamp, C. W. Brink .-
Gas runner and rosette

Garment clasp. D. . Rosado

Gas as a fuel, utilizing natural, I. P. Rider..... Gas engine, A. L. Riker..
Gas moter engine, N. A. Otto.
Gasoline vapor conductor, Porter \& Daly.......
Gate. See Fence gate. Overflow gate. Sliding gate. Sliding and swinging gate.
Gate actuating mechanism, W. R. White. Gun, cane, F. A. Wardwell Gun, cane, F. A. Wardwell.... Hame, J. Letchworth.
Hame attachment, J. Le.............
Hammer, drop, F. M. Leavitt...... Hammer, drop, F. M. Leavitt....
Handle. See Extension handle.
Harness, loop bar for, N. A. Gardiner. Harrow or cultivator, tooth, F. F. Wolgamuth.
Harvester binder. Harris \& Luces. Harvester, cotton, C. E. Wright
 Morgan.. Harvesting and binding machine, grain, w Harvesting machine, R. Emerson.
Hat brims, machine for folding or curling.
Hay rake and tedder, combined, M. P. Denney Hay rake. wheeled. C. Eastman..
Hay stacker, J. Locher.
Hay stacker, J. Locher...........
Heel, convolute spring. G. W. Briddle
Heel making
Heel making machine, C. W.
Hinge, luck. M. G. Kuhn...
Holder. See Cuff holder. Pencil holder. Rein holder. Ticket holder. Tool holder
Hook, See Button hook. Snap hook. Horse rake, C. La Dow................................
Horseshoe blank bars, machine for rolling, Hose coupling, E. E. Gold
Hose protector, D. P. Dieterich
Hot air furnace, G. L. Niehaus
Hot air furnace, A. Ormsby
Hot air furnace, A. Ormsby....
Ice chamber, movable, I. Allegr Ice machine, G. R. Jarman.
Incubator, F. Rosebrook.... Indicator. See Elevator indicator. Steam engine Ingot mould, compound, J. Illingworth. Inhaler and respirator, S.
Injector, E. P. Howe...
Insole, A. P. Rindskon
Insole, A. P. Rindskopf
Insulator, N. T. Fitch...
Insulator for electrical conductors, S. F. McGill J. Reese... Jack. See Lifting jack.

bury................

Kiln, L. Simpson..........
Knitting machine, J. H. Osborne
Knitting machines, counting apparatus and pat
Knob attachment. G. Van Winkle
 Lamp and lantern attachment. Swett \& Brace.
Lamp post, electric. Doubleday \& Lyman
Lamp protector electric Lamp protector, electric arc, G. Jeffery...
Lamp shades, ornament for, W. A. Hull.. Lamps. hanger for extension, G. .E. Sovereign....
Lantern for use on railways and steam and sailin

Lantern, tubular, J. H. Stone........................
Lathe for turning journals of car axles,
Small.
Letter box

Lifting jack, J. W. Donoho

Lifting jack, W. F. Morell
Link. W. Mild.
 Gaillet \& Huet..............................
Lock. See End gate lock. Nut lock. Seal lock. Loom, J. W. Emsley... Loom stedding mechanism, J. Hinchliffe. Lubricator. See Axle lubricator. Mainsprings, wiale
Manacle, N. Davis.
Mat. See Water closet mat.
Measuring tank, W. Neil..................
Meat, preservation of. C. Marchand. Mechanical movement, A. A. Rheutan..........
Medicating water, apparatus for, C. . . Harker. Mill. See Crushing and grinding mill. Rolling minill. Windmill. Mould. See Ingot mould.
\qquad Water motor. Weight motor. Motor engine, G. Daimler.
Mowing machine. J. Pine.

Neckte fastener, A. J.
Nut and bolt, expansib
Nut lock. E. E. Kyle...
il can, G. Trubel...
Overflow gate for reservoirs, w. Halley et al.....................................
Package, Andrews dor pistons, metallic. W. H. Lang...............
Packing the joints of gas pipes, etc., compositio
of matter for. Rowand \& Hunzeker..
Paint. manufacture of, G. w. Holley....
Pantor bag W. A. Wang.
Paper box, J. B. Duke............
Passenger recorder, Torrey \& Casey...
Pattern for garments, H. Moschcowitz
Pattern
Pen, fountain, M. H. Kerner...
Pen, fountain, G. H. Sackett...
Pen stylographic. O. Bussler...
Pen, stylographic. O. Bussler.....
Pencil holder, J. Trebentscheck......
Piano action, upright. F. M. Lawson
Planter, T. J. Savage
Planter, W. S. Strother
Planter and fertilizer distributer, J. S. Jenkin........
Planter, corn, O. J. C
Plow, F. Rothmunt...
Plow, J. M. Woodley.
Plow attachment, s. A. Stienbar
Plowing, pulverizing and cultivating machin
steam, J. Q. A. Newson............................
Potato digger, W. H. Tuttle........................
Preservation of food substauces, A. R. Roosen..
Preserving food, composition for, W. Radam.... Preserving food, composition for, W. Radam....
Press. See Baing press. Gunpowder press.
Printing machine, B. Huber...................
 tector.
Pulley, hoisting, H. Butters... Pulley, hoisting, H. Butters...
Pump, Patten, Jr., \& Anderson
Pump piston, W. H. Wheeler. Pump piston, W. H. Wheeler.
Pump, pneumatic. R. Adlung. Pump, submerged force. L. A. Kelly..........
Pumps. vent hole closer for. E. S. Babcock.. Pyroxyline or analogous substances upon a man drel, process of and apparatus for mountink
J. B. Edson.. Rack. See Display rack. Towel rack.
Rails, circuit closer for. W. Daves...... Rails, circuit closer fa
Railway, E. C. Jones.
Railway car signal. R. Solano.
Railway frog, J. J. Billingsley
Railway frog, E. Campbell
Railway rail. D.S.Tuthill........
Railway rail splice, C. P. Sharrer.
Railway rail sphice, C. P. Sharrer....
Railway signal, Rathbun \& Burkess.
Railway signal, electric, W. Daves.. Railways, conduit for cable. L. B. Whi Railways, grip for cable, L. B. White
Railways, part of the permanent way of, J. H. \& W. Tozer............... Railways, traction device for cable. J. H. Pend
ton...
Rake. See Hay rake. Horse rake. Rake, H. Fisher..........
Reamer, H. R. Tillison.
Recorder. See Passenger recorder.
Reel. See Harvester reel. register. Remedial appliance, G. Kug.le.
Return ball, J. A. Groeninger.. Retunn ball. J. A. Groeninger
Roller. See Towel roller. Roller. See Towel roller.
Rolling mill, Martin \& Beavis.
Roof, portable, C. M. Keeler..
Roofing, metallic., A. Wightman.......................
Rubber to leather, mould for vulcanizing, Butterfleld ...
Salol, production
. 687 l $\begin{aligned} & \text { Salt to stock, device for supplying, J. Gushart........ } \\ & \text { Sap pails, device for supporting and protecting }\end{aligned}$ Sap pails, device for supporting and protecting
Sash balance, J. H. Corsbie.. Sarw, drag, J. P. Cyphers.
Saw, drag. w. W. Smith.
Saw setting device, O. G. Franks .
Saws, guard for gin, J. C. wollace
Sawing machine, Demoss \& Pearce.
Seal, lead and wire, E. J. Brooks
Seal lock, S. F. Allen
Seat. lock. D. Ferris.....
See Carriage seat.
350.013
349,915

DESIGNS.

TRADE MARKS.
fog biscuit and substances and preparations for
feeding pheasants and cther game birds and
poultry, Spratt's Patent...................... 13,693
poultry, sprats and other kame birds and poul.
try, substances and preparations for, Spratt's
Patent...6..............63,697
ood for dogs, cats, poun's Patent.
posiepa, w. D. \& F. H. Ormsby............................. 13, 13687
Medicine for dogs, Spratt's Patent............... 13.688 Medicine for pheasants and other game birds and poultry, Spratt's Patent................13,690, 13,692
Musical instruments of all kinds, J. H. Foote.... 11,696 Satinets or woolens, printed, J. M. Locke \& Co..... 13,688 Soap, S. C. Adier.................................. 13,695
Towels and tidies, s. Wood \& Ward........... 13,700 Vegetable extracts for flavoring soups, Normal
Company............................. 13,699 A printed copy of the speciflcation and drawing of any patent in the foregoing list, also of any patent ents. In ordering please state the number and date ans. In ordering please state the number and date
the patent desired, and remit to Munn \& Co., 361 Broad way, New York. We also furnish copies of patents granted prior to 1866 ; but at increased cost, as the
speciflcations, not being printed, must be copied by and. Canadian Patents may now be obtained by the going list, at a cost of $\$ 40$ each. For full instruction
address Munn \& Co., 361 Broadway, New York. Oiner foreign patents may also be obtained.
-fovertisements.

SEBASTIAN, MAY \& CO'S

NMmumayy

Mrotallic Boer Irege.

The Best and Most Complete Book on Electro-Metalurgy
in any Lanocuape.
Waw

Studies in Modern Sorialism and

By T. EdwiN Bridow, D.D. One vol., 12mo, cloth

 SENT BYMAIL, POST PAID, ON RECEIPT OF
PRICE BY THE PUBLISHERS. 1, D\& A PRLETON \& CO.,

40 page illustrated price list, 30 page book of banjo
 SLATE ROOFCOVERINGS.-BY JOHN

Mineral Lands Prospected
 INSTRUMENTS.

CAS ENGINE.

 Chicago H. Hent, $111 T \mathrm{MHAM}$ Monroe

P. 0 Box 148.

BALLI UNIPOIARR Systom of Electric Lighting is
 FOREIGN PATENTS. Their Cost Reduced.
The expenses attending the procuring of patents in
most threign countres having been considerably re-
duced the duced the obstacle of cost is no longer in the way of o
large pruportion of our inventors patenting their $i n v e n-$
tions abroad
Ci NAll.
.
 Brunswick, Nova scotia, British Columbia, and Mant-
tome Toua.
Thumber of our patentees who avail themselves of
the cheap and easy method now offered tor ortaing the cheap and easymethod now offered for obtaining
patents in Canada is very large, and is steadily increas Eng. Torce on Jan. 1st. 1885 , enab es parties to secure patents Channel Islands. Great Britain is the acknowiedged namcial and commercial center of the world. and her
goods are sent to every quarter of the globe. A good nvention is like y to realize as much for the patentee him at hrme. and the small cost now renders it possible tent in Great Britaiu. where his rights are as well proO'TH ER COU Unted States.
on very reasonable terms in France, Belgium, Gtained Austria, Russia. Italy. Spain (the latter includes Cuba
and all the other *panish Colonies), Brazil, Britisb Iudia Australia, and the other British Colonies.
An experience of Forty years ias publishers of The Scientific aidicinabled the competent and trustworthy agencies in all the principa have the business of the r clients promptly and proper1y done and their interesss faithfuly guarded. of all countries. including the cost for each, and othe information useful to persons contemplating the pro
curing of patents abroad, may be had on application

Mis office.
MIN N CO.. Editors and Proprietors of THe SCI
ENTIFIC AMERICAN, cordially invite all persons desiring uny information re ative to patents, or the registry of trade-marks, in this country or abroad. to call at their
offices, 361 Broadway. Examination of inventions, consultation, and advice free. Inquiries by muntions, con answered.

Address, MUNN \& CO.
361 Broadway, New York.
Branct Offices: No. 622 and 624 F Sireet, Pacifl

(a)

 All oiner kinds Imitations and Interior. ourname is stamped in full upon all ou NEW YORK BELTING \& PACKING CO. Branches: 308 Chestnout St., Plilla,? Park Row, opp. Astor House, New York ofn h. Cherver, Treas. J. D. Cherver, Dep'y Treas.

"25c. POLYGRAPH. 25c."

 HARBACH ORGAN CO.
$\mathbf{8 0 9}$ Fibert Street, Philadelphin MICRO-ORGANISMS OF POTABLE

THE IMPROVED PAPYROGRAPH,

 PTTKTETE:

 Order from our "Special List." THE JOHN T. NOYE MFG. CO.,VOLNEY W. MASON \& CO. FRICTION PULLEYS CLUTCHES and ELEVATORS

Telegraph and Electrical ${ }_{M e d i c a l}$ Bateries, ${ }^{\text {Inventors }}$ Mod

$\frac{a}{51}$ And

ACAAL DAWAEALALASA CUON V E Y OR R CALDWELLVS SPIRAL, STEEL, CONVEYOR

ROCK BREAKERS AND ORE CRUSHERS.

ICE \& REFRIGERATING

ARTESIAN

PRESERDATION OF TIMBER,-RE-

EOE SATER

 A complete set of Tools for Driling Artesian Well.Have theen usad for woil at Glen Isiand. Drills are for 10
 Wadiwonlinn Vise INSTANTANEOUS GRIP. T. C. MASSET, Sole Mfr.

$\underset{\text { FOR SALE, or would sell State }}{\text { PAThhts. }}$

USTD COKSTOVE ERIER

MIIL OWNERS.

Price of Burnham's improved Standard Turbine is enst
of manufaturing. Pamphlet
NEWSPAPER FTIE

 ${ }^{\text {every }} \begin{aligned} & \text { one } \\ & \text { Adress }\end{aligned}$ wo wishes to preserve ther
MUNN \& CO.,

 Send Greer Stamp tor Kosstrae Specimens.
ELECTRICITY APPLIED TO THE

New Catalogue of Valuable Papers

CONCRETE AS A BUILDING MA

TO The steel manufacturers
 The attention of all steel manufacturers of the U Uited
tates is sherevy invitedtot the revaurements of the Nvavy

 for thear arm, if any manuacturere so desires; but bidd
overidg
oual both will receive preference, other things being

EOW TH RGDUGF

and maintain an even steam or water pressure is a
nuestion asked by every ansineer Our new Reducing
 THE PHILOSOPBY OF OF TWIST.-

WORKSHOP RECEIPTS.

For the use of Manufacturers, Mechan1cs, and Scien- Fifc Amateurs. The beet late collection published of

 FIRST SERIES.-Bokbinding; Candles; Drawing;Electro-Metetallury; Engraving; Gilding; Japans; Pho
tography; Pottery; Varnishing, etc. Scconp SERİs.-Indistrial Chemistry; cements and

 Fourti SERESE-WWaterproofing; Packing and StorCooling Air and Water; Pumps and Siphons; Desic-
cating; Distilling; Emulsifying: Evaporing; Filter-
ing; Percolating and Macerating; Electrotyping; Steing Percolating, and Macerating; Electrotyping; Ste-
reotyping; Bookbinding Straw-jlaiting; Muscal In-
struments; Clock and Wateh Mendin; Photogaphy
etc. any address.
"爵 In ordering single volumes, be particular to men-
tion the series" wanted. Sent postpaid by MUN M
New Yorth, on receipt of price.
CONSUMPTION QURED Home Treatment. A Aatediscovery by a celebrate Star
man Prysician. Is Treatise with directions sent FREE to any sufferer.
Dr. W.F.G. Noetling \& Co., 850 East Hampton, Conn. THE RESOURCES OF ALASKA.-AN nterestivg paper by Frederick Shwatal. Timber
ands.
ary and salmow cedarand its is value. The salmon indus-

CURE Firis DEAF Restore the Hearing, and perform the work of the natural drume Intisible comfortaile and alway sin position All conversation and even whisuers heard distinctly. Send for

PERFU.MES.-A PAPER BY JACOB

2fDertisements.

 . Address: Tho Amerlican WritingMachine Co., Hortfor, Con,
New York Omfice, 237 Broadway.

 Samples and deesriptive P rice L ist free by mail. HICAGO. PHILADEIPHIA.
heating buildings by steam.

The only Real Treanise on the Subiect The Windmill as a Prime Mover

THE DISCHARGE OF ELECTRICITY
 Certs. To be had at this oflice and rrom all newween

 INTERNATIONAL INSTITUTE FOR Liquefied Carbonic Gas.

PATENTS.

cat:on of the ScIENTIFIC AMERICAN, continue to examine improve
for Inventors.
In this line of business they have had forty one years'
experience, and now have unequaled facilities for the preparation of Patent Drawings, Specifcations, and the
prosecution of Applications for Patents in the United prosecution of Applications for Patents in the United
States, Canada, and Foreign Countries. Messrs Munn \& Co. alsoattend to the preparation of Caveats, Copyrights
for Books, Labels, Reissues, A Asignments, and Report for Books, Labels, Reissues, A ssignments, and Reports on Infringements of Patents. All business intrusted to
them is done with special care and promptness, on very easonable terms.
A pamplet sent free of charge, on application, con-
taining full information about Patents and how to pro
cure them; directions concernat

 MIUNN \& CO., Solicitors of Patents, 361 Broadway, New York.
BRANCH OFFICES.-No. 622 and 624 F Street, P

PATENT RIVETED MONARCH RUBBER BELTING.

Best in the wromid.
Specially adapted for PAPER MILLS, SAW MILLS, and THRESHING MACHINES.

THE GUTTA PERCHA and RUBBER MFG. CO.

JACKET KETTLEES,

Columbia Bicycles and Tricycles. cataiogue sent meer.

ENGINERING INVENTIONS SINCE

Plummer's Fruit Evaporators,

 $\frac{\text { BeWEL MANUFACTURING Co., Toledu, onio. }}{\text { Barnes' Foot-Power Machinery, }}$

Use the JENKINS STANDARD PACKING in the worst
Joint you have, and if, after following directions, it is no joint you have, and if, after following directions, it is
what we claim, WE WILI REFUND THE MONEY. Our "Trade Mark" is stamped on every sheet. Non
genuine unless so stamped. Send for Price List. JPINIKINS BEOB:, 71 John Street, N. Y. 79 Kilby Street, Boston

 MOOERE BRONZE ALLOYS.-A PA-

"ACME" 4 Bocheseter Machine Tool Works, THE CONVERSION OF HEAT INTO

CLARK'S NOISELEESS RUBBER WHEELS CLARKS NOSELESS RUBBER WHELLN
No more Splintered Floors.
Diff erent Styles. Catalogue Free.
GEO. P. ClAARK,
Windsor Locks, Ct. THERAPEUUICAL EFFECT OF THE

HYDRAULIC FLANGED HEADS

OF IRON or STEEL, for bOILER and TANK MAKERS. Unequaled for Strength and Uniformity. THE DICKSON MANUFACTURING CO.
sORALITrFOIN, PA.

mamamiminich.

95 MILK ST., BOSTON, MASS.

This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787.
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor.
PUMPING MACHINERY.-BY E. D.

Machine Knives,
L. \& I.J. WHITE,

Planing, Moulding. Shingle and
Stave, Hoop and Veneer. Plated
 Stock and Blanks for Moulding Cutters, Other Machine
Cutters to Pattern Moulding cutterc can be ordered by
uumber from Universal M oulding Book.

providut

Šriemtific Ammericam

FOR 1886.

The Most Popalar Scientific Paper in the World. Only $\$ 3.00$ a Year, including Postage. Weekly.
This widely circulated and splendidly illustrated paper is published weekly. Every number contains sixoriginal engravings of new inventions and discoveries,
representing Engineering Works, Steam Machinery representing Engineering Works, Steam Machinery
New Inventions, Novelties in Mechanics, Manufactures, Chemistry, Electricity Telegraphy, Pbotography, Archiecture, Agriculture, Horticulture, Natural History, etc.
All Classes of Readers find in the Scientific AMERICAN a popular resume of the best scientificin-
formation of the day; and it is the aim of the pulishers formation of the day; and it is the aim of the publishers
to present it in an attractive form, avolding as much as possible abstruse terms. To every intelligent mind, this journal affords a constant supply of instructive eading. It is promotive of knowledge and progress in ery community where
Terms of Subscription.-One copy of the ScIENTFIC AMERICAN will be sent for one year-52 numbersor Canada, on recelpt of three dollars by the pub-
lishers; six months, $\$ 1.50$; three months, $\$ 1.00$. Clubs.-One extra copy of the Scientific Ameri-
CAN will be supplied gratisfor everyclubof five subscribers at $\$ 3.00$ each ; additional copies at same proportionate
The safest way to remit is by Postal Order. Draft, or Express money Order. Money carefully placed inside Express Money Order. Money carefuly placed inside
of envelopes, securely sealed, and correctly addressed,
seldom goes astray, but is at the sender's risk. Address all letters and make all orders, drafts, etc., payable to M MUININ \& CO., 361 Broadway, New York. TEX
Scientific American Supplement.
This is a separate and distinct publication from
THE Scientific American, but is uniform therewith ies scientipic american Suppiemient is publighed The Scientific American sidplemilnt is pubished
weekiy, and includes a very wide range of contents. It presents the most recent papers by eminent writers in all the principal departments of Science and the
Useful Arts, embracing Biology, Geclogy, Mineralogy, Useful Arts, embracing Biology, Geclogy, Mineralogy,
Natural History, Geography, Archæology. Astronomy, Chemistry, Electricity, Light. Heat, Mechanical Engineering. Steam and Railway Engineering, Mining, Ship Building, Marine Engineering, Photogriphy, Technology, Manufacturing Industries, Sanitary En-
gineering, Agriculture, Horticulture, Domestic Economy , Biography, Medicine, etc. A vast amount of fresh and valuable information pertaining to these and allied subjects is given, the whole profusely illustrated with engravings.
The most $i m$
The most important Ensineering Works, Mechanisms, and described in the SUPPLEEMENT.
Price for the SUPPLEMENT for the United States and Canada. $\$ 5.00$ a year, or one copy of the SCIENTIFIC AM LRICAN and one copy of the SUPPLEMLNT, both mailed
for one year for $\$ 7.00$. Address and remit by postal order. express money order, or check,

MUNN \& Co., 361 Broadway, N. Y., Publishers Scientific ameitican.
To Foreign Subscribers.-Under the facilities of the Postal Union, the Senentific american is now sent scribers in Great Britain. India. Australia. and all other British colonies; to France, Austria, Belg ium, Germany Mussia, and all Sther European states ; Japan, Brazil, Terms, when sent to foreign countries, Canada excepted, \$4, gola, for Scientific American, one year; $\$ 9$, gold,
for both Scientific Ambrican and SUPPLEMENT for or both ScIENTIFIC AMmRICAN and SUpplement for
one year. This includes postage, which we pay. Remit ne year. This includes postage, which we pay. Remit MUNN \& CO.. 361 Broadway, New York.
PRINTING INKS,
THE "Scientific American" is printed with CHAS.
ENEU JOHNSON ©O. SINK. Tenth and Lom
bard Sts., Phila., and 47 Rose St., opp. Duane St,, N. Y.

