

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

THE NEW RACING SLOOP YACHT ATLANTIC.
The yacht Atlantic was successfully launched on May 1 from the shipyard of her builder, Mr. John Mumm at the foot of Fifty-fifth Street, South Brooklyn. Her keel was laid in February last.

The new clipper has been built after the designs of Captain Philip Ellsworth by a syndicate of yachtsinen composed of prominent members of the Atlantic Yacht Club.
Her length over all is 95 ft .7 in ., and on the water line 84 ft . Her extreme beam is 23 ft . $2 . \mathrm{in}$. The hold is $101 / 2 \mathrm{ft}$. deep, and the draught of water $81 / 2 \mathrm{ft}$. We illustrate her outline in plan and elevation. In cross section her lines are full and well rounded, the angle at the keel being noticeably blunt. The characteristic feature in the construction of the yacht is the extreme lightness the materials employed. The frame is made of oak and black larch, and the ceiling of Oregon pine. The clamps are of yellow pine. Her outside pine. The clamps are of yellow pine. Her outside
planking is also of Oregon pine, with the exception of
the three upper strakes, and is $21 / 2$ inches in thickness. Many of these planks have been cut from mast stuff and are fifty to sixty feet long. In the interior, metal knees made of cast steel, 4 by 114 inches, are used to resist the racking strain of her spars. Wooden hanging knees on each side support the strains on her deck. A shelf of yellow pine running round her side and under her beam ends will meet the torsional strains brought to bear upon her frame.
At the time of the launch, she had only her bowsprit in, and had a mean draught of 6 feet and 4 inches. Thirty-four tons of lead form the ballast on her keel. The casting and handling of this immense piece was a matter of some difficulty, but was successfully accomplished by building a mould directly under her timbers. It is estimated that the total ballast will be about forty-five tons. We have secured a very spirited picture of the yacht just as she is about to take her first plunge into the waves. The lively interest excited in yachting matters by last summer's international race
was shown by the large crowds that have watched her volution and were on hand at the christening. Much admiration was expressed for the graceful lines, and particularly for her light flotation.
Her sail power will be very large. The mainmast is 50 feet, with a gaff of 47 feet and a boom of 76 feet 6 inches. Her suit of racing sails numbers 15. They have been specially woven for the Atlantic, and vary in weight from the heaviest duck to the lightest cotton drillings. The spread of the mainsail is 4,000 square eet and that of the large jib 1,150 feet. The club topsail adds 1,560 feet to her sail area, and the balloon jib topsail, intended for gentler breezes, 4,180 square feet. Her spinnaker boom is 72 feet long, and carries a sail of 4,400 square feet.
Such are the main dimensions and features of New York's representative clipper yacht. She is to all appearances a thorough-going racer, and has been built or work.
The purpose of her existence is the defense of the

THE NEW RACING SLOOP TACHT ATLANTIC.

America's cup, for which the British cutter Galatea is now the avowed competitor. Whether the Atlantic will fulfill her mission, and win the honorable office of defending the cup, will be determined by the preliminary races between the four competitive American clippers, the Puritan, Priscilla, Mayflower, and Atlantic. Each boat has its champions, but they are all so admirable that the most experienced yachtsmen hesitate to express any opinion about the result of the forthcoming trials. The success of the Puritan has made the superiority of the centerboard over the cutter a foregone conclusion in the minds of nearly all American yacht owners. This confidence has made the interest in the national contest much more lively at present than in the real contest between the American champion and the British challenger Apparently, everything possible has been done to make the successful clipper, whichever she may be, a worthy representative of the most advanced principles of American yacht building.

Iron Foundations for Heavy Guns.

In case of a war with foreign powers, we should be forced to the rapid construction of temporary fortifications behind earthen parapets. One of the great difficulties in the way of such construction is the time required for building properly the heavy, massive masonry foundations up to this day regarded as necessary under heavy guns. This difficulty may be now avoided (according to Captain W. H. Bixby, Corps of Engineers, U. S. Army) by the use of wrought iron instead of masonry for these foundations.
Captain Bixby proposes to replace the present slowly built, difficultly moved, difficultly releveled masonry foundations for heavy guns behind earthen parapets by rapidly constructed, easily moved, easily releveled wrought iron foundations, to rest on cross girders or sleepers: embedded in the earth of the terre-plein, and provided with a front parapet anchorage sufficient to resist all direct recoil.
The holding power of anchorages embedded in mere earth is well known by the experiments of our Q. M. Department on suspension bridge anchorages during the war of 1861-65, and it is also well shown by the Shoeburyness experiments of 1881 (see p. 41, Part 2, of Captain Bixby's report on "Sea Coast Fortifications in Europe ").

A 40-foot earthen parapet and suitable iron rod and cross girder anchorage may well be trusted to resist and absorb all the direct horizontal recoil of even a $100-$ ton gun, leaving to the foundation alone the lighter duty of supporting the carriage and gun and the comparatively small vertical component of the recoil.
An iron girder foundation, resting on sleepers and earthen bed, may be fairly well trusted to serve as an efficient support to the vertical weights and blows of our heavy guns, after the first few rounds have been fired. A little unequal settlement may naturally be expected, but such settlement is of minor account today, for two reasons: first, heavy guns of the present and future must be traversed by machinery, and such machinery will overpower the slight extra resistances due to unequal settlement of the gun's platform ; second, whenever an unequal settlement becomes marked and objectionable (probably not oftener than once in a month during action), the iron girder foundation can be jacked up and earth tamped in underneath it (exactly as is currently done to remedy similar unequal settlements of railroad tracks).
It seems now quite probable that future fortification in the United States (when it does come) will demand economy of time rather than economy of money. In any case the advantages which may arise from rapidity of original construction, rapidity of construction in place, facility of repair, facility of change of position if necessary to allow of other angles of fire, facility of replacement if necessary to allow of guns of greater weight and size-all these advantages appear sufficient to authorize at least the trial of such a foundation under one of our heaviest guns.
Captain Bixby's suggestions are now being considered by the War Department, and will undoubtedly lead to some change in the present slow methods of gun foundation construction.

The Tongue in Disease.

One of our medical contemporaries states that different complaints are indicated by the condition of the tongue, as follows :
A white-coated tongue indicates febrile disturbance; a brown moist tongue indicates disordered digestion or overloaded primæ viæ; a brown dry tongue indicates depressed vitality, as in typhoid conditions and bloodpoisoning; a red moist tongue indicates debility, as from exhausting discharges; a red dry tongue indicates pyrexia, or any inflammatory fever; a "strawberry" tongue with prominent papillæ indicates scarlet fever or rotheln; a red glazed tongue indicates debility, with want of assimilative power of digestion ; a tremulous, flabby tongue indicates delirium tremens; hesitancy in protruding the tongue indicates concussion of the brain; protrusion at one side indicates paraiysis of the muscles of that side.

sonientific Gmmicam.

HSTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
o. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, postage included...
One copy, six months, postage included .8320
.160
Clubs.-One extra copy of THE ScIENTIFIC AMFRICAN will be supplied same proportionate rate. Postage prepaid.
Remit by postal or express money order. Address
MUNN \& CO., 361 Broad way, corner of
MUNN \& CO., 361 Broadway, corner of Franklin Street, New York.
The Scientific American Supplement is a distinct paper from the SCIENTIFIC AMERICAN. THE SUPPLEMENT with Scientific American. Tepms of subscription for Supplemente $\$ 5.00$ a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all newsdealers throughout the country.
Combined Rates.-The Sclentific Ambrican and Supplement
will be sent for one year, postage free, on receipt of seven dollars. Both will be sent for one year, postage free, on receipt of
papers to one address or different addresses as desired.

The safest way

registered letter.
Address MUNN \&

左

The Scientific American Export Edition is a ladition.

 odical, issued once a month. Each number contains about one hundrilarge quarto pages, profusely illustrated, embracing: (1.) Most of the plates and pages of the four preceding weekly issues of the Scientific AmeriCAN. With its splendid engravings and valuable information; (2.) Commercial, trade, and manufacturing announcements of leading houses.Terms for Export Edition, $\$ 5.00$ a y ear, sent prepaid to any part of the world. Single copies, 50 cents. Manufacturers and others who desire secure foreign trade may have large and handsomely dis
nouncements published in this edition at a very moderate cost.
The SCIENTIFIC AmERICAN Export Edition has a large guaranteed circulation in sll commercial places throughout the world. Address MUNN
$\&$ CO., 361 Broadway, corner of Franklin Street, New York.

NEW YORK, SATURDAY, MAY $22,1886$.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT NO. 542.
For the Week Ending May 22, 1886. Price 10 cents. For sale by all newsdealers.
I. CHEMISTRY.-The Solubility of Sulphur in Alcohol.-By ARTHORAG
 II. ELECTRICITY.-An Electric Crane.-A full description of the ma-
chine usd by the Companding bas Entrepots en Magasins at Paris,
fion.
tion filigures bales of wool.-Their construction and rapid opera-

 condact or silver plates by sparks from differently constructed
cond... figures

SOCIAL SCIENCE.. 8659
tion.-An ind Atkinson on the Eicht Hour Ques-
tro.

AN UNDERGROUND RAILWAY FOR NEW YORK CITY.
In March, 1870, the Scientific American published illustrations of, an underground railway which had then been built, for a distance of one block, under Broadway, New York. It was known as the Beach pneumatic tunnel road, the cars to be propelled by compressed air, but was never conpleted, except for a distance of about two hundred feet. From that day to this, the project of an underground Broadway railroad has come up at almost every session of the State Legislature, until a bill for this purpose has at last been passed, and received the Governor's signature. There are said to be grave doubts about the constitutionality of the act, which will have to be settled before the work of building is actually begun, but the names of the eminent capitalists and business men connected with the enterprise afford an assurance that this great undertaking will now be prosecuted in earnest.
By the plan adopted, the company is allowed fortyour feet under the surface, the least width between the sidewalks on Broadway being, for a short distange, thirty-nine feet, and the average width being about forty-nine feet. The sewers, water, gas, and steam pipes, with tubes for wires, etc., are to be carried in vaults and subways of brick or iron, to be built and kept in repair by the company ; they are to be open for entrance at every quarter of a mile distance, and it is estimated will cost $\$ 400,000$ a mile. This will, of itself, be a great saving to the city, and obviate the necessity of the frequent tearing up of the pavement, at present o great a source of public inconvenience. The kind of power to be used is not specified ; it may be electricity or any motor not emitting smoke, gas, or cinders.
During construction, a temporary bridge is to be maintained over all places where the work is going on, so that travel will not be interfered with during the progress of the work. The road is to extend under Broadway from the Battery to Fifty-ninth Street, a distance of about four and a half miles, with a branch at Madison Square to Forty-second Street, but both of these lines to be further continued, if found desirable, in the future. The sections named are to be completed within five years, and the city is to receive for the privileges granted three per cent. of the gross revenue. The capital stock of the company is fixed at $\$ 25,000,000$, and the cost of building is variously estimated at from $\$ 3,000,000$ to $\$ 6,000,000$ per mile.
The only work in the world at all similar to this proposed arcade subway under Broadway is the minterground railway system of London, by which that city is belted by a nearly complete double circle of subterranean roadway, though with many open cuttings within high walls. These underground roads cost from two and a half to four million dollars per mile, and pay from three to four per cent. interest on the capital invested. Although the total population of London is more than four millions, while that of New York should not be placed higher than probably one-third of this, the rapid growth of the latter city, and its peculiar configuration, determining most of its travel in main north and south lines, seem to indicate that the new road is likely to have as large a business, in proportion to its mileage, as its London predecessor. Let us hope that it will, also, be as well and solidly built, for the London road is, both in its building and operating, a most creditable example of a high order of engineering skill.

PROGRESS OF INDUSTRIAL ELECTRICITY.

"How was that made?'
This question was asked of a prominent metal merchant as a vessel was handed him, made in the shape of a head-light reflector. It was composed of copper about one sixty-fourth inch thick, tough, pliable, and very smooth on the inner surface. Examining the edges of the flange, the merchant noticed that the thickness of the metal did not vary in the least around the entire rim.
"It was spun."
"No."
"Stamped."
"No."
"Pressed."
"No."
"Cast? Impossible."
No, it was not cast."
"Then it must have grown."
It had grown, but it was with the rapidity that only electricity can give to growth.
The process by which the above casting or vessel was made is as follows
A rigid male form is made of the approximate shape and less in size than the article wished to be reproduced. This form is then immersed in a kettle of refined wax, paraffine, or similar substance.
The shape of form will decide in what position the form is to be held; in the case of a reflector, the form is held with small end up. The wax must be pure, and free from dirt or water to get best results. The wax is heated so that it will run nicely. By immersing form in kettle and withdrawing vertically, the wax will run smoothly, and as it cools in a few seconds leaves a
smooth, true surface. This surface is now rendered
conductive with the well-known electrotyper's process, by the application of black lead, iron filings, and blue vitriol. The whole thing is then immersed in a copper solution, and connected electrically with a dynamo. Copper anodes are also putin solution, and connected electrically with opposite pole of dynamo. The dyna mo is set in motion, and the "growth" of a vessel begins. The thickness of vessel is dependent upon the length of time deposit is allowed to continue; pieces of copper an inch thick have been made. The time required to make a vessel of a certain weight and size depends altogether upon the size of the dynamo. The perfection and strength attained by these "electric engines" through the perseverance of recent inventors and manufacturers is something marvelous. The Brush people of Cleveland are now building a dynamo which will have a current strength of 122,500 amperes. A current strength of 386.4 amperes will deposit 1 pound of copper per hour. This large dynamo, then, will deposit over 315 pounds copper per hour- 3,150 pounds in a run of 10 hours. The weight of copper in reflectors will average 14 pounds; 225 reflectorscan be made in 10 hours, or about 6,000 per month.
The output of the United States averages between 5,000 and 8,000 reflectors per annum. Given the required number of forms, a dynamo of above size and a few workmen will turn out in 30 days what now requires the use of many spinning lathes and other machinery and the entire time of many workmen. Electro deposit is crystalline in its nature, and therefore the conclusion is hastily jumped at by many men that vessels made in this way will necessarily be porous. The advances made in this point are as marked as those in the development of the dynamo, and the casts properly made by above process are as ductile and pliable as the finest rolled sheet copper. In examining thedigest in the Pat ent Office on electro deposition, it was found that the idea of making reflectors and other copper wares by electro deposition was an old one, patents having been issued to foreigners as early as 1841 and 1842. At that ime the dynamo was scarcely in existence, and the point of failure in the practical application of their specifications lay in the fact that they failed to see that unless moulds could be formed quickly and cheaply, the idea was useless. To bring out this point clearly, let us go back a little; when the vessel has acquired the necessary thickness, the form and vessel are removed from the bath, and a slight pressure is brought to bear upon the vessel or hot water is poured over it. This will loosen the wax, and allow the vessel to be removed.
The original or principal form is made of wood, clay, earthenware, glass, brass, copper, or of any substantial material. It will be at once seen that it is only necessary to immerse this original form in the wax again to prepare it for another cast. In the patents above referred to, granted in 1841 and 1842, the forms are composed of either wood, clay, brass, etc., but are composed entire of one material or substance, requiring for the removal of vessel the destruction or mutilation of mould, necessitating a new mould for each vessel made. This method was too expensive to be practical, and the process was abandoned.
The above new method of preparing moulds is fully covered in letters patent recently issued to a Western inventor. Electricity is surely taking the lead in valuable inventions, and this promises to do away with much time and labor. It will also introduce some new and important articles upon the market.
It is well known that it is an impossibility to cast copper in thin sheets, and rolling is expensive. As the forms in above process may be of any size or shape, a burial casket may be made in one piece, of copper, and at a much less cost than if cast from iron, as now made. Probably the greatest revolution which this process will bring to the commercial world will be in the plumbing goods line. Instead of having to roll sheets of copper, then cut them to exact dimensions, and then solder together to make a bath tub, an entire shell will be made in one single piece, set in a wooden frame, and a far better and probably cheaper bath tub will be the result. Linings for flush tanks will come under the same change.

A Belt Carries Fire through a Mill.

On the morning of the 21st ult. the Merchant mill of Pennsylvania Steel Works, at Steelton, Pa., was completely destroyed by fire. The mill was an immense wooden structure, with iron roof, 100 feet wide by 400 feet long. At 10:30 o'clock in the morning there were 312 men at work. A boy who wanted to fill his torch with oil went to the pump house for that purpose, and while thus engaged the torch exploded, and the lad tried to stamp out the flame. In doing so he scattered the blazing oil, and the fire was communicated to the barrel of oil, which stood under the belt that ran from the pump house to the main mill and furnished the motive power for the machinery. The flames shot up from the burning oil barrels, and set the oil-saturated belt on fire, and in an instant the moving belt dragged a trail of fire into and clear across the mill, communicating flame to whatever it touched, and making a display of fireworks gorgeous but costly.

American Clays, and Their Use for Constructive

In addition to the localities already known, further geological researches have disclosed the occurrence of large deposits of brick clay in different portions of Maine, and particularly along the Kennebec and Penobscot rivers. Deposits have also been found in Augusta Co., Va., prodúcing both fire and potter's clays; at Birmingham, Ala., and in several new locali ties in Ohio and New Jersey. No new finds are report ed in the Rocky Mountain division, but in California clay deposits of some importance have recently been discovered in several portions of the State. An excelrent quality of kaolin, or porcelain clay, occurs at Calico, in San Bernardino Co. Clays suitable for making the coarser kinds of pottery have been found in a num ber of localities, stretching from the Oregon line to Lower California.
With the greater diversity shown by American indus tries, the uses for clay have largely increased, until now a long list of articles is made exclusively of this material. The processes of manufacture differ both with the quality of the crude article and the uses to which it is to be put. They have just now, however, a greater interest than usual, since the high price of lumber and the desire to make our structures more fireproof than formerly have operated to invest all mineral constructive materials with an increasing importance. In the manufacture of common brick a great variety of clay is employed, but that containing much lime is avoided, since it would be made caustic by burning, and its subsequent hydration on exposure to the atmosphere would cause the bricks to crumble
Particles of stone or iron pyrites are also removed to prevent trouble in the after working. When partially dry, the clay is ground in roller mills, and then mixed for use. The mixing is necessary to produce a homo geneous and, consequently, a durable product. When this process is completed, the clay is moulded into bricks, either by hand or machinery.
It is said that an experienced moulder with proper assistance can make 2,000 bricks in a day, when working by hand. The moulded bricks are permitted to partially dry in the sun, and are then stacked in kilns for burning. The fuel varies, but when a vailable, anthra cite screenings are usually employed. With coal, the burning requires from four to six days, and the cooling of the kiln about the saime time. Building brick for city fronts, and the better class of work, are made in the same manner, except that better clay is used, and the operations are more carefully performed. Pressed brick, such as is made at Baltimore with success, are moulded larger than required, and then compressed to the proper size in a brick press. The color and smooth ness depend upon the moulding sand employed. Al of the operations are conducted under cover, and the bricks are laid on their faces in drying, instead of on end, as with the commoner kinds. Special precaution are also required in firing. The arches and four or five lower courses are made of common brick and the pressed brick on top of these. The burning requires from ten to twelve days. The bricks are allowed to cool slowly, and when taken from the kiln are sorted, the defective ones being rejected. The ornamental and intaglio bricks now so popular are made in a simi Glanner, save that even greater
Glazed brick are now largely used for both interior and exterior decoration. They are manufactured in
Ohio and elsewhere in the United States. For this Ohio and elsewhere in the United States. For this
purpose an ordinary red or light colored brick is used, and a suitable enamel produced on the surfaces to be exposed. Some colors are very easily obtained. A simple lead glaze on a cheap buff fire brick makes a good yellow- A manganese and iron glaze is used for black. White and blue are the most difficult to pro duce, since the red color of the ordinary brick must first be hidden by an opaque layer of white before the finishing glaze is applied. Green must be made in the same way.
Roofing tiles are made by ordinary brick clay. This is first moulded into strips, abeut six inches wide and three-eighths of an inch thick, and is then cut into desired lengths. Oil is used to keep the clay smooth and prevent the plates from sticking. A specially de vised machine then trims off the edge of the plate to a
symmetrical shape, and presses it to the desired pattern. It takes about two weeks in a steam heated chamber to dry the tiles, as the oil hinders the escape of moisture. They are piled loosely in a kiln, to a depth of six feet, and subjected to a slight firing. Several designs of tile are made. The shingle tile is simply a slab of burnt clay, $12 \times 6 \times 3 / 8 \mathrm{in}$., having suitable holes for the nails to pass through, which hold them to the roof. The diamond tiles hook into each other and are more ornamental, but less durable. The chief objection to roofs of this character is in their excessive weight. A ten foot square of plain shingle tile weighs about 1,100 pounds; of the diamond tile, from 650 to 850 pounds.
The manufacture of door knobs, as carried on at East Liverpool, \mathbf{O}., is of considerable interest, since it requires a careful mixing of the different clays to obtain
a well marbled product. Each color of clay is worked
separately and is first put through a process called boiling. A vertical cylinder, about six feet in diameter, and carrying in the center a revolving rod provided with stirring and, cutting arms arranged spirally, is filled with the requisite amounts of water and clay. It is then set in motion by horse power, and the clay beaten to a thin mud or slip. This is run through a fine bolting cloth into a large tank, from which it is dipped into an evaporating pan, heated by suitable furnaces. When removed from the pan, the clay is soft and plastic, and is piled up and coyered with wet blankets to keep it tempered. The clay, when ready or use, is "wedged." A block of both colors is cut by a wire into six or eight lasers each, which are piled alternately into a new block of double the size. This is thrown down with violence to consolidate the layers. It is then cut and wedged and so on until the colors are marbled in fine alternating streaks. Thus prepared, the clay is moulded into proper shape by stamping in a die. The knobs are dried, and when somewhat hard are turned to a smooth, regular face. They are then thoroughly dried and burned twice-once as biscuit, and then dipped in glaze and burned again.
A terra cotta lumber has recently been added to the list of mineral building materials. A kaolinite of good quality is mixed with sawdust, worked by machinery into slabs, and is then burned, sawed, and dressed. It is, in this condition, ready for market, and is said to be indestructible by fire, water, or gases. It is a poor conductor, and suffers but slight expansion or contraction with changes of temperature. Its weight is put down at one-half that of brick. It can be worked with edge tools, bored, and sawed, and holds nails as readily as timber. It is also made into hollow tile and fireproof casing. Mr. Wilbur's report to the Government, from which our information is taken, also gives the statistics of production of the United States, together with the imports and exports.

A Child Woman.

The recent death of Miss Caroline Terboss has at racted renewed interest in her remarkable case. She was a member of an otherwise normally developed famiy, and up to her twelfth year she was apparently like ther girls. But at that age she suddenly stopped growing, and though she lived to the advanced age of sev-enty-seven, development, once interrupted, was never resumed. At the time of her death, she was in form, tature, and organization a child. For many years she was a familiar figure on Fifth Avenue in the neighborhood of the reservoii. Her age was a mystery, for her hair remained unchanged in color, and her face, though noticeably mature for so young a figure, was but slightly wrinkled. Beyond an extreme sensitiveness of the skin, she enjoyed apparently good health until within a short time of her death. Her height is given at but four feet and four inches. She is stated to have been remarkably quick intelleetually. As no physician had been in attendance within wenty-four hours of death, it was necessary to summon the coroner. The autopsy revealed the per ectly formed body of an apparent girl of eleven. Beyond certain organic peculiarities, the anatomy was normal. The spine was straight, and there was no outward deformity. No examination was made of the brain.
The case attracts much interest among physicians, because, though similar instances have been recorded, they are very rare, and never has the subject lived to so advanced an age. Death has usually occurred before twenty-one. Twenty-five years of age is believed to have been the extreme limit.

The Telephone Nut Shell.

A large number of German publications printed from 1860 to 1865 contain accounts of the transmission of words and articulate speech by Philipp Reis with elecricity, and the instruments as made by Reis do now transmit and receive articulate speech clearly and disinctly, and I maintain that if only five words were so ransmitted the discovery of its being done with electricity by Philipp Reis is conclusive, and that no honest or intelligent person can concede to Bell what was done and given to the world unconditionally 15 years before by Philipp Reis. All subsequent efforts are merely mechanical improvements, and no honest man acquainted with the subject can dispute the discovery by Philipp Reis. W. Van Benthuysen.

The President in a message to the House has suggested that the 3d of September be set apart as an appropriate day for the inauguration of the Bartholdi statue of Liberty. This day is selected as being the anniversary of the signing of the treaty of peace at Paris, by which the independence of the United States was recognized and secured. He asks that a sufficient amount be appropriated by Congress for the suitable recognition of this event. It is very encouraging to believe that the completion of this great work, begun so nany years ago, is really at hand. The pedestal is quite finished, and presents a splendid appearance, looming up, as it does, above the old fort on Bedloe's Island in Its solitary grandeur.

IMPROVED TUBE CUTTER.
The accompanying engraving represents an implement for cutting off boiler tubes within the boiler, in case the tubes must be removed. This tube cutter is the invention of Mr. John C. Mineo, of Bunker Hill, Ill. The tubular stock is formed with a tapered shank, provided at its end with a squared part fitting a key, by means of which the stock can be turned. In the stock is a longitudinal slot, and in the shank is a slot extending entirely through it, as shownin the sectional view, Fig. 2. Bassing through the stock is a wedge piece, provided with a groove along its beveled edge and along its straight edge. In the slot in the stock is a block having a groove in its bottom for receiving the beveled edge of the wedge piece. Pins from the sides of the groove pass into the upper grooves in the wedge piece, and pins from the sides of the stock enter the lower grooves. A cutting disk is pivoted in the block. 1.

MINEO'S IMPROVED TUBE CUTTER.

A stem projects from the inner end of the wedge piece through the shank, and has its outer end screw-threaded to receive a nut. A spiral spring on the stem presses the wedge piece out. Before inserting the implement, the wedge piece is so moved as to draw. the block into the stock until the cutter does not project. The implement is then inserted and the nut is turned to draw the wedge piece in the opposite direction, thereby forcing the block outward and pressing the cutter against the inner surface of the boiler tube. The key is then pushed from the nut to the squared part of the shank and the tool turned, the cutter ?cutting into the tube. The cutter is gradually moved outward by turning the nut. In case the tube has a greater diameter than the stock, an eccentric sleeve, having a flange, is slipped on the stock and is held in place by a binding screw.

HAY STACKER.

To the lower end of the pole, which is made in two or more parts united by ferrules, are pivoted the inner ends of two prongs so formed that when the end of the pole is pushed down into a heap of hay or straw they will be forced into a horizontal position, and thereby form a rest for the pole and keep it from entering the hay too far. The pole is held in an erect position by guy ropes attached to a plate

SOSEMAN'S HAY STACKER.

pivoted to its upper end. The derrick arm is made in two parts hinged to each other at the upper edges of their adjacent ends, so that the outer part of the arm is free to swing upward, but cannot swing downward below a horizontal position. This derrick arm is held to the pole by a frame provided with suitable rollers, as shown in the engraving, and may be raised up or down, or swung around the pole. The
hoisting rope passes from the place where the power
is applied over a pulley hung in the small pivoted frame at the top of the mast, then over a pulley pivoted in bearings attached to the opposite sides of and projecting beyond the outer end of the derrick arm. The end of the rope is fastened to an ordinary hay fork, to raise the hay or straw to be packed. At tached to the rope a little distance from the fork is a ball, which, when the loaded fork has been raised to the required height, passes over the arm pulley and comes in contact with the lower side of the forward ends of two bars, by which the rope is prevented from passing any further over the pulley, and is made to raise the forward part of the arm (as shown by the dotted lines) into a vertical position, bringing the fork nearer the center of the stack and allowing the load to be deposited at any desired place by swing ing the arm around the pole. While being swung around, the arm is held in the forked outer end of horizontal arm attached to the top of the supporting frame. The hoisting rope is also prevented from swinging about by a properly arranged forked bar. As the forward part of the derrick arm is raised, the bars at its outer end are made to clamp the rope, to prevent its being drawn further through and to allow that part of the arm to be drawn down into a hori zontal position by pulling upon the trip rope. These bars are unclamped as the arm comes to a level position.

This invention has been patented by Messrs. L. \& T. Soseman, whose address is P. O. box 397, South Bend, Ind.

ICE CUTTING MACHINE.

The table forming the body of the machine is provided with a central longitudinal slot, to which is loosely fitted a slide, provided with spurs and having a rod attached to it, extending through the slot and bent up at the end to form a handle, by which the slide is drawn forward. Fixed to the back of the table is a board, to guide and hold the block of ice

ELLIOTT PAGE \& LEWIS' ICE CUTTING MACHINE.
A slotted bar, secured to the table at right angles, supports at one end a block provided with a ser rated steel cutter, as shown in the cut, and having at the opposite end a guide in which slides a head car rying a second cutter. The block of ice to be cut is placed upon the table and moved forward between the cutters, when the sliding head is reciprocated to bring its cutter into engagement with the ice, which at the same time is pushed against the stationary cut ter This quickly separates the block. These machines can be made in different sizes, to adapt them for use in connection with different sized blocks of ice.
This invention has been patented by Messrs. R. S. Elliott, L. W. Page, and H. F. Lewis, of Shreveport, Louisiana.

Care of the Hands.

There are not nearly as many secrets in hand trextment as people imagine. A little ammonia or borax in the water you wash your hands with, and that water just lukewarm, will keep the skin clean and soft. A little,oatmeal mixed with the water will whiten the hands. Many people use glycerine on their hands when they go to bed, wearing gloves to keep the bedding clean ; but glycerine does not agree with every one. It makes some skins harsh and red. These people should rub their hands with dry oatmeal and wear gloves in bed. The best preparation for the hands at night is white of egg with a grain of alum dissolved in it. Quacks have a fancy name for it ; but all can make it and spread it over their hands, and the job is done. They also make the Roman toilet paste. It is merely white of egg, barley flour, and honey. They say it was used by the Romans in olden time. Any way, it is a first-rate thing; but it is a sticky sort of stuff to use, and does not do the work any better than oatmeal. The roughest and hardest hands can be made soft and white in a month's time by doctoring them a little at bed time, and ad the tools you need are a nail brush, a bottle of ammonia, a box of powdered borax, and a little fine white sand to rub the stains off, or a cut of lemon, which will do even $\left\lvert\, \begin{aligned} & \text { the stains off, or a cut of lemon, which will do eve } \\ & \text { better, for the acid of the lemon will cleang. }\end{aligned}\right.$

PLUMBER'S FURNACE.

This simple furnace, the invention of Mr. John Clegg, of 119.Richmond Street, Providence, R. I., produces a powerful draught in a very short time. The cast iron pot or bowl is secured on top of a metal frame fastened on a base. Into an aperture in the bottom of the pot projects the neck of a blower casing. Suitably mounted cogwheels and pinions, operated by a crank handle, revolve the fan in the blower very rapidly. The powerful current of air thus produced

CLEGG'S PLUMBER'S FURNACE.
is.directly delivered on the charcoal in the pot. As a high degree of heat is produced in a short time, the metal in the melting pot is melted in a few minutes. The furnace can be easily carried from place to place by means of the bail.

To Clean the Hands.

Petroleum jelly serves to clean and take away all traces of dirt from the hands after work in the shop or laboratory. For that purpose, you need only rub the hands with a small amount of the jelly, which, penetrating into the pores of the skin, incorporates itself with the greasy matters which are there. Wash them with warm water and Castile soap, and the hands become cleansed and softened.

FEED MECHANISM FOR SHINGLE MACHINES.

The shingle machine is of the ordinary kind, having a saw revolving in a vertical plane and a swinging block-carrying frame moving above a concave bed piece, and carrying the block, which is swung past the saw in the operation of removing a shingle from the block. The swinging frame is returned to the starting position by a weight attached to a rope passing over a pulley on the outer end of the curved bed, and secured to the swinging frame. To a short arm, projecting from the bottom of the swinging frame, is pivoted the end of a bar that passes between two rollers, one mounted on a shaft receiving its motion directly from the mandrel or through a countershaft as shown, and the other mounted in the end of a lever pivoted in the top of a standard in front of the saw. The other end of this lever can be depressed to cause the rollers to gripe the

PURVES' FEED MECHANISM FOR SHINGLE MACHINES.
bar, and feed the block to the saw by means of a vertical hand lever pivoted to the floor. The pressure exerted, of course, controls the force of the grip of the rollers and the speed of feeding. The outer end of the lever is pressed upward and the rollers separated by a pring secured to the floor. If desired, the lever can be so arranged as to be operated by the foot.
This invention has been patented by Mr. W. L. Purves, of Waddington, N. Y.

CAR COUPLING.

The recess in the enlarged head of the drawbar is rectangular at its inner end, but is formed with beveled sides as it approaches the mouth of the head. Within this recess there are pivoted two coupling jaws, each formed with a hemispherical recess and a flaring mouth piece formed like one-half of an ordinary bell; between these parts there is a shoulder, as shown in the sectional view. Each jaw is provided with a rear lug formed with a notch, so that when the two jaws are in the

CHAPPELL'S CAR COUPLING.

position shown at the left in Fig. 2, there will be a space between the lugs which can be entered by the locking dog, which is held forward and within the recess by a spiral spring. The dog is provided with a cross bar extending through slots in the sides of the drawhead. Links connect the ends of this cross bar with the ends of a U-shaped lever pivoted to a lug upon the under side of the drawhead. A downwardly extending arm of the lever is provided with a weight and is connected by chains which can be wound upon either a horizontal rod extending across the end of the car, or a vertical rod extending to the roof of the car ; upon the outer ends of these rods are hand wheels by which the coupling can be operated without going between the cars. Upon each end of the coupling link there is a ball that fits snugly within the spherical recess.
The operation of this coupling is as follows: One end of the link is placed within the recess of one of the couplers, and the locking dog advanced between the lugs to hold the jaws closed. As the cars approach, the outer ball of the link strikes the bell-shaped mouth of the lower jaw of the other coupler, slides up the mouth piece, separates the jaws, and enters the spherical recess ; the upper jaw drops to a horizontal position, and the lower jaw is raised by the ball striking the inner face of the recess, when the spring forces the dog between the lugs to lock the jaws. Each jaw is formed with an aperture through which a pin can be passed when it is necessary to use a coupling link of the ordinary construction.
This invention has been patented by Mr. Clifton T. Chappell, of 227 Second Street, Macon, Ga.

IMPROVED WINDOW SASH.
The accompanying engraving shows an improved

BROSNAN'S IMPROVED WINDOW SASH.
construction of the frames and sashes for store windows. The vertical post sustaining the edge or edges of the glass is formed of a pipe provided with a longitudinal slot at its inner side. This post is filled with wood, and the edges of the glass are held by a fillet secured against the margins of the glass by screws, as shown in the sectional plan view, Fig. 2. The lower end of the post rests in a socket formed in the upper end of a metal standard. In the case here
shown, this socket is formed by the continuation of the fillet that extends along the top surface of the metal sash bar, and forms, with the horizontal inwardly projecting flange of the bar, the rabbet in which the lower edge of the glass is held. This flange also forms the support for the boards composing the flooring of the window. In the case of a window having a single post at the meeting edges of the glass, the sash bars are extended in both directions and their free ends are supported in the walls or columns of the build ing. In a window having two or more posts the adja cent ends of the sash bars are bolted to a connecting plate, as shown at the right in Fig. 1. By making the bars and support for the post in one piece, the relative movement of the parts is prevented. The standard may be made in two parts, as shown in Fig 3. By using a metal frame for supporting the glass, there is no liability of the shrinking, warping, or giving away by decay, so as to allow the glass to settle, as is liable to occur in the construction of these parts commonly used. The metal sash bar, by occupying only a sinall part of the opening beneath the window, gives a much larger space for lighting the lower room than could heretofore be obtained. This invention has been patented by Mr. P. J. Brosnan, of 200 Milwaukee Avenue, Chicago, Ill.

SIMPLE MEANS OF FASTENING WAGON TIRES.

 The illustration herewith represents a means of se curely fastening the tires of wagon and carriage wheels, so that it is almost impossible for them to spring from their position, while only two bolts are used, those being at the joints where the fellies come together. Fig. 2 is an enlarged and Fig. 3 a sectional view of the bolt and tire, showing how the joint is made. The tire is made with flanges to fit over the outside edges of the felly, so that it requires a full heat in being put on to give the necessary expansion, but the subsequent contraction is then sufficient to hold the felly firmly within

HITT'S TIRE AND TIRE BOLT.

the flanges of the tire. The bolt is then driven through the felly and tire, and riveted in a countersunk hole in the face of the latter, the head of the bolt being drawn over the felly on the inside, as shown in Fig. 3. The whole operation can be completed in far less time than it takes to put on a tire of the ordinary style, and the wheel has a neat and substantial finish. In this tire also, the face is wider than the felly, and thus protects that and the spokes from injury from rock and dirt, while the flanges likewise help to stiffen the tire help it to better keep its shape with hard usage
This invention has been patented by Mr. Lewis L Hitt, No. 924 Market Street, Chattanoogar Tenn.

Test for Leather Belts.
Herr Eitner proposes the following method for testing the efficiency of belts : A small strip is cut off and placed in a jar filled with comınon vinegar. If the belt was well tanned and good quality, it may remain in the vinegar many months without being injuriously affected, it growing only a little darker in color. If, on the contrary, the belt was of an inferior make, its fibers begin soon to swell, and after a short time are transformed into a gelatinous mass.

HAY AND COTTON PRESS.

This press for baling hay and cotton is constructed in independent detachable sections, so as to be quickly set up for use and taken apart and compactly packed for storage or shipment. Upon the base are mounted the four sides composing the box. Two sides are made up of upright strips, between the spaces at the lower ends of which are the ends of similar strips forming the bottom. The upright strips are united by top and middle rails. The lower parts of the fuel
ends, each of which is made in one piece, are held from spreading by strips secured to the base. The upper ends of the four side pieces are held togethe by cross bars, which are halved into the extended
sides are pivoted to the frame by removable rods, which form hinges upon which either side can be turned down to form a platform upon which to receive the bale from the press. The follower is provided with a central cross beam extending through vertical openings in the ends; to the extended ends are secured ropes wound around a windlass turning in bearings in the base, by which the follower is drawn down to compress the bale. The windlass is

HANSEN'S HAY AND COTTON PRESS.

operated by a lever, and is prevented from turning backward by a pawl. That side of the box not to be used as a door may be connected to the ends by bolts and staples. To prevent the end pieces from rising off the base, they are notched beneath the top side rails.
This invention has been patented by Mr. H. G. Hansen, and further particulars can be had from Mr. Fred. Mackensie, of Calumet, Mich.

A SMOKE CONSUMING FURNACE.

The simple construction herewith illustrated, for promoting a more perfect combustion, and making a furnace which is in reality a smoke consumer, adapted for locomotive, marine, and stationary boilers, will be understood at a glance. Its most essential feature is in the arch located in the front of the combustion chamber, between the fire on the grate and the boiler, and dividing the combustion chamber so as to form a coking oven in its front half. Here the fuel is first fed, and after being there coked is forced back upon the rear of the stationary grate, where the process of combustion is completed. The arch is inclined toward the rear, so as to narrow the throat between the coking oven and the rest of the combustion chamber, so confining all the volatile products of combustion as to insure their most thorough utilization, bustion as to insure their most thorough utilization, that no smoke or soot may pass the bridge wall. The
arch also prevents cold air from coming in contact with the boiler when the door is opened for the ad mission of fuel or otherwise. There is a dumping grate in the rear of the stationary grate, just in front of the bridge wall, which is provided with an operating bar, shown at the side of the ashpit door ; as the clinkers are crowded to the rear end of the furnace in the

THE BACKUS BOILER FURNACE.

egular order of firing, they may thus be readily removed without disturbing the operation of the fur nace or impairing its even and perfect combustion of uel.
This invention has been patented in the United tates and in several foreign countries by Mr. Absalom Backus, Jr., and these furnaces are manufactured by Mich.

Shellac.*

by J. bosisto, examinerin materia medida at the viotoria colleger of pharmact.
In the central provinces of India, especially in the thick jungles, the Coccus lacea insects may be seen dwelling together in thick set groups on the branches and twigs of Zizyphus jujuba, Ficus religiosa, Butea firondosa, besides other trees and shrubs belonging chiefly to the Leguminoseæ order. Each insect incrusts itself over with a resinous substance, forming within a cell containing larvæ and a deep coloring matter, the dead body of the parent being itself the cell. Hundreds of these are piled together, adhering to a twig, and in this condition it is termed stick lac, and contains about 70 per cent of resin, 10 per cent of coloring matter, and the rest debris.
The collecting of stick lac and the making of shellac, button lac, sheet lac, and lac dye, is an industry carried on by the Hindoos in the districts of the central provinces. In order to obtain the largest quantity both of resin and coloring matter, the stick lac is collected before the larvæ emerge from the cells, else, with their flight, they carry a way the greater part of the dye coloring.
Since the advent of the anilin dyes, lac dye is but little in demand. The larvæ are allowed to mature, as they do not interfere with the quality or quantity of the resin portion. It is chiefly this circumstance that keeps down the price of shellac, there being, consequently, more insect workers than formerly.
The process of dealing with stick lac for the making of shellac and lac dye was witnessed by the writer when in India, and is as follows : The first part of the process is to separate the lac from the twigs. This is done by two women-one turning and the other feeding a primitive-shaped wooden mill. When a heap is formed (about a bushel in quantity), it is winnowed in a rustic-looking winnower, the lighter debris separating; the remainder is then hand picked. The process of grinding and winnowing is repeated until the whole is reduced to small, orange colored nodules. When in this condition, it is termed seed lac; the bright, garnetcolored pieces, being few in number, are now picked out and set aside for native ornaments. The seed lāc is then placed in a large earthenware pan, and with it some water. A woman steps into the pan, steadying herself against the mud wall with her hands, then turning violently to the right and left, in order to keep the lac in a continual state of motion against her feet and the sides of the pan for some time, the other woman occasionally adding more water, until the vessel is full of a dark colored liquid. After settlement, the dye water is removed into another earthenware pan, and the lac again washed until the water runs away clear. Lac Dye.-The treatment of the colored water for the purpose of obtaining from it the lac dye is very simple. After straining, lime water is added, which precipitates the dye. The water is then drawn off, and the dye drained through cotton cloth ; from this it is transferred to compressible frames, containing strong iron plates, and reduced by a native screw press to solid sheets of dark purple dye about a quarter of an inch thick; these are cut up into cakes and stored till dry enough for packing, and then forwarded to Calcutta for sale in the bazars. The utilitarian value of lac dye over cochineal in a humid climate, especially in dyeing the scarlet cloth of the soldiers' coats, lies in its power to resist the action of human perspiration.
Shellac.-The manufacture of shellac is an entirely distinct process. The seed lac at the bottom of the pan is removed, dried, and sifted. The finer dust, which is highiy inflammable, is removed. The lac workers of India make it up into bracelets and ornaments of various kinds.
The coarse lac which is to be made into shell is put into long sausage-shaped bags of about two inches diameter, made of cloth like American drill. Under a shed is a charcoal fire about two feet long and six inches wide; alongside of the fireplace is a bamboo pole, about three feet long and four inches in diameter, filled with warm sand, inclining at a slight angle to the ground. On each side of the fireplace is sitting a man, or more generally a woman, each holding an end of the sausage-rolllooking bag about twelve inches high over the clear charcoal fire, turning the roll or bag briskly until the lac begins to ooze through the interstices of the cloth; the bag is still kept twisted until a coating of soft lac covers the outside. It is then removed from the fire, and a small disk of lac is placed here and there over
the surface of the bambooby a rapid turn of the wrist. the surface of the bamboo by a rapid turn of the wrist.
A third woman is sitting at one end of the bamboo, A third woman is sitting at one end of the bamboo,
holding in both hands a strip of aloe leaf, resembling very much a thin magic wand; this she pushes forward over the soft lac, repeating the motion three or four times, when a thin film of the lac covers over the round surface of the bamboo, which is immediately transferred into an open basket. The lac drying rapidly cracks up into many pieces; this is shellac.
Button lac is simply shellac without spreading.
Sheet lac is made in a similar manmer to shellac, only the sheets are much thicker, and the woman removing it from the bamboo in a supple condition and with both
hands stretches it over the fire in order to remove the wave-like furrows which are impressed on it by the fibrous surface of the aloe leaf. While doing this, it is not uncommon to see the woman-who performs her work intelligently-lift the hot sheet to her mouth and bite out any foreign substance, such as dirt or sand, filling in the hole so made by a rapid movement of her hand over the sheet. The average rate of wages is an anna and a quarter ($17 / 8$ of a penny) per day.

Report by M. Pasteur.

At the last meeting of the Academy of Sciences, Paris, M. Pasteur read the following report of the results of his antirabic treatment at his laboratory in the Rue d'Ulm : "The number of persons so treated amounted, up to the 12th April, to 726, including those who are still undergoing treatment. Of this number, there were 688 who were bitten by mad dogs and thirty-eight by wolves, the latter being all Russians. The patients belonging to the first category are, with the exception of the little girl Pelletier, who, it will be remembered, died after a few inoculations, all doing well. More than half of that number have passed the dangerous period. Of the thirty-eight Russians who have been treated and are still undergoing treatment, three havo died rabic; the others are doing well, but it is impossible to foresee what may happen to them, as there exists a profound difference between the bites of dogs and those of wolves, the proportion of deaths caused by rabid wolves being at least 82 per cent." M. Pasteur then concluded his report in the following terms: "The above facts demonstrate (1) that the duration of incubation of human rabies caused by the bite of a rabid wolf is often very short, very much shorter than rabies after the bite of a mad dog; (2) that the mortality after the bites of rabid wolves is considerable, if we compare it with the effects from the bites of dogs. These two propositions may be sufficiently explained by the number, the depth, and the seat of the bites caused by the wolf, which so savagely attacks his victim, the attack being often on the head and face. The necropsy of the three Russians who died at the Hotel Dieu, and the inoculation of rabbits, guinea pigs, and dogs with the medulla oblongata of the first of the patients who died, prove that the virus of the wolf and that of the dog are sensibly of the same degree of virulence, and that the difference of the rabies of the wolf and that of the dog depends on the number and nature of the bites. Thesefacts induced me to inquire whether, in the case of bites from rabid wolves, themethod could not be usefully modified by inoculations in greater number and within a shorter time. The results will be eventually reported to the Academy. In any case, for the wolf in particular, it is good to submit the patient to the preventive treatment as soon as possible. The Russians of Smolensk were six days on their journey to Paris, and presented themselves at the laboratory fourteen or fifteen days after having been bitten. They might therefore have commenced the treatment eight days earlier, and one cannot say what might have been the influence of this modification for the three patients who have succumbed."

Swedish Iron Mountain.

It cannot be said that our iron mining companie have latterly had any very profitable times, for they have had to pay ruinous mineral royalties at a tim when trade is very depressed and prices almost un precedentedly low, and the amount of competition existing not only between home, but from Spanish Swedish, and other foreign sources, is very great. It has become a common occurrence, in fact, for imported ores to undersell ours, even in places contiguous to the mines. An enterprise, however, is now being undertaken which, when completed, will have a considerable effect on the iron ore market of both this country and the Continent,' and will lead to still further competition in this direction. We allude to the opening up of what are perhaps the largest deposits of iron ore to be found in the world, large hills being almost entirely composed of this material of an extremely rich and valuable nature. The deposits in question are situated in the extreme north of Sweden, verging on Lapland, and a railway is now being constructed for the purpose of bringing the metal to market. The Northern Europe railway, said to be the most northern in the world, commences at the port of Lulea, at the northwest end of the Gulf of Bothnia, a town of about 4,000 inhabitants, having a very large timber trade, and possessing a good harbor, which vessels of large tonnage can easily enter, and runs across the Scandinavian peninsula to Ofoton Fjord on the Atlantic coast of Norway. The line follows the Lulea River valley
for the first twenty-five miles, then, turning north, crosses the Arctic Circle and proceeds to Gellivara, 140 miles from Lulea. This section of the line, in which the work of construction is light, passing principally through valleys of sand and gravel, is now on the point of completion.
Vast forest of pine are here met with, extending over hundreds of square miles, and timber will now be able to be readily brought to the port of shipment. At Gel-
livara stands the mountain of that name, entirely composed of rich iron ore, hundreds of feet thick, and covering many squa're miles. The ore requires no mining, being close to the surface, and can be quarried and put into railway wagons direct, the railway passing round the moantain for that purpose. A small portion of this ore already reaches Lulea, being carted the whole distance during the winter months. After leaving Gellivara, the line passes Lake Tjantjas and Panki, to the great iron mountain of Kirunavara, whose peak of great iron mountain of Kirunavara, whose peak of
solid metal is visible at a distance of forty miles. This solid metal is visible at a distance of forty miles. This
mountain is several miles long and 850 feet above the level of Panki Lake. It is composed of about $981 / 2$ per cent of peroxide of iron, very rich in quality, and is estimated to contain about $280,000,000$ tons of metal above the waters of the lake. It is estimated this ore can be quarried and put into trucks for two shillings per ton. It will have to be carried eighty-five miles by rail to the proposed Atlantic harbor. A sister iron mountain, Luosavara, stands four miles to the northwest of Kirunavara, being about the same height, and also containing gigantic deposits of equally rich ore The two mountains are separated by a valley, through which the railway will pass on its way to the Norwegian frontier, running by the Great; Torne Lake, fifty miles long, and through forests of fir trees, until the frontier is passed on a tableland 1,600 feet above the sea level. The descent from the Kjolen mountains to the terminus, a distance of 28 miles, is circuitous, and will necessitate some severe gradients and expensive works during construction, which is being undertaken by English contractors under the supervision of English engineers.-Mechanical World.

Using One's Eyes.

How many of us go through life without ever realizIng that our eyes have to be educated to see as well as our tongues to speak, and that only the barest outlines of the complex and ever-changing images focused on the retina ordinarily impress themselves upon the brain? That the education of the eye may be brought to a high state of perfection is shown in numerous ways.
There are many delicate processes of manufacture which depend for their practical success upon the nice visual perception of the skilled artisan, who almost un consciously detects variations of temperature color, density, etc., of his materials which are inappreciable o the ordinary eye.
The hunter, the mariner, the artist, the scientist, each needs to educate the eye to quick action in his special field of research before he can hope to become expert in it.
The following story from the Penn Monthly, which is quite apropos, is related of Agassiz, and it is sufficiently characteristic of this remarkably accurate observer to have the merit of probability. We are told that once upon a time the Professor had occasion to select an as-
sistant from one of his classes. There were a number sistant from one of his classes. There were a number of candidates for the post of honor, and finding himself in a quandary as to which one he should choose, the happy thought occurred to him of subjecting three of the more promising students in turn to the simple test of describing the view from his laboratory window which overlooked the side yard of the college. One said that he saw merely a board fence and a brick pavement; another added a stream of soapy water; a third detected the color of the paint on the fence, noted a green mould or fungus on the bricks, and evidences of "bluing" in the water, besides other details. It is needless to tell to which candidate was awarded the coveted position.
Houdin, the celebrated prestidigitator, attributed his success in his profession mainly to his quickness of per-
ception, which, he tells us in his entertaining autobiography, he acquired by educating his eye to detect a large number of objects at a single glance. His simple plan was to select a shop window full of a miscellaneous assortment of articles, and walk rapidly past it a number of times every day, writing down each object which impressed itself on his mind. In this way he was able, after a time, to detect instantaneously all of the articles in the window, even though they might be numbered by scores.

Speaking on the "Corrosion of Iron and Steel," Mr. T. H. Davis, F.I.C., formerly assistant at the Royal College of Chemistry and School of Mines, London, says if the air or water which surrounds iron contains carbonic acid or any free acid in minute quantity, the corrosion increases rapidly; but if a caustic alkali, such as potash, soda, or lime be present, the corrosion ceases altogether while any causticity remains, because oxy, gen and carbonic acid have greater affinities for theso alkalies than for iron. He also points out that a perfect paint for the protection and preservation of iron and steel should be one which has a high mechanical adhesive property, and composed of such materials as are related electro-negatively to iron, mixed with some tenacious fluid vehicle containing little or no oxygen, and not capable of being decomposed by the iron be neath it. This would exclude most oily paints.

Gorrespondence.

Mining Precautions.

To the Editor of the Scientific American:
Let mining companies be compelled by law to put down bore holes, from the surface of the ground, at greater or less intervals over the entire course of the
mine. The holes would not be very expensive to put down, and could be sunk with any prospecting well or oil rig. They should be large enough to contain a tube two or three inches in diameter, with good valves at each end. It. seems to me that this plan would do away with part of the risk that miners undergo from being imprisoned by a cave-in.
The holes could also be used for aiding the regular ventilating of the mine.

Irving Boardman.
Elmira, N. Y., Febrüary 8, 1886.

Collisions at Sea.

To"the Editor of the Scientific American:
Having long been an attentive reader of your valuable journal, I have followed with unusual interest the suggestions offered from time to time by Mr. E. Reynolds in nautical matters. His last appears in the Scientific American of April 17; and as I have spent the best part of thirteen years at sea, in merchant sailing vessels as well as in steamers and men of war of six different nations, I hope that I will be able to contribute my mite toward lessening the greatest of all perils at sea. Mr. Reynolds is perfectly right in asserting that the greatest danger lies in the uncertainty of which most masters of sailing ressels become possessed on the approach of a steamer. How often have I heard the command from my captain, I having the wheel at the time: "Keep her off a little," "Keep her off another point," though we in our sailing craft had the right of way beyond dispute. Rapid communication at night at a safe distance between the approaching vessels is therefore the goal to be attained. Let me propose the following :
In the United States Navy they are using with great success "Very's signal lights" for night signaling; the apparatus consisting in a pair of brass pistols and a sufficient number of cartridges in green and red, which are fired from the pistols, ascending from 60 to 100 yards into the air and giving a brilliant light, red or green, during ascent and descent. Time of light, 60 to 80 seconds; cost of the whole apparatus, probably $\$ 20$. Now, let every sea-going vessel be provided with this apparatus, and establish, through the same means by which "the rules of the road at sea" were made international, the following three simple rules :

1. One red light fired means: "I am going to keep my course."
2. One green light fired means: "I am going to starboard my helm."
3. Two red lights fired simultaneously, the lights ascending from the bow of the vessel at an angle of from 15 to 30 degrees, means: "I am going to port my helm."
As the lights which I have seen fired during a four years' cruise in Chinese waters always ascended much higher than the headlight of a steamer is usually fixed above the water line, and as those headlights are supposed to be visible at a distance of five nautical miles, it is safe to presume that communication at night between approaching vessels may be commenced at a distance of five miles. A more perfect code of night signals may be easily constructed from the combination of these red and green lights; but I think, for the purpose of letting the other vessel know distinctly what one intends doing, the above three rules would be sufficient. I have seen these lights fired in all conditions and in all kinds of weather at sea, and they stood the test very well; and as the outlay for the apparatus is not worth mentioning in comparison with the lives and millions' worth of property yearly lost through the inability to communicate during night time at sea, the above plan may be well worth considering. Hugo L. R. Lehmann. Fort Lewis, Colo., Company B, 22d U. S. Infantry.

A Mile of Coal Cars.

A correspondent wants to know how much coalthere may be in a mile of loaded coal cars. In reply we can say that a 5 ton car or coal jimmy is 11 ft .6 in . in length from bumper to bumper. An 11 ton car is 22 ft .1 in . A car holding from 14 to 16 tons of anthracite is 24 ft . 2 in . A gondola of 20 tons capacity is put at 27 ft .4 in . A large gondola with 25 tons capacity is 32 ft . in length. Now, then, for the quantity. There will be 460 of the jimmies to the mile, and that means 2,300 tons of coal, perhaps. There will be 240 of the double jimmies, and that means perhaps 2,640 tons. There will be 218 of the large cars, and that may mean 3,270 tons. Of the gondolas there will be 193 cars, and this may mean 3,840 tons. Then of the larger ones there are, say, 160 cars, which will equal in capacity 4,000 tons. All this goes to show that when you see or hear of a mile so very much coal,-Coal Irade Journal.

An interesting

An interesting discussion has been going on in our pages for some weeks concerning pile driving. For the benefit of our younger readers it may be well to
explain what it is all about. It turns on a question often asked, namely, What is the force of a blow? It is a remarkable circumstance that this question seems to constitute a pons asinorum for a very large number of persons, although the solution of the problem presents no difficulties of any kind to those capable of understanding a few very simple physical laws. As, however, we know that the whole problem is a vexation of spirit to many students, and that even engineers of larger growth have quite failed to understand it, we propose here to give such an explanation of it as will, we hope, suffice to clear up all obscurities and render its solution perfectly up al
easy.
To

To simplify matters, we shall assume that the blow with which we have to deal is caused by gravity that, in a word, it is due to the arrest of a falling weight, such, for example, as the monkey of a pile driver; but our readers will, we think, have no dif ficulty in understanding that a blow is a blow, no matter how dealt-whether it be delivered on a target by a shot projected from a 100 ton gun or with a tiny hammer on the head of a tin tack. In their nature both blows are the same; they only differ in degree. A falling body cannot do more work when its progress is arrested than has been done on it in lifting it up to the height from which it has fallen Thus, for example, let us suppose that the monkey of a pile engine weighs one ton, and that it falls 4 feet on to the head of a pile; then the work in the monkey cannot be either more or less than equivalent to four foot tons. A foot ton is simply an arbitrary unit. The proposition may be expressed in various ways. Thus, the work in the monkey at the moment it touched the head of the pile would be sufficient to raise the monkey up again to the point from which it fell ; or to raise a weight of 4 tons a heigh of 1 foot; or to raise 1 pound through a height of $2,240 \times 4=8,960$ feet; or to raise a weight of 48 ton through a height of 1 inch, and so on. It is essen tial that this little matter of equivalence be clearly understood. To drive it home still further, we may
say that a horse power is equivalent to lifting a weight of 33,000 pounds through a height of 1 foot in a minute. But the result would be the same if 1 pound was raised 33,000 feet in a minute. We may, in short, go on ringing the changes how we please between weight and height. The result will invariably be the same, one element in the calculation being always diminished as the other is increased. Now, it is clear that if our monkey were employed to raise 1 ton through a height of four feet, it must exert a force or push of 1 ton throughout the distance 4 feet. If it did not, it would not move one ton at all, for it would be overbalanced. If it were called upon to raise 4 tons through a height of 1 foot, then it must exert a push of 4 tons through a distance of 1 foot; if to lift a weight of 48 tons, then it must exert a push of 48 tons through a dis tance of 1 inch, and so on. Bearing this in mind, there will be no difficuty in understanding the following simple rule: The force of a blow is measured by dividing the whole distance x passed through by the mon key before impact by the distancey passed through after impact, and multiplying the weight by the quotient. Thus, let the monkey weigh 1 ton, let the fall x be 48 inches, let the pile descend 1 inch $=y$ at each blow then the force of the blow-or, in other words, the push or effort exerted by the monkey on the top of the pile-will be $\frac{48}{1}=48$, and $48 \times 1=48$ tons. If the
fall was 20 feet, or 240 inches, then the effort would be 240 tons, and so on. It must be understood that this is the mean or average force of the blow. Its initial effort may be much greater and its terminal effort may be much less, because at the instant of im pact the monkey is moving atits full velocity, while at the moment when the pile ceases to descend it will have no motion at all, and consequently will exert no push, except that due to its weight. With this aspect of the question, however, the student need not now concern himself. It will be seen that the force can be varied by altering either the distance passed through before or after impact. For exam ple, the monkey weighing 1 ton and falling 48 inches, let the pile descend only $1 / 8$ inch, then $48 \times 8 \times 1=384$ tons; and this leads to an important deduction. If y becomes infinitely small, the force of impact will become infinitely great. We are led thus to the ancient problem, If an irresistible force encounters an insurmountable obstacle, what will happen? No such condition can by any possibility occur in practice Some movement must take place after impact.
If our readers have followed what we have said, they will see that to ask how to calculate the force of blow, giving only the weight and the fall, is to put an absurd question. Three factors are in all cases ne cessary, namely, the weight, the height of fall, and the distance through which the body which receives
the blow moves. In practice it is by no means easy
to ascertain the latter with precision; and the energy in the falling body can be expended in more ways than one. For example, when the head of a pile is struck, two effects take place simultaneously-the monkey is shortened and so is the pile. The elastic
rebound of each immediately takes place, and the monkey jumps up from the top of the pile. Again, the top of the pile becomes highly heated. In very dry weather the top of a pile has been known to take fire under the blows of a light monkey rapidly repeated. The elasticity of the pile plays an important part in nfluencing the rate of its descent. A monkey weighing 100 pounds, falling. a height of 50 feet, will have stored in it on impact $50 \times 100=5,000$ foot pounds, and if the progress of the pile were 1 inch, its driving force would be $600 \times 100=60,000$ pounds. A monkey weighing 1,000 pounds, and falling 5 feet, would also have 5,000 foot pounds of work in it, and would exert a driving force of 60,000 pounds over a space of 1 inch ; but it does not follow that the former would be equally effective in driving the pile. On the contrary, the lighter monkey striking the pile with a higher velocity might be much the less efficient of the two, because the force of the blow would not be trans mitted through the pile, but would be expended in compressing the top of it, probably in shattering the wood. We do not propose to go here into any questions concerning modulus of elasticity, which would only serve to complicate a statement which we desire to keep so simple that it may be understood by those who only possess the most elementary mathematical knowledge; but this article would, on the other hand, be manifestly incomplete if we did not say something further concerning the respective values of light and heavy monkeys and hammers and high and low falls.
When a pile is struck on the top, what is known as a wave of compression passes through it; and this wave requires time for its passage. Such a wave is set up in all columns when stress is suddenly brought on one end. Thus, for example, if the muzzle of a fowling piece containing a column of air is plugged up with a cork, or with snow or mud, the barrel may be burst when the weapon is fired, simply because, while the pressure at the muzzle is yet too small to move the cork, the pressure at the breech end is great enough to burst the barrel. The wave of compression will not reach the muzzle till the breech has been burst. In the same way the detonation of a lump of dynamite on a rail will break it, the action being so sudden that the wave of transmission of pressure has not time to pass through the air surrounding the dynamite, and the air really plays almost the same part as a block of steel round the explosive. The effect of a heavy ram falling a short distance on a pile head resembles a push, in a sense, and gives time for the transmission of the effort throughout the whole pile; but when a light monkey falls, the effect may be confined to the top of the pile, which is shattered. In order to make this quite clear, we must take into account the element time, concerning which we have said nothing yet.
The velocity with which a monkey strikes a ram is calculated by extracting the square root of the height of fall in feet and multiplying it by 8. Thus, let the monkey fall 4 feet; the square root of 4 is 2 , and $2 \times 8=16$ feet per second. If the monkey fall, as stated in our last example, 50 feet, then we have 7 as the nearest whole number square root, and $7 \times 8=$ 56 feet per second as the velocity with which the monkey would strike the pile. If this speed was greater than that at which the wave of transmission could pass through the pile, then little or no effect would be produced in the way of causing its descent; nearly the whole of the work would be done in compressing the top of the pile or in shattering it, and the driving effect would be nil. This, it will be seen, is the aspect of the question now being discussed by Mr. Donaldson and "Scrutator," and there is plenty of room for discussion, because very little seems to be really known concerning a great many practical points connected with pile driving. The efficiency of the pile driver is affected by the length, weight, and material of the pile, the condition of its head, and the character of the ground in which it is being driven. The effect of the element time is not sufficiently well understood. About, indeed, the only thing fully recognized is that a heavy monkey falling from a moderate height is, other things being equal, much more efficient than a light monkey falling from a great height.-The Engineer.

Thunderstorm in a Clear Sky.

Capt. Anderson, of the British bark Siddartha, which lately arrived in New York, reported a peculiar thunderstorm on April 27, while on the northern edge of the Gulf Stream. The sky was quite clear at the time and the sun shining brightly, although there appeared to be a thin mist about the ship. Suddenly there appeared a vivid flash of lightning, accompanied by violent thunder. The compass was caused to vi brate perceptibly for a period of 15 minutes.

TRIPLE EXPANSION ENGINES

We illustrate a very excellent example of expansion engines, designed by Mr. Kirk, of the firm of R. Napier \& Sons, Glasgow. These engines were built for the steamer Aberdeen, one of those large vessels belonging to Geo. Thompson \& Co., designed for long voyages, such as the line between England and Australia. For such voyages, the fuel economy is of the greatest importance.
indicated horse power. The next trial was to find the of steel, with six of Fox's corrugated furnaces in each, maximum speed, which on four runs on the measured the total heating surface being 7,128 square feet. There mile, occupying two hours, was 13.74 knots, the mean is no superheater. The construction of these boilers power being 2,631, and the consumption of coal during for so high a pressure- 125 lb . per square inch-was these two hours being 1 ton 17 cwt . per hour. The facilitated by their being built of steel and to Lloyd's, weight of steam condensed in the jackets, carefully whose rules allow the shells to be made thinner than measured into a tank, was $33 / 4$ degrees per cent of the required by the Board of Trade, although the internal greatest weight of steam admitted to the high pressure cylinder, by diagram, the pressure on the jacket of the \mid After all, the shell is the simplest and strongest part of

TRIPLE EXPANSION ENGINES.

The Aberdeen is a ship built of iron, both ship and |middle cylinder being 30 lb , and on the low pressure cy- a round boiler, where, even if built to Lloyd's, there is engines being of the highest class at Lloyd's, 350 feet linder 10 lb . In a second experiment the condensed superabundance of strength; but to doubly insure suclong by 44 feet by 33 feet. When the ship was com- water was still the same percentage when the pressure in plete, 2,000 tons of dead weight were put on board, and each jacket was doubled. The loss of steam from the arrangements were made to test the consumption on a high pressurecylinder to the low pressure, just before six hours' run at 1,800 horse power; this, however, by release, plus thejsteam condensed in the jackets, was the the owner's desire, was reduced to four only. The coal same as took place inside the cylinders with the steam was Penrikyber Welsh coal, and Messrs. Parker \& shut off from the jackets. Dunlop, who happened to be on board, kindly under- The cylinders of the Aberdeen are 30 in ., 40 in ., and low pressure one with steam of 15 lb . above the atmotook to examine the state of the fires, and see the coal 70 in . by 4 ft .6 in . stroke. The boilers, two in number, sphere. We are indebted to the Engineer for our enweighed. The result was a consumption of 1.28 lb . per are ordinary double-ended boilers, constructed entirely graving and these particulars.

CARRIAGE MAKERS' WORK IN THE LAST CENTURY. It was not until the latter part of the seventeenth and the commencement of the eighteenth century that the inventor and mechanician seem to have applied themselves to making carriages which could be used with sufficient comfort to attain any degree of popularity. The most of the specimens we have of the work of an earlier period must have been extremely clumsy and awkward for actual service, though some of them are richly carved and elaborately decorated. In the French museum of Cluny is a fine collection of eighteenth century carriages, two singular vehicles belonging to which are represented in the accompanying illustrations. It is said that a vehicle onething like the sediola here omething like the sediola here hown is still used in some parts of Italy. It is fixed without any kind of suspension to the shafts, obtaining its spring from their great length, and is allied to the Norwegian carriole, the Neapolitan calesso, and the Cuban volnte The body is decorated with in subjects in bold relief, and the wheels are elaborately painted, animals and birds being profusely represented on the tire. The Dutch tilbury shown is built more after the style of our gigs at present, being suspended on straps which go over small wheels at the back, so they can be loosened or tight-
ened at will. The seat is padded and comfortable, movement exceeding that and the sides and back, with the front of the dash. of cavalry, and would make board, are pictured with agricultural subjects, the a most effective corps in vehicle being on the whole a decidedly handsome one, strongly built, but without being extremely heavy.

a scythian chariot.

m. meigs, u. s. c. e.

I was much interested in the drawing published in a late number of the Scientific American SupPLEMENT, No. 528, describing an ancient Egyptian chariot wheel found in a recently opened tomb.
I send you a sketch of a chariot no less curious, which I find in my sketch book, and which I think had a somewhat similar origin. The vehicle represented in the sketch was taken from an Egyptian tomb of the date 1400 B.C.
It is said to be of Scythian origin, and probably formed part of the spoils of some Egyptian victory. Only a portion of the rawhide lashings with which all the joints were secured now remain. The hub is a composite affair, consisting of an inside tube made in two pieces, and afterward put together with wooden rings fitting over the ends of the tube.
The spokes, which are of wood with a natural crook, are made like the letter L, and are four in number, being fitted into a groove in the hub; the long arm of the L extending out to and into the felly, and the short arm bent at right angles and notched and fitted to the adjacent spoke. The whole was firmly bound together with rawhide.
The fellies, two in number, are scarfed together between the spokes and also lashed with rawhide. The I append the following imensions: Axle, 79 in. to outside; neck fork or saddle, 10 in . long. ence. gelatine films.

The weight of the whole vehicle, harness, yokes, etc I estimated at not over 50 pounds, and the method of attaching to the horses must have left them with most perfect liberty of motion.
A squadron of such chariots, with two men (a driver and an archer) in each, must have been an exceedingly efficient sort of light artillery.
Perhaps we may witness in our own day, when cavalry has become only a sort of mounted infantry, a return to the methods of 3,000 years ago. There are great advantages in such a light cart as this chariot. It is too low to be upset, and can be taken over any sort of

fTALIAN SEDIOLA. country. The harness and weight are reduced to a minimuın. A regimentfurnished with such chariots and with repeating riffes and with repeating rifles
would have a rapidity of

It is very doubtful if the average severe flash in thi atitude does not endure or continue for a very much longer period. Despite the popular belief to the contrary, the author has frequently observed the motion of foliage when illumined by no other light than the lightning flash. This would not, of course, be the case if the flash were even approximately instantaneous.
It is a very significant fact that in the photographs of Mr. Barker the foliage shows unmistakable evidence of having perceptibly moved during the period of exposure ; thus showing that it was by no means instantaneous.
It is to be hoped that Mr. Barker, or some other photographer, will repeat these exposures under the fol owing conditions, viz.; to make the exposure while the camera is sharply focused on moving foliage or a rapidly rotating wheel, while illumined by a lightning flash, so flash.
In the case of the lightning flash, the large percentage of blue rays would of course render the plate more sensitive to the extremely short exposure by practically prolonging the same, since the ordinary photographic chemicals now employed are es pecially sensitive to the blue portions of the spectrum.
It would appear from the facts developed by the photographs of Mr. Barker, that the method of measuring the duration of the lightning flash, as adopted by Wheatstone and others, which consists essentially in endeavoring to detect by the unassisted eye the change in position of a rapidly moving wheel or othe object, while illumined by the flash, might be greatly improved by substituting for the eye the
H2 long; seat, 39 in . long, 20 in . deep; pole, $11 / 2 \mathrm{in}$. diameter small end, 3 in. diameter large end ; wheels, 39 in . diameter; hubs, $123 / 4 \mathrm{in}$. long ; yoke, 35 in . long, outside

The chariot is now in the Etruscan Museum at Flor-

Photography by a Lightning Flash.

Mr. Albert S. Barker, of Philadelphia, has recently succeeded in taking two very fair photographic negatives of outside objects while illumined by no other light than that of a single lightning flash. These photographic views were taken at 7 P.M. on Thursday, October 29, 1885, near Philadelphia. The night was excessively dark, the wind strong, and the rain heavy. The camera was placed in an open window, with the slide drawn. The lightning flash came in less than one minute, when the slide was returned. The plate holder was then reversed and suitably placed for a second exposure. The plate was one of the highly sensitive

Mr. Barker developed the plates the same evening.
sensitive photographic plate,
since the latter is apparently far more sensitive than the eye.
Should photographic pictures of a rapidly rotating wheel, whose rate of motion was known, be taken while illumined by a lightning flash, the displacement of the image on the negative would give far more reliable data for calculating the duration of the flash than the me thods heretofore employed.
Mr. Barker's photographs, therefore, are not only interesting as showing how extremely sensitive the photographic plate may be made, but are also of interest as throwing some light on the possible duration of the lightning flash.-Franklin Journal.

Emile Laurent hasin of blastion whether diastase is a product of bacterial action, or whether it can be formed without organic intervention. He placed seeds of lupin, maize, barley, and helianthus to germinate under a bell glass, over water which had been previously boiled, the seeds having been first freed from superficial micro-organisms by the ordinary processes of sterilization. When the sprout began to show the seeds were introduced, with all necessary precau-

A SCYTHIAN CHARIOT.
section of the felly is oval or elliptical, and I could not discover that there was any provision made for protect ing the wood with a tire of any sort. The floor of the chariot was of rawhide thongs, and must have made a very elastic footing indeed.
A light, elegantly curved yoke was attarhed to the pole of the vehicle by a pin and lashings, and was attached to the two horses by means of a forked piece of wood like an inverted \mathbf{Y}, this piece being placed astride the neck in front of the withers and lashed to the yoke.

From their behavior he rated the actinic effect of the light as equal to that obtained from an exposure of about $\frac{1}{30 \sigma}$ part of a second in bright sunlight.
The popular impression as to the duration of the lightning flash is that it is practically instantaneous. From the experiments of Wheatstone and others with the rotating disk, the duration of the flashes measured would vary apparently from the $\frac{10}{100 \pi}$ to the $\frac{10}{100} 0$ of a second. Others estimate the duration of the flash as even shorter than these figures.
tions, into tubes containing Koch's nutritive gelatine The seeds continued to develop normally, without liquefying the gclatine, which constitutes, according to Koch, an infallible criterion of the absence of bacteria. Sprouted seeds, introduced into sterilized plum juice, continued to grow, without showing any bacteria in the liquid. Although these experiments can hardly be considered as decisive, they lend great probability to Laurent's opinion that bacterial intervention is not necessary.-Bul. de l'Acad. Roy。 de Belg., No. 7, 1885,

How to Intensify a Gelatine Negative foriLine Work The Brit. Jour. of Photo. recommends the following To prepare the negative for intensification, after thoroughly washing, soak it for five minutes in a bath com posed of saturated solution of alum, to each pint of which an ounce of aqua regia has been added. Or, more conveniently, dissolve one ounce of common salt in four ounces of nitric acid by means of heat, and add to one pint of alum an ounce of the solution when cold.
In addition to clearing the film from stain, and pre paring it for the silver intensifier, the above solution is useful in another way, namely, in clearing away any slight veil or fog. In this respect its action differs entirely from that of any other combination of alum and acid we have tried. If a veiled negative be treated with he alum solution above given, or, better still, with very dilute solution of the acid alone, or of the mixture of nitric acid and salt, the image is gradually and completely converted into chloride. The action is quite different from that which occurs when hydrochloric acid is employed in a similar manner; the bleached image, instead of being a sickly, yellowish color, possesses a pearly whiteness, reminding one of the old alabastrian picture.
If, as soon as the solution is applied, a constant watch be kept on the $b a c k$ of the negative, the deepest shadows will gradually be noticed to assume the pearly tint spoken of ; showing that the whole of the deposit constituting the fog or veil has been converted into chloride. A dip into clean hypo removes the chloride, leaving the shadows with a clearness and brilliancy carcely obtainable by other means. In the case of half-tone negatives, experience alone can teach the proper moment to cease the action of the acid; but with black and white negatives the right time is instantly the veiled lines show white at the back of the plate.
The method of silver intensification is as follows: To a three grain solution of pyro a few drops are added of the following: silver nitrate, 60 grains; citric acid; 30 grains; nitric acid, 30 minims; water, 2 ounces. Dissolve the silver and citric acid separately, mix, and add the nitric. If a little sugar or glycerine be added, to help the intensifier to flow smoothly, the operation will be better performed by holding the plate on a pneumatic holder than in a dish, as the greater portion of the silver is, in the latter case, deposited on the dish. It will also economize silver
After intensification and thorough washing, the plates are completed by a final dip in the acid-alum bath.
National Academy of Sciences.-Washington Meeting. (Continued from page 272.)
Prof. T. Sterry Hunt, of Montreal, read a paper on the Cowles Electrical Furnace, recently invented by the Cowles Brothers, of Cleveland, O.
In this furnace the action is not electrical, though electricity is used as the means of generating heat, and with such success that the heat engendered far exceeds that by any previous process, and affords a powerful means of reducing refractory ores.
The furnace consists of a retort filled with charcoal in contact with the substance to be reduced. It is operated by passing an electric current through the mixture. It was found necessary to coat the particles of charcoal with lime in order to decrease their conducting power, and thus increase the intensity of the heat caused by the electric current. This coating was heat caused by the electric current.
The intense heat melted the first furnace of fireclay, and a retort of carbon had to be substituted.
So great is the heat that a platinum wire is almost instantly melted; and an ordinary electric light carbon, plunged into the furnace for a moment, and then withdrawn, glows as the electric arc.
This furnace has been used to obtain the metal aluminum in a cheap form. For this purpose corundum is resorted to as the most practicable ore, common clay being too much mixed with sand or other impurities. It is believed that corundum may be obtained in large quantities at the cost of two or three cents a pound. Alumina in the form of corundum is immediately reduced to the metallic state aluminum.
In order to grasp the metal and retain it, copper is used to make an alloy, just as mercury does in the metallurgy of gold.
Quartz is melted in the furnace, becomes lighter, and a large part of the silicon is reduced.
Boracic acid gives fumes of boron, and the residual copper shows on analysis the presence of $31 / 2$ per cent of boron.
Manganese is also reduced, and an alloy containing 66 per cent of it was shown.
Alloys of aluminum with carbon, with silicon, and a peculiar alloy, believed to consist entirely of alumi num and nitrogen, were also shown.
Aluminum forms valuable alloys with iron. The addition of a small proportion of aluminum to iron reduces its melting point, without impairing its strength as carbon does. One-half of one per cent is sufficient for this purpose.

Titanium was reduced, but would not form an alloy with copper.
All easily reducible metals are conveniently obtained by this process, such metals as magnesium, potassium, and sodium being mentioned.
As yet, pure aluminum has only been produced in mall lumps direct from the furnace, but it may be obtained by melting an alloy of aluminum and tin with lead, when the lead and the tin separate.
Another method of obtaining the aluminum pure is by subliming either an alloy of aluminum with carbon or one with copper, when the pure aluminum is carried over.
In aluminum bronze some silicon is always present, but that is no detriment. It is not yet determined whether or not the silicon can be separated.
The aluminum bronze, or the alloy with copper, is the most readily obtained, and hence the cheapest form of aluminum. The importance of these alloys is incalculable. Their economic value has long been understood, but their use has been limited by high price. Webster, of Birmingham, England, has for many years been the chief manufacturer, and has charged on the basis of 60 shillings (about $\$ 15$) a pound for the aluminum contained in the mixture. The present process enables manufacturers to furnish it at $\$ 2.50$ or in large quantities at $\$ 1.80$ per pound in the form of 10 per cent alloy with copper, a pound of this mixture costing 30 cents.
The properties of aluminum bronze vary mụch with the proportion of copper and aluminum.
The maximum amount of aluminum which can be olerated is 10 per cent, until we get near the other end of the scale, when mixtures of 70 or 80 per cent of luminum, or more, give valuable workable alloys.
These bronzes have a general resemblance to those of copper with zinc.
Some large manufacturers have said that aluminum bronze could not be rolled, but it has been rolled sucessfully, and specimens were shown. It has also been drawn into wire, as shown, having a breaking strength of 109,000 pounds.
The addition of a small amount of aluminum to brass increases its strength remarkably; 2 or 3 per cent nearly doubles it.

It is strange that a metal which holds oxygen with such tenacity, when combined, should be so slow to enter into combination with it; yet, in fact, aluminum is almost untarnishable, and the alloys which contain 5 per cent or more seem to share this property. A specimen containing $21 / 2$ per cent, however, was shown to be tarnished by action of the atmosphere.
Specimens of aluminum silver were also shown. The addition of 4 per cent to German silver makes an alloy .so tough that Cowles thinks razors might be made of it.
Silicon bronze is used for telegraph wires. The addition of one-half per cent of silicon greatly increases the strength, without materially reducing the conductivity of the wire. The Bennett-Mackay cable is made of this alloy
In early experiments with the Cowles furnace, an engine of 30 dynamo power yielded a daily output of 50 pounds of 10 per cent alloy. Brush has now constructed an engine with 908 revolutions a minute, which for every 35 horse power reduces one pound of the alloy per hour. The expense of working is now covered by one-half cent an hour for one horse power; thus the cost of the alloy is 17 cents a pound.
Within a week, the gases given off by the furnace have been analyzed. In the early part of the process it is found that a large amount of nitrogen was given off, showing that air leaks into the furnace. After an hour and a half, the nitrogen is much diminished.
They at first used moist carbon for packing, but hãve now reformed that, thereby saving the waste of fuel in drying out the moisture.
In the ensuing discussjon, Mr. Sellers, of Philadel phia, remarked that he had made a series of experi ments at iron works in that city, in the use of aluminum with iron, which gave what is technically called "dead melting" in two or three minutes, instead of an hour, as required by previous method. The result was very fine castings, and absence of flaws, which so often vex the founder, in using the process generally employed.

The entire number of papers read was twenty-six, many being technical as usual.
Prof. Ogden N. Rood, of Columbia College, gave an account of a series of experiments on color contrast, whereby it appears that colors appearing on neutral ground to the eye, as a result of contrast with those seen, are not, as is generally supposed, complementary, except in the case of red; and in proportion as the violet end of the spectrum is approached do the contrasted colors differ more and more from the complementary ones. He found also that bluish colors affect the eye more than reddish ones. The reason of these physioPical actions he was unable to explain.
Prof. H. A. Rowland, of Johns Hopkins University gave a valuable exposition of the absolute and relative ' wave lengths of lines of the solar spectrum, remarking that Angstrom's determinations were no longer suffici-
ent, because of the superior accuracy of modern instruments. Rowland regards his own determinations as correct within one or two parts in half a million.
Prof. A. Graham Bell gave a further contribution to the study of heredity in relation to deaf-mutism, tak ing in hand, this time, the families of Martha's Vineyard. An important fact noted was that, notwith standing the repeated intermarriages on the island, and the fact that the families investigated were scattered all over the island, all but two of the deaf mutes were found in the township of Chilmark, which contains the smaller part of the population, and in which town four per cent of the people are deaf mutes.
Doctors speak of the prevalence of typhoid fever in Chilmark, and even note a definite boundary within which it prevails, calling it the typhoid fever line, showing that the influence of environment is more potent than that of heredity.
A few of the papers proposed new or modified classification, which met with such thorough and unanimous approval that the schemes presented are subjoined, and are believed to mark the final results attained by science in the departments named.
Prof. E. D. Cope, of Philadelphia, now gives the following scheme as the phylogeny of the Batrachians,viz.:

He says that reptiles, as above shown, originated rom a batrachian type.
Prof. Theodore Gill, of Washington, classifies fishes s follows, four classes:
1st. Leptocardians, or lancelets.
2d. Mydonts, or lampreys.
3d. Selachians, or sharks and rays
4th. Teleostomes, or true sishes.
He remarks that these are entitled to be called classes rather than orders, being more widely separat ed from each other than the orders of either reptiles or birds.
The brain furnishes the best indication for classify-
ing the major groups, and the osseous system for general grouping.
Almost all orders of fishes are of recent introduction. In the Devonian formation are seven or eight orders, all but one extinct; and no living order has there a representative, except dipnoi.
Prof. Charles D. Walcott, of Washington, proposes the following classification of the rocks above and below the Cambrian of North America:

	Carboniferous:	Permian, Coal measures, Lower carboniferous.
	Devonian:	Catskill, Chemung, Corniferous.
	Silurian:	Oriskany, Lower Helderberg, Niagara.
	Ordovician:	Cincinnati, Trenton, Chazy, Calciferous.
	Cambrian:	Potsdam, Georgia, St. John.
	Keweenaw:	Keweenaw series, Grand Canon series, Llano series.
	Huronian:	Lake Superior, Minnesota, Newfoundland.

He would further classify the Cambrian rocks as follows:

Upper Cambrian:	$\left\{\begin{array}{l}\text { Potsdam, } \\ \text { Knox, } \\ \text { Tonto. }\end{array}\right.$
Middle Cambrian:	$\left\{\begin{array}{l}\text { Georgia, } \\ \text { L'Anse au Loup, } \\ \text { Prospect. }\end{array}\right.$
Lower Cambrian:	$\left\{\begin{array}{l}\text { St. John, } \\ \text { Braintree, } \\ \text { Newfoundland, } \\ \text { Wasath, } \\ \text { Tennessee. }\end{array}\right.$

Prof. Hunt commended this scheme as the best yet presented, especially approving the separation of the Ordovician. It was formerly supposed that the Potsdam contained the earliest forms of life, but Prof. Walcott has shown fossils from the lowest Cambrian, and has at least cast doubt upon the Keweenaw and Huonian.
The fall meeting of the Academy will be held at Boston, commencing Nov. 9, 1886.
W. H. H.

CONCRETE CONSTRUCTION.

Concrete may be described briefly as pieces and particles of rock or like material aggregated together with lime or cement. The origin of its manufacture is unknown. The massive ruins in Italy testify to its durability and of its extensive employment by the Romans. Since the introduction of Portland cement, the use of concrete has greatly extended. In England, where the first cement was manufactured, Drake states that thousands of concrete buildings have been erected of late years. The great desirability of concrete as a building naterial is well recognized, and rapid strides are being made in its application. Rapid as has been the increase of concrete building during the past few years, the progress would have been still greater had it not been hindered by the general lack of knowledge on the subject, the great cost of moulding or shaping the material, and the want of adequate appliances for mixing the concrete.
There are many localities where sand rock or gravel can be obtained at a nominal cost, in which concrete could be profitably introduced by any metallurgical man. And in these same districts are inen plodding along in the plodding along in the grooves of better known
trades who, by turning their attention to concrete construction, could estab lish themselves in a good business.
To accomplish the best results in this class of construction, it will be advisable to consult Mr. Ransome, who has had great experience in this class of work, and obtain the right of using his patented apparatus, with which buildings can be put up with unskilled laborers, provided the men are intelligently directed.
On this page we give an illustration of a building in process of erection on the system invented by Ernest L. Ransome, of this city. Mr. Ransome has re ceived patents covering building construction, concrete mixer, and a concrete apparatus for moulding walls, houses, and other buildings.
The engraving gives an isometrical view of a building in course of erection, with part of the scaffolding removed. Ransome apparatus for moulding the walls consists of slotted standards, which being placed in pairs, one on either side of the site of the wall, and bolted together, hold in place the mouldboards, between which the concrete is placed. These standards are arranged to slide upward upon the outer face of the mouldboards as the wall progresses, and are made to conform to any breaks or projections that may be required in the building.
The moulding boards may be of any size. If they are permanently required for the apparatus, they should be surfaced and squared, and about 114 inches thick, 6 to 12 inches wide, and as long as could be conveniently obtained or handled. If, on the other hand, by reason of the location or other causes, they are only needed temporarily for this purpose, then their dimensions should be determined by their future use For instance, if they are sub sequently needed for flooring then flooring could be used if fencing is wanted, then use fence boards; if planks are required, then let planks be taken. In using them for the mould, the boards or planks are but little damaged ; the bolt holes required in some of them are not large, and could easily be filled up.
Ordinary bolts may be used for connecting the standards together, but those having winged nuts will be found more convenient. The wash ers should be of good size

The modus operandi is as follows: The foundations being prepared and the standards and lower moulding boards all in position, concrete is put into the mould continuously, layer after layer. Moulding boards are added from time to time, as needed, until the concrete is brought to about the top of the standards. The bolts are then slackened, a set at a time, and the standards pushed up a few inches, or a foot or two, dependent upon the character of the work.

ART IN THE GARDEN.-A CIRCULAR PATH.

The Ordinary vest a Poor Lung Protector.
Mr. James Hess makes a very sensible suggestion, it seems to us, in the Herald of Health, when he calls attention to the absurdity of our present curious habit of wearing cambric-back vests, while the fronts are of heavy material and sometimes wadded, and urges the propriety of protection for both sides of the lungs. The habit of course has grown from a belief that the outer coat is sufficient protection for the back, while the chest needs warmer cover ing on account of the coat being open. But it seems a disproval of the reason ing that the first unpleasant sensations of chilliness are the so-called "creep ers" running down the spine. Even when the warmest woolen materia is selected for a suiting the tailor, unless otherwise ordered, will invariably make the back of the vest f some thin, flimsy material, like cambric or silk though he may deem it advisable to pad the front with cotton wadding There is no proper reason why the back of the ves should be made so insufficient. The front may be made uncomfortably thick and still fail to protect the lungs, unless the back is made equally thick and warm. In front they are protected about five time as much as in the back by lothing, ribs, flesh, mus le and fat. In the back the lungs almost come to the surface, and therefore need more protection. Mr. Hess asserts that it has been his custom for two years past, and that many gentlemen to whom he has
wide and 50 ft . high, the cost of the apparatus, irrespective of height, would not exceed $\$ 150$, and the expense of working it would not be more than a cent per cubic foot of concrete. After building a wall, the apparatus is good for ten or twenty more. By this system the first cost is small and the expense of working slight. There is no difficulty in keeping the wall plumb, and there is no trouble in moulding projections if desired.
The large factory and warehouse recently built for the Arctic Oil Works, on the Potrero, were constructed after this manner by the patentee of the system. The fireproof roof of the warehouse was also built by him. Mr . Ransome has built many concrete foundations for buildings, machinery, etc., the largest being that of the Starr \& Co. Mills, at Wheatport, Contra Costa County. The foundations of this mill were all built of concrete. In the piers, arches, and floor platforms there are 140,000 square feet of concrete. Mr. Ernest

As soon as the lower bolts are in the way of the up ward movement of the standards, they are withdrawn and replaced at the top of the slot. The moulding boards, liberated by these movements, are reused above those already placed as often as needed.

This action is repeated as often as may be necessar obtain the height desired. It forms a continuous oration, and offers no interruption to the posts are inserted in the face of the bank and sunk below the foundation of the wall at inter vals of from five to ten feet, and the slotted standards are attached to these by means of lag screws.
For a plain building, say 100 ft . long by 50 ft . mentioned the matter have had their vests made with good, warm backs, and after a winter's trial are quite enthusiastic over the change.
They have passed through the entire winter and spring without once taking cold, which is the best evidence in support of the thick vest-back proposition that could be adduced.

THE LAYING OUT OF GARDEN PATHS.

Where a garden is to be laid out in a perfectly flat situation, there is not, of course, the same scope for ef fective ornamentation as can be produced where there is a diversity of surface. One means, however, of dealing with level ground is to provide oval and circular and serpentine paths, with plainly marked borders, but so that, to the eye, the lines of the borders will be broken by trees and shrubbery, and the complete plan will not be suggested one point. Such wadks should, wherever possible, lead to or by some bright little spots which one will come upon un expectedly, and the surprise of which will heighten the pleasure obtainable from the beauty of the scene. An idea of thus laying out a circular walk may be obtained from the accompanying illustra tion, the planting of quick growing shrubbery giving extension and outline to a general direction of paths, which would be governed by any growth, as of trees, that would require years to mature. When a general plan has once been adopted, however, it should be carefully kept in view in all future work in the garden, and the pruning and planting kept steadily in line with the plan laid out.
L. Ransome, whose office is at 402 Montgomery Street, San Francisco, California, is prepared to rent tools, sell licenses and territorial rights for his various inventions in connection with concrete construction, and give selves.

SUGAR, glycerine, and gum arabic are the article used to produce the glossy appearance of ink.

Tobacco blindness is be
coming a coinmon affliction. At present there are several persons under treatment for it at one London hospital. It first takes the form of color blindness, the sufferers who have smoked themselves into this condition being quite unable to distinguish the color of a piece of red cloth held up before them. Sometimes the victim loses his sight altogether. Although moking is to a large extent the cause of the malady, heavy drinking is also partly responsible.

EMGINEERING INVENTIONS.

A feed water regulator has been patented by Mr. Alexander J. Aderhold, of Birmingham, Ala. It is a balance valve regulator in which the entirevalve,
stem and all, is inclosed within the stem and water chamber within which it acts, and which requires no stuffing box for its stem, the construction being simple and su.
stick.
A car coupling has been patented by Mr. William H. Moore, of Elsie, Mich. The coupling hook is pivoted to swing vertically, its prong being at
the front end of thedrawhead, a apring pressing the hook downward, and a shaft journaled transversely in the drawhead extending to the sides of the car to operate a
cam by which the action of the coupling hook can be cam by which the action of the coupling hook can be
controlled.
A rotary engine has been patented by Mr. George W. Bond, of Fort Wayne, Ind. Combined with a wheel having peripheral buckets with their front edges concaved, is a segmental steam box having rotary bearings upon the edges of the buckets, the exhaust pipe taking the exhaust from the lower end of the
steam box, the engine being simple in construction intended to utilize the steam to the greatest advantage.
A hydraulic engine has been patented by Mr.Charles R. Whittier, of Yonkers, N. Y. It is of that class in which the piston is stationary and the cyl
inder is cansed to reciprocate by the inflow and dis inder is caused to reciprocate by the inflow and dis-
charge of water, the construction being such that only small counterbalancing weights are required, and the cylinder may be made comparatively short, no equaliz ing pipe to equalize the pressure of water in the cylin der being required.
A smoke preventing furnace has been patented by Mr. William Latham, of South Cleveland,
0 . It is designed to prevent the formation of smoke b securing a perfect combustion, employing therefe by injector operated by steam to carry in a blast of air to hollow trunk in the bridge wall, where it issues in jet and mingles with the products of combustion, the in of parte.

MECHANICAL INVENTIONS.

A convertible drịl press or slotting machine has been patented by Mr. Laurence H . Pierson, of San Francisco, Cal. It has a traveling head carrying a contrivance for converting the up and down motion
into a rotary one, a frame on which the head is adjusta into a rotary one, a frame on which the head is adjusta
ble, a standard supporting the frame and directly attach able to the work to be slotted or drilled, with feedin devices and other novel details.

agricultural inventions.

A mowing machine has been patented by Messrg. Walter B. Cox and John McDanough, of
New York city. It has a horizontally revolving cutter arranged to act in conrection with relatively stationary fingers, the cutter b.aaes beir,g at an angle of forty-five degrees to the inc.inteu forward edges of tangential
arms, the opposite edges of the blades being beveled sharp edge be used.

miscellaneous inventions.

A ruling machine has been patented by Mr. Thomas W. Wharmby, of Cleveland, O . This patent relates to the laying mechanism and drop boxes of
paper ruling machines, the ruled sheets passing ove concave rollers as they are discharged, to prevent the

A flower pin has been patented by Mr. Howard L. Kranz, of Providence, R. I. Combined with a brooch having a slot is a clasp extending through
the slot; and acted on by a spring, whereby a bouquet or bunch of loose flowers may be conveniently attached to any part of the dress.
A penholder has been patented by Mr. Samuel S. Rogers, of Assotin City, Washington Ter. is adapted to attach the hclder to the hand at one angle and for holding and guiding it, in connection with a
fountain and a mechanism for regulating the supply of fountain and
ink to the pen
A shaft tug has been patented by Mr. George M. Sickiesteel, of North Branch, Mich. It is novel device, intended to prevent the shaft or thills from dropping, even if the brace or whiffetree breaks,
and also to prevent the vehicle from running on the and also oc preven theaking the the ring
A rotary shuttle for sewing machines has been patented by Mr. Carl Junker, of Carlsruhe, Ger-
many. It is a uniformly vertically rotating shuttle many. It is aniciar shape held by the driver, the axes of the semicircular shape held by the driver, the axes of the
spool and shuttle being coincident, the invention being
si an in provemen
same inventor.
A roller skate has been patented by Mr. Burt E . Tilden, of Youngstown, O . This invention pro-
vides an improved brake for roller skates, a brake shoe of leather, rubber, or other suitable material, with its rubbing surface outwardly convex, being go held at the
rear of the skate that it can be conveniently adjusted to rear of the skate that it can be conveniently adjusted to any desired height.
A piano wagon has been patented by Mr. John D. Lindsley, of Hiawatha, Kansas. It is provided with windlasses and ropes, skids and various attacoments for holding and managing the piano, to pro while in transit, and to lessen the labor of piano mo ing.
A grab hook has been patented by Mr. Sylvester Byrne, of Philadelphia, Pa. Grabbing levers
are pivoted on a rood, with springs acting on the levers and arms for locking levers in place, making an improved implement for automatically grabbing persons in the water and ho
be used by fremen.

A horseshoe has been patented by Mr. Daniel Cruice, of New York city. It is formed with a thickened portion at the toe and thin portion at the thickened portion at the toe and thin portion at the
heel, in combination with heel and frog supports, the
shoe being offset at its upper surface, and with thin hoe being offset at its upper surface, and with thin
pockets or depressions in the lower surface which will end to prevent the horse slipping.
A truss pad has been patented by Mr. Alonzo D. Smith, of New Woodstock, N. Y. It is a Cosely fitted to the aperture, the smaller pad being ar losely fitted to the aperture, the smaller pad being arranged opposite the hernial opening, while the larger
pad supports the abdominal walls around, a spring conpecting the smaller and larger pads.
A carpet stretcher has been patented by Mr. O orman C. Du Souchet, of Warsaw, Ill. A rack bar is passed through a box, and there is a clamp with its
ivoted jaws on opposite sides of the end of the rack ar, with means for operating the rack bar, and othe novel features, making a carpet strecther which will be strong and durable and easy to operate.
A shirt has been patented by Mr. Jacob Lederer, of New York city. It has front and rear renforcing pieces reaching along the edges of the yoke
o the arm hole, thence around the arm hole and joined seneath it, in order to render the shirt strong where the nost wear and strain comes, without making it heavy and uncomfortable.
A stamp canceler has been patented by Messrs. Edward A. Luzenberg and Edward Sachs, of San Antonio, Texas. It is made to force metal teeth inked, and thus perforate the stamp and ink it at the same time, but so as not to mutilate the letter or other

An artificial fly has been patented by Mr. Wakeman Holberton, of Hackensack, N.J. The wings are so attached to the body of the insect that they will collapse or close when casting the fiy, thus reducing he air resistance, rendering the fly less liable to be--
come detached, and causing the parts to expand and come detached, and causing the pa
have a life-like motion in the water.
A turning machine has been patented by Mr. Abraham Stoner, of Stony Point, La. It is more particularly intended for forming vessels or tubs from dried is very white, light, and difficult to split by mechnical means, the machine operating automatically, and vessels of various siz
A street washer has been patented by Mr. Frederick Chapman, of Brooklyn, N. Y. It is a ox set immediately over and in connection with the
water main, closed by a removable cover, and with suitable easily operated valve fittings, whereby the apparatus will be wholly protected from becoming clogged

A mosquito canopy for bedsteads has C. The construction is such that the canopy is sus ained by cords, the supporting arms and their joints being removed from the range of entanglementwith the netting when folded, the invention being an improvement

A fire escape has been patented by Mr . and \mathbf{H}. Dillman, of Fredericksburg, Pa. It consists nice or side of a building, contiguous to a window or
other place of exit, and to operate automatically when ther place of exit, and to operate automatically when person steps upon
A thill coupling has been patented by Mr. Benjamin Ligget, of Tucson, Arizona Ter. The ob-
ject of this invention is to do away with the ordinary form of bolt and nut, the bolt beingheld in place by the ction of a spring, and the bolt being only slotted at its of the head against one jaw of the clips, and prevent thing or accidental displacement
An automatic cut-off for gas burners as been patented by Messrs. Thomas J. L. Smiley and harles H. Stombs, of San Francisco, Cal. This invengers or springs, and is applicable both to double and single tip burners, constituting a life-saving gas burner, which will do away with possibility of accident from he escape of gas from burners to which it is attached.
A seal press has been patented by Mr. Emory Q. Darr, of Shelbyville, Ind. It has a handlecarrying die, a spring hammer carrying a correspondtrigger, the device being conveniently made in the form of a small pocket pistol, or in such form that it can be readily carried in the pocket, to be easily availae by notaries and othe
An electrical cut-out has been patented by Mr. John M. Fairchild, of Portland, Ore. This device provides for the ready cutting out of an electrical current by any one from a building in case of fire, etc., at has a rotary adjustable switch bar and contacts, parable key, and olter details, whereby the locking or turning
person.
A° whiffletree coupling has been patentd by Mr. Hiram C. Brown, of Winsted, Conn. It conplate with an apertured lug for the reception of the plate with an apertured lug for the reception of the
nd of the curved arm, with other details, whereby the whiffletree will be held from tilting forward when ubjected to a draught, and so it will always work freely pon its bolt.
A road cart has been patented by Mr. Samuel Coles, of Valhalla, N. Y. A cross bar with convexed upper surface is secured upon the shafts, and the body is independently balanced upon the cross bar, d by the horse motion, and the horse can be driven with a loose girth, the girth having nothing to do with
the motion of the cart.
A process of making explosive com-

North Bergen, N. J. A mechanical mixture of wood
fiber, charcoal, bituminous coal, and starch is powder ed, made into grains, treated with acide, and then with carbonate of potash and saltpeter, making an explosiv agent mainly of nitro-cellulose, but adapted for use is all kinds of firearms.
A device for regulating and enriching illuminating gas has been patented by Messrs. Lewis B.
White, Daniel Jackson, and Martin Van Buren, of New York city. It has an annular funnel-shaped vessel for receiving hydrocarbon, in connection with a speciall contrived governor, whereby the gas may be regulate
automatically according to the pressure, or may be made to circulate among the heated hydrocarbons of the apgrtments of the gas-enriching attachment.
A spirit level for boring bits forms the subject of two patents which have been issued to Mr.Wm. E. Gwyer, of New York city. Its construction is such ly in the center of the spirit bottle, and the least variation of the bit from a vertical position will cause the air bubble to move away from the center, so the operato can always know when he is boring a vertical hole; an-
other device of suspension hooks, stem, and balancing weights enables the operator to bore holes exactly hori weights
zontal.

NEW BOOKS AND PUBLICATIONS

Eological Survey of New Jersey.

 AnNUAL Report of the StateGEOLOGIST For 1885. Trenton: State Printer.
Under the direction of Professor George H. Cook, the Geological Survey of New Jersey has become one of the most creditable of the many undertaken by the
different State governments. While New Jersey offers different state governments. Whime New Jersey offer but a limited field for geological study as compared
with some of the other States, the topographical work of the survey is scarcely inferior to even the magnifi cent maps prepared by the national corps under eithe the Coast or Geological Surveys. Eleven years have now been spent upon the the topography of the State,
and it is calculated that about two more years will be and it is calculated that about two more years will be
required to complete the work. But perhaps the best feature of the Survey is its practical value to the peo ple of the State. This is, after all, the highest pur to include in these investigations the questions which have a direct bearing on industrial matters, and as result, to furnish information which will be personally useful to the citizens who have contributed toward its The Mic
The Microscopical Bulletin. Jame W. Queen \& Co., Philadelphia.

This little bimonthly publication contains matter
which is of interest to microscopists, and the price which is of interest to microscopists, and the pric
(25 cents a year) is so small that every one interested in microscopical subjects can afford to have it.

ßusiness and æersonal.

The charge for Insertion under this head is one Dollar a line for each insertion a about eight words to a lint

 a line for each insertion, about tight words to a line,Advertisements must be received at publication aftice as early as Thursday norning to appearin next issue.

How to Meet Customers.
Inventors and manufacturers should exhibit at the Min neapolis. Industrial Exposition. Opens August 23, close
October 2 Finest buildinn floor space. Power and space free. Buildng in center ooor space. Power and space 0 ree. Bund
of city; 10,000 people; 40000 within radius twenty
miles. Entire Northwest tributary. Address, for full particu
sota.
$\$ 3,000$ will buy the right to patent Morgan's U. S. patent Horse Hay Fork Returner in Canada. Big bo Send to the Railroad Gazette, 73 Broadway, New York, for a cat
railroad books.
Emery Wheels of unusually superior quality for wet grinding. The Tanite Co., Stroudsburg. Monroe Co., Pa. Guild \& Garrison's Steam Pump Works, Brooklyn,
N. Y. Pumps for liquids, air, and gases. New catalogue N. Y. Pum.

Wanted-To correspond with a practical door, sash, and blind maker; one who would be fully competent to take full charge of a factory and could give correct esti-
mate of machinery needed, cost of manufacture, probable demand and margin. One that could take an inter-
est would be preferred. Address Mr. H. H. Durkee, 48 est would be preferred.
Broad St., New York.
Wanted-Patented articles of merit to manufacture Coyalty. Electich Mi, Curtis Pressure Regulator and Steam Trap. See p. 142. Nickel Plating.-Sole manufacturers cast nickel an-
odes, pure nickel salts, polishing compositions, etc. $\$ 100$ odes, pure nickel salts, poishing compositions, etc. Complete outft for plating, etc. Hanson, Van Winkle \& Co., Newark, N. J., and 92 and 94 Liberty St., New York.
Grimshaw.-Sleam Engine Catechism.-A series of
thoroughly Practical Questions and Answers arranged so as to give to a Young Engineer just the information required to ft him for properly running an engine. By Munn \& Co., 361 Broadway, N. Y
Send for catalogue of Sclentific Books for sale by The Knowles Steam Pump Works, 44 St., Boston, and 93 Liberty St., New York, have just issued a new catalogue. in which are many new and im-
proved forms of Pumping Machinery of the single and proved forms of Pumping Machinery of the single and
duplex, steam and power type. This catalogue will be duplex, steam and power type. This
mailed free of charge on application.
mitation is the Sincerest Flattery."
If the above quotation is true. then Dr. R. V. Pierce
ought to feel highly fiattered on account of the man imitators of his popular remedy, the "Pleasant Purgative Pellets," for they have scores of imitators. but
never an equal, for the cure of sick and bilious headache, constipation, impure bioood, kidiney pains, internal
fever, and all bowel complaints. With a bottle of the sugared granules in the house, you can dispense with the

Haswell's Engineer's Pocket-Book. By Charles H. ng Tables, Rules, and Formulas pertaining to Mechanss, Mathematics, and Physics, Architecture Mechanteam Vessels, Mills, Limes, Mortars, Cements, etc. 900 pages, leather, pocket-book form,
Munn \& Co., 361 Broadway, New York.
Machinery for Light Manufacturing, on hand and
built to order. E. E. Garvin \& Co., 139 Center St., N. Y. If an invention has not been patented in the United States for more than one year, it may still be patented in anada. Cost for Canadian patent, \$40. Various other address Munn $\&$ Co., Scientific American patent agency, 361 Broadway, New York.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. Iron Planer, Lathe, Drill, and other machine tools of Catarrh, Catarrhal Deafness, and Hay Fever permanently cured by a new treatment, in from one to three simpe applications, made at home. Send stamp for descrip-

Dixon \& Son, 303 West King St.,
Nystrom's Mechanics.-A pocket book of mechanics and engineering, containing a memorandum offacts and connection of practice and theory, by J. W. Nystrom,
C.E., 1sth edition. revised and greatly enlarged, plates, 12 mo , roan tuck. Price, 33.50 .
361 Broadway, New York city.
Mineral Lands Prospected, Artesian Wells Bored, by
Pa. Diamond Drill Co. Box 423, Pottsville, Pa. See p. 46 . Hercules Lacing and Superior Leather Belting made.
by Page Belting Co., Concord, N. H. \cdot See adv. page 238. Cutting-off Saw and Gaining Machine, and Wood
Working Machinery. c. B. Rogers \& Co., Norwich, Conn. Supplement Catalogue.-Persons in pursuit of information of any special engineering, mechanical, or scienifl subject, can have catalogue of contents of the SCI-
NTIFIC AMERICAN SUPPIEM FNT Thific Amprican Supplement sent to them free. the whole range of engineering, mechanics, and physical cience. Address Munn \& Co., Publishers, New York. Billings' Patent Adjustable Four and Six Inch Pocket New Portab ${ }^{2}$ New Portable \& Stationary CenteringChucks for rapid onn.
The Crescent Boilcr Compound has no equal. CresCo., Cleveland, o
Wm. Frech, Sensitive Drill Presses, Turret and Speed roe Street, Chicago.
The Improved Hydraulic Jacks, Punches, and Tube xpanders. R. Dudgeon, 24 Columbia St., New York. Hoisting Engines. D. Frisbie \& Co., Philadelphia, Pa. Tight and Slack Barrel Machinery a specialty. John Astronomical Telescopes, from $6^{\prime \prime}$ to largest size. Oband, 0 .

HINTS TO CORRESPONDENTS.
Names and Address must accompany all letters,
or no attention will be paid thereto. This is for our
information, and not for publication. References to former articles or answers should give date of paper and page or number of of question.
Inquiries not answered reasonable time should
be repeated; correspondents will bear in mind
 Special Written Information on matters of
personal rather than general interest zannot be
expected without remuneration.
Scentific American Suppentents referred
to may be had at the office. Price 10 cents each.
Books referred to promptly supplied on receipt of Books referred to promptly supplied on receipt of
mrice.
Minerls sent for examination should be distinctly
marked or labeled.
(i) W. T. S. asks : How many feet board measure, allowing 14 of an inch for the kerf of 10 inches square? A. If you sell the stick of timber inches square? A. If you sell the stick of limber
t board measure, no allowance should be made for resawing, and it should tally 400 feet board measure. f allowance is agreed to for resawing, the stick will If allowance is agreed to for resawing, the stick will
cut seven 1 inch boards and one $11 / 2$ inch board or
plank, and should then tally for the whole stick 330 plank, and should then
feet board measure.
(2) W. S. L.-It will take 6 horse ower for :nachines you mention. We could not in Notes give large examples and details.
(3) G. J. S.-Sheet copper is somehat variable in its tensile strength; hard rolled copper 36,000 pounds, soft copper 24,000 pounds, is the utmost rength per square inch. Thus a $\frac{1}{3 z}$ inch sheet will Allow 34 of this as a safe load. To make sure, say 200 ounds, which divide by the pressure you wish to carry. (4) S. F. L.-Your 1 horse power enne wil run a light 18 foot boat with a good form of 3 blade propeller, 16 inches in diameter. Would not recommend a padde wheel for so small a boat. We
advise you to inspect the numerous small steam ychts in your vicinity.
(5) W. F. R. asks: 1. What material is the best to paint a tin roof? A. Prince's metallic paint and boiled linseed oil. 2. How can I make human soil. 3. What is the best plan to build a private cehouse-above or below ground? Give me the best dian for both. A. Below ground, all but roof. See I have tyo large skylight glasses that are cracked
cross. What can I use to stop them from leaking? A. Putty a strip over the cracks, or put in a new light. What is the best soldering finid to use on an old tin
oof, that has been painted with tar? A. Tinner's roof, that has been painted with tar? A. Tinner's
little sal ammoniac. Scrape the tin where you intend solaering. If at all possible, use rosin, as it makes a better job than acid. 6. How can I make white wash
that will not rub off? A. Put a little white glue in the that will not rub off ? A. Put a little white ellue in the
whitewash. 7 . What is the name of the best brand of whitewash. 7. What is the name of the best brand of
tin that is made? A. There are over three hundred tin that is made ? A. There are over three hundred
brands in the tin trade; generally, the more letters, ${ }_{\mathrm{ns}}^{\mathrm{X}} \mathrm{X}, \mathrm{XX}, \mathrm{XXX}$, etc., the thicker the tin.
(6) In answer to P. D. P., March 27 (in regard to boiler feed pipe and heater pipes be-
coming partly filled with hard lime scale), E. A. T.
 or feed, and slip it over it or them wherever they are exposed to great heat, and you will never have any
more troubbe with their filling up. I learned this from more trouble with their filling ap. I learned this from
my Scientrivic Americas ten years ago or more, and it has been worth a great deal to me in that time
(7) F. T. R.-Nitric acid dissolvod in twenty to thirty parts of water is used to etch zinc with.
An excellent liquid to be used in writing on zinc is $3 / 4$ An excellent liquid to be used in writing on zinc is $3 / 4$
ounce platinum chloride It is very expensive. This solution must be kept lass, and the writing executed with a
(8) A. H. asks: Of what shall we compose composition for making job printing press ink-
ing rollers?
A. To 8 pounds transparent glue add ing rollers? A. To 8 pounds transparent glue add
enough water to cover it: let it stand with occasional stirring 7 or 8 hours. After 24 hours, all the water shoula be absorbed. Heat it in a water bath, as glue rise, remove from fre, and add 7 pounds molasses
that has been made quite hot. Heat with frequent that has been made quite hot. Heat with frequent
stirring for half an hour. The monlds should be clean and greased. Pour into moulds after it has cooled a little, and allow to stand 8 or 10 hours in winter,
longer in summer. Some use far more molasses, three case atter soaking 1 to 11 , In this the glue in board over night, and then melted with addition of no more water, and three or four times its weight of mo
lasses added. Two hours' cooking is recommended in this case.
(9) W. A. M. asks : If horseshoe magnets are made of fine quality of 18 gauge sheet stee.
small in size be necessary to harden the steel to have them retain
their magnetism? Would they be more powerful their magnetism? Would they be more powerful
if hardened? A. They will retain more magnetism if hardened, and therefore will be more powerful.
(10) H. C. B. desires a recipe for mak a peacock green stain which will penetrate into
wood. A. A green stain is produced by a solution of verdigris in nitric acid; then, by dipping into a hot so lution of pearl ash, the color may be changed into blue. By varying the strenghs on he botained.
the exact shade desired by you can be ot
(11) C. H. T. asks how to make bay rum from the bay oil. A. Take 10 fluid . .rachms oill of
bay, 1 fuid drachm oil of pimento, 2 fluid ounces acetic ether, 3 gallons alcohol, and $29 / 2$ gal
and after two weeks
repose
(12) C. A. K. asks the process for tempering steel springs in the shape of rings 11 inches in
circumference. A. Such a spring shonld be heated in a muffle or oven, lying upon a plate of iron. When at edgewise so as to keep its shape. This may be done by dexterously and quickly turning the plate over, so that the spring may drop edgewise. A wire frame it sometimes used, and the spring heated in a charcoa
fire and handled hy a wire loop, from the frame.
(13) J. S. asks : What will precipitate copper and gold in a cyanide solution? A. They can be thrown aown as suphies by eant on again by
sulphide and then brougt into solution
boiling with potassium chlorate and hydrochloric acid. boiling with potasium chlorate and hydrochloric acid
Then the gold can be separated out by adding iron sulphate.
$\underset{\text { (14) H. W. B. asks : How. can I bronze a }}{ }$ plaster cast? A. Go over the figure with isinglass size,
until it holds wet, or without any part of its surface until it holds wet, or withoot any part of its arface
bēcoming dry; then witha brush go over the whole, taking care to remove while it is yet soft any of the size
that may lodge on the delicate parts of the figure When it is dry, take a little thin oil gold size, and with as much as just damps the brush go over the figure with it, allowing no more to remain than causes it to
shine. Set it aside in a dry place free from smoke, and in forty-ight hours the figure is prepared to receiv the bronze. After having touched over the whole figure with the bronze powder, let it stand another
day, and then with a soft dry brush rub off all the loose powder, particularly from the points or from the
more prominent parts or the ligure.
(15) W. S. desires a recipe for making a cheap varnish for varnishing furniture. A. The
following is a fine, lustrous polish for furniture: Hal following is a fine, lustrous polish for furniture: Halr
pint linseed oill half pint old ale, the white of an egg pint linseed oil, half pint old ale, the white of an egg,
one oonce spirts of wine, one ounce spirits of salts.
She Shake well before using. A little to be applied to face of soft linen pad and lightly rubbed for a minute or
two over the article to be restored, which should be first rubbed off with an old silk handkerchief. It will
(16) R. W. W. desires a receipt to make a good water stain to imitate walnut, not to cost too
much. A. Take of burnt umber 2 parts, rose pink much. A. Take of burnt umber 2 parts, rose pink
part, glae 1 part, water sufficient; heat all together and dissolve completely. Apply to the work first with sponge, then go over it with a brush, and varnish over
with shellac.
(17) G. W. H. asks the composition of afuzee, or large scented match, which when ignited
perfumes the air around $\$$ A. Dissolve $3 /$ ounce niter
in 1 ind perfumes the air aroond in 1 . the nitrated charcoal is perfectly dry, pour upon it mixture of $1 / 3$ drachm each of the attar of thyme, caraway, rose lavender, cloves, and santal; then stiri in 6
ounces benzoic aci. Mix thoroughly through a sieve, then beat in a mortar with sufficient mucilage to bind together. Make into pastils, and dry.
(18) H. M. B. desires a formula of plastic compounds that soften easily by gentle heat, and are ane, and will then set rapidly. A. The following mixare, used for making photo. gelatine plates, may be te heat, and to the melted bitumen there a moder the heat, and to the melted bitumen there are added permaceti, 200 of stearine, and 170 of white wax All these being incorporated, 70 parts of finely ground black lead are etirred in. This preparation is poured
(19) J. S. W. asks as to the use of a A. It may be done by a spray fountain or a spray jet thrown against a muslin curtain. Any means to prouce a large evaporating surface supplied with water Cold if possible) will accomplish your purpose
(20) J. N. W. asks the formula for map engravers' wax. A. You can use a preparation made of
ounces of linseed oii, half ounce of gum benzoin,
if an ounce of white wax; boil to two-thirds.
(21) P. R.-To temper a machinist's ta ake a piece of iron pipe or old boiler fuue, and pl
ne end by welding. With equal parts of clean wh sand and pulverized charcoal, pack your tap in the ceen ter of the pipe. Heat evenly in a large fire to a full is heated through. Then draw the tap from the sand ath, and dip perpendicularly in clear water at a temperature of 70°. Do not let the water splash up on
he tap, as it chills the teeth above the water, which revents their hardening. It should require about seconds to immerse if the thread is 6 inches long. ittle experience is wortha page of advice. Quality o
teel is of vital importance in hardening.
(22) W. M. R. asks: 1. When water ets low in a steam boiler, and water is pumped in and exploding? A. Excessive generation of steam by the overheated iron forming the shell and tubes of the boiler. 2. Does water bubble up and down in a boiler
like a tea kettle when there is pressure on the water by like a tea kettle when there is pressure on the water by
team? A. Yes; when boilers are said to foam, their steam? A. Yes; when boilers are esid to foam, their
action much resembles a kettle that is boiling over. action much resembes a kette that is boiling over.
3. How many degrees Fahrenheit does iron have to be over 212° Fah., when you put water on it, that it will ot generate steam? L . the so-caled spheroiaal con
dition of water on t tion on temperature of both water and iron. Very cold water may become spheroidal on poiished iron at
2150. The phenomena becomes more effective at higher temperatures, and is worthy of study as ex hibited in working large masses of iron with a wet (23) M. E. R.-There are a variety of well pumps to be had through the hard ware trade. We
know of nothing better than oak for a chain pump know of nothing better than oak for a chain pump
box. Your tile drain should not be tolerated near a box. Your tile drain should not be tolerated near a
well. If the drain is necessary in its present position, it should be made of cast iron pipe with lead joints well tamped. There is no simple test for contamina tion in.
clear.
(24) W. C. W. asks how the polished ronwork on a printing press can be restored to its from oil. A. Scrape off the hard oil and clean with kerosene; then polish with fine emery paper. Parts that are rough from rust must be rubbed down with
medium emery paper or cloth, then polished with fine memy paper.
(25) G. H. B. asks in what form to put inc in order to secure the greatest movement of a rod said zinc, to regulate an incubator lamp? A. Make combination lever of sheet zinc and sheet iron, say of
trips 1 inch wide No. 16, fastening each end together
, strips 1 inch wide No. 16, fastening each end together
by riveting or soldering, and holding them together by riveting or soldering, and holding them together twing. Fasten one end to the side or top of the incubator. The variations in temperature will swing hould be from 18 inches to 2 feet long.
(26) J. E. E. asks : By what process is graying" done-with acids-upon polished iron or
teel, which is frequently preferred to "bluing"? A. By dipping or sprinkling with dilute nitric acid after heating until blue. 2. How to make a smelter for brazing iron or steel that will fuse at a lower degree
han brass. A. By mixing a little more zinc or tin with than brass. A. By mixing a little more zinc
(27) G. A. C. asks: 1. What is a good paint for steam pipes when exposed to a very high eed oil is as durable as any. 2. What is used to mix gilt, gold, copper, etc., for painting steam heating pparatus? A. For ordinary bronzing, the metallic bronze powder is rubbed upon the pain
dry, then varnished with thin mastic.
(28) L. B. asks (1) a process to soften cast iron bozes, to chamber them to receive babbitt. A. ing over the fire with hot ashes, leaving the boxes to
$\begin{aligned} & \text { cool gradually. } \\ & \text { 2. A recipe for cementing cost }\end{aligned}$ cool gradually. 2. A recipe for cementing cast iron.
A. See Scientific American, February 6, 1886, Cement for Cast Iron.
(29) E. S. asks : 1. Will a leather belt transmit as much power on rubber-covered pulleys as a
rubber one? If not, about what is the difference? A No; 50 per ent in, a wor fore? A ley, when both are new. 2. What oil is best for a the oil gumming. A. Best cold pressed lard oil, with ne-tenth kerosene.
(30) F. W. S. writes: The precession of mount to one day in about 70 years. In that length of time from 1885 will they fall upon the 20th of the month instead of the 21st, as at present? A. 20 minutes
23 seconds is the true precession in time. This year 23 seconds is the true precession in time. This year
the equinox occurred on the 20 th at about $4: 35$ P. M, of
the astronomical day, which is also 4:35 P. M. of the
civil day. The equinox will enter the 19th day, civil civil day. The eq
time, in 49 years.
(31) J. H. B. asks: What size engine and boiler will run a boat 22 feet long, 5 feet beam, A. 3×4 cylinder; vertical boiler, 26 inches diame (32) C. M. asks : 1. What can be used t ender new patches in an old brick wall similar in ap pearance to the old? A. We know of no means of ac complishing such result. 2. I have seen something like cut glass. What is its composition and how is it made ? A. Tat is of about the thickness of a finger, which must be thoroughly dry, immerse for about a week in a concentrated solution of lead acetate and then dry. See also "Simple Method of Cutting Glass," in Scientific american for October 31, 1885, page 275.
(33) G. J. E. asks : How can I dilute crude carbolic acid with water? I have not been able
to mix it thoroughly. A. Carbolic acid is soluble in 15 parts of water, therefore you cannot expect to make a very satisfactory solution except by using
large quantities of water. Heat will facilitate the solularge quantities of water. Heat will facilitate the solu-
tion somewhat, but alcohol, ether, and acetic acid are best solvents.
(34) J. B. W.-Pure water will not affec nes or boiler. If you are using a surface condenser may contain acid that will act on the boiler. There id from the brass tubes.
(35) D. \& S. - Broken anthracite measures 45 cubic feet to a gross ton, or 50 pounds to
the cubic foot, but the specific gravity of anthracite varies from 1350 to $1 \cdot 640$, or from 84 to 102 pounds pr solid cubic foot, so that there will be a variatio tated for various kinds of coal.
Minerals, ETC.-Specimens have been eceived from the following
mined with the results stated.
o. H. J.-The specimen is a micaceous schist, par

INDEX OF INVENTIONS

 or which Letters Patent of the United States were Granted May 4, 1886,
AND EACH BEARING THAT DATE

Air compressor, G. E. Dow
Axle lubricator, A. D. Howe
Axle lubricator, car, Morison \& Bertrand
Baby walker, H. Pudder.
Basket, grape. A. Schmoker......................
Bathtubs, shower attahhment for, W. Strong
Bed bottom, spring, A. Keenholts. Bedstead, metallic, Barth \& Ramsey...
Beer weighing apparatus, J. Ohlweiler Beer weighing apparatus, Ohlweiler \& Struppe. Bell cord coupling, G. W. Wood
Bicycle, J. H. Hea
Bicycye, J. H. Healey
Bicycle, C. A. Prescot
Binding strip for papers, etc.. I. W. Heysinger.
Blind slat adjuster, P. A. Lewis.
Board. J. H. Blakely... Ironing board. Wago
spring board. Washboard.
Boat, H. Darct.
Boat, H. Darcy.............
Boiler. See steam boiler.
Boiler furnace, steam, H. B. Meec
Boilers, flre arch for, R. Patrick
Bolt and nut, F. H. Howes..
Book or holder, account, A. D. Wilt
Boot or shoe, laced, G. W. Hayden
Box. See Axle box
Brace. See Vehicle spring brace.
Bracket. See Shade roller
bracket.
Brake. See Car brake. Vehicle brake
Brake. See Car brake. Vehicle brake.
Broom winding machines, chuck for, A. J. Sands. 341,278
Brush and broom head, A. G. Morey..... Brush and broom head, A. G. Morey................
Brushes, machine for making flat paint and white
wash, S. A. Verbryck.
Buckle, belt. S. Bretzfeld

Burner. See Gas burner. Lamp burner.
Bustle. Miner \& McLaughli
Bustle, D. Wertz..
Button, J. H. Huff.
Button atraching needle, E. Kempshall...........
Button fastener setting machine, F. H. Richards

Calipers or dividers, E. Weissenborn............. Capsule machine, o. c. Mellick...............

Car brake, F. L. Volz.....
Car coupler, W. L. Wait.
Car coupling, J. Arnold.

Car coupling, W. W. H. Moore
Car coupling, A. W. Van D
............. .. 14
Car wheel, F. M. D. Davis..
Carburetor, C. H. Wolford.....
Carpet stretcher, O. C. Du So
Carpet stretcher, o. C. Du Souche.
Carriage body. . . . Beman
Carriage body, G. N. Beman et al..
Carriage tops, support for, T. Zang
W. Pearce..................

Carriages, shifting seat for,
Cart, road, M. I. Bergman.:
Cart, road, M. I. S. Bergman
Cart, road, C. H. Schlaack
Caster, T. Goetz.................................
Casting car wheels, chill for, L.
Casting metal tubes, core for, A.
Centrifugal reel, W. R. Dunlap.
ereals and mode of production, prepared. So
$\&$ Robbins, Jr..
hair, H. H. Paine.

Chenille fringe, making. L. D. Valetton............ 341,0r8
Chimneys, construction of, J. G. Vaughan....... 341382
Chimneys, construction of, J. G. Vaughan............ 341,088
341,362 Clamp. See Hose clamp
Clasp. See Shoe clasp.
Clasp. See Shoe clasp.
Clasp, F. E. Randall............................. 341,276
Cleaner. See Lamp chimney cleaner.
Cleaner. See Lamp chimney cleaner.
Clipper, hair, W. G. Hildebrand................... 341,006
locks, eleer
S. Ross.......... 341,111
loset
S. Ross.......... 341,111
Closet. See Water closet.
Clothes line reet, J. M. Robbins........................ 341,349

Clothes line reel, J. M. Robbins........................ 341,349
Clothes support, W. F. Krull.................. 341,022
Clutch, friction, J. W. Blodgett...................... 340,944

Collar folding machine, G. E. Norris...................... 341,044
Combination wrench, A. W. Wright.............. 341,117
Commode, A. L. Ellisisn............................. 341,135
Compass attachment for pencils, E. Weissenborn. 341,081
Compass attachment for pencils, E. Weissenborn. 341,081
Cbmpass, mariner's, E. Bisson 341,125
Cooler. See Water cooler.
Coops, feed trough for poultry, J. o. Beazley...... 341,211
Copying press, Samuels \& Breidenstein.......... 341,056
Copying press,, Samuels \& Breidenstein............ 311,056
Cord or band. Cadbury \& Bollason
Cotton press, G. W. Soule............................... 341,070
Yoke coupling.
Crib, folding convertible, C. F. Heinss............... 341,238
Crusher. See Coke crusher.
Culinary vessel, steam, N. \& J. Forshaw............ 340.995
Cultivating and seeding machine, R. A. Preston.. 341,108
Cultivating and seeding machine, R. A. Preston.. 341,108
Cultivator, W. D. Lloyd..11,106
Cultivator, A. B. Reeves............09
Currency, paper, I. M. Phelps............................ 341,429
Cutlery, table, J. D. Frary.................
Cutter head, H. C. Knowlton......................... 341,149
Damper regulator and alarm, thermo-electric, A.
M. Butz.. 341,092

Disinfectant, A. P. Bouton..........................
Disinfecting closets, urinals, etc., apparatus for,
B. Haigh 341,234
Door, E. F. Keller................

Door hanger, t. Hooker...111,076 341,016
Door mat, H. T. Windt.................16
Draught equalizer, T. K. Frankenberry...............................31,116
3406
lain...341,300
Draught regulator, E. Wood.........
Dredging apparatus, A.
Drier. See Malt drier.
Drill.
Drill press or slotting machine, convertible, I. H.

341,165
341,175
341,409
31,384
311059
Lectric cut-out, A. Lungen........................... 341,384
Electric light system, W. M. Schlesinger.........59
Electric machine, steam dynamo. I. G. Wooley.. 341,303
Electric machine, steam dynamo. I. G. Woolley..
Electric machine, unipolar dynamo, S. z. de Fer-
ranti...................................

Engine. See Hydraulic engine. Pumping engine.
Rotary engine.
nsilage cutting machine, J. M. Bailey et al.....
Envelope, F. R. White............................... 3411,3997
xprcising machine, S. N. Goodman................ 341,231
Faucet, Dummer \& Malmstrom..............................
Faucet for oil cans, G. W. Banker........
eed cutter, J. Dick, Jr..
eed cutter, J. C. Wilson

Fence, A. J. \& G. B. M. Yarlot........................ 341,120
Fences, machine for building, W. H. McGrew..... 341,031
Fibers from leaves and plants, machine for ob-
taining, G. Sanford......................... 341,171
File for bills, music sheets, etc., A. Lake........ 34l.252

Fining composition, M. Herzog......................... 341,239
Firearm, breach-loading, C. . Ehbets..............37
Fire escape, D. H. Dillmann.................. 341,31
Fire extinguishing device, C. J. Hexamer.......... 341,143
F'ish hooks and other purposes, gauge or snood
for. H. H. Mansfield................................ 841,257
Flower pin, H. . Krañ................... 411,105
Flower stand, adjustable, Walker \& Smith........ 341,91
Flower stand, adjustable, Walker \& Smith.......... 341,191
Fly, artificial. W. Holberton................. 31,331
Folding and creasing machine, Tickle \& Leonardt
341,361
Foot rest, adjustable, S. G. Scarritt.................. 341,351
Fracture apparatus, A. S. Aloe.......................................341, 341
Fruit jar, J. McMillen...........
Fuel apparatus, vapor, A. I. Ambler....................... 341,308
Fuel economizers, lid or cover for, E. Green...... 341,233
Furnace. See Boiler furnace. Ore roasting fur-
nace. Smoke and gas consuming furnace.
Smoke preventing furnace.

Furnace, J. A. Langdon... 341,
Furnace, H. B. Meech........
Furnaes
rane... $341,1,1636$
Guage pin, E. Megill......

Gas burner, Hosford \& Bass, Jr...................
Gas furnace for boilers, W. R. Jones.................
Gas furnaces, working regenerative, F. Siemens.
Gas mains, pipe joint for, T. MCSweeney..........
Gas, manufacturing. R. H. Smith.............
Gas, manufacturing. R.
Gas pipe joints, sealing natural, J. Schinneller.................. Gas works, scrubber for, A. O. Granker............ 341, 30,988 Gate. See Railway gate.
Generator. See Smoke generator. Steam gene-
rator.
Glass jars, former head for. G. W. Coddington.... 341,317
Glass melting oven, H. J. Jacobsen.............. 341,10s
Glass melting oven, H. J. Jacobsen................. 341,103
Glassware and process of making the same, orna-
mental preseed, ग. Haley.................... 341,141

Governor．J．Casho
Governor，electric steam，E．H．Amet
Grab hook，S．Byrne．．．．．
Grain binder，P．P．Coler
Grain binders，cord alarm for，W．M．Whiting Grating separator，D．Young． Guard．See Keyhole guard．Tug guard． cartridge charger for machine，L． F Gun sight，w．Lyman
Halter，H．Wood．．．．．．．．．．
Hame attachment，C．E．Car
Hammer，power，T．V．Norris．．．．．．．．．．．．．．．．．．．．．．．．．
Hanger．See Door hanger．Picture frame Harvester platform adjustment，J．F．Steward．．． Hatchway，self－closing，R．D．Thackston．．．．311，0ï3， Hay loader，J．H．Lux
Hay loader，B．D．Spilman Hay or grain shed cover，
Head．See Cutter head．
Heater，J．Batchelder，Jr．．．．．．．．．．．．．．．．．． Heel plate，reversible W．H．Pierce． Heel trimmer，A．F．Smith． Heel trimming machine，A．F．Smith． Helical springs，machine for coil
Fancher．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． Hinge， e
Hog cholera remedy，H．Bridge
Holdback，vehicle，c．Pulver．
Holder．See Pen holder．Pillow sham holde
Hook．See Bench hook．Grab hook
Horse detacher，J．R．Bird

Horses，ankle and skin boot and cord protecto
for，J．A．McKerro
Horseshoe，D．Cruici．
Horseshoes，detachable calk for，W．H．Miller Hose clamp，W．J．Wilson．．
Hydraulic engine，© R．Whit
ree cooling apparatus，W．J．Morawe
Ice creeper，T．J．McMurray et al．．．．．．
Injector，J．M．Marty
ron．See Sad iron．
Ironing board，G．W．Schenc
Jack．See Lifting jack
Joint．See Railway rail joint
Keyhole guard，C．Pior
Knitting machine，T．Langham
Ladder，folding，D．P．Sharp．．．．
amp，H．Wellington．
Lamp chimney．cleaner，A．White
Lathe，metal rurn her，J．R．Back．．．．．．．．．．．．．．．．．．．．．341，207
Lifting Jack，W．P．Willams
Lock．See Nut lock．
Locomotive smoke consumer，c．．．．．．．．．．．．．．．．．
Loom shedding mechanism，J．T．Cre
Lubricator．See Axle lubricato
Marshall \＆Savage．．．．．．．．．．．．．．．．．．．．．ing
device for，J．E．Thomas．
Marking and stamping apparatus，Hey \＆Laass Mattress，L．P．Nelson

H．Smith．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．

ce，W．Kent

Mill．See Roller mill．
Mirror，hat，S．J．Thiers．

Mordant，C．N．Waite
 Mosquito canopy for bedsteads，N．Petersen．．

 Mowing machine，Cox \＆McDonough．．．．Nailing machine，H．Weeks．
Vecktie fastener，H．G ．Fiske．
Newspaper stand and fle，combined，W．E．E．
Bailey
Nut lock

Nut lock．F．H．Howes．

al
il feeder for feeding oil to valves，N．Seibert．． Ore roansting furnace，H．B．Meech．．． Oven，baker＇s，A．Crumbie．．．
Packing piston，Goeller \＆Moo
Pad．See Truss pad．
Pan．See Dust pan．
Paper cop tube machine，W．M．Marchant
Paper fasteners，making，F．H．Richards
Paper fasteners，material for，F．H．Richards．．
Paper making，pulp digester for，G．W．Russell．．．． W．Russell
Paper pails，machine for making
Paper pulp screen，R．L．Howe
Paper pulp，wood grinding machine for，T．H
Paper stock，Jordan engine for grinding，L．
Pen，C．Rohn
Pen，fountain，E．J．Hal
Photographic printing frame stand w．．．．．．．．．．．．．． hotographic printing，preparing paper for，
botocrahic．．．．．．．．．．．．．．．．．．．．．．．
Phatographic shutter，A．G．Cla
Pillow sham holder，F．K．Hickok
in．See Flower pin．Gauge pin．
ipe．See Smoking pipe．
Pipes，apparatus for controllin
Planter and fertilizer distsibutem hand corn， \mathbf{H} ．
Bivin．．
Planter，
A very
Planter，
Planter

$\begin{aligned} & 341,157 \\ & . .341,16 \end{aligned}$
10，719
341，250
341，275
341，160
341，353
．341，295
．311，305
${ }_{\substack{341,332 \\ 341,137}}$
．341，137
． 3440,999
．341，180
．341，393
．340，984
．341，098
． 341,077

g，M．Alsh
elegraph，district or fire alarm，J
Telegraph，fre alarm，J．C．W
Telephone lines，electric time sys Ross．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Telephone rece
Telephone transmitter，J．F．McLaugh
Teleph
Telephonic receiver and circuit，W．Mars
Thill coupling，W．H．Ha
Thill coupling，G．M．Pi
Thrashing machine band cutter and feeder，M Doran．．
ickets，machine for manipulating，C．L．Camp－ bell．
Tire for wheels，Pierce
Tire tightener，J．B．Cypert
Torpedo signal，railway，J．B．
Toy vehicle．Harden \＆White
Track instrument，C．D．T
Trap．See Insect trap．
Trellis，J．B．Wilson．
Trolling spoon，J．B．McF
Truss pad，A．D．Smith．
Tube cutter，E．H．\＆G．E
Tubes，manufacfure of，W．K
Tubing，apparatus for welding，P．
Tug guard，shaft，J．W．Theob
Tug，shaft，G．M．Sicklesteel．
Tunnels，segment for constru
Turning machine，A．Stoner．
Twist drills，manufacture of
Type writing machine，G．W
Umbrella，W．A．Webster
Urinal fitting，J．Barret
r fusible safety pl

341,319
341,324

\section*{| 341,319 |
| :---: |
| 341,324 |
| 3411,51 |
 341，151}

341,342
341,043

みた义verissements．

CET THE BEST AND CHEAPEST

ofxclusive Agents and Importers forthe United States
of the

ESSENTIAL ELEMENTS OF PLANTS －A paper by Thos，Jamieson，discussing the question
Whether thereduction in the chumber of the chemial
essentials of plants has reached its

STAMPED METAL GOODS，

ATOMS AND MOLECULES．－A LEC

NEWSPAPER FILE
 MUNN \＆CO，

AMERICAN STEAM EOLIER RNSURANOE CO．，

NOVELTY ELECTRIC CO.

B URNHAM Antomatic Steam ENGINE Patented Peb. 23, 1886 Burnham Engine Co. YORK, PA.
РUT_T, ロTE. Order from our "Special List." THE JOHN T. NOYE MFG CO., CORRESPONDENCE BY MEANS OF

CHOLERA.--ABSTRACT OF A PAPER

0SAMUEL HARRIS\&CO. M'rss of Lathe Dosg, Malleable
 ENGINEER'S POCKET BOOK. BY

M/ANTED. A mill man of experience and ability

ARCHITECTURAL PERSPECTIVE

COPPER WIRE; HOW DRAWN.-AN

FOREIGN PATENTS Their Cost Reduced.

[^0]
 GAS ENGINESS.
Best in principle, workmanship, and materials.
An unequaled small Motor adapted to all uses.
When the motor is not at work, the expense When the motor is not at work, the expense of running it ceases.
Simple sife, Economical, Durable. No extrainsurance.
Four sizes: 1 H.P., 1 H. H. 1 man power, and Dental Engine ECONOMIC MOTOR CO. Office

LOVEGROVE\& CO. мй

A TREATISE ON STEAM BOILER INCRISTATION

For ROOFS OF ALL DESCRIPTIONS, steeporflat, can be applied byordinarywork kTen having steep orflat, previous
experience. Send or Samples and Illustrated Pamph.
let. Address experience.
let. Address

EVOLUTION; THE LATEST AD-

THE NATIONAL TRANSIT COM

A PRACTICAIL SUCLESS.
VAN DUZEN'S PAT. 10 SEE PULLEE OILER. Thousands in satisfactory every
day use Entire reliability and con
stancy demonstrated in two years
test by (would be) Eastern sketic

NEW YORK BELTING AND PACKING CO.
 Vulcanized Rubber Fabrics

RUBBER BELTING, PACKING, AND HOSE, Mats and Matting, and Stair Treads, \&c BIOTOIGE TIFRES, CAIR BPRINGE.

SINKING THROUGH QUICKSAND.

Warted.

 ELECTRIC CONVEYORS.--DESCRIP-

STEAM ENGINES.
 bine Water Wheels.
York Mfg Coo., York, Pa. U.S. A.

 Perfection" Turbine. BEST FOR HICH HEADS. NBEDS NO PBNBTOOE C. RIDGWAY $\&$ SonPRESERVATION OF TIMBER.-RE-

WORKSHOP RECEPTS.

For the use of Manufacturers, Mechanies, and Scien
t.
tifc Am Amers.
ind

avis Send for our complete Catalogue of books, free to tion In ordering single volumes, be particular to men-

PRESERVATION OF BUILDING MA-

HAIR

 BLOWPIPE-FLAME FURNACE.-A

2920

PETROLEUM AS FUEL ive Engines A paper by LOCOMOPoites are arrangea for burninins petroleum- The spoay
njector. Storaze of petroleum.
Experimental enfines

WEAKMEN!
4)

FREEETRTAI, NRRVTA speeany curesall

 Treated by most of the noted specinilistorot the days

CURE Firild

 PILES. Instant relief. Final cure in 10 days, and

TO Weak MEN
 PORTABLE BRIDGES. - DESCRIP-

WEAK, UNDEVELOPED PARTS

Didocrtisements.

 BOSTON SEWAGE WORKS.-A FULL

 er of burning fues
VENTILATION-GREAT IMPORT

INTERNATIONAL INSTITUTE FOR Liquefied Carbonic Gas

To Business Men.

The value of the Scientific American as an adver
tising medium cannot be overestimated. Its circulation is many times greater than that of any similar journal now published. It goes into all the States and Territories, and is read in all the principal libraries and reading
rooms of the world. A business man wants something paper. He wants circulation. This he has when he paper. He wants circulation. This he has when he
advertises in the ScIENTIFIC AMERICAN. And do no let the advertising agent influence you to substitute
some other paper for the ScIENTIFIC AMERICAN, when electing a list of publications in which you decide it it for the reason that the agent gets a larger commission from the papers having a smull circulation than is allow For rates see top of first column

MUNN \& CO., Publishers,

H.W.JOHNS'

Steam Packings, Boiler Coverings, Fire Proof Paints, Cements, Ett., H. W. JOHNS M'F'G CO., 87 MAIDEN LANE, N. Y. 175 Randolph St., Chicago; 170 N .4 th St., Philadelphia DOUBLE BOATS.-TWENTY-ONE IL lustrations of patented double boats, the general con
structlon and plan ot which are so so clearly
shown an t
need no detaled

Dhoto Entaphiviva 6.
 1. 77 park phate new york

 HARRIS-CORLISSENCINE With Harris' Pat. Improvements, from 10 to 1,000 H. P . MEMTron Hual

PATENTS.

 MESSRS. MUNN \& CO. in connectinn with the pubii-cation of the SCIENTFIC AMERICAN continue to ex-
amine improvements, and to act as Solicitors of Patents In this line of business they have had forty one years'

 on Infringements of
them is
rone with s
A pamphlet sent free of charge, on application, con-
taining full information about Patents and how to pro
cure them directios and cure them; directions concerning Labels, Copyrights,
Designs, Patents, Appeals, Reissuses, Infringements, As
signmets, Rejected Cases, IHints on the Sale of Pa-
tents, etc, Res. We also send, free of charge, a Synopsis of Foreign Pa-
tent Lisws, showing the cont and method of securing
patents in all the principal countries of the worla. MIJNN \& CO., Solicitors of Patents,

JFNKINS BROS'MATMFS Gate, Globe, Angle, Check, and Safety.
MANUFACTURED OF BEST STEAM METAL The Jenkins Disks used in these Valves are manufactured under our 1880 Patent, and will stan
any degree of steam pressure, hot and cold oils, or acid.
o avoid imposicion, see that valves are stamped
g1 John St., New York. 13 So. Fourth St., Phila.

THE IMPROVED

Biider Fot Air Pumping Pagine For City or Country Residences,
Burns Coal. Wood, or Gas. Safe, Simple, Illustrated Catalogue "A."
Yer \& CO. 37 DeJ St., New Fork

LIGHTNING RODS.-DESCRIPTION OF

S AWS Wanted 50,000 Suw yers and SAW S

 GRATEFUL-COMFORTING.

CAS ENGINE.

 Willims \& Orton Mig , CO... . 0. Box 148 . STERLING, ILLS THERAPEUTICAL EFFECT OF THE Internal Administration of Hot Water in the Treat
mett of Nervous Diseases.-By Ambrose Ranney
M.D. Rules for administration The Refle
 in its favor. Conclusions. Contained in sci
AMEHCAN SU PPEEMHNT, No. 6 Sis Price 10 ce
be had at this office and from all newsdealers.

the manufactitie of crucible

Barnes' Pat. Foot Hand Power

This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787.
The transmission of Speech by all known orms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor.

WTTHERBY, RUGGG \& RICHARDSON. Manufacturers tion. Faclities unsurpassed. Shop formery descrip.
ov R. Ball \& Co.. Worcester, Mass. Send for Catalogued.

ฐ̌ientific gmmrican

The Most Popalar Scientific Paper in the World. Only $\$ 3.20$ a Year, including Postage. Weekly

This widely circulated and splendidy illustrated paper is published weekly. Every number contains sixoriginal engravings of new inven and a large number of epresenting Engineering Works, Steam Machinery ew Inventions, Novelties in Mechanics, Manufactures, Tecture, Agriculture, Horticulture, Natural History, etc. All Classes of Readers find in the ScIENTIFIC ON a popular resume of the best scientific inOrmation of the duy; and th tos the aim of the pubishers
op present it in an atiractive form, avoiding as much as possible abstruse terms. To every intelligent mind,
this journal affords a constant supply of instructive reading. It is promotive of knowledge and progress in every community where it circulates. Terms of Subscription. - One copy of the SCIENmFTC American will be sent for one year-52 numbers-
postage prepaid, to any subscriber in the United States or Canada, on receipt of three dollars and twenty months, $\$ 1.00$.
Clubs.- One extra copy of the Scientific Amerian will be supplied gratisfor every club of five subscribers at $\$ 3.20$ each; additional copies at same proportionate
ate. The safest way to remit is by Postal Order, Draft, or
Express Money Order. Money carefully placed inside on envelopes, securely sealed, and correctiy addressed, eldom goes astray, but is at the sender's risk. Ad-
ress all letters and make all orders, drafts, etc., puy-

MIUINAT \& CO.,
361 Broadway New York.

Trisis

Scientific American Supplement. This is a separate and distinct publication from in size, every number containing sixteen large pages.
THe Scientific American Supplicmilnt is published weekly, and includes a very wide range of contents. It all the principal departments of science and the Useful Arts, embracing Biology, Geology, Mineralogy, Natural History, Geography, Archæology, Astronomy, Chemistry, Electricity, Light, Heat, Mechanical Engineering, Steam and Railway Engineering, Mining,
Ship Building, Marine Engineering, Photogruphy, Technology, Kanufacturing Industries, Sanitary Enmeering, Agriculture, Horticuiture, Domestic Economy, Biography, Medicine, etc. A vast amount of fresh nd valuable information pertaining to these and allied engravings.
The most important Enjineering Works, Mechanisms, and described in the nd described in he Supplement
Canada. 85.00 a year, or one copy of the Scied States and erican and one copy of the SUPPLEMENt, both mailed or one year for $\$ 7.00$. Address and remit by postal MUNN \& Co., 361 Broadway, N. Y., Publishers Scientific American.
To Foreign Subscribers.-Under the facilities of
the Postal Union, the ScIENTIFIC AMERICAN is now sent post direct from New York, with regularity, to sent cribers in Great Britain. India. Australia, and all other Bussia, and all other European States : Japan, Brazy, Mexico, and all States of Central and South America, Terms, when sent to foreign countries, Canada excepted, 64, gold, for Scientific Amirican, one year; 99 , gold,
for both Sctentific Amierican ani Supplement for ne year. This includes pcstage, which we pay. Remit
xpress money order, or draft to order of
MUNN \& CO., 361 Broadway, New York.
PRTNTYING INKKS,
T EE Scientific American", is pritted with ciAAS

[^0]: The expenses attending the procuring of patents in
 most foreign countries having been considerably reduced the obstacle of cost is no longer in the way of a
 large proportion of our inventors patenting their inventions abroad
 CANADA.-The cost of a patent in Canada is even
 less than the cost of a United States patent, and the former includes the Provinces of Ontario, Quebec, New toba.
 The number of our patentees who avail themselves of the cheap and easy method now offered for obtaining patents in Canada is very large, and is steadily increas-
 ing. ENGIAND.-The new English law, which went into
 torce on Jan. 1st. 1885, enabies parties to secure patents in Great Britain on very moderate terms.. ABritish paChannel Islands. Great Britain is the acknowiedged
 anancial and commercial center of the world, and he Anancial and commercial center of the world, and hey
 goods are sent to every quarter of the globe. A good Invention is likely to realize as much for the patentee
 in England as bis United States patent produces for him at hrme, and the small cost now renders it possible
 for almost every patentee in this country to secure a patent in Great Britain, where his
 tected as in the United States
 OTHER COUNIIRIES.-Patents are also obtained on very reasonable terms in France, Belgium, Germany,
 Austria, Russia, Italy, Spain (the latter includes Cuba and all the other Spanish Colonies), Brazil, British India, Australia, and the other British Colonies.
 An experience of Forty vears ins An experience of Forty years has enabled the
 publishers of T'HE SCIENTIFIC AMERICAN to establish competent and trustworthy agencies in all the principal foreign countries, and it has always been their aim to
 have the business of thotr clients promptly and piroper ly done and their interesss faithfully guarded. A pamphlet containing a synopsis of the patent laws
 of all countries, including the cost for each, and othe iformation useful to persons contemplating the pro this office.
 ntific aco., Editors and Proprietors of The Sciantific American, cordially invite all persons desiring trade-marks, in this country or abroad, to call at the trade-marks, in this country or abroad, to call at theit
 offices, 361 Broadway. Examination of inventions, con sultation, and advice free. Inquiries by mail promptly answered.
 Address.

 > MUNN \& CO., Publishers and Patent Solicitors 3h1 Broadwav Now

 Branch Offices: No. 622 and 624 F Street, Pacif Buildi ng, near 7th Street, Washington, D. C

