a Weekly journal of practical inforiiation, art, science, mechanics, Chemistry, and manufactures.

NEW YORK, MAY 1, 1886.
[$\$$ [2.20 per Annum.

THE NEW FRENCH ATLANTIC STEAMSHIP LA

 BOURGOGNE.This magnificent vessel, of which we give an illustration, is one of the four recently constructed for the Compagnie Generale Transatlantique by the Societe des Forges, at La Seyne, on the Mediterranean. The three other boats are the La Champagne, La Bretagne, and La Gascogne. To all these have been added. improvements on the La Normandie, which is considered one of the finest types of the European commercial marine. These vessels have been built expressly for the postal service between Havre and expressly for the postal service between Havre and
New York, under a contract with the French Government, and their minimum speed will be fifteen knots an hour.

The length of this ship, La Bourgogne, is 480 feet, with a beam of 48 feet. The hull is constructed of steel, and subdivided into several compartments, which will (with the steam pump) prevent the sinking of the ship in case of accident of any kind. She carries 800 tons of water ballast, and as the coal (of which there is a daily consumption of 150 tons) is consumed, its room is filled by water, so that the screw is always submerged. 'The engines of the La Bourgogne are of 8,000 horse power, and the main shaft of the propeller, which has four blades, is 21 feet in diameter, and divided into three cranks, weighing about fifty tons. The Bourgogne has eight steel boilers, and the. average duration of the voyage will be eight days in summer and nine in winter. But it is not alone to the acceleration of the voyage that attention has been directed; special regard has been given to the safety and to the comfort of the passen-
gers. As for safety, all chance of collision during the night or fire arising from the carelesness of the crew or passengers, is guarded against. The electric crew or passengers, is guarded against. The electric
light is employed, not only on the masts and bows, but is used in the cabins and passenger saloons, which latter are very capacious and well ventilated. Berths are provided with comfortable beds and bedding the table is well kept; the provisions are always fresh, abundant, and of the best quality, and the arrangements of the cuisine excellent. Wine is provided $a d$ libitum at table, and there is an unlimited supply of drinking water and ice; and a distilling apparatus is also in use. The ship is commanded by Captain Frangeul, one of the oldest and most distinguished officers of the company; his maritime career has been signalized by acts of courage for which he has been awarded the "Croix de la Legion d'Honneur."
M. Eugene Pereire, who has succeeded his relatives, the celebrated Emile and Isaac Pereire, in the office of President of the Compagnie Transatlantique, has pro fited by the errors of some other companies, and has directed his operations in a spirit of progress with considerable energy, and with a success worthy of emulation.-Illustrated London News.

The Extinction of Kilauea.

On March 6 the active volcano of Kilauea, in the Sandwich Islands, composed of the old Lake Halemaumau and the New Lake, sank from the bed of the crater, leaving a bottomless abyss about four miles in circumference. The volcanic eruption which has been so active in the past was utterly extinguished.

During the latter part of 1885, both lakes were very active, and boiled and surged from side to side with unusual violence. In the middle of December the New Lake commenced building a wall for itself, which by the first of March had covered its surface. On the evening of the 6th, both lakes were full of boiling and surging lava, and were particularly brilliant up to half past nine o'clock. At that time a series of earthquake hocks began, forty-three in number, which lasted unil half past seven the next morning. After the fourth shock, the fires of the New Lake had entirely disappeared, and only a slight reflection from Halemaumau was visible. During several days following, cracks and rents were made in the surrounding wall, and immense quantities of steam and vapor rose above the crater. Several upheavals occurred to change the entire configuration of the immediate surroundings. Large porions of the edge of the crater fell into the gulf with a sound like thunder. The cone in the New Lake disappeared entirely, while the bottom of the lake can till be seen 500 to 600 feet below its former level; but of Halemaumau nothing is visible but a gaping abyss, four miles in circumference.
It is possible that the volcanic fires will never be renewed, and that Kilauea will be classed with that large list of extinct volcanoes which tell of past energy and fire. The islanders, it is reported, do not admit his probability, as it would rob them of one of their greatest attractions for tourists. They hold that the ava has found some temporary subterranean outlet, where it may be expected soon to solidify, and being thus cut off from other escape will again fill the crater of Kilauea and recall its dispersed students.

Svientifir Ammerian.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. pUbLished weekly at
 No. 361 BROADWAY, NEW YORK.

A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

 One copy, one year, postage included.. 1830160One copy, six months, postage included....... Clubs.-One extra copy of The Scientific Americi............................... gratis for every club of tive subscribers at
Remit by postal or express money order. Address
MUNN \& CO., 361 Broadway, corner of Franklin Street, New York.
The Scientific American Supplement is a distinct paper from the Scientific American. the supplement is issued weekly. Every number contains 16 octavo pages. uniform in size
with Scientific American. Terms of subscription for Supplement, \$5.00 a year, postage paid, to subscribers. Single copies, 10 cents. Sold by In newsdealers throughout the country. will be sent for one year, postage free, on receipt of seven doll papers to one address or different addresses as desired.
The safest way to remit is by draft, postal order, express money order, or registered letter.

Scientific American Export Edition

The Scientiutc American Export Edition is a large and splendid periodical, issued once a month. Each number contains about one hundred
large quarto pages, prof usely illustrated, embracing:(1.) Most of the plates and pages of the four preceding weekly issues of the ScIENTIFIC AMERICAN. with its splendid engravings and valuable information; (2.) Commercial, trade, and manufacturing announcements of leading houses Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the
world. Single copies, 50 cents. Manufacturers and others who desire world. Single copies, 50 cents. Manufacturers and others who desire nouncements published in this edition at a very moderate cost.
The SCIENTIFIC AMERICAN Export Edition has a large guaranteed cir culation in all commercial places throughout the world.
\& CO., 361 Broad way, corner of Franklin Street, New York.

NEW YORK, SATURDAY, MAY $1,1886$.
Contents.
(Illustrated articles are marked with an asterisk.)

table of Contents of
SCIENTIFIC AMERICAN SUPPLEMENT

No. 539

For the Week Ending May 1, 1886.
Price 10 cents. For sale by all newsdealers.
ARCHITECTURE. The Nautical Arena or Aquatic Theater.-An
interesting description of the new Arenes Naticures at Paris, a
building accommodating 3,000 spectators, and designed for use as a

inventions wanted in india.

The present industrial requirements of India is the subject of a very interesting communication received from an esteemed correspondent in Calcutta, whose position as proprietor of a large tea estate has given him an excellent opportunity for observation. His suggestions will be of interest to American inventors,
as they point out new fields for the as they point out new fields for the application of that ingenuity which has already given to American inventions such an enviable pre-eminence in the mar kets of both hemispheres. After a long period of apparent mechanical inertia, India is now evincing a progressiveness which will make her a country whose acquaintance it will be very desirable to cultivate. As her resources are still largely agricultural, one of the first demands is for improved farming tools and appliances. In tea culture, improved machines for rolling the leaf after withering, for firing, sorting, and sifting, are in demand, and would be heartily welcomed by many planters. In handling silk, a welcomed by many planters. In handling silk, a
great disadvantage is at present experienced from the great disadvantage is at present experienced from the
difficulty of producing an even thread. The fiber of the native silk is excellent, but the manipulations which it subsequently undergoes are so imperfectly performed that the product comes out an inferior article. India, it will be remembered, is the old home of the sugar cane, and improved crushing machinery finds ready market. One firm alone makes over a hundred thousand dollars annually in royalties from its patent mill. The indigo industry has been brought to considerable perfection, though there is still room for improvement in the chemical and mechanical manipulations. In addition, there are large amounts of crude products, such as oil seeds, jute, and cotton, which are exported, but which could be worked up at home to good advantage were suitable manufacturing processes available.
As all of these industries require large quantities of worked timber for boxes, buildings, carts, tool mountings, etc., there is an excellent market, our correspondentadds, for woodworking machinery. In many parts of the empire there are valuable forests, but the lack of sawmills prevents them from being utilized. The demand is particularly for portable machines which can be conveniently moved from place to place as demand and timber supply require. The mining implements of India are still very primitive, though the development of the petroleum industry has created a demand for improved boring tools. Steam launches and barges are coming into more general use, and considerable progress is shown in this direction. The railways have effected a marked mechanical advance. They now manufacture their own locomotives and most other appliances for railway service. We might enumerate many other departments from our correspondent's lengthy and carefully compiled notes in which this spirit of progressiveness is manifest, but we have probably said enough to convince American inventors that there is already a field in India in which to extend the success achieved at home, and it is a field the importance of which is annually increasing. Our correspondent thinks our manufacturers, exporters, and inventors will be unwise if they overlook India in their pursuit of new avenues for the distribution of their merchandise and the introduction of useful machinery and patent appliances.
The patent laws of India are liberal toward the inventor, and protection is as readily accorded there as in other countries; and with stean communication between England and India as regular as the boats ply between New York and Fall River, to which add the telegraph, India is no longer an "out of the world, barbarian country."

THE AMERICAN MUSEUM OF NATURAL HISTORY.

We want to call the special attention of our reader to Mr. Gratacap's very interesting description in the Scientific American of April 17 of the more prominent specimens to be found in the paleontological department of the American Museum of Natural History at Central Park, New York. We believe that the institution is not as fully appreciated and used as it should be, because it is not very well known to the public.
We are sure that a great many more people would avail themselves of its treasures if they only knew how much there is there to claim their interest. And a word in regard to our illustrations. We have, it is true, built up an ideal picture in order to present more vividly those extinct organisms which once inhabited the land and sea but our artist has not drawn upon his imagination for even the slightest detail. Both fauna and flora are exact reproductions of the actual specimens, just as the hand of Nature inclosed them between the limestone
and sandstone pages of her great geological history.
The Museum is located on Eighth Avenue, at the corner of Seventy-seventh Street, on the west side of the Park, and is easily reached by way of the Sixth Avenue elevated railroad. It is open for free inspection, and contains so much of interest in its collections of minerals, fossils, natural history specimens, native
woods, etc., that we are confident any and all of our
readers, whether particularly scientific or not, must feel well repaid for the trouble of a visit by the pleasure of a careful examination. We hope that the educational importance of the collection will in the future be better understood and appreciated.

national academy of sciences.-annual meeting at washington.

The regular annual meeting of the National Academy of Sciences was held at the Smithsonian Institution, April 20 and for several subsequent days, President 0 . C. Marsh in the chair. (See portrait on another page.) The attendance of members was the largest ever known in the history of the Academy, including the following : Cleveland Abbe, Spencer F. Baird, George F. Barker, A. Graham Bell, John S. Billings, W. K. Brooks, John H. C. Coffin, Edward D. Cope, Clarence E. Dutton, William Ferril, Grove K. Gilbert, Theodore N. Gill, Arnold Hague, Asaph Hall, Julius E. Hilgard, George W. Hill, T. Sterry Hunt, Samuel P. Langley, Alfred M. Mayer, Montgomery C. Meigs, Henry Mitchell, S. Weir Mitchell, Edward S. Morse, Simon Newcomb, H. A. Newton, A. S. Packard, John W. Powell, Raphael Pumpelly, Ira Remsen, Ogden N. Rood, Henry A. Rowland, Charles A. Schott, Samuel H. Scudder, William Sellers, Sidney I. Smith, Arthur W. Wright, and Charles A. Young.
The session was especially signalized by the conferring of the first medal ever awarded by the Academythe Henry Draper gold medal, of the value of $\$ 200$, placed at the disposal of the Academy by the widow of the late Henry Draper, and awarded by a committee of the Academy for the best original researches in astronomical physics.
The award was not restricted to the limits of the Academy, but was to go to the most successful discoverer in all the world. After careful consideration, the committee reported that it was best deserved by a fellow member, Prof. Samuel P. Langley, of the Allegheny Observatory, for his researches into the wave lengths of light in the infra-red and ultra-violet portions of the spectrum.
In presenting the medal, President Marsh gave a synopsis of Prof. Langley's scientific researches, extendng over the last fifteen years. In 1869 he observed the solar eclipse, and again in 1870, going to Spain the lat ter year. In 1875 he demonstrated the absorption of violet rays by the sun's atmosphere. In 1876 hestudied the distribution of heat on the sun, and the limits with in which sun spots affect climate, proving that they cannot make a difference of 1° Fah., and continued investigations of solarheat and its effect upon theearth for several years following. In 1878 he investigated the solar pectrum from Pike's Peak, and showed that the rays of the "great group A" were double. In 1881 he carried out the expedition to Mount Whitney, and ascertained that the amount of the sun's heat had previously been greatly underestimated. He increased the estimate 50 per cent. He also determined the fact that the sun is blue, and that the white light which we see is only the remnant sifted out by the selective action of the sun's and the earth's atmosphere. In 1882 he invented the bolometer, which enabled him to study with a degree of precision not theretofore attainable the undulations of long wave lengths below the visible red end of the spectrum. In 1884 and 1885 he applied this instrument to the study of terrestrial absorption and of the radiation of heat from the moon.
In 1885 and 1886 he prosecuted researches far into the nfra-red region of the spectrum, discovering in terrestrial and lunar radiations undulations much slower than have been detected in the spectrum of light direct from the sun. Sir Isaac Newton had only succeeded in detecting waves of 0.00004 to 0.00007 millimeter in length, and in the two centuries since his time subsequent observers were able to extend the investigation only to 0.00010 m .; whereas, since the invention of the bolometer in 1882, Langley has demonstrated undulations of the length of 0.004 m ., being a range forty times as great as all other investigators had covered in the two centuries preceding.
Two other medals of the same value are to be hereafter awarded by the Academy-the Watson medal, for original research in another department of asronomy, and the Lawrence Smith medal, for original discovery in meteoric bodies. The Watson medal has been awarded to Professor B. A. Gould, and will be conferred next year. The brilliant and instructive studies of Professor Hubert A. Newton, of Yale Colege, point to him as evidently the most conspicuous candidate for the honor of the latter medal.
The papers read at this meeting have been of high value, both scientific and utilitarian. Professor Langley presented results of his studies on invisible spectra. He said that most of the region of the spectrum from which energy comes to us is unknown. We have in the ultra-violet rays one hundredth part the amount of energy which comes from all the rest of the spectrum, and our investigations therefore have merely touched this region. This is due to the fact that these rays will not pass through glass, and rock salt.
the most available medium, is difficult to work.

He has succeeded, however, in obtaining prisms of this material whereby to investigate the subject of the molecular vibrations associated with wave lengths. Sir Isaac Newton determined wave lengths of 0.00003 to 0.00007 millimeter. In 1882, all that was certain was wave lengths of 0.00010 m . ; within two years we went down to 0.00027 m . There we found that the sun's effect ceased.
Much greater results were subsequently obtained by the use of Rowland's gratings, being made of extraordinary size for this purpose. The apparatus was described in detail. It was of such delicacy that readings could be made down to 0.1 m . when there was one vibration in 40 seconds. The sodium lines were taken as fixed points of comparison.
The difficulty of manipulation was indicated by the statement that the spectrum to be examined must be identified and distinguished from among twenty or more other visible and an almost infinite number of invisible spectra.
The delicacy of the apparatus employed was such that the presence of a current of only 0000000001 ampere was distinguishable.
Two years of work were required to overcome difficulties. The extrapolation formulæ employed led to cubic equations difficult to solve.
By means of numerou experiments, however, it was ascertained that the relation of the index of re fraction to the molecular wave length of vibration wave length of vibration hroughout the entire spectrum is nearly repre sented by a hyperbola.
As a result, the shortest wave length measured was about 53,000 on Angstrom's scale. The longest wave ength of the visible spec ength of the visible spec trum is about 0.01 m . The extremes found by Lang-
ley were 0.1 m . and 0.0025 m . The shortest wave length of sound determined by Helmholtz is about 5 m ., being only fifty times the length of Langley's longest wave length of the spec trum, thus vastly reducing the hitherto immeas urable gulf between light and heat on one hand and sound on the other.
Professor H. A. Newton read an important paper on Biela's comet, which is onnected with the Novem ber meteoric shower. This shower was mostly over before sunset in this country, but in Europe it was notably brilliant, exceed ing the display of 1872 , though not equal to that of 1833 .
In many places, up to a hundred a minute were counted by a single person, the maximum display continuing not more than three hours. Experiments show that no single observer can detect more than one-eighth of the entire before this disruption with that of Biela's comet, a number that fall; so that the shower probably amounted to 75,000 per hour.
To compute the density of their distribution in space, we must take into account the fact that we do not see them near the horizon as we should if we saw all that fall. One in fifty of all that are visible come within 10° of the zenith.
Computing the path of the earth through its orbit for three hours, it appears that the dense shower only occupies a space 87,000 miles in width, hence each meter corresponds to an area $201 / 2$ miles square.
Applying proper correction for the effect of the earth's attraction, the dispersion of meteors covered about 10°; although, as seen from the sun, the apparent thickness of the shower belt is only 4^{\prime}, and its actual thickness therefore is only 8^{\prime}.
If these meteors come to us though a range of 10°, they represent, not a group, but a wide dispersion through space. The only possible explanation of the wide divergence, therefore, is that they glance when they strike the earth's atmosphere.
This explanation, it is true, has been previously suggested, but it has seemed to be untenable, for the reason that the meteors as we see them always move in straight lines. An ingenious explanation of this was now given. The meteors are small irregular bodies, which, when they strike the atmosphere, are cold and
ark, and compress the air before them to such an extent as to compel them to chang , their course to a path of less resistance ; but as soon as the pressure and friction heat them to incandescence, the side which is forward fuses, and is wiped off by the impact of the air, leaving the glowing particles behind, which constitute the trail, and at the same time rounding off the front of the meteor, so that it will thereafter proceed in a straightforward course, like a round bullet, having no longer the sharp angles which at first compelled it to glance. Thus it is that the meteors are dispersed while dark and invisible; but as soon as they become visible, they have assumed the rounded form, which gives them a straight path from the time when we are first able to discern them. Were it not for this dispersion, we might fix the direction of the radiant within an angular distance only one-quarter the apparent diameter of the full moon, and the shower would be seen pouring down in this narrow stream. The radiant last November was in zenith nearly over the Black Sea. In 1841, Biela's comet came near to Jupiter, and its course was changed. It was at the same time broken into two large and innumerable small fragments.
Comparing the longitude of the meteoric showe

In the map, stars of the first magnitude are eight-pointed; second magnitude, six-pointed; third magnitude, five-pointed; fourth magnitude (a few), four-pointed; fifth magnitude (very few), three-pointed; counting the points only as shown in the solid outline, without the intermediate lines signifying star rays.
before this disruption with that of Biela's comet, substantial conformity is seen. Afterward, both comet
and meteors underwent a radical change of longitude, and still the new position in longitude was the same fo both comet and meteors. Comparison of right ascenion also gives the same results.
This proves conclusively that the meteors were not separated from the comet until after its disruption, and it follows as a corollary that the disintegra tion of the comet is in progress, and that it will be ultimately dissipated; which is further apparent from the fact that the comet was not visible at the computed periods of the return in 1859 and 1866. We are now one hundred million miles distant from where the comet ought to be.
The meteoric showers will also gradually become less conspicuous, on the whole, although the earth may occasionally, as last November, pass through a denser portion.
The prominence given at this meeting to astronomy and astronomical physics by the award of the Draper medal seemed to entitle these papers to precedence, leaving till next week the report of Hunt's paper on the Cowles electrical furnace, and its immense prac tical value in the metallurgy of aluminum and other metals.
Prof. Wolcott Gibbs was elected Foreign Secretary in place of Alexander Agassiz, resigned. W. H. H.

NIGHT SKY-APRIL AND MAY.

by richard a. proctor.

The Great Bear,' Ursa Major, is now at its highest and nearly overhead, the pointers aiming downward from high up, slightly west of due north. A line from the Pole Star, α of the Little Bear, Ursa Minor, to the Guardians of the Pole, β and γ, is now in the position of the minute hand of a clock eight minutes after an hour.
Below the Little Bear we find Cepheus low down to the east of north, and Cassiopeia low down to the west of north. Perseus, the Rescuer, is setting in the northwest; the Camelopard is above, trying to get on his feet.
The Charioteer, Auriga, with the bright Capella is earing the northwestern horizon, followed by the Twins, Gemini, in the west. Further west and higher we find the Crab, Cancer, below which is the Little Dog, Canis Minor.
The southwestern sky is very barren of bright stars, Alfard, the heart of the Sea Serpent, Hydra, shining alone in a great blank space. Above the Sea Serpent's head we see the Sickle in the Lion, Leo, himself stretch ing his tail to due south, very high up. Coma Berenices is close by, and the Hunting Dogs, Canes Venatici, between Coma and the Great Bear.
In the south, lower down, we find the Crow, Corvus, and the Cup, Cra ter, on the Serpent's back ; the Virgin, Virgo, extending in the mid-heavens from southeast to south between the Lion's tail and the Crow. In the same direction, but low down, we find the head and body of the Centaur, Centaurus supposed to have typified the patriarchal Noah.
In the southeast the Scorpion's Heart has just risen, and between the head of Scorpio and the Virgin's robes we see the stars of the Scales, Libra.
Due east, low down, is the Serpent Holder, Ophiuchus, on his back-'tis the customary attitude of heavenly bodies when risng. The Serpent, Serpens, held by him is seen curving upward toward the Crown, Corona Borealis. The Serpent's head is due west, and above it we see the bright Arcturus, chief brilliant of the Herdsman, Bootes.
In the northeast is Her cules, his head close to the head of the Serpent Holder. Beneath his feet is the Lyre, Lyra, with the brilliant Vega; and the Swan, Cygnus, has already half isen above the northeastern horizon.
Lastly, the Dragon, Draco, curves from between the pointers and the pole, round the Guardians to ward Cepheus, and then retorts its head, with gleaming eyes (β and γ), toward the heel of Hercules.

Magnetic Qualities of Iron.

It is well known what an influence the quality of the ron in the field magnets has upon the ultimate output in a dynamo, and a case in point is mentioned by Mr. Gisbert Kapp, showing how impossible it is to foretell accurately the performance of a dynamo unless the quality of the iron be exactly the same in the manufactured machine as the sample submitted. In the case of two machines manufactured for him, there was a difference of electro-motive force of 20 per cent between the two, although the machines were of exacty the same dimensions and treated in the same manher. It was imagined that in the first machine the iron magnets had not been sufficiently annealed, in consequence of the shortness of time allowed for the work. A second pair of field magnets were ordered and an extra time allowed for the work, the consequence being that 20 per cent. more electro-motive force was obtained.

Erratum.

In Abernethy's keying clamp, illustrated on page 242, April 17, 1886, the slots shown in the cut should not extend entirely through the jaws, as represented. They should be about half the depth of the jaws.

A CRATE FOR SHIPPING FRUITS, VEGETABLES, ETC. sides of the frame. Additional disks in sets of two The illustration herewith shows a method of making a crate for the transportation of fruit, vegetables, etc., in such manner that, after use for the purpose for which it is designed, it may be taken down and folded up to occupy the least possible space, to be returned to the original shipper. The crate is composed of side and end bars, which meet at the four angles, where they are overlapped, and held in place by a long rod, which passes through the ends of the bars, being formed at one end with a head, and passing through a plate at the other, above which plate the rod is flattened out by riveting, so that displacement will be prevented. Upon either

colville's return crate.

end of each set of side bars there are cleats which serve as braces and as retaining cleats for the bottom and cover of the crate. In the longitudinal center of the crate there is also a partition formed by bars inserted and held in place by rods after the same manner as the crate is otherwise held together by the rods at the corners. In the illustration, one of the views is in perspective, showing the crate set up, while beneath is a representation of one of the sections as it appears when unpacked, to be folded for return to the shipper.
This invention has been patented by Mr. John Colville, of Brunswick, Ga.

TWICK'S COMBINED LAND ROLLER AND CLOD CRUSHER. An improved land roller for breaking the lumps and clods of earth in a newly plowed field has recently been patented by Mr. Friedrich Twick, of Sheboygan, Wis. A rectangular frame, as shown in the perspective view of the machine, is attached to an ordinary draught pole, and has two parallel shafts journaled in its side pieces. A series of cutter disks, or colters, having sharp cutting edges separated by curved annular grooves, is mounted on each transverse shaft in such a manner that the cutting disks on one shaft pass into the grooves on the other, as shown in Fig. 2. Suitable washers are interposed between the end disks and the sides of the frame. Screw spindles with cross pieces or handles on their upper ends are mounted in standards projecting upward from the central portion of the side pieces of the frame, one on each side of the machine. These

TWICK'S COMBINED LAND ROLLER AND CLOD CRUSHER.

spindles pass through nuts formed as arms on the upper ends of side plates carrying the road wheels. Fig. 3 represents the details of this construction. Consequently, by turning the spindles, the frame can be raised or lowered in relation to the wheels, and the cutter disks lifted entirely above the ground, when going to and from the field, or adjusted to penetrate more or less deeply when the machine is in operation. The disks may, if desired, be placed in operation. The disks may, if desired, be placed
at unéqual distances above the ground on the two
or three are shown at the front and rear of the machine. These are mounted on small shafts journaled in sliding frames which are connected with the main frame at diagonally opposite corners. These sliding frames are raised or depressed by means of levers capable of being locked in place by a spring catch on the draught pole. The action of the machine is to crush the lumps and clods, and at the same time cut them in pieces and pulverize the earth.

Cattle Bones.

The four feet of an ordinary ox will make a pint of neat's foot oil. Not a bone of any animal is thrown away. Many cattle's shin bones are shipped to England for the making of knife handles, where they bring $\$ 40$ per ton. The thigh bones are the most valuable, being worth $\$ 80$ per ton for cutting into tooth-brush handles. The fore-leg bones are worth $\$ 30$ per ton and are des. The fore-leg bones are worth $\$ 30$ per ton and are
made into collar buttons, parasol handles, and jewelry, though sheeps' legs are the staple parasol handles. The water in which the bones are boiled is reduced to glue, and the dust which comes from sawing the bones is fed to cattle and poultry.

A SPRING FOR LUMBER WAGONS.

A spring which is designed to have an easy movement with either light or heavy loads, and which can be readily placed on or removed from the vehicle, is shown in the accompanying illustration. It is composed of two convex members centrally united at their backs, each member being re-enforced with one, two, or more additional plates, as may be desired. The ends of the upper member of the spring have recesses which fit over the stakes of the bolster, thereby preventing any sidewise movement of the spring, but allowing a lengthwise expansion, while the ends of the lower member of the spring have downwardly extending lugs, which ride on the upper edge of the bolster, and thus hold the spring in place. As the spring is not permanently fastened to the bolster, it can be easily and quickly removed from the vehicle.

edelmann's vehicle spring.

This invention has been patented by Mr. Adam Edel mann, of Germantown, N. Y., and application for further particulars in reference thereto should be addressed to Mr. A. Weck, East Camp, Columbia County, N. Y.

Gold and Silver in the Arts.

From a table recently prepared by the Director of the Mint, it appears that during the calendar year 1883 a total of $\$ 14,459,464$ worth of gold was utilized in the arts and manufactures of the United States. Of this amount, $\$ 7,905,163$ was used in jewelry and watches ; $\$ 3,598,308$ for watch cases ; $\$ 1,084,824$ in gold leaf ; $\$ 827,000$ for watch chains ; and the remainder in smaller sums for dental supplies, pens, instruments, plate, spectacles, chemicals, and jewelers' supplies. During the same period, a total of $\$ 5,556,530$ worth of silver was utilized for similar purposes. Of this amount, $\$ 2,066,294$ was used for plate; $\$ 1,815,599$ for watch cases ; $\$ 1,098,220$ for jewelry and watches; and the remainder was divided among the other uses specified for gold. The table is of considerable importance, for by giving the amount of gold and silver annually utilized in the arts, it permits an approximate estimate of the available metallic currency of the country.

The English 's Parcels Post."

The Railway News gives the new arrangements for the parcels post, which are to take effect May 1. The present maximum weight is seven pounds, which is to be increased to eleven pounds. The charges will be 3 d . for the first pound and $11 / 2 \mathrm{~d}$. foreach pound or portion of a pound after the first, so that the charge for eleven pounds would be 18 d ., or 36 cents. There is also a provision for insurance up to a value of $£ 10$, at an additional charge of 2d. Postal arrangements of this kind here would tend to diminish the value of express

AN ADJUSTABLE AUTOMATIC OIL CUP.

The discharge aperture in the bottom of the oil cup shown in the accompanying illustration is fitted with an adjustable valve and novel means for holding the valve in any position in which it may be placed. The cup has a threaded nipple for attachment to the guides of a locomotive or other mechanism with which it is to be used, and at the top of the opening of the nipple is formed a valve seat, the valve stem extending upward through a spider in the top of the cup. On this spider, and concentric with the stem of the valve, is formed an annular rim, on the upper edge of which

MAHAN \& ROSSETTER'S OIL CUP.
are two inclined surfaces or cams, ،shown more in detail in the smaller view. The top of the valve spindle has a crossbar whose lower edge is V -shaped and rests upon the inclined cams; when the crossbar is above the lower ends of the inclined cams, the valve will be on its seat, and when the crossbar is turned to cause it to ride upward, the valve will be raised, allowing theescape of oil. Notches are formed in one of the cams to hold the crossbar in such position as it may be desired to set the valve, and a spiral spring on the valve spindle holds it in place.
This invention has been patented by Messrs. William A. Mahan and Charles Rossetter, of Marquette, Mich.

A SIMPLE FIRE ESCAPE.

The device herewith illustrated, besides being a simple one for use by individual householders, is intended also as a convenient appliance for the service of fire departments, in connection with hook and ladder companies, to facilitate the releasing of occupants from the upper floors of burning buildings. The fire escape proper consists of a car or basket, suspended from a ring which has a rope attached to it, by which the ring which has a rope attached to it, by which the
basket is raised and lowered, the rope passing over a basket is raised and lowered, the rope passing over a
roller or pulley on a shaft held in the window frame; or, otherwise, the pulley over which the rope passes may be suspended by a suitable hook made fast within a window frame or other opening of an upper story. There is, in addition, a guide rope, made fast at the window, and passing through lugs at the outer edge of the ring from which the basket is suspended, to be anchored at the other end at a suitable distance from the

ilse's fire escape.

building. This escape can be operated by a person in he basket to reach or lower away from an upper story, or by one on the ground, the basket being raised and lowered as slowly or as quickly as desired.
This invention has been patented by Mr. Augustus Ilse, of Evanston, Wyoming 'Territory.

To remove candle grease from furniture without injuring the varnish, rub it off with a little warm water and a rag.

IMPROVED STEAM BOILER.

The boiler shown in the accompanying engraving has an extensive heating surface, and is capable of standing high pressure. The water boxes or sections are formed of sheets of iron or steel, connected by short bolts and retained apart a short distance by strips at the edges, so as to form boxes of flat form, the space between the sides being about an inch. Any suitable number of these boxes are placed side by side with narrow spaces between, and are connected by braces so as

COOPER'S IMPROVED STEAM BOLLER.

to form flues that terminate in a smokebox at the rear end of the boiler. Between the sections, a short distance below the water line, are placed bars which extend from the front plate to the smokebox, and are bent at the inner ends and extended upward to the top of the sections; these bars prevent the flame from rising too high between the sections. The interior boxes are cut out at the front end to form a firebox, the sides of which are formed by the outside boxes. Pipes connect the boxes with the steam dome; the feed water pipe is connected with the rear lower ends of the boxes. It will be seen that this boiler has extensive heating surface compared with the body of water, and can be made to stand a high pressure.
This invention has been patented by Mr. George H. Cooper, of New Westminster, British Columbia, Canada.

A DOUBLE-LINK, AUTOMATIC CAR COUPLING.

The top of the drawhead of the coupling herewith shown has a slot of sufficient size to allow the coupling hook to be readily inserted and removed through it, the hook having a short slot in its rear to receive a pin, by which it is secured in place, the pin being kept in position by a key or other suitable means, and so arranged as to allow the coupling hook the necessary play. Fig. 1 is a perspective and F'ig. 2 a sectional view of the couplings linked together. The coupler has two hooks upon its lower side, for which there are corresponding slots in the lower side of the drawhead, the rear hook being made so long that it will never be raised out of its slot when the coupler is in use. The forward side of the forward hook is inclined or rounded so that it will be raised by the contact of the coupling link of the opposite car when the cars are run together, to allow the link to pass this forward hook, which then drops back into place and the cars are coupled. The coupling hook has three bearing points besides the pin on which it works-an inclined seat at the forward end of the slot in the top of the drawhead and twoinclined seats at the forward end of the two slots in the bottom of the drawhead. With this construction, each drawhead is permanently provided with a coupling link, the inner end of which is held by the rear hook; and when two cars are run together, the draught strain will be sustained by two independent links, either of which is intended to be sufficiently strong for use should the other be broken, while, should both be broken, the cars can be coupled by an ordinary coupling link, and the coupling still be automatic.
This invention has been patented by Messrs. William H. Adams, James D. Felthousen, and Albert Lawtenslager, of Albany, N. Y., and is an improvement on a former patented invention of the same inventors. For further particulars in reference thereto address Mr. Albert Lawtenslager, 71 North Pearl Street, Albany, N. Y.

CONSTRUCTION OF TORPEDO BOATS.

The construction of torpedo boats is an industry of very recent growth. It is one, however, which has of late attracted much attention, in consequence of the rapid increase in the number of such vessels in foreign navies, and the very few in our own. We are glad this deficiency is being fast put an end to ; the British Government having in the course of construction at the present time no less than fifty thoroughly serviceable first-class, sea-going torpedo boats, all of which will be completed in the course of this year.
Among the most celebrated constructors are Messrs.

Yarrow \& Co., who, during the last few years, have supplied nearly every country in the world with boats of this type ; and the British Government at the time of the Russian scare last spring contracted with them for the supply of twenty-four, which are now fast approaching completion. In addition to these, Messrs. Yarrow \& Co. are building similar vessels for the Spanish, Austrian, Dutch, Italian, Japanese, Portuguese, and Chilian Governments; and at the present moment their works represent a scene of the greatest possible activity

an improved car coupling.

-a very pleasant contrast with the general depression of trade in other parts of the country.
In these works, not only are the vessels themselves constructed from the very commencement, but also the machinery for propelling them, giving employment to over 1,200 men.
To give some idea of the amount of material which enters into the construction of a torpedo boat, it may be mentioned that the bars forming the skeleton work of the hull, if laid out in a continuous line, would extend for a length of over two miles, all of which has to be bent into shape, punched, and fitted up in its place, o which framework the outside skin plating of the hull is attached.
The longitudinal section represents probably the most interesting torpedo boat ever constructed, and shows very clearly what the internal arrangements of such a

training the hull.

putting a skin plating at the bow.

bhearing a skin plating.

forging steel screw propeller.

boring out screw propeller.

VIEW of messrs. yarrow \& co.'s works from the river thames.

view of bow, showing whitehead torpedo

craft are like. In the bow are two tubes, into which it will be seen, the Whitehead torpedoes are placed. They are ejected from these tubes at the required moment by the officer in charge, which is done by means of either compressed air or gunpowder. Aft of the torpedo compartment are the commander's and officers' cabins, next to which come the boiler and engines. We may here remark that the stokehole is sealed down air tight, no ingress or egress being permitted, and air is pumped into it by means of a steam ventilator, so that the men who are firing the boiler are actually at work under a pressure of air. Aft of the machinery compartment there is the crew space and petty officers' cabin. On deck will be seen two conning towers-one forward of the funnels, which is for use in time of war; the other, on deck amidships, being in a more suitable position for navigating when cruising about. The special interest that attaches itself to the torpedo boat represented by the sectional view is due to its unprecedented speed, which, on recent trials, was shown to be $271 / 2$ miles an hour. It may here be mentioned that when going full speed the boiler consumes no less than $11 / 2$ tons of coal per hour, evaporating water at the rate of one ton every four to five minutes, the engines developing over 1,200 horse power. -Illustrated London News.

Concrete as a Fireproof Material.

The engine works of the Barrow Shipbuilding Company, only lately restarted, are largely constructed of stone, and except in connection with the roof, pattern makers' floor, brass finishers* department, stores, and the gates, there is little or no wood, and yet stone it appears is not a good fire-resisting material and the best of it cracks, while iron exposed to a fierce flame buckles and twists and is soon practically destroyed. Properly made concrete, however successfully resists fire, and when iron beams or joists are embedded in it, they are well protected. It is now possible to construct large buildings entirely of concrete, although for roofing it is not perhaps always successful ; but for walls and floors it is eminently suitable, while its use for foundations is widely known-for this latter purpose six parts of ballast, one of sand, and one of Portland cement makes a concrete good enough for any kind of foundation. When great care is taken in making concrete for walls, these can be one-fifth less in thickness than brickwork For flooring, concrete has successfully stood the test especially in the North of England, and there is a large warehouse in Sunderland which has no less than 1,800 tons of cement concrete in its floors. These were made of slabs, some being as large as 21 ft . by 12 ft . 6 in . and 13 in . thick-four parts of hard broken brick to one of Portland cement being used ; and the iron girders were thoroughly embedded on all sides, except under the bottom flange. After six years these floors stand quite unshaken, and although there have been two or three serious fires, no damage has yet been done to the building itself. Care was taken to see that the cement used was not below 700 lb . tensile strength per square inch.

A Cheap Camera.

A good substitute for a more expensive camera lucida for the microscope can be made as follows: Cut a piece of thin metal, brass or copper (or even tin will do), into the form of a letter L. After smoothing the edges, bend one limb into an inclosed band, to clasp the end of the eyepiece after the cap is re moved. Clasp the other limb, near its juncture with the ring, with a pair of pliers, and twist it on its own axis through an angle of 90°. On the outer end bend a cockeye to hold a piece of wood, in the end of which make a slight split and insert the edge of a cover glass to serve as a mirror. Of course, both the image and the pencil point are seen by looking through the glassthe former by reflected, and the latter by transmitted light. The light reflected is sufficient to give good definition when ordi nary powers are used. In this way, each member of a class can easily make a camera for himself.-Botanical Gazette.

Venice.

s. von rochan.

SIMPLE MATCH TRICK.

To lift three matches by means of one, it is neces sary to make an incision in the end of a match and insert the pointed end of a second match into this ncision. Place them on the table with a third match resting against them for a support, as shown at the left of the figure. Then present a match to any one who may be looking on, and ask them to raise the three together by means of the match in the hand.

The solution is given at the right of the figure.
Bear lightly against the two matches that are joined until the third falls against the one held in the hand. Then raise it, and all three will be lifted together.
Although this trick, which we find described in a

a simple match trick.
French paper, Le Chercheurr, is probably as ancient as the art of making matches, our juvenile readers may find it of interest, and possibly it may afford them a half hour's amusement at recess time.

Heat Developed by Various Systems of Lighting.
In the Zeitschrift fur Elektrotcchnik, Mr. Wilhelm Penkert gives the following as the results of his experiments on the amount of heat emitted by various kinds of lights during one hour :

INCANDESCENT LAMPS.

A HOME-MIADE PRINTING PRESS.

"Faust," in the Amateur, of London, gives the drawings and details for building a press capable of printing a sheet $8 \times 10 \mathrm{in}$., and which is of a strength and solidity sufficient to give a good impression. Figs. 1 and 2 show sections of frame; Fig. 3, pieces for giving strength to top of platen; Fig. 4, carriage. with its hinging; Fig. 5, front and end elevation (A and B) of impression roller, so made as to form with its handle an eccentric lever; Figs. 6 and 7, perspective and end views of press. The pieces for frame, drawer, guides, etc., are of clean yellow deal, well seasoned and free

Council of Engineering Societies on National Public Works.
The organization now includes twenty-one engineering societies, representing a total membership of about 2,600. It was resolved at the last meeting that the organization should be called the Council of Engineering Societies on National Public Works, and that its object should be to promote an improved system of national public works. In making the Council permanent, a president, vice-president, and executive board of seven members were chosen, and it was decided that its membership should consist of the committees on public work of the various engineering societies throughout the United States, and as associates, with all the privileges except that of voting, any engineers interested in the development of a national policy. The organization has already enlisted the interest of many of the most prominent American engineers, and promises to make itself felt in influencing the future engineering work of the Government. Sub-committees of one member wer appointed to gather information in regard to the or ganization and conduct of the public works of the United States, France, Italy, Austria, Great Britain, and Canada. These results will be published from time to time, and a strong effort made to secure public co-operation. A committee was also appointed upón legislative information. It is believed that the best informed members of Congress appreciate the fact that the time has come for a radical change in the administration of the internal improvements made by the Government, and that instead of the highly diversified schemes now brought before Congress and the River and Harbor Committee of the House, through influences eminently local, there should be a board of public works, under, probably, the Treasury Department, which should discuss and thoroughly digest all these proposed plans: before they are submitted to Congress. Such a board would operate in very much the same manner as the pres ent Lighthouse Board, whose suggestions are always received with respect and are usually carried out. Some of the members of the Council do not feel that the time has quite come when it would be advisable to approach the members of Congress with such a proposition, but they all agree that the necessary in formation should be collected with as little delay as possible, and that the proper time for presenting the results of this investigation in a bill before Congress cannot be far distant. There is at present a manifest disposition on the part of the people to enlarge the functions of Government, and to give it the power to do for the nation many things which were formerly left to individual enterprise. So long as the conduct of public affairs can be kept in the hands of honest and disinterested representatives of the best element of the people, this tendency is to be warmly encouraged. If the Council of Engineers succeed in framing a wiser policy for the national works, we shall hope that these same advisers will be tempted to improve, through legislative enactment, the administration of some of those larger enterprises, such as transportation and communication, upon which the interests of the people are so greatly dependent.

Tonnage of the Tehuantepec Ship Railway.
The wise man who is about to build, first sits down and counts the cost, and, if he is an engineer, he adds to this calculation what the returns of the invest ment will probably be, that is, what there is to justify the cost. In the transisthmian ship railway, the cost has been very carefully estimated, and the other side of the equation, the returns, has received not less thoughtful consideration. During the year 1879, the total tonnage of the vessels which were entered and cleared from the Isthmus of Panama, and from such Atlantic and Pacific ports as indicated the doubling of Cape Horn, amounted to $2,938,386$ tons. In 1885, this had increased to $4,518,934$ tons, a gain of 54 per cent. At the same rate of increase, the tonnage for 1890, the date of the completion of the ship ilway, would be about $\quad \begin{aligned} & \text { is calculated that the } \\ & \text { tonnage which would be } \\ & g \text { the two oceans by a }\end{aligned}$ d at least amount to tonnage for the first year of the railway
There are two things in Venice that I have never been able to make out: How do they build a from knots, while the platen, bed, and sides and ends house, and how do they put out a fire? Building materials, of course, can be procured, and there is certainly no want of water. But where is the ground on which firemen or builders can take their stand? Even for the commonest repairs of houses three or four stories high, in streets only five or six feet wide, some plan must be adopted of which I have no conception. Two or three beams, half a hundred building stones, and a hod of mortar would block up the street, and interrupt the traffic of a whole quar-ter.-Architect.

A HOME-MADE PRINTING PRESS.
of carriage are made of mahogany. The manner of
making a platen here shown insures its being almost as rigid as if it were made of cast iron. The turning of the impression roller must be looked after with care, to be sure that the two pins just off the center at the ends, on which the roller turns, are absolutely in line with each other. The press will be greatly improved in appearance and its durability will be increased by a thorough coating with a spirit varnish. It is estimated that the cost of the materials for such a press will not exceed from $\$ 2.50$ to $\$ 3$.
gaged in this trade chose a short land carriage in preferen to the entire or partial circumnavigation of a contnent or to the reshipment of their cargoes at the Isthmus, which is not an unnatural supposition. It is difficult to estimate the increased growth of commerce which would result from such stimulus. The tonnage on the Suez Canal increased nearly 400 per cent from 1872 to 1883, and at Tehuantepec the increase would be scarcely less, as the indications all point to a marked development of the commerce of the tributary countries.

Sorrespondence.

To the Editor of the Scientific American:
Will you permit me to make a correction of an erroneous statement in my short notice of our Geological Hall in your last issue? It has arisen through an elision of the MS., and leaves an impression quite the reverse of the meaning intended.
Trilobite is a name applied to this class of crustacea, not from their sectional division into glabella, thoracic segments, and pygidium, but from the presence of a trilobed character extended through all these parts, trilobed character extended through all these parts,
from the tail to the head-a longitudinal or lengthfrom the tail to the head-a longitudinal or lengt
wise, not a transverse, feature. L. P. Gratacap.
American Museum of Natural History.

Frozen Petroleum for Steamer itor of the Scientific American :

To the Editor of the Scientific American:
It seems to me the question of fuel for steamers-I mean the substitution of petroleum for coal-can easily be solved. The drawback to petroleum is its liquid nature and consequent danger of listing. If petroleum be turned from a liquid into frozen bricks of any desired size, the objection disappears. It can then be packed as safely as coal, even more so. Small tanks heated by steam can be provided to feed the furnace burners, and into these tanks may also run pipes from the bunkers to carry away all leakage from thawing. In this manner, frozen petroleum can be carried by a steamer that will furnish considerably more fuel for the space occupied than the same bulk of coal. I think that the cost of petroleum in this form would also be a great saving on the present fuel.
E. F. De Celis, Editor La Cronica.

Los Angeles, Cal., April 10, 1886.

a detachable billiard cue tip.

This tip for a billiard cue is composed of layers of leather or other suitable material, in which is secured a bushing which serves as a means of uniting the layers, and which may be used with or without glue or cement. The tip is united to the cue by a fixed screw, which remains in the end of the cue when the tip is removed, the bushing remaining in the tip. By this arrangement an injured or worn tip may be readily replaced by a new one, and tips may be changed from one cue to another to suit
different players, who may thus easily different players, who may thus easily
detach and keep separately the tips of private cues. This invention has been patented by Mr. John A. Tracy, of Weston, W. Va.

The Tornado at St. Cloud.
 BY н. с. hovey

Minnesota has had more gratuitous advertising lately than was desirable; and the evil has been increased by the habit of styling tornadoes by the larger name of cyclones. There are points of resemblance, such as the fact that both move vertically around an advancing center, the motion being from right to left, or in a direction opposite to that of the hands of a watch, and both are violent agents of destruction and objects of dread. But there is also a marked difference between the phenomena. The true cyclone starts with a diameter of from 50 to 300 miles, spreading as it advances to one of from 500 to 3,000 miles. Its usual birthplace is amid the tropics, and its fury is exhausted before it reaches this more northern realm. Moving over a large body of water, it piles up mighty tidal waves that finally inundate the land. The tornado, on the other hand, is purely a local affair, originating in some collision of opposing storm currents, assuming a funnelshaped form, its tail now touching and then rebounding from the earth, and again sweeping along over it like a huge wet blanket, but its greatest diameter rarely exceeding 500 yards. Thus it proceeds in a serpentine way for from a few rods to 25 or 30 miles, when it bursts in some sort of local storm of rain or hail. Should it strike the water, it then becomes a waterspout, as was demonstrated in the case of a tornado in 1883, that swept out of Wisconsin upon Lake Michigan, causing a great commotion there and lifting a column of water some 300 feet high.

Several notable tornadoes have ravaged the Northwest during the last ten years, among which may be mentioned those at Hazel Green, Wis., in June, 1877 ; at Mankato, Minn., in June, 1880; at Faribault, Minn., in June, 1881; at New Ulm, Minn., at Grinnell, Iowa, at Racine, Wis., in 1883 ; at Rochester, Minn., in the same year; and at several other localities. But it many storms and tornadoes in other parts of the United States, as appears from the researches made by Lieut. Finley, whose unique book, bearing the title of "Six Hundred Tornadoes," will give the needed information, together with the supplementary observaJions made by the same authority.
The universal opinion, however, seems to be that none of the long list exceeds in its destructive energy or terrible manifestations the tornado of St. Cloud and Sauk Rapids, Minn., that took place on April 14,

1886, and of which the writer had the opportunity to make special observations, at least so far as the effects I only saw the Being on the spiteful hail, many of the stones measuring more than an inch in diameter; but on a subsequent day I visited an inch in diameter; but on a subsequent day I visited
the locality, making inquiries of eye-witnesses, and following the tornado's track myself for several miles, and noting its varied effects.
During the day a remarkably high temperature had prevailed for the season, the mercury rising as high as 80 deg., and the air was sultry and oppressive. At 3 P. M. observers saw dark banks of struggling clouds overhanging the ridge that in ancient times used to be the river limit, and there were apprehensions of im pending danger. Suddenly the clouds began to re volve, while sharp points shot downward, until a whirling funnel-shaped mass was formed above a basin amid the hills, that seems to have furnished the cradle for the ensuing tornado. Its first condition was undoubtedly that of a simple whirlwind, having a diameter of about 1,000 feet, which uprooted or twisted off nearly every tree in its circle, overturned the monuments in the adjoining Masonic cemetery, and tore up the bowlders from the ground. Thence it moved slowly and majestically along, at the rate of about 12 or 15 miles an hour, but with an inconceivably rapid rotary motion upon its vertical axis, confining itself for some distance to a path hardly more than 150 feet wide. The pyrotechnic display of flaming colors against a background of sooty blackness was very impressive and wonderful. Hundreds of people took timely warning and got out of the road of the moving column of cloud, whose general trend was toward the northeast. Having wrecked the Catholic church on Calvary Hill, and also several farmhouses, it entered a portion of the city of St. Cloud mainly occupied by foreigners, whose frame cottages were strewn over the plain indiscriminately, leaving nothing but the cellars to mark the site of the houses.
I noticed but one exception to this general work of complete demolition, and that was of a house that had been whirled about end for end and left on its foundation as a wreck. Reaching the freight depot of the Mani toba R.R., the wind tore that to pieces, overturned the long lines of freight cars, carried the trucks away, and even in places wrenched the iron rails from the ties. In one instance the trucks were blown from underneath a car, dropping the latter on the track where it was left. By a merciful exemption, the hospital of St. Benedict was spared, although the houses in its vicinity wer dence of Lieut.-Gov. Gilman, tearing away his fences and killing his horses. The total loss of life in St. Cloud was 22 individuals, mostly women and children, besides 40 or 50 more or less injured; and the total loss of property was $\$ 87,395$, of which amount $\$ 50,000$ fell to the share of the Manitoba R.R., while the remainder was divided among 64 sufferers and their families, thus rendered homeless. From these figures it will be seen that the dwellings were not of an expensive sort, and will readily be rebuilt by the generosity of contributors. The tornado struck the Mississippi River at a point opposite the village of Sauk Rapids, and fishermen
who were in full view of the crossing aver that for a few moments the bed of the river was swept dry; and in corroboration of this remarkable statement they showed me a wide marshy spot where no water had been before this event took place! Two spans were torn away from the substantial wagon bridge below the rapids, one span being hurled up stream and the
other down it by the rotary motion of the blast; and other down it by the rotary motion of the blast; and
great blocks of granite being also torn bodily out from the piers. The large flour mill near the bridge was leveled. The depot of the Northern Pacific R.R. was demolished, and the central portion of the village itself was then attacked with the greatest violence. Being the county seat, the court-house was located here, a
substantial structure, of which only the vault, six iron safes, and the calaboose were left-the latter turned upside down. A fine new schoolhouse, costing $\$ 15,000$, was completely swept away. The Episcopal church was so utterly removed that the sole relic thus far
found is a battered communion plate. The floor of the large skating-rink is all that remains of that struc ture. Stores, hotels, a brewery, and four-fifths of the residences in the village were scattered as rubbish along the hillsides, or borne away for miles through the air. The caprice of the storm was shown here and
there. The lower story of one house was removed to parts unknown, while the upper story was left on the foundation below. A large barn containing twenty mules was demolished, but the mules escaped without ver the walls woman was lifted from her chair, carried in a thicket of scrub oaks several rods distant. A man told me that, after getting his family into the cellar, he thought he would watch the storm for a moment but being caught by it, he seized hold of the roots of a tree, and was flopped up and down, as a carpet that is
being shaken, but escaped without serious injury. An ron safe was carried by the wind completely across the street, and left there as a monument of aerial energy !

The number of the killed at Sauk Rapids was 39 , and about 100 were injured more or less. The fatal blows seemed to be of two kinds, either contusion about the head or stabbing by the lance-like splinters of boards whirled through the air. Many had their limbs broken by falling timbers and other heavy objects. Of sufferers still living, several are in a critical condition and may not survive. It is an instructive fact that, of those who had the presence of mind to take refuge in cellars, on hearing the roar of the approaching tornado, only one, so far as I could learn, fell a victim to its fury-a boy who was crushed by falling masonry in a part of the cellar farthest from the storm. I examined nearly every cellar in the village over which the sorm had passed, and found that the portion nearest its direction of approach was free from rubbish, and would no doubt have proved to be a safe refüge.
An appraisement committee say that the total number of houses destroyed at Sauk Rapids, not including sheds and barns, was 109 , and the total value of property destroyed was more than $\$ 290,000$.
One of the saddest of the many tragedies marking this wide disaster took place at a farmhouse in the country, about sixteen miles north of Sauk Rapids, where a wedding party of thirty were assembled. The ceremony was just concluded, and the officiating clergyman was offering prayer, when the building was struck by the tornado. The bridegroom was killed outright, as were also fifteen others; seven more victims have since died, and only one of the company es caped severe injury of some kind.
Following the tornado's track through the forest, I was interested in observing that the scrub oaks had in so many instances resisted successfully the onslaught that had leveled larger and nobler trees. Their branches were grotesquely laden with torn garments, scraps of roofing, fragments of boards, articles of furniture, and other objects. This display was observable for miles. The depot sign "Sauk Rapids" was carried to a locality nine miles distant. A plank 14 nches wide and 12 feet long was transported 18 miles. A hunter 28 miles north of the village told me that he saw a black cloud approaching, from which he took refuge. But it did no further harm than to shower down bits of boards, lathing, torn books, etc. He picked up a ledger which was identified as belonging to the clerk of the county court.
I had excellent opportunity of noting, in a large open field, the proofs that the tornado traveled in a serpentine path, and with rapid rotation on its axis. Along the right hand of the general track, the boards and other fragments of houses, and the overturned trees, were all disposed so as to point forward and inward toward the line of march. Those along the 1eft-hand side were invariably pointed backward and away from that line. Many large splinters were driven into the ground so firmly that, using all my strength, I could not pull them out again. A farmhouse standing near the left-hand margin of the srack had its right side intact, while on the left or outward side the windows were all broken in, and the walls and roof were pierced by numerous plinters. Estimates have een made as o the rate of the rotary motion that could drive timbers deep into the soil and hat could send a splintered joist, like a huge javelin, completely through the roof of a dwelling, but I know of no satisfactory mode of calculation.
Putting together the testimony of various observers tationed at different points, the width of the tornado's rack musthave varied from 100 to 1,000 feet; ts entire duration must have been rather less than one hour, ingering but a few moments in any one locality ; and the entire distance traversed by it, from the starting point southeast of St. Cloud to the point where it iourst Station, was about thirty-five or forty miles. The total loss of life thus far reported from all points was about ninety individuals, and about twice that number injured. The sum total of property destroyed could not have been less than $\$ 400,000$.

Trees in the Valley of Mexico.

A contract was lately concluded by the Mexican Government with Mr. Oscar Droege, to plant 2,000,000 trees in the Valley of Mexico, within four years. The rees specified are chiefly ash, poplar, acacia, and mountain cedar, with a sufficient margin for miscellaneous kinds, according to special conditions of site and climate; and the arrangements contemplate the formation of national nurseries in which the study of cientific forestry may be pursued on a footing in some degree commensurate with its importance. The valley was densely wooded in the time of Montezuma, when Cortez and the Spaniards entered the country. But the Spaniards burnt off and destroyed the timber.

An article on the usefulness of patents, taken from the Boston Advertiser, will be found on another page. It is well worth reading by every one, and we especially commend it to the attention of our legislators when considering the various bills pertaining to patents now before Congress.

The island of Barbados is the most densely populated part of the earth. This island, with an area of 106,600 acres, contains a population of over 175,000 souls, that is to say, an average of no less than 1,054 people to each of its 166 square miles of territory. The Chinese province of Keang-su, which was at one time ignorantly imagined to be the most uncomfortably crowded district under the sun, contains but 850 mooneyed Celestials to the square mile, while East Flanders, in Belgium, the most thickly populated neighborhood in Europe, can boast of only r05 inhabitants to the square mile. Coming nearer home, Westchester (\%o., New York, with a territory three times as large, has only four-sevenths as many people as are packed upon this thronged, man-ridden Caribbee island. If the Empire State were as thickly settled as Barbados, it would boast a population of $60,000,000$. Of the 175,000 souls in this island, 9 per cent are whites and 91 per cent are blacks or of mixed blood

Mistakes of Life.

Somebody has condensed the mistakes of life, and arrived at the conclusion that there are fourteen of them. Most people would say, if they told the truth, that there was no limit to the mistakes of life; that they were like the drops in the ocean or the sands of the shore in number, but it is well to be accurate. Here, then, are fourteen great mistakes: "It is a great mis take to set up our own standard of right and wrong, and judge people accordingly; to measure the enjoy ment of others by our own; to expect uniformity o opinion in this world : to look for judgınent and experience in youth ; to endeavor to mould all dispositions alike; to yield to immaterial trifles; to look for perfection in our own actions; to worry ourselves and others with what eanuot be remedied; not to alleviate all that needs alleviation as far as lies in our pewer; not to make allowances for the infirmities of others ; to consider everything impossible that we cannot perform ; to believe only what our finite minds can grasp ; to expect to be able to understand everything.

Improved concrete making machine.

The Carey-Lathanmachine consists estentially of an arrangement of elevator or dredger buckets, a cement hopper, and a mixing cylinder. The sand and ballast are gathered by the buckets and delivered to the mixing cylinder-the proportion of sand to ballast being regulated by the number or capacity of the buckets employed. The cement or lime is fed from the hopper by an archimedean screw, the pitch or speed of which can be adjusted to suit the quantity required to be delivered in proportion to the sand and ballast.
The cement is delivered, says Engineering, in a continuous stream, and together with the load and ballast, which are fed in by the dredger buckets, is passed to the revolving cylinders, where the whole becomes intimately mixed in the dry state. By the time the materials have arrived at about the middle of the mix. ing cylinder they have become thorourhly amalganated, and water is then admitted in the requisite quantity by means of a perforated hollow shaft, around which the cylinder evolves. The operation of wet mixing is then performed, and the complete concrete is delivered continuously from the open end of the cylinder. An important feature of the machine is the arrangement of mixing blades, which revolve in the same direction as the cylinder, but at a slightly differentspeed; this has the effect of increasing the stirring or mixing aetion, and overcomes a difficulty which was found to exist by the setting of the cement when fixed blades were employed. The blades in moving at a quicker speed constantly change their position with respect to the inside of the cylinder, so that no cement can accumulate and set upon them. The cylinder is horizontal, but as the blades are of a curved or
screw-like form, the materials are lifted and tumbled over and over, and at the same time forced toward the open end of the cylinder.
At the Newhaven Harbor Works, two of Carey \& Latham's machines have been employed in making over one million tons of concrete; but numerous improvements have since been effected in them, and the machine we illustrate differs in several material points from the former pattern. It is now constructed in various sizes suitable for making five to seventy cubic yards per hour, and we understand Messrs. Ingrey, Poore \& Lathan, London, have supplied several of 20 yards and 70 yards capacity to some of our large contractors.

A SMALL CONDENSING ENGINE AND BOILER.
The engine and boiler, illustrated herewith are designed for use in small workshops, rural residences, etc. Mr. Pifre, the maker, has designed the boiler so that it only requires an occasional supply of fuel, and the steam is condensed to return the water to the boiler. The principle atopted for firing the boiler is that of a cupola or a slow combustion stove, having a cohmm of fuel which burns away at the bottom and allows the remainder gradually to descend The boiler is placed

A SMALL CONDENSING ENGINE AND BOILER.
on the same baseplate as the engine, and is composed of an outer shell with an internal cylindrical firebox, standing upon an ashpit cast with the foundation plate, which is provided with slides for regulating the air supply. The lower part of the firebox contains a number of vertical water tubes ranged round the cir cumference and jointed with bends to the firebox shell. For the small sizes, from 34 to 1 horse power, the firebox has the same diameter from top to bottom of the outer shell, leaving an annular steam and water space in which the circulation of the water is promoted by the water tubes. Into the upper part of the firebox a cylindrical filling cliute is inserted, which reaches to about the middle of the firebox. Above the fire box aud round the upper part of the filling cylinde
\qquad

boiler, and the filling chute is riveted to its top, a num. ber of tubes being inserted between the annular firebox top and the top of the boiler.
The engine is of the steam-hammer type, and possesses no peculiar features, except that the cylinder, piston, and slide valve are made of bron\%e, so as to reןuire no lubricant besides the steau. It is fitted with governor ant a feed pump driven by an eccentric. The steam, on escaping from the cylinder, is passed through a condenser. which is placed out of the way against a wall, and consists of two concentric pipes. The stean passes through the inner pipe, while in the annular space water circulates in the opposite direction to the flow of stean, a reservoir in which the water can cool itself again being, of course, required for this purpose where there is no available cheap supply which can be allowed to rum to waste. The condensed water flows into a cistern, from which the feed pump draivs. The safety valve on the boiler also discharges into the condensing pipe.
These small motors are very cleanly. according to the Mechanical World, of London, there being no continual firing with a shovel, and they are intended to be especially useful for those who desire small powers intermittently.

French Shocs

The following is from special reports which have just been made to the Government at Washington by the consuls and commercial agents of the United States
The French have peculiar tastes, and believe that their shoes are inimitable in material, workmanship, and, above all, in style. Take, for instance, their ladies' dress slipper, the distinguishing features of which are the pointed toe and a high heel, sloping frow the place where the heel helongs to the center of the foot. This peculiar structure is extended to theirwalk ing shoes, and it is a sad fact that they have been sent in countless numbers to America and other countries, and have been readily sold, when to the casual observer they would simply appear to he refined instruments of torture. Wooden shoes and wooden soles, cardboard and straw soles, with prunella and cloth uppers, are cheaply manufaetured, and find favor among the working classes. The French have possessed themselves of the secret of cheap mannfactur ing, so that, while maintaining a fair exterior, they can deteriorate the quality to such an extent that it is more than an offset to any foreign competition.
The duties are not excessive, but the great obstacles o the importation of boots and shoes in this district Marseilles) are of another character. 'These are the willingness of the people to purchase and wear shoes of the most firmsy and inferior quality, provided they are cheap, and their unwillingness to pay for a better article a higher price than that to which they have been accustonned. The soles are of sot't, spongy, yellowish leather, often underlaid with paper; the seam connecting the tor, with the vamp soon gives way, and in wet weather the "counter" breaks down, and permits the heel to bulge beyond the soles. These goods are the proluct of hand labor in hundreds of small shops and factorie:; throughout this district, and they form the staple footwear of the people, who, conservative and severely frugal in all things, cannot see why they should pay from 26 f . to 30 f. for one pair of good shoes when the same sum will purchase three pairs of new ones. In this, as in other articles of dress and luxury among the French working people, it is the new thing which counts
Boots and shoes for men's wear have been imported here (Lyons) to some extent frum Vienna, in Austria, and are meeting with some success. They are quite perfect in elegance and shape, but objection is made to the quality of the soles, which are said to be inferior. Germany is alse supplying the French markets with felt slippers to a considerable extent, the sole either of felt or leather, as the case may be. England is exporting so very small a quantity to this country that it is carcely worth mentioning Boots and shoes manu factured in the United States are quite unknown in this consulate district. Large quantities of caoutchouc this consulate district. Lare quantities of caoutchouc come from there, but the fabri
shoes is perfected here in France

A calculation made by Mr. Corthell of the figures of the mile-long railroad train drawn by a single locomotive establishes that there were 3,253 tons weight on this train, which was drawn by a single 35 ton engine. I'his would hemore than the weight of many steamships with their cargoes.
there is a smokebox with a lateral pipe to the chimney. Coke or charcoal is used as fuel, and the entir the sarne. The coke burns in the fire box and the com bustion gases pass through the annular space between the firebox and the filling chute. In proportion as the fuel on the grate is consumed, the column of coke sinks down, and at sufficiently long intervals the chute is filled again to the top. 'Jhis does not interfere with the combustion, which can be regulated by the slide on the ashpit and a damper in the chimney pipe, and the evaporation when once adjusted proceeds very regularly. For powers above one horse, the firebox reaches only to about the midule of the height of tha

OTHNIEL CHARLES MARSH.

by a yale classmate.
To write the record of a successful life, always a pleasant task, is doubly so when, as in this instance the history is that of a life-long friend.
Othniel Charles Marsh, Professor of Paleontology in Yale College and President of the National Academy of Sciences, was born in Lockport, N. Y., Octobミr 29, 1831. His parents were Caleb and Mary Gaines (Pea body) Marsh, whose eldest and only surviving child he is. Both his parents were of New England descent, and he was connected with the Pope, Dodge, Spofford, and other prominent families. His maternal uncle was the eminent banker, George Peabody. From early youth he was addicted to athletic exercise, especially to hunting. He was a sportsman before he became a scientist; but this out of door life and contact with nature soon turned his attention to the study of the natural sciences, at the same time that it contributed robustness and vigor to his frame, which has enabled him in after life to perform without weariness an amount of thorough and efficient work under which a mere book-worm would have collapsed, and rendered him on subsequent expeditions to the Rocky Mountains the best shot of the party.
In 1852 Marsh went to the Philips Exeter Academy at Andover, Mass., a celebrated training school, where he studied for four years and graduated as valedictorian of his class. Entering Yale College in the fall of 1856 , together with most of his Andover classmates, he graduated there in the class of 1860 with high honor.
It was as a classmate at Yale that I first knew him. He was already a savant before he had attained his first scholastic degree. Without neglecting the studies of the curriculum, he found time to care for an aquarium which he kept in his room, and in which he cultivated aquatic life, both animal and vegetable, as material for his biological studies. Vacations were often, perhaps generally, spent in Nova Scotia in the study of the geology and paleontology of that then little known country, and it was on that soil that his first great discovery was made, the two celebrated vertebræ of the Eosaurus acadianus, the earliest vestiges of reptilian life yet known. At the end of his collegiate course, Marsh stood eighth in rank of scholarship in a class of 108 or, as it now stands on the triennial catalogue of Yale, 109 members, the largest and one of the ablest classes that had ever graduated there. As a rule in that class, a high stand in scholarship was not incompatible with excellence in other directions, and among the men of whom the world has since heard may be mentioned William Walter Phelps, whose rank on the appointment was even higher than that of Marsh
Although Marsh had always rightly regarded linguistic studies as a means rather than an end, yet his proficiency in classics was such as to entitle him on graduation to the Berkeley Scholarship, which was founded by the eminent English metaphysician, Bishop George Berkeley; and in accordance with the terms on which the income of that foundation is granted, Marsh, rather for the honor than the income, since his private fortune was
ample, remained two years longer at Yale as a scholar of the house. Already he began to contribute articles to scientific journals, and his name became known in both hemispheres, so that when in 1862 he went abroad to continue his studies, he was recognized by the scientists of Europe as a brother.
He remained for three years in the universities of Heidelberg, Breslau, and Berlin, and studied under the direction of Ehrenberg, Frose, Bunsen, Peters, Beyrich, and Roemer. His vacations, as usual, were employed in the field, much of the time among the Alps, and as usual he found something that others had overlooked.
In 1866 he was appointed Professor of Paleontology at Yale College, and still retains that professorship, the only person who has ever filledthat chair at Yale. The fund which endows it comes from the estate of his uncle, George Peabody, as also does the endowment of the Peabody Museum of Natural History at New Haven, the Peabody Museum of Archeology and Ethnology at Cambridge, and the Peabody Academy of Science at Salem, Mass., to the success of all which he has contributed by his advice and plans.
Prof. Marsh began the work of his professorship by examinations of the Cretaceous and Tertiary fauna of New Jersey; but in 1868 he made the first journey to the region with which his name is most fully identified. He may well be said to have written his name across the Rocky Mountains, so numerous and valuable have

PROF. MARSH, PRESIDENT of the national academy of sciences.
hundred sons and daughters of Yale. His fine physique, robust health, and florid complexion still give him a youthful appearance, as the engraving, accurately reproduced from a life-like photograph, well shows.
He was Vice-President of the American Association for the Advancement of Science at the Nashville meeting in 1877, and President of the same at the St. Louis meeting in 1878.
As Vice-President, he delivered an address " On the Introduction and Succession of Vertebrate Life in America," and as retiring President at Saratoga, in 1879, an address "On the History and Methods of Paleontological Discovery," both which were milestones in the progress of science.
His larger published works are the elaborate monographs, published in the Geological Survey series, on "Odontornithes" and "Dinocerata."
He has also published over one hundred and fifty papers on scientific subjects, all favoring the evolutionary theory.
In April, 1878, he was elected Vice-President of the National Academy of Sciences, and on the death of Joseph Henry, later in the year, he succeeded Henry as President, which office he has ever since held, and is expected to preside at the annual meeting of the Academy in Washington, commencing April 20.
W. H. H.

Industrial Notes.

Damaskeening Metals by Electrolysis.At one of the last sessions of the Societe Industrielle d'Aix-la-Chapelle a note was presented in which was described a method of damaskeening metal plates by electrolysis. The process is based upon the following principle: If we put two copper plates into a sulphate of copper bath, and connect one of them with the positive and the other with the negative pole of a battery, a transfer of metal from one to the other will occur. This granted, the process is as follows : A thin layer of an insulating substance (wax, for example) is spread over a plate of copper, and on this is drawn with an etching needle the design that it is desired to reproduce. The plate thus prepared is suspended in a sulphate of copper bath and connected with the positive pole of a battery. In a short time the plate will have been attacked everywhere where the copper was laid bare by the needle, that is to say, upon the lines of the drawing.
It requires a battery of two elements to bite in the lines of the drawing to the depth of a millimeter. After sufficient biting in, the plate is taken from the bath and treated with a few drops of hydrochloric acid, in order to remove all traces of oxide of copper in the lines of the drawing. After this, the plate is washed with water and suspended in a bath of silver or nickel and connected with the negative pole of a battery. The positive pole now consists of a plate of platinum. The silver or nickel deposits wherever the copper has been attacked, and, at the end of a certain time, the depressions will be entirely filled with the new metal.
After this it only remains to polish the plate, when it will be impossible to distinguish it from one that has been
awaited him on his return from his summer's explorations in the Rocky Mountain regions last Saturday, he will busy himself arranging and describing the treasures he brought back with him. The discoveries made by Professor Marsh are of the greatest importance.
About a dozen subsequent expeditions were undertaken from year to year, but he finally preferred to send out trained explorers.
In 1874 he came in contact with the Sioux Indians, who at first drove him back, supposing he was prospecting for gold. On better acquaintance, however, Red Cloud spoke of him as being the only white man he ever met who kept his promises. He was led to attempt redress of the Indian grievances, and thus brought into conflict with the policy of Secretary Delano. The quindecennial history of the Yale class of 1860, published in 1875, says: "Secretary Delano began by calling our classmate 'a Mr. Marsh,' and ended by retiring to private life and political death in Ohio, where he is now known as 'a Mr. Delano.' This is the first instance in which a private citizen has successfully fought a department of the Government in his efforts to expose corruption, and of course the victor was a ' 60 man."
Prof. Marsh is a connoisseur in art as well as a leader in science. His beautiful mansion in New Haven is well-stocked museum of painting and sculpture.
He is still a bachelor, though older than most of his
amaskeened by hand.-La Lumiere Electrique. Artificial Stone.-Messrs. Thompson and Bryantform a good artificial stone by mixing in proper proportions Portland cement, powdered granite, blast furnace slag, and water containing silicate of soda. The mixture may be colored to suit the taste.
Iron Paint.-For painting walls or other objects exposed to dampness a composition is much used in Germany formed of very fine iron filings and linseed oil varnish. When the object to be painted is to undergo frequent changes of temperature, linseed oil and amber varnish are added to the first two coats.
This paint may be applied to wood, stone, or iron. In the case of the latter, it is not necessary to first free it from rust or oily matters.
Fireproof Composition.-Mr. S. J. Blanc, by treating furnace slag with boiling acid, obtains a jelly-like substance, of which he mixes 16 parts with 8 parts of silica, 23 of oxide of zinc, 23 of silicate of soda, and 30 of lime water. The product thus obtained he mixes with colors and varnishes, in order to render them incombustible, and, at the same time, impermeable to moisture.
Bleaching without the Use of Chlorine.-Mr. Thomas, of Elberfeld, describes the following process of bleaching without the use of chlorine: The materials to be bleached are submitted to a preparatory treatment, either a cold one in a stone or wooden back, or a hot one in an iron boiler, according to the degree of decoloration that it is desired to obtain. This treatment is
performed with a solution of caustic soda in the proportion of $3 \frac{1}{2}$ pounds to 100 pounds of the materials to be treated. The duration of this operation is about twelve hours.
The materials are next immersed in a hot bath of permanganate of potash for twenty or thirty minutes, and after this in a solution of one pound of borax in ten gallons of water, which has previously been saturated with sulphurous acid. In this latter bath they are allowed to remain from twenty to thirty minutes, after which they are thoroughly washed, and finally dried. - Moniteur Industrielle.

Preparation of Metals for Nickelizing.-Surfaces to be nickelized are usually polished before being submitted to the action of the bath. After this operation is finished they remain covered with a slight greasiness, which is often still further increased by contact with the hands. This is one of the principal causes of failure to obtain a perfect nickelization, and it is therefore essential to have the surfaces as clean as possible. The Elektrotechnische Rundschau says that the following process will always yield good results :
Prepare a hot solution of one part by weight of pot ash in ten of water, and place the object in this and allow it to remain therein for one or two minutes, and then wash with plenty of water. Next putit into a bath made by slaking quicklime in water and adding enough water to make the mixture look like milk. Then wash again with fresh water. Finally, place the object in a solution of one drachm of hydrochloric acid to a quart of water, and wash a third time with pure water. The surfaces will now be well adapted for receiving a nickel coating, and the only precaution to take is to prevent them from coming into contact with the hands or other greasy bodies.

What is Thought of it.

The encomiums passed upon the Scientific AmeriCAN by the press throughout the country are numerous and very gratifying to the conductors of this paper. It is but seldom that we occupy space for the reproduction of these kindly expressions, but occasionally we take occasion to recognize the courtesy of our contemporaries by copying from some of those papers published in diverse portions of the country. The papers named in the annexed list, and scores of others who have seen fit to say good words for the Scientific American, have the publishers' thanks.
The Scientific American is the very best publication in this country for those interested in science,
engineering, mechanics, etc.-Fulton Co. (N. Y.) Reengineerin
The Sci
"sing its praises" American certainly needs no one feel it an absolute duty to the general public, at least that portion of it which has never seen or heard of the paper, to tell them that such a one is published, and that its true value cannot be overestimated. It stands at the head.-The Practical Poultryman, War-
saw, Ind. That well known and most useful journal, the SciENTIFIC AMERICAN, a paper that is alike interesting
to the common reader, the artisan, and the student. to the common reader, the artisan, and the student. Its columns are always prat.
San Antonio (Tex.) Light.
Scientific American.-Every week this most valuable periodical presents whatever is new in the world of science, art, and manufactures. Full of practical information, it discloses to the thoughtful not only what has been ascertained, but also suggests the possibilities
still to be revealed. With the growing attention to still to be revealed. With the growing attention to education in the industrial arts this periodicald must realize that "Truth is stranger than fiction."-Truth and Works, Phila.
The ScIENTIFIC AMERICAN presents weekly to its readers the best and most reliable record of various improvements in machinery, while the scientific progress of the country can in no way be gleaned so well as by
the regular perusal of its pages.-The Fountain, York, $P a_{\text {. }}$ regular perusal of its pages.-The Fountain, York, A father can give his young son no better present
than a year's reading of the ScIENTIFIC AMERICAN. Its good influence will undoubtedly show in the brain of his son, which will make him feel proud of him. Its contents will lead the young mind in the, path of
thought, and if he treads there a while, he'll forget frivolities and be of some account

After the moral and religious instruction of the family is secured, we know of nothing more interesting and instructince and its marvelous achievements. And we know no medium which presents such a record in so full and readable a manner as that well known weekly, the SCIENTIFIC AMERICAN, $\$ 3.20$ a year, established over forty years. It will promote industry, progress,
thrift, and intelligence wherever it is read. It is of thrift, and intelligence wherever it is read. It is of but is also of use to the farming and mercantile community, on account of its illustrated notes on farming, fencing, farm buildings, implements, etc.
The Scientific American Supplement is the same size, and of a somewhat higher and more technical grade. Price $\$ 5$, or the two together for $\$ 7$. Munn \& Home and School, Toronto, Canada.

Among the publications devoted to practical information, art, science, mechanics, chemistry, manufactures, roughly than the ScIENTIFIC AMERICAN. Its copious letterpress is supplemented by admirable illustrations, and is the product of the best minds in the peculiar
domain which it cultivates. The ScIENTIFIC AMERI-

CAN is considered an authority by both spec
the general public.-The Standard, Boston.
The Scientific American is the most practically useful publication of its kind in the country. Indeed, it occupies a field distinctively its own. Not alone for
the machinist, manufacturer, or scientist, but it is a journal for popular perusal and study.-The Tonica Ill.) News.
The Scientific Americian is the standard of all vorld. It is art questions throughout the civilized $\$ 3.20$ per annum, which places it within the reach of all.-The Weiser (Idaho) Leader.
The Scientific American is, beyond all competi tion, the leading scientific paper of America. It pre sents the latest scientific topics in an interesting as
well as a reliable manner.-Sunday Gazette, Akron, O.

The Scientific American and the Scientific AMERICAN SUPPLEMENT are publications of incalcula ble worth to every mechanic, artisan, and inventor By reading these beautifully printed publications, with their pages filled with pictures and illustrations of new ledge that often prove fortunes to them.-"Brick" Pomeroy's Democrat.
The ScIENTIFIC AmERICAN, says the Wolsey (Dakota)
Journal, is without a peer in its line, and is invaluable Journal, is without a peer in its line, and is invaluable
to mechanics and inventors.

The Scientific American remains without a rival
its special field. One will always find it full of valuin its special field. One will always find it full of valuable information that it would
where.-Christian S. S. Teacher.

The Scientific American is the greatest journal of its clas
cate.
The
The Scientific American is, without a doubt, the best scientific paper published in America and is inter esting and
Advance.

Our Patent System.

If some philosopher should propose a scheme by which, without any expense to the state, a small army of ingenious men might constantly be employed in devising means for adding to the wealth of the country and to the comfort of its inhabitants, he would be regarded as a person of almost superhuman wisdom. And yet the patent system of the United States is such a scheme, producing such results. Last year the patents granted for inventions reached the enormous number of 23,329 , and most of these were for really useful de vices that will effect a saving in time, money, and labor. It would be speaking within bounds to say that every year 10,000 men employ a considerable part of their working hours in making inventions, and to this class our wonderful industrial and agricultural progress is largely due. It is the genius of the inventor that has developed our manufactures, planted and reaped the prairies, and even fenced in the cattle ranges of the West. In his recent work on "Popular Government," Sir Henry Maine remarks that the power to grant patents by federal authority is one of those provisions of the Constitution which, though commonly overlooked by superficial critics, "have most influenced the desti nies of the American people," and that it has made them " the first in the world for the number and ingenuity of the inventions by which they have promoted the useful arts." Practical men who study our indusfew achievements come to the same conclusion. A who visited this country returned home almost in despair of competing with us even in the manufacture of watches; and in their report they recommend, as of the utmost necessity, the creation of a patent system in Switzerland similar to our own. Sir William Thomson, President of the Mathematical and Physical Sec tion of the British Association, has declared that "if Europe does not amend its patent laws, America will speedily become the nursery of useful inventions for the world."
The Boston Weekly Advertiser, from which the above is taken, expresses the opinion that the costs of a pa tent in this country seldom prevent an inventor from obtaining a patent, in consequence of his inability to pay the fees, although circumstances may require him to wait some time longer than he likes to, for lack of the necessary means.
Referring to the Patent Office, the editor adds Small as the fees are, however, the income arising from them is sufficient not only to defray the whole expense of the Patent Office, but to leave a large surplus besides; and, therefore, there can be no excuse for the niggardly appropriations made by Congress for this department. The force is too small, so that inventors are kept waiting an unreasonable time for action upon their applications, and the salaries of the examiners are insufficient to attract such men as the duties of their office demand. If, therefore, any new legislation is to be had in respect to patents, it should be such as will increase the efficiency of the present system, already a source of revenue to the state and of immense benefit and embodied in five or six bills recently introduced in Congress, are of a directly opposite character, and calculated to impair, in some cases to destroy, the efficiency of the present law. They are indications of a feeling
in the West, that patents are instruments of oppression, they could be done a way with.
It is true that the protection of a patent sometimes nvolves a certain hardship to innocent purchasers of an infringing article, but the hardship in this case is no greater than in other cases where innocent purchasers are victimized by thieves. The man who buys a stolen horse is obliged to surrender him to the rightful owner, and although this is a hardship, it is a necessary one. And a similar hardship is equally necessary in the case of a patent, for if innocent purchasers were not liable to suits for infringement, the infringing manufacturer and seller would stand as well in the market as the owner of the patent; and when the article invented was, as it very often, perhaps most often, is of such a character as to be made and disposed of easily, the value of the patent would practically be gone. In reality, it very seldom happens that an innocent purchaser is sued; but if his liability to suit were taken away, capitalists would not buy patents, and the prospective reward of the inventor would disappear The capitalist is as indispensable to the inventor as he is to the workman; and it is impossible to destroy the property of the capitalist in patents without striking a fatal blow at the inventor behind him. The capitalist benefits incidentally by the patent law, but if this be a misfortune, it is an unavoidable one.
Those who wish to curtail the privilege of patent owners, or to abolish the system altogether, should bear in mind not only soulless corporations and rich capitalists, but the real object of the patent laws-the inventor. Commonly he is a poor mechanic, toiling late at night; often and often, as the law books record, struggling with poverty, illness, and discouragement, but buoyed up for years, may be, by the certainty of obtaining, if he succeeds, a patent that will have a market value. It is for the purpose of keeping this man to his task that our patent system exists. With out the hope of pecuniary reward, great in proportion to the value of his invention, he will either make no attempt to invent, or succumb to the first difficulty. In the establishment of M. Schneider, the famous ironworker of Creuzot, France, about 12,000 workmen are employed, but they are forbidden to take out patents for themselves, and the result is that they have never produced a single invention of sufficient value to be worth patenting by the proprietors.
A patent system, to be of any avail, must touch every workman in the country, and to this end the patent must, first, be obtained cheaply, and, second, be protected efficiently. If not cheaply obtainable, it will be beyond the reach of the workman ; and unless fully protected, it will not be for the interest of the capital ist to buy the patent; consequently, there being no reward for the inventor, he will cease to invent. At present, our patent system combines both of these essential characteristics ; to abolish either of them would be an act not only of injustice, but of folly.

Repairs of Railroad Cars by Contract.

At a meeting of the Master CarBuilders' Club, at their rooms in New York city, on April 15, there was an informal discussion of the question of the advisability of introducing some system wherely car repairing of all kinds, including painting and varnishing, might be done by contract. There has been some slight attempt made in this direction by one or two companies, in special kinds of work, but the idea of thus covering the whole field of car repairs is now being entertained by a sufficient number of railroad men to insure a thorough discussion of the subject. One of the reasons especially put forward in its favor is that, once having a scale of prices adopted covering all the details of the work, the companies will not be likely to have as much difficulty with the men on account of strikes, as, under the proposed new contract system, the work would naturally be so divided as to come ander the control of "teams," as it were, in the several departments, these teams contracting to do so much work, the company furnishing the material, and the men settling their own affairs as to the division of the pay among themselves.

Red Ink in Printing.

In ornate typography, red is growing in favor, and the tendency is to work in heavy masses of it. To produce a striking effect, more red is required than black. A recent number of the Art Age, in an elaborate review of the use of red ink, says, among other pertinent things, that the mistake most frequently made is in introducing red inappropriately in masses where it is neither ornamental nor part of the general composiion.
To put it plainer, there is an increasing disposition on the part of printers who have a laudable desire to be progressive to use great masses of red merely for the sake of obtaining a glaring effect. A single line of red in a page of̉ gothic produces a highly attractive effect. One heavy initial letter or line of red in a page is pleas ing to the eye; any further addition of red in mass be comes a positive blemish, which repels.

Natural History Notes.

The Age of Fish.--Many statements have been made as to the great age that fish may attain. Some persons think that there are carp at Fontainebleau that date back to the time of Francis I., but the majority is skeptical in regard to this, and for good reasons. Professor Spencer F. Baird thinks that we may allow an age of 200 years for certain carp. There is nothing, says he, to prevent fish from living almost indefi nitely, since they have no period of maturity, and grow every year of their life. In Washington there are goldfish that have belonged to the same family for fifty years, and they appear to be scarcely any larger than they were when purchased. In the royal aquaria at St. Petersburg, there are fish that are really 140 years old. Some of these are fully five times larger than they were when introduced, while others have gained but a fraction of an inch in length. It appears that in China there are sacred fish of still greater age.
A Gigantic Sea Weed.-Captain John Stone, commander of the ship Clever, recently carried to Montevideo some remains of a gigantic sea weed that he picked up near the equator. While overtaken by a dead calm in these regions, the sailors perceived an object floating on the surface at some distance from the ship. Manning a boat, they rowed out to it and the ship. Manning a boat, they rowed out to it and
found to their surprise that it was an alga of the extraordinary length of over fifteen hundred feet. From an examination of the specimens collected, botanists identified the plant as $M a$ crocystis pyrifera.
Deep Water Fauna of the North Atlantic.-In a recent paper by Professor S. I. Smith on the decapod crustaceans dredged by the Albatross in the North Atlantic, the author re marks that at least a third of all the species taken came from depths greater than a thousand fathoms, and a number were re markable for their large size. One Brachyuran had a carapace five inches long and six broad, and some specimens of an Anomuran measured, with outstretch ed legs, over three feet Some of the species were nearly colorless, but most were of some shade of red or orange. As regards eyes, eight out of twenty-one had normal black ones, two had abnormally small ones, three had eyes with ones, three had eyes with
light colored pigment, and of the rest the func tion was doubtful. Of five species from below two thousand fathoms, one had normal, well developed eyes, while the eyes of the rest were small, eyes of the rest were small,
imperfect, or doubtful. imperfect, or doubtful.
From these and other From these and other
facts, Professor Smith dr facts, Professor Smith draws the conclusion that, notwithstanding the objections made by physicists, some light penetrates to a depth of over two thousand fathoms, and, in view of the purity of the water in mid-ocean, he sees no reason why light should not reach that depth as easily as it does five hundred or two hundred fathoms nearer shore. Howdred or two hundred fathoms nearer shore. How-
ever this may be, he finds that there is a tendency toward a radical modification or an obliteration of the normal visual organs in deep water species.
The Enemies of the Oyster.-In a recent number of Science, Mr. R. S. Tarr gives some interesting details in regard to the habits of two enemies of the oyster, studied by him-Asterias Forbesii and Eurosalpinx Cinerea. The former of these approaches the oyster, which naturally is powerless to move, and lies upon its shell. It then proceeds to attack its victim's stomach, and in so doing secretes a peculiar liquid that seems to weaken or kill the oyster, so that the latter remains with its shell partly open. After a while, the Asterias has absorbed sufficient of the oyster, and takes its departure, leaving its victim to perish. Getting hungry again, the Asterias begins upon another oyster, eating a small portion as before, and leaving the rest without ever returning to it. It appears that at times an oyster bed will be entirely taken possession of by these animals and be wholly destroyed in one night. Mr. Tarr thinks the only remedy is to find whether there is not some mollusk that the Asterias might like better than the oyster, and, if there is, to rear this in the vicinity of oyster beds in order to satisfy the starfish's voracity.

current of feeble intensity produced a negative curvature, and one of strong intensity a positive one.
More recently some researches on this subject have been made by Mr. Rischewi. According to the theory which he espouses, the curvatures are attributable to cataphoric action. This scientist bases his theory upon the well known experiment of Dr. Du Bois Reymond, in which two cylinders of coagulated albumen, placed between the electrodes, show an inflation at the negative electrode and a contraction at the positive. This phenomenon is due to the fact that the water in the cylinder moves, under the influence of the current, in the direction of the latter. Roots afford another example of such action. As the turgidness of the cellules increases on the side next the cathode, this side elongates, and a positive curvature is produced. The negative curvature is explained by the diffusion of the external liquid in the porous roots, this occurring on the side next the
anode, when a current of feeble intensity is made to pass.

The Velocity of Meteors.

About six weeks ago, we referred to the fact of an extraordinarily brilliant meteor having flashed across the sky in this neighborhood, and we invited com-
munications upon it from any who might have observed it. It seems that upon the same night a similar meteor was observed in England. Now, under ordinary circumstances, there was nothing notable in this, meteors are known to be continually falling, it having been calculated that many millions of them
fall annually upon the earth. But that one should fall of exceeding brilliance, and described in almost identical language by correspondents in the Times and by ourselves, is worthy of note and of further inquiry. We recorded that such a meteor appeared at 27 minutes past 12 in the direction east-southeast from Cumballa Hill, from which place it was seen. It was subsequently reported from Rutnagherry that a meteor was seen there, but to the north. A correspondent wrote us from Mahableshwur, who reported that he saw a very bright meteor at half past 1 (local time), but the great difference in time pointed to some error in recording the exact appearance, or else proved that it was some other meteor that was seen. In England there was a meteor which seems to have passed over London about 5:5 P.M. Greenwich time, or 9:55 P.M. Bombay time ; and it appears to have been traveling eastward. It does not seem beyond the bounds of possibility that the meteors seen here and in England were the same. The absolute difference in time would thus be 2 hours 32 minutes, which is equal to the time taken to travel the distance between these two points. Assuming this distance to be about 5,500 miles, the rate at which the meteor was traveling was about $351 / 2$ miles a minute in the earth's atmosphere. The rate at which meteors travel in interstellar space is about 40 to 50 miles per second. in interstellar space is about 40 to 50 miles per second.
So that the difference between these two rates of speed shows the retardation due to the earth's atmosphere, always going upon the assumption that the meteor seen in England was the same as that seen here. To settle this point, it will be of interest to know if any one between Bombay and London noticed the brilliant meteor of the 16th of January, and it would also be interesting to know if any one saw it on the other side of India and further east. Though meteors or meteorites fall in such great numbers, it is very rarely that their history can be traced, and it appears that a service may be done to science by tracing out the path of this particular one, if so be that two points in its journey have been fixed.-Times of India, March 6, 1886.

NOVEL MODE OF FEEDING LAMBS LAMBS.

The device for feeding lambs is so simple and so well delineated in our excellent engraving as to require but very little description.
It may be well to state that the reservoir containing the milk should be kept clean and sweet, and fed to the lambs at about the normal temperature of the animal.
The sooner after birth the lambs are introduced to this mode of artificial feeding, the less trouble will be experienced in the weaning process. The lambs should be fed regularly, not less than three times a day. In France, where the invention has been introduced quite extensively, it is said to have proved very satisfactory.

The Paris Metropolitan Railway.

The capital of the company for the promotion of the Metropolitan Railway for Paris is to be $50,000,000$ francs. The plan comprises (1) an inner circle line along which the rails will pass, according to the nature of the ground traversed, underground through cuttings or over viaducts ; (2) two great arteries destined to connect the stations of the great companies and intersecting Paris. One underground will connect the Gare de 'Est, pass through the district of the General Post Office and Halles, and terminate at Mont Parnasse Station; the other, which will be above the surface level, will connect with each other (1) the Saint Lazare and the Nord stations by a line which will pass through the Carrefour Drouot; (2) the two stations so united of the West and North with the Vincennes and Lyons stations by means of a line passing from the Carrefour Drouot and leading toward the Avenue Daumesnil by crossing the district of the Halles, which, serving as a point of intersection of the above-ground artery and the underground artery, will thus have exceptional advantages. The contemplated stations number 64, of which 28 are to be on the viaduct, 15 over open cut. tings, and 21 over, the underground way.

ENGINEERING INVENTIONS.

A boiler covering composition has been patented by Mr. William M. Suhr, of New York city.
It is a fireproof and at the same time non-conducting It is a fireproof and at the same time non-conducting
boiler and tube covering, consisting of a solution of bolier and tube covering, consisting of a solution of mineral wool, cork and sawdust, and plaster of Paris, or onher
tions.
A rotary engine has been patented by Mr. William L. Tuck, of Bay View, Wis. It has a cir cular cylinder combined wth a non-concentric block
having recesses and steam ports, a piston having wings
and radially sloted plates, within which the ends of the and radially slosted plates, within which the ends of the
aings move a slide valve, exhaust valves, manipulating Wings move, a slide valve, exhaust valves, manipulating
lever, ett., the engine being designed to utilize the full force of the steam throughout the greater part of th revolution of the piston.

miscellaneous inventions.

- A head rest häs been patented by Mr George Phillips, of Tilford, Ill. It is a wire frame pro-
vided with a cushion for the head, with cords attached vided with a cushion for the head, with cords attached
which are held by the feet to support the head rest at which are held by the feet to support the head rest at
the desired inclination, the device being simple, light, and portable, for the use of tourists and others.
A cyclometer has been patented by $\mathbf{M r}$ Gabriel P. B. Hoyt, of Jamaica, N. Y. It is constructed to receive positive, intermittent, or stop motion, from a
point, projection, or cogwheel arranged to revolve with point, projection, or cogwheel arranged to revolve with
the crank, and does not depend upon the force of gravity for its operation.
A duplex brick has been patented by Mr. Janes A. McAllister, of Fredericton, N. B., Cana
da. It consists of two ordinary sized brick united by connecting neck or web, the surfaces of the brick being
cond indented on the upper and lower faces and ends to ena-
ble the mortar to obtain a firmer grip. A brick burner has been patented by Mr. Bernhard Albers, of Conception, Mo. This invention consists in furnaces having interchangeable grates, the furnaces being arranged in pairs, each pair being
connected by an arch in which there is a flue, said flue being centrally divided by a solid abutmentor partition. An edge trimmer for walks and beds Nas been patented by Mr. Thomas Akins, of Camden moved along the edge of a walk the cutter trims the edge
of the sod to the desired slope, and the plow or scraper of the sod to the desired slope, and the plow or scraper
loosens the sod and soil cut off and throws them into the middle part of the walk.
A coffee huller has been patented by Mr. Jose Guardiola, of Chocola, Guatemala. In con-
nection with the hopper and its casing are disks which revolve about two hundred times a minute, the berries being rubbed between projections of the casing and the
disks and plates, whereby the hulls are broken and removed
A wrench has been patented by Messrs. John and Patrick Ryan, of New York city. Its handle is in two parallel parts, one being a prolongation of the
shank and having mortises, and the other part of the shank and having mortises, and the other part of the
handle having lugs adapted to enter the mortises, the outer end of the adjusting screw being journaled in this part.
A cement for roofing has been patented by Mr. Eldridge J. Burchell, of La Fargeville, N. Y. I
is made of coal tar, water lime, coal ashes, plaster o is made of coal tar, water lime, coal ashes, plaster of
Paris, an oil solution, and a soda solution, mixed in specified proportions, which are variable somewhat, according to the uses to which it is to be put, and adding An
An anti-insect fabric has been patented by Mr. John P. Regan, of New York city. It is made by first steeping the fabric in a solution of tobacco and
cascarilla bark macerated in benzine, then drying and cascarilla bark macerated in benzine, then drying and
steeping in tobacco, cascarilla bark, and hot water, the
fabric to be used in trunk linings, etc., as a protection fabric to be used in trunk linings, etc., as a protection

A mode of re-enforcing tubular or hol low structures has been patented by Mr. Ebenezer Hill,
of South Norwalk, Conn. In vessels exposed to high in of South Norwalk, Conn. In vessels exposed to high in-
ternal fluid pressures, this method consists in inclosing the vessels in a series of casings, each succeeding outer one charged with fluid, air, or gas of a less pressure
than the one next within it.
A stencil has been patented by Mr. Geo. F. Gunther, of Louisville, Ky. It has a metal head piece with wire or rod extension on which letters or
numbers may be slipped to form the print to be made, numbers may be slipped to form the print to be made,
with other novel features, to facilitate the marking of package
device.
A street lamp has been patented by Mr Albert F. B. Hennig, of Denver, Col. The construction is such that the gas is automatically turned on by swinging up the bottom gate or door to introduce the
torch or other light used for igniting the gas, and the improvement is one that can be applied on any ga lamp and on any burner.

A fire escape has been patented by Mr. Patrick Fogarty, of Milwaukee, wis. It consists essen-
tially of an elevator car supported by wires that pass over pulleys carried by arms that project from an ad-
justable bar that is secured within the window casing, with certain novel details of construction, to facilitat the escape of occupants from burning buildings.
A band cutter and feeding attachment H. Sheldon, of Warren, Minn. It is designed to carr H. Sheldon, of Warren, Minn. It is designed to carry
the bundles forward, cut the bands, spread the grain, and feed it evenly, and when the machine is not in use,
and passing from place to place, the carrier can be swung over the chute.
A rosette for harness has been patented by Mr. Ernest F. Pflueger, of Akron, \mathbf{O}. This invention
consists in means for securing the holding loop to the consists in means for securing the holding loop to th
rosette frame more strongly, and is an improvement o
former patented invention of the same inventor, the ands of the loop being, according to the
ton, embedded in a solid filling of solder.
A gate latch has been patented by $\mathbf{M r}$ Louis S. Stoll, of Arcadia, Iowa. It consists of a bar or lever, two slotted and tongued plates, a spring and a imple and inexpensive latch, which may be readily apmpled to new or old gates, and one which will effectively and automatically latch the gate when it is swung shut

A machine for printing samples on textile fabrics has been patented by Mr. William Mather, of Manchester, Lancaster Co., Eng. Its construction is
such that thereby samples can be printed of designs such that thereby samples can be printed of designs
from the engraved copper rollers without the necessity of first mounting the rollers on solid mandrels, thereby saving the great trouble and cost of readjustment for

A hoe sharpener has been patented by Mr. Park D. Folkes, of Hays' Landing, Miss. It consists of a pair of jaws pivoted together, a whetstone or jaw, and an anti-friction roller the innner edge of one on the other jaw, and an anti-friction roller journaled on the other
jaw, making a device which can be used on a large
variety of tools, or to sharpen mowing machine knives without removing them from the machine.
A machine for hardening seamless felt Messrs. Walter P. and Nolson F. Hyatt, of Matteawan Messrs. Walter P. and Nolson F. Hyatt, of Matteawan,
N. Y. It has a solid mould with a recess of about the shape of the desired article, with a core which can be placed in the recess and vibrated therein, so that no
subsequent stitching, finishing, or felting is required for subsequent stitching, finishing, or felting is required for firmly uniting the bats to complete the article.
A bridle has been patented by Mr. Robert Richardson, of Detroit, Mich. It has two bits, so arranged in connection with straps and rings of the head gear that in driving only one bit will ordinarily be
used, but if this is not sufficient to check the horse, an ased, but if this is not sufficient to check the horse, an
extra tension on the reins will bring the other and extra tension on the reins will bring the other and
maller bit into the horse's mouth with a force sufficient maller bit into the horse's mouth with a force su.
A combined breast collar and saddle has been patented by Mr. Christopher G. Calo, of New York ity. The saddle tree is made with end loops to receive ine top strap, with upwardly projecting flanges to keep in place, and win ore arness is made lighter and less expensive to manufac ture.
A process of ornamenting wall and ther papers has been patented by Mr. William V. Wil-
on, of Jubilee St., Mile End, Middlesex Co., Eng. It n, of Jubilee St., Mile End, Middlesex Co., Eng. It
is for producing a finish on previously printed papers, in imitation of silk, satin, or other fabrics, and consists in first coating the fabric with a varnish or compound of nitro-cellulose, and then embossing or frictioning surac.
An appara tus for electrotyping has been atented by Mr. William J. Ladd, of New York city. oulds and forming the electric connection therewith in the decomposing trough, the currents being easily disconnected without removing the mould from the
bath, there being an indicator to mark the time of deosit, and provision for preventing the deposit of metal

A garment lock has been patented by Mr. Anders Ponten, of New York city. It is a small evice for conveniently securing coats, hats, umbrellas,
and like articles, to supports in dining rooms, cars, and other places, to prevent their being taken by mistake, the lock having hooks to close upon the article, and phetates for adjustment, so the lock cannot be opened A jersey waist forms the subject of two patents issued to Mr. David F. Halsted, of Brooklyn, fladies' jersen provides for such a construction nce of being worn over a jacket, and so that the fronts an be readily removed, washed, and replaced, the knited garment having a space between its front edges and ontour of the space, and detachably connected at its ide edges tothe front edges of the jersey
A process of producing sulphite or bisulphite of sodium forms the subject of a patent issued
Messrs. William 0 . and William Messrs. William O. and William P. Crocker, of
Turner's Falls, Mass. It consists in mixing sulphate of sodium with carbonaceous matter, roasting the mixture, eaching out the soluble part, evaporating to dryness, in contact with air or oxygen until incandescence ceases, and making it into a solution, with other deails, by which sulphur and sodium are sufficiently oxiized to produce a practical wood reducing solution.
A process of making bisulphites has so been patented by the same inventors. in suspending by agitation neutral sulphite of calcium
in neutral sulphate of sodium solution, and then chargin neutral sulphate of sodium solution, and then charg-
ing the mixture with sulphurous acid until decomposiing the mixture with sulphurous acid until deco
tion has taken place, with other special details.

NEW BOOKS AND PUBLICATIONS.

The Present Condition of Electric Lighting" is the title of a report made for the Gaslighting Company of Munich, September 26, 1885, by Dr.
N. H. Schilling, and republished in this country by cupples, Upham \& Co., of Boston. It gives a brief reities in electric lighting, and in less detail that of sev ral American and British cities, making out a case de cidedly unfavorable to electricity. A contract was made with the gas company in 1863, for lighting the public squares and streets of Munich for 36 years. A orth this report,in which the author maintains that both justice and self-interest should support the continuance
and extension of the present system of gas illumination.

Special.

LOTTA-PHILADELPHIA'S FAVORITE. It was always a marvel to the amusement-loving pu
lic how Lotta could be so sick that the Chestnut Stre opera House. Philadelphia, was compelled to be close for one week, about two years ago, and that at the en
of that time she was well enough to resume her play o "Nitouche." More than this, it was noticed that her
voice had acquired fresh volume, and in " Nitouche," which is a singing play, shecould be heard in ensemble a well as in solo. Among all the gifted ladies who adorn
the stage, Lotta is decidedly the pet and favorite. Her intense vitality, her beauty, and the versatility of her
talents draw all classes to see her. She has been on the stage since her eighth year, and in all that time th breath of scandal has never once assailed her. She is a
phenomenally devoted child to her mother, in whose so ciety she is found at all times. Can it be wondered at
that this little lady returned so soon to her labor at the Opera House, when we remember that this speedy resto ration was due to the inhalation of Compound Oxygen?
a press correspondent writes: "1t was at the residence of Mrs. James H. Heverin, of Delancy Place (wife of the with Lotta in reforencence to the treatment of Drs. Starkey T Palen, which prevented her a great pecuniary loss. The little comedienne was spending the day there, and
as she answered my card she came bounding into the parlor, throwing herself into a luxurious armchair, and
as soon as the formalities of a visit were complied with, as soon as the formalities of a v
I at once broached my subject.

I hear you have tried Compound Oxygen treatment,
"Oh, yes! You remember the terrible sore throat I had two years ago-that it baffled the skill of my New York
physicians? After burning my throat and positivel prohibiting my appearance before an audience for an try the 'Oxygen,' so I immediately and put myself under the care of Drs. Starkey \& Palen."

Did you experience relief immediately?
It whe the 1 had done the right thing, for it seem
trouble under immediate control."
"Then you do not favor burning
the methods usually resorted to?"
"No. I think it a harsh and cruel treatment, and it cannot be long before Compound Oxygen will come to "Drs. Starkey \& Palen claim tha by the Compound Oxygen treatment is as genuine and permanent as one's original health. Does your experi ence confirm that opinion?"
"Yes, it most certainly doe
hour since I used the oxygen. greatly benefited by the use of the Oxygen, and is as great an enthusiast as I. It seems to invigorate the
whole constitution, and imparts fresh life to every part of the body. In my profession I am always studying from nature. Lobserve the expressions, gestures, and ways
of the various people with whom I meet, and find that my power of observation has grown more acute and dis-
criminating since my treatment with the Oxygen. In criminating since my treatment with the Oxygen. In
the voice alone there is a most perceptible gain. Long
and sustained notes have become easy; and whethe talking or singing, I find it now no labor. Persons who
sing or talk much on stage or platform feel a certain amount of exhaustion at the end of the season, and to
them the use of the Compound Oxgen would be of great
value 1 wonder these gentlemen have not brought it to the notice of the acting profession before. It is just
what we all need." "Do you think
"
"Yes, and without the disa
in pursuit of health. the disadvantages of long journey in pursuit of health. such as thel loss of home comfort
and the interference with regular business pursuits." "Did you have any unpleasant sensations while taking
the Oxygen?" "No; on the contrary, the sensations were pleasant." "Do yo,
public?
"I certainly do. You are at liberty to say I said so."
Miss Lotta is one of the busiest little ladies Miss Lotta is one of the busiest little ladies in the
world. Her engagements are continuously requiring he presence in the cities each season. She owns theaters and real estate in America and Europe and large tracts
of wooded land in the Northwest; indeed, she is one of he wealthiest lad She of the stage. Lotta is modestabout her own merits. She believes the test of talent is public
appreciation. Surely no one has passed this test with
greater eclat than this appreciation. Surely no one has passed this test with
greater eclat than this gifted lady, who is still young
and fresh. Now, if the Compound Oxygen can bring and fresh. Now, if the Compound Oxygen can bring
back to the stage each year this favorite and pet, in prime health, the public can but thank Drs. Starkey \&
Palen. Any who may desire to know more of the treat ment of which so kindiy words are spoken should write
to the office of the physicians, 1529 Arch Street, for the iterature on the subject, which is mailed free to all ap

Business and æersonal.

The charge for Insertion under this head is One Dollar a line for each insertion; about eight words to a line. Advertisements must be received at pubicaizon office

Wanted-An experienced foreman for a machine shop in the West, employing an average of 50 hands; must be machine work, with experience in the economical management of men. Give reference and salary expected Address "J. M. H.," P. O. Box 773, New York.
Catarrh, Catarrhal Deafness, and Hay Fever perman ently cured by a new treatment, in from one to three sim-
ple applications, made at home. Send stamp for descriptive pamphlet to
Dixon \& Son, 303 West King St.,
Toronto Can

Send to the Railroad Gazette, 73 Broadway, New York, for a catalogue of Locomotive, Track, and othe Guild \& Garrison's Steam Pump Works, Brooklyn, N. Y. Pump
now ready.

To Maintain One Lie
you must invent twenty. but truth can never be strength ened by bolstering. The testimony of every lady who
has used Dr. Pierce's "Favorite Prescription" for nerv ous debility and female weakness carries conviction with
it. The facts are stated in such a way that no one can
doubt them. All those peculiar pains and sinking sendoubt them. All those peculiar pains and sinking sen
sations which ladies suffer from can be overcome by
means of this wonderful preparation. If your are a suf-

Wanted-To correspond with a practical door, sash, and blind maker; one who would be fully competent to
take full charge of a factory and could give correct estimate of machinery needed, cost of manufacture, prob-
able demand and margin. One that could take an interst would be preferre.
Broad St, New York.
Plumb \& Webb, Newark, N. J., clockwork wheels, nions, worms, and small gearing to order a specialty. Wanted.-A Mechanical Draughtsman wanted to go West. One acquainted with wood working machinery
preferred. Steady emplyment to a sober and industrius man. Address, with full particulars, stating wages For Sale.-A patent Boiler Flue Cleaner. A bonanza For Sale.-A patent Boiler Flue
Lovis Duennisch, Sandusky, Ohio.
For Sale-Patent, dated April 6, 1886, Valve Gear for
Emery Wheels of unusually superior quality for wet Wanted-Patented articles of merit to manufacture royalty. Electric Mfg. Co. 311 River St. Troy, N. Y. Nickel Plating.-Sole manufacturers cast nickel andes, pure nickel salts, polishing compositions, etc. $\$ 1100$ ole manufacturers of the new Dip Lacquer Kristaline. Complete outfit for plating, etc. Hanson, Van Winkle \&
Co., Newark, N. J., and 92 and 94 Liberty St., New York. Grimshaw.-Steam Engine Catechism.-A series of horoughly Practical Questions and Answers arranged equired to fit him for properly running an engine. By
Robert Grimshaw. 18mo, cloth, $\$ 1.00$. For sale by unn \& Co., 361 B
Wm. Frech, Sensitive Drill Presses, Turretand Speed oe Street, Chicago.
Order our elegant Keyless Locks for your fine doors. rcular free. Lexington Mfg. Co., Lexington, Ky.
Send for catalogue of Scientific Books for sale by
Munn \& Co.., 361 Broadway, N. Y. Free on application. The Knowles Steam Pump Works, 44 Washington St., Boston, and 93 Liberty St., New York, have just isproved forms of Pumping Machinery of the single and duplex, steam and power type. This catalogue will be

Haswell's Engineer's Pocket-Book. By Charles H: ing Tables, Rules, and Formulas pertal Engineer. Giving Tables, Rules, and Formulas pertaining to Mechan-
ics, Mathematics, and Physics, Architecture, Masonry, pages, leather, pocket-book form, $\$ 4.00$. For sale by
Munn \& Co.., 361 Broadway, New York, Machinery for Light Manufacturing, on hand and Send for Monthly Machinery List
to the George Place Machinery Company,
If an invention has not been patented in the United
States for more than one year, it may still be patentedin Sates for more than one year, it may still be patentedin
Canada. Cost for Canadian patent. \$40. Various other oreign patents may also be obtained. For instructions
ddress Munn $\&$ Co., Scientific AMERICAN patent agency, 361 Broad way, New York.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N.J. Iron Planer, Lathe, Drill, and other machine tools of Nen Hes. New Mfg. Co., New Haven, Conn Nystrom's Mechanics.-A pocket book of mechanics and engineering, containing a memorandum of facts and
connention of practice and theory, by J. W. Nystrom,
C.E. 18th edition C.E., 1 th edition. revised and greatly enlarged, plates,
T2mo, roan tuck. Price, $\$ 3.50$. For sale by Munn $\&$ Co., t. mo, roan tuck. Price, $\$ 3.50$.
361 Broad way, New York city.

Tools, Hardware, and other specialties made under
Supplement Catalogue.-Persons in pursuit of infor mation of any special engineering, mechanical. or scien ENTIFIC AMERICAN SUPDLEMEN contents of to them free The SUPPLEMENT contains lengthy articles embracin science. Address Munn \& Co., Publishers, New York. Mineral Lands Prospected, Artesian Wells Bored, by Pa. Diamond Drill Co. Box 423, Pottsville, Pa. See p. 46 . Hercules Lacing and Superior Leather Belting made
y Page Belting Co., Concord, N. H. See adv. page 233. FPlaning and Matching Machines. All kinds Wood
Working Machinery. C. B. Rogers \& Co., Norwich, Conn. A A Catechism on the Locomotive. By M. N. Forney.
With 19 plates, 227 engravings, and 600 pages. 82.50 . Sent n receipt of the price by Munn $\&$ Co., 561 Broadway,
New York.
The Windmill as a Prime Mover. Comprehending everything of value relating to windmills, their use, de-
sign, construction, etc. By A. R. Wolff. With many sign, construction, etc. By A. R. Wolf. Wrice many
fine illustrations. (Shortly.) 8vo, cloth. Price, $\$ \$.00$.
For sale by Munn \& Co., 361 Broadway. New York. Iron, Steel, and Copper Drop Forgings of every de-
scription. Billings \& Spencer Co., Hartford, Conn. See Burnham Automatic Engine adv.last and next week. We are sole manufacturers of the Fibrous Asbestos
emovable Pipe and Boiler Coverings. We make pure asestos goods of all kinds. The Chalmers-Spence Co., 9 East 8th Street, New York.
Crescent Solidified Oil and Lubricators. Something
Curtis Return Steam Trap returns all condensations
into the boiler without waste. Curtis Regulator Works. Boston, Mass.
Curtis Pressure Regulator for Steam Heating Apparatus, Waterworks, etc. Curtis Regulator Works, Bos-
New Portable \& Stationary Centering Chucks for rapid centeri
Conn.
Steam Hammers, Improved Hydraulic Jacks, and Tube Expanders. R. Duageon, 24 Columbia St.. New York.
60,000 Emerson's 1886 Book of superior saws, with Supplement, sent free to all Sawyers and Lumbermen.
Address Emerson, Smith \& Co. Limited, Beaver Falls, Pa., U. S. A.
Safety Elevators, steam and belt power ; quick and
smooth. D. Frisbie \& Co., Philadelphia. Pa. Manufacture of Soaps, Candles, Lubricants, and Glyce-
rine. Illustrated. Price, \$4.00. E. \& F. N. Spon, New rine. Illustrated. Price, \$4.00. E. \& F. N. Spon, New
York.
"How to Keep Boilers Clean." Send your address
for free 88 page book. Jas. C. Hotchkiss, 93 John St., N. Y. Barrel, Keg, Hogshead, StaveMach'y. See adv. p. 76 . Brass and Iron Working Machinery, Die Sinkers ditew Machis. Warner a Swasey, Cleveland, o . pearnces Whow prices, and of same strength and appearance as Whole Pulleys. Yocom \& Son's Shafting
Works, Drinker St., Philadelphia, Pa.

(1) J. P. W., Jr., asks the cheapest mode of obtaining a solution with which to charge an electric battery calculated to operate a 6 candle powe
Edison light. A. There are many solutions used, the particular kind depending on the battery. For zin carbon battery (Grenet), mix 5 fluid ounces of sul
phuric acid (oil of vitrioi) with three pints of cold water ; after it has cooled, add 6 ouñees or as much as it will take up of powdered bichromate of potash. tions for any desired amou
(2) F. G. Z. asks why one can't use induction coil mentioned in Supplement, No. 160 A. You can do so. Economy of construction prompts the use of uncovered wire
(3) F. P. L. asks how to remove the copper from the electric light carbon. A. The copper
can be dissolved in nitric acid.
2. If I should use can be dissolved in nitric acid. 2. If I should use
coppered ones, and the solution be weakened, could I charge it again and get as good current? A. The copper ones would answer. It is a simple matter to add a
little more sal ammoniac to strengthen the solution as little more sal ammoniac to strengthen the solution as
it becomes exhausted. 3. Which plate does the cur it becomes exhausted. 3. Which plate does the cur-
rent come from-the carbon or the zinc? A. The current come from-the carbon or the zinc? A. The cur-
rent is assumed to pass from carbon to zinc on the ent is assumed to pass from carbon a current is conventional term only; we know nothing of the
(4) G. E. C. asks the best kind of soft ron and size of copper wire to make electro-magnets A. Norway iron is very good. After it has been
forged and finished, heat it to a red heat and bury it in forge cinders or in powdered quicklime. The size circumstances of the case. No general rule can be given.
(5) H. B. P. asks for a method of drilling holes in glass, and if they can be drilled as larg as $2 / 4$ inch without enlarging or running out. A. A in a brace. Apply spirits of turpentine with camphor in solution to the glass, and keep the cavity supplied. A copper tube held in a lathe chnck and supplied with emery and oil cuts a very neat hole. The glass
may be held steady by a core cemented to it to fit may be held steady by a core cemented to it to fit
inside of the tube. Hold a cork pressed against the lass opposite the tube end while drilling
(6) J. B. McG. writes: Two engines are as near alike as can be made, except size of Why is it that the one with 3 ft . $2 \mathrm{in}$. driving han the one with 4 ft . 2 in. wheels? A. The piston of the engine with 3 ft .2 in . drivers will act with more advantageous leverage than will the other, as
far as hauling power is concerned, but it loses the exact equivalent in rate of running at equal piston
(7) J. T. S. W. writes: I have read that if you make a piece of steel red hot, and touch it
with a stick of brimstone, the steel will melt and run like water. Is this a fact? Ihave tried the experi ment, but with no success. A. Your heat may have been insufficient, and you may not have held the cal reaction takes place; the sulphur combines with the iron, forming a sulphide of iron, fusible at a red heat. This it is that melts, not the steel as such Use a stick of sulphur, and keep it in contact with the steel until the result is obtained. The sulphur will probably catch fire, so be careful when you try
the experiment, and have water at hand with which to experiment, and have water at hand with which
to the burning sulphur will be very disagreeable.
(8) A. F. M. asks how to make a Try Burgundy pitch or melted shellac. We would not advise you to trust to cement alone. Fasten you plates by metal straps or scr
by either of above cements.
(9) C. H. M. asks : 1. How much cold will the fire extinguishing liquid stand, a recipe of which you have given? A. It is supposed to stand the the extreme cold of Dakota might affectit. 2. Is it equal to that used in the hand grenades? A. It is
used in them. 3. Is there any objection to running a lightning rod through a barn, following a post, in stead of carrying it down on outside? A. It is considered better practice to carry it outside of the
binilding. 4. I have a geared windwheel on one end
of my barn ; its upright shaft ($11 / 2$ inches) extends about 8 feet above the roof, and comes within about
8 feet of the floor. The horizontal shaft runs 24 feet toward the center of barn, the two shafts connecting th pinions. Can I keep the electric current from and run it direct to the ground? A. Connect lower end of vertical shaft by a lightning rod or other danductor to a plate of iron buried in charcoal,
damp earth, or immersed in a cistern or well. The lectricity will not follow the shaft. 5. In rodding the barn, would you connect a point to upright shaft? The
barn is 62 feet long, and should have three rods points. There is a cupola in center of roof, 9 or 10 feet higher than peak of barn. A. If above connection is made, it will be well to have several points con-
nected to shaft. If the shaft is in contact with the wooden frame only, and has no metallic connection with the ground, no points are needed. The connec-
tion described in No. 4 under latter conditions is un-
.
(10) W. A. P. writes : In making m ynamo, described in Supplement, No. 161, I have ound the magnet with No. 16 wire, cotton-covered, and covered each layer with shellac and red lead; and when I connect one of the terminals with a battery, and touch the other battery wire to either pole of the nagnet, I get a spark; what is the trouble ? A. Your magnet. The coating is broken, or the binding screw or terminal may not be insulated.

INDEX OF INVENTIONS

United States were Granted,

April 13, 1886,

AND EACH BEARING THAT DATE

[See note at end of list about copies of these patents.]

Advertising circular, W. Homan.................... 339,88 Air, apparatus for drying, J. H. Cremer.. Alarm. See Burglar alarm. Door alarm.
Ale, beer, and porter, manufacturing, Pigeon Ale, beer, and porter, manufacturing, Pigeon
Flanagan R. G. Neuenschwander.
malgamator, Beaupre \& Meloy Annunciator and fire alarm, hotel, ,.......... ... (r) Doolittle..................................... в.
Anti-insect fabric, J. P. Regan...
Automatic brake, G. W. Sanborn
xxle lubricator, Hawkins \& Allen..... xxles, metallic cup for carriaze, E. Jacqueli Bag holder, W. M. Krure............................
Balance, molecular pivot, A. Springer... 340,010 t Balance, torsion pivot, A. Springer... Balance, torsional. Springer \& Roeder.............
Balance, torsional pivot. F. A. Roeder....340,006 to Balance, torsional pivot. F. A. Roeder....340,006 to
Balance, torsional pivot, ppringer \& Roeder.....
Ballot box, registering and canceling, R.
Wood.....................................
Bar. See Railway splice bar.
Bath. See Steam or vapor bath
Bed bottom, C. Kilburn.
Belt, tightener, chain, 0
Bevel, E. D. Farnham..................................
Bicycles, hood attachment for, H. W. Libbey... Bisulphites, making,
Bit. See Bridle bit.
Blind slats, device for operating, B. D. Stevens. Board. See Switch board

Boiler scraper, C. A. Rockstroh.
Boiner scraper, C. A. Rockstroh...
Bolt. See Chain bolt. Flour bolt.
Bolt. H. A. Wahlert.......
Book and paper folding machine, A. J. Davison
Book and paper foldin
Book clasp, J. Monch
Boot or shoe, Gascoine \& Royce..
Boot or shoe, rubber, G. Watkinso
bottle filling device, R. R. Stone
Box. See Ballot box. Paper box. Photograph
er's wash box. Scouring box.
ley.. Brake. See Automatic bra
brake. Vehicle brake.
Brick burner, B. Albers.
Brick machine, G. Haut.
Koch...............
Bridle rosette, w. J. Bitter
Broom and brush cabinet, J. L. Smith
Buckle, S. Scheuer
Buckle, suspender, J. Spruce..................
Buckles, machine for making, J. E. Kelsey
Buckles, machine for making, J. E. Kelsey.
Building purposes, composition for, J. Wurz
Building, whale-shaped museum, A. Ward..
Burglar alarm, S. E. Carr...
Burglar alarm. J. N. Yelton
Burglar alarm. . N. Yelton......................... 339, 339,
Burner. See Brick burner. Gas reand

burne

Button, collar, A. Hessels................
Button setting instrument. E. D. Steele..
Camera, C. C A. Roncag
Camera attachment, s. s. Benster
an rosining and soldering machine, combined, 3
 Car brake, W. Lang. ..
Car brake and starter, D. Hall
Car coupling. J. M. Edwards.
Car coupling, P. C. Greenawalt
Car coupling, J. W. Jackson...
Car coupling, J. W. Jackson...
Car coupling, J. W. Johnson...
Car coupling C.
Car wheel, J. C. Beach.

Lars, gripping device for cable,...
rriage windows, apparatus F for adjusting,
Frost..
Frost..........................
artridge crimper, W. E. Nye

39,760	F
	39,539
	F

Case. See. Egg case.
Castings, mould for forming, W. H. Harris. Cement for roofing, etc., E. J. Burchell..
Cement, manufacture of, H. Mathey.... Cement, manufacture of,
Chain bolt, J. B. Hawes
Chain machine, Heldless, M. Jacker
Chair. See Opera chair.
Chair seat, R. P. Burkhar
Chimney cowl, ventilating, M. W. Costello
Chisel, mortising, Peterson \& Connelly....
Chupper. J. S. Kelso..........
Churn, S. Smith
Cigar box, I. Levi
Cigar bunching machine, Bovee \& Belmont
Cigarette holder, c. Stoppa..
Clamp. See Overshoe clamp
Clamp. See Overshoe
Clasp. See Book clasp.
Clipper, hair, Reinhardt \& L
Clock, calendar, U. V. Jaeggi
Clock pendulum regulator, w. D. Davies
Clock synchronizing device, C. H. Pond.
Coach platform, A. \& C. E. Wnuck
Coat, etc., P. F. Paulme...
Coffee huller, J. Guardiola
Coffee roaster.J. T.
Coffin, R. M. Fryer...
Conduit, underground, J. Beeler
Copy holder, A. Hayward, Jr.
Copying press, . M. Maines....
Copying press, letter, H. Grifin
Corset, M. A. Waterhouse..
Cotton chopper, C. L. Fer
Cotton gin, G. L. Rollins.
Coupling.
Coupling. See Car coupling. Thill couphing Cover. See Manhole cover.
Cowl. See Chimney cowl.
Cracker machine, Crane \& Eden
Crackers, machine for arranging

Crusher. See Ore crusher. Cultivator, T. J. Eubats

Cultivator, T. J. Eubanks...............
Cut-off for cisterns, water, W. Horn,
W. Jac......

Monroe..................................
Cutter. See Band cutter. Paper catter.
Cutter head, C. Temple..............
Cutter heads, counterbalance for, G. W. Hill.
Cutter heads, counterbalat
Cyclometer, \mathbf{G} 'P. B. Hoyt.
Deodorizing and disinfecting purposes, portable
apparatus for use with closet...................
apparatus for use with closets, commodes, and
the like for, G. H. Ellis.
Digger. See Potato digger.
Dish washing pan, H. B. Allen
Disinfectant, Sarmiento \& Grimm....
Door alarm, C. G. Edwards..........
Dovetailing machine, J. B. Schmid
Drawer handle, A. H. Jones.......
Drawer handle, A. H. Jones.........................
Drier. See Clothes drier. Fruit drier. Grain
drier.
Dump, slag, Bretherton \& Colburn...
Damp, slag, Bretherton \& Colburn...
Eavesh hanger, W. H. Berger
Egg case, T. M. Appling.........................
Electric machine, dynamo, Batchelor \& Walter
Electric machine, unipolar dynamo, C. Hering
Electric machines, compensating resistance
dynamo, C. Hering..
Electric signal, individ
Electric signal, individual,
Electric switch, E. Thomson.........
rical conduit, underground, D. N. Hurlb
Elevating liquids, apparatus for, E. Korting.
Elevators, valve for hydraulic, R. C. Smith..
End gate and scoop board, combined, G
Engine. See Rotary engine. Steam engine
Eraser, O. Cate........................

Extractor.
Fabric. See Anti-insect fabric.
Fabric turfing implement, G. W. Griffin.. Fan, rotary, C. Barnes.
Fan, rotary, J. Carr....
820 Feed trough, H. Mendenhall
Feed trough, S. A. \& J. M. Rine...
Feed water heater, H. C. Franci
Feed water heater, E. Green ..
Feed water heater, E. Green
Fence, J. o. Carter.........

animal, T. B. Bowers.
Filter, S. W. Lambertson
Filters, draining device for upwardly-acing bo
Filters, seamless felted fabric for, T..............
Firearm, breech-loading, J. P. Pieri..
9
Fire escape, J. A. Neilson..................
Fish, bait for catching, A. Wakeman. Flour bolt, F. G. Winkler.
Fly trap, J. M. Perry
Foot warmer, M. W. Hanley
Freezing or refrigerating machine, J. Csete. Fruit drier, A. J. Hatch..
Furnace. See Gas furnace. Tinner's furnace.
Furnaces, utilizing the waste heat of, S. M. Lilli
Furnaces, utilizing the waste heat
Furniture, household, W. Beale ..
Gauge. See Scissors cutting gauge.
Gas, apparatus for the manufacture of illuminat
ing, H. H. Edgerton......
Gas furnace, Head \& Kaylor

339,775	Gas holder and mixer, C. M. \& C................
340,014	Gas pressure regulator, L. B. Fulton.........

Gas regulating burner, Butcher \& Wuster.
Gate. See End gat
Gate, J. M. Dine..
Gate, I. L. Landis
Gate, Olafather \&
Gate, J. Ringer..
Gate, J. Ring
Generator.

overnor for steam engines, electric, A. o. Teng-
vall.......
vall...........................
Governor for water wheels, H. E. Jacobs..
Grain binder, G. G. Hunt
Grain binder, G. G. Hunt.........................99,
Grain binder, cord holder, J. G. Leonard......
Grain cutting machinery, A. Wemple.
Grain drier. L. Gathmann
Grain separator, G. H. Ellsbury.
Grinding mill, roller, P. Van Gelder
Gun carriage, H. C. E. Malet.....
Gun carriage, H. C. E. Malet.
Hames, guard and trace attachment for harness,
J. Douglass..................................... 339,629
Harness, C. La Dow...

339,902
339,929
Larness rosette, W. J. Btter.
velle...........................

Harvester, L. J. Gilman et al......
Harvester, cotton, C. E. Wright

Hay carrier track, P. A. Myers..

Hay carrier track, P. A. Myers....................... 340,055
50 Hay rake, horse, H. M. Burdick................. 339991
Hay stacker, L. \& T. Soseman................. 339818
Hay

Heater. See
Hog ring, W. L. Caldwell............................ 339,852
Holder. See Bag holder. Cigarette holder. Copy

Hogring, W. L. Caller..........................
Holder. See Bag holder. Cigarette holer. Copy
holder. Gas holder. Lamp stade holder. Pen

 older. Gas holder. Lamp stade holder. Pen
 and pencil holder. Rein holder. Shade holder.
Spool holder.
Hook. See Meat hook. Stove hook. Whiffletree

hook.
Horses, quarter boot for, E. A. Leonhard...
Huller. See Coffee huller. 339,995 340,099
339,980

Letters, blanks, and other papers, device for hold-
ing and filing, A. L. Colton.. 339,850

ing and filing, A. L. Colton
Lifter. See Plate lifter.

E. D. Kendali.........................

Key. See Telegraph key. Watch
Kiln. See Tile and pottery kiln.

nimp, electric, Macdonald $\&$ Woarkin

Lamp, self-regulating, v. Di Marzo.

Lamp shade holder, F. A. stearn
Lamp, street. A. F. B. Hennig...

Lamps, carbon, dark, w. Wenerner.

Gra-
339,926
339,835

339,761
339,725
340,055

Horses, quarter boot for, E. A. Leonhard...
Huller. See Coffee huller.
Indicating apparatus, pointer for, T. H. Shep-

herd...................
Inhaler, G. A. Evans..

339,777
339,787
339,737 $\begin{aligned} & \text { Loom shuttle, R. Shand........... } \\ & \text { Lubricator. See Axle lubricator. }\end{aligned}$
Magneto asbestus, E. A. Hayes...................Meat hook, J. Koeberle..Mechanical movement, Crompton \& W
Mechanical movement, 0 . Hufeland...Mechanical movement, O. Hufeland.
Mechanical movement, A. D. Jeffrey
Mechanical movement, C. B. Maxson................
Metal working machines, tension mechanism fo
spindles of, J. Hartness
Meter. See Grain meter.
Meter. See Grain meter. Milk cans, locking device for, E. Whitson
Mole and gopher trap, F. Stanke.
Mole and gopher trap, F. St
Money changer, C. B. Hopki
Mop wringer, A. A. Frasier.
Mop wringer, A. A. Frasier...........................
Mower knives, device for forming, G. M. Wil
liams.......................................
Mower, lawn, G. Campbell..................................
Mowing machine, G. L. K. Morrow..............
Music holder. P. J. Kearney.........................
Music rollers, machine for making and insertin
staples in, H. B. Morris..........................
Nail extractor, P. F. King.
Nails, machine for making wire, J. T. Kenned

Nut lock, G. L. Fowler
Nut lock, G. L. Fowler.
Nut lock, O. D. Harmon..
Opera chair, S. W. Peregr
Opera chair, S. W. Peregrine .
Ore crusher, roller,. . R. Krom
Over

Packing for stuffing boxes, metallic, F. Henne
bohle..............................

339,771
339925
339,956
Paper box, F. M. viviatt.................................... 340,058
Paper box machine, B. E. Becker....... 339,843
Paper
Paper cutter, W. Jones.................................. 339,895
Paper, rrying frame for sensitized, H. Kun.... 339666
Paper machines, automatic guide roll attachment
Paper machines,
for, R. Smith
for, R. Smith.................................. 339,703
Paper webs, machine for winding, J. J. Manning.. 399,796
Pen and pencil bolder, T. W. F. Smitten......... 339,817
Pencils and pen holders, yoke for connecting, \boldsymbol{T}
W. F. Smitten..
Perforating machine, J. Schumacher.
Photographer's wash box, T. H. Kelley..

Beach.......................................
Picker. See Loom picker.
Pipe wrench, D. P. Foster........................... 339,6
33
Pipes, closing the ends of wrought iron. M. L.
Ritchie..................................
Pitchfork and rake, combined, A. J. \& E. B. Wil
cox.............................

Plane, bench, J. P. Gage......
Planing machine, W. H. Gray
Planing machine, W. H. Gray.....................
Planter and fertilizer distributer, combined seed
R. M. \& J. M. Brooks....................
Planter, check rower corn, C. E. Sweney
Planter, seed, P. Dickinson.
Plate lifter, C. A. Crawford
Platform. See Coach platform.
Plow, I. C. Jaques..
Plow, J. T. Ketchum
Plow, J. T. Ketchum...
Postal card,
Postal card, repply, W. Homa....
Potato digger, S. E. Smith
Potato digger, S.L. J. McFarland......
Potato digger, plow,
Press. See Copying press. Soap pres

シ
Lock. See Nut lock. Seal lock

				Remington Standard Type-Writer Purchasers per-					
		Trap. See Fly trap. Mole and gopher trap. Seal trap. Sewer trap	 						
		Type and overlay, perforating, J. Mayerhoff......							
		rrall... 339,72\square							
				FURVAC					
		(e)							
		Vehicle brake, W. J. Renniman. $3430,30,036$ Vehicle spring, A. Edelmann. 339,615							
		Vehicle							
			FRICTION CLUTCH Pulleys and Cut-off Couplings. JAS. HUNTER \& SON. North Adams, Mass.	MINERS \& MANUFACTURERS SOS PACKING CO N NEW YORK The ASEEST 169 Roston.					
			FUEL OF THE FUTURE.-BY M3 NEWHYRK. The ASBESTOS 169 Bostons artion orne suppiv of natural cas., The economi\square						
	${ }_{\substack{\text { a }}}^{33,7,7}$								
		Wheel. See Car wheel. Wheillarrow wheel							
					或				
			ATMOTIGHT\&SLACK BARRELMACHNEEY JOHN GREENWOOD \& CO. bochestern.						
		Dishes and tableware, Laughlin \& Chetwynd 16,613Door mat, M. O'Connor. 16,618							
		Hub band, J. Simpson.............................16,624 to 16,627	FAY'S MANILLA R00FING						
		Tray, A. Ledi\qquad trade marks.							
		Cod liver oil and plain cod liver oil, emulsion of. D. M. Stiger \& Co............................13,190 Cincen		hitects, Contractors, Builders Should not fail to examine the merits of					
				Should not fail to examine the merits of					
				IN OLD FRAMES. IN NEW FRAMES.					
		Flour, wheat, Schoellkopf \& Mathews.. Furs for garments and garments made wholly or Furs for garments and garments made wholly or							
		Furs for garments and garments made wholly or in part of furs, R. A. Servant........................13,187 Game, certain named, Edwards \& Bonbright....... 13,175							
		cating, Branat Boss....................................... 18 Peppermint oil and products containing the same							
				ORMSBY SASH HOLDER CO. 92 UTICA ST \qquad					
		Wire nails, Hartman Steel Company (limited) 13,180 Woven fabrics, R. \& H. Simon......................... $\mathbf{1 3}$ W.188							
	33.9	18 Sti. will be furished from this ofice for 2							
				neh oficie and Factor, 59 Duane street, Ner X					
		cents. In ordering please state the number and date							

PORTABLE BRIDGES.-DESCRIP

 GOLD MEDAL, PARIS, ${ }^{18}$
BAKER'S Bidalkfast COCOd. Oil has been removed. It has $t h r e e$ times the strength of Coocoa mixed
with Starch, Arrowroot and is therefofere far more economi. cup. costing less than one cent a
is delicious, nourishing strengthening, easily digested, and mirably adapted for invalids as
W. BAKER \& CO, Dorchester, Mass.

SLAT ROOF COVERINGS.--BY JOHN
 FOOT OR ATIE EFOR WOOD Pouri LATHES OR METAL SMRBASTIMAN, MAY \&

FOREIGN PATENTS Their Cost Reduced.

[^0]NEW YORK BELTING AND PACKING COMP'Y.

 Warehouse: 15 Park RIING opp. Astor House, New York

Transmission of Power

WIRE ROPE

Trenton Tron Go.

PETROLEUM AS FUEL IN LOCOMO

ending June 30, the fiscal year beginning' July 1 , 1886 , an To he Postmaster General prescribes no modelor sample
for bidders but chice among samples submitted will be
made with referenceto utility and price.
Blanks for proposal, with specifications giving full in
formation and instructions, may be had on appliciation
to the Superintendent of the Money Order System, Post
 william fr $\underset{\text { Postmaster- }}{\text { VILLAS }}$

ROCK BREAKERS AND ORE CRUSHERS.

HARRISON CONVEYOR!
Handing Grain, Coal, Sand, Clay, Tar Bark, Cinders, Ores, Seeds, \&c.

The Latest Improvement TRACTIONENGINES $2+2=$ $=2=$ = $=$:
facture of Prible, Agricultural, \& Stationary Steam Engines. With determined policy to build only the BEST MACHIN-
ERY from the BEST MAERIAL, and in the BRT
MANNER OF COSETRUCTION, and with continued imp MANNER OF, CoNSTRUCTION, and With continued imp
provements. have tained the HIGHEST STANDARD in
excellence of workmanship, simplicity of design, and capacity of power.
In additionto our STANDARD ENGINES We now offer
the frst RoAD ENGINE Wiich has the Traction Power
practically and efficiently applied to the tour truct practically and efficiently applied to the four truck
wheels and while so applied to each wheel independ
entiythe orward axle is under fu li control of the steer
ing apparatus.

WOOD, TABER \& MORSE,
ICE. REFRIGERATING

CONSTRUCTION OF STABLES. - A
 In Sccientify
Price 10 cents.
newsdealers.

ICE-HOUSE AND COLD ROOM.-BY R.

2ic. Pubuevs 4 c .
 THE MANUFACTURE OF CRUCIBLE

Pidvertisements.
 Engravings may head advertisements at the same rate per line oy measurement. as the letter press. Adver
tisements must be received at publication office as earl
as Thursday morning to appear in next issue

AQUA PURA

路Hard Water Made Soft Cities, Towns, Mills, Hotels,
and Private Houses Sup-
plied and Results plied and Results
Guaranteed.
Seale in Boilers Avoided. Two per cent.added to the
Annal Water Rates in any
city will
 NEWARK FILTERING CO., NEWARK, To Business Men. The value of the Scientific American as an adver-
tising medium cannot be overestimated. lts circulation is many times greater than that of any similar journal
now published. It goes into all the States and Territories, and is read in all the principal libraries and reading
rooms of the world. A business man wants something more than to see his advertisement in a printed news advertises in the SCIENTIFIC AMFRICAN. And do not let the advertising agent influence you to substitute
some other paper for the Scientific Ambrican, when for your interest to advertise. This is frequently done from the d on the Scientific American. For rates see top of first column of this page, or adMUNN \& CO., Publishers,

H.W.JOHNS

Steam Paoking, Building Felt, Boiler Coverings, Fire Proof Paints, Cements, EEtc.
Samples and Descriptive Price Lists Free W. JOHNS M'F'G CO., 87 MAIDEN LANE, N. Y 175 Randolph St., Chicago; 170 N. 4th St., Philadelphia, DOUBLE BOATS.-TWENTY-ONE IL

SJACKET KETTLES, No. 3, Universal Engine Lathe

With fne Precision, Sceref cut under the mirorocopen

[^1] mamanual. By J. W. HIII, M.E. Price $\$ 1.25$.

PATENTS.

MESSRS. MUNN \& CO., in connection with the publi amine iinprove
for Inventors.

A pamphiet sent free of charpe on aphication, eon

 MUNN \& CO Solicitors MU., Solicitors of Pate

FILM PHOTOGRAPHY.

 EASTMAN'S PERMANENT BROMDE PAPER
Is the best for copying plans and drawings. Prints lamplight, no toning, pure blacks and whites. simpl easl, certan. Admpe printir EASTMAND DRY PLAT
culars free. Address THF
AND FILM CO., 1920 State St., Rochester, N. Y. PURE NATURALL LUBRICATING OIL free from scale. Put up in ten gallon cans, and shipped
to any address on receit of fve dolars.
FRANKLIN OIL WORKS, Franklin, Pa.
PATENT RIVETED MONARCH RUBBER BELTING. Best in the WVoricl. Specially adapted for PAPER MILLS, SAW MILLS, and THRESHING MACHINES.
THE GUTTA PERCHA and RUBBER MFG. CO.,

VOLNEY W. MASON \& co. FRICTION PULLEYS CLUTCHES and ELEVATORS

INTERNATIONAL INSTITUTE FOR Liquefied Carbonic Gas

THE NEW "GRESHAM" PATENT
Antomatic Pe-starting IIjector.
Invaluable for use on Traction, Farm, Portable
Marine, and Stationary Engines of all kinds. No Handles required. Water supply very dificult to break. Capability of restarting immediately, auto-
matically, after interruption to feed from any cause. Reliable and Cheap.

Sole Manufacturers in the United States and Canada,
Nathan Manufacturing Co. $92 \& 94$ LIBERTY ST., N. Y.

JENKINS BROSA'VAIVGS.
Gate, Globe, Angle, Check, and Safety.
MANUFACTURED OF BEST STEAM METAL.
The Jenkins Disks used in these Valves are manu factured under our 1880 Pateat
any degree of stem pressure, hot and ocold oisis, or cocid.
To avoid impoing, see that valves are stamped "Jenkins Bros.

\%1 John St., New York
"'79 Kilby St., Boston
 95 MILK ST., BOSTON, MASS.

This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787.
The tiansmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor.

WITHERBY, RUGG \& RICHARDSON. Manufacturers
of Patent Wood Working Machinery of every deserip.

ORusplew

צcientific 9muricau

The Most Popular Scientific Paper in World. Only $\$ 3.20$ a Year, inclucing Postage. Weekly
This widely circulated and splendidly illustrated paper is published weekly. Every number contains sixoriginal engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery Chemistry,Electricity Telegraphy, Photography, Archiecture, Agriculture, Horticulture, Natural History, etc. All Classes of Readers find in the Scientific AMERICAN a popular resume of the best scientific in-
formation of the day; and it is the aim of the publishers to present it in an attractiveform, avoiding as much as possible abstruse terms. To every intelligent mind, his journal affords a constant supply of instructive eading. It is promotive of knowledge and progress in
every community where it circulates. Terms of Subscription.-One copy of the ScIENpostage prepaid, to any subscriber in the United States or Canada, on receipt of three dollars and twenty
cents by the publishers; six months, $\$ 1.60$; three months, \$1.00.
Clubs.-One extra copy of the Scientific AmeriAN will be supplied gratisforevery clubof fve subscribers rate. Express Money Order. Money carefully placed inside of envelopes, securely sealed, and correctly addressed,
seldom goes astray, but is at the sender's risk. Address all letters and make all orders, drafts, etc., pay-

MIUINAT \& CO., 361 Broadway New York.

Scientific American Supplement This is a separate and distinct publication from
THi SCIENTIFIG AMERICAN, but is uniform therewith mur is published weekly, and includes a very wide range of contents. It aresents the most recent papers by eminent writers in Useful Arts, embracing Biology, Geology, Mineralogy, Natural History, Geography, A rchæology, Astronomy,
Chemistry, Electricity, Light, Heat, Mechanical EngiChemistry, Electricity, Light, Heat, Mechanical Engi-
neering, Steam and Railway Engineering, Mining, Ship Building, Marine Engineering, Photography,
Technology, Manufacturing Industries, Sanitary Engineering, Agriculture, Horticulture, Domestic Economy, Biography, Medicine, etc. A vast amount of fresh subjects is given, the whole profusely illustrated with subjects is
engravings.
The most
nd Manufacturtant Ensineering Works, Mechanisms, nd described in the Supplement.
Canada. 85.00 a year, or one copy the United States and ERICAN and ${ }^{\circ}$ ne copy of the SUPPLEMENT, both mailed for one year for $\$ 7.00$. Address and remit by postal

MUNN \& Co., 361 Broadway, N. Y., Publishers ScIENTIFIG American.
the Postal Union, the ScIENTIFIC Amicrican is now of by post direct from New York, with regularity, to subscribers in Great Britain. India, Australia, and all other Russia, and all other European States; Japan, Brazil, Terms, when sent to foreign countries, Canada excepted \$4, gold, for Scientific American, one year; $\$ 9$, gold,
for both Scientific American and SUPPLEMENT for one year. This includes pcstage, which we pay. Remit
by postal or express money order, or draft to order of PRTNTING TNEC

[^0]: most experign countries having been considerably re
 duced the obstacle of cost is no longer in the way of large propor
 tions abroad
 CANADA.-The cost of a patent in Canada is even less than the cost of a United States patent, and th
 former includes the Provinces of Ontario, Quebec, New toba.
 The
 The number of our patentees who avail themselves of
 the cheap and easy method now offered for obtaining
 patents in Canada is very large, and is steadily increasing. force on Jan. 1st. 1885, enables parties to secure patents
 in Great Britain on very moderate terms. ABritish pa-
 tent includes England, Scotland, Wales, Ireland and the Channel Islands. Great Britain is the acknowledged financial and commercial center of the world, and her
 goods are sent to every quarter of the globe. A good in England as his United States patent produces for him at home, and the small cost now renders it possible for almost every patentee in this country to secure a pa-
 tent in Great Britain, where his rights are as well proO'IHELR COUN'IRIES. Austrin reasonable terms in France, Belgium, Germany Austria, Russia, Italy, Spain (the latter includes Cuba
 and all the other Spanish Colonies), Brazil, British India Australia, and the other British Colonies. An experience of Forty years has enabled the
 publishers of THe Scentific American to establish competent and trustworthy agencies in all the principal
 foreign countries, and it has always been their aim to have the business of their clients promptly an
 ly done and their interescs faithfully guarded.

 A pamphlet containing a synopsis of countries, including the cost for eat la information useful to persons contemplating the pr
 curing of patents abroad, may be had on application to
 curing of pa
 this office.
 MUNN \& CO., Editors and Proprietors of THe Sct ENTIFIC AmERTCAN, cordially invite all persons desiring
 any information relative to patents, or the registry of trade-marks, in this country or abroad, to call at their offices, 361 Broadway. Examination of inventions, con--
 sultation, and advice free. Inquiries by mail promply answered.

 Address, MUNN \& CO.,
 Publishers and Patent Solic
 361 Broadway, N BRANCH OFFICES: No. 622 and 624 F Street, Pacific

 NOVEITY ETWCTRIC CO. Everything Electrical.

[^1]: HARRIS-CORLISSENGINE

