

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

THE DAVIS ISLAND DAM ON THE OHIO RIVER.

In the olden days, when Fort Duquesne was on the extreme colonial frantier the reatless waters of its two encircling rivers met below the old fort to form the broad Ohio, and together flowed toward the sea ino unrestrained freedom. In winter and spring mighty tor rents rushed hurriedly past the fort and onward to the great valley. In summer and autumn, when heat and drought had quenched the tributary fountains, these torrents were replaced by broad, shallow streams, scarcely navigable for heavier craft than the frail ca noes that formed their only fleet. But when the old fort had grown into a famous trading post, and then into a brisk city; this intermittent navigation became extremely disadvantageous. The large mineral resources of Western Pennsylvania were being developed, and their product of coal and iron distributed throughout the South and West by means of the natira waterways afforded by the Ohio and Mississippi.
Pittsburg's commerce had stretched outits hands un til her steamers had gone into the Northwest as far as the Upper Missouri, a distance of 4,300 miles, and on the South as far $\left.\begin{aligned} & \text { the Upper Missouri, a distance of } 4,300 \text { miles, and on } \\ & \text { the South as far as New Orleans and the Gulf. Each } \\ & \text { ice-bound season to the next. The two conditions neces- } \\ & \text { sary to be considered-an open passage at high water }\end{aligned} \right\rvert\,$
year the traffic grows larger, until at the present time the tonnage of the port of Pittsburg exceeds that of New Konk.
Its growing requirements strongly demand infleyed facilities of water communication. The Monongahela has already been made navigable for many miles above the city by an elaborate system of fixed dams and locks. The Allegheny remains for the most part unimproved. Penetrating, as these rivers do, to the North and South, they bring a large region of rich and productive country into communication with the city at their mouths, and further improvements to navigation will extend the area of the tributary district. But the actual port of the city has not until recently been free from the interruptions caused by the low water of summer.
The only practicable way of improving it lay in damming the Ohio, and so raising the water level. But t would have been a manifest disadvantage to turn his immense tonnage through a lock all the immense tonnage through a
and a navigable pool surrounding the city and extending as far down the rivr as possible city and extend-
ing as far down the river as possible, at all seasons of was, therefore, decided to construct a wicket dam, on the plan devised by M. Chanoine, by which the river could be left open at high water, and during the dry season could be so far confined as to make a navigable pool surrounding the city.
Davis Island, five and a half miles below Pittsburg, was chosen by the Government engineers as the site for such a dam. The work was begun in August, 1878, and finished last fall. It was formally opened on October 7. A channel-way, 456 feet wide, between Davis Island and the southern shore has been closed by a permanent dam. The main channel of the river, between the island and the northern shore, is 1,344 feet wide. It is across this water-way that the movable dam has been 'constructed. A lock, 689 feet long and 10 feet wide, has been built on the northern shore. A and wall, having a total length of 1,649 feet, extends along the' bank. A wall of solid masonry, $191 / 2$ feet high, 11 feet wide at its base and 8 feet on top, sepa-
(Continued on page 214.)

MOVABLE DAM ON THE OHIO RIVER AT DAVIS ISLAND.

Surintific Ammicam.

ESTPABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
o. D. MUNN.
A. е. beach.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year. postage included.....
One copy, six months, postage included.
.8320
.160
Clubs.-One extra copy of THe Scientific Amprican will be supplied
eratis for every club of tive subscribers at $\$ 3.20$ each; additional copies at same proportionate rate. Postage prepaid.
Remit by postal or express money order. Address
MUNN \& CO., 361 Broadway, corner of Franklin
The Scientific American Supplement
is a distinct paper from the ScIENTIFIC AMERICAN. THE SUPPLEMENT
is issued weekly. Every number contains 16 octavo pages. uniform in size with Scientific american. Terms of subscription for Supplement $\$ 5.00$ a year, postage paid, to subscribers. Single copies, 10 cents. Sold by
all newsdealers throughout the country. Combined Rates.-The Scientific American and SUPPlement Combined Rates.-The SCIENTIFIC AMERICAN and SUPPLEMENT
will be sent for one year, postage free, on receipt of seven dollars. Both
papers to one address or different addresses as desired. papers to one address or different addresses as desired. The safest way t
rekistered letter.

Scientific American Export Edition.

The Scientific American Export Edition is a large and splendid peri-
odical, issued once a month. Each number contains about one hundred odical, issued once a month. Each number contains about one hundred
large quarto pages, profusely illustrated, embracing: (1.) Most of the plates and pages of the four preceding weekly issues of the Scientific AmeriCAN. with its splendid engravings and valuable information; (2.) Com-
mercial, trade, and manufacturing announcements of leading houses. mercial, trade, and manufacturing announcements of leading houses.
Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the
world. Single copies, 50 cents. Manufacturers and others who desire to secure foreign trade may have large and handsomely disp
nouncements published in this edition at a very moderate cost. The SCIENTIFIC AMERICAN Export Edition has a alarge guaranteed cir-
culation in all commercial places throughout the world. Address MUNN culation in all commercial places throughout the world. Address MUNN
\& CO., 361 Broadway, corner of Franklin Street, New York.

NEW YORK, SATURDAY, APRIL 3, 1886.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT NO. 585

For the Week Ending April 3, 1886.

Price 10 cents. For sale by all newsdealers.
I. CHEMISTRY.-Purifcation of ISulphuric Acid and Preparation of Nitric Acid.
on the
on
GEO. K. DAvis.-A A paper read before the London Section of the Soc. of Chem. Ind
II. ENGINEERING, ETC.-Spiel's Petroleum Engine.-With descrip-
 The Bessemer Steel Industry of the United States.-Standard
II. TECHNOLOGY.-Cork Cloth.-Use to which it is applied.-Tex ture of the cloth.--2 engravings.
Bung for preserving wines on

Thstruments for drawia
New Process of casting Iron Cyliuders.-2 figures...................... 838
Timber : Its Growth, Seasoning, and Preparation for Use.-Abtract of a lecture by Mr. BLashill.
IV. MAGNETISM AND ELECTRICITY.- Earth Currents in the Ben Nevis Observatory Telegraph Cable.....................................
The Self-induction of an Electric Current in Relation to the Nature and Form of its Conductor.-By Prof. D. E. HUGHEs.-In-
duction bridge.-Induction capacity of metals.-Infuence of parallel currents.-Physical changes in the conductor. 1 figure an diagram.
Electricity applied to Pharmacy--2 figures The Condensation of Fumes
Some Recent Telephonic Apparatus.......................
V. SPECTROSCOPY, SOUND, ETC.-On the Variation of the Ab sorption Spectra and the Emissive Phosphorescence Spectra of One and the Same Body.-By M. Henri Becquerel....
A New Theory of Sound.-By H. A. Mott.-Limits pacities of the senses.-Philosophy of substantialism.- Sound a substantial force.-Fallacyof the wave theory.-Organs.of speech. 8
VI. ARCHITECTURE.-A Church at Frankfurt.-Engraving..... Church at West Herrington.-An engraving....
Sketch for a Country Church.-An engraving.
VII. GEOLOG Y.-A Fiint contalning Water.- With engraving................. By James Richardson.
ViII. HORTICULTURE.-The Balm of Gilead.-(Populus Candican.) -3 engravings.
IX. MISCELLANEOUS.-Perille's Safety Catch. -4 figures. A New Lamp Shade.-With engraving.

THE PATENT BILLS BEFORE CONGRESS

A large number of bills are now before Congress, designed to modify the existing patent laws. Regarded as a whole, the most notable point concerning them is their diversity of purpose, which appears to have been determined, more or less, by local prejudice or the degree of popular enlightenmentin the district or State whence the bill originated. Among them are bills for the nullification of the patent laws; for depriving the inventor of the right to sue infringers; for giving all purchasers exemption from damages, if they infringe; for the purchase of patents by the Government; for limiting the amount of profits the inventor shall make from his patent; for extinguishing patents by money payments from the Treasury to inventors of valuable new inventions; for reducing the term of patents from seventeen to seven years; for depriving inventors or their assigns of their patents, if they attempt to hinder others from manufacturing the same; for compelling patentees to give bonds, if they bring suits; for infringement; for securing to those who buy an infringing device, the free right of use; for perpetuating testimony, reducing time for suits, etc.these are among the proposed enactments adverse to inventors.

To encourage and benefit the inventors there are bills for extending the designs patent law ; for extending the trade-mark law ; for extending the benefits of the copyright law to foreigners; for preventing the sale of patent rights for debt ; for preventing old foreign inventions from being patented here; for reviving and extending all old expired patents, and existing patents, so that a new term of eight years shall be now enjoyed; for extending the jurisdiction of the Circuit Court and facilitating patentees in recovering compensation for the use by Government of their patents; for the grant of patents for new flowers, fruits, horticultural and agricultural improvements; for the appointment of a commission to find out and report what changes are required in the patent laws-cost therefor, twenty-five thousand dollars; for the establishment of a Patent Court in Washington as an adjunct to the Patent Office, with clerks, deputies, bailiffs, etc., at a cost of many thousand dollars; for extending the jurisdiction of the Court of Claims to patent cases.
We have not space at this time to go into the particulars of all these bills, but shall hereafter refer to several of them, as they contain interesting and novel features.
For the present, let us look at Senate bill 1,511, introduced by the Hon. James Z. George, Senator from Mississippi. Its first section, of twelve lines, provides that any person who in good faith shall buy a patented article without notice that the same was covered by a patent, or without notice that the seller had no right to sell such article, shall thereby become the absolute owner, and no subsequent notice that the seller was not the lawful owner shall in any way impair the right of such purchaser as absolute owner.
If this bill is enacted into law, a man who buys stolen property-a patented wagon, for example-will become the absolute owner, the bona-fide proprietor will be debarred from recovering his property, and the is not often that three such glaring his royalty fee. It are packed within so brief a legislative proposition. The bill perhaps represents the Mississippian idea on patents, but it is not very encouraging to honest industry and invention.
The second section of the same bill provides that all patents hereafter granted shall be subject to purchase by Congress, for the use of the people of the United States, at such reasonable valuation and terms as may be provided for by law.
This section seems superfluous in view of the first section ; besides, Congress may at any time authorize the purchase of patents, and has frequently done so.
House bill 5.925, introduced by the Honed Charles B. Lore, of Delaware, is intended to repeal all present patent laws and establish another sysent of be granted for one year only; the patent shall be submitted by the Commissioner of Patents to a committee of experts, who shall decide, finally, whether the invention is valuable or not. If found of no value, the inventor gets nothing, and goes to grass. If the Expert Committee find the invention of worth, they decide upon the cash value of the invention, which shall in no case exceed two hundred thousand dollars, and from that sum down, to be paid out of the Treasury by warrant
The Expert Committee would have a very delicate duty to perform in fixing the cash valuations, and they would constantly be subjected to risks and probabilities of making egregious errors. For instance, if they were to allow $\$ 10,000$ as the value of the patent for the thread placed in the crease of an envelope to facilitate opening of the same, how much ought they to allow for the second patent, that was granted for the little knot that was tied on the end of the thread, so the
finger nail could easily hold the thread ? finger nail could easily hold the thread?
Then, again, how much ought the committee allow fo
a simple device like the patent umbrella thimble slide. a single bit of brass tubing that costs a cent and a quarter to make? Probably the committee would think that one thousand dollars would be a most generous allowance, while two hundred thousand dollarsthe limit of the bill-would, of course, be regarded as a monstrous and dishonest valuation. But the real truth is, the patent for this device is actually worth nearer one million dollars than two hundred thousand. The inventor, Dr. John J. Higgins, of this city, has already received over one hundred thousand dollars cash in royalties fortis patents, and probably will receive three times that sum before they expire; while his licensees, the umbrella makers, are supposed to have already realized a million dollars' profits directly or indirectly arising from the control of this little article. Few people have an idea of the extent of the umbrella trade. In this city alone there is scarcely an umbrella manufacturing concern of any account that turns out less than two thousand umbrellas per diem.
We have not space to consider the valuations which other and greater inventions should probably receive, such as the harvester, the sewing machine, the printing press, the telegraph. The limit of compensation fixed by the bill would be far inadequate for such improvements.
As a means of getting rid of the surplus income of the Government, the bill in question is admirable. It beats the pension schemes, river and harbor steals, the land grabs, and Congressional private secretaryships all out. But the bill, as it stands, is full of difficulties, and likely to give rise to endless disputes and tergiver sations, to overcome which and satisfy everybody, we advise Mr. Lore to amend his little bill as follows: First, grant patents and copyrights, free of charge, to all applicants; and second, the holder of any patent or copyright, on presenting to the Patent Commissioner a full assignment thereof, shall receive five thousand silver dollars, redeemable in gold.

ROOTS' BLOWING AND PUMPING MACHINERY.

A notable example of the world-wide appreciation of good machinery is seen in the remarkable progress made by P. H. \& F. M. Roots, of Connersville, Ind., in the manufacture and development of their blowing and pumping devices. These machines now have an international reputation. They are in operation in every part of the globe, and are generally recognized by engineers as standards of mechanical excellence in the lines to which they belong. Some idea of the high esteem in which these machines are held in England will be gained from the recent illustrated article published in the Engineer, which we give in another column.

How Coal Made the "Bad Lands."

The "Bad Lands" of Dakota are said to owe their origin to the burning of the coal deposits that once existed there. They are situated principally along the Cheyenne and Grand rivers and the Little Missouri They are from two or three miles to, say, twenty-five miles in width. In the long ago, the valleys of these streams must have been filled with drift wood. Then followed a period of drift, which buried the accumulation of wood under two or three hundred feet of sediment, sand, and gravel. The buried wood in time became coal, the veins being in some instances twenty odd feet in depth. Either from spontaneous combustion or from electricity, fires were started in these veins, and they gradually burned out, restoring in part the old water courses by means of the overflow from the accumulation of water in these newly formed basins. Looking upon them, here you see patches of slag, there great bowlders, showing unmistakable evidences of great heat, and on every hand scoria or burned clay, resembling broken brick. Where the fires were checked by the caving earth and the coal did not burn, mounds two or three hundred feet in height stand.
And according to the Black Diariond, a newspaper devoted to the coal interests, published in Chicago, in parts of Wyoming the same process is now going on; vast fields are undermined by subterranean fires, and the blackened, smoking plain is filled with desolation. Trappers say these fires have been in existence for a long time, and the traditions of the Indians point to the same conclusion.

Lack of Heat.

In the Superior Court of Massachussetts, in an action for rent against the tenant of rooms in an apartment house, it appeared that the steam heat which the landlord agreed to supply was inadequate that additional heat became essential to a proper enjoyment of the premises; that the flues and chimneys were defective, or improperly constructed; that her apartments were often filled with dense smoke; and that the elevator service was inefficient. The court held that these grievances were an obstruc. tion to the beneficial enjoyment of the premises, constituting a constructive eviction, and justified the constituting a construct

French Torpedo Experiments.

The T'emps, of Paris, gives an account of a series of torpedo experiments which have been lately carried out under the direction of the French Minister of Marine, and which, according to that paper, proved far more successful than those performed by the British fleet in Bantry Bay. It would appear that the new minister, Admiral Aube, is desirous of investigating the efficiency of the torpedo service; and with that object he dispatched a number of boats from Cherbourg to Toulon via the Straits of Gibraltar, to test their sea-going qualities. The trial was most satisfactory, with one exception; the vessels proved very seaworthy, and passed through the Bay of Biscay successfully. But the crews found their quarters most unpleasant; the continual vibration, the cramped accommodation, the want of fresh air, and the general discomfort were such that after thirty-six hours the men were completely fatigued, and needed to run to port for rest. Hence it seemed proved that such boats were only fitted for operations near their base, and could not be sent on long independent cruises. But when the firing experiments were made, the results were altogether successful. On the 2 d of March an attack was made on the ironclad Amiral Duperre, off the Hyeres ral Duperre, off the Hyeres
Islands, under several difIslands, under several dif-
ferent conditions. Two torpedo boats, Nos. 58 and 59 , were moored by three cables, while the vessel steamed past them at the rate of 14 to $141 / 2$ knots per hour. They launched six torpedoes at her at different angles, some directed at the mast, and others at various parts of the ship. All these missiles struck the vessel and exploded their fuses. The next experiment consisted in boat No. 58 meeting the ironclad stem on, the former at the rate of nine knots and the latter at $141 / 2$. When a distance of 500 yards separated the two, the torpedo was ejected from its tube, and struck the ship. 11 meters behind the spur, exploding its mimic charge. Two first-class boats, Nos. 63 and 64, were then brought into action. The former advanced toward the bows of the Amiral Duperre at the rate of 12 knots, the large vessel steaming at the same time at 14 knots. The missile again struck, and when the second boat executed a similar maneuver, its projectile only missed by a few yards.
As far as they go, these trials are most satisfactory, and confirm the tory, and confirm the
opinion that the torpedo opinion that the torpedo
boat will be the prominent feature in the naval battles of the future. But, says Engineering, when our contemporary goes mediate lines signifying star rays.
on to suggest that the poorer results obtained in Ban-
try Bay were owing to the English torpedoes being badly equipped or unskillfully worked, he shows that badly equipped or unskillfully worked, he shows that
he fails to appreciate the different conditions of the he fails to appreciate the different conditions of the
two cases. He might as well compare the shooting at two cases. He might as well compare the shooting at
Wimbledon with the waste of lead in a battle. In the. Wimbledon with the waste of lead in a battle. In the
placid waters of the Mediterranean, the torpedo had placid waters of in the first trial, the boats were securely moored, and in the others the speeds were eviderty settled beforehand. The whole programme was arranged, and was carried out without hurry or excitement.
But in Bantry Bay there was no indulgence extended to the torpedo. The course of the Polyphemus was not known; she was to make a rush at the boom, but could choose her own direction and speed, so that the officers in charge of the boats had to be on the alert to select the most fitting opportunity, and had at the same time to determine what allowance must be made for speed. No wonder the theory that the wave which preceded the vessel deflected the missiles was advanced, and received great prominence in the newspaper accounts which appeared, a theory which our contemporary declares to be now exploded. If the French Minister of Marine will repeat his experiments under conditions more nearly resembling a battle, he will probably find some new hypothesis advanced to explain the poorer results which will be obtained.

NIGHT SKY-MARCH AND APRIL.

A simple method of producing a powerful magnesium light for experimental purposes is described by a corre spondent of the Photographic News. It consists of a methylated spirit lamp, the wick of which projects out from the side, near the top, being inclosed in a short spout. The flame of this lamp is made to play upon the bottom of a brass vessel, about the size of an egg-cup, which is intended to contain a mixture of sand and powdered magnesium. There is a small perforation in the bottom of the cup for the continuous escape of the powder, which must be so placed that while it falls into the flame of the spirit lamp, it does not drop upon the wick. The sand-cup arrangement is, in fact, on the hour glass principle. It is essential that the perforated end of the sand-cup should be kept hot by the flame, in order to prevent condensation upon it of water, to which the powder would adhere. A trial will show the required dimensions of the hole in the cup, the proportion of magnesium, and the management of the little apparatus. It is stated, in order to discourage attempts with a very obvious makeshift, that a funnel will not answer in place of

The Great Bear (Ursa Major) is now nearing the point overhead, the Pointers (α and β) aiming almost directly downward toward the Pole Star. The line rom this star (α of the Little Bear, Ursa Minor) to the Guardians (β and γ) is now in the position of the minute hand of a clock about 13 min . after an hour.
Cepheus lies north, low down, Cassiopeia on his left, the Cameleopard above her, Andromeda just setting, almost due northwest, on the left. Perseus is due northwest, rather low, the Charioteer (Auriga) on his left, but higher. Setting between west and northwest we see the Bull (Taurus), with the Pleiades and the ruddy Aldebaran. Orion is almost prone in his descent toward his western grave. The Twins (Gemini) are due west, in the mid-heavens; the Little Dog (Canis Minor) beside them on their left, the Crab (Cancer) above, the Greater Dog (Canis Major) below, chasing the Hare (Lepus) below the horizon. Just behind the Dog the poop of the Great Ship (Argo) is also setting.
The Sea Serpent (Hydra) now shows his full length, earing his head high in the south. Observe the dark- heart, α, Alfard, the Solitary One. The Cup (Cra. ter) and Crow (Corvus) stand on his back.
The Sickle in the Lion (Leo) now stands with handle upright, due south. Below the tail stars of the Lion we see the Virgin (Virgo), with the bright Spica Azimech. The set of five third magnitude stars above was called by the Arabs, for reasons not ex plained, the "Retreat of the Howling She Dogs."
Behind the Lion, due east and high up, we see Coma Berenices, the hair of Queen Berenice, between which and the tail of the Great Bear we see in the chart one star only of the Hunting Dogs (Canes Venatici).
The Herdsman (Bootes), still his back, pursues in that striking and effective position the Great Bear. Below the shoulder stars of the Herdsman we see the Crown (Corona Borealis), near which, on the right, low down and due east, the head of the Ser pent (Serpens) is rising. Hercules is also rising, but in the northeast.
Lastly, the stars of the Dragon (Draco) can be seen curving from between the Pointers pand the Pole, round the Little Bear, then back toward Hercules, the head of the Dragon, with α, the bright eyes, β and γ, being \cdot rather low down, and somewhat north of north east.

Hints to Draughtsmen.

Draughtsmen, as well as become choked with powder and water. The larger others, have their little kinks, and the publishing of the proportion of magnesium that can be satisfactorily burnt in this way, the longer is the flame. With proper management, a magnesium flame $11 / 2$ yards long may be obtained. The best way to start the apparatus is to light the spirit lamp first, and then fill the cup with the charge of powder by pouring it in all at once from a sheet of paper, when the metallic flame will forthwith be produced. The same style of apparatus may be found useful for displaying the effects of other powders in a non-luminous flame.

Railroad Tie Plantations.

Hon. R. W. Phipps, Forestry Commissioner of On tario, in a letter from Southern Kansas to the Toronto Globe writes:
"One railroad board here, knowing that the growing of wood, when set about in earnest, is neither a slow nor difficult task, has established in Kansas the largest artificial plantation of forest trees in North America. These railway gentlemen themselves gave out the contract for planting over a square mile of land with young saplings of the catalpa and ailantus; and their president, observing the success of their experiment, and impressed with its probable excellent financial results, has had planted at his own expense, as a speculation, as much more. These are situated near the little town of Farlington, Kan."
hese kinks often helps others. A practical draughtsthese kinks often helps others. A practical draughts-
man in Wood and Iron gives the following simple suggestions, which will likely prove useful to some reader. In mixing up inks, the process is very much expedited by heating the dish and water in which it is mixed before commencing. It often happens in the summer that the flies walk over a tracing and eat off the ink in a very provoking manner. The use of vinegar instead of water will prevent this. 'In making a tracing, the cloth will take the ink much better if it is rubbed over with chalk. Tracing cloth that has been rolled up may be straightened out effectually and expeditiously by drawing it over the edge of a table or drawing board, holding it down meantime with an ordinary three-cornered scale. When there are a large number of drawings made and kept, a great deal of trouble and confusion can be avoided by making all the drawings on extra standard sizes. If a size of $16 \times 24 \mathrm{in}$. be adopted, then the next larger size would be equal to two of these, or $24 \times 32 \mathrm{in}$. This enlarging or reducing process may be carried as far as the circumstances require, but it is always best to do it by the doubling or halving process if possible.
One of the advantages of standard sizes of drawings is that they may be kept in a case of drawers, the size of which is made to accommodate the standard sizes determined upon,

IRONING TABLE

The ironing table here shown is strong and dura ble, can be folded very compactly, and is provided with an apron to prevent the articles being ironed from coming in contact with the floor. Pivoted near one end of the board are two bars whose opposite ends are bent toward each other and pivoted to the bottom of a leg having a cross piece at its top. The bars are united by cross pieces, and between them, at the curves, is pivoted a frame on which a piece of fabric is secured; the free end of this frame is supported by a strap. To adjust the table, the edge of the top of a kitçen table is passed between the end of the board and the ends of prongs secured to the

johnson's ironing table.

under side of the board. The bars are swung down, and the cross piece on the leg is swung up against the under side of the board. A catch on the leg engages with a cross piece on the lower ends of the bars, and holds the parts in place. The frame drops, and forms a pocket for receiving parts of the gar ment being ironed. To fold the board, the frame is swung between the bars, the leg is swung on the lower cross piece, when the bars are swung against the under side of the board; a latch then locks the parts in place.
This invention has been patented by Mr. T. N Johnson, whose address is P. O. box 735, Rome, N. Y.

CAR COUPLİNG.

The drawhead of the car coupling here shown is in general of the usual construction, and is provided with holes for the couplingpin, the head of which rests upon a collar formed on the middle of a cross piece of a U shaped frame placed on the drawhead near the front. The side pieces of this frame are slotted to receive guide pins; pins project from the lower ends of the sides of the frame. The link-lifting bar is pivoted in a slot in the bottom of the head, and is made with a fork at its front end. Pivoted in a slot in the lifting bar is a dog having at its upper end laterally projecting guide lugs, which project over curved shoulders on the inner sides of the drawhead near its top. A short arm projects from the lower end of the dog through the slot and under the bottom edge of the lifting bar. Journaled in a transverse recess in the bottom of the head is a shaft having a handle piece and an arm in

clined downward toward the front, so as to strike the pins on the sliding frame. The coupling link is of the usual construction.
Before the cars are coupled, the pin is rested on top of the dog. The entering link strikes the dog and swings it from under the pin, which drops through the link and couples the cars. By turning the shaft, the entering end of thel link can be raised as shown in Fig. 2: To uncouple the cars, the pin is drawn up, when the dog swings under it; or the shaft can be so turned that its arms will raise the frame, which wil
carry the pin up with it. The short curved arm on the dog prevents it swinging too far front.
This invention has been patented by Messrs. G. D. and C. H. Westover, of Cadillac, Mich., who will furnish further particulars.

How to Secure Water Supply.

About a year ago I saw some articles in the Scien tific American on storing wind power. One of them, I believe, was for pumping water in a reservoir for irripation purposes.
I have an idea of using the same force in a still simpler way, provided locality suits the case, viz., to make that untiring fellow, the wind, bring sufficient snow drifts on the most elevated portion of the farm, where, on the lowest end of it, a reservoir is built, into which the water is collected by proper drainage, when the snow melts.
To bring the snow on the desired strip of land, it is simply necessary to build a high fence in a north and south direction, on the east side of which the snow will accumulate in sufficient quantity, almost every winter, to fill a good sized reservoir, if the obstructive fence is at least from 25 to 50 rods in length; but better than a fence would be a belt of forest trees, of at least two rows of evergreens.
That such a strip of trees planted on the west side of a farm pays many times for its cost in the way of protection tofarm crops, I have ample experience.
G. G.

AN IMPROMPTU HEN COOP.

The demand for coops for sitting hens or for mothers with young broods of chickens is often unexpected, and frequently this demand exceeds the supply. One of the easiest ways to meet this want is to follow the suggestion of the accompanying cut, and make use of old flour barrels and apple barrels, which are now long since relieved of their winter contents. The barrel should be partly buried in the ground, the exca-

AN IMPROMPTU HEN COOP.

vated earth being thrown back into bottom of same, and a comfortable and sheltered retreat is thus provided. In case the coop is to be the home of a young. family of chickens, it is only necessary to add to the barrel a few slats at the opening. If a few nests of this kind are scattered about the yard, they will be found very attractive to sitting hens, who may be supplied with eggs when it is found that they are earnest in their intentions. It is not proposed that this species of nest shall take the place of the old fashioned coop, but it will be found to be a desirable re source in case of emergency.

India Calling for Our Inventions.

A gentleman residing in Calcutta having seen our illustration and description of a separator for wheat in the Scientific American, writes to this office a long and very interesting letter, giving important statistics relative to the growth and exporting of wheat from India, and suggests that it is a good market for meritorious inventions in the agricultural line, and es pecially the class pertaining to the cultivation and cleaning of wheat
He says that "the extension of our railway system has made it possible for wheat to be brought down to our ports in vast quantity, and producers would get much better prices for at least four million tons annually if they had good wheat cleaners."
India, China, and Japan, he adds, are advancing rapidly in the path of material progress, and Indian trade has advanced with greater rapidity than that of even America. The writer laments that so few important improvements patented in the United States find their way to India, and promises in a future letter to send his further observations on other inventions most reeded in his country.

Curious Request.

Editors are constantly in receipt of curious letters. Here is one of them, sent to the editor of Harper's Magazine the other day. It was from a lady who wrote that she was dying, and that her physicians told her she would be dead before the conclusion of Mr. Howells' story, "Indian Summer," then running in the Monthly. She was very much interested in it, and did not want to die until she knew how it was going to end, and she begged the editor to let her read the advance sheets, that she might die happy.

IMPROVED SAD IRON.

This sad iron-the invention of Mr. G. S. Castagneto -is so constructed that the heat cannot be reflected from the top or handle, and thus cannot pain the hand of the person using the iron. The space between the top of the cast bottom piece and a sheet metal plate held on the slightly raised edges is filled with asbestos. The edges of this plate are turned up to form flanges, on which rests a metal plate having its edges turned down to form flanges, which rest against the outsides of the others; asbestos is filled in between the plates. On the upper plate is a hollow sheet metal handle, the ends of which are filled with asbestos. In the top of the handle are holes, through which the hot air can escape. The several pieces are held together by

castagneto's improved sad iron.

screws. The layers of asbestos prevent the top plate being heated from the bottom piece, and thereby keep the heat from the hand.
Additional particulars concerning this invention can be had by addressing General Stephen Moffitt, of Plattsburg, N. Y.

HILL MARKING ATTACHMENT FOR CORN PLANTERS.
The engraving represents a hill marking attachment for corn planters, constructed in such a manner as to be operated to mark the ground by the movement of the seed-dropping slide, and raised from the ground automatically as the planter is drawn forward. The forward part of the planter frame and the rear part are hinged to each other. The forward part is provided with channel-opening runners, seed boxes, and a seed-dropping slide in the ordinary manner; the slide can be operated by hand, by a lever or by any of the well known means. The points to mark the ground in line with the cross rows are formed on bent rods journaled to the side bars of the forward frame, as shown in the cut. These points-shown in the small views-are so held as to yield, should they strike an obstruction. The points can be held out of contact with the ground by shoulders formed on the ends of a shaft placed in bearings attached to the ends of the side bars of the forward frame; springs hold this shaft so that they will engage with certainty with the marking bars.
To the middle of the shaft is rigidly secured an arm, which projects so as to be struck by a double inclined projection formed upon the lower side of the seed-dropping slide, thus rocking the shaft and withdrawing the marker bars each time the slide is moved to drop seed. To the marker bars are attached chains leading to the ends of arms projecting from a shaft rocking in bearings on the forward part of the rear frame. Fixed at the middle of this shaft is an arm, in whose forked end is pivoted a lever pawl having a tooth to engage with ratchet wheel on the axle of the drive wheels.

SHUPE'S HILL MARKING ATTACHMENT FOR CORN PLANTERS.

This pawl is so connected by levers that, when the side is operated to drop the seed and release the markers, it drops into gear with the ratchet wheel. As the wheel turns forward it carries the pawl and arm with it, and turns the shaft so that the chains will raise the markers until they are caught by the catches. The further movement of the wheel releases the pawl, which is raised by the weight of the arms of the shaft on the rear frame into position, ready to be again dropped when the slide is again moved to drop seed for another hill. A slight change is made when the slide is to be operated by a check wire.
This invention has been patented by Mr. Charles C. Shupe, of Mendon, IIl.

A large gas vein was recently struck at Piqua, Ohio, at the depth of 400 feet.

Lubricating and Cylinder Oils.

An interesting and instructive address on lubricat ing and cylinder oils was recently delivered by Scott A. Smith before the Rhode Island Engineers' Association, Providence
He made comparison of different oils, regarding the impurities they contained, and explained the methods employed in refining. He said that for purposes of lubrication, where metal is working upon metal, sperm oil is the best, lard oil second, neat's foot third, and tallow oil fourth. The best grade of animal oil is that which contains the least stearine and no free acid.
Regarding the friction of oils upon their own par ticles, lard oil is two and one-third times as long in running out of this tube at 70° as sperm; then we must consider that we have the weight of one ounce of oil compared with another ounce moving upon itself. The result, so far considered, is vastly in favor of sperm as a light running oil; but in actual use, where bearings have a stress of 300 pounds and upward to the square inch, then this great difference tends rapidly to disappear.
If you work bearings with 1 pound pressure to the square inch, use sperm; if at 500 to 600 , or as a locomotive practice up to 1,200 and more, then you may find lard the best, particularly at about half the price per gallon of sperm. Petroleum, consisting of hydrogen and carbon, is eminently fitted for lubrication, as it contains none of the destroying slementoxygen.
The average quality of petroleum oils has been much improved within a few years, partly for the reason that consumers have exacted a better article, and partly because of the competition of dealers, who have marketed their oils on their merits. It is, I think, not too much to hope for that, within the next ten years, or less, the qualities of pure petroleum oils may be so improved that, with improvements in the shaft bearings of machinery, and some provisions against accidental overheating, all lubrication may be possible with petroleum alone. Use as little animal oil as possible, on account of high cost, waste by careless handling, its active acid qualities, and its tendency to gum.
The gumming of animal oils exists independently of the active acid principle, and is the result of oxidizing. Petroleum oils have no active principle to neutralize the acid of animal oils.
Petroleum cylinder oils, so made that they will do the best work in any and all engines, are the result of much scientific and practical study, and the processes of their manufacture are very complicated. They contain no acid, and cannot develop any by heat and work. Their flashing point is not less than 400°; gravity, 25° to 28° at 100° Fah.
In conclusion, petroleum cylinder oils have peculiar and distinctive qualities to recommend them for this special use-great heat-resisting power, freedom from all acid qualities, freedom from all tendency to gum,
name, or any reference thereto, but simply describe the oil to the best of his ability.

Means can be furnished members by which they can get the cold test, gravity, and flash of the oil now in use.
The reasons why I would exclude the maker's name are these: The prime object should be to get information about oils, and not to advertise them.-Provi dence Journal.

A COMPACT BOAT BOILER

Our illustrations represent a boat boiler designed by M. V. Cadiat, a French marine engineer. In this boiler the heating surface is derived principally from a group of brass tubes inclined at an angle of 45 deg., and

CADIAT'S IMPROVED STEAM BOILER.

through which the water circulates. These tubes stand immediately in front of the grate and are fixed in two tube plates. A certain number of the tubes are made to act as stays by being fitted with double nuts at the ends. Each of the tube plates has a thickened margin; the upper one is bolted to a spherical steam chamber, and the lower to a smaller chamber or dish, provided with mud hole doors. Two of the tubes which are at the side of the group further from the fire are of a large diameter in order to provide for the downward current of water. A baffle plate in the dome, at about the water level, aids the circulation by deflecting the stream toward the larger tubes.
The spherical dome carries the safety valve, water gauge, and the like. With the exception of the water gauge all the fittings are grouped upon a special pipe connected to a steam separator inside the dome. This consists of a helical tube of three turns, upon the outer side of which there are a number of small holes, pro-
covered with polished brass. The arrangement of the doors for gaining access to the tubes, and the manner of carrying the chimney, are clearly shown in the engravings.
Engineering says: We are informed by the makers, MM. Edouard Mourraille \& Co., Toulon, France, that a trial of one of these boilers has given the following results: The boiler in question had a heating surface of 63 square feet and a grate surface of $2 \cdot 15$ square feet. The pressure was 100 pounds per square inch, and the weight of the boiler and water one ton. It was fitted in a small boat having a single cylinder noncondensing engine, with the exhaust in the chimney The coal burnt per hour, with easy firing, was 154 pounds, or 71 pounds per square foot of grate surface. This evaporated 921 pounds of water, or 6 pounds per pound of coal. The indicated horse power was 20.
The merit of the boiler lies in its compactness and the ease with which the internal parts can be reached. The entire wear is thrown upon the tubes, which can be easily renewed.

The Utilization of Bagasse

The utilization in sugar making countries of the residual canes-bagasse-for fuel and gas making is an important practical problem which has yet been only partially solved. The great drawback to the profitable combustion or carbonization of this highly car bonaceous material has been the large proportion of water which it contains, as ordinarily treated by mills, presses, etc. It is stated, however, in the Revue Indus trielle, that M. Pellet has succeeded in devising, to the order of the Fives-Lille Company, a system of dealing with the material which produces, by direct compression, a combustible containing not more than 40 to 50 per cent of water. In this state the waste can be burnt directly in boiler furnaces or carbonized without previous drying. This result is obtained by a preliminary division of the pieces of cane in a special apparatus, whereby the after-compression of the material by presses of any convenient kind may be usefully secured. The compressed material is formed into bricks by the addition of powdered fuel, ashes, or lime. It is cited as a remarkable instance of the utilization of a waste product reacting upon the original value of the material, that this conversion of waste sugar-cane into a useful fuel will render possible a special treatment of the cane, which will result in simplifying processes, saving labor, and increasing the yield of the raw article.

Accidents from Machinery.

It has been settled by a decision of the Supreme Court of Pennsylvania that machinery, once -adjusted to its place in a factory, is presumably properly constructed, and may be operated without danger to the operativecharged with its care. In case of an action for damages from injuries, there must be direct and conclusive evidence to overcome this presumption The meaning of this decision to employes in this State

CADIAT'S IMPROVED STEAM BOILER.
and their remarkable property of spreading on heated surfaces.
The speaker suggested that the Engineers' Association might gather in the experience of its individual members in past years with various kinds of oils under the conditions of actual use. I make bold to formulate this plan :

Prepare and have printed suitable directions, with questions to be answered; also, a request for a full account of their experience with oils; with, however, this requirement, that no one shall give the maker's
vided with inclined plates. As the steam and wate rush through this pipe the particles of water are, by the centrifugal force, thrown through these holes int the casing, from, whence they return to the boiler, while the steam is emitted dry at the bottom of the helix. The boiler is lagged with an envelope which surrounds the upper part of the group of tubes, and is fixed to the inner sides of the tube plates. The furnace is lined with firebrick. Neither the walls of the firebox nor the casing around the tubes adds to the heating sur the casing around the tubes adds to the heating sur-
face of the boiler, The dome is covered with felt, and
is that any personal injuries they may sustain from exposed machinery will be at their own risk, so far as legal remedies are concerned. At first sight this may seem a hard thing, but reflection will lead inevitably to the conclusion that no other basis of equity could be found by the court. To make the owner of machinery liable for individual carelessness is to put a premium upon stupidity. The remedies for gross neglect of precautions to secure ordinary safety will never be denied, but the reckless trifler with whirling wheels must run his own risks.-Phil. Record.

James Watt Anniversary.

The anniversary dinner of the foremen engineers of the Clyde, in honor of the third jubilee or 150 th anniversary of the birth of James Watt, was held on Saturday evening, the 23d of January, in the Grand Hotel, Charing Cross, Glasgow, under the genial presidency of Mr. John Ward, of the Leven Shipyard, Dumbarton. The occasion was marked with all that enthusiasm and esprit de corps for which these annual dinners are famous. The chairman was supported by Mr. F. H. Underwood, Consul for the United States. The croupier's chair was filled by Mr. G. Russell Motherwell, who is president-elect for next anniversary. The gathering, which numbered about one hundred and fifty, also included many of the leading members of the trades interested on the Clyde.
The chairman, in submitting the toast of the evening, "The Memory of James Watt," gave a succinct and choicely worded resume of the life and work of this illustrious engineer. In introducing his subject, he said: "Just as we love to remember in our family life, and our national life, the birth anniversaries of those near and dear to us, or who have done well for their country, and deserve well at our hands, so do we, or we ought, as lineal descendants of our patron saint, take pleasure in meeting together to celebrate this, the third jubilee anniversary of his birth, and hear once again of the intellectual battles he fought, of the victories he gained, and of the honors he won-battles none the less real because they were bloodless; victories none the less enduring and of lasting benefit to his country and to mankind in general because they were peaceful ; and honors which deservedly crowned him with wealth and fame, but which fell far short of what would doubtless have been his had his battles been of a military character, and his victories gained at the loss of precious lives and the desolation of many hearths and homes."
Having traced in a highly interesting way the early efforts and later successes of Watt, the speaker said that it was a duty lying on "any orie proposing this toast to bring to remembrance the great help Watt had received from that great and inventive genius who was so closely associated with him in his later improvements on the steam engine. I refer to our countryman, William Murdoch. This great and original genius was engaged by Boulton and Watt in 1777 (three years after their commencement in business), first as a mechanic at 15 s . a week, and latterly in directing the erection and working of the mine engines set up by the firm in Cornwall, the salary given him by them for this work being $£ 1$ per week. At the age of 44 he asked for an increase, and not receiving a prompt reply, he resigned his position.
"As a result of this the firm showed the appreciation in which they held him by offering him the general managership of their works, at a salary of $£ 1,000$ a year, which he accepted. But that his resignation had taken place before any tangible appreciation of his worth was given by the firm, even when holding a position of trust, leaves an unpleasant feeling in the minds of impartial thinkers. As the inventor of the first locomotive engine, of the first oscillating and the first slide valve engines, Murdoch showed his wonderful ability and genius; but especially as the founder and inventor of gas lighting will his name ever be best known to mankind. If, however, Boulton and Watt made scant recognition of his worth until compelled by his leaving them to do so, what shall we say of those who have for many years taken the free gift which he gave to the world, and especially those who have and are making large fortunes thereby, without any recognition whatever ? Right glad am I to know, gentlemen, that there some members of his profession with us this evening who are at this moment striving to atone for past neglect, and in the success with which their efforts for a national memorial to him are being crowned, are doing honor to his memory as well as to the profession which they themselves adorn."
Speaking of later times, the speaker concluded: 'While great improvements have since been made upon the steam engine, yet in essential points it still remains as Watt left it, his successors in the profession being content if they could simply add their stone to the structure whose foundations have been so firmly laid. The men of the Clyde, and particularly members of this association, have pride in knowing that the greatest improvements on the steam engine since the days of Watt have emanated from brains trained, as his was, on the banks of the Clyde-notably surface condensation and the compound marine engine; while more recently engines with great pressures, and triple and quadruple expansions, are the latest laurels of the profession. And so the steam engine goes steadily forward on the march of progression, until now we see it the great lever which has influenced society, and brought about more changes upon the face of the world than any other power. Steam navigation has also made great progress within the last 25 years. True we have the Great Eastern, which must ever remain a tribute to Brunel \& Scott Russell's genius, but as a profitable and speedy steamer she was never but as a profitable and speedy steamer she was never
successful. Dr. Lardner, in 1835, addressing a Liver-
pool audience, said: 'As to the project which was announced in the newspapers of making the voyage directly from New York to Liverpool, it was, he had no hesitation in saying, perfectly chimerical, and they might as well talk of making a voyage from New York or Liverpool to the moon.' That declaration can never be more fitly recalled than at a time like this, when marine engines admit of vast power being packed in little space-when we have steam at sea as on shore, cheaper than the unbought wind, and when enormous floating palaces are constantly making the passage in a little over six days. What further advance remains to steam navigation it would be unwise to conjecture, but we know that at the present moment we are building on the Clyde vessels to beat the highest speeds we have yet reached,'and even then the limits of steamship achievements will not be defined."
Succeeding toasts were: "The Trade and Commerce of Glasgow," submitted by Mr. \#J. M. Cherrie, of Park head Forge, and responded to by Mr. Underwood, U. S. Consul; "The Association of Foremen Engineers," proposed by Mr. P. Denny, Jr., and replied to by the Croupier; "Shipbuilding and Marine Engineering on the Clyde," proposed by Mr. J. W. Millar, replied to by Mr. J. P. Wilson; "The Iron and Steel Trades," proMr. J. P. Wilson; "The Iron and Steel Trades," pro McLelland, of the Steel Company of Scotland. Other toasts were: "The Railway Interests," "The Visitors," "The Chairman," and "The Croupier." In the course of the evening, which was much enjoyed throughout, several of the company entertained the gathering with songs.

The Eight Hour Movement.

Congress long since enacted that eight hours should constitute a day's work for those engaged in the employ of the United States. The enactment has not been adhered to, and a measure is now before Congress to reimburse those who have worked more than eight hours, for overtime. Should the measure pass, it is estimated that it will take about three millions of dollars to pay the bills. City governments are susceptible to several influences which would favor the success of a movement of this character. The favor of the working classes, the ability to increase the number of employes and thus incidentally reduce the number of needy persons, are some of the considerations which make city governments regard the movement favorably. In a few instances the eight hour system has been adopted by cities, while in others the question is now being agitated.
The arguments used in favor of eight hours constituting a day's work are primarily that it would give employment to many more persons and relieve the glut of the labor market; that it would give more time for recreation, mental and social improvement, and thus, by bettering the condition of the wage-earning class, elevate society as a whole. Although, as has already been noted, those who demand a reduction in the hours of labor express a willingness to accept a corresponding reduction in wages, it is evident that this is merely a temporary expedient to let employers down easy. The advocates of the eight hour movement expect that after the system has been inaugurated they will then be able to secure an advance of wages to old ten-hour rates. Indeed, as much was acknowledged publicly by the principal speaker at a monster eight hour meeting in Chicago held recently. His words were that "if the eight hour movement is pushed
to a successful issue, twenty per cent more labor would be needed, and that as the demand for labor increased, wages would become better and better." This we believe to be the " milk in the cocoanut." The advocates of the eight hour movement expect, in reality, to cut down the working day two hours, and re ceive the same pay, after a little, as at present.
So important a matter as the dropping off of one-fifth of the hours heretofore constituting a day's work cannot fail to be of great importance to employers, and they are, as a matter of course, considering the sub ject in its various bearings upon their interests. In a few lines of manufactures, in which most of the labor is done on the piecework system, the adoption of the eight hour system would make no great difference. This would not be the case, however, in many, if not in the majority of cases, where the work is largely done by the piece. An increase in the number of persons
employed would require more space, more tools, more machinery would require more space, more tools, more call for the employment of additional help which does not work by the piece. This would be particularly true in large cities, and will be apparent to intelligent readers without going into a detailed explanation. In lines in which costly machinery is employed, it is often necessary to keep the machinery running long hours
in order to obtain a just return for the investment. On the whole, the conclusion is inevitable that a reduction of the hours of labor is equivalent to an increase in running expenses. This increase may not be quite in the exact proportion of the reduction in the hours of labor, where the piecework plan is in operation, but it In enterprises where la many cases.
month, the increase in the cost of production by a re duction of the hours of labor is entirely obvious. A concern employing one hundred men ten hours would lose twenty days' work every day by the adoption of the eight hour system; an establishment employing five hundred men would lose one hundred days' work every day. This will give an idea of the amount of reduction in production which would arise from the adoption of the eight hour system, with present working forces. A corresponding reduction of wages, if adhered to, would, of course, relieve employing producers in a measure, but could not altogether compensate for the reduction in labor. But, as we have already noted, it is not expected that wages would remain permanently reduced. It is hard enough now for thousands to live, both day and piece hands, and they would not consent to a reduction in the hours of labor if they expected a corresponding permanent reduction in wages. Such a corresponding permanent reduction in wages. Such a
reduction would only bring increased privation in families whose lot is already hard enough.
The conclusion is inevitable that a general adoption of the eight hour system would increase the cost of production and enhance the price of goods to consumers, including, of course, wage-workers themselves, and would have a tendency to stimulate immigration. How far a restriction of production and enhancement of the selling price of goods would reimburse manufacturers for the disadvantages which we have shown would accompany the proposed reduction in the hours of labor, is a matter which experience only can demonstrate. Capital will not seek investment except where a profitable return seems clear to the investor. How far the adoption of the proposed measure would influence capital unfavorably, it is difficult to say. One thing is already a fact in Chicago, and that is that bids and estimates for public and private buildings, now offered, contain a margin of some thousands of dollars for possible labor difficulties, and this will have the effect, in some instances, at least, of influencing some parties to defer building who would otherwise do so.-American Artisan.

PHOTOGRAPHIC NOTES.

Method of Producing Uniform Enlargements.-We recently had occasion to enlarge a small negative of a child clothed in a fine white lace dress, upon gelatine bromide paper, and experienced some difficulty in obtaining sufficient detail in the dress without sacrificing the high lights in the face. An exposure for the face was too short for the dress, inasmuch as the density of the negative in the face was out of proportion to that in the dress.
Having already spoiled one enlargement by over-ex posure, we took a pair of scissors and cut out of it the face and other portions of the picture which we wished to have protected, and proceeded as follows: First the image was focused on the enlarging screen, the size of the face being exactly the same as that which had previously been cut out. Then an exposure was made for fifteen seconds on the sensitive sheet, the cap of red glass was next put over the lens, and the cut-out sheet of paper representing the face was slightly dampened and placed in position over the image, on the screen, so that it matched theimage exactly. The moisture in the paper was sufficient to cause it easily to adhere to the sensitive sheet. After this a second exposure for fifteen seconds more was made, then the cut-out sheet was re moved and the sensitive sheet developed in the usual manner. One portion of the picture had twice as much exposure as that which was masked. As a result, the fine delicate tracery in the white dress was fully brought out, while the high lights of the face and other masked portions were well preserved and of agreeable quality. The dampening of the film of the sensitive sheet while on the screen did not injure in the least the resulting picture.
Improved Screen for Lantern Pictures.-In a lecture recently given before the Society of Amateur Photographers of this city, by Mr. Geo. M. Hopkins, on "Po larized Light," a simple, but effective, screen was employed. It consists of heavy bluish white tracing paper, secured by mucilage or flour paste to a common wood hoop, four feet in diameter.
The audience viewed the pictures from the side of the screen opposite to the lantern, or by transmitted light.
The full benefit of the illumination was thus obtained.
For lanterns lighted by kerosene oil it undoubtedly brings out the full effect of the weak illumination, and is admirably adapted for small sized pictures.

A New Form of Tin.

A new metal, called by the inventor, Albert Assman, of Rahway, N. \because J., "assayme," is produced by a special treatment of tin. It has all the good qualities of the latter, can be pressed into any shape, or cast into statuary, or used for plate ware of any description. A beautiful bronze color can be given to the metal, or any shade from bronze to a silver color; and as it does not in the least corrode, it is specially valuable as a silver solder. It melts at a temperaturo valuable as a silver solder. It melts at a
of 432 degrees, or 18 degrees less than tin.

Gorrespondence.

Steam Yacht.

To the Editor of the Scientific American:
Perhaps my experience will be of some assistance to W. N. McA., Notes and Queries (67), of March 13. I had a yacht almost a duplicate of his. My boat was 2 feet longer, 3 inches wider, and the same draught of water. The boiler was 4 inches more in diameter and same height, engine $\times 57$, wheel 2 inches larger. The change from 2 to 3 blades was no improvement, and to 4 a loss. I then lowered the shaft in stern post sufficient to put in a 32 inch 2 blade propeller, and with 100 pounds steam pressure in boiler could make 12 miles per hour, and have exceeded that speed with higher boiler pressure.
While speaking of the speed of steam yachts, I can assure the owners of the Stiletto that they can increase her speed at least two miles per hour by changing her wheel for a two bladed wheel, 60 inches diameter, and lead $11 / 2$ to 1 . Of course the shaft would require to be lowered enough to put wheel under the water when boat was at rest.
A. S. Dickson.

Meadville, Pa., March 16, 1886.

Cultivating Paste Eels for Microscope Study.

To the Editor of the Scientific American:
Referring to Mr. James' explanation of the paste eel tricks of microscope venders, in the March 13th issue of the Scientific American, and the difficulties he mentions in the cultivation of the eels, I would say that I have the best success in preserving the eels by keeping the paste in a wide mouth bottle partly full, and loosely stoppered, and set in a cool place. If cool enough to freeze water, all the better for keeping them, but to grow them rapidly and large, warmth is needed. Whenever I discover that they are not doing well, I add a bit of bread to the paste or make a fresh batch. Rye paste seems to answer best, and a few of the eels transplanted into a fresh bowl of paste in warm weather will multiply so rapidly as to cover its surface in a few days with a thick, yellow coat of them. Paste that contains a good supply of them will keep for weeks without moulding, when, without them, it would be covered with mould in a day or two.
W. G. Blish.

Niles, Mich., March 13, 1886.

The Earth's Past.

The earth's surface has long been recognized as presenting a stupendously difficult series of problemsproblems indeed which can never be fully solved. So soon as men gave up the old idea that the crust had been fashioned originally much as it is now; so soon as, turning over the leaves of the great earth volume, they began to read what is recorded there, they found, in the first place, that the record runs back over millions of past years, and, in the second place, that millions of past years, and, in the second place, that
it is full of gaps, of blurred pages, of scarce interit is full of gaps, of blurred pages, of scarce inter-
pretable passages. Yet imperfect though the record is in many plaees, and hard to read in others, it at least tells us clearly the general history of the earth from the time when first there were lands and seas in her surface as now, and when the rival forces of denudation on the one hand and of land making on the other began the contest which has continued for the other began the contest which has continued for
millions of years in the past, and will last for millions of years yet to come.
We no longer, indeed, look back over such a uniform series of changes as the earlier students of geology contemplated. We no longer regard the layers of the earth as comparable with those of an onion, or formed in uniform succession as to time. We see, for example, that even as, in our own age, the denuding forces are forming new strata out of the materials of Quaternary rocks here, out of Tertiary rocks there, of Cretaceous, Jurassic, and Triassic rocks elsewhere, and in other vast regions, even out of the primary rocks down to the Lower Silurian and Cambrian, nay even to the Archæan rocks themselves, so it has been all the time. The crust of the earth has never presented features purely Pleistocene, or Pliocene, or Miocene, or Eocene-or presented, indeed, any uniform ascect at all; and as the formations have never been uniformly presented, so also the strata have never been uniformly laid down. We can no more say the earth was at one time Carboniferous and at another Cretaceous, than we can say that the soil of England was in such and such an era waste, at another time pasture land, at another crop land.
Yet we can look back over the past history of the earth and recognize her constant, though not uniform, progression from her Archæan condition to her present state.
The problems thus presented by the earth's history, while stupendously difficult in detail, are yet so far soluble that we can find in the action of air and water on the one hand, and subterranean forces on the other, the explanation of the general progression of the earth to her present condition. It is other-
wise with those prior changes by which the earth passed to the stage when she was fit to be the abode of living creatures. We have evidence, indeed, here also, but it is not so close at hand. We have knowledge of the chemical and physical laws involved in the problem, but the conditions under which the processes then taking place proceeded were unlike any under which we can now experiment. So far as I know, the problems suggested by the consideration of the earth's fiery youth have not been as yet very closely earth's fiery youth have not been as yet very closely
dealt with. Let us note some of the evidence, and some of the points which may fairly be regarded as clear.
In the first place, I think we are too apt to regard a planet in its fiery youth as more uniform than the earth is as we recognize it now. We find the idea common that there would be a molten mass, with perhaps a solid nucleus and a solid crust, and outside that a complex atmospheric envelope, high up, in which would be suspended immense layers of cloud, enshrouding the real planet from outside view. These ideas seem as likely to be erroneous as the common idea of the earth as inclosed in a uniform series of strata before wind, rain, and storm cut her surface up into mountains and valleys, hills and dales, ravines and gorges. Probably the structure of the earth, when in its fiery youth, was even very much more complex than the contour of the earth's crust is now. All the conditions favored tremendous disturbances. The upheavals and down, sinkings of the crust, for instance, would be very much more active then than now, though it does not follow that the resulting inequalities of level would be greater. Indeed, they would not be nearly so great, for the simple reason that, whatever the actual materials of the forming crust in those times, the intense heat pervading it would suffice to render it too unstable to be able to stand out to very great heights above the mean level. But consider how rapidly it would be changed by the subaerial forces which in those days must have been at work.
On our present earth we have an atmosphere of oxygen and nitrogen producing a pressure of about 15 pounds to the square inch; water is from time to time added to it in the form of vapor raised by the sun's heat from the sea, and it is this water, forming into clouds, and pouring down on the land, which leads to all the denuding work of river, cataract, rain, snow, ice, and glacier. In addition there is the direct denuding action of the air in wind and storm, the direct denuding action of water as the waves of the sea pulsate on their shore lines.
But such denuding forces can be absolutely as nothing compared with the denuding forces which must have been in operation when the earth was young. It is certain that the oxygen and nitrogen now present in the air are but a residuum of what was once there. But besides these gases, now in due proportion for the support of the earth's life, there were immense quantities of carbonic acid gas, of sulphurous acid, sulphureted hydrogen, chlorine, boracic acid, and other destructive gases, some ready to assume the liquid form, and so to be still more destructive. But there would also be immense quan-
tities-whole oceans one may say-of water in the tities-whole oceans one may say-of water in the
form of vapor. The pressure of that primeval atmosphere would have been so great that the waters of such oceans as would have existed then would not such oceans as would have existed then would not
have turned into steam, save at a temperature so far above the boiling point at the present atmospheric pressure that the surface of the ocean would actually have glowed with inherent luster. The water vapor in. the air would have been no such cool and pleasant vapor as now exists in our air, but steam at high pressure and intensely hot. The rains falling then would have been torrents of hot water, impregnated with destructive acids, and falling on intensely heated rocks, ready to respond with intense rapidity to the destructive influences of those falling torrents and of the dense, complicated, and destructive atmosphere through which they fell. We may be well assured that the changes taking place in the aspect of the earth's surface during that remote part of her career were far more rapid than those taking place now.-Newcastle Weekly Chronicle.

American Mills and Looms.'

The cotton manufacture in 1885 shows the total number of mills in the United States as 826, containing 261,228 looms and $12,280,342$ spindles, manufacturing $786,000,000$ yards of print cloths per annum. Of these, New England has 481 mills, containing 205,011 looms and $9,481,272$ spindles, manufacturing $646,000,000$ yards of print cloth.
Fall River has $1,742,884$ spindies and 40,908 looms.
It has 55 mills, with an incorporated capital of $\$ 18,139,000$, but a probable investment of $\$ 35,000,000$.
New England has made a large increase in spindles and looms within the past five years.
Fall River has thus nearly one-seventh of the spindles in the country, and about one-fifth of those in New England.

Dr. Cantani, of Naples, having in mind the fact that the bacillus of consumption is destroyed when other bacteria are grown in the same soil, has proposed to eradicate consumption by introducing into the system other bacilli which are injurious only to the germs of the disease. If an organ of the body be attacked by a bacillus dangerous to human life, he would intro duce another, harmless to man but fatal to the destructive bacillus. In the case of a consumptive patient, Dr. Cantani introduced a harmless organism, known as the Bacterium termo, and found that the Bacillus tuberculosis gradually disappeared from the patient's expectorations. The widespread desolation wrought by consumption is more than sufficient to urge the strongest effort on the part of the medical fraternity to discover a successful treatment. It may be possible that this suggestion will bear fruits of the greatest importance. We hope, at least, that it will receive careful investigation.

- The Colliery Manager.

Mr. Laurence Hill, a well known Glasgow engineer, is one of the professional examiners of candidates for colliery managers' certificates in the eastern district of Scotland, over which Mr. Ralph Moore is Her Majesty's chief inspector of mines. A few weeks since Mr. Hill was applied to by a young man, with the request that he would assist him in his studies for the examination for one of these certificates; and as every year many men present themselves at the examinations without being qualified, Mr. Hill and his friend, Mr. Moore, thought that it would do a service to intending candidates if they were provided with some outline of the course of study necessary to enable them to secure certificates. Accordingly, the first named gentleman put in writing a reply to the young man who desired to become a candidate and as it may be equally useful to intending candidates in all the colliery districts of the kingdom, we give it the benefit, says the Colliery Guardian, of publicity.
Addressing his correspondent, Mr. Hill trusts that he will understand that it is not for want of wish to assist him in a praiseworthy object, but because it would be wrong for any examiner to give special instruction. This would, he says, be very unfair to other candidates. He makes his correspondent welcome, however, to the following information, and he remarks that he will be recompensed for his trouble if the recipient of the information will circulate it among his friends.
In the first place, he would remark, he says, that if his correspondent is only now (February) beginning to prepare himself for the approaching exami nation, he would not advise him to come up this year, but to use all his spare time from now till next year to prepare himself, as he cannot cram himself in a few weeks or months. Much patient study is required for the examination

1. The candidate must be able to write a good, lear, and legible hand.
2. He must be able to express his ideas in a clear
3. He must be well up in ordinary arithmetic, and if he understands decimals, so much the better.
4. He ought to be able to draw tolerably well.
5. He must understand mechanics, including a knowledge of the steam engine and mining machinery The foregoing will be of much use to the intend ing candidate, whether he continues his mining studies or not.
In addition to these, a mining manager must-
6. Be thoroughly conversant with the Mining Act, that he may know what the government requires for the safety of miners.
7. Know all the different modes of working coal.
8. Be able to survey and make neat plans of coal workings, and of roads above and below ground, and make neat sketches of machinery.
9. Know the best and safest modes of hauling and winding, and the costs of the different systems.
10. Know the best, safest, and most economical modes of sinking.
11. Be well acquainted with pumping machinery 6. Be well acguainted with pumping
and other appliances for draining workings.
12. Have a knowledge of natural philosophy, to enable him to understand the effects of alterations in atmospheric pressure, the ventilation of mines, the strength of materials, the nature of explosives, and the cause and effects of explosions.
13. Have a knowledge of geology, and the nature of upheavals, distortions, and disruptions in strata, dikes, etc.
14. Be well up to the various and requisite precau tions for the safety of miners and sinkers; and though not expressly called for by the examination, yet Mr. Hill recommends intending candidates to acquire a habit of taking copious notes, and sketches of any useful thing which may come under their notice, either from books or from personal observation. This and a knowledge of book-keeping will be of great serand a knowledge of book-kee
vice to them in any capacity.

THE DAVIS ISLAND DAM ON THE OHIO RIVER.

 (Continued from first pàge.)rates the lock from the river. Between the wall and the island the channel is divided into the Pass, 559 feet wide, and three weirs of 224,224 , and 216 feet respectively. The weirs are separated from each other and from the ship channel-the Pass-by masonry piers. The dam consists of a series of 305 movable wickets, which lie flat on the river bed during high wickets, which lie flat on the river bed during high
water, and are only raised into position when the river has fallen so low as to make navigation difficult or impossible.
The wicket consists of three parts-the wicket proper, the horse, and the prop. The wickets are made of white oak, and are 3 feet 9 inches wide. Their length varies from 12 feet 11 inches in the Pass to 9 feet 9 inches in the weir nearest the island. They are placed 4 feet between centers, thus leaving a space of 3 inches between them, through which the overflow water pass es. When the river is too low to permit this waste, pieces of scantling are put down over the openings, the weight of water being sufficient to hold them in place. The wicket is journaled to the horse at a point just a little above its center. The lower part of the wicket is weighted, in order to keep it down. The horse is a frame of wrought iron, 6 feet 8 inches long, which is journaled in a cast iron box in the bottom of the river. These horse boxes are fastened to stout timbers on the river bed, which in turn are secured by iron rods, 9 feet long, to a buried timber which serves as an anchor.
The prop is journaled to the crosshead of the horse, its free end being supported, when the dam is up, by means of the Pasqueau "hurter." This ingenious device is a cast iron box, 9 feet long and open at both ends, which rests upon the bottom of the river. When the wicket is raised into position, the end of the prop slides along the bottom of the box, and up a slight inclined plane occupying one-half the width of the bottom, until it reaches the end of the plane and drops down into a notch, where it is held by the pressure of the water against the wicket.
When the wicket is to be lowered, it is pulled forward slightly until the prop is disengaged from the notch and falls to the bottom of the hurter. As the wicket is lowered, the end of the prop, guided by a beveled edge, slides to one side of the inclined plane, and so along the bottom of the hurter until prop, horse, and wicket are flat on the bed of the river. The Pasqueau hurter, like the entire system of wicket dams, is a French invention. Its characteristic feature, upon which the Pasqueau patent was taken out, is the beveled edge, by which the end of the prop is guided to one side of the inclined plane, and permits the wicket to be lowered.
The wickets across the navigable pass are operated from a "maneuvering boat." In closing the dams, a hook is inserted in the lower end of the wicket. This is then drawn forward until the prop falls in to the notch in the hurter, the wicket proper remaining all the time like a feathered oar, with its broad side parallel to the current. When the prop is securely in place, the lower end of the wicket is gradually allowed to sink until it rests against a sill in the bottom of the river. The wicket must be held by the hook until it rests against the sill, otherwise the force of the current would soon prove destructive. When the dam is to be lowered, a hook is inserted into the upper end of the wicket and by means of a windlass on board the boat, is drawn in until the prop is disengaged, and allows the whole affair to sink to the bottom. Both in raising and lowering the dam each wicket is operated separately. The system of wickets in the weirs is precisely similar to that in the pass and across the head of the lock, but is"operated from a "service" bridge in place of the boat. This bridge is a light iron structure, some feet above the dam, and when not in use collapses at right angles to the current. It is built in sections, as shown in our illustration, and stands 15 feet $11 / 2$ inches above the river bed. The supports are 8 feet apart, and are hinged at their lower ends to suitable sills. A section of flooring sufficient to span the intervening space is hinged to each support, and goes down with it. A chain connects the free end of the flooring section with the ad-
joining support nearest the island. When collapsed, the sections lie flat on the river bed, overlapping each other, after the manner of a fallen row of bricks. When the bridge is to be erected, the section nearest Davis Island is first put in place, and by means of the

UPPER GATE AND SHORE RECESS.

chain connection, the succeeding ones are one by one brought into position. The supports projecting from the upper side of the piers are in the line of the bridge, and divide it into three larger sections, corresponding to the weirs.
The lock, in addition to several novel features of construction, possesses an interest as being the largest, both in length and breadth, in the world. A dam of both in length and breadth, in the world. A dam of
27 wickets extends across its upper end. This is only
wide, and 118 feet long. They are formed of several Howe trusses laid horizontally, and connected by a heavy timber framework. Each gate runs :n a track, and when the lock is to be opened, is drawn into a corresponding recess in the river bank. In the lower gate there are 14 butterfly valves, 38 inches in diameter. These are all connected with one shaft, and operate in unison. In the upper gate there are no valves. Each shore recess is provided with seven discharging butter fly valves, $41 / 2$ feet in diameter, and in the river wall there are also seven valves, $41 / 2$ feet in diameter, making the filling and discharging area of the valves the same. A turbine wheel in the river wall is operated by the water entering the lock through these valves, and its power is utilized to pump water into two tanks on the bank, which have a total capacity of 79,000 gallons. When full, these tanks give a fall of 64 feet, and serve to operate a turbine at each gate. In this manner all power required by the lock is furnished by the river. The turbine at the upper gate is smaller, be cause less power is required to move the gate. Being so largely of timber, the gate will almost float; and being at the same time so nearly submerged, it has little weight, and requires therefore but little power to ope rate it. The lower gate, however, is different. It moves almost entirely out of the water, and requires a larger turbine for its operation.
The work of building the Davis Island dam has been subject to a great many interruptions and delays. It has cost the Government about nine hundred thousand dollars. It is presumed that the annual maintenance will be about six thousand.
When the dam is up, it gives back water on the Monongahela to Dam No. 1, a distance of $61 / 2$ miles, and on the Allegheny to 36th Street, a distance of 7 miles. This makes a depth of 12 feet at the dam and about 6 feet at Pittsburg, giving a pool, therefore, which is navigable in the driest seasons. The dam will only be used for a few months during the summer. Some idea of the enormous tows that pass down the Ohio at this point can be gained from considering a single instance, where 22,000 tons of coal were carried at one time to the markets further down the river. Such a cargo is greater than the famous Great Eastern ever handled, and it is worthy of note that the expense of transportation is lower than in any other system of carriage on record. The coal barges carry about 500 tons each, and the boats about 760 tons Lashed together, three abreast, and lying low in the water, they look at some distance like immense rafts. The tow boats are large stern-wheel vessels, requiring only about two feet of water. They are always placed back of the tow, and when traveling in a current of much velocity present a curious picture, their large wheels revolving in a reverse direction in order to bring the tow to a control lable speed.

The enormous traffic on the Ohio has reached such a stage that it warrants the systematic improvement of
brought into requisition when the lock is first used or taken out of use. It is for the purpose of giving slack water in the locks, as it would be impossible otherwise to operate the gates. While the lock is in use, the weir will be unnecessary, as the water will always be slack, either the upper or lower gate being at all times closed.
The gates are alike, except in the arrangement of their valves. They are 14 feet high, 13 feet $75 / 8$ inches

SERVICE BRIDGE AND PIERS,
the river in every possible way. The am at Davis Island is an experimental one, inas much as it will probably determine the system of im-
provement on the entire. Ohio. Should it Prove sucprovement on the entire. Ohio. Should it Prove suc-
cessful, similar dams, on the Chanoine system, will be built at various points to the mouth of the river at Cairo. So far, the success of the Davis Island dam, as well as the four on the Kanawha River, has been such that there is little doubt that the system will be widel Forty such wicket dams have been mentioned as being necessary to bring the river into a series of continuously navigable pools between Pittsburg and Cairo.
In addition to its commercial importance, the Pittsburg pool will be the scene of considerable yachting, and already the builders of pleasure craft report a noticeable increase in their business. The slack water and long stretch of several miles make it admirable ground for the oarsman.

American Tin.-A 9,000-pound mass of tin ore was recently exhimass of tin ore was recently exhi-
bited at a smelting works in New bited at a smelting works in New
York. It was taken out of a 29 -foot vein in the now well-known Etta tin mine, in the Black Hills. The specimen will be sent to London for the benefit of those British tin-mine owners who have so complacently watched our heretofore unsuccessful search for the metal.

The Explosion of Natural Gas at Murraysville.
One of the most serious and fatal explosions of natural gas that has yet been recorded occurred at Murraysville, Fa., on the 19th ult. In the attempt to make connection with a 16 inch main oi the Chartiers Company, a large volume of gas poured into the streets and neighboring houses.
Coming in contact with burning jets of gas, terrible explosion occurred, fatally injuring severa persons and destroying a large amount of pro perty. The fire was then communicated to the big McWilliams well, and a volume of flame at least seventy-five feet high shot up into the air. The flame pouring out of the main was finally extinguished, but it was not until the 22d that the fire at the McWilliams well wasput out, and the danger of a general conflagration averted. During this time the entire village was kept in a state of constant anxiety, for there seemed every probability that the neighboring gas wells would take fire, and place the flames beyond hope of control.
For about three days the men employed by the gas companies fought the fire almost incessantly. The heat was so great that they could only work with their heads bound in wet cloths, and then only for three or four minutes at a time. The roar of the escaping gas made conversation impossible anywhere near the burning well. The noise was heard distinctly at a distance of five miles, while the glare of this more than giant's torch kept the night in abeyance over an area of several miles radius.
It was estimated that $3,000,000$ cubic feet of gas were being consumed every hour, and that three times that amount escaped into the air unignited. The atmosphere within a radius of 1,500 feet was so saturated with gas that it was almost impossible for a human being to approach the flames and maintain strength and consciousness enough to do any work. As a desperate remedy, it was proposed to cannonade the well, in the hope of either quenching the flame or, by collapsing the pipes, so far reduce the outflow of gas as to bring the flame under control. For this purpose a detachment of Battery B, of Pittsburg, was taken to the scene of the disaster. The suggestion, however, was not carried out, as other means appeared more practicable. Yet it is a curious sight, that of a three inch cannon being dragged twenty miles through mud and rain, to storm this powerful but rebellious servant into submission to his newly found master.
Less revolutionary means were adopted. A trench was dug to within a few feet of the standpipe. Under cover of a fireproof shield, the men gradually accomplished their hard task. A short tunnel was then driven to the pipe itself. By careful chiseling, a ring was cut half way through the tubing. Then began an earnest tug of war. Chains were attached to the standpipe, and 150 men pulled with their might and main. The pipe bent over and broke, and volumes of flame poured out along the ground. The gas afterward became ignited where it issued from the well at the ground. This had one advantage, that it brought the fire all to one spot, the mains having been cut off by the removal of the surface piping. An attempt was then made to drop one end of a long pipe over the jet, so as to extinguish the flame by cutting off the supply of air, but it proved unsuccessful. The force of the outrushing gas threw the pipe to one side. A large funnel like the snuffer of an old-fashioned candlestick was also tried, and failed.
Finally, a large stack was prepared, and one end cautiously pushed toward the mouth of the well. The other end was then raised, and the flame rushed through it with a deafening roar. It was proposed to raise it to some height, and then, by suddenly letting it fall, put out denly letting it fall, put out
the flame by the draught created. When the stack had reached an angle of about' 45°, there was a sudden puff, and the workmen sprang back in alarm. But no further flame appeared. It had been strangled. It is believed the heat was so great that an outward current of air was drawn into the stack in sufficient quantity to form a miniature whirlwind, and thus extinguished the flame.

ARTISTIC ARCHITECTURAL DE-IGNS.

The studios and residences of artists always possess a peculiar charm for the traveler and sightseer. With a natural love of the beautiful, and with a taste cultivated by study and elevating association, the artist becomes the exponent of refinement and culture. A glimpse into a painter's home is always a treat. The columns, with their beautiful capitals, in the accompanying cut are from

ARTISTIC COLUMNS AND CAPITALS.

the hallway in the residence of the eminent English artist, Sir Frederick Leighton. This house is situted in Holland Park Road, Kensington, London, and is the achievement of Mr. Atchison. The staircase shown in the lower cut is not Sir Frederick's, but is a design of M. Koekx Wouters, of Brussels, Belgium. The banisters are of wrought iron work and of exquisite finish, and executed entirely by hand. This style of work for stairs is comparatively unknown in this country, although it is of ten found in palaces.and residences in Europe. However beautiful, light, and graceful it may appear, the effect produced is hardly commensurate with the great cost attending its construction.

Petrified wood is susceptible of as fine a polish as marble or Mexican onyx, and is taking the place of the latter on the Pacific coast for mantelpieces, tablets, and

WROUGHT IRON STAIRCASE AND BANISTER. dust are equally effective.

Earth Closets.

To those persons who live in smaller cities, in villages, and in country districts where the advantages of a sewerage system are not accessible, and in large cities where sewers are not extended to outlying disricts, there is no such easy and economical method disposing of excreta as by using earth closets.
The primitive and barbaric privy pits are univercondemned and almost as universally used. Earth closets can take their place in a majority of instances without disturhing the habits of the family, and with great benefit to their health. The old privy can, by a little home carpentering, be fitted into a good earth closet. The pit should be cleaned as thoroughly as possible and refilled with clean earth. The lower portion of the back of the old structure may be fixed as a door to raise up, to permit the removal and placing of the soil containers, which should be either galvanized iron pails or strong wooden boxes. The earth may be kept in a box or barrel, in the structure itself.
The trouble with remodeling the outbuilding for an earth closet is that it makes no change in the publicity of access or the disagreeableness of reaching it in stormy weather. As an earth closet, properly constructed and managed, with a due regard to decency and cleanliness, need not be an offense to sight or smell, it can be so built as to place it in some side room or shed attached to the dwelling and under the same roof. In this case a portable, easily managed closet is necessary.
The value of dry earth as an absorbent, deodorizer and disinfecter is not properly recognized. It is said by some to be more powerful in these capacities than any other agent known If two parts of dry earth are put with one of excrement, and kept in a dry place, the two assimilate, the excreta becoming undisinguishable from the soil after a time, and it may be used over and over again, though it is generally better to bury each pailful in a different place each time, over a portion of the land adjoining the residence. The earth must not be sand or gravel, but soil of a clayey nature, thoroughly dry and finely pulverized. Powdered charcoal, coal ashes, and street

Earth closets offer many advantages, chief of which is that, when they are properly cared for, the excreta of one family is rendered harmless and disposed of on the premises, not being liable to soak into a neighbor's well. There is no offensive odor or contamination of the soil. They may be placed under the same roof as the living rooms, and'thus be easily accessible to women, children, and invalids.
There are many failures of earth closets to give satisfaction, but the failure is due to an inability on the part of the owner to understand their capacities. They must not be made the receptacle of house or chamber slops, as the ability of the dry earth to absorb moisture is necessarily limited, and any excess of its capacity creates a nuisance. A great inprovement has been perfected in earth closets by Mr. William Heap, in an automatic urine separator, which prevents any undue soakage of the earth and does away with the only source of annoyance in their legitimate use.

The death rate from zymotic diseases has been shown to have been much reduced by the introduction of proper systems of sewerage, as at Memphis. There is no doubt that the uniform adoption of the dry earth system of soil removal in villages would show a corresponding reduction in the death rate, from typhoid fever especially.Sanitary News.

Prof. Leslie says: "I take the opportunity to express my opinion in the strongest terms that the amazing exhibition of oil and gas which has characterized the last twenty other architectural parts for which marble, slate, and years, and. will probably characterize the next ten tiles are commonly used. The raw material employed comes mostly from the forests of petrified wood in the territories of Arizona, Wyoming, and the Rocky Mountains, along the line of the Atlantic and Pacific Railway. Geologists will regret the destruction of such interesting primeval remains, and some steps ought to be taken to preserve certain tracts in their original state.
or twenty years, is, nevertheless, not only geologically but historically a temporary and vanishing phe-nomenon-one which young men will live to see come to its natural end. And this opinion I do not entertain in any loose or unreasonable form; it is the result of both an active and a thoughtful acquaintance with the subject."

Boston, Mass.

Before describing the methods of the department under the control of the Superintendent of Health, a word of introduction is, perhaps, necessary to enable our readers to better understand the reason for the prevailing discipline and thoroughness of work performed by this official in Boston.
The secret of success here lies in the fact that the executive head is, first, a very efficient man, and secondly, that this qualification has been appreciated by the appointing powers to such an extent that, though nominally appointed each year, he has actually continued in office for about twenty years. The practical result of this wise though unusual policy in the selection of city officers is a well-trained and efficient corps of assistants and an able, experienced head to guide them. Permanency of employment has made positions in this department, even of the lowest grade, highly desirable; and having many to select from, and being free to choose, the best of the applicants only are selected, the choice of the superintendent being for young married men. This is city civil service of the best type, apparently brought about by an honest desire to benefit the city and the public rather than the political "worker."

The Removal of Ashes, Offal, etc.-In the removal of city refuse, the first requirement of the city ordinances is that no ashes or other material matter or house rubbish shall be mixed with the animal or vegetable waste, usually called "swill." This material must be placed by the householder in suitable separate receptacles; the ashes usually in metallic tubs, so that there may be no danger from fire, and the house waste, or swill, in a tight vessel. These receptacles must be located in an " easily accessible place" on the premises, usually inside the yard; the city scavengers are required to remove them from the yard and return the empty vessels to their proper places.
The "swill" is removed daily from all hotels, markets, restaurants, and other points of rapid accumulation; it is taken from dwelling houses three times a week during the summer months, and twice a week in winter. For this purpose the city is divided into fortynine districts, to each of which is assigned one swill wagon, a driver, and a helper. With each wagon are two offal buckets, in which the swill is transferred from the house receptacle to the wagon; there is also an offal chisel used in chopping frozen matter out of the house receptacle. This swill wagon has a thoroughly water-tight body, containing about 64 cubic feet, and is closed by tight, hinged wooden covers; there is absolutely no dripping, nor any offensive odor. The collection is made during the whole day up to 5 P.M., and the daily average of each wagon is from two to three loads, depending on the length of haul to the depot.
When the wagon is filled, it is taken to one of three city depots, in Boston, Roxbury, or Charlestown, and the contents are there dumped out upon a tight, raised platform, and the wagon itself thoroughly cleaned inside and out before being sent after another load. This "swill" is readily sold to farmers for feeding hogs and cattle, customers hauling it as far as twenty miles from Boston in tight, covered wagons, which are required on the part of the farmers by the communities they pass through. The prices paid per cord (128 cubic feet) in 1885 were, in Boston, $\$ 4$; in Roxbury, $\$ 5$; and in Charlestown, $\$ 6$.
In the official year of 1884-85, the department em ployed in this service 108 men and 49 one-horse swill wagons. This force collected 28,520 loads, or, averaging the loads at 60 cubic feet, about 63,400 cubic yards of house offal or "swill." The cost of labor was $\$ 87,691.93$, and the amount realized from the sale of offal in the year was $\$ 36,420.52$.
In collecting ashes and house dirt, the city is again divided into seventy-six fixed routes, to each of which is assigned a one-horse cart, a driver, and a helper. This class of refuse is removed from hotels, tenement houses, and stores twice in each week, and from dwelling houses once a week.
The ash carts contain about 44 cubic feet, and must be covered with canvas when being hauled through the streets. The city employes enter the house, yard, or shed of the citizen, and remove the ashes to the cart, but they are not required to go up stairs. This plan practically does away with the nuisance of sidewalks blocked with unsightly or offensive vessels of refuse awaiting the city carts. While the driver is taking the loaded cart to the nearest city dumping ground, the helper remains on the route and transfers the ash barrels to the street ready for the next load. Each cart makes from six to eight trips per day, depending on the length of haul.
At the present time, the main city dump is on the South Boston Flats, where this refuse is utilized in fill ing low land, chiefly belonging to the State of Massachusetts. This dump is the rendezvous of a motley crowd of general scavengers, who make a precarious 1 ving by rescuing from the rubbish the rags, bottles, old metal, and any other marketable material found therein. There are other dumping grounds on the

Back Bay and in the outlying districts; but as all these tween the piles and go into the angles dand corners that dumps will very soon cease to be available, the Board the machine cannot reach. And finally come the one of Health, in 1884, proposed to carry this refuse to sea and there dispose of it. Experiments were made to this end with ordinary dump scows, such as are used in connection with dredges; but owing to the buoyancy and clogging nature of the material, it was found that it would not sink through the bottoms of the scows, and sometimes twenty prisoners from the Deer Island institutions would be engaged fourteen hours in clearing one scow. The Board then tried a Barney dumping boat as used in New York Harbor, and were so well pleased with its performances that in their last report (1885) they recommended the purchase of the boat at a cost of $\$ 12,000$, and $\$ 1,500$ annually as royalty. Previous to this recommendation, they had hired the boat for $\$ 15$ per day.
This Barney dumping boat is 110 feet long, 28 feet wide, and 12 feet deep; its carrying capacity is about 500 tons, and when loaded it draws about 9 feet. It is thoroughly seaworthy in construction, and two men will dump the load, wash out and close the boat, and be ready to return to port in from five to ten minutes.
There are two strong hulls, or pontoons, secured together at both ends and in the middle by heavy bridges hinged to the pontoons. The storage room is V-shaped, and the fastenings, at all three bridges, are operated from a center wheel; the pontoons work automatically, and open and close as soon as released, the movement being about one-eighth of a circle. This Barney scow has been in use in Boston since June, 1884, and to April 1,1885 , it had dumped 14,823 loads, making the trip once or twice a week as required. The Board estimated that the saving in horses, teams, and labor exceeded $\$ 25,000$ in the period named. As an additional source of income, private parties were permitted to dump refuse material into the scow on the payment of ten cents per barrel.
During the year 1884-85, 162 men and seventy-two wagons were employed in the removal of ashes and house dirt. This force collected 182,642 loads of ashes and 62,222 of street dirt; or, with an average of only 40 cubic feet per load, a total of 362,761 cubic yards. The cost of labor for this work was $\$ 125,902.21$, and the amount received from the sale and removal of ashes was $\$ 14,159.76$. On this basis, the average cost of collection and removal was about $30{ }_{10}^{8}$ cents per cubic yard.
There is a "snow drag" used by this department in removing ash barrels from the yard to the street in winter. A club used in loosening up frozen ashes in the barrels of the householders is the source of unceas ing tribulation and complaint on the part of the Boston housewife; and besides being a formidable and effective instrument, is perhaps too frequently handled with unnecessary vigor.
Street Sweeping and Cleaning.-This work is done by the city with its own men, horses, and machines. At the present time, about 185 miles of streets are cleaned weekly, the work upon the business streets being usually finished before 7 A. M. During the winter months the teams are employed in moving house dirt and some of the machines in cleaning crossings. In this latter service, experience has shown that a onehorse sweeper will do more and better work than seven or eight men. Only paved streets are swept; on the macadamized and gravel streets in the districts, the gutters are kept clean and paper and other rubbish is gathered up. Sweeping such streets would naturally carry off the top dressing and lessen their durability.
The sweeping machines now used are built by the department under the patent of Aaron Stackpole, Jr., of Oct. 23, 1883. The original machine is intended for one horse only, but the department in some of the latest made have fitted them for two horses by adding a pair of front wheels and a pole. This two-horse machine has decided advantages, and two horses can work in it all day, while in the smaller machine one horse can only .work one-half day; the substitution of rattan for the usual "bass" in the broom, though more expensive, is found to be much more efficient, especially in handling slush in win
The work of street sweeping as practiced in Bos ton is worthy of a detailed description, both as an evidence of the discipline of the laborers and as a contrast to the slovenly manner in which similar work is performed in some other cities. Taking a street of average width as an example, the first on the ground used in ordinary street sprinkling in having finer jets or openings in the sprinkler. After this cart come usually two one-horse sweeping machines, which travel in echelon, so that vehicles may sss between them; these machines, commencing in the middle of the street; sweep the dirt toward the two gutters, wide. Then . urns over the block if the street gather the dirt into rough piles on each side of the street, the distance between piles being regulated by the quantity of matter swept up. Then we have generally four men armed with the ordinary birch brooms, two men to a gutter, who clean up the interval be-
horse carts with two men to each; one man shovels in the dirt, and the other assists him in filling his shovel with the special carter's broom.
In the year 1884-85, there were employed in this service 181 men (87 being sweepers), 34 carts, 10 sweeping machines, and 6 watering carts. The principal streets were cleaned daily, the others twice a week; as previously stated, 185 miles of streets are cleaned each week. The quantity of street dirt removed was about 92,180 cubic yards, and the cost for the year for labor was $\$ 97,280.10$. This street dirt is disposed of in the ame manner as the ashes and house dirt.
So that the cost of street cleaning under the Boston system may be better understood, we have secured the following figures from Mr. M. B. Rowe, who has a general supervision over the work under the Superinendent of Health:
The department "day's labor" is ten hours. The wages paid in 1885 were as follows: Teamsters, $\$ 2.10$; teamsters' helpers, $\$ 2.02$; drivers of sweeping machine, $\$ 2.10$; sweepers, ash cart and offal cart drivers, and their helpers, $\$ 2.00$ each.
The daily cost, without driver, of a watering cart is figured at $\$ 2.00$; one-horse sweeping machine, $\$ 4.40$ (allowance madefor two horses, one in the morning, and another in the afternoon); two-horse sweeping machine $\$ 4.75$ (here the same two horses work all day); one ash cart and one offal wagon, $\$ 2.10$ per day each.
To get at some idea of the itemized cost of street cleaning, we have taken, in summer time, a street 66 feet between curbs, and a length of 8,385 feet. The total time occupied in cleaning this area of 553,410 square feet was $23 / 4$ hours. The itemized cost we make as follows from data furnished by the Health Department:

Total cost of sweeping 553,410 sq. ft. $=\$ 30.073$
At this rate the cost per 1,000 square feet would be $\$ 0.054$; or on one mile of the same street 66 feet wide it would be $\$ 18.811 / 2$.

Monster Sea Turtle in Kansas.
The discoverer of a gigantic extinct sea turtle found near Fort Wallace, in Western K̇ansas, first observed the large bony shields projecting from a bluff near Butte Creek. They were carefully taken out and brought to Philadelphia, where the restoration was made. The fore flippers alone were nearly five feet long, while its expanse from the tip of one extended flipper to an other was about seventeen feet. The question may arise, How did the sea turtle become buried in a bluff in the State of Kansas? A natural supposition would be that Kansas is the bed of a former ocean, and so it is. Ages ago, in what is called by geologists the Cretaceous Period, that part of the world was the bed of a great sea, in which the great turtle swam together with other monsters of curious shape and appearance. Gradually the crust of the earth was raised, the water fell back or became inclosed, and left the inhabitants of the Cretaceous Sea high and dry, to be covered by the earth and preserved for us to study ages afterward.
The shores of this ancient ocean are easily found and followed by geologists. Its extent has been traced on our Western plains by the bleaching and disintegrating remains that have been found, upon and beneath the surface.-Charles Frederick Holder, in St. Nicholas.

A Substitute for Sugar from Coal Tar

Mr. Ivan Levinstein, the President of the Manchester Section of the Society of Chemical Industry calls attention to a new substance which is extracted from coal tar, and possesses sweetening properties far stronger than the best cane or beet root sugar. This substance, he said, seemed likely to enter into daily consumption. According to Mr. Levinstein, 1 part of it will give a very sweet taste to 10,000 parts of water, for it is 230 times sweeter than best sugar and taken in the quantities added to food as sweet ening material, hias no injurious effects whatever on the human system. Patients suffering from diabetes have been treated for the last few months in one of the principal hospitals in Berlin with saccharin with out feeling in the least inconvenienced by its use. The use of saccharin would, therefore, Mr. Levinstein said, be not merely a probable substitute for sugar but it might even' be applied to medicinal purposes where sugar was not permissible.
[the engineer, London.]
ROOTS' IMPROVEMENTS IN BLOWERS AND POMPS.
The Roots blower now being a well known machine in this country, though of American origin, some account of its career may be interesting to our readers. It consists of two revolving vanes or abutments geared together so as to keep up constant contact with each other, and with the internal periphery
ficulty in setting out, and hence expense in manufac ture. Fig. 3 shows the mode of tooling the convex surfaces on an ordinary planing machine. Fig. 4 represents the next improvement and the mode of drilling out the curves. It will be seen not to differ much from Fig. 3. Fig. 5 shows the last constructed curve, which far exceeds those preceding it in simplicity of
enough for the free passage of the wire. This vessel is provided near the bottom with a tube fitted with a stopcock. The balloon is accurately balanced, while the vessel containing it is filled with air; and then, if another gas of different specific gravity is allowed to enter and displace the air, the balloon will rise or fall according as the gas is heavier or lighter than air Equilibrium is to be restored by adding weights to one

and small curves are struck from one common center, thus reducing the construction to the utmost simplicity. By reference to Fig. 5, it will be seen that each half of the vane consists-on each side-of two large and two small curves, and that to produce these four curves only two centers• and two radii are employed. The centers are represented by the points A B, and radii A C-A E, B D-B F. Thus the two smaller curves are struck with radii A C and $\mathrm{B} D$, and the larger with radii A E-B F from the centers A and B, which are found by exceedingly simple means, and also the radii. These being fully described in patent No. 10,323, 1885, it will be unnecessary to describe them more fully here. An exterior view of the blower is given in Fig. 6.
As a pump, Messrs. Mather \& Platt, of Salford have taken a license to manufacture, and, we believe have supplied several to her Majesty's government the contractors of the Tay Bridge, and others. A very neat design of a combined engine and pump, shown in Fig. 7, is being brought out by Mr. Okes, of Queen Victoria Street, the engine being by Mr. A. C. Mumford, of Colchester, who is acting as Mr. Roots' agent in England. Fig. 7 is a perspective view of the combined rotary pump and engine.

A Specific Gravity Balance

 for Gases.Professor Lommel has recently described in Wiedermann's Annalen an ærostatic balance for determining the specific gravity of gases, which is claimed to be specially useful for lecture room demonstrations. A closed glass balloon is hung by a wire underneath one arm of a balance, and, thus suspended, is inclosed in a

Fig. 7.-ROOTS' COMBINED ROTARY PUMP AND ENGINE

Fig. 6.-ROOTS' BLOWER.
scale or the other, which thus indicate the difference in weight between a volume of gas equal to that of the balloon and an equal volume of air at the same temperature and pressure. The apparatus may be constructed of any desired delicacy, and might easily be made into a handy and inexpensive specific gravity apparatus for coal gas analysis.
noculation as a Preservative against Consumption.
M. Verneuil has lately published a letter to the edi tor of the Gazette Hebdomidaire, M. Lere boullet, in which he proposes to set on foot an experimental inquiry into the possibility of finding some method of "attenuating" the presumed virus of tubercle, so as to make inoculation therewith practically useful against consumption, either as a prophylactic measure, like vaccination against smallpox, or as a means of cure, like Pasteur's inoculations in hydrophobia.
Three thousand francs have already been subscribed, and the respectable names of Cornil, Bouchard, Damaschino, and Potain are mentioned among those who approve of the investigation.
It must, however, be remembered (1) that with the exception of hydrophobia, an excep tion still on trial, no human disease but smallpox is known which can be prevented by inoculation; (2) that of epizootic disease anthrax is only in certain cases guarded against by Pasteur's attenuated virus; (3). that the dependence of consumption on Koch's Bacillus tuberculosis is far from es tablished; (4) that its fatality is very far below that of smallpox or hydrophobia, and its treatment far more successful.
Consumption is the most important disease of temperate climates, both by its prevalence, its mortality, and its incidence on young adults; so that the sacrifice of a few rabbits or cats for even a remote chance of controlling its ravages is well justified. But the chance is, we fear, remote.-Nature.

The Chicago Tribune, referring to the recent marriage of Mr. Edison and his prolific inventions, concludes that his genius will now be directed to electric candles, electric nursing bottles, electric safety pins, electric machines to get up and walk the baby in the middle of the night, electric devices for cutting teeth, and scaring off whooping cough, croup, and measles, and will contrive other articles for mitigating the troubles, trials, and petty annoyances usual in domestic life.

ENGINEERING INVENTIONS. A car coupling has been patented by Mr. Calvin Keeler, of Hobart, N. Y. Combined with
a drawhead is a lever pivoted thereon, having on its swinging end a fork for holding a pin, with a cam lever pivoted on the forked lever and serving to adjust the pink.

A spring frog has been patented by Mr. David H. Lovell, of Renovo, Pa. It has the top of the siding rail and of the spring rail a short distance below theveled, the object being to prevent the breaking of the spring rail by badly worn wheels.
A railroad tie has been patented by Mr. John Gearon, of Alta, Iowa. This invention provides for covering a roadbed with a series of united U-shaped
metal ties placed alternately with the shanks projecting metal ties placed alternately with the shanks projecting
upward and downward, the shanks of one tie passing into the recess of the other tie, preventing the grow
of weeds, and water from flowing into the roadbed.

A valve gear for steam pumps has bee patented by Mr. Abraham Hill, of Marlborough, of Wilts County, England. This invention substitutes for
the eccentrics in doublecylinderengines a gear whereby the eccentrics in double cylinderengines a gear whereby
the valves will be caused to open and shut quickly, the gear being operated from the piston rod crossheads, the crosshead of each engine working the valve of th crank shaft, is unaffected by any play of the latter.

agricultural inventions.

A farm gate has been patented by Mr. Willian C. Hamner, of Morganfield, Ky. It has a bar extended from its rear end, on which are levers con-
necting with the gate latch with various necting with the gate latch, with various novel features
of construction, whereby the gate can be opened and of construction, whereby the gate can be opened and
closed at somedistane from either side by a pedestrian
or one in a vehicle, the gate locking and unlocking autocorsed at some distance rom a ienher side by a pedestrian
or the gate locking and unlocking auto-
combined harrow and replanter ha bcen patented by Mr. David A. Spitler, of Flora, Ind. Its coustruction is such that when the harrow is being
Arawn along to kill weeds and loosen the soil, a place being reached where the seed has not germinated, such
hill can be quickly and conveniently, replanted, the necessary attachments therefor being carried above th ground when not in use.
A fertilizer distributer has been pat ented by Mr. Alexander Lively, of Sardis, Ga. The box or body consists of sections having meeting edges
formed on diverging lines, with batten bars pivoted to and connecting the sections, the adjustment of the sec tions permitting a greater or less quantity of fertilize
to be distributed by each revolution of an wheel which operates between the lower edges of the sections.
A low binding grain harvester has been patented by Messrss. J. Calder Cunningham and George It is made with a long and o short horizontal Kan apron, and a driving mechanism connected with the apron, and a d diving mechanism connected with the
platform frame to receive the cut grain and deliver it at the outer end of the harvester at a level with the plat-
form, with other novel features, whereby grain can be form, with other novel features. whereby grain can be
bound without being elevated above the level of the bound with
platform.

miscellaneous inventions.

A traveling cap has been patented by Mr. Anthony Ward, of Brooklyn, N. Y. It is made of two pieces, the crown and body portion, the latter being
provided with visor, cape, and cape lining, all from the provided with visor, cape, and cape lining, all from the
same piece of material, to make a winter traveling cap, same piece of material, to make a wi
with very little waste in cutting out.
A pump has been patented by Mr. Hiaim Field, of Smithville, Ontario, Canada. It has both liftiug and forcing actions, and has large capacity for a
given size of barrel, while giving a continuous, even given size of barrel, , hinie giving a continuous, even volume of liquid, being especially adapter
force liguids from deep wells and mines.
A wire fence post has been patented by Mr. Eugene Brisbin, of Weston, $\mathbf{0}$. It has a base with central aperture for the post and end apertures for rods
which act as braces, with prongs to force through the base into the ground, making a post which is light, strong, and durable.

- baling press has been patented by Mr. George Ertel, of Quincy, IIl. Its construction is
such as to regulate automatically the weight of the finsuch as to regulate automatically the weight of the fin-
sshed bales, while it smothes their surface and provides for their being quickly and easily tied, the press being especially adap
and similar material.
A hose reel has been patented by Messrs. Manitoba, Can ing wheels, and thills supported on springs secured to the axle, is a reel with mechanism for operating it
from the wheels, so that the hose may be automatically from the wheels, so that the hose may be automatically
wound by running the cart backward over the line.
A tray for developing photographic plates has been patented by Mr. Richard E. Atkinson
of New York city. The photographic plate itself is ade to constitute the bottom of the tray for retaining the developing fluid, a rubber or other flexible packing being used to make a tight joint for the edges of open
frumes or sections which close upon the plate or film.
A siding for buildings has been patented by Mr. Albert C. Daugherty, of North Belle Vernon,
P'a. This invention consists in making the sidings of uniform thickness throughout, the outer sides of the ach course, and the tongued edges having inclined sur each course, and the tongued edges having inclined sur-
faces through which to nail the siding to the studding.
A salt drier has been patented by Mr. Joseph A. Cook, of Auburn, N. Y. It is a jacketed
trough, surrounded by steam, and with an inner heating
drum with flanges, which operate, as the drum is re
volved, to agitate the salt and to move it along in the trough to the discharge pipe, the apparatus being also pplicable for drying sugar and other fine substances.
A check file has been patented by Mr. shomas A. O'Keefe, of Brooklyn, N. Y. It consists of having numbers, letters, or other marks, the boards being united by upright pieces to form steps, and with pins projecting from their upper surfaces, mak
improved file for filing check books or checks.
A banjo has been patented by Mr. Chas. E. Dobson, of New York city. It is made with the forward edge of its rim spun over a wire ring, the spunover edge and rim having numerous perforations parallel with the axes of the rim and ring and registernd clearnss of tone in of the instrument

A wagon brakelever has been patented by Mr. Columbus F. Moore, of Waveland, Ind. It consists of a tooth rack operated by pinion that is carried by a jointed rod or shaft, with a novel pawl-operating
attachment, with other novel features, for better operating the ordinary form of brake for wagons or other ehicles.
An automatic signal buoy has been patented by Mr. Henry McLaughlin, of Bangor, Me. This invention covers a special construction of a buoy carrying a gong and balls, with guides to direct the balls
to strike the gong under the action of the waves or the current, or a similar gong-sounding mechanism may be used on a small raft or boat, etc.
Artificial stone forms the subject of a patent issued to Mr. George Blum, of Orlando, Fla. By laked lime, sulphur, sulphuric acid, common salt, or ther saline matter, and sand, mixed in stated propor ions, and made in a special machine, which subjects them to a pressure of one ton per brick.
An ax helve wedge has been patented by Mr. Henry F. Sawyer, of Providence, R. I. It is point, and separated at their inner edges to give space or the passage between them of a screw, so that when the screw is removed the wedge may be easily pried rom the end of the helve.
An automatic attachment for gas stoves as been patented by Mr. John N. Ives, of Brooklyn, N. Y. This invention covers a novel construction of an automatic device for operating the cock in the gas ser-
ice pipe of gas stoves, to partially cut off the flow of vice pipe of gas stoves, to partially cut off the flow of
pas to the stoves when no object to be heated is in the tove, thus effecting a saving of gas.
A barbed fence wire has been patented by.Mr. James E. Hunt, of Chicago, III. A short piece of wire, with its ends pointed to form barbs, is passed hrough a loop of a fence wire, and wrapped one or more mes around the loop, in such way that the pointed d wire being securely held by the way it is twisted.
A ratchet drill has been patented by Mr. Jules Magnette, of Long Island City, N. Y. Com ined with the screw socket of the ratchet wheel and he feed screw, having a novel point and head, are inter mediate telescoping screws and their stop pins, muking
a drill which can be readily fed forward, and in which the feed a

A waterproofing cloth has been patent ed by Mr. James H. Sheldon, of Zanesville, Ohio. The method of waterproofing consists in saturating the
cloth in a hot solution of gum arabic, table salt, and alum, in soft water, then handling and airing, then saturating in a warm solution of Spanish whiting and prepared chalk, with handling according to a specified manner.
A hame fastener has been patented by Mr. Marsh Noe, of Davenport, Iowa. It has a special form of tumbler and fastening hook, which mutually lock, while there is a stop applied to the hook to avoid accidental unlocking of the hames, and a tongue or
guide is applied to the lower ends of the collar to cause guide is applied to the lower ends of the collar to cause
a proper registering of the collar and hames when A rought together for fastening
A bouquet holder has been patented by Marietta Flint, of New York city. It is an orna mentally shaped receiver, fitted with an internal holder, the receiver having sponge or other absorbent material in the bottom, and the holder being so fitted as ing out, there being a hinged pin for attaching the re ceiver to a garment, a hat, or bonnet.
A land roller has been patented by Mr. ooseph Hafner, of Fowler, Mich. It is for rolling land to crush lumps left by the harrow and bed the seed, but is adapted also for rolling lawns or leveling roads, chine frame and the driver, as well as that of the rollhighest or the lumps largest.
An axle gauge has been patented by Mr. Hector McQuarry, of Allandale, Ontario, Canada. This invention relates to gauges to determine the bend
to be given to an axle so that the lower supporting to be given to an axle so that the lower supporting
spokes of the "dished " wheel turning thereon will be always plumb, and the wheel may have the required "gather," the invention being an improvement on an "gate gauge formerly patented by the same inventor.
An ore concentrator forms the subject of two patents issued to Mr. William Hooper, of Ticon deroga, N. Y. Combined with a vertical shaft, a driv
ing mechanism, a stirring tub, and a perforated water pipe, is an annular series of radial flaring sluices adapt ed to have a rotary movement, whereby the head end of the sluices will be brought successively beneath the feed and the water supply, with other novel features, for separating automatically the floating values, tail-
ings, middlings, and concentrates, and delivering them into separate recoivers

PBusiness and Personal.
The charge for Insertion under this head is One Dollar a line for each insertion; about eight words to a line.
Advertisements must be received at publication affice Advertisements must be received at publication office
as early as Thursday morning to appear in next issue.

Bac-kac-he.

What does that spell? Why, " backache," of course,
though you would not suspect it at the first glance. It though you would not suspect it at the frst glance. It
spells what hundreds and thousands of women are sufspells what hundreds and thousands of womat they need
fering from every day of their lives, but what not suffer from, if they knew the virtues of Dr. Pierce"
"Favorite Prescription." All those "dragging down" pains and sensations of nausea and weakness, peculiar to women, can be cured by this same bal
kind. It is almost magical in its results.
Wanted.-An established manufactory wants patented articles (iron or steel) to manufacture on royalty; or
vould buy outright. Address Manufacturer , 261, Pittsburg, Pa.
Cushman's Chucks carried in stock in all large cities
Catalogue free. Cushman Chuck Co., Hartford, Conn.
 ond hand, that will punch \% hole in $3 /$ or \%inch iron either hand or power, or punch and shear combined.

60,000 Emerson's 1886 Book of superior saws, with Supplement, sent free to all Sawyers and Lumbermen,
Address Emerson, Smith \& Co., Limited, Beaver Falls, Pa., U. S. A.
Nes, , Plating.-Sole manufacturers cast nickel anodes, pure nickel salts, polishing compositions, etc. $\$ 100$
"Little.W onder." A perfect Electro Plating Machine. Sole manufacturers of the new Dip Lacquer Kristaline.
Complete outfit for plating, etc. Hanson, Van Winkle \& Small Bench Lathes, with Countershaft $\$ 16,00$. Cirk. cular free. T. F. Welch \& Co., 35 Batterymarch Street Boston, Mass.
Grimshaw.-Steam Engine Catechism.-A series of
thoroughly Practical Questions and Answers arranged so as to give to a Young Engineer just the information required to Ht him for properly running an engine. By
Robert Grimshaw. 18mo, cloth, \$1.00. For sale by Robert Grimshaw. 18mo, cloth,
Munn \& Co., 3 il Broadway, N. Y.
Guild \& Garrison's Steam Pump Works, Brooklyn, N. Y. Pumps for liquid
will be ready in March.

Wm. Frech, Sensitive Drill Presses, Turret and Speed oo Street, Chicago.
Order our elegant Keyless Locks for your fine doors. Circular free. Lexington Mfg. Co., Lexington, Ky .
Send for catalogue of Scientific Books for sale by
Munn \& Co., 361 Broadway, N. Y. Free on application.
The Knowles Steam Pump Works, 44 Washington St., Boston, and 93 Liberty St., New York, have just is-
sued a new catalogue, in which are many new and improved forms of Pumping Machinery of the single and duplex, steam and power type. This
nailed free of charge on application.
Haswell's Engineer's Pocket-Book.
Haswell 's Engineer's Pocket-Book. By Charles H ing Tables, Rules, and Formulas pertaining to Mechaniss, Mathematics, and Physics, Architecture, Masonry,
Steam Vessels, Mills, Limes, Mortars, Cements, etc. 900 pages, leather, pocket-book form, $\$ 4.00$.
Munn \& Co., 361 Broadway. New York.
Machinery for Light Manufacturing, on hand and

> Send for Monthly Machinery List
to the George Place Machinery Company,
If an invention has not been patented in the United States for more than one year, it may still bepatented in Canada. Cost for Canadian patent, \$40. Various other
foreign patents may also be obtained. For instructions gency, 361 Broadway, New York.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. Wood Working Machinery. Full line. Williamsport Iron Planer, Lathe, Drill, and other machine tools of Nystresig. New Haven Mfg. Co., New Haven, Conn Nystrom's Mechanics.-A pocket book of mechanics
and engineering, containing a memorandum of facts and
connection of practice and theory, by J. W. Nystrom. c.E., 18 th edition. revised and greatly enlarged, plates 12 mo , roan tuck. Price, $\$ 3.50$.
361 Broadway, New York city.
Mineral Lands Prospected, Artesian Wells Bored; by Pa. Diamond Drill Co. Box 423 , Pottsville, Pa. See p. 46 . Hercules Lacing and Superior Leather Belting made
y Page Belting Co., Concord, N. H. See adv. page 158. Supplement Catalogue.-Persons in pursuit of infor mation of any special engineering, mechanical, or scien-
tiffc subject, can have catalogue of contents of the ScIentific Amprican Supplement sent to them free. the SUPPLEMENT contains lengthy articles embracing Rubber Belting, Cotton Belting Leather Belting Economy Belting, Polishing Belting. Greene, Tweed
C Co., New York. Dynamo Machines
for all purposes. Dynamo machines of highest efficiency, accurately calculated (as to capacity, etc.), and
built to meet requirements in connection with all Industrial Applications of Electricity,
Electro Mechanical Machinery, Electro Deposition of Metals, Electro Chemical Work, Telegraphy in place of Batteries, Electuc Motors, of various horse power,
to be run by Dynamo Currents. All dynamo and motor ing to the best of knovere models for economy and ef

fieiency. J. H. Bunnell \& Co.

For Sale.- $\$ 350$ buys a new patent of a novel
evice. C. A. Bryant, Box 61, Wakefleld, Mass.
We are sole manufacturers of the Fibrous Asbestos Removable Pipe and Boiler Coverings. We make pure
asbestos ${ }^{\text {Roods of all kinds. The Chalmers-Spence Co., }}$, 19 East 8th Street Now 19 East 8th Street, New York.
The Crescent Boiler Compound has no equal. Cres-
oent Mfg. Co., Clevoland, 0 .

Curtis Return Steam Trap returns all condensations Curtis Return Steam Trap returns all condensations
into the boiler without waste. Curtis Regulator Works, Steam Hammers, Improved Hydraulic Jacks, and Tube Expanders. R. Dudgeon, 24 Columbia St., New York. Safety Elevators, steam and belt power ; quick and
mooth. D. Frisbie \& Co., Philadelphia, Pa. Blake's Patent Belt Studs. The strongest and best astening for ${ }^{\text {Rubber and }}$ Leather Belting. Greene "How to Keep Boilers Clean." Send your address Barrel, Keg, Hogshead, Stave Mach'y. See adv. p. 76. Domestic Electricity. Describing all the recent in Nentions. Mlustrated. Price, \$3.00. E. \& F. N. Spon,
New
Brass and Iror. Working Machinery, Die Sinkers, Split Pulleys at low prices, and of same strength and Works. Drinker St Phile Timber Gaining Machine. All kinds Wood Work-
g Machinery. C. B. Rogers \& Co., Norwich, Conn. Curtis Pressure Regulator and Steam Trap. See p. 142 Iron and Steel Wire, Wire Rope, Wire Rope TramTrenton Iron Company Tools, Hardware, and other specialties made under ontract. American Machine Co., Philadelphia.
Iron, Steel, and Copper Drop Forgings of every de-

> HINTS TO CORRESPONDENTS.

(1) M. P. B. asks: 1. In which numgers of the Supplement are directions for gold plat-
g? A. Nos. 112, 160, 310. 2 . Suppose a piece of steel ng? A. Nos. 112, 160, 310. 2. Suppose a piece of steel
is hardened and drawn to a blue, then repolished, and drawn to a blue a second time. Will the second drawing alter the temper? A. Hardened steel will lose
temper by redrawing to a blue each time. If drawn temper by redrawing to a blue each time. If drawn
to blue, it may be redrawn to a straw or orange sevto blue, it may be redrawn to a straw or orange sev-
eral times without losing hardness. 3. Can a watch eral times without losing hardness. 3. Can a watch
that has become magnetized be demagnetized? A. Yes; see Scientific American be demagnetized? A.
Supplement, No. 419 . 4. Please give directions for etching on hardened steel. A. For etching on steel, cover the surface with asphalt, draw the design with a ward point, and etch with a dilute mixture of nitric acid and water; or, paint the design for bright lines with thin asphalt, and brush and cover all other parts not required to be
etched with the varnish, and dip the article in the etched with the varnish, and dip the article in the
acid bath.
(2) L. J. S.-Run your leather belts with the grain (or hair) side next the pulley. A little
good Labrador oil with a small proportion of tallow makes an excellent dressing, but not much should be taken up by the belt after the latter has been thorougly sponged off-enough to make it slightly damp This tends to keep up the life of the leather, and restore it to the condition in which the best belt makers furnish it. The use of beeswax to make a belt pull is a temporary and unworkmanlike expedient for a dirty, overworked, or undersized belt
Rubber belts need no dressing.
(3) M. W. asks how to recrystallize rock alum. A. Dissolve in water and evaporate slowly
ontil the mass is just about to crystallize; then add until the mass is just about to crystallize; then add
a little more water, and place the vessel containing the a little more water, and place the vessel containing the
solution near the heat, and crystallization will probasolution near the heat, an
bly take place over night.
(4) H. V. P. writes: 'I have a glass vessel which has been used for an aquarium. It is
coated with a film of a milky appearance and lead colored spots. Can you inform me how I can remove them? A. Use hydrochloric acid, diluted with water. any organic matter.
(5) F. B. asks : 1. What is the horse ower (nominal) of an engine that has a cylinder 16 inches diameter, 18 inches stroke, average pressure 75
pounds steam, 150 revolutions? A. 80 horse power. 2. What causes the water to flow through the injector to the boiler, when the pressure on the boiler check tific American Supplement, Nos. 212, 356, also a little work on the theory of injectors, 50 cents, which we can furnish.
(6) J. J. H., Jr.-The straight link connection for an engine does not meet the requirement of a perfect link movement. and of course is of no advantage.-Cold rolled shafting is made from ordi-
nary round iron, a little larger than the required size nary round iron, a little larger than the required size,
cleaned from scale, and rolled to a finish below the red cleaned
heat.
(7) G. W. D.-Plating with celluloid or zylonite is a very dificult process, and many of the
details of such manufacture are patented. The artidetails of such manufacture are patented. The arti-
cles require to be heated to melt the celluloid and

pressed to the surface. The surface of the cellul			
when cold requires finishing and polishing much in	Bi	E. Palmer. \qquad 337,987	rop
the manner of ivory. It easily takes fire, and is considered a dangerous article to handle near fire	Bleaching apparatus,	ble,	Pug mill. Pulverizing
8) $1 . \mathrm{Ba}$ S asts: Can			Motion, a
a tubular boiler that has a crack between two flues		Faucet and beer pump, combined, F.X. Esche-	
(distance between flues about $3 / 8$ inch) be repaired,			мо
without taking out the flue plate, and if so, how should	Boot and shoe lasting machine, F. Chase............. 337,925		motor water motor
done? A. There is no satisfactory way of re-			
ing a cracked tube sheet. A hole may be drilled patches bolted on both sides with iron putty for a	Boots and shoes, apparatus for cleaning, T. O.	Fence post, wire, wire	Music leaf Musical ins
temporary expedient.			
A. E. asks: Which is most economi-		day....	
30 horse power engine-a 6 foot or a	e ba	Fence wire and other strands, stretching, G. W.	
t balance wheel; and what is the difference in			
of these wheels, each having an 18 inch face? A.		Fences,	Nut lock, J. H. Mce Mean..
enness of motion depends upon weight and diameter	Brick kiln furnace, , portable, S. P. Crafts.......... 37,927		ward. \qquad 337,822
The lorger size will sive a better		Fif	
he same weight. Apart from the conve-		File box, H. D. Waste.	Oiler an
ence of belting, there is economy in a large balance		Firearm, G. D. Potter............ 338.188	
S. asks: What will remove	Bridese wall or fre arch support, J. . Enright......... Bri,941	Firearm, breat	
tone from steam copper coil? Coil is used in		${ }_{\text {Fire }}$	pen hol
heating water, and deposit is on outside. A. Hydro-		Firearms, safety catch for, ©. O. . Potter............ 388	
ter 3 parts. Swab the coil with			
mixture, let it stand an hour or two, and wash	Buggy spring, P. F. Hellerstedt...... 338,071 Bullet, E. Rubin.	Fishing, snell for, F. E. Forster....................... 337,944 Folding machine, C. Baillie 337,914	Permu
off the first time, treat again.		Folding m	
(11) E. A. C. asks for a marking ink for		For	
		Froz, spring, D. H. Lovell.	
turpentine to a thin fluil. This dries quickly,			
he markings are nearly indestructible.		Fruit jar	
C. A. H. asks a formula for making		$\xrightarrow{\text { Fruit pic }}$ Fuel, fee	
ment to cement glass lenses to iron block while			
		Fu	
or			Post. See Fence post. Wire fence post.
during the process of grinding loosens itself		78	Potato digger, C. Babcock
gla			
tough, so as not to splinter under pressure thumb nail, at the working temperature of the			Presure regulator, automatic, Beale \& Arm- ${ }_{\text {strong }}$
	$7,823$		
3) R. \& Co. ask (1) how pulverized	Car coupling, D. B. Gray 338,149		Printing ma Miehle.
s. A. The material is ground with linseed oil,	Car coupling, J. C. F. McCauley....................... 3378877		
	Car coupling, E. G. Sessions,.................... ${ }^{33,107}$		Propeling
duce a paint. It is said that by its use the parts	337,281		
coated become fireproof.	337,292	Gate, w	
(14) L. K. asks what the size is made			
of that is used to put		P. Manhes..................................... ${ }^{337,987}$	
flork work is made from glue, but you			
turer. Details of preparation, obtained	7,999		Pu
perience,		Gra	
duce a better size than can		Grate for	Ra
		Grinding mill, w. R. Eynon........................... 338,221	
5) A. L. S. asks: How many distinct	Cash and p		
sabstances are known to science, and how many are used as medicines? A. There are about 67 distinct	Cash and parcel carrier for store service, Blount $\&$ Kimpton	Gun, electric, S. Russell............................... 337,873 Hammock stretcher or adjuster, E. C. Cook........ 337,815	
elements known to science; of these, perhaps 50 are	Cash and parcel transfer ssstem, ele	Hand rake,	Rail
used in medicine.		Handle.	
TO INvENTORS. .			Rake. Se
		Harro	Razor, L.
more than one hundred thousand applications for patents at home and abroad, enable us to understand the	Cash indicator and check receiver, alarm, C. E. Baldwin \qquad 337,915	$\xrightarrow{\text { Harrow toon }}$	Razor, s Reel.
laws and practice on both continents, and to possess un-	Casting heart	Harvester, low	
	Ceatch for, C. Vetter...ime...................... 338.210	Harvest	${ }^{\text {Refri }}$
	Chain machine.	Hat felt	Regulator.
	${ }_{\text {Chair. }}^{\text {Charn, See Coo }}$	- Hay bur	
delay. Every application, in which the fees have been		Has rake and tedider, combined, Thomas \& Offut 337	Rock dill F .
the papers are simned at our office, or reeeived by mail,	Chur	Head dress, M.	Rock drill. h
so	Clasp, A,	Hoeing machi	Rock drills, car
			${ }_{\text {Reocking }}^{\text {Rock }}$
	Clothes line fastener, I. Kohn..................... 388,159	Hoisting apparatus, Rawson \&	Rubber cloth, j
the securing of patents, either at home onbroad, are in-		Holder. See Bit holder. Book holder. Candle holder. Card holder. Line holder. Nail	Rubbe
	Coffin, Sparks \& Rappleyea..................38,198,	holder.	dale,
for conducting the business. Address MUNN \& CO., office Scientific Amprican 361 Broadway, N. Y	Combination lock for money drawers, etc., H. M. Sturgis. 338,205	Hoof clea Hook. S	
	Compass, mariner's signal, B. Arnola............. 338,160	Hops to	Saw, dr
	Con		
		ors	Saw makin Sawmill a
INDEX OF INVENTION		Hor	Sawmill, band, H. . . B
	n shock compressing device, M. T. Mahin...... 33,092		Sawmill ban
which Letters Patent of	Corrice bending machine, Kittredge \& Ohl........ 388,079 .	Horseshoe, C. J. Le Rof...................... 377844	Sawmill, dog,
ere Granted,			
		Hydralic motor, G. S. Pidgeon................... 337 ,684	kin
6, 1886,		Inject	Saw set,
		$\begin{aligned} & \text { Inse } \\ & \text { Inse } \end{aligned}$	
And each bearing that	Cult	Int	Sawing ma
		Iro	
[See note at end of list about copies of these patents.]		Joint. See Pipe foint	Screw machine.
	Desk, cabinet, F. A. Contin...................... 338.039	Kill. See	Seal lock, J. M. Smith............... 377,899
		Kilader for an	
Air as a motive power, process of and machine for the use of compressed, F. S. Tull et al...... 33		S.J.P	Sewing ma
for the use of compressed, F. F. S. Tull et al...... Alarm. See Burgar alarm. Feed water alurm.		Lader	Sewing machine
Aluminium from aluminous ores and earths, pro-	Distributer. See Fertili	Lamp, electicic arc, R. $\&$ H. Walther................... 388	Sewing machine spool holder, H. Meyers 337,862
cess of obtaining, F. J. Seymour................ 337,996	Door securer, H. A. A. Witman.................... ${ }^{33821214}$	Lamps, auton	Sewing machine quilting attachment.
Atmospheric pressure, apparatus for con parcels or mrain by, . E. Buell.......	Drier. D. A. Greene............................. 337,948 Drill See Rock dril.		
Automatie sprinkler, Kittle \& Jackson........... 3 37\%,896	Driling machine, F. Bennett..................... 33,021	Lante	Abnes
	Drum, stovepipe, B. D. Evans.................. 388.145	Ian	Shears, A. M. Barnett........................ ${ }^{3} 7$ 3,917
		$\underset{\text { Latch }}{\text { Jath }}$	${ }_{\text {Shee }} \begin{aligned} & \text { Shoe. } \\ & \text { Shoe }\end{aligned}$
Bale ties, machine for-makiin wire, D. I. . ecker-		Leath	Shoe fastening, \%lar.
	Brown.............. 37,923	Lin	Signal. See Railmay signal.
Baling press, P. K. Dederick....................... 337.935		Line holder, H. B. Whiting.......................38, ${ }^{\text {38,2 }}$	Skate, roller,
Barrel head, F. J. Oliver......................... 337.984	Electric motor. E. M. Bentley.................... 33, $\mathbf{0}$, ${ }^{\text {a }}$		Skate.ri
Bathing apparatus, F. B. Brown................. 338,031	Electric motor, W. H. Knight.................. 33,085	L.ocomotives,	Sleigh, bob. w. H. Galvin
Beams, locking device for securing w fron, K. L. Gocht...............			- $\begin{aligned} & \text { Solderinig tool. } \\ & \text { Sower, broadcas }\end{aligned}$
Bearing, A. Stigler.................			
Bed and fire escape, combined spring, Wilson \& Zimmermann.	Electro magnetic reciprocatin		
			g machine spindle bolster, H. F.W cy.
Beastead. G. Brrkmann........................... 337.920			Spring. See Buggy spring. Vehicle spring.

Staple, hams. W. A. Heywood.
Steam accumulator, P. Twohig.
Steam boiler. H. Spence..
Steam boiler, sectional, w. H. Wison
Steam engine, D. Pattee.
Steam generator and superheater, M. Foreman Steamer, C. F. Hanneman. Stone, artificial, G. Blum.
Stone, artifcial, J. Grant Stone, artiflcial, J. Grant.........
Stop or curb box, W. S. Payne. Stop or curb box, W. S. Payne....................
Stoves, automatic attachment forgas, J. N. Ives.
Stoves, gas burner attachment for, J. e. Dooly... Street sweeping. machine, C. F. Gruner..
 porter.
Surveyor's target, W. Keuffel
Suspending device, G. W. McGill Table and clothes rack, combined, J. L. Easton Tanning with sulpholeic acid, A. Muller Telegraph pole, metallic pole for use as a, s. H. Telephone mouthpiece, J. Miller. empering, apparatus for, S. E. Mower Tempering metal bands or strips, method of Tempering metal, method of, S. E. Mowe Tempering, process of, S. E. Mower. Thill coupling, L. D. Haskell, Jr. Thill coupling, M. IH. Underwood Thill coupling, R. H. Wilson... Thill, vehicle, Ziegler \& Copes... Till, money, J. Roggy
Toy, humming, S. F. Robins
Trace carrier, W. R. Johns.
Traction and other engines. F. F. Landis Tree protector, F. E. Kohler Truck, barrel, F. W. Roberts Tug for harness, shaft, J . Stoll........... Undershirt, lady's, w. H. Bilbrough Valve, air vent, M. J. Smith. Valve gear for steam pumps, A. Hill Vehicle dash, J. M. Perkins... Vehicle spring, E. J. Hess Velocipede, J. A. Griffiths Velocipede, S. W. W. Morgan
 volt ampere meter, L. Waldo.. Vote recording and indicating apparatus, elect cal, C. O. Yale et al Warping machines sto Moor Washboard rubber, C. Hood. Washing machine, I. M. Groff. Dill................................. Water closet cistern, F. A. Jacob. . Water level indicator, J. R. Wilcox Water meter, piston, J
Weatherboard qauge, Kuykendall \& Elkins Weatherboarding gauge, M. E. Johns Wedge, ax helve, H. F. Sawyer. Weige, spring jack, H. Anderson.................. Wheel. See Fifth weel. Whip socket lock, Madden \& Brown Windmill, J. G. \& U. C. Stough..... Wire, spool for barbed. C. S. De Witt.
Wood, machine for bundling, D. A. Gre Wool drying machine, Petrie, Jr., \& Fielden Wrench. See Pipe wrench. Wrench, A. Kinderma
Wrench, E. C. Palmer Wrench, E. C. Palmer.
Writing, hand support

DESIGNS.
Aracket for springs, J. W. Kenna.
Coffin handle socket, W. M. Smith
Harness terret, G. M. Hubbard
Rubber mat, J. Murphy.
Spoon or fork handle, H. W. Hirschfeld.
Stall guard, W. C. Peet.
Tableware, T. Maddock..........
Tobacco pipe, F. J. Kaldenberg
Trunk iron, J. H. Alexander....

TRADE MARKS.
Blood purifers, tonics, pills, teas, powders, and drops, X. Herberg.
Canned goods, certain, G. W. Aldrich Chains, gold, A. Wallach's Nep
Corn, shelled, E. B. Crofut \& C C
Flour. roller. process wheat, Heyman \&
Fruits, dried, Reid, Murdoch \& Fischer Horse rasps, Kearney \& Foot Company Liquors, malt, Machen \& Co Mackerel. Trask Fish Company
Overalls. Carter \& Churchill...
Pickles, highly spiced, Skilton, Foo
Refrigerators, Blodgett \& Osgood
Suits and overcoats, gents' and children's, Einstei.
\& Co......................
Wine, Foley \& Poor
A printed copy of the specifleation and drawing o any patent in the foregong list, also of any paten of the patent Broadway, New York. We also furnish copies of patent granted prior to 1866 ; but at increased cost, as th
specifications, not being printed, must be copied and.
Canadinn Patents may now be obtained by the going list, at a cost of $\$ 40$ each. For full instruction address Munn \& Co., 361 Broadway, New York. Othe corelgn pate way be obtained.

SATISFY EVERYBODY
 ISSUED BY

No Burdensome Conditions or Restrictions.

LOWEST PREMUMS OF aNY LIBERAL POLICY YET ISSUED.

Indefeasible, Non-Forfeitable.
WORLD-WIDE TRAVEL

Cash Surrender Values, Paid-up Policy or Special Term Insurance, plainl
aSk agents to show a COPY,
AND SEE FOR YOURSELF.

FRICTION CLUTCH
Pulleys and Cut-off Couplings.

for

FOR SALE. Manufacturing Property
 American Braid co., w. Cheshire, ct.

Inauguration of the New Series. 1886. Thirteenth. 1886.

CIMCINNATI INDUSTRIAL EXPOSITION.

Opens Sept. 1st. Closes Oct. 9th.
 Representative Exhibition of In-
dustry and Art.
Manufactures-Art-Inventions-Products. Open to the World.

NO COMPETITIVE AWARDS.
11 Articles will be Entered for Exhibition Only.
L. H. McCAMMON, Secretary.

oodworking Machinery.
 Fuli asorimment of Perin Saw Bladea, ICE-HOUSE AND COLD ROOM.-BY R.

ELFCTRIC LIGHT

MAGIC LANTERN.

FIDIEOIT

LAMPS, BATTERIES, INSTRUMENTS MOTORS, AND SUPPLIES.
The AURORA BATTERY for ELECTRIC LIGHTING.
The STOUT-MEADOWCROFT CO.
Authorized Agents of the Edison Lamp Co.,
21 ANN STREEET, NE W YORI.

WATCHMAN'S IMPROVED

Pocket Type Writer. \$5. Practical: Elegant: No NToy:
Doos as good work as any Type Writer made.
 HARBACH ORGAN CO.
809 Filbert St., Phil..

- F. TK minT

204 South 3d Street, Philadelphia, P
DRAWING \mid Ihatatede

BOXWOOD AND ITS SUBSTITUTES

RESERVOIRS.

ELECTROLYSIS.

DYNAMO ELECTRIC

 MACHINERY. E. \& F. N. SPON, Pablishers, 35 MURRAY ST., New York. Remington Standard Type-Writer

Wyckoff, Seamans \& Benedict, COUNTERSINK and DRILL COMBINED.

The Countersink following the Prill, the fob is fnish-
d at one one operation suving the adjusting of toos and Wirktwice. Made by Mry. Co.. Greenfield, Mass. ICE-HOUSE AND REFRIGERATOR.

 STAMPED METAL GOODS,

TRARING FOR MECHANICAL ENGI-

GOLD MEDAL, PARIS, 1878. BAKER'S

Warranted absolutely pure
Cocoa, from which the excess of Oil has been removed. It has three times the strength of Cocoa mixed
with Starch with Starch, Arrowroot or Sugar,
and is therefore far and is therefore far more economi-
cal, costing less than one cent as
cup. It is delicious, nourishing, cup. It is delicious, nourishing,
strengthening, easily digested, and
admirably adapted for invalids as ell as for persons in health.
W. BAKER \& CO.; Dorchester, Mass.

RAILWAY AND STEAM FITTERS SUPPLIES Rue's Little Giant Injector. SCREW JACKS, STURTEVANT BLOWERS, \&C.
OHN S. URQUHART, 46 Cortlandt St., N. Y. SUNLIGHT AND THE EARTH'S AT-mosphiere.-A lecture by Prof. S. P. Langley, pointing
out that the atmosphere is not ramsparent, as t seems
to be and that the true color of the sun is bue rather

A Great Repository of Practical and Scientifc Informa
 Containing several thousand receipts，comprising th
latest．most valuale ond mont useful discoveries in
Chemical

 Antomatic Re－Stariing Injector．

Invaluable for use on Traction，Farm，Portable
Marine，and Stationary Engines of all kinds．N Handles required．Water supply verg dificult to break．Capability of restarting immediately，auto－
matically，after interruption to feed from any cause Reliable and Cheap．

Sole Manufacturers in the United States and Canada，
Nathan Manufacturing Co．
92 \＆ 94 LIBERTY ST．，N．Y．
ROCK BREAKERS AND ORE CRUSHERS．

SHIELDS \＆BROWN

FOr BOILERS and STEAM PIPES FOR GAS ANDW ATMERPSIPES．

Strit）first liass．Has hoilow sinide outside and

Leffel Water Wheels， TINE NIW PAUPELEI POS 1885 Sent free to those interested．© nt free to those interested．（20）Res JAMES LEFPEI \＆CO．， Springfield，Ohic 10 Liberty St．，N．Y．City．

the cheap and easy method now offered for obtaining patents in Canada is very large，and is steadlly increas
ing． ENGI，A ND．－The new English law，which went into
torce on Jan． 1 st．1885，enables parties to secure patents in Greal Britain on very moderate terms．ABritish pa－
tent includes England，Scotland，Wales，Ireland and the Channel Islands．Great Britain is the acknowledged financial and commercial center of the world．and her
goods are sent to every quarter of the globe．A good Invention is likely to realize as much for the patentee
in Englund as bis United States patent produces him at horue，and the small cost now renders it possible tent in Great Britain，where his rights are as well pro－ tected as in the United States．
OTHER COUNTIRIES．
on very reasonable terms in France，Belcium，obtained on very reasonable terms in France，Belgium，Germany，
Austria，Russia．Italy．Spain（the latter includes Cuba and all the other Spanish Colonies），Brazll，British India， Australia，and the other British Colonies．
An experience of Forty years has enabled the
publishers of THE SCIENTIFIC AMERICAN to establish publishers of THE SCIENTIFIC AMERICAN to establish
competent and trustworthy agencies in all the principal foreign countries，and it has always been their aim to have the business of thotr clients promptly and proper－ ly done and their interesis faithfully guarded．
A pamphlet containing a synopsis of the patent laws
of all countries，including the cost for each，and othe of all countries，including the cost for each，and othe curing of patents abroad，may be had on application to t is office．
MNUNN \＆CO．，Editors and Proprietors of The Sci－ any information relative to patents，or the registry o trade－marks，in this country or abroad，to call at their offices， 361 Broadway．Examination of inventions，con－
sultation，and advice free．Inquiries by mail promptly answered．

Address， \qquad
MUNN \＆CO．
361 Broadway，New York． Brance Offices：No． 622 and 624 F Street，Pacifl

NOVELTY ELECTRIC CO．

The only House in the United States making a ful

亚
 HARRISON CONVEYOR！

OTTO GAS ENGINE
OTTO GAS ENGINE．

St
 $$
10
$$

$\stackrel{\substack{\text { E } \\ \text { Un } \\ \text { Yon }}}{ }$PROPOSALS，
To Furnish Silk Reeling Machines of the Most
Modern and Best Patterins． Proposals And CORRESPONDDENCE to be ac－
companied with drawings or photorraphs of ma－ also price．Address proposals to the
STATE BOARD OF SILK CULTURE，

THE DINGEE \＆CONARD CO＇S
ROSES
Our Great Specinlty is growing and distribiting
 3 TO． 12 PLANTS \＄1 \＄8 to \＄15

ICE－BOATS－THEIR．CONSTRUCTION

CUTLLER＇S POCKET INHALER

ICE．REFRIGERATING
NEW YORK BELTING AND PACKING COMP＇Y．

Fmery Wheels．
All other finds Imitntions and Inter ior．Our name is stamped in full upon all our
standard
NDE YORIK BPITING \＆PACISING CO

WITHERBY，RUGGG R RICHA RDSON．Manufacturers
of Patent Wod Working Machinery of every descrip－
 2ic．PUZEEXS 4c． ROUGH Johnt．Noye Mfg．Co．FINISHED

VOLNEY W．MASON \＆CO．，

 FRICTION POLLETS CLUTCHES and ELEVATORS THE IMPROVED Rider Hot Air Pumping Fngine For City or Conntry Residences， YER \＆CO．， 34 Dej St．，New York． DOUBLE BOATS．－TWENTY－ONE IL－

 Kaestner Friction Olutch， Gearing，Pulleys， COUPLINGS 。 CHAS．KAESTNER
BuIIder of S Senerel and
CO．，

 FRANKLIN OLL D Wollars．
FRs，Franklin，Pa．

D EAFNESS

CURE Figit DEAF

TO WEAKMENさ

WEAKMEN

NEWSPAPER FIIE

 Δ arabone who wish to preserve the paper

MONN \＆CO．，

Dhdvertisements．

Scientipee Alustrated Articie in

 THE AMERICAN WRITING MACHINE COMPANY， HARTFORD，CONN．
New York Office，

To Business Men．

dJACKET KETTLES，

－ELECTRIC

H．W．JOHNS ASBESTOS：

Steam Packing Boiler Coverings，
Fire Proon Dainter Cermentist
Samples and Descriptive Price Lists Free． H．W．JOHNS M＇F＇G CO．， 87 MAIDEN LANE，N．Y

INTERNATIONAL INSTITUTE FOR Liquefied Carbonic Gas．

 Trade eupplied．

HARRIS－CORLISSENGINE
With Harris＇Pat．Improvements，from 10 to 1,000 H． P
мหมmanual．By

PATENTS

and this in ine of business the have hay forty ne years＇

 midne \＆CO．，Solicitors of Patents， 361 Broadway，New York．

AQUA PURA

Turbid Water Made Clean
 means removed．
Hard Water Made Soft
 Scale In Rollers Avo Thwo per cent．addeded to the
Annual Water Rates in any
 NEWARK FILTERING CO．，NEWARK，N．J
 BRADエ戸チ＇S Helve Hammer

For painting ROOFS．RED AND BROR BROWN
IN

The Best in the World．
 fif your dealer soes．None ge nuine unless so stamp．

Poriable，Agriculitural，\＆Stationary Steam Engines．

WOOD，TABER \＆MORSE Eaton，Madison Co．，N．Y

Columbia Blcycles and Tricycles． Relluction in Prices and Many
lmprovements for 1886． Now Spring Catalogue Sent Froe． The POPR MPG．$\overline{C 0}, 597$ Wastington $8 t$, Boston Pranch Houes： 12 Warren 8t．，Now
York； 115 Wabah Avo．，oileago．

PATENT RIVETED MONARCH RUBBER BELTING．
Best in the woorla．
Specially adapted for PAPER MILLS，SAW MILLS，and THRESHING MACHINES．
THE GUTTA PERCHA and RUBBER MFG．CO．，

STANDARD COODS．

 Everf litile while some new concern starts with a big
furry，or some bic concern offers a bigger discount．and

MROSDTUUS

SEixutifix GMMEXixu

The Most Popular Selentific Paper in the World． Only \＄3．20 a Yent，including Postage．Weekly
This widely circulated and splendidly Mlustrated paper is published weekly．Every number contains six－ teen pages of useful infomation and a a arge number of
original en gravings of new inventions and discoveries． representing EngIneering Works，Steam Machinery tecture，Agriculture，Horticulture，Natural History，etc All Classes of Readers find in the Scirntific AMERICAN a popular resume of the best scientific in
formation of the day；and it is the aim of the pubisher to present it in an attractive form，avoiding as much as possible abstruse terms．To every intelligent mind，
this journal affords a constant supply of instructive his journal affirds a constant supply of instructive reading．It is promotive of knowled．
every community where it circulates．
Terms of Subscription．－One copy of the SCIEN－
IFIC AMERICAN will be sent for one year－ 52 numbers－ postage prepaid．to any subscriber in the United States Careaa，on receipt of three dollars and twenty
cent by the publishers；six months，s1．60；three months， 81.00 ．
Clubs．- One extra copy of the Scientific Amert $\Delta \mathrm{N}$ will be supplied graisfor every clud of Jne subseriber tite rate．
The sa
Express Money Order． of envelopes，securely sealed，and correctily adradessed，
seldom goes astray，but is at the sender＇s risk．Ad－ and make all orders，drafts，etc，puy MIUNIN \＆CO．，

361 Broadway New York．
Scientific American Supplement． This is a separate and distinct publication from
THi ScIENTIFIC AMERICAN，but is uniform therewith in size，every number containing sixteen large pages． The Scientific American Supplement is published week 1 ，and includes a a ery wide range of contents．It
presents the most recent papers by eminent writers in Ul the princtpal departments of science and the Natural History，Geography，A rcheology．Astronomy， Chemistry，Electricity，Light．Heat，Mechanical Engi－ Ship Building，Marine Engineering，Photogning， Technology，Manufacturing Industries，Sanitary En－ ineering，Agriculture，Horticulture，Domestlc Econo－
ay，Bíography，Medicine，etc．A vast amount of fresh and valuable information pertaining to these and allied sengravings．
sum
The most important Ensineering Works，Mechanisms， and Manufactures at home and abroad are represented Price for the SUPPIEMENT for t
Price for the SUPPLEMENT for the United States and erican and one copy of the SUPPLEMENT，both mailed or one year for $\$ 7.00$ ．Address and remit by postal order．express money order，or check，

MUNN \＆Co．， 361 Broadway，N．Y．， Publishers Scientific american． he Postalunion the Scievtrfic aner the facilities of by post direct from New York，with regularity，to sub－ British colonies ；to France，Austria，Belgium，Germany， kussia，and all other European States；Japan，Brazi， Terms，when sent to foreign countries，Canada excepted， 84，gold，for Scientific American，one year；$\$ 9$ ，gold，
for both Scientific American and Supplement for one year．This includes pcstage，which we pay．Remit

PRINTIING INKS．

