
a WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

1. Entrance of Tunnel. 2. Buildings and Plant in Dark Canon. 3. Drill Carriage. 4. Air Compressors. 5. Map of Big Bend and Line of Tunnel. 6. View of Island Bar, Feather River,

Forientifir gmmiran.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors.

 published weekly at
No. 361 BROADWAY, NEW YORK.

O. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMELICAN.

Une copy, one year, postageincluded.. 1320
One copy, six months, postage included.......
Clubs.-One extra copy of The Scientific Amprican will be supplied gratis for every club of tive subscribers at
same proportionate rate. Postage prepaid.
same proportionate rate. Postage prepaid.
Remit by postal or express money order. Address
MUNN \& CO., 361 Broadway, corner of Franklin Street, New York.
The Scientific American Supplement
is a distinct paper from the Scientific American. THE SUPPLLEMENT with Scientific American. Terms of subscription for Supplement \$5.00 a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all newsdealers throughout the country.
Combined Rates.-The ScIENTIFIC
Combined Rates.-The Scientific American and Supplement
will be sent for one year, postage free, on receipt of seven dollars. Will be sent for one year, postage free, on receipt of
papers to one address or different addresses as desired. The safest way
egistered letter. repistered letter.
Address MUNN

Scientific American Export Edition.

The SCIENTIFIC American Export Edition is a large and splendid peri-
odical, issued once a month. Each number contains about one hundred arge quarto pages, profusely illustrated, embracing : (1.) Most of the plates and pages of the four preceding weekly issues of the SCIENTIFIC AMERImercial, trade, and manufacturing announcements of leading hooses. Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the
world. Single copies, 50 cents. Manufacturers and others who desire world. Single copies, 50 cents. Manufacturers and others who desire to secure foreign trade may have large and handsomely dis
nouncements published in this edition at a very moderate cost.
The Scientific American Export Edition has a large gua
culation in all commercial places throughout the world. Address MUN CO., 361 Broadway, corner of Franklin Street, New York.

NEW YORK, SATURDAY, FEBRUARY 6, 1886.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT INO. 527

For the Week Ending February 6, 1886.

 Price 10 cents. For sale by all newsdealers.
 I. ENGINEERING AND MECHANICS.-Sir Wm. Thomson's Mari-

V. ELECTRICITY, ETC.-Telephony at the Philadelphia Exhi-
bition--Electrical
fransmission of time.-Various telephones.-6

A daptation of means to ens.--Every day phenomena............

STOPPAGE OF THE CLEVELAND WATER TUNNEL BY ICE SPICULES.

The system of running tunnels out to some distance under the surface of the water in our Western lakes, to gain a supply of pure water for cities on the shores thereof, has, in the main, proved highly successful. The single defect yet unsurmounted is the liability of these tunnels to become clogged with ice in cold weather, and thus cut off the water supply.
To the citizens of Cleveland, in whose memories the recollection of the great fires of sister cities is yet fresh and vivid, it must have been a starling announcement on the morning of January 14 that the water supply was entirely cut off by ice accumulation in the tunnel between the lake crib and the pumping station; that the principal industries of the city must be suspended, and its valuable property left, at least temporarily, to the mercy of circumstances should fires break out.
There ought never again to be a recurrence of such a danger and inconvenience to any town from the cause we shall proceed to point out; but first let us consider briefly the causes of the stoppage.
These are to be sought in well-ascertained principles of ice formation, under the condition that the application of the cold to the liquid to be frozen is made to the upper surface.
When a mass of still water having a temperature above $4^{\circ} \mathrm{C}$., or $39^{\circ} \mathrm{F}$., is exposed to a superimposed mass of air colder than the water, two surface actions for the removal of heat from the liquid unite their orces, to wit, convection and radiatia.
The latter of these modes of heat change acts con tantly, summer and winter, without any dependence upon the temperature of the air, except in so far as temperature affects the amount of water vapor held suspended in air. Air not being a radiating body, its action upon the upper surface of water can only effect heat change by convection, and this action will not be set up when either the air or the water is perfectly at rest, and the temperature of the air is higher than that of th.e water. The reason for this will be obvious when we reflect that the action called convection consists in the interchange of place of fluid molecules which are hotter with those that are colder; and that the colder molecules of water descend at all temperatures above that known as the temperature of maximum density, while the colder molecules of air descend, when free to move, at all temperatures yet known as naturally or artificially produced. It follows that when the upper surface of a still mass of water is in contact with a mass of superincumbent air, the warmer stratum of the water will be uppermost, and the colder stratum of the air will be that resting upon the water -a condition under which the motion needed for the action of convection is impossible.
But if the air be colder than the water, the lower stratum of air molecules derives heat from the upper stratum of water molecules; the former rises and the latter falls, and the action of convection at once begins.
This action continues (always provided there is no reaches $4^{\circ} \mathrm{C}$., or $391^{\circ} \mathrm{F}$., when a remarkable change takes place. The water molecules now expand, and their specific gravity becomes less; they now cease to descend, and begin to rise.
A stratum of water, having the temperature of $4^{\circ} \mathrm{C}$., now forms at the upper surface of the water mass, and there remains. By contact with the colder air, this stratum quickly reaches the freezing point, and congeals into a film of ice. The action of convection between the air and the yet liquid water under the frozen film now wholly ceases, and all further transfer of heat from the liquid to the air must be by conduction through the ice. The action of convection between through the ice. The action of convection between
the air and the upper surface of the sheet of ice and transfer of heat from the water to the lower surface of the sheet of ice continue so long as any part of the water remains unfrozen; and not until the ice, after. freezing, has cooled down to the temperature of the air will the heat transfer wholly cease. Radiation greatly assists the process. This is nature's method of manufacturing ice.
The upper film of ice, when it first begins to form on a still mass of water, will be found, when critically examined, to be a curious network of crystals, very slightly cohering at their angles or points. The slightest motion of the liquid breaks these connections, and sets the crystals free to move in obedience to any current that may be generated in the liquid. Now, if the liquid be kept constantly stirred, each stratum of crystals as it forms will be carried downward, the temperature of the water will be reduced throughout its mass to the freezing point, and just as meal sprinkled on the surface of water can be stirred into the mass, so the continuously forming ice crystals commingle with the liquid portions, and the mass becomes (to use a com-
mon phrase) "mushy." Everywhere and anywhere where any obstruction to motion exists, the crystals, pausing in their course, immediately cohere to form ice
last large, granular, milky-looking masses of ice result. It hardly needs to be added that the conditions of ice formation on the Lakes must sometimes conform to what we have described.
Whenever the temperature of maximum density has been attained at their surfaces, and the action of winds and waves, assisted by a current into the mouths of the tunnels of the water supplies, becomes sufficiently intense to produce the " mushy" condition, the tunnels are sure to become obstructed, either partially or wholly. Strainers at the mouths of the tunnels, no matter how they may be constructed or arranged, cannot meet the difficulty; if fine enough to prevent the passage of the ice spicules, they inevitably become clogged.
It is evident that, if the mean temperature of the water entering the mouth of the tunnel be kept even a fraction of a degree above the freezing point, and if the ice particles be also melted as they enter, or just before they enter, no ice obstruction could even form in any part of the tunnels, these being by their situation protected from freezing.
We will briefly calculate the amount of heat required to effect this for a million of gallons, assuming 10 per cent as the proportion of ice in the water at the instant of inflow, which is probably considerably too high. For simplicity, we will consider the specific gravity of ice to be the same as that of the water, and the weight of a gallon of water to be eight pounds.
We shall then need to heat 900,000 gallons of water one-quarter of one degree, and melt 100,000 gallons of ice.
We shall need for the entire work $900,000 \times 8+4=$ $1,800,000 ; 100,000 \times 142 \cdot 4 \times 8=113,920,000$.
Total (heat units) $=115,720,000$.
Dividing this total by 966.5 , the heat obtainable from one pound of steam, we get 119,710 pounds of steam required. With a boiler of good type, well housed, we can get a steam product of 10 pounds per pound of coal consumed, hence we have 11,971 pounds of coal required for the work, or, in round numbers, say $51 / 2$ tons. At $\$ 5$ per ton this would cost $\$ 27.50$, or $23 / 4$ cents per each 1,000 gallons delivered.
Contrast this slight expense with the loss per hour to the city of Cleveland from the stoppage of her manifold industries, the risks entailed upon insured property and insurance writers, and the untold inconveni ence and suffering in families.
The steam could be conveyed to and discharged into the water entering the fouth of a tunnel by insulated pipes from boilers located at the crib. The necessity for its use being for only a few days each winter, the steam could be supplied from the boilers of tugboats.

american precious stones.

The recent volume on "The Mineral Resources of the United States," published by the Government, contains an interesting paper by Mr. George F. Kunz on the history and production of gem stones in America. For a country so otherwise richly endowed with mineral wealth as the United States, her product of precious stones is surprisingly small. The total value of gems mined in this country during 1884 amounted to but $\$ 82,975$. Almost two-thirds of this sum was for minerals valuable only as cabinet specimens, and therefore not strictly to be classed under the head of gems. In addition, the value of the gold quartz withheld from reduction for use in jewelry and as specimens is calculated to be $\$ 140,000$.
Though in point of quantity and value among the most insignificant of the entire list, the diamond, as the stone of all stones, naturally receives the first consideration. Probably the largest one ever found in this country is the Manchester diamond, which was unearthed by a laborer at Manchester, Va., about the middle of the century. The gem was not recognized at first, and by way of experiment was placed in an iron furnace at Richmond. After remaining at a red heat for two hours and twenty minutes, it was found to be unimpaired and brighter than before. When recognized, it was valued at $\$ 4,000$. It passed through a number of hands, being cut at an expense of $\$ 1,500$, and at one time $\$ 6,000$ was loaned on it. The original weight was $233 / 4$ carats. This was reduced by cutting to $11 \frac{1}{1} \frac{1}{6}$ carats. As the stone is off color, and imperfect, it is not worth to-day more than from $\$ 300$ to $\$ 400$. The gold regions of North Carolina have produced a number of small diamonds Among the first discovered was a fine octohedron rom Brindletown Creek, valued at $\$ 100$. A number of stones, improperly classed as diamonds, proved on examination to be quartz pebbles or zircons. Anther stone, of fine white color, found in a South Carolina placer claim, has a reputed value of $\$ 400$.
Some of the finest American diamonds come from California, though their size is generally quite small. Professor Whitney states that the stone is found in fifteen or twenty different localities, the largest that has come under his notice having been discovered at French Corral. It weighed $71 / 4$ carats. The most prolific locality has been at Cherokee Flats, Butte County, where the hydraulic operations have dis
low, straw, and rose. They are found with zircons, platinum, iridium, and other associates of the diamond. They are also found in connection with itacolumite, that peculiar flexible sandstone which is likewise native to North Carolina. So far as known, $\$ 500$ is the highest price ever paid for any California diamond in the rough. Large numbers, however, have been sold for from $\$ 10$ to $\$ 50$, and not a few have brought as much as $\$ 100$. Among the sapphire gems, a number of excellent specimens have been found, particularly in North Carolina. Probably one of the finest known specimens of emerald green sapphire was found at Jenks Mine, in Franklin County. It is the transparent part of a corundum crystal, 4 by 2 by $11 / 2$ inches. It would probably furnish gems to the amount of 100 carats. Being very rare, its value is over $\$ 1,000$. Fine specimens of chrysoberyl and spinel have been found in various localities in New England, New York, and the Southern States. The Platte Mountains, in Colorado, have afforded the best crystals of topaz. One of these weighs 125 carats, and is as fine a gem of any kind as America has ever produced. The crystals gathered from this one locality, during a period of locality, during a period of
fourteen months, have sold for nearly a thousand dollars. Emeralds, beryls, and some of the less commonly known minerals, such as zircon, tourmaline, and staurolite, have been found in small quantities, but have not proved of much importance as gems. In garnets, however, America has produced stones comparable with the best products of Africa and the East. Thoughsmallerthan those found in the diamond mines of the Cape of Good Hope, the garnets of the Colorado River plateau are unsurpassed in color and clearness. The Cape garnets retain their dark color by artificial light, but in the American nothing but the clear blood color is visible. As a mineral they are found all over the United States, wher ever the older formations are exposed, but it is only occasionally that they are sufficiently transparent to rank as gems.
It is in the group of It is in the group of largest value among American gem minerals. In transparent quartz, particularly fine crystals have been found in New York. The purple variety, the well known amethyst, is quite common in New England, one specimen found near Cheshire, Conn., being almost equal in color to the much praised Si -
berian gems. Several southern localities likewise afford excellent specimens. The most remarkable native amethyst is that. recently deposited in the National Museum by Dr. Lucas. It is a turtle-shaped prehistoric cutting, which measures $23 / 4$ inches in length, 2 inches in width, and $11 / 2$ inches in thickness. The whole stone is transparent and without a flaw. Smoky quartz has returned the largest revenue of any of the gem stones, amounting, in 1884, to $\$ 10,000$. The finest specimens are those from Bear Creek, Colorado, where finely developed crystals, from an inch to over four feet in length, have been found. In many of the specimens, included minerals, such as rutile, asbestos, and gothite, add much to their beauty and value. Quartz crystals containing fluid cavities with moving bubbles are of particular interest, and have been found in a number of localities. There are in addition a large number of less valuable stones, whose beauty still attracts admiration. The beautiful green variety of feldspar known as Amazon stone, which has been found in fine crystals at Pike's Peak, is much prized as cabinet specimens. The numerous varieties of silicified wood have afforded as pretty specimens as can be found the world over. Numbers of minerals also, which have but a nominal value in themselves, are made up into attractive articles. Anthracite is carved and turned into a variety of pretty trinkets, of which $\$ 2,500$ to $\$ 3,000$ worth are sold annually. Pipestone, from those red pipestone quarries in Minnesota which are so well known to readers of "Hiawatha"
as having afforded the material of the famous peace pipe smoked by Gitche-Manitou, the Mighty, is still used for the same purpose, only that the pipes sell for $\$ 1$ to $\$ 20$ apiece, according to the carving, and circulate strictly among mortals.
There are many inducements for a systematic search for precious stones. Though we produced but $\$ 28,650$ worth of gems proper, we imported during the same year diamonds and other precious stones to the amount of over $\$ 9,000,000$. A more intimate knowledge of American resources will probably, in time, somewhat reduce this undesirable proportion between the native and imported gems.

Historical Electrical Apparatus.
In a lecture delivered before the Franklin Institute, Philadelphia, Mr. C. J. Kintner, chief examiner of the Department of Electricity, in the United States Patent Office, spoke of a number of notable pieces of electrical apparatus in the possession of the office, and of the wonderful increase in the growth of the business

In the map, stars of the first magnitude are eight-pointed: second magnitude, six-pointed; third magnitude, five-pointed; fourth magnitude (a
few). four-pointed; fifth magnitude (very few), three-pointed, counting the points only as shown in the solid outline, without the interfew). four-pointed; fifth magnitude (very few), three-pointed, counting the points only as shown in the solid outline, without the inter-
mediate lines signifying star rays. mediate lines signifying star rays.

| Prior to the year 1881, electrical apparatus was only | Hunting Dogs occupy th |
| :--- | :--- | :--- | hilosophical instruments. In that year it was made Shilosophical instrum. In that year, it was made ventions has multiplied so rapidly that during the past year the electrical department was given nine classes in place of one. The greatest epoch in the history of the art was in 1876. Before that time, there had been but 1,973 patents taken out for electrical inventions. Since then there have been 8,000 new patents. It was in 1833 that the first patent in this department was granted to D. Harrington, a Philadelphian, for an invention meant to cure disease by an application of electricity. Two more patents were granted to the same inventor for similar devices, but these three were the only electrical patents granted before the regular establishment of the Patent Office, in 1836. Among the most famous of the models in the possession of the Government, Mr. Kintner mentioned Morse's tele graph instrument, which, he stated, was, like all that inventor's models, a marvel of good workmanship and

performance. Bell's telephone, the Brush electric light, and many other devices not so well known to the geñeral public, make up a list of inventions upon which large industrial operations have been based and to which our present progress is largely attributable.

The surplus of the Ætna Insurance Company is now over $\$ 3,200,000$, which is larger than the capital of now over $\$ 3,200,000$, which is large
any other fire insurance company. Hair and the Great Bear. having been welded together.

NIGHT SKY-JANUARY AND FEBRUARY.

by richard a. proctor.
The Great Bear (Ursa Major), with its Dipper and Pointers, occupies the northeasterly mid-heaven. A line from the Pole Star (and of the Little Bear, Ursa Minor) to the Guardians, β and γ, lies in the position of the minute hand of a clock 18 minutes after an hour. The Camelopard (Cameloptrdus) is above. The Dragon (Draco), whose head is below the horizon, curves round the Little Bear to between the Guardians and the Pointers. In the northwest, fairly high up, we find Cassiopeia, the Seated Lady, and on her-right, lower down, the inconspicuous constellation Cepheus. Andromeda, the Chained Lady, is on Cassiopeia's left. The Great Nebula will be noticed in the map-it is faintly visible to the naked eye. Abote Andromeda is Perseus, the Rescuing Knight, and above him the Charioteer (Auriga), nearly overhead. On the left of Audromeda is Aries, the Ram, the small constellation, the Triangle, lying between them.
Toward the southwest, the Whale(Cetus) is beginning to set. The River (Eridanus) occupies the lower part of the southwesterly sky, and extends also to the midheavens in that direction. The Dove (Columba) is nearly due south, and at its best-which is not saying much. Above is the Hare (Lepus), on which Orion treads. The giant now presents his noblest aspect -prince of all the constellations, as he is. He faces the Bull (Taurus), known by the Pleiads and the bright Aldebaran.
Close by the poor Hare, on the left, leaps Canis Major, the Greater Dog, with the bright Sirius, which " bickers into green and emerald." The stern of the star ship Argo is nearing the south.
Very high in the southeast we find the Twins (Gemini), with the twin stars, Castor and Pollux (a and β); and below them the Lịtle Dog (Canis Minor) The Sea Serpent (Hydra) is rearing its tall neck above the eastern horizon (by south), as if aiming either for the Little. Dog or for the Crab (Cancer), now high up in the east, with its pretty Beehive cluster showing well in clear weather. The Lion (Leo) is due east, the Sickle (marked by the stars α, η, $\boldsymbol{\gamma}, \mu$, and ε) being easily recognized.
Queen Berenice's Hair (Coma Berenices, not Berenicis, as often ignorantly given) is in the northeast. It used to mark the tip of the real Lion's tail, just as the stars of the Crab marked his head. The

Cement for Cast Iron.

A correspondent of the English Mechanic says that he used the following recipe with the greatest success. for the cementing of iron railing tops, iron gratings to stoves, etc., and with such effect as to resist the blows of a sledge hammer: Take equal parts of sulphur and white lead, with about a sixth of borax; incorporate the three so as to form one homogeneous mass. When going to apply it, wet it with strong sulphuric acid and place a thin layer of it between the two pieces of iron, which should then be pressed together. In five days it will be perfectly dry, all traces of the cement having vanished, and the iron will have the appearance of

The American Exhibition in London

The Executive Council of the American Exhibition Company have announced that the time for the opening of the exhibition has been postponed a year, and hat May, 1887, has been chosen as a more favorable time. This change has been made because the Colonial and Indian Exhibition will be held next spring in London, and it is naturally thought that the simultaneous occurrence of the two exhibitions would interfere with the success of the American enterprise. Minister Phelps, Consul-General Waller, and other prominent Americans have advised the postponement.

HONEY EXTRACTOR.

In the old style honey extractor the honey is thrown from two combs placed in opposite sides of a wire cloth basket, which is rapidly revolved by means of a simple gearing placed at the top. The extractor here shown is revolved in the same way, but instead of throwing the honey from two combs at a time, it may be made to throw from four, six, or eight. The combs are placed in wire cloth pockets, which are free to swing on round steel rods placed vertically at the corners of the basket. On top of each rod is a small wheel, provided with a series of steel pegs in its face. Passing around these wheels is a steel band formed with holes, which engage with the pegs. By slightly pulling on this band, or by grasping one of the pockets, all of the pock

treadwell's honey extractor.
ets may be turned simultaneously either to the right or left without reversing the motion of the machine The combs may thus be reversed without raising them from the machine or touching them with the hands. It will be seen that with this extractor the combs may be easily reversed several times before the honey is wholly removed from both sides-an advantage that will be appreciated by beekeepers.
This invention has been patented by Mr. W. B. Treadwell, and the extractors are manufactured by Messrs. Aspinwall \& Treadwell, of 16 Thomas Street New York city.

EXPANDING PULLEY.

By means of the mechanism herevith shown, the speed of a belt-driven pulley may be increased or diminished without shifting the belt or stopping the machine. In the supporting frame there is mounted a driving shaft, secured to which is a disk having a number of plates riveted to it, and formed with flange-like projections, constituting radial ways between the plates. The face of the driving pulley is made up of a number of circular sections, which project at right angles from arms sliding in the grooves. Rods connect the extending ends of the arms with a collar mounted loosely on the shaft. This collar is formed with an annular groove, and is shifted by a lever pivotally connected to the frame, as shown in the sectional view. It will be seen that, by moving the lever to carry the collar up close to the disk, the rods will act to extend the arms, thereby carrying the circular sections away from the shaft, and conse-
minish the diameter of the driving pulley, the tight ening pulley is depressed by a bell crank lever operated by the main lever, as shown in the perspective view, and the belt is forced downward, sothatan equal amount of tension is always maintained upon it. Instead of this method, it will be understood that the driven pulley might also be formed with an expanding peripheral face, that might be made to be adjusted simultaneously with the driving pulley, but in an inversed direction. The main lever is held by catch in any desired position.
This invention has been patented by Mr. John M Herman, of Mallard, Iowa.

California Cream of Tartar

Among the various industries and sources of revenue of Los Angeles, California, which are a perfect success so far as they have been well attended to, is the production of argols and the manufacture of cream of tartar from same. A gentleman who has been engaged in the business for some time in Los Angeles has been very successful, although it has been with a great deal of difficulty with his limited means to secure a location adapted to the handling of the wine or producing the argols on a scale that would make it largely a source of profit. He commenced the business some four years ago, and has been compelled to move from one location to another frequently at a great expense and interruption to his enterprise. The argols are obtained by suspending small pieces of rope in casks or vats of wine, like the old process of making dip candles, when the tartar crystals form on the pieces of ropes until the wine is relieved of its acidity and materially aged nd improved. When the crystals are taken out they are put through a refining process and bleached of their reddish brown color, and come out in pure white crystals ready for the mill, where they are ground to an impalpable powder, ready for the market. The crude argols are usually kept for three or our months, when they are shipped to the New York market. The wine from an acre of grapes will produce from thirty to seventy-five pounds of chemically pure cream of tartar, owing, of course, to the yield and the acidity or tartar contained in the wine. The wines from the low, moist, or heavily irrigated vineyards usually contain a greater percentage of tartar. The cream of tartar of Southern California always commands a higher price than that brought rom France, and is eagerly sought for by dealers. The use of the wine can be had! forffrom one to three cents a gallon, or the equivalent of the evaporation and waste of wine during the process. Last year seven tons of this valuable product were shipped, and there will probably be shipped three or four times that quantity this season. He is just now building factory where he will have an abundance of room for handling wines. His furnaces and kettles are in position, as are his tanks and cooperage for conducting his operations on a much larger scale this season than ever before.-Independent Journal.

Does Oxygen Deteriorate Castings?

The presence of occluded oxygen and of oxides in metals has long been recognized as the cause of deterioration of quality which appears as flaws in casting or n reduced strains. In silver, oxygencauses sprouting in copper and nickel, oxides produce red-shortness, while in steel they affect the tensile strength; in lead, patches of oxide lead to more rapid corrosion and pitting. The removal of oxides is generally accomplished by adding more readily oxidized substances, like manganese in steel, phosphorus in copper and bronze, and magnesium in nickel.
Though long recognized as a source of danger, and provided against in the manner indicated, our chemists have not well succeeded in giving us figures to judge of its magnitude or allow of arriving at conclusions concerning the counteracting methods adopted. Special interest, therefore, attaches to a series of data contained in a paper by Professor Ledebur, of Freiburg, who reports, according to the London Iron Trade Exchange, that in different grades of steel, ranging from 0.14 to 0.37 per cent of manganese and 0.12 to 0.32 per cent of carbon, he found from 0.12 to 0.03 per cent of oxygen. The former figure, naturally referring to the milder steel, with a comparatively low percentage of manganese, is, never theless, surprisingly large. It has been repeatedly suggested, in discussions on quently increasing the diameter of the driving pulley; |thequality of steel in the meetings of technical societies, moving the collar away from the disk lessens the diameter of the pulley. In order that a proper tension may always be maintained upon the belt, irre spective of the size of the driving pulley, the appara tus is provided with a tightening pulley, carried by a swinging arm. When the main lever is moved to di- ${ }_{\text {mysterious failures, it is possible that, especially with }}$
mild steels, oxygen may be shown to be the bugbear. The subject is one which invites closer study, and the Iron Trade Exchange thinks a series of analyses, with accompanying mechanical tests, might lead to very important developments.

SPRING TRAP.

The object of this invention-lately patented by Mr. Joseph Vasseur, Jr., of Ontonagon, Mich.-is to simplify the construction of spring traps so that they will be more substantial and convenient, and more reliable in use. The jaws and spring are of the usual construction. On the bottom plate is held a transverse piece by a bolt passing through a longitudinal slot. The outer end of the plate is adapted to receive a hook formed on a downward projection of a catch lever, on the inner end of which a pan is formed. On the outer end of the lever is a lug, to be passed over the upper edge of one jaw, and thus

VASSEUR'S SPRING TRAP

hold the jaws open. The animal steps upon the pan, presses it down and thereby causes the lug to release the jaws, which are thrown against each other by the spring. When the trap is to spring easily, the crosspiece is moved toward the middle of the bottom plate, so that the lug projects less over the jaw; the trap, of course, can be made to spring with more difficulty by making the lug project farther over the jaw. When the trap is not in use, the cross piece is swung parallel with and over the bottom plate, so that the trap will occupy less space, and can be packed and stored in a smaller place, as shown in the lower figure.

STRAINER AND CUT-OFF

This device is employed to strain and direct the flow of water from the house-top, the first or dirty portion passing to the sewer, and the next or clean portion passing to the cistern. The casing is provided with an inlet pipe and two outlets, one of which connects with the sewer and the other with the cistern. The strainer consists of a wire gauze mounted diagonally across the path of the inlet pipe and extending from the upper corner of one side to about the middle of the opposite side, a part of the lower portion of which is bent within the casing to form a deflecting plate, by which the water, if it should spread on leaving the pipe, would be thrown back upon the strainer. Just below a horizontal central partition having a central opening is pivotally mounted a deflecting plate, that can be securely held, so as to guide the water either to the

HOUGH \& HOFFMAN'S STRAINER AND CUT-OFF.
sewer or cistern pipe. The first water from the roof is sent into the sewer; the plate is then shifted to send the clean water into the cistern. The strainerintercepts any debris of appreciable size that may come from the roof.
This invention has been patented by Messrs. W. W. This invention has been patented by Messrs.
Hough and H. C. Hoffman, of Mound City, Ill.
machine for carding buttons by electricity.
Machinery is every day taking the place of the workman in the industrial arts; everything is done automatically, even the most complicated operations, which one would suppose could only be accomplished by hand. Inventors now have another source besides mechanics to which they can appeal, ramely, electri city, which enables them to solve many problems which, without it, would remain unsolved. We have an example of this in the curious machine represented in our cut, and which makes use of the properties of the electro-magnet. It is designed for stamping shoe buttons in lots of three or four dozen, on cardboard sheets, for commercial uses.
The buttons are placed on an inclined plane, A, shaped like a fan and provided with. grooves which at the lower end are large enough to receive only a single button at a time. The inclined plane is kept in state of vibration, causing the buttons to descend; but at the lower end of the grooves they are stopped by a grating, B, mounted on a cross bar. The cardboards destined to receive the buttons are held one behind the other by little hooks on two leather bands, DD, mounted on act uating pulleys like an endless belt. These slip along the table (the front part of which has been broken away to show the construction), and carry with them the cardboards. In this manner these are brought underneath the inclined plane and over the electro-magnet, E, the pole of which, M, is shaped like a comb, with its teeth so arranged that each one of them will be located immediately under a groove through which the button is delivered.
The machine operates in this manner: Power is applied through the grooved pulley shown at the left. By means of cams on the shaft of this pulley the cross bar and the grating, B, are raised at equal intervals to allow a row of buttons to pass through, when they immediately fall again.
The buttons are received by the cardboard, which passes underneath them, and at. that moment a current is passed through the electro-magnet, E , each tooth of the pole, M, attracts the metal loop of the button which is op posite to it, and holds it in a vertical position with its head raised and with its loop pressing against the cardboard. The cross bar, C, which is actuated by the eccentric, F, under the action of a strong spiral spring, descends at that moment and presses on the heads of the buttons, forcing the loops through the cardboard, where they thus become firmly fixed.
The electric current is then broken and the leather belt advances a certain distance, determined by the space it is desirable to have between the rows of but tons. The belts are actuated by the ratchet, H, mounted on the shaft of the pulleys, DD, which operate at certain regular intervals as soon as the cross bar, C, commences to rise.
When one card is filled, by a special arrangement the ratchet is made to revolve several teeth at a time, so as to carry the next card without delay under the grooves out delay under the grich carry the buttons.
which carry the buttons. One workman is employed,
for placing the buttons in A, and according as the leather belts advance, to place the cardboards at the back part of the table and to remove those at the front part that have been already filled.
It is very interesting to watch this machine in operation. It was constructed by Mr. Olagnier, at the button fact ory of Messrs. Rosenwald. At the last exposition at the Palais de l'Industrie in Paris, visitors were always interested in watching a reduced working model, operated by a small Forest gas motor. Not far away was located another motor of the same system, which actuated the dynamo|surface roads, that it is expected to meet the require that furnished the current necessary for the electromagnet of the machine. Of course, in ordinary practice all the power required is given by 1 motor.-La Nature

THE death rate from chloroform is, according to a recent estimate, 1 in 1,600.

MACHINE FOR CARDING BUTTONS BY ELECTRICITY.

The office recently opened at 18 Broadway by the trustees of the Brooklyn Bridge, for the reception of models and diagrams of improved cable grips, has been well patronized. A record of. all the inventions submitted is preserved in a special book. One of the most amusing communications received is that from

A SIMPLE TRAVELING TOP.

convict at sing sing. He suggests a circular track at each terminus of the bridge, so that the cars could continue on their course from one track to the other. Short cars, he adds, might be used to make the plan feasible.
Permission has been granted to the Westinghouse Air Brake Company to equip a car with their com pressed air brake and a newly devised grip working on the same principle. The trial trip will probably be made within a few days. The experiment is at the company's expense. The compressed air appa-
the has met with so much success when applied to
surface roads, that it is expected to meet the requirements of travel on the bridge.
Governor Leon Abbett, of New Jersey, has submitted a grip very similar to that of the Westinghouse Company. These grips differ from that now in use on the bridge in being automatic in their action, while the present one is workedentirely by hand.

A SIMPLE TRAVELING TOP

The ingenious toy here shown consists simply of a perforated disk, which can be easily whittled out of a piece of thin board, and a piece of strong cord of such a length that when the ends are tied together it will form a oop, through which the legs can be passed, as shown in drawing. At opposite points on the edge of the disk are cut two small notches to receive the cord, as shown in the upper cut. The performer passes his legs through the loop, inserts the two lengths of cord in the notches of the disk, and then tightly twists up the cord. He now lets go of the disk and suddenly forces his legs apart. The untwisting of the cord rapidly revolves the disk, which will drop to the floor and run away for 50 or 100 yards according to the strength and skill of the manipulator.
Of course, the direction in which the cord is twisted will govern the direction in which the top will run, whether for ward or backward. The force applied in untwisting may be increased by aiding the legs by placing the hands upon the knees. A very little practice will enable a boy to accurately gauge the direction in which the top will run and the dis tance. The disk should be of such a size that it will pass, witbout touching, between the two sides of the loop when they are ptrallel, as shown in the left hand figure. If made larger, the disk will not be free to drop from the cord when the latter has been completely untwisted.

Architects, Clients, and Builders.

It is a principle of law and equity that an agent is not allowed to make any profit out of the agency, without the knowledge and consent of his principal, beyond his proper remuneration; and any sums of money so obtained by an agent from any other source must be accounted for to the principal, who may claim it as money received to his use. Where, therefore, an engineer (and this case again equally refers to an architect) entered into a sub-contract with the contractor without the knowledge or consent of employer, it was held that any surreptitious dealing between the contractor and the engineer was a fraud, and entitled the defrauded employer, i he came in time, to have the contract which was en tered into without his knowledge or consent rescinded, and to refuse to proceed with it in any shape. So, on the other hand, the architect should not, without the knowledge of the builder enter into a contract or en nowledge of th Ir, besides the contrac between the employer and the builder, there is a con-
tract between the employer and the architect, not communicated to the builder, that the outlay shall not exceed a - given sum, and the builder is, by the contract, subject to the orders of the architect as to what works he shall execute, this agreement is not binding upon the builder, and such restriction of the architect's authority by contract, as agent for the employer, cannot in any respect prejudice the builder's rights.

And in order to enable the employer to claim the benefit of a proviso that the architect was to arbitrate in all matters between him and the builder, it is essential that the fact of such a contract as above mentioned, between himself and the architect, should have been communicated to the builder, and distinct notice of such an engagement given to him pre viously to his entering into any contract, as otherwise the architect would be put in a position of undue bias.
If, however, the builder was aware of the agreement between the architect and his employer, and of the fact of the architect's interest in consequence, the builder would be bound.-Alfred Emden, in the Architect, London.

From the commencement of the cholera epidemic in Spain to the last day of July, the number of cases or cholera reported by the Spanish officials was 114.740, of which 33,973 proved fatal.

Youthful Inventors.

Eight pupils of one of the New York grammar schools, all of whom are under fourteen years of age, were among the exhibitors at the American Institute Fair. Although manual training is not included in the ordinary grammar school roster, it has been the practice of the principal of their school, Mr. McNary, to form a voluntary class in elementary shop work; and so successful has this effort been, that the models madc by these youthful mechanics were judged worthy of a place in the machinery department. They comprise a pump, a dumbwaiter, a guillotine, a brick and mortar elevator, a screw press, a foundry crane, a derrick, two pile drivers, a vapor furnace, a blower, and an inclined railway. They were built toillustrate the applications of the six mechanical powers, and are very creditable to the intelligence of the scholars. The advantages of manual training are becoming more apparent every day. With the abolition of the apprentice system, it is indeed almost a necessary branch of education if the mechanic arts are to be brought to any degree of excellence. Many a man who is but an indifferent clerk or salesman would, if his ingenuity were turned in the right direction, make an excellent artisan. The reopening of these old avenues of occupation is a very desirable revival, and one which may be expected to produce practical benefits.

The Otto Gas Engine.

The important case of Otto vs. Steel, which had been fought for sixteen days before Mr. Justice Pearson, in the chancery division of the High_{6} Court of Justice, London, England, ended on Dec. 19, with judgment for the plaintiff. There was a formidable array of counsel and scientific witnesses for the prosecution, consisting of five lawyers and three scientific. witnesses, and the other side was also ably represented. The point at issue was the validity of Dr. Otto's patent of 1876, which was strongly contended for already in Otto vs. Linford some years ago, and then decided in favor of the well-known inventor. The defendant admitted that his engine was an infringement of the Otto patent, and if it were valid, he was liable under the statute. The defendant sought to invalidate the first claim on particular objections not dealt with in the former case vs. Linford. From the plain evidence furnished by the scientific witnesses, the judge decided that the first claim is strictly accurate accordthat the first claim is strictly accurate accord-
ing to Dr. Otto's specification. He also considered that the mixture, when fired, is as specified by Dr. Otto, and has exactly the effect which he describes in his first claim; that his invention has not been anticipated by any of the specifications which have been put in before him; and that, therefore, Dr. Otto's patent is a valid and good patent.
The defendant was given one month, within which his engines should be given up. A petition for having the injunction suspended for a longer term was refused on the ground that this action was the second in which the court had declared in favor of the patent.

SAUCEPAN AND COVER.

As generally made, the perforations in the main cover of a saucepan are closed or exposed by a supplementary lid (Fig. 1), which is a self-opening and closing one, according to the position in which the

saucepan is held. In the invention here illustrated, a sliding lid (Fig. 2), provided with suitable perforations to correspond with those in the main lid, is substituted for the swinging one. There is no tendency of this lid to open when carrying the saucepan about, and it is only by specially adjusting the lid before tilting the saucepan that the draining openings will be exposed to pour off the liquid. The amount of exposure may be regulated as required by adjusting the slide to bring its apertures either wholly or only partly over those in the cover. The main cover is held to the body of the saucepan by a clip placed opposite the handle and by a sliding clip placed upon the handle. These clips hold the lid very securely, and yet permit of its easy removal when necessary.

This invention has been patented by Mr. George A. Bradford, of Bergen Point, N. J.

IMPROVEMENT IN STONE AND MARBLE SAWING MACHINES.
This invention is designed to be attached as a permanent fixture to any stone or marble saw, to provide for a simple and positive method of accurately spacing the saws to any required widths, and to hold the saws securely in a truly vertical position. The saws work independently, so that any one can be taken and replaced in its true position without disturbing the gauge. This construction dispenses entirely with the use of wooden gauges; and slabs of stone or marble from five-eighths of an inch thick to as wide as the gang will admit can be sawn accurately. Fig. 1 shows a plan of the saw frame with this device attached, the saws being spaced ready for work. Fig. 2 shows the device detached and

COYNE'S ADJUSTABLE STONE AND MARBLE SAW GAUGE.
the method of spacing the saws. The lugs, shown detached in Fig. 3, are movable on the bar, and can be held securely in any desired position by means of set screws underneath them. Any of the usual methods can be used to bring the saws up tight end wise.
Further information can be obtained by addressing the patentee and inventor, Mr. James F. Coyne, 424 North Halstead Street, Chicago, IIl.

PHOTOGRAPHIC NOTES.

Photographing by the aid of a new Magnesium Light.-On the 26th ult., at a meeting of the New York Amateur Photographers' Society, a new apparatus for burning magnesium ribbon, designed by the president, Mr. F. C. Beach, was successfully employed for lighting the room and the audience when a photograph was made.

The apparatus consisted of two metal boxes about 14 inches square by 8 inches deep, having bright reflectors inserted at their back, while the front was inclosed with a pane of glass; at the top of the interior was soldered a spring clasp, resembling a garter clamp, and immediately below, in a vertical line, were a series of wire rings, secured to cross wires, arranged two and a half inches apart.
In the bottom, just under the lowest ring, was soldered a projecting wire with a sharpened point, half an inch long. Half an inch on each side of the wire were brass binding posts, which extended through the bottom to the outside, and were insulated from the metal by gutta-percha washers.
Near one side of the box, in the bottom, was a quarter inch inlet tin tube, its inner end being protected or covered a short distance from its mouth by a metal disk one inch in diameter, the latter being held in position by suitable supports. The outer end projected two inches below the bottom.
Each of the outer tuhes of the boxes was connected by a rubber pipe to a T, and from the latter to an oxygen gas cylinder (in which the gas was compressed under pressure) located at one side of the room near the operator.
By two No. 16 insulated copper wires the respective binding posts of each box were connected in series to an "Aurora" bichromate of potassium battery, consisting of four large cells, placed near by on the floor, the wires extending from the battery to an open circuit key fixed on the table of the president.
In each box, suspended from the spring clamp at the top, and passing through the wire rings below, were tapers of magnesium ribbon, made by taking a ribbon 48 inches long and folding it upon itself in lengths of ten or eleven inches. The lower end of each taper was
then about half an inch above the upper extremity of the projecting pin in the bottom of the box.
The brass binding posts on the inside were connected by a fine platinum wire, No. 40 gauge, and upon the metal pin was put a small piece of sponge about as large as a small marble.
The object of the arrangement thus described was to furnish a means for simultaneously igniting two or more magnesium tapers arranged at varying distances
apart, and at the same time to burn them in an at-
mosphere of oxygen gas. By thus confining the white oxide fumes given off, the light was softened and a better effect obtained.
Just before operating, the sponges in each box were dipped in alcohol and then mounted on the wire pins, the platinum wire was arranged to come in contact with the sponge, and, when all was ready, the boxes were charged with oxygen gas from the cylinder below; then the operator, by pressing the electric key, heated the platinum wires to a red heat, which in turn ignited the alcohol on the sponge, and that flame immediately, nearly simultaneously, ignited the magnesium tapers; at the same moment the exposure, which lasted about ten seconds, was made by removing the cap from the lens in the ordinary way.
The experiment was quite novel, and proved to be very satisfactory to the assembly and the inventor.
After the exposure was made, the sensitive dry plate was developed in an adjoining room, and an excellent negative of the audience obtained.
The particular advantage claimed for this system was its use in the photographing of large halls, theaters, etc., where it was necessary to locate and distribute the lamps in inaccessible places or at high elevations.
The manner of burning magnesium powder mixed with sand, thrown into a metal funnel under which wás an alcohol lamp, was shown, a brilliant flame of fire resulting. The powder, being very light, would not fall rapidly and regularly through the funnel (which should have a short mouth) unless the inside was smooth and highly polished, and the angle quite acute.
Very probably, further improvements will be made in the use of the magnesium light as an aid in photographing interiors and for making portraits at night.

The Moon and Us.

The first of a series of ten scientific lectures, to be delivered before the Science Matinee Club, at the Hotel Brunswick, New York, was that by Prof. Young, of Princeton, on the moon, which was illustrated by the stereopticon. The lecturer spoke of our satellite as the petrified daughter of the earth, since it is destitute of life, air, and water.
The moon has always been a favorite subject of study among astronomers, on account of its proximity and because it is the only heavenly body, with the exception of the sun, that exercises an appreciable influence upon our planet. The lunar temperature is one of violent extremes. In the dark spots, under the shadow of the lunar Alps, it is calculated to be about 200 deg . below zero; while in the localities exposed to the sunlight, the temperature of boiling water is supposed to prevail. Beyond her influence upon the tides, the moon has little power in earthly affairs, in spite of the popular belief in her disturbing action upon the human brain or her assistance in the germination of the sown grain. Were she annihilated, the temperature of New York, Prof. Young said, would be reduced one degree. In her present orbit, however, she has absolutely no influence upon the weather. In conclusion, the lecturer begged artists not to paint their crescent moons upside down, as Hogarth has done in one of his pictures.

IMPROVED FISH HOOK.

In our issue of December 19, we described and illustrated a novel fish hook, invented by Mr. Cornelius Lie. The engraving then presented showed the points of the hooks spread out by the strain upon the line when the fish is caught. The accompanying cut shows

LIE'S IMPROVED FISH HOOK.

the hooks concealed in the body of the artificial fish, there being no strain upon the line. All further particulars concerning this patent can be obtained from Mr. J. J. Eskil, of Florence, Wis., to whom it has been assigned.

A Great Cold Wave.

The heavy snow storm that reached New York on the evening of the 8th of January, and for many succeeding days was followed by such intense cold, was one that has not been equaled in severity and wide distribution by any storm of the past half century. At Atlanta and other points in Georgia, the thermometerhas been as low as zero, while at Charleston, S. C., it has gone six or seven degrees below. In Florida, such cold has not been felt since the memorable winter of 1835, when the orange trees were killed. The damage to the orange crop this year has been great. The temperature all over the State has been unusual. At Jacksonville, the thermometer stood at 16°, while Tampa Bay, which is usually free from even frost, it was at 15°.

THE BIG BEND TONNEL IN BUTTE COONTY, CALIFORNIA.

Since that famous year of 1848, when Marshall found his gold nuggets in the race-course of Sutter's sawmill on American River, California has been noted in the history of the precious metals as one of the most boun tiful and at the same time one of the most constant producers. The legitimate industrial pursuit of gold has become so characteristic of her people that the bare mention of her name is sufficient to call up a picture of quartz ledge and placers. Thirty odd years spent in persistent attention to one calling has given her a pre-eminence in the industry as gratifying as it is remarkable.
The machinery which has been devised to work her ire tire world. A distinct type has been evolved. The machine builders of all gold-producing countries. Her enterprise in the search and working of the sources of the precious metals has been marked by an unprecedented magnitude and boldness. Her hydraulic mining has been on a scale sufficient to permanently change the topography of the country. Whole mountains have been washed away. The beds of ancient rivershave been followed, and deprived of their precious burden. The course of living streams has been checked and altered. One hundred million dollars' worth of gold, that was at one time mingled with the sands of these river bottoms, has been recovered in three years, and is now added to the commerce of the world.
All of these changes have been accomplished, all this wealth has been gathered, in but a comparatively short period of time. With the appropriation of the more eligible sites and the exhaustion of the more available treasure, however, it has been necessary for the gold miner to turn his attention to works of even greater difficulty. This more closely guarded gold has only been brought within reach by the wonderful advance in engineering science and by the perfection of the tools and mechanisms of the engineer.
The early discovery of gold having been made on Feather River led to a most careful prospecting of the length of its entire bank. Considerable value has been taken from its bed. Portions of the river have, however, on account of their impetuous currents and steep banks, remained inaccessible to the miner even after their value became known. The almost semicircular curve in Butte County denominated the Big Bend is a case in point. Occasional washing of its bars and hurried incisions into the gravel of its bed proper have disclosed a promising richness, and made further working very desirable. The rocky canon through which the river flows for fourteen miles before disengaging its waters from the Big Bend is wild, and accessible only with difficulty. The river itself has a sufficient fall to create a strong current, and a volume seldom less than 80,000 miners' inches. These circumstances have never permitted more than casual operations.
Both above and below the Bend, very profitable enterprises are said to have been carried out. A company of Buffalo capitalists, induced by these considerations, determined to investigate the possibility of driving a tunnel across the base of the semicircle, and by thus draining the fourteen miles of river bed included in the Bend, make it feasible to thoroughly work the promising gravels. During the summer of 1882, careful surveys of the region were made by Mr. N. A. Harris, the superintendent chosen by the company, and Mr. James McGann, at that time official surveyor for Butte County. At the completion of the surveys, it was found that a tunnel about 12,000 feet long, with an average grade of $32 \cdot 1$ feet to the mile, would carry the
waters from above the Bend to Dark Canon, from which waters from above the Bend to Dark Canon, from which
they would pass to the West Branch, and eventually they would pass to the West Branch, and eventually the Bend. By diverting the waters in this manner, the entire bed of the river for a distance of about fourteen miles would be exposed to mining operations. As the scheme was regarded as entirely practical by several experienced engineers, the company determined to carry it into effect. In the following November, work was begun by blasting off the surface of the rock in Dark Canon, and getting a solid working face for the air drills. It was decided to run the tunnel at an upward grade of $29 \cdot 7$ feet to the mile until within 300 feet of its upper end. From this point, all of the unused grade will be utilized in giving a high velocity to the inflowing waters. The drilling proper began on the 18th of November, 1882. Two days later a night shift was put to work, and on the first of the following month three shifts of eight hours each were established. When the operations first began, the plant consisted of a No. 4 Burleigh air compressor, so arranged that it could be driven by steam or water power; an air tank, 4 by 16 feet, a No. 3 Knowles pump; a 2 by 8 ft . Lewellyn heater; an 8 ft . Knight water wheel and fittings ; a Buffalo drill carriage mounting four drills; and a complete tubular boiler, 5 by 16 feet. Since then, there have been added 4 Burleigh tunnel drills, a olower, and an engine to run the blower.
The water wheel is supplied from a ditch carrying 100 miners' inches of water taken from Dark Canon

n 11 inch iron pipe, having a

The progress of the work since the beginning is shown in the following table:

No full record of work was kept. prior to Jan. 1, 1883, but since then it is complete. In 1883, six days' time, or 18 shifts, were lost; in 1884, four and two-thirds days, or 14 shifts, were lost; and in 1885, only three and twothirds days, or 11 shifts. This represents all time lost by reason of breakage of machinery, cleaning boiler, and all other causes.
The least distance made in any month was in August, 1883, when only 175 feet were accomplished. The greatest distance made in the same time was in September, 1885, when the heading was advanced 405 feet. The monthly average for 1883 was 291.9 feet, and for 1885 was 327%. The character of the rock has changed during the progress of the tunnel, and therefore the results of the different months are not strictly comparable with each other. During the first nine months, an easily penetrated slate formation, with occasional stringers of quartz and granite, prevailed, with the exception of about 203 feet of very hard diorite. The rock was sufficiently firm to dispense with all timbering. In several cases, bodies of rock were passed through, yielding from eight to fourteen dollars per ton in gold and silver. For several months after this, the rock continued hard and difficult to work; but
when the tunnel had been driven about six thousand feet, or just half the distance, a black slate was encountered, which, though close and hard, and requiring a large amount of explosives to blast it, permitted excellent speed with the drills.
The tunnel is being constructed with a width of 16 ft . and height of 10 ft ., giving a cross sectional area of 160 square feet, or 23,040 square inches. From an elaborate series of measurements made at the site of the upper end of the tunnel, it is calculated that an outlet of this area will suffice to carry off the waters of the river for a period of from seven to nine months out of each year. Just at this point the river is narrow and inclosed between steep banks, so that it offers a favorablesite for a dam.

In driving the heading, each of the three shifts is made up of a boss, 4 drill men, 4 helpers on drills, 1 powder man, 1 car man, and 2 laborers. The outside force cọnsists of 2 blacksmiths, 2 helpers, 1 machinist, 2 engineers, and a number of other laborers varying with the requirements of the work. The ventilation of the tunnel is kept up by means of the air drills and the Baker blower. When the drills are in operation the exhaust furnishes all the fresh air needed.
The blower is located at the mouth of the tunnel, and is driven by means of a separate engine. It connects with an eleven inch iron pipe, which extends up the tunnel to within two hundred feet of the working face. The blower is used exclusively as an exhaust for extracting the smoke and bad air from the heading. It is only put in operation ten or fifteen minutes before a blast, and at the same time the air compressor delivers a volume of fresh air directly into the face of the working. This arrangement permits the men to resume work within about fifteen minutes after blast-
ing. Bȯth blower and compressor are ing. Bȯth blower and compressor are kept at work
until the debris has been removed and the drilling re commenced, when the blower is shut down until just before another blast. A track of two foot gauge, laid with sixteen pound T rail, extends from the heading. The grade being uniformly down, the removal of the rock is not difficult. The movement of the cars is effected entirely by means of mules, six animals being kept at the tunnel for this purpose. The trains are composed of from ten to twelve cars, and the number of daily trips is regulated entirely by circumstances. In addition to the main part of the enterprise, that fodriving the tunnel, an immense amount of work has been necessary on the surface. Roads have been built in order to facilitate the transportation of supplies rom Oroville, some sixteen miles distant, and have been extended over different parts of Big Bend Mt., so that timber can be conveniently brought to the sawmill and furnace. Fourteen miles of pack-animal trail have been built around the Big Bend, in order to make all portions of the claim accessible. A private telephone wire has been built to Oroville, and in time will be extended to all parts of the trail. The company has bought several thousantd acres of land, in order to cover its tunnel site, provide ample timber reserves,
and protect it against actions for damages arising out of the backing up of the water above the proposed dam or out of the increased volume which, as soon as the tunnel is completed, will find an outlet through Dark Canon and the West Branch. The president of the company, R. V. Pierce, Esq., of Buffalo, N. Y., informs us that the tunnel itself will probably be comforms us that the tunnel itself will probably be com-
pleted about April 1, and that they hope to do a good

season's-w summer

ummer
When the river is turned into the tunnel and its bed drained, several mining camps will be established at favorable points on the Bend, so that the gravel can be worked in a number of localities at the same time. The treatment will consist in loosening up the gravel, raising it, and running it through sluices. The gold, from its greater specific gravity, collects on the bottom of these sluiceways, while the earth and debris are carried along by the stream of water, and will be deposited at convenient points on the bank. The water for the supply of these sluices and "long toms" will be taken from the rive above the dam, by means of ditches, and from the smaller tributaries that enter the Bend itself. The illustrations on the front page show the tunnel site and workings.
No materials exist for the formation of even an approximate estimate of the amount of gold which may be expected to be recovered from these gravels. Practical miners of the neighborhood state that it will be from fifty to one hundred and fifty million dollars. This estimate, however, is only valuable as an experienced guess, for there are no data at hand which would warrant one in venturing upon figures.

English Patents in 1885.

-The Board of Trade has appointed Sir Farrer Herschell, the Earl of Crawford and Balcarres, and Baron Henry de Worms, M. P., to be a committee to inquire into the working of the patent office under the act of 1883. The Ironmonger thinks the step is a very proper one and very well timed, for, as the act has now had two years' trial (it came into force on January 1, 1884), it is possible to ascertain how far it has really proved an improvement on the previous law, and what are the defects which practical trial may have brought to light. Certain defects have already been discovered, and have been remedied by the short amending act passed last ses sion,* and there will probably not be much question among those familiar with patents that, whether or not any further alteration in the law is required, there are many points in which the practice of the office leaves considerable room for improvement.
On the whole, it need not be doubted that the act has given satisfaction to inventors. Reduction in fees was what they mainly clamored for, and this they got, at all events, in the initial stages. If the num ber of patents applied for be taken as a criterion of the value of the act, there can be no further ques tion about it, for in this respect its success exceeded the most sanguine expectations of its promoters. In the first year of the new act there were 17,110 applications, not far from three times the number in any previous year, and in the year just past there were 16,101 . This falling off of 1,000 may easily be accounted or by the fact that there was a sort of accumula tion of inventions at the beginning of 1884 waiting for cheap patents, as is shown by the rush to the patent office in the earlier months of that year.
About 20 per cent of the applications are from persons not resident in the United Kingdom, and the suspicion cannot but arise that a certain proportion of this large percentage are applications for patents made with the idea of preventing the working of an invention in England, and therefore enabling its owners to supply English markets with goods manufactured abroad. Under the act, the Board of Trade has power to compel an inventor to grant licenses. But the mandamus by which this provision is to be enforced cannot reach the foreigner, and the Board has no power to cancel the patent. It may be thought that, in any case in which there had been failure on these grounds to obtain a license, the fact of having applied for one would be sufficient defense to an action for infringement; but this is one of those ques tions which remain matter for speculation until the courts have had their say upon them.

The Tehuantepec Ship Railway.

Captain James B. Eads and Hon. William Windom, president of the Tehuantepec Ship Railway, recently appeared before a joint meeting of the Congressional Committee on Commerce to advocate the passage of the ship railway measure introduced by Senator Vest in December last. A model showing the workings of the railway was exhibited and explained. All of the members present manifested the greatest interest in the subject. The case was thoroughly presented to them in all its details. A most favorable impression was evidently made upon the gentlemen of the committee, and while the fate of the measure has not yet been assured, the chances are thought to be in its favor.

* This act, passed August 14, 1885, comprises several sections, but most of them pertain to rules of practice in the patent oftice. But that affect ing inventors most generally is the one declarng that neither the drawings
nor specifications in abandoned applications shall be open to public innor specifications in abandoned applications shall be open to public in-
spection or be published. Another section determines the right of several section or be published. Another section determines the right of several persons to apply jointly for a patent, whereas doubts on this point had

CONDENSING ENGINE, ANTWERP EXHIBITION. \quad and gives out 110 effective horse power, with a boiler diameter and grooved for eight ropes. At the Ant We publish engravings of a very fine engine exhib- pressure of 75 pounds, and a cut-off at one-sixth of werp Exhibition it was employed in driving a large ited at Antwerp by M. Charles Nolet, of Ghent. This the stroke. The piston is 20 inches in diameter and roller mill, shown by M. Luther, of Brunswick-the engine, says the Engineer, indicates 123 horse power, 3 feet $33 / 8$ inches stroke. The fiywheel is 18 feet in mills by Ganz \& Co.-capable of turning out 500

DETAILS OF CONDENSING ENGINE, ANTWERP EXHIBITION.

CONDENSING ENGINE, 120 HORSE POWER, ANTWERP EXHIBITION.
sacks of flour per day. The engine was exhibited hors concours-that is to say it did not compete for a prize, and was sold to MM. A. \& N. Buysse, millers, of Wettern.
The cylinder is carefully jacketed, and the valves are all worked by cams on a horizontal shaft driven by bevel gear. The exhaust valves are of the gridiron type. The steam is actuated by double beat puppet valves, as shown in the cross section. The trip gear is extremely simple. A detent actuated by a spring engages with a vertical rod. The detent is carried by a frame, which is lifted by the cam on a rotating shaft. The vertical rod is provided with an arm, to which is secured the valve rod. The governor controls an inclined lever, on the end of which is a toe. This toe comes in contact with the trigger of the detent before referred to, and pulls it down as soon as the frame has reached a given height, or more strictly, it prevents the trigger from continuing to rise with the frame. This pulls the catch out of the vertical rod, and allows the valve to drop and so close. The angle of inclination of the toe-carrying lever is settled by the governor, which thus controls the ratio of expansion. An examination of the cross section through the cylinder will make this quite clear.
The engine exhibited at Antwerp furnishes an other example of the great perfection to which Belgian engineers have carried the art of steam engine construction.

The Inaceracs of Car

At a recent meeting of master car builders at Boston, Mass., it was stated that the 24 inch chilled iron car wheels were liable to be $1 / 4$ inch different in ranges of diameter and an equal amount in eccentricity, both variations being caused by irregularities in cooling. The sentiment of the meeting was reported to be against grinding the wheels to accuracy in concentricity and diameter, as involving a useless expense. These opinions do not seem to be warranted by an examination of the facts. The evils of uneven wear of chilled wheels are well known, and universally ascribed to skidding the wheels by excessive application of the brakes, but as such use of brakes is forbidden, and at present somewhat infrequent, is it not more probable that it is in great measure due to the enforced slip caused by fastening wheels of different diameter upon the same axle? Taking the extreme case of a 24 inch wheel and a $241 / 4$ inch wheel upon the ame axle, in a 100 mile un there would be a dif un there would a a dif ference of 871 revolutions,
or 5,529 , feet in the disance compassed by each of the wheels, and one wheel or the other must have slipped on the track more than a mile, with its consequent wear, which would soon find the soft est parts in the wheel not to mention the exces of tractive force required to do this extra work Such of the wheels as were $1 / 4$ inch eccentric would be raised 1,751 feet during the 100 mile run; and the one-third of a mile of ver tical component must pound rolling stock and roadway. Some of the best managed. American railways use, on their pas senger cars, wheels which have been ground, but this comprises only a smal proportion of all the car wheels in use. ${ }^{4}$ The Pull man parlor cars use wheel which are made of an annular mass of paper, 36 inches in diameter, pressed between an iron boss at center and surrounded by steel tire; thin iron plates bolted to each side protect the paper against exposure. There are other forms of car wheels mad of pieces of iron with rub ber between the iron body of the wheel and the stee tire, and they have given excellent results, but the excessive first cost has re tarded their introduction

A THICK vein of coal wa struck at a depth of 245 ft near Chatham, Ill

PRIZE DESIGN FOR AN OBSERVATORY TOWER
and was recommended for execution. The programme pointed out that special attention should be given to the finish of the upper part of the tower, as it is to be surrounded by a growth of trees, 46 feet high; that a flight of easy steps should lead to the top; and that the cost of construction should not exceed $12,000 \mathrm{~m}$., or about $\$ 3,000$. - Architecktonische Rundschau.

Bleaching Drawings made upon a Photographic Print.

Reading in one of your late issues of a method of bleaching away a photograph made on good Bristol board, after the same had been worked over by the artist, so as to admit of its being reproduced by photoengraving processes, recalls to my mind many of the unpleasantnesses encountered in attempting to bleach drawings made upon a photographic print The principal objection which presented itself was the dinginess or yellowness of the paper after bleaching, notwithstanding the precaution of having it thor oughly washed, and even after repeated applications of flowing with the bleaching solution made after the well known formula of about one quart absolute alcohol to one ounce bichloride mercury.
The dingy yellow brown on the paper, not permitting a strong black and white negative to be made, would be fatal to a good reproduction; if the drawing happened to be one with a large proportion of shadows, the dinginess increased proportionately, and more so where the drawing would take a couple of days or more to complete.
To remedy these difficulties I resort to the following method, which has always given me clean whit results, and is one which can be relied upon.
Procure good plain paper, salted, and float the same on a silver bath, made as follows:

Distilled water 9 ounces.
Nitrate of silver.......................... 1 ounce.
Nitrate of silver \qquad
Dissolve the silver in the water and separate three ounces of the solution from the rest, to which add iquor ammonia until the oxide of silver formed is redissolved and the solution is again clear. Then add it to the remaining six ounces of solution. Oxide of silver will again be formed, which can be allowed to settle to the bottom, or decant and filter same
Give sufficient time in printing to get out all the detail, but do not print very strongly; thoroughly wash until the print becomes red (do not use warm water). When the excess of silver has been thoroughly re moved by several changes of water, place the same in freshly made hypo.; let it be rather weak and about equal proportions of hypo sulphite of soda and good bicarbonate of soda. It should remain in this solution about ten or twelve minutes only, and not longer than that time. You desire simply to fix the image temporarily and not permanently. Thoroughly wash the same in severa changes of clean water and then mount on card board.

The drawing should be made as soon as possible after the paper is tho roughly dried, for, if kept several days, the image will begin to show signs of dissolution. After the artist has outlined enough for his guidance, flow on the bleaching solution a you would collodion, and in fifteen minutes you wil have a pure white pape without the slightest trace of a photographic substra tum. - Lithographer and Printer.

A Plan for rendering paper as tough as wood or leather, it is said, has been recently introduced on the Continent. It consists in mixing chloride of zinc with the pulp in the course of manufacture. It has been found that the greater the degree of concentration of the zinc solution, the greater will be the tough ness of the paper. It can be used for making boxes, combs, for roofing, and even for making boots.

©orrespondence.

Strength of Walls

To the Editor of the Scientific American:
Being an admirer of the splendid illustrations which you issue, I take the liberty of stating what I know of the relative strength of brick and stone walls. I have seen in your December issue an article taken from the Brick and Tile Gazette, saying: "A two-brick wall is equivalent in strength to one in solid masonry two feet." As a mason I feel inclined to contradict such, when no proof is given only that bricks absorb more moisture. Now, I say if a stone wall two feet in width is properly built, it is equivalent in strength to a 2 foot 6 inch brick wall.
New York, January, 1886.
Boiler Explosion-St. Mary's Church, Fort Wayne, Ind.
To the Editor of the Scientific American :
The explosion of the boiler of the steam heating apparatus in St. Mary's Church, in this city, which occurred on Wednesday, Jan. 13, between 12 and 1 P.M., made a complete wreck. St. Mary's Church was a large and stately edifice. The boiler was in the cellar, at the east end, under that portion of the church where the high altar is situated, and located in a recess built out from the east wall of the church. One portion of the force of the explosion apparently drove up through the floor overhead and out through the roof of the recessed por tion, hurling that portion of the roof, which was of tin, over on the parsonage, which is situated close by, east of the church; the other portion tore up the floor of the church, and demolished everything within its reach, as can be easily imagined by one of the boiler heads cutting its way to near the front door. The large stained glass windows, with their frames, were blown into the middle of the street.
So quick and violent was the force, that many of the window frames were split from top to bottom, and that portion having the lugs upon them, which held them in the walls, were left in their places; at the same time, the massive side walls were thrown out of line at the top, and now overhang about two feet from the perpendicular. The large windows, sash and all, away up in the belfry of the tower, were blown out. There is a double row of columns running through the church, which apparently sustained the roof.
A schoolhouse on the south side, immediately adjoining the church, is so shattered that it has been abandoned. The priest's residence, on the east, is in the same condition, and will have to be taken down. In fact, all is ruined.
Is it possible that the missing boiler sheet was blown to atoms? It is nowhere to be found. Even if it was a bad one, it held on long enough to create a force-more destructive than dynamite, for that is generally local in its effects, whereas this boiler explosion was general and extended in its action.
It is said the safety valve was weighted to carry thirteen pounds of steam to the square inch; that would be reasonable for so large a church. But who knows what the condition of the valve itself was ? Who knows whether it had ever been lifted since it was started last fall?
A boiler that will hold together long enough to cause such fearful havoc of life and property ought not to be blamed if it blew up, nor the makers censured. It would be interesting to know how much pressure it sustained before it gave out.
It is safe to say that ignorance the most profound, in the use of steam, had charge of that boiler, and a fearful penalty has been the forfeit. Wm. Line. Fort Wayne, Ind., January 17, 1886.

Mitis, or Wrought Iron Castings.

As this new process is now in successful operation at the works of the Worcester Malleable Iron Company, Worcester, Mass., it will be interesting to note its chief characteristics and values. Mr. T. Nordenfelt, in a paper read before the Iron and Steel Institute, May, 1885, gives the following among other particulars:
I have called our produce "wrought iron castings" because they are made of wrought iron alone, without any other additions than such chemicals as we have found most suitable for our purposes, and I havecalled these castings "Mitis castings," the Latin word "mitis" meaning, of course, mild, flexible, or ductile.
The origin of this invention is as follows: We had at Carlsvik, in Stockholm, a malleable iron foundry which fairly succeeded in producing good malleable castings, but we did not succeed in making these castings so absolutely free from faults that I could use them in my gun manufacture. We adopted the method originated by Mr. Wittenstroem, assisted by the experience of Mr. Ludwig Nobel, of dynamite and petroleum reputation, and the results of a couple of years' experiments by Messrs. Faustman and Oestberg and myself, with the guidance of Mr. Witienstroem, are what you now see before you. The firs’ castings were produced in January, 1885.
iron scrap, such as horseshoes, rivets, etc., and the castings we obtained from this raw material were found
to have about 20 per cent higher tensile strength than the wrought iron used-the tensile strength being 24 tons per square inch and upward-and this percontage of gain in strength has been maintained for other raw materials.
We could not at first see that our castings were in any way less pliable or ductile than the Swedish wrought iron used as raw material, and you will observe from the samples, all of which are bent cold, that the castings show as good a quality in this respect as can possibly be expected from wrought iron forgings.
We got rid of all slag, and at the same time we were free from all risks of the delamination and imperfect welding occurring in wrought iron forgings. Our castings are therefore more dense than wrought iron, and have practically no fiber; they have the same tensile strength in all directions, this advantage being obtained at the cost of the slight loss of elongation caused by the absence of slag, and by the virtual absence of fiber.

We do not alter to any considerable extent the chemical properties of the material we use, and I need hardly say that I do not claim that we improve (more than already stated) the actual raw material used. What we put into the pot we get out of it, with such alterations only as are caused by the treatment to which we subject it; therefore, if we use iron free from all im purities, we obtain exceedingly good castings, and if we use iron with a verylarge percentage of phosphorus we naturally obtain proportionately brittle and unsatisfactory castings. A pure iron, such as refined iron from Middlesbrough, gave us castings to all intents and purposes as good as the best English forgings, while such perfect raw material as hematite puddle bars gave us castings which were equally as good as, if not better, in every respect, than, those produced from Swedish wrought iron scrap.
We found that raw material containing one-fourth per cent of phosphorus was too impure to preventbrittleness in the castings, but when we mix two-thirds of scrap containing one-fourth per cent of phosphorus with one-third of refined iron, hematite, or Swedish iron, we obtain castings quite satisfactory for general purposes; when we mix half and half, we obtain cast ings quite as ductile as and much stronger than ordinary forgings; while using refined Yorkshire iron hematite, or Swedish iron alone, we obtained casting which I may be allowed to call "extra" quality, tha is, their ductility (as shown by the samples) probably exceeds what can be produced by forgings, while thei strength is fully 20 per cent greater in all directions than the best wrought iron forgings.
All the above named mixtures, with less than one quarter per cent of phosphorus, give us castings which can be welded and mended like wrought iron without the slightest trouble.
It seems to me that what we do might be said to be that we make exceedingly mild steel by melting the wrought iron almost free from carbon, instead of making mild steel by decarbonizing pig iron, which contains about 3 per cent of carbon.
Good pure cast iron would probably not be a much cheaper raw material than the above named mixtures of wrought iron scrap, while on the other hand we d not require the costly apparatus of the Bessemer and
Siemens manufacture, and the very inconsiderable cost of our furnaces would enable our castings to be made on a much smaller scale than those made by the Bessemer and Siemens methods; while, on the other hand, those methods may produce very heavy castings more cheaply than we can. Our method will also pro bably be found a more economical way of using up scrap than any other
The manner in which we make the "Mitis" wrought iron castings is as follows: You will see that the samples show an unusually clean surface, and the iron runs, perhaps, more perfectly than in the best cast iron castings. This, of course, means that we use a very great heat; in order to obtain, this heat, we melt the wrought iron in crucibles placed in furnaces, each containing six crucibles. Each furnace has one fire, and we work two crucibles together; the pair furthest away from the fire is warmed to a certain degree by the wast heat, the second pair is heated also by the waste heat to a point where the scrap approaches its melting tem-
perature, and in the pair nearest to the fire the wrough perature, and in the pair nearest to the fire the wrought
iron is completely melted. As this last pair is lifted out, the second pair is moved forward into its place, the third pair is moved forward into the place of the second, and a fresh pair of filled crucibles is placed in the compartment furthest away from the fire.

In order to obtain quickly the great heat required, we employ as fuel the residuum of petroleum, called naphtha, which is easily obtainable in unlimited quantities, and which is not in any way dangerous.
From these furnaces we can draw 8 to 10 pairs of crucibles per day of 12 hours; and when we, as we intend to do, commence working day and night shifts, we can cast 15 to 20 times every 24 hours. 'This is a considerable gain, as I believe that in Sheffield the
hours; and we have the further advantage that we re fill each crucible every time by its full charge of about 66 pounds of scrap, whereas in Sheffield a full charge of 60 pounds is only put into a new crucible, their second charge being about 50 pounds, their third about 45 . and so on.
Our next step is to deal with this exceedingly hot ron. We have carried out a method of moulding and facing sand which works to our entire satisfaction, and we have made use of water moulds of a special construction when a great number of castings have to be made to the same pattern. In order to do this expeditiously and cheaply, we use a ladle in which we keep the iron at its full heat by means of a surface blast of very hot gases, and we fix a number of moulds around the circumference of a turntable in such a manner that one nould can be filled after the other as quickly as it is brought under the lip of the ladle, and the castings are immediately taken out of the moulds, so that each mould is ready for refilling as soon as it comes round again under the lip of the ladle.
The raw material being wrought iron only, the castings do not require to be in any way annealed, but are simply cleaned up by emery wheels or otherwise, and delivered to the purchaser.
As the iron runs so exceedingly freely without large heads, and as it falls out of the moulds so easily, this method of "Mitis wrought iron castings" must tend to save labor to a very important extent, and we have already found that it enables us to considerably lighten and greatly vary designs-such as designs of machinery, etc.-as we can, without extra cost, shape our moulds so that we give the strength of the metal where wanted, but only where wanted, whereas in forgings it would often not pay to complicate the shape.
This method also enables a constructor to make much bolder designs, and of more different forms, knowing that such designs can be easily and cheaply carried out. Here again we find great advantage in being able easily to weld the castings, as we can cast the parts, which would otherwise be difficult to forge, or which would require much machining, and weld them on to a bar or rod as required. Some of the samples show links, bearings, and clutches used in this way.
I can hardly imagine any form of forging which it would not be more advantageous to cast by this method. You see before you the most difficult forms such as pulleys, smoke consumers, wheels, knees, and bends of piping, etc., which give the tensile strength of mild steel forgings without any greater expense than for castings of ordinary shapes, except what may be caused by the greater trouble in making the mould.
We have also lately made some very successful steel castings with a higher percentage of carbon, some samples of which, unpolished, as well as burnished, I have brought here. These promise well for the future, the surface being exceedingly clean and taking a very high polish, and we have tried them successfully for ordinary edged tools; for instance, we cast at present some of our tools for the gun factory in Stockholm, and we cast them ready to shape, after which we have only to harden and grind in order to make them ready to put into use. These steel castings we also make out of wrought iron scrap as raw material, adding the quantity of pure pig iron required to bring up the per centage of carbon to the point required for each dif erent purpose.
I do not mean to say that tools can be made bette by this method than by the ordinary methods, but it is certainly a more direct way than to make wrought iron bars into blister steel and then melt this blister steel in a crucible, and my method is certainly cheaper seeing that pure scrap can be obtained at a very much lower figure than the bars, and that my tools are cast ready to shape.

Dr. W. B. Menz, of Vidalia, La., writes to the Medi cal Record that he was called to see a lady, fifty-five years of age, who had been a constant sufferer from sciatica for ten years. The pain was very severe, and extended along the entire length of the nerve. She had run the whole gamut of anti-neuralgic remedies, and had never obtained anything more than very transitory relief. Having with him a vial of a four pe cent solution of cocaine hydrochlorate, Dr. Menz de termined to try the efficacy of a subcutaneous injection The hypodermic needle was inserted deeply over the sciatic foramen, and about twenty drops of the solution were passed into the tissues. The pain ceased almost immediately, and during the six weeks that have since elapsed has not returned, although there has been no further treatment, and one injection only was practiced The relief given by other remedies had never been of more than from two to four hours' duration.

In case of a bite from a rabid dog, Dr. Billings recom mends that the wounds be cauterized with strong car bolic acid. It is much less painful and more effective than burning with a hot iron. The wounds will also heal in less time.

A NEW MASS OF METEORIC IRON.

In late years the discovery of quite sizable masses of meteoric iron has been of frequent occurrence in the United States, and it has almost become unnecessary to call public attention to them, because of their great similarity.
Unless of rare form or of unusual composition,lengthy descriptions of them tend to repetition of much that has been written before.
Where these masses are seen to fall, by competent observers, all particulars concerning the time, velocity, direction, and distance are of value, and merit immediate and faithful record; especially as the data for these several particulars is very meager and not wholly satisfactory.
The mass of meteoric iron hereinafter described was not seen to fall, but was discovered in the surface soil, and thus its history is incomplete.
Of the 130 or more known masses of meteoric iron, only about half a dozen were seen to fall, all the others being accidentally discovered in a manner similar to the one here noticed. Of the stony meteorites in the collections, perhaps of all of them the exact date and hour of fall is known or closely approximated.
Of a necessity these wanderers in space make no choice of locality when they come down to us. As many may be discovered in one place as in another; we know of no law prescribing the latitudes wherein they must arbitrarily fall.
Attention is called to this because the writer has lately seen, in a foreign publication, a map of the world on which were indicated the localities where meteoric bodies had fallen, and it was evident that the majority of these discoveries were in regions of the earth's surface most densely populated.
For instance, on the continent of North America, the region between the 20th and 44th parallels east of the Mississippi River monopolized the great majority of these occurrences ; while in Europe the same statement would apply west of the Urals, between the 44th and 60th parallels; and in India, between the 10 th and 30 th; while the great domains of Siberia, Africa, Australia, South America, British America, and Alaska present (according to the records) only a few scattering discoveries of this character.
All this shows to us that these regions of the United States, Europe, and of India, which have been so prolific, are only indicators of the immense number of these celestial bodies which have fallen to the earth, and which must be ultimately discovered in the as yet almost unknown areas as they become peopled.
China, with her dense population and immense area, has kept, within her borders all specimens and all data relating to her meteorites, and, reasoning from analogy, a very goodly number must exist there. Altogether only about 400 distinct finds of meteorites (stony and metallic) are recorded, which number is certainly not very great when we consider it covers all historic time.
We now pass to the consideration of the lately discovered mass of meteoric iron in Arkansas.
This mass was found in the latter part of June, 1884, in the manner set forth in the communication from Mr. John Hindman, surveyor and civil engineer, of Elmo, Ark. He writes under date of July 2, 1885, as follows:
"As to the history of the meteoric specimen: It was found about the last of June, 1884. My stepson, George Whitfield Price, accompanied by. my son, John W Hindman, and a young boy by the name of Monroe. Marshall, conclud ed to take a ramble through the woods. They went along the north side of White River, to a mountain known as the 'Joe Wright Mountain.' This small eminence is situated about six miles below Bates ille Indenendence Co Ark ville, Independence Co., Ark. The
boys wended their way to a spur of boys wended their way to a spur of
the mountain running northwest, densely overgrown with cedar and pine. The soil there was underlain with a kind of shale, into which time had made many inroads in the way of deep gullies. As these gullies led down the mountain side they converged into one. It was where these gullies met that my stepson found the meteor. It had undoubtedly been embedded a short depth below the surface, and as the earth washed away it became exposed and dropped to the bottom of the gully at the place where it was found. The boys rigged up a 'drag' of poles and bark, and brought it home, where it remained until we took it to Newport, Ark., to be sent to the New Orleans Exposition."
It was at the World's Industrial and Cotton Centennial Exposition that this mass of meteoric iron first came to the writer's notice. It formed a part of the very attractive mineral exhibit of the Arkansas section. It remained there until June, 1885, when it came into the possession of the writer and was sent to Newark, N. J.

By referring to the engraving (Fig. 1), the reader wil get a correct idea of the exterior appearance of this celestial visitor. Its surface is pitted with ovoid depressions, which lie with their longer axis in nearly the same general direction, this direction being parallel to one set of the Widmanstatten lines.
The surface was almost black in color, and looked blistered. No rusty appearance or alteration from oxidation was noticed on any part of the mass, which would go to prove that this meteorite had not long been on the earth
Its weight is ninety-four pounds. It is seventeen inches long, and eight inches thick in its greatest diameter.

While in point of size it is unusual, yet several masses lately described excel it in this respect, notably the

Fig. 2.-NATURAL SIZE OF THE WIDMANSTATTEN LINE ON THE INDEPENDENCE CO., ARK., METEORIC IRON.
mass from New Mexico and the "cigar-shaped" mass from Tennessee. This Arkansas mass has a very large surface compared to its weight, on account of being thin on its edges and of the many hollow depressions.
Its most interesting feature is the presence of a hole through its edge measuring five-eighths inch in its smallest diameter. (The situation of this hole is shown in the engraving by a ribbon tied through it; see Fig. 1.) The length of the aperture is one and three-quarter inches and is cone-shaped from both sides, being smallest in the middle. This very remarkable feature is almost without a parallel among meteorites. It reminds us of the famous natural ring of meteoric iron in the Smithsonian Institution, that weighs more than half a ton; the aperture being large enough for a man to crawl through.
The small surface which in Fig. 1 shows faintly the characteristic Widmanstatten lines is better illustrated in Fig. 2, which is of exact natural size, and was taken direct from the meteorite by the Ives photo-engraving

Probably no better representation of the Widmanstatten lines-one having the natural appearance--has been published heretofore. The use of the iron itself to print from is wrong, for surface printing, since it

Fig. 1.-THE INDEPENDENCE COUNTY, ARK., METEORIC IRON.-ONE-THIRD NATURAL SIZE of the fall. in speculation.

James B. Mackintosh, E.M., gave $91 \cdot 22$ per cent of iron, $0 \cdot 16$ per cent phosphorus, and 8.62 per cent (by difference) of nickel and cobalt, nothing unusual thus appearing in its composition.

Wm. Earl Hidden
N. B.-If any of our readers should know of the existence of masses similar in nature to the above, they will confer a favor by notifying the Scientific American office. Should any meteorites fall in their vicinity, or within their knowledge, we would be glad to receive early information of them, and also samples

The Times we Live In.

On all hands the cause of the recent stagnation in trade is assigned, by business men, to overproduction. It has been said that overproduction means simply the clogging of the markets by too much wealth. It is meant that there is too much wheat, too much corn, too much iron, too much coal, too much cotton, too much of the great staples of wealth generally, preventing those who complain from getting as much for what they have for sale as they expected to get, or to sell as much to others as they expected to sell, or to make prices fluctuate in a manner profitable to modern speculation. In short, such an abundance of any of the staples that speculators cannot create a corner in the market, and thereby oppress the poor laborers in the interests of questionable methods, to say the least

If we look over the world, we will find that there never was a time in the history of the race when the luxuries of life were so widely disseminated and en joyed by so large a portion of the commonalty of man kind as now. The ability to afford the luxuries and pleasures of life is increasing very rapidly among the working classes, and most rapidly among the most industrious and hardest working classes.
It has been pertinently remarked that "putting aside the wealthy classes, there never was a time in which more people could wear silk and broadcloth, have vacations, take journeys, eat ice cream, provide pianos and organs for their families, go to the races, the theater, and the polo ground," than at the present time. And it is safe to say that, as a rule, these classes take advantage of the opportunities offered. It is also equally true that there is a great deal of extreme poverty existing throughout the country in connection with crime and ignorance and indolence in many places and employments; but this is the exception to the general rule of widespread prosperity in the middle and lower classes of humanity generally.
That there is a general tendency all over the world to an increase in the production of the luxuries and common comforts of life cannot be doubted; and if this overproduction is an evil, it is unmistakably an increasing evil. This is necessarily the case. The constant progress made in the invention and manufacture of labor saving processes, the increase of the productveness of labor, with increasing intelligence, cannot result otherwise than in an increase in the surplus production. This may in one sense be an evil, but it certainly is not an evil when you regard it in the light of the comfort and progress of the race; for whatever increases the facilities for making home more comfortable and attractive increases the pleasures of home and home life, ennobles work, and makes the ties to government and an upright living tenfold stronger. It will also tend to shorten the hours of labor and increase those of recreation and plea sure. This cannot be regarded as an evil by any save those who regard a laboring man as simply a drudge, and his every hour of recre ation and pleasure, above those actually required for sleep, as so much precious time wasted.-Jas. M. Kerr, in Chicago Current.

Car Builders' Association.
The committee appointed by the Master Car Builders' Association and several representatives of brake companies met at Harrisburg, Pa., on Jan. 6, to devise a plan for the testing of the brakes now in use. It was decided to have two tests at Burlington, Iowa, on the Chicago, Burlington \& Quincy Railroad. The first trial is to be on July 13 next, and the second on the 13 th of April following. Each brake company is to furnish fifty cars fully equip-
section was properly prepared for use, after the manner \mid ped with its apparatus
of copper-plate printing, results quite as good as this new process gives might be obtained.
The Widmanstatten lines in this iron are remarkably perfect and abundant. Their apparent tendency to produce right angles is a rather uncommon feature.
. Troillite (Fe.S) was noticed on the polished face as thin seams, having a bronze luster, which penetrated deeply into the mass.
An analysis of the main mass of the meteorite by
ped with its apparatus.
The cars are to be returned to their owners and put in actual service between the times of the tests. On their return, a careful record of the cost of maintenance and the number of miles traveled is to be submitted to the com ittee. At the final test, a year from next April, the brake which is decided to be the most effective is to be adopted as the standard, and recommended for adoption by the different railroad companies in the United States.

ENGINEERING INVENTIONS.

An operating mechanism for railway switches has been patented by Mr. William B. S. Reed, of Brooklyn, N. Y. This invention provides a mech-
anism whereby but a single lever is used, and such anism whereby but a single lever is used, and such
lever is inoperative to open more than one switch or system
open.

AGRICOLTURAL INVENTIONS

A hand corn planter has been patented by Mr. Seth Hackett. of Bronson, Mich. It has a com-
bination of pocketed disks, whichare intermittently rotated to effect the discharge of the seed and secure a re liable delivery every time the
moved stepwise to the operator.

miscellaneous inventions.

An automatic flushing siphon has been patented by Mr. William B. Parsons, Jr., of New York city. This invention covers a main and auxiliary siphon
of novel construction for intermittent flushing in con of novel construction for intermittent flushing, in con-
nection with a water closet or for other similar purpose.

A carpet stretcher has been patented by Mr. Robert R. Jones, of Blossburg, Pa. It consists in a bar having at.one end a spur to be driven into the
floor, and having pulleys, a lever, and a rope, while floor, and having pulleys, a lever, and a rope, while combined therewith is a sliding crosshead
pointed teeth or hooks for engaging the carpet.
A twine and wire cutter has been pat ented by Mr. William L. Haas, of Charles City, Iowa.
It has a handle section with hollow head in which is It has a and an upper leverrsection with cutting edge and movable jaw, with other novel features, making a too to cuttelegraph wires or the wires or twine bands used for binding sheaves of wheat, etc.
A draught equalizer has been patented by Mr. John L. Powles, of Goodland, Ind. The single
and double trees are so pivoted as balanced levers that the draught will be made alike for four horses working abreast, with one horse at one side of the tongue and
three horses at the other side, which is often desirable operating grain harvesters and other machines. A bag holder has been patented by Mr Walter s. Kendall, of Grand Rapids, o. This inven tion relates to a device for holding bags open and in an
upright position to be filled, facilititating the attachment of the empty bags to the holder and their removal there the mouth of the bac
A windlass has been patented by Mr Frederick W. Thomson, of Maitland, N. S., Canada This invention covers a novel arrangement of friction
band wheels and bands, with a contrivance of break me chanism comprising brake shoes which may be forced
against the interior faces of flanges on the main grabs or purchase wheels.
A magazine spring gun has been patented by Mr. Stephen D. Engle, of Hazzeton, Pa. I has a langitudinally sooted barrel with a follower fitted
to work therein, subject to the control of the trigger with other novel features, the invention being an im. inventor.
A wood sawing machine has been pat ented by Mr. Samuel P. Dresser, of Pleasant Mount, Mo. It cam be operated by one or two persons, by turn-
ing one or two cranks, whereby a saw is rapilly reciprocated, the saw blade being pressed downward in the kerf by a spring, the pressure of which can be readily
regulated
An umbrella or parasol has been patented by Mr. George W.'Jones, of Brooklyn, N. Y. It has
telescopic braces and a runner connected with the ribs, the braces and their runner, in connection with a hol low stick, to hold the ribs'. from being forced too far
back with hon back, with other novel features, , to promote conveni
A barrel making machine has been pa tented by Mr. Josiah J. Philbrick, of Birmingham, Ala. staves and hold them even across the edge joints on both faces, keeping the croze of the staves even or in
line all around the barrel or cask, so the heads will ill the croze and make a perfectly tight parrel or cask.
A pipe vise has been patented by Mr Andrew L. Rose, of West Troy, N. Y. This invention
provides for vises constructed to hold pipes firmly while provides for vises constructed to hold pipes frrmy while
being cut, or having screw threads cut in them, and the vise can be readily adjusted to hold pipes of different
sizes, and conveniently operated to clamp ond relens sizes,
pipes.

A saw has been patented by Mr. George N. Clemson, of Middletown, N. Y. It has its opposite
edges hardened, with a soft body between the edges making a cutting edge which is very hard and durable and at the same time furnishing a saw which is tough and flexible, and especially adapted for use by butchers metal workers, etc.
A device for centering vessels in dry docks has been patented by Mr. Adam Bulman, of
Jersey City, N. J. This invention consists principally of an attachment made with two sliding blocks adapted to engage with the opposite sides of the keel of a ves-
sel, and to be moved to the center of the dock by draw sel, and to be moved to the center of the dock
ing upon ropes attached to the sliding blocks.
A funnel has been 'patented by Mr Frederick Catlin, of New York :city. It has a cock cas-
ing formed with longitudinal and transverse apertures. ing formed with longitudinal and transverse apertures,
with other novel features, and is adapted for use not only for pouring liquid from one' vessel into another but also for measuring and conveying or transporting liquids.
The producing of metallic printing plates has been patented by Mr. Cesar Felix Josz, of Bockenhelm, Germany. The process consists in first
mechancally graining the plates, then extracting all mechantcally graining the plates, then extracting all
grease by alkalies, and opening or raising the grains by means of astringents operating mechanically, and giving the metallic surface the affinity for ink, lithographic
erayon, etc.

A hose or suction tubing forms the subject of a patent issued to Mr. James Jones, of Dablin,
reland. It is formed of fabric treated with oil to rener it air and liquid proof, the fabric being wound on a spiral wire core and held in place by a spiral wire wound around it, the metallic support for the tube proper being intended
traction under suction.
A folding box or crate has been patented by Mr. Edward Harris, of Cambria, Wis. The ends
are hinged to end pieces and the sides to side pieces of are hinged to end pieces and the sides to side pieces or the base section, while on the inner sarfaces of the ends
are held wires which extend from top to bottom, the ower ends forming hooks projecting from each other nd the upper ends being bent over the top edges, the wires being held in place by staples.
A ventilator has been patented by Mr. Richard de Logerot, of New York city. It consists of an elastic bulb with valves and tubes, one tube leading outward and the other connecting with perforated distributing pipes in an apartment, the bublubeing operated by clockwork mechanism to alternately compress
and permit the expansion of the bulb, for ventilating and permit the expansion of the balb, for ventilating A clothes drier has been patented by Messrs. Charles Goodyer and William Morse, of Warren, Pa. It consists in a hollow upright having offsets in the sides, the offsets having openings, with a slide in
the upright, and arms or bars pivoted to the side edges the upright, and arms or bars piveod to the side eages
and projecting through, making a clothes bar of simple onstruction, which can be compactly folded when not

NEW BOOKS AND RUBLICATIONS.

Poultry Culture. How to Raise Managre, Mate, and Judge Thoroughbred
Fowls. By I. K. Felch. Chicago: W. H. Harrison, Jr., 1886.

Ponltry culture has heretofore received from the
farmer just as much attention as he regarded necessary keep the flock alive, after everything else on the farm had been looked after. Now, however, the in in-
trounction of business methods int troduction of business methods into farm work has
caused an invasion of the poultry yard also. Enhusiastic exponents like Mr. Felch have brought for-
ward an array of results that is quite astonishing. ard an array of results that is quite astonishing ew people realize the fact that the egg and poultry
product of the United States exceeds in value such substantial crops as corn, cotton, or hay, and that the profit, in keeping some of the finer breeds of fowl. amounts to as much as $\$ 4.00$ per head. When these
are remembered, the industry seems worthy of careful are remembered, the industry seems worthy of careful attention, and one can understand why Mr. Felch
hould recommend it to young men as a possible openIn. In presenting the resalts of his own thirty years'
experience in the tusines, he is able to experience in the business, he is able to give a great
many valuable hints to those similarly interested.
Art Age, published monthly, \$2 a year. Turnure \& Gilliss Bros, 75 Fulton Street, N. Y. This contains usually one or more supplements-reproashs architectural drawinge, etc., specimens sometimes several different engravig proce
number is particularly attractive.
Business and Personal.
The charge for Insertion under this head is One Dollar
a line for each insertion; about eight words to alint a line for each insertion; aboote ieight wordst to o line. as early as Thursday morning to appearin nexext issue.
a Proftable Investment
can be made in a postal card, if it is used to send your
address to Hallett \& Co., Portland, Maine, who can urnish you work that you can do and live at home; few here are who cannot earn over $\$ 5$ per day, and some
have made over ton. Capital not required youre
started free. Either sex; all a aes. All particulars free.
Dynamo Machines
for all purposes. Dynamo machines of highest effci-1-
ency, acourately calculated (as to capacity, etc.), and viit to meet requirements in connection with all

Industrial Applications of Electricity,
Electro Mechanical Machinery, Electro Deposition Metals, Electro Chemical Work, Telegraphy in plac of Batteries, Electric Motors, of various horse powe to be run by Dynamo Currents. All dynamo and motor
apparatus built to suit the work required and accordapparatus
ing to the
ficiency.
J. H. Bunnell \& Co..

Don't fail to send for circular of new Laboratory
To Manufacturers
To Manufacturers.-The undersigned, traveling for interest of eight American firms, solicits catalogues and price lists to be sent to him by manufacturers of all sorts of agricultural and industrial machinery. for the purpose of introducing such of them that may be found
suitable for the trade. Address A. V. Perrin, Brussels, Belgium.
The Magic Square.-A novel instrument for solving problems in arithmetic by a mechanical method, without
nental labor. Equal to a slide rule twenty feet long. By
ail, 25 c . W. H. Wythe mail, 25c. W. H. Wythe. Ocean Gr
A " Pointer.'
When Col. Sellers gives you a "pointer" in stocks, my
friend, leave them severely alone, but when your own eelings tell you that you have palpilation of the own asthma, bronchitis, or catarrh, which, unless checked, are apt to run into consumption, heed the admonition efore it is too late. All the diseases enumerated, and the largest gland in the human body, and you will speedily regain your lost health, and your bad feelings will
disappear. Dr. Pierce's "Golden Medical Discovery" vill accomplish the work speedils and certainly. Of your druggist.
Wanted.-.Li wild turkeys and deer for stocking Best, most convenient, and effective Laboratory Lamp Saf made is the Dangler. Clevelana, 0.
Safety Elevators, steam and belt power ; quick and
smooth. D. Frisbie \& Co., Philadelphia, Pa.

Wm. Frech, Manufacturer of Sensitive Drills, Turr oe St., Chicago
For Sale.-One 50 H. P. and one 200 H. P. Corliss Engines, built by Geo. H. Corliss; also one $\mathbf{3 0}$ H. P. Porta-
ble Engine, built by Erie City Iron Works, nearly used only few months. Henry I. Snell, 135 North 3d St Philadelphia.
Modern M'ch. Tools a specialty. Abbe Bolt Forgers, Power Hammers, Lathes, Planers, Drills, and Shapers,
Send for estimates. Forsaith M. Co., Manchester, N. H.
To Manufacturers.-The owner of 260 acres of ground Pittsburg, on the Allegheny River and Pennsylvani fers to donate a number of excellent manufacturing sites. See adv. of Whitney \& Stephenson, this issue. Order our elegant Keyless Locks for your fine do
Circular free. Lexington Mfg. Co., Lexington, $\mathbf{K y}$. Geo. E Lloyd \& Co., Electrotype and Stereotype Ma Chinery, Foly
Chicago, III.
g.-Sole manufacturers cast nickel an "Little Wonder." A perfect Electro Plating Machine Sole manufacturers of the new Dip Lacquer Kristaline Complete outflt for plating, etc. Hanson, Van Winkle
Grimshaw.-Steam Engine Catechism. A series of so as to give to a Young Engineer just the information required to ft him for properly running an engine. By Robert Grimshaw. 18mo, cloth, \$1.00. For sale by unn \& Co.,
Woodw'kg. Mch'y, Engines, andBoilers. Most complete stock in U. S. Prices to meet times. Send stamps
for catalogues. Forsaith M. Co., Manchester, N. H. Shafting, Couplings, Hangers, Pulleys. Edison Shafting The Knowles Steam Pump Works, 44 Washington St., Boston, and 93 Liberty St. New York, hashingto sued a new catalogue, in which are many new and improved forms of Pumping Machinery of the single and duplex, steam and power type. This
mailed free of charge on application.
Haswell's Engineer's Pocket-Book. By Charles H. ing Tables, Rules, and Formulas pertaining to Mechan cs, Mathematics, and Physics, Architecture, Masonry Steam Vessels, Mills. Limes, Mortars, Cements, etc. 900
pages, leather, pocket-book form, $\$ 4.00$. For sale by

Air Compressors, RockDrills. J. Clayton, 43 Dey st.,N.Y Machinery for Light Manufacturing, on hand and Send for Monthly Machinery List
21 Chambers and 103 Reade Streets, New York.
If an invention has not been patented in the United States for more than one year, it may still be patented in
Canada. Cost for Canadian patent. \$40. Various othe oreign patents may also be obtained. For instruction address Munn \& Co., Scientific American paten

Supplement Catalogue-Perso
supplement Catalogue.-Persons in pursuit of infor tific subject, can have catalogue of contents of the Scientific Ambrican Supplement sent to them free The SUPPLEMENT contains lengthy articles embracin the whole range of engineering, mechanics, and physica
sience. Address Munn \& Co., Publishers, New York. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J Guild \& Garrison's Steam Pump Works, Brooklyn, v. Y. Steam Pumping Machinery of every description. Send for catalogue.
Wood WorkingMachinery. Full line. Williamsport Machine Co., " Limited," 110 W. 3d St., Williamsport, Pa Mineral Lands Prospected, Artesian Wells Bored, by Pa. Diamond Drill Co. Box 423, Pottsville, Pa. See p. 46 . Hercules Lacing and Superior Leather Belting made
by Page Belting Co., Concord, N. H. See adv. page 46 . Planing and Matching Machines. All kinds Wood Iron Mach Iron Manufacturers wishing to purchase large deposit hig gral mag ,
Iron Planer, Lathe, Drill, and other machine tools of
modern design. New Haven Mfg, Co., New Haven, Conn. modern design. New Haven Mfg. Co., New Haven, Conn
We are sole manufacturers of the Fibrous Asbesto We are sole manufacturers of the Fibrous Asbestor
Removable Pipe and Boiler Coverings. We make pure 19 East 8th Street, New York.
Pat. Geared Scroll Chucks, with 3 pinions, are sold a same prices as common chucks by Cushman Chuck Co.,
Hartford, Conn. Crescent Solidified Oil and Lubricators. Something

Curtis Return Steam Trap returns all condensation Boston, Mass.
Curtis Pressure Regulator and Steam Trap. See p. 350 . Steam Hammers, Improved Hydraulic Jacks, and Tube
Expanders. R. Dudgeon, 24 Columbia St., New York. Emerson's B Emerson's Book of Saws free. Reduced prices Cmerson, Smith \& Co., Limited, Beaver Falls, Pa.
The new Vapor Laboratory Lamp made by Dangle v. s. Co., Cleveland, $\mathrm{O}_{\text {., is a }}$ grand success.
Rubber Belting, Cotton Belting, Leather Belting conomy Belting, Co.. New York.
"How to Keep
or free 88 page book. Jas. C. Hotchkiss, 86 John St., N. Y
Barrel, Keg, Hogshead, StaveMach'y. See adv. p. 76. "Wrinkles in Electric Lighting," by V. Stephen
with illustrations. Price, $\$ 1.00$. E. \& F. N. Spon, New York.
Blake's Belt Studs. The strongest and best fastening or Rubber and Leather Belting. Greene. Tweed \& Co Machinists' Pat
Machinists' Pattern Letters. Pattern Letters to order
Vanderburgh, Wells \& Co., 110 Fulton St., New York. Brass and Iron Working Machinery, Die Sinkers, Split Pulleys at low prices, and of same strength and Works. Drinker St.. Philadelphia, Pa. ${ }^{\text {\& }}$. Wanted.-Second hand Engine a
horse power, to drive yacht. Must be in good condition Send price and description to Jos. Minchener, Lane
Parly, Fla.

HINTS TO CORRESPONDENTS.
Names and Address must accompany all letters,
or no antention will be paid thereto. This is for our
infor
Rererences to former articles or answers should
give ante of paper and page or number of question

Minerals sent for examination should be distinctly
marked or ${ }_{l}^{\text {labeled. }}$
(1) A. W. C. asks: Will the attachment of the ground wire from telegraph office to a water pipe
ffect the freazing of the water?
A. No. The freezing effect the freezing of the water? A. No. The freezing
must be due to the position of the pipe, and not to the fect of the electric current.
(2) M. L., Jr., writes: A fire alarm telèraph wire goesover the house I am in. It is held in place ave an electric bell, such as are used for door calls, ., wif I would I se the fire alarm wire with the fire telegraph wire, running it to your bell, and from the bell to a good ground, you will be able to get the alarm; but we think you would render yourself liable by such' an operation, and might
also interfere with the efficiency of the fire alarm telealso int
(3) E. A. C. writes: I wish to make an electric motor one-half the size of the one described in UPPLEMENT, No. 161, and I am uncertain about the
ze wire which should be employed in winding the eld magnet and armature. Can you inform me hrough the Scientific American? I also wish to know how many layers of wire should be wound on
the field magnet, and how many Robert's batteries the field magnet, and how many Robert's batteries
(e. m. f. 2 volts) would be necessary to run the same? A. For a motor, you should use No. 16 wire on the armature, and the same size on the magnet, employing about four layers on each leg of the magnet. You would require 5 or 6 cells of the battery. 2 .
What form of motor is best for running a small fan, and where 1 get drawings information in reard to the same? A. Probably there is no better form or a small motor than the one you propose to adopt. 3. wish to make a spark coil for electric gas lighting. ployed, or the number of layers which should be ployed, or the number of layers which should be
wound around the core. in order to secure the best results. A. Supplement, No. 160, will give you informa
gas.
(4)
(4) W. K. asks: What substance could add to wax (such as used for artificial flowers), in order to render it pliable in cold weather and at the
ame time preserve its whiteness? A. Any substance which would render wax pliable in cold weather would render it too soft to preserve its shape in warm
weather. Paraffine is sometimes added to wax to weather. Paraffine is sometimes added to wax to
toughen it. A small percentage of glycerine might toughen it. A small perce
also effect the same result.
(5) J. McC., Jr., writes: I am making a dynamo-electric machine like one described in Sclen-
tific American Supplement, No. 161, with permaific american Supplement, No. 161, with permanent magnets. 1. Does increased speed give increased
power, or is there a limit to the speed which gives he best results, and if so, what is it ? (I use twelve 1 magnets, and armature is $33 / 2$ Inches long.) speed is governed by the rapidity of magnetization and demagnetization of the core of the armature. 2. Is this machine able to drive a small incandescent ight, and how many candle power? A. This machine will drive three or four 4 candle power lamps. 3. by using finer wire on the armature, and what number wire? A. For a single lamp of high resistance, yes. four candle power) be able to drive four one candle power lamps? I have noticed that one candle power ight requires more than one-fourth the number of volts that a four candle power lamp requires. A. It depenis, of course, upon the resistance of the lamps and the way in which they are arranged in the circuit.
We think, however, that you could drive four oneandle power lamps with a machine that would supply a four-candle power lamp.
(6) J. O.-Propeller wheels are named from their form of the section of a screw, and plow hrough the water in the same manner that any screw
runs in a nut, only that the pitch is greater and the runs in a nut,
nut is water.
(7) C. \& D.-Diamond drills are made y setting borts or black diamonds in the ends of iron or steel tubes. The tubes are rotated, cutting a solid
core, which, by an arrangement of a nipper in the drill, is lifted out with the drill.
(8) W. A. B.-There are several reckonngs of time. The civil year commences at midnight, December 31. The astronomical year is also reck-
oned with the civil year. The equinoctial year is reckoned from the vernal equinox. The sidereal year is the time of revolution of the earth in its orbit froma given line between the sun and a flxed star. The regard to the moon. Perihelion is the earth's position when nearest the sun.
(9) J. L. asks (1) how Fehling's solution made. A. Fehling's solution is made by dissolving solution of 173 grammes of Rochelle sater and adding contimeters of sodium hydrate having a density of $1 \cdot 14$ nd diluting to one liter. 2. How to detect putty
powder in other mixtures used in polishing plate.
A. We know of no means except by chemical analysis. A. We know of no means except by chemical analysis.
Some of the ordinary tests for tin might be applied. 3. Can good brandy be made from sour, musty wine A. Brandy can be obtained from the wine designate by distillation. As to the quality, we cannot say. 4 . Does the law allow a man having a still for chemice purposes to distill enongh liquor for his own use ? A
It is necessary to have a license in order to distill liquor, whether for private Iconsumption or priblic sale. 5. What is good to varnish scraps in/a scrap book, something that will not stick the leaves together?
A. Boil clear parchment cuttings in water to a clean A. Boil clear parchment cuttings in water In a clean glazed pipkin till they
it and keep it for use.
(10) D. B. asks how the chilled mandre is made to cast cast-iron box for wagon axle so h will not have to ream them. A. Make the chill man drel of wrought iron of the proper taper, and make slot $1 / 8$ inch wide its entire length and nearly through weak core sand. If this does not spring enough to prevent the boz from cracking by shrinke cut th slot wider or bore a hole clear through the mandrel
(11) D. W. G. desires the formula of Dr. Tebbett's Physiological Hair Regenerator. A. This pre paration is an aqueous solution of acetate contain
ing about $63 / 4 \mathrm{grains}$ of metallic lead to each ounce of the fluid.
(12) G. F. N. asks whether salicylic acid will preserve animal and vegetable oils, and what See the article on salicylic acid contained in Screvtrin American Supplement, No. 226. This acid pre ents fermentation and putrefaction. The dry powde of the acid has practically no effect upon the skin, .e., it is not corrosive
(13) J. H. E. asks (1) how to color kero sene different shades, what, and how to use it. A. Use niline colors sold as soluble in oil. 2. How to nicke plate? A. See the article on "Electro Metallurgy "con-
tained in Scientific American Supplement, No.. 310 . How to fasten a lamp chimney to a revolving head for cleaning? A. It can be clamped on to a wooden
chuck, but the head should be specially adapted for chuck, but
such use.
(14) C. J. M. asks if there is any way of taking out stains from matting or carpet, caused by dripping from stove pipe. A. The dripping probably consists of so many ingredients that its removal can
not be accomplished. Soot, for instance, cannot be not be accomplished. Soot, for instance, cannot be
removed. If it is simply coal tar, try water and then lcohol.
(15) J. W. P. asks how to make a paste or placing labels on tin and glass. A. See Reliable 199, Scerntic
(16) A. B. asks: What is the process sed for covering pills with awhite stratum (notsugar oated) that will be damp proof? A. They are pro ion of 6 parts of gelatine and 1 part sugar. See "How to Coat Pills with Gelatine," Scientific American Supplement, No. 370.
(17) G. E. B. writes from Hillsboro, Dakota: At a depth of 126 feet, in drilling an artesian water out of 2 inch pipe to a height of 30 feet. Ap plying a torch, the flame shot up ten feet burning with great brilliancy and intense heat until extinguished. Would such a vein, if continuous, be of atility for illuminating or other purposes? A. Yes. Natural gas is now extensively used for illuminating purposes and also
in producing heat.
(18) H. E. D. asks why trichinæ do not kill the animal. A. The trichinæ will kill the animal if they are allowed to develop sufficiently, but the animal is generally slaughtered bef
mature sufficiently to produce death.
(19) K. asks if it is possible to get inc or tin in flnely divided state, by any chemical mer from' the sulphate. A. Zinc dust is a commer he metal. Fine crystals of tin can be obtained when water containing zinc dust in suspension is gradually added to a solution of tin chloride. There is no prac
(20) J. A. asks how to make the best spirit varnish suitable for varnishing carved wood. A. A shellac varnish will answer, made by dissolving shellac in 95 per cent alcohol. The color of the wood in minge selition of the gum. Spons Work will give you a suries, which we can send for $\$ 2$ e used.
(21) A. M. asks (1) how to prevent rubwith a flexible varnish in the course of their manu acture. The application of a solution of rubber on carbon disulphide may be of some help, but it would not bepermanent. 2. How to prevent rain coming in a skylight. A. Tight joints will prevent the entrance of (2) we know of no other means.
(22) G. H. D. desires a receipt for making compressed yeast such as is sold in little flat squares, about an inch square, covered with tin foil A. This yeast is obtained by straining the common is obtained, which is then placed in hair moist mass obtained, which is then placed in hair bags and the dry, It is then sewed up into bags for transporta-
ion, (23) R W asks how to make a pre
(23) T. R. W. asks how to make a. preparation to paint iron cores with, so that they willslip
out of the castings easily and leave a perfectly smooth hole. A. Paint the cores with black lead, ground fine, and water. When nearly dry, smooth the surface with a
grease similar to the common axle grease in the market
A. Use paraffine or tallow. See the article on "Lu-
brican bicants," contained in Scientific American Supple Ent, No. 316. A number of valuable receipts ar
(25) S. L. asks the use and value of bat uano. A. It is used as a fertilizer. Its commercial market value per unit of bone phosphate contained in market value per unit of bone phosphate contained in he guano, and $\$ 1.75$ is the value of nitrogen equiva inary bat guano seldom contains two per cent of n rogen equivalent to ammonia, although from 4 to 5 per cent are sometimes found.
(26) N. L. B. asks: Can the glue in water color be removed by any simple and cheap process? If so, how? That is, so the pigments may oaking the material in water till it becomes disintegrated, then adding fresh water and continuing to do so, in time all of the glne will be washed out, leav-
ng the pigment behind. behind.
(27) B. C. H. asks: 1. In qualitative nalysis, an easy way to separate iron and zinc, both bing precipitated by ammonia. A. Zinc is not prewith hydrogen sulphide for zinc. 2. Of what does the arple solution in the porous cup of a chrome batte onsist, and does it clog up the pores at all? A. Pro bably chr
battery.
(28) A. S. G. asks if hydrogen peroxide - one article and Naquet's bismuthic dye another, oo they both mean the same thing? A. They are two deperred to is not made commercially in this country as far as we know. The hydrogen peroxide can b purchased from any wholesale druggist in New York
(29) C. E. Q.-Cherry stain can be reou will find it preferable to stain it a dork color, by using some of the liquids recommended for walnut stains.
(30) F. T. asks if there is any receipt for aking a pomade for polishing metal that is superior nswer to query 20, in Scientific American of May 1885, a formula for a paste is given which is cheape nd equally as efficient as the putz pomade.
(31) G. F. D. asks: What gives beef oil rye bread taste; or what acid is used to flavor beef oil for butterine parposes? A. Probably butyric acid. See the "Manufacture of Artificial Butter," contained Scientific American Supplement, Nos. 48 and 49, Scientific American Supplement, No. 397.
(32) A. J. W. asks: Is the bite of the kunk sure hydrophobia, or is there anything known which renders its saliva so poisonous that its bite is more to be feared than that of the rattlesnake. Many instances are given in which persons sleeping on the ground have been bitten, generally with fatal, and always with dangerous, consequences. It has not been shown, as far as we know, that this disease has any nnection with hydrophobia.
Minerals, etc.-Specimens have been received from the following
mined with the results stated.
W. H. F.-The amount of ple of clay can only be determined by analysis, the expense of which would be $\$ 12.00$. All clays contain alumina, but no economical process of extracting the metal is as yet known.-J. M. M.-Your own descriptio of the minerals is quite correct; they appear to be va mica. The specimens were examined for tin, but none was found. We would suggest that a larger but non of the suspected tin ore be sent to us, with $\$ 5.00$ o pay for an assay, which would defnitely settle the subject.

INDEX OF INVENTIONS

or which Letters Patent of the

 United States were Granted,January 19, 1886,

AND EACH BEARING THAT DATE

[See note at end of list about copies of these patents.]
Air brakes, valve for operating. P. Pickering...... 334,46 anvil, vise, and drill, combined, J. Weathers
Axle box, car, R. M. McGrath
xle box cover, car, F. Hyde
Axle, vehicle, H. M. Clark.
Bag frame fastening, A. Go
Bag holder, W. S. Kendall.
Bag holder, I. Steenrod.
Baking wafers, machine for, Meyer \& Strickler.
Barometers, etc., recerding apparatu
Richard..........................
Barrel making machine, J. J. Philbrick
Bath or bathing apparatus, S. C. Neal.
Battery. See Stamp batter
Bed bottom, G. E. Bedell.
Bed lounge, folding, F. H. Walker
Bed lounge, folding spring. F. H. W Bedstead and fireplace, combined. Q. S. Backus. Bell, bicycle, T. E.
Bicycle. E. H. Foot

Bird cage, B. A. Drayton
Boiler. See Steam boiler.
Boiler tube Boiler tube cleaner, R. A. Rege
Bolt. See Sash and door bolt.
Bolt heading machine Bolt heading machine, F. Philips.............334,464,
Bolts and hooks. machlne for forming eyes
matel
metal, H. V. Hartz.

Hay carrier, W. G. Ricker
Heater, W. H. Denslow.
Heating furnace, E. C. Condit.....
Heating furnace, air, J. M. Hess
Heating furnace, air, J. M. Hess................. 344,
Holder. See Bag holder. Sash holder.
Hook. See Trellis hook.
Hooks, machine for making, H. V. Hartz.......... 334,
Horseshoe, duplex, A.C. Hawes.........344,658 to 334,
Hose, manufacture of rubber lined and rubber
covered, A. Bruegger, Jr.
Hub, vehicle, D. Bookwalter.
Irrigation of land, C. B. Cox
Jack. See Lifting jack.
Jack. See Lifting jack.
Joint. See Pipe joint.
Journal bearing, anti-friction, W. Kratzer.
Journal box, R. W. Traslo
Key board, S. Stewart..........
Knitting machine, J. Smalley.
Knitting machine latch guard attachment, G. \mathbf{G}.
Ents..............
abel, G. C. Henning
Lamp. G. B. Bengelow.
Lamp, M. B. \& C. G. D.
Lamp, M. B. \& C. G. Dyott.
Lamp, E. B. Requa........
Lamp, bracket, A. C. o. Ad
Llon
Lamp, burner, Argand, M. J. Dooley.....
Lamp shade support. S. S. Woodward.
Lathe for turning shafting, W. J. Muncaster.
Lathing, C. E. Merriffeld...
Leather waterproof, makin
Lifter. See Pot lifter.
Lifting jack, J. Weathers............................. 344,

```
R. Mellor .......
```


334,713

Locomotive furnace, T. A. Buckland

Measure for draughting garments,
Mechanical movement, J. Frist...
Metal bending and straightening machine, w.
Muncaster.................................
Metal tubes, manu facture of, \mathbb{A}. Lateh.
Microscopist's turn table, C. Klipp
Mill. See Roller mill. Windmill.
Mill. See Roller mill. Windmill.
Mining machine, coa1, F. I. Clerc.................... 334,642
Miter frame clamp, G. R. Hammond.......... 334,435
Mould. See Cigar mould.
Moulding flower 'pots, machine for, H. Ammen-
heuser.. 334,406
heuser....................
Nail driving machine, E. L. Wheeler................
Nail machine, wire, E. S. Mortonn..............
Nails, manufacture of ornamental, J. F. Thayer.
Nails, manufacture of orn
Oil cup, w. Krutzsch.....
Oil cup, W. Krutzsch........
Ointment, Berry \& Butler.
Ointment, Musgrave \& Barton
Oven door catch, L. E. Ziegle.
Package for tiquind g. gue, etc.. C. H. Le................. Packing for piston and valve rods, metallic
Sleeper \& Hubbard............................... Packing for surface condensers, tube, D. B. Cobb. Packing, piston rod, O. J. Garlock.................. 34,579
Paint, mixed, т. J. Venema.................... 344,493
Pan. See Bake pan.
Paper machines, steam condensing doctor for, F
Brewer..44,511
Piano action, I. Bullard..............
Picker. See Cranberry picker. Fruit picker. Picker. See Cranberry
Pin. See Safety pin. Pipe. See Tobacco pipe
Pipe joint, H. Green....

Planter, check row corn, W. B. Chamber
Planter check row corn, E. H. Reynolds
Planter check row corn, E. H. Re
Planter, hand corn, S. Hackett...
Planter, seed, P. \& F. W. Boxendale
Plaster or cement, J. Thomlinson...
Plow fender, R. H. Avery.
Plow, sulky, G. H. Fowler
Plow, sulky, G. H. Fowler..
Plug, turning, F. W. Pelle.
Plug, turnng, F. W. Pole.......
Plumber's ftting, J. Noble
Pocketbook, Putnam \& Hoffm Post hole digger, W. \& E. W. Gibbs.... Postal clerks, practice case for. L. Ro,
Pot lifter, J. B. Kibler...
Potato digging machine, w. H. McCall Potato digging machine, W. H. McCall
Press, J. Stewart Pressure regulator, fluid, G. Metzger
Printer's quoin, W. R. Whitmore... Privy seat. G. \& J. Turnbull... Propelier, ship's, H. C. Bender
Propulsion of ships, F. Girein. Propulsion of ships, F
Pump, I. W. Numan..
Pump, steam jet, J. A. Marsh. Punching device, R. Allstatter Railway circuit. electric, F. L. Pope Railway crossing, J. Gray...............
Railway rail fastening, H. . De Zeng. B. S. Reed..................
 Raking, hoeing, shoveling, and pitching, com-
bined tool for, W. Heston...................................344,48
Rat trap, C. F. A. Kobelke..........43 Rat trap, C. F. A. Kobelke.....
Recorder. See Fare recorder.

334,526 .34354 34,548

Danuper, stovepepie. G. W. Mud...............................
Digger. See Post hole digger.
Door securer, D. Bromley
Drier. See Clothes drier.
Dropper. See Fertilizer dropper
Mather..
Jr..
Electrical cables, machine for making, Kruesi \&
Langton, Jr.

Mectrical Mason.

Engraving machine, M. Bock
Excavator, s. . F. Welch
Exercising machine, E. N. Bowen.
Fan, automatic, P. Murray, Jr.
Fan, summer, G. H. Aylworth.............
Fare recorder and register, H. Marshall. Farm gate, T. B. Thorn... Feed regulator, boiler, M. Crawford.....
Fence making machine, field, S. B. Cross
Fence, portable, L. W. Fisher.......... Fence post, A. A. Parker. Miles. ence wire stretcher, E. J. A. McNab Fertilizer dropper, tobacco, A. Mc
File, distributing, R. F. Leaman..
Filter bed, elevated, w. . w. wet. Fiilter bed, elevated, W. S. West........
Firework stand, portable. H. C. Weed Firework stand, portable. H. C. Weeden............
Fires in houses and vessels, apparatus for localiz ing and extinguishing, P. L. Palmer
lood gate, M. A. Emmons...... Flooring and ceiling clamp, E. A. Reed
Forks; maktng, T. E. Wawrinsky...... Forks; maktng, T. E. Wawrinsk
Frame. See Skylight frame. Frame. See Skylight frame.
Frame for draping fringe, etc., Fruit picker, Strong \& Smith......... unnel, F. Catlin.
\qquad
urnaces and stoves, heating attachment for,
T. Greenwood. T. Greenwood...... Gas, apparatus for producing, P. W. Mackenzie. Gas, manufacturing, A. O. Granger.....
Gas, stop-off valve for, J. L. Chapman. Gas, stop-ori valve for, J. Flood gate. Gate, Depp \& Selby...
Glass panel, ornamental, C
Glass panel, ornamental, C. D. Pease........
Glove. etc., P. F. Cole.....
Grain binder, C. Whitney.
Grain binder, C. Whitney
Grapple, W. F. Kircher..
Gun, magazine, J. M. Marin........
Gun, water, J. I. Shaw..
Guns, cocking mechani H. Davenport......
Hame clip. E. Barnard Hame clip, E. Barnard.

```
Marvester cutters, clearer
```

Potee

44,661

334,689
334,616

334,616 334,679 334,457

334,699

334,455 33,531

Cockle separator, B. Cloutier
Cooler and flter, combined, Frazee \& Thomas. cotton sweep, J. C. Awalt...

Coupling. See Car coupling. Shaft coupling.
Cover, kettle, D. H. Murphy...

.. 334, ,116
.. 344565
234648

Cultivator, H. Skelton..
Cultivator, tonguele

No Burdensome Conditions or Restrictions．

LOWEST PREMUMS OF ANY LIBERAL POLICY YET ISSUED．

Indefeasible，Non－Forfeitable．
WORLD－WIDE TRAVEL

Cash Surrender Values，Paid－up Policy or Special Term Insurance，plainly stated in every Policy issued．

ASK AGENTS TO SHOW A COPY， and see for yourself．

NEWTON \＆COO． ALBANY，N．Y．， Manufacture Best Quality
FIRR BRICIK FOR ALL PURPOSES． PHILITP SEMMER，
PLATE and SHEET GLASS DEPOT．

SHIELDS \＆BROWN

For BOILERS and STEAM PIPES FOR GAS AND WA＇INER PIPES． Prevents Sweating and FreezIng．
The Rest Non－Conductor of H al and Cold in the World Send for illustrated descriptive Circular，and name this paper．
132 Cedar Street，New York．
78 and 80 Lake street，Chicago．

A Practical Treatise

，

 D．VAN Nourran it Pubigher，
DOUBLE BOATS．－TWENTY－ONE IL

WATCHMAN＇S IMPROVED

TIME DETECTOR，

TCE－BOATS－THEIR CONSTRUCTION

ME richly illustrated Midwinter（Feb＇y）Number of The Century Magazine
contains，among its spe－ cial features，an article
by GENERAL GRANT． by General Grant， Wildernes paign，＂－the moststriking of all the papers
ontributed by Gen－ eral Grant to THE Century War Series a remarkable de scription of this re－ THE NEW NOVEL neagamern nues．W．D．HOWELLS，
＂The Minister＇s Charge，＂ begins in this number，as wel as the novelette，＂A Borrowed Month，＂by Frank R．Stockton． All dealers sell it；price， 35 cts． The Century Co．N．Y．

36th ANNUAL STATEMENT

ETNA

LIFE INSURANCE CO．，

OF HARTFORD，CONN

January 1，1886．

Abstract

Premium Receipts in 1885， Interest Receipts in 1888

Interest Receipts in 18855_{5} ，
＇Total Receipts during the year， Total Receipts during the year，

Disbursements to Policy－holders， and for expenses，taxes，\＆c．， Assets January 1，1886， | Total Liabilities， |
| :--- |
| Surplus by Ct．and Mass．standara， | Surplus by the standard of N．Y．． Pollcies in force January 1，1886， 61，437，insuring． olicies issued in 1885

MORGAN G．BULKELEY，President．
EBSTER，Vice－President．
J．L．ENGLISH，S̄ecretary
H．W．ST．JOHN，Actuary． GURDON W．RUSSELL，M．D．

T．J．MUMFORD，Manager，
165 Broadway，New York，N．Y． Remington Ntandard Type－Writer

COUNTERSINK and DRILL COMBINED．

The Countersink following the Drill，the job is fnish－
ed at one operati on．saving the adjusting of too s and ed at one operation，saving the adjusting of toos and
work twiee．Made by
Wiley \＆liusell Mfg．Co．．Greenfield，Mass．

FHDISOIN

ELECTRIC LAMPS， $1 / 2$ to 6 candle power，$\$ 1.50$ each．
 These batteries will run the lamps two hours with one
eharge of solution．Directions with each． EDISON spiral lamps $\$ \mathbf{S} .50$ eandle power，for focusing， THEE＂AURORA＂，BATTEIRY for house light－ ing，also for doctors＇，dentists＇，and mice．
otors，Batteries，Instruments，and Electrical Supplies． The STOUT－MEADOWCROFT CO．， 21 ANN S＇TREE＇I，NEW YORK．
YOR

FRICTION CLUTCH
Pulleys and Cut－off Couplings．
\qquad

戸尺ADエ戸エ’S Helve Hammer

 FOOT POWER MACHINERY Lathes．SAWS，erc．
Praetical Workshop．

February 6, i886.]

Lumberman, Farmer and Mechanic. Containing, directions for finding the interest on any Heek, Board, Scantling and Plank Measure, Cubic Con
tents of Souare and Round Timber, Cubic Content
Round sure Measure, Standard Contents of Logs, Wood Mea
Sure in Load rid Pile, Cost of Wood Cost of Mamber
Weight of grains per Bushel, Contents of Granari

 whole coveringeevery branch of Science apple ed to the Artse
sent free and fre
worla who will furnish hive ado adaress. HENRYCAREY BAIRD \& CO., 816 Walnut Street, Philadelphia.

A Literary Enterprise Untque in the Annals of Cassell's
National Library. Edited by HENRY MORLEY, LLL.D. Professor of English
A serieterature at Universit. College, weondity volumes each containing about 200

TEN CENTS PER VOLUME
Or 52 volumes, postpaid, 85.00 , when subscribed for by
the year. series will represent all periods and forms of
The ser
 NOW READY
My Ten Years' Imprisonment

Translated from the Italian, by Thomas Roscoe, IN PRESS.

 CHILDE HAROLD. By LORD BYRON.THE AUTOBIOGRAPHY OF BENJAMIN TRANKLIN.
THE COMPLEETE ANGLER. By ISAAC WALTON THE SCHOOL FOR SCANDAL AND THE

Complete Catalogue sent free by mail to any address on
CASSELL \& COMPANY, Limited,
739 and 741 Broadway, N. Y.

Their Cost Reduced.

The expenses attending the procuring of patents in
most foreign countries having been considerably re most foreign countries having been considerably re-
duced the obstacle of cost is no longer in the way of a large proportion of our inventors patenting theirinven-
tions abroad CANADA.-The cost of a patent in Canada is even less than the cost of a United States patent, and the
former includes the Provinces of Ontario, Quebec, New Brunswick, Nova Scotia, British Columbia, and Mani-
The number of our patentees who avail themselves of patents in Canada is very large, and is steadlly increasing. torce on Jan. 1st. 1885, enables parties to secure patents in Great Britain on very moderate Warms. Abeland and the flnancial and ands. Great Britain is the acknowledged inancial and commercial center of the world, and her
goods are sent to every quarter of the globe. A good invention is likely to realize as much for the patentee him at hnroe. and the small cost now renders it possible ror ammost everypatentee in this country to secure a pa tent in Great Britaiu, where his rights are as well protected as in the United states.
on very reasonable terms in France, Belgium, Germany Austria. Russia, Italy, Spain (the latter includes Cuba and all the other spanish Colonies), Brazil, British ludia, Australia, and the other British Colonies.
An experience of FORTY years nas An experience of forty years has enabled the
publishers of THe ScIentific Amenionn to establish competent and trustworthy agencies in all the principal foreign countries, and it has always been their aim to
have the business of thetr clients promptly and properhave the business of thetr clients promptly and
ly done and their interests faithfully guarded. ly done and their interests faithfully guarded of all countries, including the cost for each, and othe information useful to persons contemplating the procuring of pat
this office.
this office.
minific Amero., Editors and Proprietors of The Sciany information relative to patents, or the registry of trade-marks. in this country or abroad, to call at their
offices. 361 Broadway. Examination of inventions, conofffices. 3 Bron Broadway. Examination of inventions, con-
suitation, and advice free. Inquiries by mail promptly suitation, and advice free. Inquiries by mail promptly
answered.

Address, MUNN \& CO.,
Publishers and Patent Sollicit Branct Offices: No. 622 and 624 F Street, Pacific
Brad

THE NEW "GRESHAM" PATENT Antunatic Pr-Starting midector.

Invaluable for use on Traction, Farm, Portable, Marine, and Stationary Engines of all kinds. No
Handles [required. Water Supply very dificult to Handies Crequired. Water Supply very dimituit to matically, ofter interruptiou to feed from any cause Reliable and Cheap.

Sole Manufacturers in the United States and Canada, Nathan Manufacturing Co. 92 \& 94 LIBERTY ST., N. Y.

NEW YORK BELTING AND PACKING COMP'Y
 rimer my vineels
 Warehouse: 15 Park Row, opp. Astor House, New York Emery Wheel.
JoHN H. CHEEVER,Treas.
J. D. CHEEVER, Depy Treas. Warehouse: 15 Park R Ow, opp. Astor House, New York
Branches: 308 Chestnut St., Phila., 167 Lake St., Chicago, 52 Summer St., Boston.

A
BIG OFFER. To nitrodae them, wo

THE DINGEE \& CONARD CO'S
ROSES

 3 TO 12 PLANTS $\$ 1$. ser 8 Hantred

HARRISON CONVEYOR! Fanoing Brain, Coal, Sand, Clay, Tan Bark, Cinders, Ores, Seeds, \&c. sand fins
diutumas.|
BORDEN,

GUARANTEED TO CONSUNE 25 to 75 A NY PER GHEREGGASENGINE SOKILITHERE, SCHUNAK do

 the new hatter patent
portable
Steam
ENGiNE,

 Or 36 Dey St, New York.

OOLD MEDAL, PARIS, 1878. BAKER'S Breatras Chona rom which the excess of Cocoo, from which the excess of times the strength of Cocoa mixed with Starch, Arrowroot or Sugar,
and is therefore far more economical, costing less than one cent cup. It is delicious, nourishing,
strengthening, easily digested admirably adapted for invalids as
well as for persend ell as for persons in heath.
Sold by Grocers everywhere. W. BAKER \& CO., Dorchester, Mass.
 POWER ATEORMETAL

An Engineer's Field Book.

PRICE 25 CENTS.

Address $\begin{aligned} & \text { GNGINEERING NEWS PUBLISHING CO. } \\ & \text { TRIBUNE BUILDING, NEW YORE. }\end{aligned}$
New Catalogue of Valuable Papers contained in ScInNTIFIC Ambirican suppiement, sent
free of charge to any adres.

ICE. REFRIGERATING RUBBER ROOFING

INSURANCE (6.HARTFORD CoNN

LOSSES PAII IN GTYEARS. $\$ 48,750,000$

 engineers pocket book. BY

 ROUGH Johnt Thteirf, Co. FINISHED CUTLER'S POCKET INHALER
carbolard of lodine INHALANT.

CURE Win DEAF

TOWEAK MEN Myforing fom tho oft

NEWSPAPER FILE

 MUNN \& $\mathbf{C O}$.

Whonertisements．
 Engravings may head advertisements at the same rate
per line by measurement，as the letter press．Adver－ tisements must be received at publication offce as aver－

H．W．JOHNS AHBEESTOS：

Steam Packings，Boiler Coverings， Steam Packings，Bo，Cemente，Ert．，
Famples and Descrintive Price Lists Free． Samples and Descriptive Price Lists Free． H．W．JOHNS M＇F＇G CO．， 87 MAIDEN LANE，N．Y．
75 Randolph St，Chicago； 170 N．4th St．，Philadelohia RAILWAY AND STEAM FIITERS SUPPLIES Rue＇s Little Giant Injector． SCREW JACES，STURTEVANT BLOWERS，\＆c．
 P．o．BOX R．WAYNESBORO，PA．

WESTON DYNAMO－ELECTRIC MACHINE

flefecroplating and electrotyping，

 and every variety of supplies for Nickel，Silver，an plete outfits for plating．Estimates and catalogues fur

HANSON VANWINKLE \＆Co． SOLE AGENTS

PHOTOCRAPHERS ${ }^{\text {can im }}$

CREE MANUFACTURING SITES at PittSburg， WITH NATURAL GAS．－A gentieman wishes to
improve a large property．Sites unexcelled；Nat Gas；Navigable River；Railroads；cheap coal；a

WHITNEY \＆STEPHENSON，Brokers，
12 Liberty Street，Pittsburg；or A．LiEGGA
eral Street，Allegheny City，Pa．

Martin Brick Machine． Latestand Improved Brick Machinery For Both Steam and Horsefower．

WANTED．

Live wild turkeys and deer for stocking a park．
Address，with price，M．N，H．，
P．O．Box $\boldsymbol{y} \boldsymbol{y} \boldsymbol{3}$ ，New York TCEHOUSE AND COLD ROOM－BY R．

HARRIIInal and only Builder of the With Harris＇Pat．Improvements，from 10 to 1,000 H．P．${ }^{\text {P }}$

PATENTS．

MESSRS．MUNN \＆CO．，in connection with the publi－
cation of the SCIENTIFIC AMERICAN，continue to ex amine improve
In this line of business they have had forty one years＇
experience，and now nave unequaled facilities for the preparation of Patent Drawingequaled faecificatiotions，and the prosecution of Applications for Patents in the United
States，Canada，and Foreign Countries．Messrs Munn \＆ Co．also attend to the preparation of Caveats，Copyrights for Books，Labels，Reissues．Assignments，and Report
on Infringements of Patents．All business intrusted to them is done with
A pamphlet sent free of charge，on application，con－ aining full information about Patents and how to pro cure them；directions concerning Labels，Copyrights， Dignments，Rejected Cases，Hints，Infringements，As tents，etc．
We also send，free of charge，a Synopsis of Foreign Pa－ patents in all the principal countries of the world． MIUNN \＆CO．，Solicitors of Patents，
361 Broadway，New York． BRANCH OFFICES．－No． 622 and 624 F St ciffle Building，near 7th Street，Washington，D．C．

PATENT RIVETED MONARCH RUBBER BELTING．
Best in the wToricl．
Specially adapted for PAPER MILLS，SAW MILLS，and THRESHING MACHINES．

THE GUTTA PERCHA and RUBBER MFG．CO．

JFNKINS BROS，VAIVES

 Gate，Globe，Angle，Check，and Safety．MANUFACTURED OF BEST STEAM METAL The Jenkins Disks used in these Valves are manufactured under our 1880 Patent，and will stan
any degree of steam pressure，hot and cold oils，or acid． $\boldsymbol{y} 1$ John St．，New可卫

```
13 so．Wourth St．，Phila．
```


VOLNEY W．MASON \＆CO． FRICTION PULLEYS CLUTCHES and ELEVATORS，

Leffel Water Wheels，

With Important Improvements． FINE NEW PAMPELET FOR 1885 JAMES to those interest Springfield，Oh

The Latest Improvement

TRACTIONENGINES

The only Engines where the power is practically an

Poriable，Agricultural，\＆Stationary Steam Engines． With determined policy to build only the BEST MACHIN－
ERY from the BEST MATERALS，and in the BRS

 practically and efficiently applied to the four trued
wheels，and while so applied to each wheel independ
ently，the forward axle is under full control of the steer entiy，the forward axle is under full control of the
ing apparatus．
Descriptive catalogue will be sent on application． OOD，TABER \＆MORSE，

BRIGEIT，OHEATR URATHE
． hen，Foreming．Shop，Office，School，or Jibrary．Work－ Presidents，Officials，Merchants，Farmers，Teachers， and profession in life，will derive benefit from a regular reading of THE SCIENTIFIC AMERICAN．
Terms for the United States and Canada，$\$ 3.20$ a year； $\$ 1.60$ six months．Specimen copies free．Remit by Postal Order，Express Money Order，or Check．

MUNN \＆CO．，Publishers，

361 Broad

Scientific American Supplement．
The Scientific American Supplement is a sepa
rate and distinct publication from The Scientifio Am－ Grican，but is uniform therewith in size，every number RRIGAN SUPPIEMENT is pablished weekly，and includes very wide range of contents．It presents the most re－ cent papers by eminent writers in all the principal de－
partments of Science and the Useful Arts，embracing partments of clience and the Useful Arts，embracing
Biology，Geoloky，Mineralogy，Natural History，Geo－ graphy，A rchæology．Astronomy，Chemistry，Electricity， ight．Heat，Mechanical Engineering．Steam and Rail－ ineering，Photography，Techhnology，Manufacturing dustries，Sanitary Engineering，Agriculture，Horti－ calture，Domestlc Economy，Biography，Medicine，etc．
vast amount of fresh and valuable information vast amount of fresh and valuable information per－ rofusely illustrated with engravings．
The most imporlant Ensineering Works，Mechanisms， nd Manufactures at home and abroad are represented Price for the Supplem inct for the United States and Canada． 85.00 a year，or one copy of the SCIENTIFIC AM－ ERICAN and one copy of the SUPPLEMENT，both mailed
for one year for $\$ 7.00$ ．Address and remit by postal order，express money order，or check，
MUNN \＆Co．． 361 Broadway，N．Y．，
TO Foreign Subscribers．－Under the facilities of
the Postal by post direct from New York，with regularity，to sub－ scribers in Great Britain．India，Australia，and all other British colonies；to France，Austria，Belglum，Germany， Rusisia，and all other European States ；Japan，Brazil， Terms，when sent to foreign countries，Canada excepted， \＄4，gold，for Scientipic Amlerican，one year；$\ddagger 9$ ，gold
for both Scientific Ammican and SUpPLement for one year．This includes pcstage，刃hich we pay．Remit postal or express money order，or draft to order of
MUNN \＆CO， 361 Broadwas，New Yort

PRINTING INKS．
T Then

