

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

THE NEW TAY VIADUCT.

This viaduct is designed to replace the metallic bridge over the same river, that was blown down in December, 1879, by a storm of extreme violence, carrying down with it a train which was crossing. The new work (see Fig. 4) is 10,800 feet in length. It comprises two approaches, the southern one, A, of which is horizontal and formed of 27 spans, while the northern one, B , consists of 45 spans, and has a falling gradient of 1 to 114 . Between the viaducts there is a bridge, \mathbf{B}, of 13 spans of 230 feet each, four of which allow a clear headway for shipping of 77 feet. The viaduct spans are naturally shorter than those of the bridge, and vary from 50 to 166 feet. At the south end the work connects with the shore byl four brick arches of 50 foot span, the first of which forms an abutment. These arches support the junction of the tracks of the Newport branch with those of the Edinburgh main line, and they progressively diminish in width until they unite with the metallic part. At the north end the work crosses the extension of the Dundee esplanade, and for this reason an abutment could not be constructed; so two wrought iron skew arches supported by brickwork masonry have been substituted therefor. Beyond these are four spans of wrought iron girders supported by cast iron columns standing upon granite bases. All the other' piers, 77 in number, that support the structure are of the same type-consisting of two cylindrical wrought iron caissons for the bridge and southern viaduct, and cast iron ones for the northern. These are internally lined with brickwork and filled in with concrete, which, in the first ones, reaches the level of low water, and in the second extends to the very top. The diameter of the bases of these caissons varies from ten to twentythree feet, according to the length of the span. Each caisson is constructed of three cylinders, that diminish in diameter from base to apex. Except in a few cases where they are founded upon rock, the cylinders are sunk to depths varying from 20 to 30 feet below the bed of the river, so as to preserve them against the scouring action of the tide. Before going loading them with a weight which is 33 per cent

greater than that of the two trains that they are calculated to support. The upper parts of the caissons of each pier are afterward connected at $11 / 2$ feet above high water by cast iron girders 8 feet in height, the interval being filled in, as in the caissons with brickwork and concrete. On top of the cylinders rise octagonal shafts connected by a semicircular arch upon which rest the principal girders. These latter are four in number upon the viaducts, properly so-called, and are cross-braced with diagonal stays, while on the bridge there are but two, which are much stronger, and are cross-braced above with secondary girders. The sections in Fig. 3 show these arrangements.
The construction and sinking of the caissons is effected by means of an entirely new apparatus, whose arrangements are due to the Messrs. Arrol, the contractors for the work, who likewise have in charge the construction of the gigantic bridge over the Firth of Forth. The apparatus consists of a metallic platform - composed of two main caissons of iron plate and a third one parallel with them. The three are connected by girders, which support a stage upon which are placed the pumps, hydraulic engine, material, etc. At each of the four corners of this pontoon thus formed is arranged a vertical wrought iron tubular leg, 5 feet in diameter and 64 in length. These cylinders are open below, and provided with a transverse partition $21 / 2$ feet above the cutting edge, in order to prevent them from entering the bed of the river to too great a depth. In the platform there are two large rectangular openings in which the cylindrical caissons, C, of the piers are constructed and sub merged. In order to perform these operations at any height of the sea, it is necessary that the platform shall be capable of rising and falling in situ. To this effect, each of the four columns is provided with two double vertical guide bars, B, (Fig. 5), of steel, which are diametrically opposite, 15 inches apart, and contain apertures 6 inches apart. Between these two bars move two plates, D D, which are connected with (Continued on page 20.)

Fig. 2.-CONSTRUCTION OF PIERS OF THE NEW TAY VIADUCT.

Srinutifir gmmicam.

ESTABLISHED 1845

MUNN \& CO., Editors and Proprietors. published weekly at
NO. 361 BROADWAY, NEW YORK.
o. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

One copy, one year. postage included....
One copy, six months, postage included.
Clubs.-One extra copy of The Scientific Ampric............................. 6 same proportionate rate. Postage prepaid.
Remit by postal order. Address
MUNN \& CO., 361 Broadway, corner of Franklin Street, New York.
The Scientific American Supplement
is a distinct paper from the ScIENTIFIC AMERICAN. THE SUPPLLEMENT wish ScIENTIFIC AMERICAN. T'erms of subscription for SUPPLEMENT, With SCIENTIFIC AMERICAN. Terms of subscription for SUPPLEMENT,
$\$ 5.00$ a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all newsdealers throughout the country.
Combined Rates.-The ScIENTIFIC
Combined Rates.-The Scientific American and Supplement will be sent for one year, postage free, on receipt of
papers to one address or different addresses as desired.
papers to one address or difierent addresses as desired.
The safest way to remit is by draft, postal order, or registered letter.
Scientific American Export Edition.
The Scientific American Export Edition is a large and splendid peri-
odical, issued once a month. Each number contains about one hundred large quarto pages, profusely illustrated, embracing : (1.) Most of the plates and pages of the four preceding weekly issues of the SCIENTIFIC AMER-
CAN. with its splendid engravings and valuable information; (2.) Commercial, trade, and manufacturing announcements of leading houses mercial, trade, and manufacturing announcements of leading houses.
Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the
word. wor.d. Single copies, 50 cents. Manufacturers and others who desire to secure foreign trade may have large and handsomely disp
nouncements published in this edition at a very moderate cost.
nouncements published in this edition at a very moderate cost.
The SCIENTIFIC AMERICAN Export Edition has a large guaranteed circulation in all commercial places throughout the world. Address MUNN \& CO., 361 Broadway, corner of Franklin Street, New York.

NEW YORK, SATURDAY, JANUARY 9, 1886.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT

NO. 523,

For the Week Ending January 9, 1886.

Price 10 cents. For sale by all newsdealers.
I. ENGINEERING.-Goubet's Submarine TorDedo Boat.-With full description of the boat, mechanism, etc., and a full page of illustrations..
Scientifi
machinery.-Tests of materials for steam engines.-Advantages of machinery.-Tests of materials for steam engines.-Advantages of
technical scbool training.- Effect of motion within floating bodies. -Cable roads, etc.-Teaching elements of physics to children...... Davies' System of Railway Rail Fastening-With full page de H. H . M . S. Irrawaddy,
dition- With engraving
Destruction of ordnance by bur.........................
The Vacuum Automatic Brake--Improve Igures.................. 8348 Description of the brake of the Vacuum Brake Company, London -With full page of illustrations.
Ir. G . Sire,-2
Dr. G. Sire. - 2 fikures.................
The Wackernie Filter.-2 figures.
Berthon
Berthon and Debenoit's Water Meter. - - figures............................. Forge and Workshop for Amateu
anvils.-Accessories, etc.- 6 figures
Intermittent Siphons.- -1 figure.
The Bertrand Mineralo
PHYSICS,
phone. -1 figure.
Disruptive Dischar.. TARQUEMand DAMIEN
The Telephone Litigation.-............ Do
The Telephone Question.-A letter.
he ferphone Question.-A letter.................................. Part played by the then Electro-Magnetic steel diaphragmene Transmitter. The Glynde Telpher Line.-Inauguration of the line.-Descrin. tion of the line, motor, etc.--3 engravings....................... 8
Can a Celestial Body fall to the Center of its Attraction ?-A letter...
IV. Horticulture, ETC.-A Common Edible Fungus.-Manner of recognizing it.-Modes of conking the Agaricus procerus. -3 ilHYGIENE, MEDICINE, ETC.-The American Public Health As-
 Unilateral Hallucinations.-An interesting paper read by WM.
A. HAMMOND, M.D., before the New York Neurological Society... 8 A. HAMMOND. M.D., before the New York Neurological
I. GEOLOGY.-Uintahite Asphaltum.-By Prof. W. P. Blake.-Ap pearance of the mineral, properties, etc.
vii. miscell aneous.-An Iron Pillar in the Punjab (Hindostan),

ELECTRIC LIGHT ON CAPTIVE BALLOONS.

The trials recently inade in England of electrical sig nalizing from captive balloons show that an important service may be rendered by this means, both in peace and war. Of course, it does not require the use of the electric light to signal from captive balloons, for such service has been had in recent wars by the aid of flags by day and colored lights by night. But balloons for this service must be large and cumbersome for carriage in an army train, and have sufficient buoyancy to sustain the weight of a man in mid-air with safety, whereas by the use of electricity the same service can be performed by a small and inexpensive balloon, and one that can be readily transported. The incandescent electric light is peculiarly adapted for this work. It can soon be made as powerful as the arc light, and can be fed by a wire, say of silicious bronze, so fine as to be lost from sight in the line holding the balloon, even though that line be an ordinary cod-line; and the wire is so light that a single man can carry several miles of it.
It requires, as we know, only two characters or visigramovements to send the longest message. In telegraphy the dot and the dash or the short and long sound and their combinations are used. In the army wig-wag system, a flag moved to right and left during the day, and a white light moved over a stationary red one at night, are readily made to answer the same purpose. From this it will be seen that a flash light, that is to say, one which can be made to glow or disappear at pleasure, may be made to furnish the required number of movements. Thus the electric light, which may be controlled as rapidly as a telegraphic sounder makes and breaks the circuit, can be used as the medium of transmitting information.
The trained armies of to-day lay a military tele graph along the line of their communications as they march, and usually separate ones to various points of their advanced picket-line, but often they have no other means of communicating with supporting columns coming from various directions, or main lines, save that afforded by the uncertain courier. At established headquarters balloons are often used, but in marching columns they are too cumbersome, and require too much time to prepare for operation. The electric balloon, on the other hand, can be carried by one man without inconvenience, and all its apparatus stowed away in a corner of one of the caissons of the artillery train. Such a light as one of these balloons could support might be seen for a great many miles on a clear night; and by means of a constant variation of the signal code, the enemy kept in ignorance of the contents of the dispatches. These balloons might also prove of great value as an auxiliary to the Weather Bureau. In the vicinity of harbors the very earliest intelligence as to advancing storms might thus be conveyed to the masters of ships who have already cleared and are making their way seaward. The present arrangement of setting storm signals upon high buildings or staffs overlooking harbors is an excellent one as far as it goes, but.it cannot always be seen far enough and every time it is set in a great port like New York or Boston or Baltimore, sailing
vessels are already beyond its range of visibility in the open sea. Such a signal as could be furnished from a captive balloon could be seen far out on the coast; and should that signal warn them that a storm was approaching from the very direction in which they were bound, it would enable them to make a harbor or get under a lee where they could ride it out in safety.

Mechanical Substitute for a Horse

Chambers's Journal mentions a gentleman who, being prevented, by physical disqualification, from continu ing the exercise on horseback which had always been so beneficial to his health, was possessed with the singular notion that it woutd be possible to construct a ma chine which, when seated upon, could be made to evolve the same action as a galloping horse. The inventor made his machine; it answered its purpose to his complete satisfaction; and the device having been patented, it has recently been manufactured and brought before the public. Whimsical as is the pur pose of the machine, it has, upon trial, been commended by many medical authorities, and won no little favor The "rider" seats himself upon an ordinary leathe saddle, his feet being in fixed stirrups, and his hands grasping a handle attached to a metal projection. The saddle is firmly attached to a small wooden platform below by means of metal connections. This platform is suspended by leather straps from the topmost ex tremities of four semicircular steel springs, which are firmly attached at the bottom to the metal foundation of the machine. Seated upon the saddle, the operator can be swayed about in all directions.
Beneath the platform are four padded buffers-cor responding to the horse's feet-and by the weight and motion of the operator's body these buffers strike or bump, at each depression, upon the foundation below, so that, with a little practice, an automatic imitation of horse exercise can be produced. The movement can be made either very easy or very violent. By the full
use of the handle, a good muscular action is given to the chest and lungs. For invalids and all of a weak bodily constitution, the machine is strongly recom mended. It is adjustable for the use of persons of dif ferent stature and weight; and for those condemned to sedentary employment, its daily use is said to be at tended with beneficial results.

Cheap Sodium

The manufacture of cheap sodium by an electrolytic process has been announced in France. An engineer of Lyons, M. Lossier, states that he will soon be in a position to sell sodium in large quantities at a price of about 25 centimes per kilo, not much over one penny a pound. There would be no necessity for such an extremely low figure to be reached to insure a very large demand for the material. The process of M. Lossier consists, it appears, in decomposing, with an electric current, the chloride of sodium at a temperature of 900 deg . C., and it appears incredible that by any such process the price named is not absurdly low. In Frocess the price named indeed, sea salt, which costs about $21 / 2$ centimes France, indeed, sea salt, which costs about $21 / 2$ centimes
the kilo to obtain, is sold wholesale at 10 centimes the the kilo to obtain, is sold wholesal
kilo, the duty being considerable.
It appears that 3 kilos of salt are required to produce 1 kilo of chloride of sodium. It follows that, at current prices, the sodium not extracted from the combination is worth 30 centimes the kilo, to which must be added the cost of fuel for melting and heating the salt, the expense of producing the current, general expenses, profits, interest, and depreciation, which would be extremely high. The price of 25 centimes appears therefore to be far too low, even if the salt be valued at the prime cost of production. It may be remarked that marine salt is at once one of the cheapest and most abundant materials known in commerce. Engineering says that if we assume a moderate area and depth of that portion of the globe covered by the ocean, the quantity of salt that it contains is estimated at six times the volume of the Alps. Unlike coal, the supply of which is being gradually but surely exhausted, marine salt is absolutely inexhaustible. It is therefore essentially a raw material of high value, for which many applications have yet to be discovered.

Uses of Sulphuric Acid.

Some of M. Pasteur's latest experiments have proved that water containing two per cent of concentrated sul phuric acid possesses the property of destroying bac teria, and this mixture of acid and water is recommend ed for disinfecting efficaciously the floors of stables, nangers, cattle stalls, courtyards, areas of dwellings, dust bins, etc. Sulphuric acid, properly diluted, is a valuable cooling and astringent remedy. It is used to acidify certain decoctions or infusions. Only the dilute acid (in most countries, one part pure acid, nine parts water) is ever used medicinally. Ten to twenty-four drops of this dilute pharmaceutical acid will give an agreeable acidity to one quart of the infusion or other liquid. As many fever patients are fed principally on milk, care must be taken never to give liquids contain ing sulphuric acid or acid lemonades of any kind too soon after milk has been given, otherwise it may pro duce unpleasant symptoms of indigestion. In France, an alcoholized sulphuric acid is sometimes used. It is made by adding concentrated sulphuric acid, 100 parts, to alcohol (of 85 per cent), 300 parts, and is generally colored red by the addition of 4 parts of the petals of the red poppy. Sulphuric lemonade is made from this according to the formula:

Alcoholized sulphuric acid
Simple sirup.
This is also known as " mineral lemonade."-Chem and Druggist.

A Dead Black Paint.

The Locomotive, issued monthly by the Hartford Steam Boiler and Inspection Company, gives the following receipt for painting brass tubes, and such arti cles as optical instrument makers produce, a "dead black." The writer says he has found all the formulæ and recipes given in the books unsatisfactory because of their vagueness, but that the following can be relied upon to give a first-rate dead black, and it is easily made:
Take two grains of lampblack, put it into any smooth, shallow dish, such as a saucer or small butter plate, add a little gold size, and thoroughly mix the two together. Just enough gold size should be used to hold the lampblack together. About three drops of such size as may be had by dipping the point of a lead pencil about half an inch into the gold size will be found right for the above quantity of lampblack; it should be added a drop at a time, however. After the lampblack and size are thoroughly mixed and worked, add twenty-four drops of turpentine, and again mix and work. It is then ready for use. Apply it thin with a camel's hair brush; and when it is thoroughly dry, the articles will have as fine a dead black as they did when they came from the optician's hands.

PHOTOGRAPHIC NOTES.

Novel Detective Cameras.-At a recent meeting of the Society of Amateur Photographers in this city, two novel cameras were shown. One, called a vest camera, the invention of Mr. R. D. Gray, consisted of a circular case of metal nicely nickel plated, about seven inches in diameter and two inches thick, divided by a thin blackened metal partition on the inside, having a small truncated aperture cut between the center and its outer edge. Upon the front side of the partition, held in close contact with it by a small pressure spring, was a rotating shutter propelled by a flat coiled steel spring, and provided with four apertures similar in size and shape to that in the partition.
A shaft or spindle passed through the center of the partition, to which the spring of the shutter was attached, and around which the shutter loosely revolved. The end of the spindle passing to the rear of the partition terminated in a disk two inches in diameter, upon which the sensitive plate, cut in the shape of an octagon, rested. A pawl and ratchet wheel just under the disk prevented the spindle from rotating backward, and at the same time served to hold the spring of the shutter to any desired tension.
The front face of the case, carrying a small lens made to imitate a good sized button, slipped over the rim, and was attached thereto by a bayonet joint; through the center projected the front end of the spindle, on the end of which was screwed a small black buttor, having a slight brass projection at its edge, intended to serve as a guide when rotating the plate, that the op
may know where his first exposure was located.

A simple spring release device for the shutt

arranged on the inside rim of the case, operated by pulling a string which passed to the outside and was long enough to come down under a vest to the waist of the operator.
The back of the case had on its inside, near the center, a flat spring, which, as the back was attached to the rim by a bayonet joint, pressed upon the back face of the rotating disk, previously mentioned.
A false vest, made of stiff "hatter's" material, had on its rear side a leather pocket, into which the metal case was put, and through special openings (the edges
of which were covered with binding), the lens tube of which were covered with binding), the lens tube
and spindle projected. A flat cord passing over the and spindle projected. A flat cord passing over the
back of the neck suspends the vest in position; and, back of the neck suspends the vest in position; and,
when the coat is buttoned near the neck, over the false vest, the lens tube appears to be like a button on the coat, and is remarkably deceptive.
To operate the camera, it is only necessary, when opposite and within the proper distance of the object, to pull the string, hanging slightly below the bottom of the vest, which releases the shutter, and makes the exposure, without attracting the attention of any one. The small knob on the front end of the spindle is then rotated to the right until a click is heard inside, which indicates that the sensitive plate has been revolved forward sufficient to receive a new impression, at the same time the coiled spring is wound up equivalent to the amount it was uncoiled when operating the shutter, so that the speed of the latter, though moving continually forward in one direction, will be uniform.
Each plate will receive eight impressions, and when full may be replaced by a fresh plate in the usual dark room. All the images have to be developed together in one solution; and as the exposures have been uniform, the pictures usually develop out equally. The exposure may be made very rapidly, as it is not necessary to operate any plate holder.
We have seen several negatives, and enlargements from the same, made by the apparatus, which were so
well done that they fully demonstrated its practicability, and proved it to be a truly detective camera. We should mention that by unscrewing the lens button a certain number of turns, the focus is regulated to suit different distances. Another advantage is that pictures can be secured while in the act of walking, leaving the hands perfectly free.
The other camera referred to was in the shape of a large opera or field glass, shown by Mr. C. Volney King, and arranged for him by Mr. Wm. T. Gregg, of this city. On the small end of one tube was the lens, behind it the shutter, a rotating disk actuated by a coiled flat steel spring, and released by a small trigger, while at the large end was fitted a case to hold the small sensitive plate. The circle of the picture is $21 / 8$ inches in diameter. In the other tube was a similar lens, but at the large end was a ground glass. The operator, after drawing out the slide of the miniature plate holder, had, in order to take the picture, only to reverse the opera glass, Iook at the object through the large end, and focus by working the usual central screw with the thumb and middle usual central screw with the thumb and middle
finger then, when all was ready, press the releasing trigger with the little finger, which made the exposure. When the image was sharp on the ground glass, it would also be on the sensitive plate, as both were in the same plane. It was only necessary to put in a fresh plate to take successive pictures, and these being small were easily carried about in the pocket. The
pictures could be enlarged without difficulty, and
were the correct size for the magic lantern. Being small, compact, light, and portable, and in the form of an article in common use, the camera possessed many advantages not found in ordinary so-called detective cameras.
To Prevent the Curling of Gelatine Paper Prints.After the print has been fixed and washed, it is immersed for a few minutes in a five per cent solution of glycerine and water; then removed, and directly squeegeed on a sheet of smooth hard rubber, then left to dry. When pulled off, it will lie as flat as a sheet of glass.

other at Sea

The number of directions in which experiments are being made with electricity is almost numberless. Prof. Bell, in a recent interview, stated that similar conclusions had been reached by himself and Prof. Trowbridge as to a means of vessels communicating with each other at sea, as follows:
" Most of the passenger steamships have dynamo engines, and are electrically lighted. Suppose, for instance, one of them should trail a wire a mile long, or any length, which is connected with the dynamo engine and electrically charged. The wire would practically have a ground connection by trailing in the water, at least, the result would be the same. Suppose you attach a telephone to the end on board of a ship. Then your dynamo or telephone end would be positive, and the other end of the wire trailing behind would be negative. All of the water about the ship will be positive within a circle whose radius is one-half of the length of the wire. All of the water about the trailing end of the wire will be negative within a circle whose radius is the other half of the wire. If your wire is one mile long, there is then a large area of water about the ship which is affected either positively or negatively by the dynamo engine and the electrically charged wire. It will be impossible for any ship or object to approach within the water so charged in relation to your ship, without the telephone telling the whole story to the listening ear. Now, if a ship coming in this area also has a similar apparatus, the two vessels can communicate with each other by their telephones. If they are enveloped in a fog, they can keep out of each other's way. The ship having the telephone can detect other ships in its track, and keep out of 'the way in a fog or storm. The matter is so simple that I hope our ocean steanships will experiment with it. The principle is not new; it is old, with a new use waiting for commerce to utilize it. I have experimented on for commerce to utilize it. I have experimented on
the Potomac, and marveled at the simplicity of the apparatns and the stupendous importance of the results."

Fire Dangers from Steam Pipes and Hot Air Flues.
In the course of a recent lecture by Dr. Tanner before the Louisville Board of Underwriters, the subject of fires caused by steam pipes and hot air flues was discussed at considerable length. In the course of his address, Dr. Tanner spoke as follows:
Mr. James Braid
Mr. James Braidwood, who was for many years chief of the London Fire Brigade, made the startling statement in 1846 that it was his belief that "by long exposure to heat not exceeding 212 deg . timber is brought into such a condition that it will fire without the application of light. The time during which this process
will go on until it ends in spontaneous combustion is will go on until it ends in spontaneous combustion is
from eight to ten years, so that a fire might be hatching in a man's premises during the whole time of his lease without making any sign." Among the many instances cited by Mr. Braidwood in support of this statement is one to the effect that a fire in the Bank of England was traced to a stove which was resting on a cast iron plate one inch thick, this in turn resting on concrete two and a half inches thick, which was sup-
ported by wooden joists, the joists under the sto ve igniting. If this is a cause of fire, then the majority of houses heated by means of steam, hot water, and hot air are in constant danger of from spontaneous combustion, since the general impression prevails that the pipes and flues for heating can with impunity be placed in contact with timber.
In examining this cause of fires, the first question is whether wood will char at as low a temperature as 212 deg. In tearing down houses for the purpose of rebuilding, the timber in contact with the heating pipes
and flues has often been found charred. Chareoal is and flues has often been found charred. Chareoal is made for certain purposes in the arts at 300 deg . A the result of experiments performed by myself in the
laboratory, small pieces of white pine heated a few hours in an air bath at a temperature of 300 deg . were partially converted into charcoal. Considering these facts, it must be admitted the temperature of 212 deg . is sufficient, if applied for a long time, to convert wood
into a partially burned charcoal. Accepting this as a fact, the next point to consider is the degree of heat at which charcoal will ignite. Made from the same wood at different temperatures, the products ignite accordingly; that is, if made at a low heat, it fires from a cor mined experimentally that low it has been deter
der, when made at 500 deg., would fire spontaneously at 680 deg ., and when wood has been carbonized at 260 deg., a temperature of 340 deg . only was required for spontaneous ignition. Under certain circumstances, charcoal made at a temperature of 500 deg . even will ignite when heated to 212 deg .
So far the discussion of heating pipes and flues as a cause of spontaneous fires has been upon the false idea that they are never heated beyond 212 deg. Under the ordinary pressure of the atmosphere, as when water is heated in the open air, it boils at 212 deg., but if it is heated under pressure, the boiling temperature increases accordingly; for instance, water boiling at a temperature of 212 deg . is under a pressure 147 pounds, equal to a column of water one inch square and about thirty feet high; if the pressure is increased to two at mospheres, the temperature required will increase to 249 deg ., and so on, so that when a steam gauge registers 60 the actual pressure is 75 pounds, and the temperature at which the water is boiling as high as 307 deg. The higher the house, the greater must be the pressure, and hence the higher the temperature at which the water boils, and it follows that the pipes must heat hot accordingly, and it is stated that in some systems of water heating the pipes have the water started through them at a temperature of 350 deg .*
Then, where furnaces are used for heating, the temperature in a flue has been found to be 300 deg., at a distance of fifty feet from the fire. Couple these figures with those given in reference to the heat necessary to produce charcoal and cause its ignition, and it must be admitted that these pipes and flues for heating are responsible for niany fires. 'The application of these facts is as follows: After long exposure, the wood in contact with the heating pipes and flues is changed on the surface to charcoal. During the warm season this charred surface absorbs moisture from the air; then in the fall comes a cold spell and heat is turned on, when the moisture is driven from the pores of the charcoal, leaving it in a condition to readily absorb gases. The cold abates and the heat is lowered; fresh air in abundance then passes into the confined spaces where the pipes are generally placed, rapid absorption of oxygen from the air by the charcoal follows, with heating and spontaneous firing as already explained.
The body of the timber is heated, and this heat prevents too rapid cooling of the charred surface when the fresh air passes in, otherwise the charcoal would be placed under circumstances unfavorable to ignition. The experiment of burning iron filings in the flame of a spirit lamp illustrates the influence of division upon the igniting point; now, if the iron is in a pulverulent state, as when made by hydrogen, it will, when freshly made, ignite to a red heat when shaken into the air. Then, if it is true, as stated by an English scientist, that the oxide of iron, if placed in contact with timber and excluded from the air, and aided by a slightly increased temperature, will part with its oxygen and be converted into very finely divided particles of metallic iron, here is another cause of fires from heating pipes. For during the summer the pipes rust, and then when heated the rust is reduced, leaving the metallic iron in the same condition as that made by hydrogen; the temperature is lowered, fresh air appears, and oxygen is rapidly taken up by the finely divided iron, each particle beating so rapidly as to give a red heat to the mass.
I have not been able to prove this experimentally; but as carbon is able to overcome quite strong chemical affinities, and will reduce the oxide under strong heat, theoretically it is possible, and the authorities all tend to prove it. Considering all the points bearing upon hot water and steam pipes, also heating flues, an explanatiorf is found of the great number of fires occurring at the approach of winter, and which are reported as from defective flues, supposed incendiary origin, or causes unknown. Steam pipes packed in sawdust or shavings to retain the heat while steam is conveyed to distance have given fires. One peculiar and important instance is on record of a fire from steam pipes. In the drying room of a woolen mill, a pine board was placed some three or four inches above the steam pipes to prevent wool fromfalling upon them. A fire followed, and after being put out, a careful examination determined to the satisfaction of all, that the heat of the pipes had distilled the pitch from several knots in the pine board, and this dropping on the pipes had ignited and caused the fire. The illustration needs no comment, as the lesson is too plain to need pointing out.

Every one has a cure for sore throat, but simple remedies appear to be most effectual. Salt and water is used by many as a gargle, but a little alum and honey dissolved in sage tea is better. An application of cloths wrung out of hot water and applied to the neck, changing as often as they begin to cool, has the most potency for removing inflammation of anything we ever tried. It should be kept up for a number of hours; during the evening is the usually most convenient time for applying this remedy.
By the system of low pressure steam heating, which is far the most generally used, the pressure is only from 5 to 7 pounds above that of the
atmosphere, with a corresponding temperature of 228 deg. to 235 deg . F.

Safety Railway Couplings.

The Amalgamated Society of Railway Servants ha invited all owners and inventors of improved safety railway carriage or wagon couplings to communicate with its secretary at the rooms of the Society, 306 City Road, London, E. C., with a view of giving their inventions a practical trial in actual service. The sum of $£ 500$ has been set aside by the Society for this purpose. The desirability of such an action is shown by the statistics of the past few years. During the year 1884, 130 persons in Great Britain were killed while shunting cars, and 1,305 were injured. During the seven years preceding 1885, the yearly average of accidents gave 154 killed and 1,322 injured from this cause. In the United States, 459 men were killed in the same manner during 1884.
It is estimated that one man is killed here for each 765,000 freight-train miles, while in England the record is somewhat better, being one man to each $1,010,000$ miles. Our readers are familiar with the effort of the Master Car Builders' Association in attempting to decide upon the best coupler among the many good ones of American inventions, and their desire to have it uniformly adopted on all American roads. The problem is somewhat less complicated in England on account of the uniformity of the central drawbar and chain, but it is stated that no satisfactory substitute for the simple hand coupler now in use has yet been invented.

VEHICLE SPRING.

Clips hold the front spring and the front ends of the perches connected with the rear axle to the head block, the nuts of the clips being in recesses in the bottom edges of the block; the rear spring is secured to the center of the axle in the usualmanner. The ends of these

CAIN'S VEHICLE SPRING

springs are pivotally connected at their outer ends with the four corners of the vehicle body. Longitudinally along the center of the under side of the body is attached a strip or sill, to which the thicker inner ends of brace springs are secured. These springs extend to the ends of the box, and their outer ends are curved and fastened to bolts held on the ends of inwardly and upwardly projecting prongs, held on the head block by the clips and the king bolt, and on the rear axle by clips. The center of the body is thus supported from the front and rear axles. The vehicle rides very easily and gently, as the several springs co-operate, and no side bars, side springs, nor spring bars are required.
This invention has been patented by Mr. Cornelius H. Cain, of 1223 Olive Street, St. Louis, Mo.

IMPROVED PLOW

The share is formed solid with the short landside, and fits into a recess in the lower forward part of the extension or long landside. This extension is strengthened and stiffened by flanges and ribs, as shown in the engraving, and is formed with holes that receive the bolts for fastening the landside plate in position; this construction allows the extension to be made lighter than would otherwise be practicable, and at the same time provides a secure and firm support for the plate. Upon

HODGSON'S IMPROVED PLOW

the inner forward part of the landside are lugs (shown by the full and dotted lines), that receive the bolts holding the share and mouldboard in place; theselugs allow the share and mouldboard to be fitted into place more easily than would be possible if a solid frog or dead lay were used. The lug can be so formed that the same landside can be used with either a single
shim or double shim mouldboard. The heel is secured to the landside by a bolt passing through two parallel lugs projecting upward from the middle part, the landside entering between the lugs. The projecting side parts of the heel are made narrower at their outer ends, and the narrow end of the outside one is placed for-

WORRELL'S "WEB" DRIER.
ward. The outer part of the heel is forced into the soil at the base of the shoulder of the furrow, thereby giving steadiness to the plow. When one side becomes worn, the heel can be detached and reversed. If desired, the lugs can be extended, and connected at their ends to form an open welded or cast frog, to be used instead of a solid frog or dead lay when applied to a steel, cast iron, or wrought iron landside
This plow is the invention of Mr. W. H. Hodgson Gen. Mgr. of the Winona Plow Co., of Winona, Minn.

IMPROVED DRIER FOR DAMP GRAIN, GLUCOSE, STARCH,

 ETC.We herewith illustrate a new invention for drying starch and glucose refuse, brewers' grains, distillery slops, and substances of a similar character, which, from their glutinous nature, have not heretofore been successfully operated upon by existing drying machines. It is also well adapted for handling damp grain and granulated tobacco. The main feature is an endless web or belt of galvanized wire cloth drawn over two large rollers, one journaled at each end of the machine. The edges of this web are sustained by iron plates, which also prevent the escape of hot air at the sides. A number of "idlers" are also provided for sup porting the wire cloth and material being dried. The furnace is underneath the drying belt, the firebox being in the middle, and from each side of this extend a number of cast iron heating pipes, that discharge into a soot box at each end of the drier. The entire heating apparatus is covered by dust shields. The brickwork around the furnace prevents the loss of heat by radia tion, and furnishes a substantial support for the running gear. Numerous small gates are placed in the bottom of this wall for regulating the distribution of the air currents. The furnace presents a large amount of heating surfaces, means forproducing a regular radiation of heat, and easy access for cleaning purposes. Any kind of fuel can be used.
The top of the machine is a close-fitting sheet iron cover, to which is connected the suction spout of a powerful exhaust fan, seen in the top of the cut, to accelerate the upward movement of the hot air, which is the sole drying agent. Drain pipes are supplied for disposing of the condensed water that collects on the interior of the iron cover. Motion is transmitted to the drying web by worm gearing, shown at the extreme right
In operation, the damp material is spread to an even thickness across the entire width of the upper wire cloth by a sifting device in the bottom of the hopper, at the lef t of the cut. This action leaves the substance to be dried in a loose, porous condition, so that the air can freely pass through it. By the movement of the web the material is now carried into the machine, where the heat brings the moisture to the surfaces of the particles, and it is absorbed by the air and carried up and discharged through the blower. This action is continued until the material reaches the opposite end of the machine, where it is discharged in a thoroughly dry condition. A revolving brush under the delivery roller removes any particles that may adhere to the wire cloth.
This invention has been patented by Mr. Stanley E. Worrell, of Hannibal, Mo.

Powdered rice is said to have a great effect in stopping bleeding from fresh wounds.

Ships Signals.
Mr. Donald C. Grant, one of the Forth Bridge staff, according to the Engineer, is bringing out a new form of signal for use at sea to indicate to other ships the direction of movement of the helm, so as to avoid collision with ships close up. He does not propose to supersede the side lights at present employed, but only to supplement them. The officer on watch is supplied with a couple of signals small enough to be carried in a breast coat-pocket of ordina ry capacity.
Should he wish to indicate that his vessel is on the port tack, he takes a signal-with a round handle and colored red-from his pocket, and fires it by giving it a slight tap. The result is a brilliant red light.
After this light has burned for about 30 seconds, it explodes a small maroon, the report of which can be heard a mile off, and after this the light continues to burn for another 30 seconds. The process of firing the starboard tack signal is, of course, the same, the result being a green light, but in this case the handle is square, light, but in this case the handle is square,
this difference of form making it easy in the dark to distinguish the right signal to be employed.

VEHICLE WHEEL.

Fig. 1 is a cross sectional elevation, and Fig. 2 is a front view, of the front ring of a vehicle wheel invented by Mr. Henry B. Weinstock, of Fall Creek, Wis. On the front and rear ends of the tapered hub-thimble,
 A, are the sand guard flanges, B, C. Cast on the thimble a short distance from the front end is a ring or lug, F ; and at he rear end is a ring of pockets, G, provided with pins and open toward the front Fitting on the ront end of the thimble is the ring, J formed with three longiudinal grooves, K, in its inner side for receiving tap ered keys cast on the thimble. This ing has as many pockets as there are pockets, G, on the thimble. The ends of the rear spokes are placed in the pockets, G, the pins passing into the outer faces of the spokes, and the ends of the front spokes are placed in the pockets in the ring, the pins entering their outer edges. The outer ends of the spokes are mortised in a wide felly. The ring, J is held by bolts, the heads of which are held in recessed lugs on the thimble, as shown clearly in Fig. 1. This construction forms a strong and durable wheel.
an automatic and non-Freezing stock watering TROUGH.
Farmers and stock raisers will find, in the contriv Farmers and stock raisers will find, in the contriv-
ance for watering stock herewith illustrated, a con-

BOIES' STOCK WȦATERING TROUGH,
struction calculated to save time and trouble, promote cleanliness, prevent waste of water, and yet always perform the service required. The platform in front of the trough is arranged to have an up and down movement, and is so connected by short rods, and a crank rod and crank arms, with the cover that when the hog or other animal steps upon it the cover will-be
raised, as seen in the illustration; and when the animal steps off, the platform will return to its normal position, and the cover will automatically close over the trough, the cross bars across the top preventing the stock from putting their feet in the trough, and defiling the water. The trough is made in two compartments, of which the one at the left, in the engraving, receives water direct from a tank or reservoir. This compartment is connected with the other by an opening, so that the water will always stand at the same height in both compartments, but the height of the water in the first division is controlled by a stop cock

mofarlands dumping wagon.
actuated by a float, which admits water when it falls below a certain level and cuts off the supply as it rises above that level, so that there can be no overflow or waste of water. The sides, ends, and bottoms of the trough, and its covers, are all made with double walls, the space between them being carefully packed with asbestos millboard, as a non-conductor of cold or heat, making a substantial protection against the freezing of the water in cold weather, a difficulty which many of the farmers in some our Western States, where water is scarce, have found to be a most serious one. The cover has a small aperture with which the interior of the trough may be ventilated, and the interior partitions are so made that they can be readily removed for cleaning.
This invention has been patented by Mr. Thaddeus W. Boies, of Beloit, Kan.

INSECT DESTROYER.

During the past summer the insect destroyer shown in the accompanying engraving gave most satisfactory results during thorough and practical tests by the inventor, Mr. Dud ey H. Manning of Sibley, Iowa The under sur The under sur face of the coni cal top, through the center of which the chim ney passes, is bright, as are also he partitions the partition ward from the upright of the frame and carry the ocket for receiv ing the lamp.
Panes of glass are held between the inclined inner edges of these par titions thus forming an inverted conical glass casin around the lamp. The entire apparatus is placed on top of a vessel partly filled with water. The various mirrors reflect the light upon the water, illuminating it very brightly. Insects of nocturnal habits-moths, beetles, etc.--fly toward the light and into the brightly illuminated water, where they perish, or, striking the cone, are thrown downward into the water. An inverted conical ring placed just above the water prevents their escape. The water in the pail may be poisoned or may be sweetened. The top can be easily detached from the base, and the whole apparatus can be carried from place to place by the bail.

Messrs. Pears, the celebrated English soap makers, and remarkable for the extent and novelty of their advertisements, offered some time ago a prize of $£ 100$ for the best essay on "The Depression of Trade." The general purport of the essays is to the effect that de pressions are periodical, and followed by activity; that the present depression is not worse than others that have preceded it; that a future of prosperity must be close at hand; that the causes of the depression are most complex, and the remedies must be similarly various. Street, in that city. part of the pedestal to which the legs are welded, and on the other pin is a die shaped to forge the inclined inside of the pedestal.

Fastened between the plates by pins is a center bar, Fig. 3, which reaches to and enters a recess in the bottom of the hammer head. The dabs to be welded are placed between the bushing and:die, when the hammer head strikes the dab through the center bar and forges it to the leg, as shown by the dotted lines, Fig. 3. The bushing and its pin, and the center bar, are then removed, and the leg of the pedestal is placed between the plates and against the die, when the bushing is replaced. The pedestal of the frame under the hammer to the

AN IMPROVED DUMPING WAGON.

From the accompanying picture the reader can readily understand the general principles on which this wagon is built, but it has some novel features calculated to attract the attention of makers and users of wagons of this character. The box and its supporting frame are slightly wider at the rear than in front, yet the guide pieces are made to work back and forth in parallel lines, so that the box will readily free the load in dumping, while the gear for moving the box is at the back of the chair of the wagon, where the front wheels will come back of it and not interfere with movement of the box. pavement. and wagons are being made according thereto at the factory of Mr. William Tingley, No. 231 East Main

HAMMER FOR WELDING LOCOMOTIVE FRAMES

Near the center of the base plate is mounted a steam hammer, grouped in a circle around which are three furnaces, the one in front being provided with two fires and used for heating the main frame and braces, and the side ones for heating the legs of the pedestals. In the front edges of the standards of the hammer are grooved guides, in which slides the hammer head, pro vided with removable plates carrying the various dies used in welding the different parts of the frame. The anvil is made with an extension placed between the standards, and fastened by a bolt and nut to the base plate of the hammer. A slot in the extension, through which the bolt passes, makes the anvil adjustable, so as to weld on its center or on its front horn, as desired. On top of the anvil are guide stops, against which rests the rear edge of the pedestal of the frame while being welded, and it is provided on each side with pivoted catches to hold the pedestal in place. At each side of the standards is a davit for lifting and swinging the legs of the pedestal to and from the hammer and side furnaces. The main base plate carries a swinging crane having chains, pulleys, runners, etc., to which the pedestal of the frame is attached near its ends, so as to be easily manipulated under the hammer, and be swung to and from the main furnace. Passing through holes near the lower ends of the side plates are steel pins; on one pin is a bushing for forging the rounded outsid to which the leg is to be welded having been formed
turning the wagons in short curves The operation of the shafts and intermeshing gear wheels, in connec tion with the connecting rod and rack, for moving the box of the wagon back and forward, will be readily understood from the engraving, there being hooked guide plates on the sliding frame of the box that engage pinions on the sills of the wagon to limit the backward

Thereare also plates on the for ward end of the sliding frame of the box, which lock in loops on the sills as the box is moved forward, the locking devices preventing bouncing of the box when the wagon is going over rough roads or

This invention has been patent ed by Mr. James McFarland, of 235 Main St., Louisville, Kentucky,

JAMES HAMMER FOR WELDING LOCOMOTIVE FRAMES.
steel cutter that assists in welding, and cuts the sides to the proper size of the pedestals. The leg can be taken from the plates by removing the bushing. Fig. 4 is a front elevation of the hammer block, showing a die for welding the braces to the frame. The braces are heated with the main frame over the front furnace, which is provided with two fires.
The difficulty of obtaining perfectly welded locomotive frames by blows of heavy sledges is well known; but by means of the hammer above described each weld can be perfectly made, and the parts can be easily handled and brought under the hammer. The inventor of this hammer, Mr. John R. James, of Dunkirk, N. Y., is confident that with this hammer and the aid of three men he can do more and far superior work than with seven men in the old way.

PACKING FOR STEAM PIPE JOINT.

The accompanying illustration represents two meet ing lengths of pipe, each of which is threaded to en gage with an internally threaded coupling flange. The flanges are united by bolts in the ordinary way, but instead of the usual rubber or soft metal packing ring, a steel or iron ring is placed between the flanges. This ring consists essentially of two or more concentric ridges projecting from each side of a central web. The bearing edges of these ridges are V-shaped, and all are of the same height; and, being sharp and preferably made of steel, they will, to a certain extent, cut into the flanges. It will be seen that the packing ring may

lyons' packing for steam pipe joint.
be used upon the ordinary form of flanged coupling plece, without the slightest alteration of the coupling This packing is more particularly designed for us when the joint is subjected to a high degree of heat.
This invention has been patented by Mr. J. B. Lyons further particulars can be obtained by addressing F. L. Hirschmann, M.D., of Norway, Mich.

Artificial Leather.

Artificial leather is, according to a French invention recently patented, made by a cotton fabric, the warp threads of which are very slightly twisted, and the weft threads of which are finer than usual. This fabric is serrated on both sides, and immersed in a preparation consisting of a decoction of linseed, rabbit skin glue, linseed oil, and coloring matter. When the fabis impregnated with this preparation, it is stretched upon a polished zinc plate laid upon a steam heated hot
desired shape for the lower end of the leg, the plate, the drying being continued untilthe aqueous porframe is swung from the main furnace to the anvil, tion is entirely evaporated. It is claimed that this arti and the heated leg set in position on it, as shown ficial leather is an excellent imitation of the real thing. by the dotted lines in Fig. 1. The hammer head then strikes the top of the leg and forges it to the pedestal, the bushing, die, and side plates acting as guides for the leg. On the lower end of the outer plate is a insulated. the leg. On the lower end of the outer plate is a insulated.

FARADAY proved the magnetic condition of matter and that magnetism, unlike electricity, cannot be

the new tay viaduct.

Continued from first page).

the platform, and are provided with apertures of the same diameter and spacing as the preceding. Moreover, the plates, D D, are provided with a longitudinal grove of a length equal to that of the stroke of the piston of the hydraulic engine. The ascent is effected as follows: Let us suppose the piston at the end of its stroke; the apparatus is keyed by passing a steel pin into the apertures of the guide bars, B, and into the head, I, of the piston. The admission of water above the latter presses the pin against the bars, B, and, as the column with which these are connected is bearing against the ground, the cylinder, \mathbf{E}, is forced to rise and carry along the plates, D, along with the platform. When the entire affair has risen 6 inches, the apertures in the plates, D, come opposite those in the bars, B B, and a second pin is then passed into the corresponding apertures under the piston. The water contained in the cylinder, \mathbf{E}, is then expelled, and the platform rests upon the lower pin that has just been inserted, thus allowing the other one to be removed. It is now only necessary to cause the piston to rise, and to replace the first pfn, to prepare the system for an ascent. The descent is effected by proceeding in just the opposite way. The two cylin ders, E, of each column are always conjugate, and can, when necessary, be joined to those of the other columns.
The method employed for submerging the cylindrical caissons is based upon the same principle. The caissons weigh, on an average, 50 tons, inclusive of the brick filling which is put in during the sinking. Four rods, L, of square section (Nos. 2 and 3, Fig. 5) are fixed at their lower end to a strong disk riveted to the caisson, and slide in a piston having a hollow rod, P , movable in a cylinder, A, on the platform. This cylinder is surmounted by a crosspiece, B (Fig. 5), which gives passage to the rods, L, which latter contain three rectangular apertures. When at rest, a bar inserted at K in one of these apertures holds the caisson. Let us suppose that each piston, P, has reached the end of suppose that each piston, P, has reached the end of
its stroke; the cock, Q, that admits water is closed, and a bar is inserted in the hole,
M that succeeds the hole K .
Then the cock is opened so that the whole apparatus shall be supported by the piston, thus allowing of the removal of the bar inserted in the hole, K. Upon then opening the eduction, the piston and caisson descend together as far as the end of the former's stroke. At this moment a bar is inserted in the hole that has reached the level of the crosspiece, and everything is now ready for a second operation. The caisson thus gradually descends to the bottom.
From what precedes, it may be easily seen how the piers are constructed. The pontoon is set afloat, and hauled to the spotselected for the foundations by means of the service crane and of capstans around which wind cables fixed to the piers of the old bridge. Then the temporary supports that sustain the columns are removed, and allowed to rest upon the ground, care being taken to open the water valves of the caisson in order to prevent the pontoon from floating when the tide is rising. The platform is then raised to a proper height by means of the hydraulic cylinders. The stability of the whole is secured by means of anchors and chains.
The construction and submersion of the foundation caissons is performed as follows in the openings of the platform:
The 'rings are brought to the spot all prepared for being placed in position to be riveted together. While the riveting is being done, a lining of bricks is constructed in order to increase the caisson's weight. During the mounting of the sections, the entire affair is gradually let down by means of the hydraulic cylinders above described until the caisson touches bottom. The excavating apparatus are then set in motion, and the caisson sinks by its own weight (which, when necessary, is increased by a surcharge) until it reaches the proper depth. The interior is afterward filled in with concrete, and the foundation caisson is finished. When the second caisson has been finished in a similar manner, the platform is removed to another point of the work. This is done by lowering it to the proper level for floating, and then towing it to the desired spot.
When the pontoon has been removed, it remains to build the masonry pier up to the level of the octagonal metallic pier which is to surmount it. 'To this effect, temporary caissons are bolted to the main one before sinking it. These serve both for carrying the additional load above mentioned and for guiding the caisson during its descent. After exhausting the water from the latter the masonry is completed, and an anchor bolt two inches in diameter is inserted 20 inches beneath the summit. When the upper masonry is finished, the temporary caissons are unbolted, and those pieces are adjusted that serve to connect the metallic part of the piers with the masonry.

In short, the work is performed in the following order: 1. Putting the pontoon in place, descent of the caisson, excavation, and filling with masonry. 2. Tests of the strength of the foundation. 3. Construction of the upper masonry of the piers beneath the level of high water. 4. Finishing the pier up to the level of the octagonal metallic portion.
Four of these pontoons are now in use, the largest of which is 82 feet in length by 65 in width, and the smallest 55 by 36 feet. They are proportioned to the dimensions of the piers to whose construction they are to be applied. This very ingenious device can be economical only for large works, where there is quite a number of piers to be constructed. At the Tay viaduct it is giving excellent results. On the north shore (Dundee side), it has permitted of sinking. and finishing one pier per week, consisting of two caissons 10 feet in diameter.
The work was begun in June, 1882. At present the masonry arches of the two extremities are finished, and nearly all the foundation caissons are sunk and filled. Half of these have received the octagonal piers, and part of the bridge, with its railway track, is now completed for a totar length of 1,640 feet. The girders and superstructure of the 13 middle spans are being

[^0]Management and Care of Steam Boilers.
The following summary is issued by the Hewes \& Phillips Iron Works, of Newark, N. J., and it com prises useful information to all in charge of engines:
"The first duty of an engineer, when he enters his boiler room in the morning, is to ascertain how many gauges of water there are in his boilers. Never unbank nor replenish the fires until this is done. Accidents have occurred, and many boilers have been entirely ruined, from neglect of this precaution.
"In case of low water, immediately cover the fires with ashes, or, if no ashes are at hand, use fresh coal. Do not turn on the feed under any circumstances, nor tamper with or open the safety valve. Let the steam outlets remain as they are.
"In cases of foaming, close throttle, and keep closed long enough to show true level of water. If that level is sufficiently high, feeding and blowing will usually suffice to correct the evil. In cases of violent foaming, caused by dirty water, or change from salt to fresh, or vice versa, in addition to the action before stated, check draught and cover fires with fresh coal.
'When leaks are discovered, they should be repaired as soon as possible.
"Blow off 8 or 10 inches at least once a week; every Saturday night would be better. In case the feed becomes muddy, blow out 6 or 8 inchesevery day. Never blow entirely off except when boiler needs scraping or repairing, and then not until fire has been drawn for at least ten hours, as boilers are of ten seriously injured or ruined by being emptied when the walls are hot. Where surface blow-cocks are used, they should be often opened for a few moments at a time.
' After blowing down, allow the boiler to become cool before filling again. Cold water pumped into hot boilers is very injurious from sudden contraction.
"Care should be taken that no water comes in contact with the exterior of the boiler, either from leaky joints or other causes.
"In tubular boilers the hand-holes should be often opened, and all collections removed from over the fire. Also, when boilers are fed in front and blown off through the same pipe, the collection of mud or sediment in the rear end should be often removed.
"Raise the safety valves cautiously and frequently, as they are liable to become fast in their seats, and useless for the purpose intended.
"Should the gauge at any time indicate an excessive pressure, see that the safety

Fig. 5.-HYDRAULIC CYLINDER, FOR RAISING AND LOW-
ERING MOVABLE PLATFORM.
put together upon a scaffolding at the extreme south of the work. When the parts for each span have been assembled, the irons will be placed upon the caissons already constructed, and will afterward be raised by hydraulic engines to the height that they are to occupy upon the octagonal piers.-La Nature.

The Sun's Corona.

Signor F. Tacchini, the successor of Signor F Secchi at the Observatory of the Collegio Romano has published a confirmation of the astronomer Forel's statement that the sun's corona is, in a clear sky, discernible on high mountains in a surprisingly distinct manner. He himself observed the phenomenon from the summit of Ætna at the beginning of July. At Rome, Naples, Messina, Catania, the sun appeared surrounded by a broad white crown; but from the top of Ætna, 3,300 meters above the level of the sea, in a very clear sky, it presented the appearance of a white ring surrounded by a splendid copper red corona. Near the horizon, the sun's appearance changed into an ill-defined arch of great span. He was able to observe all these phenomena at leisure on two different days. At sunrise and sunset he saw clearly the beautiful red light of the arch. But he is of opinion that those appearances are not as strong and brilliant this year as in 1833 and 1884.
valves are blowing oif. In case of difference, notify the parties from whom boiler was purchased.
"Keep gauge cocks clear, and in constant use. Glass gauges should not be relied on altogether.
"When a blister appears, there must be no delay in having it carefully examined, and trimmed or patched, as the case may require.
"Particular care should be taken to keep sheets and parts of boilers exposed to the fire perfectly clean, also all tubes, flues, and connections well swept. This is particularly necessary where wood or soft coal is used for fuel.
" Under all circumstances keep the gauges, cocks, etc., clean and in good order, and things generally in and about the engine and boiler room in a neat condition.
" Barium chloride and milk of lime are said to be used with good effect at Krupp's Works, in Prussia, for waters impregnated with gypsum.
"Soda ash and other alkalies are very useful in waters containing sulphate of lime, by converting it into a carbonate, and so forming a soft scale easily cleaned; but when used in excess they cause foaming, particularly where there is oil coming from the engine, with which they form soap. All soapy substances are objectionable for the same reason.
"Petroleum has been much used of late years. It acts best in water in which sulphate of lime predominates. As crude petroleum, however, sometimes helps in forming a very injuriouscrust, the refined only should be used.
"Rogers' tannate of soda is probably the best preparation for general use, but in waters containing much sulphate it should be supplemented by a portion of carbonate of soda or soda ash.
"For muddy water, particularly if it contain salts of lime, no preventive of incrustation will prevail except filtration; and in almost every instance the use of a filter, either alone or in connection with some means of precipitating the solid matter from solution, will be found very desirable.
' In all cases where impure or hard waters are used, frequent 'blowing' 'from the mud drum is necessary to carry off the accumulated matter, which if allowed to remain would form a scale."

Beware of long, crooked suction pipes, when erecting a pump. Bends, returns, and angles increase friction very rapidly. Also remember that doubling the diameter of a pipe increases its capacity four times.

Sorrespondence.

How to Cure Stammering.

To the Editor of the Scientific American:
Referring to No. 18 of Notes and Queries, of your issue of December 19, would say that if O. C. P. will always fill his lungs with air by a strong inhalation before he begins to speak, he may very readily cure the most obstinate case of stammering. At least that is the personal experience of the writer.

Chas. F. Pennman.
Asheville, N. C., December 20, 1885.

Bell not the Inventor of the speaking Telephone.

To the Editor of the Scientific American:
There is a phase of the telephone controversy which I do not remember to have seen referred to, namely, that Prof. Bell's title to his telephone patent of 1876 is at best only legal, which so interpreted has been sufficient so far for his purpose. It is not true historically that he was the inventor of the first speaking telephone. Leaving out all that Reis did and said about his telephone, it is nowhere denied, and is everywhere believed, that Yates, of Dublin, did make and use a telephone, which for substance was identical with the caveat of which for substance was identical with the caveat of
Gray, and which Bell himself used for his first success in speech transmission. Yates' experiments did not happen to be published, though there were, and still are, several witnesses to their success, and the instruwints have been produced in a London court. Therefore, if it be allowed for the argument's sake that Reis did not transmit speech, it cannot be allowed that Yates did not; and hence, if Reis was not the inventor Yates did not; and hence, if Reis was not the inventor
of the first speaking telephone. Yates was. This is of the first speaking telephone. Yates was. This is
simple history, and is not subject to legal quibbles. Happily, there are no legal priorities in matters of history.
Admitting the necessity for a law as to priorities in invention, and even admitting its applicability in this special case on account of the lack of publications of Yates' work at the time, it still does not in truth follow that Prof. Bell was the inventor of the first speaklow that Prof. Bell was the inventor of the first speak-
ing telephone; and though he holds a legal patent, it ing telephone; and though he holds a legal patent, it
is only upon technical grounds, and ethically it is neither just nor honorable that he should be considered the inventor of the first speaking telephone.
Courts construe law and courts make law when they see fit, and whether they do the one or the other, depends in a good measure upon their environment.

College Hill, Mass., Dec. 21, 1885.

A. E. Dolbear.

starting the Ship Railway Trains.

To the Editor of the Scientific American:
In reading the very interesting letter of Mr. C. H. Needham in your issue of December 19, about the power required for the ship railway, considerable unnecessary stress was laid on the extra power required to start such a large mass as a ship and cargo. If it requires 25 per cent more to start a train than to keep it in motion afterward, would not the car bestarted by having either end of the road depressed sufficiently, so having either end of the road depressed sufficiently, so
the car would start by merely loosening the brakes? the car would start by merely loosening the brakes ?
This would seem to me desirable, even if the slight depression at the immediate end of the line had to be recovered after the car got in motion. It would also tend to stop the car at the end of its journey, which with such a massis no small consideration. I hope that this small and original (as it would seem from the above mentioned letter) suggestion may be used to advantage.
Baltimore, Dec. 17, 1885.
[Mr. Gary's suggestion would possess greater merit if he had told us how he proposes to start the car on any intermediate part of the line. It will doubtless be necessary sometimes to stop the engines temporarily at points between its terminals, to readjust some of its moving parts, tighten up nuts, or relieve a heated axle, as in ordinary railway practice; and as a moderate increase of diameter of cylinder over the ordinary requirements of the present railways will, as was shown in our issue of December 19, furnish all the extra power required to start the ship railway train, and do it both economically and with certainty, we fail to see the advantage of Mr. Gary's suggestion.-ED.]

The Kansas Grasshopper.

It is reported that the citizens of Helena, Ark., were recently aroused early in the morning by what seemed to be a heavy rainstorm, but they found the sky perfectly clear, and the air full of dark flakes which afterward proved to be a cloud of grasshoppers. They pattered against the roofs and windows of the houses with so much force and in such large numbers that they simulated rain. People who had seen the dreaded pests
before, when they descended upon the grain fields of before, when they descended upon the grain fields of
Kansas and consumed every blade in a few hours, say that the numbers exceeded even that visitation. They were passing westward. Many of them were disabled by hitting against buildings and other obstructions, as they flew very low, and had to be shoveled off the sidewalk in the street. They were apparently genuine walk in the street. They were apparently genuine
Kansas grasshoppers.

The Equatorial Telescope and its operation. isanc sharpless.

It is a mistaken idea that to study astronomy successfully a great telescope and the resources of a fixed observatory are essential. The observers of the East in ancient times, with nothing to use but their trained eyes and quickened intellects, saw a multitude of sights in the heavens of which those of us who are not astronomers, but who have plenty of facilities, never think. The sun, the moon, and the stars roll around us with a regularity and precision which have no counterpart in nature or in human handicraft, and to observe and test this regularity requires instruments and appliances of the most delicate sort. It is for this mathematical part of astronomy, practical astronomy, in the common sense of the word practical, and not for the purposes of the unprofessional observer, that the extreme delicacy of construction and mounting of astronomical instruments is needed.
If the earth, our station for observing, stood still, it would greatly simplify the problems to be dealt with. But when it is traveling through space at the rate of something like one and a half millions of miles a day, and also whirling daily about its own axis, an element of difficulty is introduced. If our telescope is pointed at an outside object, in a minute it will point in another direction. To study attentively anything which requires time, thismotion of our earth must be counterbalanced by a motion of the telescope in a contrary direction. It is as if we were intently examining a point of the landscape; with a spy glass, from the window of a rapidly moving train. Evidently the spy glass can not be rigidly attached to the framework of the car, but must be in continual motion. It is for securing a result similar to this that the common form of mount ing for telescopes, the "equatorial," is devised.
But let us begin at the base. The pier of solid masonry on which the telescope is to rest is set on a firm foundation, several feet under ground. The surface ground should not come in contact with this pier, for the tremors of the earth are communicated by some kinds of strata to a long distance. A railroad train shakes the earth, sometimes for a half a mile on each side. At Columbia College Observatory, close to the N. Y. Central R.R., all observations have to
cease when a train passes. City observatories are cease when a train passes. City obs
nearly always defective for this reason.
The pier is extended upward to a height necessary to give a good horizon. If too tall, the element of instathan enters. Modern telescopes are mounted lower astronomers preferring to have part of their horizon astronomers preferring to have part of their h
obscured rather than take any risks of tremors.
The house which surrounds the pier is built entirely separate from it, being framed around it without con-
tact. Otherwise the motion of a person about the rooms, or the wind striking the outside, will produce a very decided quivering of the instrument. We have known a large telescope to become almost useless be cause a piece of mortar, dropped by a workman, had hardened between the pier and the framework of the building, though the pier was in this case solid brick work, six feet square.
The telescope room is surmounted by a hemispherical dome which runs on a horizontal track around the times Sometimes this is merely an iron track, some devices for equalizing pressure and destroying friction are often used. The new dome, forty feet in diameter, just completed for the great telescope of the University of Virginia, can be turned by the force of about ten pounds applied at its base in the direction of its motion.
The great observatory at Nice in France, created by the liberality of M. Bischoffsheim, has its large dome floating in a circular tank, the liquid in which takes nearly all the weight off the supports. Of course this is not available in climates where such great cold is felt as in ours, as the liquid would freeze.
In the dome is a shutter, to open when the telescope
to be used. By revelving the is to be used. By revolving the dome, this shitter, which extends all the way to the apex, can be brought so that any point of the heavens can be viewed by the telescope.
On the pier within the dome is the telescope. To readily counteract the rotation of the earth, one of the axes of the telescope is made parallel to the axis of the earth, or pointing nearly to the North Star. A series of wheels run by a weight will move the telescope slowly around this axis, and a governor regulates the speed. When the telescope is pointed at a star, it is clamped to the axis, the clockwork is set in action, and if properly regulated, as fast as the rotation of the earth would carry the telescope eastward, the weight would carry it westward. Thus, as the star rises, crosses the meridian, and sets, the telescope follows it. By occasionally winding up his clock, the astronomer has no concern after once finding his star. He may leave the room, sure that on his return the image of the star will still be there in his tube. If his telescope axis were not parallel to that of the earth, this could not be so readily arranged. But the stars seem in their diurnal rotation to move about an axis running north
equal to the latitude of the place. If the telescope also moves about such an axis, all that has to be done is to regulate its motion to the right velocity, and we have a perfect counteraction to the earth's rotation.
When the astronomer desires to bring his telescope into action, he first opens the shutter and revolves the dome, so as to bring the opening in the direction of the desired object. Then by his finder, a little telescope set by the side of his large one and embracing a large field of view in the sky, he points the telescope aright; having now the object in his large tube, he fastens the clamping screws and releases the clock, so as to keep the telescope on the object. If these operations have slightly disarranged his tube, by a system of cords and levers reaching to the eye end of the telescope, and which he handles while looking into it, he makes the necessary adjustment. The observing chair, a sliding seat mounted on a step ladder, adjustable to all different heights, he places in position. His dark lantern to read the graduated circles of the instrument is at his side. With pencil and note-book in easy reach he is ready for work, only to be interrupted by the necessity of occasionally winding the clock and shifting the dome. Many of the larger telescopes have little telescopes leading from the circles to the eye end, so that all may be read without leaving the chair. A little lamp lights up the figures and divisions, so they may readily be seen. Save that the temperature must be that of the outside air, the observer may do his work in entire comfort. Some of them are too Spartan in their zeal to take advantage of these luxuries; but discard the chair for a platform, on which they stand twisting their necks into most abnormal positions.
The work of an astronomer is not all poetry. Sitting before a telescope with the thermometer close to zero, and a wind raging without, with benumbed fingers and cold feet. when the clock won't work for the stiffening of the oil, and the shutter becomes frozen on its track, working alone in the stillness of the midnight or morn-
ing hours, requires as much the spur of strong incentive as any other unpleasant employment.
Haverford College, Pa.

Our Mining Industries.

The report of the United States Geological Survey shows that the mining industries of the United States are assuming giant proportions. Not less than $\$ 800$,000,000 is invested in mining enterprises as productive capital, and over 400,000 people are furnished employment, and the mineral product of the United States for the year 1884 had a value of $\$ 413,104,620$. The following is a detailed statement of these mineral products as shown by the statistics collected by the United States Geological Survey:

	Quantity.	Value
Pig iron, long	4,097,868	\$73,761,624
Silver, troy ounces..	37,744,605	48,800,000
Gold, troy ounces.	1,489,949	30,800,000
Copper, pounds.	145,221,934	17,789,687
Lead, short tons.	139.807	10,567,042
Zinc, short tons	38,544	3,422,707
Quicksilver, flasks.	31,913	936,327
Nickel, pounds	64,550	48,412
Platinum, troy ounces..	150	450
Aluminum, troy ounces.	1,800	1,350
Bituminous coal, long tons	73,730.539	77,417,066
Pennsylvania anthracite, long tons.	33,175,756	66,331,512
Petroleum, barrels	24,089.758	20,476,294
Lime, barrels..	37,000,000	18,500,000
Building stone.		19,000,000
Salt, barrels..	6,514,937	4,197,734
Cement, barrels.	4,000,000	3,720,000
Limestone for iron flux, long tons...	3,401,930	1,700,965
S. Carolina phosphate rock, long tons.	431,779	2,374,784
New Jersey marls, short tons.	875,000	437,500
Borax. pounds	7,000,000	490,000
Mica, pounds.	147,410	308,525
Zinc white, short tons.	13.000	910,000
Natural gas.		1,460,000
Other mineral products		11,062,631
Grand total of mineral products		413,104,620

Requirements of the Canadian Patent Law in Re-
The Bell telephone patents having been declared invalid in Canada for the reason that they had not been manufactured in accordance with law, a suit was lately brought to upset the Edison telephone patents on the same ground. The Minister of Agriculture has, however, decided that in the case of the Edison patents the law has been complied with, and the patents stand. He says:
"A patentee is within the meaning of the law, in regard of his obligation to manufacture, when he has kept himself ready either to furnish the patented article or to sell the right of using, though, may be, not one single specimen of the article has been produced, and he may have voided his patent by refusal to sell, although his patents were in general use.
"In this case there is absence of the proof, without which no patent should be considered forfeited.
"Therefore, Thomas Alva Edison's Patents No. 8,026 , for telephonic communication, No. 9,922 , for improvements in telephone, and No. 9,923, for improvements in telephones and circuits, have not become null and void under the provisions of Section 28 of the Patent Act of 1872."

IMPROVED PLATE BENDING MACHINE.

At the Oldfield Road Ironworks have been produced recently some good specimens of plate bending rolls, some notion of which may be obtained by a glance at the annexed illustration.
The rolls are 18 ft .6 in . long, the distance between the standards being 19 ft . 'The top roll is 27 in . diameter, and the two lower ter, and the two lower
ones 19 in. diameter; these ones 19 in. diameter; these
latter are fluted from end to end, to secure a better grip of the plates. From the great size of the top roll (the weight being 10 tons), it will be seen that special provision must be provided for raising and lowering, otherwise too much effort would be required of the workmen. The difficulty has been met by balancing this roll by means of two large pans suspended from the end of a suitable lever underneath the framework of the machine. On the opposite ends of these levers to the pans rest the vertical rods which support the top roll.
The leverage is about 4 to 1 , so that with a weight of about one ton in each pan the roll will be practically balanced. The hand gear for raising the roll is shown in the illustration. We found on trial that it was comparatively that it was comparatively easy to balance weights of a workman continuously.
The upper roll neck is $101 / 2 \mathrm{in}$. diameter, and the two lower ones $81 / 2$ in. A special feature of this machine is the manner of supporting the rolls in the center by means of three small friction pulleys; these are situated on a strong bridge bolted across the foundation frames of the machine, the latter being deepened in the center, as.shown, to take up the strain thus brought upon them. The end frames are of box section 12 in . square, and are braced together near the top by a strong bolt if the center. We may mention that the friction rollers are 12 in . diameter and 6 in . wide, having bearings on each side 4 in . diameter and 6 in. long.

There are also provided, for the purpose of supporting the plates under operation, two strong rods running from end to end of the machine, one on each side of the lower rolls; these rods are themselves supported by four vertical brackets rising from the foundation beams, so as to prevent bending.

The bed frames are ex.tended beyond the machine
proper, as shown on the left side of the engraving and serve as a foundation for the engine; this plan makes the machine self-contained, and much more rigid than would be the case with separate foundations for the engine and rolls.

The engine has two cylinders arranged diagonally 8 in. diameter and 10 in stroke with pistons runnin

AN 18 FT. 5 IN. PLATE BENDING MACHINE.
several thousand pounds, hauling carriages at a speed much less than that of the horse, and resembling roadrollers for crushing stones more than anything else. Now, Messrs. Dion, Bouton \& Trepardoux have succeeded in manufacturing steam vehicles of all sorts and of all dimensions, from the tricycle up to the largest omnibuses and merchandise vans. This result is the outcome of their quickvaporizing, circulatory, inexplosive boiler, which is applicable to all the industries in general, and which, although of slight bulk and weight, furnishes great power. Our engraving represents one of their steam phaetons-a vehicle of remarkable elegance, lightness, and strength. The frame of the apparatus is mounted upon four wheels. The two steering wheels in front are $21 / 2$ feet in diameter, and the two driving wheels $33 / 4$ feet. Upon the frame, and in front of the driving wheels, are placed the box and two movable seats, back to back, capable of accommodating six persons. Over the driving wheels is the boiler, and, under the seat, the water tank. Behind the boiler are placed the coal bunkers, the feed apparatus, and the stoker's seat. Beneath the frame are arranged the cylinders, and the differential gear that at a speed of 300 ft . per minute, this speed being re- renders the driving wheels inter- and independent. duced by triple gearing to a speed of nearly five revolutions per minute of the rolls, or more accurately a circumferential velocity of 24 feet per minute. The gearing is exceptionally strong, the three pairs of wheels being $2 \mathrm{in} ., 3 \mathrm{in}$., and 4 in . pitch, and $4 \mathrm{in} ., 6$ in., and 8 in . wide respectively; each of the three pinions is shrouded to the top of the tooth. From the last shaft in the above series each of the lower rolls is driven through a pair of wheels of 20 and 21 teeth respectively, shrouded to the pitch line.
Both rolls are driven from the same end, so that all the gearing is located in the same place, and secures the additional advantage of not having the same amount of vibration and jerking as is experienced when the rolls are driven from opposite ends by means Mech. World.

A NEW STEAM CARRIAGE.
Street locomotion by steam has just made a grea stride in the domain of practice. Hitherto, we hav been accustomed to see heavy locomotives, weighing to 44 pounds, and registered at 26 . The engine con-

sists of two oscillating cylinders of 4 inches diameter and 4 inches stroke, the_distribution of steam in which permits of a reversal of direction and of a variable expansion. These parts are not visible, since they are inclosed in order to protect them against dust and all other causes of deterioration.

The speed of the carriage is 18 miles per hour. It is capable of ascending gradients of one-tenth at a speed of $43 / 4$ miles per hour. The amount of fuel consumed is from $21 / 4$ to $31 / 4$ pounds per hour. The smokestack emits neither smoke nor steam. The exhaust steam from the cylinder makes no noise. The wheels make a little more noise than do those of other carriages, on account of the speed of the carriage, and its weight, which, in running order, with six passengers and a stoker, is 3,960 pounds.-L'Illustration and La $N a$ ture.

THE LAYTON ART GALLERY, MILWAUKEE,

 WISCONSIN.We give a perspective view, ground plan, and transverse section of the art gallery now in course of erec-
been found to stand best in the neighborhood of Milwaukee under all extremes of temperature. The architects engaged on the work are Messrs. ${ }^{\text {W }}$ W. and G. Audslev, FF.R.I.B.A., London, and .Mr. E. T. Mix of Milwaukee.

The Largest Elevator in the world.

Says a Northwestern contemporary of late date Wheat is now pouring into Minneapolis at the rate of 300 to 500 cars per day; and to those who are not acquainted with the facilities for handling the enormous quantity of grain, the problem of what becomes of it all is mysterious and interesting. The double rows of big mills alongside the falls are greedy monsters, and at this time there are daily poured down their hungry throats about 225 car loads, or 130.000 bushels, of wheat. While a portion of the wheat, on arriving from the country, is sent directly to the mills, the bulk of it has country, is sent directly to the mills, the bulk of it has
to be first stowed in the elevators to be cleaned and to be first stowed in the elevators to be cleaned and
prepared for milling, and afterward drawn upon as occasion requires.
A description of the method of handling wheat in an
crop of Minnesota and Dakota during the season. On every floor of the building are automatic sprinklers, which deluge the place in case of fire. As an extra precaution, 800 feet of $21 / 2$ inch fire hose and ejghteen fire extinguishers are stored in handy places about the building.
An elevator is simply a mechanical contrivance for lifting grain from the ground to the upper floor. Two railroad tracks run through the Union Elevator, and the trains of cars are taken in at. one end and pushed out empty at the other. When a train arrives at the elevator, the cars are backed;up to the entrance, a rope is attached, and they are drawn into the building. The doors of a car are opened, and two men with shoveis as large as road scrapers drag the grain into a deep pit.
These shovels are drawn by chains worked by machin ery, the men guiding them in their course from the ends of the car to the door at the side. The average time for unloading a car is five minutes, and nine cars can be emptied at one time. One hundred and fortyfive cars were easily unloaded in ten hours last week:

THE LAYTON ART GALLERY, MILWAUKEE, WIS.
tion at the corner of Jefferson and Mason Streets, Milwaukee. The building is being erected at the sole expense of Mr. Fred Layton, a local art lover and successful merchant, who intends, on its completion, to present it to the city. So says the London Building News, to which we are indebted for our illustration. The ground or principal floor comprises three picture galleries, opening conveniently from a central apartment, and connected together by wide doors. These and the central gallery, to be devoted to statuary, are lighted by skylights of ample dimensions. On this floor are a curator's room, retiring and cloak room, and lavatories, all conveniently situated near the entrance hall. In the basement are two large rooms and an unpacking room, and extensive arrangements are provided for the heating and ventilating, a matter of the first importance in a climate such as that of Wisconsin. The exterior of the building is being constructed of the best quality of buff Amherst sandstone, straw colored Milwaukee pressed brick, and terra cotta of a similar tint manufactured by Messrs. True, Brunkhorst \& Co., of Chicago. Granite, plain and polished, will be used for steps, and certain other portions liable to wear and injury. The roofing will be of tin plate, laid on terra cotta roofing plates, supported by \mathbf{T} iron rafters. This class of covering has
elevator is interesting. The erection of the Union Ele vator at Minneapolis. Junction, on the Manitoba road, this year, gives to Minneapolis the distinction of pos sessing the largest grain elevator.in the United States, and, its owners claim, the largest in the world. No other building in the city attracts so much attention as this large house, whose gray corrugated walls loom up against the clouds like a mountain. The cities of New York and Chicago have a number of groups of buildings under the name of one storehouse whose com bined capacity is greater than the Union, but no other independent building in the United States equals it in size and capacity. The total cost of the building is $\$ 300,000$. It is 336 feet long, 92 feet wide, and 175 feet high. Its actual storage capacity is $2,000,000$ bushels There was used in its construction $6,500,000$ feet of lumber, and thirty-two car loads, or $10,000 \mathrm{kegs}$, of big nails were required to hold the planks together. Mr Cook, the enthusiastic young foreman in charge of the building; says the actual number of nails was $13,353,900$ although he declined to say that he had counted them. A giant Corliss engine, of 450 horse power, moves the machinery, and its steady strokes are almost noiseless. The elevating capacity is 175,000 bushels per day, but this can be increased to 250,000 bushels on a pinch. The proprietors say that they can handle the entire $\left\lvert\, \begin{aligned} & \text { pren } \\ & \text { dent }\end{aligned}\right.$
and, as the foreman remarked, "he was running only on five legs." The legs of an elevator are the long wooden boxes, or tubes, extending from the pit into which the wheat is dumped from the car to the receiving bins at the top of the elevator. Running up these legs are belts 24 inches wide, on which are fastened oblong metal cups, which catch the grain as they come up through the pit. After being carried to the top it is discharged by centrifugal force into a spout leading to the receiving bins, where it is weighed. From these bins movable spouts lead to the various storage bins, other spouts lead to the shipping bins, which hold a car load each. There are 104 of these shipping bins, and that many cars can be loaded and sent to the mills without refilling the bins. There are nine discharging spouts, and nine cars can be loaded at once. the time being about three minutes. A car load is from 500 to 560 bushels.
The Union was built by Minneapolis men under the title of the Union Elevator Company, at the solicitation of President Hill, of the Manitoba road, in order to relieve the tremendous pressure on the rolling stock of his road, and facilitate the movement of the constantly increasing crops. Ex-Governor John S. Pillsbury is president of the company, and Horace Pratt vice-president.

WHALES AND WHALJ.NG.

bT J. b. ноLDer.
Time was in our memory when whales were out of fashion, but whales and the whale fishery are more familiar subjects to-day than théy have been any time in these forty years past. Whý is this? Two very good reasons occur to us: the reappearance of a once very common right whale that was well nigh extinct, and the increased demand for whalebone and oil.
The discovery gimineral oil promised at one time to leave whale oif quite an undesirable commodity; but by pressure of the unnumbered wants attendant on the marvełous strides of civilization, this product has again assumed a commercial value.
The story of the whale fishery is an interesting one, and through certain circumstances is one little understood.
Prior to the American Revolution, and as far back as our history reaches, a species of right whale was indigenous to the temperate Atlantic Ocean. The earliest white settlers in New England found the aborigines hunting right whales off the shore. A canoe with two or more individuals constituted the whaling outfit; the great creatures being towed to shore, and there cut up for the various purposes then calling for their capture.
The whites, of course, early introduced their small vessels and improved apparatus; yet during many years the whale fishery consisted in but small improvement on the Indian methods.
It was not until the whales became scarce that larger vessels and a more elaborate outfit were in use. It is now that the New England people, as an old writer has it, "began to whale out in the deep sea."
This right whale, called by the early authors the " second sorte," in contradis tinction to the large Arctic whale, is first mentioned A.D. 890, in "Orosius Voyages," written by Alfred the Great.
In the twelfth century an old Icelandic clergyman published in Konigspeil(" Mirror of Royalty") a list of cetaceans, in which he enumerates a "second species, called Nordcape, from it having been seen first off the North Cape of lceland." Other writers mention this whale under the name Sarde and Sletbag, the latter meaning a whale without a dorsal finthe finback probably being familiar to the peoples of that day, as it is now.
The earliest English record of this whale seems to be that of John Smith, in "Annals of Salem, Mass." He says: "The whaling business began on the New England coast prior to 1614, guaranteed by royal authority to Mass. Bay." The same author states that in 1690 " whales were occasionally killed in Cape Cod Harbor. Nantucket first sent boats this year from shore, and in 1700 they began to fit out small vessels. In 1714 small vessels were sent to Newfoundland, and south ward along the gulf. In 1748 whales became so scarce that they were pursued in larger vessels, an hundred sails being
fitted out from Boston." The whale thus pursued was the Atlantic right whale, not the finback, which was not regarded as worth capturing as long as there were any right whales within reasonable distance.
It was on the account of the finback being undesir able in these early days that the larger baleen whale was called right whale, as it was the right one to search for; the latter giving much more oil and valuable baleen, or whalebone. The finback has very narrow, short, and coarse baleen.
New Bedford commenced the business of whaling in 1755, their boats going as far south as the capes of Virginia.
In 1770 these temperate Atlantic whales became so scarce the vessels employed were built for long voyages, across the Atlantic.
This right whale was first hunted by the Basques, a colony of fishermen on the coast of the Bay of Biscay, who had from early times pursued this occupation. As the whales became less numerous the voyages were extended, until the great Arctic whale, which is essentially confined to the waters of the Arctic zone, was accidentally met with. Seafaring people are not always acutely observing of characters of marine creatures that do not concern their occupation; consequently no one chanced to discover that they had come upon a different species of whale entirely. Nor did they care, especially as the new one proved to be much more valuable, having "whalebone" of very much greater size, and, of course, more value, and superior oil, in quality and thickness-the northern sea creatures evidently requiring heavier layers of fat.
This state of things continued until 1775, or about the time of the Revolution. The "second sorte" had been growing scarcer, until now it had become practi cally extinct. None were caught. Naturalists in

Europe had some knowledge of this lost whale, that, as we have seen, was recorded by old authors, but the record was meager. It was understood by them that there was larger species in the north, and that this was a "sec ond sorte." So long as this "second sorte" was avail able, the whalemen desired nothing better; but when they became so scarce, it was necessary to push north and capture what the whalers of that day thought were no more than a larger kind.
The truth is, and this, though, as we have seen, was nown vaguely to the few cetologists of the time, there are two distinct species of baleen or right whales-the great Arctic or Greenland whale, bowhead, so called by the present race of whalers (Balcena mysticetus); and the Atlantic right whale, nordcaper, sletbag, and sarde of the old authors, black whale of the early settlers of New England (Balcena cisarctica of Cope)
During the Revolution, the men usually employed in whaling were occupied in some service of the conflict. But little if any whale fishing was carried on during the several years of war. It will be borne in mind that the Atlantic right whale was nearly extinct at the commencement of this war. At this time there was little of cetological literature credited to North American authors, and in Europe there was but little more, touching this species.
During the years of the war and succeeding years nothing was heard of the Atlantic whale. The great Arctic animal occupied all attention
Meantime the great deep held a small family, or at least a pair, of the lost whales, and in 1854 a female, accompanied by its young, visited the old "hunting
seen on our coast; that was thrown ashore on Long Island about 1860. Peter Cooper secured the bones, with the baleen, and generously gave it to the American Museum of Natural History on the occasion of its found-ing-in 1870. A male specimen was captured in Charleston Harbor in January, 1880, after an exciting chase of several days' duration. Steam tugs were used and several times the harpoon lines had been made fast, but the creature, which measured nearly 50 feet, struck the tugs in its furious lashings, and injured them to the extent that the whalers were obliged to resort to the old methods of whaleboats, oarsmen, harpooners, and lancemen-when the great creature was captured.
During the extremely cold weather of last January, six examples of this whale appeared off Montauk and Southampton, on Long Island. The hardy seamen and whalers of that region put out in regular trim, and captured four of them, two being young. A large one gave the old whalers a deal of trouble. During the coldest night of that notable cold "spell," Captain Edwards, who is over 60 years of age, stood at the bow of his boat, lance in hand, the icy waves beating most unkindly over him, while hour after hour of anxious trial passed.
At length the opportunity came, and the well-poised ance brought the monster cetacean to death. It now seems that the Atlantic right whale is gradually increasing in numbers.
The finback-Balonoptera-has long been a familiar creature off our North Atlantic shores. Systematically, it is of another family, the distinguishing features being the small head, with very insignificant baleen or whalebone, and a fleshy fin-like member on its back. The balænopters are notably long and slender, compared with the baleen whales. The great rorqual, the largest known mammal, is of this group.
The finback is the whale so frequently seen off vessels along our coast and in mid-Atlantic. This whale is so active, it proves a dangerous enemy when once attacked and wounded, consequently it is not sought after extensively; though it were implying a lack of courage and en terprise on the part of our seamen to say this without explaining that the baleen of this whale is so small and coarse it is useless, and the fat is so meager in quan tity it does not pay well.
The Cape Cod whalers and fishermen have in late years pursued them in steam tugs, and each autumn there are many captured in that manner. The blackfish (Globiocephalus) is the most common cetacean pursued by the Cape Cod people. It is in the habit of visiting the vicinity of Cape Cod harbors in droves, and much sport is had driving them in and beaching them.
They feed on the squid(Octopus), and follow the schools of that mollusk; some times fifty or a hundred blackfish are seen on such occasions. They swim with much of the body exposed when going rapidly, thus giving a most singular ex

WHALES RECENTLY TAKEN NEAR LONG ISLAND.

 grounds," the Bay of Biscay. The cub only was taken. hibition of marine maneuvering. They have a habit, It is a pleasing circumstance that the first appearance, after so many years, of this species should be in the waters from which the creature first derived its specific name. Eschricht named it Balana biscayensis.In 1865, Prof. Cope, of Philadelphia, examined the first nearly adult example that has come under scientific inspection. William Penn, in 1683, relates that eleven of these were taken that year, called by the whalers black whale. Prof. Cope's examination proved the identity of these with the Biscay whale, consequently the terms cisarctica and biscayensis have been applied to the same species.

So far science had not gained a full account of this lost and found whale. It had been gone so long, no one knew anything of it. To the "lay" reader it was an unknown quantity; to the cetologist it was known only as a cub, and by certain features handed down by very crude drawings and carved blocks, which, however, prove to be accurate, so far as they appear.

A little more than ten years after Prof. Cope's identification, an adult female, 48 feet in length, was captured off Montauk Point by some whalers. This was exhibited in New York Harbor in the spring of 1883. We had the privilege of examining this specimen, and through the courtesy of the owners and the captor, Captain Josh. Edwards, we made an exhaustive description of its characters, externally. The first feature noticeable, in comparison with the Arctic whale, is the shortness of the head. The latter whale has a head measuring one-third the total length. The present species has a head one-fourth the same. The baleen is not half the length of that of the Arctic species; consequently the value is much less, while the oil is nuch less in quantity.
Only one more specimen was known to have been
like that of the sperm whale, of "standing" in water perpendicularly, with a portion of the head above water. This cetacean is equally common on both sides of the continent and the equator; and they even ex tend to high northern and extreme southern latitudes The term blackfish is misleading to those not ac quainted with cetaceans. It is one of the dolphin family-related to the porpoise-but is larger. The white whale is about its size, reaching some 15 feet, though the later is oftener about 10.
The extreme beauty of the tail and its admirable adaptation for its purposes as a propellerare well shown in the picture of the finback. The great mouth of these creatures seems out of all proportion, but the food being mostly soft marine animals, like the mol lusca, going in immense schools, the creature scoops up vast quantities at once. The swallow, or œsophagus, is very small, not larger in a whale 50 feet in length than one's two fists. The great tongue is closed over the mass of jellies after they are taken in the mouth, pressing them against the roof of the mouth, when the water that has been taken in oozes through the plates of whalebone, and the morsel of food is pressed in to the stomach. The great rorqual, or sulphur bottoma Pacific species-often has reached near a hundred feet in length. Examples measuring over a hundred are recorded. Some errors are extant concerning the great Arctic whale (Balona) and the sperm whale (Physeter). Both are equally bulky, and both about the same length. None ever reach over 60 feet in length. Their heads are, in both cases, about one-third their total length, but are much the greater bulk. The sperm whale is well known as a carnivorous cetacean, living on fishes, its lower jaw being supplied with long rows of teeth.

ENGINEERING INVENTIONS.

A glass tube for water gauges has been patented by Mr. Auguste Guilbert-Martin, of St. Denis, F'rance. It has a longitudinal colored strip or strips on
a white or bright strip, the colored strip being arranged a white or bright strip, the colored strip being arranged
nearer the inner surface of the tube than the white or bright strip, whereby the upper end of
liquid can be more easily distinguished.
A track and wheel cleaning and lubricating device has been patented by Mr. Francis G. Tuttle, of Portland, Ore. It is intended to ve operated by the ordinary locomotive injector, combining with a pipe leading therefrom a series of pipes leading to the front
and rear of the locomotive, having nozzles for discharging hot water upon the track, and jets of water upon the drive wheels.
A car truck has been patented by Mr. Arthur M. Wellington, of \mid New York city. This invention covers a check chain so made and applied as to ab-
solutely prevent the swiveling of the truck through a solutely prevent the swiveling of the truck through a
greater angle than is necessary to enable the car to pass greater angle than is necessary to enable the car to pass
through or over curves of such radii as are encountered in ordinary service, doing away
chains having excessive slack.
A railway track has been patented by Mr. Jacob Frysinger, of Rock Island, Ill. The cross
ties are of metal and the stringers of wood, seated indthe ties are of metal and the stringers of wood, seated infthe
cross ties, the fastening bolts passing through both and the rail, the bolt holes in which and in the stringers are elongated, whereby the strain of the bolts on the stringers is relieved, and
A car coupling has been patented by Mr. Adrian T. Lott, of Coldwater, Miss. It, comprises
a drawhead with a pivoted and spring pressed coupling a drawhead with a pivoted and spring pressed coupling
plate having an inclined downwardly projecting hook, plate having an inclined downwardly projecting hook,
allowing automatic coupling, together with a screw rod adapted to be operated from the top of the car, to titt
the coupling plate to lift its hook for uncoupling the $=$

An electric time signal for railways has been patented by Mr. George Cornell, of Crystal Run,
N. Y. Combined with a clock mechanism, stationary magnets, and armature lever, are a sliding hand, weight, and studded arm, connecting the hand with a wheel of the clock mechanism, with other novel features, the de-
vice being especially designed to automatically indicate vice being especially designed to automatically indica
A metallic piston packing has been pa tented by Mr. Nicholas Pflaum, of Port Jervis, N. Y This invention covers an improvement on a former paouter surface wears away, the packing will always re-
tain its circular form, and remain in close contact with the cylinder, while the interior is calculated to feed melted tallow to lubricate the inner surface of the cyl-
A hydraulic forging machine has been patented by Mr. Charles Davy, of Sheffield, York Co., England. This invention has for its object to lessen
the friction on the rams, guides, etc., from the expansion of the parts by heat from proximity to the ingot, and also to more effectually guide the moving cross
head, and provide improved valves and method working the main and lifting rams by high and low pressure water, obtaining a quick motion of the moving
cross head toward and from the work.

MECHANICAL INVENTIONS.

A taper and pulley turning attachment for lathes has been patented by Mr. Thomas H. Worrall, of Meredith Village, N.H. Combined with the
bed and a carriage thereon is a tool holder fitted in
ways on the carriage a lever pivoted to the carrige and ways on the carriage, a lever pivoted to the carriage and to a fixed arm on the bed, with other novel features, whereby the tool holder is automatically shifted to turn

agricultural inventions.

A cylinder plow and pulverizer has been patented by Mr. Samuel M. Neely, of Smith's Turn
Out, S. C. It is so constructed as to be readily adjustable to work at any desired depth in the ground, and to pulverize the soil as fine as desir
cally clears the teeth of the soil.
A sugar cane harvester has been patented by Mr. Charles H. Lee, of Centralia, Kansas. It has an endless chain of knives, two pairs of vertical
shafts, and a horizontal shaft with chain wheels, with other novel features, whereby cane and sorghum can be cut and topped, and the cane or stalks de
wagons drawn at the side of the harvesters.
A corn planter has been patented by of this invention is to afford such construction that the planter can be readily controlled, will adapt itself to
uneven ground, and can be conveniently adjusted to plant three rows at a time, or a single row, while pack ing the soil
the rows.

MISCELLANEOUS INVENTIONS.

Suspenders for men's trousers form the subject of a patent issued to Mr. George H. Boyd, of
Marysville, Cal. They are so made as to be attached to Marysville, Cal. They are so made as to be attached to
the waistband at the front and sides only, and do not interfere with stooping and bending, so the susp.
and buttons are not subjected to undue strains.
An envelope has been patented by Mr. Samuel H. Smith, of New York city. It has two checks on its flap, and a gum line on the back of the flap above
the checks, with a gum line at one end, being designed for keeping money or valuables, and also to
receipt for one with whom it has been left.
A combined truss and supporter has been patented by Mr. Henry A. Schulz, of Brooklyn, N. Y
Itunites a rupture pad and an abdoninal supporter in such a manner as to relieve the rupture pad from the abdominal weight, and thus allow it to do its work ef fectually while exerting a light pressure.

A hot air fireplace has been patented by Mr. Doyel Pearson, of Memphis, Tenn. This inven-
ion covers a novel construction and combination o tion covers a novel construction and combination of
parts for open freplaces where wood is burned, to save waste heat and conduct the heated air where it is want
ed, or more effectually diftuse it throughot A water tank has been patented by $\mathbf{M r}$. Francis J. Kearney, of New York city. It consists of two independent compartments, one within another.
with space between them, and suitable inlet and exit valves and overflow pipe, the whole making a novelcon-
struction of a affety tank.
A swing has been patented by Mr. Wil liam S. Brown, of Pine Hill, Ky. Combined with fron and rear swinging rods and seat bars are pivoted levers,
whereby in swinging the seat is always kept level, and when the swing is once in motion but little power is rewhen the swing is o
quired to operate it.
A rotary escape movement has been pa ented by Mr. William D. Chapman, of Theresa, N. Y.
This invention covers a novel mechanism adapted to effectively give reciprocating motion to a column car rying articles in showcases, or to perpendicul.
zontal movements in clocks, watches, etc.
A window curtain has been patented y Mr. Frederick H. Goodyer, of Nottingham, Eng. It to form a lambrequin, the latter being made in one con tinuous piece with the curtain, and there being a conlambrequin. A check hook has been patented by
Mr. Neil McGoldrick, of Brooklyn, N. Y. This invention covers an improvement on an another recent pat may be unchecked and checked up again from the vehice, without stopping the horse and without getting out of the vehicle.
A filter has been patented by Mr. Wilham L. Johnson, of Hackettstown, N. J. This inven nected with reservoirs, and the construction is such
that the overflow may be arranged to prevent, in time of high water, muddy and impure water from entering the
A nut lock has been patented by Mr. James B. Law, of Darlington, S. C. The nut has an un-
slitted end extension of reduced thickness, with a hread corresponding to and communicating with the compressed into an elliptical cross section shape, so the nut itself furnishes the lock.
A bottle washing apparatus has been patented by Mr. Alfred L. Bernardin, of Evansville, Ind. of shot upward into the bottles, with a discharge of water, the shot being projected by plungers that work
in vertical guides, and forced upward by spring hamin vertical guides, and forced upward by spring ham-
mers actuated intermittently by suitable mechanism.
A churn dasher has been patented by Mr. John B. Swaim, of Newbern, Ind. It has an annular base plate and circular top plate, inclined slats con-
necting them. with a handle having a conical.knob on its lower end secured in a hole in the top plate by a key hrough the milk and quickly bring the butter.
A reservoir window washing brush has Mo. Combined with M brush having hole admit water to the bristles is a reservoir of water hinged to the top of the brush, with tubes to feed the water
hrough the hoies, the supply of water following the rush when in operation on a window
A lath attachment has been patented by Mr. Edward J. Bracken, of Columbus, O. It consists of a wire and fastening plate device for stiffening the lathing or joining the ends of the lath, so that it
will not be necessary to uniformly space the joists of a will not be necessary to uniformly space the joists of a
building, and the lath need not be of uniform or regular engths.
An ice plow has been patented by Messrs. John G. and Henry Bodenstein, of Staatsburg.
N. Y. Its frame consists of two bars or plates of unN. Y. Its frame consists of two bars or plates of unwhen the plow is working at its full depth, the frame being permitted to pass over projections.
An automatic flushing water closet has An patented by Mr. William B. Parsons, Jr., of El-
mira, N. Y. This invention covers a trough formed mira, N. Y. This invention covers a trough formed
with a series of basins located on different levels, each basin having a weir or dam, in combination with a
flushing attachment, all corners of the trough being rounded or sloped.
A self-holding screw driver has been paTer. It has an outer casing in which is held by pins skeleton piece and ring with an inner shell and jaws for holding the screw to be inserted, so that the screw
may be placed, started, and driven home without using may be placed, started, and driven home without
the hands and without starting with a hammer.
A churn has been patented by Messrs. Henry Brown and Andrew Bushnell, of Lamar, Mo. It
consists of a peculiar form of agitating and butter consists of a peculiar form of agitating and bet de
gathering frame, with a top ring and ribbed sides dependent therefrom, with plates connected therewith, to provide for the rapid making and separating of the
ter and easy cleaning of the parts of the churn.
A water gauge has been patented by Mr. William Young, of \ddagger Easton, Pa. It has two conentric glass tubes, with a space between them, the instuffing boxes for securing the inner tube to to the elbows, the glass tube.
A combined galley rest, copy holder, by $\mathbf{~ M r}$ guide for the use of printers has been patentmade as to be readily applied to the lower case to hold a galley, when correcting proof, and to the upper case
for holding copy, without obstructing any of the for holding copy, withou
compartments of the case.

A refrigerator has been patented by Mr. John Falkner, of Orange, N. J. It is a peculiarly municating openings arranged to be closed by the lids to the provision chamber when the latter is opened, and vice versa, thus effecting economy in the consumption A fastening for double doors has bee atented by Mr. George W. Wright, of Leavenworth Ind. It is a combination and arrangement of bolts and a guiding plate on one door, operated by levers, rack,
and pinion, with devices for locking the levers when and pinion, with devices for locking the levers when
the doors are closed or opened, and so that the bolts of
A suspender strap clasp has been patented by Mr. Charles R. Harris, of Jersey Shore, Pa the front and a metal plate bent upon itself to mak receive them, and inwardly projecting teeth, making a strong, neat clasp, more securely fastening the straps than the common leather loop.
A lumber measurer has been patented by Mr. Emmet N. Barber, of Kent, Ohio. It is a device that can be set for boards of different lengths, measuring them by being rolled across them, and re-
gistering the measure accurately and rapidly, being also gistering the measure accurately and rapidly, being also
adapted for making different registrations of different adapted for making
grades of lumber.
A sight for firearms has been patented by Mr. Walter G. Owen, of New York city. It is a
sight bar with its ends similary shaped, but having sight bar with its ends similariy shaped, but having
contrasting colors, mounted on a plate adapted to be rotated on a base plate, with stops for limiting its
ell as fine weather, and in the night.
An automatic dam has been patented by Mr. Horace Harding, of Tuscaloosa, Ala. It is designed for maintaining, navigation when the water of a river is ow by automatically making slack water levels,
stopping the water when it is running low, and automatically removing the dam to permit the passage of A then the water is running high.
A tidal power mechanism has been patnted by Messrs. Felix R. Bussard and Martin Gates, of Hays City, Kan. It consists in a float supported by the
water, carrying a rack bar which engages gearing for water, carrying a rack bar which engages gearing for
winding weights by the rise and fall of the float, thus storing power in the weights to be given out gradually in doing work.
A lock has been patented by Mr. John C. Taylor, of Nires, Mich. It may be adjusted as a
latch to allow the door to be opened from both sides without using the key, or to unlock the door from the outside with the key, or to prevent the unlocking of the
door with the key, its construction being simple, inexdoor with the key, its
pensive, and durable.

A sand moulding machine has been pa tented by Mr. Patrick C. Smith, of Indianapolis, Ind It has gear wheels operated by a lever and meshing into racks which carry the follower plate, with adjustable
pins and a device for regulating the depth of the mould, making a device in which the patterns can be easily hanged and adju
A churn has been patented by Mr. Loren J. Wicks, of Paterson, N. J. It has a vertica central shaft, which by a bevel cog wheel and pinion is
revolved in the cream, carrying blades and wheels t agitate it thoroughly, while an air tube also extends
down the center, carrying a flattened nozzle, which is down the center, carrying a flattened nozzle, which is
made to revolve near the bottom of the churn, and made to revolve near the bot
draw air down into the cream.
A door latch has been patented by Mr. William G. Cline, of Gallatin, Mo. Combined with latch casing is a knob bolt with notches in its head,
sliding latch with a lug on the inner end and the front siding latch with a lug on the inner end and the front
end projecting from the face of the door, the projecting end being made adjustable, so the bevel of the head does not strike the edge of the keeper, and the bolt is
A thread waxing and heating device or sewing machines has been patented by Mr. Benjawhereby the upper thread may be waxed during it passage from the tension to the needle, and be shielded
from cold, taking a direct course from the tension device through the
near the needle.
A fastener for hand satchels has been patented by Mr. Max Rubin, of Brooklyn, N. Y. Com ined with the frame is a projecting slotted plate at
tached to one part of the frame, a projecting post with rounded end being attached to the other part of the frame, and engaging with the slotted plate, the device being simple in construction, and holding the frames

A spring for velocipede seats has been patented by Mr. Robert E. Humphreys, of Irwin, Pa. The spring support is formed of a wire bent to have
coils at the front and rear of the support, the coils being in horizontal planes both at the front and rear, and the top and bottom coils alternating both at the front and rear, the supp
A lowering mechanism for dentists' chairs has been patented by Mr. Levi Stuck, of Hart Mich. Combined with uprights is a tapered sliding acting thereon, with a lever to which the screws are atttached, and various other novel features, whereby
the chair may be easily raised and lowered, and locked t any desired height.
A rotary pump has been patented by casing is a cylindrical shaped casting, to the outer sur face of which are hinged three pistons that revolve in
recesses in the sides of the outer casing, while there are recesses in the sides of the outer casing, while there are riction, and render the action of the pump simple and

fective

A washing machine has been patented by Mr. George G. Koschel, of Denver, Col. Combined
with a clothes box and devices for washing the
clothes therein, is a sliding box held under the clothe ing, and having hinged side and end pieces, while be being whirled about in the tub, and the machine being A
A snow shovel has been patented by
Mr. David Flack, Jr., of Toronto, Ont. Canada It is of wood, with a metallic edge, slightly curved backward of wood, with a metalice edge, slightly curved backwar
to prevent its engaging with obstructions, and has a handle hinged to the under surface of the shovel, near the center, with a fastener for holding the handle when folded against the body, with other novel features, the
shovel being easily changed into a scrape An extension table has ber.
An extension table has been patented by Mr. Siegfried E. Claussen, of Portland, Oregon. It a cross bar connecting the inner ends of the arms, roller journaled in the arms, with extension slides joined together, forming a series or chain, connected a the cross bar of the roller supporting frame.
A. saw sharpening machine has been patented by Mr. David W. Johns, of New Albany, Ind plate being held at one end on the disk and extending diagonally across the recess, with a screw for adjusting the pitch of the plate, and various other novel features,
the device being adapted for sharpening saws of all kinds, either straight or circular.
A dyestuff made from diazo-naphthaine has been patented by Mr. Meinhard Hoffman, of
Mainkur, near Frankfort-on-the-Main, Germany. It is a new gammadisulphonic acid of betanaphthol, whose mew gammadisulphonic acid of betanaphthol, whore patent; it is characterized by its great tendency to crystallize, and is adapted for dyeing wool, silk, and other materials a brilliant bluish-red shade.
A hydraulic elevator has been patenter by Mr. Parker F. Morey, of Portland, Oregon It combuting inlet and outlet valves, a telescoping ram in the standpipe having an opening and a long tapering inle valve, to open as the ram rises, with other novel fea
tures, to insure a practically uniform steadiness of
thread breaking attachment
A thread breaking attachment for doubling and twisting machines has been patented by
Mr. Fred Haggas, of New York city The invention plate or head, and the construction of the yarn holding plate or head, and he parts connected therewith, to
sever both yarns in case one of the yarns breaks or one bobbin runs ont sooner than the other, thus preventing waste and the formation of three or four ply yarn.
Transfer or reproducing paper forms he subject of a patent issued to Mr. David Gestetner, of London, Eng. The paper is of bamboo fiber, on one
surface of which a layer of wax or paraffine is fixed, the surface of which a layer of wax or paraffine is fixed, the
paper being perforated with a stylus or toothed wheel paper being perforated with a stylus or toothed wheel
to produce the desired letters or design, when, on passto produce the rosirer leters or design, when, on pass-
ing an inked rer ink the perforations upon the sheet below.
A wagon body has been patented by Messrs. James B. Law and Charles Mooney, of Darlingon, S. C. It is of simple construction for holding the
ide boards and tail gate keeper firmly, avoiding all side boards and tail gate keeper firmly, avoiding all
bolt or screw holes in the side boards, double armed clamps being used, and the design such that the body
may be readily taken to pieces and packed for transportation.
A toy spring gun has been patented by Mr. Francis W. Goodyear, of Springfield, Mass. The barrel has a longitudinal groove in its top, the trigger is
pivoted in a slotin the barrel, with its upper end propivoted in a slotin the barrel, with its upper end pro-
jecting slightly from the groove and the lower end conjecting slightly from the groove and the lower end con-
nected by a wire with a trigger lever pivoted in the ected by a wire with a trigger lever pivoted in the
tock, the gun being adapted to throw a dart or arrow tock, the gun being adapte.
A buggy top has been patented by Messrs. Edward Carroll and Patrick Ryan, of Guelph1,
Ontario, Canda. Combined with the seat hox are side arms and a top supporting frame pivoted to each side, between the sides of the box and the arms, whereby the top may be swung to one side for people to enter or
leave the vehicle without obstruction from the bows or rame.
The embossing of plastic material forms the subject of a patent issued to Mr. Charles Schwartz,
of Brooklyn, N. Y. The invention relates especially to of Brooklyn, N. Y. The invention relates especially to embossing paper, and preventing the surface of the aised portion from cracking, for which the outlines of
he letters or figures to be embossed are incised on the pper surface, so that when a sheet or card is submitted o pressure between the dies, the stretching of the fibers not break or tear the surfaces.
A glove fastening has been patented by Messrs. Augustus Travers, of New York city, and Henry B. Pierson, of Brooklyn, N. Y. The edges of one flap
have holes, with open spring rings held along their edges by threads, and ball headed studs are held on the edges of the other flap, so that the glove can be fastened by drawing the flaps together and pressing the ball head-
ed studs through the spring bound holes, or it can be ed studs through the spring bound holes, or it can be
opened. A machine for testing lubricants has This invention covers an improvement on a former
atented invention of the same inventor, whereby the patented invention of the same inventor, whereby the
testing journal was made removable from the shaft, testing journal was made removable from the shaft,
etc., and provides for making the bearing with a thin removable shell, so light that it can be taken out and weighed with great accuracy, the journal also having an
outer and comparatively thin shell that can be removed for accurate weighing.

A printer's chase has been patented by It has long screws held adjacent to and par: 113 with It has long screws held adjacent to and parr Mel with
the inner edges of achase, with movable longitudinal through which the havis hapertures screws adjacent to the outer edges of the bars, so the latter may be moved up thereby on the screw in the direction of the length or width of the chase with a sim ple key.

PBusiness and Personal.
The chargefor Insertion under this head is One Dollar a line for each insertion; about eight words to a line. Advertisements must be received at publication office

Snug Little Fortunes may be had by all who are sufficiently intelligent and enterprising to embrace the opportunities which occasion ally are offered them. Hallett \& Co., Portland, Maine, have something new to offer in the line of work which an can do for them, and live at home. The profts of many are immense, and every worker is sure of over $\$ 5$ day; several have made over $\$ 50$ in a single day. Al ages; both sexes. ages; both sexes. Capital not required; you are starte
 Patent Office "Official Gazette;" full sheep binding

 Modern Machine Tools a specialty. Abbe Bolt Forg ng Machines, Power Hammers, Lathes, Planers, Drills Shapers. SendGeo. E. Lloyd \& Co., Electrotype and Stereotype Ma
chinery, Folding Machines, etc. Send for catalogue. Chicago, IIl.
Nickel Plating.-Sole manufacturers cast nickel an odes, pure nickel salts, polishing compositions, etc. \$10 Sole manufacturers of the new Dip Lacquer Kristaline. Complete outftit for plating, etc. Hanson, Van Winkle \&
Co., Newark, N. J., and 92 and 94 Liberty, St., New York.

Grimshaw.-Steam Engıne Catechism. A series of thoroughly Practical Questions and Answers arranged so as to give to a Young Engineer just the information
required to fit him for properly running an engine. By Munn \& Co., 361 Broadway, N. Y.
The Knowles Steam Pump Works, 44 Washington St., Boston, and 93 Liberty St., New York, have just is-
sued a new catalogue, in which are many new and imsued a new catalogue, in which are many new and im-
proved forms of Pumping Machinery of the single and duplex, steam and power type. This
mailed free of charge on application.
Haswell's Engineer's Pocket-Book. By Charles H Haswell, Civil, Marine, and Mechanical Engineer. Givcos, Mathematics, and Physies, Architecture, Masonry,
Steam Vessels, Mills, Limes, Mortars, Cements, etc. 900 Steam Vessels, Mils, Limes, Mortars, Cements, etc. 94
pages, leather, pocket-book form, $\$ 4.00$. For sale by

Air Compressors, Rock Drills. J. Clayton, 43 Dey st.,N.Y Shafting, Couplings, Hangers, Pulleys. Edison Shafting Iron Planer, Lathe, Drill, and other machine tools of Wanted.-Patented articles or machinery to manufac Hre and introduce. Lexington Mfg.Co., Lexington, $\mathbf{K y}$ For Power \& Economy, Alcott'sTurbine, Mt. Holly, N.J Machinery for Light Manufacturing, on hand and
built to order. E. E. Garvin \& Co., 139 Center St., N. Y. Send for Monthly Machinery List
to the George Place Machinery Company,
121 Chambers and 103 Reade Streets, New York, Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J If an invention has not been patented in the United Canada. Cost for Canadian patent, \$40. Various other
Cand foreign patents may also be obtained. For instructions
address Munn \& Co., SCIENTIFIC AMERICAN patent address Munn \& Co., Scientif
agency, 361 Broadway, New York.
Supplement Catalogue.-Persons in pursuit of infor mation of any special engineering, mechanical, or scien-
tift subject, can have catalogue of contents of the SciENTIFIC American Supplement sent to them free. The SUPPLEMENT contains lengthy articles embracing
the whole range of engineering, mechanics, and physical lid. Address Munn \& Co., Publishers, New York. Guild \& Garrison's Steam Pump Works, Brooklyn, N. Y. Steam Pumpi.

Send for catalogue of Scientific Books for sale by Wood WorkingMachinery. Full line. Williamsport Machine Co., " Iimited," 110 W. 3d St., Williamsport, Pa Mineral Lands Prospected, Artesian Wells Bored, by Timber Gaining Machine all kinds Wood Work g Machinery. C. B. Rogers \& Co., Norwich, Conn. Curtis Pressure Regulator and Steam Trap. See p. 350. Iron and Steel Wire, Wire Rope, Wire Rope TramBest Automatic Planer Knife Grinders. Pat. Face Plate huck Jaws. Am. Twist Dril Co., Meredith, N. H. Iron and Steel Drop Forgings of every description.
Billings \& Spencer Co., Hartford, Conn. Wings apenci Co., We are sole manufacturers of the Fibrous Asbestos
Removable Pipe and Boiler Coverings. We make pure Removable Pipe and Boiler Coverings. We make pure
asbestos goods of all kinds. The Chalmers-Spence Co., 419 East 8th Street, New York.
Crescent Solidified Oil and Lubricators. Something
Curtis Return Steam Trap returns all condensations into the boiler without waste. Curtis Regulator Works. Woodw'kg. Mch'y, Engines, andBoilers. Most complete stock in U. S. Pri
Co., Manchester, N. H.
Emerson's Book of Saws free. Reduced prices for 1885. 50,000 Sawyers and Lumbermen. Address
Emerson, Smith \& Co., Limited, Beaver Falls, Pa. Safety Elevators, steain and belt power ; quick and "Hooth. D. Frisbie \& Co., Philadelphia, Pa How to Keep Bollers Clean." Send your address Barrel, Keg, Hogshead, StaveMach'y. See adv. p.76. Providence Steam Engine Co., Providence, R. I., are Domestic Electricity. Describing all the recent in
ventions. Illustrated. Price, \$3.00. E. \& F. N. Spon, ventions.
New York.
Patent Elevators with Automatic Hatch Covers. Circular free. T'ubbs \& Humphreys, Cohoes, N. Y Machinists' Pattern Figures, Pattern Plates, and Let
ters. Vanderburgh, Wells \& Co., 110 Fulton St., N. Y.

Brass and Iron Working Machinery, Die Sinkers, nd Screw Machines. Warner \& Swasey, Cleveland, o. Split Pulleys at low prices, and of same strength and orks Drinker St., Philadelphia, Pa
Steam Hammers, Improved Hydraulic Jacks, and Tu
NEW BOOKS AND PUBLICATIONS
The Magazine of American History. Edited by Mrs. MarthaJ.
York: 30 Lafayette Place.
This monthly journal of history upholds the high tandard by which it has been marked fo ception, and which was characteristic of all of Mrs.
Lamb's preceding work. Its articles are all valuaLamb's preceding work. Its articles are all valua-
ble, evincing sound judgment in the selection of subjects and faithful original research in their elucidajects and faithful original research in their elucida-
tiont, while there is sutticient variety in the matter to render each number exceedingly interesting to, a very wide range of readers. The frontispiece of the December number was a portrait of the late General McClellan, he editor. The series of articles on our "Historic Homes " is continued, with an illustration of the Brooklyn house of Philip Livingston, one of the signers of
the Declaration of Independence, on what is now known as Brooklyn Heights; while there is a valuable article as Brooklyn Heights; while there is a valuable article
relative to the Massachusetts Constitutionnal Convention of 1788, a chapter on the Mexican war, aud two ontributions relative to our late civilwaring of General ohn A. Logan and a number of wood engravings illustrating incidents in our late war.
Longitude by Lunar Distances. By don: W. H. Allen \& Co., 1885.
Major Clarke has offered in this volume a method of alculation is simplified by a division into several dis tinct steps, and is so presented thateven the inexperienced traveler can, with a little patience, fix his posi-
tion upon the earth's surface with precision. The tion upon the earth's surface with precision. The
moon has a daily motion among the stars of about 13°. moon has a daily motion among the stars of about 13°.
The geocentric angles between the moon's center and The geocentric angles between the moon's center and
certain of the stars and planets are given in the Nautical Almanac for every three hours of Greenwich mean time. If at any place the distance between the sextant or reflecting circle, and be corrected for sem diameter, refraction, parallax, and spheroidicity, the geocentric lunar distance will be obtained; and this, when compared with the distance recorded in the
Almanac, will give the longitude of the place. But Almanac, will give the longitude of the place. But
this apparently simple calculation is decidedly difficult, and apt to deter one from making the effort, unless he be aided by some such systematic method as Major arke has suggested.
Golden Text Calendar. Selections from the best authors, and International Sunday School Les
son Text for each Sunday. By Mrs. A. C. Morrow son Text for each Sunday. By
$\$ 1.00$. D. Lothrop \& Co., Boston.

HINTS TO CORRESPONDENTS.

(1) W. M. B. asks (1) if pine sawdus can be put to any profitable use. I have heard it could be mixed with pitch or resin, and moulded in brick for fuel. I am in the back woods, where several saw-
mills saw long-leaf pine, and the dust is thrown away. mills saw long-leaf pine, and the dust is thrown away.
I wish to know what are the best steps to take to I wish to know what are the best market? A. You can mix your sawdust with a little pitc be used for kindling wood, but we doubt if you could make it profitable, on account of the expense of transportation. The sawdust may also be used in the manufacture of
pyroligneous acid. 2. I have a lot of black walnut pyroligneous acid. 2. I have a lot of black walnu
shells I wish to use in making walnut stain without use of water, as, when walnut stain becomes too thick or dark, it is thinned by adding turpentine. Tur-
pentine and water won't mix. Please tell me what to pentine and water won't mix. Piease tell me what to
do in this matter. A. Try dissolving out the coloring matter with alcohol or turpentine. 3. I wish to construct some cheap and convenient plan to use steam from a 20 horse steam boiler for steaming plank so as to bend easily for coffin sides. Please tell me how this process is done. A. An ordinary wooden
tank or box arranged to use the exhaust steam from tank or box arranged to use the exhaust steam from
your engine will answer your purpose. Care should be taken that the steam pressure does not exceed the resisting power of the box. You will need to steam
your plank for three or four hours before bending
(2) F.S. asks the proper way to make maint in a street main cast-iron water pipe; the proper the proper depth to lay a main in a street; and whethe there is any device for drilling, tapping, ing a pipe while main is under pressure? A. Lead i pipes-a gasket of hemp being first driven into the into the pipe Then to keep the lead from leaking into the pipe. Then put a putty closure around the
mouth of the socket, held to place by a rope, wood,
or packed sand, with a hole at top to pour in the lead.

When poured and cool, drive the lead in hard with or galvanized The leaders to houses should be lead main should be a brass drive cock, or may we the with a screw joint. The proper depth for mains in your State should be at the mid-winter frost line, pro bably seven feet. There are devices for drilling and dri ing or tapping under pressure.
tained through the plumbing trade.
(3) W. W. W. asks: What is a good dip for cleaning brass patterns? A. They should not be
dipped in any acid. Use only a soft brush dry, or wash with hot water, soap, and brush. Th
practice in the best malleable iron foundries.
(4) J. D.-You cannot practically oper ate a siphon more than 25 feet above the source of under partial vacuum, and will stay in the top of the siphon and break the flow. The plan that you hav ketched is not practicable.
(5) O. N. L. asks: What preparation of glue is most suitable for facing cast iron pulleys? A Venice turpentine; boil gently for 12 hours. If the pulley has
(6) S. N. P.-For the galvanizing proFor see Scientific American Supplement, No. 176 of the tin bath clear with a little powdered sal ammoniac and doing the work quickly. If the articles are left in the bath too long, the tin absorbs iron and be-
comes thick, after which the surface of the tinning comes thick, after which the surface of the tinning
will come out rough. Smoothness of finish also dewill come out rough. Smoothness of finish also de
pends much upon the smoothness of the pieces to be tinned.
(7) J. B. P.-There is no absolute dif ference in the heating power of a ton of anthracite
coal, whether it be nut or pea, provided the quality is coal, whether it be nut or pea, provided the quality is
exactly the same in both. The price is the main point in their economical value as fuel. Formerly largely favor pea coal where the grate was of the pro per kind to prevent waste. There is sometimes much culm and dirt in pea coal, which is a cause of waste neers. The whole question of economy turns on r ative price, cleanliness, and carbon value, so that
decision cannot be arrived at on the simple question.
(8) W. D. A.-Copper lined tanks ar often known to give trouble by leaking after a few years, much of which arises from the manner of soldering. Most plumbers use common solder, made of
lead and tin. For this kind of work pure tin should be used, and the laps thoroughly sweated through. The of repairing for such leaks but to take out the lining
(9) J. M. G.-The rich, deep soils of
ransas only need thorough tillage for a few years to
repress the weeds. Much of this trouble comes from neighboring untilled land, from which wild seed is blown by the strong winds of that woodless country
Too much land planted without the meanefor thorough cultivation is probably the cause of much of the
(10) R. M. F. (Philadelphia) writes: We ave a large room, $60 \times 100 \times 19$ feet, to heat by steam; how much pipe would it require, also how large a
boiler? A. For your latitude. 2,500 to 2,800 feet 1 inch pipe, according to exposure, with 110 square feet effect (11) F. H. H. asks: Why does not an the radius? A. Emery wheels are used on the sides where fine flat surfaces are required. They do not cut face of the wheel. The convex surface of the perequiring but a small pressure to produce a cut.
(12) C. P.-There are so many ways in which engine pumps are affected that no proper solu
ion of your troubles can be arrived at without per sonal inspection. Sometimes the plan of the valves is defective, so as not to allow of their closing at the proper time, either by the flow of water binding them guide. At other times, air gets into the piston chamber and cushions under the action of the piston, and thereby prevents suction. We can only advise you to get some of your neighboring engineers to hold an in quest over the subject.
(13) T. H. D. S. asks: What do you think of the practice of some engineers and boile
makers of passing the products of combustion from the urnace of a coal-fired return tubular boiler over the top of shell to stack at rear end of boilers, after it ha passed under the shell and through the tubes? Is it injurious to boiler? There is a derence of opinion gases of combustion back over the boiler. It is in some cases inconvenient for cleaning both boiler and Hues. If the flue is neglected, the accumulation of erheating of steam a nullity. It is butlittle practiced
(14) E. D. H.-In 1812 Samuel Slater egan the erection of cotton mills in Oxford, now Webin 1789, when hc was 21 years of age, but had then Iready spent seven years in the cotton mills of Derby shire, and became familiar with Arkwright's pro-
cesses. Before going to Webster he operated carding and spinning machinery at Pawtucket, R. I., commenc ng there in 1790. The machine for making cards wa and patented in 1797. Previous to 1813, the mills in peration were designed only for spinning, and the twist was sold to weavers. It is said that the first factory in raw cotton into finished cloth was built at Waltham, Mass., in 1813, by Francis C. Lowell, of Boston, this
factory having a power loom somewhat improved from factory having a power loom somewhat improved from
the then rather crude model of the British invention.
(15) W. D. O. asks: What is the best omposition to remove scales from a boiler? A
wo or three pounds caustic soda dissolved in water nd pumped into the boiler, allowing it to remain in he boiler for a day. Next day blow out, at intervals of two hours, one, two, or three cocks as convenient. The second application should be followed by clean-
ing boiler, if there has been much scale. Extract of ing boiler, if there has been much scale. Extract of
\tan bark is also used with the soda when it can be
(16) W. B. W.-You can use bevel heels at any angle, as you have sketched.-The largest trbine wheels we know of are "Leffel's" 87 inch, of
horse power, with 40 feet head, using 21,00 1,400 horse power, with 40 feet head, using 21,000
cubic feet of water per minute, making 100 turns per minute; 80 to 90 per cent of the total water power is laimed for these wheels.
(17) W. B. writes: I wish to make an experimental battery for running an incandescent lamp.
How many cells of the battery described in the ScIENrfic Angne of Apil 11, 1885, would be required or a 12 candle power lamp? Would a $3 / 4$ inch rod do or the zinc plate? A. We cannot advise you to try to un a single incandescent lamp by means of a battery. You will require probably 50 cells of the battery re-
ferred to. We think a $3 /$ inch rod would scarcely give erred to. We think a $3 / 4$ inch rod would scarcely give
(18) W. E. asks how celluloid electroypes are made, and what is the composition. A. Celissolved in acids. Celluloid printing plates are made by pressing thin plates of celluloid into contact with (18) whict.
(19) Subscriber asks if the double induction motor run by small water motor (capable of run-
ning sewing machine easily) will generate enough curent for a small incandescent lamp without any change in present construction of motor. If so, what power
lamp. And if change is necessary in the motor, what ould it be? A. We think that the motor referred to s so small that when used as a dynamo it would not generate a current sufficient for running a lamp of any
kind. 2. Are magnets for magneto bells constructed ifferently from magnets for common vibrating bells, and if so, which way are they wound (the magneto magnets), and how many layers of what number wire? A. The magneto magnets are permanent magnets.
The armatures are generally wound with very fine wire, The armatures are generally,
say 12 or 15 layers of No. 36 .
(20) Reader asks whether it is feasible ocoat a metal speculum with silver by precipitation. that to repolish will destroy the figure. Now if I can recipitate a silver film over the speculum, all difficul Will the silver act the same on the neculum metal as on a ground glass speculum, and try, lest I spoil the thing altogether. A. We think there would be no difficulty in coating a clean metal speculum with silver in the manner suggested, but we oubt if you can accomplish it with the badly tarnished speculum which you say you have; would it not be beter to send your speculum to some reputable telescope
(21) O. D. W. writes: We have occasion he wood with, or what ingredient could we use to at in the aniline to prevent the wood from fading, so to keep its color? A. Dissolve your aniline in lcohol, and and to it white shellac varnish, or apply apply any suitable varnish.
(22) H. K. asks: If a dynamo electric aachine as described in Supplement, No. 161, be built ght, and will it run two 16 candle power incande the lamps, and will a one horse power engine be sufficient to run it? A. A dynamo twice the size of the one referred to would produce more than double the current, if properly made. It might be arranged to run
two 16 candle power incandescent lamps, if wound with wire fine enough to produce a current capable of with wire fine enough to produce a current capable of gine should run the machine.
(23) K. A. R. asks if cannel coal is more valuable than the soft coal so extensively used through-
out the United States. A. We do not understand from our query whether you mean to inquire whether s a fuel. Cannel coal of good quality always brings very high price, and is therefore of greater value than he ordinary bituminous coal, and it is undoubtedly a more efficient fuel than the ordinary soft coal.
(24) F. W. S.-Electric light carbon is ould adapted to use in the Leclanche battery. You nd $1 / 2$ inch thick, made expressly for this use. The common method of connecting the wire with the carbon is to cast a lead cap upon the upper part of the
carbon rod. The hissing in your battery is probably carbon rod. The hissing in your battery is probably
caused by the decomposition of the battery solution in caused by the decomposition of the battery solution in
the contact between the conductor and the carbon. Coper coated carbon rods are not available for batteries this kind.-Plaster Paris is unfit for the porous cells. (25) M. G.-We think your best course uld be to write to Cornell University, Ithaca, N. Y (26) J. G. K.-There is no paint with which zinc can be coated to prevent its burning. Its melting point is 773° Fah.
(2\%) L. J. M. wishes a receipt for burnishing marble paper, such as bookbinders use. A.
The paper is first coated with a little size, and the finish produced by friction by means of agate rubbers.
Such paper is not made in this country, and cannot be economically manufactured on account of the high (28) J. W K United State
(28) J. W. K. asks: 1. Can you inform
kind of battery to use for such? A. A simple way to
make a burglar alarm is to construct a spring key with make a burglar alarm is to construct a spring key with of the window, so that the rounded knob projects be yond the casing when the contact points of the key are separated. A cavity is made in the edge of the sash
to receive the rounded knob projecting from the back of the key when the window is closed, so as to per mit of the circuit remaining open so long as the win dow is closed. When the window 18 raised, the engage key forward, bringing its contact point against the fixed contact. The spring key and its fixed contact lead to battery and a bell, and when the key makes a con tact in the manner described, the bell will be rung. If desirable, the wires may also include a part of an annunciator. The key for a door will be arranged with a pin projecting through the door casing, to be
engaged by the door when closed, so that it wilf push engaged by the door when closed, so that it will push
the key forward, away from its fixed contact, thus the key forward, away from its fixed contact, thu keeping the circuit open while the door is closed. B on the pin being released, the key will move forward and make the contact as in the other case. If desira ble, two parallel wires may be run to each window and door in a room, and the spring key will be at tached to one of these wires, and the fixed contact to the other wire, so that whenever a key is made t complete the circuit, an alarm will be given. The bat-
tery commonly used with the burglar alarm is the Letery commonly used with the burglar alarm is the Le
clanche. The Fuller battery is also an excellent bat clanche. The Fuller battery is also an excellent bat
tery for this purpose. 2. Would also like to know tery for this purpose. 2. Would also like to know
how to make a simple interrupter for induction coil. A. You can make a simple interrupter for an inducbattery wires, drawing the other battery wire along th face of the file. If you desire to make an electro-mag netic interrupter, you may take a small magnet wound with coarse wire,attach its armature to a flat spring, and place a small auxiliary spring on the back of the arma-
ture spring. Support ir front of the auxiliary spring an adjustable contact point, conect the contact point with one of your battery wires and the armature spring with the other. 3. How is mercury sold, and how much is it worth? A. The price of mercury is 75 cents per pound. It is usually sold in large quantite
in wrought iron flasks containing 100 pounds each.
29) C. W. M. asks: Do you know of ny substance that, if placed between magnet and piece of steel, will destroy the attraction of the stee
to the magnet? A. No substance having the required property has been discovered.
(30) G. L. F. asks: 1. Can hair be per manently removed by electricity? A. We believe it
has been done. 2. How is the operation performed A. By means of a platinum wire made incandescent by the passage of electricity. The wire is thrust down by
the side of the root of the hair. 3. Is it painful? A. the side of the root of the hair. 3. Is
We believe it is not extremely painful.
(31) L. W. B. writes: 1. I have seen it tated that the rifles used by the sharpshooters in the late civil war weighed as much as a hundred pounds;
now, is this so. and where can I learn their construction, now, is this so. and where can I learn their construction,
etc.? A. They were of various weights but, we believe etc.? A. They were of various weights, but, we beliere.
none of them weighed one hundred pounds. There is none of them weighed one hundred pounds. There is
a good article on rifles in Appleton's Cyclopedia. 2. In filling the lining of a fireproof safe with plaster of Paris, will it make any difference whether it is put in
dry, or mixed with water and poured in? A. It should be put in dry. 3. Where can I find out all about
archery? A. You can find out much about it in works on the subject, which are sold at the principal book
(3) W. C. C. writes: We have constructed a number of carbon batteries in which we used red flower-pot clay for our porous cups, the batteries
being excited by electropoion fluid. For a short time they seem to give considerable current, gradually de creasing in quantity. The fluid turns a dark green color, and gives off sulphureted hydrogen gas; at the same
time, purple crystals form inside the porous cups. The batteries have been charged as directed; the carbon placed in the porous cups and filled with electropoion fluid, and the zincs in the outer jar, which is filled with water. A. The green color of the solution indicates that your battery is exhausted, and the generation of
hydrogen shows that your zinc is not perfectly amalhydrogen shows that your zinc is not perfectly amal-
gamated. The zinc should be amalgamated thoroughly, gamated. The zinc should be amalgamated thoroughly,
and the fluid should be changed when exhausted. Posand the fluid should be changed when exhausted. Pos
sibly your jars are too porous. Try filling a portion of the walls of the jars with paraffine. To accomplish hot. ${ }^{(33)}$ J D asks. 1. What will remove (33) J. D. asks: 1. What will remove stamp? I have tried an ink eraser of two liquids,
being, I am told, the first. dilute acetic acid, and the sccond lime water, but it leaves the impression in pale brown. A. Remove the oily material of the ink with ether or naphtha, then try a bleaching powder. 2 What would be the cost of maintaining an ordinary
Edison incandescent lamp by chemical battery? A Edison incandescent lamp by chemical battery? A We are unable to give the exact figures, but the cost to How many cells, and what kind, would be best, cleanest, and most convenient for a private dwelling? A. This depends of course upon the number of lamps you use,
their resistance, and the manner in which they are connected up in the circuit. Probably the bichromate form of Bunsen battery is the best. They work fairly
well for one week without
(34) J. D. C. asks: 1. Does a body passng through air create f
friction in air? A. Yes.
(35) C. S. B. writes: 1. In the dynamo described in Supplement, No. 161, if, instead of the outside of the field magnets being made straight at the
lower end, they are made bracket-shape or provide lower end, they are made bracket-shape, or provided
with outwardly projecting flanges, will the magnetism with outwardly projecting flanges, will the magnetism The magnetism would be liable to be dissipated by the lateral extension of the poles. 2. Which gives gong? A. For the same weight of metal, the gong a gong? A. For the sam
will givet he louder sound
(36) Miss A. C. asks: 1. What kind of gas secured? Is it by propelling it into a gasometer, or by what process? A. Gas is made by distilling ous preducts through a washing and purifyingmachine to a gasometer. It is forced through the main and ervice pipes by the pressure of the gasometer. Coal
as, when very poor in carbon, is sometimes carureted by the employment of gasoline or naphtha. Does any other matter mix in with the gas while general gasometer, how is gas propelled into the as be prevented from receding? A. The gas is prevented from receding by valves or water traps. The pressure created in the retorts is sufficient to carry the gas into the gasometer against the pressure of the
gas contained by the gasometer; but in most gas works gas contained by the gasometer; but in most gas works
machine called a gas exhauster is employed to take a machine called a gas exhauster is employed to take
the gas from the retorts, and force it into the gasohe gas from the retorts, and force it into the gaso
meter. 5 . And is there any danger of explosion from verpressure of gas? A. There is no danger of explo light-the greatest pressure being equal to a column of water 1 to 2 inches high. Gas when mixed with air orms an explosive compound, which is sufficiently powerful, when ignited, to destroy the gasometer. 6.
Has the gasometer any compartments? A. Generally cas the gasometer any compartments? A. Generally, times, however, made in two sections arranged telecopically, so as to increase the capacity of the gaso
(37) W. A. D.-We think the statement the experiment of causing an iron beam to swing to and fro by hitting it with pith balls is a little fancition by means of the cork pellets, if thrown at reguar intervals, and synchronously with the vibrations of the bar; but we do not think that any tremendous with pith pellets.
(38) G. A. H. writes: I have a clinical mometer which from frequent use has become markings of the scale. Will you please give me recipe for a permanent preparation by which I can mark it again? A. Probably the marks on your thermometer are engraved, and the black filling has been
removed. You can refill the engraving marks by rubremoved. You can refill the engraving marks by rub-
bing the scale over with asphaltum varnish, leaving bing the scale over with asphaltum varnish, leaving
the varnish only in the engraved marks. The surplus the varnish only in the engraved marks. The surplus
on the surface of the scale may be removed by a on the surface of the scale may
(39) R. L. N. asks what the red substance is that dentists use for plates for artificial teeth and how it is worked. Will you also state what
book will give me some information on dentistry? A. The substance referred to is rubber colored with ver nd may be forced into warm moulds. For denta work the moulds are generally made of plaster of Paris. After the mould is filled and secured, it is placed in a vulcanizer, which is simply a small steam boiler, and is allow to remain in the vulcanizer under a steam pressure of 100 pounds,or a temperature of 320 ,
for one hour.-You can procure books on Dentistry from any of the dental depots in this city or in Phila delphia.
(40) B. A. L. asks: Can you give me a receipt for a lacquer or varnish for varnishing an old theodolite? Would one of shellac varnish colore length of time? A. You can color the brass parts of your instrument black, by dipping them in a solution consisting of sulphate of copper $1 / 4$ ounce, hyposul-
phite of soda $1 / / \mathrm{ounce}$, dissolved in one pint of water. lean the articles thoroughly, and heat them in the so tion. More hyposulphite of soda renders the article arker, and the addition of more sulphate of coppe nders the color gray. Another method of giving of arsenic and muriatic acid. These in a solution arsenic and muriatic acid. These articles, ant
being colored, may be protected by a very thin coat of hellac varnish or lacquer. Either of the above stain for brass wears well.
(41) W. T. P. writes: I wish to conruct a pair of cylinders to condense oxygen and hydrogen gases for lime light use. What thickness should either steel, iron, or copper, to hold a pressure of 250 pounds per square inch? A. Your cylinders should be made of three-sixteenths steel riveted and brazed. We think you have selected a size larger than is necessary for ordinary use. If you make your cylinders 12 inches
in diameter, and 3 feet high, they will contain diameter, and 3 feet high, they will contain
bout $2 \cdot 4$ feet of gas each. Your cylinders, if made of about $2 \cdot 4$ feet of gas each. Your cylinders, if made of
the dimensions given, have a capacity of 5.58 cubic eet each. 2. How many cubic feet of gas would such cylinder hold at above pressure? A. At 250 pounds
pressure, each cylinder will contain about 90 cubic feet of gas. 3. Please give a rule to find the pressure for each doubling of the cylinder's capacity. A. When you have created a pressure in your cylinder of 15
pounds, it will contain 558 feet of gas; when you have pounds, it will contain $5 \cdot 58$ feet of gas; when you have
doubled the pressure, it will contain $11 \cdot 16$ feet. When doubled the pressure, it will contain 11116 feet. When
you have increased the pressure to 60 pounds, it will ontain $22: 32$ feet, and so
(42) P. S. K. W. asks what to use to make a thin coating on wood so that hot oil will not
penetrate it. A. Use an alcoholic solution of gum (43) A. R. asks how to obtain instruc ther work is there so much furnished for the price a in Professor MacCord's papers, published in the Sur Plement. We have these papers, containing 450 special engravings, stitched in paper, for $\$ 2.50$, or bound in cloth for $\$ 3.50$.
(44) J. K. M. S. desires a receipt for kill a tree. A. Use kerosene or turpentine around the roots.
(45) R. V. G. asks: 1. Are there any lead (45) R . V. G. asks. 1 . Are there any lead
pencis made so that the marks will not rub off if you
vanish them over? A. Ordinary pencil marks can be preserved by coating them over with a solution o collodion to which 2 per cent of stearine has bee added. 2. Have you any book treating on the subject ent authority, we can send you for $\$ 3.50$. 3. A recipe for putting metal leaf on wood. A. Coat the wood with a size made as follows: To $1 / 2$ pound parch
ment cuttings or cuttings of white leather add 3 quart water, and boil it in a proper vessel till reduced to
early half the quantity; then strain through a sieve.
(46) E. A. B. desires the receipt of a good glue for pasting labels on the backs of library books.
A. Strong glue, 50 parts, is dissolved with a little turA. Strong glue, 50 parts, is dissolved with a little tur the mixture is added a thick paste made with 100 part of starch. It is applied cold, and dries rapidly.
(47) L. N. T. asks: What preparation i used to gild the edges of writing paper, and how is it of egg mixed with water and with this the into whit of the paper are moistened; gold leaf is then taken up on a tip brush, and applied to the moistened edge, to which it instantly adheres. When all three edges have been gilded in this way, and allowed to remain a very piece of hard stone, and rub the gold very forcibly which gives a high degree of polish.
(48) K. H. H. desires a receipt foì a freez ing mixture-one that will freeze or bring water a near the freezing point as possible, and be capable of
being re-used several times, so as to render its cos being re-used several times, so as to render its yos results to be attained therefrom. A. Use:

Nitrate of ammonia
Water
.1 part. The mixture should be made in a thick vessel, well clothed, to prevent the accession of external heat; and very thin vessel, so as to expose it more fully to the action of the mixture. See also Freezing Mixtures, in
(49) S. R. B., Jr., desires a recipe for olishing horns. A. First scrape with glass to take of any roughness, then grind some pumicestone to powder,
and, with a piece of cloth wetted and dipped in the powder, rub them until a smooth surface is obtained Next polish with rottenstone and linseed oil, and Thish with dry flour and a piece of clean linen rag.
Thore rubbing with the stone and oil, the bette the polish. Trent sand is used in the Sheffield factorics It is a very fine and sharp sand, and is prepared for use by calcining and sifting.
(50) H. W. O. writes: 1. I wish to mix graphite and pulverized asbestos with lead. Is there nything that I can add to make them adhere when the but a mechanical mixture of these three ingredient can be made. 2. I would like to granulate the lead a low heat without hardening it. Antimony and tin bot make it hard, and for this reason cannot be used for the purpose required. A. The addition of bismuth, tin, nd cadmium will lower the fusing point of lead.
(51) G. H. desires (1) a recipe to bleach ish scales. A. The application of hydrogen peroxid (see Scienchic aches, provided that fat and oily mat ter was first removed by washing with alkalies. 2
What is magic compound to cleau carpets? A. Carpets re frequently cleaned by the following process: Tak a pailful of clean cold spring water, and put into it about 3 gills of ox gall. Take another pail of clean cold water only. Then rub the carpet with some of the ox gall water, using a scrubbing brush, which will raise the lather off clean with a rag or cloth dipped in pure water. When all the lather has disappeared, rub the part with a clean dry cloth. The magic compound pro
(52) M. C. B. asks (1) what the process is for extracting the oil from the PalmiChristi bean? A 2. Whether the cake or residue is of any value after the oil is expressed? A. The cake is frequently used as ies in the United States? If not, where are they cated? A. St. Louis is the center of the castor oil in dustry in this country. Information as to the cultiva-
tion of the bean is given in Scientific American Sur ion of the bean is given in Scientific American Sup
plement, No. 186, under title of "The Castor Bean
(53) J. A. T. asks: What will remove or prevent the collection of coating in hot beer pipes com-
(54) R. E. M. asks a receipt for preserv ing the juice of lemons for six months or longer. A
Add a small quantity of benzoic acid or salicylic acid ther of t qua
(55) A. I. asks for a paint that will re and where it can be purchased. A. A coating of liquid asphalt, made by melting asphaltum, will resist the action of sulphuric acid. This substance can be pro-
cured from dealers in tar and like materials in your city.
(56) W. H. S. writes: I have some valuaof acids, but by so doing stains were taken by mean How can I reglaze it? A. The sizing of paper consists of a mixture of glue and alum water. For your pur pose a little gum arabic dissolved in water and passed ver the erased surface is perhaps as good a remedy
(57) J. A. H. asks for a varnish or coat ing that may be used to prevent wood from absorbing
moisture in refrigerators. A. Use shellac varnish pre maired by dissolving white shellac in alcohol. 2. A
recipe for a varnish of a light shade, that will bear ashing off with water, to be used on muslin or linen, The additiod and unrolled often without cracking? A. regoing of a small amount of glycerine to the but it is not very satisfactory. The waterproof flexible arnish is generally prepared by dissolving $11 / 2$ ounces pure India rubber
carbon disulphide.
(58) E. C. M. gives the following description of a simple open circuit battery devised by
im: Take an ordinary fruit jar and place in it a numer of pieces of broken electric light carbons, hundreds of which can be picked up in the street after the lamps have been trimmed. One of the bottom pieces is seire, which going up to the top makes the connection with binding screw on cover, the cover being made of ood or hard rubber. Next an ordinary Leclanche battery zinc is suspended from the cover of the jar, reachng down to within an inch or two of the carbons. The xciting fluid is a solution of sal ammoniac and water. C. M. says he now uses this battery in connection Wharg a burglar alarm which works very satisfactorily We presume uncoppered carbons are used in this batry, as sal ammoniac would attack the copper, and the
(59) J. H. L. asks: If a rocket was fired in a vacuum, would it rise or remain stationary? The rocket is supposed to be an ordinary practicable ocket, and the vacuum an infinite theoretical vacuum. It would remain stationary
(60) J. N. B. writes: Some time ago meter asked for a simple method of filling baroiling the mercury. For ordinary weather glasses, I have had fair success as follows: Place a little tuft of aw cotton (clean and fine) in the bottom (i.e.e, top when aled) of the tube, to which is tied a small thread; then on out slowly. All air bubbles in the tuft of cotn out slowl. Antar bubbles in the mercury will pear. After the cotton is out, fill up to overflowing press a small piece of thick leather over the end, and vert into a cup of mercury, etc.
(61) W. G. T. writes: Will you please inform me if at any time the Scientific American or
he Scientific American Supplement has given direcions for the construction of an electric motor of about ne-half horsepower or over? If $x^{\text {a }}$ please inform me when it was issued. A. You will find descriptions of ectric motors in Supplement, Nos. 323, 212, 267, and 259. The dynamo electric machine described in Suplement, No. 160, will answer for a motor, if you wind the armature with No. 16 instead of No. 18 wire, and
wind the magnet with No. 14 wire, employing only wind the magnet
(62) W. H. B. says: Will you please tell he cause of the following: In one corner of our cellar the concrete floor has been thrown up, just as though 4 had been an eruption under the floor. The floor ated so. A. This may be caused by the upward presure of water in the ground or by the lateral expansion of the concrete. Even if water is not shown, the air nder the pavement may be subjected to a great pres-
sure by the increased amount of water below it, the eight of the latter being constantly changed by wet or dry states of the weather.

Minerals, etc.-Specimens have been mined with the results stated.
B. E. N.-No. 1 is magnetic iron sand, and may be valuable as an iron ore. An analysis, costing $\$ 15.00$, ould be necessary to determine this. 2. The red particles may be fragments of garnets or colored quartz.
The sample is sand containing iron.

INDEX OF INVENTIONS

For which Letters Patent of the

December 22, 1885,
AND EACH BEARING THAT DATE.
[See note at end of list about copies of these patents.]

Book, press copying, c. \mathbf{l}. Doyle.
Box. See Paper box. Box. See Paper box
Box strap, H. Frank
Bracelet,
Bracelet, C. S. Pine...
Bracelet, self-closing,
Brake. See Car brake.
Bridge safety gate, draw, McGregory \& Koch Bridge safety gate, draw. G. E. Hawks.........
Bucket covers, fastening for sap. B. F. Couch. Buggy top, Carroll \& Ryan
Buggy top bow protector,
Buggy top bow protector, J..........................
Butter cabinet, S. G. Highfll....................
Button fastener, J. F. Thayer..332,967
Button setting instrument, J. H. Vinton....
Button setting instrument, J. H. Vinton
Candle moulding machine. I. Homan... Candle moulding machine. L. Homan.....
Cap or cover, sheet metal screw. S. Adlam.
Car brake, automatic. R. Randolph. Car brake, automatic. R. Randolph Car coupling, I. H. Bradshaw Car coupling, F. J. Papineau, Jl
Car coupling, J. E. Swope.
Car, double action hay, J. D
Carpet stretcher and tacker, Schmidt \& Kunzel
$\underset{\text { Carriage, folding baby, C. Seel. }}{\text { man }}$
Carriage knob, double clinching, M. A. Corliss. Carrier apparatus, H. Smith.........................929 to Cartridge loading machine, W. Hill. Cartridge shell crimper, H. T. Hazard Chain link, D. Munro Chair. See Foldin
clining chair.
Chair, F. E. Harringt
 Clasp. See Suspender strap clasp.
Cleaner. See Flume rack cleaner. Pipe line
cleaner. Clock pendulums, electric synchronizing dev for, H. L. Bailey..........
Clock, programme. W. Akin. Clock regulator, G. L. Goodrich Clothes pounder, E. T. Roots........................ Coll, imitation, J. Mayer.........
Cold, production of, A. J. Rossi. Color producing acids, manufacture of, Vollbrecht $\&$ Mensching \ldots.
Coloring matter derived from alphanaphthol................ and diazotoluol, Vollbrecht \& Mensching.........
Coloring matter derived from alphanaphtholdis phonic acid. Vollbrecht \& Mensching. Coloring matter derived from diazobenzol and
alphanaphthol, Vollbrecht \& Mensching aloring matter from betanatherging...... acid, red, H. Prinz.................................
Coloring matter from diazobenzol and alphanaphtholdisulphonic acid. Vollbrecht \& MenCompass needle, G .Blanchard. Concentrator, J. N.
Cornice, F. Mankey.
Cotton picking device, G. Beekman Coupling. See Car coupling. Thill coupling. Crate, folding, W. C. Doubleday. Crushing roll, E. A. Wa Crutch, L. Ladomus... Curtain fixture. W. C. Kelly Curtain holder, N. Wilson Curtain, lace, J. F. Forth. Dam, automatic, H. Harding............ Die stock, J. H. Hines...................... Door fastening, double, G. W. Wright Door plate, E C. Barton.

Drag, marine, W. H. Hart.............................
Drawing and spinning machines, roll for, C. Coupland.................
Drill. See Grain dril.
Drying eylin.
Dust collector, C. H. Morgan.. Dyestuff from naphthol, manufacture of, voll-
brecht $\&$ Mensching byeing, bleaching, ecc., apparatus for, J. J. o. Obermaier..
Dyeing. sizing, and wringing yarn, apparatus for,
S. Spencer S. Spencer..
Dynamometer or motive power balance, E. A. Egg beater, D. B. Rock Electric meter, S. D. Mott......
llectric wire conduit, R R Tor Elevator operating mechanism, N. Elevator operating mechanism, N.
Embroidering machine, H. Stockel.
Engine. See Direct acting engine gine.
ned
 F. Parish...................................332.742 to
Ensilage and fodder cutter, J. B. Brown et al... Ensilage and fodder cutter, J. B. Brown et al...
Escape movement, rotary, w. D. Chapman.... Evaporating and condensing apparatus,
Theisen... Extractor. See Nail extractor.
Fan, automatic. P. Murray, Jr.
are registering machine J. B Faucet, measuring, S. B. Derby. Feed water heater, L. A. Olsen. eeding salt or compressed feed to cattle, device
for, M.S. Thompson................. ence post, S. L. Knepper.
File, newspaper, F. M. Xiques.
Filter, J. E. Werren
Firearm magazine, R. T. Hare..
Firearm sight, W. G. Owen..
Fire kindler, P. McMenamin.
Flange connection, expansion, G. A. Karwiese..
Floor cloth, etc., manufacture of, G. Schwar wald....
Flume rack
from, treating, J. J. Sawin........................
eveling instrument, Haithcock \& Suit
ifter. See Transom lifter.
Link making machine, J. I Beecher..
Liquors, apparatus for filling vessels with fe
mented, C. Mussel....................................
ficial, J. Wezel
Lock, J. C. Taylor.

Loom take-up mechanism, J. C. Brooks et al......
Looms on breakage of the weft, device for arrest
ing the take-up mechanism of, A. F. Staples.
Lubricants, machine for testing, R. H. Thurston.
Labricating fla
S. Clarkson.
Mamber dryibg platen, N
Masker, land, P. M. Dice...........
Mat or floor covering, R. Martinez......
Match making machine, Norris \& Hagan...........
Measure for drygoods, etc.. self-indicating
Springe \& Raiffeisen........
Measure, lumber. E. N. Barber
Medicine, blackleg, remedy for, C. L. Hussey..
Medicine, cough remedy, J. F. Richard son.
Meter. See Electric meter. Water meter
Meter. See Electric meter. W
Mill. See Bark mill. Sawmill.
Mortise lock, G. Voll.
Motion, machine for producing rectilinear recip
Moulding clamp, Phelps \&
Moulding clamp, Phelps \& Sterns
Moulding machine, sand, A. Rice
Moulding mane sand Rice..
Nail extractor, I. H. Kizer
Nail feeding apparatus, S. Perry
Nail, flat wire. C. W. Deen........

ton
Ore separator, G. H. Blake..
Lane, Jr..
Packages, fastening for tied, M. McCarty... 332,92,
Packing band, joint. D. B. Morrell.
Packing, piston rod, G. H. \& J. Dickson
Packing, piston rod, C. c. Worthinston
Panels, producing open work, F. Manke
Pants, supplementary waistband for, L. Freiden

Folding chair, Prall \& Williams..................... 3
Furnace. See Ore roasting and smelting fur-
nace. nace. See Ore roasting and smelting fur-
nace. Galley rest, copy holde
bined, J. Silbernik... Garden rake, Fitzpatrick \& Lew is
Gas mains, sealing the joints of, W. A. Hoev
ler...................................... Gate. See Bridge safety gate.
Gate, M. P. Hiveley
Gates, device for operating, C. H. Paxson........................332,840
$.302,63$
$.333,094$
32,764
332,749
Plant bed heater, Roush \& Halterman. Planter and guano distributer, cornan, R. E.
Planter, broadeast seed, S. S. Speicher
Planter, corn Planter, corn, E. Burkholder..

Plow, wheel, C. M. French
Plows, scraper attachment for wheel,
Pneumatic dispatch tube
Poeumatic dispatch tube system, C. M. Johnson..
Pole change, E. W. Smith.........................
Pool rack, self-talling, Peterson \& Larson.....
Power. See Tidal power.Press. See Hay press.
Press for separating liquid and solid matter, H
\qquad Pressure regulator, M. G. Wilder...............
Pressure regulator, automatic, w. s. Payne.. Printing machine, cylinder, J. T. Hawkins..
Printing machine sheet delive
Ha wkins................
Propeller, screw, E. H. Hall.

P
P
P
P
R
R
R
R
R
R

H. Hall......................................
Protector. See Bugay top bow protector.
Pump, steam vacuum. G. H. Nye............
Punch cutting machine, L. B. Benton......

Rack. See Pool 1 ack.

Railway frog, W.'J. Morden.
Railway frog, F. C. Weir.....
Railway, gravity switchback, L. A. Thompson.....
Railway grip, cable. D. J. Miller................
Railway switching device, cable, D. J. Miller...
Railway track, J. Frysinger.....
Railway track chair, A. A. Strom
Railways, apparatus for automatically indicicating
or signaling the passage of trains upon, Le-
basteur $\&$ Reuart

Rake. See Garden rake. Hay rake.
Reclining chair, F. W. Brooks..........
Rake. See Garden rake. Hay rat.
Reclining chair, . W. Brooks...
Refrigerator, J. Falkner........
Regulator. See Clock regulator. Pressure regu-
Rein holder. check, W. D. Taber..

Rotary engine, A. W.
Safe, J. R. Grove...
Sash cord fastener. W. Altick
Sawmill, circular, R. B. Holt
Saws, device for setting, fling, and jointing circ
lar, A. Winkler..
chine for, L. Bush, Jr.
Scaffold, A. C. Halterman...........
Scale and rule holder, C. A. Smith.
Seraper Scraper and carrier, dirt, H. M. Brown
Seat and desk fastening. F. L. Sands..

Sewing machine cutting attachment. buttonhole

F. E. Schmidt

Sewing machine tension attachment, R. Rossiter.
Sewing machine thread holder and cutter, D. F.
Spees..
Sewing machines, device for attaching presser
feet and other attachments to, H. C. Good-
tion for, C . Mansfield
Shell, M. Von Forster................................
Shirt bodies, securing bosoms to, M. Hermann.
Shirt bodies, securing bosoms to, M. Hermann..
Shuiter fastener and bower combined, F. C. Ro
inson..........
Skate wheel, roller, H. A. \& H. A. House, Jr.
Skating appliance, R. H. Rice..
Snow clearer, W. A. Greenlees
Snow excavator, rallway. J. N. Butler...............
Sockets, tap for screw threading, H. R. Borie...
Sodawater draught tube, J. C. Miller
Spark arrester, F. Manual.....
Spading machine, W. E. Depp
Spading machine, W. E. Depp......
Spindle and bearing, w. T. Carroll.
Spindle bolster, W. T. Carroll....
Splasher holder, A. W. Parmelee
Stamping machine, M. C. Wallin
Steam boiler, J. F. Pease..
Steam boiler, G. A. Porter
Steam boilers, air supply apparatus for, J. S. Pes-
senger..................
Steam engine, J. Curtis..
Steam generator, M. Fo
Steam trap, J. Corell...
Steam trap, H. A. Tobey.
Steam, utilization of exhaust, M. Honigmann (r)
Steel ingots, soaking pit for, J. Riley.
Stereotype matrices, apparatus for

Lloyd...................................
Stone dressing machine, F. Manning................. 332,91 ,

S
S
S

Strap. See Box strap. Hitching strap.
ugar, machining raw, Newhall \& Tucker

Clarke................................
Suspension device, L. T. Lawton...
Swing, w. S. Brown.............
Switch. See Tramway switch.
Table service articles, individual holder or rest
Target trap, A. H. \& C. C. Hebbard...
Telephone, mechanical, M. B. Williamson.
Thermometer, Sardy \& Coles.
hill coupling J. M. Simpson
Thill couplings, anti-rattler for, T. P. Randall.
Tidal power, Bussard \& Gates,
Tobacco curing apparatus, D.
Tobacco pipe, J. Aikman..................
Congue iron, wagon, O. Vanorman . Foulks...
Torpedo boats, electro-magnetic steering and
versing mechanism for. H. P. Griswold...
versing mechanism for. H. P. Gris
Torpedo, railway signal. H. F. Clark...
Toy spring gun, F. W. Goodjear
Alace connection for hames, adjustable, J.
Arace fastening, adjustable, J. A. Alexander...
rack and wheel cleaning and lubricating devi
F, G. Tuttle

Tramway switch, H. A. Hunter...................... 333,
Transom lifter, G. J. Dickson................. 332,
Trap. See Overflow trap. Steam trap. Target
trap.
Trimmer. See Wick trimmer.
Truck, car, A. M. Wellington....................... 332,981
Truck, car, A. M. Wellington....................... 332,981
Tube. See Sodawater draught tube.
Type writer, B. T. Mulligan 333,080
Type writing machines, ink ribbon annunciator
Type writer, B. T. Mulligan

Valve, steam engine, H. C. Anson.
Valve, throttle, C. H. Worthen........................... $332,88,85$
Vehicle running gear, McPherson \& Ramsdail.... 332,930
338877
Vehicle spring, C. H. Cain............................... 332,877
Ventilator. See Car ventilator.
Vertical tube boiler, Holtamann \& Mayer.......... 333,012
Wenan
Wagon brake, H. M. \& J. M. Crippen
Wagon, buckboard, Brown \& Bradle
Wagon, dumping, J. N. Archamb
Wagon, dunping, F. C. Milliken.
Wagon, dunping, F. C. Milliken..................
W asher and linchpin. combined, J. Lovett.
Washer and linchpin. combine
Watch case, C. K. Colby...............
Water closet tank, J. W. Somervile.
Water gauge, w. Young............................
Water gauges, glass tube for, A. Guilbert-Martin.
Water gauges, , lass tube for, A. Guilbert-Martin.
Water meter, proportional, L. H. Nash.....332,935,
Wand
Water meters, operating proportional, L. H. H.
Nash................................ 332,9
Wick trimmer, lamp, H. H. Hawley.......................................3200
Windmill gearing, G. H. Pattison...........
E. M. Greer..
Window 'shade attachment, adjustable, J. H.

Wire, barbed, H. B. Scutt............
Wire barbing machine, J. Stubbe.
Wrench, M. Gale. .
DESIGNS.
Stove, cannon, H. C. Bascom.........
16,423
16,424

TRADE MARKS
Cement for leather. H. G. Williams.. Corn, evaporated su,
Lamps, C. s. Upton.

A printed copy of the specification and drawing of
any patent in the foregoing list, also of any patent any patent in the foregoing list, also of any patent
issued since 186f, will be furnished from this office for 25 issued since 186f, will be furnished from this office for
cents. In ordering please state the number and date of the patent desired, and remit to Munn a Co., 301
Broadway, New York. We also furnish copies of patents Braadway, priow to 1866; but at increased cost, as the
granted pecifcations; not being printed, must be copied by specific
hand.
Canadian Patents may now be obtained by the going list, at a cost of $\$ 40$ each. For full instruction
address Munn \& Co., 361 Broadway, New York. Other foreign patents may also be obtained.

Pfovertisements.

tisements must be received at publication office as early
as Thursday morning to appear in next issue.
Remington Standard Type-Writer

Purchasers
miter-
mite to
perun
y

 giving an oppoprtun-
ivt of comprison
with ot ot her ma-
Wyckoff, Seamans \& B Bnedict,

FRICTION CLUTCH
Pulleys and Cut-off Couplings.

manminalimma

ENGINEER'S POCKET BOOK. BY

 PROPOSITIONSFOR GAS

ELECTRIC LIGHTINGE.

TRAINING FOR MECHANICAL ENGI

INJECTORS

A

REIS TELEPHONE Transmitery and telephones antedate and do not infringe any telephone
patent.
G. K. MILLIKEN \& CO.
\%0 Washington Street, Boston, Mass.

21C. PULLEYS 4 C . ROUGH Johntivite ifte. Co. FINISHED PETROLEUM AS FUEL IN LOCOMO-

 HYDROPHOBIA.--A PAPER BY DR.

 THE BEST STEAM PUMP.

 CONSTRUCTION OF STABLES-A

81000000000.

NO CAPITAL REQUIRED.

 SCIENCE OF LIFE.

 the press, clergy, parents, and teachers, and every one of
its more han a milijion readers. Every man, Young or
old, hould read this book, and every sufferershouldeon-
sult the author.

 the last medicine you sent me. I am now (thanks to your
skill completely restored to goo health Last year, be-
fore compencing traatent, did not thin m , healh
fould

 you to all suffering rom ne
Yours truly
Book E, vol. xiii., case 122.

CURE ${ }_{\text {THE }}^{\text {Tin }}$ DEAF always in position, All conversation and even whispers heard distioctly Send forlutrited hon with testimoni- als, FREE. Adress F. HISCOX, 853 Broadway, N. Y.

MEN N = = waw

DfDoerfisements

nongravings may head advertisements at the same rate
per line, by measuremint, as the letter press. Adverper line, by measuremint, as the letter press. Adver
tisement must bo received at peblication office as early
as Thursday morning to uppear in next issue.

H.W. JOHNS
 ASBESTOS:

Roam Packings, Building Felt, Coverings,
Steam Packings, Boiler Coverings,
Fire Proof Paints, Cements, Etc.
Samples and Descriptive Price Lists Free. H. W. JOHNS M'F'G CO., 87 MAIDEN LANE, N. Y.

NATURAL GAS.-A PAPER BY C E. cequenbourg. discussing the illuminating power and
caroric value of natural gas as compared with that made
from coal. Contained In SclENTFIC AMERCAN SUP-
rIEMENT. No 471. Price 10 cents. To be had at this

DRAWING INSTRUMENTS.
$\xrightarrow{\text { Ilastrated atatagut }}$ sent
MALLEABLE
THOMAS DEELIN \& CO
LEHICH AVE. AME
THE RAILWAY BUILDER. A HAND-

HARRIS-CORLISSENCINE, With Harris' Pat. Improvements, from 10 to $1,000 \mathrm{H}$. P

PERFUMES.-A PAPER BY JACOB

A New Drill Chuck. No. 1 THE HARTFORD.
 THE CUSHMMA CHUCK CO. Hartrord, Connt
Healer in machinists' ${ }^{\text {Tools. }}$. HIGH EXPLOSIVES FOR WAR PUR-

YELECTRIL

BOILER TUBES.-A VERY USEFUL
 Chidrews' Parlor Bed fer fer
 american mechanical dictionary.

PATENTS.

 MESSRS. MUNN \& CO., in connection with the publication of the SCIENTIFIC AMERICAN, continue to ex-amine improvements, and to act as Solicitors of Patents for Inventors.
perience, and now nave unequaled facilities for the prep aration of Patent Drawings, Specifications, and the prosecution of Applications for Patents in the United States, Canada, and Foreign Countries. Messrs Munn \&
Co. also attend to the preparation of Caveats, Copyrights for Books, Labels, Reissues, Assignments, and Reports n Iniringents of Patents. All business intrusted to
 taining full infor cation about Patents and how to proDesigns, Patents, Appeals, Reissues, Infringements, As signments, Rejected Cases, Hints on the Sale of Patents, etc.
We also
We Laws, showing the cost and method of secururing patents in all the principal countries of the world. BRANCH OFFICES.- No. 622 and 624 F St

PATENT RIVETED MONARCH RUBBER BELTING. Best in the w下omia.
Specially adapted for PAPER MILLS, SAW MILLS, and THRESHING MACHINES.
THE GUTTA PERCHA and RUBBER MFG. CO.

The Best in the World.

We make the Best Packing that can be made regardless
of cost. Users will sustain us by calling for the "JENKINS STANDARD PACKING.'
Our "Trade Mark" is stamped on every sheet. None
genuine unless so stamped. JENKINS BROS.

THE MANUFACTURE OF CRUCIBLE
 LIFII AMEMIAN SUPPLEMENT, No. 464. Price
cents.

COLD ROLLED SHAFTING

 Helve Hant ium inan

steam catamaran may bar

民xperimelina
 SendforCircuars,
 C.E.Jonesebio

Aluminum Bronze, Aluminum Silver, Aluminum Brass, SILICON BRONZE,
Furnished in Ingots and Castings. Rods and Wire Made to Order. We have no Sheet Metal. Our Malleable Castings can be made of over 100,000 pounds tensile strength, with extraordinary power to with-
stand corrosive influences, and unrivaled beauty of color. Send for pamphlet, THE COWLES ELECTRIC SMELIING AND ALUMINUM CO., CLEVELAND, 0.

REPAIR OF BOILER TUBES.-BY

ELECTRIC CONVEYORS.-DESCRIP

Clark's Compressed Paper Skate Rollers.
 CHOLERA--ABSTAACT OF A PAPER

The Latesi Improvement TRACTIONENGINES

 Poriable, Agricultural, \& Stationary Steam Engines.

 Jesparatus atalogue will be sent on application
WOOD, TABER \& MORSE Eaton, Madison Co., N. Y.

SHOEING HORSES:-ABSTRACT OF A

ECONOMIC MOTOR CO.'S

GAS ENGINES.

ECONOMIC MOTOR CO.,

95 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor.

Wanted-The right to manuacture some patent artican be used. Will purchase patents or manu
royalty. Address P. O . Box 2 , Deatur, III.
DHOTOGRAPHIO OUTFITS Oor A Amateurs.
 THERAPEUTICAL EFFECT OF THE

Barnes' Patent Foot and Hand Power MACHIN ERY, \$15.

The Scientific American.
THE MOST POPULAR SCIENTIFIC PAPER IN THE WORLD.
 This unrivaled periodical, now in its forty-fiist year, continues to matitain its high reputation for excellence,
and enjoys the largest circulation ever attained by any
scientific publication.

- Every number contains sixteen large nages, beautifully orinted, elegantly illustrated \& it presents in popular
style a descrt 2 tive record of the most novel. interesting, style a descrip ${ }^{\text {tive }}$
and record of the most novel. interesting, and important advances in scence, Ars, a in respect to
tures. It shows the progress of the World
New Discoveries and Improvements, embracing Machtnry, Mechanical Works, Engineering in all branches, Chemisiry, Metallurgy, Eiectricity, Iight, Heat, A rchitory, etc. It abounds with fresh and interesting subjects for discussion, thought, or experiment; furnishes hundreds of useful suggestions for business. It promotes
industry, Progress, Thrift, and Intelligence in every Industry, Progress, Thrift, and
community where it circulates.
The Scientipic American should bave a place in every Dwelling, Shop, Office, School, or Library. Workmen, Foremen, Engineers, Superintendentz, Directors, Presidents, Officials, Merchants, Farmers, Teachers,
Lawyers,Physicians, Clergymen, people in every walk and profession in life, will derive benefit from a regular reading of THes SCIENTIFIC American.
Terms for the United States and Canada, 83.20 a year; $\$ 1.60$ six months. Specimen copies free. Remit by Postal Order or Check.

$$
\begin{aligned}
& \text { \& Co., Publishers, } \\
& \mathbf{3 6 1} \text { Broadway, New Yorks. }
\end{aligned}
$$ TET

Scientific American Supplement.
rate and distinct publication from Tree Scientifio AmErican, but is uniform therewith in size, every number containing sixteen large pages. The Scientific Am-
ERICAN SUPPLicmunt is pablished weekly, and includes very wide range of contents. It presents the most recent papers by eminent writers in all the principal de-
partments of Science and the Useful Arts, embracing Biology, Geology, Mineralogy, Natural History, Geo-
graphy, A rehæology, Astronomy, Chemistry, Electricity, Light. Heat, Mechanical Engineering, Steam and Railway Engineering, Mining, Shi, Buildifg, Marine Engineering, Photography, Techhnology, Manufacturing
jndustres, Sanitary \#ngineeripg, Agriculture, Hortipadustries, sanitary migineeripg, Agriculture, He, vast amount of fresh and valuable ingen, the whole profusely illustrated with engravings.
The most important Ensineering Works, Mechanisms, and Manufactures at home and abroad are represented
and described in the SuPPLEMENT. Price for the SUPPIEMENT for the United States and
Canada. 85.00 a year, or one copy of the ScIENTIFIC AMerican and one copy of the SUPPLEMient. both mailed order or check, order or check,
MUNN

Irs Scientific American.
To Foreign Subscribers.-Under the facilites of
the Postal Union. the Scientific Amerioan is now sent by post direct from New Fork, with regularity, to subBritish colonies ; to France, Austria, Belgium, Germany, Russia, and all other European States; Japan, Brazil, i4, gols, when sent to foreign countries, canada excepted, \$4, gola, for ScIENTIFTC AMERICAN, one year; 99 gold,
for,both SCIENTIFIC AMRRICAN and SUPPLEMENT for one year. This includes postage, which we pay. Remit or draft to order of

PRINPIING INKEA,
THE "Scientific American" is printed with CHAS.
Gard Sts. Phila... and 47 Rose St., opp. Duane St., N. N . $\overline{\text { Y. }}$

[^0]: Fig. 3.-Elevations through a, b, C, and D

