

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CIIEMISTRY; AND MANUFACTURES.

$\left[\begin{array}{c}\text { [POSTAGE PREPAD.] } \\ \text { \$3.20 per A nnum }\end{array}\right.$

REPAIRING THE COOPER INSTITUTE BUILDING, NEW YORK CITY.-[See page 857.]

minutifir ghmerica.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors.
published weekly at
No. 361 BROADWAY, NEW YORK.
o. D. MUNN
A. E. BEACH. One copy, one year, postage included...
Clubs.-One extra copy of The Scientific Amprican will be supplied gratis for every club of tive subscribers at
same proportionate rate. Postage prepaid.

Remit by postal order. Address

The Scientific American Supplement
is a distinct paper from the Scientific American. THE SUPPLEMENT is issued weekly. Every number contains 16 octavo pages, uniform in size With Scientific American. Terms of subscription for SUPPLEmen all newsdealers throughout the country.
Combined Rates.-The Scientific American and Supplemen will be sent for one year, postage free, on receipt of
papers to one address or different addresses as desired.
The safest way to remit is by draft, postal order, or registered letter.

Scientife American Export Edition.

The SCientific American Export Edition is a large and splendid periodical, issued once a month. Each number contains about one hundred large quarto pages, profusely illustrated, embracing: (1.) Most of the plates
and pages of the four preceding weekly issues of the Scientific A CAN with its splendid engravings and valuable information; (2.) Com mercial, trade, and manufacturing announcements of leading houses Terms for Export Edition, 85.00 a year, sent prepaid to any part of the
wor.d. Single copies, 50 cents. Manufacturers and others who desire wor.d. Single copies, 50 cents. Manufacturers and others who desire
to secure foreign trade may have large and handsomely displayed anto secure foreign trade may have large and handsomely displ
The Scientific American Export Edition has a large guaranteed circulation in all commercial places throughout the world. Address MUN \& CO., 361 Broadway, corner of Franklin Street, New York

NEW YORK, SATURDAY, DECEMBER 5, 1885.

Contents.

(Illustrated articles are marked with an asterisk.)

TABLE OF CONTENTS OF
the scientific american supplement

NO. 518,

For the Week Ending December 5, 1885.
Price 10 cents. For sale by all newsdealers.
I. Chemistry.-Freezing Mixtures.-With table. Nitru-Celluloses.
A pparatus for Appara
figure..
engineering and mechanics.-The Nordenfelt Subm rine Boat.-With fult description and numerous illustrations.......
Surface Condensation.-Condensers of the S.S. Calabria.-With Surface \mathbf{C}
engraving.
Dohis's Accumulator of Power for Use on Sewing Machines. -2
technology.-The Manufacture of LD . . erials employed.-Causticizing of alkalies.-Classiffcation and general chemical characters of soap making processes. Apparatus for Packing Flour in Bags.-2 figures.
Machine for Covering Copper Cables with
Machine for Covering Copper Cables with Gutta Percha.
Improved Balling Machine.-2 figures
Qualifications of Foreme
IV. Electricity, etc.-New Method of Manufacturing Incandes cent Lamps.- 2 figures.
architecture and art.-The Midland Hotel, withing.... Anear Manchester.- Full page of engravings.

BIOLOGY, ANTHROPOLOGY Animals.-By Prof. W. K. Parker.-Did the higher vetid rise suddenly, or slowly by gentle modifications?-Did the lower vertebrata arise suddenly, or by gradual metamorphosis of nonThe Carp.-Its food

VII. MISCELLANEOUS.-The Eightieth Anniversary of the Battle of Trafalgar.-With plan and engraving................................. 8
Jappanes Tattooing.-Origin and meaning of the practice--Man-

THE GREYHOUNDS OF THE ATLANTIC.

It is a question whether the new class of steamship

 of extreme speed and enormous size can be made as acceptable to their owners as to the public, for the large expense for first cost and maintenance makes it doubtful on which side the financial margin will be found. The managers of the Cunard Line seem, however, to have satisfied themselves of their profitableness, for within the past few years they have added to their fleet as many as five of the fastest and largest vessels afloat. The French Steamship Company are following the same policy, and the voyage from New York to Havre will be made next summer by the large new steamers recently built for the pur pose. The other lines, however, are more conservative The White Star Line has not added a new vessel to ts fleet for years, and its steamers can no longer be called swift. The same thing holds true of the Inman Line. The America, of the National Line, and the City of Rome, of the Anchor, are both known as ocean racers. The Guion Line retains the Alaska and the Arizona, but was glad to sell the Oregon to the Cunard Company; and it is said that the rumor of war be tween England and Russia, which led to the charter ing of this and other vessels, was hailed with delight by those companies whose property was taken. It will be observed that the evidence in the matter is de cidedly ambiguous. While the one company is increas ing size and speed, the others are holding back. The cost of operating these immense steamers is enormous, while the rates for ocean travel are, if anything, on the decline. The great size made necessary by high peeds adds to the resistance while it increases the power, and the gieater space occupied by engines and coal bunkers does not permit a corresponding increas in the carrying capacity. The cost of a steamer like the Etruria is about $\$ 1,000,000$; she burns over 300 tons of coal daily, and her crew is necessarily much large than on a vessel of from five to six thousand tons burḍen.She has carried as many as 600 first class passenger t one trip, and could this rate be maintained all the year round, she would, of course, be a very profitable investment; but the season of heavy travel is limited, and for a large part of the year she must either be laid up or run at a loss. The real question, then, as the Tribune puts it, is whether it will pay to build vessel at a vast cost which will run almost empty during half the year, and will make the passage from New York to Queenstown in twenty-fours less time than other vessels which cost much less and burn half as much coal. In the long run, it will probably be found that the most profitable steamers for transatlantic passenger service are boats like the Britannic, the Gallia, and the Normandie, which cross in about eight days. They burn something less than 200 tons of coal a day, and can accommodate about 300 passengers. The gain of the larger and swifter boats in capacity and speed is at too great a cost.

M. PASTEUR'S RESEARCHES IN THE TREATMENT OF HYDROPHOBIA.

The entire civilized world has for some time past been watching with intense interest the experiments on the treatment of hydrophobia conducted by the celebrated French scientist, Dr. Louis Pasteur. These researches have now been so far completed that the results have been presented by the investigator to the French Academy of Sciences. The first step in these investigations, as reported by cable to the Herald, was the inoculation of a rabbit with a frag ment of tissue taken from the spine of a rabid dog. The incubation of the poison occupied fifteen days. As soon as the animal died, a portion of its spinal marrow was in turn inoculated into a second rabbit, and the process continued until sixty rabbits had been treated. Each inoculation increased the power of the virus, so that thelast incubation occupied but seven days. As dried air diminishes the power of the virus, the spinal marrow of the inoculated rabbits was kep in bottles of dried air. In beginning his experi ments, therefore, M. Pasteur inoculated his subject with the old tissue, and finished the operation by the injection of tissue that had been bottled only two days, the period of incubation of which would not exceed a week. These experiments have been ver successful, for after such an inoculation the subject
is found to be entirely proof against hydrophobia. An excellent opportunity to test the new treatment wa afforded by a lad, twelve years old, named Meister who had been bitten fourteen times by a rabid dog, and who was brought to M. Pasteur. As there seemed no doubt of a speedy and painful death, should nothing be done for the child, he was considered proper subject for experiment. In thirteen days, the inoculations made upon the lad were gradually increased in strength, until the last was from a rabbit that had only died on the previous day. At the end of a. hundred days, the lad was in perfect health, and the experiment was pronounced a decided success. Another lad, named Judith, who was fifteen years old, and had been bitten by a mad dog, was progressing
satisfactorily after a week's treatment, and a fortnight
from the time of the accident. To carry this system into effect, it will be necessary to have rabbit farms established, where the animals wili be kept constantly inoculated with the disease, just as we now have bovine farms for the production of vaccine virus. Two lines of treatment are mentioned, the inoculation of human subjects and the blotting out of the disease by the compulsory inoculation of dogs for several generations. The origin and nature of hydrophobia are understood but imperfectly, and it is too soon to make any definite assertions in regard to M. Pasteur's system. It is probably but the first link in a chain of elaborate investigation. The honor, however, in such unique inquiries is to him who breaks the ground.

WAR BALLOONS.

At a recent meeting of the Military Service Institution, held at Governor's Island, Gen. Russell Thayer, of Philadelphia, presented in detail his system of independent and dependent dirigible balloons, intended particularly for use in war times. General Thayer has made many experiments in aerial navigation, and has so far been successful that a number of his designs and working models are now under consideration at the British War Office
The independent balloon is for observation chiefly, and has sufficient carrying force to enable it to drop powerful explosive bombs upon the fleet or camp of an enemy, and cause greater destruction than the most ormidable fortifications. The buoyant part of the balloon is made of superimposed tissues of silk or rubber, or vegetable textures impregnated with caoutchouc, to prevent the escape of hydrogen.
The form is that of a circular spindle, the longer horizontal axis of which should be three and two-thirds that of the smaller. The body is at all times perfectly inflated, so as to remain rigidly in shape. The suspended deck, carrying the machinery and crew, is firmly supported and braced. A lower deck carries the motive power. When the machinery is in operation, the balloon can be raised or lowered to any elevation without employment of ballast. Four cylinders located on the upperdeck receive a portion of the hydrogen from the inflated bag of the balloon when it is desired to lessen its buoyancy, and consequently descend. To ascend, the gas is pumped from the cylinders into the bag, and by displacing the heavier air of the surrounding atmosphere, the buoyancy is increased.
The motor is a high pressure air compressor coupled directly to a newly devised carbonic acid gas engine and a reservoir for storing the air until sufficient pressure is obtained. At given intervals of time, the compressed air is suddenly released, producing a powerful orward thrust. As the carbonic acid gas engine uses no coal, danger from fire is entirely avoided. This is particularly important, since mixtures of hydrogen and air are so terribly explosive. The air being discharged at the stern through a pipe and nozzle fitted on a ball and socket joint, the direction of the air ship is determined by a wheel governing the movement of the pipe and nozzle. No other rudder is necessary. The efficiency of the mechanism is increased materially by placing hollow, truncated cones over the nozzle.
Gen. Thayer expressed his belief that air ships, even 1,000 yards in length, could be operated without difficulty, since the resistance does not increase in proportion to the size of the ship. Last year the United States Ordnance Board recommended the construction of an experimental balloon, 100 feet in diameter and 367 feet long. Such a ship would have a total ascending force of about 55 tons. It is thought that a speed of 50 miles an hour could be obtained. Gen. Thayer's model, being 30 feet long by 10 feet in diameter, was not placed on exhibition, as the assembly room was scarcely capacious enough.
The construction of the dependent dirigible balloon s similar to that of the independent ship except the motive power, which is here electricity. The track consists of two parallel wires supported on poles above the ground. The lower deck would be provided with two large wheels constructed to run on the under side of the wires, and two small wheels to run on the upper side. This arrangement anchors the balloon to the earth, and furnishes the motive current from a dynamo at the end of the line.
It is expected that a speed of at least 20 miles an hour could be obtained. A model of the balloon and track was shown, and by making the connection was operated successfully. These experiments have at tracted much interest, and have inspired a confidence in their ultimate success when put into practice.

ACCORDING to La Lumiere Electrique Mr. L. Senet has invented a new process that permits of the manufacture of aluminum, as well as copper, silver, etc., by electrolysis. A current of from 6 to 7 volts and 4 amperes is made to act upon a saturated solution of sulphate of aluminum in the presence of a solution of chloride of sodium, the two solutions being separated by a porous vessel. A double chloride of aluminum and sodium is formed, which is decomposed, and the aluminum that is set free deposits upon the negative electrode.

NIGHT SEY-NOVEMBER AND DECEMBER.

The Great Bear (Ursa Major) is beginning to rise above the northeast (by north) horizon. The end of the Dipper's handle is hidden. A line from the Pole Star (toward which the Pointers direct the observer) to the Guardians of the pole, β and γ oif the Little Bear (U'sa Minor), is now in the position or the minute hand of a clock 27 minutes before an hrour. Thestars of the Dragon wind round below the Little Bear toward the west, the head of the Dragon with the gleaming eyes (" oblique retorted that askant cast gleaming fire") being low down, a little north of northwest. Above is King Cepheus, and above him his queen, the Seated Lady, Cassiopeia, their daughter, the Chained Lady Andromeda, being nearly overhead.

Low down in the northwest we see the Lyre (Iyra), with the bright Vega, and close by toward the west the Swan (Cygnus), or Northern Cross. The Eagle is setting in the west, and the Little Dolphin nears the western horizon.
Toward the southwest (by west) we see the Water Bearer (Aquarius), with his pitcher (β, γ, α), close by Bearer (Aquarius), with his pitcher (β, γ, α, close
which is the head of the Winged Horse (Pegasus). In which is the head of the W
the south, low down, is the absurd Phœnix; above, the Sea Monster, or Whale (Cetus); above him, the Fishes (Pisces); above them the Ram (Aries); while nearly overhead lies the Triangle.
The river Eridanus occu pies the southeasterly sky the Dove and Great Dog (Columba and CanisMajor) rising in the southeast. The glorious Orion has now come well into position, though not yet so upright as we could wish a knightly hunter to be. He tread on the Hare (Lepus), and faces the Bull (Taurus) above.

Due east we find the Crab (Cancer) and Little Dog (Canis Minor) low down; the Twins (Gemini) higher above them the Chariotee (Auriga), with the brigh Capella, and Perseus the Rescuer nearing the point overhead. In the midspace between Perseus Auriga, and the two Bears we find the ridiculous con stellation Camelopardus or the Giraffe.

Asphalted Jute.

According to the Journal des Fabricants de Papier, a material called asphalted jute is being largely employed in Germany for ployed in Germany fo covering roofs, for isolat
ing damp walls and floors ing damp walls and floors,
and for preventing bad and for preventing bad
odors from reaching apart odors from reaching apart
ments situated over stables ment
It consists of strong jute cloth coated with specially prepared asphaltum, and covered on each side with strong, asphaltum-coated /first costahealthfulness, and beauty of design and finpaper. In order to obtain a very compact product, the whole is submitted to very strong pressure.
The material can be used on farms for making tight reservoirs, in the construction of bridges, and in many other cases where there is need of a material that is at once strong, impermeable, and cheap.

Hon. Thomas A. Hendricks.

It is with deep regret that we record the death of Hon. Thomas A. Hendricks, Vice-President of the United States. After a very brief illness, he expired at his residence in Indianapolis, on November 25th. For some time he had suffered from a slight paralysis of the left hand, and it is thought that his death was caused by instantaneous paralysis of both heart and brain. Mr. Hendricks was born in 1819, at Zanesville, Ohio; studied at Hanover College, and, after completing his law course, was admitted to the bar of Indiana. He was at different times a member of the Legislature and of Congress, the Commissioner of the General Land Office, a National Senator, Governor of Indiana, and was twice chosen to be VicePresident of the United States.

The Seventy-six Canal Company of California are to build a branch canal at Tulare County, 18 miles long and 60 feet wide.

Whitening Walls.

The Deutsche Bauzeitung has lately commented upon he dangers resulting from the use of certain substances in whitening walls, as well as from the size and other compositions used in paper hanging, etc. From the fact that painters' brushes are injured by lime freshly slaked, they often mix with it organic substances, which are liable, it is considered, to cause infection. The same remarks are applied in a general way to paperhangers. These disadvantages can, it is said, be obviated by adding one-tenth of a pound of boric acid to each gallon of ordinary milk of lime. This addition has the advantage of preventing the appearance of stains when paper or size colors are applied to walls not sufficiently dry. In cases of disinfection it is necessary for special care to be exercised as to purity of the lime used.

Homes.

For many years past the *Baltimore" has been one of the best known and most popular of the fireplace heaters in use. For heating houses of moderate size it heaters in use. For heating houses of moderate size it
ish, that easily account for the large degree of public favor it has received. It was originally a distinctive Baltimore invention, from which it took its name; but its manufacturers, Messrs. B. C. Bibb \& Son, of that city, have introduced various new features in its construction, whereby the fire can at all times be regulated with the least possible attention, for the maintaining of a uniform temperature, with a minimum consump tion of coal, while the heater will not only warm the lower rooms of a hoase, but two and sometimes three chambers above. It is, in fact, a miniature furnace put in the fireplace or chimney flue, the same as grate, and is furnished with or without a mantel, espe cially made to harmonize with it in appearance, and hus add to the furnishing and decoration of a room The chimney flue may be used as a conductor of hea to the rooms above, or a tin heat pipe may be run through the chimney to the registers in the upper rooms. These heaters are self-feeding, and require so little attention that those using them frequently keep their fires going'through the whole season without once having to rebuild a fresh fire, while they have an illuminated front which gives the cheerful appearance of low iron grate in a room, with none of the dust and dirt which are such serious drawbacks to an open grate fire. The grate is so arranged that the clinker can be removed without disturbing the fire, and an improved
slide has been added by which the ashes can be dropped directly into a receptacle in the cellar if so desired. The "Baltimore". heater is in such demand that a majority of new houses in Baltimore and Washington ess than 25 ft . front are supplied with and entirely warmed by them.
Messrs. B. C. Bibb \& Son, Nos. 39 and 41 Light St., Baltimore, Md., are the invenjors, patentees, and manufacturers of these improved heaters, the above company being the pioneers in this line, having been thirty-four years in the business.

Ammonia and Alcohol in Snako Bite

Writing to the Medical Times from the Delaware Water Gap, where poisonous snakes abound, Dr. J. B. Shaw says that he was called to see a child, aged 10 ,' female. She was bitten by a copperhead on the foot, about one inch above the middle toes. He saw her in four hours from the time she was bitten. Her symptoms then were: Extreme prostration with nausea; respiration very slow; pulse weak; eyes fully dilated, with a wild look. The foot and leg were very much swollen and purple, and very painful.

He gave her 60 minims of spts. ammon. aromat. hypodermically, ordered one ounce of whisky every two hours, and a large poultice of bruised raw onions to be applied to the foot and to be renewed every hour. The whisky and onions were kept up until the child was well, which was on the third day.
The above has been hi treatment for the last six years, and he has never lost a case; nor has he heard of a death from snake bite where the treatment has been carried out.

Unmagnetizable Steel

Mr. J. T. Bottomley has made some experiments with a piece of steel made by Messrs. Moses Eadon \& Sons, of Sheffield, under Hadfield's patent, containing 15 per cent of manga nese. One side of the spe cimen has been polished and shows that the steel is capable of taking a very high finish The present specimen has a tensile strength of 45 tons to the square inch. To test it magnetically, the bar was first "touched" with steel magnets, but these had evidently no effect upon it. It was then placed between the poles of a powerful Ruhmkorff elec-tro-magnet, excited by forty large tray Daniel cells arranged in fours fo quantity, and ten in series. The bar was, however, still unaffected by the magnet sm, as far as could be per ceived by the hand. On
esting it by a delicate magnetometer, however, it was found to show a slight trace of magnetism. The magnetization per gramme was found to be 0.013 C. G. S. (centimeter-gramme-second) units, whereas some specimens of steel show 50 to 100 C. G. S. units per gramme.

The Hartford Steam Boiler Inspection and Insur ance Co.
An examination of the financial resources of the Hartford Steam Boiler Inspection and Insurance Co., made during the past summer by A. R. McGill, the Insurance Commissioner of Minnesota, and J. J. Brinker hoff, the Examiner for Illinois, shows the condition of the company to be in every sense satisfactory. It had on the 10th of August, $\$ 527,194.55$ of good interest-pay ing assets, and, aside from its capital stock of $\$ 250,000$ but $\$ 172,561.53$ of liabilities. The investments of the company have all proved to be excellent, and the management has shown rare skill and ability in keeping the losses down to a minimum. This is due largely to the company's thorough system of inspection, by which the expenses are limited in a large measure to the pre ventive department. An investigation by outside examiners was deemed advisable, on account of adverse reports circulated in the Northwest by an unscrupulous competitor, but the report now made public will comcompetitor, but the report now made pu
pletely silence such an unworthy attack.
nected with it, which carries away water of condensa tion. Fed by the water tank, shown in the center of the picture, is a large pipe encircling the kiln above the burners. From this circle a smaller pipe leads to each opening, where it connects with a water back; from the outlet of each water back a pipe leads to a waste-water collector. By this means a constant circulation of cool water is maintained through each water back, and the brick lining adjacent to the flame is protected from the effect of the intense heat. Suitably located valves control the admission of steam and the flow of oil and water to the kiln. The steam, in its passage across the opening in the vertical oil pipe of

bUCKNER's IMPROVED WINDOW.
the burner, draws up the oil, which enters the kiln as a fine spray; upon being ignited, an intense and equal heat is obtained, which burns the limestone as it gradu ally passes downward through the kiln.
Limestone from the quarry, but a short distance away, is brought upon cars to the level of the upper floor; from here it is fed to the kiln through a door in the upper conical portion. The degree of heat to which the lime in its passage is submitted increases as the burners are approached. Above each burner opening is a peep hole, through which the condition of the interior may be observed. The lower part of the inte rior of the kiln tapers downward, and terminates in a chute, provided with a weighted door, and through which the lime is drawn. The lime is stored upon this floor, or packed ready for shipping; a track leading to
one of the branches of the Pennsylvania Railroad
a nicety and may be maintained for an indefinite period, and that the kiln is continuous in its action The limestone is. subjected to what may be termed a cleansing process, and the lime is delivered in a pure state.
This invention has been patented by Mr. Joshua Hunt, and is controlled by the Baker Lime Co. (Limited), of Avondale, Chester Co., Pa., whose kiln our engraving illustrates. The general agents of the Baker Lime Co. are the Jackson Lime and Coal Co., of Wilmington, Del.

AN IMPROVED WINDOW.

To the window casing, which is formed with weight boxes in the ordinary manner, are attached guards forming grooves for the sashes to slide up and down in. Each of the sashes is made in two parts, rabbeted at their inner and outer edges to form close joints, and hinged at their outer edges to pieces fitted to slide up and down in the grooves in the casing. To each hinge piece are attached two or more bolts formed with flat heads, which project at the inner sides of the pieces so far as to underlap the adjacent edges of metal guide plates secured to and between the guards and casing, as clearly shown in the sectional plan view. When closed, the sashes are held together by bolts, as shown in the large view. With this construc tion the sashes can be raised and lowered with the same facility as ordinary sashes, and can also be swung open and shut upon the hinges, so that the outer sides of the window can be readily washed and the window can be fully opened in warm weather to admit air to cool and ventilate the apartment, and quickly closed when required.
This invention has been patented by Mr. M. S Buckner, of 154 Hull Street, Savannah, Ga., who will furnish all further particulars.

Andromeda's Loss.

The new star in Andromeda, which was first seen by Ward, at Belfast, on August 19, as a star of the ninth magnitude, and two days later reached its greatest brightness as one of the seventh magnitude, is now fading at the rate of one magnitude in eighteen to twenty one days, and has reached the lower brilliancy of a star of the eleventh magnitude. Monck has suggested the hypothesis that the stranger may be a dark star raised to incandescence by passing through the matter con stituting the nebula, or may be a condensation of meteoric streams. Or it may not be in the nebula at ll. If it is really pasing through Andromeda th ngth it nebula, since it must be going across the thin portion the diameter of which is, nevertheless, forty or fifty times as great as the distance of the earth from the

IMPROVED METHOD OF BURNING LIMESTONE.-KILN OF THE BAKER LIME CO
from the reservoir to the auxiliary tank, which is at passes before the door of this apartment. The lower|sun, or about four and a half billions of miles. Similar
such an elevation that when full the oil surface is a few inches below the burner outlet. Each horizontal pipe of the burners is connected with a steam pipe encircling the kiln just below the burner openings, and supplied with steam by the boiler.

Immediately below the steam circle is another con-
portion of the kiln could, if thought desirable, be so dark stars have been previously observed. constructed as to form a capacious storage chamber, in which the lime would be perfectly protected, and from which it could be easily drawn as needed.
From the above brief description it will be seen that all the parts are simple, the heat may be regulated to

SOME one suggests the brilliant idea of chaining a Bible to each telephone in the country, so that while waiting for replies the telephoners will have something to read of a nature to repress profanity.

MACHINE FOR BEVELING ANGLE BARS, ETC. Any one practically acquainted with shipbuilding, boilermaking, etc., will be aware that up to a recent date it has been and is still generally customary to bevel bars for the frames, reverse bars, keelsons, stringers, etc., for iron or steel vessels in a very laborious manner, with the use of tools worked entirely by hand; the angle has in the first instance to angle has in at by the worke to be guessed at by the workmen,
then altered back or forward unthen altered back or forward until it conforms with the bevel ob-
tained from the body plan of the ship. When the bevel required to be put on a bar, and the curve to which it has to be bent, is considerable, several heats are necessary, the iron in the process becoming brittle and unsatisfactory. Frequently the bar is broken and the labor at all events lost, as usually iron manufacturers only replace the material, and do not allow for the labor expended. In any case, the work when it is done by the ordinary method is far from being satisfactory, the bars becoming hollow in the flanges, thus-

instead of being perfectly flat, so that, when the work is put together, the riveters are compelled to ply the bar with quarter hammers so that it may be made to fay close; and while doing so the bars are frequently fractured, which if detected leads to them being condemned, or doubling pieces have to be fitted as compensation. Arthur's patent beveling machine overcomes these practical difficulties to good beveling, and has already been tried, approved, and adopted by several large shipbuilding firms. The patentee is a practical iron shipbuilder, being at present a foreman plater with Messrs. Ramage \& Ferguson, who have adopted the machine. The need of some better means of beveling angle and other bars has often occurred to Mr. Arthur, and this machine is the result of much thought and experiment on his part.
The machine which we saw at work was mounted on rails in front of the furnace, and when in use is brought up opposite the furnace mouth. It draws the bar out of the furnace (a saving of manual labor), and the beveling process goes on simultaneously while the bar is still at its best heat, no time being lost as in the ordinary method by having first to secure the bars on the blocks. It bevels straight out from the heel, and smooths down the rough edges of the rivet holes, so that the rivet head gets close up to the neck and the work fays close. The beveling is done correctly and at once, so that the result is smooth, clean, and accurate work; and the operation being done by rollers when the bar is hot, the edges are fair and free from local

McMORRAY'S SLEEPER'S GUARD.

strains, which are always put on bars beveled by the old fashioned way, the beveling occupying just about the same time as in the ordinary method is taken in merely drawing the bar out of the furnace.
The bar when it has left the machine is sufficiently hot to be turned without reheating, and is easily wound or turned fair to the set, so that it is therefore
free from kinks. It is claimed by the patentee that the work is done with a saving in labor alone equal to about 50 per cent, and there is no doubt that there is a very great saving in the labor expended in beveling. The machine is very compact, lightly but strongly constructed, and so simple that any workman can use it.

MACHINE FOR BEVELING ANGLE BARS, ETC.
the position of the roller, E , so that the pointer, M will indicate on the sector, N , the angle corresponding to the desired angle of the bar at said point.
The machine draws the bar from the furnace when it has reached the desired temperature, and for this purpose guide rollers are provided, which are not shown in the cut.

THE SLEEPER'S GUARD

One, two, or three horizontal slats are attached to two upright bars, which are intended to be placed between the edges of the mattress and the side pieces of the bedstead or berth. Two folding arms are hinged to these uprights at points considerably above their lower ends, and when in use are arranged to be placed between the two mattresses of the bed, or when only one mattress is used, be tween the mattress and the springs or slats. The guard is shown in our illustration as adjusted to an ordinary bedstead. When not in use, the arms may be folded against the uprights, as shown, and the guard is readi ly portable or may be disposed of during the day by putting it under the mattress. The invention has quite a wide application. It is intended for use with ordinary beds, or with the berths of sleeping cars and steamers, to prevent the occupant, and particulariy children, from falling out and being injured or crippled. It is a very simple device, and when ad justed to the bed or berth, the sleeping persons are perfectly secure without recourse to pillows, chairs, or other uncertain contrivances. The guard has been patented by Mr. John C. The machine we saw in operation was being used to \mid McMurray, and is manufactured by the Sleeper's bevel 6 in. by 4 in . frame bars, and the frame turner Guard Co., 277 Pearl St., New York. using it was doing so for the first time, and had found practically no difficulty in understanding how to manipulate it, and expressed himself thoroughly satisfied that it did much better work than can be done by the old, crude method; and seeing the patentee was a perfect stranger to him, and he has no interest whatever in the machine, such an expression of opinion speaks for itself.
We append an illustration showing a sectional view of the machine, with part of the gearing and guide rollers removed, and with a bar in the position for open beveling; when it is required to shut-bevel, the bar is fed through the machine with the horizontal flange in the opposite direction to that shown in the drawing, so that the edge will lie toward the collar, a, of the roller, A, and this roller is then adjusted horizontally to bear up on the edge of the bar. The most
ant parts of the machine are the conical rollers, D and E, of which the roller, D, holds one flange or wing of the angle bar horizontal, while the other roller, E, regulates the angle of the other wing of the bar. The angle is determined beforehand, and indicated by the pointer, M, on the sector, N, which is provided with a scale. The position of the roller, A , is adjusted by the hand wheel, B, and the screw collar, C, according to the thickness of the bar. By means of the collar, C , the roller, A, can be moved toward or from the conical roller, D; and by means of the hand wheel, B, the roller, A, can be adjusted vertically.
To regulate the angle of the bar, the screw, L , is turned, thus moving the summit of the cone, E , in the slot, G, formed in the crossbar, H. The pointer, M, is connected at one end to the screw, L, and, as stated above, indicates on the sector, N, the angle formed by the two wings of the bar. This angle can be varied in different parts of the bar; and in this case the angles are taken on the plan of the ship at equal intervals in the length of the bar to be shaped. A disk, O, provided with a pointer indicates the course taken by the bar in passing through the machine. Note is taken in advance of the angles which correspond to each point of the bar, each of

AN IMPROVED TURNING LATHE.

This lathe, shown in the engraving, is designed to turn work square or polygonal in shape instead of round. The machine consists of two wheels adjustably secured upon a central shaft. The materials to be turned are placed upon the wheels, thereby forming a cylinder. The wheels being revolved, one side of the pieces are cut to the desired shape. They are then turned over, and the other sides cut in like manner. The pieces are held on the wheels by a series of clamps or shoes, which are adjustable radially to enable them to clamp materials of different thickness. Each clamp is worked by a lever, which is quick and powerful in operation. A single movement of the lever will throw the clamp back out of the way, as shown in the enraving, leaving a section of the machine free of all im

SMITH'S IMPROVED TURNING LATHE. these points being designated by a number, and these numbers are placed on the disk, 0 . When the machine is to be operated, a bar is placed between the rollers, D and A, which revolve, and thus draw said bar into the macchine. As the points which have been marked occur at regular intervals, it can easily be seen on the disk, O, when one of these points arrives at the rollers, at which moment the operator regulates thtable middle support for the pieces, upon which the rollers, at which moment the operator regulates they are firmly held, preventing all vibration and per-
mitting of the finest work. The wheels are provided with adjustable seats, by means of which the pieces may be turned octagon or any other number of sides. The machine is so designed as to be easily and rapidly operated, and will finish smooth, with clean, sharp edges, from one hundred and fifty to six hundred piece in ten hours.
This invention has been patented, and the machines are now manufactured by Messrs. D. C. \& S. E. Smith 227 West 5th Street, St. Paul, Minn.

BOILER FLUE CLEANER.

In the flue cleaner which we illustrate, the inventor has taken advantage of the cleansing power of a jet of dry steam, and has produced an instrument which is both effective and rapid in its operation. A truncated cone of cast iron, having the diameter of its base

ferguson's boiler flue cleaner.

somewhat greater than that of the flues to be cleaned, is screwed on the end of a section of tubing, which has a socket on its other end for the reception of a handle, and a right-angled neck for connection with a flexible steam pipe. This construction is shown in the first figure on a larger scale, and in the third figure as in actual operation. In the second figure, a portion of the truncated cone has been broken away, in order to disclose the internal arrangement. The neck of the conical nozzle is screw-threaded to make a tight joint with the tube section, and, by means of suitable braces, supports a disk at its face, provided with an annular opening and a central aperture for the discharge of the steam blast. The nozzle closes the mouth of the flue, excluding all air, and, by means of the openings in its disk, discharges a current of steam against the sides of the flue, sweeping out all obstructions and preventing the formation of scale. Where the cleaneris intended for use with an upright boiler, the handle may be arranged at right angles to the tube.
The device has been patented by Mr. J. M. Ferguson, 99 Camp Street, New Orleans, La., who will furnish further particulars.

CLAMP FOR ROOF SCAFFOLDS, ETC.
Attached to a plate which can be inserted under one of the shingles, as shown in the engraving, is an arm carrying a clamping screw having a bearing plate attached to its lower end. The bearing plate is slotted to receive the arm, and when borne down by the screw it serves to securely clamp the shingle between it and the lower plate.. The upper end of the bearing plate is formed with a toe or upright, against which and

BARLOW'S CLAMP FOR ROOF SCAFFOLDS, ETC.
the corresponding toe of an adjacent clamp a "straigh edge" may be placed when shingling the roof, to provide for laying the shingles perfectly true without the aid of a chalk line or any other guide. On each screw above the arm is a ball, to which is pivoted a support for the plank. This support consists of a bar slotted at one end where pivoted to the ball, and provided on the under side of its opposite end
with any number of small pointed projections to stick
into the roof to assist in holding the clamp in place The clamps may be quickly and easily shifted from time to time to adjust them to different positions on the roof as the work progresses. It is claimed that one man by the aid of this device can lay 5,000 shingles a day, and that its use will result in a great saving of time and money. It can be used in laying tin or slate roofs, and by painters or tinners, and by farmers or others in repairing roofs. It does away with lumber for scaffolding and the labor of nailing the same. The clamp can be used in all kinds of weather, and would prove useful in case of fire in ascending the roof. This invention has been patented by Mr. A. T. Barlow, of Marshfield, Oregon; further information can be obtained from Messrs. Crawford \& Lockhart, of same address.

Crushing Limit of Columns.

In preparing a plan for an electric lighthouse, M. Bourdais, the architect of the Palace of the Trocadero, investigated the height to which a column of different materials could be raised without crushing under its own weight. The weight of a pyramid with a square base may be expressed by the equation:

$$
\mathrm{P}=\frac{h}{\mathrm{D}^{2}} \frac{h}{3} \delta
$$

in which D represents the side of the base of the pyra mid, h the height, and δ the density.
The resistance is: $\quad R=\frac{P}{D^{2}}$

Hence

$$
\begin{aligned}
\mathrm{R} & =\frac{1}{3} h \delta \\
h & =\frac{3 \mathrm{R}}{\delta}
\end{aligned}
$$

If we take for the limiting value of R one-sixth of the load, which produces crushing in iron, and one twentieth for different varieties of stone, we may deduce the following table:

MATERIAL.	R.	δ.	H.	
Porphyry.	2,470,000	2,870	2.550	meter
Iron.	6,000,000	7,800	2,280	"
Granite	800,000	2,700	900	"

Such are the practical limits to which a pyramid might be raised in the respective materials. It is evident that the Egyptians, in the great pyramid of Cheops, stopped far below the limit. If the prismatic form were adopted, the height could be only one-third as great.-Lumiere Electrique.

Decay of Neglected Bridges.

The rapid decay experienced by iron bridges which are neglected has recently been exemplified in Callowhill Street Bridge in Philadelphia. When lately the painters were set to work on this structure, their preliminary exertions in cleaning off the rust brought off flakes of oxide from one-fourth inch to three-eighths inch in thickness. This at once revealed the extent to which the injury had already gone, and called attention to the necessity of an immediate survey. The fact that the weakening process had already proceeded to a dangerous extent was shown by the vibration, which was so violent that the men had to hold on when a heavy load passed over, to avoid being shaken from the swinging stages. On examination, it was found that not only had rust invaded the material of the girders, but that the whole bridge, which is built on a rising grade, had moved down hill so far as to tear out the top courses of the upper abutment, and to buckle the struts of the intermediate supports, while the movements of the roadway had cracked the asphalt and forced out the paving blocks between the tram rails. The bridge crosses a railway, and provides for the street traffic above it; it includes one span of 340 feet. The structure was only completed in 1875, and thus ten years of neglect have sufficed to bring it to the verge of destruction.

Brick Walls.

Except upon sites where stone can be quarried in the immediate neighborhood, we are all familiar with the economical advantages possessed by brick over stone as a material for walls. A two-brick wall is equivalent in strength to one in solid masonry 2 ft . in thickness, and here is a saving of 6 in . in space on every average external wall-no mean consideration on a town site where the ground is valuable. That bricks absorb more moisture than most kinds of stone is admitted, but they do not retain it for so long a period, and it is consequently less liable to find its way through brick walls. But apart from this, there are methods of protecting brick "walls from damp, which we should shrink from applying to stone. If we were to affix or namental hanging tiles to the surface of a stone wall, such concealment of a fine natural material would be $\begin{aligned} & \text { sugarded as a piece of vandalism in art almost equal } \\ & \text { reg the application of cement. Hanging tiles form one }\end{aligned}$
to
of the most picturesque of coverings for external walls, and greatly conduce to the appearance of home-like comfort which the exterior of a dwelling can be made to suggest; while, if glazed, they will not absorb moisture.-Brick and Tile Gaz.

PORTABLE SASH SECURER.

The form of this improved window sash fastener, which can also be used with advantage as a sash lock, is clearly shown in Fig. 2, while the manner of applying it to the window to hold the sash is shown in Fig. 1. In the outer end of a steel plate bent at right angles is pivoted a lever, one arm of which extends above the plate and is curved as shown; the other arm

BETTERMANN'S PORTABLE SASH SECURER.
extends downward, and is made wider at its lower end and sharpened at the edge, so as to engage the guide rail of the sash when the device is placed in position for use. A U-shaped frame, riveted to the under side of the plate, prevents the long arm of the lever from dropping too far. To use the fastener, the sash is lifted and the upwardly bent portion of the plate inserted between the sash frame and the guide rail. The sash is then lowered so as to rest upon the short curved arm of the lever, when its weight throws the sharp lower edge of the lever against the rail, so as to bite into the same and thereby support the sash. To lower the sash, it is first lifted to permit the removal of the astener. When used as a sash lock, the fastener is placed in an inverted position at one of the upper corners of the sash, when the latter cannot be opened rom the outside.
This invention has been patented by Mr. R. Bettermann, of Cambria, Penn.

AN EASILY OPERATED WASHING MACHINE

The illustrations herewith show a washing machine in which a perforated drum, holding the clothes, is placed in a boiler or reservoir containing soap and water, and the whole placed upon a stove and heated, when the clothes are washed by revolving the drum with a crank handle. Fig. 1 is a perspective view of the apparatus, Fig. 2 a plan representing the end covers partly drawn out, and Fig. 3 a transverse sectional elevation, Fig. 4 showing the working of the crank. The cover has an escape tube for the steam, with a cap to regulate its pressure, and there are ribs

ROGERS' IMPROVED WASHING MACHINE.
within the cylinder, which, as it revolves, raise the clothes and let them fall, and also cause the water to all on them as the drum revolves; there are, besides, water elevators, formed by bent plates of galvanized metal, which take up the water and suds as the drum revolves, and cause it to pass through the perforations, so as to fall upon the clothes. This invention has been patented by Mr. Henry B. Rogers; particulars can be had from Messrs. Potter \& Son, of Marshall, Mo.

Repairing the cooper institute.

So well known is the aim of Cooper Institute, and so widespread has been the good accomplished during the thirty-two years of its existence, that any statement regarding its work, except of the most general kind, would be superfluous. Founded by the philanthro pist Peter Cooper, and amply endowed by him, it is devoted, with its entire income, to the instruction and elevation of the working people of New York city, ir respective of age, sex, or condition.
The building occupies a whole block, being 86 feet on Seventh Street, 155 feet on Third Avenue-the front shown in our frontispiece-143 feet on Eighth Street, and 195 feet on Fourth Avenue. Originally there were but five stories and a basement, the latter containing the large lecture room, which is 125 by 82 feet and 21 feet high; but a few years since, an additional story was placed over the entire building, two stories were raised over a part of the Third Avenue side, and the southern end (to the left in the engraving) was raised to a total of eight stories. This additional load, together with errors in the design, made necessary the extensive repairs which have been in progress for several months, and which are now nearing completion.
The piers supporting the walls facing the avenues were placed beneath the center lines of the window spaces of the third or reading room story, and also beneath the piers of the third story. The piers under the window spaces thus had but little or no load to carry beyond their own weight, and, as a natural consequence, the lintels and window sills werefractured by the strains produced by the bearing piers moving downward, thereby causing an upward reaction through the line of the intermediate ones, or those having no load. To remedy this defect, which is by no means an uncommon one, even in buildings of recent date, all the bearing piers were removed, and others were built having a larger section and an increased area of foundation, while the flat lintels of the second story were replaced by segmental stone arches. During this work the walls were supported upon shoring, as shown clearly in the engraving. Beneath the lower portion of each of the third story piers were placed two pairs of heavy iron I-beams 15 inches deep and two sets of heavy yellow pine timbers. The interior shores extended from floor to floor to the baseinent, where they rested upon a crib formed of timbers; the large foundation area thus obtained rendered easy the adjustment of the shores by the screws. Outside there were two shores to each needle, and where there were vaults under the sidewalk, the arches were centered, and held by shores. Struts
were wedged across the lower part of each window were wedged across the lower part of each window pac.
The ceiling of the lecture room was supported upon three rows-parallel with Fourth Avenue-of cast iron columns, 12 inches in diameter, spaced $183 / 4$ feet apart; at right angles to the rows, the columns were 18 feet apart, and the outer rows were $202 / 3$ feet from the piers. Upon adjacent columns, and in a direction perpendicular to the avenue, were two brick arches (shown in Fig. 9), the space between which was filled in; the lower arch was designed to carry the ground floor, and the semicircular one served to distribute the weight of the dividing walls and the piers and columns which extended upward through the several stories of the building to the columns. The piers upon which the outer line of arches rested were so narrow that the line of thrust fell outside the base, and the pressure was not transmitted to the retaining wall, owing to the height at which the arch joining the wall and piers was placed. As repaired, the foundations of the piers are $103 / 4$ feet square, and the arch is so curved, as shown in Fig. 8, which represents the lecture room finished, with the exception of the floor, that the line of thrust falls well within the base. In both the new and old constructions, Figs. 8 and 9 , the thrust is indicated by the dotted lines. After this row of arches had been completed, the upper walls were found to be too weak to carry the load; the arches were then centered, and were supported by vertical and radial shores, while the adjoining by vertical and radial shores, while the adjoining
ones were put in. All of these arches are of cut stone. nes were put in. All of these arches are of cut stone.
The columns were originally supported upon foundations consisting of an upper granite block 2 ft . square by from 11 to 12 in . thick, and by an under block, which in several instances was divided, $41 / 2$ by $42 / 3 \mathrm{ft}$., and 16 in . thick. The upper block is now $4 \mathrm{ft} .81 / 2 \mathrm{in}$. by $4 \mathrm{ft} .101 / 2 \mathrm{in}$., and 1 ft .10 in . thick; the lowest course of concrete is 8 by 9 ft . (The entire building rests upon sand, and in every case the foundations of the piers and columns have been increased in area and extended deeper.) The columns are of cast iron, 16 in . in diameter.
The plates and wedges used with the columns are shown detached and separated in Fig. 5 and in position in Fig. 6. Wedging similar in principle to this, but in form corresponding with the situation, was used at the front walls for the removal of the shores and elsewhere in the building. The facing surfaces of each plate are reessed to receive the wedges, which are sharp and planed true; a slight tap with a small hammer upon
insures an even distribution of weight. The plates were bedded in pure Portland cement. The columns in the reading room in the third story were directly over the outer rows in the basement, and that portion of the room between these columns -37 ft . wide and 90 ft . long-passed through the third and fourth stories. The ceiling over this space, Fig. 2, was held by girders supported at the end upon columns and at the center by rods from the roof. These girders at the ends of the reading room, as shown in the cross sectional view, Fig. 4, and at b in Fig. 2, were made up of two deck beams each 7 in . deep, put bulb to bulb and held by bolts through the flanges. A permanent deflection averaging about 2 in . had taken place. These are re enforced by the placing of two heav:- I-beams, one at each side, as shown in the section, Fig. 3, and at a, Fig. 2. To relieve the roof a center row of columns has been erected. While the repairs in the reading room and the strengthening of the walls in the lower stories were going forward, the central portions of the floors were cut away. The columns in the reading room were carried by shores extending to the basement floor. Aboüt the upper part of the column were firmly bolted the carefully fitted sections of an iron jacket shaped as shown in the upper part of Fig. 7; the shores bore against the extended under side of this jacket, and held the column during the building of the new wall.
In the foregoing we have attempted to describe only the main features of the principal changes, and to briefly mention the causes making them necessary. This building was the first one in which iron was used extensively; and owing to the experimental condition in which the use of this material then was, there crept into the design errors in form and proportioning which the experience of later years enables the builder to steer clear of. All such parts have been either entirely removed and rebuilt, or have been strengthened. During the repairs, the load in every case has been carried to the basement by shoring always placed vertically in line, thereby obviating the risk of having an unusu al weight brought upon the floors. All the division walls and the columns have been carried up vertically in line with the basement columns, and have been made of such size as to insure ample strength.
It is estimated that these repairs will cost in the neighborhood of $\$ 250,000$, the building costing originally $\$ 650,000$; this expense thus far has been borne by a few gentlemen whose names we are not at liberty to give, but to whom all praise is due for their generous and unostentatious support of so good a work. The architect under whose direction the work has been most successfully prosecuted is Mr. Leopold Eidlitz Mr. J. H. Smith is the builder, and Mr. Isaac White nack, the foreman of masons.

PHOTOGRAPHIC NOTES.

Increasing the Sensitiveness of Orthochromatic Plates. -From recent experiments described in the Photo graphische Wochenblatt by V.Schumann,and translated by the Photographic News, it appears plates prepared with a bromo-argentic emulsion containing also an ammoniacal solution of eosine are not as sensitive to yellow and red colors as those coated with the ordinary Eder silver, oxide, ammonia emulsion, and then dipped for two or three minutes in an aqueous solu tion of eosine to which a little ammonia is added. After immersion, the plates are dried and then ex posed in the camera.
The pyro and potash developer is preferred, and very brilliant results are obtained when the emulsion con tains bromide and iodide of silver formed simultaneously.
It is also advised not to use an emulsion of high speed, as the dipping bath then tends to fog the plate. It is probable, in photographing colored objects, the bath plates will prove to be superior, as they will render more accurately the different shadings of colors in consequence of being more sensitive to yellow. Removing Silver Stains.-Dr. H. W. Vogel recommends the same compound used as a reducer for re moving stains of silver from the hands or clothes. A few crystals of ferricyanide of potassium are dissolved in a solution of hypo, or instead a 10 or 20 per cent solution of the ferricyanide is added to the hypo, and then applied to the stains. The advantage of this so lution is that it is not poisonous, and does not destroy the color of articles of clothing.

Antwerp Prizes for America.

The juries at the Antwerp Exhibition made the fol wing awards to American exhibitors:
Diploma of Honor.-Davis Sewing Machine Co.
Gold Medals.-Westinghouse Co., general machinery;
New Home Sewing Machine; Geo. Bruce, Son \& Co., New Home Sewing Machine; Geo. Bruce, Son \& Co aper ware
Silver Medals.-Meriden Britannia Co., metal ware Rochester Lamp Company; Santa Maria \& Co., food products; Washington Packing Co.; San Jose Fruit Packing Co.; Arpad, Harasthy \& Co., liquors.

Bronze Medal.- Seabury \& Johnson, chemicals
Honorable Mention.-Leonard \& Ellis, chemical

Sorrespondence.

'Gateway of Knowledge.' (from an old subscriber.)

To the Editor of the Scientific American
My attention has been called to the fact that this is the fortieth year of the publication of the Scien fific American. The first paper was published the year of my birth, in 1845; and I cansay that I have been one of its readers for twenty years, or since I was twenty years old. I hesitate not to say that the SCI entific American is one of the gateways to know ledge, and the Supplement, its near relative, I have taken from its first edition. As journals of science, they have no equals.

Chas. McCune.
Decatur, Macon County, Ill
November 16, 1885.

An Improved Thermometer Required.

To the Editor of the Scientific American:
One of the greatest aids in medicine is the clinical thermometer. As generally used, it consists of a glass tube having a bulb for the mercury, a construction in the bore between the bulb and main tube for main taining the index, and a bar divided into degrees and tenths, the graduation running from 90° to 110°. The index is the important point. It is usually obtained by causing a portion of the mercury column to sepa rate from the main column or from the mass of mer cury in the bulb, so that it shall remain in situ, and register the degree of heat of the body after it is re moved from contact with the body. Great trouble is experienced in maintaining this index, and many ingenious methods have been devised to overcome the annoyance of "losing the index" by constructing turning, or twisting the bore of the tube. The bulb may be of various shapes, as an elongated cylinder, or even disk-shaped. The glass tube may be round, oval, hemispherical, or even triangular in section. The bore of the tube may be backed with white or black enamel, and the tube over the bore may be so made that it shall magnify the mercury.
With all its improvements, however, the material of which the thermometer is made remains the same, namely, glass-the great objection to which is its liability to breakage. In spite of hard rubber cases with shoulders, metal cases with chains, and other safe guards, thermometers will break. To enumerate the ways in which they may break would be useless; it is sufficient to say that they do break, and it becomes an tem of no small expense to keep one's self in thermometers
The one who can invent and put upon the market nbreakable thermometers will not only confer a great benefit upon the medical profession, but will enrich himself greatly. Such a thermometer must be accurate in measuring temperature and in recording it, and it must be permanent, that is, always record a given temperature correctly. It need not cover a scale of more than 20°, viz., 90° to 110°, but this scale must be divided into fifths at least, and tenths, if possible The dial or scale must be of a size that can be easily read, or, if very small, must be magnified by a lens covering it. The whole thermometer must be of convenient size and shape. It may be a moderately long cylinder, 3 inches to 6 inches by $1 / 4$ inch to $1 / 2$ inch, or a disk of moderate thickness and diameter, or an ovoid notlarger than a robin's egg. The mechanism, ncluding the dial, must be inclosed in a covering mpermeable to moisture, and one that can be easily cleaned, preferably hard rubber. The different ex pansibilities of different metals would suggest one or more compound metallic bars, tubes, or plates, straight, curved, twisted, or coiled upon themselves or corru gated, one end being permanently fixed, the other being attached to an index in such a way that there shall be no loose motion, the sweep of the in dex being increased, if necessary, by suitable me chanism. Hard rubber may be used in connection with metal. The steam gauge and aneroid baro meter are suggestive of a form.
These remarks are presented with the hope that some person may experiment in this direction.

Chas. Everete Warren, M.D.
No. 5 Union Park, Boston, Mass.
[The above is a good suggestion, which deserves he attention of our inventors. Some of the very volatile liquids, such as ether and gasolene, might be available in the construction of a thermometer of this kind Such a liquid might be hermetically sealed in an elastic vessel, and the expansive force generated by the heat of the body acting on the liquid could be made o operate indicating or recording mechanism.]

Backman's Car Coupler.

In our notice of the car coupler invented by Mor Thomas E. Buckman, of Jacksonville, Fla., in the Scientific American of Nov. 21, it was stated that when the cars are drawn apart-having been uncoupled-the coupler always assumes "at the instant its position for uncoupling automatically." It is apparent that the word recoupling should have been used.

THE PRESERVATION OF THE OBELISK.

The work of preserving the Obelisk at Central Park, New York, has now been completed, and apparently none too soon, as the numerous storms which have since assailed the shaft would have done it material damage had the pores of the stone still remained open. The process employed was that described in our issue of Nov. 14, consisting of treating the heated stone with a mixture of paraffine, creosote, and turpentine, and has been applied by the Brick and Stone Waterproofing Co., of 55 Broadway, New York, who own the patents covering this treatment. As the manner of applying the process to a structure so tall and slight as the monolith attracted considerable attention, we have given somewhat detailed illustrations, showing respectively the general appearance of the shaft and scaffolding during the progress of the treatment, the process of heating the stone, the alcohol blowpipe used to penetrate the recesses of the hieroglyphics, and the construction of the charcoal furnaces. Now that the scaffolding is entirely removed, the stone shows to good advantage; and as it is a trifle darker in color, it resembles more perfectly the original syenite. The treatment has had the further effect ment has had the further effect
of bringing out the characters into such strong relief that a number have been deceived into believing that they must have been recut. The process seems to have given entire satisfaction. It was, however, by no means experimental, as the company had already done much work in St. Louis, and during the past summer has treated a number of prominent buildings in New York, the white marble structure of the Mutual Life Insurance Company at the corner of Liberty Street being among the number. A severer test was that made at Newark, N. J., on the house of Mr. William Clark, the well known cotton thread manufacturer. The mansion is constructed of pressed brick and Wyoming blue stone, a small portion of which was small portion of which was
treated two years ago. As treated two years ago. As
the sample proved highly satisfactory, the entire building has recently been waterproofed. We also hear that the company has received a contrac₹ for treating all the stonework of Central Park.

The Montreal Cable Railway.

The cablerailway or elevator by which the summit of Mount Royal, back of Montreal, is reached, has now been in successful operation for some days. The railway is some days. The railway is 403s, feet horizontal measure-
ment, the height 275 feet, and ment, the height 275 feet, and
the length of track 510 feet. It is built in a segment of a circle with a reversed side of twelve feet, and has an incline of about $331 / 2$ degrees. The road is supported by 16 iron pillars set in stone foundations, and the balances are of wood 12×12 inches. The gauge of the road is 5 feet, with a distance between the tracks of 4 feet. The cars are drawn to the top by ineans of a stationary engine of 75 horse power at the top of the mountain. The wire ropes are three in number, two of them being $11 / 8$ inches diameter and the middle one $11 / 4$ inches. The two smaller ones have been tested with a strain of 35 tons, and the center or safety rope with a strain of 43 tons. The ropes pass over sheaves 6 feet in diameter, and are wound over two drums of wood and iron 10 feet in diameter, and are a direct pull upon the cars. The center or safety rope runs independently of the engine, and is attached to both cars, so that, in event of the two outside ropes breaking, the center one would hold the cars in check, besides which the large wheel of 11 feet diameter is provided with brakes, which may be applied from the platform at the top of the incline by the engineer. The fare on the incline is 5 cents up and 3 cents down.

According to the Deutsche Far"̄er Zeitung, the hardest indigo is easy to grind, dissolves better, and adheres better to the goods, if it is for 4 hours steeped in hot water with $11 / 2 \mathrm{lb}$. calcined soda to 4 lb . indigo. When ground fine, 2 lb . soda and 16 lb . lime are added, and afterward 20 lb . pure copperas, Thesolution is made by heating in an iron boiler.

Sir Joseph Whitworth asserts that the two great elements in mechanics are the power of measurement and the true plane.
The measuring machines which I have constructed, says Sir Joseph, are based upon the production of the true plane.
Measures of length are obtained either by line or end measurement.
The English standard yard is represented by two lines drawn across two gold studs sunk in a bronze bar about 38 inches long, the temperature being at 62° Fahr.
There is an insurmountable difficulty in converting line measure into end measure, and therefore it is most desirable for all standards of linear measure to be end measure.
Line measure depends on sight, aided by magnifying glasses; but the accuracy of end measure is due to the sense of touch, and the delicacy of that sense is indicated by means of a mechanical multiplier.
In the case of the workshop measuring machine, the divisions on the micrometer wheel represent 10,000 ths
should be adopted, and that the standards and measuring appliances should be made and kept in a room at a uniform temperature of 85° Fahr.
In many workshops we hear the workmen speak in such vague terms as a bare sixteenth or full thirty-second, but minute and accurate measurement requires to be expressed in decimals of an inch.
In 1857, when president of the Institution of Mechanical Engineers, I read a paper on standard decimal measures of length, and I am happy to say that since that period the decimal system has been introduced to a certain extent in many engineers' works, but it is still far from being universal.
In the manufacture of our standard gauges, the workmen measure to the $\frac{{ }^{2} \sigma^{\frac{1}{0}} 0 \pi}{}$ of an inch, and these measures are as familiar and appreciable as those of larger dimensions.
As an illustration of the importance of very small differences of size, I have here cylindrical standards with a difference of the ten-thousandth of an inch. It is therefore obvious that a difference of ${ }^{1 \pi} \frac{1}{\delta \sigma \delta \sigma}$ of an inch is an appreciable and important quantity.
It will be at once conceded that the only scale of measurement which can be used for such small differences must be a decimal one.
For many years the decimal system has been in use at our works, taking the inch as the unit, and the workmen think and speak in tenths, hundredths, and thousandths of an inch.
It is of great importance to the manufacturer to have the means of referring to an accurate fixed measure, as it wnl enable him, at any time, to reproduce a facsimile of what he has once made, and so preserve a system of the sizes of the fitting parts unaltered.
The great value of the work shop measuring machine is making difference gauges.
Every external diameter having to work in an internal diameter should have a certain difference of size; and close observation and experience canalone determine what this difference of size ought to be.

Take, for instacice, a railway axle; if the bearing in which it has to work be too small, the heating of the axle by rapid rotation will be the consequence; if, on the other hand, the bearing be too large, it will be sooner worn out.
It is therefore most important, when rapid revolutions and great strains have to be undergone, that the proper difference of size, when once ascertained by experience, should be strictly adhered to.

In the manufacture of axles there should be two gauges used, the axle being made to the standard gauge and the bearing bored out to fit a
difference gauge, which has to be as much larger as experience has found to be necessary, according to the conditions under which the axle has to work. Hence every manufacturer should be in a position to select his own difference gauges.
Fifty years ago the thousands of spindles in a cotton factory had each to be separately fitted into the bol ster in which it had to work. At the present time all these spindles are made to gauge, and are interchangeable.
It cannot be impressed too forcibly, both upon the tudent in mechanics and upon the workman, that acstudent in mechanics and upon the workman, that ac-
curacy of measurement is essential for good and efficicuracy of measurement is essential for good and effici-
ent workmanship, and that it tends to economy in all branches of manufacture, so as to have the parts inter changeable.

The Business Importance of Burglars.

W. S. Gilbert, in the London Times, says: "For my part, I could never quite understand the prejudice against burglars. An unarrestedburglargives employment to innumerable telegraph clerks, police officers, railway officials, and possibly also to surgeons, coroners, undertakers, and monument masons. As soon as he is in custody, the services of a whole army of solicit ors, barristers, judges, grand and petty jurymen, re porters, governors of jails, and prison warders are called into requisition. Really, the burglar does more called into requisit
good than harm."

MONCRIEFF GUN CARRIAGES FOR RUSSIAN IRON cLADS.
Messrs. Easton and Anderson recently issued invitations to officers of Government manufacturing departments and foreign attaches to visit their works at Erith, in order to inspect the Moncrieff gun car-
zle velocity is estimated at 1,950 feet per second. This is very powerful, and the battery, of course, most formgives 19,260 foot tons energy, with a perforation per idable. As six ships are to be made nearly of the same inch circumference of 511.2 foot tons, which is equiva- type and power, the addition to the Russian navy is lent to the perforation of about 23.7 inches of iron. very important.
The rule of thumb would give 23.4 inches, this being a The following is a description of the parts shown as case where the sectional density of the projectile is far as possible in Fig. 2.

Fig. 2.-MONCRIEFF GUN CARRIAGES FOR RUSSIAN IRONCLADS.
riages made by them for the new Russian ironclad very high. The gun itself is made on the Krupp sys Catherine II. This vessel will probably have about tem. We do not ourselves, says the Engineer, like 10,000 tons displacement. She is to carry six $501 / 2$ ton the section-a large heavy central tube is strength-breech-loading guns in a central breastwork with steel plate protection overhead, somewhat resembling that adopted by the French in the Admiral Duperre and other barbette ships. The general form and position of the breastwork may be seen in Fig. 1. The guns are in pairs on turntables, and have a large scope of all-round fire. The breastwork only extends to a height of 22 inches above the surrounding deck, so that the battery is not conspicuous, and the guns but little exposed to view even when in their firing position. The breastwork consists of 12 inch compound plates made under Messrs. Cammell's direction in the wood and a strong framework. The gun is very powerful. The projectile weighs 731 pounds, and the muz-
ened by several layers of short steel hoops over it. The whole of the longitudinal strain falls on the inner

The individual steel tubes taper, and consequently their thickness from end to end varies, we think, too much. We believe that in future patterns the Russians contemplate the adoption of the interrupted screw breech in place of the Krupp wedge. What-

The mounting shown in Fig. 2 consists of a caststeel roller path, D, in segments 21 feet 9 inches- 6.63 meters - diameter, secured to the main deck of the ship, upon which revolves upon twenty-two live rollers, III, and round a hollow steel central pivot, a platform composed of a cast steel ring, L, filled in with a thick wrought iron deck, to which, as well as to the outer ring, two pairs of gun carriage sides, J, are bolted and riveted. The carriage sides are hollow, and composed riveted. The carriage sides are hollow, and composed Each pair of sides carries, in bearings fitted with cap squares, a rocking shaft, C , on which is secured a pair of levers, X, the upper ends of which are formed into the trunnion bearings for the gun, and are fitted with cap squares, while the lower ends of the levers have threaded through them a spindle, on to which s coupled a pair of connecting rods the tail onds coupled a pair of connecting rods, the tail ends of

Fig. 3.-MONCRIEFF GU̇N CARRIAGES FOR RUSSIAN IRONCLADS.
the bottom of the steel hollow plungers, which work into the recoil cylinders. These cylinders, \mathbf{Y}, are placed in the forward end of the carriage under the gun, and are secured by bolts and rivets to the carriage sides and to each other. To the upper forward end of each cylinder is fitted an escape pipe, \mathbf{A}, which joins a recoil valve chest, B, common to each pair of cylinders. The recoil valve consists of an ordinary conical valve fitted with a strong steel spindle, which passes through a balancing cylinder and stuffing box toward the main rocking shaft, C , which carries the gun.
Inasmuch as the weight of the gun has more and more effect on the plungers as it falls, it is necessary to vary the load on the recoil valve, because a hydraulic pressure which would be sufficient to hold up the gun in any position will be too great to allow the gun to recoil down to the proper loading position. This adjustment is effected by loading the recoil valve by means of disk springs, E , threaded on its spindle and abutting on a crosshead, F, which is connected by means of a pair of tension rods with a cam movement on the main rocking shaft, the cams being so arranged that there is least tension on the springs when the gun is up, and most when it is quite down.
Gun Mounting on the Moncrieff Disappearing System to mount two 12-inch breech-loading rifled guns of $501 / 2$ tons weight, for the Imperial Russian Navy. By Easton \& Anderson, $\mathbf{3}$ Whitehall Place, London, and Erith Ironworks.

liber of gun..... ... 12	305 mm .
Length over all........ 30 ft .	9.14 meters.
Weight............... $50 \cdot 47$ tons	51,271 kilos.
Weight of shot......... 731 lb .	3315 kilos.
Weight of powder. . . . 248 lb .	1124 kilos.
Muzzle velocity...1,950 ft.	5913 meters.
Weight of carriage..... 100 tons.	101,134 kllos.
Fall of g	122 meters.
Did	1082 meters.
Heig	

The outer end of the valve spindle is screwed, and carries a disk and pair of nuts, by means of which any desired initial tension may be placed on the springs. The pressure in the recoil cylinders during discharge is expected to vary between 48 atmospheres and 55 atmo spheres: The water from the recoil valves is discharged into a large cast iron pipe common to both pairs of cylinders, by means of which it is conveyed into the central pivot casting, and so back into the tank from which the pressure pumps draw their water. For raising the guns, water, under about 66 atmospheres pressure, is admitted to the rear and upper end of the cylinders, that is, the ends nearest the center of the carriage, by means of a stop valve controlled from the side of the carriage. The plungers do not fit their cylinders fully, but terminate in pistons of a little larger diameter, through which there are holes which always keep up a free waterway between the forward end of the cylinders and the annular space to the rear of the pistons.
The pipes, $\mathrm{H} H$, by which the water for rais ing the gun enters, communicate with the cylinders close to their glands, the water makes its way freely through the pistons to the forward end until the pistons reach the opening of the pipes, and then, as the gun rises further, the pistons gradually close the opening, and thus by throttling the water bring the gun gradually to rest in its firing position: The guns can be lowered slowly by letting the water escape from the cylinders through a small screw stop valve placed beside the main lifting valve, the water in this case also returning to the pump tank. The rotation of the gun platform is effected by means of teeth, L, cast in the upper roller path which forms the frame of the platform. Into these teeth gears a cast steel pinion keyed on a vertical shaft, which descends through the main deck to that beneath, M, where it is actuated by a double-acting three-cylinder engine, the movement of which can be controlled through the center pivot by means of a system of rods and levers worked by hydraulic notch hand gear placed between the pair of guns. The elevation of the guns is accomplished by elevating bars, \mathbf{N}, attached at their upper ends to trunnions formed on the rear ends of the guns, and at their lower ends to screw lifting gear contrived in the hollow carriage sides about O , and so adjusted in form and disposition that the guns always recoil into the same loading position, whatever the elevation may be. The gun platform is prevented from turning excessively from the discharge of a single gun by means of a brake, P , worked by hydraulic pressure, and it is locked in the loading position by a bolt, which is shot by the same agency; the application both of the brake and of the bolt is performed automatically by the hydrauli hand gear for rotating the platform.

Hydraulic pressure is supplied by means of a directacting automatic duplex pumping engine, R, capable of delivering 20 cubic feet per minute under a pressure of 66 atmospheres; this pump may be placed in any convenient position in the ship. The water under pressure is pumped into an air accumulator, S , composed of nine steel vessels grouped together, and of a capacity sufficient to raise both guns once into the firing position without the assistance of the pump. The compressed air in the accumulator is supplied by a small torpedo air compressing pump. The ammunition is served by means of an inclined endless chain actuated by small steam engines, T, and is rammed home by means of telescopic hydraulic rammers, U ; the sighting platform may be seen at V , and a piece of barbette wall at W .

THE SILVER KING IN NORTHERN WATERS

A tarpon (Megalops thrissoides), or silver king, as it is often called, measuring 5 feet 9 inches, and weighing, when taken, 110 pounds, was caught last Monday August 17) in a seine by a fisherman off Sea Bright, New Jersey, and exhibited at the stall of Eugene Blackord, the fish commissioner. This fish, though rarely taken in Northern waters, is very abundant about the coasts of Florida and throughout the Gulf of Mexico, and deserves to be and deserves to be
better known. It $\begin{array}{ll}\text { better known. } & \text { It } \\ \text { looks, as may } & \text { be }\end{array}$ $n \left\lvert\, \begin{array}{ll}n & \begin{array}{l}\text { looks, as may be } \\ \text { seen in the illustra- }\end{array}\end{array}\right.$

tarpon fishing is scarcely known as a sport, and the best means and appliances for taking the fish are scarcely determined. The inside of the mouth is very tough and elastic, and the fish seems to possess the power of ejecting the bait by protruding its fleshy tongue. The upper jaw is armed with minute teeth; and consisting, as it does, of movable plates working against the upward pointing lower jaw, invariably cuts the line, which necessitates the use of plain wire, to which the hooks are soldered, or some such device to secure a hold. A writer in the American Angler for Dec. 15, 1883, recommends the following barbarous and possibly unsportsmanlike rig for the capture of this noble fish :
"I take the heaviest piano wire obtainable, and make three joints four inches long and three six inches in length. The joints of the links are made by heating the wire in the fire, bending each end, allowing half an inch for soldering. Before soldering, I polish each piece of wire with emery paper, and tin it to prevent rusting. To the upper link I attach a strong brass swivel, two and a half inches long. I wrap the ends of the wire below the loops with fine copper wire, and finish the job with common solder. I use hooks two inches from tip to shank. To each of the three lower links I solder two hooks at a rightangle. When completed, the hooks are in two lines. For bait, I cut a mullet in half from mouth to tail. I pass one hook through the eye, one amidships, and the other near the tail. Three hooks pass through the bait with points exposed, and the three the bait with points exposed, and the three
others pass beyond the edge of the bait. In addition, I take a packing needle and fine twine, and tie the links to the bait. By adopting this course I make an attrac-
tion, and armed with hooks partially concealed and an almost invisible snood. Tackle rigged in this way possesses great strength, for the last time I was fishing at Mayport, I captured two sharks, one seven and the other nine feet in length, with my tarpon rig." To give some idea of the almost resistless power of this fish in making "a rush," the story is told of a party of gentlemen, among whom was a lad fourteen years old, who were fishing in the surf at Pelican Island. To secure his line, the boy had tied it about his waist; whirling his weighted hook about his head, he threw it as far as he could out to sea. In a moment his bait was taken, and in another the screaming, struggting boy was dragged into the surf, from which he was with difficulty rescued by his companions. The fish had caught the boy.

The Art of Ancient Yucatan.

I recently passed an evening with Dr. and Mrs. Le Plongeon, who, after twelve years spent in exploring the ruined cities of Yucatan and the modern and ancient Maya language and character, are passing a few months in this country. The evening was passed in looking at photographs of the remains of architectural and plastic art, in examining tracings and squeezes from the walls of the buildings, in studying the accurate plans and measurements made by the Doctor and his wife of these structures, in reviewing a small but exceedingly choice collection of relics, and in listening to the Doctor's explanation of the Maya in listening to the Doctor's explanation of the Maya
hieroglyphic system. Whatever opinion may be enhieroglyphic system. Whatever opinion may be en-
tertained of the analogies which the Doctor thinks he tertained of the analogies which the Doctor thinks he
has discovered between Maya culture and language and those of Asia and Africa, no one who, as I had the privilege of doing, goes over the actual product of his labors and those of his accomplished wife, can doubt the magnitude of his discoveries and the new and valuable light they throw upon ancient Maya civilization. They oorrect in various instances the hasty deductions of Charney, and they prove that buried under the tropical growth of the Yucatan forests still remain monuments of art that would surprise the world were they exhumed and rendered accessible to students Dr. D. G. Brinton, in the American Antiquarian.

The Jewish Population of the world.
The Bulletin of the Geographical Society of Marseilles estimates the total number of Jews in the world at 6,377,602-that is, 5,407,602 in Europe, 245,000 in Asia, 413,000 in Africa, 300,000 in America, and 12,000 in Oceania. The European Jews are distributed as follows: $1,643,708$ in Austria-Hungary, 561,612 in Germany, 60,000 in Great Britain, 3,000 in Belgium, 3,946 in Denmark, 1,900 in Spain, 70,000 in France, 2,652 in Greece, 7,373 in Switzerland, 8,693 in Holland, 36,289 in Italy, 600 in Luxemburg, 200 in Portugal, 260,000 in Roumania, $2,552,145$ in Russia, 3,493 in Servia, 3,000 in Sweden and Norway, and 116,000 in European Turkey. There are about 150,000 in the Asiatic provinces of Turkey, 15,000 in Persia, 47,000 in Asiatic Russia, in India and China 19,000, and 14,000 in Turkes\tan and Afghanistan. In Africa, there are about 35,000 in Algeria, 100,000 in Morocco, 55,000 in Tunis, 6,000 in Tripoli, 200,000 in Abyssinia, 8.000 in Egypt, 8,000 scattered over the desert, and about 1,000 at the Cape of Good Hope.

ENGINEERING INVENTIONS.
 A railroad rail spike forms the subject

 of two patents issued to Mr. Thomas A. Davies, of New York city. According to one of the patents, the headsare laterally inclined upon their lower sides, to give them a substantial bearing upon the flanges of the pails when the spikes are driven into the ties in an inclined direction. The other provides for the head of the spike having its lower part in the form of a frustum of a spike body, to give a firm bearing on the rail flanges whether the spikes are driven vertically or not.
A stay plate for railroad rail spikes has also been patented by the same inventor. Combined
with the rails, ties, and spikes are tapered plates, of a width greater than that of the spikes, driven into the
ties at the outer sides of the spikes, and transversely with the grain of the wood, to hold the spikes firmly with the grain of the wood, to hold the spikes firmly
in place against the rail flanges, and prevent the rails
A center fastening for railroad rails, likewise patented by the same inventor, provides for
recesses in the edges of opposite flanges of the rail, in recesses in the edges of opposite flanges of the rail, in
which are driven inclined fasterfing splkes, at opposite inclinations on opposite sides of the rall, such improve-
ment being especially applicable on single track railment being especially applicable on single track rail-
ways, to resist the tendency of the rails to creep in either ways, to res
direction.

MISCELLANEOUS INVENTIONS.

A tool handle has been patented by Mr. Frank Cronin, of Deming, New Mexico. This inven-
tion covers a double ratchet mechanism, made for easy tion covers a double ratchet mechanism, made for easy
adjustment, to allow rotation of the bit in either direcadjustment, to allow rotation of the bit in either direc-
tion, and is intended for use with all sorts of hand ools requiring a rotary motiou
A machine for sewing looped fabrics has been patented by Mr. Joseph M. Merrow, of Mer-
row, Conn. This invention relates to machines for row, Conn. This invention relates to machines for
uniting parts of stockings or other knit work, and covers an attachment whereby the thread that unites several articles is cut automatically instead of by hand.
A hand saw has been patented by $\mathbf{M r}$. Alfred Fornander, of Brooklyn, N. Y. Combined with a stock or handle, are a straining bar and cam lever, for
locking the straining bar on the stock or handle, to facilitate placing and securing saw blades of various sizes in the frame, the improvement being
applicable for hack saws and butchers' saws.
applicable for hack saws and butchers' saws.
An insect destroyer has been patented by Mr. Dudley H. Manning, of Sibley, Iowa. Combined with an inverted conical ring holding a frame with a lamp within it and a transparent shade around the vessel partly filled with water, which is thus illuminat ed and attracts insects.
An endless band or cord has been patented by Mr. Leedham BInns, of Philadelphia, Pa. It is tubular plaited, united at its ends by each of the ends
being inserted bodily and longitudinally in reverse direction to each other within the portion of the body of
the band next adjacent to the other end, being specially the band next adjacent to the other end, being specially nd other machiner
A loom shuttle has been patented by Mr . Chartes N. Newcomb, of Omaha, Neb. It is de-
signed especially for rag carpet looms, and has tension signed especially for rag carpet looms, and has tension
regulating springs projecting into its eye, with a rag receiving can having an open end adapted to be placed withing the shuttle body, the can holding a large quan-
tity of rags and delivering the weft with a light and unitity of rags and delivering the we
form tension, without twisting.
A windwheel has been patented by Mr. Franklin G. Tallerday, of Poplar Grove, Ill. Its wings
are made of sail cloth or similar material, in a suitable are made of sail cloth or similar material, in a suitable
frame to be expansible and contractible, and the construction is such that the wind, acting upon the concave part of the wing, opens it to its fullest capacity,
and when blowing on the convex surface closes the fan and when blowing on the
or wing part way down.
A bicycle has been patented by Mr. Selden A. Jan Graw, of Nashua, N. H. This invention
covers a novel construction of parts and details in a covers a novel construction of parts and details in a
bicycle whose speed can be regulated as desired by bicycle whose speed can be regulated as desired by
changing the proportional sizes of toothed wheels
which transmit the power, and which has a safety atwhich transmit the power, and which has a safety at
tachment to prevent headers or the tilting of the bicy cle.
A metaflic sole for boots or shoes has been patented by Mr. William T. Milholland, of McKees-
port, Pa. It has closed hollow projections on its outer port, Pa. It has closed hollow projections on its outer
face, such projections being struck from the body of the metal of the plate, so as to inclose air spaces on the sole when applied, and the plates being fastened on by
nails or screws, making boots or shoes well adapted fo nails or screws, making boots or shoes well adapted
mill men or others having to walk over hot floors.

A permutation lock has been patented by Mr. Walter E. Malley, of New Haven, Conn. Com
bined with a casing, sliding bolt, and sliding tumble are ratchet wheels adapted to engage with the tumbler and push pins or other devices for turning the ratchet wheels, the latter being held in place by pawl springs
which can be disengaged from the wheels, making alock which can be disengaged from the wheels, making a lock
that is simple, safe, and not liable to get out of order. A shoulder brace has been patented by Messrs. William Carroll and John Meekison, of Colum bus, Ohio. Besides the usual features of a shoulder
brace, the straps are connected with wires or cords the hollow boot hel a opring rack, and pinion, which operate to make a pull on the brace to hold the shoul ders back when the weight of the body is resting on the feet.

A wool washing machine has been patinvention covers improvements in a former patente machine of the same inventor, the machine having a
series of connected receptacles in which the wool is successively treated, the receptacles being combined water, and elevators for returning the water to the place
from whence it was drawn.

Special.

AMONG THE BANI NOTES.

The American Bank Note Company is the largest as
well as the oldest corporation in this country devoted to the work of designing and engraving bank notes, coupon
 he work for Government securities as long ago as 1809 .
One of the oldest engraving firms outside of this great concern was that of Rawdon, Wright, Hatch \& Smillie, hose name is familiar to all who handled the bonds and
otes of thirty or forty years ago. Mr. Smillie, of this firm. who achieved national reputation as an artist, is now spending the years of a ripe old age at Poughkeepsie,
New York. His son, William M. Smillie, Esq., is one of the Vire-Presidentso of the American Bank Note Com-
pany, having charge of the detail of the artistic work in hat, great institution.
A well known New York editor recently visited Mr. millie in his office in the new building of the American
Bank Note Company. This building, by the way, is the most beautiful and ample in the world for the purpose
ocommercial art work. It is under the shadow of the spire of Trinity Church. Its offlees are spacious and elegant, and its workrooms are equipped with a wonderful
perfection in everything pertaining to the designing and
production production of the immense quantity of fine engraving "So your fat
Mr. Smillie?
\qquad
"Yes, and for a man of his age he has had a wonde ling. We brought winter he had an attack of pleury. We brought him from Poughkeepsie to this city in He remained here two or three months, most of the time leura, and he could use only about half of one lung.
Hereturned to his home, and grew so much weaker that we all thought he would die. The pleura was tapped, nd three quarts of water taken from it. He suffered so that we determined to send him to my brother's at some good. The chauge was made last July. While at
Montrose he suffered much from intense pain in the chest and suffocation. We gave him the best medical
care that could be obtained. But it was of little avail. He that could be obtained
"In ted to go home to die.
"In this condition he was brought to New York, nd he could not get his boots on. I found him thus at he St. Cloud Hotel early in September.
" When my father's case had
o him and my mother and sisters: ' Now, yout, 1 suid had your way as to medical treatment; suppose you let me have mine. I am a believer in Compound Oxygen. I
want to try it on father.' They agreed to it, although want to try it on father.' They agreed to it, although
they said his case was hopeless. We got a nurse from
Bellevue Hospital. She said she knew nothing of Compound Oxygen, but would give it a fair trial.
"I went to my old friend, Dr. Turner, in cha
"I went to my old friend, Dr. Turner, in charge of the
New York office of Compound Oxygen, 148 Fifth Avenue. told him my father's feet were badly swollen; that his stoathing apparatus was all out of order; that his
stoad condition from twenty years of dyspepsia, and that he was very low. The doctor said: 'I
hope we can help him; we will try.' ". So took a. Honne Treatment.' Father was so weak
e could hardy tnhale it at all. He could take the Oxygen in short whiffs. The nurse gave it to him ten or
twelve times the first day. That night he slept, and it was the first good sleep he had taken for weeks. It was n a Tuesday that he began the Oxygen Treatment. By
Saturday he was so much better that he wanted to leave the hotel and go to his home in Poughkeepsie. We lifted him along as gentls as we could, and in a few hours he
was sitting on his portico overlooking the Park and the was sitting on his portico overlooking the Park and the
Hudson River, and enjoying one of the most beautiful unset especially for me. Now o sleep.' He slept nearly all night, and with almost enirefreedom from pain.
"A week ago
"A week ago I spent a day with him. I arrived about
lunch time, and they gave my lunch in his room. When hnch time, and they gave my lunch in his room. When appetizing. Why don't they give me my lunch that way? r'm tired of eating sick folks' dishes. I want some cold
lamb and food like other folks.' Then he said that in lamb and food like other folks.' Then he said that in
order to eat solid food he must have his teeth fixed. He sent for a dentist, who took out three lower teeth and
made him a new set. Why, if those teeth had been
taken out before he began taking the Compound Oxyen, it would simply have killed him. Now he stood ravely, and what is more, he is getting along hand-
omely with his new set, and eating pretty much what other peoppe eat. His is inprovement has been marvelous.
Tormerly he could sleep only by resting his head forward Formerly he could sleep only by resting his head forward
on a chair placed for the purpose. Now he can lay his head back on his easy chair and sleep comfortably. Beweeks. Now he goes to bed every night, and obteins refresking slumber. He walks about histroom, and is some-
fimes taken out for a short drive He times taken out for a short drive. He takes,
ral minutes at a time, morning and night." teady and regular, or has he had interruptions?
"There have been occasional days of depression, a
two or three times we have almost feared that he going to lose all ne had gained. But each of these shall not be surprised if such pe, iods return occasion-
ally. It is natural in a man of his age that they should. ut see the improvement! His breathing was obstructd, his stomach pain was great, his sleep was misery, and
his skin was hard and dry. Now he breathes naturally, is stomach is free from distress, his sleep is refreshing. and his skin is like that of an infant. Let me remark that the use of the Oxygenagua. which accompanies the
Compound Oxygen, proved very advantageous for the compound Oxygen, proved very
eelief of his stomach and bowels."
"Do"
"Do
"an?"
"As passed through the experience he has. To renew the youth and heal all the infirmities of a man of his age oxygen has done for him. It has evidently prolonged his life. And it has performed wonders in easing him of
"And now to
"And now as to your own experience, Mr. Smillie?
You must have had good reason for falling in love with Compound Oxygen to such an extent as to recommend "it for your father."
"Four or five years ago I was bady overworked. I had been giving too close attention to business, and found
nsself breaking down. I procured a ' Home and diligently followed directions. It brought me up. Since then I have never been without it, and I never
will be. My wife has been suffering from nervous proswili be. My wife has been suffering from nervous pros-
tration, and she is now taking Compound Oxygen with
excellent results.
"I have a frlend who, three summers ago, was suffer
ing with a dreadful cougb. 'That man can't live long, said some of his friends who heard him cough. I per
suaded him to go with me to the Compound Oxygen suaded him to go with me to the Compound Oxygen
office. A few inhalations of Oxygen produced a marked offect on him. He had beex a al sleep. All summer h,
He soon began to enjoy restful kept on improving. In the rall his cough was gone. He is now as lively and hearty as any of us."
Is not this Compor The doctors try to find out what it is made thing Smillie's physician asked for a vial from the "blue bot-
te" in order to analyze it. He reported that he couldn" ell what it was, but he was satisfled that it had done wonders for Mr. Smillie. Its whole history is the history
of the accomplishments of wonders, which in many in stances were more thap its most sanguine believers had
dared to hope for it. A little book which will be mailed ree by Drs. STARKEY \& PALEN, 1529 Arch Street, Phil adelphia, tells much that is of value and interest con
cerning Compound Oxygen. Make free to write for it.

Bussiness and Xersonal.
The charge for Insertion under this head is One Dolla a lineforeach insertion; about eight words to a line.
Advertisements must be received at publication office as early as Thursday morning to appear in next issue.

Bradley's improved Cushioned Helve Hammer. New
design. Sizes, 25 to 500 lb. Bradley \& Co., Syracuse, N. Y Light and Fine Machinery to order. Foot Lathe cataCurtis Damper Regulator for dranght and steam presks , Boston, Mass. Geo. E. Lloyd \& Co., Electrotype and Stereotype MaChinery, Fold
Notice to Manufacturers or Inventors.-A company shop in running order, located in one of the best towns in Ohio, not troubled with strikes, where coal, wood, and iron are cheap, would take any article made of iron or
wood to make during the winter months, which is their dullest season of the year. Stoves or stove castings preNickel Plating.-Sole manufacturers cast nickel anodes, pure nickel salts, polishing compositions, etc. $\$ 100$
"Little Wonder." \mathbf{A} perfect Electro Plating Machine. ole manufacturers of the new Dip Lacquer Kristaline. Complete outfit for plating, etc. Hanson, Van Winkle \&
Co., Newark, N. J., and 92 and 94 Liberty, St., New York. Grimshaw.-Steam Engine Catechism. A series of
thoroughly Practical Questions and Answers arranged so as to give to a Young Engineer just the information
required to fit him for properly running an engine. By Robert Grimshaw. 18mo, cloth, $\$ 1.00$. For sale by The \& Co., 361 Broadway, N. Y.
The Knowles Steam Pump Works, 44 Washington St., Boston, and 93 Liberty St., New York, have just is-
sued a new catalogue, in which are many new and improved forms of Pumping Machinery of the single and
duplex, steam and power type. This catalogue will be duplex, steam and power type. This
mailed free of charge on application.
Coiled Wire Belting takes place of all round belting Air Compressors, Rock Drills. J. Clayton, 43 Dey st.,N.Y. Huswell's Engineer's Pocket-Book. By Charles H.
Haswell, Civil, Marine, und Mechanical Engineer. GivHaswell, Civil, Marine, and Melchanical Engineer. Giv-
ing Tables, Rules, and Formulas pertaining to Mechaning Tables, Rules, and Formulas pertaining to Mechan-
ics, Mathematics and Physics, Architecture, Masonry, Steam Vessels, Mills. Limes, Mortars, Cements, etc. 90
pages, leather, pocket-book form, $\$ 4.00$. For sale by unn \& Co., 361 Broadway. New York
Shafting, Couplings, Hangers, Pulleys. Edison Shafting Iron Planer, Lathe, Drill, and other machine tools of Wanted Patich Wanted.-Patented articles or machinery to manufac-
ture and introduce. Lexington Mfg. Co., Lexington, Ky . For Power \& Economy, Alcott's Turbine, Mt. Holly, N.J. Machinery for Light Manufacturing. on hand and
built to order. E. E. Garvin \& Co., 139 Center St., N. Y. Send for Monthly Machinery List
to the George Place Machinery Company,
121 Chambers and 103 Reade Streets. New York.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J.
If an invention has not been patented in the United Canada. Cost for Canadian patent, \$40. Various other
foreign patents may also be obtained. For instructions address Munn \& Co., Scientific American paten
Supplement Catalogue.-Persons in pursuit of infor macion of any special engineering, mechanical, or scien ENTIFIC AMERIIAN SUPPLEMENT sent to them free.
The SUPPLEMENT contains lengthy articles embracing The SUPPLEMENT contains lengthy articles embracing
the whole range of engineering, mechanics, and physical Guild \& Garrison's Steam Pump Works, Brooklyn N. Y. Steam Pumping Machinery of every description. Send for descriptive circular on lubrication. Charles H. Besly \& Co., North American Agents for Reisert
Celebrated Solid Oil, $175 \& 177$ Lake St., Chicago, Ill. Keystone Steam Driller for all kinds of artesian wells. Wood Working Machinery. Full line. Williamspor Machine Co.. " Limited," 110 W. 3d St., Williamsport. Pa.
Mineral Lands Prospected, Artesian Wells Bored, by a. Diamond Drill Co. Box 423, Pottsville, Pa. See p. 46. Cutting-off Saw and Gaining Machine, and Wood
Working Machinery. c. B. Rogers \& Co., Norwich, Conn. Cushman's Chucks can be found in stock in all large cities. Send
ford, Conn.
Crescent Steel Tube Scrapers are made on scientific Curtis Pressure Regulator and Steam Trap. See p. 222. The Improved Hydraulic Jacks, Punches, and Tube Hoisting Engines. D. Frisbie \& Co., Philadelphia, Pa Tight and Slack Barrel Machinery a specialty. John Send for catalogue of Scientific Books for sale b

Pays well on Small Investpent.-Stereopticons, Magic Lanterns, and Views illustrating every subject for public
exhibitions. Lanterns for colleges, Sunday schools, and home ammsements. 136 page illustrated catalogue free.
McAllister, Manufacturing Optician, 49 Nassau St., N. Y. The "Improved Green Engine," Automatic Cut off. Catechism of the Locomotive, 625 pages, 250 engrav-
ings. Most accurate, complete, and easily understood ook onthe Locomotive. Price $\$ 2.50$. Send for catalogue of railroad books. The Railroad Gazette, 7\% B'way, N. Y. "To Mechanics."一 When needing Twist Drills, ask o., Cleveland, O. See page xi, Export Edition.

Steel name stamps, 15 cts. per letter; steel figures, $\$ 1$
per set. F. A. Sackmann, 1099 First A ve., Cleveland. O. Seam and Looping Machines, patent Burr Wheels Cachinists' Pattern Figures, Pattern Plates, and LetAstronomicsl Telescopes, from $6^{\prime \prime}$ to largest size. Ob-
servatory Domes, all sizes. Warner \& Swasey, Cleveservatory Domes, all sizes. Warner \& Swasey, Cleve-
and, 0 .

NEW BOOKS AND PUBLICATIONS.

Elementis of Inorganic Chemistry,
DESCRIPTIVE By James H. Shepard. Boston: D.
C. Heath \& Co., 1885.
There is a marked tendency at prosent to make all education subjective. From the youngest baby who
toddles to a kindergarten to the college senior nearing graduation, the successive steps are taken as far as posgraduation, the successive steps are taken as far as possible by the student himself, and both text book and many respects the system is advantageous. The studies appear more absorbing than when viewed imperson-
ally. There is, however, a danger that in limiting the investigation to one's own experience, the broader
view of the subject, the underlying theory, may be view of the subject, the underlying theory, may be
lost. Mr. Shepard has recognized these tendencies, and in the present volume has attempted to avoid the disadvantages of too strict an adherence to either
theory or practice by combining laboratory work with text book instruction from the very beginning. Systematic, experimental, and analytical chemistry are thus united in one volume, and are intended to be
taught side by side. The method is unnsual, for a tudent is seldom admitted to the laboratory until he has acquired some knowledge of elementary chemistry. is well presented, and with a careful instructor could ee expected to give good results. The grouping of the analytical works, and arsenic and antimony find place had the adPittsburg and Western Pennsyl Commerce of Pittsburg, 1885.
Of late years, when rival towns are pressing their advantages upon the attention of manufacturers, a custom
has grown up, among the various Chambers of Commerce of the competing points, of issuing pamphlets descriptive of the merits of their respective towns. It is a very good custom; for though these local bodies per-
haps see more of the rose color about the smoke of the home atmosphere than other people would, their corporate standing is a guarantee of the integrity of the statements made; they offer also a convenient medium
for further correspondence. The present brochure is a for further correspondence. The present brochure is a
good example of its kind. A description is given of the main industries of Pittsburg and the natural facilibing of course devoted to the question of natural gas. An excellent map, showing the position of the oil flelds and main gas wells, accompanies the monograph.
Natural gas: its advantages, use, and
 It is put forward evidently by the borough, and makes a strong appeal to the prospecting capitalist. Those
investigating the economic advantages of Western investigating the economic advantages of Western
Pennsylvania will find both of these pamphlets of in-

HINTS TO CORRESPONDENTS.

(1) C. C. B. asks: Do you know of any remedy to prevent horses from wind or stump sucking you are habits, and therefore not curable by any treatment other than care. The sucking habit may be pre-
vented by tying a piece of sheepskin, woolly side out, vented by tying a piece of sheepskin, woolly side out,
over the posts, or by tying something around his throat over the posts, or by tying something around his throat
o prevent swallowing. The other habit is incurable.
(2) S. R. asks for a receipt for making German paste for canary birds, small quantity. A.
Blanched sweet almonds one pound, pea meal two pounds, butter three ounces, satfron a few grains, honey sufficient quantity. Form the whole into a paste, and granulate it by pressing it throagh a colander. Some
add the yolks of two egge.
(8) J. C. H. writes: 1. When I add tincture of canthardes to Horsford's acid phosphate,
the mtsture becomes cloudy. What are the reactions? the mrsture beloce estactive matter, unsoluble in water, is naturally precipitated by the addition of an acid aqueouas solution. 2 . Is the phosphorus precipitated? A. Tue phosphorus is therefore not thrown down. 3. ${ }^{3}$. Ire the medicinal properties of the ingredients changed?
A. Not unless the extractive matter, which is precipi. A. Not unless the estractive matter, which is precipi-
tated, is removed, and also it depends upon what the tated, is removed, and also it depends upon what the
compound is given for, whether it is impaired.
(4) H. W. H., Jr., writes: Some time ago 1 saw a very good method of assay of gola, a short process producing the metal from the ore to the pure
state. Kindly say where I may find it. A. The destate. Kindly say where I may find it. A. The de-
tection of gold in a given mineral is a simple process, tection of gold in a given mineral is a simple process,
but the assay involves a determination of the amount of gold in the ore, and can only be satisfactority accomplished by the collection of the metal in a lead bnon in all text-books on the subject.
(5) H. M. asks (1) for means of restoring to its previous condition a painting done on white think that it is possible to remove the smoke without injury to thepainting. 2. The method of cleaning steel
engravings? A. Articles on "How to Restore Soiled engravings8 A. Articles on "How to Restore Soiled
Steel Engravings " are given in Scientiric America Steel Engravings " are given in Sci
SUPPLEMENT. Nos. 44,115 , and 124 .
(6) C. M. McK. asks how will vulcanite a little less hard than that used for combs, brushes, etc., compare, under pretty rough treatment, with
leather in durability? A. The vulcanite will not stand ". pretty rough treatment." 2. About what proportion of sulphur would be used to obtain such a quality or
vulcanite? A. For details as to manufacture see Scrmintific American Suppiement, No. 253. 3. Can you give me some idea of the cost of vilcanite in large quantities? A. The value of vulcanite is dependent upon its quality, and the price in accordance is from
30 cents to 75 cents.
(7) E. H. R. asks if the "white bronze monuments retain their original color for an indefinite
length of time. A. Yes. 2. Is the expansion or conlength of time. A. Yes. 2. Is the expansion or con-
traction of the metal by reasonl of heator cold such as to be material, or worthy of consideration? A. No. 3.
Does the white bronze, which I understand is zinc, wear Does the white broize, which I understand is z inc, wear
well? A. Yes, it is very enduring. 4. My reasons for inquiry is, we are about getting up a soldiers' monument, and we want a good one. A.
for the purpose you mention.
(8) J. H. asks the names of the ingredients composing the liquids in the various patent
fire extinguishers, or a formula for a good liquid for fire extinguishers, or a formula for a good liquid for
the same. A. 8 pounds carbonate of soda, 4 pounds ${ }_{24}^{\text {alum, } 3 \text { pounds borax, } 1 \text { pound carbonate of potash, and }}$ $1 \times$ pounds of this mixture is added to each gallon of water when required for use. See also answer to
query 7 in Scirnmiric American for febraary $\% 1885$. (9) W. W. A. asks: Can I keep ice 8 feet high? wh sawdust in a roon 6 feet square and is well drained. How thick should the sawdust ge ge
around it? A. Your plan is feasible. A layer of spow around it? A. Your plan is feasible. A layer of sp
dust from 6 to 8 inches between double wood walls fvil be quite sufficient.
(10) H. L. K. asks (1) how sugar chated poporn is prepared after the corn has been popped.
A. The adhesive mixture with which the corns are held together consists of gelatine with a little molasses; the coloring matter is carmine.-We cannot undertake
to give examples in simple arithmetic in these colto give
umns.
(11) F. E. asks: 1 . Is there any book giving full information in regard to the manner of re-
moving hair by electricity? A. There is no single book treating on this subject, and the practical succerss of thisis method can hardly be called proved. See the articles on Removal of Hair by Electricity contained in Sci-
ENTINC American Supriement, Nos. 176 and 333 . Are there irido-platinum needles; manufactured for this purpose? A. No. .3. Is one cell battery sufficient? A. No. 4. How is turtle shell softened, so that it may
be given any desired shape? A. It is softened by the be given any desired shape? A. It is softened by the
heat of boiling water; and if compressed in this state heat of biling water; and if compressed in this state
by screws in iron or brass moulds till it may be bent by screws in iron or brass moulds till it may be bent
into any shape, the moulds being then plunged into
cold water.
(12) J. W. V. asks: Is there any differ ence between the so-called "compound oxygen" nsed by some of the doctors, and the orygen obtained by
heating potassium chlorate and manganese? A. "Compound oxygen " is simply a fancy name given to an article made and sold by various physicians through-
out the country. In the May issue of the Drugizts Circular, the analyses of five articles bearing the name of compound oxygen are given. 2. Is the latter ever
used for medicinal purposes? A. Under certain cir used for medicinal purposes? A. Under certain cir
cumstances, it is probably used for inhalation. How are paper mustard plasters made? A. They are How are paper mustard plasters madee A. Yhey are
probaty made by diping porous paper in a strong
alcohoific extract of oil of mustard. After it has dripa, it mayy be applied.
(18) C. R. C. writes: An eight day clock spring $3 /$ inch in width would be equal to a weight of how many pounds as to power? A. Clock springs
are not always of the same power forthe same width You can only ascertain by trial of a given spring. (14) E. C. \& J. E. Y.-For stove cement use pulverized clay 8 parts, fine iron fllings 4 parts, peroxide of manganese 2 parts, sea salt 1 part, borax
t pait. Thoroughly pulverize, dry, and mix. When I pait. Thoroughty palverize, dry, and mix. When
rectited for use. make up the required quantity fo
(4) CE A asks the simplest
(45) C.E. A. asks the simplest way to if thatinum can be melted in the same manner. A. The simpleit methof of melting gola, silver. copper
etc., is by treating them with a little carbonate of soda on a piece of charcoal, and then fusing with a blowpipe Platinum requires s much higher heat, and is infusible by the ordinary processes.
(16) B. writes: I can buy a good second hand portable 12 horse power boiler and engine for the to put an engine in my barn for steam purposes gener to put an engine in my bara for steam purposes gener-
anly, such as cutting forage, firewood, etc., but do not need over 5 horse power. Which of these two engine is preferable for me? Will the 12 horse power be as
economical as the five horse power in doing the eame work? In my inexperience, it appears that a 12 horse engine dong half work is as economical as a 5 horse
power at its full power. Is it? A. We recommend the 12 horse power engine, which will do your work at tion, will not only give you economical results, but will be a source of satisfaction if yo
need more power or wish to sell
(17) M. C. C. asks: What chemical is red annealing malleable iron castings, and in what proportion? A. Pulverized hematite or pulverized an
vil scales. The goods to be packed in cast iron boxes so that each piece shall be surrounded with the above material. The whole to be placed in an oven and heated (18)
(18) G. M.-The bluing of gun barrels is done by heating evenly in a muffle until the de-
sired blue color is raised-the barrel being first made clean and bright with emery cloth, leaving no marks of grease or dirt upon the barrel when the bluing takes place. We do not recommend this except in the hands of experts. It requires considerable experience to obtain
an even. clear blue. The receipt for browning is from an even. clear blue. The receipt for browning form Spirits of wine $11 /$ ounces, tincture of steel $11 / 2$ ounces, ounces, blue vitriol 1 ounce, nitric acid $3 / /$ ounce. Mix and dissolve in 1 quart of warm water, and keep in a
glass jar. Clean the barrel well with caustic soda glass jar. Clean the barrel well with caustic soda
water to remove grease or oil. Then clean the surface of all stains and marks, by emery paper or cloth, so as to produce an even bright surface for the acid to ct upon. No finger marks. Stop the bore and ven
with wooden plugs. Then apply the above mixture with wooden plugs. Then apply the above mixture
to every part with a sponge or rag, expose to the air to every part with a sponge or rag, expose to the air
for twenty-four hours. Then rub the loose rust off
with with a steel scratch brush. Again apply the mixture
and seratch brush, and if not perfect, a third time. If satisfactory, wash in boiling water, dry quickly, and wipe with linseed oil or varnish with shellac.
(19) R. G. W. asks (1) how to gold, silver, and nickel plate small things. I have a powerful hatery of zinc and carbon and sulphis on electro plating we refer you to Surpiemenr, No. 310. You will not require a battery giving a high tension current
for electroplating. 2 . Which can be burnt the harderhard electropsating. 2. Which can be burnt the harderhard? A. So far as the hardening of the clay is conerned, one brick will be as hara as the other, bu quently stand more pressure.
(20) F. R. H. asks: Will you give me in ypar valuable paper a little advice as to the use of implements, etc.) from rust, damp; and salt air? Here in Florida I have great trouble with such things as guns, carpenters' tools, machinery, and hardware in the house rusting, and have heard a good deal of talk about paraffine. A. You can obtain paraffine from any of
the wholesale druaggists in New York city, who will give he wholesale druggists in New York city, who will give
you prices on application. It comes in irregular fragyou prices on appication. It omes in irreguar rag-
ments or in cakes; you can apply it to the metal surfaces by warming the metal and rubbing the paraffine n, allowing it to melt, or you can dissolve the paraf (21) D. G. E. asks: Why will a long horsehair stretched in an Eolian harp produce a sound, when mouth, will not? Are there any pecaliar conditions in which strings produce sound by such means? A. There is no reason why the Eolian harp effect cannot be produced by the breath, if the conditions ara favorale', probably one reason why yot did not succeed in
your experiment is that your string was so short as produce vibrations too rapid for a musical note
(22) J. B. S. writes: Please send me the directions for using the Reis telephone, or let me know In what number of your paper, if in innyl chan ind an
explanation of the same. A. Reis' telephone may be seed successfully by substituting carbon for the pla careful adjustment of the platinum points, but it is not practical when used in that way. Some experimenters have placed between the contact points of the transmitter a liquid such as acidulated water, thereby
improving the effect. For description of Reis' telemproving the effect. For desc 1
phone, see Supplement, No. 389 .
(23) F. A. H. writes: To-day a man came in my office with a small glass tube with two round gwbes on each end, each as large as an egg. The
ube ofnecting the two bulbs was some 8 or 10 inche tabe fonnecting the two bulbs was some 8 or 10 inches
 some persons, the fuid would rush to the other bulb, although the other bulb was much higher than the one hand; for others, the fuid would not move. It was he blood; a person having good blood would cause it oflow almost perpendicular into the upper chamber, while a person with poor blood would not move it. As had never seen anything of the kind before, I was nuch surprised. Will you kindly explain in Notes nnd Queries the science of this instrument, what the
fuid is, and why it operates?
A. The tube and bulbs luid is. and why it operatess? A. The tube and balbs
contain ether colored by aniline. The air is exhausted from the bulbs, so that the ether boils at a very low temperature, the heat of the hand being sufficient to va on handling the instrument has nothing whatever to do with the action of the ether
(24) R. L. asks: 1 . Would not brass wire do for winding field magnett of electric machine described in Supribinurn, No. 161 ? A. Brass wire will
not answer so well as copper wire, because its electrical conductivity is conisiderably less than that of
copper. 2. Would not paper covered wire do? A.
Paper covered wire would do. provided you couild wind Paper covered wire would do. provided you could wind
it without breaking the insulation. The paper eovering
should be very thin and strong. 3. What would ma. should be very thin and strong. 3. What would ma-
chine be worth complete? A. Such machines may b chine be worth complete? A. Such
purchased for from $\$ 40.00$ to $\$ 50.00$.
communications received.
On Clinical Thermometers. By C.E. W.
On the Fly's Foot. By C. H. L.
INDEX OF INVENTIONS
For which Letters Patent of the
United States were Granted
November 17, 1885,
and each bearing that date.
[See note at end of list about copies of these patents.]
A ir and gas compressor valve, W. H. Worthen...
Arthur.........................
Animal trap, C. W. Barkley...
Animal trap. W. R. Hampton.
Animal trap. W. R. Hampton
A uger, post hole, F. Grimm
Axie box, car, N. W. Cutter.
Axle box, car. W. C. Miller.
Bag fller, weigher, and register, grain, L. P. P. Sum
mers..........................

Bed clothing clamp or faste
Bed, foling, $\mathrm{H} . \mathrm{S}$ Hale....
Bed, folding couch,
Bed pan, S . V. Beal.
Bed, sofa, C. Streit................
Bedstead, folding,
Beehive,
Beehive, E. Armstrong.
Beehive, w. Groff...
Beehive, w. P. Hamlin.
Bell, call, w
Bevel, miter, and try square, combined. S. S. Colt Bevel swaging machine, J. T
Bicycle holder, A. P. Seiler.
Bicycle holder, A.
Bitters, D. J. Kyte
Blackboard composition, I. Chadwick Board. See Ele
Bobbin. T. Hall.
Boiler. See Steam boiler.
Bdiler tube clean
Bdiler tube cleaner, E. W. Vanduzen.
Book and music clamp, J. E. Hunsal
Boot jack, E. Harris.

Bottle irrigating, attachment, A. B. Tutton
Bottle stopper, W. Ward. Bottle stopper, W. Ward.
Bottle stopper fastening,
Bottle stopper fastening, L. Kalling, Jr....
Bottles, cans, etc., closure for, E. Schmitz.
Box. See Window seat box. Box. See Window seat box.
Bracket, L. Bridge.
Bracket arm, C. Hollwe.....
Broom, G. A. Thompson. Brushes, machine for
Buckle, C. C. Shelby.
Buckle shic. Shelby........... A. Fraz
Buckle, suspender, D. L. Durand..
Burner. See Hydrocarbon burner
Bustle, A. I. Rich...
Butter package, W.
Button, , R. H. Isbell...... .
Button fastener, A. G. Irvin
Button fastener, A. G. Irvine..
Buttonhole cutter, G. E. Combs
Button or stud, T. W. Foster
Buttons to
Keith.
Capsule for medici..................................
Car coupling, J. Button..
Car coupling, A. Nutting.
Car mover, S. Shackelford
Car replacing jack, L. F. Longmor
Car strap, e. Q. Bowm
Car wheel, D. H. Rice.
Car wheel and axle box, S. A. Bemis.
Car wheel lathe, Small \& McNaughto
Carpet cleaning machine, S. T.
Carpet sweeper. G. W. Kelley.
Cartridgee shenll holder, Rababe \& Fi.....
Case. See Cigar case. Toilet case.
Casket plate, G. W. Moulton
Cement, manufacture of, H. Mathey................
Centering hubs and other blocks, devie for, B.
Wing...
Chair. See Desk chair. Folding chair. Ham-
Chair. See Desk chair. Folding chair. Ham-
mock chair. Oscillating chair.
mock chair. Oscillating chair.
Cherry seeding machine, G. W. Knapp
Chicken brooder, G. B. Bayley.
Chopper. See Cotton chopper.
Chuck, pivoting, F. Boardman.
Cider press. P. R. Cross.
Cigar case, H. W. Pitz...
Cigar tip cutter, W. H. Iilly.........................
Clamp. See Book and music clamp. Presse
Clamp for roof scaffolds, etc., A. T. Barlow....
Clamp for roor scaffolds, et., A. T. Barlow.........
Clay cutter and pulver izer, W. N. Graves.......
Cleaner. See Boiler tube cleaner. Lamp chimncy cleaner.
Clipping machine, hair, Whittier \& Donlon........
Clocks, contact maker for electric, L. H. Spellier.
Clothes drier, I. A. Johnson.
clothes drier, Z. Stephenso
Clothes line, J. s. Wailes.
Clutch, A. J. Moyer.
Coke, furnace for the manufacture of, H . M
Coke, manufacturing, H. M. Pierce.
Collar and hame, combined, Barber \& Reynolds.
Collar or cuff, E. Kipper
Comb. See Curry comb.
Confection. F. P. Ziegler.
Core barrel, collapsible, P. Wilk
Corn sheller, King \& Gilman
Corn sheller. King \& Gilman.
Corset stay, M. W. Henius.
Cotter pins, machine for making, J. Adt.

Coupling. See Thill coupling. 330,620
330,829
Crate for fruit. etc.. W. F. Redding.................. 330,
Cream, egg, and liquor mixer, R. M. Eastman.... 330
Creamer and refrigerator, combined, F. W. Mose-
ley...30,845
Cuffholder, D. ${ }^{302}$
Cultivator, Brown \& Bragk
cultivator, G. Carrothers
Cultivator. J. J. Fraikin
Cultivator, J. Macphail.
Cultivator, C. Whitehall.. 330,794
Cup. See Oil cup.
Cup. See Oil cup.
Current wheel, W. J. McGavock...
Curry comb, W. E. Lawrence
Curtain cabinet, B. Vallett...

Cutter. See Buttonhole cutter. Cigar tip cutter.

Disinfecting apparatus, portable, w. W. Rosen-
field...

Drier. See Clothes drier.
Drill. See Rock drill
30.563

Drill. See Rock drill.
Drum and ventilator. heating, J. Springer.........
H. P. Brown..................................... 330,466
Electric lighting, incandescent, H. P. Brown..... 330,464

Electric lighting system, H. P. Brown............... 330,465
Electric machine, dynamo, O. F. Jonsson....... 330,836
M. M. Slattery,...................................
Electric machines, armature for dynamo, $\mathbf{~ C . ~ D . ~}$

Jenney... 330
Electric switch board, T.
Electrical meter, E. Weston........................ 330

Traction engine.
Envelope opener and paper knife, combined, G.
Excavator, tunnel, C. C. Quinn
Expansion joint, M. H. Gray...............
yeglass hook, G. D. Briggs..
Eyeglass nose pad, J. S. Speucer
rabric. T. Isherwood...............
Fan, J. M. Seymour....
Farm gate, S. W. Smith
Faucet, water. A. Stover............................. $330,50,51$
Feed water heater, O'Brien \& Weaver............ 330,612
Feed water neater, S. J. Weaver.............. 330,600
330,558
Feed water heater,
Feed water purifer and heater, J. P. Warner....... 33
Fence, metallic, , Hanika............................
Fence strips, machine for making barbed, J. W.
Roop ...
Fence wire reel devie, W. s. Newth..........
Fencing, connection for metalic, , Hani.......
Fifth wheel, B. F. Gorsuch...
Firter and cooler, combined
Fish hook, C. Lie...30,793
Fishing rod, bamboo, E. M. Edwards............ 330,572
Flask. See Liquor flask.
Flue welding machine, B. F. Lowther.............. 330,84
Folding chair or settee, H. J. Harwood......... 330,688
Fork guard, J. W. Drew.................................. 330,824
Fortification, revolving tower, T. R. Timby 330,440
Fortifications, revolving tower system of, T. R.
Timb........................33,63, 330,641, 330,
Fortifications, shield and tower system of, T. R.
Timby....................................... 330,639
rame. See Quilting frame. Umbrella and para-
sol frame.
Furnace. See Locomotive furnace. Open hearth
furnace.
Furnace grate, F. Minier.
Furnace grate, F. Minier,...................... 830,608
Gume, parlor baseball, Jacobus \& McKinley. 330,788
Gas, aparatus for making, W. P. Ellitott......... 330,78
Gas conduits, tube joint for, W. L. Scaife........ 330,644
Gas, producing illuminating, R. H. Smith......... 330,747
Gate. See Farm gate. Water gate. Water wheel

Gate, J. D. Fox..
Gate roller and hinge, combined, E. C. Washburn.
Gaear cutting machine, M. O'Gorman....... 3330,510
Glass furnace stone, H. Femes...
Glazier's point. H. W. Eames..
Glazier's point, E. J. Van Reype
Glove fastening, A. C. Mather....................... $330,430,501$
Governor for vessels, pendulum engine,
Hawk,
Governor, steam engine, A. I. Loop.. 330,699
Grain binder, A. Stark....................
Grate. C. L. Riker... 330,633
Guard. See Fork guard. Razor guard.
Hair, composition for removing, S. R. Kennedy... 330,715
Hair, composition for removing, S. R. Kennedy... 330,715
Hair, tablet for use in removing, S. R. Kennedy. 330,76
Hammock chair, G. B. Hook........................ 330,705
Handle. See Shovel and spade handle. Too
Hanger. See Pipe hanger.
Harness pad oress, J. W. Johnson..
Harness sweat pad fastener, R. Brownson..................330,710 330,772
Harrow, J. Macphail...
Harrow, iron, A. Callander....
Harvester, J. Keller..........
Harvester, Whiteley \& Bayley
Harvester, D. Young............................
Harvester and mowing machine,
Harvester and mowing machine, G. M.
Harvester bundle carrier, w. Beltz
Harvester, grain binding, D. R. Preston..
Hat holder and coat rack, G. D. Spielman
Hat holder and coat rack, G. D. Spielman.
Hat rounding machine, Tweedy \& Yule...
Hat rounding machine, Tweedy \&
Hay press, power, A. B. Farquhar.
Hay press, power, A. B.
Hay rack, H. Connelly..
Hay rake. D. F. Oliver...........
Heater.
See Feed water heater.
Heating apparatusfor buildings, S. Bradley....... 330,462
Hides, machine for unhairing, working, and
scouring, A. E. Whitney..........................
Hoeing machine, D. G. Zeigler
Hoeing machine, D. G. Zeigler...................... 330,74
Hog and cattle separating device, D. L. Monroe.. 830,41
Holder. See Bicyele holder. Cuf. ho
holder. Pencil holder.
Holland cases, extension door for, C. Cregmile.... ${ }^{3330,38}$
Hood and other garments, W. Randel............ 330,51
Hook. See Eyeglass hook. Fish hook. Snap
hook. Se
hoor

Washing machine, J. A. Tynan.
Washing machine and eeter Washing machine
bined, S . Sewell,
Washing
Tynan.
Washing machine
Waste valve, automatic, J. H. Bacon et al
Watch case, B. F. Hope.
Watch case, J. Lamont.
Watch, stem winding and setting, C. T. Higgin
botham..

Water closet, single plece po
Fowkes \& Connolly...
Water closet valve, H. s. Lord..
Water tank, automatic stock, R. H. Barber Water wheel gate, D. L. Trulinnger
Wheel. See Car wheel. Current wheel. Fifth wheel. Skate wheel.
Wheel securing device, G. P. St
Whiffetree iron, O. Vanorman.
Whip socket, C. N. Webb............
Window seat box, w. H. Wetherill.
Wire machine, barb, w. Edenborn
Wrench, G. A. Burnes...
Wrench, E. B. Jackson.
Wrench, S. J. Lea..
Wrench, R. Wolfe.
DESIGNS
Burial caskets, or
Carpet, J. Lyall.
Jewel setting G. Bect
Paper selips, back for, A. E. Seltzer......
Surface ornamentation, F. Mankey.

TRADE MARKS.

Agricultural implements named, S. L. Allen \& Co. Alcohol and its compounds, wood, L. A. Salomo

 \& Bro................................... Baking powder, G. F. Gilman.........................Balsam for cure of gout, rheumatism, etc., C. Pi gel......................
Belting, oil dressed and waterproofed flat leather
C. A.S Schieren \& Co...............................
Caps or primers for blasting purposes, Metallic Cap Manufacturing Company. Cod liver oil, Ansar, Harford \& Co....................
Flour or meal made of the entire wheat, Franklin

$$
\begin{aligned}
& \text { Mill Company.. } \\
& \text { Food for curing an }
\end{aligned}
$$

et al..................
Liniment, R. J. Keen..........
Medicine for the treatment
sore mouth, Howard Bros
sore mouth, Howard Bros......................
ler Paper Company................
Peanuts, Norfolk Storage Company
Remedy for horse colic, P. Crist
Shoes, school, Fearey Manufacturing Company
Sirup for coughs, colds, etc., C. Pingel Soap, toilet and laundry, Kansas City Soap Com pany.
Tobacco, chewing and smok......................................72, , ,77 Tobacco, smoking, B. F. Weyman.....................
Tonics and stimulants, M. Kalbfeisch's Sons....
A Printed copy of the specifications and drawing of any patent in the foregoing list, also of any patent
issued since 1866, will be furnished from this office for 25 cents. In ordering please state the number and date
of the patent desired, and remit to Munn \& Co., 361 Broadway, New York. Wealsofurnish copies of patents Broadway, priow to 1866; but at increased cost, as the
granted
specifcations, not being printed, must be copied by speciflce
hand.
Canadian Patents may now be obtained by the going list, at a cost of \$40 each. For full instructions address Munn \& Co., 361 Broadway, New York, Other

Pfovertisements.

 fiess Rediced of EDSON'S IMPROVED

Made and for sale by the
EDSON RECORDING AND ALARM GADGE CO.,

$\frac{1}{6}$	The Standard Rider нот AlR) PUMPING ENGINE For Gas or coal.
	$S A Y B R \& C O$. 34 Def Stroet, X . Y . ctit.

Western Electric Co. CHICAGO and NEW YORK. Electric Bells, Burglar Alarms. HOUSE AND HOTEL ANNUNCIATORS. ELECTRIC LICHTS,
ARC AND INCANDHSCENTS.

PHILLIP SEMMER,

ESTIMATES PRoMPTLY FURNISHED.

 Cume wir mant. Cheap, Durable. Increases Power. II not
affected by Water EEasily connected. Thoussansisof feet in inse.
Can refer to hundreds of large manufacCan refer to hundreds of large manufac-
turing concerns using it. COILED WIRE BELTIING CO.,
Street, New Yorks. HENRY DIBBLEE \& CO.
WOOD ANDSLATE MANTELS LOW'S ARTMTILES, FINE GRATES AND BRASS GOODS, (Giles Building) WABASH AVENUE, OHIOAGO,

SHIELDS \& RROWN
 FOr BUILERS and STEAM PIPES FOR Reduces © Gondenuation of steam. Prevents Sweating and Freezing. The bes., Nill-Conductor of Hear. and Coln in the Wor
Send for illustrated descriptive Circular, and name this paper.
132 Cedar Streetr New Yor,
 NCKEL PLATING Reor ZUGKER RHEVETH CHEMICAL C? NEW YORKUS.A. an merm ABerracy ELECTRO PLATING OUTFITS.

(4)Rider's New and Improved compression Hot air Pamping Engine
 DELAMATER IRON WORKS,
No. 16 CORTLANDT ST., NEW york, n. y
 Kemington Standard Type-Writer

 They combine the brass seat and rubber than any others in the market. GOLLAD 217 RIVER ST, TROY
 P'S'

GRATEFUL-COMFORTING.

Address H. L. Shepard, Agent, 134 E. 2dSt,

WATCHMAKERS.

WIRE ROPE

Frenton Tron Go.
 SOWNES MANUAL OF RHEMISTRY Embracing WATTS' PHYSICAL and INOR-

CET THE BEST AND CHEAPEST.

EBASTIAN, MAY \& co. Screw Cuting Lathe. Designed for actual work; no
Dathes for wood

COUNTERSINK and DRILL COMBINED.

The Countersink following the Drill, the job is finish- dat one operat on siving the adjusting of too s and

 Work twice. Made by mfg. Co., Greenfield, Mass. AMERICAN STEAM BOILER INSURANCE CO.,
 BENTS can make $\$ 3$ to \$15 per day introto, business men. No peddling. Sold fromosample
Specimen sheets, showing plan of book, with ali
particulars, by return mail. Adatess

INJECTORS rivitud

 THE Noye Ifg. ©o. FINISHED beffalo, N . y .

STEAM ENGINES.
 York Mfg Co., York, Pa, U. S. A. CARD: Sample book and ful outte nad dorefy Xmas

RUBBER ROOFING.

 $\$ 3.25$Per 100 Square Feet.

\$3.25

Anybody Can Lay 1 On Barns, Dwellings, actories. \&c.
 Used 18,000 feet "Temporary Rubber Roofing."
have thoroughy tested your Temporary Ruofing, and find it a perfectly water and sun proof material; taking
account the rapidity with which it can be applied, the number of years it will last, and the ease with which an be transferred from one building to another, it is the cheapest article of that kind on the market. We use CAMPs, Ga., Oct, 29, 1884.

Save time and money by sending for Estimate for new or
old buildings. Book free if you write to-day. Learn how to stop leaks effectually, cheaply, save reshingling, tc.
Correspondence invited.. Indiana Paint and Roofng Co.,
New York City, or Indianapolis, Ind.

THE NEW "GRESHAM " PATENT Antomatic Pe:starting Iniactor.

A most remarkable boiler feeder, which has just taken the firs
premium at the lnventors' Exhibition in England premium at the lnventors' Exhibition in England. May be used manipulation whatsoever, after interruption of the feed from any cause. The most effective injector ever placed on the marke for stationary or portable boilers. Reliable and cheap.

Nathan Manufacturing Co., 92 \& 94 LIBERTY ST., N. Y.

MAGIC Lumasez ontan \pm Ena winterns Glasses, Telescopes, Mi- croscopes, Barometers, Thermometers, Medical Batteries, Artificial Human Eyes, Architect Eastern Price
 DAINTEBS' NEW GRAINING TOOLS for raprraining Oak, Wallnut, Ash. etce Send stamp for Cotida- loguewith cuts, etc. J J. J.CALLOW, Cleveland, Ohio.

 FiNQ for Ruidides of every decripilion Purable,

BARREL, KEG, Hogshead,

Stave Machinery Over 50 varieties manu.
E. \& B. HOLMES BUFFALO, N. Y.

THE CAMERON STEAM PUMP.为
 30,000 IN USE.
ADAPTED TO EVERY POSSIBLE DUTY. ADdA PTED TIO EVERY POSSIBLE DUTY.
The AMERON SIEAMI PUMP WORKS, FOot East 23d Sto, New York
THE SHIPMAN STEAM ENGINE.

KEROSENE OIL FUEL

 ThE SHIPMAN ENGINE is popular above 1st. Low Price. Men of small means can own it. 3d. Economy in the use of its fuel. 4th. Consumes only the fuel required for power taken. sth. Absolutely safe from explosion. th. Puts out fire and relights it again. th. Moment work is done, expense stops.
8th. No dust, no dift. Fire never "to draw " 9th. If you have only one hour's work to do, you can get up steam pressure of 100 pounds, do the hour's work, put out the fire, and the time for the consump-
tion of fuel will not exceed one hour and seven or ten tion of fuel will not exceed one hour and seven or
minutes, at a cost of three to five cents per H. P. 10th. You cand be your own engineer and fireman. 11th. If oil and water supply is uninterrupted, the fi
boiler and engine will take care of themselves. Farmers pump water, saw wood, cut fodder, \&c. Printers run from two to five presses. Carpenters
and Machinists can run every kind of small maclinery Manufacturers find great economy in nearly every department of their work to use small power. Young
Men can make ordinary row-boats into steam-yachts.
HON TOKNOM the Shipman Engine: Soats into steam-yachts. Virginia, or West Virginia, write to THE SHIPMAN ENGINE MFG CO ROCHESTER, N. Y. If you live in the State of Illinois, Michigan, Indiana, Wisconsin, Iowa, or Minnesota,
write to THE POPE MFG. CO., 115 Wabash Ave, CHICAGO, ILL. If you live in the State of Pennsylvania write to THE POPE MFG. CO., 115 Wabash Ave.. CHICAGO, ILL. If you live in the State of Pennsylvania,
Delaware, Maryland or New Jersey, write to C. D. YOUNG \& BROS., 42 North 4th St., PHIIADEELPHIA, PA.

WITILERBY, RUGG \& RICHARDSON. Manufacturers
 DRAWING

RALLWAY AND STEAM FITTERS' SUIPLIES Rue's Little Giant Injector. sCREW Jacks, sturtevant blowers. \&c.
JOHN S. URQUHART, 46 Cortlandt St., N. \mathbf{y}.

Telegraph and Electrical

CURE FOR DEAE
Peck's Patent Improved Cushioned Dar Drums PERFECTLY RESTORE THE HEARING, and perform the work of the Natural Drum. Always
in position, but In lisibilo to others and oomprortable
in

 CUTLER'S POCKET INHALER
 CARBOLATE of IODINE INHALANT.

 ing exhusting discharges.
 alists of the draated by most of the noted seaci-
 PORTLAND GEMENT.-THE SCI-

MANHOOD When Iost from Abusg

MEN

2 fovertisements.
 (About elight words to thane.)

 IEPAGES GLUES

PEUECTRIC

H.W. JOHNS'
 ASHESTOM:

Stoam Roafhg, Building Felt,
 - Samples and Descriptive Price Lists Free. S AWS Wanted anowo suwers tand SAW S
 Nat write to
 216 Lake Street, Chicago, For anything that you wantin their line
 TO MANUFACTURERS Will sell the rights of SCREW OILER 188s, for Western. sauthern, and L. POSTA WKA \& CO., Cambridgeport, Mase.

WIRE FOPE

 ers, Trenton, N. J., or 117 Liberty street, New York.
sheels and Rope for conveying power long distances
 Original and Only Builder of the
HARE
WIORLISSENGINE With Harris' Pat. Improvements, from 10 to 1,000 H. P. Manual. By J. W. HIII, M.E. Price 81.25 .
Priverlderas
PATENTS. Cation of the ScIENTIFIC AMERICAN, continue to ex
amine improvements, and to act as Solicitors of Patents for Inventors.
In thisline of business they have had forty years' ex-
perience, and now have unequaled facilities for the prep aration of Pàtent Drawings, Specifications, and the
prosecution of Applications for Patents in the United States, Canada, and Foreign Countries. Messrs Munn \& Co. alsoattend to the preparation of Caveats, Copyrights
for Books, Labels, Reissues. Assignments, and Reports for Books, Labels, Reissues. Assignments, and Reports
on Infringements of Patents. All business intrusted to them is done with special care and promptness, on very reasonable teras.
A pamphlet sent free of charge, on application, con
taining full information about Patents and how to pro cure them ; directions concerning Labets, Copyrights
curn casigns, Patents, Appeals, Reissues, Infringements, Assignments, Rejected Cases, Hints on the Sale of PaWents, etc
We also send, free of charge, a Synopsis of Foreign Patent Laws, showing the cost and method of securink
patents in all the principal countries of the world. MIUNN \&e CO., Solicitors of Patents, BRANCH OFFICES. ${ }^{361 \text { Broadway, New York. } 622 \text { and } 624 \text { F Stree }}$ BRANCH OFFICES.-NO. 62 and 624 F Stree
ctac Building, near 7th Street, Washington, D. C.

M, EHRET, JR. \& CO.
 mat basingha:

ROOFING,
For' Buildings of every description. Best, cheapest,
and most durable Roofng ever offered to the public. and most durable Roofng eever offered to the public.
New circular just out. Full information cheerfully given 2 PLY PREPRED FELT STEAM, WATER, GAS, and ACID proof. Mact STEAM, WATER, GAS, and ACID proof. Made
by us especially for use on Locomotive Round House
Chemical Works, Factories, \&c.
 incinnati, No. 16 Public Landing.

KLEIN, SCHANZLIN \& BECKER

 FILTER PRESSES,
 MANY YEARS' SPECIALTY. 284 Supplied to ONE Chemicul Works.
Price Lits Gratis and Free of Pontage.
 book watiter evaive.

friots powime
$\begin{array}{r}5 \\ J \\ \text { Jin } \\ \hline\end{array}$

MORSE ELEVATOR WORKS.

 MORSM, WILLIAMS \& CO., Manufacturers land Builders of all kinds of PASSENGER and FREIGHT

J. O. TODP,

 THE NEW BAXTER PATENT Portable steam evaine

 -w Or 36 Dey St., New York. $\begin{aligned} & \text { J. . C. rod. }\end{aligned}$

EVERY LSER OF MACHINERY How to Use Loose Pulleys.

The Best in the World.

 W e make the Best Packing that can be made regardlesof cost . Users will snstain uis by calling for the "JEN of cost. Users will sustain uis
KINS STANDARD PA CKING."
Our " Trade Mark" is stamp Our " Trade Mark" is stamped on every sheet. None
genuine unless so stamped. Send for Price List " B. JENKINS BROS.
71 Jolin Street, N. Y. 79 Kilby Street, Boston
ICE. REFRIGERATING

 THE NEWARE
gas WATziz

WATER MOTOR orot

MICROSCOPES, TELESCOPES, OPERA GLASSES, PHOTOGRAPHIC OUTFITS POR AMATEURS, SPECTACLES, EYE GLASSES, THERMOMETERS, BAROMETERS.
Illustrated Catalogues Mailed Free.
W. H. WaLMSLEY \& CO., 1810 cassatr streer, palavelpali.

TELECRAPH.

THEAMERHANBELL TELEPHONE CO.

95 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787.
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor
The Scientific American.
THE MOST POPULAR SCIENTIFIC PAPER IN THE WORLD
ublished Weekly, *8.20 a Year; *1.60 Stx Montho, This unrivaled periodical, now in its forty-firat year, and enjoys the largest circulation ever attained by any cientific publication.

- Itiverg number contains sixteen large pages, beautifully
printed, elegantly tllustrated; it presents in printed, elegantly illustrated; it presents in popu ar
sty a a descriptive record of the most novel. interest ing, and important advances in Science, A rts, and Manufactures. It shows the progress of the World in respect to New Discoveries and Improvements, embracing Machinery, Mechanical Works, Engineering in all branches,
Chemistry, Metallurgy, Eiectricity, Light. Heat, ArchiChemisiry, Metallurgy, Eiectricity, Light, Heat, A rchi-
tecture, Domestic Economy, Agriculture, Natural Hisory, etc. It abounds with fresh and interesting subjects for discussion, thought, or experiment; furnishes hun-
dreds of useful suggestions. for business. It promotes dreds of useful suggestions. for business. It promotes
Industry, Progress, Thrift, and Intelligence in every Industry, frogress, Thiff, and intelligence in every
community where it circulates.
The ScIENTwIC AMEICAN should have a place in very Dwelling, Shop, Office, School, or Sibrary. Work-
ven, Foremen, Enkineers. Superintendenta, Directors, men, Foremen, Engineers. Superintendenta, Directors, residents, Officials, Merchants, Farmers, Teachers,
Lawyers, Physicians, Clergymen, people in every walk and profession in life, will derive beneft from a regular reading of The Scientific American.
Terms for tbe United States and Canada, 83.20 a year; Terms for the United States and Canada, 88.20 a year;
s1.60 six months. Specimen copies free. Remit by 81.60 six months. Spe
Postal Order or Check.

MUNN \& CO., Publinhers,
361 Broadway, New York. TEX
Scientific American Supplement.
the Scientifio amerioan Supplem ent is a sepaERICAN, but is uniform therewith in size, every number ERICAN SUPPLLEMLCNT is published weekly, and includes very wide range of contents. It presents the most reent papers by eminent writers in all the prin31pal de-
partments of Science and the Useful Arts, embracing artments of Science and the Useful Arts, embracing Biology, Geology, Mineralogy, Natural History, Geo-
raphy, A rchæology. Astronomy, Chemistry, Electricity, light. Heat, Mechanical Engineering. Steam and Railway Engineering, Mining, Ship Building, Marine Enineering, Photogriphy, Techhnology, Manufacturing
Industries, Sanitary Engineering, Agriculture, Hortindustries, Sanitary Engineering, Agriculture, Horti-
culture, Domestfc Economy, Biography, Medicine, etc. A vastramount of fresh and valuatrophy, information per-
tining to these and allied subjects is given, the whole taining to these and allied subjects is given, the whole The most impartant Enith engravings.
The most important Enyineering Works, Mechanisms, and described in the SUPPIEMENT.
Price for the SUPPIEMENT for the United States and Price for the SUPPIEMENT for the United States and
Canada, $\$ 5.00$ a year, or one copy of the ScIENTIFIC AMEIICAN and one copy of the SUPPLEMENT, both mailed order or check, MUN \& Co.. 361 Broadway, N. Y., Publishers ScIENTIFIC AMELICAN.
To Joreign subscribers.-Under the facilites of
the Postal Union. the ScIENTIFIC American is now sent the Postal Union. the Scientific American is now sent
by post direct from New York, with regularity, to subscribers in Great Britain. India. Australia, and all other British colonies; to France, Austria, Belgium, Germany, Russia, and all other European States; Japan. Brazil, Mexico, and all States of Central and South America.
Terms, when sent to foreign countries, Canada excepted, Terms, when sent to foreign countries, Canada excepted
\$4, gola, for ScI ENTIFIC AM VRICAN. one year ; \$9, gold, for both Scientific Ammicican ani Supplement for one year. This includes pcstage, 刃7hich we pay. Remit
oy postal order or draft to order of by postal order or draft to order of
MUNN \& CO., 361 Broal
PRINTING INES.

