
a WEEKLY JOURVAL OF PRACTICAL INFORMATION, ART, SCLENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES,

Buildings, Dr. R. H. Thurston, Director. 5. The Sibley College Foundry. 6. Fall Creek Reservoir and Water Supply. 7. The Sibley College Draughting Room. 8. The Sibley College Machine Shop. ILLUSTRATIONS OF SIBLEY COLLLEGE, CORNELL UNIVERSITY, ITHACA, N, Y.-[See page 247.]

šientifir Ammitan.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. pUbLISHED WEEKLY aT

No. 361 BROADWAY, NEW YORK.

o. D. MUNN.
A. E. BEACH.

TERIS FOR THE SCIENTIFIC AMERICAN.

 One copy, one year, postage included.One copy, six months, postane include
ne copy, six months, postage included... 160 gratis for every club of five subscribers at $\$ 3.20$ each; additional copies a same proportionate rate. Postage prepaid.
Remit by postal order. Address
MUNN \& CO., 3fil Broadway, co
The Scientific American Supplement is a distinct paper from the Scientific American. THE SUPPLEMENT
is issued weekly. Every number contains 16 octavo pages, uniform in size Is issued weekly. Every num ber contains 16 octavo pages. uniform in size
with SCIENTIFIC AMERICAN. T'erms of subscription for SUPPLEM ENT, \$5.00 a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all newsdealers throughout the country.
Combined lates.-The Scientific American and Supplement
will be sent for one year, postage free, on receipt of seven dollars. Both papers to one address or different addresses as desired.
The safest way to remit is by draft, postal order, or registered letter.
Address MUNN \& CO., 361 Broadway, corner of Franklin Street, New Yo
Scientific American Export Edition.
The SCIENTIFIC American Export Edition is a large and splendid peri-
odical, issued once a month. Each number contains about onethundred larse quarto pages, profusely illustrated, embracing : (1,) Most of the plates and pages of the four preceding weekly issues of the Scientific Amerimorcial, trade, and manufacturing announcements of leading houses.
Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the wor.d. Single copies, 50 cents. Manufacturers and others who desire to secure foreign trade may have large and handsomely disp
nouncements published in this edition at a very moderate cost. nouncements published in this edition at a very moderate cost
The Scientific American Export Edition has a large gua The SCIENTIFIC AMERICAN Export Edition has a large guaranteed cir-
culation in all commercial places throughout the world. Address MUNN \& CO., 361 Broadway, corner of Franklin Street, New York.

NEW YORK, SATURDAY, OCTOBER 17, 1885.
Contents.

TABLE OF CONTENTS OF

the scientific american supplement No. 511,

For the Week Ending October 17, 1885.

Price 10 cents. For sale by all newsdealers.

I. ENGINEERING AND MECHANICS.-Mechanical Science.-An address delivered by
tion at Aberdeen...
 -By Geo. r. bramiall.- Buildings of ancient Egypt, Persia China, Greece.-Cathedrals of Europe.-Aqueduct bridges.-RAiload bridges in the United States.-Work of modern engineers....
II. TECHNOLOGY.-The Physiograph.-An instrument to ke used in drawing from nature. -2 figures.
in drawing from n.
Tests of Brichs..
. PHYSICS, figure.
Movements of Dust Particles.
A New Voltameter. - 1 figure..
Thierry's Hemaspectroscope.- 2 figures.
Prof. L. Sohnecke on the Origin of ThunderstormE.................. New Analogies between Electric Phenomena and Hydrodyna mic Effects-3 flgures......................
Cauderay's Coulomb Meter. -2 figures
Stanecki's Pile. -1 figure.................
IV. ARCHITECTURE.-Bowling Green Hotel, Kenilworth.-An en graving.

BOTANY, HORTICULTURE, ETC.-Tampico Fiber.-2 engrav

 Raspberry Lord Beaconsfield.-..VI. PÀYSIOLOGY, MEDICINE, ETC.-The Motor Centers rain and the Mechanism of the Will.--Lecture delivered by Vic TOR HORSLEY before the Royal Institution.
Acute Inflammatory Rheumatism.-By JAS. Craig, M. D................ 816164
I. MISCELLANEOUS.-Meeting of the British Association at Aber-deen.-With two engravings...... 8151
vili. biggraphy.--Henri Miline Enwards, the Great French

MISSISSIPPI RIVER IMPROVEMENTS.

Of the many waterways which Congress yearly provides the means of improving, none, perhaps, is more worthy than the Mississippi River. When we consider the vast extent of country drained by this great stream and its tributaries, and the amount and importance of the commerce of which it is the highway, the appropriations for improvements, were they many times as large as usual, could no
looked upon as excessive.
That large sums have been wasted in abortive at tempts at improvement there is no doubt; and yet those who have studied the subject, and are aware of the progress that has been made, will doubtless incline to the belief that the money has not been altogether thrown away. In this we do not mean to include the splendid achievement of Captain Eads at the mouths of the Mississippi, because the work at this point was an unqualified success, and appropriations were, perhaps, never used to greater advantage. But the success had by Eads in interpreting Nature's processes in physical hydrography has not always attended the efforts of those who have sought to improve navigation in the various reaches and bends of the Mississippi system of waters. We have seen large amounts of money expended in dredging and cutting, which, when the flood season came, was seen to have been ill-advised. In a few days, and even in a few hours, we have seen nature assert itself; the banks and shoals which had been dredged away were built up again in the same order and shape, and with similar dimensions; and where short cuts had been made, the waters, as if indignant at man's presumption, began once more to hollow out another curve to wind around as of yore.
Of late years, however, more careful students have devoted themselves to the problems to be met with in the scheme for Mississippi improvement.
It is known now that the systems which have been employed with success on European streams will not always prove effective here. For the fact is, the Mis sissippi presents features in physical hydrography not known to exist anywhere else. The bed of the Mississippi is made up of gravel, sand, or mud, instead of rock in place, and the stream is not in any way influenced by the tide. The quality of the bottom and the banks on either side has a direct bearing upon the characteristics of the various portions of the main body of waters and its tributaries. During the flood season, the waters road themselves with alluvial matter, which they bear down the stream, and deposit where the current slackens in the same manner as a glass of water taken from a muddy pond, if permitted to rest, lets fall its sediment. The constant erosion of the stream wears away its banks, and the great river, forsaking its original bed, makes frequent excursions to the one side or to the other; the lateral defections being limited only by the sides of the valley through which the stream is flowing.
The constant movement of large masses of sand and silt, and the changes in the direction and force of the current due to the varying contour of the shore line, results naturally enough in moving the channel ways now to this side and now to that, so that the pilot on the Mississippi can neither run on ranges nor by any other established marks, beacons, monuments, or stakes. He must know how to follow the axis of the current, and to read the physical signs, which experience and good judgment alone will serve to interpret.
As said before, during the seasons of flood, large amounts of alluvial matter are carried down stream by the waters, and deposited at various points, which, when the waters fall, are found to have formed into bars and shoals that greatly impede navigation.
Now, instead of trying, as in the old way, to dredge these-an endless and bootless task-or to cut through the slim parts of the bends, which soon leads to physical changes presenting other and not less formidable obstacles to navigation, an ingenious scheme has been devised to feed and re-enforce the river during the dry season, and thus deepen the channel ways without interfering with the natural processes continually alive.

It is a plan almost original in its inception, and while it has not yet been sufficiently developed to decide upon its ultimate feasibility, offers, it is thought, no little promise of success.
This project, which is in charge of Major C. J. Allen, of the engineers, may be described as involving the construction of reservoirs upon the headwaters of the Mississippi River and its tributaries. Major Allen proposes, as he says:

To collect surplus water, principally from the precipitation of winter, spring, and early summer, to be systematically released so as to benefit navigation upon the reaches of the several streams below the dams, and also that of the Mississippi below Saint Paul. Allevi ation of floods, in localities near the proposed reser-
voirs, expected to obtain to some extent, but control of extended floods or freshets covering long reaches not expected.

In order that navigation may be benefited upon the Mississippi above the mouth of the Saint Croix, upon the Saint Croix the Chippewa and the navigabl
reaches of the Wisconsin, the system of dams pro posed for each must be carried out, and no benefit of consequence to the Mississippi below Lake Pepin can be predicted unless the entire system is built.'
These reservoirs are nearly completed, and Major Allen speaks of them in a recent report as likely to perform a valuable service The gates of the Winnibigoshish dam were closed some time since for a period of a few weeks, as were also those of the Leech Lake dam. "During this short time," says Major Allen, "the surplus water collected in the two reservoirs amounted to about $12,000,000,000$ cubic feet."
These dams constitute only a portion of the system of dams which it is proposed to use in aiding naviga tion on the Mississippi; and when their influence upon the main stream shall have been thoroughly tested, it will become apparent whether or not an extension of the system is advisable.
Like Eads' jetty work at the mouths of the Mississippi, the scheme of dams to feed the Mississippi during droughts is original only in its application; and while it has not excited the derision nor met with the oppo sition which Eads' encountered, it will, if it succeeds, be entitled to quite as much commendation.

A NECKLACE OF MUMMY EYES.

The material for a unique necklace is now in the hands of Messrs. Tiffany \& Co., of New York, and is waiting the attention of their workmen. It consists of a large collection of very beautiful mummy eyes, which were brought from Peru by Mr. W. E. Curtis, of the South American Commission. The majority of them came from Arica, where large cemeteries are filled with mummies of the ancient Incas.
Some little discussion has occurred in scientitic cir cles as to whether they are mummified human eyes or those of some variety of tish, which had been substituted by the Inca embalmers on account of their less destructible nature. Mr. Curtis writes us that the local antiquaries from whom the eyes were purchased be lieved them to have belonged to a species of cuttle fish which was common on the Peruvian coast.
On the other hand, Prof. Ramondi, the most distin guished native ethnologist, maintains that they are really human eyes, and the Superintendent of the Eth nological Branch of the British Museum quotes Dr Tschudi, of Vienna, a friend of Humboldt and a thorough student of Peruvian antiquities, as likewise supporting this theory. Since the eyes have been in this country, they have been examined by Mr. G. F. Kunz and by several of the gentlemen connected with the Smithsonian Institution, and they seem to agree in pronouncing them to be the crystalline lens of the eye of a cuttle fish or squid. They vary in size from 5 to 18 millimeters in diameter, and are therefore con siderably larger than the lens of the human eye. Their excellent preservation would also seem to disprove a human origin, for the lens of the human eye is very perishable, and can with difficulty be preserved even a few days. The custom of embalming, which was so common among the Incas, was made very easy by the warm, dry climate of Peru, and it is stated that the em balmed were often simply placed in a sitting posture on the vast niter beds, and left exposed to the open air. For years after death they were visited by friends and relatives, and it was consequently important that the semblance of life should be maintained as perfectly as possible. Hence it was that the dried cuttle fish eye, which is almost indestructible, and possesses sufficient warmth and fire to partially simulate life, was substituted for the human organ
So common are these mummies that they can be dug up almost anywhere, or can be purchased for four or five dollars apiece. In the rough state, the eyes are of a bronze yellow color, and quite opaque, but when the outer covering or skin is removed, and the inner lens carefully polished, it becomes translucent or even semi-transparent, and shows a handsome coloring varying from yellow to orange and reddish brown. In this form, it makes a very beautiful gem. The concentric arrangement of the different layers gives the eye the appearance of iridescent glass, and produces an effect similar to that formed by placing a series of minute crystal globes one within the other. Some of the less perfect specimens have also radial cracks, which add to the refractive power of the lens, but will probably detract from its durability. The crystalline lens of a quid possesses so much solid matter that, when removed from the eye, it becomes hard and dry in a very few days, and has a milky, opalescent appearance. Those taken from the mummies had been cut in two pieces, so as to expose the cross section. It is supposed that the darker and richer tints found in themare due either to an organic change within the eye, resulting from age, or to the absorption of juices or antiseptics from contact with the body
The work of polishing the eyes has been interrupted by the illness of several of the lapidaries, which is attributed to poisons used in preserving the eyes. Opinions differ as to what the poison may be; some of the symptoms would indicate arsenic, but the opinion has also been advanced that it is due to some alkaloid gene rated by the decomposition of the organic constituents.

As no chemical analysis has been made, it is not yet possible to assign any definite cause for the illness of the workmen. It was sufficiently severe, however, to produce an unwillingness to resume the task, and for the present nothing is being done.

Bolts and Screw Threads.

In a recent communication to the American Institute of Mining Engineers, Major King, of the Government Corps, again calls attention to the evident weakening of bolts by cutting coarse "standard" threads upon them, and gives some experimental proof of the great advantage to be derived from the use of a finer standard. As a rule, bolts are the weakest part of a structure, and they are at present further weakened by cutting away too much metal for the screw threads. When the thread is cut deeper than is required to pre vent stripping, the bolt is weakened by precisely the same method that the blacksmith employs when he wishes to break a bar of iron or steel, only it is to be noted that the standard thread is cut even deeper than the blacksmith nicks his bars. The standard sizes for V-shaped threads are much too coarse for nearly all purposes, and the nuts themselves are out of all proportion to the strains put upon them, as the bolt invariably breaks long before the thread or nut would yield.
In order to thoroughly verify these statements, Major King had three pairs of bolts made, having 6,12 , and 18 threads to the inch respectively. In all other respects they were entirely alike, being turned from bar iron $15 / 8 \times 2$ inches square, so that no forging was required. When broken in a hydrostatic press, not a single nut showed signs of weakness, and the bolts with 18 threads to the inch showed unmistakably that they were the strongest, although they finally yielded by pulling out of the nut-not by stripping the threads, as is generally understood, but by drawing down the size of the bolt until the greater part of the threads were disengaged. The standard bolts broke at an average strain of 76,655 pounds, those with 12 threads at 92,991 , and those with 18 threads at 94,248 pounds; or, taking the tensile strength in connection with the stretch, they showed a relative work of $1,2,9$, and 4.
Major King thus sums up the advantages of increasing the number of threads per inch:

1. At least twenty per cent additional statical strength.
2. Three or four times the strength to resist impact.
3. The finer lines are easier to cut.
4. They are less liable to work loose
5. In many cases this practice will take the place of upset or enlarged bolt ends.
6. In such cases it would have the advantage of fill ing the hole, or, rather, it would a.void the necessity of making the holes larger than the body of the bolts.
7. There will be a saving of fifty to sixty per cent in weight of heads and nuts, also in cost; and-
8. Bolts may be placed closer to angles in structures without chipping out for head or nut.
He mentions among the disadvantages the cost of changing taps and dies; the additional time required to put on or remove nuts, which, of course, is hardly worthy of notice; and the greater loss in strength from wear and rust of surfaces of thread. In some cases, such as the bolts which secure the cylinder heads of a steam engine, the coarse thread will probably be preferable; but for all other ordinary uses the finer thread seems undoubtedly the more desirable.
In establishing a new standard, it is suggested that instead of introducing such complications as fractional threads to the inch, whole numbers be agreed upon for each quarter inch of bolt diameter, and that each of the intermediate sizes of bolts have the same number of threads as the bolt next below it in size.

The Brotherhood of Locomotive Engineers.
The Brotherhood of Locomotive Engineers has a membership of over 17,000 engineers, and 294 subdivisions in the United States, Canada, and Mexico. Its head officer is' Grand Chief Engineer Arthur, who for twenty years has ruled it.
One of the engineers at the reunion of the Brotherhood, speaking privately of engineers' work, said: "The boys are all lovely so far as the Brotherhood is concerned, but when they get back to work they are the most jealous set of men in the world. No one could help it. Engineers are governed by innumerable rules, the breaking of the least of which means suspension or discharge. No excuse will be taken. Only a perfect and a lucky man can hold his place. Scores of good men are waiting to take it. The jealousy between engineers is often so bitter that their wives, although old acquaintances, will not speak. One engineer may be in luck; the other, without blame, may have had the series of three accidents that sometimes come to an engine. If she has one, she is sure not to stop till she has had three, and the engineer may be in danger of discharge.

This intense rivalry sometimes leads to acts of meanness. A young man just promoted fears even the old engineer that he fired for, and that loved him like a brother--when he was a fireman-and will not run
out his engine until he has inspected every inch of her, to see that no one has put up a job on him. A young engineer on the Nickel Plate cut out all the bearings of his engine on the first trip, and was laid off. He was a close observer, and found that some wretch had put emery in his oil can. He was able to prove this fact, and regained his situation. Another new engineer was suspended for burning out the flues of his boiler. He had worked and waited for years for promotion, and to have the coveted prize snatched from him just as he had grasped it drove him into the grave. He had insisted that the engine's gauges had registered plenty of water, but the master mechanic disbelieved him. When he was dead, it was found that he had told the truth. A conscience-stricken rival confessed that be had put oil in the tank, so that it foamed and showed water at the top gauge when there was scarcely a quart in the boiler. Another method of meanness is quartin the the water hose leading from the tank to the boiler with cotton waste.

It is a great event in the life of an engineer when he gets a chance to make some special run that will give him a record, and he becomes a special object of envy. When the Nickel Plate was the rival of the Lake Shore, a Nickel Plate engineer made the run with thirty cars of stock, leaving Chicago at the same hour that the Lake Shore train did, and beating it into Buffalo more than ten hours. That engineer got promoted.
' An accident often makes an engineer famous and prosperous, and then he becomes an object of envy.
Dan McGuire, one of the luckiest of men, was running Dan McGuire, one of the luckiest of men, was running Lake Shore train the night of the Ashtabula accident. His engine managed to get across the bridge just as the train went down. The engine was saved, but stopped so near the awful brink that the tender hung poised over the edge. This crowning piece of good fortune called McGuire into prominence, and now, whenever Vanderbilt's train takes a trip over the road, McGuire is generally chosen to run it over his division. McGuire, by the way, is quite a prominent name among engineers. Shandy McGuire, an engineer rurning out of Elmira, N. Y., has become famous, not only as a good runner, but as the writer of poetry."

American Forests.

The agricultural, climatic, and commercial importance of preserving the country's forests was clearly
brought out and emphasized at the meeting of the American Forestry Congress, held in Boston on September 22. The climatic changes induced by the destruction of our trees are already noticeable in the greater variability of the annual rainfall, the lengthened periods of drought, and the increased power of floods and cloud bursts. These are sufficient to offer a warning voice against any further depredations, and to demand an immediate and systematic restoration of the normal amount of forest vegetation. Sev-
eral communications of interest were read.by the president, the one from Dr. Oliver Wendell Holmes stating that he hoped the people would allow the country to retain "leaves enough to hide its nakedness, of which it is already becoming to be ashamed." Rev. N. H. Eggleston, of the Department of Agriculture, presented some suggestive facts in regard to the forests of
the country and their consumption. The national domain, omitting Alaska, contain $1,856,070,400$ acres. Of this large territory, $440,990,000$ acres are covered with forests, and $295,650,000$ acres are devoted to agriculture, or about five acres to each inhabitant. The unimproved and waste lands, including fallow fields, amount to $1,115,430,400$ acres. To traverse this do-
main 150,000 miles of railway are employed, which have required $396,000,000$ ties for their construction. Supposing that these ties require renewal once in every six years, and that 10,000 miles of new road are built annually, if twenty-five years be taken as the average age of trees fit for ties, it would require $15,000,000$ acres of standing timber to supply the annual demand for ties, or an area, equal to that of Vermont,
New Hampshire, Connecticut New Hampshire, Connecticut, and Rhode Island. But with the increase of railroads, unless glass and steel and other materials for ties come into use, it must
be remembered that the timber area required for be remembered that the timber area required for
their supply is likewise continually increasing other departments an even greater consumption of wood is taking place. The annual supply of timber consumed as fuel alone amounts to $145,778,137$ cords of wood and $74,000,000$ bushels of charcoal, which would clear the forests from $30,000,000$ acres, or an area equal to that of New York and North Carolina together. To this estimate must be added the purely wasteful consumption of timber in the great forest fires which are a recognized feature in the year's catastrophies. This would add $10,000,000$ to the grand total, and possibly more. The timber cut for lumber, though an immense drain, is comparatively small
when the other statistics are considered. It would lay bare $5,600,000$ acres. Altogether, then, it appears that the forest area in America is subject to an annual decrease of over $50,000,000$ acres. These figures, taken in conjunction with our total forestry, furnish the material for very serious reflection.

Operations of the Patent office.

From a statement prepared by Commissioner Montcomery, showing the operations of the Patent Office during the fiscal year ended June 30, it appears that the number of applications for patents received was 32,662 , for designs 1,071 , for reissues of patents 156 , for trademarks 1,126 , and for labels 673 , making a total of 35,688 , against 28,822 during the preceding year.
The number of caveats filed was 2,515 . The number of patents granted, including reissues, was 22,928 , of trademarks registered 1,092, and of labels, 337, making a total issue of 24,357 . Patents numbering 2,828 were withheld for payment of final fees, and 13,332 patents expired during the year. The receipts of the Office from all sources were $\$ 1,074,974$, as against $\$ 1,145,433$ during the preceding year, while the expenditures were $\$ 934,123$, leaving a surplus of $\$ 140,851$. The number of applications for patents awaiting action on July 1, 1885, was 5,766 , a decrease of 41 per cent as compared 1880 , was 5,766 , a decrease of 41 per cent as compared
with the number a waiting action at the beginning of the last fiscal year.

The Reis Telephone.

The Orange, N. J., Chronicle says: Professor J. R. Paddock, of Stevens Institute, who resides on East Park Street, East Orange, has been engaged the past summer in important investigations as expert for the Overland Telephone Companies of New Jersey and Pennsylvania, in the suits pending in the United States Courts for infringement of Bell's patents. The defense rests in part upon the inventions of one, Philipp Reis, of Germany, who it is claimed invented a talking telephone fifteen years before Bell's telephones were patented. Professor Paddock received some time since the original instruments of Philipp Reis from Frankfort, Germany, and has been engaged with E. W. Sınith, of New York, in testing their efficiency as regards this much disputed point. In their testimony before C. N. Williams, special examiner, who has been taking testimony in the case, Professor Paddock and Mr. Smith proved that for four months they had been experimenting with the Reis instruments in various forms. They gave the results in detail, and showed more clearly than has ever been done before that these instruments without any change are perfectly capable of transmitting speech. Qne sentence of fifty-six words was spoken by Professor Paddock and received by Mr. Smith by a Reis transmitter of the cubical box form without carbon points, and a knitting needle receiver. They also proved that the identical telephone used by Reis at his lecture in 1861 will transmit speech without any alteration. They stated that they had used it in Professor Paddock's laboratory on a line from the house to the stable, 350 feet, and had succeeded in sending nany words and short sentences and the words and music of various songs. They were surprised at the result, because they did not think it probable that the actual membrane and electrodes used by Reis twentyfive years ago would retain their properties sufficiently for actual use at this time.

White of Egg in obstinate Diarrhooa.
From the Allg. Meg. Cent. Zeit., we learn that Celli has recently called attention to the curative properties of the albumen of hens' eggs in severe diarrhœal affections. In a discussion before a medical society at Rome he advocated its use, and related two cases of chronic enteritis and diarrhœa which, having resisted all treatment, speedily made complete recoveries under the use of egg albumen. The same diet is strongly re commended in the diarrhoa accompanying febrile cachexia, and in that of phthisis. In two cases of diarrhœa dependent upon tertiary syphilis, it was found of no avail. On post-mortem examination diffuse amyloid degeneration of the arterioles of the villi was found in these cases. The whites of eight or ten eggs are beaten up and made into an emulsion with a pint of water. This is to be taken in divided quantitiesduring the day. More may be given if desired. The insipid taste can be improved with lemon, anise, or sugar. In case of colic, a few drops of tincture of opium may be added.-Medical Compendium.

Coating the Cages of Hydro-extractors.

Messrs. Marting et Cie. have taken out a French patent for the coating of the metallic cages of the hy-dro-extractors in such a way that they resist the action of the chemicals. The inventors employ a coating of caoutchouc; they first apply a solution of India rubber, and before it has time to dry they apply on the same a caoutchouc sheet, which is thus strongly bound to the metal. The perforations of the interior of the cage are also coated with India rubber, and so is the exterior of the cage itself. The whole is exposed to vulcanization, and the holes bored or cut in such a way that the holes in the caoutchouc are smaller than those on the metal.

Russian Saltpeter.

Rich deposits of saltpeter of very high quality were the Atreck River and in the transcaspian region near

I HAND-PROTECTING SAD IRON HOLDER

This holder is one which may be quickly attached to the handles of smoothing or other heated irons, to protect the hand from heat, either in contact or by radiation. The handle portion is in two sections, hinged together along one side, and is made preferably of sheet metal, such as heavy tin, its edges beaded or wired, or having a narrow flange, which incloses an outer covering of plush, felt, or cloth. In the upper section of the holder-handle is a lining of felt, or other non-conductor of heat, over which is a layer of hard pasteboard, to receive directly the pressure of the operator on the iron handle. To the ends of the holder is attached a guard, which curves around and broadens in its lower portion, so as to shield the hand from the heat arising from the body of the iron, and prevent contact with the hot

MCINTYRE'S SAD IRON HOLDER.
shanks. The holder is soft to the hand, holds the iron firmly, and will fit different sizes of handles.
This invention has been patented by Mr. William M. McIntyre, of Room 3, Union Station, Pittsburg, Pa.

AN IMPROVED GATE.

The invention herewith illustrated provides for the construction of a gate which may be opened and closed by persons in vehicles or on horseback without dismounting, as well as those on foot. Fig. 1 is a perspective view showing the gate closed in position, and Fig. 2 is a broken face view of the latch post. A is the gate, with rails, a, an inner upright, B, an outer upright, C, and intermediate ones, D , at either side of the gate in the middle. made fast to the rails. A brace rod, a^{1}, connects the uprights, and is provided with barbs, a^{2}, to prevent stock from rubbing against the lever which
the gate with the latch bar directly over the notch made for it.
A wind vane, or fan, T, is fixed to the rear upright of the gate, to assist in opening and closing it when the wind is strong. By pulling the cord, O, the gate may be opened till it latches on the post, M, opposite the side of approach, and after passing through the gate may be closed by the similar cord on that side. This invention has been patented by Mr. William G. Stone, of Ellisville, Ill.

ORE SEPARATING MACHINE.

This machine separates the dry gold dust from the sand, dirt, gravel, etc. with which it may be mixed. The shaft carrying the drum, which is cone-shaped, is journaled at a slight inclination in the supporting frame. The larger lower end of the drum is open, and the smaller upper end is closed by a head having a cen tral aperture, through which projects the spout of the hopper. Spikes project from the inner surface of the drum for the pur pose of breaking up the lumps of dirt, etc., passed through. Below and in the rear of the drum is a pan suspended by links, so that it can rock in the direc tion of its length. The end next the drum is higher than the other. The bottom of the pan is formed with transverse pockets. A spring secured to the frame and pan is so arranged as to pull an end plate on the latter against a cam mounted on a shaft journaled on the end of the frame, and provided at one end with a fly wheel, and at the opposite end with a beveled gear wheel engaging with a beveled wheel on a shaft extending along the side of the frame and provided with a crank for turning it. A belt passes around a pulley on this shaft and around the drum. An endless screen belt passes around a second pulley on this shaft and around a pulley at the other side of the machine, this belt being directly below the larger end of the drum.
The sand, dirt, etc., containing the gold dust is dumped into the hopper, from which it passes into the drum, which is revolved by its belt. The lumps are broken up, and drop from the drum upon the screen belt; the larger ones are carried by the belt to one side of the machine and deposited, while the sand, etc. drops upon the pan, which is vibrated by the cam and spring; the sand slides down the bottom of the pan and drops from the lower end, and the gold dust col lects in the grooves or pockets. The drum, screen belt, and pan are all operated from the side shaft which can be turned by hand or by power.
For information concerning this invention, address the Gideon Ore Separating Machine Company, care of Mr. Jacob Sims, Council Bluffs, Iowa.

Compressed Steel.

Further tests of the new French treatment of steel for rendering it tough appear to confirm its value, imparting to it also a fineness of grain, an increased hardness, and a notable accession of strength to withstand rupture; this effect being most marked in the case of highly carbonated steel, and in this respect the metal is made to resemble tempered steel, without being in all points identical with it. The cause of this alteration in physical condition is attributed to the rapid heating and no less rapid cooling of the metal; that is, when the red hot steel is first strongly compressed, which is the peculiar feature of this proeess the converston of the mechanical ener gy into heat serves to raise the temperature of the entire mass, at the same time that the particles of the metal are more closely cemented to gether; this effect is followed by a rapid cooling, due to the contact of the plates of the hydraulic press with the surfaces of the metal, and the very
unlatches the gate. E is the hinge post at one side of close pressure materially increases this conducting the roadway, from which bars, \mathbf{N}, extend, carrying gate operating cords, which may also be used as braces for the posts, M, set along the side of the roadway, and carrying catches, L, on which the gate may be latched open. G is the latch bar of the gate, pivoted at g, and is connected at its inner end by links, J, with a weighted lever, K , pivoted to the upright, B . O O indicate the operating cords of the gate, attached to the back end of the weighted lever, K, and passing through a double sheave or pulley block, P , swiveled to the head of the upright, B, thence through separate sheaves at the back end of the lever, and over pulleys, n, one at the head of each brace, \mathbf{N}, on the roadway at either side of the gate, and terminating in the hand grasps, r. In connection with the latch, shown in de tail in Fig. 2, is a lock bar, I, which stops the swing of
close pressure materially increases this conductin
effect of the cold metal.

COMBINED CALIPER, PROTRACTOR, AND BEVEL

Formed on one end of the graduated arm, a, is a pro tractor, through the center of which passes a thumb screw, on which is placed one end of the arm, d, the other end being attached to a pointer riveted to the arm, a, on the opposite end from the protractor; the outer face of the arm, d, is graduated. On the thumb screw, and between the arms, a and d, is placed the arm, f, having graduations on both faces, and being formed with a pointer which indicates on the graduation, representing degrees and subdivisions on the protractor. The caliper arm, h, slides on the arm, f, upon which it 'may be held by means of the thumbscrew The slotted arm is provided with a mark to read the
measurement of the inside caliper, and the outer end is formed with a point. When the caliper arm is detached, the tool can be used as a common rule by turning the arm, f, in the opposite direction from the arms, a and d, and fastening the three together in this position by the thumbscrew; the graduations then indicate a continuous measure from one end to the other. The arms, f and a and d_{0} are used to measure bevels with, the de-位

GIDEON'S ORE SEPARATING MACHINE.
grees being shown on the protractor by the pointer. By setting the arm, f, at right angles to the others, a square can be formed. When arranged as shown in Fig. 1, the tool can be used as inside or outside calipers; the outside caliper is taken between the edges of the arms, and the measurement is read on the arm, f, asindicated by the inner edge of the caliper arm, h; the inside caliper is taken between the pointers on the arms, a and h, and the measurement is indicated by the mark on the slotted arm.

This invention has been patented by Mr. Frederick W Woodhull, of Lincoln University, Pa.

AN IMPROVED HAME FASTENER.

The principle on which this hame fastener operates is plainly shown in the illustration herewith. It consists of two levers pivoted together, each having a differently projecting hook at its outer end, together with a metal strap, also carrying a hook, and provided with a series of corrugations, in each of which is a slot extending in the direction of the length of the strap. One of the lever hooks and the hook of the metal strap are passed through the links, rings, or eyes, on the lower ends of the hames, when the other lever is passed through one of the slots of the metal strap and then through the pole strap ring, and swung up to the first lever and locked, by a ring

passing over the hooks of both levers, thus holding the pole strap ring in one of the corrugations. The device is especially designed not to cut the collar, and o the hame will not get loose when once fastened. This invention has been patented by Mr. Samuel Killebrew, of Brownsville, Tenn.

FLOOD ROCK BLOWN UP.

Last Saturday morning, October 10, at 11 o'clock and 16 minutes, the 150 tons of dynamite and rack-arock stored in the excavation under Flood Rock, Hell Gate, N. Y., were exploded. The volume of water that rose in the air seemed to most fittingly

Fig. 1.-JUST BEFORE THE EXPLOSION.

Fig. 3.-THE WATER RISING.
dous piece of engineering, of its kind, the world has teur Photographers of this city, for the excellent instanyet seen. The volume rose in irregular masses, seemingly as if many gigantic fountains; each playing independently, were at work beneath the surface; it measured at least 1,400 feet in length, 800 feet in width, and 200 feet in height. There was one heavy report, followed by a lighter one from the northern end of the
work; along each
work; along each ne severe shock ne severe shock was felt; ther was no series of vibrations.
The engraving, Fig. 1, represents Flood Rock immediately before the explosion; Fig. 2 is immedi ately after; Figs. 3 and 4 show the water rising, and in the former may be seen the derrick just toppling over; in Fig. 5 the water is about at its height. Figs. 1,2 , and 5 are on precisely the same scale, and taking the total length of Flood Rock (Fig. 1) as 300 feet, our readers have an accurate scalle n accurate scal by which to meas ure the water. The volume of water shown in Fig. 5 is at least 1,100 feet in length. An examination of the rock shows it to beshattered proving that the xplosion was suc cessful.
We are indebted to Messrs. F. C. Beach, President; Geo. H. Ripley, Frank G. Dubois, Win. Darrow, Jr., nembers of the Society of Ama-

Fig. 2.-JUST AFTER THE EXPLOSION.

Fig. 4-THE WATER NEARLY AT ITS HEIGHT.

Fig. 5.-FLOOD ROCK EXPLOSION-THE WATER AT ITS HEIGHT.

Photo-Mezzotint Engraving

Upon a polished steel plate, spread a thin coating of Saturated solution of bichromate of ammonia........5 drachms. Albumen

Let this be dried by gentle heat, and when tho oughly dry, expose to light under a transparency. Now remove the plate to a place in which the air is moist. The atmosphere in an ordinary room contains moisture sufficient to act upon the surface of the picture which has been printed in the manner indicated. The preparation of which the formula is given above is slightly deliquescent, and very soon after it has become quite dry by the application of heat itattracts so much moisture from the atmosphere as to become more or less tacky. But the exposure to light has the tendency of hardening the film; so that the tackiness produced is in the inverse ratio of the luminous action.
A large camel's hair brush is now charged with mixture of the two finest kinds of emery powder, and applied with a circular kind of whisking motion all over the surface. As those portions of the plate on which the light did not act are the first to become tacky, the emery powder will first adhere to them, and we find that the coarsest particles attach themselves to those parts of the picture that are in deepest shadow. The exposure to light ought to be such that every portion of the surface-with the exception of the extreme high lights-becomes in a condition to "take" the powder. If the image be slow in becoming developed under this pulverulent treatment, then the moisture in the atmosphere should be slightly increased. The mere allowing of the picture to stand for five minutes longer frequently answers every purpose; the moistening of the air by artificial means will answer the same purpose without any delay. This film is so susceptible to the influence of moisture that the operator should take great care lest his damp breath impinge on the picture, as the moisture caused by such a local application might result in a local predominance of the power which attaches itself in obedience to hygropower which
We may here observe that a quarter of an hour's experimenting will at this stage enable the practitioner to learn more-provided he uses his eyes and his judg-ment-than we could teach him by writing at far greater length than would here be expedient.

Assuming, then, that the picture has been developed, a polished plate of metal, softer than that upon which the picture is formed, must have been procured and laid down upon the other, face to face. They are passed between a pair of rollers screwed so well together as to insure the setting off on to, or indentation of, the emery powder image into the polished plate of metal. This latter plate is now precisely similar to the one produced by the mezzotint engraver.
An impression having been obtained by an ordinary copper plate process, the manipulator (whom we must now designate the "artist," seeing that art feeling and knowledge must be brought into play), having the proof and the plate both before him, applies a small burnisher with a curved point to the various portions of the picture requiring lightening. After having completed this work to the best of his judgment, a second proof is obtained, and, if necessary, a second series of the alterations are made upon the plate, until it is finally found that it yields an impression quite equal to the requirements of the subject.
This being the case, it only remains to hand the plate over to the printer, who will produce the impressions equal in every respect to the first proof. The method we have here pointed out is no shadowy or mere theoretical one, for we have most carefully carried it out in practice.-Lith. and Printer.

Fall Grass Seeding.

A. W. Cheever, in the Rural New-Yorker, advises farmers to sow grass seed as soon after the heat of summer is past as the condition of the land will permit. Don't sow grass seed when the heat is greatest. Grass delights in cool, moist weather all through its life. Nature's time for sowing is soon after the seeds ripen in summer. The seeds fall to the ground, and wait only for rain to start into life. Grass seed sown in spring is placed under unnatural conditions. Hot weather is before it, and if it gets a start in the spring, it will try to produce seed the first year. This practice affects grass plants as it affects heifers to have calves at an early age. Grass sown in spring and cut for hay in July has been killed outright by the operation. The hot sun dried the surface, and the root growth being shallow and scanty, the plants were killed. Nothing is gained by spring seeding, except the labor in replowing after grain is harvested. Grass sown alone this fall, on well tilled and well enriched land, should produce a full crop of hay next July. Fall sown grass has the
advantage over spring sown in this, that the annual advantage over spring sown in this, that the annual weeds which may come up with it will soon be killed
by frost and be out of the way of the grass, while in spring the chances are usually more favorable to the spring the chances are usually more favorable to the
weeds than to the grass, as the weeds are starting at weeds than to the grass, as the weeds are
their natural season, while the grass is not.

IMPROVED EXPANSION BOLT

The greatest use of the bolt herewith shown is in places where it is not practicable or desirable to bore through the material to which the fastenings are to be made. With this bolt any piece of work can be drawn down and tightened; the manner in which this is done is shown in the cuts. The bolt is put in the hole with the collar, b, between the base of the jaw piece, c, and the head to tighten against; an ordinary washer may be used for this, as it is only to get the fitting in place, and the same washer will do for any number of bolts. The shape of the piece, c, and the nut, d, are clearly shown. By turning the bolt the wedge-shaped portion of the nut, d, is brought between the jaws of the piece, c, the latter being thus firmly pressed against the side of the hole
The piece, c, will be spread out to fit the hole, and then with any convenient tool may be driven in with a light blow, leaving a space, e; the piece, c, will be held in this position in the hole by the spreading action of the nut. A plate, f, may be held securely to the wall. This expansion bolt has been used extensively in fastening objects to stone, iron, brick work, and wood, and has given the utmost satisfaction. Further par-

EVANS' IMPROVED EXPANSION BOLT.
ticulars can be had from the patentee and manufac turer, Mr. F. H. Evans, of 124 to 136 Kent Ave., Brooklyn, N. Y.; the bolt can be seen at the American Insti tute Fair.

A A New Explosive.
A new explosive, known as hellhoffite, which has been invented by Hellhoff and Gruson, has been sub jected to comparative trials at St. Petersburg, together with nitro-glycerine and ordinary gunpowder. It is described in the London Times as a solution of a nitrated organic combination-naphthaline, phenol, benzine, etc.-in fuming nitric acid.
In preparing the hellhoffite tried in the experiments, binitro-benzine, a solid, inexplosive, and badly burning body, was used. At the first trial glass bottles of 20 cubic centimeters contents each were filled with 20 grammes of the respective explosive substances, and corked down. A tube filled with fulminate of mercury was passed through the corks, a slow match being attached to the outer end of the tube for the purpose of ignition. Each of the bottles thus prepared was placed on a truncated cone of lead, the upper diameter of which was 3.5 centimeters, its lower 4.5 ,
and its height 6 . The cone itself stood on a cast iron plate 2.5 centimeters thick. The deformation of the leaden cone by the action of the explosives could consequently be taken as measure of their respective destructive power. The explosion of the gunpowder, as was anticipated, caused no changes. By the explosion of the nitro-glycerine the cone was compressed about a quarter of its height; its surface had assumed the appearance of a well worn hammer; the diameter
of the surface had been increased to 5.5 centimeters The explosion of the hellhoffite caused much greater changes. The surface of the cone was completely torn; pieces 5 centimeters long and 2 centimeters thick were torn off and thrown about for several paces; only half of the cone was still a compact but entirely defaced mass.
At the second experiment, bottles of 25 gramme each, filled with the various explosive substances, were let into corresponding cavities bored into the face of fir blocks of similar dimensions. In exploding the gunpowder, the block was torn into four pieces as if split with a hatchet, the several pieces ploding the nitro-glycerine, the block was split into several pieces. The upper portion of the block, as far as the bottle was let into it, was torn off perpendicularly in the direction of the fiber in such a man ner that a smooth cut was formed. The explosion of the hellhoffite likewise tore the portion of the block surrounding the bottle perpendicularly in the direction of the fiber, and splintered the remainder of the block into a large number of thin fibers.. The following experiments were also made with hellhoffite alone: A slow match was passed through the tube in the cork, which was without fulminate of mercury, as far
no explosion followed on igniting the slow match. A quantity of hellhoffite poured into a bowl could not be exploded by a lighted match. Finally a few drops of hellhoffite were poured on an anvil, and exposed to heavy blows with a hammer, and no explosion followed. The hellhoffite consequently possesses the following advantages: (1) In igniting it with fulminate of mercury, it acts more powerfully than nitro-glycerine; (2) it may be stored and transported with perfect safety as regards concussion, as it cannot be exploded either by a blow or a shock, nor by an open flame. On the other hand, it has the following disadvantages: (1) Hellhoffite is a liquid; (2) the fuming nitric acid contained in hellhoffite is of such a volatile nature that it can be stored only in perfectly closed vessels; (3) hellhoffite is rendered completely inexplosive by being mixed with water, and can consequently not be employed for works under water.

Compressed Air Street Cars.

The line of the London Street Tramways Company from Holloway to King's Cross is about to be worked exclusively by compressed air machinery instead of horses, as hitherto.
Underneath the car body is a series of cylindrical reservoirs, which may be charged with enough compressed air to propel it a distance of 10 or 12 miles. The car is four wheeled, one pair of these wheels alone being used for driving; and, to save the expense and inconvenience of turn tables, the car may be driven from both ends. To the driving wheels are attached a pair of high and low pressure ordinary work. ing cylinders, each of 8 inches stroke. Means are provided by which the high pressure air can be used in the low pressure cylinder, if necessary, for start ing. The air in passing from the reservoirs to the cylinders bubbles through boiling water and steam of 60 pounds pressure on the square inch, contained in a vessel called the " hot pot," of which there is one at each end. This vessel is charged at the pumping station during the time occupied in charging the car with compressed air. The advantages claimed in thus with compressed air. The advantages claimed in thus
using the air are that the heat which the air takes up using the air are that the heat which the air takes up
in passing through the hot water not only causes the air to expand, but fprevents the formation of snow in the cylinders at the exhaust. The moisture also
picked up by the air in its passage through the hot picked up by the air in its passage through the hot water acts as a lubricant for the side valves and pistons. The working pressure in the high pressure cylinder can be varied at will; it is usually from 120 pounds down to 50 pounds on the square inch, the variation being regulated by a valve of peculiar construction, consisting essentially of a piston, which, by means of a hand wheel and screw, can be forced into or raised from a vessel in which water and air are contained. The bottom of this vessel is made of an India rubber diaphragm, which is connected to a valve opening against the pressure of steam and air in the " hot pot." With this arrangement, when the piston is forced down into the vessel in which the water is contained, the diaphragm is pressed downward and the valve is opened, allowing the steam and air to escapefrom the " hot pot" to the working cylinders. This valve gives the driver a most delicate and beautiful means of varying the working pressure, which, in addition, it automatically regulates. Every precaution has been taken for safety. In the first place, the car can run over nobody. The wheels are hidden from view behind the capacious cyl indrical reservoirs which flank all four sides, almost down to the road level. Whatever may get in the way of the car in motion would simply be shunted aside, albeit somewhat unceremoniously. But the car can be pulled up short; the brakes can be applied to all four wheels in any one of three different ways. In the case of excessive speed, as over 10 miles an hour, there is a governor which not only cuts off all steam, or rather the air, from the engines working the car, but applies the brakes. The driver, too, can, from either end of the car, put on the air pressure brake and has a foot brake continually under his control when the car is in motion, with which ordinary passenger stops are made. With the most powerful of these arrangements, and when running at its greatest speed and in ordinary weather, the car can be brought to rest in a distance slightly exceeding its own length. The driver also has the power, by reversing the engines, of rapidly coming to a standstill. The car as constructed carries 38 passengers, and weighs about $61 / 2$ tons unloaded. The tram way is regarded as one of the most difficult for the purpose, on account oi its varied gradients and a sharp curve in its course not to mention the fact that the thoroughfare is one of the busiest in London.-Railway and Tramway Ex press.

Another Lightning Photo.
Mr. A. W. Manning, of Edena, Mo., sends a photo. graph of a "streak of lightning," which exhibits the waviness shown in our recent illustration; but there is only one sinuous line. The upper end of the streak, however, exhibits several faintly defined branches, as if the discharge had resulted from the coalition of several tributaries.

©orresponderce.

The word "Atlantic."

To the Editor of the Scientific American:
In an article by Dr. Le Plongeon, in Supplement No. 509, there is, among several remarkable etymolo gies, one of so wonderful a nature that it ought not to be passed over without comment. Dr. Le Plongeon, speaking of the "Lands of the West" of the Troano and Dresden MSS., says that they were "surrounded by or [were] near the water, the Atlan of the Nahuatl, from which the Atlantic Ocean derives its name"(!) I had supposed that every intelligent person who cares to know the meaning of words knew that Atlantic was, through Latin, from $\alpha \dot{\tau} \lambda \alpha \nu \tau \tau \varkappa \dot{\partial} \nu$, the adjectival prefix in the Greek name of the Atlantic Ocean-
 Deriving the word from a North American Indian language is carrying a hobby too far.
G. W. R.

The New Star.

To the Editor of the Scientific American:
In your Scientific American of September 19, 1885, I read a communication from Mr. Wm. R. Brooks, of the Red House Observatory, concerning the new star in Andromeda. I have since that time been watching the papers, hoping some"one would suggest whether this new star might not be the Pilgrim, which appeared in the years 945,1262 , and 1572 . Allowing it to be a variable star, with a period of 310 to 315 years, it would be due again in 1885. Some years ago I read in H. W. Warren's "Recreations in Astronomy." the following:
"In November, 1572, a new star blazed out in Cassiopea. This star was visible in noonday, and was brighter than any other star in the heavens. In January, 1573, it was less bright than Jupiter; in April it was below the second magnitude; the last of May it utterly disappeared. A bright star was seen near the place of the Pilgrim, as the star of 1573 was called, in 1264 and 945. A star of the tenth magnitude is now seen, brightening slowly, almost in the same place. It is possible this is a variable star of a period of about three hundred and ten years, and will blaze out again about 1885."
About the time I read Mr. Warren's book, I saw another notice of the Pilgrim, which traced it further back, to the years 630 and 320 , and suggesting it might very possibly be the veritable Star of Bethlehem! I cannot lay my hand upon the author of this suggestion, but if it really can be traced back to 320 A.D., why may it not be?
If the present new star "does blaze out brighter than any other star," it will be a most interesting event, especially if it can be connected in any way with that most wonderful of all stars which shone in the East 1885 years ago. Can you or any of your readers throw any further light upon the subject?

Media, Penn., October, 1885.

American Whale Fishery.

To the Editor of the Scientific A merican:
An article in the issue of your paper for August 8, 1885, on the "Right Whale of the North Atlantic," taken from Science et Nature, represents so incorrectly the present condition of our whale fishery that a reply and correction ought, in fairness, to be made. The writer, evidently, was not well informed as to matters on this side of the Atlantic. After referring to the former great extent of American whaling, he says:
"In 1856 they still had 655 ships on the sea, but today the industry is almost completely abandoned for lack of whales. Fishing is no longer done, except by a few rare ships from the ports of Scotland, that go out to the polar sea for seal, and fish for whales incidentally. In the large seas of the temperate zones, the South Atlantic, the Pacific, and the Indian Ocean, the whale is now so rare that it may almost be sa there is none."
Now, these are by no means fair representations. There are at this moment 130 American vessels engaged in whaling, having an aggregate tonnage of 29,424 tons. New Bedford alone has 82 vessels, of 20,302 tons, and San Francisco sends out 20 , of 6,155 tons.
Thus much for the vessels employed; but the whaling grounds are well worthy of notice. Twenty-two New Bedford whalers have spent the season this year "in the Arctic," that is, northward and mostly eastward of Behring's Strait; 16 have been on the South Pacific whaling grounds; 21 have cruised the Atlantic below the line, everywhere from the African coast to South America; while 3 have been engaged in that which is the successor of the old Greenland whaling, their field being Hudson's Bay.
The San Francisco whalers have been in the Arctic, with a single exception. They do not seem to consider that "in the South Atlantic and the Pacific the whale is so rare that it may almost be said there is none." The reports from various ships in the Atlantic of this season, up to the latest dates, read like this: 850 sperm,

185 whale: 290 sperm, 10 whale; 299 sperm, 30 whale 510 sperm, etc. In the Arctic it has rea $\bar{\Omega}: 2$ whales. 2 whales, 4 whales, 9 whales, etc.; but it must be remembered that these reports necessarily comprise only the earlier part of the season.
The returns for the total whaling fleet of the United States, as reported for this year, from January 1 to September 15, have been 13,366 barrels sperm, 15,749 whale, and 242,780 pounds bone. These, at current rates, are worth $\$ 1,131,000$, bringing
year's fishery easily up to $\$ 1,500,000$.
This is certainly far below the returns of forty years ago, when our fleet exceeded 500 vessels, but it indicates a branch of industry by no means to be despised, and one not at all likely to die of inanition. M. Jouan's statement of "655 ships still on the sea in 1856 " is another error. Even in the strongest days of the whale fishery, previous to 1845 , the entire number was never quite 600 , and that total had grown very decidedly less up to 1856.
The whales captured in the Arctic are the long known right whale, commonly called by the whalers "steeple top" and " bowhead," which, by the way, is the species represented in your woodcut accompanying the article quoted. It belongs only to the high northern waters, and is never found in our mid-Atlantic regions. Sperm whales, southern right whales, humpbacks, and California gray are the objects of chase in the lowe
waters.
W. O. A.

The Aim and End of Machinery.

At the recent meeting of the Institution of Mechaniservice was held in the cathedral, to which the members were invited by the Dean and Chapter. An address of welcome by the Bishop, Dr. King, formed a part of the evening's service, and in the course of his remarks the Reverend Doctor gave expression to his thoughts in a manner which showed that he had studied the matter from a correct standpoint. Looking at the occupation of the mechanical engineers as one involving the subjugation. of natural forces to the
will of man, it appeared to him that we were tend ing toward a state of things in which toil of a severe nature would be annihilated, as even already time and distance had been annihilated by the subjugation of electricity, so that by its action even the very tone of the human voice could be transmitted through long distances. All this, in his opinion, placed the mechanical engineer in a high position among his fel-
low men. Such was the general drift of the Bishop' remarks.
Let us consider how it is that, with all the aid of steam and electricity, we still toil as hard as we ever did. Is it because machinery does not perform more work than could be performed by hand? This certainly cannot be the case, for it is self-evident'; that machinery does work that it would be impossible to do otherwise. The truth is that we have gone the
wrong way to work. Quality has been subjected to quantity, as oneconsequence of our original error.
Before the days of steam power, and when the loom, for example, was wholly driven by manuallabor, one individual worker could not possibly attend to more than one machine, for the constant presence of the worker was required in order to keep the machine at
work. The labor was often severe and protracted. work. The labor was often severe and protracted.
What did steam power do for the weaver? It relieved him of his severe labor, and left him with nothing to do but the light work of piecing broken threads, or refilling the shuttle and generally watching the good performance of the work of the machine. But it was very soon found that one man or woman could do
more than this, and in place of tending a single machine it became the custom for one worker to super intend two machines; and as the machine improved in quality, and the turning of the steam engine also improved in regularity, another and another loom wa added to the charge of each worker, until now it is no uncommon for one worker to superintend perhaps 4 to 7 looms, while at the same time the rate of work of each loom has progressed rapidly; the number of picks, from
being perhaps 20 to 40 per minute in the hand loorn, having attained from 100 to 300 in the most modern machines of a like width. Thus the number of yards produced has increased say fifty fold, and the only extra labor which has been employed to produce the steam power which has done this has been the proportionate fraction of the work of the engine driver and fireman, and of the coal carter or other carrier and the collier. Now, so long as a large number of the earth's inhabitants require clothing which they can not provide for themselves, the above state of affairs
may, and will, continue; but during the last few years may, and will, continue; but during the last few years, long had a with the fact that many of our old customers have begun to make for themselves, and not only this, but they also aim at making for others who still buy from us. As civilization progresses, the disproportion between makers and users will become smaller still, and perhaps finally disappear; and the nearer we ap-
proach to the time when all shall make for themselves,
the more tense will become the situation. Long before such a time comes, however, we shall have some altera tion. We cannot go on making millions of yards of cloth which no one will buy, and the weavers will have to turn to other pursuits. Such, however, are
not open, for every worker will be confronted with the fact that his productions are not required, and all will be seeking other pursuits and not finding them. It is therefore evident that changes must be made before this state of affairs is reached. The change required is lessened production. As the world now stands, it would not be practicable for us as a country to say we will at once reduce our productions one-half. It would be the signal for our downfall, for the Germans and the French would at once seize the opporunity to produce agreat part of our relinquished half. But the time even then would still surely arrive when they also would have to restrain production; and it is clear that some day all manufacturers will have to do his. When this time arrives, it will then be seen how machinery has reduced toil. So far the employment of machinery appears to have simply tended to the production of more goods. We have used it simply as a means to assist us in doing more work, but not, as we ought to have done, to enable us to do in one day the work of a whole week. We have been content to work along at the old strain with an assistant that has done 98 per cent of the labor, the remaining 2 per cent alone having devolved upon us; but we have put into the 2 per cent remnant the whole of the energy which we formerly expended upon the 98 per cent, which the machine now does for us. Thoughtful minds may perhaps long have foreseen what must inevitably be the result of this, to use a familiar phrase, "keeping of a dog and barking ourselves." We have kept our dog with a vengeance, but we have not ceased to bark as lustily as before we possessed a whole pack of hounds.
This cannot continue. We must eitiner do away with machinery, or employ it to do in one hour the work that would take us a day. To dispense with machinery is out of the question, and this leaves only the other course open to us. How such a mighty revolution can take place we do not clearly see; we only see that the question is looming up more distinctly day by day and week by week. The distant rumbling of the storm has been heard this month in Oldham. When hestorm has passed, which it will do, though not in our time nor perhaps for centuries, yet it will leave the world better for the change. The work of the mechanical engineer will have accomplished the end which the Bishop of Lincoln prophetically indicated.
It is well that the church should recognize facts which are becoming palpable to many thoughtful men. We live in an era of overproduction. The only way that we have yet been able to find to reduce the surfeit has been to find a fresh market. This we have found from time to time, and in the present strait all eyes are turned toward Africa as a new and extensive outlet for goods. Open up Africa, say our merchants, and it will absorb all and more than we can produce, and leave enough for our Continental rivals also. Granted, we exclaim, but when Africa has been opened up, what next? Let Australia first be filled with people. So be it; but how when, like the United States, they become their own producers? What must next be done? Where shall we turn for a fresh market when the whole earth is civilized throughout? Some nations must, of course, hold pre-eminence in certain pursuits, but the final result to the world at large can be but one-a cessation from toil. We shall have to do less and learn more. What we do will have to be done well. What we produce will have to carry the impress of beauty. We shall have to change many things now existing, but the change will be for the better. The force of competition will have run its course, for it is not possible that it should last orever.-Textile Manufacturer.

Singular Effect of Naphtha.

Recently at the American Rubber Company's Works, Cambridge, Mass., a number of the girls in the coat room were suddenly overcome by the fumes of the naphtha used in the cement on the seams of the coats.
One of the girls suddenly began to laugh loudly and acted strangely, and then fainted. Several others also dropped upon the floor, and before physicians could be summoned more than thirty employes were unconscious or in hysterics. The alarm spread to the other employes, but they were soon quieted by the foremen in charge, and the girls most seriously affected were sent to their homes in carriages. No serious results are anticipated in any of the cases. Under certain conditions the naphtha produces effects somewhat similar to läughing gas.

The new water works at Bismarck, Dak., are estimated to cost $\$ 100,000$, and will not be completed this year. The water of the Missouri is to be pumped into a reservoir 144 feet above the business part of the city, which will carry it to any building.

A SUBSTITUTE FOR GLASS IN PHOTOGRAPHY.

In addition to the value of photography as a means of recreation, it is also found to be an invaluable aid to professional men. Engineers, architects, and draughtsmen use it for recording the progress of their work, making pictures of machinery, buildings, copying, drawings, and an infinite variety of work, which saves a vast amount of hand labor. Physicians find it useful in making memoranda of surgical operations. Insurance men use it in inspecting risks and adjusting en losses by fire. Artists find it indispensable as an aid to sketching. Correspondents for illustrated papers and magazines now carry cameras as a part of their outfits, and even traveling sign painters photograph treir work and send in the picture as a voucher on whicil to draw their pay.
All this has been accomplished by the introduction of the gelatine dry plate; but there are many who are still prevented from practicing the art by the weight
laying the board over the back of the paper. The whole is then slid into an ordinary plate holder like a plate.
When used in long strips, the paper is wound upon wood spool, arranged for use in an instrument termed roll holder, the principle of which is to draw the sensitive paper from the supply spool at one end over an exposing platform, occupying the same place as the focusing ground glass, to a winding-up reel at the other end.
These parts are inclosed in a highly finished maggany case, shown in Fig. 6, with the vulcanite slide partially withdrawn, exposing to view the sensitive paper lying smooth and flat upon the exposing platform. A removable back supporting the working parts is attached to the case by four flat spring catches, plainly seen in Figs. 1, 2, and 3.
In taking the holder apart in the dark room to either
centered, the clamp is pressed down, holding and draw ing the paper as soon as the reel is rotated. The reel is inserted and removed in a manner similar to the supply spool, but is constructed so that it will be impossible to put it in the same plane as the latter.
A spring pawl bears upon the head of reel and a gravity pawl upon that of the spool (see Fig. 2); these are thrown off during the process of changing spools. A guide roll is placed at each end of the platform, the one on the right, Fig. 2, beiag termed a measuring guide roll, in which is a longitudinal slot used as a guide for the point of the knife in cutting off the exposed from the unexposed paper. The roll has a pin at one end for operating a flat spring, making a sound alarm, and in addition on its axis a spur wheel geared with a larger wheel for rotating the indicator. Metal points project slightly above the surface of the reel at each end, which puncture the surface of the reel at each end, which puncture the
margin of the paper at each revolution. As the cir.

Fig. 1.-Roll Holder Thrown Back. Fig. 2.-Cutting off the Film. Fig. 3.-The Case Partly Raised. Fig. 4.-Putting in the Spool. Fig. 5.-Inserting the Free End. Fig. 6.-The Case-Slide partly drawn. Fig. 7.-Operat. ing the Holder. Fig. s.-Single Film Carrier. Fig. 9.-Developing. Fig. 10.-Making Films Transparent. Fig. 11.—The Package. Fig. 12.-Cross Section of Slide Aperture.

NEW PHOTOGRAPHIC APPARATUS FOR MAKING NEGATIVES ON PAPER.

of the apparatus and material, which has to be carried about to make even a few pictures. The weight of the glass is such a serious burden, especially in the larger sizes, that it discourages even the most enthusiastic after a few trials, and many cameras have been laid aside for this reason when they would otherwise be a source of unending satisfaction to their owners.
By reason of several recent improvements it has been found possible to prepare paper of fine and close texture upon a large scale, with an even coating of an extremely sensitive bromide of silver gelatine emulsion, so perfectly that positive silver prints made from the paper negatives will show no grain in the half tones, and be equally as clear and perfect as if made from glass.
The sensitive paper is prepared in sheets for use in ordinary plate holders, as shown in the pile to the right in Fig. 8, and in spools, as shown in Fig. 11. The film carrier in Fig. 8 is a flat board made of several strips of narrow wood glued together edgewise to prevent warping, between which and the spring metal frame lying flat, the sensitive sheet is clamped, as shown, by
catches are thrown out, the key socket and indicator knob on the side pulled out, and the case lifted off. (Fig. 3 shows it partly raised. Fig. 2 shows position when entirely removed.)
The light, blackened frame of brass holding the various parts is pivoted to the back by two pairs of sliding spring bolts, one pair being shown at the right in Fig. 1. Supposing that the frame occupies the position in Fig. 2, we draw inward with the right hand the sliding bolts, and with the left raise the whole, as shown in Fig. 1; this affords access to the spool mechanism. The supply spool is next inserted, as in Fig. 4, by raising the pressure spring brake, and pushing the end of the spool upon a projecting plug, seen upon the left, the opposite end being fastened by a thumb-screw. A suitable spring friction mechanism is provided, not shown, for giving tension to the paper when unwound from spools. After insertion the frame is lowered, locked to the back with the spring bolts, and the opposite end aised. The free end of the paper is then drawn up over an exposing platform and down to the reel under
cumference of the roll is one-fourth the length of the picture, four alarms are sounded, and the indicator at the same time makes one revolution, when one exposure has been wound up. Fig. 12 is a cross section showing the light flat brass springs which bear against margin of the paper, preventing the same from curling up. Fig. 7 shows the manner of operating the holder; a key with a screw thread is inserted in the key valve and rotated like the winding of a clock, revolving the reel, which winds up the exposed sheet, and brings a fresh surface into place ready for the next exposure. When the indicator has made one revolution, and the fourth click been heard, then the operator knows that the change has been accomplished.
After exposure, the paper on the reel may be readily emoved, and a new one inserted to take up the balance of the unexposed paper. By counting four dots on the margin from the end after the sheet has been severed, as in Fig. 2, the length of the picture is easily determined, and may be cut off with a pair of scissors.

The exposed sheets, as they are cut off, can be developed several at a time in one tray, with the usual pyro developer; Cooper's developer, described on page 197, No. 13, vol. 53 , of the Scientific American, being preferred. Fig. 9 shows the tray, the developed negative being held up for examination to the red light. The developer is sold ready mixed, thereby insuring to the novice success at the outset.
After the negative is fixed and dried, positive silver prints may be made from it in the usual way; but to quicken the process, oiling the paper with castor oil and a hot iron, as shown in Fig. 10, is recommended, which renders it translucent. Paraffine wax may be used in place of oil.
The primary advantage of paper over glass is its extreme lightness. An 8×10 apparatus complete, with camera, lens, roll holder for 24 exposures, tripod, and case, weighs $281 / 2$ pounds less than a glass equipped outfit.
Such a saving makes the taking of large photographs attractive, and enablest he amateur to obtain panoramic or other views of inaccessible regions with considerable comfort. The danger of breakage is avoided, thereby making rough transportation of the negatives perfectly safe.
The compact way in which the negatives can be packed should not be overlooked; they can be kept in books, thereby affording as easy a means of reference as if they were in a photographic album-a point of much value in any large concern. They can be used in photographic ink printing processes without the need of transfer, so common with glass plates. They are splendidly adapted for large work, and, as an instance of their success in this respect, we have but to refer to the very fine exhibition of lifesized direct portraits which was given at the Buffalo Photographers' Convention, in Buffalo, N. Y., last July.
The softness and delicacy of the shadows and the brilliancy of the high lights were specially noticeable.
The retouching of paper negatives is more easily done than on glass, for the back of the negative is worked upon by a pencil; any mistake can be readily erased. With crayon stubs very pretty cloud effects can be worked into the sky of landscape negabe worked into the sky of landscape nega-
tives. Perfect freedom from halation is one tives. Perfect freedom from halation is on of the special characteristics of the paper, making it ate institutions of the United States. Whether convaluable in the photographing of interiors. All por- sidered with reference to the number and magnitude tions of the holder are made interchangeable.

Fig. 9.-SIBLEY COLLEGE WATER WHEEL HOUSE.
the "leading objects" are asserted to be the instruction of students, "without excluding other scientific and classical studies, and including military tactics," in " such branches of learning as are related to agriculture and the mechanic arts." Thus, while giving opportunity for securing an education of the broadest and most liberal character, its founders intended to make sure that the special needs of a nation of workers should be recognized, and that schools of agriculture and the mechanic arts, of the several branches of construction and of the highest departments of engineering, should take their place beside the schools of classical and of scientific learning. From the first, it was intended to become a real university, of such scope as should give real university, of such scope as should give
to the citizens of this country the means of to the citizens of this country the means of
educating their sons and their daughters in such manner as should best fit them for the work of meeting the difficulties of life. It has been thus organized, and is now a great institution of learning, exhibiting the novel feature of schools of engineering and of the useful arts side by side with those departusefut arts side by side with those depart-
ments which usually constitute, alone, the ments which
older colleges.
Cornell University was incorporated in the year 1865, endowed by the State of New York with its land scrip, representing nine hundred and ninety thousand acres, and by Ezra Cornell with a half million of dollars in money and two hundred acres of land, adjacent to the city of Ithaca. Since that date this endowment has been amplified by the generosity of Henry W. Sage, John McGraw, the late Mrs. J. McGraw Fiske, .Hiram Sibley, Andrew D. White, and others. The university is beautifully located, above the city of Ithaca and overlooking the forty miles length of Cayuga Lake; is conveniently accessible, from every direction, by the six lines of railroad intersecting each other at Ithaca. Fig. 2 gives a striking view of the Ithaca. Fig. 2 gives a striking view of the
grounds of the university, as seen from the grounds of the university, as seen from the
top of the tower of Sage College, the college endowed by Mr. Sage for the benefit of the young women among the students. Sage Chapel, in which the most distinguished clergymen of the country are invited from Sunday to Sunday to preach non-sectarian discourses, is in the foreground; the library building, known as the McGraw Building, building, known as the McGraw Building,
flanked by Morrill Hall and White Hall, beyond, while in the distance may be seen the great laboratory building and a corner of Sibley College. A way beyond, apparently not far from the lake, but, in fact, nearly a mile from it, is the house of Mrs. Jennie McGraw Fiske, the magnificent mansion of a lady whose philanthropy left nearly a million of dollars for whose philanthropy lert neary a miosital and a great the erection and en
university library.

university library. Cayuga Lake, wi

Cayuga Lake, with its picturesque banks and gorges, fills the distance. The grounds themselves are among the most beautiful in the country, if not in the world, and are bounded at the right and and are bounded at the right and
left by wonderfully picturesque canyons, through which the rushing waters fall some four hundred feet to the lake below.
Sibley College is the school of mechanical engineering and of the mechanic arts of Cornell University. It was built and endowed, and supplied with a splendid outfit of machinery, workshops, models, and apparatus by the Hon. Hiram Sibley, of Rochester; himself a mechanic by original occupation and trainby original occupation and train-
ing, and later one of those princely ing, and later one of those princely
men who built up the existing great systems of telegraphy in this country. Like Cornell himself, he turned a good proportion of his profits into the hands of the Trustees of the University, for the benefit of the youth of the present generation, in remembrance of those earlier days remembrance of those earlier days
when he would have given so much when he would have given so much
for such opportunities, then not to be found anywhere in the land.
The Sibley buildings were designed by Prof. Morris; as shown in Fig. 4, they consist of a main building 160 feet long by 40 feet wide and three stories high, in which and three stories high, in which
are the lecture rooms, the draware the lecture rooms, the draw-
ing rooms, and the museums of

Fig. 10.-SIBLEY COLLEGE DYNAMO AND ELECTRICAL ROOM.

Even in the most ancient times different foreign matters were mixed with bread.
In Thracia, bread was mixed with powdered dried roots, in Syria with dried mulberries, in Egypt with whole grains.
In modern times, in Sweden they add to the bread powdered dried fish; in Ireland and in Iceland, moss, which besides being nutritious keeps the bread from drying; in Prussia, white clay, which contains alkali salts and makes bread very light; in Russia, powdered bark or finely chopped straw. On western shore of England certain kind of sea weed (Porphyra laciniata) is gathered, washed, boiled, and then baked with oat meal flour.
In Africa, powdered dried locusts are mixed with bread, in India potatoes and pea flour, and during the famine even stones ground to fine powder were used in the latter country.
of our country. Cornell enjoys the proud distinction country or in Eust of all universities, whether in this sity, designed to give a real and broad university training, in which the needs of the people are fully recoging, in which the needs of the people are futly recog-
nized by the provisions of its charter, and in which the college; and of a series of workshops seen in
the rear and at the side, consisting of a wood workthe rear and at the side, consisting of a wood working shop, a machine shop, a blacksmith shop, and a foundry, and also including a very extensive "meforty feet wide by forty to sixty long, are well equipped,
and are still receiving new machinery and tools of all the forms familiar to the engineer as used in the trades. Before the close of the present college year, they will be practically complete, and are already sufficiently so to permit the instruction of sections of twenty-five students at one time. They will be extended and new tools added as the growing classes may make it necessary. Fig. 1 shows one of the museums, that of mechanism, containing the Reauleaux collection of models illustrating the course in "kinematics," of "pure mechanism," or of the motions of machines. The second, the museum of machines, is similarly fitted up with cases containing models of machines, and also with book cases and tables, thus serving as a reading room as well as a museum and room in which to sketch machinery. These models are used in the lecture rooms in the illustration of the courses of instruction in mechanism and in machine design. One of the drawing rooms is seen in Fig. 7, the freehand or fine art room. Four large rooms are devoted the department of drawing and machine design.
The lecture rooms are also fitted up with cases for apparatus especially intended for illustration in special subjects. For example, that of the professor of mechanical engineering contains principally models and apparatus used in the course of lectures upon the steam engine and other motors. Some of the workshops are shown in Figs. 3, 5, and 8. At the left is seen the blacksmith shop, with its ten forges and its tools; at the right is the foundry, with its stock of flasks and accessories, and its cupola in which the iron is melted as required. Both of these departments greatly interest the young mechanics, who, under the careful and systematic instruction of their skilled teachers, often do wonderfully good work, and learn with singular rapidity.

The machine shop is seen at the lower part of our multiple illustration; and here, as well as in the carpenter's and pattern maker's shop, many a young successor to the great mechanics of to-day is finding his way into the mysteries of fine work and construction, to gauge size with a facility and ease that makes his elders regret that this epoch of true technical education had not come a generation earlier It is here that the real mechanic at once separates himself from the youth who has mistaken bis vocation, and shows that marvelous sleight and that wonderful accuracy of hand and eye that distinguish him from his less fortunate fellows. Such a student often acquires more knowledge and more skill in handling tools and in doing good work in a week than his classmate of the other type can attain in months. Nevertheless, here, as in every other department, it is not certain that the race is to be won by the swift; for steady, patient, earnest work does wonders for many who, at the first, give little promise of success.
The machine shop of Sibley College is fitted up with lathes and planers, milling machine and slotter, and with all the needed hand tools. The engine seen in the foreground of Fig. 8 is not intended to drive the machinery of the shop, although it may be so used, as the shop is ordinarily driven by water power; but is placed here for the purpose of serving as an experimental engine, with which the students may be made familiar with the methods of taking indicator cards, of using the Prony brake, and of testing engines to determine their power and efficiency, the position of their valves, and of solving all questions that arise in the operation of the steam engine. This was made by the students, under the direction of Professor Sweet, and was exhibited at the Centennial Exhibition of 1876.
Adjacent to the machine shop is the boiler room, containing the steam boilers used for heating and experimental purposes. One of the boilers is fitted up with all the apparatus required for boiler trials, where students are taught its management, the determination of its power and economical efficiency, and to ascertain the character of the steam made, by the best known methods. It is expected that, as the old boilers wear out, the new boilers introduced in their place, and to supply steam for the new buildings to be erected, will illustrate all the forms made by the best builders, including the so-called "safety boilers," as well as the older "shell" boilers. The work of the closing term of the regular course brings in this and a large amount of other experimental work.
A "mechanical laboratory," a large room, some sixty by forty feet, is fitted up adjacent to the workshops, also, in which are placed a variety of testing machines, including the Fairbanks, Riehle, and Olsen forms, for determining the strength, elasticity, ductility, and "resilience," or shock resisting power, of iron, steel, or other materials of construction, Thurston's "autographic " and lubricant testing machines, meters, indicators, scales, dynamometers, and all forms of apparatus for determining the quality of the materials used by the engineer and the power given or
demanded by machines of all kinds, and their effidemanded by machines of all kinds, and their effi-
ciency. This department forms a very prominent part of the establishment, and the course of instruction includes a considerable amount of work of this
kind. The laboratory is one of the most interesting of all the interesting apartments in this great college and is deserving of separate and independent illustra tion and description; it is therefore reserved for a later occasion.
In the main building is still another exceedingly important department, illustrated in Fig. 10. This is the "dynamo room," in which all experimental work in the testing of dynamo-electric machinery is per formed. This work forms a part of the course in mechanical engineering, and is also made a prominent feature in a special course of "electrical angineering," taught at Cornell University under the direction of
the professor of physics. In the engraving, a machine the professor of physics. In the engraving, a machine is seen supported upon the cradle of the Brackett dy namometer, and driven by a steam engine placed below. Thismachinery, as well as that of the shops
and mechanical laboratory, can be driven either by steam or by water power, or by both together, as has been done in work for which the great galvanometer illustrated in a late issue of the ScIENtific American was constructed. The machine fur nishing the electric lights for the grounds of the university is placed here, as will be the beautiful ma chinery lately presented Sibley College by Mr. Edi son. A reconstruction of this part of the establish ment, about to be undertaken, and the introduction
of a new engine, are expected to give still more complete facilities for experimentation upon engine and machinery.
Exterior to Sibley College are many objects of great nnprofession to the engineer and to the ordinary buidings, and withitor. Immediately behind the buidings, and within a stone's throw, is Fall Creek,
a beautiful stream, rushing between high banks, precipitating itself through the deep gorge over a dozen high ledges, and furnishing such picturesque views as delight the heart of the artist, while sup plying the utilitarian necessities of the college. Here, as seen in Fig. 6, is placed the water supply ma chinery furnishing the reservoir, one or two hundred feet above it, with the water needed by the whole university. A few hundred feet below this beautiful fall is another, Fig. 9, which furnishes power for the shops through a turbine wheel, inclosed in a substantial house, as shown in the illus tration; in which, also, are kept and used all the apparatus required to make determination of the test of the turbine is thus capable of being made a matter of class instruction and illustration. Such exercises will be made a part of the regular course when the plans now in hand are fully carried out.
The Director is now engaged in improving the channels of supply, putting in a larger and more power ful wheel to drive the considerable amount of ma-
chinery to be introduced, and inclosing the wheel in a new house of sufficient size to permit the in struction of classes to be carried on within it. Our artist has given a very excellent view of this beautiful lower fall, and lack of space only prevents our introduction of other views from this interesting locality, which is but a sample of many in the neigh-
borhood of the university. The wheel house and suspension bridge represent our artist's plans rather than those of the Director, who will adopt architecture of a simpler character and a suspension bridge of less imposing design.
Thus much for the material part of this great and growing school of mechanical engineering. But bricks and mortar and fine machinery and beautiful apparatus do not make a school. Brains, not buildings and museums of apparatus and machines, give real success,
if worked into an organization of proper form. The organization and personnel of the establishment are of more importance than the buildings and plant, however elaborate. The trustees of Cornell University, recognizing this fact, have effected an organization upon which they rely for the successful conduct of this mighty educational maehine. They place"at its head a "Director," whose title indicates his office and
his unusual powers. He organizes the college, determines the work and the limits of its several depart ments, arranges the courses of instruction, prescribes the methods, selects the right men, and assigns them their lines of work. The college, with the approval of the Trustees, has been divided by the Director into three principal departments: a department of drawing, a department of mechanic arts or of shopwork, and a department of mechanical engineering; each of which is conducted by a professor versed in the art taught in his part of the establishment. Each of these depart ments forms a part of the school of engineering, in which the regular course of instruction is given, and each contributes its part in the organization of the severaladvanced schools of specialbranches of mechanical engineering, conducted under the general super vision of the Director or by members of the colleg faculty especially fitted for such lines of work.
The regular course in mechanical engineering begins with two years of preparatory work, in which the students, ceming from the preparatory and high schools of the country, are taught the higher mathematics and
such branches of science and literature as are best dapted to their needs. Thenceforth the instruction in this department is made very largely professional, and includes lecture room and experimental study of the materials of engineering, of kinematics or motions of mechanism, of machine design, and of the principles, the theory, and the structure of the steam engine and other machines and motors. Experimental work and appropriate laboratory investirations accompany every step in the progress of the pupil throughout the course, and the final work is the preparation of a graduating thesis, which mainly occupies the last term of the course. Accompanying the professional work, also, a large amount of laboratory work is done in the departments of physics and chemstry, such as the engineer finds continually useful in his later practice.
Advanced courses are also given, where desired, in the school of marine engineering, in that of steam encineering, or in the post-graduate course in the mechanical engineering of railroads. As the college grows in number of students and instructors, and such advance becomes practicable, new schools will be organzed in other branches of mechanical engineering. It is possible that special courses may, in time, also be or ganized for the benefit of young men desirous of preparing themselves to become superintendents of shops and establishments, or, as is common in Europe, for the benefit of young proprietors. Possibly, also, trade schools, as of carpentry, pattern making, machine work, may be organized for the purpose of teaching the higher branches of the several arts, thus combining chools for the mechanic arts in the same system with the present schools of engineering.
The officers of Sibley College are: Dr. R. H. Thurston, M.A., Doc. Eng., Director, and Professor of Mechanical Engineering; J. L. Morris, M.A., C.E., Sibley Professor of Practical Mechanics, or of the Mechanic Arts; E. C. Cleaves, B.S., Professor of Drawing; F. H. Bailey, U.S.N., Assistant Professor of Mechanical Engineering and of Marine Engineering; F. Van Vleck, M.E., Assistant to the Director and Instructor in the Mechanical Laboratory; R. Anderson, B.M.E., in charge of the workshop; and various skilled mechanics in the several shops. For all information our readers may address either the Director, the President of the University, Dr. Chas. Kendall Adams, or the Treasurer, Mr. E. L. Williams.

Blacksmith's Hammer Signals.

There are few persons, either in the city or country, who have not at times watched a blacksmith at work in his shop with his assistant, or striker. They have noticed that the smith keeps up a constant succession of motions and taps with a small hand hammer, while with his left hand he turns and moves the hot iron which the assistant is striking with a sledge. The taps are not purposeless, but givenentirely for the direction of the striker. According to a writer in the Hardware Reporter, the signals, as given by the blacksmith and wheelwright, are as follows:
When the blacksmith gives the anvil quick, light blows, it is a signal to the helper to use the sledge or o strike quicker.
The force of the blows given by the blacksmith's hammer indicates the force of blow it is required to give the sledge.
The blacksmith's helper is supposed to strike the work in the middle of the width of the anvil, and when this requires to be varied the blacksmith indi cates where the sledge blows are to fall by touching the required spot with his hand hammer.
If the sledge is required to have a lateral motion while descending, the blacksmith indicates the same o the helper by delivering hand hammer blows in which the hand hammer moves in the direction required for the sledge to move.
If the blacksmith delivers a heavy blow upon the work and an intermediate light blow on the anvil, it denotes that heavy sledge blows are required.
If there are two or more helpers, the blacksmith strikes a blow betweer each helper's sledge hammer blow, the object being to merely denote where the sledge blows are to fall.
When the blacksmith desires the sledge blows to cease, he lets the hand hammer head fall upon the anvil and continue its rebound upon the same until it eases.
Thus the movements of the hand hammer constitute signals to the helper, and what appear desultory blows munication between the blacksmith and his helper.

A recent compilation of fires caused by the exploions of petroleum lamps used for illuminating purposes in the city of Philadelphia during the last five years gives the following results: In 1880, 125 fires; in 1881, 79 fires; in 1882, 53 fires; in 1883, 72 fires; and in 1884, 66 fires; making a total of 395 fires. The numerous other fires caused by plumbers' and painters' pots, oil stoves, etc., are not contained in the above list.

MACHINES FOR BAKERIES.

We illustrate herewith some improved apparatus of Mr . Dathis for kneading and baking bread, and which may be seen in operation at a fine establishment on Opera Avenue, Paris.
Kneading by hand, usually employed in all bakeries, is here replaced by machinery. The apparatus consists of a receptacle that revolves around an axis in such a way as to present all parts of the dough that it contains to the action of the kneading instruments. These latter, which are like forks, continuously lift the dough, in order to first stiffen it, and then knead it by drawing it out, aerating it, and inflating it, without ever compressing it. This mode of operating makes the dough very spongy and light.
The kneading tools are fixed to the extremity of levers by means of regulating screws. These levers are actuated by cranks mounted upon a shaft driven by belting or by hand power. The dough pan, with the different pieces that move it, and the flywheels and cranks that actuate the kneaders, rests as a whole upon a cast iron frame.
The maneuver of the machine is very simple: A certain quantity of tepid water is first put into the lower vessel, in order to give a proper temperature to the dough that is to be kneaded in the pan above. The yeast, flour, liquid, and accessories having been put in, the apparatus is revolved, slowly at first in order to give the flour time to absorb the liquid, and then the speed is increased until it is 60 revolutions per minute. After ten minutes have elapsed, the dough is allowed to rest two or three minutes, and then the kneading is continued for another ten minutes. The operation is now finished, and the dough is taken out and put into a basket to rise. The machine is next thoroughly washed with water.

When the dough has risen sufficiently, the fact is announced by an electric bell, which is set ringing through a contact being formed by a movable piston that rests upon the dough.
The yeast is preserved in a wooden vat provided with a cover having a hermetical joint. In the center there is a screw plug, whose aperture is closed with cotton that filters the air coming into contact with the yeast.
In Fig. 2 is shown a Dathis bread oven, which consists of three parts, viz., a lower part forming a base and containing the fireplace and chimney, the oven properly so called, and the cover, with its lifting mechanism.
The lower part is supported by four iron legs in the small size and by four cast iron columns in the large size. It consists of a circular bottom formed of refractory plates arranged upon iron plate. This bottom is provided with a cylindrical double rim composed of refractory plates and tiles held together by an angle iron.
The fireplace is in front of the center of this circular bottom, and beneath it. It consists of a fire-bridge, flues, and an ordinary horizontal grate with ash pan.
The oven properly so called rests upon this lower part, and consists of an iron plate cylinder, having a double base of convex form, made of iron plate. This latter receives the direct heat of the fireplace, whose bridge, being in contact with it, obliges the flames to form a double ring of fire, that embraces the entire surface of the metal. The hot gases escape up the chimney, through the intermedium of a special conduit.
Above the iron plate there is arranged another hollow diaphragm, which is open in the center, and designed to distribute the heat throughout the entire mass of the oven. Water is introduced into the iron plate receptacle through a funnel provided with a cock and pipe. This water at the moment of charging the oven, produces stram, and this latter, condensing upon the cold bread, glazes it and facilitates its devolopment.
Over this diaphragm there is a plano-convex iron plate arrangement, whose contained air equalizes the heat
over the entire surface of the sides. Above the plane surface of this piece is placed the wire cloth designed to receive the loaves. As the bread is completely isolated from the dead plate of the oven, it does not become soiled by those impurities that this usually imperfectly cleaned piece usually contains.

Fig. 1.-KNEADING MACHINE.
The cover, which is of cast iron, and convex in form, is provided externally with an isolating jacket, and serves to reflect the heat to the outer surface of the oaves.
It is lifted and lowered by means of a lever and counterpoise, supported by a column. It is provided with handles, sight holes for watching the interior, and a thermometer. In some cases an electric lamp may be arranged upon the cover, so that the in terior of the oven may be lighted up and the baking observed.
In the six foot furnaces the wire-cloth bread support is removed by means of a sort of crane, as shown in the figure.
There are three sizes of these ovens, of the following diameters: 6 feet, 3 feet, and $11 / 2$ feet.
The fuel used is either coal, coke, or wood. :The bak ing is not begun until the oven has reached a tempera-

A Government Signal Lamp.
Major Heap, of the Government Lighthouse Board, has devised a new arrangement of the electric light in its application to lighthouses, which may prove of some value. There are objections to the use of the arc lamp for this purpose, as it can penetrate fogs but little further than ordinary and weaker lamps now in use, and is about three times as expensive to maintain. The experiments made by the Trinity House Board, at South Fouland, England, showed that a 15,000 candle power arc lamp gave butlittle greater penetration in a fog than an oil or gas light of 2,500 candle power. The explanation offered for this singular deficiency of penetration is that the arc light is composed mainly of rays toward the violet end of the spectrum, while the light given from burning hydrocarbons is composed of rays toward the red end, and these possess the greater fog penetrating qualities.
If one looks at an arc light through a piece of red glass he will no longer see any arc, but only the two carbons heated to the point of incandescence, and the light will consequently be very much diminished. The sun, seen through a fog, appears decidedly red, indicating that only the red rays manage to penetrate. A lighthouse needs, therefore, not only a very powerful light, but also one rich in red and yellow rays. The latter of these conditions are not fulfilled by the arc lamp, but seem capable of realization in the incandescent electric lamp. Up to the present time, however, these have not been made to exceed 300 candle power, and nould be too weak for use in lighthouses.
Major Heap's proposition is simply to increase the power of the incandescent lamp by using several carbon filaments in the same bulb. It is not new qualitatively, for there are lamps now in the market in which two filaments are employed in the same vac uum, but the multiple system has never been carried out as far as he suggests.
In a coast light of the third order, the flame at pres ent is a cylinder, $13 / 4$ inches high and $15 / 8$ inches in diameter, and the lens employed is constructed to give the best results from these dimensions. To necessitate as little change as possible in the present plant, the new lamp is designed to furnish a light of these same dimensions.
Two disks of carbon, $15 / 8$ inches in diameter, are placed $13 / 4$ inches apart, and are connected at the circumference by twenty-four carbon filaments, one fifth of an inch from each other. If each of these filaments give a light of 15 candle power, the inventor supposes that the total power will be 360 candles. If it were a simple question of multiplication, this undoubtedly would be the result, but there will probably be other elements entering into such a construction, which will modify the calculation, such as the difficulty of overcoming the resistance of such a length of carbon, and of maintaining the different filaments at the same degree of incandescence. If the system succeeds, it is proposed to include lights of the first order, by increasing the dimensions of the multiple arc.

Good Words from old Friends.

We have so many of them that we do not often mention the fact in the Scientific American, although they are none the less pleasant to receive. The following comes from out in Wisconsin, in connection with a question to our "Note and Query" department:
"I have taken the Screntific American about eight years, and when I do not get it Saturday afternoon it seems as if the wheels of the week had
Fig. 2.-DATHIS'S BREAD OVEN.
necessary to obtain such temperature in a six foot oven is not over 18 pounds.-La Nature.

In the course of last year 3,284 ships passed through the Suez Canal. Of these vessels, 1,669 passed from the Mediterranean to the Red Sea, and $1,615^{\circ}$ rom

ENGINEERING INVENTIONS.

A high and low water indicator has been patented by Mr. John C. Palmer, of Hamilton, Ont., Canada. It consists of a vessel having boiler
connections, a float, guide rod, and levers, so arranged connections, a float, guide rod, and levers, so arranged
that when the water rises or falls beyond certain points that when the water rises or falls beyond certain points
the levers will be moved to sound the whistle, and thus omote the more safe management of steam boilers.
A car coupling has been patented by Mr. William E. Samuel, of Fairifiel, Neb. This coupling has an automatically operating cock connecting
with the steam and air brakes, so that when the cars wre coupled, and the speed of the locomotive suddenly checked sot that the bumpers come together, joints are
made whereby the tubes of the severtl cars are conmade whereby the etubes of the severnl cars are con-
nected for a sufficient length of time to apply the steam nected for a su
or air brakes.

agricultural inventions.

A hand seed drill has been patented by Mr. Frank H. Chesebro, of South Haven, Mich. The seed box has a sliding plate with a discharge opening,
and is connected by a bent lever and a rod with an elbow lever pivoted to a handle of the drill, in connection with a furrow opening spout, the device being designed to promote convenience and accuracy in the
drilling of small seeds.
drilling of small seed
A potato digger has been patented by Mr. Frank M. Thorn, of Orchard Park, N. Y. It con-
sists of a vertically adjustable double mould board plow sists of a vertically adjustable double mould board plow
between two broad tread wheels, the axis of each wheel so fixed to the plow frame that as the machine advance the contents of the potato hills will be conveyed by th
mould boards into the broad rims of the wheels which they are elevated and deposited by gravity on a sifter
plow.

miscellaneous inventions.

A watch charm has been patented by Mr. Cornelius H. Davis, of Philipsburg, Pa. It consists of a pendant and a spinning top removably secur
cd thereto, so that the latter can be easily attached and ed thereto, so that the latter can be easily attached
detached, making an ornament and toy combined.
A surgical instrument has been patent ed by Mr. James Somers, of Moro, Oregon. It provides an instrument for certain kinds of amputations, so that
the blood vessels and arteries will be twisted together before they are severed, and thus prevent hmomorrhage
bese without cauterization or tying.
A saddle bar has been patented by Mr Thomas J. Haslam, of Dublin, Ireland. It is for holding the runner to which the stirrup strap is secured,
and is made to hold the runner firmly under ordinary use, but so that it will become detached automaticall
A cotton packer has been patent
A cotton packer has been patented by Mr. Al fred Hart, of San Marcos, Texas. This device is desinged to receive the cotton from the condenser, after
ginning, and pack it in.a box preparatoryito being presswhereby the work may be done automatically.
A bed and bedstead has been patented Sellwood, Oregon. There are transverse rollers at the Selw and foot carrying an end less belt for supporting
head bedding, there being al so a drawer in th foot end
to th bedding, there beeng al aso a drawer in th toot end
of the bessteas, with hinged leaf and sliding boards. of the bedstead, with hinged eaf and sliding boards.
An eaves trough fastening has been pa tented by Mr. Olin Harley, of South Whitley, Ind. It is sömade that a readily accessible single upper nut, in the form of a thumbscrew, serves to secure the hanger to a
cross bar and to provide for adjustment of the trough cross bar and to provide for ajusustment of the trough
free from all liability of detachment or loss of the nut.
A stand or casing for bottles has been patented by Messrs. Camille S. Bleton and Adolphe
Maleville, of Paris, France. It has inwardly projecting Malevilie, of Paris, France. It has inwardy projecting tenons, and at the bottom a spring cushion, and is to
be used in combination with a bottle having longitudinal groves in opposite sides.
A horse collar has been patented by Mr. Henry Brooks, of Brooklyn, Ohio. Its main lining,
or portion coming in contact with the animal, is of felt, and contains within a canvas or other wrapper a suita ble filling, which is prevented by the soft nature of the felt lining from gathering into wads or lumps.
A washing machine has been patented by Mr. Morgan L. Grover, of Lavalle, Wis. This inven-
tion provides a rocking clothes box or tub, in which tion provides a rocking clothes box or tub, in which
the clothes are placed with hot soapsuds and washed by the clothes are placed with hot soapsuas and washed by
being thrown from one end to the other by rocking the
box atthe same time that they are beaten byे aswnying beater.
A carpet stretcher and tacker has been patented by Mr. George M. Brandon, of Harveyville, Pa. Combined with a series of sharp points extended from a suitable hande is a projecting head and spring for hold
ing a tack over a slot between the points, so the carpet may be stretched to the pointdesired and so held while he tack is driven.
A cartridge loader has been patented by Messrs. Jacob D. McKenneyand Thomas W. Brown, of Chattanooga, Tenn. Combined with the body of the
shell loader are powder and shot hoppers arranged to be brocght alternately under a suitabere aperture, with
such an arranement of slides as will allow of readily such an arrangement of sydes as wil
A churn has been patented by Mr. Allin cockrell, of Lamar, Mo. It has a shaft and a tubu site directions in the cream box or tub, and the arrange ment is such that the cream, buttermilk, .etc., are
drainel of trom the butter by a perforated bottom and drained off from the
a perforated tube.
A fabric measuring machine has been patented by Mr. John W. Kruger, of Litchfield, Minn. It is adapted for measuring goods of different widths,
and will wind and unwind cloth accurately at the same and will wind and unwind cloth accurately at the same
time as measuring, the machine covering a special comtime as measuring, the machine covering a special com
bination of rollers, fabric holding devices, and other parts and details.

A cravat fastener has been patented by Mr. John Adams, of Montrose, Col. It consists of opening with radial slits extending therefrom to the hield of the cravat, so that the coilar button or stud
may be pressed through the opening to attach the cravat in place.
A wash tub, sink, or other vessel made of cement has been patented by Mr. CarlWesely, of West New York, N. J. This invention covers the mak-
ng of such vessels with their angles and corners and ing of such vessels with their angles and corners and
upper edges faced with metal strips embedded in the cement or compound forming the vessel, to promote trength and durability.
A school desk has been patented by Mr. William P. Conner, of Bloomsburg, Pa. The desk has
two leg frames on which the back of the seat and the box of the desk are held, the back of the seat also forming the back of the desk box, with numerous other spe. cial details, for strengthening such desks and simplify. ng their construction.
A vehicle shaft support has been patnted by Mr. James F. Pace, of Simsborough, La. It
consists essentially in a bar adapted to be pivoted at ne end to the front of ar adapted to be pivoted at nd with a forward projecting hook, a spring for throwing the bar into a vertical position against the w A needle for Jacquard looms has
A needle for Jacquard looms has been patented by Mr. Andreas Mutter, of Paterson, N.J. The reedle has a longitudinal slot, on the bottom of which rests a spiral spring, with a plate at its end adapted to
slide vertically between the sides of the groove, so that if a needle is forced againsta Jacquard card its end will ot punch or perforate it.
A turpentine hacker has been patented by Mr. Walter Watson, of Fayetteville, N. C. The hacking blade has a shank of fiat form for a portion of d, combined with a handle having apertures, to receive and firmly hold the shank of the hacker through-
A it length.
A pencil case and sharpener has been patented by Mr. Greenleaf A. Wilbur, of Skowhegan,
Me. The pencil case is open at both ends, a rubber or eraser to ben placed in one end, and so the pencil may be eraser to be placed in one end, and so the pencil may be
passed point first into the other end, the case having a side slot in which a sharpener may be held, the device thus affording protection to the point of the pencil and A gate spring has been patented by Mesers. Miles Kious and William A. Morton, of Le Rov, Kan. The action of the spring is such as to
dose the gate until the latter is opened so wide that the close the gate until the latter is opened so wide that the
staple passes the hinge center, when the strain of the spring is on the opposite side of the hinge pin, and.the
gate is held open, while in the other cases it is autogate is held open,
matically closed.
A ball and socket hinge has been patented by Mr. Abert G. Rockfellow, of Ashland,
Oregon. With the use of a screw shank the construc tion is intended to protect the hinge completely from the weather, and from the lodgment of grit and dirt, thus prolonging the life of the hinge and at the same time giving.a gate on whi,
A carpet stretcher has been patented by Mr. Joseph S. Ingham, of Academy Corners, Pa. A bar having a sliding cross bar carrying teeth is so com-
bined with a pulley, rope, winding post, lever, and bined with a pulley, rope, winding post, lever, and
clamp, that the carpet can be stretched to the desired pamp, that the carpet can be tretcthed it che desine n improvemen
A compound for treating tobacco has been patented by Mr. Adolph Gloeser, of West St. Paul, Minn. It is for cigars and smoking and chewing ties and render it more agreeable, and consists of tincture of coca, fluid extract of tolu, fluid extract of hops, proportions.
A running gear for vehicles has been Holder of Vesldosta, Gexander K. Wilson and Benjamin block is located vertically over the front axle, and the weight of the body is borne directly on such azle, the
use of the kingbolt being.avoided, and the reach, guide, use of the kingbolt being.avoided, and the reach, guide,
or keeper, and curved bar of the head block forming or keeper, an
fifth wheel.
A fruit drier has been patented by Mr. John G. McNaughton, of Marion, N. C. Combined with a. series of pans, each having two bottoms forming a
steam compartment between them, are steam spreaders forming an arched passage closed at the bottom and finely perforated at the top, so controlling the entrance fore its escape.

A mail crane has been patented by Mr. Fred W. Sensiba, of Talbot, Mich. This invention overs a special construction whereby cranes for hold
ing mail pouches at the sides of railway tracks to ng mail pouches at the sides of railway tracks, to be matically swing into a position parallel with the track when the pouch is pulled out, so the crane will then be out of the way of the cars.
An underskirt has been patented by Mr. Jacob Mayer, of New York city. By this invention of material, with folded darts in front and curved side and back seams and curved placket, to make a corset-
fitting skirt without waste, slightly padding the figure fitting skirt without waste, slightly padding the figure in front, and preventing the outines of the front poin
of the corset from showing through the dress.
An implement used in the manufacture of cans, etc., has been patented by Mr. Hiram G. Fil-
son, of New Cumberland, W. Va. It consists of an adson, of New Cumberland, W. Va. It consists of an ad-
justable cylindrical holder to be employed in soldering the edges and bottoms, and adapted to hold articles of handle on the interior of the holder to withdraw it from the soldered article.

A water regulator for windmills has been patented by Mr. Anson M. Otis, of York, Neb. A A
tank is suitably suspended from one end of a lever, which carries a weight on the other end, the weight greater than the empty tank but less than a full one
making a device for automatically stopping the flow o water into a tank or throwing a windmill out of gear A split pulley has been patented by Messrs. Harrison Underwood and Charles Schweizer, of
New York city. Combined with two half pulley sections is a split rim or band secured to and surroundin them, with boits for clamping them on the shaftand
for holding the ends of the band together, making a pulley which can be easily placed and firmly locked on

A washing machine has been patented by Mr. Robert Lynn, Sr., of Pleasant Plain, Iowa. combined with a rotary cylinder having ond cylinder adjacent to and in front of the slits, with back ward curved rear sides, the deviec being adapted to be
placed in a common tub for washing clothes, and conplaced in a common tub for washing clothes, and con-
tinually dipping up water and pouring it upon the othes.
A feed regulator for hemp drawing and spinning machines has been patented by Mr. George Davis, on andeen, N.J. Te condenser standard ha ed weight and a projecting pin, whereby the parts are connected and the movements of the condenser standand thus regulate the delivery of the sliver to the con

A self-acting solar reflector has been patented by Mr. Heinrich A. W. Braune, of Valparaiso,
Ind. The invention consists in a guide and a fixed piece for changing the inclination of the mirror as it revolves, with devices for adjusting the inclination of
the longitudinal horizontal he longtudinal horizontal axis of the mirror to the and keep a beam of light continually in the same posi and keep a beam of light continualily in the sal.
tion in relation to the lens of the solar camera.

A water elevator has been patented by Mr. Justus W. Thorp, of Dayton, Washington Ter. A
lifting screw is hung from its upper end and supported on anti-friction rollers, dispensing with a lower end bearing, and there are universally jointed shaft connections from the driving Yearing of the screw toa water
wheel in the stream from which the water is lifted by wheel in the stream from which the water is liftea by
the screw, the invention being calculated to facilitate

hydraulic mining.

A machine for boring gun barrels has been patented by Messrs. Herman H. Hackman and
Theophiel P. Walter, of Vincennes, Ind. It is made with an expansible and hollow boring tool, and a guide brough the to the working carriage and passing govern the diameter and shape of the bore, with other special features, so that the work may be done by un-
skilled labor and the barrels will have great precision. A water elevator has been patented by Mr. Benjamin J. Hewitt, of Manton, Mich. Over a well carb is placed a shaft having a loosely mounted
hifting pulley, around which is coiled a rope witt shifting pulley, around which is coiled a rope with
buckets at its ends, one bucket enough heavier than the ther to overbaiance the latter and its contents, in connection with which is a weight so arranged that the full bucket may always be lifted by moving the pulley one

A
A tension regulator for the let-off motions of looms has been patented by Mr. Arthur Mid-
dleton, Jr, of Pelzer, S. C. The construction is such tha the pressure of the tension producing spring is regulat ed antomatically and continuously in exact proportion to the reduction of the size of the roll of warp on the
beam, thus giving the warp the same tension from the beginning to the finish of the roll without the help of an itendant.
An apparatus for and method of making and raising salt brine from deep salt veins forms the subject of two patents issued to Mr. John Peters, of
Haverstraw, N. Y. The invention covers an arrangement of outside pumping machinery to force water into contact and become brine, and to expel the latter from the well by pressure, thus doing away with inside pumping machinery, and allowing of the use of a
natural or artificial head or pressure of water near the mouth of the well to dispense with the force pump.
A wind motor has been patented by Mr.
A wind motor has been patentor Ter. Com-
 platform a a shaft is journaled winh two cranks a tright
angles to each other, with a connecting rods connecting the ftwo cranks, with varl ous other novel features, whereby the motion will al ways be transmitted vertically, and the top platforn may revolve
ting motion.
A money drawer and recorder has been patented by Mr. Alphonso S. Keating, of Corry, Pa signal when the drawer is opened, with certaln devices for automatically feeding a strip or sheet of paper over the top of a box in front of the drawer, on which to
note expenditures, etc. The same inventor has also patented a cash recorder, with devices for showing when the register has been opened, and various novel reatures
drawer.
A process of and apparatus for making wax and parafine paper forms the subject of three pat-
ents issued to Mr. Edward G. Sparks, of New York city. These several inventions all cover different apparatus for passing paper through melted wax or paraffine in such way that both surfaces shall be thoroughly coated therewith, all superfluous wax scraped off, and
the surfaces, if desired, be afterward brushed with a polishing roll, the body of the paper not being filled with the wax, thus making a asving in the cost of the paper may be applied for the ordinary uses indiffer-

Business and Personal.

The charge for Insertion under this head is one Dollar
a line for each insertion, about eieht tords to a a line for each insertion; about eight words to a line. as early as Thursday morning to a ppearin next issue

Nickel Plating.-Sole manufacturers cast nickel anodes, pure nickel salts, polishing compositions, etc. \$100
little wonder. A perfect Electro Plating Machine. Sole ittle wonder. A perfect Electro Plating Machine. Sole plete outtit for plating, etc. . Hanson, Van Winkle \& Co lete outflt for plating, etc. Hanson, Van Winkle
Newark, N. J., and 92 and 94 Liberty, St., New York. It will pay manufacturers of any goods requiring laels to mail a small sam
Bradley’s improved Cushioned Helve Hammer. New
esign. Sizes from 25 to 500 lb . Bradley \& Co., Syracuse design.
N. Y.
\quad Wante
Wanted.-Novelties or patented specialties to manuacture on contract. Burckhardt \& Schneider, makers
of fine tools, models, and light machinery, 211 and 213 Mulberry Street, Newark, N. J.
Beach's Improved Patent Thread Cutting and Diamond Point
ford, Conn.
Grimshaw.-Steam Engine Catechism. A series of horoughly Practical Questions and Answers arranged o as to give to a Young Engliceer Just the information
equired to fit him for properly running an engine. By equired to fimim for properly running an engine. By
oobert Grimshaw. 18mo cloth, \$1.00. For sale by Munn \& Co., 361 Broadway, $\mathrm{N} . \mathrm{Y}$.
Wanted.-Patented articles and novelties to manufac-
ure and introduce. R. M. Downie \& Bro.. Fallston. Pa ture and introduce. R. M. Downie \& Bro.. Fallston, Pa. The Knowles Steam Pump Works, 44 Washington
St., Boston, and 93 Liberty St., New York, have just isued a new catalogue, in which New York, hav and imsued a new catalogue, in which are many new and im-
proved forms of Pumping Machinery of the single and
duplex, steam and power type. This catalogue will be aplex, steam and power type. This
nailed free of charge on application.
Coiled Wire Belting takes place of all round belting. Cheap; durable. C. W. Belting Co., 93 Clifr St., N. Y. Compressors, Rock Drils. Haswell's Engineer's Pocket-Book. By Charles H. Haswell, Civil, Marine, and Mechanical Engineer. Giv-
Tables, Rules, and Formulas pertaining to Mechanics, Mathematics, and Physics, Architecture, Masonry,
Steam Vessels, Mills, Limes, Mortars, Cements, etc. 900
pages, leather, pocket-book form, $\$ 4.00$. For sale by Munn \& Co., 361 Broadway, New York.
Peerless Leather Belting. Best in the world for swift unning and electric machines. Arny \& Son, Phila. Send for catalogue of Scientific Books for sale by
Kunn \& Co., 361 Broadway, N. Y. Free on application Shafting, Couplings, Hangers, Pulleys. Edison Shafting
Mfg. Co..86 Goerck St., N.Y. Send for catalogue and prices. fg. Co..,86 Goerck St., N.Y. Send for catalogue and prices. Iron Planer, Lathe, Drill, and other machine tools of Wanted - Pew Haven MIg. Co., New Haven, Conacre and introduce or Power \& Economy, Alcott's Turbine, Mt. Holly, N.J. Send for Monthly Machinery List
to the George Place Machinery Company,
121 Chambers and 103 Reade Streets, New York
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. If an invention has not been patented in the United States for more than one year, it may still be patented in
Canada. Cost for Canadian patent, \$40. Various other foreign patents may also be obtained. For instructions
address Munn $\&$ Co., Scientific American patent Machinery for Light Manufacturing, on hand and Supplement Catalogue.-Persons in pursuit of information of any special engineering, mechanical, or scienmation of any special engineering, mechanical, or scien-
tiffe subject, can have catalogue of contents of the Screntific American Supplement sent to them free.
The Su PPLement contains lengthy articles embracing the whole range of engineering, mechanics, and physical
science. Address Munn \& Co., Publishers. New York. Timber Gaining Machine. All kinds Wood WorkCurtis Pressure Regulator and Steam Trap. See p. 222. Iron and Steel Wire, Wire Rope, Wire Rope TramIron and Steel Wire, Wire Rope, Wire R
ways. Trenton Iron Company, Trenton, N. J.
Wood Working Machinery. Full line. Williamsport We are sole manufacturers of the Fibrous Asbestos We are sole manufacturers of the Fibrous Asbestos
Removable Pipe and Boiler Coverings. We make pure asbestos goods of all kinds. TT
419 East 8th Street, New York.
Pat. Geared Scroll Chucks, with 3 pinions, are sold at same prices as common chucks by A. F. Cushman, Hart-
ord, Conn. Crescent Solidified Oil and Lubricators. Something Steam Hammers, Improved Hydraulic Jacks, and Tube Emerson's Book of Saws free. Reduced prices for 1885. 50,000 Sawyers and Lumbermen. Address
Emerson, Smith \& Co., Limited, Beaver Falls, Pa. Safety Elevators, steam and belt power ; quick and
smooth. D. Frisbie \& Co., Philadelphia, Pa.
"How to Keep Boilers Clean." Send your address
free 88 page book. Jas. C. Hotchkiss, 86 John St., N. Y. Barrel, Keg, Hogshead, StaveMach'y. See adv. p. 76 Keystone Steam Drillerfor all kinds of artesian wells. Prospected, Artesian Wells Bored, by . Diamond Drill Co. Box 423, Pottsville, Pa. See p. 46 . Providence Steam Engine Co., Providence, R. I., are Patent Elevators with Automatic Hatch Covers. Cir flar free. Tubbs \& Humphreys, Cohoes, N. Y. Nervous, Debilitated Men.
You are allowed a free trial of thirty days of the use of sory Appliances, for the speedy relief and permanen cure of Nervous Debility, loss of Vitality and Man
hood, and all kindred troubles. Also for many othe hood, and all kindred troubles. Alse for many other
diseases. Complete restoration to health, vigor, and manhood guaranteed. No risk is incurred. Illustrated
pamphlat, with full information, terms, etc., mailed free by addressing

Voltaio Belt Co...
Marshall, Mic

Guild \& Garrison's Steam Pump Works, Brooklyn
N. Y. Steam Pumping Machinery of every description Send for catalogue
Domestic Electricity. Describing all the recent inventions. 11
New York.
Machinists' Pattern Letters. Pattern Letters to orde Brase In Whing Mainery, Die Sink Brass and Iron Working Machinery, Die Sinker
and Screw Machines. Warner \& Swasey, Cleveland, 0 . Split Pulleys at low prices, and of same strength and appearance as Whole Pulleys. Yocom \& Son's Shaftin
Works. Drinker St., Philadelphia, Pa.

Abstract

HINTS TO CORRESPONDENTS. Names and Address must accompany all letters, or no attention will be paid thereto. This is for our information and information, and not for publication. Refferences to former articles or answers should give date of paper and page or number of give date of paper and page or number of question. Inquiries not answerd in reasonable time shound be repeated; correspondents will bear in mind that some answers require not a little research, and, though we endeavor to reply to all, either by letter or in this department, each must take his turn. or in this department, each must take his turn. Special Information requests on matters of personal rather than general interest, and requests for Prompt Answers iny accompanied with remittance of $\$ 1$ to $\$ 5$, hocuold be be persoaromper Answers by Leetter, should be for Prompt Ancompanie with remittance of \$1 to $\$ 5$, according atc the subjet, as we cannot be expected to perform to such service without remuneration. such service without remuneration. Scientific American Supplements referred to may be had at the office. Price 10 cents each. Mifinerals sent for examination should be distinctly marked or labeled.

(1) J. R. B. asks: 1. What effect has kerosene oil on metals? A. No effect. 2. Does it softe steel? A. No.
(2) H. M. L. writes: I have made an induction coil; it is 3 inches long, and $11 / 2$ inches in diameter: it is wound with 4 layers of heavy and 13 layers of fine wire, and each layer is insulated by a
layer of tissue paper; the current is interrupted by an electro-magnet. A child could bear the current at ful
strength. I would like to know how to makeit stronger and be able to regulate the current. When I put the bundle of wires in, the current increases; and if I put a steel rod in, it is still stronger; |the spark it gives is hardly perceptible. I use a Grenet battery. A. It is
probablethat the resistance of your electro-magnetic interrupter, together with the primary wire of your coil, is too great. Either add another cell of battery or use some insulation may not be perfect enough, if so , yo can improve it by soaking the coil for some time in hot paraffin.
(3) W. A. S. writes: 1. Wishing to try an experiment, I should like to know through you valuable paper, the SCIEntific American: 1. What
the nature of a loadstone? A. Loadstone is a variety of magnetic iron ore. 2. Where can I obtain such a stone A. From any dealer in mineral specimens. 3. What is a sympathetic magnetic needle? A. There is no such thing. 4. When the needle on a dial is attracted to a
certain point by a loadstone, would a sympathetic certain point by a loadstone, would a sympathetic
needle on another dial placed at a considerable distanc from the first move to a corresponding position on it
(4) J. C. N. asks: 1. For electro gold plating how long should an article remain in the bath ple, take a silver dollar; how long should it remain in single cell Smee battery, size of zinc plates $3 \neq \times \bar{y}$ inches heat of bath 160° Fah.? A. This depends on the strength of the gilding solution, the size of the anode, and the condition of the battery. The usual nethod of de termining the amount of gold deposited in a given time
is to weigh the cathode before gilding, and from time to time during the process. 2. Also, how often should it be taken out and brushed over with pumicestone or sand? A. It should be taken out and scratch-brushed
soon after the first immersion, and a short time before the finish. 3. Can you give me the formula for making mercury in strong nitric acid. Another method is to saturate strong nitric acid, diluted with an equal measure of water, with oxide of mercury
(5) H. M. N. asks (1) the reason why astronomers think the sun is not stationary? A. By
observing a great number of stars, it has been as certained that the solar system is moving toward the constellation Hercules. 2. Where can I find the sun's motions treated at length, with the supposed reasons as
signed for the same? A. Newcomb's Popular Astronosigned for the same? A. Newcomb's Popular Astrono
my will give youinfork
(6) C. E. A. asks. will it be practical to light my plating room by electricity. My dynamo has capacity to run 200 gallons solution. A. It is pro-
bable that your machine generates a current of low electromotive force, and is therefore not adapted t lectric lighting.
(7) J. J. W. writes: There is considera ble discussion in this shop as to what is known as
India rubber, or pure rubber. I claim it is a popular ame for caoutchouc, while others claim that it means gutta percha. As we all bank on the SCIENTIFIC and accept your decision as final. A. You are right. Gutta percha is a different gum.
(8) R. T. M. writes: A gentleman not ong ago asked whether a yacht would sail in a calm operated by steam, on board. The person to whom the question was addressed answered, "Not an inch." I differed with him, and held that the yacht would move backward. We cannot convince each other. Will you have the kindness to answer in your correspondence column? A. The'yacht would not be moved by the
action of the wind from the bellows on the sails. The
reactionary effect of the wind might move, the boat
backward as you suggest, and this effect would be reater without the sails.
(9) E. J. C. writes: Please describe how he drop shutter on anuunciators and burglar alarms is
 The drop, a, is pivoted to a
plate attached to or formed plate attached to or formed
upon the main frame, the plate having on its face the name or number. The drop is held in a slightly inclined position by the this end of the lever being held down by a spring. The opposite end of the lever carries an armature, below which is lo-
cated the magnet, which is in cated the magnet, which is in ush button, c. By pushing the button, c, the magnet rendered active, and the armature is pulled down, raising the opposite end of the lever, b, releasing the
drop, a, which thus falls of its own gravity: The action rop, a, which thus falls onds oungravity. The action of a screw which passes through the lever, b, and striking on the upper edge of the annunci
limits the downward movement of the catch.
(10) L. B. asks: How are the moulds btained for making hollow rubber balls? If made in sections, how united? At what temperature are they vulcanized, and in dry heat or steam? A. The mould is a simple metallic mould made in halves. The rubber is placed in it so that it will join at the edges when the mould is closed, but before closing the mould a small quantity of water is placed in the rubber. This makes eam when the mould is heated. and forces the rubnd the temperature depends upon the time in which the work is to be done; 300° to 310° Fah. is about the ight temperature for quick work Consult Supple IENT, Nos. 249, 251, and 252 for information on rubber
(11) J. W. S. asks: What ingredients re used with corundum in making wheels and other forms for grinding and reducing metals, and the manipulative process? A. There are vandum wheels. Corndum wheakis emery ad with water are generally made of corundum and shellac. Dry corundum wheels are often made with glue only as a cement. Rubber vulcanized), water glass, and oxychloride of zinc are (12) J. E. H. writes: 1. Given: two inch achromatic objectives, properly corrected, one of
ive, the other six feet focal distance, which will make five, the other six feet focal distance, which will make
the better telescope? A. For comet seeking and simihar uses, the short focus; for other work, the long focus. We think the long focus would be preferable for general pound eyepieces determined? A. Consult Supplement, No. 399. 3. Can the eyepieces of a microscope be used or a telescope? A. Yes. 4. What is the meaning of the term "ampere" as used in electrical technology?
A. The unit of the current. It is found by dividing the ectromotive force in volts by the resistance of the circuit in ohms:
$\mathrm{C}=\frac{\mathrm{E}}{\mathrm{R}}$

INDEX OF INVENTIONS

For which Letters Patent of the United States were Granted,

September 29, 1885,
AND EACH BEARING THAT DATE.
ddressing machine, C.I. Williams
ddjustable chair, A. J. Gibson................... eriform flu
gricultural fork, J. F. All.................
Amalgamator. E. Pike
tomizer, F. H. Clark.
Awning, window, C. M. Roche
Ax, W. Harvey.
Ax, w. C. Kelly
Axle bearing, car,
Bag, E. W. Haaf.
Barrels after being pitch. Graves machine for rolling
F. X. Kuhn...

Bath tub stand pipe attachment, W. A. Johnson
Bath tubs, overflow pipe for, S. G. McFarland... Battery. See Secondary battery.
 Bed, folding, B. F. Farrar.............................37, 327, 327,
Beehive, R. H. Coons
Beehive, J. Heddon.
Beer ventilator, Vehr \& Kirby
Belt catch, L. Oswald.........
Bicycle saddle, F. G. Burley.
Bicycle saddle, F. G. Burle
Billiard table cushion, H. W.
Binder, temporary, o. Bloch.............
Bit. See Bridle bit. Metal boring bit.
ilna, slidng widow, R. M. Clapp
Block. See Sawmill head bl
Blotter holder, automatic, ,...
Boiler. See Heating boiler. Steam boiler. Was
boiler.
Boiler. L.
H. Prentice.
Boiler furnace, steam, Henderson \& Bergland Bolt operating device, L. G. Moulton
Bottle drink register, G. Weitzel
Bottle, mucilage, E. R. Cahoone.
Bottle stand or casing, Bleton \& Maleville.
W. Painte

Bowl, wash, H. C. Lowrie

C

327,016

Bracket. See Shelving bracket.
Brake. See Air brake Brake. See Air brake.
Bridge gate or guard, P. R.ck. Bridges, signal gate for draw, D. B. Fisk. Bridle bit, H. M. Clemons... Brush, revolving, J. Schmid Buckle, harness, H. F. Bock
Buckle, trace, J. Herringt Burning fuel, apparatus for, R. E. Burn Bustle, M. Rosenstock.:
Button, T. R. Hyde, J

Button, N. K. Palmer.............
Button, sleeve, J. StadImeyr. Buttons, attaching, J. Mathison
Cabinet lock, E. G. Gory........ Cabinet lock, E. G. Gory...
Cable, anti-induction, H.

Spalding,
327486,32

Camp chair or hammock, adjustable, A. O. Hub
H. G. Filson.

Cant hook, T. W. Cassidy
Car brake, A. Bixby.....
Car coupling, F. R. Butterf
Car coupling, T. D. Davis
Car couphing, I. D. Davis.
Car couppling, D. v. Putnam.
Car coupling, W. E. Samuel
Car coupling, B. H. Tyso
Car dump, A. Woleott...
Car, railway, Loring \& Jewett.
Car, stock, J. A. P. Parker....
Card
Car wheel, L. R. Faught
ar wheel, L. R. Faught.
Car wheel chill, G. J. McCurley
Cars, switching wheel for stree
Carbon holder, H. H. Levett......................
Carbureting gas, apparatus for, W. F. H. O'Ke
Carpet stretcher, J. S. Ingham...............
Carpet stretcher and tacker. G.
Carpet stretcher and tacker. G. M. Bra
Carriage and wagon jack, H. Midwood.
Carriage, baby, J. F. Colby..
Carriage bolts, die for form
Carriage bolts, die for forming, c. W. Root... Cart, road, Rehkopf \& Roge
Cartridge loader, McKenney \& Brown.............................
Cartridge shells, machine for polishing,
Mason.......................
Case. See Draughting case.
Caster, N. Drucker.
Casting hollow metal......
able lining. L. Stevens
Casting machines, nipple plate for type, Gabel................
ement, etc., washtub, sink, or other vessel mad
entrifugal reel, Smith \& Dickey... 327 32,
Chair. See Adjustable chair. Camp chair. Fold
ing chair. Opera chair. Reclining chair.
Channel flap laying machine, o. Gilmore...
Charm, watch, C. H. Davis...........................
Check rein and post hook, C. L. Bard..... 327,056 to
Churn, J. P. Beard........
Clamp. See Railway rail clamp.
Clamp. See Garment clasp. Garment sup
Clasp. Slasp.
Clip. See Paper clip. Vehicle spring clip.
Clip. See Paper clip. Vehicle spring clip.
Clothes tongs, D. Worthington...............
Clothes wringer, I. R. Laux..

Coffee roaster, s. Stewart............
Coffer dam, D. W. Howes.
Coffin stool, H. Randles.
Coin changer's box, D. R. Ford.
Collar, horse, H. Broo

 Conving table. . . R. Swan.......................Cooler. See Molasses cooler. Water cooler. Cork, siphon, J. Low.

C
Cotton packer, A. Hart
Cotton press, G. McGover
Coupling. See Car coupling. Pipe coupling.
Cravat fastener, J. Adams.:
Creamer, centrifugal, o. Lam
Cultivator, W. H. Traphagen.
Curtain flxture, R. R. Broune
Curtain fixture, R. R. Broun
Curtain fixture, L. A. Mallor
Cut-off rain water spout for cisterns, filtering, J
Cutter. See Milling cutter. Straw cutter.
Cutter head, B. R. Hand.
Cutter head, F. Holland.
Damper regulator, automatic, J. J. Burge....
Damper regulator, automatic, J. E. Spenc
Dead centers and starting fyw
overcoming, \mathbf{O}. B. Thompson.

Dental broaches, Donaldson...

tal chairs....................................

ental engine hand piece coupling, A.

Browne.....................
Die. See Forging die. Steel di
Disinfecting apparatus, R .

```
eel die.
```

Disinfecting apparatus, R. Henneberg..............
Door and shutter fastener, J. T. \& N. R. Yarnall.
Door hanger, H. Myers...
Door securing device, Clo
Door securing evice, Clou
Dor shield, M. Camp....
Doubletree, P. W. Leffler.

Drawer, R. W. Perry...
Drier. See Fruit drier. Lumber drier. Wool
drill. See Seed drill.

Eaves trough fastening, o. Harley.
Electric cable. H. C. Svalding.......

lectric circuit safety deviee, H. C. Spalding, ${ }_{327,498}$ to 327,500

$\quad 327,498$ to 377,500
Electric conductor, subterranean, H. C. Spald-
sing.................................... 327,485
Eing.. 327,485
Electric conductor, underground, H. C. Spald-
ing..................................... 527,480
Electric conductors, underground conduit for,
S. Cox... 327,383
Electric current meter, J. J. Green............391
Electrical

Electrical cable, H. C. Spalding................377,491. 327,493
Electrical cable, anti-induction, H. C. Spalding... 327,488
$327,459,327,476$
Electrical cable, multiplex, H. c. Spalding. $. . . .327,473$
Electrical cable, multiplex, H. C. Spalding.......
Electrical cabie. submarine, H. C. Spalding....
Electrical circuit, H. C. Spalding...
Electrical circuits, safety device fo
Electrical circut conductor, H. H. C. Spalding............... 377,482
Electrical conductor, splice, H. H. C. Spalding............ 327,482
Electrical conductor, underground, H. C. Spald-
ing... 327
derground lines of, H. C. Spalding............... ${ }^{32}$
Electrical conductors from the heat of subter-

C. Spalding.. 327,475
Electrical conductors underground, protecting.
H. C. Spalding................................. 327,463
H. C. Spalding..................................... 327,463
Elevator.
vator.

Elevator indicator, Q. N. Evans..................... 32
Elevators and inclined railways, safety attach-
ment for, F. Wittram............................. 327,048
Elevators, automatic feeder and register for bar-
evators, automatic feeder and register for bar-
rel, J. Meyer......................... 327,007
Exercising apparatus P. E. McDonnell............. 3
Howz
Expansio

Feeder, safety stock, J. E. Roach............................... 3277,110
Fence, J. H. Crain...................................... 327,384

File.for preserving prescriptions, B. H. Colby...... 337,140
file.letter, L. L. Ferris............... 327,389
327310
Finger nail cleaning and trimming 'apparatus, \mathbf{G}.
D. Burton... シ27,065
Finger ring, J. Bulova ...37,431

Fire extinguishing apparatus, T. Evans............. 326,982
Fireplace, open, D. E. Jones................................396
Fish line float. C. Palm......................
Flask. See Moulder's flask.
Holding chair, J. Pierce................................. 327,388
Fork. See Agricultural fork. Grappling fork.
Frame. See Sewing machine quilting frame.
Fruit drier, J. G. McNaughton.................... 327,006
Fuel and air, apparatus for mixing liquid, J. w.
\& F. R. Hoard..326,981
227,049
Garment clasp, C. B. Weeks.......................... 327,363
Garment supporter clasp, S. H. Whiting.......... 327,367
Gas, apparatus for making, W. P. Elliott........ 326,959
Gas, apparatus for making. W. P. Elliott.......... 326,359
Gate. See Bridge gate.
Gate spring, Kious \& Morton..... 327,445
Gear cutting machine, A. Swasey......................... 327,
Gears, device for starting the dead wheel in muti-
lated, M. M. Hooton........................
Gearing and relief mechanism for driving rolls, \mathbf{W}.
earing and relief mechanism for driving rolls, W.
F. Cochrane..37,240
327446
Glass ornamentation for imitation of tine polished
stone, T. E. Strickland.................... 32
Glass vessel, serew collar for, Spruce \&Tonks.... 32,
Glassware, crimping device for, J. Northwood.... 327
Gold, silver, etc., composition for cleaning and

Governor, steam engine, P. A
Grain binder, M. M. Hooton..
Grain scourer, G. B. Gray.
Grain screen, S. H. Bills...
Grain screen or separator, F. Wulfert
Grappling fork, M. W. Chamberlain
Grappling fork, M. W. Chamberlain................. 327,059503
Grinding mill, wet, T. L. Sturtevant............. 327,501
Gun barrels, machine for boring, Hackman \&
Walter..250
Hame fastener, F.
Hame, reversion W. Hassel.............................. 327,082
Hammer, drop,
Handle. SSe Saw hande.. Valve handle.

Harrow tooth, spring, L............................... 327,020
Harvester, corn, G. H. Kunsman...................... 327.390
Harvesting machine dropping cradle, J. Hornsby
et al................................... 327,
2ne
Hat brims, finishing or binding the edges of, J
Thomas...
327,333
37235
37222
3723
son.. 3267,2
Hat frame and body, J. L. Kendall..................
Hat paring machine, Tweedy \& Yule......327,122
Hay carrier, L. Y. Myers..........
Hay or cotton press, B. J. Curry
Hay or cotton press, B. J. Curry..
Headlight, electric, E. B. Cutten.
Heatiǔg boiler, steam, T. P. Hogan.
Heel stiffeners, machine for making, C. Dancel....
High and low water indicator, J.
Hinge, F. F . Parker............
Hinge, awning blind, C. Garlick..
Hinge, spring, L. M. Devore
Hog ringer. S. H. Taylor.............................
Holder. See Blotter holder. Carbon holder.
and pencil holder.
older for small wares, G. K. Jenkins....
look. See Cant hook. Check rein and post hook. Conductor hook. Snap hook.

 Br
 GOLD AND JEWELLED MEDAL
 SCIENCE OF LIFE.

SHAFTING,

PULLEYS,

HANGERS.

Pat. stoel shafting.
PATENT FRICTION CLUTCH,
Internal Clamp Gouplings.
A. \& F. BROWN, 43 PARK PLACE, NEW YORK

NEW YORK BELTING AND PACKING COMP'Y. \boldsymbol{S} The Oldest and largest Manufacturers of the orizinal \ddagger Hinequy y Altan oher kinds, mitatione nud hferior. Our name is stamped in full upon all ou

ROCK BREAKERS AND ORE CRUSHERS.

BIC OFFER. $\frac{7}{\text { To infrodace then we }}$

NEGATIVE PAPER BY MAIL,

ICE-HOUSE AND COLD ROOM.-BY R
 and of ill inemsedealere.

THE STOCKPORT GAS ENGINE.
Unequaled for Simplicity, Durability, Reliability, Economy, Lightness, and
Generai Design.
Starts with ease. Receives an impulse at every revolution. Runs silently. Uses less ga DICKSON MANUFACTURING CO., Scranton, Pa. 112 Liberty St., N. Y., U. S. A.

HARRISON CONVEYOR!
Handing Grain, Coal, Sand, Clay, Tan Bark, Cinders, Ores, Seeds,\&C.

WEAK NERVOUS MEN

TO WEAK MEN Wutafueat

PERFECT
NEWSPAPER FILE

MUNN \& \& COblishers Scriz

MANUFACTURERS of Wood ware to

Gaskets and Rings

PARARUBBER,
And in all sizes. Recommended by all steam Boiler
Insuran ine
specian moumpanies and inspectors. Fine facilitiesfor

Scientific American
B00K LIST
To Readers of the Scentitic Americall: By arrangements with the principal publishers, we are now enabled to supply standard books of every description at regular prices.
The subjoined List pertains chiefly to Scientific Works; but we can furnish ooks on any desired subject, on receipt f author's name and title.
All remittances and all books sent will be at the purchaser's risk.
喓 On receipt of the price, the books ordered will be sent by mail, unless other directions are given. Those who desire o have their packages registered should nd the registration fee,
The safest way to remit money is by postal order or bank check to order of Mund \& Co.
䠔 ${ }^{\circ}$ catalogue furnished on application.

Address MUNN \& CO
361 Broadway, New York,
Publishers of the "Scientific American."

Spons, MECHANICS' OWN BOOK. A Manual
for Handicraftsmen and Amateurs. 8vo. 1,420 illustrations.................... 5 .
Spons, workshop REEEIPTS. For the Use

 $\underset{\sim}{\text { Second }}$ SERIES,-Industrial Chemistry;

 Third SERIRs: Alloys, Electrics, Enamels and
 Sratson.-CASTING. AND FOUNDING: A
 Measures of Heat: Thermometers and PyroEngines, Fans and Blowers; Paternss. Materials
unsed in Moulding Moulding Chill Castin; Malle-
able
 dryi Bronze Fine Art Wort; Statue Foundin-;
Beli Founding Cleaning and Dressing Found:
ings. Examples of Foundries

 thoroughly practical work, with 24 plates of
working dra wings....................50

 ing, Inlaying, Lacquering, French Polish, etc.
12mo................................ Stonehenge. DOGS, THE, OF GREAT BRI-
TAIN, AMERICA, AND OTHE COUNTIES
Their Breeding Train Their Breeding. Training, and Management in
Healtanadisease Contanoverone Hundred
Beautiful Eneravings, embracing most noted Dogs in both Continents. maracing most noteter with
Chapters by American Writers, the most wom-
piete Do plete.Dog Book ever published. 12 mo , clom- $\$ 2.00$ Streeter.-PRECIOUS STONES AND GEMS.
 Svedelius. -CHARCOAL BURNING. By.
Svedelits. A Handbook for Workmen..... $\$ 1.50$ Swifl.-TELEGRAPHER, THE PRACTICAL.
 and most sunccesstul b
pages, 108 illustrations.

In this issue of the Screntific American were from negativestaken on

\mathcal{W} Hvertisements.
 ningravings may head advertisements at the same rate
per line, by measureniont, as the letter press. Adver tisements must be received at publication ofice
as Thursday morning to uppear in next issue.

Here is something which will not disappoint you. It
will cut iron as other saws cut wood. One blade, withwill cut iron as other saws cutwood. One blade, with-
out fliling, will saw off a rod of half-inch iron one hun-
dred times dred times. The blade costs five ecnts. Files to do the
same work would cost ten times as much. same work would cost ten times as much.
Men in every calling will have them as soon as they
know about it. We guarantee full satisfaction in ail cases. One nickel-plated steel frame and twelve saws
sent by maii prepaid on receipt of $\$ 1.50$, Hardware
dealers will furnish them dealers will furnish them at the same orice.
Millers Falls Co., WHAT THE BAKER CAN GET OUT quastion as to how much a reduction of 25 per cent. in
Hheat has
tenefted the consumer contained in SCIENTIFIC AMERICAN SUPPLEMENT, No. 4 G4. Price
10 eents. To be had at this ofice and from all news
dealers.

HIW IOHNS RABPESTOS*

Steam Packings, Boiler Coverings,
Fire Proof Paints, Cements Etc. Fire Proof Paints, Cements, Etc,
Samples and Descriptive Price Lists Free. W, JOHNS MF'G CO 87 MADEN LANE N. 175 Randolph St., Chicago; 170 N. 4th St., Philadelph

DRAINAGE.-A SERIES OF VERY
 CHOLERA.--ABSTRACT OF A PAPER Dy Dr. F. H. Hamilton, presenting the various facts that

ICE-BOATS - THEIR CONSTRUCTION

Abstract

roulame wint in HARRiginal and Only Builder of the HASE, With Harris Pat. Improvements, from 10 to 1,000 H. P. Send for copy Engineer's and Steam User's Manual. By J. W. HIII, M.E. Price \& 1.25 .

"VULCAN" Cushioned Hammer Steel Helve, Rabber Cassions, truesquare. elastic blow
w. P. DUNCAN \& CO.,
Bellefonte Pa., U.

PATENTS.
MESSRS. MUNN \& CO., in connection with the publication of the SCIENTIFIC American, continue to ex-
amine improvements, and to act as Solicitors of Patents for Inventors.
pe ience, and now have unequaled facilities for years' ex aration of Patent Drawings, Specifications, and the prosecution of Applications for Patents in the United
States, Canada, and Foreign Countries. Messrs Munn \&
Co. also attend to the preparation of for Books, Labels, Reissues, Assignments, and Reports on Intringements of Patents. All business intrusted to
them is done with special care and promptness, on ver reasonable terms.
A pamphlet sent free of charge, on application, con-
taining full information about Patents cure them; directions concerning Labels, Copyrights Designs, Patents, Appeals, Reissues, Infringements, As signments, Rejected Cases, Hints on the Sale of PaWe also send, freeof charge, a Synopsis of Foreign Patent Laws, showing the cost and method of securin MUNN \& CO., Solicitors of Patents, 361 Broadway, New York.
ORANCH OFFICE.-Corner of F and 7th Washington, D. C.

PATENT RIVETED MONARCH RUBBER BELTING.
Best in the wromid.
Specially adapted for PAPER MILLS, SAW MILLS, and THRESHING MACHINES.
THE GUTTA PERCHA and RUBBER MFG. CO.
Aluminum Bronze, Aluminum Silver, Aluminum Brass,
ETIT IROIN IRIOINERIE,
FURNISHED IN INGOTS, CASTINGS, RODS, OR WIRE. Our Malleable Castings can be made of over 100,000 pounds tensile strentth,
stand corrosive influences, and unrivaled beauty of color. Send for pamphlet.
THE COWLES ELECTRIC SMELTING AND ALUMINUM CO., CLEVELAND, O.

VOLNEY W. MASON \& CO.,
FRICTION PULLEES CLUTCHES and ELEVATORS.

IRON REVOLVERS, PERFECTLY BALANCED, Has Fewer Parts than any other Blower.
P. H. \& F. M. ROOTS, Manufacturers C. S. TOW NSEND, Gen. Agt.,22 Cortland St., 9Deyse
 SEND FOR PRICED CATALOGUE.

The Best in the World.
We make the Best Packing that can be made regardless
of cost. Users will sustain us by calling for the "JENof cost. Users will sustain us by calling for the "JEN-
KINS STANDARD PACKING." Our "Trade Mark" is stamped on every sheet. None
genuine unless so stamped. Send for Price List " B." J ENKINS BROS.,
OTTO GAS ENGINE.

PORTLAND CEMENT. S. .illimechanex

Thie fact that this shafting has tis per cent. greater

ERICSSON'S NEW CALORIC
PUMPING ENGINE, Dwellings $\dot{\text { Por }}$ Conntry Seats
 Delamater Iron Works, C. H. Delamater \& Co.,

EVAPORATING FRUIT
 \qquad

VELOCITY OF ICE BOATS. A COLLEC

Leffel Water Wheels,

 With Important Improvements.11,000 IN SUCCESSFUL OPERATION. FINE ARW PAMPELET FOR 1885 ent free to those intereste
JAMES LEFFEL \& CO., Springfield, olit

1Jacket Mettes,
 CURE ${ }^{\text {fig }}$ DEAF Peck's Patent Improved Cushloned Bar Drums PERFECTLY RESTORE THE HEARING and perform the work of the Natural Drum. Always
in position, but invisible to others and comportable in position, but invisible to others and comfortaan
to wear. All Conversation and even whispers hear
distinctly. We refer to those using them. Send disinctly. We refer to those using them. Send for
illustrated book with testimonials free. Address, F.
HISCOX, 853 Broadway, N. Y. Mention this paper.

THEANFRHANBEH TEREPHANETG 95 MILK ST., BOSTON, MASS.

This Company owns the Letters Patent ranted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787.
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor.
The Scientific American.
THE MOST POPULAR SCIENTIFIC PAPER IN THE WORLD.

This unriv
ontinues t and cientific publication. circulation ever attained by any cientiff publication.
rinted, 'elegantly illustrated; it presents in beautifully printed, elegantly illustrated; it presents in popular
style a descriptive record of the most novel. interesting, nd important advances in Science, Arts, and Manufactures. It shows the progress of the World in respect to
New Discoveries and Improvements, ombracing Machinary, Mechanical Works, Engineering in all branches, ecture, Domestic Economy, Agriculture, Natural History, etc. It abounds with freshand interesting subjects
for discussion, thought, or experiment ; furnishes hunor discussion, thought, or experiment; furnishes hun-
dreds of useful suggestions for business. It promotes Industry, Progress, Thrift, and Intelligence in every community where it circulates.
The Scientipic american should bave a place in every Dwelling, Shop, Offce, School, or Library. Work-
men, Foremen, Engineers. Superintendents, Directors, men,
Presidents, Officials, Merchants, Farmers, Teachers,
Lawers, Physicians, Clergymen, people in every walk Lawyers, Physicians, Clergymen, people in every walk
and profession in life, will derive benefit from a regular nd profession in life, will derive benefft from a regular eading of The Scientific American
Terms for the United States and Cana
$\$ 1.60$ six months. Specimen coples free. Remit by Postal Order or Check.

MUNN \& CO., Publishers,
61 TEX
Scientific American Supplement. The Scientipic american SUPplement is a sepa-
rate and distinct publ cation from 'THi Scientifio AMERICAN, but is uniform therewith in size, every number
 erican Supplement is published weekly, and includes very wide range of contents. It presents the most repartments of Science and the Useful Arts, embracing Biology, Geology, Mineralogy, Natural History, Georaphy, Archæology, Astronomy, Chenistry, Electricity, Light. Heat, Mechanical Engineering. Steam and Railway Engineering, Mining, Ship Building, Marine Enndustries, Sanitary Engineering, Agriculture, Horticulture, Domestic Economy, Biography, Medicine, etc. A vast amount of fresh and valuable information per-
taining to these and allied subjects is given, the whole rofusely illustrated with engravings. . prof usely illustrated with engravings.
The most important Engineering Work
and Manufactures at home and abroad are represented Price for the SUPPI.EMENT for the United Price for the SUPPLEMENT for the United States and
Canada. $\$ 5.00$ a year, or one copy of the SCIENTIFIC AMERICAN and one copy of the SUPPLEMENT, both mailed
or one year for $\$ 7.00$. Address and remit by postal MUNN \& Co., 361 Broadway, N. Y., Pblishers SCIENTIFIC AMEICAN. he Postal Union, the ScIENTIFIC AMcrican facilities of by post direct from New York, with regularity, to subcribers in Great Britain. India, Australia, and all other British colonies ; to France, Austria, Belglum, Germany Mexsia, and all other European States; Japan, Brazh Terms, when sent to foreign countries, Canada excepted, \$4, gold,for Scientific American, one year; $\$ 9$, gold, for both ScIENTIFIC AMERICAN and SUPPLEMENT IO by postal order or draft to order of
MUNN \& CO.. 361 Broadway, New York.

PRINTINNG INNKS:

