
a Weekly journal of practical information, art, science, mechavics, cilemistry, and manufactures.

Sorutifir Ammitam.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors.
published weekly at

No. 361 BROADUWAY, NEW YORK.

o. D. MUNN.

A. e. beach.

TERMS FOR THE SCIENTIFIC AMEIRICAN.

 One copy, one year, postage included...One copy, six months, postage included
Clubs.-One extra copy of The Scientific amkrican will be supplied gratis for every club of five subscribers at $\$ 3.20$ each; additional copies a same propurtionate rate. Postage prepaid.
Kemit by postal order.

MUNN \& order. Address
The Sie
distinct paper from the Scifterican Supplement is a distinct paper from the Scientipic American. The supplempnt
is issued weekly. Every number contains 16 octavo pages. uniform in size is issued weekly. Every number contains 16 octavo pages. uniform in size
with Scirviric American. Terms of subscription for ScpprikMENT
\& 500 , \$5.00 a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all newsdealers throughout the country.
Combined Rates.-The Scientific american and Supplement
will be sent for one year, postage free, on receipt of seven dollars. Both will be sent for one year, postage free, on receipt of
papers to one address or different addresses as desired.
papers to one address or different addresses as desired.
The safest way to remit is by draft, postal order, or registered letter.
Address MUNN \& CO., 361 Broadway, corner of Franklin Street,New Y
Scientific American Export Edition.
The Scientific American Export Edition is a large and splendid peri-
odical, issued once a month. Each number contains about one hundred large quarto pages, profusely illustrated, embracing: (1.) Most of the plates and pages of the four preceding weekly issues of the SCIENTIFIC AMFriand wial, trade, and manufacturing announcements of leading houses Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the wor.d. Single copies, 50 cents. to secure foreign trade may have large and handsomely disp
nouncements published in this edition at a very moderate cost. nouncements published in this edition at a very moderate cost.
The Scientific American Export Edition has a large gua
culation in all conmercial places throughout the world. Address MUNN
$\&$ CO., 361 Broad way, corner of Franklin Street, New York.
NEW YORK, SATURDAY, OCTOBER 10, 1885.

TABLE OF CONTENTS OF

the scientific american supplement

 No. 510,For the Week Ending october 10, 1885.
Price 10 cents. For sale by all newsdealers.
CHEMISTRY, METALLLURGY, ETC.-Ozokerite; its Nature and Propertit
graving.
raving. ..
Magnetic Separation of Minerals at Oberlahnstein.-By M. 0. haberle.................
I. EXGineeriva, ETC.-
Compressed Air Motor
 Distribution of power to 1 onses hy Raref
The Forth Bridge.-By THos. C. CLARKE..

The Car Coupler Trials at Buffalo, N. Y. -2 The Car Coupler Trils at Buffalo, N Y - - - full.................. | ings.... |
| :---: |
| The |

The Clinograph or Borehole Test.-Scotchman's United Mine.The phials or clinostats.-The clinometer or recording instrumen On the Constructione-Core extractor
Wheels.--By Prof. C. W. MacCord
Comparison of Great Guns
III. TECHNOLOGY.-How to Prevent Curling of Unmounted Photo

Prints. ..
Some Easy Ways of Making Grain Plates or Surfaces for Photo
Mechanical Printing Proce
Woolens and Worsteds.
The Clarification and Purification of Public Water Supply.- - By
IV. ELECTRICITY, ETC.-Bazin's Rotary Pile.- With engraving...
A High-Pressure Infuence Electric Machine.-Experiments.A High-Pressure Influence Elect
W. HEMPEL.-With engraving....
. ART, ARCHITECTURE, AND ARCHEOLOGY.-The Constitutional Club, Northumberland Avenue, Charing Cross.-An engrav-
ing..
 Clog Almanacs used before the Introduction of Printing.-Seve-

I. MEDICINE, HYGIENE, ETC.-Remember the Skin.-A poem..

 Erysipelas. - Its rapid cure.Nutritive Value of the Diffe

Vil. miscelleaneous.-Phases of American Progress

THE PENNSYLVANIA AEROLITE.

The people of Southwestern Pennsylvania were startled on the 26th of September, by the occurrence of a very unusual phenomenon; an immense aerolite had descended upon them. At first the impression prevailed that the district had been visited by an earthquake or that a terrible explosion of natural gas had taken place, while others decided that a pretty large set of boilers had burst, or that a gigantic blast had thrown down a large mass of rock from some neighboring quarry. Loud detonations were heard throughout ing quarry. Loud detonations were heard throughout a straight line across the country, and causing not a little consternation among the people.
The meteor seems to have passed from the northeast to the southwest, and the noise of its passage, which was variously described as resembling the rattling of heavy artillery over a solid roadbed or as a mighty peal of thunder, washeard over a large area of country in the neighborhood of Pittsburg and to the south. A number of witnesses describe it as an immense mass of fire, fully as large as the largest barns-and Pennsylvania barns, it will be remembered, are noted for their size. A powerful flame of deep red color, which tapered off into a darker tail, seemed attached to the mass. This, however, is stated to have disappeared as the meteor came nearer, and the color of the mass changed to a bluish white, which was maintained as changed to a bluish white,
long as it remained in sight.
A mail carrier on horseback and a farmer who was plowing at the time both describe their animals as being so terrified that they remained perfectly motionless, and could not be persuaded to stir for several minutes after the fiery visitor had disappeared. It finally struck the earth on the farm of Mr. Buckland, in Jefferson Township, Washington County, near the West Virginia line. The stone broke into three pieces, and became partly buried. The color is gray, with streaks of red running over it; possibly from the formation of sesquioxide of iron. The form is irregular, and the dimensions, if correctly reported, are without precedent. It is stated to be from 30 to 50 feet in diameter, but we doubt very much that the statement can be verified. The Gibbs meteorite, in the Yale College Cabinet at New Haven, is noted for its size, but it weighs only 1,635 pounds, and has a length of 3 feet 4 inches, a breadth of 2 feet 4 inches, and a height of 1 foot 4 inches. It came from the Red River.
A still more noted one is the Tucson meteorite, from Sonora, Mexico, which is now at the Smithsonian Institution. It is ring-shaped, and 49 inches in its greatest diameter. The most remarkable masses of which we have any knowledge have been found in South America. One discovered in the district of Chaco-Gualamba was estimated to weigh 16 tons, and another found near Bahia, Brazil, to contain 28 cubic feet, and to weigh 7 tons. These weights and volumes would, however, be quite dwarfed by a comparison with those reported still a little romance attached to these accounts, and the true dimensions will not be reached until later. An odd superstition clings to meteors, and many who witnessed this remarkable one were inspired with the dread belief that it brought with it a spirit of pestilence and famine; but if these people would only call to remembrance the wide prevalence of meteoric visitors, they would conclude that the most persistent spirit which their imagination could attach to them must be quite exhausted by this time. Dr. Kleiber of St. Petersburg has calculated that 4,950 pounds of meteoric dust fall to the earth every hour, which would make 59 tons a day, or more than 21,500 tons in a year, while Professor Proctor thinks that even this estimate is too small. Yet very little damage is done by the fall of these "air stones," for the most of them fall upon unoccupied ground or into the sea. Relic hunters are reported to be already at work and carrying off the meteorite by piecemeal. This seems to indicate either that the mass was very much shattered by its fall, or that it has a large predominance of stony matter, which would enable fragments to be broken off; for the most accomplished vandal would find difficulty in securing a souvenir from a piece of meteoric iron.

GRAPHICAL COMPARISON OF PERFORATION FORMULE. In connection with the Board on Armament of Fortifications, Major W. R. King, of the Corps of Engineers, U. S. Army, has compiled a comparative table
of all formulæ relating to the perforation of armor plating; and in order to show at a glance the relative values obtained by using the different formulæ, has plotted the results to a uniform scale. As this sheet gives information of some interest to engineers, it has been published by the government and distributed to the different members of the corps. The two axes in the diagram represent the thickness of the unbacked wrought iron plating in inches, and the energy in foot tons per inch of shot's circumference, so that the resulting curves at any point show the valu
from the formulæ of different authorities.

They display wide discrepancies, and, indeed, the variations in the quality of both the shot and the plate
used by the investigators are such that it is quite impossible to obtain any general formulæ which are entirely accurate. The present graphical method has the advantage, however, of showing these conflicting results with admirable clearness, and it may be valuable in helping us to reach more uniform formulæ by calling attention to the existing confusion, and the need for further and more careful experimentation.

CURIOUS FEATURES OF THE ELECTRIC LIGHTING BUSINESS.

The business of the voltaic are light companies may be said to furnish additional evidence of the credulity of human nature. The picture presented by hundreds of sub-companies spread over the country, living on prospects rather than profits, stimulates the observer and invites the analyst. At the recent meeting of the National Electric Light Association, it was not difficult to see in which direction the profit lay. Those engaged in selling light exhibited the unmistakable evidences of depression, while their fellows who confine their efforts to the sale of electric lighting plant were correspondingly elated and huogant.
The first discussed economical processes with an interest that was profound and serious, as though their only hope of profit lay in a reduction of running expenses, while the second looked on with ill-concealed indifference.
To those who have had the time and inclination to tudy the electric lighting business, this will not be surprising. They will have discovered that there is an immense profit in electric lighting plant, and but little, if any at all, in the sale of the light. Like glucose, the electric lighting plant business is advertised but little; the private circular having been found to be the nost judicious method of reaching purchasers.
Go into the office of one of the so-called parent companies, and talk about electric lighting plant, and you will be astonished by the prospective profits of light selling. It will be proved to you with mathematical precision that few modern enterprises offer such a large margin of protit as the operation of an electric lighting plant. But if there is so much profit in selling the ight, why don't these companies go into the business themselves? Why do they confine themselves to selling plant? You will scarcely fail to be struck with this when hearing the plant people talk on the subject of light selling.
Last week two large electric lighting plant com panies were consolidated. One of these companies only two years ago had a little office in Union Square, before which a single are light hung suspended. This was rarely lighted, as if the dispensing of arc light was a luxury far too costly to be indulged in by any but sub-companies.
This company has now a great factory in New York city, where large quantities of lighting plant are manu factured for those provincial projectors who are possessed of robust bank accounts and adamantine credulity.
Fortunes have been made in arc light apparatus, but he only people who have profited, thus far, from the ight itself are the gas companies, because its brilliancy o pales the gas jets by comparison that gas consum ers, in order to counteract its influences, are forced to turn on more burners and use more gas.

STUDENT MECHANICS.

The most ardent supporters of technical schools dc ot claim that they can supersede the workshop; but they do claim, properly, that the inexperienced boy can obtain in them a general knowledge of the charac ter of materials, the methods of working the... ad the reasons why these methods differ. None older mechanics ever regret the smattering of theoretical knowledge of natural laws that they obtained at school from the meager instruction afforded by the text book on natural philosophy; and in after years some of its statements-mere commonly known axioms-have been easy to quote, and beneficial to heed. Book knowledge on practical subjects may be useful, even if it does not teach the handling of tools and the best methods of doing a job. As a preliminary to the shop novitiate, the technical school is a wonderful helper.
Sometimes boys of fourteen or fifteen see clearer than do their elders the possible advantages of a theoretical mechanical education; but no experienced mechanic can visit one of our modern technical schools without feeling that he was a loser because they were not in his boyhood days, and that he had no opportunity for the advantages which they unquestionably give to the embryo mechanic. Such a school is a means of guiding the young man to the choice of an occupation; mechanical bent, discouraged at home, is given room for development. Occasionally, however, parent has the wisdom to help the son in his inclination.
An instance in illustration is that of a boy of fourteen, left by his father, a prominent government official, with a considerable fortune. He shows a decided taste for mechanics, is provided by his sensible mother with a home workshop used in vacations will leave
his grammar school for a technical school at the expiration of his course, and will be graduated from thence -if events are fortunate-to a workshop; so, instead of going into a " genteel" profession, he will become a useful mechanic.
A college professor in an Eastern State "releases his mind" by employing himself in a workshop in his attic. He has placed many articles of elegant and useful furniture in his house, which are the work of his own hands, and are admired by all who visit at his house. By the connivance of his wife, broken chairs, leaky tinware, dilapidated toys, and similar articles are gathered from the neighborhood to delight the sedate and learned professor, who revamps them as an amusement. He said in conversation, a short time ago, that if the technical school had existed in his callow days, he would have been at the head of a mechanical shop instead of a professor in a college, and he thought he might have been a more contented man.

A NEW STAR WITHIN A STAR CLOUD.

A star has given an answer to the theory, complacently repeated long after it has been disproved, that the nebulæ or star clouds are external galaxies. The entire aspect of the star-strewn heavens may in a sense be said to be altered by the appearance of a star-
though it be but of the eighth magnitude--in the heart of the great nebula in Andromeda. At once we see that all the varied glories of the star depths, giant suns and suns like our own, isolated suns, and groupings of minor suns, all forms and orders of star clouds, are as certainly part of the glory of our own galaxy as all the varied orders of planets are of the realm over which our sun bears sway. Stars have appeared ere now in the midst of nebulous masses; but these masses have in every case of the kind, thus far, been gaseous. The Andromeda
nebula, whatever be its actual constitution, is not a nebula, whatever be its actual constitution, is not a
great mass of luminous gas. It is not one of those nebulæ that like the great "fish mouth nebula in Orion," bulæ that like the great "fish mouth nebula in Orion,"
the still vaster "keyhole nebula in Argo," or the "lover's knot nebula in Dorado," have given evidence, under spectroscopic serutiny, of being great self-luminous masses of hydrogen, nitrogen, and some other as yet undetermined gas. Instead of the three or four bright lines into which the light of the gaseous nebulæ is resolved by the spectroscope, the light of the nebulæ in Andromeda gives a spectrum like that of a star or dark lines, and only differing from the spectrum of a star in showing rather stronger absorption near the red end than is usual in stellar spectra.
In the midst of this great mass of stellar material, how distributed we know not, a new star has suddenly made its appearance. I was about to say that this new star came into existence but a few days ago. But who shall say how old the news really is that the light rays from the Andromeda nebula have recently brought us? From even the nearest star, light takes $31 / 2$ years to reach us, from Sirius 20 years at least, and from the great majority of the stars that deck our skies, hundreds of years. It may well be that the outburst, or whatever other change it was, which has made the new star visible to us occurred a thousand years ago; for assuredly the greater number of the stars which shine no more brightly than this new one does (stars which the keenest human vision cannot see) lie at distances which light could not traverse in less than a thousand years. It is as thus viewed perhaps that the study of the great nebula in Andromeda acquires chief interest; the nebula lies at so immense a
distance that it must be inconceivably large. Putting distance that it must be inconceivably large. Putting it is many times farther away-its volume must exceed many thousands of times the whole domain of the many thousands of times the whole domain of the
sun. If the orbit of the distant Neptune encircled like a belt a gigantic sphere, whose whole surface shone with the same intrinsic luster as our sun's, that monstrous orb, removed to the distance of the Andromeda
nebula, would look no larger (though of course it would nebula, would look no larger (though of course it would
look far brighter) than the nuclear heart of that star cloud. The nebula must have a volume measurable only by billions of trillions of cubic miles of space. Be it remembered that this estimate of the extent of the region occupied by this wonderful nebula is far short of that which had to be adopted by those who accepted the usual account of the nebula. For, according to that account, the nebula in Andromeda does not lie within the galaxy at all, but thousands of times farther away than the remotest parts of our stellar system. It is in fact, or rather was, according to that account, a galaxy itself, reduced by vastness of distance to the appearance of a mere faint fleck of misty light on the dark vault of heaven-a fleck barely to be seen by the unaided eye.
Hereafter, of course, the great Andromeda nebula can no longer be so regarded. The change involved by the appearance of the new star in the midst of a nebula which under the most powerful telescopic scrutiny had shown no trace of a star, would be too stupendous to be regarded as possible, or even conceivable. We can imagine that when a new star shone
suddenly forth in the Northern Crown in 1866, as-
tronomers in some remote part of our own galaxy might have recognized the new star, as we did, who are
near the middle of the galexy; we may even conceive that astronomers living in some outlying galaxy, if armed with telescopes to show individually all the thousands of millions of stars in our stellar system, might have noted that new star as one added to those countless millions. That would be supposing such astronomers much keener sighted, and much readier at counting multitudinous points, than any astronomers who have yet appeared on this earth. But that would not in the slightest degree resemble what our astronomers have recognized in the Andromeda nebula. There they have seen a star, visible with very small telescopes (Argelander's 21/2 inch telescope showed stars down to the tenth magnitude), making sudden appearance in the heart of a star cloud which had been scru-
tinized'with the most powerful telescopes yet made by man, without any trace of a star being discovered in it. It is as though in the heart of our galaxy there should suddenly appear a star outshining all the other stars hundreds of thousands of times.

We are compelled, then, to assume that no such change as this has taken place. What has happened has manifestly been simply that, in a star cloud forming part of our own galaxy, a change has taken place by which a star, probably no larger than those minor suns which form the wealth of the Milky Way, has made its appearance. Possibly the star will be found to last but for a short time, like the one which shone out in the Northern Crown as a second magnitude star, and that other which but a few years ago blazed suddenly forth in the Swan-to fade out again, not like the former into a faint star such as it had before been, but into a bluish globe of gaseous matter, in fact, into what is called a planetary nebula.
One conclusion which has been drawn from the appearance of the new star in the midst of the Andromeda nebula, I venture to regard as entirely erroneous. It has been said that the phenomenon confirms, if it does not establish, Laplace's theory of the origin of our solar system from a great mass of rotating gas.
If any occurrence in the star depths could possibly shake men's faith in that theory-or rather speculation, for so Laplace regarded it-the sudden appearance of a new star in the midst of a mass of stellar matter should do so. A theory which has been accepted by astronomers under the mistaken idea that there are no physical objections against it, and by physicists under the equally mistaken idea that observed astronomical facts absolutely require it; a hy pothesis according to which a mass of gas, far rarer
than hydrogen at atmospheric pressure (nay, almost infinitely rarer), and having a span of about six thou sand millions of miles, rotated for millions of years as a coherent whole-such a theory may be expected to retain vitality under almost any conceivable shock. Otherwise, assuredly the discovery that sudden and rapid changes, not the inconceivably slow changes
imagined by Laplace, affect star clouds, of enormous size, might be expected to destroy men's faith in an idea which its celebrated author never regarded as more than a guess, and which with the knowledge of physical laws possessed in our time should have been long since rejected as obviously erroneous. Whatever light the further telescopic study and the spectroscopic study (yet to be begun) of the new star and
of the changing nobula may bring, I venture to express confident assurance that the nebular hypothesis of Laplace will not be confirmed. If the change in the Andromeda nebula throws any light at all on processes of evolution, it will rather be on those by which the galaxy reached its present condition than on those belonging to the past of our solar system. We are beginning to recognize in the architecture of the galaxy evidence of processes by which regions of space incomparably vaster than the whole domain of the sun are affected, or have been affected in the past, under the action of forces which seem to have a different character from any whose operation we can follow within the solar system. We see that isolated suns tions of minor stars in other directions. and the nebulæ elsewhere again; precisely as, within the solar system, we have the giant planets, the terrestrial planets, the asteroids, the systems of satellites, and so forth, each occupying their appropriate domain. It may well be that in the study of local changes still going on, some light may be thrown on long past processes by which the stellar groupings attained their present form.

Suit about a Chimney.

A dispute has arisen between the Bridgeport, Conn., Water Company and the Bridgeport Paper Company regarding the ownership of a chimney which both have jointly used for many years. The paper company wish to pull down the chimney and build a larger one, and on Sunday they began to pull it down, but were restrained by an injunction signed by "Judge Granger, of the Superior Court. The water company claim that they cannot do without a chimney, even for a single day, as more than 40,000 people depend upon
the company for a sunply of water.

France has some 19,000 miles of railroads. The scientific spirit of this nation, says a London paper, is shown by the fact that their trains pass to the left of each other, and not to the right. We go to the right in our wagons and trains, probably from having confounded the moral meaning of the right with the physical right hand. We say, do right, and therefcie we go right, whereas we would do right if we went left. You drive your horse sitting on the right of him, and therefore the man who has to pass you on the right is partly hidden from you by your horse's head. If you sat on the left you would see the man on your right, and if he sat on the side nearest to instead of furthest from you, he would not have half the trouble he now has. The French, therefore, is the left-eyed nation. Passengers get out of the trains on the left hand side. The government taxes every ticket sold by a railroad since the late war. The trains are classified, and only high class passengers-those who nay the highest fares -go on the fastest trains. We have copled from the French our late system of shutting the passengers up in the station until the train is ready, and they can go through the gate and show their tickets. French travelers are allowed only two-thirds of 100 pounds of baggage free; those who are going outside of France are allowed only 55 pounds. The railroad charges for entering the baggage or booking it. We have already
adopted the French plan of collections on packages left adopted the French plan of collections on packages left at the station, but the French only charge one penny, while we charge two. All the railroads in France'are run on Paris time.

About Fig Trees.

'Will fig trees that are planted out in the garden bear better than those that are grown in boxes, and wintered in the cellar? How deep should they be planted? And in burying for winter, should they be first covered with straw, or with earth only?"
Wm. Falconer answers the above query in respect to the culture of this delicious fruit in the American Garden as follows:
Fig trees planted out bear better than those in boxes, and with far less trouble. You are more certain of a crop from young plants that are grown in tubs or boxes that you would be from the same sized or aged plants that are planted out, but the out-door plants can become large bushes, hence have more fig-bearing wood than box-grown ones. All the care the out-door fig trees need is to bend them down and peg them flat to the ground, and bury them about a foot deep with earth in the fall, and unearth them again in spring. My neighbor, Mr. Barlow, on Long Island, gets enormous crops off his fig trees treated in this way.
When planting fig trees, plant as you would any other bush or shrub; shake the earth from the roots and spread them out. There is nothing delicate about the rooting of a fig tree. It roots easily.
In burying for winter, use earth only. Straw or litter would be cozy winter quarters for field mice, and peeling the fig trees capital amusement for the mischievous rodents.

Duty of coal.

Notwithstanding the well-known imperfections in all appliances for utilizing the full amount of energy which is due to the combustion of coal, both on land and water, the great improvements in that direction which have been made during the last quarter of a century are indeed remarkable. A single example, for instance, is afforded in the case of the steamer Burgos, built especially to carry cargoes cheaply at a low speed, and which left England for China with a cargo weighing $5,600,000$ pounds. During the first part of the voyage, from Plymouth to Alexandria, the consumption of coal was 282,240 pounds, the distance being 3,380 miles; the consumption per mile was, therefore, only 83.5 pounds, and the consumption per ton of cargo per mile, 0.028 pound; in other words, half an ounce of coal propelled one ton of cargo per mile. It is further stated that the best locomotive performance in this country shows a consumption of about two ounces of coal per ton of freight hauled one mile, at the rate of 13 miles an hour, including stoppages; on lines having grades of from 53 to 70 feet per mile, the consumption often rises to five or more ounces.-N. Y. Sun.

Manufacture of Aluminum by Electrolysis.

La Lumiere Electrique says that Mr. L. Senet has devised a new process that permits of obtaining aluminum, as well as copper, silver, etc., by electroaluminum, as well as copper, silver, etc., by electro-
lytic way. A current of from 6 to 7 volts and 4 ytic way. A current of from 6 to 8 volts and 4
amperes is made to act upon a saturated solution of sulphate of aluminum in the presence of a solution of chloride of sodium, the two solutions being separated by a porous vessel. There forms a double chloride of aluminum and sodium, which is decomposed; and the aluminum that is set free deposits upon the nerative electrode.
The process may be applied either for obtaining deposits of aluminum upon any objects whatever, or. what is more important, for the cheap manufacture of the metal.

AN AUTOMATIC WAGON BRAKE.

Fig. 1 is a plan view, and Fig. 2 is a vertical section of an automatic wagon brake invented by Messrs. Minor Cartmell and Nelson Bayless, of Urbana, Ohio. Attached to the hub of one hind wheel is a gear wheel, which engages in front of it with a wheel on a tapering shaft carrying a barrel correspondingly tapered to fit snugly on the shaft. On the opposite end of the shaft is a ratchet wheel, and on the like end of the barrel is another ratchet wheel; the teeth of these wheels run in opposite directions to one another. The frictional hold of the barrel on the shaft is regulated by means of a nut. A slotted drawbar having reversely arranged ratchet teeth on its upper and lower jaws is arranged to engage with the ratchet wheels on opposite sides of the shaft and barrel. The brake beam is connected with the drawbar by an adjustable coupling pin. When the wagon is on a level, the teeth on the upper and lower jaws of the drawbar do not engage with either of the ratchet wheels; and the drawbar is held in such position by a weighted pendulum.
When the wagon is traveling forward, the shaft has a backward rotation; and when the wagon strikes a down grade of sufficient declivity, the pendulum swings forward and a crank on the shaft to which the pendulum rod is attached drops the drawbar into engagement with the ratchet on the barrel, which draws the brake beam with its shoes against the wagon wheels. When the wagon passes to a level, the pendulum swings back to an extent that, by the aid of the crank, disengages the upper jaw of the drawbar from the ratchet on the barrel, but not sufficiently to engage the lower jaw with the ratchet on the shaft. Suitable springs act upon the brake beam to remove its shoes from the wheels. When the wagon strikes an up grade, the pendulum swings back far enough to cause the crank to raise the drawbar, so that the teeth on its lower jaw mesh with the ratchet on the shaft; but, owing to the direction of motion of this ratchet and the arrangement of its teeth, the ratchet will slip over the teeth on the jaw, and fail to slip over the teeth on the jaw, and fail to
operate the drawbar until the wagon stops and makes operate the drawbar until the wagon stops and makes
a slight backward movement, when the shaft, revolva slight backward movement, when the shaft, revolv-
ing forward, draws the brake against the wheels. The forward motion of the wagon again releases the wheels. By adjusting two cut-offs which limit the swing of the pendulum, the wagon can be backed on either an up or a down grade. When the wagon is passing over light grades, or when the roads are heavy, the mechanism can be adjusted so that the brake will not act. A hand lever is provided for locking the wagon when on a level, should the driver desire to leave his team una level, should the driver desire to leave his team un-
tied. This wagon brake accomplishes all the work required of such a device, and in its control of back action is of much value on long grades when applied to heavily loaded wagons, as the driver can rest his team whenever necessary. As the brake is carried by the running gear, its working is not interfered with by

CARTMELL \& BAYLESS' AUTOMATIC WAGON BRAKE.
the removal of the wagon box. The brake is simple, and can be strongly and durably built.

Spontaneous Combustion from Coal Dust.

The conclusion has been reached by M. Fayol that the absorption of atmospheric oxygen by coal dust usually produces the rise in temperature to which spontaneous combustion is due. He finds that lignite is ignited at the low temperature of 300 deg ., anthracite at 575 deg., and other varieties of coal, in powdered form, at intermediate temperatures.

WACKERMAN'S IMPROVED SNOW PLOW.

The engraving represents a snow plow adapted especially for use in clearing railway tracks, although it may also be used for clearing paths over common roads. The plow is made with concave mould boards, joined at their forward ends and diverging backward, and secured to a platform which inclines downward and forward, and has a square end; these parts are supported by a frame of wood or iron bars connecting the plow to the front of a locomotive, or the front of a traction engine or wheeled vehicle when common
can be so made as to throw all the snow to either side of the track, or to divide it evenly, as represented in the engraving. All the parts of the plow are simple, and are so arranged as to facilitate repairing; the machine can be strongly and durably built.
This invention has been patented by Mr. Joseph Wackerman, of Warren, Pa.

Loads on Roofs.

The load to which a roof is exposed is of two kinds first, that due to the weight of the materials; and sec ond, that due to the wind, or its vertical pressure. The first increases with the span, and must be estimated from tables of the weight of the materials used. In the second category the vertical component of the wind has to be considered, calculated about 40 lb . per square foot. For ordinary roofs the following data have been given per square foot: 5 lb . for weight of truss, 5 lb . for purlines, etc., 10 lb . for slate, and 36 lb . for wind, making a total pressure of 56 lb . or $1 / 2$ cwt., about 1-40 ton per square foot. For very large roofs these figures ought to be increased, and we may usefully refer to the figures used for the St. Pancras station roof, as given by Mr. Barlow. Here the total estimated pressure, exclusive of the weight of truss, was taken at 80 lb . per foot, and this was made up as follows:
The truss, 10 lb . per square foot, covering $36 \mathrm{lb} .$, wind 34 lb . The calculation of the strains can be obtained by analytical or graphical means, both of which methods are described in handbooks which treat of these matters. It is convenient to suppose this total load concentrated at certain points, such as the foot of rafter, the apex of roof, and a point midway between. Whatever the weight may be on each rafter, half of it will be discharged at each of the two extremities if we regard it as a rigid beam. But if we divide the length, the middle or purline point will receive double the share of weight discharged at the foot. There will, in fact, be equal weights at the apex and the purline point, but half only at the foot of rafter. In short, at the apex and purline point the loads
roads are to be cleared. The rear part of the shovel plate is bolted rigidly to a bar of a frame supported by the bed plate, so that its rear end overlaps the for ward end of the bed plate; and the front shovel plate -preferably made in three sections in a railway snow plow-is hinged to the forward edge of the rear plate, and rests upon the front bar of the frame. To a series of arms projecting backward from the rear bar of the frame is fixed a curved bar (shown in the inverted view of the plow), which bears against guide and anti-friction rollers. With this construction the shovel plates and frame are supported by the bed plate, and are at liberty to turn bodily to either side as the curved bar moves over the rollers, to allow the machine to turn curves more readily without damage to the plow runners. The forward ends of the runners are pivotally connected to the front edge of the forward shovel plate by pins; the rear ends of the runners have slots through which passes a rod held at both ends in hangers fixed to the bed plate. One or more of the central runners have their slots open at the back ends; this allows these runners to be removed, as may sometimes be necessary when the ballast is high at the center of the track.
To the outer edge of the forward shovel plate, at points between the runners, are fixed upwardly curved guard bars, which serve to lift the shovels above any obstacles that may chance to lie in the path of the plow between the runners, and that would not be struck by the runners. The rails enter slots made in the shovel plate. The forward shovel plate is made in three separate sections, to allow of independent movement as the various runners meet inequalities of ground or tie surface along the road or track; and to allow the outside runners to be lifted higher at the forward ends than the inner runners, so as to meet and pass over considerable inequalities on the ends of the ties, and also to allow vertical adjustment of the end sections above the center one when it is desired not to cut down the snow quite so close to the ties at the outside of the rails. The end shovel sections are made with two plates held to each other by screws passing through slots. Fixed at the opposite ends of the central section are cutters which make a clean cut through the snow along the tops of the rails. When intended for use on common roads, the shovel plate may be made in one piece and without the rail slots and cutters.
A transversely ranging shaft journaled in the rear upper part of the mould board is so connected with the shovel plates and plow runners as to lift them when it is turned by means of a rod extending from a crank arm at one end of the engine cab. This shaft is also provided with arms carrying | weights, which serve to counterbalance the weight of the shov- particulars can be had from Mr. J. W. Daskam, genels and runners. It will be seen that the mould board ${ }^{\text {eral agent, Stamford, Conn. }}$

BLOWING UP FLOOD ROCK, HELL GATE. The many large and small rocks which originally filled the bend made by the East River in rounding Astoria, were so located as to make all the deep channels extremely tortuous; a great part of these rocks was below
passage, but they were all confined to the removal of the smaller obstructions.
Work upon Hallet's Point, which projected 325 ft . rom Astoria shore, was begun in 1869, by the building of a heavy coffer dam of timber next to the shore. When this dam had been pumped out, a shaft was sunk to a depth of 33 feet, and from this ten radiating headings were started under the reef; these headings were united by numerous cross galleries. The total length of headings and galleries was 7,426 feet, and the roof was supported by 173 piers, each about 10 feet square. There were 47,461 cubic yards of rock removed by the excavation, and 3,676 drill holes, from 2 to 3 inches in diameter, were made in the roof and piers to an average depth of 9 feet. Into these holes was placed a charge of 47,781 pounds of dynamite; the separate charges were arranged in 184 battery groups of 20 charges each. The explosion took place September 24, 1876. This removed one of the most serious obstacles, since vessels coming to New York had no sooner rounded Hallet's Point than they were driven by the rapid current toward Flood Rock.
At the present time Diamond, Coenties, Way's Reef, Shelldrake, Heel Top, Frying Pan, Pot Rock, and Hallet's Point have been re moved to a depth of 26 feet at mean low water; Bread and Cheese Reef has been inclosed, and a stone dike built from Great Mill to Little Mill Rock; in addition, many smaller rocks have been removed, and Flood Rock has been mined, charged with explosives, and only awaits the touch of a button to reduce it to a mass of small broken stone.
In the Scientific American of July 25, 1885, we described the method of mining and drilling Flood Rock; it is only necessary here to give a few points. The

Fig. 8.--INSERTING EXPLODERS IN CARTRIDGES.
 main shaft was sunk to a depth of 64 feet below mean low tide, and from the foot of this rack-a-rock, and is filled with No. 1 dynamite; it is headings were extended parallel with and at right furnished with a common fulminate exploder. The angles to the current; there are 24 of the former and operation of forming a hole in the dynamite cartridge 46 of the latter. The extreme length-parallel with with a stick and inserting the exploder is shown in the the stream-is 1,200 feet, and the width 625 . The roof engraving, Fig. 8. The cartridges are all dipped in oil of this chamber, which has an area of a little over 9 acres, averages about 15 feet in thickness, and is supported by 467 enormous piers. The total length of the galleries is 21,670 feet.
Into the roof and tops of the piers there have been drilled 13,286 holes, 3 inches in diameter and having an average depth of 9 feet; in other words, the rock has been pierced with holes having an aggregate length of over 22 miles. At.the present writing these holes have been filled with rack-a-rock and dynamite, all the buildings and machinery have been removed from the small island, the electrical connections have been made, and a final survey is being made to make sure that no mistake will prevent the successful explosion of what is by far the largest blast ever attempted. The drawing, Fig. 6, is a longitudinal section through the galleries and shafts; it gives also a correct idea of the sloping character of the river bottom at this point.
Fig. 7 represents the cartridges and exploder's. The dynamite cartridge No. 1 is 15 inches long by $21 / 4$ inches in diameter; it is the last cartridge put in each drill hole, and it is so placs, d that its end projects about 6 inches beyond the face of the rock. In the forward or project ing end is placed an exploder which consists of a thin, jumpedup copper shell filled with ful minate of mercury, the open end being pinched together and dipped in solder. No. 2 is the rack-a-rock cartridge with dynamite exploder, shown full size in No. 3. This cartridge is 24 inches long by $21 / 4$ inches in diameter, and holds 6 pounds. Rack-a-rock is a mixture of chlorate of potash and dinitro-benzole ; the ingredients are harmless until united. The mixing was done upon Great Mill Rock, in a lead-lined vat, the potash being made to pass

Fig. 10.-THE ELECTRICAL FIRING APPARATUS.

Fig. 9.-THE FUSES AND FIRING CARTRIDGES IN PLACE through a finesieve, and the ben
to 112°. The filled shells are then placed in compartment boxes and carried to the galleries. At the bottom of each cartridge are four outwardly projecting wires, which serve to hold the cartridge in the drill hole The method of loading the holes was described and illustrated in our issue of July 25, 1885.
The dynamite exploder No. 3 (Fig. 7) consists of a copper tube filled with No. 1 dynamite, and provided with an exploder similar to that shown in No. 1. A cork stopper is placed in the open end of the tube, which is then dipped in glue and a copper cover put on. This exploder is pushed a short distance No 2.
2. and pitch and then rolled in sand, to protect them from
corrosion. corrosion.
No. 5 shows the mine exploder (shown in position in the mine in Fig. 9), which is a brass cylinder $71 / 2$ inches long by $13 / 4$ inches in diameter, filled with dynamite. Inclosed within the dynamite is a fuse (No. 5), the wires from which pass through a divided cork in the mouth of the brass cylinder. The fuse-shown full size in No. 4-consists of a copper tube nearly filled with 30 grains fulminate of mercury. Fitting within the open end of this tube is a second one containing sulphur, through which pass the two conducting wires, which are held firmly in place by the sulphur. The inner ends of the wires are united by a small platinum wire or bridge. The ends of the wires are then rounded with fulminate, and the two parts are put together, that containing the wires slipping within the other. The entire fuse is then covered with gutta other. The entire fuse is then covered with gutta-
percha. The passage of an electric current through
$\left\lvert\, \begin{aligned} & \text { other } \\ & \text { perch }\end{aligned}\right.$
zole being then added in the requisite proportion. |the wires heats the platinum bridge to redness, when
ments of her rudder was by no means assured. The magnitude of the obstacle thus placed in the path of all commerce between New York city and Long Island Sound can be imagined. Fig. 4 shows clearly the condition of Hell Gate about forty years ago, and gives the depth of water at various points, together with the three main courses.
Naturally, attempts were early made to clear the

The explosive thus formed has 95 per cent the strength the fulminate is exploded.
Each drill hole is nearly filled with rack-a-rock cartridges, space of course being left in the mouth to ooks like moist light brown sugar, a light wooden permit the entrance of the dynamite cartridge. We rammer forcing it gently into place. Whenfilled, a cap thus have each of the holes filled mainly with rack-ais soldered upon each case. The alloy here used is very rock, and from each projects a short length of tube fusible, the soldering cap being only heated, by steam, having dynamite, and in every cartridge is an exploder.

Not one of the cartridges in the drill holes is connected with wires, nor is one to be exploded by electricity.
Extending from wall to wall in each of the galleries and at intervals of about 25 feet, are timbers, 3 by 5 inches, as shown in Fig. 9. Tied side by side upon each one of these timbers are two dynamite cartridges like those already described as filling the mouths of the drill holes. Tied upon each pair of these cartridges is a mine exploder, represented in No. 5 (Fig. 7). The en tire mine is divided into 24 independent circuits, each circuit representing or covering a certain section. Within each circuit are 25 fuses or mine exploders.
A wire from the surface of the rock at the mouth of the shaft leads from one fuse to the next until the 25 fuses are in the same electrical circuit, the other end of the wire, of course, returning to the surface. Each of the 24 circuits has its own wire. The wire circuit is shown at 1 and 2, Fig. 9. We now come to the electrical firing apparatus, shown in Fig. 10. We will suppose one end of each wire of each circuit to be + and the other - . All the + ends are dipped in mercury contained in a cup, and all the - ends in mercury in a second cup. It will be seen that if the mercury in these two cups be united by a wire, we shall have a complete electrical circuit embracing every fuse or mine exploder in the excavation.
Leading from the left hand or + cup is a wire secured to one pole of a battery; and leading from the opposite or - cup is a wire, C , which extends to the bottom of the middle cup, which contains only a little mercury. The wire, B, leads from the other pole of the battery, and is held suspended over the mercury in the center cup. It is evident that, when the wire, B, enters the mercury in the center cup, the circuits through the mine and battery will be completed, and the fuses discharged.
At A is a fuse held to the string carrying the wire, B, by a half hitch. One wire passing through this fuse is grounded, while the other leads to the shore, where it also is grounded; a battery on shore is placed in this circuit. The current through the shore wire explodes the fuse, A, which breaks the cord and allows the wire, then exploded. It will be observed that the wire, B, then exploded. It will be observed that the wire, B,
enters the cup a short distance. This is in order that the mine may be exploded even if anything should happen to the shore wire or battery, or if the explosion of the fuse, A, should fail to break the string holding up the wire, B. The outlet of a vessel containing mercury is placed over the center cup. It has been ascertained by experiment just how long it will take the mercury running from this vessel to fill the cup up to the end of the wire, B. The flow has been so gauged that after all the apparatus has been arranged, there will be ample time for the boat to go from Flood Rock to the shore; then the current will be sent through the shore wire.
Should the shore wire fail, there will be nothing to do but wait until the mercury has filled the cup to the wire, B. The shore connection was devised mainly for the benefit of scientists, who will be located in the vicinity, and who wish to make observations of the vibrations of the earth caused by the explosion. The current will notify them of the exact instant of explosion. The failure of the shore wire would of course deprive them of this most important point, but would interfere in no way, as mentioned above with the firing of the mine

The electrical current will explode the 600 fuses or mine exploders (Fig. 9), when the dynamite cartridges projecting from the drill holes will "explode by sympathy," as it is termed, and these in turn will discharge the rack-arock placed behind them. Each cartridge is rendered more sensitive by the exploder embedded in it. The explosion of the 40,000 cartridges containing 75,000 pounds of No. 1 dynamite and 240,000 pounds of rack-a-rock will completely break up the 9 acres in which they are buried, so as to render easy the final operation of dredging the broken rock. The cost of the improvement is estimated at $\$ 1,000,000$.
The Harlem River improvement contemplates the building of a deep water channel from the East River through the Harlem River and Spuyten Duyvil to the Hudson River, as shown in the map, Fig 11. Above the Third Avenue bridge to the entrance of Dyckman'sCut into the Harlem, the pier and bulkhead lines will be 400 feet apart. The line through rock at Dyckman's Meadows
will be 350 feet wide, and from there to the Hudson 400 feet wide. From Third Avenue bridge to lower part of Randall's Island the width will be 500 feet, and from there to the East River 800 feet wide. Between Morrisania and Randall's Island the channel will be 350 feet wide.
All the work at Hell Gate was designed by Gen. Newton, to whose perseverance, industry, and skill we owe the successful opening of one of the most important entrances to New York; the last operation-blowing up Flood Rock--fittingly completes, by its great magnitude and the rare difficulties it presented, long years of well
directed effort. During the past few years the work at Flood Rock has been under the supervision of Lieut. G. McC. Derby, who has without accident of any kind, or any delay, succeeded in performing one of the most arduous pieces of mining ever attempted. We wish

Fig. 11.-MAP SHOWING HARLEM RIVER IMPROVEMENT
to acknowledge the kindness of Gen. Newton and Lieut. Derby, who furnished us data.

AN IMPROVED WRENCH.

The wrench shown in the accompanying cut has many admirable features-it adjusts itself to either pipe, nut, or stud; owing to the form of the forward or movable jaw, it can be used to fit corners about ma hinery that cannot be reached with other forms of wrenches; and owing to the fact that it has three bearings on the pipe, the latter is not liable to be crushed. The serrated or holding surfaces of the movable jaw are at right angles to each other; this jaw is pivoted in fork projecting from the side of a fixed sleeve on the end of the handle, and a spring presses the holding portion of the jaw toward the end of the handles, which is also serrated. By pressing upon the rear end of the movable jaw bar, the jaws may be opened to their wid est extent. The metal \& best steel) is so distributed as to make those parts which are subjected to the severest strain exceedingly strong. The wrench is easy to handle, exerts a powerful grip, and may be instantly freed from the pipe. It is manufactured in sizes, taking pipe from one-eighth inch to five inches, the smallest

This wrench is manufactured by the Porter Manufacturing Company, of Revere, Mass.; The Eaton, Cole \& Burnham Company, of 82 and 84 Fulton Street, New York city, are sole agents.

An Electric Railway in Toronto

The Vandepoele electric railway was recently put in operation in Toronto, in order to carry passengers from the horse cars to the fair grounds, a distance of one mile. Trips were made in two and a half minutes, and large numbers of passengers were carried nutes, and large nu

The Cunard steamship Etruria arrived at New York August 22, from Liverpool, having made thefastest trip in the record of Atlantic traveling. Time from Queenstown to Sandy Hook, 6 days 5 hours and 31 minutes. The fastest previous passages were made by the Oregon of the same line, and were: Westward, 6 days 10 hours and 10 minutes, just a year ago, and eastward, 6 days 6 hours 41 minutes, in December. 1884. The Etruria's previous trip eastward, reckoning to Fastnet only, was made in 6 days 5 hours and 35 minutes.
Following is a table of the runs made on the different days during the Etruria's last voyage: Run.

Run.	Miles.
Liverpool to Queenstown.	
From leaving Queenstown to noon August 17.	424
24 hours to noon August 18.	464
24 hours to noon August 19.	450
24 hours to noon August 20	465
24 hours to noon August 21.	464
24 hours to noon August 22.	465
From noon to 3:35 P. M. Au	71

Total...
The Etruria is built of steel, has a gross tonnage of 8,000 tons, and upward of 14,000 horse power; her length over all is 520 feet, and extreme breadth 57 feet 3 inches.

Great Carco of Lumber.

Mr. J. K. Ward, the well known Montreal lumberman, gives the following in the Gazette of that city: Probably the largest cargo of sawed lumber that has ever been shipped from Canada left this port to-day per steamship Regius, Capt. Kayll, on account of Bryant, Powis \& Bryant, of London, Eng. It consisted of 1,272 St. Petersburg standard three inch deals, or $2,518,560$ feet board measure, equal to ten large barge loads of 250,000 feet each. If it were in one inch boards it would cover a farm of 60 acres, and require the pine product of say 1,000 acres of ordinary forest land, such as we have to depend on for our future supply. This shipment may suggest to the minds of many the great importance of the future of our leading industry. There is no questioning the fact that our country is fast being depleted of one of its most important elements of prosperity. and that it behooves not only the umbermen and the government, who are directly interested, but also every member of the community, to do what they can by expression of opinion or otherwise to protect that that cannot be reproduced in our day.

Texas Copper Deposits.

According to a Texas newspaper, the copper region of that State is of great extent, running westward rom Red River, from the line of the Indian Territory, through several counties, prominent among which are Archer, Baylor, Knox, Hardeman, and Cottle. The district is approximately in latitude 32 degrees north. with Red River to the north as well as the east, and the Brazos River to the south. The copper deposits were discovered by General George B. McClellan, in 1852. In that year, McClellan, then a lieutenant in the army, was detailed by Jefferson Davis, Secretary of War, to accompany an expedition up Red River into Texas and Indian Territory. While on this duty Lieutenant McClellan found important deposits of rich copper ore near the point where Cache Creek empties into the river, and some miles above it was discovered that Red River flowed through apparently solid beds of the valuable mineral. In the same locality rich gold bearing quartz veins and placers were found, and all the conditions pointed to the existence of a mining district of great possibilities. To complete the romantic history of the discovery of copper in Texas, it is only necessary to add that General McClellan is now, after the lapse of a third of a century, the leading spirit engaged in the development of the deposits. The Grand Belt mines, in which he is largely interested, are fifty miles from Harrold, in Wilbarger county, from which latter point forty wagons are at present engaged in hauling coke to the smelter. The smelter is an experiment, but has a capacity of forty tons per day, and is suitably provided with engine, blower, pumps, etc. All told, the McClellan company's patented claims embrace some 36,000 acres, stretching sixty-five miles along the ore belt. Upon this vast property they have made probably sixty shallow openings of an average depth of seven or eight feet. The ore is found principally in shallow pockets, and at the main point of taking out is said to average about 54 or 55 per cent metallic copper. Some of it is supposed to be very rich in silver. The most promising opening at present being worked by the company is at Kiowa Peak, the center of Motley County, some sixty miles west of Margaret, the county seat of Hardeman County.

Science Leads to Economy of Time and Labor.*
How exultant is the old Greek poet Antipater ("Analecta Veterum Græcorum," Epig. 39, vol. ii., p. 119) when women are relieved of the drudgery of turn ing the grindstones for the daily supply of corn! 'Woman, you wno have hitherto had to grind corn, let your arms rest for the future. It is no longer for you that the birds announce by their songs the dawn of the morning. Ceres has ordered the water nymphs to move the heavy millstones and perform your labor." Penelope had twelve slaves to grind corn for her small household. During the most prosperous time of Athens it was estimated that there were twenty slaves to each free citizen. Slaves are mere machines, and machincs neither invent nor discover. The bondmen of the Jews, the helots of Sparta, the captive slaves of Rome, the serfs of Europe, and uneducated laborers of the present day, who are the slaves of ignorance, have added nothing to human progress. But as natural forces substitute and become cheaper than slave labor, liberty follows advancing civilization. Machines require educated superintendence. One shoe factory in Boston by its machines does the work of 30,000 shoemakers in Paris, who have still to go through the weary drudgery of mechanical labor. The steam power of the world, during the last twenty years, has risen from $111 / 2$ million to 29 million horse power, or 152 per cent.
Let me take a single example of how even a petty manufacture improved by the teachings of science affects the comforts and enlarges the resources of mankind. When I was a boy, the only way of obtaining a
light was by the tinder box, with its quadruple materials, flint and steel, burnt rags or tinder, and a sulphur match. If everything went well, if the box could be found and the air was dry, a light could be obtained in two minutes; but very often the time occupied was much longer, and the process became a great trial to the serenity of temper. The consequence of this was that a fire or a burning lamp was kept alight through the day. Old Gerard, in his Herbal, tells us how certain fungi were used to carry fire from one part of the country to the other. The tinder box long held its position as a great discovery in the arts. The pyxidicula igniaria of the Romans appears to have beennuch the
same implement, though a little ruder than the flint and steel which Philip the Good put into the collar of the Golden Fleece in 1429 as the representation of high knowledge in the progress of the arts. It continued to prevail till 1833, when phosphorus matches were introduced, though I have been amused to find that there are a few venerable ancients in London who still stick to the tinder box, and for whom a few shops keep a small supply. Phosphorus was no new discovery, for it had been obtained by an Arabian called Bechel in the eighth century. However, it was forgotten, and was rediscovered by Brandt, who made it out of very stinking materials in 1669 .
Other discoveries had, however, to be made before it could be used for lucifer matches. The science of combustion was only developed on the discovery of oxygen a century later. Time had to elapse before chemical
analysis showed the kind of bodies which could be added to phosphorus so as to make it ignite readily. So it was not till 1833 that matches became a partial success. Intolerably bad they then were, dangerously incess. Intolerably bad they then were, dangerously in-
flammable, horribly poisonous to the makers, and injurious to the lungs of the consumers. It required another discovery by Schrotter, in 1845, to change poisonous waxy into innocuous red-brick phosphorus, in order that these defects might be remedied, and to give us the safety match of the present day.
Now, what have these successive discoveries in science done for the nation, in this single manufacture, by an economy of time? If before 1833 we had made the same demands for light that we now do, when we daily consume eight matches per head of the population, the tinder box could have supplied the demand, under the most favorable conditions, by an expenditure of one-quarter of an hour. The lucifer match supplies a lightin 15 seconds on each occasion, or in 2 minutes for the whole day. Putting these difference into a year, the venerable ancient who still sticks to his tinder box would require to spend 90 hours yearly in tho producwould require to spend 90 hours yearly in the produc-
tion of light, while the user of lucifer matches spends 12 hours; so that the latter has an economy of $7 ¢$ hours yearly, or about 10 working days. Measured by cost of production at 1 s .6 d . daily, the economy of time represented in money to our population is $£ 26,000,000$ annually. This is a curious instance of the manner in which science leads to economy of time and wealth even in a small manufacture.
In larger industries the economy of time and labor produced by the application of scientific discoveries is beyond all measurement. Thus the discovery of latent heat by Black led to the inventions of Watt, while that of the mechanical equivalent of heat by Joule has been the basis of the progressive improvements in the steam engine, which enable power to be obtained by a consumption of fuel less than one fourth the amount used twenty years ago. It may be that the engines of

[^0]Watt and Stephenson will yield in their turn to more economical motors; still they have already expanded land more than all the battles fought by her soldier or all the treaties negotiated by her diplomatists. The coal which has hitherto been the chief source of power probably represents the product of five or six million years, during which the sun shone upon the plants of the carboniferous period, and stored up its energy in this convenient form. But we are using this conserved force wastefully and prodigally; for, although horse power in steam engines has so largely increased since 1864, two men only now produce what three men did at that date. It is only three hundred years since we became a manufacturing country. According to Professor Dewar, in less than two hundred years more the coal of this country will be wholly exhausted, and in half that time will be difficult to procure. Our not very distant descendants will have to face the problem -What will be the condition of England without coal? The answer to that question depends upon the intellectual development of the nation at that time. The value of the intellectual factor of production is continvalue of the intellectual factor of production is continfuel are lessening factors. It may be that when the dreaded time of exhausted fuel has arrived, its importation from other coal fields, such as those of New South Wales, will be so easy and cheap that the increased technical education of our operatives may largely overbalance the disadvantages of increased cost in fuel. But this supposes that future governments in England will have more enlightened views as to the value of science than past governments have possessed.
Industrial applications are but the overflowings of science welling over from the fullness of its measure.
Few would ask now, as was constantly done a few years ago, "What is the use of an abstract discovery in science?" Faraday once answered this question by another, "What is the use of a baby?" Yet round that baby center all the hopes and sentiments of his parents, and even the interests of the State, which in-
terferes in its upbringing so as to insure its being a capable citizen. The processes of mindewhich produce a discovery or an invention are rarely associated in the same person, for while the discoverer seeks to explain causes and the relations of phenomena, the inventor aims at producing new effects, or at least of obtaining them in a novel and efficient way. In this the inventor may sometimes succeed without much knowledge of science, though his labors are infinitely more productive when he understands the causes of the effect which he desires to produce.

An Architect's Responsibility.

An architect is the chief builder, according to the correct derivation of the word, but his responsibility for the safety, stability, and permanency of works that are being executed under his direction is a different one from that of the real builder. The builder is directly responsible, not alone for accidents which may occur in building operations (all of which he may make good financially), but also for loss of life and his employ if thappen to and through negligence to provide the proper labor and material necessary to carry on the work in safety. It is not always easy to draw the line at the point where an architect's re sponsibility ends and that of a builder begins. There are such. hazy notions prevalent in regard to an architect's superintendence, and the amount of responsi bility it entails, that it is difficult to fix responsibility in any given case. The American Institute did not help matters much by their somewhat elaborate definition of superintendence. In this there was a distinct effort to define the duties of an architect as re gards superintendence, and especially to show that an architect was not a clerk of works, and bound to de vote an unlimited amount of time in superintending. There was nothing, however, intending to fix responsi bility for poor work. This is left, wisely or unwisely, to the parties directly concerned, in case it should be necessary to determine responsibility. It seems to us that a general principle can be laid down which, if borne in mind, might prevent misconceptions. Let it be understood, first of all, that an architect by super-
intendence does not assume what must necessarily always be a builder's risk, i. e., the risk arising from imperfect materials or poor labor. Even if an architect has passed upon a portion of the work which is afterward found defective, the builder is not thereby relieved, and in any event he cannot transfer his direct responsibility for poor work, no matter when or how detected. On the other hand, an architect is
clearly responsible for the result, in case his plans and specifications are strictly followed, and the construction has been according to his directions. If it should transpire in any case where a defect was found, that it was due to imperfect design, poorly conceived planning, or bad construction, either theoretical or practical, we think an architect becomes liable for damages The trouble is, however, to prove that the defect was brought about by any such cause. We speak of
legal proof-of the kind necessary to sustain action
for damages-not of the conviction which every wellinformed man has, after examining into a defect, as to the cause of it. For instance, suppose a building turn out when done to be poorly lighted and ill ventilated, or that the rooms are planned in an imprac ticable manner, or that there are various absurd and crazy features which will entail future expense in repairs, or that there are any features which will not adjust themselves to the practical requirements for which the building was built. An architect is cer tainly responsible for any such mistakes, and yet we have never heard of an action to recover based on them.

A case like the following will illustrate the difference between the architect and builder as to responsibility for a disaster: Suppose a high wall of masonry, where there were tall windows separated by piers, should fall down. The responsibility for this would depend, first, on the question of labor and material being all right; second, as to whether the proper precautions had been used; and third, as to whether the wall itself or through weak piers was unstable according to the plans. If on investigation it turns out that the mortar was poor, or that the stones were poorly bonded, or that the wall was not secured in any way while building-no shoring supports being used-then the builder has to bear the blame and sustain the money loss. If the builder alleges that the architect saw the mortar frequently without remark, and gave no directions concerning securing the wall, and that hence he is also responsible and liable, the claim is not good, and cannot be sustained. It is possible that poor mortar and imperfect work may escape the closest supervision, although, of course, this is not likely to occur with a thoroughly capable superintendent. Even the capable superintendent may be cheated, how ever, in the most ordinary building operations. Hence it is just to hold the builder responsible for any disaster due to imperfect work or materials, even if the super intending architect has passed upon the work that is involved. The principle at stake here is one that finds expression in many contracts, as follows: "Under the superintendence of -_- , architect, who shall have full right at any time to reject such work or material as does not, in his opinion, conform to the truc meaning of the plans and specifications." The words "at any time" are unmistakable in their meaning, but even without them the principle will be sustained, that the safety of the walls is at the solc risk of the builder, as far as ordinary imperfections are concerned. The architect would be responsible for the fall of the wall in case it was established that it was inhorently weak in its design, and that good material and labor were not sufficient to make it stable. The wall might not be thick enough for the height to which it was carried, or the piers dividing the window.s might bc too weak structurally. Any such cause of troublc as this clearly lays the blame upon the architect's shoulders. Further than this, if the materials have been according to specifications, and it is established that they were inadequate to do the work they were called upon to do, the architect must be held liable.
Sometimes an accident occurs where no one is really to blame, and therc is difficulty in fixing upon the person who is liable; at least, there is a disposition to waive responsibility where there is no blame attached. Suppose \approx truss should give way, causing the fall of a roof, and upon investigation it was found that it was owing to a defect in the iron tie rod-a de fect that might have stood the test at the mill, and of such a nature that no one could be aware of it. The builder, feeling that ho was not to blame for the disaster, not unnaturally seeks to ovade financial responsibility, but he is liable to the owner nevertheless, and he in turn ought to recover damages from the peoplc of whom he bought the rod.
To the earnest architect every really important building that he has charge of brings a higher kind of responsibility than the kind we have been discussing. Whether the builder is technically liable or not, the architect is morally liable, and no mishap can ccur without damage to his fame. An architect literally has to entrust his roputation to the builder and his workmen, and the public will hold him strictly responsible, justly or unjustly.-Building.

Alfreis E. Moore, of Winsted, Conn., made a fortysix mile journey in thirty-five minutes in a balloon, the 24 th of September. The trip was made at an average of 6.000 feet above the earth, and rrom this altitude he could see the cities of Hartford, New London, New York, New Haven, and Bridgeport, like mere dots, through the glass. In speaking of his experience, he said: "Balloons, in descending, frighten the crows and poultry terribly. Going over farmhouses, I never
heard such a racket in my life. When you are far up heard such a racket in my life. When you are far up and above the clouds, the awful silence is terrible. You can hear the watch tick in your pocket, and the snapping of a straw hat will make you start. The rushing of blood through your whole body is an experience you vouldn't care to have lost. There is no sensation of noving along, when, perhaps, you are going at the rate

IMPROVEMENT IN SMALL GAS ENGINES

The greatest difficulty experienced by the manufacturer of machinery to be used by everybody is generally with the user. The majority of people are to a great extent unmechanical, at least they have little practical knowledge of the use of machinery, therefore the machinery must suffer. Every wise manufacturer of machinery for general use will be governed by this fact, and, rather than try to educate his patrons, will simplify his machinery, and, so far as possible, will adapt it to existing conditions.
What we have said with regard to machinery in general applies with peculiar force to gas engines, especially

Fig. 1.-GAS ENGINE FOR SMALL USES. of the piston.
b, which directs the igniting flame toward the open end
An exhaust passage, f, in the cylinder head leads to n exhaust valve, consisting of a valve casing, e^{\prime}, and a ylindrical valve, g^{\prime} sliding therein. The valve, g^{\prime}, is noved by an eccentric or cam on the main shaft, through the rod, j^{\prime}. The operation of the engine is as follows: The igniting flame being lit, and gas being allowed to flow continuously through the pipe, l, into the compartment, h, of the air pipe, F, the flywheel is turned, moving the piston, D, outward, forming a partial vacuum in the cylinder, A, into which a mixture of air and gas passes through the ports in the cylinder and piston into the prolongation of the piston, air only entering through the ports, $d d^{\prime}$. When the piston has made something less than onehalf of its out-stroke, the air and gas port is closed by the piston in its forward movement, and the ignition ports, $a^{\prime} a$, coincide when the igniting flame is drawn in and the charge contained by the cylinder is exploded; but before the full force of the explosion is reached, the port, a, in the cylinder is closed by the forward motion of the piston, so that there is very little escape through the ignition ports.
The explosion propels the piston forward and turns the shaft, storing in of the smaller sizes, which, with scarcely an exception, the flywheel sufficient power to do the work required have been quite complex, so much so as to render a considerable amount of instruction of great importance to the user.
We believe, however, the makers of the engines shown in the accompanying cuts have duly considered the necessity of great simplicity in small motors designed to be universally used.
These engines consist practically of but three moving parts-the piston, the crankshaft, and the exhaust valve. The piston does treble duty: first, that of transmitting the pressure generated by the explosion of gas in the cylinder; second, as a valve for controlling the admission of gas and air to the cylinder; and third, as an ignition valve for admitting the igniting flame to the cylinder.
Figs. 1 and 2 show two forms of this engine, which differ mainly in appearance, the working parts being substantially the same in both. The smallest engine made by the Economic Motor Company is that shown in Fig. 1. It is adapted to such small uses as driving sewing machines, dental engines, mechanical signs, small ventilating fans, etc. It is perfectly portable, requiring no water for cooling the cylinder.
The one horse power engine, shown in Fig. 2, is used for a large variety of purposes, including the driv ing of small shops for ng of small shops for metal and woodworking coffee mills, water pump
ing, etc. 'थwo smaller ing, etc. ''wo smaller sizes of this type of engine are made, which are re spectively one-half horse power and one-eighth horse power.
The construction of the engine will be understood by reference to Figs. : and 4.
The cylinder, A, contains a piston, D , having a hollow cylindrical prolongation, D^{\prime}, whose length is a little greater than the stroke of the engine. The forward end of the piston is connected with the crank, C, in the usual way. In one side of the cylinder there is an air and gas port, c, communicating with the air pipe, \mathbf{F}; and below the port, c, there is an auxiliary air port, d, communi cating with a division, G of the air pipe, F. In the side of the cylinder, A, op-| sult of a fresh attempt on the part of Captain Renard posite the port, c, there is an ignition port, a, opposite which is continually maintained the igniting flame by the Bunsen burner, o.
The hollow cylindrical prolongation of the piston, D , has ports, $a^{\prime} c^{\prime} d^{\prime}$, which coincide with the corresponding ports, $a c d$, in the cylinder during both the outstroke and in-stroke of the piston. Within the ignition port, a^{\prime}, in the piston is supported a deflector,

Fig. 2.-SIMPLIFIED GAS ENGINE MADE BY THE ECONOMIC MOTOR CO. and his brother to make the much desired art of bal looning a practical success. Ascents were made from the Camp of Chalais on two different occasions, and though the aerial voyage was short, it was sufficiently successful to satisfy the War Office authorities that the problem had apparently been solved. It is, however stated that the cost of working Captain Renard's balloon is still prohibitive, and that it cannot be controlled
for a long interval of time. On each occasion the balloon rose suddenly in midair, and, after remaining motionless for a short time, pursued a comparatively steady course toward the Point du Jour, about three miles from the starting point. Here a short pause and slight descent were made by the balloon, but it obeyed the steersman wonderfully, and sailed back to the Camp of Chalais, allowing a comfortable descent. It is too much to say that the problem has been solved for the same premature announcement has often been made before; but it is at least encouraging to learn that the aeronauts accomplished a definite journey in place of the aimless wanderings which are the usual record of journeys in the air. It has ceased to be much of a

Fig. 3.-TRANSVERSE SECTION OF GAS ENGINE CYLINDER.

Fig. 4.-LONGITUDINAL SECTION OF GAS ENGINE CYLINDER.
feat to make a simple ascension, but it is still rather novel to have the balloon return to its starting point. In company with Captain Krebs, Captain Renard, it will be remembered, made quite a celebrated voyage from Meudon to Bellancourt and return in the fall of 1884, in which he demonstrated the complete success of his steering apparatus. His balloon was cigar-shaped and pointed at each ex tremity instead of simply underneath, as is usually the case. The car was provided with seats for two aeronauts, and the balloon had a directing apparatus and rudder. The power was furnished by a series of torage batteries of a total capacity of ten horse powr, and the balloon could be operated for four hours at a time. If persistence be a virtue worthy of reward, we may certainly expect the construction of an enirely successful balloon for there are few problems which have secured more careful and persistent eforts in the face of great difficulties than that of aerial navigation. The progress has been slow of ne essity, from our ignorance of the requisite conditions, , been accomplished during been accomplished during
the past two years, and waccess.
A CORRESPONDENT, describing himself as "a country mechanic," writes us of having spliced a wire cable in 1872 , which has been in use ever since, so that at the time of splicing not one in one hundred mechanics who examined the cable could tell where the ends were joined. The job took about eight hours.

Chair elevator for use at fires. The rapidity of elevating firemen with hose to any required point between the basement and roof of the highest building is the chief feature of this remarkably simple device, and renders it valuable to the owner, fire department, and insurance company. Firemen carrying the hose, without exertion on their part, are elevated by the chair to the locality of the fire, without the necessity of awaiting the arrival and placing in pothe necessity of awaiting the arrival and placing in po-
sition of ladders, the entire weight of hose and of the water being supported by the chair. The same applies to the use of the Fire Patrol in carrying their cover to any height in the building. The severe strain and exhaustion now consequent in carrying the hose and covers up-stairs, or raising them on the ladders, is entirely done away with. For rescuing persons and those over come and helpless, it is also very admirable. While it is always ready for instant use, and may easily be

Extending across the chair immediately below the seat is a shaft provided at its center with an arm, in the end of which is pivoted a rod connecting with the foot rest. Rigidly secured to the right hand end of this bar is a handle extending up to within convenient reach of the person in the chair. This handle moves along a curved catch bar, and can be locked at any desired point. Moving this handle forward and downward moves the foot rest downward and brings the brake into action. Thus the rapidity of the descent of brake into action. Thus the rapidity of the descent of
the chair can be perfectly governed either with the hand or feet of the operator, as well as from the street below. The front standards of the frame are curved inwardly as shown in the drawings, and at each corner is a roller to admit of the chair rolling easily along the front of the building and over obstructions.
As the weather will not affect the chair, it can lie
perature was 65 degrees, and on the outside 45 degrees Fahrenheit. If the heat generated by the bees, when the mercury is 10 below, is 65 degrees, what must it be when the outside temperature is 90 degrees? It is in tense, but the bees have a way of reducing it, at least a way of creating a draught and keeping the atmosphere pure.
A number of bees-a thousand or more, perhapsact as ventilators or fanners. They stand, heads down, with bodies at an angle of 45 degrees, and keep the wings in motion. Throughout the hive, on all the combs, up and down, the ventilators keep their fans going. On the alighting board, with bodies pointing from the hive, they fan also. At the entrance of one hive, on a day in August, two hundred and eighty bees, by actual count, were fanuing. The honey gatherer dropped down upon them, tumbled over them, but they kept to their work. Some writers have spoken of

CHAIR ELEVATOR FOR PROTECTING LIFE AND PROPERTY FROM FIRE
brought into operation, it does not mar the appearance of the front of the building.
Its parts are few and simple, and are so arranged as not to become clogged or out of order. The device consists of a chair weighing about fifty-six pounds, made entirely of steel, and operated by means of five hundred feet of steel wire cable capable of raising 3,000 pounds.
Extending across the chair beneath the seat is a Exhaft mounted in bearings formed in the side rungs. At each end of this shaft just within the chair frame is rigidly mounted a small grooved drum; each drum carries a cable passing upward through holes in the seat and in the tops of the arms. By means of this cable the chair can be suspended from any suitable point on the building. The ends of the cable are wound about the drums in the same direction. At the center of the cross shaft is_mounted a large drum, about which is wound, in a direction opposite to that of the cable on the small drums, one end of a cable whose other end extends to the ground, being guided to the drum by passing between two rods uniting the lower front and rear crossbars so as to form a long and narrow slot. In each side edge of this drum is a groove to receive a strap brake; both straps are joined at one end to a bar uniting the lower side rungs, and after passing around the drum are joined to a movable foot rest consisting of a frame pivoted to the lower rear rung of the chair and extending forward so as to support the feet of the occupant. By pressing upon this frame the straps are bound against the edge of the large drum, and by the friction thus.created the revolution of the shaft and the descent of the chair can be regulated.
as shown in Fig. 1, or it may be kept in any room; those made specially for rooms are of very light wood and iron.
The chair is raised by pulling upon the cable passing around the center drum, and when it is necessary to use it to raise a fireman and hose, the center cable is passed through a pulley secured at the foot of the building, and then operated from that point.
All further particulars regard
ing this device can be obtained by addressing the Life the "hum of the hive," as though the hum was the and Property Saving Chair Co., 35 Broadway, N. Y.

The Busy Honey Bees.
A
The full harvest has not been gathered, but every crop, in now in pọssession of a part of the year be. Returns are incomplete but, as far as heard from the yield of honey has been equal to that of an average year. The season has been favorable in greater part although an occasional fall of the mercury has hindered comb building and interfered with the "building up" process. During August, certainly, the beekeeper expects to hear the "mighty hum" of the bees if he be near a hive. If no sound proceeds from a hive in state of the tee weather. Last winter, when the mercury was ten de- ing grees below zero, a thermometer was thrust into a ence to their calling. This will be a fine opportunity cluster of bees. On the inside of the cluster the tem- for young mechanics.

THE CAR COUPLER TRIALS AT BUFFALO, N. Y. The Executive Committee of the Master Car-Builders' Association met at Buffalo, N. Y., on the 15th of September, in order to make a practical trial of the various car couplers which are now in the market. It was its purpose to select those best suited for railroad requirements, and then to watch their record to within a month of the time of the next convention of the Association, so that it could prepare a report, and recommend the universal adoption of one or more of the successful competitors. The committee consisted of representative railroad men, and though their task was not easy, they seem to have accomplished it in a manner which gave general satisfaction to those interested. The conditions required by the
when the cars were brought together sharply. Some confusion existed in regard to the dimensions of a standard link; that used was $101 / 2$ by $13 / 4$ inches inside measurement, but several gentlemen present stated that a link 2 inches wide inside would more properly represent the standard. The second series of tests were made on a $20^{\circ} 20^{\prime}$ curve (282 feet radius), and with the center of the drawbar of one car inches above the corresponding point in the other car. Many couplers which had passed the first trials satisfactorily failed entirely under the conditions of the second. 'The inventors were also required to furnish a set of drawings and specifications of their couplers, giving in detail the cost and weight of tach part, and the total cost of applying the device and a pin which can be set not to couple, but which
tory, but it must be coupled with the old style by hand, which is undoubtedly a disadvantage; otherwise t is automatic.
2. Perry, a Chicago invention, is made of cast iron, has a dead block, and is without a buffer. The pin is supported by a dog, and the link is guided. It also must be coupled with the old style by hand, but is otherwise automatic. It has been in use for two years.
3. Archer, of Albany, N. Y., has a dead block, but no buffer. A long vertical hook inside of the drawhead is substituted for the pin. It is operated by a spring, nd is automatic.
difora, is provided with a buffer, has a loose link

PERRY.

DOWLING.

GIFFORD.

JANNEY.

MoREEN.

THURMOND.

TITUS \& BOSSINGER.

ARCHER.

COWELL.

MARKS.

AUTOMATIC CAR COUPLERS ADOPTED AFTER TEST, AT BUFFALO, N. Y., SEPTEMBER, 1885.
committee prevented many inventors from being represented; but these conditions cannot be called unjustly severe, for they simply anticipated the requirements of every day use. No models or drawings of any kind were considered; it was an imperative condition of the trial that all couplers submitted for examination should be applied to two ordinary freight cars, so that they could be subjected to practical tests. The couplers were first tested on a straight and level piece of track, or, as the railroad men would say, on a level tangent. The points which the committee endeavored to ascertain with regard to each coupler were whether it would couple with the standard link, whether it would couple with its own kind at a slow sneed and also when the two cars were brought together sharply, and finally, whether it could be set not to coup
to a new car, and to a car already supplied with the cannot be removed from the drawhead. It operates ordinary link and drawhead. Forty-six couplers in by gravity, and is automatic. The tests were all satisall were entered for competition, but as four of these factory.
failed to put in an appearance, the total nun ber 5 . Marks, exhibited by C. E. Marks, of Flint, Mich. tested was but forty-two. We are indebted to the employs a long vertical hook raised by an eccentric, in Railroad Gazette for the details of these tests and place of a pin, and is operated by a spring.
for our illustrations. The investigations consumed three days, and after several hours' additional deliberation with closed doors, the committee announced that they had decided to recommend the following couplers for further trial in actual service:

CLASS A.-LOOSE LINK.

1. McKeen, exhibited by T. L. McKeen, of Easton Pa., is constructed of wrought iron and provided with a dead block, but no buffer. The pin is supported by a spring plungar, and the link guided by a patent controller. 'The test of this coupler was entirely satisfac-
2. Thurmond, is also provided with a knuckle, which is locked by a piece sliding forward and downward. Operates by gravity, and is coupled with the old style by hand.
3. Hien, Chicago, is not unlike the Dowling, as it also has a knuckle opened by a spring and locked by a vertihas a knuckle opened by a spring and locked by a vertitory on a curve
4. Janney, Pittsburg, has its knuckle locked by a vertical plunger actuated by a spring. Passed the tests very well.
5. Cowell, has a knuckle locked by gravity, and the drawbar guided by a "boot."
6. Titus and Bossinger, Huntington, W. Va., has its knuckle locked on the outside by a radial cam falling vertically. At lower speeds, coupled rather slowly. It will be noticed that of the forty-two couplers submitted, but twelve were adopted by the committee.
Of these, six link couplers were selected, and six operating in the vertical plane, so that the relative merits of the two main classes may be expected to have a thorough practical test during the months which intervene before the next convention of the Association. It is very hard to obtain uniformity in any line, and in so vexed a question as that of car couplers, where there are about 3,500 patents already issued, we hardly expect to see the entire country settle down to the use of one or even a half a dozen of the prescribed forms. Nor does it seem to us desirable to thus crystallize an invention against further improvement. The necessary interchangeability can easily be obtained by constructing each automatic coupler to couple with the ordinary link, and consequently with its competitors. It is an easy condition to fulfill, and would leave greater independence to both railroad companies and manufacturers.

Natural History Notes.

Seuse of Color in Animals.-J. Graber has investigated the sense of color and illumination in animals. To decide whether animals had a sense of color or of light, he placed them in a box so arranged that qualitative and quantitative rays fell on one or the other of its two divisions, which communicated with one another. Five mammals, seven birds, two reptiles, three amphibians, two fishes, three mollusca, twenty-seven insects, two spiders, and two worms were experimented with. It was found that the sense of color, as well as the power of perceiving light, was much more widely distributed among animals than has been generally supposed. The variations in the sense of color in various animals are very great, but a much greater number of observations must be made before a definite solution of the problem can be obtained.
Origin of the Lombardy Poplar.-According to Mr. Bossier, a botanist who has lately studied Oriental botany, this poplar is a distinct species, which he calls Populus pyramidalis. It is believed by the best authorities to have originated in Persia; some writers, on the other hand, state that it is truly indigenous to Italy; but the evidence, however, we think is strongest in favor of Persia, from whence most probably it was introduced into Italy, where it is now a favorite tree and extensively grown.-The Garden.
Colors of Birds' Eggs.-Dr. O. Laschenberg has recently published an abstract of his investigations on this subject in Zoolog. Anzeig. Some of his conclusions are the following: As has been stated by Krukenberg, the ground coloration originates in a different way from the spots and markings, though both are derived from the blood, and not from special pigment glands. The ground coloring is caused by a transudation through the uterus, which is richly supplied with blood vessels. The spots are formed by particles of pigment which are found throughout the oviduct, and probably arise in the Graafian follicle. The formation of the pigment is no doubt to be referred to a process similar to that which causes the corpus luteum in the ovary of mammals.
Immortality of Unicellular Organisms.-Professor A. Weismann (Biolog. Centralblatt., iv., pp. 577-591, and 650-655) believes that theidea of a senescence of unicellular animals is not tenable.
Physiologically speaking, there is a profound difference between the uni- and multicellular organisms in the fact that the latter only wear themselves out by living, and proceed to a natural death. The unicellular animals are never so modified by the transformation of matter that life becomes impossible. They have no physiological death; their bodies are immortal.

Exhalation of Ozone by Plants.—Drs. J. M. Anders and G. B. M. Miller, who have been investigating the subject of the exhalation of ozone by odorous plants, sum up their conclusions in the September Naturalist as follows: (1) Flowering plants, including odorous and inodorous, generate ozone; the former, however, much more actively than the latter. (2) So far as tested, scented foliage does possess the power of producing ozone, and, in the case of pine or hemlock foliage, to a marked degree. (3) Inasmuch as no reactions oc-
curred on rainy days, during the experiments, it is ence of the sun's rays, or at least of good diffused light.

Blind Fishes in California.-Mr. J. D. Caton writes to the American Naturalist that at Santa Clara College, in the San Jose valley, a 170 foot artesian well is flowing from which are discharged sightless fishes from one to two inches in length.
Influence of Heat and Light upon Vegetation.-Ciel et Terre gives the researches of Mr. Hellriegel upon this subject. This gentleman undertook in the first place to ascertain the lowest temperature at which seeds are capable of germinating, and confined his experiments to 18 species of cultivated plants. The seeds, sprinkled with distilled water, were planted in large receptacles filled with vegetable mould that were raised to constant temperatures of $48^{\circ}, 40^{\circ}, 38^{\circ}$,
35°, and 32°, and kept there for from 35 to 60 hours. 35°, and 32°, and kept there for from 35 to 60 hours.
It was found that rye and winter wheat germinated at 32°. Barley and oats showed their cotyledon at 32°, but the root did not start till 35° were reached. Indian corn required 48°. The turnip germinated at 32°, flax at 35°, the pea and clover at 35°, the bean and lupin at 38°, asparagus at 35°, the carrot at 38°, and the beat at 40°.
The respiratory function requires little heat, and operates even in the entire absence of light. Heat and light, on the contrary, are most favorable for the assimilation of carbonic acid and its conversion into carbon. Mr. Hellriegel atta
ance to the color of the light.
Production of Male and Female Plants.-In some investigations made with a view to determining the conditions under which male or female individuals are produced in the case of diœcious plants, Dr. Hoffmann has found that in most, if not all, the cases he examined, dense sowing increases the proportion of the male plants produced; and this results from an insufficient supply of nutriment. As a general law, the production of male plants is promoted by the want of an adequate supply of food when in an en bryonal condition.
Use of Spines in Cactuses.-Our brethren across the water, assuming that thorns are simply for protec their serials over the spiny leaves of the holly. When young and vigorous, $i . e$. , in early life, the teeth are very spiny; when the tree is aged, and the branches then a distance above the surface of the ground, losing
vigor, the spines are weak or absent. Sir John vigor, the spines are weak or absent. Sir John Lub-
bock and others, following the poet Southey, see in this a beautiful adaptation for protective purposes. When within the reach of animals, spines are borne when high up where animals cannot reach, spines are unnecessary. Numbers of species of plants have mucronate points to the leafy serrature, which are want ing in maturer years. It is at any rate difficult to imagine why a sharp point should be made especially for protection, and points less sharp for no protect ive use at all.
I have often reflected on a fact referred to by Dr. Newberry, that our thorniest plants are in much greater proportion in places where animal life is scarce, and the immense police force sustained by the great vegetable community absolutely thrown away. Cac tuses and other thorny things I have seen covered with thorns and spines on deserts where the hot air seemed to be bounding up and down like the surging ocean,
and where not even a lizard could have dared to show its face. Thorns cannot be, so I have thought, for protection where the climate gives all the protection desired. I am not one who doubts that nature has a purpose in every move she makes, but the main pur selves an injury in research by assuming mere inci dental uses as the main purposes for which structures seem to be "adapted."
One of these uses in the spines of cactus has occurred to me. They break the full force of the sun on the plant, a force it is made to endure and not to love, as we know who have learned to cultivate it. Plant lovers set out their treasures in summer under "arbors" of fish netting or galvanized wire, and those who have no experience would be surprised to find how the moving shadows of the twine or wire lower
the temperature. A mass of spines on a cactus must certainly have the same effect. A cactus does not need much light on its epiderm to keep healthy. On the dry mesas along the Uncompahgre River I have seen some aggregated masses of Echinocactus phœniceus forming dense hemispheres a foot high and as much wide, with spines so thoroughly interlaced with spines as to rival the hedgehog, and leaving not a particle of the green surface visible; and there are
species not cæspitose, such as E. pectinatus, which no one can see for spines without cutting apart, and forming a complete protection from the hot suns under which they are doomed to live.
I do not suppose I have yet reached the final purpose of spines in a cactus any more than we have the final purpose in the existence of the cactus itself,
tial shade I feel to be beyond a doubt.-Thomas Meehan in Bull. Torrey Botanical Club.
How Flies Move upon Smooth Surfaces.—Some time ago Dr. J. E. Rombouts established the fact that flies attach themselves to smooth surfaces by the aid of a liquid secretion from the feet. This liquid, however, is not sticky, but the attachment is brought about by capillary attraction. Dr. Rombouts has recently strengthened his conclusions by an experiment which he describes in Zoolog. Anzeig, vii., pp. 619-623. Several flies were confined to a glass plate by strips of paper, and the liquid that accumulated was sufficient to be perceptible to the naked eye. By the aid of experiments with glass balls, it was found that the adhesive power of the liquid was less than that of water, and about equal to that of olive oil. Hence ca pillary attraction is obviously the only force that could bring about the required result.
A New Use for Eucalyptus Trees.-The patenting of process for the manufacture of a preparation of the um of Eucalyptus globulus, which has the effect of thoroughly removing the scales which form on steam engine boilers, and of preventing rust and pitting, has created a largely increased demand for it both in thi country and in Europe. The effect of this preparation in preventing the pitting and corrosion of boilers will, it is expected, extend the period of their usefulness 100 or 150 per cent, and, at the same time, effect great saving in fuel, as scale is a non-conductor of heat. The company owning the patent, at Piedmont (Cal.), has also embarked in the distillation of essential oils of the Eucalyptus globulus, which have here tofore been supplied by Australia, it being found that they can be produced at profit. With this object in view, the company proposes to set out extensive for ests of Eucalyptus trees, in order to have at its command a sufficient supply of leaves, the portion of the tree consumed in the manufacture of the oils.

Deep Mining for Gold.

Although gold mining in Victoria, N. S. W., is an industry which is comparatively depressed just now, there are some features which are not only encouraging there, but also to gold miners in other parts of the world. The Mining Registrar for the central division of the Ballarat district reports the Band of Hope and Albion Consols Company, on the Redan line of reef, struck a solid body of stone two feet six inches in thickness in a cross cut at a depth of 1,000 feet, the greatest depth yet attained on that reef. "This opportune discovery of payable quartz at the deeper levels,' writes the Mining Registrar, "cannot fail to give a great impetus to mining operations in this district and to this line in particular.
They believe in deep mining for gold in that region, as may be seen from the following list of the ten deep est shafts in Victoria: 1. Magdala Company, at Stawell 2,409 feet. 2. Lansell's 180 mine, Sandhurst, 2,041 feet 3. Victoria and Pandora Company, Sandhurst, 2.000 feet. 4. Newington Company, Pleasant Creek, 1,940 feet. 5. Prince Patrick Company, Pleasant Creek, 1,830 feet. 6. Crown Cross United Company, Pleasant Creek, 1,815 feet. 7. Prince Alfred Company, Pleasant Creek, 1,770 feet. 8. North Old Chum Company, Sandhurst, 1,684 feet. 9. Oriental Company, Pleasant Creek, 1,676 feet. 10. New Chum and Victoria Company, Sandhurst, 1,625 feet. Only two of these shafts were deepened during the quarter, viz., that of the Victoria and Pandora Company by 60 feet, and that of the North Old Chum Company by 20 feet.
The mining population of the colony is estimated by the Mining Registrar at 27,632 . In quartz mining 12,409 miners are engaged, and 15,223 in alluvial mining. Of the total mining population 5,258 are Chinese. The value of the machinery employed in the gold fields is $£ 1,879,316$. The Registrar's reports show that in many localities mining suffered during the quarter through want of sufficient water for sluicing and crushing purposes. The total quantity of gold raised during the three months ended March 31 was 192,438 oz. 11 dwt. 15 gr., and its value at $£ 4$ per oz, is $£ 769,7546 \mathrm{~s} .6 \mathrm{~d}$. The area of auriferous ground actually worked upon is returned as 315 square miles, being about $41 / 2$ square miles in excess of the area worked upon during the previous quarter.

Mechanism of the Bee.

An investigator into the mysteries of animal life as serts that a bee's working tools comprise a variety equal to that of the average mechanic. He says that the feet of the common working bee exhibit the combination of a basket, a brush, and a pair of pincers. The brush, the hairs of which are arranged in symmetrical rows, is only to be seen with the microscope. With this brush of fairy delicacy the bee brushes its velvet robe to remove the pollen dust with which it becomes loaded while sucking up the nectar. Another article, hollowed like a spoon, receives all the gleanings which the insect carries to the hive. Finally, by openng them, one upon another, by means of a hinge, these two pieces become a pair of pincers, which render important service in the construction of the combs.

ENGINEERING INVENTIONS.

A rail clearer for snow plows has been patented by Mr. Augustus F. Priest, of Fort William, Ont., Canada. The invention covers a special construcon for track clearers and their attachment to the plow larities of the track, and be lifted and let down at will by connections extending to the engine cab.

AGRICULTURAL INVENTIONS.

A harvester has been patented by Mr. William F. Weirick, of Charlestown, West Va. It has automatic rakes and binders, and is designed to be car-
ried bodily upon and propelled by an engine, being arranged so that the engine driver may drop the bundles

A grain cleaner for thrashing machines has been patented by Mr. David L. Stroud, of Richford, Minn. To the sides of the sieve shoe are added extensions, with a series of rocker bars arranged between
them on pivots, with fingers ranging from them on pivots, with fingers ranging from one to the other and overlapping them to form a riddle, the grain
escaping from the straw and chaff as it passes over

MISCELLANEOUS INVENTIONS.

A jar fastener has been patented by Mr. Charles Watts, of Crooksville, Ohio. Combined seat is a peculiarly bent wire locking device, intended to make a cheap and effective sealing attachment for earthenware jars.
A speculum has been patented by Mr. Joseph G. Ellis, of Oak Ridge, La. It is for the use of physicians and surgeons in making internal examina-
tions, and the speculum is adapted to be withdrawn through the chamber of the instrument in connection with which it is used.
A gate has been patented by Mr. Samuel C. Gridley, of Nordhoff, Cal. This invention covers a special construction and arrangement of parts for gate to move back and forth, between two posts set at
one side of the roadway, which will be strong and duraone side of the roadway, which will be strong and dur
ble, and can be operated without stopping the team.
A breast pad has been patented by Mr. Charles L. Morehouse, of Brocklyn, N. Y. It is made
of hollow rubber, to be suitably supported by straps and a belt, and, while being well calculated to fit the and a belt, and, while being well ruffies, etc., while it may be covered with silk or othe
suitable material.

A treadle has been patented by Mr. Thomas P. Gooch, of Oakland, Miss. The treadle lever
has its lower end formed with two arms, one having a hook and the other a foot piece, with other novel fea tures, whereby the foot rest is intended to a pply equal ly on both sides of the
in great part avoided.
A weighing scale has been patented by Mr. William Watkins, of Moss Point, Miss. It has two
beams, one graduated to indicate values and the other prices at which articles are sold, the beams having weights which can be so adjusted as to enable the desired quantity of
for a given price.
A brace wire fastening for wire fences has been patented by Mr. Arthur Lott, of Riddleville,
Tex. Combined with the panel wires are braces and triarmed clasps embracing the wires and braces at thei points of intersection, the clasps each being made in
one piece, with its arms bent around a longitudinal or one piece, with its arms bent
panel wire and a brace wire.
A hinge has been patented by Mr. John A. Resch, of Jersey City, N. J. The invention consists
in hinges made with their plates of unequal width and in hinges made with their plates of unequal width and
bent outward or from each other at right angles, that, when used for inside blinds, the latter, when folded together, can be turned back against the wall of the room at the sides of the window.
A ticket chart has been patented by Mr. Henry E. Lomas, of Cresco, Iowa. It consists in a printed plan, adaptable for any place of entertainmen,
with removable portions, so that these portions can be removed and attached to the tickets, and the remaining
plan will represent the solid and unsold portions of the house. Samuel J. Wisdom, of Montgomery, Ala. This invention consists in a washer having an inclined slot, and
madewith its top edge slightly bent, being especially madewith its top edge slightly bent, being especially plied to the bolt without taking oift the not
A screen attachment for bottling machines has been patented by Mr. Frank Seely, of New York city. It is made of sheet or cast metal, to be so
attached to a bottling machine that the attendant will be fully protected against flying fragments of glass in case the bottle bursts when being corked, the screen be
A safety check for music boxes has been patented by Mr. C. Henry Jacot, of Hoboken, N. J. Combined with the cylinder shaft is a ratchet wheel
and a double pawl having a weighted arm, whereby and a double pawl having a weighted arm, whereby
the shaft will be stopped and held should its speed be the shaft will be stopped and held should its speed be
unduly increased, thus preventing the pins and teeth unduly increased, thus preventing the pins and teet
A side bar vehicle has been patented by Mr. Luther Stouffer, of St. Joseph, Mo. Combined
with a vehicle box and side bars is a spring rod or bar bent to form a square or oblong figure, with its outer
ends crossed and extended laterally to the side bars, to ends crossed and extended laterally to the side bars, to
which they are secured, giving a more gradual and easy movement than is usual in side bar vehicles.
A washing machine has been patented by Mr. Frank Beliel, of Hastings, Neb. It consists of
a semicircular tub and cover hinged together, so made that the clothes are placed in a space between a board and cylinarical rubber, the rainst the ribs of the board, rying the clothes around against the ribs of the
springs pressing the board and rubber together.

A shears has been patented by $\mathbf{M r}$ Benjamin F. McCarty, of Rolling Prairie, Ind. The in arm carrying dies and connected by arms to the disk arm carrying dies and connected by arms to the disk,
with an adjustable arm to prevent the metal from rising
when being cut, the shears being especially devised for when being cut, the shears being especially devised fo
cutting metal bars and sheet metal by hand power.
A feeder for roller mills has been patented by Messrs. Louis Nolden and Alfred E. May, of Beardstown, Ill. It is made with a case having an inclined rear side, a skeleton, a rotary cylinder re-
volving within the case, and an adjustable feed plate to adapt it to feed middlings and other soft material the rolers regularly and uniforml
An axle for vehicles has been patented by Mr. Governeur M. Forbes, of Salt Lake City, Utah Ter. It has crank arms at its ends, with cams for re-
taining the body level or nearly so as the crank turns taining the body level or nearly so as the crank turn
over, the design being to make the vehicle travel nore easily and smoothly than one with a straight axle over ordinary roads.
A grate for furnaces has been patented by Mr. Silas H. Huntington, of West Pittston, Pa. This invention covers a special construction of roller
grate bars to provide a free air circulation throughthem to the fire, with hollow teeth alternating with the eeth of the grate bars, to prevent burning out, the formation of clinker, and secure a level settling of th
fire as the bars are rotated.
A latch has been patented by Messrs. Rudolf E. Woodrich, of New York city, and Charle Langbien, of Brooklyn, N. Y. Combined with a lock
casing is a sliding bolt therein, a knob shaft connect ed with the bolt, and a sliding latch in a sleeve sur romding the knob shaft, the bolt being acted apon ay y means of a latch.
An improved roofing has been patented by Mr. Benjamin B. Adams, of Roswell, New Mexico nally upon the roof by fitting the angle of each between the diagonal sides of adjacent plates of the course above, nailing the corner and folding the plate over to
cover the nail, so the roofing will be unaffected by changes of temperature.
A composition of matter for lining coating boxes has been patented by Mr. Adolf Hollner
of Dennison, Ohio. It is more particularly for boxes for holding coffee or other articles from which it is desirable to exclude moisture and preserve the aroma therein, and consists of glue, skinmmed milk,
and calcareous material, such as chalk, prepared and applied in a specified manner.
A mechanism for controlling steam driven sewing machines has been patented by Mr.
James H. Rohme, of Newburg, N. Y. In combination with the drive fpulley and a rock shaft a treadle is so arranged and connected that the pulley will be instant-
ly stopped when thrown out of gear with its friction wheel, so that the machines can be instantly
A saw set has been patented by A saw set has been patented by Mr.
ohn S. Long, of Murphysborough, Ill. This is an improvement on a former patented invention of the same o descend upon the anvil or saw teeth held thereon prior o delivering its blow, so as to indicate to the operator the exact position on the anvil that the saw tooth should e held to be effectively struck.
A job printer's case has been patented by Mr. George W. Butler, of Chicago, Ill. It consists
of an upper and lower case made regulation size, the of an upper and lower case made regulation size, the
lower case having a large compartment in which to est a "job galley," while on both sides thereof, and in he whole space of the upper case, are divisions for olding leads, rules, slugs, spaces, quads,
A pendulum escapement for clocks has been patented by Mr. William Hart, of Kirksville, Mo. It is applied to the lower end of the pendulum, but de-
ached from the latter, although the escapement wheel and lever may be fitted to operate at any point in the length of the pendulum, and the device is intended to
facilitate the ase of the pendulum by hanging shelves facilitate the ase of the pendu
thereon for displaying goods.
An automatic cut-off for gas burners has been patented by Mr. John E. Birch, of Winnipeg, Manitoba, Canada. By this invention the expansibility of a confined body of air is utilized to hold open
a valve that permits the flow of gas to continue, the air being heated by the normal heat of the burner, and so hat when it cools
A cartridge loader has been patented by Mr. Charles A. Thompson, of Hopkinsville, Ky. is a shell carrying arm adapted to act on the stems of the holders, a rammer, a wad holder, and an ejector for
forcing the wads out of the holder, with other novel forcing the wads out of the holder, with other novel latures, adapted for
A fireproof floor has been patented by Ir. William W. Hazlett, of Toronto, Ohio. This invention relates especially to a protection for the lower
portions of the flanged iron beams of the floors, and as for its object to improve the construction of the loors by providing a better protection to the beams,
and also to facilitate the setting of the tile arches be-

A stock car has been patented by Messrs. Daniel Lines and Charles T. Long, of Milano, Tex. It so constructed that the hay racks swing up automathe
ally and the troughs can be lowered to be out of the way when not in use, or easily swung up when the animals are to be watered, the design being such that ordi-
nary cars can easily be converted in this way into nary cars can easily be converted in this way into
stock cars.
A nut machine has been patented by Mr. Alfred Marland, of Pittsburg, Pa. Combined with
forming and compressing dies are a cutting die at one forming and compressing dies are a cutting die at one
side of the forming die, a blank cutting and carrying and feeding them to the dies, with other novel features,
the invention covering improvements on former pat-
nted mventions of the same inventor in A cotton press has been in nut machine Mr. Samuel I. Wilkinson, of Yazoo City, Miss. Com bined with a box pivoted to swing in a horizontal plane are plungers connected with a fixed object, so the lat-
ter will be reciprocated in the box when the latter is ter will be reciprocated in the box when the latter is
swung or rocked, the press being one which can be swung or rocked, the press being one which can be
operated by hand or power, and can be cheaply made operated by hand
A band pulley has been patented by Mr. Reuben Jones, of Atlanta, Ga. It is designed to carry rope belt, and is a sectional pulley having teeth a
its edges inclined in opposite directions, enabling both sedges inclined in opposite directions, enabling both
ections of the pulley to be cast in the same mould, forming a diagonal crimp in the rope between the teeth, and giving one sharp angle for the rope to catch against whether moving forward or backward.
A gate hanger has been patented by Mr. Issachar Crowfoot, of Hartford, Wis. Combined with the gate post is a screw held therein supporting block or head in which the top supporting bar of the gate is held, so that by turning the screw the gate can be raised or lowered at will, the post passing through a
spider frame, and its lower end resting in a flanged cup mbedded in the ground.
An adding machine has been patented by Mr. John L. McCaleb, of Benton, Tex. It consists a box with apindle spindle and on the sleeve, there devices for turning the spindle from the sleeve, a cog wheel revolved from the spindle, and an extra hand in or adding and multiplying numbers.
A ratchet drill has been patented by Mr. John J. Banta, of Pacific, Mo. There is a novel arrangement of pawls in a block fixed to the tool holding spindle, which is journaled in a frame or stock, the pawls being adapted to engage and slip over ratchet
teeth fixed to bevel pinions loose on the spindle and driven by a gear wheel and crank, to insure the easier ing or drilling mare eft
A method of making plush articles of clothing has been patented by Messrs. Charles Theinert and Simon Christiansen, of New York city.
consists of cutting the plush on the back by means of a knife diagonally to the warps and wefts, abutting the edges of the pieces, and uniting them by the glove
or cross stitch, so that a garment thus made will have or cross stitch, so that a garment thus made will have
invisible seams, not indicated by any depression in the invisible seams, not
surface of the plush.
An odometer has been patented by Mr Henry O. Brooks, of Lowell, Mass. The case has rings is made in halves, and bound upon the axle so the col lar revolves with the axle and the odometer hangs collar allowing it to be readily afflxed to any axle, and the device being an inexpensive one for measuring th distance traveled by bicycles and other vehicles.

P3usiness and Personal.

he charge for Insertion under this head is One Dollar a line for each insertion, about eight words to a line
Advertisements must be received at publication affice as early as Thursday morning to appear in next issue.

Seam and Looping Machines, patent Burr Wheels,
rushing Machines. Tubbs \& Humphreys, Cohoes, N. Y Pays well on Small Investment.-Stereopticons, Magic xhibitions. Views illustrating every subject for pubnic oxhibitions. Lanterns for colleges, Sunday schools, and cAllister, Manufacturing Optician, 49 Nassau St., N. Y. or an improved covering for steam boilers and pipes
iberal arrangements made with live men. Address ineral arrangements made with
B. C., P. O. box 773, New York city.
Wanted:-Novelties or patented specialties to manu facture on contract. Burckhardt \& Schneider, makers
of fine tools, models, and light machinery, 211 and 213 of fine tools, models, and light machinery, 211 and 213
Mulberry Street, Newark, N. J.
Grimshaw.-Steam Engine Catechism. A series of so as to give to a Young Engineer just the information required to fit him for properly running an engine. By
Robert Grimshaw. 18mo, cloth, $\$ 1.00$. For sale by Robert Grimshaw. 18 mo, clot
Munn \& Co., 361 Broadway, N. Y
Wanted.-Patented articles and novelties to manufacThe Knowles Ster Pump Wio.. The Knowles Steam Pump Works, 44 Washington
St., Boston, and 93 Iiberty St., New York, have just isSt., Boston, and
sued a new catalogue, in which are many new and im proved forms of Pumping Machinery of the single and
duplex, steam and power type. This catalogue will be ailed free of charge on application.
Coiled Wire Belting takes place of all round belting.
Cheap; durable. C. W. Belting Co.. 93 Cliff St., N. Y. Clock Factory in complete order for sale. Addres E. Osborn, New Haven, Conn

Air Compressors, Rock Drills. J. Clayton, 43 Dey st.,N.Y Haswell's Engineer's Pocket-Book. By Charles H
Haswell, Civil, Marine, and Mechanical Engineer. GivHaswell, Civil, Marine, and Mechanical Engineer. Giv-
ing Tables, Rules, and Formulas pertaining to Mechan ing Tables, Rules, and Formulas pertaining to Mechan
ics, Mathematics, and Physics, A rchitecture, Masonry Steam Vessels, Mills. Limes, Mortars, Cements, etc. 900
pages, leather, pocket-book form, $\$ 4.00$. For sale by pages, leather, pocket-book form, $\$ 4.0$
Munn \& Co., 361 Broadway, New York.
Peerless Leather Belting. Best in the world for swif nh Send for catalogue of Scientific Books for sale by
Munn \& Co., 361 Broadway, N. Y. Free on application. Shafting, Couplings, Hangers, Pulleys. Edison Shafting Iron Planer, Lathe, Drill, and other machine to Iron Planer, Lathe, Drill, and other machine tools of
Wanted.-Patented articles or machinery to manufacFor Power \& Economy, Alcott's Turbine, Mt. Holly, N.J

Send for Monthly Machinery List
121 Chambers and 103 Reade Streets, New York.

Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J If an invention has not been patented in the United States for more than one year, it may still be patented in Canada. Cost for Canadian patent, $\$ 40$. Various other
foreign patents may also be obtained. For instructions
address Munn address Munn \& Co., Scientific American patent
Guild \& Garrison's Steam Pump Works, Brooklyn,
N. Y. Steam Pumping Machinery of every description. Nend for catalogue.
Machinery for Light Manufacturing, on hand and Nickel Plating-S. Garvin \& Co., 139 Center St., N. Y. Nickel Plating.-Sole manufacturers cast nickel an
odes pure nickel salts, polishing compositions, etc. Comodeste outfit for plating, etc. Hanson, Van Winkle \& Co.
pewark, N. J., and 92 and 94 Liberty, St., New York. Supplement Catalogue.-Persons in pursuit of infor mation of any special engineering, mechanical, or scien tific subject, can have catalogue of contents of the Scl The Supplement contains lengthy articles embracin the whole range of engineering, mechanics, and physical science. Address Munn \& Co., Publishers, New York.
Timber Gaining Machine. All kinds Wood Work Machinery. Best Automatic Planer Knife Grinders. Pat. Face Plate Curtis Pressure Regulator and Steam Trap. See p. Curtis Pressure Regulator and Steam Trap. See p. 12.
Crescent Steel Tube Scrapers are made on scientific inciples. Crescent Mfg. Co., Cleveland, Ohio Friction Clutch Pulleys. D. Frisbie \& Co., Phila. Tight and Slack Barrel Machinery a specialty. John
Green wood \& Co., Rochester, N. Y. See illus. adv., p. 190. Curefor the Deaf.
Peck's Patent Improved Cushioned Ear Drums per-
fectly restore the hearing and perform the work of the fectly restore the hearing and perform the work of the
natural drum. Always in position, but invisible to others, and comfortable to wear. AlI conversations
and even whispers heard distinctly. We refer to those using them. Send for illustrated book with testimo-
nials, free. Address F. Hiscox, 853 Broadway, New York. Mention this paper.
The "Improved Greene Engine "can be obtained only " To Mechanics,", Whidence Steam Engine Co., R. "or "Standard," or send for catalogue to Standard Too o., Cleveland, o. See page xi., Export Edition.

Iron and Steel Wire, Wire Rope, Wire Rope TramMachinists' Pattern Figures, Pattern Plates, and Let-
ers. Vanderburgh, Wells \& Co., 110 Fulton St., N. Y. ters. Vanderburgh, Wells \& Co., 110 Fulton St., N. Y. Wood Working Machinery. Full line. Williamsport
Machine Co., "Limited," 110 W. 3d St., Williamsport, Pa. Astronomical Telescopes, from $6^{\prime \prime}$ tolargest size. Observatory
land, 0.
The Improved Hydraulic Jacks, Punches, and Tube

HINTS TO CORRESPONDENTS.

(1) R. H. K. asks (1) a recipe or method ments. etc. A. Treat with hydrogen peroxide. See Scientific American Supplement, No. 339. 2. How may I toughen feet so as to take long tramps comfortably? A. Treating them with some astringent solution
is said to be slightly beneficial. 3. Best black ink for en sketches and other drawing purposes? A. You will american Supplement, No. 157. 4. Which pencils do artists consider the best? A. Dixon's or Faber's; either are good. 5. Where can I get the best book or account ont on on tramps on foot? Practical papers. Also
best onsing from nature? A. "A Pilgrimage . Janterbury," by the artist Joseph Pennell, may interest you. The files of "Outing" are more likely
to give you information of the character desired rather to give you information of the
than any single book or books.
(2) M. D. asks: Would not the combustion of an old time blast furnace preclude there be-
ing a paying amount of iron remaining in the slag? Could ng a paying amount of iron'remaining in the slag? Could
graded iron be produced from this slag, using with it a fair percentage of scrap? Would charcoal fuel be of ny advantage in such reduction? Please decide a cluding the chemical operations of such reduction and composition of product. A. The iron in the slag of old
style furnaces is not worth. the cost of redemption. It style furnaces is not worth the cost of redemption. It will not pay for the fruel for remelting.
(3) R. M. asks the most practical way to get rid of sewage, by absorption of the soil where
the ground is level, and the frost line eight feet deep, the ground is level, and the frost line eight feet deep,
the soil being compact clay. A. We know of no means he soil being compact clay. A. We know of no means
of absorbing sewage in compact clay. You may so arrange a drainage system as to discharge on a lower level, gather in a cesspool and discharge by pumping into a wagon tank and hauling. This is much practiced in the Eastern States. In many places sanitary laws forbid absorption on account of well contamination.
(4) R. M. writes: Having dropped some indelible ink upon the oil cloth of the table of my
study，I procured potassium cyanite to remove the
same．But the solution being too strong，it left two same．But the solution being too strong．it left two
largeerasions，where the greenishness of the cloth is largererasions，where the greenishness of the cloth is
entrrely taken away，or in some places but slightly．
W． entirely taken away，or in some places but slightly．
What should I use to restore the cloth to its former
color？ color？A．By the use of the cyanide you have entirely
removed the color and therefore it cannot be restored． removed the color，and therefore it cannot be restored
A little coloring matter with some alcohol varnish
might produce a new coating．
（5）L．P．S．asks how the cold rolled shafting is made．A．By pickling the round iron in an
acid bath to free it from scale，and rolling between acid bath to free it from scale，
hard，polished，grooved rollers．
（6）S．A．H．asks how to clean a rub－ ber watch chain that has become brown by or faded by
the sun；it was originally black．A．Dip thechain in the sun；it was originally black．A．Dip thechain in
carbon disulphide．This chemical，however，must be carbon disulphide．This chemical，however，must be
very cautiously used，as it an exceedingly dangerous very cautiously used，as an an expert．
substance to handle by one not an
（7）J．S．S．asks a rule for finding boiler capacity necessary for heating building where pipe and heaters are in place and radiating surface known？
One square foot of effectual heating surface in boiler to eight square feet of radiating surfacee in cold or exposed
bild ings．One to nine and one to ten，where conditions buildings．One to nine and one to ten，where conditions
（8）E．E．D．asks when the Greek lan－ guage ceased to be a living language．A．The so－called
ancient forms never died out，but are nearly all found， even in the more cultivated modern Greek of the mid die ages．Greek is now，says Geldart，＂as really alive as it was in the days of Homer．Modern Greek resem－
bles the ancient language fully as much as current Eng． lise does the English of Chaucer，
（9）Hatmaker writes：We use a varnish to cover pin holes in cotton cloth and silk which leaves too great a gloss in contrast to the material（black）；can you give us a recipe that would answer the purpose bet－
ter？We use alcohol varnish only，and want a dead color？A．Try the following：Well wash 1 lb．of
parchment shavings or cuttings in two or more lots of parchment shavings or cuttings in two or more lots of
cold water；then put them into a saucepan or other ves cold water；then put them into a sancepan or other ves－
sel with 4 quarts of cold water，and let them simmer sel with 4 quarts of cold water，and get quarts．Strain quart of water are the proportions used in finishing silks．
（10）S．\＆F．ask how rubber bands are made．A．Rubber bands are made by cutting rub－ ber tubing into suitable sizes．The process of making
the tubing is given in Scientific American Surpie． ment，No．2g1，under title of＂The India Rubber and Gutta Percha Industries，＂a series of valuable papers
appearing in Sciextrici American Surplement，Nos． appearing in
249,251, 252．
（11）C．S．asks：1．In what proportion to take dextrine in place of gum arabic to have the same
consistence and the same gloss，etc．，as with the latter， for inks，varnishes，etc．？A．The gum is added for the purpose of holinis the gallo－tannate prexiptate in sus
pension，and also in order to gloss on drying，therefore the amount is easly deter－
mined by adding the gum until tho precipitate ceases to mined by adding the gum until the precipitate ceases to
fall．The difference between the amount of dextrine to fall．The difference between the amount of dextrine to
be used and the gum arabic will be very slight．2．Re be used and the gum arabic will be very slight．2．Re－
ceipts for burnishing ink for heel and sole edge polish－ ceipts f
ing？

a．Extract of logwood．．．．．．．．．．．． 1 to 2 ounces．	
Tincture of iron．．．．．．．．	． 1 to 2
Sweet cil．．	． 1 to 2 drachms．
Diluted alcohol．．．	． 1 pint．
b．Extract of logwood．	．．．． 4 ounces．
Bichromate of potassium．．	．．．． 12 grains．
Ferrocyanide of potassium．．．．．．．．．． 12 ＂	
Rain water．．	1 gallon．

The ink in either case is applied with a brush and im－ authori 157，treats the subject of inks quite fully．Spons
Workshop Receipts $(\$ 2)$ contain numerous recipes for Workshop Receipts（\＄2）contain numerous recipes for
（12）H．C．asks： 1 ．What plating bat tery is the cheapest for gold plating jewelry？A．Bet－
ter use a Smee battery．2．Also，how to remove printer ink from some valuable engravings without injuring them？A．It cannot be done except in places where
（13）R．asks：Why does lightning so sel－
dom strike trains and rails？Railroad men claim that dom strike trains and rails？Railroad men claim that
the oiling and greasing of the iron is the cause．Me－ the oiling and greasing of the iron is the cause．Me－
chanics claim it it the immonse quantity of iron，that spreads and weakens the electricity．A．It is provably
（14）C．T．writes：I have been building a battery of the cells and covered copper wire belonging
to a telephone：the name on the cells is＂Leclanche bat－ oo a teephone：the name nen the cells is＂ecunche bat
tery walls of a building，and IMalso go an electric bell．I
wound about 300 or 40 yards of the wire on a reel about Walls of a building，and 1．also got an electric bell．
wound about 300 or 40 yards of the wire on a reel about
6 in long：the reel is tin for the core and wood at the 6 in．long；the reel is tin for the core and wood at the
ends．I connected the wires from the reel to the elec－ ends．I connected the wires from the reel to the elec
tric bell，and connected the wires from the bell machine tric bell，and connected the wires from the teil machine
to the cells，two of them，then I connected two wires with handles to the electric bell machine．It will work
all right only when it has been working about ten mi ． all right，only when it has been working about ten mi－
nutes it gets weaker and again I have got the fine iron nutes it gets weaker and again I have got the fine iron
wires in the core，but it does not eeem to regulate the current．Could you kindly help me out of my trouble， of one size，or is it with the tin being in for the core Can you tell me of any back number of the Screntrific American SUPplementr with the full description of
building a battery，so I can get one？A．The trouble building a battery，so I can get one？A．The trouble
with your battery is that you keep it on a closed circuit with your battery is taly
too long．It is probably partially exhausted，and there fore polarizes or＂runs down＂quickly．The Leclanche
battery is not adapted to continuous use，but is yer battery is not adapted to continuous use，but is very
efficient for intermittent use．The coil you have made， if we understand you，is only a primary or magnetic coil formed of office wire．You shoold have sued magnet
wire，and to secure the results you seek，you should ap－ wire，and to securre the results youn seek，oyu should ap．
ply a secondary wire．See article on induction coil in SUPPLEMEENT，160．For information on batteries con－ sult Surpiement，Nos．157，158，and 159 ．
（15）J．L．B．asks whether a vessel with centerboard can carry more sail without upsetting enterboard？A．The tendency of a boat to capsize is the leeway of the boat on a side squall．
（16）J．B．H．－You could compress about 2，000 cubic feet of air into a steel cylinder 1 foot in dia－ ，000 pounds to the square inch．A human being re uires about 15 cubic feet of air per hour，so this would last three men 40 hours．It would run a 1 horse power
engine about $11 / 4$ hours，if the change of temperature engine about $11 / 4$ hours，if the change of temperature
caused by the use of the air were otherwise provided
（17）C．C．P．asks：When can a person be called a musician？Has a person got to know how to ead music at sight before they can be called a musician，
or is there such a thing as a natural musician？I had a ． or is there such a thing as a natural musician？yad not call a person a musician unless they can read music at sight，no matter how good they can play on different instruments．I claim if they are good players on differ－ ent instruments，they are musicians．Which is right？
A．A musician，according to Webster，is＂one that ings or performs on instruments of music according to the rules of the art．＂One may be a good musician ny one who could produce good music a musician．
（18）C．R．C．writes：I intend to build a mall steam engine，cylinder $24 / 4 \times 114$ in．Absut how many pounds power will it have？How large a boiler
would it require，boiler made of $1 / 8$ in．iron？How祭别 pounds working pressure would it stand？How large a fly wheel would engine require？A．It would depend on the construction of the engine，the speed at
which it is driven，and the steam pressure．Probably which it is driven，and the steam pressure．Probably
one－third horse power would be a fair estimate，the en－ sine making 300 revolutions under 60 lb ．average piston pressure．The boiler should have 4 to 5 square feet of heating surface．If you make the fy wheel sh
about 20 lb
and
（19）J．E．M．asks how much oxygen gas water will hold in solution，and the best simple means of generating it for oftice use？ A ．The coefticient
of solubility of oxygen in water at $59^{\circ} \mathrm{F}$ ．is 0 워99，$i .$. ．， water will absorb 0 －02989 of its volume of oxygen．This is a very small percentage．It may be greatly increased
by lowering the temperature．For $32^{\circ} \mathrm{F}$ ．the coeficient by lowering the temperature．For $32^{\circ} \mathrm{F}$ ．the coeficicient
is 0.04114. Oxygenated water or peroxide of hydrogen，
 arrent of oxyyen，converting it into peroxide of barium $\left(\mathrm{BaO}_{3}\right)$ ．This is powdered，suspended in water，and
acted upon by a stream of carbonic acid gas．The water is thus charged with peroxide of hydrogen： BaO_{2} $+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}=\mathrm{BaO}_{2} \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}_{2}$ ．The carbonate of
aryta is allowed to subside，and the clear solution o peroxide of hydrogen is poured off．Oxygen is readily
prepared by mixing with chlorate of potash one－fifth prepared by mixing with chlorate of potash one－fifth of is weight of powdered black oxide of manganese，an leating it in an iron or glass retort．The oxygen
conveyed from the retort to the wash bottle by means of a rubber tube．If pure oxygen is required it remove any passed through tubes containing potash， contain．Two precautions are necessary in making oxy gen；one is to test a small portion of the mixture of manganese and chlorate of potash in an open spoon or ladle over a flame，to see that it contains nothing which
would render it explosive；the other is to remove the would render it explosive；the other is to remove the
rubber tube from the retort when the bubbles of oxygen rabber tube from the retort when the bubbies of oxyen
cease to rise in the wash bottle，to prevent the drawing ease to rise in the wast borte，
of the water back into the retort．
（20）W．B．asks a good welding com－ ound for cast steel．A．Borax 91 parts，sal ammoniac parts．Pulverize together and melt in an iron pot
until frothing ceases，pour out and cool．Then grind in mortan to a powder for use．
（21）S．E．K．F．－Saw teeth should always be set so as to allow a clearance to the saw．It riction．For circular and mill saws there are swedges nade that set up the edge of the tooth to give clearance
to the blade．The whole tooth does not need to be set out or swedged，only the point．
（22）Subscriber wishes a formula for aking red，blue，｜and purple ink，used for rubber stamps．
Also how to make a good hektograph．A．Red． solve $1 / 2$ ounce of carmine in 2 ounces of strong water
 with enough water to make a perfectly smooth paste； hen add 1 ounce of dextrine，incorporate it well，and inally add sufficient water to bring it to the proper
consistence．Violet．－Mix and dissolve 2 to 4 drachms niline violet， 15 ounces alcohol，and 15 ounces gly－ erine．The solution is poured on the cushion and
rubbed in with a brush．For hektograph，see Scres Hific American Supriement，No．438，under title of
（23）J．M．B．writes：We have made ome＂farm bells＂out of cast iron，and they don＇t ring
satisfactorily．What is the trouble？What composi－ satisfactorily．What is the trouble？What composi－
tion should go in with the cast iron to make a good－ sounding farm bell？A．Use hard iron，No． 4 or 5 Make the model from a good－sounding bell．The （24）C．N．asks，in order to settle a dis ．The course of a ritc ball is very nearly a parabol the curve or trajectory being the result of three forces－ the impulse of the gun，the resistance of the atmo－
sphere and gravitation．You will find a very inter est shere，and gravitation．You will find a very inter est of projectiles，illustrated with geometrical diagrams， in Chambers＇＂Treatise on Practical Mathematics，
（25）E．W．asks：1．How can cast iron inches one inch to one and one－half inches thick，eight inches wide，and five feet long，be chilled without
springing the chills？The trouble we have met with
s that the chill，which we make about four inches
hick，expands on the top surface through contact with thick，expands on the top surface through contact wit
the hot iron，and throws the ends down，forming a arc of a circle，thus cutting the middole of the castings
almost in two．We have also tried to chill thes almost in two．We have also tried to chill these
castings for about two feet in the center，and have failed on account of the chill warping and leaving an uneven surface at ends of chill．A．Either make your chill hollow and flow water through it，or make it sec－
tional．2．Also what is the best work you can name on electricity and electrical engineering？I want to make it a study；understand the elementary principles already．A．Dredge＇s Electric Illumination，Thompson＇ Dynamo Electric Machinery，Gordon＇s Electricity and
Magnetism，Maxwell＇s Electricity and Magnetism． You should allo study Faraday＇s Researches．
（26）G．K．，Jr．－Paint sticks to tin that has been exposed to the weather for a short time better formed by the exposure，which prevents the paint from chipping off．
（27）J．F．S．asks the best receipt for forexhibition pureservation of fruits in a fresh state mended for the preservation of fruitss previous to eatin which，the glycerine should be removed by immersing the fruit in water．Dipping the fruit in paraffine is an excel lent means of preserving it．Collodion will probably
be found most satisfactory for exhbibition purposes be found most satisfactory for exhibition purposes．A
thin coating of this varnish will entirely prevent the
（28）C．M the fruit．
（28）C．M．asks the best way to mix plumbago and mineral oil，in order that the former
may not precipitate but remain suspended in the oil． may not precipitate，but remain suspended in the oil．
A．The only way is to make the mixture so thick and pasty with plumbago that mechanical settlement is aily excluded．
（29）J．G．L．asks how to make a cheap orange stain for birch wood．A．Yellow or orange
stains generally result from the use of nitric acid stains generally result from the use of nitric acia
turmeric．Trus 2.1 ounces finely powdered turmeric tur edigested for several days in 1r：5 ounces 80 per cent
alcohos，and then strained through a cloth．This solu alcohol，and then strained through a cloth．This sol
tion is applied to the articles to be stained．Nitr acid dilited with 3 parts of water is likewise used．A hot con
used．
（30）G．A．F．asks what to apply to gilt gas fixtures to remove dirt，fy specks，etc．A
Very few chandeliers are gitt；they are burnished and acquered with yellow lacquer．Take the chandeliers to pleces，and boil in strong soda ley for a few minutes，
brush over with a soft brush，pass it through a strong solution of potassium cyanide（a deadly poison），wash through a tubful of boiling water，dry in clean saw dust，wipe up bright with a wash leather，and relac thylic alcohol， 10 ounces of seed lac bruised，and $1 / 2$ a ounce of red sanders，dissolved and strained．
（31）C．R．S．asks how extract of malt is made，also quantity that would be a dose．A．Ex－ water at a temperature ranging between 160° and 170° Fah．，drained off without pressure，and evaporated to
the consistence of honey．It is nutritious and laxativ The dose is a tablespoonful or more，ad libitutum．
（32）A．J．V．desires a recipe for ma－ stain：Boil $1 / 2$ pound of madder and 2 ounces of \log ． wood in 1 gallon of water，and brush well over the woo while hot；when dry，go over the whole with pearl ash
solution， 2 drachms to the quart．For a lighter stain： solution， 2 drachms to the quart．For a lighter stain：
Put 2 ounces of dragon＇s blood，well briised，into 1 Put 2 onces of dragon＇s blod，well bruised，into
quart of oil of turpentine；let the bottle stand in a warm place，shake frequently，and，when dissolved，steep the
（33）A．R
（33）A．R．R．－For a silvering solution， add 15 drachms crystallized nitrate of silver to 250 drachms water，to which add 30 drachms cyanide of po－
tassium：when dissolved，add 750 drachms of water in assium：when dissolved，add 750 drachms of water in
which 15 drachms of common salt has been dissolved． Clean the metal thoroughly and dip in a weak bath of nitric acid and water，rinse in clear water，and dip in
the silver bath．The silvered wood mouldings are sil ver gilt，or silver bronzed in the same manner as painter fild and bronze signs and ornamental work．
（34）W．J．L．desires（1）a remedy for removing rough skin from the face，that has been pitted
by small pox．A．Use simple oil，pomade，or oint． ment medicated with croton oil，and of a strength just sufficient to raise a very slight pustular eruption，is probably the safest and most effective and convenient
of all the preparations that are employed for the pur－
 pose of removing pock marks．2．ne．for removing
blackheads that appear on the face．A．Cover the parts affected with a pomace acid 2 parts，with the parts，gly ycerine 3 parts，acetic acid 2 parts，wit
addition of a small quantity of some e ethereal oil．
（35）G．S．F．asks：Can a generator be ade that will generate gas from 74 gasolene sufficien别 what size will it be，and what is the best kind of material to ouse to make same，and what shape would it e？A．It requires a great deal of experience to pro－
duce a generator for gasolene gas．Almost any device by which air is brought into contact with gasolene，or fibrous material saturated with gasolene，will produce
gasolene gas，but the important points are to produce gasolene gas，but the inportant points are eo produ advice wor
ble maker．
（36）P．H．B．asks：Is not a dose of aqua ammonia（diluted so much as not to be impossible to wailow，injurions to the taker，in some way，even
while effecting some cure？If so，in what way？Are eruptions on the face and general loss of energy among the hurfful effects？A．Ammonia is simply a
stimulant，and entirely transient in its action．It has no cumulative effect．Aqua ammonia is used chiefly a an external application；very seldom internally．If di－ luted with water to such a degree that it could be swal－
lowed without difificulty，its effect would be slight，and
here would be no reason to apprehend danger．Facial
eruptions and loss of vital force and energy certainly eruptions and loss of nital foree and energy certainly
are not to be charged to it：they are doubtless due to （37）R．M．G．writes：Will you kindly inform me how I can use the dynamo described in your paper as a motor and how many cells of battery I require to run it，and about what fraction of a horse
power it will be？A．The dynamo will operate as notor without any alteration，provided it is properly adjusted as a dynamo．Possibly you may be obliged o shift the commutator a little one way or the other． battery to run it．It will not be as economical as if constructed for a motor．More wire on the armature and less on the field magnet would improve it for a pon so many circumstances as to make it difficult to （38）J．W．Cifteenth horse power．
（38）J．W．C．asks：1．Where can I get a two cell Leclanche battery？A．From any dealer in
lectrical supplies．Consult our advertising columns Can you give me any information in regard to making or wrapping an electro－magnet，and what size wire should I use on it？2．For description of various orms of electro－magnets consult Supplementr， ose for which you intend will depend on the pur purchase electrical supplies？A．See our adver－ tising columns．4．Where can I get a book on elec－ tricity？A．See our book catalogue，which wesend you．
5．Are there any directions in any back numbers of 5．Are there any directions in any back numbers of
the Surpievevt to make a battery and magnets？If ，what number？A．See SUPPLement．Nos．157，158， and 159，for articl
182，for magnets．

COMMUNICATIONS RECEIVED．

＂Why．＂by c．s．
＂On the New Star
Gulf Stream，＂by J．C．G
INDEX OF INVENTIONS For which Letters Patent of the

September 22，1885，

and each bearing that date．

			TRADE MARKS.
e. See Pencil case.			Boots and shoes, J. w. Rodgers.
Chair. see erolidig chair. Swinging chair.		Saxing machine, irieular, J. H. Palm, .	
Chopper. See Cotoon chopper. -	Horses hoofs, tool for trimming, J. Berraata...... 32, ,891		
	Horseshoe, J. Holinger etal.......................32738	Scha	
			Hineral water, natural, st. Clair Mineral Sminioss
			Company,12,599
			no.
			${ }_{\text {Ren }}^{\text {Real }}$
		Sewng machin for nuttonh	she
dek			
		${ }_{\text {Shear }}$	
	${ }_{3}^{32}, 6,818$		and spoons, stel, Pariroint Manufacturing
		Ships from foundering, ete, saving, T. Brige..... 32, s\%	
Cooker, team, Anderison $¢$ Shern,	Jel		
	Kette erain		
	920	Spark ari	25
ton press, s.t. Willikison...			
upling. See C			
nekers			${ }_{\text {che }}^{\text {the }}$ by
Ma	cient	spi	
Curtaii			the
ion f		Stalk rake, W. \downarrow N. Hollingsworth................. 32,75	
Dental			
	(81)		\mathcal{P} docrtisements.
			Inside l'age. ench insertion - - 75 cents a line
apping			Len
Drier, T.			
Eaves			
,			BEST AND CHE
gs,	${ }_{\text {Nail }}^{\text {Nail. }}$		
Eleetric machine, dynamo, R. H. Mather..........32, 36,5i5			
Electicte			${ }_{\text {sult }}$
W			A. ${ }^{\text {P }}$
trric m			
	Oatmeal mathine, G. H. Cormack..........329,633		
			RIN BAND SAW blades,
Engine. See Gas engine. Pumping engine. Ro-			
			PECIALNOTICE.
	${ }_{\text {Paper }}^{\text {Pappera }}$		
		Trace anriere, . F. . Stevens, ..F.	xee staam Eng
Fenee, flood,, . D .	aper box, knockdown, .J. C. Bauer 326,705		
		Treade,	
\%	${ }_{\text {Paper }}^{\text {Paper foling ma }}$ Paper, reparatio		
			ter
Frie extinusushing apparatus, antomate, D.C.C. 38.691			
	Pipes,	Vehicle side sid br, L. stourer.	counts.
			Stout-Meadowcroft Co.,
		${ }^{\text {chems }}$	
Furniture, fon F'urniture, H. L. Goodwin	Planter atacatment check	Wagon and carriage brake, automatic, S. Ken- nedy..62688	
		${ }_{\text {wa }}^{\text {w }}$	
coize			
			\&POLISHING MATERIA
	Planter seed. .rive \& Siles		
kets forste	2:912	nachioes, ,ayita	
stenck		w	CHEMICAL CO NEW YO
	${ }^{111}$	Waten a	
	Poke and muzze. combinea, J. H. Downing.........32.634		
	${ }^{32,835}$	Wa	
Gearris, belt, oun Morse.			
22,561		Wheel see Sifth wheel. Water wheel. Wind	
cile			
ss rol	Pump, force, J. P P. Turner........................320.691		
	Pump		
Grain binding mac			oni Chemical Worits, cork, inetand.
ter and spout L. J . Hardy...................... ${ }^{32 \times 6.64}$			
ers, ma	Rate see Staik rake		
Hanger: see cate hanger. Shatt hanker.			
	32,565	DESIGNS	
	Refiector, self -acting solar, H. A. W. Braune...... 32	57	AMERICAN STEAM BOILER INSURANCE CO.,
Hat	c82		
Waring 326,608			
		Vase, F. Kaitrer..............................10,2888	

BAIRD'S BOOKS PRACTICAL MEN

NEW YORK BELTING AND PACKING CO.
 Vulcanized Rubber Fabrics

RUBBER BELTING, PACKING, AND HOSE, Mats and Matting, and Stair Treads, \&c BICTOLE TIREB, OAR BPRINTGB. JOHN H. CHEREVRR, Dep, Treas. Warehouse, 15 Park Row. opp. Astor House, N. Y

 KLEIN, SCHANZLIN \& BECKER

 BIC OFFER. To introduce them, me

THE ANTHRACITE COAL FIELDS

FREEASLIONG AS THEX IAST, TWo

HYDROPHOBIA.--A PAPER BY DR

The Latest Improvement

Poriable, Agricultural, \& Stationary Steam Engines.

[^1]PERFUMES-A PAPER BY JACOB

 this office and from all newsdealers.

SEbASTIAN, MAY \& Co
IMPROVED Screw Cutting Lathe.

DRAWING INSTRUMENTS.

S ENGINE.
GAS ENGINE

Qenerai Design. pulse at every revolution. Runs silently. Uses less ga nd for particulars of Sizes and Prices to

Nag KING TOILET PACKAGE!

INJECTORS

 HOLLAND \& THOMPSON,

CANDLES.-AN INTERESTING DE

Telegraph and Electrical

 Medical Batteries, Inventors?
ELECTRIC CONVEYORS--DESCRIP-

N New Catalogue of Valuable Papers

Scientific American

BOOK LIST

To Readers of the Scientific American:
By arrangements with the principal publishers, we are now enabled to supply tandard books of every description at
gular prices.
The subjoined List pertains chiefly to Scientific Works; but we can furnish books on any desired subject, on receipt of author's name and title
Qis All remittances and all books sent will be at the purchaser's risk.
OS On receipt of the price, the books ordered will be sent by mail, unless other directions are given. Those who desire o have their packages registered should end the registration fee.
0. The safest way to remit money is by postal order or bank check to order of Munn \& Co.
路 ${ }^{2}$ catalogue furnished on applica-
Address MUNN \& CO.,
361 Broadway, New York,
Publishers of the "Scientific American."
Science Series.-For Students in Science and
Art Classes, and Higher and Middle-class Schools.
 excepting where other wise specified
PKACITAL PLANE AND SOLID GEOME-

 I. Text, \$1.25. Vol. II., Plates. . 82.50 a CoUStics, light, and heat. by w. s. Davis.
Mathism and electricity. by f.
Guthrie. INORGANIC CHEMISTRY. By T. E. Thorpe. MINERALOGY. By J. H. Collins. 2 vols.
ZOOLOGY. By E. Ray. Lankester.
METALURY. 2 Vy W. Grenwod.
NATGATION. By Henry Evers.

 Shreve.-A TREATISE ON THE STREGTH
OF BRDGES AND ROOFS. With Practical
Applications and Examples for the Use of En-
 Simmonds.- COMMERCIAL PRODUCTS OF
 Sinclair.-LOCOMOTIVE ENGINE RUNNING
AND MANAGEMENT. A treatise on locomo-

 Smeaton. - BUILDER'S POCKET COM-
PANION. By A. Smeato PANION. By A. C. Smeaton. The Elementso
Building; surveying, and Architecture. 12.50
$\$ 1.50$ Smith.-DYER'S INSTRUCTOR. By David

 Sugar Cane. By Peter Soames. Illustrated.

 spons, ENGINEER'S PRIOE BOOK, Giving
Prices
tro Spons, DICTIONARY OF ENGINEERING: Civil, Mechanical, Military and ENGINEERING: Contains
complete tratises on leading branches of ons
cinering gineering and mechanical work,
3,100
pages
and

Pfovertisements.

STEAM ENGINES.
 York Mfg Coo, York, Pa, U. S. A WHAT THE BAKER CAN GET OUT

H.W.JOHNS

听SHESMOS

Steam Packings, Boiler Coverings, Fire Proof Paints, Cements, Etc.
Samples and Descriptive Price Lists Free.
H. W. JOHNS M'F'G CO., 87 MAIDEN LANE, N. Y.

175 Randolph St., Chicago; 170 N. 4th St., Philadelphi

DRAINAGE.-A SERIES OF VERY

SINKING THROUGH QUICKSAND.

WM. A. RHARREXS,
HARRIS - CORLISS ENCINE, Send for copy. Engineer's and Steam User's

STEAM CATAMARAN MAY BAR-rett.-Plans and specificationn of the catamaran May Barreth, a family cruising boat built for use on rivers
and lakes, Construetion of hulls deek beams main
deck, uperer works engine and boiler, wheel. With 10
figure

"VULCAN"
Cushioned Hammer. Steel Helve, Rubber Cassions, triesquare, elastic blow Full DUNe of Sizes.
P. DUN Bellefonte Pa., U. S.' A

PATENTS.

MESSRS. MUNN \& CO., in connection with the publi-
cation of the ScIENTIFIC AMERICAN, continue to examine improve
for Inventors.
In this line of business they have had forty years' ex-
perience, and now have unequaled facilities for the preparation of Patent Drawings, Specifications, and the
prosecution of Applications for Patents in the Unite prosecution of Applications for Patents in the United
States, Canada, and Foreign Countries. Messrs Munn \& Co. also attend to the preparation of Caveats, Copyrights
for Books, Labels, Reissues, Assignments, and Reports on Infringements of Patents. All business intrusted to
them is done with special care and promptness, on very reasonable terms.

A pamphlet sent free of charge, on application, co

 cure them; directions concerning Labels, Copyrights, Designs, Patents, Appeals, Reissues, Infringements, Assignments, Rejected Cases, Hints on the Sale of We also send, free of charge, a Synopsis of Foreign Pa tent Laws, showing the cost and method of securi
patents in all the principal countries of the world. MUNN \& CO., Solicitors of Patents, BRANCH OFFICE.-Corner of F and 7th Stree

Blake's Improved Pipe Hanger. IT IS THE CHEAPEST AND BEST HANGER JENESINS DEOS, SOIE AGENTTS,
71 JUHN STREET NEW YORK. 79 KILBY STREET, BOSTON

WESTON DYNAWO-ELECTRIC MABHINE

ELEETROPlating and electrotyping
 Nickel sill 1 Pecturs of Pure Nicker Anode and every variety of supplies for Nickel, Silver, an
Gold Plating; also, Bronze and Brass Solutions,

HANSON VANWINKLE \&CO. SOLE AGENTS NEWARK, N. J.

AUSTHALIA. A inerican Manufacturer Wishng to be represented in these colonies please com
municate with Messrs. Imray \& Co., Australan Agent
28a Basinhall St., London, E. C., and at Sydney an
Mebourne.

BARREL, KEG Hogshead,

Stave Machinery 50 varieties manu-
factured by
E. \& B. HOLMES buFfalo, \mathbf{N}. \mathbf{Y}.

MODERN BRONZE ALLOYS.-A PA-

TELEGRAPH
 tiongof short lines of Telegraph, free to any address.
J. H. Bunnell\& Co.,106\& 108 Liberty St., N.

NATURAL GAS.-A PAPER BY C Hequembourg, discussing the illuminating power and
caloric value of natural gas as compared with that made

ECONOMICAL COOKING.-DESCRIP

2 BARKLL, KHU

RODTS NEW IRON BLOWER.

RON REVOLVERS, PERFECTLY BALANCEU, Has Fewer Parts than any other Blowes,
P. H. \& F. M. ROOTS, Manufacturers,
 SEND FOR PRICED CATALOGUE. SPRING MOTORS.--DESCRIPTIONS of various spring motors for venicles. Cole's car pro-
peller. Purb spring motor for street cars. Lari-
more's spring motor for cors. Pfautz's spring motor Other motors. Ilustrated with 4 engravings, Contained
insiENTFIC AMEICAN
Prie 10 cents. To be had at this omeNT, No 473.

PIPE GOVGRING.

Freroof Non-conducthng Coverings for stam Pripes
 CHALMERS 49 Sp

BY-PRODUCTS FROM COKE OVENS

 - A paper by Dr. Otto, describing a system of regenera

INTTS.

Hexagon. Case Hardened or Soft. Nuts Finished True to Gauge..

Orders filled prom
unon application *
TRIDP RUMP BROS. MCH. CO., MPRS.,

HOUSE SEWAGE; HOW TO DIS-

95 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 186,787
The transmission of Speech by all known forms of Electric Speaking Telephones inringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use, and all the consequences hereof, and liable to suit therefor.
The Scientific American.
THE MOST POPULAR SCIENTIFIC PAPER IN THE WORLD.

W continues to maintain it it high reputation for excellence, nd enjoys the largest circulation ever attained by any cientific publication printed, elegantly illustrated; it presents in popular
style a descriptive record of to style a deseriptive record of tho most novel. in interestings,
and important advances in Science, Arts, and Manufacures. It shows the progress of the World in ManufacNew Discoveries and Improvements, embracing Machinery, Mechanical Works, Engineering in all branches,
Chemistry, Metallurgy, Electricity, Light, Heat, Chemistry, Metallurgy, Electricity, Light, Heat, A rchitory, etc. It abounds with freshand interesting subjects for discussion, thought, or experiment; furnishes hun-
dreds of useful suggestions for business. It promotes Industry, Progress, Thrift, and Intelligence in every
community where it circulates. community where it circulates.
The Scientific American should bave a place in every Dwelling. Shop, Office, School, or Iibrary. Workmen, Foremen, Engineers. Superintendents, Directors,
Presidents, Officials, Merchants, Farmers, Teachers, Presidents, Oficials, Merchants, Farmers, Teachers,
Lawyers, Physicians, Clergymen, people in every walk
and reading of THE SciENTIFIC AMERICAN
Terms fortbe United States and Canada, $\$ 3.20$ a year $\$ 1.60$ six months. Specimen copies. free. Remit by Postal Order or Check.

Scientific American Supplement. he Scientific American Supplement is a sepa
ate and distinct publication from 'The Scientific American, but is uniform therewitb in size, every number ERICAN SUPPLEMLENT is published weekly, and includes very wide range of contents. It presents the most re-
cent papers by eminent writers in all the principal departments of Science and the Useful Arts, embracing
Biology, Geology, Minorn, Xatural History Geobiology, Geology, Minowthoy, Natural LHistary Geo-
graphy, Archeology, Astronomy, Chemistry, Electricity, way Engineering, Mining, Ship Building, Marine Engineering, Photography, Techhnology, Manufacturing Industries, Sanitary Engineering, Agriculture, Horticulture, Domestic Economy, Biography, Medicine, etc.
A vast amount of fresh and valuable information perprofusely illustrated with engravings.
The most important Ensineering Works, Mechanisms,
and Manufactures at home and abroad are represented and Manufactures at home and abroad
and described in the Suppiement.
Price for the Supplement for the United States and ERICAN and one copy of the SUPPLEMENETENTIFIC AMorder or check, $\xrightarrow[\text { MUNN \& Co.. } 361]{ }$ Broadway, N. Y., To Foreign subscribers.-Under the facilities of
the Postal Union, the Scientific American is now sent by post direct from New York, with regularity, to subscribers in Great Britain. India. Australia, and all other Russia, and all other European States; Japan. Brazil, Mexico, and.all States of Central and South America.
Terms, when sent to foreign countries, Canada excepted, \$4, gola, for SCIENTIFIC AMl:RICAN, one year; $\$ 9$, gold,
for both SCIENTIFIC for both SCIENTIFIC AMERICAN ant SUPPLEMENT for
one year. This includes pcstage, ซhich we pay. Remit

PRINTING INKS:

[^0]: * From Sir Lyon Playfair's address, British Association, Aberdeen.

[^1]: WOOD, TABER \& MORSE,

