

THE PANAMA CANAL

The present condition of the work of excavating the interoceanic canal, which comprises the removal of about three billion cubic feet of rock of varying consistency, may be summed up as follows: $2,450,000,000$ cubic feet, $350,000,000$ of which had already been excavated on the 31st of last December, are to be removed by the different firms, according to terms of contract which fix the finishing of their work at successive dates in 1885,1886 , and 1887. The $1,000,000,000$ cubic feet making up the entire volume of the cutting will be removed either by the same parties (which appears to be most rational), at the close of their present contracts, or by new parties, who, like their predecessors, shall accept fixed epochs for the delivery of their work in a finished state.
Two billion four hundred and fifty million cubic feet of the canal, then, are now given up to the dredges and excavators of the twenty-one principal contracting firms. Six hundred and thirty million cubic feet, about, must be finished by the first of August of the present year; about fifty million in June, and about one billion two hundred million on the first of October, 1886. The balance comprises the two extremities of the canal, that is to say, the low and easy portions. The twenty-one contractors represent an expenditure of about forty-eight million dollars, of whieh 13 go to French contractors, 11 to American, 20 to Italian, Swiss, Swedish, and native, and 90 to an Anglo-Dutch company. The money to be paid the French is in part for work on the Emperador cutting, which we represent in Fig. 3, and the location of which will be seen on the map (Fig. 1). This work takes its name from quite a large village situated upon the Atlantic side of the Culebra. Em perador is the center of a section of the great cutting, between the Obispo section, which marks the foot of this side, and the Culebra section, upon the crest of the
Cordilleras. Upon examining the topographic plan in

Fig. 1, we find that in this extent of three and a half Colon to Panama. They are likewise connected with miles the Emperador section embraces a broken cen- the works at the great dam, over which the trains of tral portion where rise Mounts Lapita, Cerrito, and cars, hauled by locomotives, go to deposit the excavatCampement. These highlands are in places quite ed material that is to form the retaining wall of the

Fig. 1-FIELD OF OPERATIONS AT EMPERADOR.

Fig. 2.-FIELD OF OPERATIONS NEAR THE CULEBRA.

each other and the Isthmus railway by branches. Ships of the greatest draught can unload, free from the reach of the wind, alongside of wooden wharfs that project into the sea. On the Pacific side the establish ment of a terminus port at Boca presents no technical difficulty. A maritime channel three hundred yards in width will form a true outer port, in which ships will be able to station themselves for their preliminary operations, and the left bank of which will be provided with tracks that connect with the railway.
Last March six large dredges were being mounted at Boca, and are certainly now in active operation.
This colossal installation, and all these fields of ope rations, over which are maneuvered hundreds of machines, thousands of cars, and a formidable materiel, required a special organization for the service of the transports, the starting, and the repairs necessitated by continuous work. For this reason the Isthmus has been divided into three sections-from Colon to San Pablo, from San Pablo to the Culebra, and from the Culebra to the Pacific-with the central seat of the shops at Matachin, at the foot of the dam and the great cutting. The entire stock of tools, apparatus, etc.that which is to be sent to the different fields of operation, and that which comes from the latter for repairis concentrated at Matachin. The Isthmus railway which is now the property of the Interoceanic Cana Company, wonderfully facilitates that moving about of the implements, etc., upon which depends the regular operation of the different sections.
In short, more than two-thirds of the canal are now under way, with a formal engagement on the part of the contractors to have their sections finished at an epoch that shall not exceed the end of 1887. The execution of the canal, then, is a problem that is now solved The parties who have contracted to perform their work cannot break their agreement. The company, more over, holds in reserve sufficient tools to allow the engineers at a given moment either to replace or aid any contractor who is getting behind. All the contracts contain a special clause that gives the director-general of the works the right to step in with his own machines and his own men in any case of this kind.-La Nature.

Ova of Bilharzia in the Lungs.
From a communication to the Unione Medica Egiziana of June 15, by Dr. Belleli, it appears that genuine ova of bilharzia hæmatobia have been discovered in the lungs. The patient was an adult man, whodied in the Hopital des Diaconesses at Alexandria. He had been admitted a few days before his death with purulent cystitis, consecutive to the bilharzia disease, Rigors and intermittent fever were the chief symptoms, and pyæmia was diagnosed. An autopsy was made, and the bladder. liver, kidneys, and lungs removed for examination. The walls of the bladder were infiltrated with the ova of bilharzia. One of the kidneys was studded with minute abscesses, and numerous ova were easily detected in both kidneys and the liver. On the surface of the lungs numerous small abscesses of variable size were seen; in the walls and contents of these abscesses, the eggs of the bilharzia were found. The eggs in the lungs were like those in the bladder in every respect, but they were much less numerous. Nearly all the eggs were found in the interlobular connective tissue; a few were detected in the intralobular and peribronchial structures. The situation of the ova corresponded to the distribution of the finer ramifications of the pulmonary artery, along which they had traveled. The connective tissue in the neighborhood of the blocked vessels had undergone a process of proliferation of recent date. The other pulmonary tissues were in various stages of inflammation and suppuration. This occasion is said to be the first on which the eggs have been discovered in the lungs. The adult worm lives in the portal vein, and the eggs are distributed thence. It is supposed that in the present case the ova passed from the vesical veins into the hypogastric veins, and so into the vena cava inferior, whence they would traverse the right heart, and so get lodged in suitable branches of the pulmonary artery. Another route might be through the communication between the portal and systemic systems, by way of the hæmorrhoidal plexus. A third mode of transit is suggested in the vessels of a certain caliber, which are said to provide direct communication between the portal trunks and the sub-hepatic veins or vena cavainferior. -Lancet.

Speaking of the rotting of timber, the Builder says: "The Merulius lacrymans is the common wood fungus that destroys nine-tenths of the wood with which we are acquainted. The reason of it being comnon to new buildings and not to old is that moisture, one of the constituents of its existence, is more present in new, green buildings than in old, dry, seasoned ones. The two prime conditions of its existence are moisture and heat; if moisture is present without heat, it will not grow, and hence its depredations, in the winter time are unknown. If heat is present without moisture, it will not grow, and hence ventilation for the passage of a current or dry air will prove fatal to its existence.

Sututifir Smmicam.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors.
published weekly at

No. 361 BROADWAY, NEW YORK.

o. D. MUNN.
 A. E. BEACH.

TERMIS FOR THE SCIENTIFIC AMERICAN. ne copy, one year. postage included...
One copy, six months, postage included 320
160

Clubs.-One extra copy of The Scientific Amprican will be supplied ame proportionate rate. Postage prepaid.
Remit by postal order. Address
MUNN \& CO., 361 Broadway, corner of
The Scientific American Supplement
is a distinct paper from the Scientific American. THE SUPPLEment is issued weekly. Every number contains 16 octavo pages. uniform in size
with Scientific American. Terms of subscription for Supplement, \$5.00 a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all newsdealers throughout the country
Combined Rates.-The Scientific American and Supplement apers to one address or different addresses as desired.
The safest way to remit is by draft, postal order, or registered letter.
Scientific American Export Edition.
The Scientific American Export Edition is a large and splendid peri-
dical, issued once a month. Each number contains about one hundred rge quarto pages, profusely illustrated, embracing: (1.) Most of the plate and pages of the four preceding weekly issues of the SCIENTIFIC AMERI-
AN. with its splendid engravings and valuable information; (2.) Commercial, trade, and manufacturing announcements of leading houses.
Terms for Export Edition, 45.00 a year, sent preaid to any part of the erms for Export Edition, 85.00 a year, sent prepaid to any part of the
or.d. Single copies, 50 cents. Manufacturers and others who desire to secure foreign trade may have large and handsomely displayed anThe Scientific American Export at a very moderate cost,
culation in all commercial places throughout the world. Address MUNN CO., 361 Broadway, corner of Franklin Street, New York.

NEW YORK, SATURDAY, AUGUST 22, 1885.

TABLE OF CONTENTS OF

the scientific american supplement

No. 503

For the Week Ending August 22, 1885.

Price 10 cents. For sale by all newsdealers.
engineering and mechanics.-Sinking the Cylinders of the Tay Bridge by Pontoons.-By ANDREW S. BigGART.-An elaborate paper read before the Institution of Engineers and Shipbuilders of
Scotland,-With 5 figures..................................... 8 The Forth Bridge.-By B. BAKER.-An elaborate paper read be-
fore the British Association, giving full engineering details of the fore the British Association, giving full enginee
structure.-(Concluded from SUPPLEMENT 457.).
structure.-(Concluded from SUPPLE
The Kansas City Cable Railroad;
grades are managed.-Illustrated.....
On the Conversion of Heat into Useful Work,-Sixth lecture.... 8 Wm. Anderson before the Society of Arts, London.-The gas en gine; the hot air engine; compressed air refrigerating machines the steam boiler.-An elaborate paper, taking the subject from
principles to practice. 17 figures principles to practice. -17 figures.

-(Rose's.)-Illustrated

A Perforated Pulley to prevent the "Slip" of Belts.-1 figure A Wooden Driving Belt.-2 views..
Improved Siphon Trap.-A new English style.
AHSICS. Wer Thers of C............... 802 By F. Jarvis Patten, U.S.A.-The accepted theories of the sun consideration of planetary space and the bodies of the solar system; the conservation of energy, etc
V. ART AND ARCHITECTURE.-Inauguration of the Statue of Nicephore Niepce, Inventor of Photography, at Chalon-sur-Saone. Engravings of statue and scene at its unveiling........................
A Sketch of Roman'Building Construction.-By W. T. OLDRIEVE. -Its principles and forms. processes and methods, materials and workmanship.-An Edinburgh University prize essay............... 808
Great Casino on the North Sea, at Scheveningen, Holland.-Full Great Casino on the North Sea, at Scheveningen, Holland.-Full
half page illustration.. half page illustration....
New West Front of St.
Sir Edmund Beckett.-Full half page illustration...

tion..

VI. MISCELLANEOUS.-Medicated Soaps.-By Dr. JoHn V.SCHOonMAKER, of Philadelphia.-Describing thirty different kinds, what

MANUFACTURING PROSPECTS

A number of interviews, held recently with the proprietors and managers of representative manufacturing establishments in a New England State, afford some interesting if not positive information relative to the prospects of manufacturers.
Out of the number visited, fourteen establishments may be taken as representative. These comprise the makers of machine tools, steam engines, hand tools, cutlery, sewing machines, guns and pistols, machine screws, bench hardware, builders' hardware, drop forgings, patterns. A number of these branches are du plicated in the visitations.
Taken as a whole the reports are favorable, not only for present work, but for prospective business. In one establishment the hours of work have been doubled during the month of August; the factory had been running on half time for several months. This in crease of time is not due to a "spurt" of a single order, but to a gradually increasing pressure of smal orders. Two machine tool establishments have lately increased their force of hands, and are busy filling re cent orders; they both say that they have few finished tools in stock. The steam engine builders complain of a lack of orders; there does not appear to be many new manufactories starting, and few which are increas ing their power. The call for bench tools for iron and wood has lately received an impetus from fresh orders; but possibly this may come from dealers whose stock has run low. Cutlery, guns, pistols, and sew ing machines are more in demand than they were three months ago-April and May-and the manufac turers are confident that " the good times" are about to come again. Machine screws are affected largely by the manufacture of machine tools and manufacturing machinery; but this industry, which has lagged slightly, is coming up to a healthy if not a driving condition. Bench hardware has suffered considerably the dealers have a considerable supply on hand. In some localities builders' hardware has been in brisk de mand all through the spring and summer, and there is an increase in orders. Drop forgings are special as well as regular, and the former seem to have increased in orders, while the latter have not materially fallen off.
So these facts as to the actual state of work may be properly supplemented by the combined opinion of the managers of the manufactories. On the whole, the impression gained is that our manufacturing business is beginning to increase; the deadlock is to be removed, and the dullness of years is to be gradually changed to an activity that shall give competent labor remunerative employment, and invested capital profitable returns.
As to the cause of the present relative inactivity, opinions differ. Probably there are combined causes, which do not resolve themselves into a comprehen sive explanation. But all those who have been addressed on the subject agree upon one cause-that of production beyond the requirements of the people It is a remarkable state of society where more of al comforts, necessaries, and luxuries are provided than can be sold to those who are able to pay for them; it may, nevertheless, be the fact.

tHE TRIANGULATION AND HYDROGRAPHY OF THE

 COAST.The charges that the work of triangulation and hydrography, as carried on by the Coast and Geodetic Survey, has been arranged so as never to be completed are misleading, and calculated to do much injustice to a really important and meritorious service. It matter not what action shall be taken regarding the present organization, the work of triangulation and hydro graphy must of a necessity be continued by the gov ernment, for otherwise the coast charts of many dis tricts would only serve to mislead the mariner and cause disaster.
If all harbors and the approaches thereto were formed of rock, having channel ways that never va ried, a single hydrographic survey made with care and precision would suffice for all time; and the scheme of triangulation when once developed and used for the determination of the hydrographic lines of the adjacent waters, would never thereafter require to be redeveloped. But most waterways have shifting channels; sands or shingle or both are in constant activity especially in the case of estuaries, and what ten year ago was, a six fathom channel, large enough under or dinary conditions to admit the passage of the deepest ship afloat, may to-day be high and dry at low water, the real channel having been deflected to the one side or to the other. Hence a resurvey is necessary, and in order that it may be accurately made, the old scheme of triangulation on the shore must be resurrected. Under favorable circumstances this can be quickly done. In the case of large cities, for instance, the prominent points near the water line, such as church steeples, the flagstaffs on the forts, the cupolas of residences standing on elevated ground, and the like, are usually to be found laid down on the charts, and so no laborious work with the transit instrument is
required. But in sparsely populated districts, as
about the bays and sounds of North and South Carolina, and indeed on a great part of the coast, only a granite block with crosshairs cut in the top marks the various points in the triangulation, and as these, especially on sandy coasts, are taken out and utilized by the fishermen as anchors, the "points "have to be re determined or other ones made before the work of hy drography can even be started.
A few weeks of clear weather will generally suffice to redevelop the triangulation, but if such a scheme had never been carried out, the preliminary labor to be performed would be immense; a whole season and perhaps two would intervene before the hydrographers could begin operations. An observatory would have to be erected, protracted astronomical observations taken, and a base line measured-a tedious and delicate work.
Hence it is that the statements in the recent Washing dispatches to the effect that "the survey of the coast is likely to last for a thousand years," though intended evidently for irony, do not necessarily prove a lack of expedition in the work, nor a reason for its discontinuance.

THE REIS TELEPHONES

It is a well received principle in patent law that an invention is protected for all possible uses, even for such as were unforeseen by the inventor. In some of the voluminous testimony and arguments of the Bell telephone suits, it has been suggested that the transmission of articulate speech was not contemplated in the original Bell telephone patent. Yet under the which would be good for all its uses.
The same state of things exists in the case of the old Reis telephone. Philipp Reis invented, constructed, and experimented with a number of different kinds of telephones during a period extending from 1859 to 1874. He died in 1874. Precisely in accordance with modern telephone practice, he divided his instruments into two classes, transmitters and receivers. These instruments have been repeatedly tried of late years, and it has been definitely determined that they will transmit articulate speech. It would seem therefore that in them would be found the complete anticipation of Bell's broad claim to the electrical transmission of speech But the point is made that in Reis' hands his instruments did not effect this. It is argued that they were only designed to transmit sounds in general, such as the tune of an air sung into the receiver, or the notes of a piano or other musical instrument. The analogy between the position of the 1876 Bell patent and the Reis telephones is perfect. In both instruments is latent the capacity for transmitting speech, but by neither Bell nor Reis was this power distinctly claimed.
In view of the really striking analogy, the anticipation seems most complete. Both inventors appear on the field with devices adapted for the same end, but neither with perfect distinctness claims this function neither with perfect distin.
The courts in their sweeping decisions in favor of the Bell patent dispose very summarily of Reis' inventions. In one decision the judge rather gratuitously says that a century of Reis would not have produced an operative telephone. By all the decisions Bell's claims have become so broadly construed that the actual Reis telephone could not be used without infring ing them, if it were so used as to transmit speech. In other words, if one of our readers were to place a Reis transmitter in one house and a Reis receiver in an other, and connect them by wire, and were to talk over such a line, he would constitute himself an infringer of Bell's claims, though he was using an invention made by a man who died two years before the date of Bell's 1876 patent. If Reis himself, as is almost certain, spoke through his telephones, he ought to be considered an infringer in advance of his time. Seriously speaking however, the bearing of the Reis inventions upon the Bell claims depends on the following facts: Reis' telephones did transmit sound; they probably transmitted speech in the days of the inventor, as they are perfectly capable of doing so at the present time. This much should constitute them an anticipation of the broad claim to electrical transmission of speech. But their effectiveness as anticipations would be vastly increased if it could be definitely proved that speech had been transmitted by them during Reis' lifetime.
Numerous passages from Reis' writings are cited to prove this. But they all are considered unsatisfactory to about such an extent as is the Bell patent of 1876, in its own claims to speech transmission. An appeal to Reis' contemporaries has been made with far more fruitful results. In Professor S. P. Thompson's work on the Reis telephone, a number of letters from friends of
Reis are printed. Many of the writers are men in Reis are printed. Many of the writers are men in
high standing in the scientific world. The letters are in some cases to the effect that articulate speech was received through the telephones as early as 1859-1864. Others are not so definite as to the facts. But the general unanimity of all on this subject is most striking. They effectually disprove of the "century

Reis" theory, so firmly upheld by one of the circuit judges.
The fact is that the scope of the Bell patents as deermined by the courts is a monument to the ability of the lawyers engaged by the Bell Telephone Company. So thin a series of claims were in all probability never before made to protect a monopoly so securely. We are firm believers in according protection to inventors. The recent tendency of the courts to destroy ventors. The recent tendency of the courts to destroy
patents should certainly be deprecated by all who have the real interest of the country at heart. But, in equal measure, the unjust broadening of claims should be condemned by all. A monopoly of an extent measured by one hundred millions of dollars should not be sustained on any but a solid basis. The inventor, Mr. Bell, has reaped ample reward for any merit that did exist in his labors. As his work seems to have been so largely anticipated, and as the public are really suffering from the rigid monopoly awarded his stock company, it is time his claims were more carefully scrutinized and their extent limited. This work we hope will be effectually done by the Supreme Court, whenever the case will be properly presented to them.
The general opinion of patent lawyers is that the United States Supreme Court has been too rigid in its dealings with original patents and reissues. Few patents comparatively can stand before it. The Bel patents have not yet reached this last tribunal. When they do, some restriction will certainly be placed upon them. It will not be strange if the much criticised action of the court in patent cases shall at last be productive of good, and tend to defining and restricting. the extent of a monopoly that has become a public evil. The morals of the case and justice to the inventor have been amply satisfied. It now is only a ventor have been amply satisfied. It now is only a
question of how to deal with the members of a giant corporation. On the one hand is the comparatively limited number of stockholders, on the other hand is the public at large. The inventor and his family have all reaped fortunes out of the patent. The corporation itself has founded a business that the entire annihilation of the patents would not destroy. Thus even in the destruction of the Bell patents no hardship would be done, and the public would be vastly benewould

Fire Losses.

The Chronicle fire tables for 1885 contain a review of the total losses from fire in the United States and Canada during the past ten years, which shows an appalling destruction of values from causes largely preventable. During this single decade, the loss of property by fire amounted in the aggregate to nearly $\$ 900,000,000$, a sum so large as to be quite past belief, did it not rest upon undeniable statistics.
The distribution of this immense loss has been rather curious. Upon the assumption that the average loss per capita amounts to about two dollars a year, we find that two-fifths of the annual combustion occurs between elevations of 500 and 1,000 feet above the sea; three-fifths, where the mean annual temperature ranges from 45° to 55°; two-fifths where the mean annual temperature of July is from 70° to 75°; nine-tenths where the range of maximum temperature is from 95° to 105°; seven-tenths where the annual rainfall ranges from 35 to 50 inches, and three-tenths where the rainfall of spring and summer is from 20 to 25 inches. Between the 40th and 41st parallels of latitude and the 73d and 84th degrees of longitude a greater loss occurs than between any others.
Since 1880, the fire losses have been increasing rapidly, the greatest difference coming between the years 1882 and 1883 , when the increase amounted to $\$ 16,000$,000. The monthly proportion shows also a number of curious features. While the losses during other months are quite variable, they seem to be very regular in February and March. The widest ranges have been noticed in January and in the early fall.
The causes of fires have also been carefully classified, and the results show an alarming predominance of incendiarism and of defective construction scarcely less criminal. For several years past, approximately onethird of all fires were the work of incendiaries, and the percentage in the different States and Territories varied in 1884 from 11 per cent in California to 62 per cent in Kentucky.

These variations seem to have no dependence upon density of population, but show an undoubted connection between incendiarism and illiteracy, although the States named represent by no means the apex or base
of the social pyramid. The monthly curve of incendiarism for the years 1883 and 1884 shows two periods of maximum outburst, the smaller occurring respectvely in May

Und October.

Under other divisions, equally curious results have been obtained. Take, for instance, the influence of atmospheric conditions. As one would expect, the greater loss occurs during the dry season of the year, when everything is more easily inflammable, and the means for extinguishing fire are less available. But the difference is less than would be supposed. In the
per cent, while the greater loss is 17 per cent, showing that the real discrepancy is due to the greater destruc-
tion wrought by fires rather than to the actual increase in their whent by fires rather than to the actual increase other things being equal, the fire loss of a locality, for any considerable period, varies inversely with the rain fall.
At the present time, in the United States and Canada, we are suffering a monthly loss from fires of almost $\$ 10,000,000-$ a tremendous tax upon our wealth produc ing power. While the scheme of insurance has miti gated the burden somewhat by distributing it over many shoulders, it has given rise to a deplorable falseness in the popular reasoning. People have come to believe that a policy cancels loss, and it must be con fessed have come likewise to act upon the principle. Omitting the flagrant immorality of incendiarism Omitting the flagrant immorality of incendiarism,
there is still a large class of apparently respectable citizens who permit themselves to regard the preservation of property for which others are responsible as less sacred than if the weight of loss rested upon themselves. We can only look for the decrease of fires in any community where there is a proper building inspection, and still more where there is a healthy state of mora sensitiveness.

Industrial Comparison between Illinois and

The most interesting portion of the report of the Illinois Bureau of Labor Statistics is that devoted to a comparison of the industrial conditions of Illinois and Massachusetts. As similar methods of inquiry were followed in the two States, there is the more value in the results obtained. The following conclusions are made Twenty-one industries, represented by 2,440 establish ments, were taken in Massachusetts, and 34 industries, represented by 1,666 establishments, in Illinois. The 2,440 establishments of the former State employed 207,793 hands; the 1,666 establishments of the latter employed 95,912 hands. The whole number of manufacturing establishments in each State is about the same, Illinois having 14,549, and Massachusetts 14,352 Illinois has 1,848 establishments in which $\$ 5,000$ or more was paid in wages during the census year and 1,666 of these were used in the investigation Massachusetts has 3,663 establishments in which $\$ 5,000$ or more was paid in annual wages, and 2,440 were used in the investigation. Thus there appears to be in Massachusetts nearly twice as many large establishments as in Illinois, and not only a greater number, but the establishments themselves are more extensive, as is shown by the fact that the average number of employes to each in Illinois is only $57+$, while the aver age for each establishment in Massachusetts is 85+.
In Massachusetts, $30 \cdot 13$ per cent of all employes are women, while in Illinois only 12.16 per cent are women, and the preponderance of this class, and the laws governing their employment in Massachusetts, prepare us for finding $80+$ per cent of the establishments in Massachusetts running 10 hours, as against $63+$ per cent of those in Illinois. This disparity is modified somewhat by the fact that $26+$ in Illinois run less than 10 hours, as against $16+$ per cent of those in Massa chusetts; but, on the other hand, the number of those which run more than 10 hours is much greater in Illinois than in Massachusetts.
In Illinois children and youth constitute only 6.07 per cent of all employes; by far the largest percentage, 37%, being found in the tobacco factories. In Massachusetts, 4.93 per cent of the workers are children.
The daily earnings are $\$ 1.51$ in Illinois and $\$ 1.23$ in Massachusetts, and the yearly earnings in the former are $\$ 430$, and in the latter $\$ 358$. Both amounts seem very low, but it must be remembered that they are not the yearly earnings of men, but an average of all the earnings of men, women, and children. As Massachusetts employs nearly twice as many women and children in her industries as Illinois, this large proportion of cheap labor would doubtless account in a great measure for the discrepancy in these averages of earnings in the two States.-Bradstreet's.

A Waterspout

A dispatch from San Antonio, Texas, July 6, says " Yesterday morning, near Walden, 150 miles west of here, an eastbound freight train was struck by a waterspout. The engineer saw the spout approaching bounding along like a rubber ball, tearing up the earth and uprooting all in its way. He reversed the train to avoid the waterspout, whose course was tortuous Just as the waterspout reached the line of the road it changed its course, and pounded along parallel with the road with frightful velocity. When opposite the train it burst, deluging the engineer, fireman, and brakeman, who abandoned the train and climbed some trees to avoid a waye of water fully eight feet high and about 100 feet wide. The locomotive and 14 cars were raised bodily and carried nearly 200 feet from the track, while the roadbed was completelyobliterated. No one was hurt. The extent of the damage is unknown. been abandoned Roadbeds and a number of bridges have been washed away by recent heavy rains."

CAR CCUPLING.

At the top of the front end of the drawhead are jaws between which is a slot extending to the rear. Between the jaws is pivoted a coupling lug, formed as clearly shown in the cut, and free to swing up and down in the slot. The entering link strikes the bottom beveled edge of the lug and raises it; the lug then drops into the link. The lug is locked in place by the prong of a hook pivoted on top of the drawhead being passed into the hole in the lug. The hook is shifted by means of a hook on one end of a rod, whose other end is slightly curved and tapered. To uncouple, the prongs of the hooks are withdrawn, and the lugs are raised by means of the rod, the tapered end of which is passed into the eyes on the top edges of the lugs. By holding the lugs raised by placing the prongs of the hooks under them, the cars may be run together without coupling. This

field's car coupling.

coupling-invented by Mr. Henry Field, Jr., of New Bedford, Mass.-may be strongly built, and does not require the brakeman to enter between the cars at any time.

WINDOW SASH AND FRAME

An invention lately patented by Mr. George W. Henry, of 195 Broadway, New York city, consists of a window frame and sash so constructed with inclined or wedge-shaped surfaces as to make perfectly airtight joints at all points between the frame and sash when the latter is closed. Fig. 1 is a sectional ele vation of half the window, Fig. 2 is a perspective view, and Fig. 3 is a transverse sectional elevation. The lower strip of the upper sash is thicker horizontally than the upper one, and the side strips are inclined at their outer surfaces, being thickest at their

HENRY'S WINDOW SASH AND FRAME.
bottoms, as shown in Fig. 3. The edges of the side strips are also inclined, as indicated by the dotted line in Fig. 1. The sash is thus formed with inclined surfaces in all directions, front, back, and edgewise. The lower sash is made in the same way, and the two sashes are placed in the frame with their widest parts at the center. The upper and lower portions of the frame are so formed that when the sashes are closed there will be a wedge fit at all points, whereby all dust, snow, and water will be excluded, and there will be no rattling of the sash. This invention may also be applied to solid sliding hatchways or doors, and to other frames placed in openings and adapted to slide.

THE SKIAGRAPH.

Wood engraving, although undoubtedly still preferred by most publishers for illustrating books and periodicals, has of recent years been to a great extent superseded by photo-electrotyping. In this process the pen takes the place of the graving tool, and an artist thoroughly familiar with this kind of work can produce most pleasing effects at a cost below that of produce most pleasing effects at a (shade delineator) has been devised for the use of such artists, and with its aid an endless variety of shades can be introduced on a pen and ink sketch.
Its capacity in this respect is almost unlimited; as many different shades or tints can be produced as designs can be by the kaleidoscope. For artists engaged on sketching illustrations for manufacturers' catalogues this instrument will be found to be a most valuable auxiliary, and in the hands of those who know how to use it to the best advantage, all kinds of artistic work can be executed in a manner comparing favorably with engraving.
In the accompanying cut, a is a bed plate having on its upper surface a central socket; b is a revolving plate having on its lower surface a central pin fitting in the socket; c is the tint plate carrier, resting on the revolving plate; d is the tint plate, resting on the carrier; e is the tint screw, by which the carrier and tint plate can be moved backward and forward. By this movement tint lines can be thickened up to any desired shade. The tint plate and carrier can be locked at any angle at which they may be placed by means-of the locking screw, f; g is the surface plate, on which is screwed the hardwood sketch frame, $i ; h h$ are adjusting screws to regulate the distance of the surface of the pen and ink sketch from the surface of the tint plate.
The artist first makes a light pencil sketch on the upper surface of a sheet of drawing paper stretched on the frame, i. Then with pen and ink he makes the outlines and does all the other pen and ink work, except that to be done by the skiagraph. The next step is to screw the frame, with the face of the sketch down, on to the surface plate, which can be lifted on or off the instrument as often as may be required. The drawing paper being semi-transparent, the artist then, on the back surface of his sketch, makes a pencil outline of the surface on which he wishes to produce a certain tint. The tint plate, having been inked over with printer's ink, is put in position, and that part of the drawing designed to receive the tint is pressed down to obtain the desired impression. By using the tint screw for thickening lines, the revolving plate for cross lines, and combining the shades produced by several tint plates, almost any desired effect can be at tained. The sketch when finished is placed in the hands of the photo-engraver, and a plate ready to print from can be had in a very short time.
This invention has been patented by Mr. Edward H. Brown, of 7 Warren Street, New York city, who will furnish particulars regarding United States and foreign patents.

Waters of Sugar Works.

It is remarked that a sugar works consuming daily 4,000 cwt. of beets furnishes as much foul water as a town of 20,000 inhabitants, and discharges as much organic impurity as a town of 50,000 inhabitants. The waste waters contain suspended matters, i. e., fragments of beets, dissolved organic matter, both nitrogenous and non-nitrogenous, and salts, sulphates, chlorides, and phosphates. Hence all conditions for energetic putrefaction and the multiplication of bacteria are present. The author recommends precipitation followed by irrigation, except when the effluent can be conveyed into a large river, "the water of which will play the part of the soil."一A. Bodenbaender.

SMORE-CONSUMING FURNACE.

Much inventive genius has been expended upon the suppression of the smoke nuisance, and a great number of plans, more or less effective, have, from time to time, been brought forward for this purpose. The device which we illustrate is one which has been suggested by Mr. John L. Peslin, of Appleton. Wis., who built a a small experimental furnace several years ago, and succeeded in obtaining very satisfactory results. The first figure shows the self-closing fire door in perspective. The central axis, about which it rotates, is provid ed on its end with a clover-leaf cam working against a small roller which is pressed upward by a spring. In consequence of this construction, when the fire door is partly revolved to admit the coals, as shown at the left of the second figure, the clover-leaf cam presses the roller down, and the spring is brought into greater tension.

As soon as the fire door is relieved of pressure, there fore, the action of the spring on the cam returns it to its first position, and the door is closed automatically.
The second figure illustrates the general action of the urnace. The grate is curved in cross section, and is fed with coals from each side. The body of the fire is constantly red and glowing, for the supply of fuel being added from the sides and not from the top, as ordi-

narily, there is no sudden lowering of the temperature, and consequently no evolution of smoke in the main fire chamber over the grate. Smoke, nevertheless, is produced, and in quite large quantities, but its generation is limited to the coal chambers at the side of the fire box, and it is fully disposed of without having a chance to find its way to the smoke stack. Its course is illustrated by the arrows. Jets of steam at each side create a strong downward draught, and force the smoke to find an outlet through the layer of burning coals. By this baptism of fire the finely divided particles of carbon, whose suspension in the mass constitutes smoke, are brought to the temperature of combustion, and pass off through the stack as carbonic acid chiefly, though if there be insufficient air, carbon monoxide will also be among the products, and will be a source of lost energy, but quite invisible, and without the disagreeable qualities of smoke.
Dampers are provided in each fuel chamber, as

PESLIN'S SMOKE-CONSUMING FURNACE.
shown. By this preliminary heating, the coal is de prived in a large measure of its volatile constituents, and by the time it reaches the zone of combustion on the grate, will be reduced to the condition of an imperfect coke, and therefore incapable of generating smoke. Doors are provided at the front of the fire box, both to admit the necessary air and to permit of stoking the fire. It has not been our pleasure to see this furnace in operation, but its plan embodies correct chemical principles, and on independent grounds we are quite prepared to believe the inventor's statement that it is very effective in preventing the contamination of the atmosphere by smoke.

COMBINED BAG HOLDER AND TRUCK.
The truck board, provided at its lower end with wheels and foot piece, has its upper end tapered to form a handle having a head. In each side of the lower part of the handle is a longitudinal groove. A metal rod, Fig. 3, from $3 / 8$ to $1 / 2$ inch in diameter, is bent to form a large loop, which may be square, circular, or oblong, and the inner ends are bent down and crossed

HATZ'S COMBINED BAG HOLDER AND TRUCK.
to form a loop, and are then bent inward to form hooks. The holder is placed on the front of the board at the upper end, the handle portion is passed through the small loop, and the hooks are passed into the side grooves. The open end of the bag is passed through the large loop, and the end seam is turned down over the outside of the loop and over the head. The bag can then be easily filled, as its mouth is held open, and as the weight in the bag increases, the top is held more firmly on the loop. If desired, the loop can be formed as shown in Fig. 2, the ends being bent to form a square frame and the hooks being dispensed with. Moving the filled bag about is facilitated by its being held to the truck.
This invention has been patented by Mr. Casper Hatz, of Big Stone City, Dakota.

FIRE ESCAPE.

In a vertical shaft on the inside or outside of the building, a fire escape is erected consisting of a series of inclined ways or chutes, A, which are secured to the walls or arranged between them, and are alternately inclined in opposite directions, the lower end of one chute being a short distance above the upper end of

GOLLINGS' F'IRE ESCAPE.
the next lower. Two chutes are placed for each story, one extending from the floor to the middle of the story below, and the other from the middle to the floor below, and so on. The upper surfaces of the chutes are hollowed out, and carpet or canvas is secured to the top edges of the sides to form an elastic support. At each floor is a door located at the upper end of a chute. At the lower end of the lowest chute is a door, B, sliding vertically in a recess in the wall; at tached to this door is a wire extending upward on the side of the shaft and connected by a wire, passing over a pulley, with the swinging edge of the door at each story. By opening any one of the doors the wire
is pulled upward and the sliding door raised. Persons step from the floor upon a chute, and sliding down alternately in opposite directions, are landed on the ground. If desired, a sliding piece may be arranged on the bottom chute in such a manner that it will slide out and form a continuation of the chute when the door is raised.
This invention has been patented by Mr. Henry Gollings, of Beltzhoover, Pa.

How to Keep Moths Out of Carriages.

As this is a subject of very great importance, especially at this season of the year, we will not wait until we have tested the remedy suggested by an old trimmer, who has been using it for a number of years back, and claims for it a comparative victory over those destructive pests known as moths. His plan is an invisible one, and strikes at the very harboring places they infest. The plan is a mixture of the paste, and will not in any way impair the quality of the paste nor stain the linings, as might at first be supposed. The paste is made up in the usual way with fine tar mixed in it, in the proportion of two tablespoonfuls to a gallon of paste.

By putting this in the paste you will readilysee that the preventive is distributed throughout the whole carriage. The odor, it is said, remains a long time, but is not sufficiently strong to render it disagreeable to smell; hence the adovisability of using it in the carriage business.-Carriage Monthly.

Geological Survey of New Jersey.

The Director of the State Survey, Prof. George H. Cook, is now preparing a complete atlas of New Jersey, several sheets of which are already issued. Including the margin, they are each 27 by 37 inches, and are intended to be folded once, making the dimensions of the atlas $181 / 2$ by 27 inches. When completed there will be seventeen of these sheets, drawn to the uniform scale of one mile to the inch. Those so far issued are six in number: No. 2, Southwestern Highlands; No. 3, Central Highlands; No. 4, Northeastern Highlands; No. 6, Central Red Sandstone; No. 7, Northeastern Red Sandstone; and No. 16, Egg Harbor. The remaining eleven sheets are expected to be issued during the course of the next three years. A small map of the State is published on the titlepage sheet, and by its division into numbered rectangles affords an easy key to the system of mapping employed.
It seems to have been the purpose to so divide the State that each separate map should show its territory grouped around some center of either geological or commercial importance. Though the plan necessitates much repetition, many localities being thus made to appear on four different sheets, it possesses undoubted advantages in making the maps more convenient for local use, and this, after all, is the chief object of such surveys, or should be. The topographical part of the work is excellent, and is unsurpassed by that of any State, not even excluding Pennsylvania from the comparison, the maps of which have gained a cosmopolitan reputation.

HARNESS ATTACHMENT

The engraving represents an invention patented by Mr. John Siebel, of Oskaloosa, Iowa, which consists mainly of an oscillating yoke or frame to which the shafts of the vehicle are attached. Leading from the vehicle, which may be of any approved construction, is a long, upwardly curved reach that extends over the horse to the back pad of the harness. The forward end of the reach is forked, and each piece is formed with an eye. Secured to the back pad are blocks formed with lugs in which the horizontal arms of the yoke are journaled. The ends of these arms are form ed with eyes that constitute guides for the lines of harness. The yoke is composed of an up per and lower bow, provided at their centers with studs on which the eyes of the reach are placed. These studs form pivots to per mit the horse to turn without cramping the reach, and the yoke arms form horizontal pivots, so that in passing over uneven ground the up and down movement of the
horse and vehicle will not cramp the back pad or reach, nor interfere with the free motion of the horse.

Experiments conducted by the Dutch State Railroad on the behavior of different paints for ironwork have shown that red lead b•st resists the action of the atmosphere. It was discovered, too, that the coat holds better on iron plates cleaned by pickling than when the plates have been scraped or brushed. The trial sheets were pickled with hydrochloric acid, washed with warm water, dried, and oiled while still warm.

SIEBEL'S HARNESS ATTACHMENT.
This invention has been patented by Mr. Alfred Horsfield, of Hazleton, Pa.

Tiers-Argent.

This alloy is much employed in the factories of Paris or the manufacture of silverware. As is indicated by its name, it consists of one-third, or 33.33 per cent, silver and two thirds, or 66.66 per cent, aluminum, and is worked to great advantage both by reason of its cheaper price (the kilogramme [43 ounces 3 dwts.] costing about 90 francs) and its superior hardness; at the same time, it is more easily pressed and engraved than the silver-copper alloys.

IMPROVED EGG BEATER

Egg beaters which move continually in the same direction produce poor results, since the semi-liquid mass is carried round but is not agitated; this is remedied in the beater herewith illustrated, as a reverse motion takes place at short intervals. A strong wire is bent to form the frame, the top being provided with a handle loop, and the bottom being bent up to form a pivot. On the free end of the wire at the bottom of the handle is a
 sleeve which forms a socket for receiving the pointed end of one of two wires twisted spirally together, the lower end being flattened and curved as shown. The twisted wires rest and turn upon the end of the upwardly projecting part of the frame. By working the nut, which is fitted to slide upon the twisted section, up and down the curved portion is rapidly revolved in opposite directions, thereby beating the eggs quickly and thoroughly. The beater is simple and strong, and
there are no parts liable to get out of order.
This invention has been patented by Mr. Charles A. Bryant, of Wakefield, Mass.
A Japanese Patent Law.
Determined upon progress, the Japanese have at length passed a patent law. The new law appears to be compiled from similar laws of other countriesa clause from England here, from France there, from Germany in another place, as seemed ad visable in the circumstances. The term of protection is 15 years; "articles that tend to disturb social tranquillity, or demoralize customs and fashions, or are injurious to health," and medicines cannot be patented; the inventions must be publicly applied within two years, and patents will become void when the patented articles have been imported from abroad and sold; the fees are low, and there are no annuities or annual payments required for keeping the protection in force, as in many European countries.

IMPROVED KNOCKDOWN FURNITURE.

The object of the invention herewith illustrated is to so construct household furniture-such as bureaus, washstands, sideboards, desks, etc.-that it can be folded very compactly for transportation, and can be erected or taken apart easily and rapidly. The bureau shown in the engraving is made with a skeleton frame on which the other parts are held. The two end pieces are formed with short legs in the usual manner, and are united at the rear by top and bottom bars having grooves along their facing edges for the reception of the panel plates of the back, between which is a post having tenons at its ends to enter the grooves in the bars and having side grooves to receive the panels.
At the front the ends are united by a top rail having notched and tongued ends to fit on the ends of the front uprights and against the ends of cleats on the inner upper surface of the ends. The bottoms of the front of the ends are united by an ornamental rail; tongues on the ends of this rail enter notches in the lower parts of the ends. Two intermediate rails have their ends formed with dovetail tenons that rest against the inner dovetail surfaces of the front uprights. The drawer cleats are Lshaped in cross section, the ends of the upright part of each cleat projecting beyond the ends of the horizontal parts. The front the ends of the horizontal parts. The front end of each upright part of each cleat is
beveled to fit against the rear bevel of the beveled to fit against the rear bevel of the
corresponding upright of the ends; the horizontal parts of the front ends of the cleats rest against the back edges of the intermediate rails. The inner ends of the horizontal parts of the cleats abutagainst L-shaped blocks, secured at the outer edges of the inner surfaces of the back panel plates, and the upright parts rest in the recesses of the blocks.
The top plate is formed with a ledge projecting from the under side of the front edge, and with two undercut L-shaped side ledges. The back edge of the plate is open. The plate is pushed over the skeleton frame from the front toward the rear, the cleats on the outer top edges of the ends passing into the grooves in the undercut ledges, thus holding the top in place
and bracing and stiffening the entire frame. Each drawer is provided with a front plate having a vertical dovetail groove in the inner surface a short distance from each end, and a longitudinal groove a short distance above the bottom edge. At the inner side of the front end of each side piece is a strip tongued to slide in the grooves in the front plate. In the inner surface of each side, near the rear end, is a dovetail groove in which the back fits, and along the bottom edge of each side is a groove to receive the bottom. A screw passed through the bottom into the edge of the back holds all the parts firmly in position.
In the back edge of the top plate are two dovetail notches to receive tongues on the mirror frame, the various parts of which are so joined as to be held firmly when assembled, and to be easily taken apart for packing. The principle here employed is the same as that briefly described above in the drawers and body of the bureau. Knockdown boxes may be placed on the top at the base of the mirror frame.
It will be seen that a bureau or like piece of furniture, constructed in this manner, can be ;uickly erected without the use of screws or glue (where neces sary the parts are held together by hooks and eyes or headed studs), and will be solid and strong, all the parts being securely braced and held. Certain of the larger parts are so made as to form, when packed, recesses into which the smaller pieces are placed.
The bureau can be packed in two bundles (shown in the engraving), which occupy less than one-third the space the erected bureau does, thus reducing the expense for transportation or storage; burlap and lumber for packing are also saved.
This invention has been patented by Mr. J. B. Bro laski, of 111 North 6th Street, St. Louis, Mo.
Improvements in Gelatino-Chioride of Silver Paper
From some recent experiments detailed in the Photo. News by Messrs. W. M. Ashman and R. Offord, it ap pears that the introduction of a small amount of chloride of gold into the emulsion prior to the coating of the paper materially hastens the toning of the same after development, and reduces the time necessary for toning to a minimum. Emulsions having the gold in must be used within a short time after they are prepared.

It is also advised that a small amount of citrate of soda be added to the toning bath for absorption of the freshly liberated chlorine from the gold.

It is very necessary that all traces of free nitrate of silver be thoroughly washed out of the emulsion when it is made.

Manufactures from the Air.
The process of Brin Brothers is about as follows: First, the air is drawn, by means of a partial vacuum, through a vessel of quicklime, which absorbs all the carbonic acid and moisture, and reduces it fo a mixture of oxygen and nitrogen. These gases are then drawn into the retorts, heated at 500°, and the artificial lung absorbs the oxygen, while the nitrogen is drawn off to
a gasometer for conversion into ammonia, etc. The

BROLASKI'S IMPROVED KNOCKDOWN FURNITURE.
tion, aerating water without carbonic acid, for increasing the heat of blast furnaces and the light of lamps, its uses are self-evident. The nitrogen, which was at first looked upon as wasted, has, by a process due to the same inventors, been turned into ammoniacal salts for manure. Most of the uses of these products were known. What is claimed is the almostfabulous reduction in the cost of production. The chemical text books, according to Messrs. Brin, are at fault as to the possibilities of baryta. They all teach that it is destructible; and the Brins maintain that, as they know how to treat it, it is indestructible. Oxygen in large quantities means a revolution in half the processes of chemical industries.

IMPROVED NUT LOCK.

The end of the bolt is formed with a smooth recess, and with radial slots extending from the recess to the outer surface of the bolt, as shown in both drawings. The bolt is passed through the plates, and the nut is drawn up tight, when a mandrel or other tool is placed in the recess and struck with a hammer to spread the slitted end of the bolt, whereby the nut is locked in place, as represented in Fig. 2. When very great power is applied
 to unscrew the nut, the prongs formed by the slits are pressed together, and the nut can be removed.
This invention has been patented by Mr. James H. Comstock, of 2 Equality Park, Newport, R. I.

The Treatment of Sick Headache.

Dr. W. Gill Wylie (N. Y. Med. Jour.), of New York, has produced excellent results with the following method of treatment: So soon as the first pain is felt the patient is to take a pill or capsule containing one grain of inspissated ox gall and one drop of oil of gaultheria, every hour until relief is felt, or until six have been taken.
Dr. Wylie states that sick headache as such is almost invariably cut short by this plan, although some pain of a neuralgic character remains in a few cases. Detroit Lancet.

Distribution of Power by Vacuum

M. Boudinoot has explained to the members of the French Society of Civil Engineers the details of his es tablishment in the Rue Beaubourgfor supplying power to the small industries of the neighborhood by means of rarefied air. He says that, in comparison with all other means for the distribution of small power, rarefied air is the most economical and serviceable. As ontrasted with compressed air, it is more than twice e; while the first cost of the plant and the working expenses are much less. In the Rue Beaubourg the mode of action is to create, by suitable pneumatic machines, a vacuum of 75 per cent in the mains and services connected with the subscribers' engines. At present a 70 horse power boiler supplies a Corliss engine, the piston rod of which is prolonged to work the piston of the air pump.
Experience showed that there was considerable heating produced in the air cylinder by the compression which took place when the air, aspirated from the main at onefourth of the atmospherie pressure, was ejected at the rate of 60 revolutions per minute. To check this effect, water is injected into the air cylinder; this device being preferred to the alternative of a cold water jacket for various reasons, the principal one being that the water jacket would have seriously increased the bulk of the machine, and would only have cooled down the periphery of the cylinder, whereas what was wanted was a cooling of the mass of air contained in it. The distributing system comprises cast iron mains, the largest being 10 inches in diameter, diminishing to 6 inches in the outskirts of the district. The service pipes are of lead; and the loss in distribution is only 3 or 4 per cent. The economical duty of the

Brins have, ror the first time, made the artificial lung indestructible. The use of baryta for the purpose is not unknown; but hitherto the baryta has been perish able, and has required renewal every four and twenty hours, at great expense. They make it virtually indestructible and unchangeable. In this way they claim to have effected an absolute revolution in chemistry for with a lung for the machine, and the atmospheric air for the material, they can make just as much oxygen as they like; and its uses, present and prospective are almost innumerable and incalculable. For ventila-
various classes of simple motors actuated by this exhaust system varies from 40 to 65 per cent, according to size and pattern. The engines are provided with revolution counters, and the charge is based upon the thousands of turns so indicated; the rental being collected every ten days. Up to the present time the system has only been in work during twelve-hours every week day; but as the business increases, and larger plant is laid down, it is intended to work until a late hour of the night, in order to adapt the system to electric light engines.

©orrespondence

Mercury in Louisiana.

To the Editor of the Scientific American
In No. 20 of the Scientific American was publish ed a communication from Mr. E. Wilkinson to the American Journal of Science, in which he says that native mercury had recently been discovered in a locality where its presence hitherto had been unknown. Cedar Grove plantation, in Jefferson parish, La., on the west bank of the Mississippi, ten miles above New Orleans, was designated as the place where the mercury had appeared in small globules in the alluvial soil. Mr. Wilkinson having examined several specimens of the soil, arrived at the conclusion that the mercury only appeared within a limited area, around a certain center, about 300 feet from the Mississippi River, and for a distance of about 1,200 feet from where the metal disappeared. In none but the upper stratum of that soil did the mercury occur in sufficient quantity to be perceptible to the naked eye. The presence of hat mercury, he further says, had been noticed for a number of years, but it had not been officially reported to the scientific world, to his knowledge. He also did not think that the mercury had been wrecked in so large a quantity, or that the results had been effected by the agency of man.
More than ten years ago, I wrote a letter to the Hon. M. Hahn, who at that time was a member of Congress, calling his attention to the mercurial deposits in the valley of the Mississippi. I pointed out to him several facts and localities where I had met with globules of that metal. In three different places of the third district of the city of New Orleans, not far from the river. I had discovered during winter time such metallic globules with the naked eye.
The globules, of a comparatively large size, were dispersed over the surface of the soil. From the exist ence in the parish of Calcasieu, underneath a big layer of sulphurets, of an apparently inexhaustible mine of sulphur, of a chemical purity unequaled in the whole world, the idea struck me that the mercury I had discovered might have been combined in a former period of our earth's history with another element, and been separated by some reducing process. The wide dispersion of the mercury through the soil from its larger deposits, wherever they may be situated, cannot be wondered at, on account of the metal being a liquid.
Besides my discovery and that of Wilkinson, ther is still another one to my knowledge which will prove the existence of larger deposits of that metal. Some White, then president of the Board of Health, about my discoveries, he brought to me a bulky mass of my discoveries, he brought to me a bulky mass of
earth, which he stated had come from Donaldsonville, La. The quantity of mercury apparently contained in it was still larger than I so farhad met with. So much seems to be evident, from what has been stated here, that somewhere in our State a large deposit of that valuable metal must exist. It is, then, not improbable that the poorest of the States in regard to mineral riches, a State which but a few years ago could not even contribute a stone to the Washington Monument, may yet become one of the richest; and well worthy, from the diverse indications we so far have received, from its various mineral deposits, that the general Government should order a geological survey of its ter
ritory.
M. Schuppert, M.D.
New Orleans, August 1, 1885.

Controlling or Annihilating Tornadoes.
 To the Editor of the Scientific American:

More than a year ago I advanced the plan to blow up or annihilate those so fearfully devastating tornadoes or whirl wind storms by explosions of common gunpowder. In your issues of Feb. 2, 1884, etc., short accounts of procedures are given. Some of the details are that a keg or barrel of common powder is to be kept in readiness to the southwest of the house or village to be protected. At the approach of a tornado the powder is wheeled or drawn as near as possible into the probable track of the tornado, by a cool headed man, who then takes his position to the northwest about one hundred yards distant, fires the powder as artillerists do cannons when the tornado is near or over it.
I did not then state the reason why explosions of powder for such purposes must necessarily be effective, hence many thave doubted and none have tried the plan in tornado infested districts. The remedy is for tornadoes or .whirlwinds (often surnamed cyclones) of small diameters only, and not at all for proper cyclones, storms of sometimes a hundred or a thousand miles in diameter, moving also generally from west to east. Tornadoes are readily seen in the form of an hourglass or funnel-shaped dust or electrical cloud, advancing at the rate of from 40 or more miles an hour, but rotating on their axis at the rate of probably more than a thousand miles an hour. The width of their track varies greatly, from less than a rod to more than a mile, according to whether the funnel-shaped cloud is high or low. It must be known that all tornadoes have
four different movements: 1. Generally from the south west to northeast. 2. Rotating. 3. Zigzag. 4. Rising west to northeast. 2. Rotating. 3. Zigzag. 4. Rising
and falling. The last movement controlled will insure afety from tornadoes.
When tornadoes rise and fall by themselves, someimes skipping over one town in their track, and entire y destroying the next, it must be evident that a lift given them by explosions of powder must necessarily make them rise sooner and higher, skipping over longer intervals. The explosions timely repeated must keep them on high, spending their force to no disad vantage to mankind below. Large charges of powder are liable to destroy or annihilate tornadoes altogether. When in districts favorable to the formation of tornadoes, powder is generally kept in large quantities for defense against them; explosions of the same at a distance of a mile or more from them are liable to check or influence the different air currents meeting and forming tornadoes or whirlwinds.
In every village or town of the country there are probably readers of your paper, who are, of course, the most progressive in their places. It becomes them to acquaint their townsmen with this tornado remedy, so promising and easily executed. It may perhaps at no distant day save their all from destruction. Every village or town should have its powder house to the southwest of it, for storage of all its surplus commercial powder. The whole powder house may, when required, be exploded from a dugout near by, artillery fashion by means of a long cord and priming tube, or by electricity from the highest house in the town, to make the tornado at least jump over the town, if not to annihilate it completely.
New York, July 14, 1885.

Spontaneous Combustion of Lampblack.

To the Editor of the Scientific American
We have recently had so close a call of having our factory destroyed by one of those mysterious fires, that we deem it worthy of mention, as the circumstances occurred under our personal observation, and seem to us somewhat remarkable. On Wednesday, the 15th inst., at about 4 o'clock P.M., one of our painters used a small quantity of black, shook or poured out of a pound paper of Marten's Germantown lampblack. It was clean and dry, and not to exceed 2 . or 3 ounces left in the paper; it was set in its usual place on the paint bench, and in the course of twenty to thirty minutes the men working near the bench detected a smell of burning soot or paint. A search resulted in discovering a slight vapor or smoke arising from the lampblack paper; the foreman brought it directly to the office; it was then but slightly warmer than the hand. We placed it on a board close at hand, and in the course of half to three-quarters of an hour the black was red hot, and soon after six o'clock it burst into a bright flame, which if it had not been noticed would certainly have burned the place, surrounded as it was with mixed paints, oil, turpentine, and varnish. Yours,

Jno. Cretors \& Son,
Buckeye Carriage Works. Leavenworth, Kan., July 29, 1885.
[It is well known that divided charcoal or carbon hen exposed to air of the right temperature and dry ness will absorb oxygen so rapidly as to cause spon taneous combustion.-ED.]

The Effect of Scientific Invention on war.
The Week (Toronto) of a recent date has the follow ing: There are indeed enthusiasts who fancy that there is a way of putting an end to war at once and forever. Their talisman is the discovery of an all-destroying projectile. An invention of wholesale slaughter thus becomes the dream of the philanthropists, and the infernal powers themselves are to be made ministers of peace. It would be a curious, and for mankind at large might prove an awkward, part of the discovery that it would invest its first possessor with omnipo tence, and enable him to compel all nations, on pain of annihilation, to receive him as universal emperor The London Spectator, in a paper discussing this vision at great length, pointed out that the improvement of weapons has so far resulted in a change of drill and tactics, without banishing or even diminishing war It is certainly curious that the rate of slaughter, in stead of keeping pace with the increased range and precision of firearms and artillery, should have remain ed stationary, as it appears to havedone, or rather has diminished. The rifled breechloader does nothing like the execution which was done by the bow. At Crecy the French dead were counted by heralds on the field mainly the work of, according to Froissart, five thou sand two hundred archers. At Batoche, we are told, nineteen thousand rounds were fired, by good marks men, besides Gatling ammunition and shells; and the number of killed and wounded on the side of the half breeds was about thirty. Batoche was not a normal but still the contrast is striking. The archer was not confused by smoke and noise, nor could he discharge his arrow without drawing the bow to his ear and taking some sort of aim, while many soldiers in a modern
battle are said not to bring the rifle to the shoulder or take any aim at all. But we must wait for a great sea fight before we make up our minds what effect scientific invention is likely to produce on war. From naval war at all events all the romance, all the pride, pomp, and circumstance, which largely stimulated the martial spirit, must now have fled. We shall see whether the souls of men are to be fired by the prospect of what Farragut called going to-the nether world-in a tea kettle.

Some Profitable Work for Inventors.
Among the present wants of American railroads is ome cheap and effective means of killing weeds and grass that cover the tracks and roadbed on all roads that are not ballasted with rock. Grass is a serious hinderance to ordinary track repairs, and greatly impedes trains by being crushed on the rails and destroy ing adhesion. This renders it necessary to remove weeds and grass with shovels or implements made for the purpose, either by cutting or digging over the sur face of the roadbed. Trackmen are frequently compelled to devote considerable time to removing grass before they can attend to needed repairs, and it is an expensive operation.
It is well known that steam will kill vegetation, and it would not be a difficult matter to arrange a boiler so as to saturate the track or roadbed between, and a proper distance outside the rails, to keep a clean track. Locomotives hauling trains have no steam to spare for the purpose of killing grass, and one that has been retired from regular service might be fitted up to keep a clear track by steaming the roadbed. Something of the kind has been attempted, but the field is open, and is an inviting one for inventors.
What is required is boiler attachments so arranged that the steam may be used effectually and economic ally, the details of which attachments may be readily worked out by any practical mechanic or engineer.
Other ground that has been partially worked over and still offers tempting inducemerts to inventors, is to provide some reliable means of preventing rear collisions of trains. The causes of this class of collisions are various, and the results are usually serious, and to prevent them requires the exercise of a considerable amount of ingenuity, but effective means of preventing this class of accidents are within the reach of Amer ican inventors. Darkness, foggy weather, and blinding snow storms render it unsafe to rely on other than audible signals. Disabled trains that are closely followed by others usually fail to signal following trains in time to prevent disaster. Sending back signal men on stormy nights is usually a failure, and mechanical appliances must be resorted to for reliable means of signaling. Explosives in the shape of torpedoes are the most reliable signals, and it is here suggested that a small wire cable may be stretched the entire length of the line, connected at proper intervals with torpedoes, and so arranged that a slight movement of the wire will place an explosive on the rail. Of course the cable must be made in sections, and so arranged that in case of a stalled or otherwise disabled train, or from any cause it is desired to signal a. coming train, a man may place the signal in either direction without consuming valuable time in going to a safe distance to place it. This can be accomplished by being provided with a small lever and grip arrangement that will grasp the cable and grip the rail for a fulcrum. By this means a ignal may be operated from almost any point with little or no travel and loss of time when even seconds are precious. These sections of cable will need springs or counterweights to return the mechanism back to place when the signal has performed its service. Track men can see that torpedoes are kept ready attached for use in any emergency. Such an appliance can be made to work automatically at railway crossings, switches, and drawbridges. Some expensive signal apparatus is in use at draws, etc., but frequent acci dents show them to be unreliable, and inventors will do well to produce simpler, cheaper, and more reliable signal apparatus than is now in use. Accidents at highway crossings continue to be frequent, notwith standing the various devices that have been put on rial as danger signals. Some of these are considered reliable, but are regarded as too expensive for general adoption. A cheap, simple, and reliable crossing signal is in demand. And there is a rapidly increasing demand for cheap and reliable power brakes specially adapted to freight trains; and those now in use on passenger trains may be greatly simplified and reduced in cost, and other objectionable features removed. Many of the safety railway appliances that have been recently brought out, while they have more or less merit, are objectionable on account of cost, complication, and liability to derangement, expensive repairs, nd general inconvenience in every day practice, and everal serious accidents within the past two years re sulting from failures of the best brakes in use is evi dence that more reliable brakes are needed. The present demands of railway traffic call for heavie trains and higher velocities, and a fresh field is opened to inventors, both for producing new safety appliances and improving those now in use.

"TRAINS" OF VESSELS ON THE SUEZ CANAL

Early in June last, the navigation of the Suez Cana was practically stopped by the sinking of a great dredge. An endeavor was made to open a temporary channel around the obstruction, and a few vessels thus got through, but it was not until the 22d of the month that business was fully resumed, after the wreck had been blown up and the debris removed from the bed been blown up and the debris removed from the bed
of the canal. The illustration herewith, for which we are indebted to the London Graphic, gives a good idea of the procession of vessels which then began to stream through the canal. Four days before the reopening of the canal, there were one hundred steamers anchored at Port Said, and a corresponding number at Suez. In order that vessels from each terminus may pass each other, the floor channel of the canal being but seventy-two feet wide, with a depth of twenty-five feet, there are several turnouts, in which steamers may anchor at one side of the channel for those proceeding in another direction to pass by, much as trains of cars on a single track railroad are switched off on sidings. These turnouts have been repeatedly enlarged to meet the increasing demands of commerce, as the numbers of vessels traveling together in the same direction have steadily added to the length of the trains, as it were as a safe distance must be preserved between the vessels of each train, these trains are sometimes as much as two miles long, and the maximum speed allowed is $5 \cdot 3$ knots an hour. To avoid this waiting on sidings,
during the current year, and the machines necessary for the completion of the works of the canal have already reached the Isthmus, or are in course of construction. In support of this assertion M. De Lesseps quotes a passage from a report received from the di-rector-general of the works to that effect, and which concludes thus: "It therefore follows that, even if we had only commenced the dry excavation work on the Isthmus on 1st January, 1885, and only begun the dredging work on the 1st January, 1886, the canal could be completed on the 1st January, 1888. To be provided against all possible accidents, there is all the dry excavation work executed before the first January, 1885, and all the dredging which was to be done before the 1st January, 1886." M. De Lesseps goes on to say that there is no doubt that half the effort necessary for the cutting of the canal has already been made. M. De Lesseps says: "The regular continuation of the piercing of the Isthmus, and the completion of the canal in 1888, are the best replies that can be opposed to the adversaries of the canal. We will not do our partners in the work-the shareholders-the injury of supposing that they are moved by such maneuvers."

To show the Panama shareholders that they need feel absolutely no alarm, the president of the company relates how, in 1860, the Suez Canal Company was attacked in precisely the same way. At that time the public was warned against taking up the little shares of the Suez Canal Company. The progress of the

35 Europeans; February, 46 deaths, 13 Europeans; March, 49 deaths, 21 Europeans-a total of 1,153, and death rate of $51 \cdot 7$ per thousand
With regard to the insurrection which took place at Colon and Panama in May, it had not entailed any great loss on the company. At the Culebra, where the most serious incident occurred, the loss fell on the con tractor. In that chapter of M. De Lesseps's report which is headed "The Cost of the Canal," he explains that his chief engineer has calculated that, by certain modifications, it would be possible to reduce the total number of cubic meters of soil to be removed to construct the canal from 120 millions, the estimate of the Technical Commission, to 90 or 95 million meters. Nevertheless, M. De Lesseps prefers to take the original estimate as the base of his calculation. The contractors now engaged in cutting the canal have under taken to remove $62,691,595$ cubic meters of soil for a total sum of $219,295,974 \mathrm{f}$. Moreover, contracts have been entered into with two other contractors, who have undertaken to complete the remainder of the works for a sum of $480,000,000 \mathrm{f}$. The total cost of the actual piercing of the Isthmus will, therefore, amount to $700,000,000$. - $£ 28,000,000$ sterling. To this sum must, of course, be added the cost of the canal administration and the annual interest paid on capital. The International Congress estimated the expenditure for the creation of the canal at $1,070,000,000 f$. , but the company has purchased the Panama Railway and land

the block in the suez canal.-Procession of steamers after the renewal of traffic.
and provide for the further increase of the canal business, two different projects have been under discussion for a considerable time back; one was the building of another and separate canal by the side of the first, and the other the simple widening of the present canal. The last plan was finally adopted by the "International Commission" of June, 1884, and, at a meeting of the Suez Canal Company, in Paris, on June 4 last, the directors were authorized to borrow $\$ 20,000,000$ to carry forward the proposed improvement.

Official Report on the Panama Canal.

The report which M. De Lesseps read at the annual general meeting of shareholders, in July last, is of length and of interest. M. De Lesseps admits that modifications of detail, necessitated by circumstances, have been introduced into the original programme of the work, but the leading principles of that programme have not been altered. That programme consisted, first, in the cutting of a canal from Panama to Colon, 9 meters deep below the average height of the waters in the two oceans; second, the width of the canal was to be 22 meters at the bottom; third, the canal between the two oceans was not to comprise any tunnel, but to be an open cutting in its entire length; fourth, at Panama a lock was to be established, to prevent the tide creating a swift current in the canal; fifth, in the middle of the course of the canal a long station, or siding, 5 kilometers in extent, was to be created; sixth, at Ha Gamboa an immense dam was Rio Chagres, and to give them another course. The execution of this programme has been proceeded with
works was described as such as to show the impracticability of the enterprise. "It is," says M. De Lesseps, "in precisely similar terms that the Panama Canal is now sometimes spoken of. The little shares of the Suez Canal, issued at 500f., have become big shares of 2,200f. The Egyptian Bosphorus has been created. The little shares and obligations of the Panama Canal will have the same destiny; for the American Bosphorus will be completed, as was its predecessor." Referring to the little mishaps which have occurred, M. De Lesseps says it would have been puerile to imagine that the gigantic work of piercing the Isthmus could be accomplished without any such accidents, and that the execution of each portion of the works could be regulated like clockwork. The number of cubic meters of soil removed every month is steadily increasing. In January, 1885-quoting the report-it was 550,000 cubic meters; in February, 590,000 cubic meters; in March, 627,000; in April, 775,000; in May, 795,000. In April, 1885, there was 17,881 persons occupied on the works; but in October there were 20,368 persons employed on them. Since that time the number of men employed has been maintained at about that figure. The deaths on the works continue very high. The official returns of the deaths that have occurred on the works during the year ending March last are as follows: 1884-April, 59 deaths, of which 9 were Europeans; May, 41 deaths, 3 Europeans; June, 60 deaths, 12 Europeans; July, 87 deaths, 26 Europeans; August, 119 deaths, 35 Europeans; September, 132 deaths, 25 Europeans; October, 163 deaths, 42 Euro peans; November, 154 deaths, 48 Europeans; December, 142 deaths, 59 Europeans. 1885-January, 91 deaths,
n the vicinity of Colon and Panama. Evidently the company will require an extension of its borrowing powers to cover these expenses, which were not in cluded in the original estimate. At the end of his report, M. De Lesseps says he has demanded of the French Government authority to borrow $600,000,000 f$. by the issue of bonds with annual prize drawings. Having obtained the approbation of the shareholders, he will take the necessary steps to obtain that authorization.

Durability of Slate when Exposed.

In the Granary Burying Ground, in Boston, there is a stone of slate erected to the memory of Captain William Condy, who died August the 25th, 1685. The style of lettering, position, etc., all indicate that it was put there soon after the burial. Yet every letter is clear and sharp, even the guiding lines, scratched with the chisel, being perfectly distinct. In fact, the stone seems to have suffered no change whatever. There are many others near it in the same unimpaired condition, and of nearly equal age. These slabs, probably, were brought from Quincy.

Arthur C. Kimber.

July 15, 1885.

Small Electific Lamps, Etc
In consequence of the enlargement of business the Stout-Meadowcroft Company has become incorporated, with Mr. Henry V. Parsell as president, a gentleman of well known means and business ability. We have heretofore referred to the excellence and reliability of the electric lights, electric fans, batteries, and other apparatus furnished by this company.

NEW CHEMICAL LABORATORY, CAMBRIDGE UNIVERSITY.

We give this week an illustration of the design for the new Chemical Laboratory of Cambridge University which has been approved by the Senate. The site is in Pembroke Street, opposite the Master's Lodge, and the new building of Pembroke College, on part of the frontage of the old Botanic Garden, and on the site of the Perse Almshouses, now removed, which has recently been acquired by the University for this purpose with the consent oi the Charity Commissioners. The remainder of the Botanic Garden frontage to Pembroke Street it is proposed to occupy by the Sedgwick Memorial Museum of Geology. The broken line of frontage has necessitated a corresponding irregularity in the building, which could not have been avoided without loss of valuable space, and which, perhaps, recalls the interest and picturesqueness of old buildings in which
such irregularities were not uncommon. uch irregularities were not uncommon
The building consists of a basement well raised out of the ground, occupied by store rooms, engine house, etc., and two smaller laboratories. The main building has two lofty stories above the basement, the central
et, and larger "stink closets" are provided beside the chimney and in the turret at the angle of the large laboratory. This laboratory has been long in contemplation, and the best arrangements for it been studied and worked out by Professors Liveing and Dewar. The principal English and Continental laboratories recently erected have been visited, and their arrangements laid under contribution, with the view of adopt ing those which have proved successful in practice. The style of architecture adopted is the form of Classic with mullioned windows characteristic of some of the old Cambridge buildings, such as St. Katherine's Hall and the third court of St. John's College, which, while continuing Cambridge traditions, is well suited for the purposes of the building. The view from which our illustration was taken is in the Royal Academy Exhibition this year. Mr. John J. Stevenson is the archi-tect.-Building News.

The Post office in Japan.

In no country of the world is the postal organization
ore wonderful than in Japan-the chief marvel

The Health of College Girls.

The investigations which have been conducted by the Massachusetts Bureau of Labor have resulted in some interesting facts regarding the health of female students. The commonly accepted opinion that men tal labor, if at all severe or long continued, is preju dicial to health, is here refuted by statistics clerived from various sources.
In one case, of 705 returns made, it was found that 78 per cent of the women graduates heard from were in good health Upon entering college, the health of 20 per cent was below par. After graduation, impaired health was found in only 17 per cent, showing that the physical condition of the student becameimproved under the restrictions and requirements of college life.
Those whose health was not good suffered chiefly from nervous diseases. It was also found that girls from the country do not make as good a showing as regards health as those who were natives of cities. Although these statistics are looked upon by the advocates of higher education of women as conclusive evidence, we cannot admit that they are sufficiently large

parts divided into mezzanines. The wing, stretching backward, has one story only above the basement. Provision is made for 150 students working at one time. A second story above this one would give places for 75 more. The principal requirements of a laboratory are ample light and good ventilation. The latter is provided for by the tall chimney or extracting shaft, which, though it carries off the fumes of the furnaces and of the boilers for steam engines and heating, will not, it is hoped, emit any visible smoke, else it might be better without any attempt at architectural ornament. Good lighting is provided by large windows carried square to the ceiling, divided by mullions and transoms with painted wooden sashes and bars, metal being liable to be affected by chemical fumes.

Complicated arrangements for ventilation have been avoided, as being often ineffective and certainly costly. The same large chimney, without any divisions in it, serves for air extractor, ventilator, and for the boiler fires, their heat supplying the necessary motive power, while an extra production of gases from the experiments, which might occasionally occur, is provided for by opening the windows on each side of the room and making a cross draught. A draught closet for operamaking a cross draught. A draught closet for opera-
tions giving rise to noxious fumes, formed of glazed framework, is provided in each window, with a flue in the wall in which the draught is stimulated by a gas
being that, till about a dozen years ago, there was no regular government institution of posts in the country. In 1871, when Japan awakened like a giant from her long sleep of exclusiveness, and set to work to accomplish changes of every sort, she resolved to establish the European postal system; and with such astonishing zeal has she done her work that within ten years the British, American, and French post offices, which had been established at all the open ports, were closed. foreign nations being satisfied with the thoroughness of the Japanese postal system. In that short period mail routes had been organized over 36,000 miles; mail trains and steamers, post vans, and runners were all enlisted; 3,927 post offices and 7,439 letter boxes had been established; money order offices and post office savings banks were in full operation; 7,500 persons were employed on the regular staff; stamps, stamped envelopes, post cards, and newspaper wrappers were issued at the same rate as our own, letter postage to any part of the empire being at the rate of $1 \mathrm{~d} .$, and post cards $1 / 2 \mathrm{~d}$., while within the limits of the city of Tokio these postages are respectively only half price. Where the post office had thus started at full swing it is needless to say that the telegraph was not forgotten, and by 1880 it was in full working order over a distance of about 10,000 miles, and giving employment to about 15,000 persons.-Cassell's Family Magazine.
or complete to convey much weight. The variation in physical condition, before and after the acquirement of a collegiate education, was only 3 per cent. This fact, which is the one from which any conclusion can be drawn, might be the result of improved hygienic surroundings, both mental and physical, making the effect of study itself wholly negative in character. $-N$. E. Medical Monthly.

Removal of Incrustations from Water Mains by Dilute Acids and Soda.

A successful attempt was made last year in Leipzig to remove by chemical means the incrustation that coated the interior of the force main from the pumping station to the reservoir. The main is 390 millimeters wide (about $15 \frac{1}{3}$ inches) and 4.55 kilometers long, and the incrustation was from 13 to 24 millimeters thick, and in places thicker still. The operations lasted from the 7th of March to the. 11 th of May, and during that period at intervals the pipe was filled with dilute hydrochloric acid eight times, with soda solution three times, and with a solution of chloride of lime once, being washed out thoroughly with water between the successive applications. It was stated that the incrustation was entirely removed, and the practical effect of the cleaning was indicated by the pressure gauge, there being a decrease of from 1.8 to 2 atmospheres pressure at pumps.
or repaired; and a shop for making boxes, where an engine runs saws and planers. The company employs three hundred and forty-five men, forty-five boys, and fifteen women and girls. They have lately built a steam dredge for collecting sand from the bottom of the river for grinding glass. Three million bushels of sand are required each year for grinding purposes alone. The white sand from which the glass is made is shipped from McVeytown, Pa. The amount of glass cast each month is 95,000 square feet. About 3 per
cent of this is used for skylights; the rest is polished, cent of this is used for skylights; the rest is polished, making an output of 70,000 feet of polished glass per mont
The novel feature about these vast works-where engines aggregating nearly 1,500 horse power are fed by steam, and sixty annealing ovens ana two melting furnaces require fuel-is the entire absence of coal and the use of natural gas in its stead.
The company owns two gas wells, which are about 1,150 feet deep, and they are now running their entire works with a little over one-half the production of one well. The pressure at the well is 260 pounds per square inch. This pressure is reduced at the well to 120 pounds, and, as the line works wide open, the pressure in the regulator, at the works, is lowered to
80 pounds. The pressure is still further reduced before it enters the furnaces. The pipe which conveys the gas to the works is four inches in diameter. The surplus gas is used in the town for heating and lighting, and as they are able to consume but a small quantity of this, compared with the supply, a tube, high in the air, sends out a large flame which lights up the surrounding country. For domestic purposes this fuel has no equal, and it has no superior for manufacturing. The steel works in Pittsburg use natural gas entirely, melting steel easily with the intense heat produced.
Glass made by this fuel is decidedly superior to that made by the use of coal. No coloring material can get into the melting pots, and the flame of the burning gas is free from impurities which would injure the quality of the glass. Several inches of this glass, when seen through from edge to edge, show no appreciable color. This is the most apparent advantage gained, but there are others of no less importance.
The control which the workmen have over the heat in the melting furnaces, and especially in the anneal ing ovens, enables them to make glass of great dura bility and strength.
At present the company are in a flourishing condition and have all they can do to supply the demand for goods. They make glass cheaper than any other plant in this country, and can compete with either the French or the English, inasmuch as their fuel costs them prac tically nothing; the gas used taking the place of three thousand bushels of coal per day.

How to Make a Glycerine Barometer.

bi J. Aserer.
In 1876 I improved Babinet's barometer by substituting glycerine for water. It is constructed in the fol lowing manner: A bottle about a quarter filled with glycerine, colored red with magenta orcrimson aniline, has a glass tube of about the diameter of a pencil passing airtight through the cork, which is inserted air tight into the bottle. The lower end of the tube dips beneath the surface of the glycerine. The bottle is made to contain compressed air by blowing into the upper end of the tube. On removing the mouth, part of the glycerine will rise in the tube until the weight of the liquid column in the tube and the atmosphere balance the internal air pressure on the surface of the glycerine. The column in the tube will tend to rise when the pressure of the atmosphere diminishes or the temperature of the compressed air rises, and to fall when the atmospheric pressure increases or the temperature of the compressed air diminishes. So far as the variation in the height of the column is due to changes in atmospheric pressure, the column moves in the opposite direction from that in a mercurial barometer.
It will now be seen that it is desirable to eliminate from the reading of the barometer scale the effect due to a change in temperature. I simultaneously observe the reading of my barometer and a thermometer at hand. I next find the difference between the readings, calling that of the thermometer the minuend. The difference is regarded as the relative pressure of the atmosphere at the time of observation. The divisions on my instrument are one-fourth of an inch apart, and the length of the tube above the bottle is 25 inches. It seems better to have 100 divisions than any other number. These divisions bear no relation to those on mer curial and aneroid barometers. Each instrumentis intended to be compared with itself to indicate a relativ pressure of the atmosphere. In my instrument the degrees are marked and numbered with a pen on a strip of paper obtained from a ribbon roll; this is pasted upon a neat wooden case behind the tube. The case has a recess into which the bottle is let. A neat piece of wood, of the proper shape, secures the bottle, while leav
secure the tube to the scale. If desirable, a paper scale may be pasted upon the tube, thus dispensing with a of
Of course, it is liable to be broken when thus con-
 ary if the barometer is kept in a cellar or any place here the temperature is nearly uniform.
With a tube 3 or 4 feet long, the bottle may be buried in a large box of dry sawdust, or any other poor conductor of heat, in a finely divided state. The instrument will then give fair results without using either a hermometer or a cellar.
The advantage of using glycerine instead of water, as used by the French scientist Babinet, is that glycerine scarcely evaporates; besides, it will not freeze except at a very low temperature, and if a minute quantity of water be present, it never becomes solid.
A thin glass tube, 4 feet long, can be bought for 10 cents at the drug stores in cities. The glycerine and magenta will cost less than 5 cents. By making an ornamental case one may, with a little ingenuity, produce beautiful instrument. It will foretell fair, changeable, and stormy weather as well as a mercurial baromeer costing thirty times as much. One evening I noticed that the column of glycerine had risen about three nches within a few hours, not a cloud was to be seen, and the day had been very fine. Next morning there was a heavy rain.
The upper end of the tube should be loosely filled with cotton to keep out the dust. After having forced air into the instrument, it should not be allowed to approach a horizontal position, for the compressed air nay blow the column out of the tube; if this does not happen, a large air bubble may separate the column, and render the instrument useless. No particular dimensions are requisite for either the bottle or the tube. My bottle is about 4 inches long and an inch square. The magenta is used merely to render the column more readly visible. Other colors may be used, but this is the most beautiful.
Were farmers provided with these simple and useful nstruments, they would most likely be the means of saving grain in harvest, as storms could often be foretold.

Phosphate Deposits or South Carolina.
 A member of a New York firm who has just received

 an order for dredges for use in excavating phosphate in South Carolina reports that industry as especially prosperous, and that 500,000 tons of this material is now being dug up as against 350,000 tons in 1883. The phosphate roek bed of South Carolina now supplies he world with the chief part of all the phosphate of ime used in the manufacture of commercial fertilizers, and this industry was unknown there until 1868. The greatest length of this phosphate rock bed is about seventy miles and its greatest width about thirty miles, the city of Charleston being about the center of the most accessible deposits. It crops out at the surfacein many places, and is found distributed over large areas at the bottom of many of the rivers. It is mined in three ways-by open quarrying and digging in the land; by dredging and grappling with powerful steam machines in deep water; by hand picking and with ongs in shallow streams. Its average price is about $\$ 6$ a ton, and the State levies a tax of one dollar a ton on all that is shipped, making it an important item of revenue. These phosphates are the remains of a very ancient animal life, and fragments are brought up not only representing the tapir, horse, elephant, and mastodon, but amphibious ones, such as the seal, dugong, walrus, etc.
500 Pound Pressure Engine.

On July 21 the screw yacht Salamander, which has just been built by Messrs. Schlesinger, Davis \& Co., of Wallsend-on-Tyne, proceeded to sea for a preliminary rial trip. The dimensions of the yacht are as follows: Length, 120 feet; breadth, 20 feet; depth, 10 feet 6 inches; tonnage, 211 y.m. She has a sharp clipper stem, with an enlarged salamander for a figurehead, and a square yacht stern. A long deck house is placed amidships, containing a deck saloon, and forward is another saloon, which will be arranged for the accommodation of ladies. The engines are of the Perkins triple-expansion type, working at a pressure of 500 pounds per quare inch. The cylinders are $73 / 4$ inches, $15 \frac{18}{\frac{1}{8}}$ inches, and $22 \% / 8$ inches diameter, by 15 inches stroke, and will work at about 140 revolutions per minute. After several trials on the mile the average speed obtained was nearly nine knots per hour. The yacht has been built to the order of Mr. Frederick Power, of London.

Paper for Wrapping up silver.

Six parts of caustic soda are dissolved in water until the hydrometer shows $20^{\circ} \mathrm{B}$. To this solution age added four parts of oxide of zinc, and boiled until dissolved. Sufficient water must next be added to reduce the solution to $10^{\circ} \mathrm{B}$. Next dip paper or calico into this solution and dry. This wrapping will very effectually preserve silver articles from being blackened by ulphureted hydrogen, which, as is well known, is contained in the atmosphere of all large cities.

Scientia.

A new scientific association, comprising a small num ber of very distinguished members, has been formed in Paris under the name of "Scientia." The object of the association is primarily the promotion of scientific knowledge, but the members have taken advantage of the present smallness of their number to give to their meetings something of a social character, and enliven them with a dinner, at which, as with many clubs which meet only occasionally, some eminent person is usually present as a guest. At the last of these meetings, as we learn from Le Genie Civil, the guest of the evening was General de Nansouty, the originator of the plan for establishing an observatory on the top of the Pic du Midi, about which we have already had something to say. This mountain constitutes a somewhat isolated spur of the Pyrenees, and rises to a height of more than seven thousand feet above the sea. Although not high enough to reach the limit of perpetual snow, the top of the Pic du Midi is exposed to terrible winds, and in winter is buried in snows which make the ascent to it impracticable.
Nevertheless General de Nansouty, who had been trongly impressed with the value of the mountain, commanding, as it dces, the great southern plain of
useful to sciencein its own way as the meteorological observatory. The experience of every year shows more clearly the advantages of placing astronomical observatories, particularly those equipped with powerful telescopes, on the tops of mountains. The one thing essential to the use of high powers in the telescope is a clear atmosphere, and, pure as we think our atmosphere is in clear nights, its transparency is so far inferior to that of the air about mountain tops that, seen from the latter, the atmosphere of the plain always appears filled with haze, which certain conditions of sunlight show to be due to perpetual clouds of dust, kept by gravitation in the lower regions of the air.-American Architect.

A BELGIAN HORSE.

Admirers of the paintings of Rubens and other Dutch masters are astonished at the peculiar shape of some of the horses represented, and attribute it to the fancy or peculiarity of the painters. This is by no means the case, for these masters only painted true and exact pictures of the horses of their country, one of which is shown in the annexed cut, taken from the Illustrirte Zeitung. The horse represented in the cut was raised in Belgium by a peasant, and lately inported into

Oleomargarine Legislation.

Certain farmers and buttermen in New York succeeded in getting a law passed in 1884 designed to suppress the manufacture of oleomargarine. Sec. 6 reads as follows:
Sec. 6.-"No person shall manufacture out of any oleaginous substance or substances, or any compound of the same, other than that produced from unadulterated milk, or of cream from the same, any article designed to take the place of butter or cheese produced from pure, unadulterated milk or cream of the same, or shall sell, or offer for sale, the same as an article of food. This provision shall not apply to pure skim milk cheese, made from pure skim milk."
It was provided that the violator of this section should be punished by a fine of not less than $\$ 100$ nor more than $\$ 500$, or not less than six months or more han one year's imprisonment, or both such fine and inprisonment, for the first offense, and by imprisonment for one year for each subsequent offense.
The court of appeals, the court of highest resort, decided, June 16, 1885, that the law attempted to prohibit the sale of any articles intended to take the place of butter, thus preventing competition and placing a ban upon progress and invention; that invaded the rights

THE STRONGEST HORSE IN THE WORLD.

France, as a site for a meteorological station, resolved to attempt a thing that the mountaineers said was impossible, and to pass a winter in a hut at the very summit of the peak. He collected materials, and during the summer constructed a little cabin, which he stocked with provisions and instruments, and put in communication with the outer world by means of a telegraph wire. Before the winter fairly set in, he established himself in his little hut, and there, cut off by the snow from either rescue or retreat, he stayed until spring opened again the way down to the plain. In spite of cold, hunger, and loneliness, he pursued his observations and kept his records, fortifying himself under adversity, as M. Tissandier said in introducing him to the club, by remembering that he was a soldier, bound by his profession not to yield to any force which he had not tried his strength against and found irresistible. Like a soldier, too, the General remembered, through all his privations, to gain what advantage he could for the benefit of the poor people about him, and used his telegraph to send word to the farmers on the plains when the melting of the snow on the peak showed an inundation would soon follow below. After a few winters spent in this manner, a permanent and wellequipped station was, as our readers know, built in place of the little cabin, and a staff of observers estab lished there; and within a short time M. Raphael Bischoffsheim has promised to build an astronomical observatory by the side of the meteorological station. If this promise is carried out, the astronomical observatory of the Pic du Midi will probably soon become as

Germany. This horse is about 6 feet high, and weighs 1,800 pounds. It is said to be the strongest horse in the world, but we have no particulars of his performances. Notwithstanding its size and weight, it can be used very well for carting, pulling heavy loads, etc., and is more active than might be expected.
About 25,000 horses are exported yearly from Belgium most of which are raised by small farmers.

Two Singular Lunatics.
The Morristown Jerseyman tells of a lunatic at the Morris Plains Asylum who was mute for five years. Even the physcians thought he had lost the power of speech. One day two of his fingers were mangled in a washing machine. To the astonishment of everybody who heard him he exclaimed: "By the great and jumping Moses, a devil is better than an inventor." That was three years ago, and he has not spoken since. Another patient, a boy in the same institution, is a lightning calculator. The most intricate problems are solved by him in fractions of a minute. The boy believes that his head is filled with little blocks with figures upon them, and they instantly fall into different positions and work out the problems. He thinks his brain, in fact, is a multiplication table. His insanity seems pardonable, for only a few sane men can compete with him as a mathematician. Every day he soaks his head in water to prevent the blocks from rattling, and occasionally he begs for oil to put into his ears, so that the imaginary squares will slip upon each other more easily.
both of persons and property, guaranteed by the constitution; that the sale of a substitute for any article of manufacture is a legitimate business, which, if car ried on without deception, cannot be arbitrarily suppressed; and that the act in question was not aimed at deception, but went further, and created a monopoly destructive of rights protected by the constitution both of the State and of the United States. In effect, the decision declared lawful the manufacture and sale of oleomargarine when it is offered in marketunder its true name, and not as an adulterated form of butter, and when it is shown to be composed of pureingredients.

Artesian Well in Moscow.

This well was opened on the 1st of January, 1885. Boring was begun in 1865 , but in 1871 the boring tool broke at the depth of 1,512 feet, and all efforts to extricate it were useless. In 1876 the work was abandoned. In the mean time, however, the water filled the bore to within 40 feet of the surface, and as it was found that this height remained constant, a new plan was adopted. A gallery was excavated from the bank of the Jaonsa River to the well at a level low enough to permit the water to run into a reservoir at the other end. The gallery runs through limestone strata, is 1,400 feet long, and has a fall of $41 / 2$ feet. The water is pure, cold (8° R.), and flows abundantly, the daily supply being 770,500 gallons; this is nearly half the whole quantity of water supplied to the city of Moscow. This well ranksamong the largest in Europe.

ENGINEERING INVENTIONS,

A car axle lubricator has been patented by Messrs. William H. Sterling and Dysin D. Wass, of New York city. This invention consists in a spring
wire frame of novel construction, carrying oiling rollers intended to give a constant and uniform lubrication of the journals of car and other axles by devices that
can be readily inserted into and removed from the box.
An electric grip for railways has been patented by Mr. John C. Henderson, of New Yorkcity. This invention consists in a novel combination of adjustable gipps ails, combined within a longitudinally
ducting bars or rain slotted box or tube arranged between the rails of the track, and is an improvement
vention of the same inventor.
A car coupling tool has been patented by Mr. Edward A. Hamilton, of New Bethlehem, Pa. It is an implement for holding up the free ends of car
coupling links, so train men can do the coupling withcoupling links, so train men can do the coupling without going between the cars, and consists of a link hold-
er with arms held to a shank adapted to slide along the handle, but which may be set, and a spring to draw the ,
A means for coaling locomotives has been patented by Mr. Henry McLaughlin. of Bangor, on which the locomotives run, and tracks leading to the coal heaps, a traveling derrick frame running on the coal heaps, a traveling derrick frame running on the
elevated track, provided with a hoisting apparatus, making an advantageous combination of tracks, ways, A feed water heater and purifier has been patented by Mr. Dyson D. Wass, of San Francisco,
Cal. The heater 1s suspended in the boiler above the water level, with a feed pipe dividing intot two branches, each with a cluck valve, an extension of the feed pipe attached to one of thriancies, and a blow off pipe and
valve, so that impurities will be delivered at any desired point of the boiler, and to scour and clean the heater by water contained in the boiler.

agricoltural inventions.

A plow and cultivator has been patented by Mr. Robert M. Henderson, of Leesville, Ind. This
invention relates to plows used by corn growers, in invention relates to plows used by corn growers, in
which the driver's seat is supported forward near the team, while the weight of the driver is almost entirely removed from the necks of the team, with various other
An adjusting mechanism for harvesters has been patented by Mr. Newton W. Miller, of Mar
shall, Ind. Combined with'a drive wheel and hollow shall, Ind. Combined with a drive wheel and hollow
axie is a shaft working therein, a guide plate and bearind carrying a sliding bara, with, other novelf fantures, to
facilitate the vertical ad justment of harvesters and facilitate the vertical adjustment of
other machines mounted upon wheels.
A corn harvester has been patented by Mr. Samuel H. Young, of Bankston, Iowa. This inven tion covers a construction to facilitate guiding the ma chine along a row of corn hills, so the front of the ma chine can be readily adjusted to the height of the corn,
so fallen stalks will be raised, and whereby bunches of stalks are drawn against the dividers, with other novel eatures
A cutting apparatus for mowers and reapers has been patented by Mr. Luman Rundell, of
New Baltimore, N. Y. The cutting teeth throughout New Baltimore, N. . . The cutting teeth throughou
one-half the length of the cutter bar, when moving in either direction, are, by this invention, made to comeither direction, are, by this invention, made cocom.
plete or nearly complete their cut before the cutting
teeth on the other half of the bar come into cutting teeth on the other half of the bar come into cutting
position with the fingers or guards, thus dividing up and easing the cut to reduce shock and jerk.

miscellaneous inventions.

A device for handling boxes has been patented by Mr. Alfred Ayer, of Lake Weir, Fla. Com-
bined with two side bars are clamps pivoted to their ends, with a strap uniting the clamps, making a device especially applicable to the handling of orange and
lemon boxes, and other such packages too cheaply conlemon boxes, and other
structed to have handles.
A horse block or step has been patent ed by Mr. Martin B. Duncan, of Angeiica, N. Y. The framework upon which the treads of the steps are mounted is formed of hollow tubes or pipes, united by buried anchor b
durable device.
A plane guide has been patented by Mr. William W. Preston, of Coldwater, Mich. This inven
tion provides an impred tion provides an improved guide for attachment t to
planes to enable the edges of lumber to be squared or planes to enabie the edges of lumber to be squared or
beeved at any desired angle either way by the planes,
with with accuracy, and without the aid of a try square o
bevel
A fastening for blind slats has been pa-
ented by Mr. George F. Evans, of Corpus Christi, Tex tented by Mr. George F. Fvans, of Corpus Christi, Tex. lower rail of the blind and to receive the slat rod between them, together with a binding screw projecting
through one of the brackets, to hold the slats more or through one of the brackets, to
less open or closed as desired.
A tree ladder has been patented by Mr James M. Cunning, of Haskins, Ohio. Combined with upright bars are top bars hinged to the upper ends of
the uprights, and having hooks projecting from the bottom edges, with braces so pivoted that the ladder can be swung around a tree,
branches reached therefy.
An ice cream freezer has been patented by Mr. Albert L. Platt, of Bowling Green, Mo. The freezing cylinder has a hollow trunnion fitted to admit the refrigerant, and having a hopper supported on and
revolving with the trunnion, with other novel features to facilitate quick frezing, and convenient for taking apart for repairing, replacing, and cleansing.
A. wagon standard has been patented by Mr. Jeffrey Starmer, of Levering, Ohio. It is a re--
movable bolster standard or stake for wagons or sleds,
consisting of a novel construction of locking device and
catch, the standard being quickly and easily attached t atch, the standard being quickly and easily attached d
and removed from the bolster, staying firmly in plac when locked, and being cheaply made.
A cutter head has been patented by Mr. Benjamin R. Hand, of Camden, N.J. This invention relates to wood planing machinery in which the knives are held by a revolving head operating in connection
with the mechanism for moving the material to be with the mechanism for moving the material to be
planed, and is intended to provide a cutter head which will firmly hold the knives after their adjustment.
A necktie fastening has been patented by Mr. Benjamin F. Hutches, Jr., of Galveston, Texas, combined with an aperture colar button is a disk with a spring loop, the disk being adapted to be secur-
ed to the back of the cravat shield with a loop project ing through an aperture in the same, making a device to ing through an aperture in the same, making a devic
A stack cover has been patented by Mr. Abert Cooley, of Osceola, lowa. It consiets of sec tions being at different distances, and the sections having edge notches to receive locking bars, so the cover
may be put on and taken off in sections, and may be may be put on and taken off in in
extended to any desired length.
A coal hoisting machine or dredge has been patented by Mr. Bernard M. Munn, of Elizabeth,
N.J. The machine has a drum, cable, boom, and N. J. The machine has a drum, cable, boom, and
means for revolving the drum, in combination with verically movable plates, arms, and scoops, the whole so arranged as to facilitate the handling
A faucet has been patented by Mr. bushing adapted to be held in a barrel or cask head is a valve for closing the outer end and a plate for closing the inner end of the bushing, or a tube held on the same, both the ralve and plate being held on the same spindle, the device being intended to
A fanning mill sieve has been patented y Mr. Siver J. Aasen, of Repubican, Dakota Ter. Th construction is such that fine seeds are deposited in a
 into a suitable box, making possible the separation of oughly cleaning the seed.
A dental jaw brace has been patented by Mr. Willis J. Bickford, of North Attleborough, Mass. This is a device for keeping the mouth of a patent open when gas is administered, and consists of a slide spring to force and hold the mouth open, the prop thus formed being properly cushioned at top and bot-
tom.
A canal convoy has been patented by Mr. William F. Cowden, of Cumberland, Md. This invention covers novel constructions and osombinations so
the convoy may beallowed to drop some distance ase convoy may beallowed to drop some distance the boats, and means whereby the separating device may be disengaged and the boats drawn close together or passing through locks.
A sash holder has keen patented by Mr. Henry Staib, of Jeffersonville, N. Y. A face plate is formed with side flanges having spindile perforations ace plate to the perforations, with eccentric, removable spindle, and other novel features, making a simple
mechanism for supporting and locking window sashes in any desired position.
An oil strainer has been patented by Mr. William Connolly, of South Norwalk, Conn. It is made with an outer case and one or more ilitering cham-
bers with perforated side walls, and an imperforate bottom tapering downward, thedevice being especially intended for use in connection with the oil drip pans
ine for sewing
ventor.
A machine for cleaning and repairing oller skates has been patented by Mr. Rufus F. Hull, of Fonda, Iowa. It has a rotary shaft with a pair of
wheels having a space between them equal to the dis. whels having a space between them equal to the dis-
tance between a pair of skate wheels, the wheels having tance between a pair of skate wheels, the wheels having
inclined grooves whereby the rollers may be cleaned nclined grooves whereby the rollers may be cleaned
and evened, while there are chucks, abrading disk; and and evened, while there are chucks, abray
An automatic swinging chair has been patented by Mr. John C. McMnllen, of St. Augustine, Pa. By this Invention the lever through which the chair of thed is not ing thereby freed from the weight of the perator and giving a greater movement to the chair, so the occupant can orgininte and easily maintain a con-
tinuous swinging motion.
A chain saw has been patented by Mr. Walter S. Shipe, of Minerva, Ohio. Each link of the
chain is made to displace the whole chip, and effect a chain is made to displace the whole chip, and effect a
ready clearance, which is done by a single cutter of ready clearance, which is done by a single cutter of cutting logs or felling trees, being started by placing drawing the chain over the timber
A door has been patented by Mr. Jeuleos Gambllee, of Creskill, N. . . Combined with a
door having top and bottom openings are slides for closing and uncovering them, and a mechanism for operating the elides automatically and by hand, so the door can be opened and closed without affecting the covers
of the openings, or the openings can be uncovered and losed whilethe door is shut.
A sheep shears has been patented by Mr. Elijah Kellogg, of Reno, Nev. Combined with a
handle having on the forward end of its under side a handle having on the forward end of its under side a end of its outer side, with a strap secured to both studs, making a pivoted joint with large bearing surfaces capa-
ble of supporting the shear blades and preventing them fe of supporting the shear blades and preventing .
A lime distributer has been patented M Mr. John Hotham, of Hillside, Pa. . Tt has wheels
ivoted beneath the discharge openings of the hopper
with curved radial flanges and connected by gearing
with a rear wheel of the machine, the size of the discharge openings being regulated by sliding plates, the lime in the lower part of the hopper being agitated a

A cracker machine has with radial pins. by Messrs. William H. Bromley and Philip J. Gately, of Brooklyn, N. Y. It has an elastic bed plate resting upon eccentric rollers, so that by turning the latter the
bed plate can be readily adjusted according as the de bed plate can be readily adjusted according as the de.
sired thickness of the sheet of dough or the wear of the sired thickness of the sheet of dough or the wear of the cutters may require, the rollers having
A car starter has been patented by Mr Theodore F. Bourne, of Bloomfield, N. J. A ratchet a swinging support and carrying a pawl adapted to en gage the ratchet wheel, a chain or coupling connecting the lever to the draught bar, there being a stop between the lever and the swinging support. the lever operating
A plaster of Paris splint has been pa ted by Messrs. John W. Bender and James C. Hinkle of Shippensburg, Pa. It consists of segmental sections
moulded internally to the shape of the limb, and hav moulded internally to the shape of the limb, and hav-
ing on their meeting edges interlocking projections and ing on their meeting edges interlocking projections and
sockets, with coincident strap grooves in their outer sockests, with coinciaent strap in roves desired number of
sides, he sections to be made in any der pieces, so that one or more may be remvved at a time
y the surgeon or nurse.
A roving frame has been patented by Messrs. Richard Curtis and William H. Rhodes, of Manchester, Eng. This invention relates to slabbing, intermediate, and roving or jack iramest, and is intenced
to improve the mechanism for imparting a gradully de creasing speed to the bobbins, so they will always draw the slubbing or roving from the front rollers at a uniform speed, notwithstanding the increase of the diame-
ter of the yarn on the bobbins as they become filled. A horseshoe has been patented by Mr. Lawrence Schwaab, of New York city. This shoe is
intended to be fastened to the horse's hoof without nails, and is made in two parts hinged to each other at their forward ends with an inwardly inclined rim on their outer edges, and having a plate formed on one part to overlap the other part; the shoe has a pad with a
buckle and strap at tit rear end and projections buckle and strap at its rear end, and projections on its
sides to engage with apertures in the sides of the rim of he shoe, to protect the hoof from jar in traveling.
A candy machine and a cake machine are the subjects of two patents insued to Mr. Daniel M.
Holmes, of Arlington, N. J. The first machine has Holmes, of Arlington, N. J. The first machine has a
steam heated chamber, which keeps the candy in steam heated chamber, which keeps the candy in a
melted condition, and from this chamber definite quantities are fed, either upon plates on an in intermittent. ly moved endesess apron or into pits or moulds formed ner, for the rapid and automatic and man or moulded candies: the cake machine is of that clase, in which the dough is fed down from a hopper into a
series of cylinders, whence it is forced by reciprocatin series or cylinders, whence it is forced by reciprocating, less apron, and the invention covers improvements in the several parts of the machine to increase its efficienc

NEW BOOKS AND PUBLICATIONS

Magneto and Dynamo Electric Ma
chines. From the German of Glase
de Cew, by F. Krohn, and edited LL.D. D.Sc. London: Symons and

This volume is the first of a new Specialists' Series edited by Dr. Paget Higgs and Professor Charles Forbes, and intended to present in popular form the latest information in regara to recent technical subjects. It is the object of the series to provide practical hand-books, ing of apparatus in the market, entirely devoid of any commercial advocacy. It is admittedly hard to be perfectly impartial, but the high character of the editor
will insure a belief in the honesty of their criticism, is will insure a belief in the honesty of their criticism, in
not always in its correctness. The present volume not always in its correctness. The present volume
treats of a comparatively new subject, where our experience is necessarily limited, and is, therefore, par-
ticularly welcome sa a conscientious effort to accuaint ticularly welcome as a conscientious effrort to acquain
the public with the princlples underlying the construc tion of electrical machines. The introduction will be found useful to those but little familiar with the theo-
ries of induced currents as well as interesting historiries of induced currents, as well as interesting histori-
cally to all readers. The subject has been divided cally to all readers. The subject has been divided
under the head of machines generating alternating or direct currents ratherthan in strict accordance with the differences between magneto-electric machines and dynamos. The chapter on storage batteries is of special
interest just such general attention. In the appendices is given con-
siderable information in regard to the practical considerable information in regard to the practical con-
struction of dynamos and a comparison between the struction of dynamos, and a comparison between the
principal ones now in use. The series is introduced in this country by Van Nostrand.
Canoe and Camp Cookery. A Practi-
cal Cook Book for Canoeists and
Outers. By "Seneca." Forest and
Stream Publishing Company, New
York.
At this time of year, such little books as this seem to introduce the urban resident, and worker in store and camping-out life, for it brings one directly to the prac tical details on which the comfort and solid enjoyment
of such summer excursions perhaps most largely deof such summer excursions perhaps most largely de-
pend. The author speaks from experience, and his pend. The author speaks from experience, and his
suggestions as to outfit, choice of menu to lay out for different kinds of expeditions, management of the fre, and the best ways of cooking afford sufficient variety to satisfy a taste win a good deal of discrimination,
while the directions are so simple that the veriest novice in such matters cannot fail to quickly acquire therefrom the knack of preparing his own food. Take nothing
but what is necessary and which can be compacty stowed, is the author's rule, and this little book, which can be easily tucked in a side pocket, might well be
counted an essential of a perfect outfit.

Ə3usiness and æpersonal.

The charge for Insertion under this head is one Dollar a line for each insertion; about eight words to a line. Advertisements must be received at publication office

Pure Turkey Emery, English Walrus, and Polishing Upright Power Hammers. Beaudry \& Cunningham, Boston. Mass.
Wanted.-Mechanical Automatic Figures. Must be We and original designs and work natural. Address, Conn.
One-third interest in patented "Lock Whip Socket" Wale. Address E. D. Bryant, Circleville, 0
Wanted.-A Foreman of a foundry would like to
change his position. Canfurnish best of references in rechange his position. Canfurnish best of references in re-"
card to quallifcations, and also good reasons. "W. S ." .o. Berlin, Ontario. Canada.
Business for Sale.-A new ornamental and cheap . Hasvell's Engineer's Pocket-Book.. By Charles H. Haswell, Civil, Marine, Mnd Mechanical Engineer. Giv-
ing Tables, Rules, and Formulas pertaining to MechanLss, Mathematics, and Physics, Architecture, Masonry,
Steam Vessels, Mills, Limes, Mortars, Cements, etc pages, leather, pocket-book form, \$4.00. For sale by Munn \& Co., 351 Broad way, New York.
Combination Pliers, Gas Pliers, Wire Cutters, Wrench, Hartfora, Conn.
Small High Speed Steam Yachts complete or in parts.
One 20×48 Corliss Engine, in good order, for sale
by Henry I. Snell. 135 North Third Street, Philadelby He
phia.

Cotton Factory, complete equipment, for sale. Ad-
ress w. W. Jennings, Harrisurg Pa Astronomical Telescopes, from $6^{\prime \prime}$ tolargest size. Observatory
and, 0.
Peerless Leather Belting. Best in the world for swift electre machnes. Aray a son, Fina.
"How to Keep Boilers Clean." Send your address Shafting, Couplings, Hangers, Pulleys. Edison Shafting ifg. Co.,86 Goerck St., N.Y. Send for catalogue and prices.
ir Compressors, Rock Drills. Jas. Clayton, B'klyn, N.Y. , Iron Planer, Lathe, Drill, and other machine tools of Wanted.-Patented articles or machinery to manufacWro maintroduce. Lexington Mfg. Con, Lexington, Ky. For Power \& Economy, Alcott's Turbine, Mt. Holly, N.J. Send for Monthly Machinery List
to the George Place Machinery Company,
121 Chambers and 103 Reade Streets, New York.
If an invention has not been patented in the United States for more than one year, it may still be patented in
Canada. Cost for Canadian patent $\$$ sil. Verious other Canada. Cost for Canadian patent. \$40. Various other
foreign patents may also be obtaine. For instructions address Munn \& Co., Scientipic American patent gency, 361 Broad way, New York.
Guild \& Garrison's Steam Pump Works, Brooklyn,
N. Y. Steam Pumping Machinery of every description. end for catalogue.
Machinery for Light Manufacturing, on hand and Nickel Plating.-Sole manufacturers cast nickel andes, pure nickel salts, polishing compositions, etc. Com-
lete outfit for plating, etc. Hanson, Van Winkle \& Co. Newark, N. J., and 92 and 94 Liberty, St., New York. For Steam and Power Pumping Machinery of Single and Duplex Pattern, embracing boiler feed, fire and low um, hydraulic, artesian, and deep well pumps, air comessers, address Geo. F. Blake Mig. Co., 44 Washington,
t., Boston; 97 Liberty St., N. Y. Send for catalogue.
Rubber Belting, Packing, and Hose for all purposes. Suppleme sacion of any special engineering, mechanical or scieniffc subject, can have catalogue of contents of the Screntific american Supplement sent to them free. The SUPPLEMENT contains lengthy articles embracing
he whole range of engineering, mechanics, and physical cience. Address Munn \& Co., Publishers, New York. Knots, Ties, and Splices. By J. T. Burgess. A Handbook for Seafarers and all who use Cordage. 12mo.,
loth, illustrated. London, 1884. Sent, postage prepaid, n receipt of 75 cts., by Munn \& Co., New York.
Send for catalogue of Scientific Books for sale by
Munn \& Co., 361 Broad way, N. Y. Free on application c. B. Rogers \& Co., Norwich, Conn., Wood Working achinery of every kind. See adv., page 62
If you want Engines, Boilers, or Machinery of any Street, Philadelphia. Curtis Pressure Regulator and Steam Trap. See p. 12. Wood Working Machinery. Full line. Williamsport We are sole manufacturers of the Fibrous Asbestos Removable Pipe and Boiler Coverings. We make pure asbestos goods of all kinds. T.
419 East 8th Street, New York.
Safety Elevators, steam and belt power ; quick and Crescent Solidified Oil and Lubricators. Something Steam Hammers, ImprovedHydraulic Jacks, and Tube xpanders. R. Dud Nervous, Debilitated Men.
You are allowed afree trial of thirtydays of the use of Dr. Dye's Celebrated Voltaic Belt with Electric Suspensory Appliances, for verve Debility, loss of Vitality and Man-
cure of Ner mill
hood, and all kindred troubles. Also for many other iseases. Complete restoration to health, vigor, and diseases. Complete restoration to hearth, vigor, and
manhood guaranteed. No risk is incurred. Illustrated
pamphlet, with full information, terms, etc., mailed

Voltaic Belt Co.,
Marshall, Mich.

Emerson's Book of Saws free. Reduced prices
for 1885. 50,000 Sawyers and Lumbermen. Address for 1885. 50,000 Sawyers and Lumbermen. Add
Emerson, Smith \& Co., Limited, Beaver Falls, Pa.
Barrel, Keg, Hogshead, StaveMach'y. See adv. p. 76. Mineral Lands Prospected, Artesian Wells Bored, by The "Improved Green Engine" Automatic Cut-off The "Improved Green Engine," Automatic C
Providence Steam Engine Co., R. i., Sole Builders. For best low price Planer and Matcher, and lates improved Sash, Door, and Blind Machinery, send for
catalogue to Rowley \& Hermance, Williamsport, Pa. Domestic Electricity. Describing all the recent in-
ventions. Illustrated. Price, $\$ 3.00$. E. \& F. N. Spon, ventions. Ill
New York.
Patent Elevators with Automatic Hatch Covers. cular free. Tubbs \& Humphreys, Cohoes, N. Y Pat. Geared Scroll Chucks, with 3 pinions, are sold a
same prices as common chucks by A. F. Cushman, Hart same prices
ford, Conn. For Sale--Patent on Exercising Bars described in
Scientific American of June 2, 1883. Address Geo. SCIENTIFIC AMERICAN of June 2, 1883. Ad
Worthington, 57 Second St., Baltimore, Md.
Split Pulleys at low prices, and of same strength and appearance as Whole Pulleys. Yocom \& Son's Shafting
Works, Drinker St., Philadelphia, Pa.

HINTS TO CORRESPONDENTS.

(1) P. \& M. ask if running an electric motor on a watch maker's bench would tend to mag-
netize watch balances, or would it be safe to operate an induction coil for the purpose of giving shocks

on hand? A. By means of the voltmeter
ter placed in a shunt of the main circuit.
(3) H. W.-Ordinary machinery steel is generally used for telephone magnets; they are hardened at the ends only, usually by heating to a red heat
and plunging into cold water. Cast steel is no better and plunging into cold water. Cast steel is no better
than machinery steel, but if used its temper should be than machinery steel, but if
drawn to a dark straw color.
(4) P. W. B.-The north-seeking pole of a magnet is attracted by the earth's north pole, and
the south seeking pole is repelled by the earth's north pole, but the "why" has never been ascertained.
(5) O. Z. writes: How is paraffine dissolved quickly? I receive tools and toys from the old country (Germany) covered with a coat of paraffine, to prevent rust I suppose. It makes them sticky to the ing the articles A. Naphtha or asoline dissolves paraffine; a little on small rag, and rub-the articles
(6) W. F. L.-Fishes balance themselves in water by the muscular contractionof the air bladder. By death the muscles relax and the air bladder expands,
raising the fish to the surface. The center of gravity being in the air bladder. which is located in the abdomen, brings the belly up when the fish floats.-In regard to electroplating, see Scientific American
Supplement, No. 310, and Wahl's Galvanoplastic ManSupplement, No. 310, and Wahl's Galvanoplastic Man which may be had through this office.-We charge for an analysis of minerals only, not for an opinion of
hat they are
(7) J. L. M.-We know of no special rules or formulas for the relation of coil to size of wire
in spiral springs. Their use, strength, elasticity, and amount of extension required are the special considera tions in their proportions. Could not give you the re
coiling force of a spiral spring. The only way is to coiling force or
make a trial.
(8) J. S. M. asks: 1. What are the con ditions on which so many patents are issued on telephone transmitters, wherein the variation of the resist other words, why are patents issued to Draughbaugh and others for carbon transmitters when Edison is
the first inventor and patentee? A. If you will ex amine the patent, critically, you will find tnat they are not issued for the same thing, although they may con-
tain some of the same elements. They are generally tain some of the same elements. They are generally for different combinations of the elements required to
produce a telephone. 2. What are the conditions on produce a telephone. 2. What are the conditions on
which patents on magnetic telephone receivers are which patents on magnetic telephone receivers are
issued to other parties since the invention of Graham Bell? A. The same may be said with regard to telephone receivers. 3. Is there any practical form of believe not. 4. Is there any practical form of loud-
speaking magnetic telephone that can be heard through a large hall by an entire audience? A. No. 5. Would
the invention of an efficient magnetic separator capable of separating 15 or 20 tons of magnetic sand per day be of any great value to the industries? A. Separators of his class are in use; any improvement will have some value. 6. Is magnetic sand used in any part of the country in the manufacture of iron and steel on a la
cale? A. We believe it is used to some extent.
(9) S. B. G. writes: It is said that the magnetic needle stands at right angles to a current of electricity which encircles the earth eastward and westward. If it is so, please explain what causes the variation of the magnetic needle, or rather the variation of
the magnetic current. A. We do not know that the magnetic current. A. We do not know that
the explanation of the action of a magnetic needle is the explanation of the action of a magnetic needie is
correct. We believe an explanation of the variation of the earth's magnetism is yet wanting. We regret that
we are unable to supply it.
(10) H. I., Jr., asks for a mineral or subtance that! when placed between a horseshoe magne
nd a piece of iron, the former will not affect or draw the a piece of iron, the former will not affect or draw
the latter toward it. A. No substance having the properties you require has yet been discovered.
(11) E. J. R. asks how many 2 gallon celis of Bunsen battery, converted into the bichromate of potash battery described in Scientific American
Supplement, No. 485 , would be required to run one 6 Supplement, No. 485, would be required to run one 6
candle incandescent lamp of $10 \cdot 8$ volts and $1 \cdot 43$ amperes. Also what carbon surface, and how deep, should the zincs be immersen? A. You would require 11 to 12
cells. Better use your cells as Bunsen bichromate bateries. They will be more constant than the plunging battery. If you desire to use them as plunging batteries, you may use in each cell 1 zinc plate and two each side of the zinc plate and about $1 / 3$ inch distant. You will be obliged to plunge the elements more and more as the solution grows weaker.
(12) F. A. writes: I wish to construct dynamo, twice as large as shown in Supplement, No. 160. 1. Shall I use the same number of wire? A. Use
the same number for the armature and No. 12 for field magnet. 2. Aow much wire shall I use for the electric magnet, and for the armature? A. It would be more or less a matter of experiment; better put on about six layers on the magnet, and bring ends out so that you could connect the different coils up in series or in
parallel circuit.
3. How many candle powe will it parallel circuit. 3. How many candle power will it give (arc lamp), how much power required to run it? A.
The amount of light produced by such a machine deThe amount of light produced by such a machine destructed. It will probably require at least $1 / 2$ horse power to drive it.
(13) J. B. W. asks: 1. How many cells Fuller batteries will it require to light an incanhe resistance of the lamp. Probably from 10 to 20 . 2. hat effect do large wires have for a core in an in-
ction coil over small wires? I have made an inducon coil after your Supplement, and have heard some ectricians argue for large wire in core and some in avor of small wires in core. Please state the advan-
ages. Mine is for a shocking machine. A. The smaller res are preferable, because they are more readily mag-
tized and demagnetized. 3. What advantage is there tized and demagnetized. 3 having als in having a large core over a small one? Mine is $1 / 2$ inch
in diameter, and some say if I had it 1 inch it would in diameter, and some say if I had it 1 inch it would
be stronger. A. By using a large core you would be able to get a larger and stronger magnetic field. able to get a larger and stronger magnetic field. 4.
Would it not be better to use No. 10 cotton covered wire for primary and No. 18 silk covered for secondary for an induction coil for a shocking machine, for street
use? A. Better use No. 16 for your primary and No. use? A. Better use No. 16 f
34 or 36 for your secondary.
(14) F. W. W. writes: 1. I have a hunt ing jacket made of common ducking. Can you tell me what preparation I can put over it to make it water-
proof, and not make it stiff and uncomfortable? A For waterproofing your duck coat, dip it in a solution containing 20 per cent of soap, and afterward into Then wash and dry. Another: 1 pound alum, 1 pound sugar of lead; pulverize both finely, and thoroughly mi dry and pour on 2 quarts boiling water. Let it stand hours, when it will be ready. Sponge the coat until it is saturated, then iron dry. 2. If the muzzle of a sho gun is worn a little bell-mouthed, will it have a ten-
dency to make the gun scatter? A. Yes. 3. When brass shells for shot gun expand, through continuous use, how can they be contracted to gauge again? A
Only by using a compressing die, which a machinist should be able to make.
(15) P. P. B.-Balloons, unless of very large size, should be made of the lightest material. Bal-
loons of small sizes would be of little or no service with hot air if made of cotton cloth or ducking. See Scien tific American Supplement, No. 127, 312, and 413 on the construction of balloons. A returning bullet in creases its velocity from the turning point until it strikes the earth.

INDEX OF INVENTIONS
For which Letters Patent of the
United States were Granted,
August 4, 1885,
AND EACH BEARING THAT DATE.
[See note at end of list about copies of these patents.]
Alarm. See Burglar alarm. Low water alarm Anchors, fitt
S. Baxter
Animals, instr.................................... Auger bit. F. Shailer.. Awning, E. A. Hildebrandt

Axes, manufacture of, V. Halter.
Axle box, car, Dooly \& 0 'Callagha Axle lubricator, car, Sterling \& Wass Bag. See Mail bag.
Bag holder J.
Bag holder, J. L. Worrell.
Barber's chair,
H. Geise.
Barber's chair, E E Kise.
Barber's comb, Smith \& Holland.
Barrel fller, J. Mc
Barrel fller, J. McKenzie.
Barrels, machine for hooping, E. A. Delano. Basket, fruit, I. S. Platt..
Battery. See Secondary Beams and girders, cutting and employing wo en, P. H. Jackson.
Bed bottom, bolster,
Bed bottom, bolster, W. I. Fielding Bed, folding, C. Fento
Beer cooler, J. Meyer...........
Belt supporter, \mathbf{C} \& E. Hinshaw
Bengal lights, composition for, C. Gerhard
Bit. See Auger bit. Bit. See Auger bit.
Blast furnace, F. Br
Blast furnace, F. Brown............
Blind slat fastening, G. F. Evans.
Block. See Horse block.
Block. See Horse block.
Blower, steam fan, J. C. Hendry
Blower, steam fan, J. C. Hendry
Blowing engine, W. K.
\& Clapp...
Boiler. See Magaze
Boiler cleaner, H. Estelle.
Boile furnace
Boiler furnace, Knight \& Tho......
Bolt. See Door bolt.
Bolting reel clothing, A. Heine.
Book holder, R. M. Lambie......
Boot machine. felt, W. A. Smith
Boot machine, felt, W. A. Smith
Boot or shoe uppers, crimping machine for,
Knetzger......................
Boring machine, e. H. Parks.
Bottle, nursing, W. R. Prime.
Bottle stopper, W. L. Roorbach
Bottles with highly aerated liquids without press-
Box. See Shipping box
Box for bottled liquids, P.
Box or trunk fastener or catch, H. A. Aesmour.
Boxes, device for handling, A.
Brace. See Dental jaw brace.
Brace. See Dental jaw brace.
Brake. See Car brake. Wagon brake
Breastpin pin tongue, A. Thommen..
Brick machine, W. M. Logan.......
Bridge joint, draw, G. W. Mersh
Bridle overdraw check. F. M. Amsbry
Brooch or breastpin, R. R. Hug
Brush or broom support,
Buffing roll, S. B. Bredd..............................
Building blocks, press for plastic material
Burglar alarm, Herrick \& Babcock...
Burner. See Gas burner. Hydrocarbon burne
Vapor burner Bustle, F. G. More
Bustle,. G. Moore..........
Bustle, woven wire, R. Kelso
Bustle, woven wire, R. Kelso...
Butter worker, L. W. Murch....
Button fastener, P. H. Sweet, Jr.
Button fastener, P. H. Sweet, Jr..........
H. W. French......

Buttons to wearing apparel, setting instrumen
for attaching, P. H. Sweet, J
Cake machine, D. M. Holmes....
Can. See Milk or M. Holmes
Canal convoy. W. F. Cowden
Candy machine, D. M. Holmes.............
Cane, machine for slicing sugar,
Cap for exploding dynamite, J. Paulus...

Capsule machine, H. H. Taylor.
Car brake, F. S. Gerrard..................
Car brake, automatic, J. B. Gathright
Car brake, automatic. W. A. Wilde
Car coupling, R. R. Hunt....
Car coupling, E. F. O'Haver.
Car coupling, D. Sturgis..
Car coupling, L. Van Camp....
Car coupling tool, E. A. Hamil
Car, dumping, J. M. Hartman.
Car, dumping, T. F. Seery...
ar for cable railways, grip, F. P. H. Loft
Car, live poultry, Jenkins \& Streeter (r)
Car starter, T. F. Bourn
Car wheel, R. N. Allen..
Car window, J. M. Fennerty
Card beveling machine, C. A. Wright.
Card holder, S. N. Rosenbaum
Carpet fastener, R. S. Gould
Carriage and cradle, convertible, Bond \& Sadle
Carriage and crad.e, child, J. A. Crandall.
Carriage spring, A. R. Schmidt
Carriage spring, A. R. Schmidt.
Carriage window, F. \& C. Forder
Carriage window, F. \& C. Forder....................
Carrier. See Clay and brick carrier. Hay car-
rier.
Case. Dressing case. File case. Seed case.
Casting rolls and other articles, mould for, w
Hainsworth.......................
Chain, ornamental, B. F. Evans.........................
Chair. See Barber's chair. Reclining chair

Swinging chair. Chair, P. E. Dowe.

Chair, P. E. Dowe............................ Chairs, etc., extensible bottom for, A. Van Wie.
Change box signaling attachment, w. J. Abe nethy.....................
Chandelier, R. F. Barnes.
Chicken house, J. Burgert. .
Chopper. See Cotton chopper. Churn, J. W. Cady..
Curn J. Durkoop
Churn, J. Durkoop............
Churn, rotary, L. W. Murch.
Clay and brick carrier J. W.
lay and brick carrier, J. W. \& G. H. Aregood.
Cloack striking mechanism, C .
Cloth rack, w. W. Palmer...........................
Clothes pins, machine for making, J. D. Senate. Clothes washer. T. F. Wood..
Clover huller, E. L. Williams
ing, G. J. P. Couffinhal
Coal screen, W. P. C. Allen..............
Coftins, lowering, C. . \& H. C. Reiche.
Collar pad, horse, Rice \& Rossman................
Comb. See Barber's comb. Ornamental comb.
Comb. See Barber's comb. Ornamental comb.
Cookingutensil, H. J. Rutter...................
Cooler. See Beer cooler.
Cooling board, O. P.
Corset, M. P. Bray..

333,671
Cotton gin, o. Washburne
Cotton picker, J. T. Martin
Countersiuk, N. Schenkel.
323,548
323,782
323,448
oupling. See Car coupling. Pi................
Thill coupling,
Thill coupling.
Cracker machine, Bromley \& Gately.
Cracker
Crate,fruit, I. S. Platt......
Crucible furnaee, T. Mcriide et al..
Cuffholder, D. W. Brown............ Cuffholder, D. W. Brown.. Cuffholder, A. Schifling.
Cultivator. J. F. Packer...................
Cutter. See Tobacco plant cutter. Cutterhead, B. R. Hand............................
Cutting double pile fabrics, machine for, R. Greenhargh...
Cutting-offtool, A....................
Damper, stovepipe, J. H. Doherty
Dental jaw brace, w. J. Bickford.
Dental lip holder, A. Garner..........
Derrick, revolving, A. N. Simmerly.
Derrick, revolving, A. N. Si
Die stock, J. W. Atrong.....
Door bolt, prison, W. Corry
Drawing rods and shafting. machine for, B.
White
 Dressing case, R. Sayer.
Drier. See Fruit drier.
Drier, Carter \& Johnson..............
Drilling machine, J. .. Wesson.....
Dyeing, etc, apparatus for, w. Math
Djector and injector, combined, Fergus
Grifiths...........................
Elastic tired wheel, w. H. Chapin.....................
Electric machines, cut-out for dynamo, C. J. Van
Depoele... 323,4
Electric motor, M. G. Farmer................
Electric motor regulator, M. G. Farmer.
Electro dynamic motor, F. J. Sprague..
Electro magnetic motor, M. G. Farm
Engine. See Blowing engine.
Exercising machine, Coop \& Boms.
Extension table, Neumer \& Derx...
Eyeglass nose guards, cushion for, G. W. Wells. Eyeglasses, J. W. Riglander.
Fan, E. W. Hoefle..........
Fare recorder, E. Baldwin.
Farm gate, T. E. Wilson...
Faucet for wash bowls, T. C. Clark.
Feed mill, T. C. Cadwgan..........................
Feed water heater and purifer, D. D. Wass.
Fence barb, G. H. Pattison.........
Fence machine, wire, O. Jackson.
Fence making machine, Williams \& Reynolds Fence post, E. R. Copeland..
File case, bill, C. H. Moulton
File cutting machine, H. F. W. Liebmann.. Filter bed, E. Holden.
Firearm, breech-loading, A. Dickerman.
Firearm lock, Landers \& Wesson............
Firearm, revolving, D. B. \& J. H. Wesson..
Firearm safety lock mechanism, D. B. Wesson,
233,
Fire extinguisher, automatic, W. Harkness..... Fire extinguisher, chemical, Dowson
Fire extinguisher, hand, A. W. Porter........
Fire Fire, protecting buildings from, J. G. Merrill. Flooring, S. C. Little.
Flower pot shelf, R. W. Perry
Flower stand, A. Iske
Frame. See Roving frame
Frut drier, steam, M. M. Burchfeld................ 323,781
Furnace. See Blast furnace. Boiler furnace.
Crucible furnace 0 , Burnace.
Steam generator furnace.
Walker.. 323,644
Furniture, guide track for heavy, F. Delmont.... 323,566
Gauge. See Water gauge.
Garter, A. E. Fuechsel.
Gas burner, F . Siemens
Gas burner, heat generating, H. A. A. Kimball..............
Gas compressor, J. B. Stobaeus.....................
Gas conveying and supplying, G. Westinghous
Gas distribution, W. A. Hoeveler....................................
Gas lighter, percussion, J. H. Wesson.................
Gas, manufacturing illuminating, C. M. Gearing.
Gas pipes, expansion joint for, w. S. Turner.....
Gate. See Automatic gate. Farm gate. Wate
gate.
Gate, J.

Trowbridge..........................
Glass, etc., furnace for melting, J. Pedder........
Gold from its ores by chlorination, apparatus f
the separation of, E. P. Thompson
Governor, steam engine, F. Fosdick
Grading machine, P. B. Sheldon.
Grain binders, grain carrier for low-down, J. E.
Appleby....................................

323,807	Grease trap for sinks, J. Reid...
323,862	Hame fastener, M. E. Campany

Handle. See Suw handle.
Harness, breast, B. McDevit.
Harness, breast, B. McD
Harrow, M. H. Cogswell.
Harrow,
Harrow, J. Maunder............................
Harrow and cultivator, riding, J. R. Whittemore
Harver
Harvester adjusting mechanism, N. W. Miller.
Harvester, and, Sorn, S. H. Young..
Harvester cutter, G. . \& W.
Harvester cutter, G. R. \& W. G. Sigle
Harvester reel, Noyes \& Perry
Harvester reel, Noyes \& Perry....................
Harvester tongue support, Wallace \& Darcus....
Harvesting machine cutting apparatus S. B.

Hay racke. B. Tanner
Hay rake, hand, C. C
Heat transmitter, J. H. L. Tuck.......................
Heater. See Feed water heater. Soldering iron
heater. Tire heater.

Hoisting maachine or dredge, coal, B. M. Munn....
Holder. See Bag holder. Book holder. Card
holder. Cuffholder. Dental lip holder. Plane
holder. Programme and hat holder. Sash
holder.
orse block or step, M. B. Duncan.................

ner.......................
Horseshoe, I. Schwaab...
House. See Chicken house.

	Protector. See Mustache protactor.
raulic jack for cranes, w. F. Durfee........... ${ }^{323,1}$	
Hydrocarbon burner, J. B. Apple................. 323,385	
	Pump, sand, Smith \& Clift
machine compr	
ndescents, furnace	
x, R. H. Wyman	
statio	
Insulator, electric lamp. J. R. Filetcher............... 323,504	
Jack. See Hydraulic jack. Lifting juck.	Rail
stopper, preserve, J. Comly.................... 32,636	Rai
Joint. See Bride joint.	
nal box, a	
Kee, J. F. Wollanakk........................... 32,479	
ric	
Knob attachment, C. W. Bul	
der, tree, J. M. Cunnin	
$\mathrm{mp},$	
Lamp fixture, hanging, G. W. Hubbell.............. 32,687	
np ,	
np or	
p sh	
Latch, coach, A. Ochsner........................ 323,79	Reflector, lamp.
d, apparatus for the manufacture of white, S.	Refrigerating rooms used therefor, F.
D. Cornel1.................................... 32,499:	Re
Ledger and blotter, combined petit, W. B. Per-	Re
	Re
Lifting jack	Ro
Lightning arrester for line wires, G. W. Mingle... ${ }^{323,8222}$	Ro
Lime distributer, J. Hotham..................... 320,63	Ro
Liquid substances with purifying or other liquids, method of and apparatus for treating semi-, E.	Rolling Roving
omot	
binder, H. Pannzorn	Sash, window. L. $\&$ H. H
oom ha	Saw,
m p	Saw har
m	Saw hande
m shutte,	
Rymane....... 323,600	Scale, recor
Lubricator.	
Magazine boiler, J. White........................ $323,6 \%$	
jolica was	see
Metal rods or bars, machine for drawing, w. All-	
allic strips, machine for barbing, T	
. 323,713	
514	
See Feed mill.	Siow or banner, M. R. İevy..
ror, hand, A. C. Estabrook........................ 323,649	
p wringer, J. F	
rtise lock, G.	Skate, roller, W. H
tion, device for converting,	
Motor. See Electric motor	Skates, mac
$\begin{aligned} & \text { tor. } \\ & \text { tor. } \end{aligned}$	
Movement cure apparatus, H. Main................ 323,701	
ver and reap	blac
Mowers and reapers, endless chain sickle for, S. S. Turner \qquad	
scle beaier, J. E. Ruebsam.......................... 323,447	Sleeve,
	plow
Nail strips, forming heads on, M. Brock............ 323,847	Sno
1	
M. Brock	Snow scraper and compressor, combined, B. F.
ktief	
lock, J. H. Burdick............................ 323,560	$\begin{aligned} & \text { sold } \\ & \text { Sold } \end{aligned}$
t lock, J. W. M	
t, screw, E. C. I	
Ore concentrators, apparatus for of, A. D. Clarke.	
${ }^{\text {of, A. D. Clarke.....ileming }}$ concentrators, fltering	
Clarke..................	
roas	
was	Stand. See Fl
pe	
Organs, pneumatic action fпr, Roosevelt \& Haskell. 323,829	
ame	
323,643	Stay for dr
king fo	
king, metallic, J.	Stea
d. See Collar pad.	
ail for commodes, D.	
Paint cans, cap for shee	
int pot, C. M. Hills.	
tatloons. drawers, or	
er folding machine, L. P. Brault.............. 323,5	Steam, heating exhaust and superheating live, L.
Paring and slicing device, P. Schwarzenhoelzer... 322,451	
ncil sharpener, S. S. Woodecock.................. 323,769	
otographic washing apparatus, H. W. Oliver... ${ }^{323,7221}$	Steaming and ore scouring apparatus, т. c.
no	Simonton...................................
no,	
er.	
Pipe. Se	
e cle	
e	
23,84	
ne gu	
ne hol	
nter and check rower, combined corn, J. Gan-	Su
Planter, corn, J.J. Fraikin.................................. 323,801	
nter, cotton, J. S. Daniell...................... 323,642	
ter, seed. W. B. B. Gibson..................... 323,413	ders
nting cranberry vines, implement for, F. B. Hiller..................................	T
	Table. See Extension table. Sewing machine
J. Zeek.................................... 323770	Table legs, loc
w and cultivator. R. M. Henderson............ ${ }^{323,676}$	
w beams,	
	Thargets, apparatus for the manufacture of flying.
	sto
t. See Paint pot. Slag pot. Slag and matte pot.	Thermostat Thill couplin
pting machine deli	
Protecting screen for air and light shafts, A. A. Hagen. \qquad	

		\mathcal{Z} (Jvertisements.			
$\begin{aligned} & \text {. } 323,805 \\ & . \\ & \hline . \\ & \hline \end{aligned} 333,398,458$					
	To				
	Trad	PERENNIAL YOUTH.			
	Tru	rt			
$\begin{aligned} & 325,409 \\ & 323,809 \\ & 323,455 \end{aligned}$	Um	nowned "Travelers," of Hartford, Conn.			
		The more business it gets, and the moreover-			
	val				
	Va	in its special fied becomes, the more ready it			
32, 24 323,50					
32,50					
323,733323,463					
.. 323,510 .. 323,857 .. 323,590					
323,867 323,602	Wagon standara,				
		ized			
323,849323,633					
	ter, apparatus for purification of, A. R. Ieeds, $\mathbf{3 2 3 , 4 3 1 , 3 2 3 , 4 3 2}$	Nande VANDU			
$\begin{aligned} & 323,783 \\ & 323,631 \\ & 323,696 \end{aligned}$					
	Whip socket, E.W				
		FRICTION CLUTCH Pulleys and Cut-off Couplings. AS. HUNTER \& SON. North Adams, Mass.			
	Wrench, automatic self-sett Wringer. See Mop wringer.				
32,50 23, 38 18		Standard Thermometers			
	trade				
	Disinfectant and insecticide, U.S. Importing Com-				
cosm					
		\% New Catalogue of Valuable Papers			
${ }_{\substack{33,8 \\ 32,5}}^{3}$					
	Ink				
	Oil for lighting purposes, high-test carbon, Central				
	Seater				
	Thread, gilling, J. Dukehart \& Co Tobacco, plug, Larus \& Bro				
[3938		Woodwrrking Machinery d-			
	A printed copy of the specification and drawing of				

Natural Gas for Manufacturing Purposes.

 The eas is supplied to householders at are usy low passed

 STOCK-BREEDING.-A PRACTICAI
 Colege. With ilistrations. This bot should be in the
handsof sot sock raiser and farmer. For sale by MUN
Co., New York. 12 mo , cloth. Price \$1.50.
 BAROMETER TUBES : DESCRIPTION

 "ACME" DRAWING PAPERS QUEEN \& CO'S PROFILE AND CROSS SECTION PAPERS

 Q $\underset{\substack{\text { Extra Fine } \\ \text { Swiss }}}{\text { Stis }}$ $\rightarrow \infty$

THE COPYING PAD.-HOW TO MAKE and how to uYe ; with an engraving. Practical directions
how to prepare the gelatine pad, and alat one anilinini
by which the copies are made; how to aply the written
 438. Price 10 cents. For sale at this office and by all
newsdealers in all parts of the country.

FREE TRRTAL, NERVITA speedly cares all
 SANITARY EXAMINATION OF DRINK.

WEAK M MRFOOSOMEN out stomach Druging, ganured to and whi suffer from nervous and prysical deblity, exhausted vitality, premature decline, Diseases of the Klney, Proc:

 ARCHITECTURAL PERSPECTIVE

NEWSPAPER FILE

 MUNN \& CO.,

PULLEYS,

HANGERS.
Pat. steel shafting.
PATENT FRICTION OLUTCH, Internal Clamp Couplings. A. \& F. BROWN, 43 PARK PLACE, NEW YORK.

Hi ITTO GAS ENEINE OVER 10.00D IN USE

SPECIAL NOTICE.
Napier's Patenit Gorerror or Speed Regalator.

Hyde Parssrs. NAPDIER BIIOTHERS,
\qquad

GATAMARAN WITH DEEP CENTER

ECONOMIC MOTOR CO.'S
 GAS ENGINES. Witw An
Simple, Sanfe, Economicnapt, Durable.
Four sizes.
Send for Circulars. ECONOMIC MOTOR CO.,
NEW YORK BELTING AND PACKING COMP'Y.

 tive
the a
ofte
Ad
Park Address the Peabory Medical Institute, or Dr. W. H.
Parker, No. Bullnch
be consulted
ence.

FYPEREM, and $\begin{gathered}\text { Sendidorcirmars. } \\ \text { F.E.Jones\&Bro. }\end{gathered}$

COLD ROLLEB SHAFTING.

Improved Westinghonse Antomatic Engines. One Y5 H. P. One 60 H. P. We offer for two-thirds
List Price. These Engines were purchased new
necent.

How to
Beome
The Wood
The

ROOFINC

Scientific American
 B00K LISH
 To Readers of. the Scientific American:

 By arrangements with the principal publishers, we are now enabled to supply tandard books of every description at regular prices.The subjoined List pertains chiefly to Scientific Works; but we can furnish books on any desired subject, on receipt of author's name and title.
All remittances and all books sent will be at the purchaser's risk.
Q ordered will be sent by mail, unless other directions are given. Those who desire to have their packages registered should send the registration fee.
The safest way to remit money is by postal order or bank check to order of MUNN \& Co.
艝 ${ }^{\circ}$ catalogue furnished on applica-
Address MUNN \& CO.,
361 Broadway, New York,
Publishers of the "Scientific American."
Henderson.-GARDENING FOR PLEASURE
By Petter Herderson. For the Amateur and Ali
who keep a Garden, Frowers, Greenhon, cese and Graper Grapr, es, Witinow,
Gardening, etc. 12 mo , cloth. IIlustrated. $\$ 1.50$ Henderson.-GARDENNG FOR PROFIT. By
Peter Herd successful Market Gardener. 12mo, cloth Hinton.-PHYSILLOGY FOR PRACTICAL logy to Health as dealt with in Education. $\$ 2.2 .25$
 Villas, Cottages, and other Edifices. 122 engrav-
ings...............................0. Holley.-COUNTRY SEATS, containing Designs
for Cottages, Villas, Mansions, etc. By H. Ho

Holly. -CARPENTERS' AND JOINERS' HAND-
 Holly.-SAW FILING. The Art of Saw Filing
Withexplicit directions for putting in order ail

 George H. Hosmer. How to get Well, keep Well.
and IVe Long. A Household Book of Practical
Medicine. 8vo A.................. $\$ 3.00$

 ELECTRIITTYY. By E. Hespitalier. A compre-
Lensive work in 2 vols. 429 ilustrations.. 88.00

 the Treatment of Accidents, Diseases, and Cases
of Poisoning which demand Prompt Action
ovo, cloth...................
 Hughes.-WIRE GAUGE. By Thomas Hughes.
The English Gauge, with Tables and Drawings.

Huxley. - AMERICAN ADDRESSES; with a T. H. Huxley, F.R.S. 12 mo , cloth........ $\$ 1.25$
Huxley. - INVERTEBRATED ANMALS: A

 Huxley. -VERTEBRATED ANIMALS: A. A Man-

 Ice Cream and Cakes. - By an American

Standard. Fresh and Originail Recipes. .. $\$ 1.50$ | Induction Coils : How Made and How to Use. |
| :--- |
| 16 mo , boards................................ |
| 0 | Jeans. CREATORS OFTHE AGEOF STEEL.

Covering sketches of Besseme. Sisemens. Whit-
worth, and others. By W.T. Jeans......si.50 Jennings.-HORSE: THE, AND HIS DIS-
 Jennings.- HORSE TRAINING MADE EASY.
 Jevois. - MONEY AND TME MECHANISM OF
EXCHANGE. By W. Stanley Jevons. M.
F.R.S. Johnston.-AGRMCULTMURAL CHEMITMTRY. tions of Chemistry and Geology in Agriculture.
12 mo , cloth............................ Johnston.-CHEMISTRY OF COMMON LIFE.

วfivertisements.

Engravings may head advertisements at the same rate
per line, by measurentint, as the letter press. Adverper line, by measuremint, as the letter press.
tisements must be received at publication oftice
as Thursday morning to uppear in next issue.

TO TNVENTORS
 AND MANUFACTURERS

The Fifty-fourth Annual Exhlbition
 timber inst

H.W:IOHNS'

ASMESTOS

Rooing, Building Felt,
Steam Packings, Boiler Coverings, Fire Proof Paints, Cements, EEt.
Samples and Descriptive Price Lists Free H. W. JOHNS M'F'G CO., 87 MAIDEN LANE, N. Y H. W. JoHNS M'F'G CO., 87 MAIDEN LANE, N. Yo
75 Randolph St., Chicago; 170 N. 4th St., PhiladelphiENGINEER'S POCKET BOOK. BY

STATIONARY STEAM ENGINES ESPECIALLY

RIBB'S FIRE-PLACE HEATERS

HARRIS-CORLISS ENGINE, , ith Harris Pat. Improvements, from 10 to 1,000 He P,

WITHERBY. RUGG \& RICHA RDSON. Manufacturers
of Patent Wood Working Nachinery of every descrip.

PATENTS.
MESSRS. MUNN \& CO., in connection with the publiamine improvements, and to act as Solicitors of Patents for Inventors.
In this line of business they have had forty years' ex-
perience, and now have unequaled facilities for the perience, and now have unequaled facilities for the prep-
aration of Patent Drawings, Specifications, and the prosecution of Applications for Patents in the United States, Canada, and Foreign Countries. Messrs Munn \&
Co. also attend to the preparation of Caveats, Copyrights Co. also attend to the preparation of Caveats, Copyrights
for Books, Labels, Reissues, Assignments, and Reports for Books, Labels, Reissues, Assignments, and Reports
on Infringements of Patents. All business intrusted to them is done with special care and promptness, on very
reasonable terms.
A pamphlet sent free of charge, on application, con-
taining full information about Patents and how to protaining full information about Patents and how to pro
cure them; directions concerning Labels, Copyrights Designs, Patents, Appeals, Reissues, Infringements, As-
signments, Rejected Cases, Hints on the Sale of Paents, etc.
We also send, free of charge, a Synopsis of Foreign Pa-
tent Laws, showing the cost and method tent Laws, showing the cost and method of securi
patents in all the principal countries of the world. MUNN \& CO., Solicitors of Patents, BRANCH OFFICE.-Cord of F and 7th Streets

Patent riveted monarch rubber belting. Bost in the tromid.
Specially adapted for PAPER MILLS, SAW MILLS, and THRESHING MACHINES.
THE GUTTA PERCHA and RUBBER MFG. CO.

MICRO-CHEMISTRY OF POISONS.

Tie ${ }^{2}$ Seibert Cylinder Oil Cup Co.,

IRON REVOLVERS, PEEFECTLY BALANCED, Has Fewer Parts than any other Blower. P. H. \& F. M. Roorty Manuacturers,
 SEND FOR PRICED CATALOGUE.
1PERA GLASSES $\begin{aligned} & \text { Microsecopes, } \\ & \text { Thererecoper }\end{aligned}$

AIR MOISTENER.

 unfformly maintained in any sized room. Used in more
tha 100 actories. In writing for estimates and refer
ences state the purpose.
J. GARLAND
Bidetord, Maine

Aluminum Bronze, Aluminum Silver, Aluminum Brass,

SILICON BRONZE,

FURNISHED IN INGOTS, CASTINGS, RODS, OR WIRE.
Our Malleable Castings can be made of over 100,000 pounds tensile strength, with extraordinary power to with
stand corrosive influences, and unrivaled beauty of color. Send for pamphet. THE COWLES ELECTIIC SMELTING AND ALUMINUM CO., CLEVELAND, O.

Clark's stetel Caseed Rubuer Wheel.
 $=2=2 \mathrm{za}$

VOLNEY W. MASON \& CO., FRICTION PULLEFS CLJTCHES and ELEVATORS. STEAM ENGINE.-THE CADET EN-
 dress MUN
Send for
plication.

Rider's New and Improved COMPRESSION
Hot air Pamping Engine New and Improved Designs.
INTERCHANGEABLE PLAN DELAMATER IRON WORKS, No. 16 COR'TLANADT ST., NEW YORK, N. Y
And 40 Dearborn Street Chlcago, III.

JENKINS BROS', VALVES,
Gate, Giobe, Angle, Check, and Safety.
MANUFACTURED OF GEST STEAM METAL.

NJACKET KETTLES,

95 MILK ST., BOSTON, MASS.

This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787.
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnish. ed by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor.
The Cheapest and Best Lubricator

FIolland \& Thompson,
Leffel Water Wheels,
With Important Improvements.
I1,000 IN SUCCESSFUL OPERATION.
fine wrw pampeler for 1885
James lefrei \& 00. Springfield, ohiz
The Scientific American.
the most popular scientific paper
 This unrivaled periodical, now in its fort y-first year,
continues to maintain its high reputation for excellence, continues to maintain its high reputation for excellence,
and enjoys the largest circulation ever attained by any scientiffc publication.
Every number contains sixteen large pages, beautifully tyle a descriptive record of the most novel, interesting, nd important advances in Science, Arts, and M anufactures. It shows the progress of the World in respect to
New Discoveries and Improvements, embracing Machinery, Mechanical Works, Engineering in all branches. Chemistry, Metallurgy, Eiectricity, Light, Heat, Architecture, Domestic Economy, Agriculture, Natural Hisory, etc. It abounds with fresh and interesting subjects for discussion, thought, or experiment; furnishes hun-
dreds of useful suggestions for business. It promotes ndustry, Progress, Thrift, and Intelligence in every community where it circulates.
The Scientiric American should bave a place in
every Dwelling. Shop, Office, School, or Tibrary. Workevery Dwelling. Shop, Office, School, or Library. Work-
men, Foremen, Engineers. Superintendents, Directors, Presidents, Officials, Merchants, Farmers, Teachers, Lawyers, Physicians, Clergymen, people in, every walk
and profession in life, will derive benefft from a regular and profession in life, will derive beneft
reading of THE ScIENTIFIC AMERICAN
Terms for the United States and Canada $\$ 3.20$ a $\$ 1.60$ six months. Specimen copies free. Remit by Postal Order or Check.

MUNN $\underset{361}{\boldsymbol{E}}$ CO., Publishers,

THE

Scientific American Supplement.
The Scientific Ammerican Supplement is a sepa-
rate and distinct publication from 'Thic Scientific AmERICAN, but is uniform therewith in size, every number
containing sixtein large pages. THE Scuevticic ANcontaining sixteen large pages. The Scientific Am-
erican SUPPLEM a very wide range of contents. It presents the most re-
cent papers by eminent writers in all the principal decent papers by eminent writers in all the principal de-
partments of Science and the Useful Arts, embracing partments of Science and the Useful Arts, embracing
Biology, Geology, Mineralogy, Natural History, Georaphy, Archæology. Astronomy, Chemistry, Electricity, way Engineering Mining Ship Building, Marine Engineering, Photogriphy, Techhnology, Manufacturing Industries, Sanitary Engineering, Agriculture, Horti-
culture, Domestic Economy, Biography, Medicine, etc. A vast amount of fresh and valuable information pertaining to these and allied subjects is given, the whole profusely illustrated with engravings.
The most important Engineering Works, Mechanisms,
and Manufactures at home and abroad are represented and described in the SUPPIIEMENT.
Price for the SUPPLEMENT for the United States and Canada. 85.00 a year, or one copy of the SCIENTIFIC AMERICAN and one copy of the SUPPLembent. both mailed
for one year for $\$ 7.00$. Address and remit by postal order or check,
MUNN $\&$ Co.. 361 Broadway, N. Y., Publishers ScIENTIFIC AMEIICAN.
 the Postal Union. the SCIENTIFIC AMERICAN is now sent
by post direct from New York, with regularity to subby post direct from New York, with requariarity, to sub-
scribers in Great Britain. India, Australia, and all other British colonies; to France, Austria, Belgium, Germany, Russia, and all other European States; Japan. Brazil, Mexico, and\&ll States of Central and South America.
Terms, when sent to foreign countries, Canada excepted
 one year. This includes pcstage, which we pay. Remit MUNN \& CO., 361 Broadway, New York.

PRINTING INKS:

ENEU JOHNSON \& CO. 'S NK. Tenth and Lom
bard Sts. Phila., and 47 Rose St., opp. Duane St., N. Y.

