
a WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCLENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.
Vol. Lilit.-No. 3.]
NEW YORK, JULY 18, 1885.

THE LATEST BRITISH WAR SHIPS.

The Colling wood, of which we obtain the accompanying illustration from the Illustrated London News, is one of the newest British war ships, in which the idea is rather to make a floating fort than one of the old style ironclads. She has a displacement of 9,150 tons and engines of 7,000 horse power, is built of steel tons and engines of 7,000 horse power, is built of steel
and plated with armor ten inches thick, and carries ten guns. She is the first of a series of regular barbette ships being built for the British navy, and is a representative of the Admiral type, named after distinguished British naval commanders, several others of the same class now being under construction in the government dockyards and by the Thames Iron Shipbuilding Company. Not only, however, is the Collingwood a new vessel of a distinctly novel type, but her armament has a new gun, with a new system of breech mechanism, actuated by a new application of hydraulics, and the gun is mounted and protected on an entirely new plan.
From the great height of the parapets above the water line, the barbette arrangement enables a powerful plunging fire to be directed against an enemy, and makes it possible for the guns to be worked under conditions of sea which would silence those of the Inflexible. The new system is advocated by its patrons also on the ground that it enables the gunner to see the enemy better, and to follow his movements more satisfactorily, so as to be able to strike him at the first
favorable moment. But some critics of the new system have remarked that with it the object can be followed only by means of side-sights, and is completely hidden by the gun in the important moment of its being laid. An experimental trial of the Collingwood's armament and mode of working her guns took place on March 5, in presence of the Naval Lords of the Admiralty, the principal dockyard officials, and the Ordnance Committee. Two 43 ton guns were fitted on the barbettes erected at each end of the superstructure battery, along the middle line of the ship, their parapets being at an elevation of 19 feet 3 inches and 20 feet 3 inches respectively above the water. The barbettes are eggshaped, and are formed of steel-faced armor, 14 inches and 12 inche thick, with a steep inward slope to secure the glancing of the shot when struck.
Communication with the magazine is obtained by means of an armored tube, up which the cartridges and shot are brought. The guns are mounted on a turn table, similar to those used on railroads, rotating on conical rollers. The diameter of the table is 24 feet, so that the guns cannot be brought within the protection of the barbette; when the breech is depressed for loading, the muzzles are dangerously elevated; and when the guns are run out for firing, they are protruded beyond the side. The top of the barbette is protected as far as possible by 3 inch plating flush with the parapet; outside is a circular gallery which serves the double purpose of forming a pathway round the barbette and
a breakwater against the shipping of seas. The experimental firing of the guns, 24 rounds in all, single and double firing, was so far satisfactory as it proved that the barbettes and adjacent parts of the ship could bear the strain well.

How to Separate Lenses.

The two lenses of an achromatic object glass are cemented together with Canada balsam, the volatile part of which passes away, after a time, and it frequently happens that air or moisture, taking the place of this, gives an iridescent appearance to the glass and interferes with correct delineation. To remedy this fault it becomes necessary to separate and clean the two lenses and readjust them, cementing with Canada balsam, as before. Hitherto it has been custonary, in order to effect the separation, to apply heat, and however carefully this may be done, it sometimes hippens that a lens is thereby cracked. All risk of fracture may be avoided by placing the achromatic combination in a small quantity of benzole or naphtha (from coal tar) within a covered vessel, either of which hydrocarbons will, in a day or two, dissolve away or soften the hardened cement without heat. The same liquid will remove the last traces of resinous matter.
The oldest architect in the United States, Mr. William Tinsley, of Cincinnati, died recently in that city, at the age of eighty-one.

צinutific gmerican.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors.
PUBLISHED WEEKLY AT
No. 361 BROADWAY, NEW YORK.
o. D. MUNN.
A. E. BEACH.

TERIFS FOR THE SCIENTIFIC AMERICAN.

 One copy, one year, postage included..Clubs.-One extra copy of The Scientific Amprican will be supplied gratis ior every club of five subscribers at
same proportionate rate. Postage prepaid.

Remit by postal order. Address
MUNN \& CO., 361 Broadway, corner of Franklin Street, New York.
The Scientific American Supplement
is a distinct paper from the Soientific American. THE SUPPLEmENT is issued weekly. Every number contains 16 octavo pages. uniform in size with Scientific amprican. Terms of subscription for Suppiement,
$\$ 5.00$ a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all newsdealers throughout the country
Combined Rates.-The Scientific American and Supplement
will be sent for one year, postage free, on receipt of seven dollars. Both will be sent for one year, postage free, on receipt of
pa;ers to one address or different addresses as desired. The safest way to remit is by draft, postal order, or registered letter.

Scientific American Export Edition.

The Scientific American Export Edition is a large and splendid periodical, issued once a month. Each number contains about one hundred
large quarto pages, profusely illustrated, embracing: (1.) Most of the plates and pages of the four preceding weekly issues of the Scientific AmeriCAN with its splendid engravings and valuable information; (2.) Commercial, trade, and manufacturing announcements of leading houses.
Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the Terms, for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the
wor.d. Single copies, 50 cents. Manufacturers and others who desire to secure foreign trade may have large and handsomely displayed announcements published in this edition at a very moderate cost.
The SCIENTIFIC AMERICAN Export Edition has a large guaranteed circulation in all commercial places throughout the world.
$\& \sim 0 ., 361$ Broadway, corner of Franklin Street, New York.

NEW YORK, SATURDAY, JULY 18, 1885.

Contents.	
(Illustrated articles are marked with an asterisk.)	
ooning, experimental..... ... 33	
Aners, great, of the Denain and ${ }^{\text {andin }}$	
ge, iron, decay of............... 35	
ness and personal........... ${ }^{41}$	
ned goods, some common mis- arkes about............ 38	
le grip, imp	
, compr	Iron, cast, decomposition of by
Chimney, 90 foot, moving.......... 3	Lenses, how to separate 31
	Lubricator, loose pulley**........ 36 New books and publications....: 42
dje rocking	
	Racork toweio....................... 36
Diet, hot weather................. 40	
, treight ca	Revolver, fring, smaliest*....ili. ${ }^{36}$Ship Collingwood of the British
	Ships, war, ${ }^{\text {Nateost }}$ British**....... ${ }^{31}$
	Statue of Liberty and electricity.: 37
Electricity	Statues. remarkable, on a few..... 40
	Teeth, salt as a destrover of il.. ${ }^{\text {a }}$
Exhibition, "Noveities," of the	
	Telephone decision, another...... ${ }^{35}$
	Thurston. Prof., goes to Cornell.. 33
	Time, railway, fast.

TABLE OF CONTENTS OF
the scilentific american supplement.

No. 498,

For the Week Ending July 18, 1885

Price 10 cents. For sale by all newsdealers.
I. Engineering and mechanics.-English and French Armor Clad Ships.
A Proposed War Balloon.- 3 figures.................................... A merican Society of Civil Engineers.. Coppin's Triple Steamships.- 5 fgures...
American Dredgers and Excavators.-American Dredgers and Excavators.--Ful
Improved Calculating Machine.- 2 figures
technol Calculating Machine. -2 figures........................... Scale.-By W. Anderson.
cale--By W. Anderson.
The Preparation of Hyp
veloper for Dry Plates.
ELECTRICITY, HEAT, ETC.-A
dablochkofl's Auto-A ccumulator... Gime's Accumulator.-1 figure..
The Forms of Vibrating Bodies
On the Conversion of Heat int
On the Conversion of Heat into
teresting article by WM. ANDERSON
V. ARCHITECTURE.-Slate Roof Cover good slate.-Sizes of slate.-Laying slate............
New Mode of Building sustaining Walls. - flgur
The Hooping of the Dome of St. Peter's, Rome.

s, Rome.

GEOLOG Y.-The American Oil and Gas Fields.-Paper read b fore the Society of Arts by Prof. J. DewAR. - Manner of obtaining it - Tracts where it is found.-Relations of gas to oil.-Analyses
if zus. - Russian compared with American oil....................... fras.-Russian compared with Amer on
VI. MEDICINE, ETC.-The Treatment of Cholera.
Treatment of Neuralgia by Neuber's Method..
VII. MISChLILA NEOUS.-Oranges in Palestine..

ANOTHER TELEPHONE DECISION

The latest phase of the telephone litigation was de veleped at Pittsburg, Pa., July. 8, in the U. S. Court before Judge McKinnon, in the suit of the Bell Tele phone Co. against the Western Telephone Co., for in fringement and injunction. The court permitted the cousel for the Bell Co. to occupy almost an entire day with their argument, but refused to hear any reply on behalf of the defense, although they were prepared to prove that their invention was substantially the same as that used by Reis, many years prior to Bell's alleged invention. At first the court was inclined to hear of this matter, as the issue hinges entirely upon the question whether or not the Reis transmitter will transmit speech regardless of the kind of receiver used; but fin ally it refused to hear evidence, allowing that to go over to the final hearing. The court, however, held that
the questions at issue had been decided recently by Judges Gray and Wallace, and that it would not, in the matter of a preliminary injunction, venture to decide contrary to the opinions of those eminent jurists.
The practical effect of this decision is that the use of the Reis telephone is an infringement of the Bell patent -a position which we have expected the lower courts would sooner or later take, since in no other way can the gigantic Bell monopoly be upheld. The moment justice is done, and the use of Reis' invention allowed, the patent of Bell will be reduced to its proper rankthat of a subordinate improvement. None of the Bell telephone litigations have reached decision by the Supreme Court. If the latter tribunal deals with the Bell patent in the same manner that it has with other wide reaching monopolies, the claims of the Bell people will, in due time, be greatly modified.

HOUSE KNOWLEDGE FOR BOYS.

The Governor of Massachusetts, in an address before the Worcester Technical School, June 25, said some words that are worthy of noting. He said: "I thank my mother that she taught me both to sew and to knit. Although my domestic life has always been felicitous, I have, at times, found this knowledge very convenient. A man who knows how to do these things, at all times honorable and sometimes absolutely necessary to preserve one's integrity, is ten times more patient when calamity befalls than one who has no these accomplishments."
A commendation of "girls' work" from such an authority emboldens the writer to add a word in favor of teaching boys how to do work that may be a relief to a nervous, sick, worried, and overworked mother or wife, and be of important and instant use in emergencies. A hungry man who cannot prepare his food, a dirty man who cạnot clean his clothes, a dilapidated man who is compelled to use a shingle nai for a sewed-on button, is a helpless and pitiable object. There are occasions in almost every man's life when to know how to cook, to sew, to "keep the house," to wash, starch, and iron, would be valuable knowledge. Such knowledge is no more unmasculine and effemin ate than that of the professional baker.
"During the great civil war, the forethought of my mother in teaching me the mysteries of household work was a 'sweet boon,' as the late Artemus Ward would say. The scant products of foraging when on the march could be turned to appetizing food by means of the knowledge acquired in boyhood, and a handy use of needle and thread was a valuable accomplishment."
Circumstances of peculiar privation compelled the writer, as head of a helpless family, to undertake the entire work. The instruction of boyhood enabled him to cook, wash, starch, iron, wait on the sick, and do the necessary menial labor of the house in a measurably cleanly and quiet manner. This knowledge is in no way derogatory to the assumptive superiority of
the male portion of humanity; a boy who knows how the male portion of humanity; a boy who knows how
to sweep, to "tidy up," to make a bed, to wash dishes, to set a table, to cook, to sew, to knit, to mend, to wait on the sick, to do chamber work, is none the less a boy; and he may be a more considerate husband, and will certainly be a more independent bachelor than without this practical knowledge. Let the boys be taught housework; it is better than playing " seven up" in a saloon.

THE NORMAL CONCERT PITCH

At a large meeting of musicians held in London on June 21, a resolution was passed in favor of the adoption of a normal pitch of 518 double vibrations for the treble.
For a number of years it was noticed that the concert pitch not only was becoming higher, but that it was far from uniform in the different European capitals. This was naturally a source of great inconven ience and annoyance to both singers and composers, and a movement was started in France fully twentyfive years ago to secure a tuning fork of uniform pitch, which should be a standard for the entire musica world. The standard tuning fork deposited at that time in the Conservatory of Music at Paris gave 437.5 double vibrations, corresponding to A or $l a$ in the treble double vibrations, corresponding to A or $l a$ in the treble
stave. Consequently C or $d o$ of the treble would result
from 522 double vibrations. In England, the Society of Arts recommended that this note should be reprsented by 528 double vibrations, a number having the advantage of being divisible down to 33 , which is a quality of some importance, since each descending octave has but half the vibrations of itsuperior stave.
The new standard of 518 double vibrations for the treble C or $d o$, if the cablegram has reported it correctly, permits but one division, giving 259 double vibrations for the middle C of the scale. The succeeding ower octaves must therefore all be represented by ractional vibrations.

SINGLE LIPPED DRILLS.

There is known to some machinists a peculiar drill known as the "cannon" drill, the "half-round "drill, and the "half lip"' drill, according to the prevailing nomenclature of locality. But all these drills depend for their centering and line on some guide outside themselves; they must be guided' by center and siide like a boring tool that works in an already formed and possibly irregular hole.
Another drill is really a cutting tool composed of a guiding center, which is the drill proper, and two wings f rotating cutting edges. This is known as the "pin" drill, the " teat" drill, and the "flange" drill; in fact, it is an untwisted auger adapted to metals instead of wood. If pressure alone induced the auger to penetrate the wood, without the aid of the threaded screw point, and the wood chips did not clog, the pin drill would be a good wood auger. The auger, by means of its threaded point, is pulled into the wood, but the drill must be forced to its work. With this difference the auger and the drill are very similar.
The writer has in possession and use an "expansible bit" which will bore a hole from five-eighths of an nch diameter-its normal size-to one of two inches diameter-its extreme limit. The expansion is made by means of a sliding blade that may be secured at any point desired. This is a single blade (not two on either side the center), and it is surprising how fast this single utter works, cutting a clean hole, the bit itself being merely a central shaft around which the one wing of a cutter swings. The tool is suggestive, and it was thought that if a self-progressing tool like an auger could keep its center with one blade, why could not a forced tool like a drill also keep its place with one cutting blade-in short, why is it necessary to make drills with double lips? It is quite evident that where two lips are to be ground exactly alike to form a center, here inust be very exact work to preserve the changing center to conform with the double circumferenceor radii. If the center was fixed, a single cutting wing oould be easily adapted to size.
A favorable chance gave opportunity to test the possibility of a single lipped drill. In passing through a shop it was noticed that a workman broke one of the blades of a "lip" drill or "teat" drill. He was about to have it reforged, when he was allowed to grind away the fragments remaining from the broken portion, and use the drill with a single lip or wing. It worked admirably; cut as rapidly as when there were two lips, and as a proof of its superiority over the two lipped drill the terminal burr came out clean, instead of havng an inner circumferential ridge. It is noticed that the burr or the last clean cut of the "teat" drill is a disk, the last of the drill's work. This disk is rarely a smooth one, but if examined it will. be found to have two circumferences, one inside the other, that show that the two cutting edges do not act uniformly; in short, that it is difficult to grind a drill to center. Perhaps a single lip drill would be an improvement on our double lip drills in many cases. It certainly would be when there could be used a projecting and guiding center such as is necessary to "teat" drills.

The ${ }^{6}$ Novelties" $\begin{gathered}\text { Exhibition of the Frankin } \\ \text { Institute. }\end{gathered}$
The pronounced success achieved by the Electrical Exhibition held under the auspices of the Franklin Institute, Philadelphia, last year has probably been a principal inducement moving that society to hold this year what is styled a" novelties" exhibition, in the well situated and capacious buildings and grounds that were utilized for last year's display. The exhibition will be open from September 15 to October 31, and exhibitors will be charged $\$ 2$ for ten square feet of space. with 10 cents more for each additional square foot. Applications must be made before September 13, and those already received give promise that the exhibition will be one of unusual interest. All applications for space should be made on blanks that give full particulars, and will be furnished on addressing the Committee on Exhibitions, Franklin Institute, Philadelphia.

Nickel Crucibles.

Crucibles of nickel have lately been adopted.in some chemical laboratories, in the place of the silver ones generally used for melting caustic alkalies. They have the advantage, not only of being cheaper, but of being capable of resisting a higher temperature than the latter, and the result is said to be favorable.

Electrical Studies at Cornell University.
The course in electrical engineering in Cornell University has now been established for two years, and is already well patronized. It requires four years of study for its completion, the object, writes Prof. W. A. Anthony in the Electrical World, being to turn out, not electricians or electrical engineers merely, but educated men. To enter it students must have a knowledge of the common English branches and a part of ledge of the common English branches and a part of the mathematics through calculus, study the French or the German language, give some time to the study of English, devote several terms to the theory and practice of machine drawing, pursue for final terms the study of mechanics as applied to engineering, besides the work in general physics and electricity, which occupies a considerable portion of the time for three years.
As to equipment, the physical department of the university, where the study of electricity is pursued, is supplied with very complete arrangements for the experimental study of electrical science and its applica tions. The best instruments for electrical measurements are at hand, and students have practice in measuring resistances of conductors, of batteries, and of instruments. They learn to test the accuracy of the instruments they employ. They measure electromotive forces by the quadrant and absolute electrometer as well as by various other means. There are four dynamo machines under charge of the department, besides several lecture room models and electromotors. Students make complete measurements and tests of these, and make constant use of them for various experiments. For instance, one student has been experimenting since last winter upon the effect of the various kinds of covering upon the rise of temperature of wires heated by electric currents; another has been comparing the different photometric methods as applied to the measurement of the illuminating power of arc lamps; another has been comparing the deposits of copper in voltameters having different sizes of plates, in neutral and acid solutions, in solutions of different degrees of concentration. Currents of various strengths from 1 to 18 amperes were employed. Silver voltameters were also compared with copper.
There is jast now being completed a "magnetic observatory" for furnishing facilities for magnetic experiments and electrical experiments that depend upon the uniformity of the magnetic field around the instrument.
Iron has been rigidly excluded from the construction of the building. Here will be mounted the instruments for determining the elements of the earth's magnetic field, but the principal instrument is an enormous tangent galvanometer on the Helmholtz plan, capable of measuring currents from one one-hundredth ampere to 200 amperes. 'The conductors for heavy currents are three-quarter inch copper rods. The deflections of the needle are read on a graduated circle 50 inches in diameter, and a suspended coil 1 meter in diameter, of 100 turns of wire, furnishes the means of determining the horizontal intensity of the earth's field at the exact the horizontal intensity of the earth's field at the exact
place of the instrument at any moment, by observaplace of the instrument at any in
tions requiring but a few minutes.
This observatory is placed so far from any of the other buildings as to be free from any magnetic disturbance from moving masses of iron. It is connected with the laboratory by several wires, among which is a pair of 0000 copper, for conveying the heavy currents. In connection with this equipment, and as accessory to the large tangent galvanometer, is a set of German silver resistances, consisting of 36.000 feet of No. 16 wire in sixty sections of 600 feet each, connected to switches that permit of combinations in series, or multiple are, or "multiple series," in all desirable ways. They give a variety of resistances from three-fifths ohm to 1,800 ohms.
The large tangent galvanometer has been constructed at the university, and it is proposed to construct next year a standard potential instrument to permit of the accurate measurement of all potentials.
All these instruments will be used by students as they have occasion. During this year several small dynamos and motors have been tested here, the students taking part in the work, and it is proposed in the future to continue this work of testing upon larger machines as opportunity offers.

Professor Thurston Goes to Cornell.

At their recent meeting, the trustees of Cornell University decide to tender to Professor Thurston, of the Stevens Institute of Technology, the position of presiding officer and "director" of Sibley College; which, as our readers are well aware, is the School of Mechanical Engineering of the University. The liberality of the Hon. Hiram Sibley, of Rochester, has reof the Hon. Hiram Sibley, of Rochester, has re-
cently provided this college with larger buildings, extended workshops, and increased facilities for the carrying out of the plans of the founder of the University and of the trustees. The collections have been enlarged, and it is proposed to considerably extend the
scope of the school. The course will be broadened, the raculty enlarged, and the shop work and mechanical
laboratory work, as well as courses of instruction involving research, greatly extended. The trustees pro-
pose to make this department as prominent and as pose to make this department as prominent and as
complete, in every respect, as its position in a university avowedly intended to be an institution of practical as well as theoretical, scientific, and literary character should justify them in making it. The new director, and the faculty who aid him, enter upon their work with the strongest possible pledges of hearty support, not only from the trustees, but from all real
friends of the university who have been consulted. It is not known who is to succeed Professor Thurston at Hoboken, but it is anticipated that it will be a distinguished member of the engineering profession, as well known by his long professional services as by his ability and by his success as a writer on mechanical and engineering topics.

Refrigerators.

When the hot season begins the annual inquiry comes, "What is the best refrigerator?" The require ments are easy to state. It must be so constructed as to perfectly preserve any article of food that is put in it, in such a manner that it not ouly will not decompose, but that the most sensitive substance that may be put in cannot be contaminated By the odor, be it good or bad, of any other article, and all this without wasting the ice
It may be said, then, there must be a circulation of pure, cold, dry air.
The outer air must be guarded against, both in the provision chambers and ice chamber, and the wast pipe conveying the drippings from the ice should be so constructed that no foul air is admitted from the sewer or waste pipe with which it is connected.
Refrigerators requiring chopped ice, thereby obtaining a greater degree of cold from the greater ice surface exposed, are wasteful.
The degree of cold required is not as low as is gener ally imagined, and if kept too cold some sensitive sub stances may be injured. A temperature averaging 40°
Fah. is, according to the New York Analyst, the Fah. is, according to the New York Analyst, the
And ventilation, according to the same authority, is not required. The action of the warmer air passing around the ice and displacing the colder air creates, by the current thus established, sufficient ventilation A good refrigerator must be so constructed as not to
contain any material easily corroded,stained, or absorbent, and that every portion of it can be easily cleaned; for cleantinessise trmportants it not more so, to the preservation as temperature.
It should be so constructed that the gases from one portion of the provision chamber cannot pass into any other part excepting the ice chamber, else the food may spoil, even though the temperature is maintained The temperature must be maintained at an even

Experimental Ballooning.

Important experiments in aerial navigation are now being made by Mr. A. F. Gower, well known in connection with the Gower-Bell telephone. The operations being carried on are, it is understood, within
the cognizance of the Government, and are more parthe cognizance of the Government, and are more par-
ticularly directed toward the adaptation of balloons to war purposes. Several ascents have already been made, and in carrying out his arrangements Mr. Gower appears to have recognized the advantages offered by the position of the town of Hythe, which he has made the center of his operations. On the 31st of May, the wind being favorable, one of the automatic pilot bal loons invented by Mr. Gower, with appliances for giv ing out its own gas and ballast, one compensating for the loss of the other, was filled with 2,300 feet of gas, and ascended at about 11 o'clock. In the car a written statement was, of course, placed, explaining the own ership of the machine and its object, with the result
that it was next heard of at Dieppe, having made a rapid passage of about seventy-two miles in a straight direction and descended at 2:30 in the afternoon. On June 1, another pilot balloon, with a capacity of 4,300 feet, was started, and immediately followed by Mr. Gower in his own balloon (containing 23,000 feet of watch the action of the pilot; but the smaller machine made such rapid progress that it got out of his chine made such rapid progress that it got out of his
observation, and came down in the vicinity of Paris. Meanwhile Mr. Gower, who ascended about noon, took the French coast at Boulogne at 2:15, and then taking a northerly curve traveled overland to Calais, where he made a smooth descent at 4 P.M. A still more important undertaking, was, however, entered upon on June 3, when Mr. Gower, Captain Lane, and Mr. Dale, the aeronaut, ascended in a balloon of 40,000 feet ca pacity. A good start was made, and the aerial voyagers sailed away in a northerly direction. After a
journey of rather more than an hour, they were compelled to descend, owing to the wind taking a slight turn toward the North Sea, and with much difficulty landed on the Isle of Sheppey, having traveled twenty three miles.-Vature.

Salt as a Destroyer or the Teeth.

At a recent meeting of the New York Odontological Society, Dr. E. Parmly Brown said:
I will venture the assertion that the excessive use cf common salt is one of the main factors in the destruction of human teeth to-day. I am now engaged in collecting some statistics on this point, from which I hope in time to demonstrate, what seems to me to be the fact, that common salt excessively used is a great solvent of the human teeth. If it will injure the human teeth through the chemistry of our systems in some way or other that I will not try to explain to-night, why might it not also have the effect of preventing a good development of the teeth when taken into the system in excess? I have lately procured some statistics from the Sandwich Islands, from a gentleman who has been there, covering a period of over forty years, that are very suggestive and interesting. Within that period the teeth of the Sandwich Islanders have decayed rapidly, and since they have begun to decay it has been noticed that the natives are in the habit of biting off great chunks of salt and eating it with their food. According to all accounts, the teeth of the Sandwich Islanders were formerly the most free from decay of any people on the face of the earth, if I remember rightly. You will find that people who eat a great deal of salt and a great deal of sugar are often entirely toothless. I know several instances of candy storekeepers where three generations are entirely toothiess. People who eat an excessive amount of salt are tempted to eat large quantities of candy, pickles, and vinegar. There seems to be a craving for those substances after the excessive use of salt.

Compulsory Drawing.

As amatter of fact, in the practical crafts by which the bulk of the people gain a living, a knowledge of simple drawing is of more substantial importance than the ability to write; and as a lad who can write better than his school fellows stands a better chance than they of getting a berth in a counting house, so another who can draw even a little will make a better carpenter than those who cannot draw at all. Rather late in the day we have found this out. The discovery was the mainspring of the system of national art training; the knowledge of it is the impelling force of the great movement for technical instruction which is now in full swing. So long as the industrial prosperity of England depended merely upon the spread of railways, the multiplication of steamships, the stream of splendid mechanical inventions, and the increased quantity and cheapness of production which resulted therefrom, the influence of elementary art teaching upon manufacturers and upon national taste could be ignored, and to the great loss of this country it was ignored. But that state of things has almost wholly passed away. Our Continental competitors nowadays buy our machinery, or themselves make as good; and the pinch of competition is felt at this time not merely in the cost but also in the taste of production. The great nations of Europe had a sharper eye to the future than we. For thirty years have they devoted themselves to this question of elementary art teaching; and in nearly all the elementary schools of the Continent drawing is not merely taught, but is, and for long has been, compulsory. And the results are so striking, so beneficial throughout the range of industry and manufacture, that our own Royal Commission appointed to inquire into the facts some years ago, when the truth could no longer be gainsaid, has just recommended that drawing should be "incorporated with writing as a single elementary subject," compulsory in all primary schools, and that it should ke continued throughout the standards.-Magazine of Art.

A Shoal water Alarm.

A curious invention especially designed for navigating the Nile, but which is applicable to other rivers, has been brought out by Messrs. Yarrow, of London. The object of the invention is to notify the pilot of the existence of sand banks or rocks lying directly in his pathway. The invention consists of two poles projecting about fifty feet ahead from the post and starboard ides, at the ends of which are suspended two vertical ron rods. The bottom extremities of these come about one foot below the level of the boat itself. Attached to each of these two vertical iron rods is a wire rope which passes inboard, and is connected with the whistle on the boiler; and the gear is so arranged that immediately this indicator touches a rock or sand bank, it instantly causes the steam whistle to blow. This plan in the first instance draws the pilot's attention to the fact, and also points out to him on which side of the steamer the sand bank or rock exists, so that it gives him warning in which direction to steer.

Henry H. Gorringe.

Lieutenant-Commander Gorringe, of the U. S. Nav; who brought the Egyptian obelisk to New York in 1880, died July 6, as the result of spinal injuries received ky jumping from a moving train some time ago.

AUTOMATIC ROCKING CRADLE

The supporting frame for the rock shaft, from which the cradle is suspended and rocked, consists of a broad base plate with uprights a suitable distance apart, for hanging the cradle between them, and an upper cross plate for staying the uprights at the top. At one end of the frame is a case inclosing a coiled driving spring and a suitable multiplying and transmitting train of gear wheels, and pinions connecting the spring with a crank shaft located in the upper part of the case. This crank carries a rod working in a sleeve on the crank of the rock shaft, so arranged that the rotation of the crank shaft will cause a rocking motion of the main

shaft. The speed can be regulated by a friction brake in connection with a disk fitted on the crank shaft; the brake is operated by an adjusting screw extending down through the top of the case. Between the brake shoe and an upper bar are placed coiled springs, the elasticity of which prevents the brake from stopping the cradle too abruptly. To prevent a jerky motion of the cradle when the crank passes the center, the cradle arms are hung loosely on the rock shaft, while the driving arms are rigidly secured to the shaft by set screws, and act against springs fitted on a rod extending from one to the other of the arms of each end of the cradle; the springs form buffers which relieve the cradle of any shocks that might otherwise be imparted to it by the quick action of the crank. Access to the driving mechanism is afforded by a door in the top of the case.
This invention has been patented by Mr. Edwadd Anderson, of 567 South Morgan St., Chicago, Ill.

DEVICE FOR FEEDING AIR TO FURNACES.

The object of the invention herewith illustrated is to provide attachments for furnaces, by the use of which the draught can be regulated and the gases formed from the coal can be wholly consumed. Fig. 1 is a sectional plan view, Fig. 2 is a perspective view of part of the furnace and boiler, and Fig. 3 is a section of a r-head, showing the pipes connected with it.
With any part of the steam space of the boiler are connected the ends of two pipes, which extend forward to the front of the furnace and then down to the level of the upper part of the fire chamber, at which points they

WRIGHT'S DEVICE FOR FEEDING AIR TO FURNACES.
enter the upper arms of the T-heads, and are bent at right angles to discharge steam into the horizontal arms of the heads.
The connection b otween the upper arms of the heads and the steam pipes is made steam tight, and the lower arms of the heads are provided with valves, so that the entrance of air can be readily regulated. The steam
pipes are furnished with valves a little above thelheads,
by which the admission of steam can be regulated. The horizontal pipes of the heads are embedded in the walls of the furnace and extend to the rear end of the furnace, pass through the end wall and through the side walls, and terminate in a chamber formed in the rear side of the bridge wall. The air chamber is covered with slabs of fire brick, finely perforated, so that the contents of the chamber will be discharged in fine streams into the products of combustion as they pass over the bridge wall.
By this plan steam or air, or steam and air, in any desired proportions can be introduced into the furnace in any quantity to regulate the draught and consume the gaseous products of combustion, so that the fuel will be entirely consumed and the greatest possible amount of heat created. The air and steam entering the furnace, being superheated, will have no tendency to lower the temperature, and all the heat produced will be utilized.
This invention has been patented by Mr. William Wright, of 262 W .22 d St., New York city.

New Stain from the Huckleberry.

by albert e. jenkins, ann arbor, mich.
In volume xxiii. of the Archiv fur Mikroskopische Anatomie, Dr. Lardowsky describes a new stain, which he highly recommends for the karyokinetic tigures and the cellulose walls of plants.
The fresh ripe fruit of the huckleberry, Vaccinium myrtillus, is washed in water, and the juice expressed and mixed with twice its volume of distilled water, to which a trace of alcohol has been added. It is then boiled and filtered while hot, the resulting fluid being of a clear deep red color and faintly acid reaction. This, if kept in a cool place, will remain unchanged for a considerable time. Probably a crystal of thymol or of chloral hydrate would prolong the period. At the time of using, it is diluted with two or three volumes of distilled water, as it is quite thick when cold. This solution stains red all objects hardened in chromic acid or chromium solutions. A beautiful violet stain, which is also more permanent than the red, may be produced as follows: The section is stained for one or two minutes as usual in the red fluid, then washed in distilled water, and transferred to a one per cent aqueous solution of lead acetate. Here it is washed until the red has turned to a lilac, when the specimen may be at once mounted in glycerine, o transferred through alcohol or clove oil to balsam.

Moving a Ninety Foot Chimney.

Ore of the most difficult transfers of heavy structures yet attempted was successfully completed Salem, Mass., a few weeks ago, where a brick factory chimney, 90 feet high and only $61 / 2$ feet in diameter at the kase, was taken up and moved, with the aid of six men ald two horses, 100 feet, and safely deposited upon a new foundation. The chimney was nearly cylindrical, the upper diameter being 5 feet; and it was estimated that a sway of 3 inches from the vertical would bring it to the ground, so that great precautions were taken to prevent lateral movement in transferring it to the platform on which it was to be transported. A cage was first built around the chimney, consisting of horizontal timbers supporting shores, which extended 23 feet up the sides of the shaft, and were re-enforced by a second set of shorter ones beneath. After these were in place, and well secured, holes were cut through the brickwork and needles inserted, under which thirty-four jackscrews were placed, and the shoring and shaft raised together high enough to allow a rough platform to be constructed under them, and rollers to be set in place. The platform, which was of strong plank, extended to the new position of the chimney, and by leveling it carefully, and employing a large number of rollers, the load, weighing 130 tons, was easily moved into place.

IMPROVED FUNNEL

The funnel herewith shown is provided with a float for automatically closing a valve as the liquid rises, so that there is no danger of overflowing the vessel. A valve, A, arranged to close the funnel, is pivoted in small uprights of an annular flange secured in the funnel. The valve is formed with a tail piece, and the funnel is provided with a bent rod which may be pressed upon the tail piece to open the valve; the rod is raised by a coiled spring. For holding the valve open a setting and tripping device is employed, consisting of a pivoted ring, B , on one side of which is a notched tongue, and a metal tongue secured to the under surface of the valve. The ring is so pivoted that the side opposite the tongue overbalances the side to which the tongue is secured, and causes it normally to be elevated when the funnel is right side up. The side of the ring opposite the tongue is provided with a plate against which the float rod, C, strikes to trip the valve. The float is inclosed in a tube attached to the funnel. Around the tube of the funnel is a short but large tube having a series of holes formed in it; within this is placed an adjustable tube having a flange at its lower end to support the funnel upon the vessel to be filled. The tube of the funnel can thus be raised more or less out of the vessel, ace rding to the height at which it
is desired to have the liquid rise in the vessel before the float will trip the valve.
By pressing downward upon the rod the valve will be raised until its tongue enters the notch of the tongue of the ring, which will hold the valve open so that it will not interfere with the flow of liquid. As the liquid rises it will lift the float, causing the ring to turn on its pivots and lower the notched tongue, to release the metal tongue and permit the valve to drop and close the funnel. By this means there is no danger of over-

STADLER'S IMPROVED FUNNEL.

flowing the vessel, which may be filled to any desired height. This invention has been patented by $\mathbf{M r}$. Peter C. Stadler, of 439 W. 46th St., New York city.

IMPROVED CABLE GRIP.

The engraving shows a device for gripping the cable f cable roads, patented by Mr. David B. Anders, of 2116 Master Street, Philadelphia, Pa A flat bar, projecting downward from the car floor through the slot in the tunnel in which the cable runs, is connected by a chain with a groove-edged quadrant on a shaft journaled on the car floor and having an upwardly projecting lever. The upper end of an arm extending upward from the flat bar is provided with a nut through which passes a screw having a hand wheel on its upper end, and having its lower end swiveled on the upper end of a rod passing downward in front of the bar. On the lower end of the bar is a cross piece having a slot, into which pass two pins projecting from the upper end parts of two gripping levers pivoted on the bottom edge of the flat bar. Below the pivot these levers have gripping jaws from which lugs extend downward and away from each other. Guide lugs also extend downward and outward from the lower end of the bar, in which a roller is journaled to prevent the lower edge of the bar from sliding off the cable, thus greatly reducing the friction.
To grip the cable the screw is turned to raise the rod,

ANDERS' IMPROVED CABLE GRIP.
whereby the jaws are pressed firmly against the cable; to release the cable the rod is moved downward. The ugs on the levers guide the cable in between the jaws. When the car arrives at a cable crossing, the cable is released and the lever swung down, thereby raising the flat bar by means of the chain; the lugs on the bar guide the cable to place. This grip operates quickly, and holds the cable firmly.

THE LIQUEFACTION OF OXYGEN.

Upon boiling in the open air, liquid ethylene produces so low a temperature that compressed oxygen reduced to that degree of cold exhibits, when its pressure is diminished, a tumultuous ebullition that lasts for an appreciable length of time. Upon hastening the evapo ration of the ethylene by means of an air pump, as was done by Faraday for protoxide of nitrogen and earbonic acid, its temperature is lowered sufficiently to bring oxygen to a liquid state.
I have endeavored to overcome the inconveniences and complications that result from the necessity of operating in a vacuum, and, with this object in view, have already suggested the use of liquid formene, which permits of effecting the liquefaction of oxygen and nitrogen in a trice.
I have, nevertheless, thought that, despite such advantages, ethylene, which is now so easy to prepare and manipulate, should be preferred to formene, and I have succeeded in obtaining, by means of ethylene boiling in open vessels, a sufficient reduction of the temperature to effect sufficient reduction of the temperatu
the complete liquefaction of oxygen.
The process that I employ is exceedingly simple, since it consists in hastening the evaporation of the ethylene by passing through it a current of air or hydrogen reduced to a very low temperature.
In the apparatus that I have constructed the steel receiver, R , which contains liquefied ethylene, is fixed upon a vertical support with its orifice downward. To this latter is adapted a copper worm, of 3 or 4 millimeters diameter, closed by a screw cock and placed in a glass vessel, S .
Upon chloride of methyl being poured into this vessel, the temperature falls to - 23°, but if air that has been carefully dried by passing it through a bottle containing chloride of calcium be forced into it, we shall soon obtain a temperature of nearly - 70°.
The ethylene thus cooled condenses and fills the worm. When the cock at the lower part of the vessel, S, is opened, the ethylene flows under a slight pressure, and without perceptible loss, into a test glass, V, arranged (as shown in the figure) in a vessel that contains pumice stone saturated with sulphuric acid designed to absorb the aqueous vapor. It is, in fact, indispensable to act in absolutely dry air, for, without such precaution, the humidity of the atmosphere would condense in the form of a layer of ice upon the sides of the test glass, and make them absolutely opaque.
It suffices, then, to hasten the evaporation of the ethylene by means of a rapid current of air or hydrogen cooled in a second worm placed in the vessel, S , of chloride of methyl, in order to allow the compressed oxygen in the glass tube fixed to the upper part of the reservoir, O, to resolve itself into a colorless, transparent liquid, separated from the gas that surmounts it by a well defined meniscus. Upon the pump, P, being worked, the injected water acts upon the mercury in the receiver, O, and forces it to enter the test glass that contains the oxygen. The gas thus compressed becomes liquefied, as we have said, in the branch of the tube contained in the glass, V. This tube dips into the ethylene at a temperature of -125°. The mass of liquefied oxygen, which is as limpid as ether, is figured in black in the engraving, in or
By means of a hydrogen thermometer that I shall make known the construction of ere long, I have measured the temperature of the ethylene, and, in one of my experiments, found it to be -123°. I hope that, by cooling the current of hydrogen with more care, the temperature may be still further reduced.
The copper spirals in which the air and ethylene circulate dip into chloride of methyl, which is rapidly evaporated by means of a previously cooled current of air.
In short, I have found that, by hastening the evaporation of liquid
the result of his observations, thus communicating in stantly to headquarters information of the designs of the enemy, and giving opportunity for the necessary counter movement of forces. It will be readily seen from the picture how the wire is laid loosely along the surface of the ground, from the reel on the soldier's back; no battery being required, the whole takes up no more space than an ordinary knapsack. The wire is insulated, and is very light, and can be reeled up on return, if desired.

Decay of an Iron Bridge.

A phenomenon has been observed in the Callowhill Street Bridge, in Philadelphia, which is of great interest to architects and engineers, although the taxpayers of Philadelphia probably take no satisfaction in it. A few days ago men were sent to repaint the girders of the bridge, and began, as a preliminary process, to scrape off the rust. The attention of the foreman was soon attracted by the unusual size and weight of the scales of rust which fell upon the railroad below, and, on picking some of them up, found that they were solid masses, from one-quarter to three-eighths of an inch in thickness. It is needless to say that plate iron girders which had lost their substance by rust to such an extent as this would have little strength remaining, and the vibration of the bridge under the movement of a horse-car or loaded cart, which was so great as to compel the painters sitting on their swinging stage to cling to the ropes or the braces of the bridge to avoid being shaken off, indicated still further the necessity for an immediate inspection of the whole structure.
The first examination was in informal one, made by persons living in the neighborhood, who found not only that some of the iron work had been nearly eaten through by rust, but that the whole bridge, which is built on a steep rising grade, had moved down hill so far as to tear out the top courses of stone of the upper abutments, and to buckle the struts of the intermediate supports; while the movements of the roadway framework had cracked the asphalt over them, and forced out the paving blocks between the horse railway tracks. The bridge includes one span of 340 feet, and as there can be no trifling with girders of this length, extensive repairs will probably be necessary. The

the military telephone.
and be repeated in public lectures.-L. Cailletet, in La Nature.

TELEPHONE APPARATUS FOR MILITARY PURPOSES.

The illustration herewith presented, from La Lumi
ere Electrique, gives a good idea of one of the many uses to which electricity is being put as an aid to mod ern military operations. The officer standing forward with field glasses to his eyes surveying the country is supposed to be an advanced scout watching the moveinents of the enemy, while at his ear is a telephone receiver, connected by wire with some point in his own army, probably with the chief of staff or general in command, whence the scout can receive continued directions. This receiver is also a transmitter, through which the scout can, in like manner, telephone back . . .
structure was only completed in 1875 , so that ten years of neglect have sufficed to bring it nearly to destruction, and those who have to design important iron roofs or bridges will do well to notice by this example how short is the life of such works if not properly cared for. In the case of the Callowhill Street Bridge, says the American Architect, the corrosion was probably hastened by the action of the smoke from the locomotives which passed under it; but there are hundreds of bridges exposed to the same action, and the iron roofs of railway stations and manufactories are often sub jected to similar or more dangerous influences.

A Locomotive Struck by Lightning.

A singular accident recently happened at Milnes, Va., on the Shenandoah Valley road, when the locomotive of a freight train, which was stand ing on a siding, was struck oy tightning Both the engineer and fireman received severe shocks, the engineer being so injured that he did not recover for several days, and the engine was somewhat damaged. Accidents of this kind rarely happen

Last autumn a book seller named Meyer, of Ronneburg, tied a water proof label under the wing of a swallow which had occupied a nest at his house, and had be come comparatively fa miliar. On it he wrote a query in German, to the effect that he wished to know where the swallow would pass the winter The bird returned to it former nest, bearing an exchange label similarly fastened, saying, in German also, "In Flor ence, at Castellari's house, and I bear many salutations."
hasp is secured in place in the grooves by the cover. With this construction the door can be fastened fully or partly closed, and when fastened and sealed canno be opened without breaking the seal.
This invention has been patented by Mr. G. A. Ger mond, whose address is Station R, New York city.

Good Inventors. - Poor Lawyers

One of our English exchanges says of English inventors that they are usually clever and necessarily of ingenious turn of mind, but concludes that they as a class should make poor lawyers. The writer cites a case which has heretofore appeared to be interminable, and had assumed something of the proportions of a cause celebre in the annals of patent litigation. It was the old story of alleged infringement of a patent right and the appeal against the decision of the inferior courts was dismissed in the superior court in favor of the respondent, not because there was or was not infringement of the patent right, but because the appellant had in his specification insufficiently described the character and defined the limits of his invention. There was apparently some ground for the belief that the ap pellant had room for complaint against the respondent inasmuch as the Bench remarked that it was a matte for regret to have to come to the decision which, as a matter of law, had to be come to, as the invention in question was a valuable and clever one.
Here, then, valuable patent rights have been practi cally a loss to the original inventor because of his hav ing failed to observe sufficient care in the wording and preparation of his specification. It is impossible to say how many valuable inventions have been lost to their inventors from a similar cause. It is not sufficient in order to secure the fruits of a valuable invention, to merely patent it. The degree of protection afforded by a patent depends, to a great extent, upon the proper wording of the specification, which should carefully define the nature and scope, if not the limits, of the invention. It should omit nothing that it is of present or prospective utility to state. The less ambiguous it is, the fewer are the chances and possibilities of in fringement and ultimate pecuniary loss.

Steel against Iron.

Mr. William F. Zimmermann, of the Pittsburg Test ing Laboratory, has completed for the Detroit Dry Dock Company a test of the new steel plates which wil enter into the construction of the new steamer they are building for the Detroit and Cleveland Steam Navigation Company. The average tensile strength of the plates is stated to be 60,000 pounds to the square inch. This soft steel is said to be of such remarkable elasticity that a piece of plate may be stretched one half longer than its usual size without parting. The Detroit Dry Dock Company recently made some experiments of its own with the soft steel used in the construction of the new steamer Mascotte at its yards in Wyandotte. They were made both with soft stee and the best quality of iron used in the construction of iron ships. Strips of cold steel plate $\frac{8}{16}$ inch thick and $3 / 4$ inch wide were twisted like an auger in a lathe, and even doubled, without cracking or caus ing a single abrasion of the metal's surface. Angle irons were flattened cold and bent in like manner Another strip was bent repeatedly without causing it to break or evenflaw. In the presence of the owners of the Mascotte, a large ball weighing 950 pounds was suspended at a height of 35 feet, and allowed todrop on a $\frac{3}{16}$ inch plate, bulging it about 20 inches into the ground without breaking it. The ball was then dropped on the reverse side of the plate, and this repeated five times without breaking the plate The same test was made with a $1 / 2$ inch iron plate, and it was broken the first time. These tests are regarded as furnishing a conclusive demonstration of the comparative merits of soft steel and iron for re sisting sudden shocks, and consequently of their respective merits as materials for the construction of modern ships.

Decomposition of Cast Iron by Heat

From some experiments which M. L. Forquignon made upon malleable iron, he was led to suppose that cast iron, at a temperature somewhat inferior to its melting point, is decomposed into free graphite and a purer carburet of iron. He accordingly heated cast iron in a vacuum to a temperature of from 900° to $1,000^{\circ}$ C., for several days, without melting orsoftening. The metal became malleable, and its surface was covered with a dull grayish efflorescence, which produced a mark upon paper or on rough porcelain. The fracture was sometimes of a uniform black, like that of a lead pencil, and sometimes it was dotted with black grains of amorphous graphite, regularly disseminated throughout the mass. It seems probable, according to the Comptes.Rendus, that this partial decomposition depends upon a tendency to equilibrium between the carbon, the iron, and the carburet of iron, the relative proportion of each of these bodies being a function of the temperature. The decomposition of a homo geneous solid into two other solid bodies is a very
rare, if not unique, phenomenon. he rare, if not unique, phenomenon.

THE SMALLEST FIRING REVOLVER.

The very diminutive firearm illustrated in our engraving is the workinanship of Mr. Victor Bovy. It is shown in actual size; and of working revolvers, it is undoubtedly the smallest in the world. The dimensions are truly Liliputian; the total length, from handle to muzzle, is $11 / 2$ inches, and the weight is something under half an ounce. The cartridges shown are also natural size, though only about a quarter of an inch in length, and the weight of shell, charge, and bullet is only a trifle over a grain. The charge consists entirely of fulminate, as the dimensions àre too small to permit the use of powder. It is in all respects a perfect litle instrument, and quite as complete as larger reolvers. There are six cartridge chambers, a self-cocking device, and a minute rod for discharging the empty shells. In spite of its pygmy proportions, its execution is quite comparable with larger arms. At a distance of ten inches it gave a penetration in wood of three-sixteenths of an inch, while at four and a half feet the bullet passed through a pane of ordinary glass. The

THE SMALLEST FIRING REVOLVER.

ccuracy of aim is naturally limited by the short barrel and nearness of the sights to each other, though at four and a half feet the bullet passed within two and three-eighths of an inch of the bull's eye. The revolver has the appearance of a toy, but it is nevertheless a veritable weapon, and if directed toward a vital part would be quite capable of producing a serious wound.

Fast Railway Time

A train carrying the president and directors of the Delaware, Lackawanna \& Western Co. recently made the trip over the Morris \& Essex Division, from Hobo ken to Washington, N. J., 67 miles, in 1 hour 24 minutes, being at the rate of 47.9 miles per hour for the entire distance, including two stops for drawbridges and slow running required at other points. The fastest time made was on the 4.6 miles between Port Morris and Waterloo, which was run in 4 minutes, or at the rate of 69 miles per hour. The 20 miles from Port Morris to Washington was run in 19 minutes, or at the rate of 63.2 miles per hour. The train consisted of 3 cars, and was drawn by engine No. 134, which has 18 $x 24 \mathrm{in}$. cylinders and 5 ft .6 in . driving wheels.
The fast train on the West Shore road on June 4 last nade the run from Newark, N. Y., to East Buffalo (94 miles) in 119 minutes. Of this time 13 minutes is de ducted for stops, leaving the actual running time 106 minutes, being at the rate of 53.2 miles per hour. The actual running time from Frankfort to East Buffalo (202 miles) with 6 cars was 254 minutes. On June 17 the same train with 7 cars ran from Newark to East Buffalo in 105 minutes, and from Frankfort to East Buffalo in 247 minutes, or at the rate of $49 \cdot 1$ miles per hour.

TOWEL RACK,

The simple and convenient towel rack shown in the engraving has been patented by Mr. Joseph Bergsten of Rockford, Ill. Each bracket has a bearing in which the reduced ends of the outer towel holding roller are journaled; on each end of the roller is a cam plate having a finger piece by which it may be turned. The ends of the clamping roller are supported n slots and are pressed outward by springs as shown in Fig. 2. The rear roller being forced back by turning one or both of the cams, the towel may be placed
 between the rolle
where it will be firmly held, after the cams have been moved back, by the springs forcing the rear roller out ward. Should it be desired to hang a towel in the rack, one or more towels being already in, a cam at one end only need be turned to separate the rollers, to allow the extra towel to be placed between them. To re move the towel it only necessary to pull them from etween the rollers, which turn as the towels are drawn out.

Electricity and che Statue of Liberty.

Some of our daily contemporaries appear to be getting alarmed lest the statue of Liberty be slowly but surely destroyed through the electrical action developed by the contact of the internal bracing of iron with the shell of copper. There is, however, no ground for such fears. Mr. Bartholdi, it is hardly necessary to say, foresaw the possible danger from this source, as well as that due to expansion, and took the proper precautionary measures to obviate both. It is proposed (according to. Le Genie Civil), when the parts of the statue are assembled, to insulate the two metals by interposing small plates of copper covered with rags smeared with red lead-a method successfully employed in the sheathing of sea going vessels.
Notwithstanding the letters communicated by certain electricians to some of the daily journals, it would seem that too great importance is being attached to this matter. No precaution whatever against galvanic action was taken in the case of the 75 foot statue of St. Charles Borromeo (on Lake Maggiore), which, although constructed of copper only one and a half millimeters (0.06 inch) thick, and internally braced with iron that is in direct contact with the shell, has held its own for nearly two centuries without any perceptible change. Again, in the theater of Monte Carlo, which is situated very near the sea, and which was constructed over four years ago, the cupola is of copper in direct contact with the iron framework that supports it: yet no injury to it, due to galvanic action, has as yet been observed.

Ethnology.

The Director of the Bureau of Ethnology at Washington, Major Powell, has mapped out the work in his department for the coming fiscal year. The interesting government researches into the life history and arts of the early Americans, which were inaugurated several years ago, are to be continued and extended. The work of this department has already attracted much attention on all sides, and the additions of the coming year promise to be of much value.

Dr. Cyrus Thomas, who is in charge of the division of mound exploration, will resume the work begun about three years ago, and will be aided by two or three assistants. He will first visit Wisconsin, in order three assistants. He will first visit Wisconsin, in order
to examine the effigy mounds in that locality, and later in the season will go to Tennessee and Mississippi, where investigations are already in progress. Since being in the field, Dr. Thomashas secured about 15,000 specimens of the handiwork of the mound buildere. Many of the mounds are undoubtedly very ancient, but others are of comparatively modern origin, and bear date subsequent to the advent of the Europeans. One mound in Tennessee disclosed a string of sleigh bells buried among the flint and bone implements in such a position that it undoubtedly formed part of the original deposit. In another in Georgia, two copper plates were found bearing figures resembling those discovered in Central American ruins. The workmanship on these plates is much superior to that on any of the accompanying articles, and leads to the suspicion that they came from the South. They are the only indications which inight point to any connection betw een the mound builders and the Aztecs or Pueblos, while, on the other hand, there is much to make us believe that the origin of these curious mounds is directly traceable to the ancestors of the Cherokee and other races of the Mississippi valley. A Spanish coat-of-arms in silver and other articles of European manufacture have been found in a Mississippi mound at a point which De Soto is supposed to have visited. As the earlier Spaniards were regarded by these simple people as celestial visitors, it is quite possible that the mounds containing European articles were built in commemoration of the supposed divine visitation. The purpose of many of the mounds is still a matter of conjecture, while others were undoubtedly intended as places of buria!, or were even the foundations of Indian vi lages, which were thus secured from inundations.
Mr. Victor Mendeleff, the artist and architect, whose models of the Pueblo and cliff villages form so interesting an exhibit at the National Museum, has already started upon his work in New Mexico, Utah, and Arizona. Last year he visited the Chaco Cañon in New Mexico, and made surveys of several pueblos of high antiquity. The ruins of this locality are of masonry, and are far superior to the adobe pueblos of the present day. In places they are still 40 feet high, and show the floor lines of three or four stories. The largest of e ancient apartment houses covers more ground than the capitol at Washington. Mr. Mendeleff, who has been engaged in the study of Pueblo architecture for several years, will first visit the Moki towns, seven in number, three of which are found on a narrow mesa, whose precipitous sides are nearly seven hundred feet high. Later he will go the Cañon de Chelley, in Arizona, where a narrow gash in the earth, a thousand feet deep and fifty miles in length, contains a number of cliff villages of considerable extent, many of which are perched high upon the rocks, six hundred feet above the bottom of the ravine. He will also make survey of the "seven ruined cities of Cibola,"
in the neighborhood of Zuñi, so celebrated in Spanish fable and romance.

The study of the sign language and picture writing will also be continued. Having found the key to the expressive gestures of the aborigines, it has been found that the rock etchings and paintings existing in all parts of the country, which were before so meaningless, are now easily translatable to any one familiar with the sign language. The pictography of these ancient American races is found to be almost identical with that of the Chang dynasty, which flourished in China 1500 B.C. Investigations will also be continued into the verbal language of the different tribes, with a view to their better classification.
Philology, which has revealed so much of the ancestry of the European nations, promises to be no less use ful in determining the relationships of the North American tribes. The two most powerful tribes of the Southwest, for instance the Apaches and the Navajos, have in this manner been traced to a common origin in British America, where the parent stock, speaking the same language, are still found.
These investigations have established the fact that the advancement of the North American tribes, as illustrated by their art during the past two or three centuries, is exactly equivalent to that existing in Europe and the East during the stone age.

ELECTRIC FAN.

A very refreshing invention, especially for the hot weather season, is the electric fan shown in our engraving. It consists of an ornamental standard, about a foot high, on which is mounted a screw propeller of a battery with the standard the fan revolves rapidly, and delivers a cool breeze in any direction desired. The upper part of the standard, on which the fan is carried, is hinged, which allows of the adjustment of the fan to any desired oblique position. The battery is contained in a little box, $41 / 2$ inches square and same depth, holding liquid enough to run the fan for several hours, when it is poured out and replaced by a fresh supply.
We have had one of these little fans running on our desk for several days past, and it gives much satisfaction. They are made by Stout, Meadowcraft \& Co., 21 Ann Street, New York, whose excellent, and reliable work
in the line of small electrical lights and other instruin the line of small ele
ments is well known.

Principles.
As analyzed by the Birmingham Medical Review
November, 1884, Ebstein, in his work on corpulence gives some valuable practical points for the reduction of obesity. According to him, fattening is strictly analogous to the fattening of cattle, and depends on overfeeding. He, however, disputes the current view that fat makes fat; on the contrary, he thinks fatty food protects the albumen, and prevents its forming at. His plan of treatment, therefore, consists in moderating the quantity of food, and while cutting off
all vegetable carbo-hydrates, sugar, starch, etc., alall vegetable carbo-hydrates, sugar, starch, etc., al-
lowing a moderate quantity of fat, two or three ounces daily, to be taken. He also suggests that the diet should be monotonous, greasy, and succulent, so as to cause satiety rapidly. He disallows beer, but permits light wines.
The plan advocated appears rational, and is free rom the objection to Banting's method, which is too much like starvation. The following is the diet used uccessfully by Ebstein in one of his cases:
Breakfast. -One large cup of black tea
Breakfast.-One large cup of black tea-about half a pint-without sugar; two ounces of white bread or brown bread, toasted, with plenty of butter.
Dinner.-Soup, often with marrow; from four to six and one-half ounces of roast or boiled meat, vegetables in moderation, leguminous preferably, and cabbages Turnips were almost and potatoes altogether excluded.
After dinner, a little fresh fruit. For second course a After dinner, a little fresh fruit. For second course a
salad or stewed fruit without sugar. Two or three glasses of light wine, and immediately after dinner arge cup of black tea, without milk or sugar.
Supper.-A large cup of black tea, as before. An ts fat, Bologna sausage, smoked or fried fish, about one ounce of white bread, well buttered, occasionally a small quantity of cheese, and some fresh fruit.
On this diet the patient lost 20 pounds in six months
Ebstein insists on the necessity of always keeping to
the restricted diet if the tendency to corpulence is to be successfully combated.-Therapeutic Gazette.

Origin of Gulf Stream Life.
In speaking some time ago of the almost incredible profusion of animal life in the surface waters of the Gulf Stream, the suggestion was made that a biological question of no small interest and importance was forced upon us by the facts there presented. The question is this--Where shall we look to find an origin for the bioplasm there displayed? From the lowest to the highest, from the infusoria to the fishes and the cetaceans, they are preying upon one another. We see how the blackfish and the dolphins live. They are but appropriating the flesh of fishes, squids, etc., already existing as perfectly formed animal food, and digesting it for their own nutriment. This is plain, and in accordance with common experience, but as we go on down in the scale we must presently be brought to a pause.
Animal bioplasm, according to all the recognized aws of modern physiology, cannot be produced from inorganic materials. No one principle has seemed to be more thoroughly established than this-that it is the peculiar function of the vegetable kingdom to absorb the proper inorganic materials, say carbon, oxygen, nitrogen, and hydrogen, and transform them by its wonderful and life-giving power into organic substances, into bioplasm first and then into the various tissues required. It has been held that the food, properly speaking, of all forms of animal life must have had these inorganic materiaīs transformed into organic had these inorganic materiais transformed into organic possibility of its assimilation; that carbon, oxygen, and hydrogen were all of them foreign bodies to us, and when introduced into our systems, perhaps mechanically with our food, must remain of no service to us, and could never be by our powers of digestion transformed into a hydrocarbon, like sugar for instance, or starch, or fat.
This has been, and is, the accepted theory and belief, and yet if we adopt it and follow it out to its legitimate conclusions, we shall find the facts which were previously stated as to the teeming life of the Gulf Stream exceedingly difficult of explanation. The vast proportion of that life must originate in the region where it lives and dies. Some favored wanderers come in from outside, for the cetaceans, the sharks, the albicore, barracuda, dolphin, etc., travel fast and far, but they are of small importance in the aggregate. There must be of necessity a very large amount of new bioplasm in constant and daily origination from inorganic materials. The question is, Whence does it ome?
It is the unanimous testimony of the observers on the staff of the Fish Commission, from whom the facts as to the abundance of the surface life are derived, that the water of the Gulf Stream is remarkably clear and transparent, that the manifestations of vegetable life in it are very small indeed. There are masses of Gulf weed floating here and there, but not in any great quantity, nor is there reason to believe that the Gulf weed is used for food, except very slightly, by the animals around it. Many of the hydroid polyps are attached to it, and drift with it, but they use it only as a moving house, a boat, or raft, so to speak, while they industriously collect their food from the water around them. Some of the small fishes, specially the urious, grotesque looking Chironectes, make the same use of the Gulf weed tangles as do the polyps, but they never touch it as food. It is quite sure that the Sargassum furnishes small amount of material for new bioplasm. Nor does there seem evidence that any of the algæ are sufficiently abundant to afford any relief from the perplexity. Even the minute, microscopic diatomaceæ which swarm so infinitely in many parts of our shallow waters are apparently in small numbers n the Gulf Stream, and we have, therefore, no profusion of vegetable life which in the slightest degree corresponds to that of animal life.
The only explanation that seems available is thisthat some, or perhaps all, of the lower forms of aninal life have really the power which has hitherto been reckoned the peculiar prerogative of vegetable organisms, that of transforming inorganic matter into organic. If we assumethis, the mystery of the origin of the swarming myriads is at once removed. Nor is he assumption one that need startle us, for we well understand that along the border line, on either hand, the functions which are shown in the higher grades to be clearly animal or vegetable are so slightly specialzed or differentiated as to have much less significance than in the more complicated types.

Disinfectants.

Two pounds of copperas, or sulphate of iron, dissolved in a pail of water, will greatly assist in purifying a privy or cesspool. A pound of nitrate of lead dissolved in the same way is excellent for sinks, drains, or vaults. Chloride of lime is also effectual, or a layer of charcoal dust will prevent offensive odors arising from any decomposing substance. The quantity of these substances will depend upon the amount of filth to be deodorized, and the length of time during which they will be effectual will deperd upon local conditions.

Some Common Mistakes about Canned Goods.

A United States Army surgeon writes us from Indian Territory, asking as to the reason for two punctures sometimes seen in the caps of cans containing fruits and other goods, and whether this indicates that the goods have been "reprocessed." The facts touching this point, as communicated to us by one who is an expert in the business, are as follows:
The presence of two or more punctures or solder holes in a tin of canned goods is not evidence of reprocessing. In capping the can after filling with fish, fowl, meat, vegetables, fruit, or whatever it may be, a cap is used which has a small hole in the center. A soldering iron, made of copper, heated to a red heat, is used, the heat from which pro that the air escapes through the hole or vent in the center of the cap. . If it could not do so, it would be a difficult operation to cap the can successfully.
After the can is capped the vent is closed with a drop of solder, and thus one vent, or puncture, is shown on the top of the can. The can is then placed in a bath or process kettle, after which the operation varies. If the goods are what is known as "double bathed goods," they are taken from the kettle after a certain time, which varies according to the article packed or the formula of the processor, and then vented or exhausted. The ends of the can being bulged out from the pressure exerted by the expansion of the contents under heat, the first vent hole in the top is either unsoldered with a hot soldering iron, or a puncture is made with an awl or sharp instrument, within half an inch from the first vent. The air and steam having been allowed to escape, the tops resume their natural condition, or are pressed in, when the second vent is closed with another drop of solder, and the goods are returned to the process kettle and bathed, according to the kind of goods being packed.
If a hot soldering iron is used to open the first vent hole referred to, after the can comes from the bath, as is sometimes done, only one sometimes done, only one
vent hole will be observed on the top of the can.
he top of the can.
If another puncture is made in the cap, and that closed with a drop of solder, it will show two punctures or vent holes in the top of the can; and as some manufacturn, double process therregoods, some cans will show three solder spots, but this is not evidence that the goods have been what is known as "swells," which have been reprocessed; for what would be easier for a packer who desired to reprocess goods than to open the original vent hole in the top of the can, provided there was only one there, let out the gas which had generated from fermentation, solder it up again, and give it a few minutes' bathing, which would serve to keep it? This is sometimes done in the case of seed fruits, which generate a gas from their pits or seeds, the germination element of which is not entirely killed by the original processing.

Trying a New Compressed Air Car

In Astoria, one of the suburbs of New York city, a trial was made a few days since of driving a street car by compressed air, according to the system of Robert Hardie. The car was built by the John Stephenson Company, and fitted up with compressed air chambers to run a small motor or engine on the front platform, the air chambers being under the car and the car seats, and wherever there was spare room. This capacity was said to be sufficient to run the car ten miles, the rate of motion being veryefficiently controlled by an air brake.

THE GREAT BLOWERS OF THE DENAIN AND ANZIN FORGES.
The progress of metallurgy is necessitating the construction of more and mora powerful accessory apparatus. The Societe des Anciens Etablissements Cail, which has signalized itself in recent times by the construction of the new. French artillery and by that of the great Bange gun, has delivered to the Denain and Anzin Forges and Steelworks two colossal machines, which are designed for forcing air into the Bessemer blast furnaces installed at those great works. Our engraving (from a photograph) represents one of the two blowers of the Denian Forges. These apparatus, which are each composed of two vertical engines coupled are each composed of two vertical engines coup
to the same shaft, have the following dimensions :

one of the blowers of the denain and anzin forges.

 Nature.wide section to the passage oi the blast, and operate almost noiselessly. These magnificent apparatus have met all the requirements that were expected of them, and do honor to the industry of our country.-La

The Strength of Clinker Concrete.
The utilization of clinkers as building material is the subject of a long memoir by M. Louvier, an architect of Lyons. It is stated in the Journal of Gas Lighting (London) that the extensive use of clinkers for foundation work was begun in the neighborhood of Lyons by small contractors, who leased from the municipality frontages on new roads where the subsoil was bad. Originally these clinkers accumulated in the vicinity of works, where they formed an eyesore, and were given freely to any one who would remove them; the cost of the material delivered on building sites being not more than 1 s. per cubic yard. The contractors found them so useful, however, that clinkers are now marketable in Lyons, and cost, delivered, as much as 10 s .6 d . per cubic yard. A small quantity of common, or hydraulic, lime is mixed with the clinkers before use, and the mixture is then wetted and rammed in layers.
When arches or vaults are formed of this kind of clinker concrete, care is taken not to place the layers of material parallel to the surface of the ground or the curve of the centering, but to ram the layers in such a way as to consolidate them vertically to the curve of the intrados. In this way all risk of shaking out any of the material is avoided. Originally used by cheap constructors, this method of construction has been adopted by architects for important works; and M. Louvier has recently depended upon it for the basement of the new hotel of the Lyons prefecture. He had previously constructed an experimental vault of the required dimensions, $6: 30$ meters span, 1.24 meters rise, the concrete being 0.45 meter thick at the crown, and the abutment 0.80 meter wide and 0.90 meter deep.
Three weeks after. it was built, this arch was loaded with a weight of 2,500 kilos. per superficial meter; and the load was kept on it for 15 days without causing the slightest settlement or fissure. The load being then removed, a block of stone weighing 600 kilos. was allowed to drop on the crown of the vault from a height of 1 meter, without injuring the structure. Fears having : been expressed lest this mixture of clinker and ashes and lime would burn, a portable forge was placed under it, and a fierce fire kept up for half an hour without affecting its substance or strength. It is further stated that at a nitro-benzine factory

Diameter of steam cylinder.........	3 feet.
Diameter of air cylinder.	7
Common stroke of pistons	5 "
Number of revolutions per minute	
Effective pressure of steam.	11 lb .
Pressure of air in cm . of mercury	
Diameter of single-acting air pumps	13/4. ft .
Stroke of pistons.	21/2

These machines have been running regularly, day and night, ever since they were set up, which dates, for the first ones, back to January, 1884.
The coupling of the two engines upon the same shaft permits of running at very variable velocities-from 5 to 6 up to 22 'revolutions per minute, according to the needs of the moment, while blowing at a given pres sure.
The distribution of steam is perfect, and the vacuum is constant at 65 . The wind cylinders are well constructed. The force and suction valves are rectangular bands of rubber, resting upon gratings. They offer a
near Lyons, the walls of which were constructed of this material, a fire occurred of sucindestructive character that the machinery was partly melted. The only effect of this intense heat on the clinker concrete was to vitrify its inner surface, but not to destroy the stability of the walls.

Dangerous Business

IN. D. Jones, who transports the nitro-g ycerine for the Warren factories, makes a trip down the river in a hitice boat about every two months. He takes about wo tons of explosives, and on his last trip, according to his statement in the Bradford Era, he narrowly escaped being run down by the steamer Emma Graham. He stated that the 'pilots seem to delight in running little boats down, and some day this will be done to the sorrow of some of them, since the amount of glycerine on board would be sufficient to tear a boat up so fine that it would require a search warrant to find the splinters.

GIGANTIC FLOWERS.

Certain localities seem particularly adapted for the development of both animals and plants, and in the region including India, the islands of the Indian Ar chipelago, and outlying Australia, certain forms of the latter are found that in the size of their fruit and flowers excite the greatest wonder in those who have beheld them, and not a little credulity in those who have not been so fortunate.
In the southern continent of our own hemisphere is found the great lily Victoria regia, that created the sensation of the time when discovered, and a picture re cently shown in these columns, representing a boy and girl standing upon one of the leaves, gives a forcible idea of the strength of structure of this giant.
The Victoria regia, however, is dwarfed by several flowers that have since been discovered, and, indeed, in South America there are one or two that equal, if not exceed it. The figure in the accompanying illustration conveys something of an idea of the size and dimen sions of a gigantic arum, the most wonderful discovery in plant life in recent times. It was found by Beccar in Sumatra, and the plant, which has been named Amorphophallus titanum, has an ally in northern countries in the little "wake robin" common in English hedgerows
The latter is a most attractive little plant, presenting a tuft of rich glossy leaves out of the center of which rises the flower, or more properly aggregation of flow ers, for it is a family or group of them, collected about the base of an erect and club-shaped pillar, or column, known as the spadix, that in turn is protected by an envelope or sheath, all growing from an extremely small tuber.
Curiously enough, in the olden times it was not the flower that was appreciat ed, but the starch that was obtained from the tuber, being used in the time of Queen Elizabeth for starching the ruffles that characterized the apparel of the court gallants.
The Sumatra arum is a wake robin of mammoth proportions, and it is said that the first European that observed it at first refused to believe that it was a flower. This was before the time of Beccari, who brought the plant before the scientific world. A party was traveliug through Sumatra with native guides, when one of the latter brought into camp a huge object of evidently vegetable structure, at least six feet in length, and endeavored to make the white men believe that it was a flower, or part of one. The story, however, was not credited, and was forgotten until the real discovery was made by the Italiarr botanist mentioned. He found the plant growing in secluded parts of the country, and considered it to be a most remarkable example of vegetable growth.
Imagine, if you can, a tuber five feet, and sometimes more, in circumference; from this growing leaves on foot stalks ten feet in length, divided and torn by the wind. yet covering an area of fortyfive or fifty feet in circumference. Above this towered the gigantic flower, impressing the beholder not onlywith it size, but by its peculiar coloring. The central columin or spadix, that in the wake robin is used as a button hole bouquet, is in this tropical cousin six feet in height and proportionately stout.
The spadix from which this rose was about three feet in diameter, of a bell shape, the edges richly crumpled and toothed in a fantastic manner, and colored a pale greenish tint upon the inside and a rich, black metalic purple withcut.
A group of thesse plants would present a remarkable sight, their enornous leaves, the large masses of color, and the huge waving central column resembling more the creatures of siome vivid imagination than the reality.
If we consider diam 3ter, the discovery of Sir Stamford Raffles in the same country is indeed a greater marvel. The plant now kíown as the Raffesia arnoldi is an enormous parasite, uncouth and fleshy, seemingly attaining its huge dimensions by literally absorbing the juices of its neighbors. It is invariably found growing upon the roots of other plants, leafless, rootless itself, represented only by the gigantic flower, rom which rises an odor sickening and fetid in the extreme.
The plant first observed was considered an enormous fungus or agaric, but it was soon shown to be a flower. Imagine a rose blasted and swollen, weighing fifteen or twenty pounds, its petals reduced to flve in number, the thickness of each being over an inch, each one measuring a foot from the base to the apex, and some idea can be gained of this monstrosity of plants. It measured over three feet across the surface, and the nectary, a vessel capable of holding six quarts, was filled with a reeking fluid
that gave out an odor like tainted beef, and was a trap containing the bodies of myriads of insect victims.
The flower was first discovered on the Manna River,
Sumatra, where it is known as the "Devil's Siri Box" Sumatra, where it is known as the "Devil's Siri Box," and is calculated to create a decided impression on the mind of the observer. Dr. Arnold, after whom it is also named, says of the effect it had upon him when coming suddenly upon it."
"To tell the truth, had I been alone, and had there been no witnesses, I should, I think, have been fearful of mentioning the dimensions of this flower, so much does it exceed every flower that I have ever seen or heard of."
In the island of Java another of these giants has been found, differing but little specifically, and being nearly as large as its Sumatra ally.
In the South American jungles are found many fowers remarkable for their extreme size. On the Magdalena River there grows a climbing aristolochia that attracts the voyager to the shore by the wonderful size and structure of its blossoms, each one of which measures four feet in circumference. The specific ame is Grandiflora, and it is probably similar to what is known as the "pelican plant" in the West Indies, where the blossom so resembles a pelican's head. The great flowers are often used by the native children as caps, being quite large and stout enough for the purpose. Miers, who observed them in Brazil, says that as they appeared hanging upon the vines, he was reminded of colored handkerchiefs spread out to dry.

GIGANTIC LILY OF SUMATRA.
None but a native would think of approaching near them, much less utilizing them as head gear, as the odor is so fetid as to drive away large animals from their near proximity.

Not only this, but they are poisonous when eaten. Tussac is authority for the statement that an entire herd of swine that had eaten the roots and leaves were destroyed
A species of this plant, A. Goldieana, found on the Old Calabar River and Sierra Leone, is quite as re markable. The flower is over two feet in length, and eleven inches in diameter at the mouth. It has all the richness of coloring and disagreeable qualities of odor that characterize its ally of the South America continent.
Our familiar night blooming cereus may well be grouped with the phenomenal plants, having a flower that, when fully expanded, measures a foot in diame ter. Exceeding this in beauty and size is the Lilium giganteum, that constitutes one of the most gorgeous displays in the floral kingdom. This is represented a the museum at Kew by a stem that was over a foot in circumference at the base, and that rose to twice the height of the tallest man, or nearly fourteen feet, and was covered with blossoms, each as large as a large goblet.
The delicate ferns that are the types of grace and beauty in our woods have gigantic representatives in other countries. That known as the "Silver King" (Cyathea dealbata) has leaves seven feet in length. This may be considered its normal size, but in the silent forests of New Zealand the delicate fern assume at once the proportions of a tree, and is met with with
leaves forty-two feet in length. Yet these were pro bably insignificant when compared to their ancestors in the past ages of the world's history.

Origin of the Cereals.

Recent numbers of Naturen contain interesting papers, by Prof. Schubeler, on the original habitat of some of the cereals, and the subsequent cultivation in the Scandinavian lands and Iceland of barley and rye more especially. It would appear that barley was cul tivated before other cereals in Scandinavia, and that the generic term "corn" was applied among North men to this grain only from the oldest times, and that in the Norwegian laws of the seventeenth and eighteenth centuries, wherever reference was made to the "Kornskat"—or standard by which land in the Northern lands was, and still is, rated in accordance with the corn it is capable of yielding-the term was understood to apply to barley. Proof of the high latitude to which the cultivation was carried in early ages is afforded by the Egil's Saga, where mention is made of a barn in Helgeland ($65^{\circ} \mathrm{N}$. lat.) used for the storing of corn, and which was so large that tables could be spread within it for the entertainment of 800 guests. In Iceland barley was cultivated from the time of its colonization, in 870 , till the middle of the fourteer, th century, or, according to Jon Storrason, as lately as 1400.

From that period down to our own times barley has not been grown in Iceland with any systematic atten tion, the islanders being dependent on the home country for their supplies of corn. In the last century, however, various attempts were made both by the Danish government and private individuals to obtain home-grown corn in Iceland, and the success with which these endeavors were attended gives additional import ance to the systematic undertaking, which has been set on foot by Dr. Schubeler and others, within the last three years, for the introduction into the island of the hardier cereals, vegetables, and fruits. As many as 382 samples of seeds of ornamental and useful plants, most of which were collected from the neighborhood of Christiania, are now being cultivated at Reykjavik under the special direction of the local government doctor, Herr Schierbeck, who succeeded, in 1883, in cutting barley ninetyeight days after the sowing of the seed which had come from Alten ($70^{\circ} \mathrm{N}$. lat.). And here it may be observed that this seems the polar limit in Norway for any thing like good barley crops. The seed is generally sown at the end of May, and in favorable seasons it may be cut at the end of August; the growth of the stalk being often $21 / 2$ inches in twenty-four hours. North of 60° or 61° barley cannot be successfully grown in Norway at more than from 1,800 to 2,000 feet above the sea level. In Sweden the polar limit is about 68° or 66°, but even there, as in Finland, night frosts prove very destructive to the young barley.
In some of the field valleys of Norway, on the other hand, barley may, in favorable seasons, be cut eight or nine weeks after its sowing, and thus two crops may be reaped in one summer. According even to a tradition current in Thelemarken, a farm there owes its name Triset, to the three crops reaped in the land in one year!
Rye early came into use as a breadstuff in Scandinavia, and in 1490 the Norwegian Council of State issued an ordinance making it obligatory on every peasant to lay down a certain proportion of his land in rye In Norway the polar limit of summer rye is about 69°, and that of winter rye about 61°; but in Sweden it has been carried along the coast as far north as 65°. The summer rye crops are generally sown and fit for cutting about the same time as barley, although occasionally, in southern Norway, less than ninety days are required for their full maturity.-Nature.

Violin Making

In a recent issue of the Scientific American some ne asked for names of works on "Violin Making." An esteemed correspondent gives the following authors: Otto on the " Construction of the Violin," etc., Davidson on the "Violin," two very interesting works, the latter being much the more practical.
The first three volumes of Amateur Work, published by Ward, Lock \& Co., London, England, have the most complete articles, theoretical and practical, ever pub lished. They are written by a pupil of Chanot, one of London's best makers. Some splendid violins have been made from the directions given. To the above may be added " Construction of the Violin," by H. P. Smith. All the above works may be ordered through the Scientific American Office.

On a Few Remarkable Statues.

The conception of monumental work seems to be characteristic of a certain degree of advancement in the civilization of peoples. The ancients erected many immense works in honor of their divinities. With them the majesty of a god often seemed to depend upon the size of his image; but the latter always sought to express power and majesty. The most imposing statues were given to the most powerful and dreaded gods.
In ancient Egypt colossi formed an essential decoration of the great temples and palaces. They were represented in a calm and uniform attitude, either seated or standing, the bust straight, the legs close together, the arms close to the body, and the hand
pon the thighs or resting upon the knees.
All details that were judged useless were suppressed without consideration in order to bring into promi nence the simplicity of the lines and the extent of the surfaces. The style was sober, broad, and severe, and if the statues represented individuals, it was man already stripped of his terrestrial character and arrived at the divine state.
Aside from its great pyramids, its 100 foot high obelisk, its gigantic tombs, and its innumerable and enormous sphinxes, Egypt was covered with statues 160 feet in height, carved out of a single block of stone.
Herodotus mentions a colossus of Osiris which was 93 feet in height. A few years ago there was exhumed at Memphis a granite statue of Ramses II., which must have been 49 feet in height. Before the entrance to the palace of Luxor there were seated four similar colossi 40 feet in height. Near Gournah there are still to be seen the fragments of a gigantic statue of Ramses the Great, represented seated. It was cut from a single piece of rose granite, and must have been 57 feet in height and have weighed more than $2,000,000$ pounds.
Finally, we may cite the two colossi of Memnon, which, although seated, each measured more than 62 feet in height, and, with their pedestal, had a weight of more than $2,800,000$ pounds.
The Egyptians employed stone almost exclusively, although they were acquainted with the art of casting and working bronze.
The Greeks likewise erected many statues to their divinities, which were in most cases of bronze, or cov ered with plates of gold and ivory. Their most celebrated sculptors adopted the colossal type. The Minerva of Phidjas was 37 feet in height. In reality it was a woodon statue supported by an internal trussing of iron, and covered with golden plates repousse with the hammer and chased, and with plates of finely carved ivory. It was so accurately fitted together that it was impossible to detect the joints.
The celebrated Jupiter Olympius of the same sculptor was likewise of gold and ivory. The god was re presented seated, and was 40 feet in height.
Phidias also constructed several colossal Minerdas, one of which,
eet in height.
The famous
The famous colossus of Rhodes, the work of Chares of Lindus, was erected 300 years before Christ, in honor of Apollo. It was of bronze, and passed for one of the seven wonders of the world. Its feet rested upon the two moles which formed the entrance to the harbor, and ships passed full sail between its legs. It was 105 few could clasp around its thumb. It took 12 years to make it. A winding staircase ran to the top, from which could easily be discerned the shores of Syria and the ships that sailed on the coast of Egypt, by the help of glasses which were hung on the statue's neck. Notwithstanding that it was ballasted with stones to secure stability, it was partly destroyed by an earthquake B. C. 224. Its remains are said to have been sold A. D. 672 by the Saracens, who were masters of the island, to a Jewish merchant of Edessa, who loaded 900 camels with the metal, whose value had been estimated at what would be represented in United States money by $\$ 180,000$.
Rome, especially under the empire, erected many colossal bronze statues, representing in most cases
Cæsars that had been deified even while living. That of Nero by Zenodorus was 110 feet in height.
In Japan there is a brass statue of Buddha, represented seated, which is 50 feet in height. In India and China most of the gigantic idols are of masonry or of roughly carved wood.
In the middle ages there were the Saint Christophers that were erected at the entrance to many churches, and the great statues of Roland.
In modern times colossal statues have generally been constructed only when the distance from the point of view rendered it necessary to increase the proportions. Several celebrated artists have of ten felt the need of joining material grandeur to that of expression.
In the first rank of these stands Michael Angelo, of
whose work we shall cite only his David, in marble, whose work we shall cite only his David, in marble,
more than 16 feet in height, his bronze statue of Julius II., three times the size of life, and his Moses-the chef l'œuvre of modern sculpture.
At Villa Pratolino, near Florence, there is a mucia
admired stone statue of Jupiter Pluvius, 70 feet in height, from the chisel of Jean de Bologne.
Almost all the most recent colossal statues have been ast in bronze. We may cite the following:
The equestrian statue of Peter the Great by Falconet 1766), at St. Petersburg. The figure of the Czar is 12 feet and the horse 18 feet in height. The entire group weighs 39,600 pounds.
The statue of Bavaria, inaugurated in 1850, near Zurich. This is 52 feet in height and weighs 1,560 hundredweight. The plaster model was divided into 15 pieces for moulding in bronze, and this latter operation took about six years.
The Virgin of the Puy, a work of the sculptor Bonassieux, inaugurated in 1860. The height of this is 52 feet, and its weight 220,000 pounds.
Finally, the colossal statue of Arminius, inaugurated n 1875 upon the summit of the Grotenburg, near Det mold, Westphalia. 'The height of this is about 65 feet, not including the sword, which measures nearly 25 feet. The weight of the whole is 237 hundredweight. The most remarkable example of the use of repousse work in colossal statuary is certainly the St. Charles Borromeo of the sculptor Cerani, which was erected in 1697 near Arona. In its construction this statue much resembles Bartholdi's Liberty; so it merits particular mention. Its height is 76 feet, or, including the pedestal, 115 feet. The length of the arm is 30 feet, that of the nose 33 inches, and that of the forefinger 6 feet.

The statue is of repousse copper supported, through ron cramps and trussing, by internal masonry which nearly tangent to the copper shell, and which rises as far as to the neck. The copper plates are but 0.00
inch thick. They did not have to be hammered over patterns, but directly by hand. These plates are quite boldly joined by large rivets $1 \cdot 6$ inches apart. They are connected directly with the masonry by means of eye bolts and hooks. The right arm, which is nearly horizontal, is supported by a large oak beam, of 14×15 inches section, sealed into the masonry, and provided with flat irons, like the yard of a ship. This beam is supported by rods sealed into the masonry. The wood is now rotten, and will have to be replaced. The left hand, which holds a book, is supported by three iron rods suspended from a beam that is sealed into the masonry.
The statue is entered through an aperture hidden under a fold in the alb, and which is reached by a ladder. The ascent is very difficult.
As regards other recently constructed statues of hammered copper, we hardly need cite any but the one erected at Alise-Sainte-Reine in honor of Vercingetorix, the heroic defender of the Gauls. Its height is 23 feet. -Abstract from Le Genie Civil.

Hot Weather Diet.

A new publication called The Cook, which is supposed to be good authority in all cuisine matters, says that housekeeping presents more varied difficulties to the young housekeeper in summer than at any other season of the year. It is the season when heavy joints should be eschewed, and light, tempting viands, arranged in neat, appetizing form, served in their stead.
Summer menus are much more difficult to arrange than others, as our systems demand cooling viands. There is nothing more acceptable than cold meats, such as cold roast lamb, cold roast squabs and chickens, and among cold vegetables, cold asparagus. These if neatly arranged on the dishes and prettily garnishd, if with nothing other than a few fruit blossoms, will please the eye and more easily tempt the palate. Salads present an endless array of good cheer during summer, and are most acceptable. A liberal diet of fresh, thoroughly ripe fruit is of the highest importance to most of us, but care must be exercised not to at too heartily of it at any one meal. Vast quantities of liquids should be avoided when fruit has been eaten. At no season of the year is it more important to have good, reliable servants than in summer. If they condescend to remain in the city, it is with reluctance and an increase of salary. The summer presents to them
visions of sea beaches, green fields, and flirtations, not visions of sea beaches, green fields, and flirtations, not
to be cast aside without strong financial inducements, and even then they feel and act like caged birds struggling to be free. Consequently watchfulness greater than at other times must be exercised, to see that they do not neglect the proper care that food should receive at this season. Viands of all kinds should be purchased from day to day, and delivered early in the morning or after sundown. When this is not possible, one should have a good sized ice box capable of holding a good supply of ice. It should be so arranged that milk, butter, etc., are separated from meats and vegetables. When huddled together, they lose their identity, so far as their individual flavors are concerned, and become tainted with the flavor of one another. This is particularly true of milk and butter, which rapidly absorb impure or obnoxious flavors. Cleanliness is nowhere more important than in the ice box, which should be thoroughly scrubbed at least twice a din
Milk is a very important summer diet, but should be
used in moderation, or it is liable to produce ill effects. Drink it in small mouthfuls, and rest a moment between them. Dyspeptic persons are advised to beat the milk a few moments lefore drinking. This treatment breaks the butter globules, and renders digestion easier. We strongly recommend skimmed milk and fresh butter milk as summer drinks instead of ice water. The ice water dyspepsia, a common malady during the summer months, may be entirely relieved by using small quantities of freshly churned buttermilk accompanied by what is known as a moderately dry diet.
Breakfast should not be a heavy meal, and hot food should be used in moderation. Hot tea and coffee liberally partaken of prevent one from feeling comfortable all day. Radishes ice cold, oatmeal crackers and milk, a dainty slice of cold lamb, fresh fruit, and cold asparagus, presents a breakfast menu that makes hot weather a luxury.

British Naval Guns.

The Woolwich correspondent of the London Times writes: The new guns which have been designed to maintain the naval supremacy of Great Britain are in an advanced state, but they have to undergo a course of experiments to settle the range tables and other particulars, and it will probably be the beginning of next year before they are ready for sea. This will, however, be earlier than the ships which are to carry them can be completed, and there will ample time available for a full and leisurely study of their requirements and capabilities.
The first of the four 63 ton steel breech loaders for Her Majesty's ship Rodney will be shortly finished, and will be used as an experimental gun, care being taken that it is not damaged in the process by any of the surgical operations to which experimental guns are oc casionally subjected. Although 17 tons lighter than the 80 ton muzzle loaders on board the Inflexible, the 63 ton gun is expected to surpass the older weapon in its destructive power. It will probably throw a $13 \frac{1}{4}$ inch shot, of $1,250 \mathrm{lb}$. weight, with a powder charge of about 580 lb. , and the estimated velocity at the muzzle is to be 2,100 feet per second. The 80 ton gun projectile weighs 1,700 lb., but the cartridge is but $450 \mathrm{lb} .$, and the muzzle velocity recorded is 1,600 feet per second. Should the new gun realize expectations, it will penetrate 29 inches of wrought iron armor at close quarters, and prove too much for 27 inches even at the liberal fighting range of 1,000 yards.
Still more powerful, but not in the same ratio of increase, will be the 110 guns now being manufactured for Her Majesty's ship Benbow. There are three of these guns ordered, one of which will be surrendered for the purpose of scientific experiment, while the other two are sent on board ship, where, however, they will not be wanted until the midsummer of 1886 . The project ile will be $16 \frac{1}{4}$ inches diameter, and weigh 1,800 or $2,000 \mathrm{lb}$. The powder charge will be the enormous one of 900 lb ., or half the weight of the projectile, supposing this to be $1,800 \mathrm{lb}$., on which supposition the velocity may be reckoned at 2,050 feet per second, and its power of penetrating armor at $311 / 2$ inches near the muzzle, or 2 inches less at 1,000 yards. The new guns will be greatly superior to the Italian 100 ton guns, which are at present at the head of all the naval artillery in the world, and they are also in advance of the 100 ton guns which are doing duty for England on the fortifications of Malta and Gibraltar, although these are larger in the bore by $11 / 2$ inches. The substitution of steel for wrought iron admits of heavier charges of powder, and this fact makes all the difference. Two huge sleighs for the proof trials of these and similar guns are being built-the one for use at Woolwich and the other for Shoeburyness, whither both the experi mental guns just mentioned will sent for practice at the sea ranges. To Shoeburyness there, is also to be immediately sent the 80 ton gun whieh has been returned to Woolwich from the Inflexible. The inner tube of the gun is unquestionably cracked, but this is regarded as a comparatively small injury, and before it is repaired the gun will be fired with a series of heavy charges at the targets which have been put up at Shoe buryness to represent the Spithead forts. These tar gets, which are respectively faced with granite. wrought iron plates, and compound steel, have already been attacked in a course of earlierexperiments, and the compound steel has shown co very great advantage. The double barge Magog will, ás heretofore, convey the 80 ton gun, but for the 110 ton gun a still larger craft is being built, which is to be called the Gog, and measures 20 feet longer than the Magog.

Somebody has said, what everybody has observed, that those persons who have attained to eminence in any vocation of life have followed a uniform course that of earnest work and unwearied application. None are truly happy but those that are busy; for the only real happiness lies in useful work of some kind, eithe of the hand or the head, so long as overexertion of either is avoided. It should be the aim of every one to be employed. If all men and women were kept at some useful employment, there would be less sorrow and wickedness in the world.

engineering inventions.

The propelling of marine vessels forms the subject of a patent issued to Mr . William O . Robbins, of New York city. Comprossed air pipes lead
from the stern of a vessel close to the propeller blades, from the stern of a vessel close to the propeller blades,
which are made to revolve by the force of air at a high pressure, whereby only short propeller shafts are need-
ed, and friction and danger of breakage is removed. ed, and friction and danger of breakage is removed. Mr. Ernest M. Brown, of New Boston, Ill. The draw bar has a head, from one side of the face of which two
longitudinal slotted prongs project, and which has longitudina sloted prongs project, and which has an
coupling pin, in combination with a coupling link of an opposite drawhead, so the cars are at all times coupled by two links, and the pins have considerable play in
the links.
A car brake and starter has been patented by Mr. Eyvind Lee Heidenrelch, of Chicago, Ill. Combined with the axle is a sliding sleeve having clutch
cups at its ends which cau be engaged with clutches cups at its ends which cau be engaged with clutches
mounted loosely on the axle and engaging with a wheel mounted loosely on the axle and engaging with a whee
in which a spiral spring is coiled, so the energy of the in which h spiral spring is coiled, so the energy of the
car's motion while being stopped is stored to be given car's motion while being stopped is
out in helping to start the car again.
A car coupling has been patented by Mr. Joseph McCoy, of Independence, Mo. Combined
with the drawhead is a V -shaped link lifter pivoted on with the drawhead on $\begin{aligned} & \text { v-shaped link lifter pivoted on } \\ & \text { the bottom and connected with a swinging piece ar- }\end{aligned}$. ranged at one side of the drawhead, while on the opposite sidid is a horizontal bar with a beveled head project.
ing beeond the end of the drawhead the device being ining beyond the end of the drawhead, the device being in-
tended to both rasse the link and couple automatically.
A railroad gate has been patented by Mr. Albert M. Woodruff, of Athens, Mich. It is made with a shaft having a staple and rigid arms carrying
suspended weights, with a push bar and springs so arsuspended weights, with a push bar and springs so ar-
ranged and connected with supports attached to the ranged and connected with supports attached to the
track that the gate will be opened by the wheels of an approaching train, held open while the train is passing, and then automatically closed.
A valve gear has been patented by Mr. John R. Deering, of Emporia, Mo. The construction is
such that the valve will be fully moved by an ectentric such that the valve will be fully moved by an eccentric
during an eighth of a revolution of the shaft, and will reman still until the eecentric reaches the opposite
side, so the exhaust will be open for three-quarters of side, so the exhaust will be open for three-quarters of
the time of revolution, thus giving an exceptionally free exhaust and reducing the back pressure on the piston
to a minimum.

A car coupling has been patented by Mr. John O'Brien, of Austin, Minn. A shaft is jour-
naled in the top part of the drawhead in front of the coupling pin, carrying a plate whose free edge projects toward the rear of the drawhead, adapted to trift the
outer end of the link when the shaft is turned, with outer end of the link when the shaft is turned, with
which are other novel features, the device being calculated to faciilitate the coupling of cars having drawheads
of unequal heigts of unequal heights.
A railway and tramway chair has been patented by Mr. John Poyser, of Sherwood Rise, Mansfield, Nottingham County, England. It is made with
three jaws formed in one piece with or rigidly attached three jaws formed in one piece with or rigidly attached
to an ordinary base, one jaw being shaped to receive to an ordinary base, one jaw being shaped to receive
one side of the rail in the usaal way, and the two jaws on the other side leaving sufficient space to allow of the
easy admision and extraction of the rail, a wooden or metal key being driven in this space to fix the rail firmly in position.

agricultural inventions.

A corn planter has been patented by Messrs. Edwin M. Calef and Truman L. Tracy, of Missouri viluey, Iowa. This invention covers a novec con-
struction and arrangement of parts intended to facilitate the planting of corn in accuratecheck row, and promote convenience in adjusting the seed cropping mechanism to keep the cross rows in line.
A mower has been patented by Mr. Benjamin Saunders, of Claverack, N. Y. The azle and
main gear wheel are connected by a ratchet wheel, and spring pressed pawls are pivoted to the radial arms of a hub, so arranged that the main gear wheel can be
driven at a fast or slow spead, and the sickle bar thus be made to vibrate more or less quickly, as the character of the grass may require, without stopping the machine. A cotton chopper has been patented by Mr. James F. Barringer, of Bennetsvinie, S. C. It is
made with wheels and an axle, runners connected by a made with wheels an a a ander, runners connected by a
shaft, pivoted bars, standards, and chopping hoes at tached to a swinging extension bar vibrated by a crank shaft driven from the wheels and axle, making a ma-
chine to facilitate the chopping of cotton to a stand, and chine to facilitate the chopping of cotton to a stand, and
one which can be conveniently adjusted, operated, and one which ca
controlled.

miscellaneous inventions.

A belt clasp has been patented by Mr. George E. Zeltmacher, of Brooklyn, N. Y. A peculiar-
ly made slide is so combined with the buckle that the ly made slide is so combined with the buckle that the
clasp can be readily adjusted to lengthen and shorten the belt, which will remain as fixed when andusted, an
the belt will not de disfigured or otherwise injured.
A hasp lock has been patented by Mr Charles P. Pond, of camuen, N. Y. Combined with no key being required to lock the hasp, and the im provement covering a lock which is simple in construc-
tion, strong and durable, and one which can be used on tion, strong and du
A nail extractor has been patented by Mr. Lewis Howard, of Watkins, N. Y. Combined with a claw bar, with a spring bit secured to its under side, a,
clevis is pivoted tothe ht, and a pin unitesthe shank of clevis is pivoted to the bit, and a a pin unites the shank of
the clevis between the bit and the under side of the bar, the clevis between the bit and the under side of the bar,
making an improved device for extracting nails and making an improved dey
spikes easily and rapidly.
A wire frame has been patented by Mr. Henry F. Fordam, of Greenport, N. Y. This inven
tion consists principally in holding the ends of the wires with a tube and wedge, key, or rivet, in making frames
with wires that radiate from a central point, so that the
wires will be held very frmly at the center of the frame wires will be held very frmly at the center
and the frame will be cheap and strong
A convertible chair has been patented folding chair of novel design, readily convertible into settee, bed, or cot, a lounge, a child's crib, or a carpet or wall papper exhibiting frame; it is composed of three main bent sections, which may be put together without A backing for books has been patented by Mr. Gustav A. Shurmann, of New York city. It consists of wood or other suitable material provided with removable attaching strips for holding the leaves,
furnishing a device for binding in furnishing a device for binding in a firm and substantial
manner and in manner, and in such way that the leave
book can be removed from the covers.
A carriage seat has been patented by Mr. Charles Morgan, of Bridgewater, Nova Scotia,
Canada. The frame of the seat is so arranged, in connection with the use of springs, that it is adapted to slide back a little when the carriage receives a sudden hock or jerk, and then again return to its place, thus easing the back of the person occupying the seat.
A composition of matter for facing brownstone and for making artificial stone has been
patented by Mr. Benjamin E. Ratcliffe, of New York patented by Mr. Benjamin E. Ratcliffe, of New York
city. It consists of linseed oil, sand, and litharge, in specified proportions, with any desired pigment for col oring, and if a finer gra
pumice stone is added.
A grindstone frame has been patented by Mr. Julius B. Johnson, of Johnson, Neb. It is a
knockdown frame which can be readily put together the sides of the frame having oppositely arranged grooves down their inner faces, neares each end, with
which, by reason of the construction and fit of the legs, cross end pieces to keep the sides at their proper disA start are dispensed with.
A stair rod has been patented by Mr. Thomas Worley, of New York city. It is made with therein having radial perforations in their shanks, with caps having flanged outer ends and transverse slots to
inclose the screws and the ends of the rod, so that such inclose the screws and the ends of the rod, so that such
rods may be readily applied and removed, and will hold the carpet firmly
A disinfecting compound has been paonsists of definite mixtures of sulphate of iron, borax choride of sodium, and bicarbonate of soda, dissolved in warm water and mixed with dry silphate of lime,
the compound being suitable for use as a powder, in the compound being suitable for use as a powder, in
hard cakes, or dissolved in water according to the ard cakes, or
A hose reed.
A hose reel has been patented by Mr. Luther C. Baldwin, of Manchester, N. H. A U-shaped support, made of gas pipe or other suitable material, io
attached to the side of a bullding or to the ground, ported from the bowed portion, the arms holding a roll
 being fixed near a faucet or hydrant, to facil
use of small hose in sprinkling. washing, etc.
Saddle bags form the subject of a paThe bag is made open at the top, with a a ow front wall, in which is a cover opening on links as a tray, the whole affording a convenient receptacle for vials and other ar-
ticies, while there is a flap cover which swings over the op and front of the tray and fastens to the front of the body.
A safety lamp has been patented by Mr. John L. Williams, of Shenandoah, Pa. This invention
covers novel attachments arranged outside of the wire covers novel attachments arranged outside of the wire
gauze cylinder of the lamp, with adjustable sleve on the wick tube to afford safety against a rush of gas, also additional wire gauze protector at the top of the lamp, with other novel features.
A combined wire stretcher and staple puller has been patented by Ela Moore, of Walla Walla, Washington Ter. The handle has teeth and a clamping Iever, in combination with a fuicrum plate or head made on a curve, having at one end a hook and at the under
side of the opposite end a depending pawl, making an side of the opposite end a depending pawl, making an
especially useful device for building and repairing especiall
fences.
A machine for sorting feathers has been patented by Mr. Henry C. Dyer, of St. Louis, Mo. There a chamber with means for agitating the feathers, and the lighter feathers and allows the heavier ones to drop into a pit, there being rollers and belts with pins over
which the feathers are conducted, the larger ones catch ing on the pins and dropping down.
A ruler attachment for slates has been patented by Mr. Joseph R. Kennedy, of Philadelphia,
Pa. The ruler is formed with a straight tube and spring tongues, the latter the elate frame, the device being such as not to interfere with the ordinary use of a slate, while adapted to
hold a pencil and sharpener. and also for use as a ruler hold a pencil and sharpener.
A revolving chair has been patented by Mr. C. Arnold Graef, of Bay Ridge, N. Y. A lever pawl is pivoted to the socket attached to the legs, and engages the socket and carrying a pivoted seat spider, whereby the ear will be securely supported and can bar readily raised and lov
sired height
A windmill has been patented by Mr. James E. Goodhue, of St. Charles, Ill. It is a self-
regulating mill of the class known as "solid wheel " regulating mill of the class known as "solid wheel" promptly stopped during heavy or light winds, while with vane maintains its position in line with the wind, with various other novel features to improve the
struction and promote the efficiency of windmills.
A grappling bucket has been patented by Mr. William G. Thompson, of Brooklyn, N. Y. It is
made with a foot block carrying the bucket arms a head block-carrying connecting bars and pulleys, and a
hoisting rope so contrived to run that the bucket can be
controlled by a single rope or controlled by a single rope or chain, and will be openee
and closed automatically, the apparatus being inexpen sive to manufacture and its working easily controlled. A carriage axle and box have been paAnted by Mr. Josiah Fowler, of St. John, N. B., Cana a. The outer end of the axle has no screw or nut to slipped over the bed of the axle, which is screwed by an external thread into the hab of the wheel and by an in ternal thread into the inner and larger end of the axle
box, with other novel features, to promote durability onx, with other novel
A sweat pad for horse collars has been patented by Mr. Edward L. McClain, of Greenfield, O A corrugated strap, preferably of rubber, is attached t around the inner roll of the collar and passed under the hames, so as to be held between the hames and the collar, the attachment being thickest at its outer or free end, so it r
and collar.
The marking of chocolate cream drops and other confectionery forms the subject of a patent issued to Messrs. John S. Hawley, of Brick Church, N.
J., and Herman W. Hoops, of New York city. The J., and Herman W. Hoops, of New York city. The
marks are impressed upon paper, upon which the cream drops or other confectionery are laid while warm and plastic, and upon cooling and hardening preserve paper on which they have been laid.

A folding crib has been patented by Mary E. Woodward, of Parker, Dakota Ter. It is
formed of two sides and two end pieces, each having at each end a corner piece with triangular cross section,
the corner pieces hinged together in pairs and bottom the corner pieces hinged together in pairs, and bottom boards being hinged to swing upward to the bottom
rails of the side pieces, making a child's crib that cas rails of the side pieces, making a child's crib that can
be folded compactly, quickly set up, and will then be folded con
stand firmly.
A machine for cutting cloth, leather, nd other substances has been patented by Mr. Charlee
Goettler. of New York city. Combined with a horizon tal shaft mounted in fixed bearings, with a feed roller is another vertically adjustable shaft with feed roller, and a knife held adjacent to the outer aides of the rollers, with other novel features, so the material will b cut smoothly as iti
by the feed rollers.
A magazine spring gun has been patent ed by Mr. Stephen D. Engle, of Hazleton, Pa. The magaziene, to contain balls or projectiles, may be a sim
ple longitudinally bored extension of the stock, connecting with the barrel at the breech, and allows one ball at a time to pass into the bore on suitably elevating the muzzle, when the follower or driver is in position,
the propelling springs, which act in unison, giving an the propelllng springs, which
extended and powerful thiow.
A stove has been patented by Messrs. Burt A. Brigden and Edwin Cannon, Jr., of Moravia,
N. Y. Around the Ire por, and Tow amm, Is nutuet a Nor. Around the Itre por, and Tow anwn, Is neter
horizontal partition, cutting off all passage of gases from the coal to the smoke flue except through the fire pot and grate, the smoke fine ing one to economiz
the partition, the stove being intinded
fuel by consuming the gases, while being simple fuel by cons.
A horse collar has been patented by Mr. Ebenezer Fisher, of Philadelphia, Pa. This invention covers a steel horse collar of two sections, each forged
from a sheet of steel to form thin side flanges, where by a greater degree of spring action is provided fo the draught attachments, with other novel features embodying improvements on a collar which has been
the subject of several former patents by the same the sub
ventor.
A windmill has been patented by Mr. Oren Stoddard, of Busti, N. Y. By this invention it is
designed to utilize the ornmental towers of buidit to locate wheels, vanes being suitably pivoted to arm to swing edgewise to the wind on the returning side, with two doors for each side closing to the center plane
of the wheel, and so that only the ordinary form of the of the wheel, and so that only the ordinary form of the
tower will appear when the doors are closed and the tower will appear
wheel not in use.
An odometer has been patented by Mr. Benjamin \mathbf{F}. Hutches, Jr., of Galveston, Texas., It is a simple, compact instrument, with geared wheels and
dials, for attachment to bicycles, carriages, cars, etc. dials, for attachment to bicycles, carriages, cars, etc.,
for registering the distance traveled, and will register the distance either forward or back ward, up to tens or hundreds of thousands of miles if required, without re quiri
ism.
A photographic camera has been patented by Mr. Thomas Samuels, of Hadley-Monken as to swing both on a horizontal and on a a vertical axis, with vertical and horizontal ad justments, whereby the
same results may be obtaned same results may be obtained as by the combined use of
sliding fronts and swing backs, the bellows body of the camera readily lending iteelf to any desired adjustmen the lens
An apparatus for transmitting power has been patented by Mr. Louis G. C. y Saenz, of Pue bia, Mex. Thisinvention combines a rotatabie ehaft pro-
vided with a power accumulating balance wheel, one or more disks being fast on the shaft, and one or more loose balls carrying reciprocating tapering pockets con-
structed to receive the disks partly within them and be tween the balls in the pockets, with other novel features to promote the accumulating and transmission of power. An ore separatipg and concentrating Anglet, Basses-Pyrenees, France. It works on the gravity principle, a a hollow vessel being held in an ap.
right position in a frame, the upper third of the vessel right position in a frame, the upper third of the vessel
being cylindrical, and the lower two-thirds tapered to being cylindrical, and the lower two-thirds tapered to-
ward the bottom, a hopper being in the upper part, the bottom of the hopper formed of sector-shaped wings hd an arm or rake being held above its floor, while th novel features.

Dusiness and PPersonal.
The charge for Insertion under this head is One Dollar a line for each insertion; about tight words to a line.
Advertisements must be received at publicuion offic as early as Thurrday mornin to appear in nexti iss e.

For Sale.-Ata low price, a full set of Patent Office Reports, excepting the year 1843; all but 5 volumes bound
in Half Russia. Address C. H. P., P. O. box No. 653 , New York city.
Specula for Reflecting Telescopes. Finest quality.
jinch, $825 ; 6$ inch, 330 . Pruf. Brooks, Phelps, N. Y . "Wrinkles in Electric Lighting," by V. Stephen;
with illustrations. Price, *1.00. F. \& F. N. Spon, New $\underset{\text { York. }}{\text { with }}$
For Sale.-Scientific american, 47 volumes ; January, 1882, to July, 1885. Bound or unbound. Wm. W.
Stepier, Wilmington, Del. Wanted-A second-hand Vacuum Pan, from 3 to 4 feet, with pump complete. Address P. O. box 88, De-
roit, Mich. Wanted.-Patented articles or hardware specialties to manufacture on contract or to manufacture and place
n the market. First-class facilities. Correspondence solicited. Address Hull Vapor Stove Co., Clevelana,
Ohirst
Volney W. Mason \& Co., of Providence, R. I., have sent a number of their Friction Pulless a
use in mines in Colorado and Montana.
Forging and Trimming Dies. Drop Forgings of all
kinds. Beecher $\&$ Peck, New Haven, Coon.
Billings' Double-acting Ratchet Drills. Drop Forgings
il kinds. Billings \& spencer Co., Harttord, Conn. Astronomical Telescopes, from $\theta^{\prime \prime}$ to largest size. obAstronomical Telescopes, from $6^{\prime \prime}$ to torgest size. ob-
ervatory Domes, all sizes. Warner $\&$ Swases, Cleveand, 0 .
Peerless Leather Belting. Best in the world for swift "How to Keep Bollers Clean." Send your address or free 8s page book. Jas. C. Hotcchkis, 86 John St., N. Y. The most complete catalogue of Scientific and Mechanical Books ever published will be sent
plication to Munn \& Co., 361 Broadway, N. \mathbf{Y}.
Shafting, Couplings, Hangers, Pulleys. Edison Shafting Air Compressors, RockDrills. Jas. Clayton, B'klyn,N.Y. Iron Planer, Lathe, Drill, and other machine tools of Every variety of Rubber Belting, Hose, Packing, Gasets, sprin Serass, Printers Blankets, manufactured by Boston
Belting Co.. 226 Devonshire $\operatorname{st.,}$ Boston, and 70 Reade St., New York.
Write to Munn \& Co., 361 Broadway, N. Y., for cata-
og ofe of Scientific Books for sale by the Logue of Scientific Books for sale by them.
Wanted.- Patented articles or machninery to manufac. re and introduce. Lexington Mfy. Co., Lexington, Ky . Mills, Engines, and Bollers for all purposes and of
every description. Send for circulars. Newell Universal
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. or Power \& Economy, Alcott's Turbine, Mt. Holly, N.J. Send for Monthly Machinery List
to the George Place Machinery Company,
121 Chambers and 103 Reade Streets, New York.
If an invention has not been patented in the United tates for more than one year, it may s4. Various other Canada. Cost for Canadian patent. \$40. Various other
foreign patents may also be obtained. For instructions
address Munn $\&$ Co., ScIENTIFIC AMERICAN patent address Munn \& Co., Scientific
agency, 361 Broadway, New York.
Gulld \& Garrison's Steam Pump Works, Brooklyn, v. Y. Steam Pumping Ma

Machinery for Light Manufacturing, on hand and Nit to order. E. E. Garvin \& Co., 139 Center St., N. Y. Nickel Plating.-Sole manufacturers cast nickel anolete outflt for plating, etc. Hanson, van Winkle \& Co.,
Newark, N. J., and 92 and 94 Liberty, St., New York. Newark, N. J., and 92 and 94 Liberty, St., New York.
For Steam and Power Pumping Machinery of Single and Duplex Pattern, embracing boiler feed, fire and low
pressure pumps, independent condensing outfits, vacuum, hydraulic, artesian, and deep well pumps, air compressers, address Geo. F. Blake Mfg. Co., 44 Washington,
St., Boston; 97 Liberty St., N. Y. Sena for catargue. Supplement Catalogue.-Persons in pursuit of informacion of any special engineering, mechanical, or scien-
tiffc subject, can have catalogue of contents of the ScIENTIF subject, can have catalogue of contents of the SCI-
ENTICRAN SUPPLEMENT sent to them free. The Supplement contains lengthy articles embracing the whole range of engineering, mechanics, and physical
science. Address Munn \& Co., Publishers, New York. Knots, Ties, and Splices. By J. T. Burgess. A Handbook for Seafaress and all who use Cordage. 12mo,
cloth, illustrated. London, 1884. Sent, postage prepaid, on receipt of 50 cts. by Munn \& Co., New York.
C. B. Rogers \& Cu., Norwich, Conn., Wood Working C. B. Rogers \& Cu., Norwich, Conn., Wood Working
Machinery of every kind. See adv., page 348 . Stephens' Patent Bench Vises are the best. See adv., Curtis Pressure Regulator and Steam Trap. See p. 365. Send for catalogue of Scientific Books for sale by
unn \& Co.. 361 Broadway, N. Y. Free on application. Best Automatic Planer Knife Grinders. Pat. Face Plate Chucks. Am. Twist Drill Co., Meredith, N. H.
Cushman's Chucks can be found in stock in all large
cities. Send for catalogue. A. F. Cushman, Hartford, cities.
Conn.
Crescent Steel Tube Scrapers are made on scientific Minciples. Crescent MIg. Co., Cleveland, Ohio. The Improved Hydraulic Jacks, Punches, and Tube
xpanders. R. Dudgeon, 24 Columbia St., New York. Hoisting Engines. D. Frisbie \& Co., Philadelphia, Pa. Tight and Slack Barrel Machinery a specialty. John
Greenwood \& Co., Rochester, N.Y. See pllus. adv., p. 30 . "To Mechanics."-When needing Twist Drills, ask Co., Cleveland, o. See page xi., Export Edition. The best Steam Pumps for Boiler Feeding. Valley Wood Working Mach Mass. Wood Working Machinery. Full line. Williamsport
Machine Co., "Limited," 110 W. 3d St. WW Will

NEW BOOKS AND PUBLICATIONS.

Commercial Organic Analysis. Vol.
I. By Alfred H. Allen. P. Blakiston I. By Alfred H. Allen.
Son © Co., Philadelphia.

This is the commencement of a revised edition of a standard work, containing m much later and additional
information. It is intended now to treat the whole sub. ject matter in three separate volumes, this one taking up bodies of the fitty series and of vegetable origin,and
including chapters on the alcohols, ethers, and other including chapters on the alcohols, ethers, and other neutral derivatives of the alcohols, sugars, starch, and
vegetable acids. The work will be found especially valuable to manufacturers whose business requires any
knowledge of chemical manipulations, and to all who have to examine commercial organic products for the
detection of adulterations or sophistications of any detection of adulterations or sophistications of any

The Windmill as a Prime Mover. By New York.
This work gives a fairly complete elucidation of the mathematics of windmill construction, as necessary for mathematics of
the engineer, together with a history of the introduc
tion of windmills, and accounts, with practical illustration of windmills, and accounts, with practical illustra-
tions, of most of the more recent windmills which have been introduced in recent ycars in this and other counMEC ECHANICS OF Materials, AND of
BEAMS, COLUMNS, AND SHAFTS. By Mansfield Merrim
Sons, New York.
This is a text book for the study of such only as have had a good training in mathematics and theoretical mechanics. It is designed for the use of classos in techarticle to enable the student to become well grounded in the theories stated.
The Angler's Guide Book. Compiled
and edited by W. C. Harris. The And edits' Publishing Company, 252 Anglers Puy, New York. 288 pages.
Price $\$ 1.00$. This is a very complete and useful book for persons 7,000 angling water are more or less accessible. It tells how to reach these points, the species of fish most abundant, the best
months for angling, the kind of baits or flies to use, list of hotels or boarding houses with their charges, cost of guides, boats, and baits where necessary, and the cost
of permits for fishing where required. permits for fishing where required.
4whumis
HINTS TO CORRESPONDEN'TS.

(1) E. E. W.-We think the steel and brass strips soldered together for a thermostatio bar
themost sensitive, and of longer range than the bowed the most sensitive, and or longer range than the bowed
wire. For a hygrometer use a strip of flat sheep gut stretched across the inside of the incubator, with one end fast and the other hung by a light spring, using th
moventent of the point of attachment as an index.
(2) F. S. M. asks how acid coloring is done on gold. A. For small gold articles a very good
plan is to place them on a lump of charcoal and make them red hot under the blow pipe flame, and then to throw them into a pickle composed of about 35 drops strong sulphuric acid to 1 ounce water, allowing the ar-
ticles to remain therein untll the color is sunficiently enhanced; washing the article in warm water in which finally rinsing and drying in boxwood sawdust, completes the operation. See also Spons' Workshop Re
(3) D D I writes Son time
save a cure for corns-collodion, salicylic acid and cannabis indica. I find it takes a long time to dissolve Extract of Cannabis indica

Salicylic acid.

Mix and dissoive. The result is a c...... 240 ution. There should be no difficulty ight green so lation. There should be no difficulty in its prepara-
tion. To prevent it from evaporating, keep the soluhemp, and not the American article; the latter is not hemp, and not
easily soluble.
(4) A. A. O. asks if he could manufacture glue from dog fish. A. Glue is largely made from the skins and refuse of fish in the same way that -ordi-
nary glue is prepared from the skins and offal of land nany gus. Thus far, however, it has been found impos-
animater sible to free it from the disagreeable fish-like odor, and
also it does not gelatinize satisfactorily. In the East also ic does not gelatinize satisfactorily. In the East a glazed earthen jar. which is stoppered tightly and
weighted so that it will remain under water. This jar weighted so that it will remain under water. This jar
is then placed in a pot of water until the scaies are reis then placed in a pot of water until the scaies are re-
duced to n semi-transparent viscous mass. Care should se taken that no water or extraneous matter, fluid or
solid, be allowed to get into the jar with the scales

Consult also "A Practical Treatise on the Raw Ma-
terials and Fabrication of Glue, Gelatine," etco, price terials and Fabrication of
$\$ 2.50$, by F. Dawidowsky.
(5) H. V. A. asks for directions for naking a small mine lamp. A. To make a phosphorus
lamp, dissolve 24 grains of phosphorus in an ounce of dive or cottonseed oil. The mixing should take place n a thin] flask, which must be placed in hot water.
When the phosphorus melts, cork the vial and shake vigorously untiln nearly melta, cork then being uncorked it mits considerable light. This preparation is an ex eerience in in the manipupuation of chemicals
(6) H. S. S., Jr., asks: 1. Would it be angerous, in case of lightning, to run a wire cable from the roof of one bock across the street to roof of an-
other, both roofs being tin? A. Unless both roofs are well connected with the ground, the lightning striking one roof might be conducted to the other, thence through the house, doing damage. 2. What result do
we obtain by mixing a solution of acetate of lead and a solution of sulphate of zinc? A. A precipitate of lead ulphate.
(7) C. G.-Silver is platinized as follows: Place some platinum in a small quantity of aqua regia or nitrohydrochloric acid, and keep it in a warm place
for a few days, whon it will have dissolved. As soon for a few days, whon it will have dissolved. As soon
as it hus dissolved, evaporate the liquid at a gentle heat untilit is as thick as honey, so as to get ric of the exeess of the nitric and hydrochloric acids. Add a little water, and it is ready for use. A dozen drops of this
solution goes a long way in platinizing silver. The atch glass to keep in the fumes, and placed a little sand in a saucer to equalize the heat.
(8) W. J. G. asks: 1. I would like a receipt for a varnish suitable to revarnish walnut arber chairs. dry quick. A. Use either of the follow ing: 1. Shellac $11 /$ pounds, naphtha 1 gallon; dissolve,
and it is ready for use without filtering. 2. Shellac 2 and it is ready for use without filtering. 2. Shellac
pounds, benzoin 4 ounces, spirit 1 gallon. Either pounds, benzoin 4 ounces, spirit 1 gallon. . .ither of
the foregoing makegageellent furniture varnish. It is best, however, to first thoroughly remove all varnish and other matter on the wood before applying a new coat
of varnish. 2. A receipt book giving receipts for making hair dyes, oils, cosmetics, pomades, etc., for barfumery and kindred arts by R. S. Cristiani, which we can send for $\$ 5.00$.
(9) A. D. asks how to clean and polish are cleaned as follows: Make a lye by boiling strong ashes; allow it to settle, pour the lye over the shells, and boil them six or seven hours, or longer, if they are
large; then soak, and wash often in fresh water. Dilute large; then soak, and wash often in fresh water. Dilute
acids, such as hydrochloric acid, mixed with from ten acids, such as hydrochloric acid, mixed with from ten
to twenty parts water, will readily eat away any portion of the shell. If polishing is pumice stone
where desired.
(10) A. B. S. writes: There were formerly on the market maps of the Holy Land, the uneven topography shown in relief. After the plates were lithographed, how was this done? A. The maps you de.
scribe are probably first made in clay, from which a plaster cast is taken. Into this female cast the paper pulp is forced, and the resulting cast constitutes the
map. The enscraved sheet is wetted, then stretched over map. The encraved sheet is wetted, then stretched over
the model, and glued down, the paper giving wherever necessary.
(11) J. B. writes: I wish to run a steam pipe from my boiler to lint room in gin house. I wish
to use this in case of fire. Would it be necessary to have the lint room very tight for the steam to extinguish fire? A. It is not necessary to have the gin house
tight, but it is well to have the pipe pass around the gin room and terminate under the gin, with perforations
various points so as to distribute the steam quickly.
(12) C. E. P. writes: Is there a way of putting up hydrochloric acid in a dry form soit can be some powdered substance that will not change the somen powdered substance that will not change the
character of the acid. It is used in the following way or the removal of tattoo marks on the skin: " Make a salve of acetic acid and lard, with which anoint the part
narked, then rub vigorously with a solution of potash and finally with diluted hydrochloric acid. A. Hydro hloric acid itself is a gas, and the acid of commerce is
mply an aqueous solution of the gas. No practical method exists by which the gas can be used in the dry orm. We do not believe that tattoo marks can be renoved by the method suggested. As regards the prebe to have it prepared by a pharmacist. The ordinary dilute solutions are made in the proportion of one of
${ }^{(13)}$ L. H. S. desires a recipe for preventing mildew in blotting paper used in copying let-
ters. A. If you dry the paper thoroughly in a current of air, no mildew spots should appear. As the mildew Is a fungous growth, dipping the paper into some con-
venient disinfectant should be all that is necessary. A solution of zinct chloride, carbolic acid, oil of cloves, etc., we should think would prevent its appearance.
(14) G. H. asks: What is out little holes in cast iron to make it smooth, before japanning same? A. Fill the holes with iron
putty made of iron filings or cast iron borings and putty made of iron filings or cast iron borings and
boiled linseed oil or a little japan varnish. Make the putty as hard as possible; fill the holes, and bake to arden. When hard, smooth with sand paper, when
it will be ready for japanning
(15) J. A. A.-Wood engraving is one of the most difficult of occupations to become an expert
in - much more so than an ordinary trade-and one seldom becomes moderately proflcient in less than four class of yoars. There is always a demand for the better
clane who are necessarily in some meal sure artists, but of poor engravers there is never any
are classes in wood engraving for females at the
Cooper Institute, New York, but practical wood en-
gravers engaging to teach the business wall gravers engaging to teach the business usually require a fixed sum therefor and a long time of gratuitous
work.
(16) J. P.-The water percolating from a zinc lined refrigerator should not be used. It is un-
doubtedly poisonous, and the flavor is anything but doubtedly poisonous, and the flavor is anything but
palatable. Make a heavy tin plate box soldered with palatable. Make a heavy tin plate box soldered with et it in the ice bec.
will be still bette.
(17) H. A. L. asks how to remedy lothes which have become shiny. A. The shininess is generally due to wear, and under such circumstances
cannot be restored. The following reviver may prove
useful, however. Tate of blue galls brused 4 , ogwood, copperas, iron filings free from grease, each ounce. Put all but the iron flings and copperas int 1 quart good vinegar, and set the vessel containing
them in a warm water bath for twenty-four hours; then dd the iron fling water bath for twenty-four hours; then or a week. The preparation should be kept in a well corked bottle. It may be applied to faded spots with
(18) Scud asks: What can I coat a musin bag with that will make it air tight, and also flexi ied wo that when not inflated it may be rolled and car ut shreds of India rubber and 1 pin ounces of finely form, washed ether or carbon disulphide; diegest in the cold until solution is complete. It will dry as soon as it is laid on. Pure gutta percha may be subs tituted for the India rubber.
(19) W. F. B. asks: 1. If a nickel soluscribed in Supplement, No. 192, and 10 ounces of chloride of nickel be used with 4 ounces of boracic acid, what would be the amount of water required to make
the solution? A. Use 1 gallon of water to 1 pound of the solution? A. Use 1 gallon of water to 1 pound of
the crystals. The exact quantity of water is not important, for the reason that just as fast as the nickel is deposited on the object to be plated the nickel anode
gives up an equal amount of nickel to the solution,so that its camposition remains constant. 2. Should a nickel solution be worked hot? A. Watt's "Electro-Metal lurgy," practically treated. Price $\$ 1.00$.
(20) V. B.-We cannot recommend the quaitt of an objective made from plate lasse unless it
was thoroughly examined and found of even density. The curves cannot be given without a knowledge of the densities or refractive and dispersive indices of both
glases. You may make the radius of all the curves glasses. You may make the radius of all the curves
about 216 feet with one side of the flint glass flat, and hen make the correction of curves by trial and obthe nature of the glass.
(21) W. F. B. -The trouble with steam tricycles is not with the light engine, but with the heavy
boiler, water, and fuel. They have been built in Eng. and to run 8 to 10 miles an hour. We do not think you can attach an engine and boilier to any ordinary tricy-
cle that will be of much service. The power stated would no doubt give the desired speed. Fuel, water and attendance make the trouble.
(22) E. J. W. asks: 1. What kind of bells? A. Best tool steel. 2. Is it used in a tempered or soft condition? A. Soft. Small triangles may be (23) J. P. A.-We do not know of any chosen, there should be as much pains taken to have it well done as with those of a larger size. A horizontal cylinder 15 inches diameter, 2 feet long, with lower
half fifled with tubes of any convenient size, can be made by a coppersmith of suitable thickness for pres ure required; 6 square feet of fire surface will be suffi cient for one-third horse power. We do not recommend
apipe boiler, which if made of serviceable proportions apip boiler, which if made of serviceable p.
s more difficult to make than one of copper.
(24) H. S. asks: Will you be kind enough to inform me which "system of stenography "
you consider the most efficient and best adappted for you consider the most efflcient and best adaptes for
practical use in regard to quickness and plainness for beginner? A. Pitman's system is largely used by are likewise both extensively used.
(25) W. E. S. writes, relative to the question of the moon's presenting to the earth the
same side always: There may be known conditions in
this problem not within my this problem not within my knowledge, which forbid would seem to be sufficient to account "for this phenomenon, to wit, a preater density in tow part of the
moon which is next the earth, as compared with the remainder, or such a shape of the moon as gives a
greater amount of material in that part, with the necessary consequence, through attraction of gravitation, of holding that part always next the earth. A. Its form
may not be a perfect sphere, and it may also be over may not be a perfect sphere, and it may aleo be over these conditions have been derived from its original condition of rotation, and yet we do not know the fact of its initial rotation, or why it is different from its imary
(26) D. T. writes: I wish to prepare different chemicals by using the direct process, avoiding quinia. What quantity of each must be used? The information you desire eash determined by calculaThus,for instance, in the case of barium sulphate, BaSO we find that the atomic weight of Ba is 137 ; of SO
$\mathrm{S}=32, \mathrm{O}=16 \times 4=64 ;$, 96 ; hence barium is 837 of 100 ; on 59.23, thatis to say, Ba combines with SO_{4} in the proportion of $59 \cdot 23$ of Ba to $40 \cdot 77$ of SO_{4}. Therefore in every 100 pounds of barium sulphate there are 59.23 pounds
of barium and 4077 pounds of the SO. In like manne of barium and $40^{-7 \%}$ pounds of the SO. In like manner
you must compute from the formula of borate of guinine
the exact amount of quinine necessary for your prepara
tion. Double decomposition in most cases is far sim (27)
(27) R . asks: What is a sure destrucround the infested places A. Powdered borax sprinkled nd black ants. Powdered clovese is said to drive them way. Another plan is to grease a plate with lard, and et it where these insects abound. They prefer lard to anything else, and will forsake sugar for it. Place a
few sticks around the plate for the ants to climb up on. Sticks around the plate for the ants to climb up with the melted lard
(28) W. T. H.-The sample is simply nsized paper dipped in a strong solution of Prussian ounce soft Prussian blue, powder it and putit in a bottle with 1 quart of clear rain water, add $1 /$ ounce of oxalic cid. A teaspoonful is sufficier ${ }^{\text {a }}$ for a large washing.
(29) F. B. D.-In the growth of vines nd plants the stalks simply enlarge at the bottom, and pat out the growth from the top: they do not pull or a thunder storm of great intensity. Its effects are inensified in the canons of the Rocky Mountains by their teep and rocky slopes precipitating the water into the gorges. A water spout is the sucking up of water
from sea, lake, or river by a tornado, which in 1ts trn may become a cloud burst by its precipitation at different locality
(30) J. F. N. wants to know all about petroleum soaps and how they are made. A. Caustic
ye at 36° B. is placed in a suitable vessel, and then lye at $3{ }^{\circ} \mathrm{B}$. is placed in a suitable vessel, and then
equal parts of animal 4 tity matter and mineral oil are placed in separate vesseds. The combined weight of standard, boric acid sufficient to dissolve the alkali is ased; the mineral oil is heated to a temperature of about 0° Fah., and the animal fatty matter is melted by steam eat, and while in this condition a quantity of boric cid is dissolved therein, which, with that acid used as before, will make up $1 / 2$ per cent of the combined weight
of the fatty matter and mineral oil employed. The of the fatty matter and mineral oil employed. The partly acidified animal fatty matter and the mineral oil,
being heated in separate vessels, are now united by gradually pouring the former into the latter, with contant stirring or agitation, in order to effect a perfect dded, and the mass kept well stirred. The process of onverting the mineral oil into a solid is completed by gradually adding the ordinary or unacidified alkali in sufficient quantity to effect this result, keeping up the gitation as before. When the entire mass is found to compound is complete. While animal fatty matter only
conversion into a saponaceous compound is complete. When mentioned, the same results can be reached by the use of vegetable fatty matters. The soap is finlished by a jet of stasm to thoroughly deoxidize the aponified matter and disintegrate the compound. After he use of steam for this purpose, the soap is boiled by aperheated steam.
(31) C. H. R. desires to know the incementing hair in the handles of brushes. A. Paint brushes are made by inserting a bunch of full length
bristles between two projecting prongs on the handle, bristles between two projecting prongs on the handle,
and securing them by a wrapping of twine which is afterward coated with a covering of glue mixed with d lead. Equal parls of asphalt and gutta percha melted together and applied hot under a
a black cement of considerable strength.
(32) C. E. F. desires the receipt for makng and applying the gilt or lacquer that opticians and their fine brass work. A. Take $3 / 4$ ounce gamboge, 2 unces gum sandarac, 2 ounces of gum elemi, 1 ounce dragon's blood, 1 .ounce of seed lac, 2 grains of orienof saffron, and 20 ounces of pure alcohol. The tincture our hours obtained iny infusing in alcohol for twentmer. The tincture must be strained through a piece of clean linen cloth, and ought to be strongly squeezed. his tincture is poured over the dragons blood, the
(33) W. S. M. desires a receipt for a ement that will stick leather, something that oil or water will not affect, and at the same time is pliable and will not crack. A. Gutta percha dissolved in carbon
disulphide to form a mass of treacly consistence is probably the best cement for splicing leather. The parts to be joined must be thinned down; a small quan-
tity of the cement is then poirred on each end and spread as to thoroughly fill all pores of the leather; the parts are warmed over a fire for a few minutes, applied quickly, and hammered well together. Or gutta ercha 1 pound, India rubber 4 ounces, pitch 2 ounces,
(34) E. N. H.-Colored or plain engravings, photographs, water colors, on colors, crayons, the following manner: Take glass that is perfectly clear, lean it thoroughly, then varnish it, taking care to have ree from dust; let it stand over night, then take your ngraving or photograph and lay it in clean water until it is wet through, say 10 or 15 minutes, then lay it upon a newspaper, that the moisture may dry upon the surface, still leaving the other side damp. Immediately ng upon it, pressing it down firmly so as to exclude very particle of air; next rub the paper from the back ntil it is of uniform thickness, so thin that you can see

(35) G. C. K. asks: How could I prepare helenina or elecampane to make tests with it in butter
to keep? If it is wholesome for veal and eggs, it must to keep? If it is wholesome for veal and eggs, it must
be so for butter. Would alcohol in this case be detected? . The helenina is obtained by evaporating the alco-
about one ounce or less of the dry powdered salt with
every 60 pounds of butter, and knead well. Be careful to crush all small lumps which may form, and have the substance well distributed throughout the mass. If the as concentrated a solution as possible, or else dilut with water the alcoholic extract and use that. The alcohol is not likely to affect the butter unless used in a concentrated form. Of course thoroughly mix th solution through the butter by kneading, etc.
(36) H. R. C. asks: Is there a point in the axis of a revolving wheel in which there is no mo tion? A. There seems to be much misunderstanding
as to the meaning of the word axis,it being a line having nether breadth nor depth, around which a body re volves. Every particle of the body revolves or moves
around its axis. The axis does not revolve. Axles re-
(37) W. H. D. asks (1) if worn out files can be recut by using acid? A. Yes. 2. With what
success? A. Fair. 3. Whatacid to be used? A. 1 part success? A. Fair. 3. What acid to be used? A. 1 part
nitric, 3 parts sulphuric, 7 parts water; dip from 5 seconds to 5 minutes. 4. What can be used in place of oil on the drawing and blanking dies? The oil touch (38) W. M. B. asks for an easy and cheap way to clean beer bottles, that is, what can I put in water to make them become clean, and at the same time remove old labels, etc.? A. At factories where revolving brush, which is pushed in through the mouth of the bottle, turned around once or twice, and then with drawn. The labels are acted upon by simply soakin in water and then scraping with knives. If the bottles cleanse them, and sometime alkalies are used to cleanse them, and sometimesacids are used, but we be-
lieve as a general thing that nothing but water is employed. See the article "How to Clean Bottles," Scien-
(39) C. D. writes: There is a bet between two miners here who are working Burleigh drills. claims that there is more pressure in a $21 / 2 \mathrm{inch}$ pipe-a
conductor of compressed air-than in the $3 / 4$ inch pipe conductor of compressed air-than in the $3 / 4 \mathrm{inch}$ pipe
leading from it. B claims that the pressure is not leading from it. B claims that the pressure is not re-
duced by transmission into the smaller pipe. How isit? duced by transmission into the smaller pipe. How is it?
A. If the drill is not at work, the pressure is uniform throughout the various sized pipes. If a drill is running by a $3 / 4$ branch from a $21 / 2$ inch pipe, the pressure is less in the $3 / 2$ pipe than in the $2 / 2 / 2$ inch main-the
amount depending upon the speed of the drill or the reamount depending upon the speed of the drill or the re-
lative velocities of the air moving through the two pipes.
(40) J. H. desires a recipe to make Per sian sherbet powders. A. We presume you refer to
the following: Take 8 ounces carbonate of soda, 6 ounces tartaric acid, 2 pounds loaf sugar (finely powdered), 3 drachms essence of lemon. Let the powders be very dry. Mix them intimately, and keep them fo good sized teaspoonfuls into a tumbler, pour in $1 / 2$ pint of cold water, sttr triskly; and drink off. See also article on Summer Beverages in Scientific American Supplement, No. 192
(41) S. S. S. writes: I have a canvas and leather strop for stropping razors, but they don't put a keen edge on. What shall I put on to mend them? A.
Razor paste is made as follows: Mix fine emery inti Razor paste is made as follows: Mix fine emery inti
mately with fat and wax until the proper consistency is obtained in the paste, and then rub it well into the leather strop. Prepare the emery by , pounding thor oughly in a mortar the coarse kind, throwing it into a
large jug of water, and stirring well. Immediately the large particles have sunk, pour off into a shallow plate or basin, and let the water evaporate. Another receipt is, levigated oxide of tin, prepared putty powder, 1 ounce, powdered oxalic acid $1 / 4$ ounce. powdered gum 20 grains; make into a stiff paste with water, and evenly and thinly spread it over the strop. With very little friction this paste gives a fine edge to the razor, and its efli (42) B. B. ask for a mis moistening it.
(42) B. B. ask for a mixture that will clean rags that have been used in wiping off oil. A.
Boil the rags with a dilute solution of caustic and then wash in water to make them of caustic soda chemicals. 2. How wood filling is made of oil and corn sta ch? A. For porous hard woods, a filler is made by using boiled linseed oil and corn starch stirred into a very thick paste; add a little japan, and reduce with
turpentine. Add no color for light ash; for dark ash and turpentine. Add no color for light ash; for dark ash and chestnut, use a little raw sienna; for walnut, burnt um-
ber and a slight amount of Venetian red; for bay wood ber and a slight amount of Venetian red; for bay wood
burnt sienna. In no case use more color than is re burnt sienna. In no case use more color than is re
quired to overcome the white appearance of the starch, quired to overcome the white appearance of the starch
unless you wish to stain the wood. The filler is worke with brush and rags in the usual manner
(43) G. W. S. asks: What can I coat muslin bag with so that it will be air tight and pliable, that it may be readily rolled when not infiated? A
Take $11 / 2$ ounces of India rubber, cut small, and of chlo roform, ether (washed), or carbon disulphide, 1 pint; digest in the cold until solution is complete. Dries a soon as it is laid on. P
tuted for India rubber.
(44) J. S. McL. asks how the letter press printing plates are made of celluloid. A. The process is patented and the property of a company. It is par
fially secret also. 2. Is there a liquid solder that will solder metal plates together without the use of a ho soldering bolt? A. A so-called liquid solder is prepared as follows: Feed hydrochloric acid all the small pieces of zinc it will eat, dilute with equal amount of
water, and it is ready for use.
(45) E. G. P. desires a receipt for whit ening a helmet covered with white cotton cloth, some thing that will not rub off. A. There is no preparation
for the purpose, but among individuals chalk is used for the purpose, but among individuals chalk is used
frequently to cover over defects. A little pipe clay
(46) S. J. H. asks for some means by which the odor of a new refrigerator can be gotten rid butter, and milk suffer most, but other things more
or less. A. There is no very satisfactory means that
we can recommend for this purpose. A vessel filled we can recommend for this purpose. A vessel filled with water or milk will absorb odor about as quickly as anything. The refrigerator should be lined with metal, and that thoroughly washed. 2. What will de
stroy currant worms? A. See the plan recommended in Scientific American Supplement, No. 242, under title of "Currant W orms." See also "Black Ants as a Cure for Currant Worms," given in Scientific Amertcan Supplement, No. 316. 3. Will remedy for currant worms be eflicacious in destroying slugs on a rose bush
A. Sprinkling beds of vegetables and flowers with a ark solution of chloride of lime is said to effectually rve them from caterpillars, slugs, etc.
(47) J. A. J. wishes to have full particu ars of how to cover copper wire with gutta perch and cotton, etc.. also how to construct a cheap ma-
chine to do the same. A. The copper wire is drawn hrough vessels containing the guttapercha in a melted ondition. A sufficiency of this material adheres to the in order to give proper shape and thickness. There are everal modifications of this general process, and the
(48) S. T.-We know of no mineral hatlis pliable
(49) J. M. S.-For cleaning a running ngine, use tripoli or rotten stone with kerosene oil. If he hollow places get gummy, use a stick dipped in the cloth or flour of emery on neglected parts. After once getting your engine clean, the less emery you have round the better. If you wipe and clean every day, use only a little whiting wet with kerosene. If you use mineral oil for lubricating, you may need but very little polishing powder of any kind. Use only whiting on
(50) T. C.-The "invention" you men ion as having been recently brought out by an exhibition company for producing tableaux, etc., was fully described by us some twelve years ago, as Pepper's ghost. The real figure, which is not seen by the ob-
server, is seated below the stage, in the light of a strong arver, is seated below the stage, in the light of a strong mp , and facing a mirror, while above the figure is t an angle of about 45°. The ghostly inage or reflecion is then seen by the observer apparently above and behind the real figure
(51) J. W. B. asks (1) how to make Grenet battery. A. Procure two plates of zinc two ize, and two jars adapted to receive them. Amalgamate the zincs, place one zinc between two carbon plates in each cell, and separate the carbons from the zinc by means of rubber or wood; the distance should be $1 / 2$ inch. Place in each cell a bichromate solution
which you will find described in recent Notes and which you will find described in recent Notes and
Queries. Connect the zinc of one cell with the carons of the other, and connect the remaining carbons nd zinc plates with your lamp; arrange the elements so hat you can readiy plange themtor wither nd if No. 20 of cotton insulated wire would do? A. For instructions on electro-magnets consult Suppleent, No. 182, in which you will find a great variety of orms described. Cotton insulated wire will do. 3 ould old insulated wire (cotton covered) be made good running it thr gh moted shoemak's wax, leaving will answer; better cost it with beeswa insuath with
(52) C. L. M. asks: Which side of a belt hould be run on the face of a pulley-the grain or flesh A. All the best belt makers say, run grain side to the pulley, and it is claimed that 33 per cent more power can thus be transmitted than with the flesh side next he pulley. The grain of the leather has a velvety surace, which enables it to hug the pulley closer than will the hard flesh side. Some users run the flesh side o the pulley for small belts, and then daub and stick up the belt with beeswax or resin to make it take hold, workmanlike, and there is always more or less fussiness in running machinery where the belts are so treated, instead of their running for years without any attention, as they will sometimes do when run grain side to the pulley, and of proper size to transmit the desired
(53) E. J. S.-The Waterbury watch was invented by Mr. D. A. A. Buck, who also built an engine so" small that, with boiler. governor, and pumps, would stand on a gold dollar. It was $5 / 8$ inch high, had 148 separate pieces, held together by 52 screws,
and 3 drops of water were required for the boiler. Diameter of cylinder one-sixteenth inch, stroke three irty-secondés inch, total weight 15 grains.
(54) J. \&. T. asks: Will a spring, if it held in tension, lose its elasticity if it not used? Take or example a spring door hinge held either open or hut for a year at a time, and not used in that period, the best mital to make aprings of for that What as the best metal to make springs of for that purpose, city if strained in either direction? A. Hardened eel springs retain their elasticity under restraint for many years. Brass springs weaken.
(55) H. H. L.-An electric current must ave both quantity and intensity to kill an individual. ing porous paper so it will take ink, except by the use of size, as paper manufacturers do.
(56) H. P. B. -No insulation for mag etism has been discovered. A substance for this purpose might
it valuable.
(57) W. H. B.-The pitch of screws is a matter of study in regard to the lines of the boat. The narrow, fine lined boat will allow of greater pitch than
a blunt, wide boat. The proposed speed of screw and boat are also essential elements in the computatid

Screws vary in pitch from one and a half to twice their
diameters. You will find interesting details in regard diameters. You will find interesting details in regar
to power, velocity, and form of screw propellers in SIIEntific American Supplement, Nos. 370, 101, 272 ,
15,208 , and a book on screw propulsion, by Walker, 15,208 , and a book on screw propulsion, by walk
cents, which you may obtain through this office.
(58) G. M. G. asks: 1. What pressure is a steam trap for returning water from heating coils, etc.
o the boiler liable to? A. The boiler pressure. the boiler liable to? A. The boiler pressure. boiler pressure? A. None, by its proper use.

INDEX OF INVENTIONS

which Letters Patent of the

United States were Granted
June 30, 1885,
AND EACH BEARING THAT DATE. [See note at end of list about copies of these patents.] Air compressor, W. T. Fox...................321,206, 321,207
Alarm. See Burglar alarm. A malgamator, dry ore, H. Kappner. Axle and box, carriage. J. Fowler. Axle nut, vehicle, A. v. Smith... Bandage, suspensory, E. G. Winchester
Bathtub, portable, C. A. Hayward.....
Bearing , 320.937 .. 321,022
. 32,1217
301,351 Bearing, anti-frictional, T. R. Ferrall...............321,50, Bedstead, J. Garrand
Beeswax Beeswax extractor. J. D. Enas.
Belt clasp, G. E Zeltm
Belt Belting, B. L. Stowe.........
Bench. See Draw bent

Bicycle, W. N. Eyster

Blasting timber, W. T. McCa Boiler. See Steam boile

Biiler. See Steam boiler
Bolt. See Flour bolt.
Book backing, G. A. Schurmann.. head shoe edge trimn Boot or shoe, P. Fischer.
Boots or shoe
Boots or shoes, manufacture o
Bottle stopper, E. H. Morgan. Bottle stopper, E. H. Morgan
Bottle washer, H. P. Merriam Bot. See Paper box.
Box. A. Saupiquet...
Bracelet clasp fastening, G. W. W. Washburn.
Bracket. See Iamp bracket. Bracket. See Jamp bracket.
Brake. See Car brake. Wagon brake. Bran duster and cleaner, Hogeboom \& Smith... Breast shield, J. B. Phillips.
Brick machine Brick machine, H. Martin............................
Bridges, safety gate for pivot, J. H. QuackenBridle blinder, H. A. Johns

Buckle, J. M. Basinger Bureau. D. R. Kinley.

Bureau. D. R. Kinley.
Burglar aiarm and sa
ash fastener, combined, J
Burner. See Gas burner.
Buttonholes, device for cutting and centering, F
W. Ostrom............... W. Ostrom...

Camera. See Photographic camera.
Can. See Creaming can. Oil can. Sheet meta
can.
Can heading machine, F. A. Walsh. Cane, apparatus for tre
Chapin.....................
Cr brake, $\mathrm{F} . \mathrm{G}$. Susemihl.
 Car couppling, L. Anderson.
Car coüpling, E. M. Brown Car coupling, Curtis \& Woo Car coupling, M. Fennell...
Car coupling, J. N. Leroux Car coupling, J. N. Ler
Car coupling, J. MCoy.
Car coupling, J. O'Brie
Car coupling, J. J' o'Brien......
Car coupling, w. s. Temple
Car coupling, westbrook \& Co
Car, dumping, J. M. Hartman.
Car platorm, saing
Car starter, J. King......
Car starter, J. Van Zandt.
Car ventilator, Doyle \& St
Car wheel, self-lubricating, P. B. Perkins
Car window, railway J. B. Whitne
Car window, railway, J. R. Whitney......
Card grinding machine, wire, w. Decker
Cad Carding machine, G. \& E.
Carriage, W. E. Roberts.
 Stone..
Carriage se
Carriage seat, C. Morgan....
Carriage spring, s. Gilbert
Carriage, spring, C. C. Hayes
Carrier. See Straw carrier. Trace carrier.
Cartyidge, A. S. Iyman............
Cartridge loading machine, Strand \& Gilbura...... 321,25
Case. See
case.
Cash and
transporting, J. R. H. Hinton

Cash carrying apparatus, D. H. Ric
Cash register and indicator, c. J. Weinman
Cement, manufacture of, Lesley
Cement, manufacture of, Lesley \& Griffith.
Cement, manufacture of Portland

Griffth.

Chain, drive, E. Huber.
Chair. See Convertible chair. Infant's posing chair. Revolving chair. Rocking chair.
Check rower, O. J. Colton..
Chickens, artiffial mother for raising, н. в. Tat
ham, Jr. ham, Jr...
Chocolate cre
marking, Hswley \& and other confectione
marking, Hawley \& Hoops.
Chuck for dem settings, C
Cider press, E. W. Lehman....
Cigar machine, G. W. Tanner
Cigar machine,
Cigar support, C. C. Knowlton
Clay crushing machine, Alsi
Clock, electric, F. Bauman
Coal drilling machine, Johnson \& Thompson
Coffin, S. Coombe.

Convertible chair, E. H. Lew
Cork retainer, E. H. Morgan.
Corset, I. S. Purinton.
Corset bustle attachment, M. A. Waterhou
Corsets, etc.. stiffener for, J.
Cot, folding, H. D. Hard.
Corsets, etc..stiffener for, J. F. J. Gunning.......... 321,
Cot, folding, H. D. Hard...................................321,
Cotton and hay press, R. Garside.............
Cotton chopper, J. F. Barringer................ 321,
. 321,230
$.321,237$
oupling. See Car coupling Hose co..... 321,174
Pipe coupling. Thill coupling. Wagon box
coupling.
Crackers, machine for packing, J. McClur

drill.
Drilling machine, U. \& H. E. Eberhardt............. 321,196
Ear jewels, ball cover for, G. W. Washburn
Ear jewels, ball cover for, G. W. Washburn.......... 321,407
Earring, c. E. Westcott.................... 320.991
Eaves trough hanger, W. C. Berger................... 321,180
Eccentric, shifting, Black \& Kaffenberger......... 321,001
Egg beater, J. E. Welling.................... 321,327
Electric cable joint. W. R. Patterson.................. 321,240
Electric motor, J. M. Pendleton............. 321,049
Electric responding signals, producing, A. G. Hol- ${ }^{221,110}$
Electrical conductors, into conduits, driving, D.
N. Hurlbut......................................
Electrical instruments, protector for, D. J. Cart-
Electrical instruments, protector for, D. J. Cart-
wright................................... 320,912
Electro-dynamic motor, F. J. Sprague, $31,147,321,148,321,150$
Elevator cages, safety device for, P. F. Laar-
man.. 321,303
Embroidering machine, hand, S. A. Scofeld..... 321,318
Engie. See Retal
Envelope machine, L. P. Bouvier............................... 321,183
Envelope, reversible, J. Hofmann.............

Exercising apparatus, J. E. Rubesa................................321,388
Exercising machine, Clarke \& Harsin............ 321,278
Exercising stool or chair, portable, G. J. F.
Tate.................................. 321,157
an, fiy, W. R. Fowler.....
321,352
321,270
Fastener, A. P. Moses...32,953
321,38
Feed water heater, W. . . Burk........
Feed water heater and purifler, A. W. Ward...... 321,406
Fence, I. W. Archibald...................... 321,171
Fence, barbed, E. S. Whe..........
Fence making machine, J.
Fence making machine, J. M. Harrop....................
Fences, machine for manufacturing, C. A. Norl321,264
321,359

Fifth wheel, J. M. Foote
321,047
321,203
3

Fire kindle, J. E. Hignutt........................... 321,027
Fire tube boiler, N. W. Pratt...................248
loor boards,
Flour bolt, N. W. Holt (r)...617
Flour mill roller, J. Pauly.................... 321,241
Frame. See Drawing frame. Grindstone frame.
Slate frame. Wire frame.
Fruit drier, L. W. Parsons........................ 321,135

nace Ore roasting furnace. Portable fur-
nace.
Gauge. See Screw thread gauge.
Game counter and register, A. Nicken.............. 321,046 McCarty...321.124
321,274 Gas, making, W. F. M. McCarty.............................321,125 Gate. See Railway gate. Swinging gate. .
Gat............................ 321,215 Generator. See Steam generator.
Gland or packing follower, R. M. Fryer........... 320,924 Glass furnace, regenerating and reverberating.
W. F. Modes...................................... 320,951
Glass tubing, manufacturing, w. L. Jukes...... 321,369 Glass tubing, manufacturing, W. L. Jukes.......
Glassware, ornamenting the handles of article of, J. S. Dignam..............
Glove fastening, G. W. Prentice.................................320,920,00

 Grinding ring, metallic, J. G. Mole................... 321,045
Grindstone frame, J. B. Johnson.............. 31221
Gunnery
Gunnery, A. S. Lyman............................. Gymnastic performance with rats
plement for, J. B. Peirano.... Hame, J. Bloedel.
Hame, G. J. Letchworth. Hame fastener, Heinzer \& Gillingham....................
Handle. See Door handle. Shovel handle. SurHandle. See Door handle. Shovel handle. Sur-
gical instrument handle.
Hanger. See Door hanger. Eaves trough hanger.
Harrow, H. L. Whitman... Harrow, rotary, C. Hawley...
Harrow, wheel, D. H. Dolby.
Harvester finger bar, W. L. W
Harvester reel, D. Gingrich...

321,071
321,105

22,243	Pump, force, T. Barb
$\begin{aligned} & \cdots 3.0,404 \\ & \cdots 321,73 \\ & \cdots 321,316 \end{aligned}$	Pump, meas
	Rack. See
	Radiator, stean
	Railm
	Railway end
375	Railway
	Railway
029	Railway sw
$320,945$	
321,309321.076	
$\begin{array}{r} .321,076 \\ .321,185 \end{array}$	
321,013	
330.099	
$\begin{array}{r} .321,250 \\ .321,145 \end{array}$	
321,146	
$\begin{aligned} & 321,0,20 \\ & 320,941 \end{aligned}$	
$\begin{aligned} & 320,941 \\ & 321,395 \end{aligned}$	
$\begin{aligned} & 031,0,35 \\ & 321,21 \\ & 321,166 \\ & \hline \end{aligned}$	
$\begin{array}{r} 321,166 \\ .321,314 \end{array}$	
$\begin{array}{r} 320.966 \\ .321,191 \end{array}$	
$\begin{aligned} & 321,191 \\ & .321,044 \\ & .3 \end{aligned}$	Rubber and
	S
$\begin{aligned} & 321,235 \\ & 321,300 \\ & 321,409 \end{aligned}$	
	Salt grainer attachment, J. Cusson Salt, manufacture of, J. M. Duncan.
	Sand mould, J. Hobbs... Sash
	Sash balancing device, H. Jones...
	Saw mill, band, J. Cook..............
32,393	
	Sawing machine, circular, J. Connell................ Scale and flour and bran. packer, combined elec-
	Scale, automatic grain. J. F. Milligan................. School seat and settee, adjustable, J. Pedersen....
	Scraper or planer, road, H. D. Cook. Screwdriver, N. W. Farrand.
103	
	Screw, gimlet pointed rolled wood, H. A. Harvey.
	Screw machine, meta, L. .P. Smith...............
	Separating machine, Mumford \& Moodie.........
	Sewer tra, LL. Fail.....
	$\begin{aligned} & \text { wing machine needle gu } \\ & \text { well, Jr................. } \end{aligned}$
	Sewing machine presser foot, H. P. Lancaster.... Sewing machine quilting attachment, H. T.
	wing machine quilting attachment, D. R. Fra-

$\begin{aligned} & 321,3655 \\ & 321,070 \\ & .321,03 \end{aligned}$	Shaftin, making long lengths of, T. R. Mor-gan, sr............................
	Shovel. See Snow sho
	sifu, C.C. C. calaes.........signal. See Railway signa
	Skate roler, A. Hall...e...............................
	Skate rolier A. Lancaster........................
	Skate roller, J. N. Ward.....................
	Slate frame and pencil case, J. H. Johnson
	Sodium sulphite, making, E. Carey et al Sole channeling machine, J. E. Jackson.......
	Sowing machine, T. D. Galloway..................Speculum, reetal, w. M. Baldwin. Jr.....
377	Sphere, terrestro-siderial, J. G.
	stair rod, T. Worrey
	Stamp, hand, W. H. Keel
	Steam boiler, C. M. Gidd
	Steam boiler he
	(team boiler
	Steam engine, IL. B. Ca
	m
	deam generator, J. R
	ne, composition
	one dr
	ne sawing or rubbing ma water feeding mechanism f

Twist drills, machine for making, F. H. Richards
320,98,
Umbrella frames, machine for riveting, A
Ligibel...........
Valve, G. F.Pottle.
Valve gear, J. R. Deering.
Valve gaear F. W. Jenkins.
Valve gear, A. B. Landis.
Valve gear, A. B. Landis............
Valve, rotary steam, G. W. Sypher
Valve, steam-actuated, L. B. Carricaburu
Valve, steam boiler, Edwards \& Schultz.......
Vat. See Liming vat.
Vehicle wheel, A. W. Grant...
Vehicle wheel, T. M. Hammond
Ventilator. See Car ventil
tilator.
Vest protector, T. S. Beals.....
Wagon box coupling, D. M. J
Wagon box coupling, D. M. Jones.
Wagon brake, C. Beeringe......
Wagon brake lever, G. P. Riester.
Wagon jack, F. Kellogg.....
Washer. See Bottle washer.
Washing machine, G. A. Eppel
Washing machine, G. A. Eppel
Washing machine, J. Howell...
Washing machine, J. Howell...
Washing machine, A. T. Jackso
Washing machine, P. Lawson.
Washing machine, C. W
Watch case, E. Haas
Watches, machine for roughing out pinions for
C. V. Woerd.....................................
Water closet bowl, porcelain, R. H. Watson.....
Water closets, water supply apparatus for, T

Water conveying apparatus, A. C. Hare............
Wz.ter courses, apparatus for cleaning, widening
and deepening, Gifford \&
Water motor, H.L. Walker.
Wave power, mechanism for utilizing,
Leavitt........................

Wheel. See Car wheel. Fifth wheel. Vehicle
wheel.
Whistle, A. L. Fisher........
Wig, A. F.Godefroy......
Windmill,
Windmill,
Window. J.
Wire drawing die, E. M. Joh
Wire frame, H. F. Fordha
Wire frame, H. F. Fordham..............................
Wire stretcher and staple puller, combined,
Wrapper for silks, etc., T. J. Oakley
DESIGNS.
Carriage step, J. M. Foote...
Closet hopper, H. W. Mansur
Closet hopper, H. W. Mansur.
Gimp, H. Wynkoop
Gimp, H. W ynkoop...
Hair crimp, c. C. E. Van Alstine.
Thermometer back, C. H. Myers.
TRADE MARKS
Beer, lager, J. Ruppert
Case containing selected instruments and standar
remedies, portable, Sun Chemical Company...
Chewing gum, Adams \& Sons........
Cocoanut, preserved, Croft \& Allen
Cocounut, preserved, Crot
Cottons, bleached, white, and
Woods.........................
Dress shields, A. H. Brinkmann...
Dress shieldas, A. H. H. Brinkmann
Flour, wheat, Fisher \& Wise
Flour, wheat, Fisher \& Wise............................
Flour, wheat, Oliver \& Imboden Company ... 12365,
Flour, wheat, Oliver \& Imboden Company 12,365,
Food for infants and invalids, Wells \& Richardson
Company..
Goves. kid, Newman \& Levinson
Hair tonic. Bloomingdale \& Rich
Hats, fur and wool, Knights of Labor Co-operative
Hat Company
amps, copper or
Lamps, copper or brass kerosene, Geiss \& Kleine.
,293 Meat extract, Liebig's Extract or Meat Company,
Medicine, the vehicle of which is in granular form
A. C. Chanteaud....
Oil, hoof, A. Spietaler..
Powders for the cure

321,210

1,210	Ribbons and dress goods, silk, Phoenix Manufac-
321,160	g Company................................. 12
,382	Soap, laundry, Oberne, Hosick \& Co.
320,929	Soap, toilet, S. W. McBride
	Starch, maize, Danville Refining Company.......... 12,360
321,107	Tacks, Pennsylvania Tack Works 12,36
$\begin{aligned} & 321,384 \\ & 321,058 \end{aligned}$	Tobacco, plug, Perkins \& Ernst 12,368
	Tobacco, smoking and chewing, H. W. M
320,975	Dwire Tobacco Company........................ 123
	Towels, certain sanitary, Southall Bros. \& Barclay 12,
	Vitreous material and certain articles made there-
${ }_{321,073}^{32,98}$	from, Vitrite Company.......................... 12,357
	Wines, champagne, Rheingauer Schaumweinfab rik Schierstein
321,40	
	A Printed copy of the specifleations and draw
321,391	any patent in the foregoing list, also
,935	issued since 1866, will be furnished from this office for 25
321,323	cents. In ordering please state the number and
	of the patent desired, and remit to Munn \& Co., 361
,390	Broadway, New York. Wealso furnish copies of patents
321,000	granted prior to 1866; but at increased cost, as the
321,036	specifications, not
321,388	hand.
,190	anadian Patents may now be obtained by the
	rany of the inventions name
	going list, at a cost of \$40 each. For full instructions
	address Munn \& Co., 361 Broadway, New York. Other
	gn patents may also be obcained.

Pfovertisements.

Engravings may head adver tivements at the same rate
per line, by measurement a the letter press. Adver.
tisements must be received at publication oftice as early
per line, by measurement. a the letter press. Adver.
tisements must re received at publication office as early
as Thursday morning to appear in next issue.
GET THE BEST AND CHEAPEST.

PERIN BAND SAW BLADES,

Gestistre Wood Working Machinery.

321,177
3127367
321,178
321,315
‘CAR' BUILDERS CAN SECURE EXTREMELTM
Galuable U. S. Monopoly by addressing R. HUDSON,
Gildersome Foundry, Leeds, England." $\xlongequal[\text { MILITARY TRANSPORTATION BY }]{\text { RIM }}$

"VULCAN"
Cushioned Hammer. Steel Helve, Rabber Cassionss, triesquare elastic blow

Telegraph and Electrical

cided

M. EHRET, JR. \& CO.

DISTILLATION UNDER ATMOSPHERIC

.

With best safety devices for Passenger and Freight Ser-
vice.-MORSE, WHLIA MS \&
Morse Elevator Works, Propr'siladelphia, Pa

ROOFING,

For Buildings of every description. Best, cheapest and most durable Roofing ever offered to the public
New circular just out. Full information cheerfullygive

2 PLY PRPPREED FELT

 STEAM, WATERR, GAS, and ACID proof. Madby us especially for use on Locomotive Round House Chemical Works, Factories, \&c.

 A PRACMTICAL SUCGESE.
VAN DOZENS PAT. LOOSE PULLEY OILER.

 SWIMMING.-DESCRIPTION OF THE method of teaching swimming employed in France
with 6 illustrations. Contained in incientiric AMERI
CAN SUPPLIMENT, No. 462. Price 10 cents. To be

 Vulcanized Rubber Fabrics RUBBER DEUTING, PACKING, AND HOSE, Mats and Matting, and Stair Treads, \&c

PIPF COVFRING.

NEWSPEAPERT FILE

WATER-POWER WITH HIGH PRES sures, and Wrought iron water Pipe.-A paper by H
Smith, J. C.E. The problemof tutiving small quantit.
ties of water with high heads. The hurdy-gurdy whee

An wheny-fir

WEAK Nervous men

out stomach Drugging, asa, healith and vigor with.
norvous and who suffer from

le oured without surgery. Treatise and testimonials free.
DR. H. TRESKOW, 46 W. 14th St.. New York MEASURING HEAT.-A PAPER BY Otto Pettersson, pro posing a method of measuring heat
which the author in tends shall fullfl some conditions that the progress of modern science will more and more
urgently require. With four engraving. Contained in
Sit SCIENTIFIC AMERICAN SUPPLEMENT, No 456 . Price
10 cents. To be had at this office and from ail news
dealers.

80
HARRISON CONVEYOR!
Handing Grain, Coal, Sand, Clyy, Tan B.rk, Cinders, Ores, Seeds, \&cc. gandorg ginder IORDEN, SELLECK

Scientific American 300K GTEN

To Readers of the Sclentific American: By arrangements with the principal publishers, we are now enabled to supply standard books of every description at egular prices.
The subjoined List pertains chiefly to Scientific Works; but we can furnish books on any desired subject, on receipt of author's name and title.
All remittances and all books sent will be at the purchaser's risk.
(ordered will be sent by mail, unless other directions are given. Those who desire o have their packages registered should send the registration fee
0 The safest way to remit money is by postal order or bank check to order of Munn \& Co.
Q(${ }^{\circ}$ A catalogue furnished on application.

Address MUNN \& CO.
361 Broadway, New York,
Publishers of the "Scientific American."

 ment to the Pharmacopoeia, and General Reter-
 Cooley- PERFUMERY AND COSMETICS. By Arnold J. Cooley. A Handbook giving Numer-
 used for the Transmission of Power..... \$3.50 Craik, -MILLWRIGHT AND MLLER, By
David Craik. Giving Detailed Descrption of
Plantused and Work to be done. 8vort. $\$ 5.00$
OV

 Cristiani-SOAPAND CANDLEE. By...... Cris- Crisani. A Technical Treatise covering Details of
Manumaturanditconnection with industry of
Fats and Oils. 581 pages. 176 engraving Croll,-CLIMATE AND TTME IN THEIR GEO
GOGICAL RELATIONS: A Theory of Secular
 Cromwenl- Toothen GEARING. Contain-

 Crookes.-A PRACTICAL HAND-BOOK OF
 Cummings.-ARCHITECTURAL DETAILS. Containing 387 designs and 967 illustrations of
the variousparts seeded in the Construction of
 Cumming. - WILD MEN AND WILD BEASTS; ming. $12 \mathrm{mmo}$.18 illustrations........... $\$ 1.50$
Dana, E. ana, E. S. - A TEXTHOOK OF MNERALO-
Gro Based upon the System of Mineralogy of
Pre

 American Geology,' Over 1,100 Figures and a

 Darwin LL.D...F.R.S. With many illustrations. Darwin, OR1GIN OF SPECIES BY MEANS
 Darwin.-THE FORMATION OF VEGETABLE
MOULD through the Action of Worms. By
Charles Darwis with ilustrations Davidson. DRRAWING FOR CARPENTERS 250 illustrations........................1.75 Davidson.-THE AMATEUR HOUSE CAR-
PENTER. Guide in Auilding, Maling, and Re-
pairing. By E. A. Davidonson 8 vo, cloth... $\$ 4.00$

 son. A Manaal for House Painters, embracing
Principles of the Decorative Art. 1 Rmo, cloth.
With numerous engravings............ $\$ 3.00$ Davidowsky. GLUE AND GELATINE PASTES, MUCHAGE, ETC. By F. Davidowsky
A Practical Treatise on he Raw Materials
Mandiand Manufacture...................... 82.50

 facture, and Materials, Toing, Machines, and
Kilns usea. 800 pages. 228 engravings and 6 plates
\$5.06

BURNHAM'S SELF-ADJUSTING SWING CHECK ValvE.
Users of Check Valves will please note the advantages theseValves possess
over all others. The most important claim is, that as the Jenkins Disk over all others. the most ymportant ciaim is, that pases around the seat moves away from
wears, the yok
the seat in proportion to the wear of the Disk, thus eausing a the seat in proportion to the wear of the Disk, thus causing a

71 John Street ЈæNIEINE BROB.,

A NEW WATER BELL--DESCRIP

H.W:JOROHNS
 SASMOESTCOS*

Steam Packings, Boiler Coverings
Fire Proof Paints, Cements, Etc.
Samples and Descriptive Price Lists Free.
H. W. JOHNS M'F'G CO., 87 MAIDEN LANE, N. Y

175 Randolph St;; Chicago; 170 N. 4th St., Philadelphia

 THE FLOW OF WATER THROUGH

PATENTS.
MESSRS. MUNN \& CO., in connection with the publi-
cation of the SCIENTIFIC AMERICAN; continue to examine inprov
for Inventors
In this line of business they have had forty years' ex
perience, and now have unequaled facilities for the perience, and now have unequaled facilities for the prep-
aration of Patent Drawings, Speeifications, and the prosecution of Applications for Patents in the United
States, Canada, and Foreign Countries. Messrs Munn \& States, Canada, and Foreign Countries. Messrs Munn \&
C. also attend to the preparation of Caveats, Copyrights
for Books, for Books, Labels, Reissues. Assignments, and Reports
on Infringements of Patents. All business intrusted to on Infringements of Patents. All business intrusted to
thens is done with special care and promptness, on very

A pamphlet sent free of charge, on application, con-
taining full information about Patents and how to procure them, Designs, Patents, Appeals, Reissues, Infring Copyrights signments, Rejected Cases, Hints on the Sale of PaWe also send, free of charge, a Synopsis of Foreign Patent Laws, showing the cost and method of secu
patents in all the principal countries of the world. MUNN \& CO., Solicitors of Patents, 361 Broadway, New York.

[^0]

AERIAL NAVIGATION. - DESCRIP-

¿ New Catalogue of Valuable Papers
 PETROLEUM AS FUEL IN LOCOMO-

PYROMETERS

 GAUNTLETT'S, HOBSON'S, and STEINEN's$\boldsymbol{P} R E S S U R E G U A G E S$ Hot Well THERMOMETERS ANEMOMETERS SAFETY LAMPS BAROMETERS SALINOMETERS Mining and Meteorological
 924 Chestnut St. Philadelphia THE SUPERGA RAILWAY.-DESCRIP-

 SHOEING HORSES.-ABSTRACT OF A paper by Secretary Russell. of the Massachusetts State
Board
proper methriculture, iving somevalunible hints on the

MICRO.CHEM ISTRY OF
By Prof. T.G. Wolmlet. Including their Physiological,
Pathological, and Legal Relations, with an Appendix on

barrel, KEG, Hogshead, STAVE AND ${ }^{\text {ANACHINERT. }}$ ver 50 varieties manu-
factured by \& B. HOLMES,
BUFALO, N. Y. TRAINING FOR MECHANICAL ENGI-neers.-A paper by Prof. G. I. Alden, theating of the
ends

 Thehetypes of the various modern decorative patterns.
The Cashmere pattern. The two kinds of reppesenta-
tions of plants. The oidest of knon forms. Greco
Italian decoration. Arabico-

BOOKWALTERE ENGINE. Compact. Substantial. Econom-
Ioal, and eesily managed.jguar-
anteed to work well and
full power clived
foimed Engine and

 or 110 Liberty St... New York.

THEEAILWAY BULLDER. AHAND-
 valuable book for rairo form. men. Price \& Ades Mhis is an in-
fili Broud way, New York.

WORK SHDPA

Barnes Co.,
Rockford, ill
Address No. 1999
CHEMISTRY AND VALUATION O Coal--By A. K. Glover. The Varietien of coal. Compo
sition Practical analysis. Valuation in heating power
Contained in SIENTFIC AMEICAN SUPPLEMENT No Contained in SCIENTIFIC AMERICAN SUPPLEMENT, N.
46. Price 10 cents. To be had at this office and
fromall newsdealers.
STEPS TOWARDA KINETIC Theory of Matter--Opening address of Sir Willian
Thomson before the British Association, Montreal, 884
discussing the probability of so arin arival at at theorr o

COMETS.-LECTURE BY PROF. R. S.
 10 cents.
dealers.
IDFEITRGINTE
 harrisburg car mpa. Co., Harribburg, Pa., U. S. a.
 STEAM ENGINES Dredging Machinery
Fiour powder, Smie nud
Fint will Mnchilery, Tur-
bine Water Wheels. York Mfg Co., York, Pa., U. S. A. WVIM. A. THARRRIE,
HARRIS-CORLISS ENCINE With Harris Pat. Improvements, from 10 to 1,000 H. P. mamamamamanco. 95 MILK ST., BOSTON, MASS.

This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787.
The transmission of Speech by all known forms of Electric Speaking Telephones in fringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnish ed by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor

WIRE ROPE

The Scientific American.
THE MOST POPULAR SCIENTIFIC PAPER IN THE WORLD
 ontinues to maintain its high reputation for excellence, cientiffc publication
Every number containssixteen large pages, beautifully
printed, elegantly illustrated; it presents in popuia atrie: afoéseriptive reched of the most novel. interestian a dom portant advances in Science,'A rts, and Mannfac-
ures. It shows the progress or the worid in respect to res. It shows the progress of the w orlid in respect to
New Discoveries and Improvements, embracing Machinery, Mechanical Works, Engineering in all branches, Chemistry, Metallurgy, Elentricity, Light, Heat, A rchitory, etc. It abounds with fresh and interesting subjects dreds of useful suggestions for business. It promotes Industry, Progress, Thrift, and Intelligence in every The Scientric it circulates.
every Dwelling. Shop, office, School, or Tave a place in men, Foremen, Engineers. Superintendents, Directors, Presidents, Officials, Merchants, Farmers, Teachers, Lawyers, Physicians, Clergymen, people in every walk
and profession in life, will derive benefft from a regular and profession in life, will derive benefit
reading of The Scentific American.
Terms for the United States and Canada, \$3.20a year
$\$ 1.60$ six months. Specimen copies free. Remit by Postal Order or Check.

MUNN $\underset{361}{ }$ CO., Prondishers, New,
Scientific American Supplement.
THE SCIENTIFIO Anerican SUPPLEEMENT is a sepa-
rate and distinct publication from THe Scientirio Amontaining sixteen large pages. The Scientific ae erican Supplemicnt is publisbed weekly, and includes a very wide range of contents. It presents the most re-
cent papers by eminent writers in all the principal departments of Science and the Useful Arts, embracing graphy, A rchæology. Astronomy, Chemistry, Electricity, Light. Heat, Mechanical Engineering, Steam and Rail-
way Enineering, Mining, Ship Building, Marine Engineering, Photogriphy, Techhnology, Manufacturing
Industries, Sanitary Engineering, Agriculture, Hortiulture, Domestic Economy, Biography, Medicine, etc. A vast amount of fresh and valuable information per-
taining to these and allied subjects is given, the whole taining to these and allied subjects is given, the whole
profusely illustrated with engravings.
The most important Ensineering Works, Mechanisms, and Manufactures at home and abroad are represented and described in the Supplement.
Price for the SUPPLEMENT for the United States and EIICAN and one copy of the SUPPLEMLENT, both mailed for one year for $\$ \mathrm{i} .00$. "Address and remit by postal order or check,
MUNN $\&$ Co.. 361 Broadway, N. Y., ablishers SCIEN
'T'o Joreign Subscribers.- Under the facilities of
the Postal Union. the ScIENTIFIC AMICRICAN is now sent by post direct from New York, with regularity, to subscribers in Great Britain. India, Australia, and all other British colonies; to France, Austria, Belgium, Germany, Russia, and all other European States; Japan. Brazil, exico, and all States of Central and South America. \$4, gold, for Sclentific Amirican, one year; \$9, gold,
for both Scientific Ambrican ani Sc pplement for or both SCIENTHEIC AMERICAN and SC PpLEMENT for
one year. This includes postage, चhich we pay. Remit MUNN \& CO.. 361 Broadway, New York.

[^0]: BRANCH OFFI

