

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

THE FASTEST RIVER STEAMER BEATEN BY A STEAM

 YАСНт.For more than twenty-two years the side wheel steamboat Mary Powell has been recognized as the fastest boat on the Hudson River; she makes an average of twenty miles an hour. and according to a pamphlet issued by the owners," in the year 1882, she ran at the very fast rate of 26 miles an hour between Milton and Poughkeepsie, making the four miles in nine minutes." Boats of all sorts of shapes, big and little, side wheels and propellers, have unsucces sfully attempted to wrest from her the well earned title of Queen of the Hudson. But on the 10th inst. she was badly beaten in a long run by a small steam yacht of very insignificant appearance. The run was from this city to Sing Sing, a distance of thirty miles,

THE STEAM YACHT STILETTO.

long over all, 90 feet on the water line, 11 feet beam, \begin{tabular}{l|l}
and was made by the steam yacht Stiletto in one hour \& long over all, 90 feet on the water line, 11 feet beam,

and fifteen minutes, the Mary Powell, on her regular \& and weighs 28 tons. The hull is double planked,

trip to Rondout, being beaten about two miles. \& and sharp at both ends, the curves extending far to-

The Stiletto was designed and built by the Herres- \& ward the center. A slightly arched deck covers the

hoff Manufacturing Co., of Bristol, R. I. She is 94 feet \& whole boat. Forward is a pilot house sufficiently

and was made by the steam yacht Stiletto in one hour \& long over all, 90 feet on the water line, 11 feet beam,

and fifteen minutes, the Mary Powell, on her regular \& and weighs 28 tons. The hull is double planked,

trip to Rondout, being beaten about two miles. \& and sharp at both ends, the curves extending far to-

The Stiletto was designed and built by the Herres- \& ward the center. A slightly arched deck covers the

hoff Manufacturing Co., of Bristol, R. I. She is 94 feet \& whole boat. Forward is a pilot house sufficiently

and was made by the steam yacht Stiletto in one hour \& long over all, 90 feet on the water line, 11 feet beam,

and fifteen minutes, the Mary Powell, on her regular \& and weighs 28 tons. The hull is double planked,

trip to Rondout, being beaten about two miles. \& and sharp at both ends, the curves extending far to-

The Stiletto was designed and built by the Herres- \& ward the center. A slightly arched deck covers the

hoff Manufacturing Co., of Bristol, R. I. She is 94 feet \& whole boat. Forward is a pilot house sufficiently

and was made by the steam yacht Stiletto in one hour \& long over all, 90 feet on the water line, 11 feet beam,

and fifteen minutes, the Mary Powell, on her regular \& and weighs 28 tons. The hull is double planked,

trip to Rondout, being beaten about two miles. \& and sharp at both ends, the curves extending far to-

The Stiletto was designed and built by the Herres- \& ward the center. A slightly arched deck covers the

hoff Manufacturing Co., of Bristol, R. I. She is 94 feet \& whole boat. Forward is a pilot house sufficiently
\end{tabular} The Stiletto was designed and built by the Herreshoff Manufacturing Co., of Bristol, R. I. She is 94 feet

reshoff type it varies greatly in construction, the tubes being arranged horizontally in sets immediately over the fire--each set being at right angles to those just above it. Exhaust steam is led to a surface condenser. An ordinary pump takes the water from the condenser, forces it into the upper set of boiler tubes, through the boiler to a separator located in front of the boiler, and to which the steam pipe is connected. The boiler will work safely with 160 pounds of steam, but in the race with the Mary Powell it was only found necessary to use from 120 to 125 pounds. The fire box is $61 / 4$ feet square.
The screw is four-bladed, 4 feet in diameter, and $61 / 2$ feet pitch. At the stern the boat draws $41 / 2$ feet and at the bow 3 feet. We may notice that there are now building at the yards of Yarrow \& Co., England, two torpedo boats which are expected to run, when light, at the rate of 24 knots an hour, or nearly 28 miles. The Stiletto must do better than 25 miles an hour before she can claim the broad title of the fastest boat in the world. In our issue of next week we will illustrate and describe in detail the construction of the boiler and engine and the method of forcing the circulation.

THE ENGLISH CUTTER GENESTA.

The greatest sporting event on the water this year will be the international yacht race for the America's cup, held under the auspices of the New York Yacht Club. Great interest is being manifested by the yachtsmen and others throughout the whole country in the coming contest, while the patriotic pride of many wealthy men in the race has been aroused to such a pitch that they have ordered several new and costly yachts to be built for the protection of the cup. Even General Butler has dropped politics (and law) long enough to say that he wants to enter the ancient America in the race. England will send two very fast yachts, with the hope that one of them will walk away with the prize. These are the cutters Genesta and Galatea. The former is the favorite, and seems to be most feared by the Yankee yachtsmen.
It is understood that the match is to be three races, best two to win-one a triangle 40 miles, one over the New York Club course, and the third, if necessary, 20 miles and return, starting from Sandy Hook.
The Genesta was built by Messrs. Henderson Bros., at Patrick-on-the-Clyde. She is 90 feet over all, 81 feet on the water line, 15 feet beam, $113 / 4$ feet depth of hold, and $131 / 2$ feet draught. Although originally she had only 60 tons of lead outside, she now carries 70 tons of lead on her keel. She has also been recently coppered and fitted with new and heavier spars. Keelson stringers, frames, and strengthening plates are all of steel, while the planking is teak and elm.

With great accommodations beneath, the cutter's fittings are plain but substantial. Thedeck fittings present several novelties. The bowsprit comes
over the steamhead in the center of the yacht, with more than the usual difficulties in reefing it. To obviate this difficulty, one of the checks of the steel bits is hinged. This device permits of the bowsprit heel being swung round clear of the scuttle and the capstan, and run aft alongside the mast. The fore scuttle, oval in form, is a steel tube, round which the wire-fall of the bobstay tackle is coiled in easier turns than it would be belayed in the ordinary way. Just before the mast is a second scuttle, which accommodates the steward, and also the crew, on racing days. Behind the mast is a third scuttle, down which canvas can be lowered into the sailroom under the cabin sole.

The Genesta will be without any provisions for screening the weather spray, besides a racing cabin. The Genesta has a fine saloon fitted up lightly and elegantly, a ladies' cabin aft, and spacious accommodations for the crew, steward, and captain. The whole length of the yacht has been utilized, and the space obtained is remarkable. The Genesta is to be in charge of C. Carter, who is well known on the Clyde as a clever yacht sailor. She is owned by Sir Richard Sutton. Our first page engraving is taken from an instantaneous photograph, representing the Genesta plowing through the water at full speed; it clearly shows the wave line, and indicates the ease with which she parts the water. All through the yachting season last year this boat met the best of the British fleets, and although not always a winner, she proved herself to be without doubt the best "all around" boat in the kingdom.

A New Military Shield.

Some interesting experiments have been carried out at Ryde, Eng., with a new arm of defense. The implement is simply a steel shield to be fixed on the muzzle of a rifle as a bayonet is fixed. It covers one superficial foot, weighs three pounds, can be easily slung under the arm, and does not appear to be unwieldy. On skirmishing duty the infantry soldier would take his "cover" with him, place the point in the earth, lie behind it, and pick off his men with ease, the shield forming a rest for the rifle. The shield, which is claimed to be bullet proof, has been submitted to the War Office, and the military authorities are said to view it with some favor.

Srientifir Ammitan.

H:STABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at
 No. 361 BROADWAY, NEW YORK.

o. D. MUNN.

A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

One copy, one year, postage included....
ne copy, six months, postage included. \qquad
Clubs.-One extra copy of The Scientific Amprican will be supplied gratis for every club of five subscribers at $\$ 3.20$ each; additional copies at same proportionate rate. Postage prepaid.
Remit by postal order. Address
MUNN \& Co, 361 Address
The Scientific American Supplement
is a distinct paper from the SCIENTIFIC AMERICAN. THE SUPPLEMENT with Scientific American. Terms of subscription for Supplement, $\$ 5.00$ a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all newsdealers throughout the country.
Combined Rates.-The Scientific American and Supplement
will be sent for one year, postage free, on receipt of seven dollars. Both will be sent for one year, postage free, on receipt of seven dollars. Both papers to one address or different addresses as desired. The safest way to remit is by draft, postal order, or registered letter.

Scientific American Export Edition.

The Scientific American Export Edition is a large and splendid perilarge quarto pages, prof usely illustrated, embracing: (1.) Most of the plates and pages of the four preceding weekly issues of the Scientific AmeriCAN. with its splendid engravings and valuable information; (2.) Commercial, trade, and manufacturing announcements of leading houses. erms for Export to secure foreign trade may have large and handsomely displayed announcements published in this edition at a very moderate cost.
The Scientific American Export Edition has a large guaranteed cir-
culation in all commercial places throughout the world. Address MUN culation in all commercial places throughout the world. A
$\&$ CO,, 361 Broadway, corner of Franklin Street, New York.

$$
\text { NEW YORK, SATURDAY, JUNE } 20,1885 .
$$

Contents.
(Illustrated articles are marked with an asterisk.)

TABLE OF CONTENTS OF

THE SCIENTIFIC AMERICAN SUPPLEMENT,

INO. 484,
For the Week Ending June 20, 1885. Price 10 cents. For sale by all newedealers.
I. CHEMISTRY.-The Bower-Barff Rustless Iron.-By J. H. Kidder.. 788

ENGINEERING AND MECHANICS.-Design for the Tower The Light Draught Steamer Pittsb Ocean Lightships with Captive Balloons.-A letter....... Machine Guns at the Inventions Exhibition.-Full page of engravings.
Compre
The Oerlikon Roller Grinding and Grooving Machine.-With engraving.
TECHNOLOGY.-The Method of Making Soap.-Laundry and toilet.-With formulas.-By an experienced manufacturer...........
Anderson's Water Purifying Apparatus : Inventions Exhibition. 2 figures.

New Secondary Battery.

Camphor Barometer, or "..............
The Glycerine Barometer at the Kew Observatory. - -3 figures.
ARCHEOLOGY.-The Marble
Frescoes Found in Rome...
Frescoes Found in Rome...
ARCHITECTURE.-F
paper by T. M. CLARE.
A Pair of Vill
A Pair of Villas.-An engraving.
VII. NATURAL HISTORY.-The Ways of Monkeys.-A long and in-
teresting article.-By Dr. A. E. BREHM
III. HORTICUL/TURE, ETC.-A Colossal Cotton Tree of Jamaica.With engraving..
X. PHYSIOLOGY, PSYCHOLOGY, ETC.-Warmth, Coldness, and Pressure.-Points of sensation in connection [with the sense of feeling.. Psychography.........
On the Organization of the Tribe.-Tribal society based on kin-
clans......
Causes of Sex.

THE NEW U. S. CRUISER DOLPHIN

Thefourth official trial of this new ship took place June 11, when by order of the Navy Department the vessel was sent out on the Jersey coast, near New York, for a six hours' continuous trial at sea. The requisition was that she should show herself capable of a speed of twelve knots an hour during the above period. The ship considerably exceeded this requirement, as she ran over fourteen knots per hour, and might have been driven to fifteen or sixteen knots.
On several of the preliminary trials of this vessel, when the machinery was new and stiff, the progress of the ship had to be stopped by reason of the heating of journals, a common occurrence with new steamers. These incidents were made the basis of certain letters and orders published over the name of the youthful Secretary of the Navy concerning the Dolphin; and some of the newspapers busied themselves by casting ridicule upon the ship and the contractor, Mr. John Roach, who executed the work.
It was made to appear that the Dolphin was little better than a worthless hulk; whereas in reality she is a noble specimen of naval architecture, fully equal in workmanship and speed to any boat of her class now afloat. The Dolphin was built in conformity with the drawings and specifications furnished by the Navy Departinent, and so far as can be ascertained, Mr. Roach, the builder, has faithfully carried out all the stipulations of his contract. The Dolphin is one of three ships of war for which the Department offered competitive plans for construction, and the bids of Mr. Roach were found to be nearly one million dollars less than those of any other builders. He has executed his work thus far in the most superior manner, and is entitled to the highest credit. We congratulate him upon the success of the Dolphin, and trust the other ships will show equally good work.
The governing condition in the design of the Dolphin has been high speed capable of being maintained for several days. It is intended for a dispatch boat for furnishing rapid communication from the seat of government to any point on the coast, or to act as fleet dispatch boat if a United States squadron should need its services. In designing it, all attempt at protection was abardoned, and machinery of the most durable and efficient type adopted.
The principal features of the Dolphin are:

Length between perpendiculars.	240	fe
Length, extreme.	$256 \cdot 5$	
Breadth, moulded.	318	"
Breadth, extreme..	32	
Depth from top of floors to top of main deck beams,	$18 \cdot 25$	"
Depth from base line to top of main deck beams..	20.07	"
Top of main deck at side above load water line.	6.28	"
Mean draught.	14	
Displacement at mean draught.	1,48\% tons.	
Complement of men.....		
Battery-one 6 -inch pivot, four revolving cannop.		
Indicated horse power.	2,300	
Speed.		
Capacity of coal bunkers	310 tons.	

The contract price for the hull, machinery, and fittings of the Dolphin, exclusive of the masts, spars, rigging, sails, boats, etc., was $\$ 315,000$.

New Mode of Hardening Plaster.

Mr. Julhe, in a note presented to the Academie des Sciences, describes some experiments that he has performed with a view to rendering the use of plaster still more general.
Of all materials used in building, plaster is the only one which increases in bulk after its application, while mortars and cements, and even wood, undergo shrinkage and cracking through drying. When applied in sufficiently thick coats to resist breakage, it offers, ${ }_{5}^{2}$ then, a surface that time and atmospheric variations will not change, provided it be protected against water. But it is necessary to give this material two properties that it lacks-hardness and resistance to crushing. This is what Mr. Julhe proposes to effect by his process.

Six parts of plaster are mixed with one of finely sifted unslaked lime. This mixture is used like ordinary plaster for moulding any object whatever, and, when once dry, the object is soaked in a solution of a sulphate having a base precipitable by lime, and the precipitate of which is insoluble. There form sulphate and oxide of lime, both of them insoluble, which fill the pores of the object and render it hard and tough. Sulphates of zinc and iron are the salts that answer the purpose best. With the first the object remains white, and with the second it gradually assumes the tint of sesquioxide of iron.-Chronique Industrielle.

English Channel Tunnel.

The projected scheme for building a tunnel under the channel to connect France with England has met with so decided a defeatin the House of Commons, that the question will probably not be brought up again for some time to come. The majority which rejected the project recently is larger than on any previous occasion when the subject has been discussed. Not a hundred members were found willing to allow even the experimental works at Dover to be continued, and two perimental works at Dover to be continued, and twa
hundred and eighty-one votes were registered in oppahundred and eighty-on
sition to the proposal.

The Quaternary Fauna of Indiana.
 by н. c. Hovey.

As every student of geology knows, the Quaternary period was characterized by great changes of climate, accompanied by remarkable sinking and rising of the earth's crust. Enormousquantities of clay, gravel, and bowlders were carried by glacial action from the higher latitudes as far south as the Ohio River, and even, at some points, a few miles into Kentucky. The area thus covered by drift extends from Cape. Cod assfar west as Dakota, and, farther north, to the Rocky Mountains and the Pacific coast. The limits of glacial action are marked by ridges known as moraines, in which have been found some interesting relics of ancient life. Following this glacial era came one of general depression, when the Atlantic Ocean extended inland so far that whales and seals played in the waters now known as Lake Champlain; while the chain of lakes along our northern border were connected with the Gulf of Mexico. A subsequent upward movement of the earth's crust restored this depressed region to its former level, when the continent took its present shape, and what is geologically known as the Recent period began, which is still in continuance.
The Quaternary period was remarkable for its gi gantic mammalian fauna, and numerous animals then existed in North America that have now no living representatives. Years ago my attention was called to fossil bones and teeth found in the moraines and lacustral deposits of Indiana. - There was a long moraine near New Albany, on the Ohio River, in which my friend, Dr. J. W. Sloane, imagined there must be inhumed the bones of animals caught between the foot of the glacier and the broad river formed by its melting torrents. Whether his theory were correct or not, his conjectures were amply verified. He bought the moraine and leveled it. One day he came riding at full speed on his black horse, crying, "Eureka! eureka!" The workmen had unearthed a mastodon. We examined the remains carefully. The white bones and long tusks lay perfect and entire in the mound of black loam that had once been the flesh of the monster. Efforts were made to preserve the skeleton, but the materials
quickly crumbled to decay. The largest fossil elephant's tooth ever found anywhere was probably the one my father placed in the cabinet of Wabash College, in the year 1870. I do not know the precise locality whence it was exhumed. It weighs 21 pounds, is 15 inches long, and 13 inches in its vertical depth. The triturating surface of this huge molar measures 9 inches across. The teeth of the mammoth differ from those of the mastodon in the corrugations of their grinding surfaces. In the former these are crimped ridges of dentine; while in the latter there are knobby or mammillary protuberances, whence the name mastodon (nipple tooth). Both varieties have been repeatedly found in different portions of Indiana, and specimens, both of the tusks and the teeth, may be seen in various public and private collections.
A nearly entire skeleton of an adult megalonyx, or giant sloth, may be seen in the cabinet of the State University at Bloomington. It was obtained by Prof. D. D. Owen, on the banks of the Ohio River near Henderson, and was described by Prof. Leidy in 1853. It is conjectured that the living animal must have been as large as an ox. Its habits were arboreal, and its structure was such as to make it probable that the creature was accustomed to stand on its hind legs and pull the branches of trees down within reach for food. Bones and teeth of an extinct species of beaver have been found in Carroll, Kosciusko, and Vanderburg counties, to which the name of Casteroides ohioensis has been given. Judging from the skull, which has a length of over 12 inches, this ancient representative of the beaver family must have been as large as a black bear, and larger than the modern capybara, said to be 'the largest of existing rodents."
The remains of the Bison latifrons, an animal fully one-third larger than the common buffalo, have been found in Vanderburg County. The horn-cores being 21 inches in circumference, the horns themselves must have been more than 4 feet long. The musk ox is thought also to have been among the ancient fauna of Indiana, whence it ranged as far south as Texas. At Laketon fragments of an extinct quadruped allied to the living peccary have been found. The tapir, horse, and elk also had their ancient congeners. And while these peaceful creatures browsed amid the semi-tropical forests, or lažily wallowed in the marshes, or sunned themselves along the ancient river, compared with which the lordly Ohio is but a rivulet, there were gigantic lions and wolves lying in wait for their prey, amid the adjacent jungles. It does not appear, from any relics yet found, that man was a witness of this old-time scene of forage and strife.
Plates and descriptions of most of the above-named mammals may be found in Collett's Fourteenth Annual Report on Geology and Natural History (1884), prepared by Cope and Wortman, whose indefatigable labors in the department of comparative anatomy cannot be too highly praised. Prof. Cope remarks that the list of discoveries thns far made "displays but a small proportion of the species that inhabited Indiana during
the Post-pliocene, or Quaternary, period, and it may b expected that the future will reveal many additions to the list." The places where such remains are most liable to be found are in the numerous caverns of south ern Indiana, the wide marshes and swamps of the northern portion of the State, the moraines and other deposits left by the glacial action of the earlier part of the period, and the beaches and terraces characterizing the later portion. And it would greatly add to the interest taken in specimens displayed if, whenever possible, the exact nature of the locality should also be described, and even specimens be shown of the sand, clay, soil

Choosing a Pursuit Scientifically.

In the Scientific American for May 30, a short article was published under the caption of "Choice of Occupation," in which allusion was made to the resort made by some people to "professional head and face readers," to indicate the line to which the unformed mind should be directed. The general drift of the arti cle seems to indicate that boys will naturally gravitate toward their proper line, and that, "circumstances not hindering," they will be likely to fall into their true pursuit.

I have no desire to inflict upon the editor or readers of the Scientific American a special plea in behalf of "character readers," or phrenologists, but-merely to suggest what seems to me of great importance, giving young people some clear intimations of their menta peculiarities, so that they may be saved from making great mistakes. "Circumstances" appear to hinder or prevent the majority of young men from falling into the pursuit for which they are best adapted. A close observer writes

Thousands have spent the formatory period of their Iives sweating over the classics or mathematics, or vainly endeavoring to become qualified for some pro fession or mechanical trade, and have failed to win re spectability or secure their daily bread, and are thus made wretched for life.'
Another observer, who won for himself special emi nence in the field of education, Horace Mann, deemed it of the highest importance that every youth should, for his entrance upon life, be furnished with all the help at the command of science. He wrote: "By the temperament, which indicates the degree of activity; by the natural language, which is a hundredfold poly graph; and by the size of the organ, which is one of the measures of power, every man advertises what he is, and, unlike common advertisements, his are true, for the hand of Nature has written them."
There is so much of the artificial in our every-day life that "circumstances" are likely to become a stronger hinderance to the young man's finding his true sphere. This is particularly the case in the cities, which are crowded with the best of our young men and young women, for there they think that they shall soonest win reputation and fortune. They press into profes sional lines, because through them respectability seems most likely to be secured; but certainly very few of these in entering upon the practice of law or medicine or art adopt such a sphere because of a strong natural
bent. We know an Ohio clergyman who for years before he ascended the pulpit was a cobbler in an obscure Western town, expecting to end his days in that capacity; but an almost accidental introduction to mental science, as it is presented in the treatises of phrenologists, led him to study and prepare for the ministerial calling. Again, an eminent inventor, Mr. Ray, was met by a well known practical phrenologist, while working as a common hand in a blacksmith shop; he was advised to try his hand at invention, and with but doubting confidence in the advice he did try, and several very valuable devices have made him rich and the world his debtor. The late Mr. Clark Mills, of Washington, had not thought of sculpture before he
was encouraged by a "character reader" to study it.
Mr. Depew said, not long ago, to an audience composed chiefly of young men: "Failures are due to two causes: One, that you have mistaken your calling; the other, that you will not or cannot work; distinguished success is in nearly all cases the result of individua adaptation to the sphere selected, and patient indus try." It is with this idea in mind that Carlyle says, "Happy is the man that hath found his work."
I know many persons of good standing in our com munity who think it is the duty of all to avail themselves of the advice of a scientific phrenologist with ref erence to the education of their children.
In one of his lectures, the Rev. James Freeman Clark says: "I recommend the phrenological arrangement of human powers simply as a convenient one in self-study; if a man wishes to know what he is fit for, and capable of, this gives him a useful method of investigation."
Intellectual and moral qualities are so important to balance of character and happy adaptation to circumstances, that I wonder our educators are not more urgent in advocating some well digested scheme for their development in the young. I believe that in the schools we have quite enough of intellectual training, sohools we have quite enough of intellectual training,
and that the great need is for proper moral education,
and in the application of any rules for this purpose there is need of a true system of mental organization.
Mr. Clark is but pne of many sound thinkers who regard the phrenological arrangement of the human powers as excellent for the parent and teacher, and his judgment in this respect is also due, to a great extent, to the fact-that may be a surprise to most people who have not bestowed much, if any, attention upon the subject-that in the system advocated by George Combe and Horace Mann the only well systemized and practicable method for general mental training is to be found.
H. S. Drayton.

Mullein Leaves in Consumption.

Dr. Quinlan, of Dublin, read before the International Medical Congress at Copenhagen last year an inter esting paper on the medicinal qualities of the mullein. It has attracted widespread attention, and among the more recent articles confirmatory of Dr. Quinlan's statements is one by Dr. Wilfert, of Cincinnati, which ppears in the last number of the Lancet and Clinic of that city. From the results obtained in 127 cases of pulmonary consumption treated by Dr. Quinlan with mullein alone, he draws the following conclusions, which are condensed from his original article, viz.

1. In the earlier and pretubercular stage of pulinonary consumption, mullein has a weight-increasing and curative power greater than that of cod liver oil, and equal to that of Russian koumiss.
2. In cases where tubercles are well established or cavities exist, the mullein has great power in relieving. cough-a great boon to consumptives, whose weak stomachs too frequently cannot tolerate the usual cough remedies.
3. Phthisical diarrhooa is completely obviated by the mullein.
4. Mullein has no power or effect on the night sweats of consumption, which should be combated by atropia sulphate.
The method of using the mullein, which originated among the Irish peasantry, and was adopted by Dr. Quinlan just as he found it, is as follows: Three ounces of the fresh green leaves, or about ten times that much of the dried, are boiled in a pint of fresh cow's milk. After boiling a moment the infusion is allowed to stand and "sipe" for ten minutes, when it is strained, sweetened, and drunk while warm. This quantity is taken wice or three times a day. It is generally much elished by the patients, who regard it as a pleasant article of diet rather than as a medicine. The smoke of the mullein leaves inhaled into the respiratory passages relieves irritation and spasmodic cough.
Dr. Wilfert states that he has followed Dr. Quinlan's method in nty cases of undoubted pulmonary proved during the administration of mullein, no other drugs being used. These results are certainly very encouraging, and should be followed up.

Tricks of the Chewing Gum Trade

According to the Portland Press, this is a great gum year in Maine, especially on the Penobscot, and now that the sun is climbing upinto the north and the lum bermen are coming out, the air is fairly redolent with the perfume of spruce. The logs, knees, and bark are not the only valuable parts of the great timber tree, for the gum is worth considerable even its rough state, ust as it is hacked from the crotches of old trees. There are two or three firms in Maine which buy large quantities of it from lumbermen and gum hunters for the purpose of refining it, as they say. But as a general thing the refining consists in adulteration with resin. They throw it into a big kettle, bark and all, and boil it into about the consistency of thick molasses, skimming the mpurities off as they rise to the surface. Then, if the purpose be to adulterate, some lard or grease and a lot of resin is added, and in some cases a little sugar. The nixture then becomes thicker, and, after more stirring is poured out on a slab, where, while it is yet hot, it i rolled out in a sheet about a quarter of an inch thick, and then chopped with a steel die into pieces half an inch wide and three-quarters of an inch long. These pieces are wrapped in tissue paper and packed in wooden boxes. There are 200 pieces in a box. Some gum is treated in this way without adulteration. The best gum comes from no particular locality, but always from the biggest trees.

A Lime Light for Demonstration Purposes.
At a meeting of the Edinbürgh Medico-Chirurgical Society, Dr. Foulis recently gave a demonstration of the circulation in the web of a frog's foot and of some botanical test objects by means of the oxyhydrogen light. The light, transmitted through a powerful con denser, passed through an ordinary microscope lens, and was thrown upon a large plate of ground glass at a distance of about 25 feet. The image of the object demonstrated could be focused on this plate with great exactitude, the definition even with high powers being excellent, and the general effect strikingly satisfactory.

improved double fireplace

The invention herewith illustrated-patented by Mr. R. R. Jones, of Sprague, W. T.-provides a fireplace for heating two rooms; the fire place is so constructed thateach room can be heated by one fire, or both rooms by one fire, or one room by two fires. Fig. 1 is a sectional elevation and Fig. 2 a face view. The chimney is arranged in the wall between two rooms, and is provided with two separate flues, below which is a fire box having two fireplaces. The back of one fire place is formed of an inclined cast iron plate, and the back of the other is formed of a plate, resting on a brick wall, and having its upper end resting under the lower end of the other plate; grates are formed in the lower portions of the fireplaces. The two faces of the fireplace box are furnished with openings which can be closed by hinged fenders; above the openings are registers. Within the fire box are damper valves having rods extending through the casing, which are formed with notches to hold the valves in any desired position; it will be readily understood that by properly arranging these valves the products of combustion may be made to take any desired route to the chimney. When the valves are adjusted as shown in the full lines in Fig. 1, the smoke, etc., from each fire box passes up its .corresponding flue, and each fire box heats its room. The dotted and full lines show

Jones' improved double fireplace

the positions the dampers may be placed in, and it is evident that by properly arranging them, the heat from either or from both fires may be used to heat either or both rooms.

attachment for gas cocks.

This attachment, invented by Mr. G ge Doutney, whose address is care of Messrs. Doutney Bros., 439 Broadway, New York city, closes the cock by means of a spring, and prevents it remaining partly open when the gas is turned off. It may be attached to any burner now in use. One end of a spiral spring, Fig. 2, is secured to the key and the other end to the casing surrounding the spring. The spring keeps therock closed. and when the key is turned to open the cock the spring swings it back again, thus closing the cock automatically. On the upper end of the key is a disk formed with ratchet teeth engaged by a lever, Fig. 1, to one end of which a cord is secured. A spring keeps the lever engaged with the teeth. The key is locked in any posi-

dOUTNEY'S attachment for gas cocks.
tion, whether the gas is to be turned on full or only partially, by the lever engaging with one of the teeth of the disk. To extinguish the gas it is only necessary to pull the cord, when the key is released and is turned by the spring, thereby closing the cock effectively and preventing any escape of gas. This attachment will prevent loss of life by careless or intoxicated persons leaving the gas key half way open, or by their turning off the gas and then turning the key partly open again.

It will also prevent fires caused by the key being left open, and will prove to be of great interest to fire insurance companies and hotel keepers.

Bending Iron cold.

Undoubtedly that iron which is so tenacious or co herent in its particles as to be bent forward and backward.without showing visible disintegration is better (tougher) than that which cracks or "crinkles" under similar treatment. But no iron can sustain its integrity under this treatment. This statement does not refer to iron bent while plastic with heat, but means iron at the ordinary atmospheric temperature.
All manufactures and structures of wrought iron that assume such a quality in iron without permanent inury are faulty; iron cannot stand the strain of cold bending without injury, the injurious effect perhaps not being perceptible if the bending is slight and not often repeated, but nevertheless existing. The deduc tion from these premises is that wrought iron should be formed and fitted while plastically hot for the position it is to retain, just as cast iron is made to form Still, wrought iron has a limit of safe elasticity-of re siliency-not allowable to even the best of cast iron; and in this quality of recouping, wrought iron is supe rior to cast iron. The idea sought to be conveyed is that wrought iron is not a mere metallic putty, that can be bent and rebent at will without losing its tensile character or impairing its tenacity.
Some recent experiments prove that wrought iron tends to disarrangement of particles, to change in structure, to weakening in mass, by being bent when cold, even though the bending is a gradual curve and not an angular change of direction. A bar of square section was cut off in the lathe per fectly square, and subjected to bending until it formed a segment of about onethird of a circle. It was noticed that the squared ends gradually changed from their perpendicularity to the length of the bar, the upper or rounding portion being shortened, so that measurements showed that the convex side of the curved bar had not so much elongated as the convex side had shortened. It was evident, therefore, that but rather as a series of superimposed plates might have been moved. Cutting the bent bar in two and examination under the microscope gave indications of a stretching, and in some cases of a rupture, of the fibers.

An attempt was made to verify this apparent demontration, by the bending of a pile of thin strips of ma chine steel of a mass corresponding with the iron bar, but it was found that the "skin" of each strip had a tenacity or resistance greater than the body of the strip, owing to its being compacted in passing through the rolls in its manufacture. Still, enough was shown to indicate that wrought iron (and steel-mild steel) was liable to a dangerous displacement of fiber by being bent while cold

Trunk Lines in the United States.

The tendency of the railways in the United States has been to combine into systems forming some of the longest lines of continuous railway administration in the world. The whole railway mileage in the United States and Canada is about 120,000 miles, and nearly half, or 57,954 miles, is in the hands of 15 companies which in turn represent the amalgamation of a greater number of corporations. The magnificent distance traversed by these railroads are as follows:

The Binns Gold and Silver Fabrics.
The Binns Patent Band Co., manufacturers, Randolph Mills, Randolph St. and Colnmbia Ave., Phila Pa., exhibitors at the New Orleans Exposition, have been awarded three gold medals of the first class, as the highest award in group 5, class 507: One gold medal for gold and silver trimmings, one gold medal for bullion cords, one gold medal for bullion yarns. The above firm have been running day and night for several nonths past. Leedham Binns, of the above firm, is the inven

CAR COUPLING.

The end of the draw bar is formed with a socket, B, from the open end of.which the top and bottom buffer prongs, C, project. 'In the socket is a ball, E, having a stem on its rear end entering a recess to prevent the ball from swinging up or down or laterally. . The free end of a stem projecting from the ball through the open end of the socket is formed with jaws, G^{\prime}, between which two S-shaped coupling hooks, H, are pivoted. Between the buffer prongs a plate, J, is held by diagonally opposite arms; the plate is between the hooks,

HAMPL \& JACOBS' CAR COUPLING.

and separates them in the act of uncoupling. The tem, \mathbf{M}, projecting from the ball, passes through a sot in the socket and carries a weight at its outer end The rod, O, slides longitudinally, and has a stop but on on its inner end and a beveled head on its fron end. An angular arm projects upward from the top buffer prong, and a lug projects from the opposite side of the prong. Hung on the upper end of the arm is a lotted link having a ball on its lower end.
When a car is uncoupled, the jaws, G, are held diag onally in the draw head by the hook, W, on the bar 0 , holding the weighted stem at an angle of about 45 degrees. The ball on the link rests against the front end of the beveled head. When the cars come together, the lug of one draw bar strikes the link ball of the other, and pushes the rod, O, back; this liberates he stem, M, which swings downward, thereby turning he ball, E, and the jaws, and interlocking the hooks of the two couplings. The link ball then slides upon the beveled top edge of the head. To uncouple, the stem, M, is raised, and the hooks are opened by the disk, J, while turning. The stem is then held by the hook, and the link ball slides down the bevel of the hook in front of the end.
This invention has been patented by Messrs. J. Hampl \& D. Jacobs, of Fort Clark, Tex., and 74 Leonard Street, New York city

IMPROVED BRAKE SHOE.

The engraving shows a new form of brake shoe designed particularly for street cars. The rubber or fric tion block has the usual concave rubbing surface, and is made of wood awed out across the grain This presents better grip or hold on the wheel than a metal shoe does not wear out the wheel so rapidly, and is cheap and durable. The metal backing, Fig. 2, is of Fig. 2, is of
arched form, arched form,
and is provided with a single
 side flange and opposite hook shaped ends that enter similarly shaped recesses made in the ends of the block, which is thus held securely from splitting, and, only being bound on one of its sides by the metal head, may be easily removed on taking out a holding screw, Fig. 3, and be replaced by another without removing the whole shoe from the brake bar. The entire shoe may be carried in the usual manner.
This invention has been patented by Mr. J. H. Pitard; information can be obtained from Messrs. Goldsmith \& Yitard, P. O. box 334, Mobile, Alabama.

Battery with Two Liquids.

The author succeeds in suppressing the nitrous vapors of the Bunsen battery by using a depolarizing liquid, consisting of nitric acid in which 75 grs. potassium dichromate have been dissolved per liter. In contact with the zinc he employs either acidulated water or potassium disulphate.-A. Dupre.

THE LAWS OF VISION AND THE HARMONY OF COLORS. In ordinary language the word color is used in different senses. Sometimes it signifies coloring matter, and sometimes it designates the special sensation that we experience at the sight of the latter. The distinction between the two senses of this word should thus be clea established, and it is in the last mentioned acceptation that it will be employed in this place. This distinction appears to be very simple, yet the different senses given to the word have caused much confusion, and eminent minds, such as Newton, Chevreul, and Helmholtz, have in turn confounded the mixture of coloring matters with the mixture of colored lights, and this latter with the mixture of colored sensations; that is to say, studying color, they have confounded what is external to us -the physical phenomenon-with what goes on within us-the physiological phenomenon. The masters of science whom we have just mentioned having especially viewed the physical side of the question, it is hardly astonishing that their rivals who have published treatises upon the science of color should have perpetuated the confusion. In all courses of physics there is still shown the Muschenbroeck disk for effecting a synthesis of white light, while in reality it is not colored lights, but colored sensations that are mixed in the eye. In what follows we present the question, then, from a physiological standpoint. Our object is to teach a means of juxtaposing colors that set one another off. In order to reach that result, it is evidently necessary to know the organization of our eye perfectly, not from an anatomical, but from the standpoint of the sensations that it experiences and of the judgment that we formulate.
The following is an experiment performed by Dr. Gillet de Grandmont before the French Society of Physics. The head of an observer is rendered immovable by means of a support, upon which rest the chin and forehead, and a screen is placed before one of the eyes. Then a brilliant metallic button is placed for a few seconds in front of the free eye, and a small bright green surface is made to appear alongside of it by means of a spring. In less than half a minute this green surface completely disappears from the sight of the observer, and he no ionger sees anything. A wink of the eye suffices to make it reappear, but entirely gray. Then, by another motion of the spring, a white surface is substituted for the green; but the eye does not see it white, for it appears to be colored fuchsine-red-a color the complementary of green. At the first wink of the eye, however, the illusion disappears, and the surface seems to be simply what it is, that is to say, white.
Thus, then, when the eye is fixed for some time upon a color, it becomes blind to it, but such blindness lasts but an instant. Another conclusion that must be drawn from such experiments is this: when the eye has seen a color, it is disposed to see the complementary thereof, that is to say, it experiences in succession the sensations as a whole that constitute white. Thus the eye of itself reconstitutes the elements of the sensation of white, if one does not represent them to it. Hence, if we offer to this organ a collection of colors that go to make up white, we shall avoid this trouble; whence the conclusion that the principle of the harmony of colors in a shade made of two others resides in the use of complementaries. I have had inany opportunities of establishing the truth of this fact. A simultaneous view of complementary colors is agreeable, the eye never tires of looking at them, and the more it sees thein the better they please it. The following is a simple way of performing the experiment:
I have a collection of sheets of colored paper which together form 16 pairs of complementary colors. In order to simplify the judgment of the mind, I have taken care to select 32 colors as similar in intensity as possible, that is to say, all equally bright and deep. This collection is in the form of squares of the same dimensions. After mixing them up, I present them to some one, and ask him to group the papers in pairs, and put side by side such colors as appear to him to produce the most pleasing effect when juxtaposed. In selecting colored surfaces of an identical form, made of the same material, and differing only in quality and not intensity, the judgment is not influenced by accessory phenomena, and acts only upon the color. Under such circumstances, the colors are invari-
ably classed by complementarics. I have remarked, moreover, that women take less time than men to make the classification, the female eye being very sensitive to contrasts.
How can we proceed in practice to determine comple mentary colors? Among the methods that are utiliz-

Fig. 1.- APPARATUS FOR STUDYING THE HARMONY OF COLORS.
able I have given preference to that of rotary disks, because it is as applicable to dilute as to pure colors. The colors are painted upon small disks of thick paper cut out by a special punch. These little disks are slit, partly according to a radius and partly according to the circumference, thus allowing two of them to be connected so as to cause the relative angle of the sec tors to vary up to the moment when, through the rapid rotation of the disk, the surface appears of a uniform, perfectly colorless gray.
In lorder to judge whether the gray obtained really fulfills this condition, it is indispensable to have before the eyes a type of comparison that is of exactly the same depth of tone as the gray produced by the two complementaries. We obtain this as follows: In a wooden
box, closed on every side, and lined internally with

Fig. 2.-DE LUYNES' CYLINDER APPARATUS.
black velvet, a small aperture is made (Fig. 1). In front of this circular aperture, which is of as perfect a black as is possible to make it, I place a white sector of variable angle made of paper painted with pure sulphate of barytes. This sector may be rapidly revolved by eans of an axle that traverses the box and terminates at the center of the aperture. There is thus produced a gray, of which I vary the tone at will by modifying the angle of the white sector. In the center of the circle I arrange, upon the same axis, the little slit disks painted with complementary colors. Through experiment we quickly succeed in obtaining two grays, which appear identical to the eye, although obtained in two so different ways.
By measuring the angle of the sectors we find (1) the proportion of two colors that reproduce the sensation of white, and (2) the quantity of white produced.
This revolving disk apparatus is especially one for study. The experiments can be seen by but a small number of spectators, for the disks must be viewed from the front, or at least at a very slight angle. This inconvenience has given Mŕ. De Luynes the ingenious idea of replacing the disks by revolving cylinders, in his lectures at the Conservatoire des Arts et Metiers. . By painting stripes lengthwise upon a cylinder we can have at our disposal a certain number of colors upon one circumference, and, through rapid rotation, obtain mixed sensations (Fig. 2). The cylinder, according to its length, permits of juxtaposing a certain number of systems of bands of diverse composition, so that through rotation we see the result of several mixtures simultaneously
The trouble with cylinders is that they do not show flat tints and do not permit of varying at will, and instantly, the proportion of the mixture, a thing very easily done with the slit disks.
Up to this point we have dealt merely with the use of complementary colors in order to avoid what M. Chevreul terms " contrast." But this is not the sole means. We shall evidently reach the same result by coloring with a monochrome of different degrees of intensity and luminosity. I am thus naturally led to present the results that experiment has taught me as to the degraclation of colors. Here, again, the disks have been of the most advantageous use, since they have shown the grave error that is committed by degrading colors in the usual way. The hue of a coloring matter varies with the thickness of the coat in which it is seen, when it is mixed with colorless matters. In a thick coat it is redder than in a thin one. Moreover, the modification not only relates to the quality of the color, but also to its intensity. Coloring matters that possess of themselves a very intense hue, such as chrome yellow, give, through mixture with colorless matters, less and less intense colors, as might be expected; while with others, whose hue is of slight in tensity (ultramarine, for example), the coloring power increases, on the contrary, under the same circumstances, up to a certain limit, beyond which the intensity decreases.
These facts explain why, if we seek the complementaries of tones of the same gamut of Chevreul's chromatic circle, we find that each tone has a different complementary, and that consequently all the tones of the gamut are derived in reality from one color. And it could not be otherwise, since Chevreul defines the "tones of one color" as "the different degrees of intensity that a color is capable of taking, according as the substance that represents it is purer, or simply mixed with white or black."
In order to obtain several tones of the same color that have definite relations to each other, it is necessary, in order to guard against such irregularities, to have a model in which we can follow a true gamut. Such a gamut, which I call an esthetic one, will be given by the result of a mixture of the sensations; such as we obtain, for example, by means of the disks. This instrument is an infallible guide that permits of ascertaining whether two tones of color are qualitatively identical, that is to say, whether they correspond to the same colored sensation, modified only as regards its intensity, or by the sensation of the white that is mixed with it.
Two colors are qualitatively identical when they are complementary; and two colors which, mixed, by means of revolving disks, with the common complementary,
produce a sensation of white with equal sectors are quantitatively identical. In short, we can now give the following conditions of the harmony of colors a certain:
(1.) Hues derived from a pure color (monochrome).The degradations of one and the same color, according to the esthetic gamut, form with each other harmonious assortments.
(2.) Hues derived from two pure colors.-The most agreeable assortment is that of two complementary pure colors, and of their derivatives.
In the case of a tint composed of two colors it is necessary to add some advice relative to the selection of the shades, and this is, that the degree of intensity should be in ratio inverse the surfaces to be colored
In applying the propositions that I have just formu lated, it must not be forgotten that in order that a coloring shall be pleasing it is not enough that it shall flatter the eye by color, for there is a more important condition to fulfill-it is necessary to satisfy the mind, that is to say, it is necessary before all else to observe principles that are outside of the limits of the present paper, i. e., those of distinct vision and concordance. A. Rosenstiehl, in La Nature.

The Mind Cure

Professor David S.wing, in our excellent literary contemporary, The Current, published in Chicago, has an interesting article on the influence of the mind in the curing of diseases, from which the following is extracted:
On account of the dignity and wise look of large words, says the Professor, science never uses a simple term when a large one can be impressed into service. Thus the sleep produced by long gazing at a bright object or by the hands of a Mesmer is called hypnotism, while the sleep which comes from disease is called a profound coma. Following this tendency of science to use high sounding terms, those who discovered the value of the mind in -vercoming disease saw fit to name the fact or theory The Metaphysical Cure. As those who are the parents of a child have the right to name it, so these discoverers of a new power in the mind had a perfect right to call it by the name that most pleased them.
It has always been known that the mind can exert a good or bad influence over the body. The old mental philosophies were full of stories which had a tendency to show how persons had taken to bed after having been told, by a succession of acquaintances, about the dreadful paleness of face or of a most unhealthy expression of the eyes. . It was also affirmed, in the olden newspapers, that some mischievous wife made her husband believe that he was swelling up with dropsy, and should by all means hasten to the German Springs, and should take her along as nurse, his condition being so critical. The wife thus secured a trip to Europe -her art being that of taking pieces out of her husband's vests, so that it becane almost impossible for him to make them reach around his abnormal body.
The Metaphysical Cure is, therefore, not a discovery, but the expansion into a medical practice of a power which had once been little else than a curiosity. A tendency of our age is to utilize forces. Nothing so pains the American mind as the thought of having anything go to waste. We are now in a worry lest there may be an electric potency that might turn all our wheels; we are attempting to run engines by sunbeams; the waste of water power at Niagara is the grief of many; while those who have escaped these forms of distress are made unhappy because the air is not as full of balloons as the streets are of cars and wagons.
In such a day it was very naturally concluded that if mind has a power over health and disease, let us utilize this power. Let us not permit the force to escape all duty, like the waters of Niagara. Let us not permit merely artful women to use it as a means of inducing dropsy and a foreign trip. Let us domesticate this mental influence, and extract from it valuable servicc.
Thus came the "Metaphysical Cure" about eight or ten years ago. In the hands of extremists it is made partly one of the delusions of the world, but in the hands of the wise and moderate it is a tonic of great value, and will displace a large amount of quinine and wild cherry bitters. Its philosophy may all be summed up in the fact that the soul affects the body, and can rouse up its torpid blood, can make the liver, heart, lungs, and the brain-that nerve center-quicken their pace and use up or crowd out the diseased globules from the blood and fluids.
This is, then, the philosophy of the mind cure. It can do much for man, and is not to be reproached because it cannot do everything. If the influence of the mind may benefit one sick person in twenty-five, it will then surpass in value many popular medicines;
and if it shall prevent many others from falling into ny imaginary illness, it will confer a second benefit upon the community. Man is not in a condition to
reject the help of any of nature's kind offers. By means of all these discovered helps the evils of ill health may be mitigated, if not banished from the world. Will, energy, medicine, fasting, good air, good food, good water, are all friends of health, but no one of these is master of the entire field of ailment. He will act most wisely who employs all these causes at different times of need.
With masses of evidence of the power of mind over matter, either to weakenit or to build it up, it is high time for us all to invoke the aid of this spiritual influence in not a few days of life; but to call it a general practice of medicine is to attempt to make a part equal the whole. This feat the new practitioners are attempting to perform. They are even attempting to cure disease when it is far away from the alleged doc-tor--the doctor throwing his mental force a thousand miles, and making it land like a bombshell amid the works of the enemy. This is that reductio.ad absurdum which has been common in all times.

THE " UNIQUE" SINGLE TUBE INJECTOR

The accompanying engravings show an injector possessing many admirablefeatures, and, as will be seen, the aim of the manufacturers to make a perfect injector of the simplest construction, so as to be readily understood, has been most successful. This injector may be placed in any position, requires no change for varying pressures of steam, and the arrangement of its parts is such
that the tubes can be conveniently taken out and
oil each. If the oil is not perfectly bright it is passed through the filters again and again until it becomes so. As a rule, however, oil, particularly if of the finest quality, becomes perfectly bright after one filtering. In the large tanks the oil is allowed to remain undisurbed until required for exportation, whether for Great Britain or the United States of America.

Concentration.

Among the powers of the human mind that seem of hemselves to make life worth living, that of concentration occupies a prominent place. To be able to fix the thoughts or the attention exclusively upon one subject, and to keep them there without wavering as long as is necessary, is a most important element of success in every occupation. It is a common mistake to think that although this ability is essential in professions, in literary pursuits, in the management of large enterprises, or in any position involving the laying of plans or the carrying out of systems, for the ordinary and ommonplace worker, especially if his work be chiefly manual, it is of little consequence. This is one of those fallacies which lie at the root of much of the poor, inefficient, and irferior quality of work which is offered to the world in quanities far exceeding the demand. It is a well known fact that while hundreds of unservceable men and women stand idle, waiting for employnent which does not come, every one who is able and ready to do superior work in any department is eagerly aught up, and may almost command his own terms.
One of the most radical differences between these two classes of workers is this very power of concentrating the energy and strength of both body and mind upon the work immediately at hand. Two men, working side by side in the field or the factory, may be equally competent, as far as knowledge or physical strength or previous training go, to perform the labor before them. They begin with equal promise of good success, but in a short time, while one is persisting, the other is relaxing in effort. One pursues his work with unremitting zeal; the other spasmodically, with intervals of wandering thoughts and flagging attention. It is already an assured fact that the one who has acquired the habit of concentration will be the successful competitor. He will be anxiously sought for and re-engaged, while the other will soon go to swell the panks of the unemployed. It matters not what is to be done; from the simplest mechanical work to the most abstruse and complex mental operation, the power of putting all the thought, energy, and attention on that and nothing else for the time being, will very largely determine the quality and amount of labor performed.
To some extent this is a natural gift. We see children at play who, without other motive than their instinctive tendencies, persist continuously in any effort they make, or purpose they form, with a perseverance and earnestness which may well shame many of their elders, while others will be distracted by every passing object, and forget their determinations as soon as they are formed. Yet here, perhaps more than in most tendencies, culture and practice come in tostrengthen what is lacking. The discipline of the schools is most valuable in developing the concentrative power in the province of thought, and it would be a blessing to in the province of thought, and like discipline helped him in the work of his hands. Like every other faculty, this, too, is strengthened by exercise. Each time we recall our scattering energies and wandering thoughts, and force them resolutely in one direction, we increase the power and develop the habit, and the exertion, at first painful and laborious, becomes in time easy and agreepainf
Mr. Thomas A. Edison attributes his success as an inventor largely tothis faculty, which he gained by steadfast exertion, once being able only to think upon a given subject for ten minutes before something else would come into his mind, butgaining by long practice the power of continuous and uninterrupted thought for hours on a simple topic. At one time he worked with his assistants in trying to connect a piece of carbon to a wire. Each time it would break, and they would spend several hours in making another, until after working in this way one day and two nights they finally succeeded.
This habit does not necessarily make a person so absorbed in one thing as to become narrow and one-sided. He may become so by yielding wholly to a native impulse of dwelling on one thing; but the same self-control that concentrates his energies at will can also divert them at will into another channel when the proper time arrives. Many things rightly claim our attention, but none of them will receive it aright if our thoughts aimlessly wander from one to another, without compass or guide.-Phila. Ledger.

Protective inoculation against yellow sever is being tried extensively in the Mexican army.

Glarrespondence.

Expected Advent of the Locust.

To the Editor of the Scientific American:
In your issue of 23d ult., under the heading of "Expected Advent of the Locust," you say that "the 17 year brood will appear at Fall River, in the southeastern portion of Massachusetts," and other States therein mentioned, but do not say when; but in the fifth paragraph you say that "the 17 year brood that is to occur this year has been well recorded for the years 1715. 1732, 1749, 1766, 1783, 1800, 1817, 1834, 1851, 1868." Now, I knowfrom personal observation that the 17 year brood made their appearance in Freetown, an adjoining town of Fall River, in the southeastern portion of Massachusetts, in the years 1818, 1835, 1852, and 1869, one year later than your record. In 1818 they were very numerous; in 1835 they were less numerous; in 1852, still less; and in 1869they were quite scattering, in comparison with 1818.
Fall River, May 25, 1885.
[Prof. C. V. Riley states that the facts above mentioned are in accord with what we know, and the insects which he thus noticed in 1835, '52, and '69 belong to Brood I., as classified by Prof. C.V. Riley, of the Department of Agriculture. This is a septemdecim brood, and has been recorded ever since 1767. It has no con nection with the broods of the present year, and will, of course, appear agam true to time in 1886. It will appear in the valley of the Connecticut River and in Franklin, Bristol, and Hampshire counties in Massa-chusetts.-ED.]

The Royal Society Soiree, 1885.

On Wednesday evening, May 6, Professor Huxley, the President of the Royal Society, entertained a large number of the Fellows of the Royal Society and a number of distinguished guests at the Society's rooms in Burlington House, and, as on previous similar occasions, there were exhibited throughout the different rooms objects of scientific interest. Upon the walls of the room in which the President received his guests was a series of studies in colored chalk, illustrative of the different phases of the eclipse of the moon of the 4 th of October in last year, and another series of very interesting chalk studies recording the magnificent roseate effects of sunset and afterglow which during the-winter of 1883-1884 attracted so much attention, and which gave rise to much speculation among meteorologists as to their cause and origin, and which by a remarkable consensus of opinion have been set down to the presence in the higher regions of the atmosphere of immense quantities of volcanic dust. Both these series of sketches were contributed by Mr. Ascroft.
In the reading room Mr. Frank Crisp exhibited, by means of an exceedingly prettily constructed little apparatus fitted on to the stage of a microscope, the combustion of different metals within the discharge spark of an induction coil; and by a supplementary spectroscope, also attached to the microscope, the spectra of the different metals so burnt could be studied and compared. In the same room Mr. Copprock exhibited a number of medical and other thermometers, in which the special feature of interest consisted in giving to the cross section of the stem of the thermometer a lenticular form, the two sides of the tube being portions of cylindrical lenses; by this means while there is no refractive displacement in a vertical plane so as to affect the reading of the instrument, the thickness of the mercurial column is magnified from eight to twelve times, and is therefore more easily read. Mr. Copprock also exhibited a combined sunshine recorder and sun dial for any latitude, and an anemometer for determining the velocity of currents of air in mines and other places. In the principal library, General Strachey, R.E., F.R.S., exhibited an interesting instrument, which would require the aid of drawings to describe, for tracing out sine curves, and by which the harmonic components of periodical phenomena can be represented by corresponding figures.
Mr. Andrews exhibited a series of photographs of fractures of railway axles, broken under breaking tests at the Wortley Iron Works, Sheffield; and Mr. T. G. Daw exhibited a specimen of his new type writer, by which, it is stated, a speech can be recorded and printed verbatim as rapidly as it is uttered by an ordinary speaker. This instrument exhibits great beauty of design and construction, and we intend to illustrate and describe it on an early occasion. Mr. G. Matthey, F.R.S., exhibited a number of beautiful specimens of objects of precision constructed of platinum and iridioplatinum. These consisted of (1) a series of iridio-platinum weights absolutely adjusted to a density of 21.566 ; (2) some unfinished weights for the Comite Internationale du Metre, also of the density of $21 \cdot 566$; (3) a coil of platinum wire of a diameter of 0.00075 inch prepared by simple drawing; and (4) a specimen of platinum wire produced by the Wollaston process, which consists of drawing a silver wire having a platinum core down to extreme fineness, and afterward dissolv-
ing away the silver in nitric acid, leaving the nearly
invisible platinum core. Professor Hele Shaw ex
hibited some new applications of his very beautifu spherical integrator, which he recently brought before the Institution of Civil Engineers, one of these applications being a very simple and accurate instrument for computing the areas of inclosed figures.
Mr. J. J. Hicks exhibited one of Professor Herbert McLeod's sunshine recorders, which, by continuously photographing the luminous image of the sun as reflected by a spherical mirror or ball of silvered glass (the axis of the sphere and camera lying in' the me ridian), traces out on the sensitized surface a curve, the continuity of which is a measure of the preva lence of sunshine during the day, and the position of any break in that continuity is a record of the time at which the sun became overclouded. Mr. Hilger, who has now so high a reputation for high class ac curacy and finish in physical apparatus, exhibited some exceptionally fine spectroscopes with diffraction gratings, and a very delicate star spectroscope fitted with prisms of Iceland spar and lenses of quartz, which he has lately constructed for the Observatory at El phinstone College, Bombay. Mr. Hilger exhibited also a fine collection of large prisms and a very simple and accurate fan governor for coutrolling the speed of a telescope driving clock for the Observatory of Rio de Janeiro.
What were perhaps the most interesting contributions to the interest of the evening were those of Mr Shelford Bidwell, whose name is well known to the readers of this journal for his very successful experi ments in connection with both the phonograph and photophone. Mr. Bidwell exhibited a series of beautifully arranged experiments in illustration of the variations in the lengths of bars of iron, steel, and nickel produced by subjecting them to magnetization, and among others he showed the following most remarkable experiment. A vertical iron rod is placed in the axis of a magnetizing solenoid of insulated copper wire its lower end is fixed to a rigid support, while its upper end is attached to the short arm of a long lever supported on knife edges, the longer arm of the lever actuating a small mirror by which the image of a luminous slit is caused to be projected on a vertical scale at the other end of the room, and by the displacement of which extremely minute variations in the length of the iron bar can be detected and measured. With this current of electricity such as Dr. Joule called a saturat ing current-that is to say, a current of such a strength that the bar was magnetized to what was believed to be its maximum capacity, and beyond which it has hitherto been considered no increase of current could affect it-elongation is produced in a bar of iron or steel, a fact of ten demonstrated before; but by increasing the strength of the current to three times what wa considered a current of "saturation," Mr. Bidwell has found and demonstrated, on the occasion to which we refer, that the length of the bar is unaffected on making or breaking the circuit, whereas on increasing the current to six times the "saturating" current, or twice of being lengthened, is considerably shortened.
Mr. Shelford Bidwell also exhibited an interesting experiment in physiological optics; he showed that if a vacuum tube, conveying an electrical discharge, is slowly rotated, it appears to be followed at an angular
distance of about 30 degrees by a fainter spectral image of the tube, rotating at the same speed, and therefore always at the same angular distance behind it, and a still more remarkable phenomenon takes place if the rotation of the tube be suddenty arrested; for then, instead of the spectral image stopping at the same moment as the tube, and at the same angular distance
from it as it remained during its rotation, or instead of disappearing at that moment, both of which effects might have been expected, it apparently goes on in its rotation, following up the tube itself and disappears at the point at which the tube ap peared to stop. These experiments were very interesting, and attracted considerable attention at the soiree, which was very largely attended, and was in every way successful.-Engineering.

American Society of Civil Engineers

The American Society of Civil Engineers will hold its annual convention at Deer Park, Md., from June 24 to the 27 th inclusive. A special invitation has been extended to members and their families to arrive in Baltimore on Monday, the 22d, and take part in several excursions in and around the city. In the afternoon, two excursions are offered: one under the auspices of the Baltimore and Ohio Railroad, to visit, by steamer, the marine terminals of that road, and other points of interest in the harbor; and the other, under the escort of the Chief Engineer, to inspect the city waterworks. In the evening, invitations
the Academy of Music.

On the 23d a special train will leave Baltimore in the morning, stopping en route to allow the tourists to inspect the Mt. Clare Shops, Harper's Ferry, and other interesting places, and will reach Deer Park in the
ing the continuance of the meeting, and visits will be made to the Cheat River Grade, Kingwood Tunnel, Tray Run Viaduct, and other points of engineering interest on the line of the Baltimore and Ohio road. President Graff will deliver the annual address at one of these sessions. Deer Park is beautifully located in the midst of the Alleghanies, 2,800 feet above tide water, and has a very attractive hotel, which will be the headquarters of the society. A better spot for a summer convention could scarcely have been selected. Already a large number have indicated their intention to be present, and the meeting promises to be one of particular interest.

The Ship Railway.

Recently, at the close of one of Mr. Corthell's lectures, in the large hall of the Massachusetts Institute of Technology, Boston, Captain Eads was introduced, and cordially greeted by the large audience present. We give a few extracts from his remarks:

If we came before capitalists with a proposition to onstruct a canal across the Isthmus of Tehuantepec, possessing, as that location does, such great advantages over Panama and Nicaragua in healthfulness of climate and proximity to the United States, there would be no lack of money offered to build it; because everybody knows what a canal is. They are as old as the Pharaohs, and everybody knows that if one is wide enough and deep enough, a ship can be floated through

We come before the world with a better and cheaper method of taking loaded ships across the Isthmus than any canal can posssibly be; but because of its novelty, we must overcome the same kind of unbelief which opposed the introduction of illuminating. gas, the telegraph, the Atlantic cable, steam navigation, the power loom, the locomotive, and a score of other immense benetits which we now enjoy as commonplace things, but each one of which had to fight its way into popular favor against all manner of opposi tion, selfishness, prejudice, ridicule, and ignorance.
"It is but a few years since George Stephenson was pleading for the means with which to build the first few miles of that grand system of steel highways which now covers the civilized world with a network far more marvelous and beneficent than the wildest flight of a poet's fancy ever pictured, or the dream of an enraptured enthusiast ever compassed.
If Stephenson had devoted one tithe of the thought energy, and talent to secure the capital for building fifty miles of a canal or a turnpike instead of that little piece of railway, he would have had an abundance of financial aid, because those means of conveyance are almost as old as Adam. But who now would invest a dollar in a stage coach if he knew that the locomo tive would be its competitor? Who would take stock in an ordinary canal now, if he knew that a railway was to be built alongside of it?

The ship railway is simply a proposition to carry larger burdens than have hitherto been carried on or dinary railways, and the same causes which tend to re duce the cost of transporting cargoes on the ocean in large ships instead of small ones must tend to lessen the cost of ship railway transportation below that of ordinary railways. For the same reason the ship railway must inevitably prove superior to the ship canal.

When we proposed to deepen the mouth of the Mississippi with jetties, the people of New Orleans had so much more faith in the Fort Saint Philip Canal (a scheme to connect the deep water of the Gulf with the river, forty miles above its mouth) that their yarious commercial bodies were immediately called together and forthwith sent two engineers of note to Washing on to defeat our proposition, and the House, in re sonse to the universal demand, actually voted eight million dollars with which to begin the construction of a canal which would have cost fifteen millions at least money, and ten years in time, for its completion.

Well, the controversy between that canal and the jetties is ended, and the country has been saved from a most expensive blunder. In four years afterward, and with one-third of the money, the old Father of Waters was made to open his mouth wide enough and deep enough to float the Great Eastern through it in safety to New Orleans.

That channel has existed for the last five years, and it will continue, with a little care, to exist to the end of time. It has opened the immense agricultural products of a region one hundred and fifty times as large as the State of Massachusetts to all the people of the world who live to the east of our Isthmus. We now propose, through the grace of God and the simple means which this model illustrates; to open that mighty valley, with its illimitable stores of cereal wealth, its boundless treasury of food for man and beast, to all the rest of mankind who live to the west of that Isthmus.

This work, when finished, will be the realization of the ardent wish of statesmen and philanthropists verywhere; the dream of kings and conquerors during the last three hundred and fifty years; and a fitting supplement to the grand achlevements which have supplement to the grand achlevements which h
marked the progress of the nineteenth century."

An Ohio Gas Well.

At Shelby, Ohio, May 5, the largest vein of gas ever struck in Ohio was reached at a depth of 480 feet. The men were warned of its presence by a roaring sound, and fled for their lives, hardly escaping before the gas rushed from the orifice with a tremendous report, shattering the derrick and throwing the dirt and mud many feetinto the air. A temporary pipe, seventy feet in length, has been laid, connecting. with the well, and it furnishes a steady stream of fire twenty-five feet high. The discovery will supply the whole town with light and fuel for dwelling houses and manufactories.

Lumley Electric Light.

The Lumley system of lights and dynamo machines, which has been in use for two or three years in England, is now being introduced into this country; it comes to us with quite a favorable recommendation. The filaments in the incandescent lamps are arranged in the outline of a cross, and, according to the statements of the company, give more light to the horse power than can be obtained from any other system. They have not yet,however, been subjected, we believe, to any competitive tests. The filament is prepared from a fiber whose origin is kept a secret. The lamps range from 10 to 300 candle power, and are guaranteed for 1,000 hours, though there are lamps at the com pany's factory which are stated to have been burned over 4,000 hours without any apparent loss of power. The arc lamp is constructed to be run, when desired, in the same circuit as the incandescent. The dynamo is a modified Gramme machine, and has the merit of being quite cheap and very compact. Particular durability is also claimed for it, but as the life of any good dynamo is, with proper care, almost indefinite, the machine can do no better in this respect than to share the general merit of longevity. It is run at 1,600 revolutions, which may possibly account for the excellent results obtained

IMPROVED TRACTION ENGINE.

The accompanying engraving represents a traction engine embodying new and valuable forms of construction, and which may be employed to plow, saw wood, gin cotton, thrash and grind grain, haul, or to do any of the work commonly performed by a steam engine. Heretofore in the operation of traction engines a serious difficulty has been caused by the slipping of the wheels in passing over sandy or soft soil. The engine here illustrated overcomes this to a great extent, as the surface of the wheel in contact with the ground is practically largely increased. This is accomplished by means of a V-shaped chain connecting each pair of wheels, thus forming a track on the pulling or tight side of the chain, that is laid on the ground for the drivers to roll on. Besides increasing the bearing surface this enables the engine to utilize more of its power than it would if rolling on the ground. The pilot wheels are of the same width as the drivers, and the weight is distributed on all four points; the guiding of these wheels is accomplished with a short axle pivoted at the center of the face of the wheels, so that the length of the chains is not altered when turning a corner. The engine rolls on its own rail, the pilot wheels lay ing it down; and being connected with the drivers they help forward the latter by taking their propor tion of the weight of the engine

In regard to the work which this engine will do, the inventor, Mr. Geo. F. Page, of No. 5 N. Schroeder St., Baltimore, Md., states that "with my twelve horse engine, I pulled through the red clay mud, up a grade of one in twelve, ten tons in two six horse wagons. The engine made better time, with less water and coal, than the old wheels on a dry road of the same grade."

Discovery of the Missing Link.

"They can talk all they please about their great scientists," said the brakeman to a Chicago Herald reporter, as he stepped between two freight cars and made his arms go up in the air, " but I did something the other day that Darwin, Haeckel, Huxley, and all them evolutionist fellers never could do, with all their larnin'. We were running along
with about thirty cars, when our train broke in two sections. We stopped 'em, an' were goin' to couple up again, when we found we couldn't do it. Something was gone. 'Wait a minute,' says I to the conductor, and then I skipped out and run back along the track. It was then what I did what the crack scientists have never been able to do."
"What was that?"
"I found the missing link."

PAGE'S IMPROVED TRACTION ENGINE.

SAFETY VALVE AND ALARM FOR STEAM BOILERS.

The object of the device herewith shown is to caus an alarm, in case the safety valve fails to open, by the use of a pressure detecter in conjunction with an ordinary safety valve, so constructed as to insure the in variable opening of the valve when the pressure reache a given point. Connected to the steam pipe attaching the device to the boiler is a steam chamber, across

SAFETY VALVE AND ALARM FOR STEAM BOILERS.
which is secured a thin metallic diaphragm carry ing a plunger extending through the upper side of the chamber into contact with a lever at a point near its fulcrum. The valve chamber is sustained by a slot ted post through which the lever passes. To the outer end of the lever is pivoted a rod extending upward loosely through a sleeve nut screwed through the end of an arm projecting from the post; by turning the nut the tension of a spring surrounding the rod and the pressure on the lever can be regulated. Beneath the valve, the casing of which is broken away in the engraving to show the interior, is a slide pin extending through the lower part of the valve chamber to the lever. The valve stem extends upward into a guide mortise, and is fluted so to reduce the friction. A whis le is connected to the outer part of the valve chamber. When used on a boiler provided with an ordinary safety valve, the lever is set by adjustment of the spring at the same pressure as the safety valve. In case the latter fails to open when the maximum pressure is reached, the steam, acting against the diaphragm, raise
and admitting steam to the whistle. The form and ar rangement of the valve are such that it is not liable to stick, and it opens easily and readily. When there is no pressure in the boiler, the lever rests, on the bottom of the slot in the post, thus relieving the diaphragm of all weight.
This invention has been patented by Messrs. W. B. Railing and C. N. May,P.O. box 160, Mechanicsburg,Pa.

A Land Flowing with Wine, and the People al

Among the new missionary stations established by the American Board is that of Inhambane, on the east coast of Africa, situated in about latitude 24° and about 200 miles northeast of Delagoa Bay. The missionary at this station, the Rev. Dr. Richards, lately made an in land tour of 150 miles from the coast, to see what he could see, and in a recent number of the Missionary Herald is given a very interesting account of this journey, from which we abstract the following:
On the third day out the explorers came upon the Amakwakwa tribe, of whom Mr. Richards says: "They have no gardens at all. They are so frequently robbed by Umzila's impis (soldiers) that they have become quite discouraged. Another reason is that the native fruit is capable of sustaining life, and is abundant and, again, the palm wine flows freely all over the country. This palm tree is usually four or five feet high, seldom ten feet. It manifests little life, save at the top, where a few leaves appear, looking like a flower pot on a stump. These leaves are all cutoff and from the cut each tree yields daily about a pint of delicious juice, but highly intoxicating when al lowed to stand for a few hours. There seems to be no limit to these trees, and we were surrounded on every hand by drunken men and women. Even little children were staggering about as ingloriously as thei parents. It was difficult to avoid trouble with thes people, yet our guns were respected, and a ball fired carelessly at a near tree would produce quiet for hal an hour. They were coarse, rough, drunken fellows, often plundering, often plundered, and accustomed to quarrels and fights not altogether bloodless. One could scarce expect to find pleasure in passing among them."

Nobert's Ruling Machine.
The world renowned ruling machine of the late M. Nobert was exhibited at the last meeting of the Royal Microscopical Society. It has been purchased by Mr. Frank Crisp, one of the secretaries. The foundation of the machine is the ordinary dividing engine used in the graduation of circles and sextants; this, by a vast amount of delicate superposed mechanism, is made to rule lines at a very minute but determinable distance strange to say, the lines are not straight ones, but portions of a large arc; the lines, however, not exceeding one-fiftieth of an inch in length, the curvature is not perceptible. The diamonds used for ruling are worked to knife edges, in some instances ground, in others chipped, but made with such delicacy that microscopical examination fails to detect any serrations; in this and the glass employed would seem to lie the secret of the fine quality of line produced by M. Nobert. The note book of the inventor accompanies the machine, and in it the performance of each diamond has been recorded, and much useful information that, will probably enable the machine to be used. Experts who have examined the machine since it has been in England do not consider the mechanical contrivances the best that could have been devised; but the fact nevertheless remains that Nobert contrived to execute rulings which have not been equaled. The resolution of the nineteenth band, in which the distance of the lines-according to the measurements of Dr. Pig-gott-is $112: 595$ to the inch, and formerly supposed to be impracticable, is now accomplished without much difficulty. There is also an adaptation for ruling the longer and comparatively coarser lines for diffraction plates for spectroscopes.

Effects of Heat and Cold on Steel Tools.
There are steels and steels. Some of them act queerly. A planer man was much annoyed at the breaking of his cutting chisels every morning in the cold weather. He had become infatuated with a "high" steel that was worked at a low red heat and was not hardened for tempering, but was left to cool under the hammer. But his planer was near a basement wall on which the frost has stood every cold morning during this "open" winter. Soon as he started a chip, away would go the point or edge of the tool. At last he put his thinking cap on, and procuring a small alcohol lamp from a glue pot, he swung it on the crosshead saddle so that the blaze came up by the side of the tool. This heated the tool so that it was almost painful to feel it. He had no more snap breakages. After the tool got heated by the friction of its work, the lamp was turned off. Another machinist, working on threading taps, heats up the threading tool in the morning by grinding it on an emery wheel.

EXPERIMENTS WITH SOAP BUBBLES AND FILMS.* T. O'CONOR SLOANE, PH.D.

The true nature of a liquid film is comparable to that collapse, or by vigorous blowing may just be kept inof a perfectly elastic and tightly stretched membrane. flated. The blast from the hole is sometimes enough to All liquids are bounded and inclosed by such a extinguish a candle.
membrane, composed of the substance of the liquid

itself. The phenomena of films, under the form of soap bubbles, have been known for many generations. They were seriously studied by Sir Isaac Newton, and later by the scientist Dr. Plateau, of Belgium, a curious study for one, like the latter, afflicted with total blindness.
If a ring one or two inches in diameter, and provided with a handle, is dipped into a solution adapted for

forming films, and is withdrawn, it will be found to be filled with a beautiful film, straight and firm, reminding us of the wing of a dragon fly, Fig. 1. If we blow against it, it will be driven out into a purse-like shape of very characteristic outline (see dotted line). If it be hetd between the mouth and a candle, it will ssreen the latter from strong blowing until it breaks, when the candle will be extinguished.

By particular management a hole of any desired size can be made in the side of a soap bubble. This is done by tying a small loop, less than the third of an inch, in the end of a silk thread, moistening it thoroughly with the solution, and hanging it over the bowl of a pipe just before blowing a bubble. As the bubble is blown, the end of the thread and the loop will adhere to it.

Then by touching the film within the loop, either with it, and the pipe pulled away, leaving the bubble ada hot wire or with a piece of blotting paper, the film
*From a lecture on "The Physics of Tenuity." to be given in full, with many additional illustrations, experiments, and formulas, in Supple ment, No. 495
its widest extent, Fig. 2. The bubble will immediately
will break inside of the loop, which will fly open to collapse, or by vigorous blowing may just be kept in-

rectly the tension exerted by an inflated bubble, a glass tube bent at a right angle may be attached to the end of a pipe stem. After blowing a bubble, the end of the glass tube may be dipped into water, when the depression will show the pressure, Fig. 3. It will be but a small fraction of an inch.
To measure the tension of the film per unit of surface a little frame with grooved sides is employed. In the grooves a wire carrying a little scale pan slides freely up and down, Fig. 4. The wire is pushed home to the top of the frame and some of the solution introduced, either by dipping the top or by painting it in with a brush. Then by adding weights the film can be pulled down like a delicate curtain until the limit is reached, and it breaks.
By mounting a ring as a pendulum and filling it with

a film, Fig. 5, the retardation the latter exercises on its swing is quite striking.
Four of the rings may be mounted as a windmill, Fig. 6, and be made to turn several times by the breath until their perishable sails break one by one.
If a thread, well moistened with the solution, is laid across a ring containing a film, and the film is broken on one side of it, the thread will be suddenly snatched across the ring and be drawn up tightly against the opposite side. To facilitate manipulation, the ends of the thread may be fastened to the ends of a wire, or thin slip of wood. On drawing out the thread it will draw with it a curtain of film, and will assume the curve of the arc of a circle, Fig. 7. In this way the ring may be again filled with•film and the thread be entirely removed.
A bubble may be blown, a moistened ring touched to
 passed to the ring. The pipe may be again dipped interior, and a second bubble may be blown thus in the interior of the first, Fig. 8.

By catching a bubble on a ring, as described above, and touching it with a second ring, previously moistned, it will adhere to both, so that it can be drawn out into the most elegant shapes, Fig. 9, reminding us of the iridescent glass vases so popular a few years ago.

Again attaching a bubble to a ring, the air in it can be drawn out by inverting the mouth of the pipe until, on pulling away the pipe, a lenticular bublle will remain, Fig. 10.

Thee well known diffusion experiment with a porous jar can be very nicely shown with a film. The mouth of the jar, a porous cup of a Bunsen or Daniell battery,

is dipped into the solution. A glass vessel full of hÿdrogen, or street gas, is inverted over it, Fig. 11. The lighter gas diffusing into the porous vessel blows a

SSHHY
bubble from the film. On removing the outer jar the reverse action takes place, and the bubble collapses. Very pretty effects can be produced by blowing bubbles full of tobacco smoke. By attaching the pipestem by a rubber tube to the gas fixture, they may be in-
flated with gas, when they will rise like balloons Many formulas have been published for making a good mixture. Plateau's mixture is thus prepared: 1 part of Marseilles soap is dissolved in 40 parts of water, at a moderate heat. It is filtered through very porous filter paper, after cooling, and 15 parts of the solution are mixed with 11 of Price's glycerine. The mixture is thoroughly shaken, and is allowed to stand for seven
days in a room that is not too cold (over 67° Fah.). On days in a room that is not too cold (over 67° Fah.). On
the eighth day it is cooled for six hours to a temperature of 37° Fah., and filtered. A bottle of ice should be kept in the funnel. The first portions may need refil tering. Very porous paper must be used. Halbrook's brown oil silk soap or his Gallipoli soap, and Scheering \& Glatz's glycerine work very well. The second filtration may be omitted-long standing and decantation from the sediment being used. After all the trouble the mixture may not give very good results.
To succeed in these experiments a little practice and niceness of manipu

How Window Glass is Made.

The workmen were engaged in making window glass, and proceeded in a way that seemed very simple. A young man would take one of the long hollow iron pipes we saw the gaunt man juggling with, and approaching one of the mouths of the great furnace with the indifference of a salamander-first,however, protect ing his face with a leather screen-would proceed by a series of wave-like movements of the pipe to gather at the end a ball of liquid glass, getting his supply from a fire clay pot. These pots contained a mixture of soda, lime, and sand, which had been reduced by firing for two days. After gathering a wad the size of a cocoanut, the y.oung man would turn and cool it upon an iron plate, still keeping up the wave-like rotary motion. Then he would return to the pot and begin fishing again, then back to the iron plate for cooling, and then more angling. By this time he has gathered a ball of about sixteen pounds weight and of intense heat. Now cooling the pipe with water, he carries his burden over and deposits it on a larger iron plate-this one floating in a tub of water-gives the pipe to a glass blower, and seizing another iron, goes back to the furnace to perform his part once again.
The glass blower rolls the ball upon the plate until he has made the glass assume a pear shape, when he applies the pipe to his lips and blows till his cheeksstand out like red apples, blows till he is red behind the ears; blows until he becomes of a complexion as blooming as the glass. All this while he imparts a rotary motion to the pipe, and does not cease either the blowing or the rotating until the pear shaped glass has expanded into the rude semblance to a bottle with no neck and a very thick bottom. Now over he goes to one of the mouths of the side furnace, into which he thrusts the pipe to warm the mean looking bottle at the end. At his feet is the grave-like pit.
Now watch him. He takes the pipe from the furnace, blows in it, and lets it swing before in the pit. The glass begins to lengthen out, stove pipe fashion; into the furnace again; now out, and up over his head. Agitate the pipe. Blow. Now a big sweep from mid-air through the pit and up again. Blow. Now a pendu-lum-like movement-up-down-way cross-back! The glass is become a cylinder four feet long. Heat again and withdraw. Blow. Rotate. A little more jugglery -here-there-right side-left-a beautiful swing below! The cylinder is over five feet long now! The work is done!
These cylinders are placed still glowing on a stand. A tap with a piece of steel releases the blow pipe, the
blower makes a measurement with a stick, wraps a blower makes a measurement with a stick, wraps a
string of hot glass about the cylinder the superfluous part falls off as though cut with a diamond, and the completed cylinder-about five feet long and eighteen inches in diameter-is carried away to a place of safety. To-morrow a hot steel rod will cut each of the cylinders through one side, thus leaving it like a sheet of paper twisted until its upper and lower edges meet. This roll will be subjected to another gentle baking, when it will flatten out into a large sheet of glass. This will be cut into sheets of the proper size, and the work is done.-M. Quad, in Detroit Free Press.

The Medical Electric Lamp.

The electric lamp used for examining General Grant's throat is manufactured by agents of the Edison Light Company. It is mounted on a hard rubber holder, about seven inches long, having a reflector at the lamp end, by which the light can be thrown to any desired angle. The holder is connected by two silk-covered wires to a small storage battery carried in the pocket of the physician. The light is turned on by simply pressing a small button on the rubber holder, and the quantity is governed by another button convenient to the operator. The lamp is inserted in the mouth almost to the palate, with the reflector above the lamp, which throws the light down the throat. The lamp has no unpleasant heat, and gives a light equal to half a sperm candle. it very valuable to the physician and dentist.

On the afternoon of March 17, a cruiser built by Sir William G. Armstong, Mitchell \& Co., being one of two begun less than twelve months ago to the order of the Japanese Government, was successfully launched from the shipbuilding yard of the company at Walker, in the presence of a large concourse of spectators.
The Naniwa-Kan is the first of two powerfully protected cruisers which were begun at the Walker yard, about ten or eleven months ago. They were designed by Mr. W. H. White, intended for the swiftest and most heavily armed cruisers at present in existence. They are also the largest war vessels that have been hitherto built by the firm. During the last few years considerable activity has been displayed by the Japanese Government in connection with the development of their naval forces and the extension of their mercantils marine, a close connection existing between the two, and the merchantmen having been built so that some of the finest of them could be used as armed transports in case of war.
As regards the disuribution of the armament and their external appearance, the two new cruisers will bear a considerableresemblance to the fanous Esmeralda. In fact, they may be briefly described as enlarged Esmeraldas, with substantial improvements in defense, structural arrangements, protection armaments, and speed, these improvements having become possible in consequence of the increase in size. In dimensions the
new cruisers are almost identical with the Iris and Mercury, dispatch vessels of the Royal Navy, and the Le ander class of partially protected cruisers. They are 300 ft . in length, 46 ft . in breadth, draw $181 / 2 \mathrm{ft}$. of water, and are of about 3,600 tons displacement. They have twin screw engines, which are to develop $7,500 \mathrm{H}$ P. at least, and their estimated speed is from 18 to $181 /$ knots. The armament includes two 28 ton 26 centime ter guns, mounted on center pivot automatic carriages as bow and stern chasers. These heavy guns are worked and loaded by means of hydraulic mechanism, which is an improvement on that fitted in the Esmeralda. On each broadside there are three 15 centimeter guns of fivetons each, also on center pivot automatic carriages of Elswick design, and along the broadsides there are also placed no less than ten 1 in . machine guns and two rapid fire guns. There are two military masts, in the tops of which four of the improved Gatling guns made at Elswick will be mounted. All the guns, except those in the tops, are earried on the upper deck, and all of them have strong steel shields protecting the gun and crews from rifle and machine gun fire. Besides the gun armament, each vessel will have a complete armament of locomotive torpedoes, ejected from four stations, two
on each broadside, situated at a small height above water.
Her powers of offense are further assisted by the presence of a most powerful ram bow, formed of an immensely strong steel casting, which projects forward under water, and would deliver a terrific blow upon the un-
der water portion of any of the ships attacked. The powder water portion of any of the ships attacked. The pow ers of defense are also remarkably developed. Throughout the length, and covering the spaces occupied by machinery, boilers, magazines, and steering gear, there is a strong protective deck, the central portion of which rises a little above water, while the sides slope down to some depth under water. This deck is of steel, and has a thickness varying from two to three inches; the total weight of the material used in this protection amounting to something over 450 tons. The few openings in this deck are protected by strong armored covers, or armored gratings, and when the ship is ready for action, and these openings are closed, the chance of shell fire reaching the vitals of the ship is extremely small. In addition to the steel deck, the defense is assisted by means of minute cellular subdivisions of the space lying above the protective deck and below the main deck, which is about six feet above water. In these cellular subdivisions very large quantities of coal can be stowed, and when the coal is in the ship it will greatly add to the defense. Below the protective deck in the hold there are also very large coal bunkers, from which can be drawn the supply of coal necessary for working the ship for a considerable time when she is in action. Watertight subdivision is also carried out very minutely in the hold space proper below the protective deck. There are two separate engine rooms
and two separate stokeholes. The magazines are all duplicated and formed into separate watertight compartments, and there is a cellular double bottom runriing through a very large part of the length of the ship.
This double bottom is fitted to be used for the stowage of water ballast, and in this manner the draught and trim of the ship can be controlled as she consumes her coals, or ammunition and stores, so that whenever she has to fight, her protective deck can be brought into proper relation to the water line. Moreover, the cellular bottom and the subdivision of the hold space will add greatly to the powers of the ship in resisting under water attacks by ram or torpedoes, or in preventing any serious consequences should the outer skin be damaged by grounding or other accidents. One very notable feature in the vessels is the extremely
rapid rate at which they have been built and their advanced state of completion at the time of launching.
The openings in the funnel, hatches, and engine hatches have been so arranged that the machinery and boilers can be passed on into the vessels without disturbing the decks in the least, and consequently it has been possible to push on with the internal fittings of cabins, mess rooms, store rooms, etc., previously to the launch. The magazines, shell rooms, gun supports, and armament fittings generally are also in an exceptionally forward state, and the interval between the launch and final completion of the ships will be proportionally shortened by the amount of work done while the vessel remains on the stocks. It may be questioned whether any war vessel of the size, and with the complicated fittings which are embodied in the design of the Naniwa-Kan, has been built in so short a time. The accommodations and fittings of the interior of the vessel are of an exceptionally good and finished character, and, besides having four powerful electric search lights, carried in commanding positions at bow and stern, each of the cruisers will also have internal electric lighting of the more important hold spaces. In
every particular these vessels will embody the latest every particular these vessels will embody the latest improvements in armament and equipment, and although they have been so rapidly constructed, it is but right to state that, in quality of workmanship and material, they will bear comparison with any war ships built in the royal dockyards.

How to Make Cucumber Pickles.

In the Scientific American of March 28, 1885, Answers to Correspondents, No. 22, E. B. D. asks how cucumber pickles for the market are put up. Then follows a most extraordinary recipe, which, if followed would make each cucumber cost as much as Horace Greeley's turnips on his experimental farm-twenty-five cents apiece.
For those who care to know how to prepare pickles (cucumbers) for the market or for home use, I give a couple of as good recipes as ever were practiced, and better than most that have been published. I know about what I talk on this subject from eleven years of practice. No. 1. Cucumbers for immediate use may be pickled by making a brine-a saturated solution of salt, all the salt the water will take up; cover the cucumbers with it, adding water if necessary. The brine will act sufficiently in one,night if poured on hot; if cold, give it twenty-four hours. Drain, and pack in a jarand scald. vinegar with cloves, cinnamon, and a lump of alum big as a marble for two gallons of cucumbers. Pour the spiced vinegar hot on the cucumbers and add a piece of horseradish root large as a human finger, and if desired two or three green peppers. These pickles are ready in three days, and with the horseradish will keep indefinitely. If the whole root of horse radish is not at hand, use some of the grated horseradish for the table. No. 2. For family use or the market, as occasion re quires; pack the cucumbers in salt, "the coarse fine salt," is best, covering them properly. When needed for pickling, freshen them in water three days, ehanging the water twice, or four days if they are desired fresh, and add cold vinegar, spice if wanted, and the piece of horseradish.
J. H. L.

The Cotton Industries.
The total number of spindles at the two different periods of 1870 and 1883 in operation in the great cot ton manufacturing countries of the world is as follows

	Great Britain.	Continent.	United State
	Spindles.	Spindles.	Spindles.
$1870 \ldots \ldots \ldots \ldots \ldots \ldots$	$34,000,000$	$18,300,000$	$7.100,000$
$1883 \ldots \ldots \ldots \ldots \ldots$	$42,000,000$	$21,215,000$	$12,660,000$

The amount of cotton consumed by these countries from 1880 to 1883 is as follows:

	Great Britain	Continent	United States.
	Bales.	Bales.	Bales.
1880.	3,018,000	2,618,000	1,774.000
1881.	. 3,202,000	2,883,000	1,993,000
1882.	3,439,000	2,910,000	1,989,000
1883........ 3,426,000	3,447,000	2,231,000
Total.	13,085,000	11,858,000	7,987,000
Average per year...	3,271,250	2,964,500	1,996,750

How Shall the Physician Cleanse His Hands?
Dr. Forster, of Amsterdam, contributes an article on this subject to the Centralblatt fur Klinische Medicin. He calls attention to the great importance of physicians thoroughly disinfecting their hands before leaving a case of infectious disease (especially any of the exanthemata), and at the same time he asserts that few of the disinfectants now in use really have the power of destroying those microspores which are recognized as so dangerous an element is modern medicine. After a series of careful experiments in the hygienic institute at Amsterdam, in which every precaution was taken to avoid error, the author decieled that a solution of car bolic acid of the strength of two and a half per cent was not capable of "sterilizing" the finger, but that a solution of corrosive sublimate of the strength of one to two thousand formed a reliable antiseptic wash. He urges that the latter be adopted by all phvsicians as well as surgeons.-N. Y. Med. Jour.

ENGINEERING INVENTIONS A car axle has been patented by Mr. George W. Wilkinson, of West Ritland, Vt. The construction is such that the whetels are keyed fupon the
points of the axle and permitted to revolve independently of each other, the arrangement being calculated to avoid wear and tear upo
friction in rounding curves.
A car coupling has been patented by with a drawhead is a top plate having do Combined jecting bars, an angle piece with side lugs pivoted in the drawhead, and other novel features, the whole being
an improvement on a car coupler formerly patented by an improvement on a car coupler formerly patented by
A switch stand has been patented by Mr. Charles W. Widney, of Wymore, Neb. There are
vertical notches in the top of the head plate to receive a throw lever pivoted to the shaft which connects to the switch rails, with special details of locking mechanisn for the throw lever tending to promote safet,
curity in the adjustment of railway switches.
An oscillating engine has been patent ed by Mr. Douia C. Putnam, of Wayne Center, N. This invention consists in certain special features of
construction of the valve motion, and in its connections to the valves and the starting, stopping, and reversing lever, providing for running the engine crank shaft in wposite directions, and for rest
A speed governor for steam engines has been patented by Mr. Ebenezer Hill, of South Norwalk, the stem of a throttle valve eis connected a second piston and a safety valve connected with the compression
chamber of an air compressor, whereby an excess of pressure in said compression chamber will raise the pis.
tons and close the throttle valve to check the speed of he engine
A system of ventilating, cooling, heat ing, and lighting railway cars, and cooling their axl
boxes, has been patented by Mr. George Van Duzer, o boxes, has been patentect by Mr. George Van Duzer, of
New York city. A separate car with independent boil er and motor operates an air purifying and cooling ap. paratus, from which flexible pipes carry the air to the ars of the train, and from which pipes also lead to the car also provides steam for heating the train, and space for storage of illuminant, either gas or electricity, to b

MECHANICAL INVENTIONS.

A method of making t wisted boring Cools has been patented by Mr. Charles Robin, of Ches
ter, Conn. It consists in swaging a blank with a plane and a concave side and then twisting the same to form a bit, with a deep spiral groove on one side and a shallow requaires but little grinding

agricultural inventions.

A cutting apparatus for harvesters has been patented by Mr. Charles Galle, of Columbia, Mo she sickle bar is made rectangular in cross section, th box ends adapted to fit the bar, and being held upon it
by a nu screwed upon the end of the bar, thus making by a nu screwed upon the end of the bar, thus making
A combined hay rake and loader has been patented by Messrs. Thomas Kirby and Rober
Shea, of Emmetsburg, Iowa. This invention covers a Shea, of Emmetsburg, Iowa. This invention covers
specially devised mechanism, which may be connected with the rear axle of a wagon upon which the hay is to be loaded, or it may be drawn by a team at the side o
the wagon, to facilitate the gathering and loading of hay.

A grain sacking and weighing attach ment for thrashing machines has been patented by Mr
William H. Barber, of Ward, Ohio. With an elevato scale is a suspending crane, branched bag, filling spout, and automatic valve shifter and registering counter, to spout grain directly into bags, from the machine, and weigh and register the number of bagg, simply and eco nomically.
A corn harvesting machine has been patented by Mr. Elias M. Aikin, of Dawson, Dakota Ter. It is for harvesting the ears of corn from the
stalks standing in the field, and is intended to be drawn along the rows, at the side of the wagon, so the stalks
will be gathered by arms into a V-shaped guide, whence plates nip the ears off, and they are so delivered as to
fall into a wa fall into a wagon box or other receptacle
A harrow has been patented by Mr. William F. M. Ricketts, of Colton, Washington Ter This invention covers novel features for giving increas-
ed flexibility to the harrow and varying the angular poed flexibility to the harrow and varying the angular po-
sition of its teeth, with facility for removing and replacing the teeth as required, and for supporting the
harrow frame in front, with or without ment in its rear.

miscellaneous inventions.

A truss has been patented by Mr. Pha Tefft, of Oriental, Col. Combined with a slotted belt
and leg strap pivoted to it is a lever with buttons and and leg strap pivoted to it is a lever with buttons and
carrying a pad, all contrived to furnish an easy wearing, self-adjusting, and reversible truss,
An earth scraper has been patented by Mr. William H. C. Goode, of Sidney, Ohio. This invention relates to a class known as wheel scrapers, and
covers improvements to facilitate the scraping up of the dumping the load, with the least expenditure of work.
A window screen has been patented by Mr. James W. Bachus, of Nas whis vention is more patticularly for guiding and holding the
window screen at any desired elevation, for which U. shaped strips are used with inwardly projecting tonguies integral with the body of the guides.
A friction roller for wire cables has
been patented by Mr. Thomas w. Flynn, of Pottsville,

Pa. It is formed with a plain cylindrical surface to a portieral play to the cable, with spring boxes for sup. vent rapid wear on either the cable or roller.
A sifter for flour, etc., has been patented by Mr. Abraham Wolf, of New York city. It is made with a scoop provided with a sieve, and has a stirre
which can be readily attached and detached, the who constituting a sifter which is simple in construction
casy to be used, and effective in operation.
An apparatus for gathering cranberries has been patented by Mr. William C. Trahern, of Elm ed to strip and gather the berries is an endless cable operated by power from a boat, so as to draw the pick
A pole and shaft coupling has been patented by Mr. George E. Thomas, of Abingdon, Va This invention provides means for attaching a pole axle, or for attaching the same to a sleigh, either to dree, or for attaching the same to a ale
An umbrella has been patented by Mr. Giovanini Gilardini, of Turin, Italy. Combined
with the stick and ribs is a sliding tuty or ed with the handle, or a ring near it, by a lever, in such way that an umbrella or parasol may
opened or closed thereby as desired.
A churn has been patented by Mr Finis M. Barney, of Kearney, Neb. It is made in the orm of a cross, boxes diagonally joined being made to in each half are fully exposed, so they may be readily washed after the contents have been poured out.
A sash holder has been patented by Mr. Cris Lee, of Paducah, Ky. Combined with the
casing is a bolt and spindle in the same and an ecen asic plug on the spindle for operating the bolt, making
ric and an improved deviec for holding the sash at any desire levation, or locking it to prevent its being raised.
A driving rein spur has been patented y Mr. Fielding B. Bever, of Ottawa, Kan. It is attach ed to the rein line, and so made that on slapping the orse;with the rein the attached spur is projected into or ygainst the flank or rear portion of the anim
A fireplace heater has been patented y Mr. Thomas J. Bartlett, of Colorado, Texas. It is nade with apertures in its back and side walls, with va
rious special features, to adapt itt heating two or more rious special features, to adapt itto heating two or
An eye glass holder has been patented by Mr. Samuel F. Merritt, of Springfield, Mass. It made from a single piece of wire, fittened and bent at
one end to form a hook, and at the other end a pin, and so made as to prevent the holder from swinging agains A kitchen resting on its side as hooks usualy do. Mr: Thomas Nicholas, of Calumet, Mich. This invention covers a special construction and arrangement o such cabinets, especially adapting it for holding the im
plements and materials required for making bread, pie plements and materials required for making bread, pie
cake, etc., one which is simple and compact, and will ake, etc., one which is simple and compact, and will
protect its contents from dust.
A cuff has been patented by Mr. Wil A cuff has been patented by Mr. Wil
am Frank, of New York city. The side edges are over liam Frank, of New York city. The side eeges are over
lapped and sewed together, and a ab is attached to the nderlapped end, thus making cuffs which can be read require less labor and material to manufacture than the dinary styles.
A street car heater has been patented by Mr. Freeman S. Hunter, of Fort Ritner, Ind. It is below an opening with a guard and grating with below an opening, wita a guar and grating, with
draught openings at one end, and connections at the other end, with s
A window frame ant sash has been patented by Mr. John E. Jor s, of New York city. The sashes are provided with r rcking strips at their vertical
surfaces, combined with parting strips having ribs against which the packing presses, so the upper and lower sashes are packed at all sides, and the window
made tight and prevented from rattling. An apparatus for bleaching liquids has been patented by Messrs. Melancthon and Clarence C
Hanford, of Boston, Mass. By this invention the liquid to be bleached is forced through an atomizing nozzle fine spray, so that each portion of the liquid is subject ine spray, so that each po
ed to the action of the gas.
A curtain cord holder has been pat ented by Mr. Melville M. Moore, of Oxford, Miss. A rack with a pulley in its upper hooked end has also a pocket with a spring tongue and a clamping or wedging device, making a device especially adapted for drawing and holding taut curtain cords.
A machine for cross grooving axle trees has been patented by Mr. George Watson, of St
Charles, Minn. This invention covers a machine for simultaneously cutting the three cross grooves or gains in the axle trees and bolsters of wagons, giving to the
side grooves either a straight transverse cut or an oblide grooves either a straight transverse cut
A foot boat has been patented by Mr. Sivert Hagen, of New Brighton, N. Y. Each foot boat
consists of a water tight long box, which can be strap. consists of a water tight long box, which can be strap.
ped on the foot in the same manner as a shoe, and can ped on the foot in the same manner as a shoe, and can
be used to travel on the water, while two of them can be united and provided with a padde wheel to form

An artist's p
tited by Mr. panel or plaque has been patis made of pasteboard coverued on hoothen, N. J. shellac, on which a layer of whiting is applied and then passing into the pores of the pasteboard,'and the shellac preventing the peeling off of the whiting and japan.
A saw tooth swage has been patented
swage and set is combined a grooved bed plate, a swiv eled base piece, so the latter can be turned axially and with other novel features, for easily and efficiently swa ing and setting saw teeth.
A gate has been patented by Mr. John W. Sims, of Jamestown, Ark. This invention covers a别 vhile permitting them to go the other way through, and may also be so arranged as to be operated by a cord by
person from a distance.
A machine for shaping chain hooks has been patented by Mr. Benjamin Mckillen, of Verona,
Mich. This invention consists in the combination, with forked stock, of a lever pivoted in the same, and a die proved device for making the lever, constituting an im 11 sizes.
A lantern has been patented by Mr. Forrest Reichard, of Easton, Pa. It consists of a base chimney, in which also are secured the ends of the bent chimney, in which also are secured the ends of the bent
wire handle, which extends up through the chimney, the de
A gate has been patented by Pollie C. Cesna, of Macon City, Mo. The device consists in lotted slide piece, the levers extending from opposite sides of the gate so they may either be grasped from a c
or have ropes suspended from their outer ends
An evaporator for cane juices has been patented by Mr. William E. Butler, of Newbern, Tenn. bottom edges, with pipes in the grooves, skimmin hains and water tank, to accomplish the whole work o reduction in one evaporating pan, so the juice can b run from che mill, passed through the evap.
then discharged direct to the striking pans.
A wick adjuster has been patented by Messrs. Charles A. Fletcher and William H. Wilder, of Garaner, Mass. Longtadinall eithoved spindies ope-
rate in unison, so each rib on either spindere registers in the groove on the other spindle, insteal of having op osite teeth which bite or hold on the wick, the new de vice giving a positive motion
low of oil through the wick
A process of making cut nails has been After the blanks are cut, the sides are clamped wit dies short of the place where the head is to be ormed, then swaging the end into a fiat head, and
welling the neck by crowding a portion of the sur plus metal longitudinally down toward the body of he nail.
An album has been patented by Mr. over having corruated front and back edges, and piect of sheet material secured thereto with slits holl cards, a part of each of the silts is adapted to cross
portion of the card to be held, and another part to ie parallel to one edge, with cther novel features, so

An earth auger has been p
Ir. Thomas A. Porter, of Cameron, Tex ented by funnel-shaped, with side cutting edges, and adapted to of the cu auger fills as rapidly at the top as at the bottom, so that the cutting is not against a pressure of the dirt within the head.
A consecutive numbering machine has been patented by Messrs. James H . Reinhardt and
Charles S. Ellis, of Memphis, Tenn. This invention covers improvements on the mechanism of numbering devices adapted to be set up in a printer's type form, where the action of the platen causes the numbers to change at each consectutive impression, and so num
ber tickets, checks, tec., in serial order.
A syringe has been patented by Mr. William Molesworth, of Brooklyn, N. Y. Combined
with a tube which has prongs at one end and a head at with a tube which has prongs at one end and a head at
the other is a tapered tube adapted to be screwed into the pronged end, provided at one end with a head and a neck projecting therefrom, making a dilate as a syringe tube:
A top roller for drawing frames has been patented by Mr. John Brierley, of East Hampton, rollers are clothed top rollers coupled together in each series at their ends, and geared with the bottom rollers, over which they are arranged to operate in unison there-
with, whereby the coupled rollers are positively driven by the bottom rollers
A piano sounding board has been pat tented by Mr. John Brinsmead, of London. Eng. The
sound board is fixed to the bracings or frame by a fulsound board is fixed to the bracings or frame by a ful.
crum between the sound board and bracings and discrum between the sound board and bracings and dis.
tant from the edge of the former, and by screws bear ing against the overhanging edge of the sound board purity of tone.

A harness has been patented by Mr. Charles F. Shedd, of Fairfield, Neb. The harness has ste pieces or plates for conveniently attaching the horse,
and the construction is such that the harness will keep its place, whether the horse kicks or plunges, being specially adapted for breaking vicious horses, and the invention of the same inventor.
A show case for cooling oysters, etc., has been patented by Mr. Alexius T. Lundquist, of New York city. Within a wire case is a wire cage or basket,
and within the inner apartment is a removable ice basket, making an improved case or box for showing oysters or other shell fish upon the counters of eating houses, etc., and at the same time keeping them fresh and cool.
A device for pieking up and affixing
of Amsterdam, Holland. It is a hand device with elastic rabber face, penetrated by sharp pins, for picking up the pins holding the stamps sufficiently to enable them to be first dampened on a pad and then fixed where desireL.
A loading winch has been patented by Mr. Favour Locke, of Bristol, N. H. The invention leigh or wagon, a drum mounted on the frame, wit a rope, ratchet lever ana paws for winding the rope
around tue drum, and a device for fastening a skid to around the drum, and a device for fastening a skid to
the sleign or wagon, to facilitate the loading of logs
A lamp burner has been patented by Mr. Edwin Lawrence, of Brooklyn, N. Y. This inven. tion provides an annular burner which will admit ain tomp, or to adapt an annular burner to be screwed into he body of a lamp like a flat wick buyer, and to con

A device for lifting kettles has been pa ented by Mr. Lucius H. Goff, of Richford, Vt. A leve while the opposite end is bent at right angles and terwinates in a head, another lever being pivoted to minates in a head, another lever being pivoted to prongs may be pressed against the sides of the kettle to facilitate lifting, carrying, etc.
A fat cutter has been patented by Mr Theodore Raeke, of Baltimore, Md. Combined with slotted trough and a head carrying blades is a carriage
fitted to slide in the trough, a shaft carrying a serie of radial arms, and other special features of construc ion, making a machine particularly adapted for cutting up fat.into pieces small enough to be easily reduced by heating.
A saw tooth swaging machine has been atented by Mr. Alexander Jacobs, of Cheboygan, Mich The dies are contrived to shift forwa on to the poin shift back for the saw to be moved along, while there are contrivances for gauging and holding the teeth side wise as they are required to be presented to the swagin
dies, the whole making a simple and cheap machine. A tobacco drier has been patented by Messrs. James K. Hardwicke and Edward B. Welles, o Marshall, N. C. This invention provides for such ar a structure that perforated cor the hot air eating made to pass in close proximity to the as wil eacilitate thes, thus securing such ventilation as wht ing to its uniform color, the prevention of sweating

Stringing pianos forms the subject of a patent issued to Mr. Thomas J. Brinsmead, of 18 Wig more Street, Middlesex County, Eng. Combined with he string, a nut on said pin and bearing against th rame, means for preventing the pin from turning means for carrying the string through or by the sid of the pin and readily attaching it, with other nove eature
The manufacture of starch, glucose etc., forms the subject of a patent issued to Mr. Paul
Radenhausen, of Altona, Schleswig-Holstein, Germany. The starch milk is precipitated after it come om the sopa im of solid matter rapidly accomplished the reseparatio treated with dilute sulphuric acid and the liquor passed over the starch depositors.
A sash balance has been patented by Ir. George W. Arnold, of Knoxville, Ill. Cord spools rollers and coiled springs are arranged in boxe and then applied by sliding the boxes into openings in the window frames, so the fitting and fastening of the pools and springs can be done more conveniently than they can be fitted directly to the frames, and hey can be readily taken down.
An implement for moulding and
of Leipsic, Ind. The bullet mould is made of two le vers, to one of which a jaw is pivoted, which, with the ever, forms the mould proper, a plate being secured to
he top of one of the levers, and having an opening hrough which the lead is poured to form the bullet, the necks being cut off as the moulds are opened to eject the bullets.
A lantern has been patented by Mr. ided, with Goodwin, of New York city. It is square tided, with a hinged or removable top or cover adapted
o be locked, and with a flange to fit over the side rames, so that when the cover is locked it locks the door of the lantern, and the glass plates or panels in
their frames, so that no person without a key can reach their frames, so that no person without a key can reach the light, making a lantern especially adapted for store

NEW BOOKS AND PUBLICATIONS.

The Modern House Carpen'rer's ComPANION AND BUILDER'S GUIDE. By
W. A. Sylvester. Boston: Cupples, Upham \& Co., 1884.
This little manual on house carpentry is intended to supply in a convenient form the principal rules and contains the simpler problems in constructive geometry, with such applications to building as will cover the or dinary methods of construction. Some details are given concerning Mansard roofs and the primary forms of truss. It also contains considerable information in re-
gard to estimates, strength of materials, and the use of instruments of measurement. Expanded from the notes of a practical workman, the book is very good so far as it goes, but it is decidedly elementary, and, will prove atisfying only to an artisan of rather limited experience. It is well illustrated with forty-five full page

ßusiness and Persorral.
 The charge for Insertion under this head is One Dollar a line for each insertion; about eight words to a line. Advertisements must be received at pubblication office Peck's Patent Drop Presses, Blast Forges, Steel and Master Keyed Padlocks and Locks. Factory and Railsay outtis. Miller Lock Works, Philadelphia, Pa. Several large Paper Mills have adopted Volney W. Several large Paper Mills have adopted Volney W Mason \& Co.'s Hriction Pulleys for driving theirma hines. Providence, R. I. Hull Vapor Colk
 verywhere. Azents Stoves.-Best in the world; sell terms. Hull Vapor Stove Co.. Cleveland, Ohio.
 Crescent Steel Aube Scrapers are made on scientific principles. Crewent Mfr. Co., Cleveland, Ohio. For Sale The poten Biler Tube

For Sale.-The patent of Boiler Tube Expander.
For particulars, apply to M. Cashin, 525 Howard St, San Francisco, Cal.
For Sale.-PPatent of a Miter Box ; very cheap. Paul
Cashin, 525 Howard St, San Francisco, Cal.
Universal and Independent 2 Jaw Chucks for brass work, etc., both b
Hartford, Conn.

To Mechanics." When needing Twist Drills, ask for "Standard," or send for catalague to standard
Co., Cleveland, or See page xv., Export Edition. Peerless Leather Belting. Best in the world for sv
"How to Keep Boilers Clean." Send your address The most complete catalogue of Scientific and Me hanical Books ever published will be sent free on ap Shafting, Couplings, Hangers, Pulleys. Edison Shafting Mfg. Co.,86Gooremst., N.Y. Send for catalogue and pricess.
AirCompressors, Rock Drills. Jas. Clayton, B'klyn,N.Y. Iron Planer, Lathe, Drill, and other machine tools of
nodern design. New Haven Mfg. Co., New Haven, Conn. The leading Non-conducting Covering for Boilers, Pipes, etc., is W m. Berkefeld's s ossil Meal Composition
Y inch thickness radiates less heat than any other cov ering does with two inches. Sold in dry state by the pound. Fossil Meal Co., 48 Cedar St., N. Y.
Every variety of Rubber Belting, Hose, Packing, Gaskets, Springs, Tubing, Rubber Covered Rollers, Deckle
Straps, Printers' Blankets, manufactured by boston Belting Co., 226Devonshire St.. Boston, and 70 Reade St.

Write to Munn \& Co.. 361 Broadway, N.
logue of Scientific Books for sale by them.
Whue of Scientific Books for sale by them.
Wanted.-Patented articles or machinery to manufac-
ture and introduce. Lexington Mfg. Co., Lexington, Ky.
Mills, Engines, and Boilers for all purposes and of every description. Send for circulars. Newell Universal
Mill Co., 10 Barclay Street, N. N.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N.J.
For Power \& Economy, Alcott'sTurbine, Mt.Holly, N.J. Send for Monthly Machinery List
to the George Place Machinery Company,
122 Chambers and 103 Reade Streets, New York. If an invention has not been patented in the United
tates for morathan one year, it mats still be patented in States for more than one year, it may still be patented in
Canada. Cost for canadian patent. $\$ 40$. Various other foreign patents may also be obtained. For instructions
address Munn \& Co., Scrivntiric AMERICAN patent agency, 36 Broadway, New York.
Guild \& Garrison's Steam Pump Works, Brooklyn, N. Y. Steam Pumpin
Send for catalogue.

Machinery for Light Manufacturing, on hand and
built to order. E. E. Garvin \& Co., 139 Center St., N. Y. Nickel Plating.-Sole manufacturers cast nickel an odes, pure nickel salts, polishing compositions, etc. Com
plete outfit for plating, etc. Hanson, Van Winkle $\&$ Co plete outht for plating, ete. Hanson, Van Winkle \&\&
Newark, N. J., and 92 and 94 Liberty, St., New York.
For Steam and Power Pumping Machinery of Single

 Supplement Catalogue.-Persons in pursuit of infor
mation of any special engineering, mechanical, or scien-
 entific Amprican Supplenievt sent to them free.
The Supplen ENT contains lengthy articles embracing the whole range of engineering, mechanics, and physical
science. Adress Munn \& Co., Publishers, New York. Send for catalogue of Scientific Books for sale by
Munn \& Co,, 361 Broad way, N. Y. Free on application. C. B. Rogers \& Co., Norwich, Conn., Wood Working Machinery of every kind. See adv., page 348.
Stephens' Patent Bench Vises are the best. See adv.
348.
Curtis Pressure Regulator and Steam Trap. See p. 285. Woodwork'g Mach'y, Rollstone Mach. Co. Adv., p. 364. Anti-Friction Bearings for Shafting, Cars, Wagon
tc. Price list free. John G. A very, Spencer, Mass. Best Automatic Planer Knife Grinders. Pat. Face Plat Iron and Steel Drop Forgings of every description. Billings \& Spencer Co., Hartford, Conn.
The Improved Hydraulic Jacks, Punches, and Tube Hoisting Engines. D. Frisbie \& Co., Philadelphia, Pa. Tight and Slack Barrel Machinery a specialty. John Catalogue of Books, 128 pages, for Engineers and
Electricians, sent free. E. \& F. N. Spon, 35 Murray

The best Steam Pumps for Boiler Feeding. Valley Wood Tonking Machinery. Full line. Williamsport Knots, Ties, and Splices. By J. T. Burgess, A Handook for Seafarers and all who use Cordage. 12mo.,
cototh, illustrated. London, 1884. Sent, postage prepaid, cloth, illustrated. London, 1884. Sent, postage

(9) (at)

hints to correspondents.

Names and Address must accompany, all letters,

(1). G. E. S. asks (1) for information about hay caps. What size ought they to be, and what
the waterproof tomposition that they are covered is the waterproof tomposition that they are covered
with? A. Hay caps are from $41 / 2$ to 6 feet square. They are made of good muslin, and should be hemmed
on the two torr. edges. It is best to have a cord hemmed on the two torr. edges. It is best to have a cord hemmed in all around the cap provided with a loop at each cor ner, through which a wooden pin is stuck into the hay,
thereby holding the cap on. It is not considered nethereby holding the cap on. It is not considered ne
cessary to have them made, waterproof, as they will sufficiently shed water if properly put on. The following ently shed water if properly put on. The following dew proof, and will enable the caps to shed water like a goosess back: Make a solution by soaking a bushel of
wheat bran in 10 gallons of water for 48 hours; then wheat bran in 10 gallons of water for 48 hours; then
boil for one hour, and strain. To this liquor add 2 pounds of alum. When completely dissolved, put in the caps, boil for 15 minutes, then wring out and dry. 2.
I am thinking of putting in a hydraulic ram to force water up into my house and stock barns. The distance from brook to house and barns is about 350 yards, and
the height from water to second story in house is between 50 and 60 feet. Can this be done, and with what flal? A. This you can readily accomplish. In order to cally that the quantity raised should be to the wate supply as the fall in feet is to the height in feet, but practically we are compelled to allow for friction, etc.,
which varies widely. In actual practice only one half which varies widely. In actual practice only one half
on one-sisth, or one-twelfth, could be delivered. Douglass makes an excellent ram, but many think that
4. Gawthrop's Son, of Wilmington, Del., furnishes something better. It should be placed in a frost proof building, and the pipes must be laid in a trench below
the reach of frost.
(2) J. R. asks: 1. Can mustard be easily raised on common soil? A. Yes. 2. Is rich or
por soil the best? A. Rich soil.
3. Can it be thrashed poor soil the best? A. Rich soil. 3. Can it be thrashed
with the commonthrashingmachine? A. Yes. 4. How much does it produce per acre? A. From twenty to forty bushels. 5. How many acres will a bushel sow? A.
Six. 6. How much is it worth per bushel? A. From six. 6. How much is it worth per bushel? A. From
$31 /$ to 4 cents per pound. 7. Where can I procure the
seed to sow it? A. As early in spring as it is possible to
work the ground well. 9. Can it be harvested with the ork the ground well. 9. Can it be harvested with the
eif sal-n with deev. 10 . Can it be cleaned out of the
darpu
ground by fall plowing, or what is the best way to ground by fall plowing, or what is the best way to
prevent it from growing the next year? A . Thorough prevent it from growing the next year? A. Thorough
cultivation will clear it out. 11. Which is the most profitable millet to sow for seed? A. Genuine millet for
feeding purposes. 12 What variety and what kind of feeding purposes. lapd is the best adapted to its culture? A. Any good, ich land; a clay loam is excellent. 13. The proper
ceason to sow it A . Not tiil the weather is settled season to sow it? A. Not tict the weather is settled
no warm. Say June 15, in central Illinois. 14. Can it be harvested with the self-binder? A. Yes. 15. How much is sown per acre? A. Accoraing to the richness
of the land, from 1/2to 1 bushel. 110 . How much doess it produce per acre? A. From 15 to 40 bushels. 17. Is there or damaging them? any, please give me the firm's address? A. A.J. Edicks, Wright's Corners, N. Y. 19. Also if you know of any way to plant beans so they will all ripen together? A
Plant clean seed that is all of one variety. 20 . What is the best way to clean the grease off of gummed xles and old machinery? A. Caustic soda or potas
(3) A. S. writes: Can you tell me the
secret of plastering a house so that the walls will not
how cracks? Iam just about to plaster my new resishow cracks? I am just about to plaster my new resi-
dence, and upon inquiry I find some houses have been allowed to stand for months, and yet the cracks occu after plastering. Timbers guaranteed seasoned and no
perceptible settling in walls, and the same thing occurs. So that I am inclined to believe that it is perhaps in the mixture and application of the mortar or plastering. . Cracks sometimes occur in walls that have had
the hest of care. Apart from allowing time for the woo work to season, the best advice that we can give is to finish with 3 coats, as in our best work. First a scratch coat. When this is well dried, put on the brown coat.
When this is well dried, finish with a white coat which has plaster of Paris in it. This is sometimes called stucco coat. Sometimes a little hydranlic cement mixed with the first coats to
them less liable to shrinkage
(4) E. M. S. asks: o of a good cheap varnish to be rubbed on furniture with rag, which will restore the original appearance where
varnish has been scratched, etc.? A. See "Furniture Polish," in Scientific American for March 28,1885 2. A man is selling a liquid solder to the people about here to mend tinware, etc. Please tell what liquid sol-
der is made of, and how? A. Dissolve as much zinc sulphate as possible in one pint of alcohol, and then add one ounce glycerine. 3. zimase explain to us the as-
tronomical terms, right armand and declination. A. See Webster's diction hich looks like balls
(5) C. E. F. asks (1) the proper instru tcosts. Do you refer to common caustic soda in you it costs. Do you refer to common caustic soda in your
answer (17), March 28, 1885 , or double refined greenbank
98 98 per cent? A. The instrument used is Baum's hy
drometer for liquids heavier than water. Price is 75 cents. It will be best to use the greenbank alkal although any good caustic lye will answer. 2 . Peceipt for making compressed yeast? A. There is a "patent
yeast" made as follows: Simmer 6 ounces hops in 3 yeast " made as follows: Simmer 6 ounces hops in 3
gallons water for 3 hours; strain it, and in 10 minutes gallons water for 3 hours; strain it, and in
stir in $1 / 3$ peck ground malt. Next reboil the hops in water, and add the liquor to the mash already made which must be well stirred, covered up, and left for to 90° Fah., set it to work with one pint yeast (patent is best); after standing for 20 to 24 hours, take off the ream, strain it through a coarse hair sieve, and it
One pint is said to be enough for bushel of bread.
(6) T. D. B. asks: 1. How are the carminiature electric lights? A. By electro soldering 2. How are these very small lamps made? A. You will ind information on this subject in the back numbers of the Scientific American and Supplemeet. This Would an exhausted incandescent electric ligh globe answer for a Geissier tube by using an induc-
tion current? A. No. 4. I have broken the platinum tion current? A. No. 4. I have broken the platinum
wires off short to the glass giobe of a mininature inandescent globe; can you tell me how , to repair sit can be used for a stationary lamp? A. Fasten a
wire to the glass with cement so that its ends will touch wire to the glass with cement so that its ends will tonch
he platinum wire if possible. then complete the con nection with a little amalgam scraped from a back of mirror, and softened with a very small guantity of
(7) C. C. B. asks: 1 . Is the process o
 olearn? Does it require any particular knack or skil
oaccomplish? A. Burnishing silver plated ware is not difficult, provided the silver is deposited in a soft state and the burnishers are in good condition. Burnishers may be of hard steel or of bloodstone. They should e highly finished, and should be polished from time to with fine rouge. The burnishers should be wet while in use with a solution of white Castile soap with a
little alkali added. 2 How is double or triple plating put on? A. By simply leaving the work in the battery or a longer time. 3. Is gilding burnished the same as or switch attached to or used with batteries? A. The resistance coil is connected with the battery, so that oosed may be introduced to the battery circuit at will.
(8) A. H. B. writes: Having con tructed a Carre dielectric machine capable of a spark o perform with it, especially those which illustrate lunous effects. Would a glass tube with wires seale then sealing, transmit the electricity with that glow peculiar to the Geissler tube, or would the moisture in ot think you could produce any visibibe effects in the vacuum tube prepared in this way. 2. Would boiling mercury in a tube produce the desired effect? A. You might, would answer the purpose. You should not inhale the apors of the boiling mercury. 3. Are there any fluid passed through them? I don' mean the galvanic current, but the current produced by an electrical machine eggs luminous. 4. I have one Geissler tube with vase of uranium glass, and wait to know if there is any way 1 can produce the necesary vacuam eneard that
expensive air pump? A. No. 5. I have heard sulphate of quinine fluoresces on the passage of the
current. Is this true and on what conditions must the current. Is this true, and on what conditions must the
quinine be in? A. The solution of sulphate of quinine
(9) E. N. L. asks: Has there ever been telephone yet made, or device by which the voice of ne talking in the transmitter at one end of a qiven
ine is reproduced or heard at the other end of the line speaking the words out loud, so that it can be heard two or three feet from the receiver, and on how long
(10) P. P. B. writes: I have built a dy namo machine similar to that described In SUPPLEMENT, he armature with 5 layers of No. 14 wire, the fiel magnets with 7 layers $\operatorname{No.} 12$ wire. The machine weigh
bout 160 pounds. It will heat a 16 candle power inandescent lamp white hot, but will not heat it sufficien prove my machine? If so, what? Communicator prings are 2 inches wide; is that sa amps in multiple arc. We think you would succeed better by using more lamps of smaller candle power; say 8 candle power each. The speed of the armatur
(11) M. V. C.-There is no danger at ending the washing of the bedsteads with hot soap suds, provided, of course, that the mercury or quickthrough open cuts, etc., or in other words, it cannot be (12) J. G. D. asks: What will cemen celluloid letters to the outside of show window? A. or else melt resin and stir in calcined plaster until re duced to a paste, to which add boiled oill a sufficient quantity to bring it to the consistence of honey; apply
(13) H. F. asks how to find the horse power of boilers. A. Divide all the surface that is ex-
posed tothe fire and heat, in square feet, by 14 whicl is the nominal horse power.
(14) W. R. J. asks the cause or causes of sound from stretched telegraph wires. A. The sounds wires being set in vibration by the motion of the ain, the
(15) G. W. H. asks: What danger is to apprehended from running electric wires under ground, several united and insulated, in a cable, or in tear proximity, as in usual street construction? This
applies to electric light wires as well.
A. No danger if applies to electric light wires as well. A. A.
the wires are properly laid and protected.
(16) C. J. G. asks how to soften a leather arriage top which has been varnished. A. You will nd the removal of the varnish a somewhat difficult
task. Benzine or turpentine will probably hell Cask. Benzine or turpentine will probably help some the cloth uailess great care is taken. Turpentine and
(17) R. L. H. writes: I make ink under recipe taken from your SUPplement. The propor-
tions and ingredients are: 168 grains extract of logwood issolved in one pint of either hot or cold water, and dd 14 grains yellow chromate of potash. Sometimes dd 20 grains common washing soda to prevent.decomionable because it is too pale, and eventually loses all its color. It however flows readily, and is the best noncorrosive ink I ever used. I can find nothing which will improve its quality; in fact, nearly all chemicals will destroy it. Can you suggest any additional chemi cal which will make it a good permanent black ink? A is very doubtful if the ink you describe can be im proved. It is generally known as Runge's ink, and a reat number of formulas exist, slightly differing from cations: ations:
Sodiu
Sodium carbonate.... 30 parts.
Warm water................... 1300 ".
Extract of logwood............. 30 " Dissolve, and add then a solution of 5 parts potassium phate of indigo or of a small quantity of soluble aniline lue to the ordinary gall inks is recommended for th purpose of increasing their blackness. A superior
quality of gall ink is composed of:
ality of gall ink is composed of:
Galls........................... 45 parts.
Ferrous sulphate 15 "
Gum......................... 5 "
(18) L. D. B.-There is considerable flax aised in this country. Its principal use until recently was for the production of the seed, but latterly it has
been used for coarse carpet warp. The imported flax een used for coarse carpet warp. The imported flaz is of fine
(19) C. L. N. asks: 1. How is water power best used to compress air? A. By a water wheel
vorking a pump. By a direct acting water and air pump. By an injector. By the falling of water down long pipe. 2. How many pounds of dead weigh ominally pure hydrogen gas? A. 1,000 cubic feet hy nominally pure hydrogen gas? A. 1,000 cubic feet hy
drogen gas will lift 70 pounds. 3. Is there rogen gas will lift 70 pounds. 3 . Is there any proces ervious to hydrogen gas? A: Xarnish the silk with India rubber cement thinned with naphtha. Can be
(20) F. H. B.-You cannot kill the life pass a thousand elbows, if they were near it might pass a thousand elbows, if they were near together
with a loss on a hundred pounds pressure of 25 ent. The fact that the crosshead has an upward bearing while a locomotive is running forward should be apparent to any one. If the cylinders were placed behind the drivers, then the action would be the same as in the stationary engine. By studying the push and pull of the piston with the upper and lower position of
the connecting rod, the philosophy becomes very plain
(21) W. B. B.-The best forms of wind mills develop from $1 / 4$ to $3 / 4$ horse power for a 12 foot mill. The tensile strength of Bessemer steel varies ionally will run up to 100,000 . Hammered bar Besse sionally will run up to 100,000 . Hammered bar Besse mer has been tested to 150,000 . The Siemens-Martin
costs about 10 per cent less than for Bessemer. Bessemer for merchant bar, about $\$ 50$ per net ton. Siemens Martin, about $\$ 45$. The prices vary very much accord
(22) W. K.-The only peculiarity in hardening mill picks is, to leave the edge thick, say one-
sixteenth inch. Harden at the lowest heat that the paricular kind of steel will take, in clean water at about 60°. Draw temper as little as possible, which may be certained by trial at a straw color to begin with. D ing. The pick after hardening should be tried with an old fine file, which by a little experience will tell you if he hardening is even. Then grind, and heat from the center for color drawing. If you use low grade steel of
first rate quality, the color temper may be dispensed irst rate quality, the color temper may be dispensed with. The greatest difficulty is caused by burning the
corners in forging or in heating to harden. There ore use a dull charcoal fire if possible with light (23) G.
(ank filled pigot at the bottom, 1 inch flow, what rate per cen will the first 25 feet of water run out faster, if any, tha he last 25 feet? A. The average flow of the upper hal he average will be equal to a pressure of 37% feet, while feet pressure. The upper half will flow three times a ast as the lower half. 2. It is claimed that the standard of gas burning is a fifteen hole Argand lamp, in erior diameter 0.44 inch, consuming 5 cubic feet pe hour, evolving a light from common coal gas of from 10 to 12 sperm candles, 6 to the pound. How is thi number of candle light power ascertained, when making
a comparison with gaslight to candle light? A. There
are many ways of making the photometric comparison between a standard candle and the standard Argand burner, but mosily by the unequal distance of the two
lights when their shadow images are alike. For interesting illustrated descriptions of photometers and their use, see Scientific American Supplement, Nos. 283 379, 284, and many others in our classified catalogue.
(24) J. M. W. writes: A says that a No. 10 shot gun, 32 inch barrel, will burn only $41 / 2$ dracbms first quality powder when loaded in the ordinary way,
$1 / 4$ ounce shot. B says that kame gun will burn any 14/ ounce shot. B says that same gun will burn any reasonable amount up to 8 drachms or more , is not all burned, but thrown out, as may be proved by fiving through j waxed paper at $!$ a few feet distance, when the unburned grains will be found sticking to the wax. You can find the exact amount that is effect-
ive by the penetration of the shot in a soft pine board ive by the penetrat
or a ream of paper.
(25) C. W. H. asks: 1. Can you mention any compound or article that could be mixed with charcoal and niter that will on burning (smouldering)
emit chlorine for disinfecting? A. Chloride of lime may be sprinkled on wet paper, which when dried may may be sprinkled on wet paper, which when dried may way. These are both also volatile without heat. . 2 Also, what is a good disinfectant for any ro m, that
can be burned (smouldered)? A. Chromic acid and sulcan be burned (smouldered)? A. Chromic acid and sul-
phur mixed in small quantities with sawdust or paper, and left just moist enought to smoulder, make most effective disinfectants. In disinfecting by burning, caution should be used regarding quantity used where
persons are present. The vapor of the tincture of persons are present. The vapor of the tincture of
iodine is also a disinfectant: this has only to be evap. iodine is also a adisinfectant: this has only to be evap-
orated from cloth or paper, and the cloth or paper burned after drying.
(26) G. E. K. asks (1) if there is any danger in drinking water filtered through common coke. A. No, provided the charcoal is renewed from time to
time. 2. Do you know of any other substance better time. 2. Do you know of any other substance better
than charcoal, coke, or pumice stone for filtering water A. We do not; metallic iron is sometimes used. How can pumice stone be madeinto any desired shape? How can pumice stone be madeinto any desired shape.
A. Pumice stone can be ground into powder or it can be cut into shape, bnt it is not moulded, as f
(27) H. F. R. writes: I made an electric machine as described in Scientific American Supplement, No. 161, and used 2 pounds of No. 18 cotton cov ered copper wire on magnets, and about 40 feet No. 16 on armature. I did not insulate the wire from the core
on the armature; will it make any difference? Would like to make a motor out of it, but do not know how to proceed to doit. A. You should have used the No.
16 on your magnet and the No. 18 on your armature. It 16 on your magnet and the No. 18 on your armature. It
would have been safer if you had covered the armawould have been safer if you had covered the armaage from the wire to the iron, it will of course make
no difference. The dynamo answers very well as a mono difference. The dynamo answers very yell a will not need a fly wheel.
(28) McN. desires a recipe for making a good tooth wash, to be made into cakes soft enough ore application, and like it to be pink in clelor. A. A.
Take 1 pound Paris white, $1 / 3$ pound rose pink, 3 ounces orris root, alum $1 / 2$ ounce, oil of cloves and nutmegs each 1 drachm. Use honey enough to form a paste. A finer
article'is made as follows: Take of prepared chalk 3 ounces, cattle fish bone fid white sugar (powdered) of each 2 ounces, orris root (powdered) 1 ounce, smalts 2
to 3 drachms. Mix with sufficient sirup of violets to
(29) I. G. askes. I. In constructing wooden trough battery to be powerful enough to
strongly magnetize steel bars of $1 / 2$ pound weight, wha number and size of cells will be necessary for using zinc
and carbon plates 5×6 square? A. Six cells. They and carbon plates 5×6 square? A. Six cells. They
should be large enough to permit of readily plunging should be large enough to permit of readily plunging
the elements, and should contain enough solution to
enable the battery to run for two or three hours. Probably $3 /$ inch larger than the electrodes all around would answer. 2. If zinc and copper plates are used instead (5xb), what should be the number of cells? A
Same size and number. 3. If a Gifferent form and size of plates would answer better, please name them? A If you use a bichromate solution, plate 3×6 inches would answer. 4. How thick should the carbon plates be to
answer for a short time? A. $1 / 4$ inch. 5. Would the answer for a short time? A. $1 / 4$ inch. 5. Would the
battery described in Scientific American of April 11 battery described in Scientific American of April 11
answer for.operating microphones, bells, etc.? A. Yes, answer for.operating microphones, bells, etc.?
but we think a Leclanche would suit you better. 6 How far should naked wire be placed from a building magnetically by it? A. The distance is immaterial. 7 and as good as iron wire? A. Yes. 8. How small wire will work a call bell $1 / 4$ to one mile? A. Use No. 12 9. Should all wires for magnetic purposes, running
through damp cellars, be insulated? A. It should be insulated.
(30) G. W. B. asks: 1. What kind of battery is used for telephones? A. Generally the Le
clanche. 2. Are same sized cells used for long as for clanche. 2. Are same sized cells used for long as for
short lines? A. Yes. 3. About how many cells ar used to a mile of line? A. One to two cells for any
length of line. 4. Is the earth ever used to complete length of line. 4. Is the earth ever used to complete
the circuit, as in telegraphy? A. Almost universally. the circuit, as in telegraphy? A. Almost universally
5. How many ohms resistance has an ordinary "bell "
(31) W. G. G. asks: 1. If a party give Writtenguarantee in purchase of boiler that it shall be done so is he liable? done so, is he liable? A. Party is liable under the com-
mon law for violation of contract. 2. When he cements up a crack and paints it over, with same representa tion, and you find on getting up steam that she is not fit at any pressure, is it not criminal? What is the does not constitute a crime, we believe, under the statutes. If you have paid for the boiler, you may
sue in court for damages to the amount of the bill, using the guarantee as evidence of agreement, and prove by witness the worthlessness and dangerous con
dition of the boiler.
(32) F. T. writes: I have made dynamo full size as described in SUPPlemernt. No. 161. Would
it make machine of double its power, by placing anit make machine of double its power, by placing an-
other pair of fild magnets at the other end, and using the same armature? A. It would increase the power
(33) O. F McP
(ath pol. F.McP. asks: 1. If the north and common copper wire, does the same effect take place as if they were joined by the regular iron armature? If so, why has it no effect on the ordinary coils of telegraphic sounder? A. The copper wire being non-
magnetic is not appreciably affected by the magnet. 2. magnetic is not appreciably affected by the magnet. 2
Which is the simplest method of producing a spark Which is the simplest method of producing a spark
from a permanent bar magnet, and, if impossible, how can it be done with a horseshoe magnet, giving a de-
scription of apparatus and parts used? A. With a scription of apparatus and parts used? A. With a
small magnet this is impossible. With a large magne you can produce a spark by applying the poles of the wound with very fine wire; on suddenly withdrawing the permanent magnet from the electro-magnet, the spark will be seen between the terminals of the electro magnet if they are sufficiently near together. 3. Also describe a spark coil. A. See Supplement, 160. 4. Also a formula of the best concrete which se large buildings. A. See Suplement, Nos. 183, 285, 418, 36, 338
(34) H. R. S. asks: 1. Will the telephone mploying U magnets, described in Scientific AmeriCAN Supplement, No. 142, work on telegraph wire the distance of six blocks, with ground connections and two Leclanche batteries at each end? A. One Leclanche but a work a transmitter to that distance or farther but a good magneto telephone ought to work that dis-
tance without battery or transmitter. 2 . If so, will I be infringing ${ }^{2}$ on any patent by using the same, using switch, by the use of which the bells can be rung and then switched so as to connect the telephone, then, when through talking, switched back, so the bells can always be rung by pressing the strap key. A. The Bell
Telephone Company claim to control ail speaking teleTelephone Company claim to control all spcaking tele-
phones. 3. Would magnets $31 / 2$ inches long be big enough? Also how longshould the iron core be. Do the small binding screws on the back of the concave flange,
E , touch the diaphragm or not? A. A magnet of E, touch the diaphragm or not? A. A magnet of
that size would be large enough. The iron core should that size would be large enough. The iron core shoula
be long enough to reach through the bobbin and nearly to make an ordinary acoustic telephone (the diaphragm espectally), and how far would it work? A. Two diaphragms of wood or metal supported at the edges and having their centers connected by string or wire, or
still better a fine wire cable, form a good acoustic telestill better a fine wire cable, form a good acoustic tele-
phone, which will work under favorable circumstances phone, which wil
for half a mile.
(35) J. E. J., Jr., writes: A man lias been going through this city for some time past selling a silver plating preparation in small clear glass bottles. It has the appearance of pure spring water, and is as liquid as and starts to polish it with this stuff, and in a few minutes the article has the appearance of silver. A. It is probable that the solution to which you refer is sim ply a solution of nitrate of mercury and water. This quantity of mercury and nitric acid, and diluting the this way is not durable, and would prove injurious if apopjed to table ware. The following is recommended for applying a thin coating of pure silver: Nitrate o silver 80 parts, dissolved in 36 parts of pure water; add 40 parts of salammoniace and 160 parts of -hypostriphite
(36) F. E. C. writes: I have a drive well point down about 35 feet, and in sand. Water was a one time moderately hard, but has in the last two or three years become soft, and in the last few weeks tastes
and smells bad. A vigorous pumping of several minutes does not improve it. Can you explain it? A.
It is possible that the surface drainage has found it is possible that the surface drainage has found
access to your well. If so, it might possibly be stoppe access to your well. If so, it might possibly be stopped
by puddling with clay, but it is best never to take any hances of using water contaminated from such cause.
(37) T. A. J.-To demagnetize a watch place it in a helix formed of about 100 convolutions o No. 16 insulated wire. Connect the helix with ing bichromate battery of about 6 cells. Plunge the ele ments, and while slowly withdrawing them from th solution work the current, reversing key at the rate o about two movements per second. If the elements of the battery are large, it would be well to tip the battery, would perhaps be well to experiment on some other magnetized object before trying the watch.
(38) W. V. L. asks for any cheap sub stance or material that can be applied to the wires of
fence between the posts to which they are attached that would effectually prevent the lightning from pass ing over it, from post to post. There is general com dents resulting from this source, and some are dis dents resulting from this source, and some are dis
carding the wire on that account. A. We would sug gest that you provide your wire fence with efficient tions at intervals. passing over it.
(39) F. I. M. asks (1) why a smaller is used'on a local circuit. A. From motives of econit than the current required for the line is an intensity current capable of overcoming the resistance of the line. The difference between a battery connected for quantity and one connected for intensity; how are they connected, for quantity when all the zincs are connected ogether to one of the conductors, and all the copper plates are connected together with the other conductor A battery connected in this way acts precisely like intensity when the zinc of one cell is connected with
the copper of the next, and so on throughout the entire series. A battery so connected has a high resistance,
and is capable of working over a circuit of high resistance when the battery connected for quantity would getting weak? A. An acid hygrometer is generally used to determine the condition of the battery.

INDEX OF INVENTIONS
which Lottors Patont of th
United Statos wore Grantod
June 2, 1885
AND EACH BEARING THAT DATE. [See note at end of list about copies of these patents.]

larm. See Burglar alarm

Ammonium sulphate, me Angle iron, D. O. Paige.

Animal guard, J. H. Fenton
Asphaltum, working and using, J. Rice, et al
Axle, car, G. W. Wilkinson
Axle trees, machine for cross grooving, G. W
Bag. See Mail bag.
Barrel elevator, L. Pent
Basket, A. M. Freeman
Beader, hand, Williams \& Poole
Bed, cot, G. E. Bedell.
Bed, folding, B. F. Farrar
Bed, folding, D. J. Powers (r).
Bed, folding cabinet, F. Schras
Bed, folding cabinet,
Bed lounge, H. Etm.
Bedstead fastening, M. F. Raleigh.
Bell, electric, E. F. Recordon.
Belt clasp, waist, O. A. Lehman....
Belting or driving band, W. White
Bevel for draughtsmen or artificers, J. J. Hed....... Bleaching liquids, apparatus for, M. \& C. C. Hanford.
Blind slat fastenin, ,.................................. 319, 319,409
Board. board.
Boat. See Foot boat.
Boiler. See Steam boile
Boiler tubes, utilizing old, Stephens \& Ritchie.... 319,144
Bolc. See Shutter and door Bolt. See Shutter and door bolt.
Bolting machine for flour mills, etc., J. v. Hecker 318,983 Book rack, folding, W. H. Kelly. Boot or shoe, P. C. Brow Boot or shoe, machine sewed, W. A. Knipe.................318,949 31929 Boot tree, A. D. Tyler, Jr.................. 319,354 to
Boots or shoes, press for forming heels for India Boots or shoes, press for
rubber, W. E. Kelly.
Boring tools, making twisted, c. Robin. Bottle stopper, S. G. Derha Bottles, machi
Carpenter
Box. See Fare box. Paper package box.
Brace. See Ratchet brace
Brace. See Ratchet
Braee, c. Snedekum.

bracket.
Brake. See Sled brake.
Bridle gag runner, R. G. Hanford, J
Bucket, slop, R. Burton.

> ing impleme ham..
Burglar alarm, electric, J.
Burner. See Gas burn.
Burner. See Gas burner.
Button and hat hook, combined, A. H. Bucking
Button and neektie holder, combined collar, w
Burtis,
Button, co
Button, collar or sle............ P.
Button fastener, H. J. Weldon
Cab. hansom, C. A. Floyd.
Cables, friction roller for w
Canal and navigating the sa
aine.................
andle machine, C. L. We
Car coupling, H. T. Bean1.
Car coupling, J. Button....
Car coupling, M. C. Cannan
Car coupling, M. C. Cannan.
ar coupling, D. K. Eastman
Car coupling, J. H. Hayes....
ar coupling, G. W. Hoover
Car coupling, G. W. Hoover
Car coupling, automatic, G. De
Car door, grain, C. P. Willson..
Car door, sliding, E. Y. Moore (r)
Car heater, street, F'. S. Hunter
Car lock and seal, J. Chapman.
Car replacer, I. Snow
Car starter, S. Rockafellow
Car wheel, R. N. Allen.....
Car wheel, R. N. Allen......
Car wheel, J. P. Stevenson.
lating, cooling, heating, and lighting railwa
G. Van Duzer....................................

Carding machines, self-stripping mechanism for
C.T. Meats.
Carpet feaner, w. H. Fastener, C. E. Du Puy

Carriage and wagon jack, P. L. Koscialowski Carriage, child's, F. H. Jury...
Carriage gear, J. B. Armstrong.
Carriage gear, J. B. Armstrong...
Cartridge shell creaser, H. W. H
Case. See Clock case. Music case. Show case
Watch case.
Caster, G. W. Curry
Chain, ornamental, R. S. Matteson.
Chandelier, extension, J. F. Broẁn.
Check for horses, driving, E. L. Metcalf
Chickens, brooding house fopy.
Chicken house, H. Evesson.
Chimeney top, G. Crompton,
Chopping knife, hand, w.
Chopping knife, hand, W.
Chuck, A.E. Ellinwood.

Chuck for rock drills, etc., J. E. Denton
Churn, F. M. Barney Cigar cutter, W. H. Ailly
Cigar fnouthpiece, W. C. Anders Cigar wrapper cutting machine, W. Rodger. 319,202
319,171 319,171
318995
319319
 Clasp. See Belt clasp. Suspender clasp. Clock case, H. Focken
Clock, secondary electric, C. A. Hussey
Closet, knockdown, G: Schulz.............. Closet. knockdown, G: Schulz....
Cock attachment, gas, G. Doutney Cock, gas, T. Gordon.
cofk, stop and waste, D. Whiteford.............
Cold artificially, apparatus for generating, W. Wren.....................
Collar. horse, W. E. Waller.

Con

Corking machine, J. J. H. Schultz
Corsets, etc., stiffening spring for, o. A.
Cotters, machine for pointing, Smith \& Weston.
Cotton press, P. C. Close........................ .. 319
Coupling. See Car coupling. Pole and shaft
Coupling. See Car coupling.
coupling. Snaft coupling.
Cow tail holder, H. F. Jacobs..
Cow tail holder, H. F. Jacobs.......................
Cranberries, apparatus for gathering, W. C. Tra-
hern... Crushing and gra
Cuff, W. Frank.
Cuff fastener, G. C. Paine..
Cuff holder, L. W. T. Lodge
Cuff holder, L. W. T. Lodge..........
Curtain cord holder, M. M. Moore
Curtain cord holder, M. M. Moor
Curtain pole bracket, R. S. Gould
Curtain stretcher, E. Sweitzer......................... 319,345
Cutter. See Cigar cutter. Fat cutter
cane cutter. Tailor's chalk cutter. Stalk and
Dental breath guard, C. C. Southwell.............. 319,338
Dental engine angle attachment, C. D. Miller..... 319,110
Dental tool for preparing roots for crowns, C. P. P. ${ }^{319,110}$
Grout.................................. 319,237
Desk, writing, Schmitt \& Dougherty.....................................19,133
Detergent, C. Robinson.................-..... 319,323
Detergent, C. Robinson...319,246
Dish, soap, H. C. Hart...........................
Ditching machine, D. J. Powers.......

Draught slide or register, L. A. White............... 319
Drainage with special reference to the prevention
of floods, surface, A. Montenegro................ 319,297
Drawers, v. Bell............................. 3919175
Drawing frames, etc., top roller for, J. Brierley..
Drill. See Rock drill.
Drill fertilizer feed, T. R. Crane......................
Drill fertilizer feed, T. R. Cran
Dust collector, A. Ingraham..
319,393
318989
Egg beater, C. A. Bryant... 318,
mann... 319,344
Electric lighting system, w. M. Thomas......... 319,347
Electric lighting system, W
Electric witch, A. J. Holt.
Electrical conductor, W. H. Sawyer..............................319,326
Electrical eonductors, conduit for, W. Cohlman... 319,197
Flectrical lighting apparatus, E. Arnould........ 319,38
Electrical lighting apparatus, E. Arnould.......
Elevator. See Barrel elevato

Embroidery, M. H. Pulaski.........................
Emery wheels, tool for dressing, L. Bush, Jr..

Engine. See Oscillating engine. Traction engine
Watchmaker's wheel cutting engine.
19,229
39,271

Eyeglass holder. S. F. Merritt.......................... 319,293
Fare box, W. G. Price.

Felly, metallic, G. D. Haworth.
Fence, J. H. Bickley...
Fence post, C. P. Lesher.....
Filing implement, paper, L. F.
Firearm sight, H. F. Clark..
irearm sight, W. Maynard
Firearm sight, W. Maynar
Fireboard, M. Gallagher.
Fireboard, M. Gallagher......
Fire escape. C. P. Willson....
Fireplace heater, T.J. Bartiett...................

Furnace. See Hot air furmace.
Furnace for preparing artiftcial fuel, v. Bietrix...
Furniture leg shoe, M. Straus.......................... 319,342
Gauge. See Water gauge.
Gas burner, o. D. McClellan........................... 319,28
Gas mains, detecting and carrying off leakage.
from, G. Westinghouse, Jr.....................
Gas meter, W. N. Milsted............................. 319,111
J. Dell.. 38,985
Gas supply, pipe line for, G. Westinghouse, Jr.... 319,365
Gate. See Elevator gate. End gate.

Gate. See Elevator gate. End gate.
Gate,19, 393
Gate, J. W. Sims............................... 319,333
Generator. See Steum renerator.
Glassware, manufacture of handled, D. C. Ripley. 319,026
Clove fastener, G. P. Ross......................... 319,030
Glove fastener, G. P. Ross........................... 319,030
Governor, steam engine speed, E. Hill.............. 319,25
Grain binder knotting mechanism, J. F. Appleby.. 319,167
Grain binder knotting mechanism, J. F. Appleby.. 31,............................ 319,160
Gripping implement, G. C. Payne....................
Guard. See Animal guard. Carving fork guard.
Dental breath guard. Window guard.
Gun carriage, machine, R. Haeek............
Gun carriage, machine, R. Haaek.................... 319,241
Gun wads, machine for counting, W. Mason..... 319,284
Hanger. See Door hanger. Shaft hanger.
Harness, C. F. Shedd............................... 319,327

Harvester, corn, H. S. Bartholomew.....................................319,054
Harvester, corn, R. L. Pearson......................... 319,310
Harvester cutting apparatus, C. Galle............ 31,222
Harvester, grain binding, A.O. Carman...............................318,953
Harvester, self-binding, A. O. Carman.
Harvesting machine, corn, E. M. Aikin..
Hasp and bolt, combined, A. P. Olmstead
Hay rake and loader, combined, Kirby \& Shea...... 319, 319
Header, C. H. Deane.........................
Paper package box T Schmidt (r)
Paper pulp, machine for forming hollow ware
Paper pulp, treating ve
ture of, D. Minthorn
Paring machine, apple, L. H. Scot
hic plates, aut
Piano sounding board, J. Brinsmead
Pianos, stringing, T. J. Brinsmead.
Pillow, folding dress, H. S. Sternberger
Pillow sham holder, W. E. Dewey.......
Pistol recoil attachment, H. G. Piffard
Plane, bench, J. A. Traut.
Planter, corn, J. Gannett.
Planter, corn, L. Scoffeld.
Planter, coverer, and marker, combined, T. Gif
ford.............................
Plow, W. M. Gorry
Plow, C. Siegortner.................................
Plow, wheel, L. M. Brock
Pole and shaft coupling, G. E. Thomas
Powder puff, A. Bender
Power press, R. H. Clark
Press. See Cotton
press. Seal press.
Press, R. E. Boschert.
Printing machine beds, mechanism for operating,
Printing press sheet delivery mechanism, J. T
Pruning knife and saw combined, M. L. Smith.
Pulley. F. Sicbert.
Puley and wheel lubrich, loose, J. Cornelius
Pump duplex ar
Pump, rotary, R. F. Hassinger
rec

Heater, C. J. McGonnell

g machine, E. B. Allen.
Raymond, 2d Hinge and roller, combined gate, J. H. Carlile Hoe, field or farm, E. K. Boothb
Holdback iron, G. R. Skinner.... Holder. See Cow tail holder. Cuff holder. Cur-
tain cord holder. Eyeglass holder. tain cord holder. Eyeglass holder. Iamp
holder. Pillow sham holder. Rein holder. Sash holder. Tool holde
Hook. See Button and hat Horseshoe, F. F. Lutz
 Hose nozzle, E. R. Tomlinson Hot air furnape, S. T. Bryce Ice creeper Ice machine, absorption, c. H. H. Evans Instructor, automatic, W. L. Gates..
Insulating materials, preparation an of, J. A. Fleming.......................................
Insulation of telegraph wires, composition of
matter for the preservation matter for the preservation of paper or vege
table tubing used for the, J. W.' Elis........... Insulator clips, machine for making, E. Dod.......
Invalids, appliance for the support of, F.
 Jack.
Joint. See Pripe joint. Stovepipe joint. Key and key seat. E. Einfeldt.

Kettles, device for lifting, L.............
Knife. See Chopping knife. Knife handle, shoe, T. Harrington Knitting machine, W. H. Mayo.... Label cabinet, C. A. Peters
Lacing, , corset. S. Bryant..
Ladder, H. H, humann.
Ladles, device for operating foundry, J. H. Whit Lamp bracket, R. L. Stokes. Lamp holder, incandescent electric
Lamp, incandescent electric. E. L. antern, C. W. Goodwl

Lanterns to cars, car
ing, M. E. Green.
Last for beating-out machines, E. C. Judd............
Lathe tool holding attachment, C. W. Coles-
Leather splitting machine, G.
Lifting apparatus, C. Sanborn.
Lightning arrester for wire fences, W. A. Morton
Lock. See Car lock. Permutation
lock.
Lock. E. W. Bretteli
Lubricator. See Pulley and wheel lubricator. Mail bag catcher and deliverer, J. McHenry. Match safe, G. P. Roberts
Meter. See Gas meter. Grain meter. Water

Ming machine, C. C. Newton. Moulding machine, J. A. Horton.
Mordant, chromium, R. Silberberg...............
Motor. See Velocipede motor. Water motor.
usical reed, M. Brat
Nail machine, wire, M. G. Voigt, Sr.. Ashe...........
Oiler, E. J. Wells
ores, solution of dichloride of copper, etc., f Oscillating, engine, D. C. Putnam........
Oven, baking, McDonald Pail, sheet metal, I. N. Ellmaker Panel or plaque, artist's, E. De Plan Paper, carbonizing, S. E. Trott

319,117 319,064

319,286
319,377 F. ${ }^{319,37}$ 319,124
319,065

319,183 319,334
 .. 319,18 .r. 319,33

319,103
318,939
319,350
3
319,350
of, J. H. E. Mendes....................... ...
319,062 Refrigerator building and apparatus, T. R. Win-
${ }^{319,271}$ Regulator. See Heat resulator.

Sash holder, C. Lee....
Saw, circular, E. Allen

$$
\begin{aligned}
& \text { Sawimill carria, } \\
& \text { \& Stringer. } \\
& \text { Saw set and }
\end{aligned}
$$

319,340
318,966
3
10290

Starch, glucose, etchausen.......................Steam boiler. W. T. Bate..
Steam boiler, J. Pessenger.
Steam generator, W. A. Gr
Steam generators, fuel magazine for, G. MehringStencil, ,. Beck..
Stirrup, W. H. Ra
Stocking, B. F. Ryer.Stones, holder for the settings
Stopper. See Bottle stopper.Store service apparatus, R.
Stove, heating,
O. PedersoStove, oil, H. E. Myers.
Stovepipe joint, W. N.Stovepipe joint, W. N. Lau
Stovepipe shelf, J. Kurtis.Stovepipe shelf, portable, E. Barnard.
Stump pulling machine, F. P. Margot.Sugar, munufacture of beet, E. F. Dye.Sulky frame, J. A. Johnson
\& Tcherniac
Switch. See Electric swit.
clearer, C. C. Quinn.
Switch stand, W.Switch stand, C. W. Widne
Telegraphs, unison device for printing, L:
McCarthy.
McCarthy.
Telephone app
Telephone apparatus, H. E. Waite
Telephone, electric, C. E. Allen..
Telephone, electric, H. B. Waite
Telephonic transmitter, electric, E. H. Johnson
Thill coupling, W. R. Bowman.
hrashing machines, grain sacking and weighing
attachment for, W. H. Barber.
Tie. See Railway cross tie
Tie. See Railway cross tie.
Time check receiver, L. Hanson
Timepiece dial, J. Stern.
Time recording apparatus, C. S. Haskell
Tool holder, A. Pawling..
Tooth crowns, applying metall
Torch, campaign, C. E. Bartra
Traction engine, G. Stringer..
Tree. See Boot tree. Shoe tree.
Trimming, L. Stark...........
Truck, hand, A
Truss, B. F. Williamson.
Tug, hame, T. L. Rivers.
Tuning hammer, A. W. G
Umbrella, G. Gilardini
Underground wires and cables, conduit for, B. L
Nevius.
V-jointer

- jointer, R. A. Bauer
Valve, balanece slide, J. B. Wallacee
Valve, balaneed slide, J. D. Olds.
Richey..
Valve gear
Valve gear, steam engine, J. D. Olds.
Valve, safety, G. H. Crosby....
Valve, slow closing, E. I. Knigh
Valve, steam engine, A. L. Ide
Vehicle running gear, J. B. Armstrong......319,049,
Vehicle spring, G. B. Hamlin
Vehicle spring, A. Straub
Vehicle spring, A. Straub...
Vhicle, two-wheeled, T. H. Brown.
Vehicle, two-wheeled, H. C. Swan.
Vhicle, two-wheelèd, H. C. Swa
Velocipede, Rudling \& Coffin....
velocipede, H. schneider.
Vent, H. Metzger..............
Wagon brake, F. R. Smith
Wagon rack, C. Cotton
Wagons, adjus
J. Carlton.
Wagons,
Allen.
Allen...
Birge...
Sanborn........................
Washing machine, W. Rochlitz.
Washing machine, W. Rochlitz
Watch case, D. O'Hara (r)...
Watchmaker's wheel cutting
wheel cutting engine, J. Cook.
Water closet, S. F. Sniffen
Water gauge, automatic, Bailey \& Alexander.
Water meter, rotary', H. Schneider
Water motor, W. T. Christy...
Weather strip, J. W. Power.
Weather strip. G. Zitzman
Wheel. See Car wheel.
Windmill, power, Colman \& Turner
Window frame and sash,
Window guard, W . Hinze.
Window screen, J. W. Bachus..
Window screen, F. \& A.! Hubka.
Window screen, J. K. Proctor...
Window screen, J. K. Procto
Wire spool, barbed, A. F. Dice....
Wire spool, barbed, D.C. Stover.
DESIGNS.
Buckle, H. C. Johnson...........
Oilcloth, C. T. \& V. E. Meyer.
........... 16,123
Tacks, instrument for ent ring and drawing, w.
M. Clark.................................

Tailor's chalk cutter, D. Machol.
Telegraph, quadruplex, G. Smith.

TRADE MARKS.
Ale, pale, T. McMullen \& Co....................
Baking powder, Ricker, Crombie \& MéLaren Baking powder, Ricker, Crombie \& MćLaren.
Biscuits, crackers, and wafers, Holmes \& Co Cigars, I. Harris..
Cigars, smoking and che
ettes, W. E. Barton..............
Coffee, Ricker, Crombie \& McLaren
Cure for malarial diseases, G. V. Dunn...................
Disinfecting or deodorizing compounds or fluids Disinfecting or deodorin.
J. A. Mathieu..........
Hlour, wheat, R. F. Piper Flour, wheat, R. F. Pip
Hair tonic, J. Semmes
 lungs, certain, B. S.
Pills, W. H. Comstock.
Soap, hard, C. Davis \& Co.....................................
Soap, laundry, Commercial Oil and Soap Company.
\qquad
Tobacco, plug smoking, U
Geo. S. Sch
Geo. S. Schwartz \& Co.

smoritifg and chewing, F. W. Felgner \& Son.....
wooolen bedding, certain named, Jaeger's Sanitary

Woolen bed System Company........................
Woolen
Woolen wearing apparel, certain named, Jaeger's
Sanitary Woolen System Company.
A Printed copy of the speciffcations and drawing any patent in the foregoing list, also of any pate
issued since 1866 , will be furnished from this office for cents. In ordering please state the number and date
of the patent desired, and remit to Munn \& Co., 361
B of the patent desired, and remit to Munn \& Co., 361
Broadway, New York. Wealso furnish copies of patents granted prior to 1866; but at increased cost, as the
speciflcations, not being printed, must be copied by

Canadian Patents may now be obtained by the inventors for any of the inventions named in the fore-
going list, at a cost of $\$ 40$ each. For fall instructions address Munn \& Co., 361 Broadway,

BAIRD＇S BOOKS PRACTICAL MEN

 Whole covering every branch of Science applied to to
Arte，sent free and free of postage to any one in and

part of the world who will furnish his address． HENRY CAREY BAIRD \＆CO | INDUSTRIALPUBLISRERS，BOOESELLERS \＆IMPORTERS， |
| :--- |
| $\mathbf{8 1 0}$ Walnut Street，Philadelphia，Pa． |

NOW READY．
 Wpranmid Meminis taining a Memorandum of Facts and Connection of Practice and Theory．By John W．Nystrom，C．E． Practice and Theory．By John W．NYsTRoM，C．E Eighteenth Revised Edition．Enlarged to the extent of 200 New Pages， 159 Tables，and 251 Ilustrations 200 New Pages，
 ＂It is a little library in a pocket－book，and is a recog－ neers and ma ing Bulletin．
 For Sale by all Booksellers，or will be sent post paid，on receipt of price，by

 715 \＆ 717 Market St，Philadelphia

SEBASTIAN，MAY \＆E Screw Cutting Lath Designe
Dron
Driil
Dre
Dre
${ }_{5}$ We mst 2 d stre
 Sealed bids and
ntilw wednestary

 CANOP FLX AND MosQurto Priburec FROTRIAL Sengo Nexitaincorthw

TO WEAK MEN

NERVOUSMEN Perfect restoration to foul mann－
hoor，heanth and vifor with

 DR．H．TRESKOW， 46 W．14th St．，New York OM THE ECONOMIC APPLICATIONS

Telegraph and Electrical

 SUPPLIES
ELECTRO－MAGNETLSM AS A PRIME

ctay
stat
Wood Working Machinery

PRACTICAL USES OF ELLECTRICITY．－

DRAWING INSTRUMENTS．

NEW YORK BELTING AND PACKING CO．
Vulcanized Rubber Fabrics

RUBBER BELTING，PACKING，AND HOSE， Mats and Matting，and Stair Treads，\＆c
BMOTRIM TIRIE，CAR BPRINVGE．

Cornell University

 Mechanic Arts，Mathematics， Civil Engineering， Electrical Engineering， $\underset{\text { Architecture，Analytical Chemistry，}}{\text { Aren }}$ Chemistry and Physics History and Political Science ature，Natural History Philosophy，Science， Entrance Examininationt bogin at 9．A．M．，June For the UNivERSITY REGISTRR，，iving full information respece ting admission，free scholarships，fellowships
 BICHROMATE OF POTASH PILES．

Rider＇s New and Improved COMPRESSION Hot dir Punming Engine Newand Improved Designs．
NTERCHANGEABLE PLAN
 or 16 COR LLANDT ST．，NEW York，N．
And 40 Dearborn Street Chicago，III．

M．EHRET，JR．\＆CO．

The Williams EVAPORATOR
 TRANSMISSION OF POWER TO A．DIS tance－By Arthur Achard．A paper read before the
Institution of Mechanical Eng ineers．Being a summar
Ot

ELEV ATORS

With best safety devices for Passenger and Freight Ser
vice．$M O$ SSE．WiviIMAS
PIPE COVERING：

PYROMETERS
 Hot．Well THERMOMETERS ANEMOMETERS SAFETY LAMPS BAROMETERS SALINOMETERS Mining and Meteorological Instruments of every deseription．

JAMES W．QUEEN \＆CO． 924 ChestnutSt．Philadelphia

ROOFING，

For Buildings of every description．Best，cheapest and most durable Roofing ever offered to the public， New circularjust out．Full informationcheerfullygive PREPARED FELT

STEAM，
W．Corner 9th annd
26 Walnut street．
RELATIONS OF THE SOIL TO HEALTH

The most successfiul lubricator
for
VAN LOOSEPZENSPYATENT
Highly recommende by those wb haghl
haears
joan

 THE RAILIWAY BUILDER．A HAND

STEAM ENGINES Hededging
Thachingery
Tour
 For SALE－Patent for metalic packing for piston
 E．C．HADLEY， 376 Washington St．，Boston，Mass

WANTED TO BORROW

Scientific American BOOK LIST

To Readers of the Scientific American：

By arrangements with the principal publishers，we are now enabled to supply standard books of every description at regular prices．
The subjoined List pertains chiefly to Scientific Works；but we can furnish books on any desired subject，on receipt of author＇s name and title．
趼 All remittances and all books sent will be at the purchaser＇s risk．
膤 On receipt of the price，the books ordered will be sent by mail，unless other directions are given．Those who desire to have their packages registered should send the registration fee
唩 The safest way to remit money is by postal order or bank check to order of Múne \＆Co．

Abney．－PHOTOGRAPHY WITH EMULSIONS．
By Capt．W．DeW．Abney．The Theory and
Practice of Gelatin and Coliodion Emulsion row
cesses．

Agnel．－CHESS．A complete guide to the pame
By H．Ag．Agnel．Illus． $12 \mathrm{mmo}$, cloth．．．．．$\$ 2.00$

 Alen．－THE USEFUL COMPANION AND AR－
 Amos－THESCIENCE OF LAW．By Professor Anderson．－LGBTNING CONDUCTORS．By
R．Adorson．Their History，Nature，and Modes
of Application．．．．．．．．．．．．．．．．．．．．．．．50

 Surface Work．XIV．Management and Accounts．
XV．Charaoteristics of the Coal Fields of Great Britein and America．A2e lithographic plates．
vols．royal tio，cloth． André－－MINING MACHINERY．A．DDescrip－
tive Treatise on the Machinery Tools and other

 Ddré．－PLAN AND MAP DRAWINGG．The Drawing，including instructions for the prepa－
ration of Enininerins Architectural and Me－
chanical Drawings，with numerous illustration chanical Drawings，with numerous illustrations
and colore exampes．By G．G．Andre，F．G．S．
M．S．E．Crown tto，cloth．．．．．．．．．．．．．．．$\$ 3.75$ Andres－Winckler．－VARNISHES．Volatile
and Fat Varnishes，Lacquers；Stains for Wood，
 Anthony and Brackett．TEXT－BOOK OF
PHYSIIS．Fully illustrate．By Prof．
Anthony，of Cornell University，and Prof． Anthony，of Cornell University
Brackettit of Princeton University
PART I．－Mechanics and Heat． 12 mo ，cloth．
 Arrowsmith．－PAPER HANG ER＇S COMPAN－
IoN By Jomes Arowsmith．A Practical Treat
ise for Wi． Ashenhurst．－DESIGN IN TEXTIIE FA． colored plates and diagrams．
Atwood．－PRACTICAL BLOW－PIPE ASSAY－
Attifield．－CHEMISTRY：General，Medical and
 Auchincloss．－LINK－MOTION．By William S．

ITETETNGINT

 HARRISBURG CAR MPG．CO．，Harrisburg，Pa．，U．S．

xion．－－THE MECHANICS FRIEND．A Collec－

 tion of Receipts and Practical Suggestions Re－lating to Aquaria；Bronzing；Cements；Drawing；
Des；Electricity：Gilding：Glass－working；Glues Horology；Lacquers：Locomotives；Magnetism； Metal－working；Modeling：Photography；Pyro－
techny；Railways；Solders；Steam－Engine；Tele－
graphy；Taxidermy；Varnishes；Waternrofing： and Miscellaneous Tools．Instruments，Machines and Processes connected with the Chemical and
Mechanic Arts．With numerous diagrams and
woodcuts．Fancy cloth．．．．．．．．．．．．．．．．．．51．50 Bacon－－A TREATISE ON THE RICHARDS
STEAM－ENGINE INDICATOR：With directions notes and large additions as developed by Ameri－
can practice；with an appendix containing useful formulæ and rules for engineers．Illustrated． Bagehot．－PHYSICS AND POLITICS．By Wal－
ter Bagehot．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 1.50$ Bain．－EDUCATION ASA SCIENCE．By Alex－
ander Bain，LL．D．1：mo，cloth．．．．．．．．．．$\$ 1 .{ }^{2} 5$ Bain，－LOGIC，DEDUCTIVEAND INDUCTIVE．
By Alexader Bain，LL．D．Revised edition． 12 mo
cloth，leather back．．．．．．．．．．．．．．．．．．．．．．82．00

JENKINS EROS, VALVES.
 \qquad

 Gate, Globe, Angle, Cheok, and Safety.manufactured of best steam metal Are the acknowledged standard of the world. Have been in use since 18es, under all possible
conditions, and never have failed. To avoid impositions nee. J GINTEITNS BIROE,

LEATHER MA

H.W.JOHNS

 ASBPSteam Packings, Boiler Coverings,
Fire Proof Paints, Cements, Etc,
Samples and Descriptive Price Lists Free H. W. JOHNS M'F'G CO ${ }_{1}, 87$ MAIDEN LANE, N. Y 175 Randolph St., Chicago; 170 N. 4th St, Philadelphia

PETROLEUM AS FUEL IN LOCOMO

PATENTS.

 ication of the scientific Ambrican, continue to ex for lnventors.In this line of business they have had forty years experience, and now have unequaled facilities for the prosecution of Applications for Patents in the Onited States, Canada, and Foreign Countries. Messrs. Mmin \& Co. also attend to the preparation of Caveats Copyrights for Books, Labels, Reissues, Assignments,
nd Reports on Infringements of Patents. All busines intrusted to them is done with special care and prompt iess, on very reasonable terms.
aining full information about paten application, con cure them; directions concerning Labels, Copyrights, ignments, Rejected Cases, Hints on the Sale of Wents, etc. also send. free of charge, a Synopsis of Foreig Patent Laws, showing the cost and method of erecuring MUNN \& CO.g Solititors of Patents,

Aluminum Bronze, Aluminum Silver, Aluminum Brass,

FURNISHED IN INGOTS, CASTINGS, RODS, OR WIRE. THE COWLES ELECTRIC SMELITING AND ALUMINUM CO., CLEVELAND, 0

EMERALD GREEN.-A PAPER BY R:

WITHERBT, RUGGG RICHARDSON Manufacturers

IRON REVOLVERS, PERFECTLY BALANCEL, P. H. \& F. M. ROOTS, Manufacturers, CONNNERSVILE, IND.
A. S. TO WNSEND, Gen. Agt.,22Cortland St., 9Dey St.,
COOKE \& CO., Selling Agts., 22 Cortland Street,
 =END FOR PRICED CATALOGUE. PORTEAND CEMENT.-THE SCI-

BARREL, KEG hognien,
Stave Machinery
Over 50 varieties
E. \& B. HOLMES, Buffalo, N. Y.

MICRO-CHEMISTRY OF POISONS By Prof.T. G. Wolmey. Including their Physiological
Pathological, and Leegal relations, with an Appendix on
the Detection and Nicroscopic Discrimination of the

 Municate with Messsts. Imray \& \& Co., A ustralian Ag Agents,
Melbournghall St., London, E. C., and at Sydney and
Mel

ENGINEER'S POCKET BOOK. BY
 etc 901 pages, leathere pills, Limes, Mortars, Cement
ebo form. Price
This valuable work wil be sent on receipt of price b
MUNN \& CO., New York.

THE CORINTH CANAL--A DESCRIP

 tion of the project o* Mr. B. Gerster, engineer in chieof the Interrational Corinth Canal, Company, and a
sketch of the progress tnus far aceomplished

BOOK WALTER EVGINE.

Compact, Substantial. Econom-
ical, and easily nanaged; guar-

AI ${ }^{2} \mathrm{CHITEATURAL}$ PERSPECTIVE

[^0], and enjoys maintain its high reputation for excellence, scientific publication. Every number contains sixteen large pages, beautifully printed, elegantly illustrated; it presents in popular
styie a descriptive record of the most noveli interesting, and important advances in Science, Arts, pnd Manufactures. It shows the progress of the N irld in respect to New Discoveries and mprovements, embracing Machinery, Mechanical Works, Engineering in all branches, Chemistry, Metallurgy, Electricity, Light, Heat, Archi-
tecture, Domestic Economy, Agriculture, Natural History, etc. It aboundswith fresh and interesting subjects tory discussion, thought, or experiment; furnishes hundreds of useful suggestions for business. It promotes Industry, Progress, Thrift, and Intelligence in every
community where it circulates, community where it circulates.
The SCIENTiFIC AMERICAN should bave a place in
every Dwelling, Shop, Office, School, or Iibrary. Workmen, Foremen, Engineers. Superintendents, Directors, Presidents, Officials, Merchants, Farmers, Teachers, Lawyers, Physicians, Clergymen, people in every walk reading of THe Scientiric American.
Terms for the United States and Canada, $\$ 3.20$ a year: $\$ 1.60$ six months. Specimen copies free. Remit by MUNN $\underset{361}{*}$ CO., Publishers,
Beaudry's
Upright Upright
Power Hammer.

MTREROPE

maxmmanm

This Company owns the Letters Patent ranted to Alexander Graham Bell, March th, 1876, No. 174,465, and January 30th, ${ }^{177}$, No. 186, ${ }^{7} 87$
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor.

(OLUMBIA

 \&TRIGYGLES. BOSTON. MSS

The Scientific American.
THE MOST POPULAR SCIENTIFIC PAPER

Scientific American Supplement.

The SCIENTIFIO AMERICAN SUPPLEM ENT is a sepaRICAN, but is uniform therewith in size, every number containing sixteen large pages. THE Scientific AM-
ERICAN SUPPLEMENT is pablished weekly, and includes a very wide range of contents. It presents the most recent papers by eminent writers in all the principal de-
partments of Science and the Useful Arts, embracing partments of Science and the Useful Arts, embracing
Biology, Geology, Mineralogy, Natural History, GeoBiology, Geology, Mineralogy, Natural History, Geo-
uraphy, A rchæology, Astronomy, Chemistry, Electricity, graphy, Archæology, Astronomy, Chemistry,
Light. Heat, Mechanical Engineering, Steam and Rail-
way Engineering, Mining, Ship Building, Marine Enway Engineering, Mining, Ship Building, Marine En-
gineering, Photography, Techhnology, Manufacturing Industries, Sanitary Engineering, Agriculture, Hortiulture, Domestic Economy, Biography, Medicine, etc.
a vast amount of fresh and valuable information pertaining to these and allied subjects is given, the whole profusely illustrated with engravings.
The most important Ensineering Works, Mechanisms, and Manufactures at home and abroa
Price for the SUPPI EMEENT for the United States
Canada. 85.00 a year, or one copy of the Scientific AmRICAN and one copy of the SUPPLEMENT, both mailed check,
MUNN \& Co.. 361 Broadway, N. Y.,
To Horeign Subscribers.-Under the facilities of y post direct from New Fork, with regularity, to subscribers in Great Britain. India. Australia, and all other British colonies ; to France, Austria, Belgium, Germany, Mexico, and all States of Central and South America \$4, goli, for SCIENTIFIC AMERICAN, one year'; $\$ 9$, gold for both Scientipic Ambrican and Supplement for
one year. This includes pcstage, 刃hich we pay ne year. This includes pcstage, ॠh

MUNN \& CO... 361 Broadway, New York.
PRINTING INKS
THE "Scientific American" is primed whar CHAAS

[^0]: (8)

 HARRISON CONVEYOR!
 ${ }_{\text {Fending }}^{\text {Foring }}$ Grain, Coal, Sand, Clay , Tan Bark, Cinders, Ores, Seeds, \&ic. Hand ong
 Sirculrs.|
 BORDEN, SELL

