a Weekly Journal 0f práctical information, art, science, mechanicis, Chemistry, and manufactures.
Vol LIII. - No. ${ }_{\text {[NEW }}^{\text {SERIES.] }}$ 22.]
NEW YORK, MAY 30, 1885.

PROPOSED bRIDGE OVER THE ST. LAWRENCE RIVER. The distance from center to center of piers, the upper and 150 feet high. The extreme width of the bridge is The Canadian Government, recognizing the great faces of each of which will be provided with massive 108 feet. At the level of the railway is the plane of the benefit which would be derived from a railway com- masonry ice breakers for a height of 60 feet to guard main wind bracing, the flanges of the wind girder munication across the St, Lawrence, has sanctioned the against the drift ice, will be 1,550 feet, and in the clear proposal to construct a bridge at a point a few miles the central span will be 1,442 feet. The clear height from Quebec. The accompanying engravings show the above high water will be 150 feet. The lower members bridge proposed by Messrs. James Brunlees, A. Luders are horizontal, while the upper ones of each cantilever Light, and T. Claxton Fidler. form parabolic curves, which, beginning at each end,
At the site selected the St. Lawrence narrows to a rise toward the piers, where the cantilever has a depth width of 2,390 feet; a large part of each shore is either of 258 feet. The upper member is supported from the very shallow or dry at low water, but for about 1,400 pier by four steel pillars, the two center ones being feet the depth increases, being at the center nearly 200 vertical, while those at the sides are inclined. The land feet. The side elevation of the bridge shows the con- end of each cantilever is anchored to a masonry tower. tour of the river bottom, and location of the two piers. The superstructure consists of two single track rail-
The bridge is of the cantilever form, and will be road bridges, placed 90 feet from center to center, and built entirely of steel. The length of the superstructure joined together by bracing; the arched masonry apcomposing the three main spans will be 2,800 feet, the proaches consist of two single track viaducts, also plactwa eantreversheing united by a short latticed span. ed 90 feet apart. The masonry arches are 40 feet span, being formed by the lower members of the cantilevers: This general arrangement offers the best and most solid construction to resist the effect of wind pressure. The towers are rigidly braced in transverse and horizontal planes, and the upper chords of each single cantilever are united by upper wind bracing, the girders so formed being 17 feet in depth. A wind pressure of 56 pounds per square foot has been provided for, and the bridge has been designed to carry the heaviest traffic covering the entire extent of both lines of railroad. The maximum stress in the steel members will be $71 / \frac{2}{2}$ tons per square inch of sectional area, while the stress in members of the wind bracing, exposed to alternating strains in opposite directions, will be five tons. (Continued on page 340.)

PROPOSED BRIDGE OVER THE ST. LAWRENCE RIVER, NEAR QUEBEC.

grimutitic elm mican.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.

o: D. MUNN.
A. e. beach.

TERMS FOR THE SCIENTIFIC AMEIRICAN.

 One copy, one year. postage included..Clubs.-One extra copy of The Scientific amprican will be supplied gratis for every club of five subscribers at $\$$
same proportionate rate. Postage prepaid.
Remit by postal order. Address
MUNN \& CO., 361 Broadway, corner of Franklin Street, New York.
The Scientific American Supplement is a distinct paper from the SCIENTIFIC American. THE SUPPLEMENT is issued weekly. Every number contains 16 octavo pages, uniform in size
with ScIENTIFIC AMERICAN. Terms of subscription for SUPPLENENT, with Scientific american. Terms of subscription for Supplement
$\$ 5.00$ a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all newsdealers throughout the country.
Combined Rates.-The Scientific American and Supplement will be sent for one year, postage free, on receipt of seven dollars. Both papers to one address or different addresses as desired.
The safest way to remit is by draft, postal order, or registered letter. Scientific American Export Edition.
The SCIENTIFIC American Export Edition is a large and splendid peri-
odical, issued once a month. Each number containg about one hundred odical, issued once a month. Each number contains about one hundred
large quarto pages, profusely illustrated, embracing: (1.) Most of the plates and pages of the four preceding weekly issues of the ScIENTIFIC AMERI CAN. with its splendid engravings and valuable information; (2.) Com-
mercial, trade, and manufacturing announcements of leading houses Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the
world. Single copies, 50 cents. Manufacturers and others who desire world. Single copies, 50 cents. Manufacturers and others who desire
to secure foreign trade may have large and handsomely displayed anto secure foreign trade may have large and handsomely disp
nouncements published in this edition at a very moderate cost.
The Scientific American Export Edition has a large guaranteed cir culation in all commercial places throughout the world. Address MUNN
$\&$ CO., 361 Broadway, corner of Franklin Street, New York.

NEW YORK, SATURDAY, MAY $30,1885$.

Contents.

table of contents of

the scientific american supplement No. 491,

For the Week Ending May 30, 1885 .

Price 10 cents. For sale by all newsdealers.

CHEMISTR Y.-Purification of Drinking Water by Alum.-The effect of alum in clarifying water by sett
Profs P. T. Austen and F. A. WILBER. Liquid Paraffine.-By Leon Crismer Hydrogen Dioxide.-By M. Traube... loon. - 10 figures.
Stability and Speed of Yachts.-A problem of mechanics in
theory and practice.-2 dia theory and practice-- 2 diagrams..
Guns as Heat Engines.-Abstract of a lecture by Mr. W. ANDER-on.-Delivered before the Society of Arts.
Tenwick's Swiveling Wheel. -1 figure Tenwick's Swiveling Wheel. -1 figure. Smokeless Furnaces. 1 figure.
Inland Navigations in Europe Motors for Sewing Machines. -1 figure The Locomotive Decapod, from the With engraving
Tank Locomotive. - 18 inch gauge
A Plan for Sewerage and for the D
City of Providence.-By S. M. Gray.
III. TECHNOLOGY.-The Manufacture of Wr........................... With description of the apparatus used and 3 engravings A New Milling Machine.-2 figures...
A New Vacuum Apparatus.-1 figure
IV. ELECTRICITY, LIGHT, ETC.-The Carbureting of Illuminat ing Gas.--The albo-carbon lamp.- With engravin
Varley's Flexible Carbon Arc Camp.- 1 figure Varley's Flexible Carbon Arc Lamp. -1 figure..
The Hydrodynamic Researches of Prof. Bre The Hydrodynamic Researches of Pro. BJERKNES.-The effect -Mutual effect produced by bodies vibrating in the same viscous medium. - 17 figures..
On the Production of Alternating Currents by Means of a Direct Current Dynamo Electric Machine.-By J. Trowbridge and H. Some Properties of t Fitygeralid.
HTOMOLOGY, ETC.-Compound Eyes and Multipl A Large Dragon Fly.-With enound eyes
The Culture of Microbes -5 engraving
VI. MISCELLANEOUS.-The Ammoni oice. -2 figures.
How English F
How English Factory Operatives Live
VII. Blography.-The Hon. Sir Wm. R.Grove, d.c.L., F.r.S

THE HIGHER ORGANIZATION OF MANUFACTORIES

It is surprising how many manufacturers have to burned out to discover what their goods cost them."
So said an adjuster of losses for a fire insurance com pany, the other day, speaking of the happy-go-lucky way in which manufacturing-particularly of patented specialties-is apt to be carried on. So long as the business, as a whole, is profitable, no critical attempt is commonly made to learn the precise cost of any single article or detail
Some day a fire occurs, damaging or destroying a quantity of finished and partly finished products. Then arises the question, What was the exact value of such articles at such and such stages of manufacture; not their selling price, but their actual cost to the maker
From data furnished by the manufacturer, cost of raw material, labor, wear and tear of machinery, shop rent, interest, and so on, a careful calculation is inade giving results which frequently surprise and not infre quently astound the manufacturer, who thus learns for the first time the prime sources of his profits or losses Very often articles which were roughly supposed to be paying handsomely are found to cost more than they bring, the real profits of the business coming from other sources. More than one instance was cited by the speaker above referred to, in which the exact informa tion developed through or incidental to a fire has been useḍ as a basis for a thorough reorganization of a business, to its permanent benefit.
While the business was "booming," the proprietors, even if they had the requisite mathematical skill, had neither time nor incentive to enter upon any elaborate calculations as to the precise cost of each process in the production of their wares, to see if the aggregate cost might possibly be lessened by some minute percentage.
They certainly would not think to call in a compe tent expert to make such calculations in the ordinary course of business. Something extraordinary, like flood or fire, with its concomitant conflicts of interest seems to be necessary for that; though it is a matter of common experience, and should be a matter of common expectation, that leakages occur in the best payin business, and that few processes are so perfect that it is safe to rest too long on the easy custom of letting well enough alone.
There are other occasions than flood and fire that compel judicious and far-sighted manufacturers to re vise their methods; among them, dull seasons and hard times. Many, we doubt not, are now readjusting their machinery and processes to meet more effectively, not merely the conditions of production hitherto existing, but those of the immediate future, with its lower prices and keener competition. Is it not safe to assume that many others are neglecting the opportunity, to their future hurt?
The fact that a business pays is not always a guarantee that it is wisely managed. The real question is, Does it pay as well as it might? Where the possible margin for profit is small, as in the production of most staple goods, the manufacture is pretty sure to be conducted with scrupulous safeguards against needless wastage and excessive cost. It is with better paying specialties, which are in the best sense monopolies, that such economies are lacking.
Chief among the sources of avoidable loss is an ab sence of critical estimates of cost and a lack of thorough organization of men and machinery. W ork is done by hand by high priced workmen, when it could be done better with cheaper labor, using intelligently selected or properly constructed tools and machines designed for the specific work to be done. Another source, less com monly recognized, is the lack of a nice adjustment of the manufacturing plant, in quantity as well as in kind, to the amount of work to be done.
The economic importance of the American system of production by means of special tools and machine tools turning out interchangeable parts is now understood the world over. It is everywhere recognized as marking the most important advance in the broader methods of the useful arts that our modern manufacturing age has witnessed. Not so many are aware that there i now in process of evolution a still more significant ad vance in the productive arts, economically considered, a higher differentiation, which promises to effect for mechanical production in the gross as signal an im provement as machine tools, with interchangeability of products, has effected in the details of manufactur ing. It applies to the manufactory as a unit, and its output as a whole, the economy which the machine tool accomplishes in respect to the single product, and promises a proportional advantage to the public a large in the cheapening of all manufactured articles. It involves the organization of the highest grades of mechanical knowledge and skill, for a broader and higher type of mechanical business, which cannot fail to react powerfully upon all lines of production.
The new business has grown out of the business of making special tools to order, the second stage of the evolution being the production of specific lines of spe cial tools of wide utility, with adaptations designed t meet the exigencies of special manufactures. The fina step marks a complete and radical change in the fur nishing of workshops.

At first the manufacturer who discovered the need of special tool had it made more or less imperfectly in his own shop, often with serious delays and expenses which a shop especially designed for machine making could easily lessen or obviate entirely. The latest advance is for the intending manufacturer to order his shop in bulk, made to measure, so to speak, as he formerly would have ordered a single tool. He submits the machine, apparatus, or other articles which he intends to manufacture, or models or drawings of them, for an estimate-first of the proper cost of the machine or article when made by proper tools and processes in a properly organized factory; second, of the cost of producing such tools; third, of the cost of an entire plant capable of turning out the articles required, at the specified cost for labor, and in the quantity demanded, the organization of the factory to show the best possible adaptation of means to the desired end.
Here, it is obvious, is the basis of a new line of busi ness of vast possibilities and enormous industrial importance, and it is gratifying to know that more thar one American firm of large capital and corresponding experience and trustworthiness is making it a considerable part, if not the whole, of its business to provide in this way complete and thoroughly organized establishments for any and every variety of productions, from steam engines to sewing machines and fire arms.
It is obvious, too, that no ordinary shop can compete either in the quality or the price of its products with an establishment fitted out from the start with special machinery in this manner, with a plant rigorously and skillfully planned and constructed for the economical production of its specialties.
This latest and highest development of the manufacturing arts promises to be especially serviceable to those founding factories for new inventions. It is now no longer necessary to develop a plant for such work tentatively or experimentally, and at uncertain costs, as heretofore; but the business can begin with the most suitable and economical productive outfit that the existing state of the arts will afford, with a prescribed capacity, at a fixed price, and with a basis of expert knowledge as to the proper cost of the intended products. It is always cheaper to buy expert knowledge than to win it by hard experience; and easier to secure capital to meet a known outlay, however great, than to induce capitalists to back an uncertainty.
At any rate, the new departure promises, as already observed, to advance materially American manufactures in respect both to quality and cheapness. Where superiority comes with diminished cost, as it must in the better equipped and better organized manufactories developed under the new system, the advantage ooth to producers and consumers cannot be questioned.
The only possible sufferers will be those non-progressive people at home or abroad who may try to compete by old time methods with those who avail themselves of the superior facilities made available by the new order of things in the equipment and organization of manufactories. The manufacturer who continues to work in ignorance of the real cost of his products, or uses ill-adapted and inefficient machines and processes through ignorance of possible better ones, is a needless waster of wealth, and has only himself to blame if driven to the wall.

General Lafayette and the Bartholdi Statue.
In stimulating the people to opening their pockets for the completion of the granite base of the statue of Liberty, the N. Y. World deserves credit. By persistent daily appeals through its columns over $\$ 50,000$ has been received at the World office. The World points out that Lafayette gave away about $\$ 140,000$ of his private fortune during our Revolution, to promote the cause of American liberty; the question is then asked, how, remembering this, fifty millions of free Americans can refuse to provide the means to pay for a resting place for the statue of Liberty sent to us by Lafayette's countrymen? The question would remain unexplained, except to those who have visited the burial spot in Paris, where the brave General's bones are deposited, and have been witnesses of the neglected condition of the place. To such as these, the question will arise why some measure has never been taken by our patriotic people, to raise funds to erect a suitable monument to the memory of the gallant young officer who came from a foreign land to the aid of our forefathers, when men with strong heads and mighty arms and generous hearts were so much needed ?

Railway Progress in the African Desert.

The Times correspondent in the Soudan telegraphs as follows: "The construction of the railway is a curious and interesting sight. In advance is a picket of cavalry, while far off on either side the vedettes scout in the bush. At the immediate head of the line is a battalion of infantry echeloned, and advancing as the rails are laid. Streams of coolies carry the sleepers from the trucks, and teams of four artillery horses drag up the rails, two at a time, to the navvies, who lay them in a twinkling, and drive the spikes. In the rear are gangs who complete the line, and further back the ballasting parties.'

aspects of the planets for June.

 saturn is evening star until the 18th, when he takes his turn in swelling the ranks of the morning stars. On the 18th, at 6 o'clock in the afternoon, Saturn is in conjunction with the sun, sweeping with his attendant rings and moons beyond the sun, and reappearing on his western side as morning star, hidden for a time in the sun's blinding rays, but keeping steadily on his westward course, until, when midsummer reigns, he becomes a beautiful object in the morning sky, one of the fairest gems that dot the firmament in the small hours that precede the summer dawn. He wins the place of honor on the annals of June, not so much for his arrival at the least interesting epoch of his course as for the fact that between his conjunction and the following opposition he will pass his perihelion, when he is nearly $100,000,000$ miles nearer the sun than when in aphelion. Just now, however, Saturn is only the planet of promise. Safely hidden from mortal eye, he travels on his unseen path, coming toward us, and growing slightly brighter until his time comes to take on a visible presence.Saturn, before conjunction with the sun, pays his respects to Venus, the former traveling toward and the latter receding from the sun on the star-strewn pathway. The planets are in conjunction on the 7th, at 5 o'clock in the afternoon, Saturn being $1^{\circ} 32^{\prime}$ south when passing west of Venus.
Saturn, after conjunction, meets Mercury, the former recading from and the latter approaching the sun. The planets are in conjunction on the 23d, at 11 o'clock in the evening, Saturn being $1^{\circ} 41^{\prime}$ south, when they meet and change places on the celestial road. The three planets have their meetings and partings all to themselves, for when these events occur the celestial actors are safely enshrouded in the dazzling halo of light that surrounds the sun, and are unseen by terrestrial observers.
The right ascension of Saturn on the 1 st is 5 h .40 m. ; his declination is $22^{\circ} 24^{\prime}$ north; his diameter is $15 \cdot 6^{\prime \prime}$; and he is in the constellation Taurus.
Saturn sets on the 1st a few minutes after 8 o'clock in the evening; on the 30th he rises about half-past 3 o'clock in the morning.

JUPITER
is evening star during the month. He is a superb object in the evening sky of June, the brightest of the three thousand stars visible on clear moonless nights. His course will be interesting to watch, for he is now moving eastward among the stars, or in direct motion, after having Eeen for a rong time either stationary or moving westward in retrograde motion, as it is technically called. Proof of this is easily discerned by observing the slowly increasing distance between him and the star Regulus, which he has now deserted for good. At a recent meeting of the Royal Astronomical Society, in London, the Earl of Crawford made a very interesting statement in regard to one of the satellites of Jupiter. Dr. Copeland, he said, had recently observed a transit of Jupiter's fourth satellite, that is, the pas sage of the satellite across the planet's disk. While closely watching the phenomenon, he saw the satellite overtake and occult its own shadow on the body of the planet. Therefore, at the time of observation, the sun, the earth, the satellite, and the part of Jupiter's disk occulted must have been in one straight line. Under these conditions an observer on the huge planet, at the right point of view, would behold our earth, dwindled by distance to a tiny black sphere, making a transit on the sun's bright surface. But we fear that the grand phenomenon of a transit of the earth was invisible to observers on the Jovian disk, for there is hardly a possibility that life, even in its lowest forms, has yet developed on the gigantic globe, where primeval chaos still reigns.
The right ascension of Jupiter on the 1 st is 10 h .3 m .; his declination is $13^{\circ} 8^{\prime}$; his diameter is $34^{\prime \prime}$; and he is in the constellation Leo.
Jupiter sets on the 1st shortly before midnight; on the 30th he sets a few minutes after 10 o'clock in the evening.
uranus
is evening star. On the 19th, at 10 o'clock in the evening, he is in quadrature with the sun on the eastern side. He then, as his three giant brothers have done before him, reaches the half-way house between opposition and conjunction, and thencef orth must be looked for in the western sky after the stars come out. He is nearly stationary during the month, and presents no other aspects worthy of record.
The right ascension of Uranus on the 1st is 11 h .56 m .; his declination is $1^{\circ} 9^{\prime}$ north; his diameter is $3 \cdot 5^{\prime \prime}$; and he is in the constellation Virgo.

Uranus sets on the 1st about 1 o'clock in the morning; on the 30th he sets about 11 o'clock in the evening.

MERCURY

is morning star until the 27 th, and then evening star. On the 27 th, at 10 o'clock in the morning, he is in superior conjunction with the sun. Since his previous superior conjunction he has made one of his swift circuits round the central orb in 88 days, and whirled on in
his course till he has overtaken the slower moving earth thus completing his synodic revolution in 115 days, and is in line with the sun and the earth. At this time he is beyond the sun, but he quickly reappears on the sun's eastern side, and speedily passes through his
varied aspects as evening and morning star till he has completed another synodic period in less than four of our months. Years are short on the swift-footed little planet, one of them numbering but 88 terrestrial days, not quite three months as we count time!
On the 5th, at 2 o'elock in the afternoon, Mercury, approaching the sun, encounters Neptune slowly receding from the great orb. They are in close conjunction, Mercury being 48 ' south. On the 23d, at 11 o'clock in the evening, Mercury, very near the sun, meets Saturn, also very near the sun. The conjunction of these planets has been already referred to. Mercury is the agitator of the brotherhood, and contributes largely toward making things lively in the sun's family.
The right ascension of Mercury on the 1st is 3 h .10 m ; his declination is $14^{\circ} 44^{\prime}$; his diameter is $7^{\prime \prime}$; and he is in the constellation Aries.
Mercury rises on the 1 st about a quarter after 3 o'clock in the morning; on the 30th he sets soon after half past 7 o'clock in the evening.

venug

is evening star. She is slowly and surely making her way to visibility, and her presence in the glowing west will be warmly welcomed. She sets an hour after the sun on the last day of the month, and bright eyes may then discern the fairest of the stars before she disappears below the western horizon.
She must be looked for in the northwest, half a degree south of the sunset point, in the constellation Gemini, south of Castor and Pollux and north of Procyon. Her high northern declination will aid the observer in his search. Venusis in.conjunction with Sat urn on the 7th, as previously referred to.
The right ascension of Venus on the 1 st is 5 h .11 m . her declination is $23^{\circ} 19^{\prime}$; her diameter is $10^{\prime \prime}$; and she is in the constellation Taurus.
Venus sets on the 1st about a quarter before 8 o'clock in the evening; on the 30th she sets a few minutes before half past 8 o'clock.

NEPTUNE

is morning star. His path lies near that of Mars throughout the month. The planets are in conjunction on the 10th, at 6 o'clock in the evening, Neptune being $1^{\circ} 29^{\prime}$ south.
The right ascension of Neptune on the 1st is 3 h .27 m .; his declination is $17^{\circ} 5^{\prime}$ north; his diameter is $2 \cdot 5^{\circ}$; and he is in the constellation Taurus.
Neptune rises on the 1st about half past 3 o'clock in the morning; on the 30th he rises about half past 1 o'clock.

mars

is morning star. At the end of June, Saturn, Neptune, and Mars are morning stars; Mercury, Venus, Jupiter, and Uranus are evening stars.
The right ascension of Mars on the 1 st is 3 h .; his declination is $16^{\circ} 45^{\circ}$ north; his diameter is $44^{\prime \prime}$; and he is in the constellation Taurus.
Mars rises on the 1st about 3 o'clock in the morning on the 30th he rises at a quarter after 2 o'clock.

the moon.

The June moon fulls on the 29th, at 14 minutes after 1 o'clock in the morning. She is in conjunction with Neptune on the 10th, and with Mars on the same day, six minutes later, showing how near together the planets are. On the 11th, the day before new moon, she is at her nearest point to Mercury; on the 13th, the day after new moon, she pays her respects to Venus, on the 17 th to Jupiter, and on the 19th to Uuranus.
The moon occults Uranus for the fifth time since the year began. The occultation occurs on the 19th, and can be seen between the limiting parallels of 20° and 80° south latitude by those favorably situated in time and place. She also occults Alpha Taurior Aldebaran on the 11th, for fortunate observers between the limiting parallels of 90° and 26° north latitude. The star and waning moon are both invisible when the phenomenon occurs.
occultation of omicron leonis.
The moon, on the 16th, occults Omicron Leonis, a star of the $31 / 2$ magnitude in the constellation Leo. The immersion or disappearance of the star behind the moon takes place 7 minutes before 7 o'clock, a half hour before sunset. The emersion or reappearance of the star occurs 1 minute before 8 o'clock, 37 minutes after sunset. The emersion will be easily observed in a small telescope. The occultation continues 1 hour and 6 minutes.

June

contributes an interesting budget of planetary events. The great sun himself is joint actor with the members of his family in three of them-the conjunction of Saturn, the quadrature of Uranus, and the superior conjunction of Mercury. Five of the planets, grouped near the sun and near each other, make matters lively, as they meet and pass on the celestial track, Saturn being in conjunction with Venus and Mercury, and Neptune with Mercury and Mars. The moon is not
outdone by the more imposing members of the family, for besides paying her respects to each planet in turn, she occults Uranus, Aldebaran, and Omicron Leonis for the pleasure of fortunate observers in some portion of the terrestrial domains. Thus the month bears wit ness, as all previous months have done, and all coming months will do, to the never-ending succession of interesting phenomena, the wondrous variety, and the spiritual exaltation that rewards the faithful study of the queen of the sciences.

Prize for a Model of a Movable Ambulance Barrack
The Empress of Germany offers $\$ 1,000$ and a gold medal as prizes in a competition for a model of a movable ambulance barrack, subject to the following requirements:
The barrack must be suitable for use on the field of battle, or for epidemics, and so arranged that it can either form part of a larger hospital or an independent hospital. To be taken down easily, transported, and quickly erected.
It must form a stable building; arrangements for winter use should be added. Walls and floor must be capable of disinfection without difficulty.
The barrack should be large enough to contain twelve beds, allowing for each bed a cubic space of at least twelve meters. The only annex required is the closet, which may form a part of the barrack, or may be separate. The different parts must fit so that special workmen will not be required, either for erecting or taking down the building.
The floor, of planed boards, should not shake when walked upon, and should not come in direct contact with the ground. The intermediate layer between the ground and the floor should be such as to receive easily and promptly the nails of an improvised floor, in cases where the floor previously prepared cannot be used.
There should be sufficient ventilation, even in the cold season, when the windows and doors are closed.
The heating apparatus should be such as to keep the temperature of the interior at about 66° Fahrenheit. The heating apparatus might be made to assist in the ventilation.
Designs presented may be full sized specimens of the barrack, or models reduced one-fifth.
If a barrack is to be composed of a certain number of similar elements or parts, only one of these parts need be presented, provided that from it the whole can easily be understood. This condition applies only to full sized samples, and not to the reduced models.
Each competitor must present a plan of his whole building, with transverse and longitudinal sections, on a scale of one twenty-fifth; besides special plans for each part of the construction, for the systems of heating and ventilation, the manner of erection, the closet, etc., which may be either full-sized, or, according to the object represented, on a scale of one-fifth or onetenth. The places for the beds must be indicated in the plan.
With the plan, there must be an exact description of the whole establishment, which must be written in French, German, English, and Italian. This description must cover the materials used, the particulars and details of construction, as well as the maneuvers necessary for pulling down, transporting, and erecting the barrack, also the time required for erection. It must also state the motives which guided the designer in his choice of materials and manner of construction. The designer should state what advantageous modifications could be brought to bear on his system, according to the country in which it was used, in relation to special climatic conditions, relative facility in procuring certain materials, and other local particulars.
The description should close with an approximate estimate of the cost and the weight of the barrack, a technical explanation of the sections used to show the different parts of the building, and finally a calculation of the operation of the heating apparatus and the sysem of ventilation.
Competitors will be allowed to represent their designs by plans only, provided such plans are accompanied by a description which fulfills all the above requirements. But those who send only plans will receive only honorable mention, not being allowed, to compete for the prize of 5,000 francs.
Competitors should send their designs, etc., to Antwerp by Sept. 1, 1885, where they will be exhibited from Sept. 10 to Sept. 20.
The competitors should announce their intention of sending designs before July 15, to the "Commissariat General" of the Belgian Government, for the Exposition at Antwerp, $10 a$ Rue de la Loi, Brussels.
For further information address the "International Committee of the Red Cross, Geneva," Switzerland.

Science has come to the aid of baseball players, and announces, for the "benefit of batsmen who are ambitious to make heavy hits, that the ball should be struck at the angle of twenty-three degrees in order to send it to the greatest possible distance. Repeated experiments in artillery have proved that a ball fired from a cannon at this angle will carry farther than if fired at any other angle with a like charge of powder.

A NEW AND IMPROVED FILTER

The filter shown in the engraving is continuous in ac tion, and, owing to the complete aeration of the water, it never becomes foul, and has no substance like charcoal to become saturated after a time and useless. The inventor of this filter, Mr. Walter Dearden, of Trinidad, Colorado, has had one in use two years, and it does just as well now as at first. The body of the filter may be of wood, galvanized iron, or earthenware, and of any appropriate size. A horizontal partition forms a receptacle at the top to receive water. The flow of water from this receptacle is regulated by a cock. Upon the perforated bottom of the next bottom of the next
compartment is compartment is gravel, above which is sharp, coarse sand. Under the cock is a distributing plate, upon which the stream of water strikes and is divided and distributed over the surface of the sand. Below the per forated bottom is the lower compartment, that receives the filtered water, which may be drawn out through the faucet. Formed in the body, just below the upper partition, is an opening, closed by a wire door, that permits free access of air to the compartment; through this opening the stem of the cock may be turned to regulate the flow of water. In the side of the lowest compartment is a similar opening for the passage of air to the filter below the filtering material, so that the water is plentifully aerated in the filter. This free access of air is of special importance in the center compartment, as the water, being divided into spray by the plate, will be brought into intimate contact with the air. The air will mingle with the sand, causing the water to be minutely divided, and, by oxidizing the impurities, will have a constant cleansing effect. The water is never permitted to enter in such quantity as to cover the sand.

Improved baling press.

The engraving shows an improved press for baling hay or cotton, recently patented by Mr. Allen M. Brasher, of Alexandria, La. In the end of a horizontal baling box is a shaft formed at its middle with a crank, and on one end of which is a combined fly and pulley wheel. The crank is connected by a pitman with a follower block sliding within the baling box. In the top of the box in front of the follower is an opening through which the hay or cotton is fed. Journaled in two standards at the side of the box is a shaft carrying a rocking lever, provided at one end with a downwardly projecting arm which is over the opening, and at the opposite end with an inclined downwardly projecting arm braced and stiffened from the lever. The lower end of this

brasher's improved baling press.
arm is so located that the rounded end of the pitman can act upon it. Pivoted in the inner ends of slots formed in the sides of the box in front of the follower (Fig. 2 is a cross sectional elevation through this part) are stops, on the outer ends of which are curved springs resting against the outer sides of the box, and thereby pressing the front ends of the stops, which are squared and larger than the inner ends, into the box. On the front end of the follower are two beveled grooves, to correspond with the slots in the box; hinged plates
hang over the front ends of the grooves, and close them to prevent the entrance of hay.
At every revolution of the crank shaft, the rear end of the pitman strikes the lower part of the braced bar, and the follower is withdrawn as far as possible. The forward end of the lever is forced down, thereby pressing the hay or cotton into that part of the box in front of the follower. As the follower moves forward, the end of the pitman slides off the bar, which swings down ward, thereby raising the opposite end of the lever. When the follower moves forward, the hinged plates push outward those parts of the stops projecting into the box; after the plates have passed the front ends of the stops, the latter snap into the grooves in the follower. When the follower is withdrawn, the ends of the stops swing the plates from the end of the follower, thus permitting the stops to pass out of the grooves. The stops prevent the hay that has just been pressed from moving back with the follower. It will be seen that the press is so constructed that it feeds itself automatically.

Decomposition of Blasting Gelatine.
According to Sir Frederick Abel, neither trinitrocellulose nor the less nitrated products are affected, when pure, by a temperature near 100°; but the easy decomposibility of gun cotton, sometimes observed, is due to the presence of nitro-derivatives of foreign organic substances (the incrusting matter of the cellular tissue), which, when heated, quickly decompose with the formation of free acid. In the Journal of the Ameri can Chemical Society, Professor Charles E. Munroe, U. S. N. A., reports the following case that has occurred under his own observation. Some camphor ated explosive gelatine was wrapped in paraffin paper, then in light brown Manila paper, and laid on a shelf. After something more than a year's exposure, it was found, in the early winter, to be giving off nitrous fumes and to have shrunk considerably in volume, while the outside of the paper was covered with congeries of fine crystals. The odor of camphor was still quite strong. The mass was immediately put into a vessel of water. It was found to be friable, and, after a short immersion disintegrated. The camphor odor soon disappeared, and the water became of a straw color, gave a strong acid reaction, and showed traces of nitrous acid, but no nitric acid. On evaporation of the filtered liquid, oxalic acid crystallized out in quantity, and on evaporation of the mother liquor on the water bath a sugar-like mass was obtained, which gave the glucose reaction with Fehling's solution. The paraffin was regained unchanged, and the paper was recovered, but in a flocculent condition, and with the color bleached from the brown. Careful search failed to reveal the presence of glycerine, nitroglycerine, or gun cotton.

A Shoal Water Alarm.

In order to facilitate the navigation of the treacher ous water of the Nile, Messrs. Yarrow have designed a permanent sounding apparatus which will notify the shoaling of the water some distance ahead. This is described as consisting of two poles about 50 ft . long, at the end of which are suspended two vertical iron rods. The bottom extremities of these come about 1 ft . below the level of the boat itself. One pole projects direct ahead from the port side, and the other from the star board side. Attached to each of these two vertical iron rods is a wire rope which passes inboard, and is connected with the whistle on the boiler; and the gear is so arranged, that immediately this indicator touches a rock or sandbank it instantly causes the steam whistle to blow. This plan in the first instance draws the pilot's attention to the fact, and also points out to him on which side of the steamer the sandbank or rock exists, so that it giveshim warning in which direction to steer.

WIRE CARRIER AND STRETCHER.

This apparatus-patented by Mr. William J. McKee, of Avon, Conn.-may be used in stretching plain and barbed wire for fencing and for rewinding the wire in removing fences; it can be operated with great facility, and requires but a minimum amount of labor. The frame consists of side bars connected by braces and provided with long arms, pivoted at one end, so that they may be set to support the frame in an inclined position, as shown. The frame and brace armshave spiked ends for entering the ground, and in the lower ends of the frame are wheels, which support the frame when it is brought down to near a horizontal position. Supported in boxes upon the frame are shafts fitted at one end with gear and ratchet wheels, the latter being engaged by pawls hung on the frame. The ends of the shafts are squared to receive crank handles, and a stud on the frame carries a large gear wheel meshing with both the small ones, and also havinga handle by which it is operated. In order to weaken the bars as little as
possible, and to permit of convenient removal of the parts, only the bottom portion of the boxes are mortised into the bars, and the upper portions are formed as straps, having hooks at one end passing beneath staples and held down at their opposite ends by bands
around the bars. The shafts are to carry the reels of wire, and have on them sliding disks provided with sharp pins that can be forced into the wooden ends of the reels, so that reel and shaft rotate together.
The reels being placed on the machine, the latter is moved along the ground on the wheels, the brace arms being used as handles. When the wire has been run

MCKEES WIRE CARRIER AND STRETCHER.

off to the extent desired, the frame is set as shown in the cut, and crank handles are applied to the shaftsthe center wheel having been removed-which are turned to stretch the wires. The pawls prevent backward movement while the wires are being secured to the posts, and the braces hold the frame against the strain. For winding wire, the braces are turned to the opposite side, and the large wheel is putin place to rotate both shafts at once.

-ELECTRIC HIGH AND LOW WATER DETECTER.

A galvanized iron stand pipe about five inches in diameter, and of suitable length, is connected with the boiler by two pipes, as shown in Fig. 1. Within the pipe is a float having a stem a little longer than the range between high and low water. The stem passes through a guide, and has a copper disk, B, near the float, to signal high water, and another, A, near its upper end, to make the connection for low water. The hole in the guide is beveled to prevent the binding of the stem when the float shifts from side to side. The disks may be placed at any point on the stem. The electric circuit is completed through the binding posts, C D, which are connected with wires leading to the annunciator, Fig. 2. The inner end of each post carries a copper plate, with which the disks come in contact as the float approaches either the high or low water level, and in order to insure proper electrical contact, each plate is slitted into separate fingers in the bearing parts; the yielding of the fingers affords more certainty of connection with both plates, in case the float should happen to incline a little more to one side than the other. The disks are placed a considerable distance above the water, where they will not be liable to be

electric high and low water detecter.
fouled with deposits. When several boilers are provided with the detecter, a multiplex annunciator, Fig. 2,'is used, so that each boiler may be represented by a special signal. The binding posts are insulated from the stand pipe, by means of a rubber tube and washers, fitted through the holes of the pipe, and against the sides between the collar and nut, as shown in Fig. 3. This apparatus is now in successful operation at the nail works of the Ellis \& Lessig Steel and Iron Co., of Pottstown, Pa. When the alarm is sounded the annunciator not only shows which boiler is in trouble, but also indicates whether it is high or low water. Further particulars can be obtained by addressing the inventor of this device, Mr. C. H. Wickersham, P. O. Box 435, Pottstown, Pa.

THE TAYLOR NEW AUTOMATIC STATIONARY ENGINE.
The competition among builders of stationary engines since electricity has attained such wide use is something almost phenomenal, and the improvements that have been made to secure a higher efficiency, more exact regulation, and smooth action at high speed mark a wonderful advance in steam engineering during the last ten years. The old fashioned cut-off has been almost entirely superseded by positive motion mechanism, and improvements in the governor have necessarily followed in rapid succession, and with these modifications there has also been a decided gain in simplicity, compactness, and working economy One of the latest examples of improved stationary engines of this class, as made by the Taylor Manufactur ing Company, of Chambersburg, Pa., is shown in the accompanying illustration. Its good proportions, both in general dimensions and arrangement of parts, and the proper form and sizes of details for the best uses of the forces developed, at once indicate its probable high efficiency for a large variety of work.

The primary elements of a good engine, accurate workmanship and the use of the best material, are points especially attended to, all parts being worked from carefully made templates and gauges, making them thoroughly interchangeable, and lessening the work of fitting to a minimum when the parts are brought together. The bed is heavy and rigid; its peculiar shape provides ample metal and strength above and below the central line of strain. The guides and head of frame are bored at the same time, thus insuring perfect alignment. The bearing for crank shaft is cast solid with the bed, and cannot spring out of line it is lined with anti-friction metal, and being very long, will not heat. The base of the bed is designed to catch all oil from engine, and prevent its running down over foundation. The cylinder is secured to

THE TAYLOR ENGINE GOVERNOR.

end of bed, and overhangs; it is cast solid with steam chest, which is at the bottom of cylinder, so that all condensation passes off from bottom of steam chest.
The steam chest has steel bushings, in which the piston valve works. Should they become worn so as to affect the proper action of the valve, and leak steam, it only requires a short time to take them out and put new ones in. The valve is of the hollow piston type, fitted with packing rings. The edges of the rings are made to serve for the proper distribution of the steam, instead of the solid end of the piston. The valve is surrounded in the center, between the packing rings, with live steam, and exhausts through the inside, and, with the packing rings working in the steel bushings, will run without loss of steam from leakage. The steam ports are large and direct. Crank shaft and crank pin are of forged steel, and bearings are large and proportioned to work under the heaviest duty the engine can perform without heating. Crank disk is cast with counterbalance to balance weight of crank pin and connecting rod. Connecting rod is of best hammered iron fitted with gun metal boxes lined with anti-friction metal, and adjusted by a wedge inside the strap, which is operated by two bolts, so that when key is set the bolts secure it against working loose while running, and the straps surrounding the boxes are securely bolted to the rod. The crosshead has liberal bearing on guides, and is adjusted by sliding gibs. Piston rod is of steel, and secured to crosshead by a threaded end jam nut and key. Crosshead pinis of forged steel, set directly central of gib bearing on guide. Piston is fitted with two self-adjust ing packing rings. All valve rods, eccentric rods, and pins
un metal connection to rocker arm that can b quickly released, and valve operated by hand to keep engine off center. Rocker shaft is of steel working in a half box that is lined with anti-friction metal.
The governor of this engine is of novel construction, its action on the valve being instantaneous and positive. In the illustration, A is an eccentric pivoted to the arm of wheel, B. At D is sleeved arm that revolves on hub of wheel, B, and is connected to eccentric by links, E. The weighted lever, F , is pivoted to rim of wheel, B, at G, and by means of link, H, to arm, D. The weights are secured to lever, F, and by means of their centrifugal force act on the eccentric through the arm, D, and links, E, which links being connected close to the pivoted point of eccentric at C, there is only a small novement of weights required to produce full throw on or off eccentric. J is a paddle wheel or vane case, secured to arm of wheel, B, with toothed wheel in position, and connecting the paddle wheel directly to the eccentric by the toothed arc, K. The springs, I, act by compression, and when speed of engine is lessened, they overcome the centrifugal force of the weights, and ncrease the throw of the eccentric, which admits more team, and restores the engine to its proper speed. The paddle wheel or valve revolving in the closed case, J, which is filled with oil or other liquid, is intended to act to prevent racing caused by sudden change of load the movement of the weights propelling the wheel so that a slow movement is imperceptible. and will not be esisted by the oil, as would be a rapid one. A change of size of gear that propels the paddle increases or dereases its motion, but its action can only be coincident with that of the weights. The eccentric is connected directly to the valve, so that its action is instantaneous. The regulator can be adjusted for any speed of engine, and is independent of the fly wheel.
The company has a 16×24 engine of this type at the New Orleans Exposition, rated from 125 to 200 h . p., and has also sixteen other engines and two saw mills there, making one of the largest and finest displays in this line of any one firm at the exposition.
Patents on this engine were granted May 5 and May 26. For further particulars address the Taylor Manu facturing Company, Chambersburg, Pa.

Echoes from the Pulpit.

On Sunday, May 1^{\prime} ', two of the widest known, and Brooklyn's most celebrated, divines made the following remarks during their morning discourses
Mr. Beecher said: "I shall not be with you many more of the fast-going years. Steadily for more than fifty years I have been under the influence of the great doctrine of evolution. In my early preaching I dis cerned that the spirit of true religion was represented by the leaven of the mustard seed. Then I found that science had a larger view, and that this was only one application of a great doctrine. Now there is not an educated man under fifty years who is not substantially an evolutionist. The application of the fruits of evolution to all forms of doctrine-this will be the closing work of my life. I propose to discuss the questions of the Divine nature, human sin, the atonement, from the standpoint of evolution, and in the light that falls from that philosophy. I wish I could write it out, but I am beyond that."
Mr. Talmage said from his pulpit: "There sprang in Yucatan, on this continent, an herb that has sprea throughout the world. In the fifteenth century it crossed the Atlantic, and captured Spain and afterward I rapidl
Portugal. Then the French ambassa-
dor took it to Paris, and captured the French empire, and Walter Raleigh took it to London, and captured Great Britain. Nicotiana is the name ascribed to that herb by the botanists, but we all know it as the exhilarating, elevating, paradising, nerve-shatter-

PROPOSED BRIDGE OVER THE ST. LAWRENCE RIVER. (Continued from first page).
The side spans, between the piers and abutments, will be erected upon staging. After the erection of the main towers, a temporary wire cable may be extende across the whole span; and from this cable or series of cables scaffolding may be suspended. Although the cantilever will support its own weight as it is carried out, this system of scaffolding would greatly aid in the assembling of the parts of the several members. In building the lower nember it will be practicable to roll forward the side girders, length by length, over the completed portion. The wind bracing will be carried forward in line with the cantilevers. The center latticed span may be erected either from the temporary cables, from false work on the ice in winter, or by building from each side toward the center.
Neither the width nor height of the center span could be reduced, since the largest ocean steamers pass up and down during the summer, and on the breaking up
cal appliances can now be brought out has produced a tendency on the part of makers to furnish in some directions an oversupply, but obviously this applies only to general and not to special machinery. An inspection of the Official Gazette of the Patent Office shows that the spirit of invention is still rife, and that new mechanical contrivances are being brought forth with unusual rapidity. This means the future introduction of large numbers of new machines, the establishment of many entirely new industries, and the constant enlargement of the machinery manufacturers' field. It is safe to say that there is probably no de partment of this field which will not in the near future display a satisfactory increase in activity, unless, perchance, it be in those departments where old mechanical devices have been superseded by new. Old machinery is being constantly displaced by that of new and improved make. The old style engine gives way to the modern engine. The old tools are replaced with new and more accurate ones. The slow and tedious
chines of one kind and another are broken, or where some accident produces injury to the plant, which requires new machinery to replace that damaged or destroyed. There is no reason for thinking that there will be fewer of these accidents in the future, but rather, as manufactories multiply, they will increase. There may be dull times in the future as in the past, but there cannot be permanent stagnation. The requirements of sixty to seventy millions of active and industrious people will alway be great, and, as we have shown, will furnish an increasing demand for the products of the machine shop. The machinist and the inventor will ever be important factors in our nation's history.

Combustion in Dry Gases.

At a recent meeting of the Chemical Society, a paper entitled "Combustion in Dried Gases" was read by Mr. H. Brereton Baker, B.A. The author was led by the experiments of Mr. Harold B. Dixon on the explosion

SIDE ELEVATION, PLAN, AND ENLARGED HALF SIDE ELEVATION OF BRIDGE OVER THE ST. LAWRENCE.
of the ice the narrow gorge here formed is choked with enormous masses of ice brought down from the lakes.

The Future of the Machinery Trade.

The machinery trade of the United States has assumed immense proportions, surprising alike to our foreign competitors and to ourselves. This trade, instead of decreasing, as •some suppose it will, should have a steady and healthful increase in the coming years. There doubtless will come periods of depression. Indeed, we have for some little time past been experiencing a reactionary condition in the consumptive demand, which has served as a material check on the progress of the trade, but this, we believe, is but a brief interruption, which will prove in the end as beneficial as at present it seems harmful.
In estimating the future demands for machinery, the following things should be taken into account: First, the natural increase in its use; second, the displacement of old machinery by new and improved devices; third, the replacement of worn-out machinery; fourth, its destruction by fires or other accidents.
In a decade the population of this country will be at the least calculation between sixty-five and seventy millions of people. During that period our exportation of manufactures must largely increase. It will be surprising if it does not double or treble. To supply the requirements of these extra millions of population and this increased trade there must be great demands upon our machinery makers. It must be remembered also that the tendency is constantly toward the use of more machinery-substituting mechanical for manual labor wherever it may successfully be done. This of itself makes an ever-increasing requirement for more and better machinery. The ease with which mechani-

* Tho Industrial World.
processes of the past are being revolutionized, and modern ideas and modern methods are brought into the while, and is increasing in extent yearly, as the number of mechanical improvements multiplies. The demand for new tools for replacing those in actual use is simply wonderful-so great, indeed, that few can fully appreciate the extent of this substitution. Closer com petition will force upon manufacturers more and more a sense of the necessity for using better appliances. This will result naturally in an enlargement in the demand for machinists' work. There is a growing de sire on the part of manufacturers to improve their plants by the substitution of better machinery, and we trust the time will come when every manufacturer wil fully realize the importance of having only the very best equipment which money and skill can provide. This is the truest economy, and very many manufacturers fully understand the truth of this proposition.
The replacement of worn-out machinery will afford our manufacturers a vast amount of work. Think of all the machinery of the shops, factories, railroads, and for farm purposes that is now in use and deteriorating. The aggregate number and value of all this bulk of machinery defies calculation. What is its average life? At best but a few years, when it must all be replacedsome of it right away, but all of it in the not very distant future. Think of this mass of deteriorating machinery which is wearing or rusting out, and then conceive, if one can, of an idle machinery trade in the next quarter of a century. The plain truth is there is no more promising field in the world for the machine maker than this country. We have not mentioned the demand which will come for the replacement of machinery that is destroyed by accidents. Every day we hear of scores of accidents where boilers explode, fac tories with all their equipments are burned, where ma-
of certain gaseous mixtures, to investigate the effect of the presence, or otherwise, of moisture on the combustion of carbon and phosphorus in oxygen. Of these the experiments on carbon possess some interest from a gas engineer's point of view. Finely powdered charcoal was prepared for the experiment by heating to redness in a current of dried chlorine for three hours, and the tube containing it was subsequently transferred to an air bath and heated at $200^{\circ} \mathrm{C}$., while a current of dried air. was passed through it. Portions of a few grains each were placed in bent hard glass tubes, together with some phosphoric oxide for the purpose of absorbing any moisture that might be present; the tubes filled with dry oxygen, and sealed in the blowpipe flame.
Like portions were also placed in similar tubes, which were filled with oxygen saturated with water, and sealed. When one of each of these tubes was placed side by side over the large flame of a Bunsen burner, the carbon in the tube charged with moist oxy gen burnt with bright scintillating flashes; but no apparent combustion took place in the tube containing dried gas, theugh it was heated to bright redness for several minutes. This experiment was successfully repeated before the meeting. The results of a series of experiments, in which the drying extended over various periods, showing the gaseous contents of the tubes after heating, were given in tabular form; and they clearly show that the burning of carbon is much retarded by drying the oxygen to the extent that is possible with the arrangement adopted by the author.

Soldering Flux.

One pound of lactic acid with one pound of glycerine and eight pounds of water is the new mixture of C. N. Waite, of Littleton, Mass., U. S. It is a substitute for chloride of zinc.

A Natural Stream of Tar

In a rugged, almost mountainous, portion of Kentucky, embraced in the county of Breckinridge, in that State, will be found unmistakable evidences of a great upheaval of the earth, in the long distant past, in the prehistoric age. So great was this convulsion of mother earth that beds of rock miles in breadth and from one hundred and fifty to two hundred feet in thickness were forcibly torn apart and separated at varying distances of a quarter to a half mile. In the valley made by the rent in the solid rock small rivers or creeks run their tortuous course, some of them of sufficient size to afford water power to turn the wheels of various mills situated at eligible sites along the streams, the banks of which are skirted by narrow strips of fertile land level enough for cultivation and very productive, while on either side of the stream the riven rocks will be seen to rise as towering, majestic cliffs. So uniformly similar in outline are these opposing cliffs that, should the hills be forced together, the edges would interlock and fit together like the two halves of an apple which had been torn apart. Ascending to the top of the cliff, the table lands which spread out for many miles are heavily timbered, and when cleared make productive farms, the houses of prosperous farmers.
An interesting feature of these romantic cliffs will be found in the fact that when the rock beds of which they were formed were torn asunder and separated, the bottom portion was much softer than that nearer the surface, and, when exposed to the atmosphere, crumbled and fell out in piles below, leaving the surface or top of the rock overhanging and forming great rooms, some of them half a mile in length, protected by the overhanging rocks, and perfectly dry at all seasons and sufficient in size to amply accommodate large armies with complete shelter from storm and rain. They became resorts for stock in winter. So partial are the various kinds of animals to these comfortable retreats that some of them, particularly hogs, will remain under this shelter during long continued cold whether with snow, and, if not fed or driven out, will remain there and starve. These commodious rooms under the overhanging cliffs made comfortable homes for the Indians who inhabited this country before its discovery by the whites, as evinced by the discovery of large numbers of their flintarrowheads and other implements of savage life. Another notable evidence of their occupancy of these natural retreats from inclement weather is that after the softer portions of the rock nearer the ground had fallen out and crumbled to dust or sand, large portions of rock, ten or fifteen feet in length and several feet in thickness, would fall out from a position high up toward the surface, and, being of a much harder substance, weuld remain lying; where they fell, and on the top of these the natives constructed or sank mortars to a depth of twelve or sixteen inches and about six inches at the top, gradually lessening toward the bottom. They manifested much skill in making these rock mortars exceedingly uniform and smooth in all their parts. What use they made of them is purely a matter of conjecture. Some thought they pounded their corn to hominy, others that they pulverized their material for making powder in them. Be this at it may, the mortars remain there in the rocks as inverted monuments to the skill of the red man. Many features of interest will reward the visitor to these scenes of a once violent convulsion in this part of the earth. The antiquity of this great upheaval is shown by large forest trees growing on the mounds made by the crumbling and falling out of rocks, which no doubt at first presented a clean break or perpendicular wall. In some places saltpeter is found exuding in its. natural state from the rock one hundred feet from its top.
The most notable features of interest are the springs which flow from beneath these projecting cliffs. Among them are the tar and white sulphur springs, situated seven miles from the Ohio River, near Cloverport, Ky.
These springs flow from the base of a cliff which is one hundred and fifty feet high, and its top projects two hundred feet over the source of the spring, which is situated at the extreme back part of a commodious room made by the overhanging rock. This room is always dry, cool, and shady. The water is beautifully clear and cold, and the sides and bottom of the channel along which it flows are lined with a velvety coating of soft, snowy white sulphur, which adds to the crystal clearness of the water; but the most remarkable feature of these springs is a stream of liquid tar, the size of a small straw, continually running on the surface of the stream of water and flowing off into the reservoir provided for its reception. There may be a break in this stream of tar at times, but it is only momentary, when it is succeeded by another stream, and flows on and on as if it would flow forever. The supply would seem to be inexhaustible. For thousands of years this stream has continued to flow, night and day without interruption, as shown by banks of pitch ten feet in thickness and a hundred feet in width made by this small stream flowing off and evaporating the fluid portion, leaving a hard, dry, pitchy residue

of the magnitude above mentioned.-J. W. Compton

The Current.

DOOR CHECK OR HOLDER

The device herewith illustrated, lately patented by Mr. James W. Callaway, of Temple, Texas, is for hold ing doors open; it is simple in construction and effective in use. A disk is pivoted on a plate secured to the floor, a ring being interposed between the plate and disk to reduce friction. On the upper surface of the disk is a handle lug, and on its edge is formed a series of ratchet teeth. On the edge of the disk is a rectangular notch, from the edges of which flanges project upward. Pivoted on the plate is a pawl to engage with the teeth, and formed with a handle lug to facilitate swinging it toward or from the disk. When the door is to be held entirely open, the plate is placed on the floor at the wall; the plate may be placed at a greater or less distance from the wall. The notch faces the direction from which the door swings, and after the door has passed the disk, the latter is swung toward the

door, the flanges resting against the edge and face of the door. The disk is then locked in place by the
pawl, which, when the door is to be closed, is swung back and the disk turned to swing the flangesfrom the door.

Cement Pipes for Drains.

Experience seems to show some special advantages in the use of cement pipes for sewers and drains, its adapt ation to withstand the chemicals in sewage being satisfactorily demonstrated. It has been found that a mortar suitable for such pipe is best made by combining two parts of standard cement and three parts clean sand, the latter of various degrees of fineness, from the very finest to the size of one's finger end, and in such proportions that the finer fills up all the chinks, as the cement finally coats each particle and fills all remaining spaces. These materials are thoroughly mixed dry, and the mortar well rammed in the moulds. It is also important that the right amount of water be used; every particle of cement and sand should be wet, but the mortar be stiff enough for the rammer to bring up solidly on it, and press it firmly together instead of displacing it horizontally. The cores are usually drawn almost immediately after the pipe is finished, and in good weather the cases removed in about half an hour. The pipe is keptunder cover about two weeks, and then put out into the sun and air, and well wet every day. The pipes thus made, the Manufacturer's Gazette concludes, may be ready for ordinary use six weeks after they are put out.

GLOVE OR SHOE FASTENER.

The edges of the metal plate, A, are bent inward to form flanges. Extending from near the ends of the
 tapered parts of the plate toward the middle are slots, through each of which passes a pin, also passing through the end joint of lazy tongs and held on a metal strip, B. One of the middle levers of the lazy tongs has an extension or spring handle, E, passing under a guard, D. The handle has a lateral extension adapted to engage with teeth, C, against which it is pressed by the spring tension
of the handle. Thestrips, B, are fastened to the opposite flaps of a glove or shoe. By swinging the handle in the direction of the arrow, the pins in the slots are moved toward each other, and the flaps to which the plates are secured are brought together, and the shoe or glove is thus closed. The projection on the handle catches on one of the teeth, and locks the handle part and plates in place. The fastening is strong and durable, and by means of it the flaps can easily be drawn toward each other.
This invention has been patented by Mr. Edward W.
A. Meyer, of 9 Pelham Street, Boston, Mass.

Erection of a Concrete Bridge in one Day.

The firm of Zurlinden \& Co., of Aarau, having constructed a canal in connection with their works about two-thirds of a mile in length, were obliged by the town authorities to bridge it in two places. This they did by means of segmental arches of cement concrete, constructed to the designs of Professor Tetmajer, of Zurich. The dimensions of the arches-
Proc. Inst. C. E.-are: Span, 39 feet 4 inches; rise, 6 Proc. Inst. C. E.-are: Span, 39 feet 4 inches; rise, 6 feet $63 / 4$ inches; thickness at crown, 1 foot $73 / 4$ inches; thickness at abutment, 3 feet $31 / 2$ inches; thickness of butments, 9 feet 10 inches; width of roadway, 13 feet $1 / 2$ inches. The foundation of both abutments is on fairly good gravel, at a depth of about 5 feet below the springing. Spandrel walls are carried up to the level of the roadway, and surmounted by an iron hand rail, the space between the spandrel walls being filled in with gravel covered with ordinary road metaling. The total weight of the structure between the abutments is 194 tons, or including a live road of 300 kilog. per square meter- $61 \cdot 5$ pounds per square foot- 211 tons. The first bridge was erected in two days in June, 1884, the two abutments being formed on the first, and the arch and spandrel walls on the second day. The bridge was brought into use after standing for about two months, and has been in constant service ever since for heavy-wheeled traffic without any sign of settlement or cracking. On the 9th of October the second bridge was completed between 6 A.M. and 6 P.M. by 65 men . The concrete was mixed in accordance with the recommendation of Professor Tetmajer, as follows: The cement and sand were first mixed dry, then the gravel added, water being gradually added during the mixing in such quantities that when the punning of the concrete was completed a thin film of water showed upon the surface. The concrete was mixed as follows:

	${ }_{\substack{\text { cement } \\ \text { vol. }}}$	$\underset{\substack{\text { sand. } \\ \text { vol. }}}{\text { S. }}$	Gravel vol.	Pounds of cement per cubic yard cubic yard of concrete.
Abutments.........	1	3	7	3372
Arch.....	1	2	4	5058
Spandrels..	1	2	6	4215

The cost of such a bridge is given as:
Excavation 50 cubic meters (65 cubic yards) at $10 \mathrm{~d} . .$.
Concrete, including centering; etc., 80 cubic meters (104 cubic yards) at 25 s .
Iron hand railing..

New Rates of Postage

On July 1 the following important changes will be made in the rates of postage:

1. Any article in a newspaper or other publication may be marked for observation, except by written or printed words, without increase of postage.
2. All newspapers sent from the office of publication, including sample copies, or when sent from a news agency, to actual subscribers thereto, or to other news agents, shall be entitled to transmission at the rate of one cent per pound or fraction thereof, the postage to be prepaid.
3. The weight of all single-rate letters is increased from one-half of one ounce each or fraction thereof to one ounce each or fraction thereof. The same increase of weight is allowed for drop letters, whether mailed at stations where there is a free delivery or where carrier service is not established.
4. A special stamp of the value of ten cents may be issued, which when attached to a letter, in addition to the lawful postage thereon, shall entitle the letter to mmediate delivery at any place containing 4,000 popuation or over according to the Federal census, within the carrier limit of any free delivery office, or within one mile of the post office coming within the provisions of this law, which may in like manner be designated as a special delivery office; that such specially stamped letters shall bedelivered between 7 A . M. and midnight; that a book shall be provided in which the person to whom the letter is addressed shall acknowledge its receipt; that messengers for this special delivery are to be paid eighty per cent. of the face value of all the stamps received and recorded in a month, provided that the aggregate compensation paid to any one person for such service shall not exceed $\$ 30$ per month, and provided further that the regulations for the delivery of these specially stamped letters shall in no way interfere with the prompt delivery of letters as provided by existing law or regulations.

How Germs Get in the Lungs.
In the ordinary healthy lungs, perhaps even in perons who have a consumptive heredity, the germ which causes the breakdown of the lung may not be able to make an impression; but if the physical integrity is destroyed by poor food, or any debilitating influence, or by a cold, then the germ is able to get in its work, and to multiply and produce its kind, and fill the lings with tubercles.—Dr. Curtis.

MATHER'S PORTABLE ENGINE.

We illustrate a four-horse portable engine of a very simple type. As will be seen at a glance, the crank shaft and flywheels form the traveling axle and road wheels when the engine is being transported from place to place. The cylinder is single-acting, the connecting rod being pivoted directly to a crosshead cast with the piston. The boiler has two crosstubes, and is mounted on a wrought iron foundation plate. The chimney is fitted to a pair of malleable iron joint rings, and has a movable iron fork provided to receive it when doubled back for traveling.

The cylinder, guides, and framing are all in one casting; the framing joins the cylinder at its lower end, and may be compared to arms and legs, all of which are cast hollow. On the back of the cylinder is cast a bracket of the same radius as the boiler, to which it is secured by bolts. On the left leg is formed a hollow bracket, to which the feed pump barrel is bolted by two bolts; the joints, which are faced, are made with paper, for easy removal. The cylinder cover, or head, contains the steam and exhaust openings and piston valve, and also carries the governors. The piston is dished, and is fitted with two rings at the upper end and with one at the lower end, under the slide plates of the crosshead, which are adjustable. The pump plunger is screwed into the crosshead flange. The crank shaft, which is 3 inches in diameter, and of Bessemer steel bent to obtuse angles, carries the two traveling wheels, one on each end. One of these wheels is keyed firmly on the crank shaft, while the other has a set screw and glut, which is tightened before and glut, which is tightened before running under ton packing and valves, and also the stuffing box turning of corners without skidding. The allow easy rod is withdrawn from the crank bearing before traveling by simply driving out a cotter, so that none of the working parts are in motion. The crank shaft also carries a driving pulley. There are no eccentrics; the valve is operated by a bent forked lever, which is at it lower extremity joined to the connecting rod by a link. This rod forces the valve downward against the steam pressure. The height to which the valve can rise when the lever is lifted depends upon a wedge, which is moved in and out by the governor. Thus the steam port is more or less uncovered, according to the amount of work to be done by the engine. There is only one gland in the engine, that being for the pump rod, only one-half inch in diameter. The valve is not connected to the lever, but from the latter a short rod is suspended, which works into a semicircular groove, allowing it to lift during the time the
valve. These engines have now been two and a half years under test, and rive great satisfaction. They are at present made in two sizes, $21 / 2$ and 4 horse power. As the working parts are all in compression they seldom need adjustment, as no knocking would be heard even under considerable wear. Mr. G. R. Mather, of Wellingborough, England, is the maker.-Engineering.

Nitrate of Soda Prizes. The Committee of the Saltpeter Producers' Association at Iquique, Chili, offers $\$ 5,000$ in prizes for essays on the use of nitrate of soda as manure. Of this amount a prize of $\$ 2,500$ will be awarded for the best popular essay showing the importance of nitrate as a manure, and the best mode of applying it. It is desired that the essay should, in its theoretical part, exhibit the present state of knowledge on the effect upon vegetation of nitrate as compared with other nitrogenous preparations; and directions are also \mid boiler. Tlue water thus blown out carries with it an to be given for the use of nitrate as an aid to plant culture. A second prize of equal value is to be awarded for the best account of new and original applications of nitrate, based upon the researches of the author himself. A Committee of Judges, composed of leading agricultural chemists of all nations, has been nominated to receive these communications.

IMPROVED PORTABLE ENGINE.

glands, where they will remain for a considerable time,
doing injury to the parts. The working of oil through the cylinder partially remedies the evil, but does not prevent the sand from cutting the surfaces of the inside of the cylinder and valves; and as the friction of these working parts is greatly increased, it requires an in creased pressure in the boiler to keep the engine up to the usual speed, and more pressure with same speed requires more fuel.
In the ordinary manner of getting the mud and sediment out of a boiler there is a loss in fuel, by the wast of heat contained in the water. Take, as an illustration, a boiler in which river water is used. Such wate generally contains a more or less quantity of mud, sand, and vegetable matter. At night, before stopping, the engineer will usually pump the boiler full to the top gauge, and in the morning, before starting up, he will open the blow-off valve, in order to get rid of the sediopen the blow-off valve, in order to get rid of the sediment supposed to have settled on the bottom of the
amount of fresh feed water, which will have to be pumped in to take its place. This blowing-off is usually repeated every few hours, each repetition being accom panied by loss of heat. These losses are additional to that caused by the sediment forming a covering on the inside of the shell and flues. This sediment or scale, be
ing a very poor conductor, keeps the heat from passing from the iron to the water, thus preventing the rapid generation of steam. It follows that a device which would remove the mud, sand, and vegetable matter held in suspension, and also the scale-forming matter held in solution, and return the water in its heated, but purified, state to the boiler, would not only cause a saving in fuel, but would protect the boiler and engine from injury arising from their presence. The device herewith illustrated claims to accomplish this result. The body, or reservoir, A, of the cleaner is made in two parts. Inside of the reservoir are from eight to nine settling tables, B, three-fifths of the upper surface of each one being formed into a basin or pocket, in which sediment collects; theother two-fifths being pierced with holes for the passage of the hot water which flows through the pipe, F, from its mouth in the centrifugal skimmer, E. The water is discharged into the opposite end of the boiler through the pipe, G. The mud and sediment are removed from the hopper, J, through the blow-off valve, O. The valves, M and N, are used only when washing out the cleaner. The skimmer is placed near one end of the boiler, with its bottom half an inch above the flues. The end of the pipe, F, is placed $11 / 4$ inches above the inside of the bottom of the skimmer, and the open end of the pipe, G, is placed 15 inches below the top line of the flues. The arrows denote the course of the water through the pipes and cleaner. By the action of heat, currents of hot water rise and flow into the skimmer, and pass through the pipe, F,
into the cleaner, where, being kept free from the agitation of the currents in the boiler, all impurities are deposited either on the settling tables or in the hopper at the bottom. The pure water then enters the other end of the boiler. To remove the sediment from the cleaner, the valves, \mathbf{M} and \mathbf{N}, are closed to shut off connections with the boiler, when the water and sediment on the plates may be discharged through the valve O Upon the valve, N , being opened, water from the boiler is forced upon any sediment remaining in the cleaner; the openings in each plate act as nozzles, through which the water is. dashed into the basin of each settling table, and finally into the hopper at the bottom and out through the blow-off. Such a cleaner is automatic as long as the water in the boiler is hot, and creates a continuous circulation; it has a large settling. capacity, and the mud and sediment can be rapidly discharged
Any further particulars regarding this boiler cleaner may be had by addressing the inventor and manufac turer, Mr. E. W. Van Duzen, of 104 E Second St Cincinnati, Ohio

New Mode of Hardening Plaster of Paris.

M. Julhe describes a new process for hardening plaster of Paris, so that it may be used, among other purposes, for floor parquetting (Comptes Rend., c., 797). It consists in mixing the plaster before using it for casting with one part in six of finely sifted recently slaked lime, and saturating the well dried casting with solution of a sulphate of a base giving an insoluble precipitate with lime. Sulphate of zinc and sulphate of iron are both suitable. The zinc sulphate gives a white material, while that containing iron is at first greenish, but upon drying takes the characteristic color of ferric oxide. A coating of burnt linseed oil converts this into a mahogany color, and a coat of copal varnish gives a fine surface. The casting should be well dried efore treating it with the sulphate solution and after being immersed not longer than two hours it should be again dried; it may then be replaced in the solution until the saturation is complete. The product is said to resist atmospheric influences, and when sulphate of iron is used, the resistance to fracture is said to be twenty times greater than in ordinary plaster.

THE ART OF LEAPING.

Not every one can leap who wishes to, and those alone who exercise know how to do it. The gymnastic object of leaping is to pass over objects without touching or overturning them; its physical object is to accustom the muscles to receive hard blows without being incommoded thereby, so that at the moment of danger one shall run no risk of being wounded; and its moral object is to habituate the heart and head to bold and perilous acts, and, in case of danger, to take oppor tune and generons resolutions tending to save life, and to traverse wide spaces in the air withou losing self-possession, as happens with those who do not exercise.

It is useless to say that the progressive exercises that lead to leaping well must be conductedwith much method and circum spection. We shal not enter into a de tail of the rules tha govern leaping; it suffices to say that it is necessary to study separately what re lates to the mode o bending the legs and of lifting them at the moment of the spring and what relates to the manner of strik ing the ground again and bending and re bounding. After ward, what relate to the motion of the arms during the leap is taught; and, finally, all the motions that have been taught separately are united. In order to diminish the danger of leaping, says Dr. Bourdon, it is necessary to look after the respiration when one falls upon the point of the feet, that is to say, it is necessary that the lungs shall have been filled with air before the fall, and that it be allowed to escape when one touches earth, because the shock is diminished by reason of the quantity of air that the open glottis has allowed to be expelled.
Physicians and philosophers have striven to give a rational theory of leaping, and, from the time of Aristotle, passing through Boerhaave and Haller up to Barthez, each has given his explanation of it. Barthez's theory seems to be the best. At the moment a person is about to leap he bends the joints of his lower limbs, and maintains such flexion by contracting his muscles. Before the straightening of the body that precedes the leap, the body braces against the earth with one foot bent obliquely; the leg bends over the foot, the thigh over the leg, and the trunk over the thighs. The body is shortened and the center of gravity lowered. The flexor muscles diminish their action, and the extensors, entering into play, give the bones of the lower extremities an upward motion. At the same time that the extensors of the lower extremities are straightening the leg and thigh, the extensors of the vertebral column are rendering the same office to that (Fig. 1). The upper extremities act then as balances or as wings. The arms carry the body along so well that it is necessary to take care to double up the fists in order to increase their weight (Fig. 2), after the manner of the ancients, who, in order to pass over a greater space, held dumb-bells in their hands when they leaped. In the practice of leaping, care should be taken not to attempt excessive leaps regardless of the hour of the day or the weather. The bodily condition varies, and a person who to-day should leap a distance of six yards, might to-morrow injure himself in leaping but two, on account of being in poor condition. Cold renders the bones brittle, and high leaping in cold weather is always more dangerous than in warm.
We cannot enumerate in this place the names of all the celebrated leapers, but we may cite a few examples of leaps famous for their length.
The Grecian athletes, according to Abbot Barthelemy, leaped a distance of no less than sixteen yards, a fact that proves that we have degenerated, for a leap of six yards without a springboard is now not usual, and necessitates a strong effort. There is cited the case of a fireman named Semson, who, at the burning of the Franconi Circus in 1826, eaped from a window 39 feet above ground. This eap was made backward in holding on to the window by the arms. As he jumped according to the correct principles that he had been taught, this man received no harm.
We do not wish to dwell here upon the leaps that
are made in circuses and hippodromes by means of accessories that, on the one hand, diminish their danger, and, on the other, increase their length, since such leaps are not made during the ordinary cours of life. Yet we advise those who desire to leap well to practice with the springboard. They will derive the greatest advantage from this exercise, especially if they practice somersaults thus. This sort of leap has the great advantage that it gives him who often exethe great advantage that it gives him who often exe
cutes it as an exercise an imperturbable confidence cutes it as an exercise an im

Figs. 1 and 2.-MAN LEAPING. (From an Instantaneous Photograph.) et Nature.
the Rheinstein, and, resting his pole upon it, shot forward toward the opposite shore, where he landed safe and sound amid the plaudits of the curious."-Science

Agriculture and Industries of Japan.

The Commissioners of Japan to the New Orleans Eid position have, with their catalogue, given some inter esting descriptive notes on the agriculture, arts, and industry of that country. Perhaps the most striking statement in this monograph is that which introduces the mention of agriculture in Japan. We all know Japan is made up of a chain of volcanic mountains, which cover a large portion of the surface, but the entire arable land of the empire is officially put at only $11,215,000$ acres-less than one-half the area of the State of New York-and this is so fertile and thoroughly cultivated that it feeds a population of $37,000,000$ about that of France. Rice is one of the principal crops, and of this some 200,000 ,000 bushels are raised annually, but among other leading products are wheat, barley, beans, potatoes, sugar cane, and cotton, and nearly all
and a skill that can scarcely be acquired by any other means. A man accustomed to turn somersaults never loses his head on any occasion, and, if he happens to fall from the top of a carriage to the pavement, he does it with as much grace as if he were performing one of the most natural of acts.
The exercise of leaping with the pole is likewise a most useful one. The pole, in fact, allows one to leap to distances that could not be reached without its aid (Fig. 3). We find an old document that comes to the support of our assertion. A letter dated Lauffenbourg (Switzerland), Feb. 5, 1846, says: "We have just been witnesses of a leap that may be truly qualified as at once great and perilous, and the like of which the annals of gymnastics offer no example of. A student of the University of Tubingen, Mr. Goehlert, who was here last week, had bet with some of his friends that he would cross the Rhine at a single leap, and that he would thus pass from Switzerland to the

Fig. 3.-LEAPING WITH A POLE. (From an Instantaneous Photograph.)

Grand Duchy of Baden. Friday noon, Mr. Goehlert, provided with a long and heavy pole, and accompanied by a hundred young people, appeared in front of the Rheinstein, a rock which is situated at a little distance from our city, in the middle of the Rhine, and which was then high and dry on account of the low tide.
agricultural work is denominated "spade husbandry," from the fact that hand labor is generally used, to raise large crops and keep the land in the finest condition, two or three crops a year being raised on the same land. Artificial irrigation is general, being necessary over more than one-half of the cultivable area, and it is frequently the case that the water is taken from streams from twenty to thirty miles distant. Steam plows and reaping machines naturally find little room for employment here, and all agricultural implements are of the most primitive forms. The total number of horned cattle is $1,115,000$, and of horses $1,605,000$. Wood of all kinds is cheap and abundant, nearly all the buildings being of timber, and wood constituting the principal fuel; the area of forest land is nearly three times as great as that under cultivation.
Japanese industries, although in many cases their rigin may be traced back to China and Corea, have changed somewhat in recent years, but they have not yet been sufficiently developed to be carried on as a rule in what we call manufacturing establishments. They are mostly conducted in small workshops, with possibly the aid of a primitive water wheel, fan making, and the manufacture of porcelain, paper, pigments and lacquers, constituting a large portion of the whole. Nearly all kinds of ores and minerals are abundant in Japan, but mining and metallurgy, although practiced to some extent for centuries, do not take the prominence that would be expected, when we remember that some of the most exquisite specimens of hammered iron and bronze work to be found in important collections to-day are the productions of Japanese artisans of a thousand years ago. The government, however, is extending aid to these and to many other industries, in a spirit as intelligent as it is liberal, good evidences of which are to be seen in the extensive display made by Japan at New Orleans.

Hearing the Earth's Magnetic Induction.

Dr. Schaper recently demonstrated to an audience the magnetic induction exercised by the earth. A number of telephones were arranged in series upon one circuit, which was rapidly made and broken by an interrupter. A telephone was then repeatedly turned end for end in such a way that its north and south poles were alternately the uppermost, and at each reversal a crack was heard in all the telephones, resulting from the induction of the earth on the central magnet. If the experiment be madế with an induction bobbin, only the crack is extremely feeble, due in that case to the induction of the earth on the bobbin. The telephone may be replaced by a magnet wrapped with insulated wire. The degree of sensibility of the telephones can be determined, if the axis of rotation of the magnet employed in the experiment be brought little by little nearer to that of the inclining apparatus.

Feather Fur.

Fur made from feathers has been used for five or six years for the borders of ladies' cloaks and dresses; muffs, capes, bonnets, etc., are made of it; even sealskin cloaks have been imitated in this material. The article is almost as suitable for this purpose, and sometimes more so than real fur; its principal advantage is that it forms an even surface which may be torn into suitably small strips without loss of substance, while in the case of real fur the breast, back, and every other part of the animal has different qualities; another advantage is that it is light, pliant, and apparently insensible to pressure and blows; and lastly, it may be moistened and even treated with hot water without its solidity being altered.
Other stuffs of a similar appearance have been made and used which, however, have this in common with each other, that the quills of the feathers are sewn in a more or less primitive way on to a lining or woven into one. The quill must naturally make the fur stiff and full of breaks; and, therefore, spoils the appear ance of the flowing folds of a lady's cloak. In the material we are describing the fiber is detached from the
quills and fastened to a lining, so that the fur retains quills and fastened to a lining, so that the fur retains
the whole of the pliancy of the material chosen for the the whol
lining.
The process of the improved manufacture is as follows: Long blocks are formed of pieces of cardboard, which are placed parallel to each other, and between these stalks of feathers are put in such a way that only $1 / 8$ to $1 / 4$ of an inch of them projects over the upper edge of the cardboards; the surface, consisting in reality of these feather tops, is then covered with an India rubber solution, after which a tissue, over which also rubber solution has been spread, is stretched over it, brushed, and rolled. If then the pieces of cardboard be taken out, the result will be that the fibers will adhere to the lining, and form a fur.
As to the details of the manufacture, the comb is the most important of the tools used. It consists of a piece of hardened steel, the front edge of which is provided with fine wire teeth perpendicular to it. The feathers to be used are placed near each other along the whole length of the comb in such a way that the quill lies behind the teeth, and one-half of the soft part of the feather hangs out of the comb. When the latter is filled with feathers lying near each other, the part of them which hangs out forms a continuous fringe, which is now ready for laying between the pieces of cardboard. For this purpose the pieces of cardboard are placed on a frame inclined at an angle of 45°, and are pressed together in it by a sledge sliding on rollers, which carries on its front an edge parallel to the cardboards. On the planed sides of the frame slides a second sledge, which carries two open angle bearings. The comb is laid with its pivots on these angle bearings, so that the stalks of the feathers hang down behind the last piece of cardboard; then by means of a treading arrangement the sledge is raised, another piece of cardboard put behind the fringe, and
the sledge again let down. If now the comb, which the sledge again let down. If now the comb, which
swivels round its pivots, is let down at an angle of 180°, the stalks held fast by the sledge are stretched so tightly round the edge and front of the comb that it is. quite easy to separate them from the comb by cutting them; the front edge of the comb has a groove in it which serves as a guide to the knife when cutting.
This operation is continued until the whole frame, which holds a block of about 12 inches thick, is filled with alternate rows of feather fibers and sheets of cardboard. The block on which this work is carried on is in the middle of a table, at which eight other girls are working besides the one attending to the block; these eight have to attend to the filling of the combs, and together with the former form a column.
When the frame is full it is locked tightly, so as to be portable, and then taken to another part of the manufactory, where the blocks are joined to longer tables. The latter are then put on a wagon and taken to the drying room to be covered with a solution of rubber in naphtha, which is spread over the whole length of the table by means of a knife.
After that the solution is dried, the naphtha being removed before the India rubber cloth is put on. The drying apparatus, into which the table with the cardboard is put, is a long box open at the front; on the bottom are the rails on to which the tables are placed. A system of steam pipes is situated near the top, under which the part which has been covered with India rubber is placed at a short distance. The back part is perforated, and forms the communication between the box and a flue behind it leading to an exhauster, which sucks up the evaporated naphtha, and in this way hastens the drying process. When the coating has been dried, which will take from 18 to 20 minutes,
the plate is taken out and a tissue spread over with rubber solution stretched over it; the whole is then brushed and rolled in a mangle weighted with about 3 cwt., until both rubber surfaces are completely joined. Finally the table is turned round to take the cardboard out, which operation must be performed with special care. At the beginning of the manufacture it was found that the stuff had a kind of grain,
i. e., that the fibers, while they should stand perpendicular to the lining, inclined to one or the other or even several directions from the perpendicular, and that this oblique position was not to be remedied by any mechanical means; this grain was merely the consequence of the way in which the cardboard was taken out. A small ridge, which, while the pieces of cardboard are being turned round their basis, assumes a particular inclination, is formed at the place where one piece of cardboard touches another. As the feathers are embedded in these ridges, the turning of the pieces of cardboard causes this oblique position of the feather stalks. It is therefore a matter of importance that the cardboard should be taken off in a perpendicular direction to the lining. To do this the long blocks of cardboard are stretched over tables whose surface forms a section of a circle, the pieces of cardboard are taken hold of singly with fine pliers and only pulled to one side just far enough to loosen the rubber, but remain in their place until they are taken away together, and therefore serve as a guide until they are placed perpendicularly. When the whole block is loosened, the pieces of cardboard are lifted off to clean and steam the now finished piece, the steaming being done to restore to the feathers their elasticity, which was partly lost by the dyeing process. Tex. Manuf.

Fatal Leap from the East River Bridge

Since the famous leap of 125 feet by Sam Patch, at Genesee Falls, in 1828, no other so desperate feat of that kind has been attempted until that of May 19, when Robert E. Odlum jumped to his death from the New York and Brooklyn Bridge. The details connected with the firstincident have had an attraction for the curious the world over ever since-the daring exploits of its principal before that last fatal attempt, and the explanation that intoxication was the most probable reason for its then causing his immediate death. In the case of Odlum there was no charge of this kind. He was a tall, athletic young man, an expert swimmer, which he had taught as a profession, and had come on from Washington three days previously expressly to make this leap from the bridge; he had before performed similar feats, though with the distance not so great, and seemed to have no appre hension of any serious result to himself. The police endeavored to prevent him from accomplishing his object, and their watchfulness made postponement necessary, but Odlum succeeded in eluding their watchfulness, and made the leap, at a point about 200 feet from the New York pier, and 140 feet above the vater.
He held his right hand high above his head, and seemed to go down straight as a spear for nearly the whole distance, but, about forty feet from the water, his head and body appeared to bend backward, and to the left, and he struck the water with a great splash. The body was out of sight but a moment, when it was taken into a boat, and consciousness, after hard work, was restored for a moment. The doctor's report was that the injuries were such as would be found in a man crushed to death by the caving in of a sand bank; the internal organs were so pressed together as to rupture the left lung, liver, spleen, and kidneys, while five of the ribs were fractured on the left side, the first high up on the chest and the others irregularly down th side and back, although his spine was not broken.
It is reported that the time occupied in the descent was $31 / 4$ seconds, which is very close to what it should have been theoretically. The distance through which a body falls the first second is very nearly 16 feet, and the distances for equal consecutive times are as $1,3,5$, 7 , etc., which would give for three seconds $16+48+80$
$=144$ feet, the figures varying slightly, according to $=144$ feet, the figures varying slightly, according to
the resistance of the air. The velocity which the body had attained at the end of the third second was 96 feet per second, and, its weight being 175 pounds, the force of striking would be $96 \times 96=9,216 \div 64=144 \times 175=$ 25,200 pounds. The only theory on which it is maintained that such a jump could be safely made is that the body may be held perfectly perpendicular, with the toes so bent down that the body will enter
the water as a wedge, and thus distribute the impact the water as a wedge, and thus distribute the impact
over a large surface, operating through a longer time, until the down ward momentum is overcome. In this instance, from the way in which the body struck the water, it is impossible to say how great a surface was ex posed to the principal force of the blow at the moment of impact, but the body itself barely went under water, and so received the direct blow with a force quite sufficient to explain the doctor's statement that "Odlum was simply mangled to death."
This trial also points out the difficulty of maintaining the body in such equilibrium as could alone afford any possibility of success; the principal weight being in the trunk, the natural tendency would be for the body, were it a rigid, inert mass, to turn over, and deception of this, from his holding his right arm straight up, but this did not prevent his body from partly turning over before it struck the water, a movement which he in vain attempted to check.

It is to be hoped that the fatal results of this last bid for notoriety will effectually put a stop to such attempts for a good while to come. Its success could hardly have been other than accidental, and in that case no one knows how many lives would have been ultimately lost by the foolhardiness of would be imitators.

Choice of Occupation.

Much is said in "writings for youth" as to the importance of choosing such an occupation for life as nature's inclinations appear to favor; and in some instances resort has been made to professional head and face readers to indicate the line to which the unformed mind should be directed. But it is often the fact that even a thinking and sensible boy is unaware of any decisive "call" to a particular pursuit. Much of this indecision probably comes from the fact that the call for a choice occurs at about the time in years and development when the subject is unfitted to make a choice-" not a man, nor a boy, but a hobbledehoy," as n old saw has it.
It is foolish to "strike out," "map out," or "arrange" for a boy's future calling by means of his expressed desire at the callow age; the boy will naturally gravitate to his proper line- if the circumstances do not hinder-if those who have to deal with him do not interfere. It is not difficult to ascertain if there is a "bent" in the boy's inclination. If it is decided, then the influences and circumstances should be brought to bear in that direction. But it is. best to start. Many make mistakes because they did not understand, and sometimes these early mistakes extend through the
lifetime; but Burritt was a fair blacksmith, Collyer lifetime; but Burritt was a fair blacksmith, Collyer was a good one, Lincoln was a good rail splitter, and Johnson was a good tailor. It would be assumptive to say that the course of these men would have been better if at the beginning they had become linguists, preachers, statesmen, and presidents. Perhaps it was better that theywere what they were at the beginning. A friend of ours was to be an artist-if he could have governed circumstances; he became a machinist and mechanical engineer because it was in his way. Certainly he has done more useful work as a mechanic han he ever could have done as an artist.
If there is any moral to facts, as to fables, it might be that the best thing an ambitious young man can do is to do the first thing that comes to him, the first thing he can reach by going for it, and watch and wait opportunities for better things.

The Unhealthfulness of Large Apartment Houses.
Dr. E. G. Loring, of Madison Avenue, New York, who lives opposite an enormous apartment house, is reported as saying in a recent interview: "When I first took this house, that corner was occupied by a row of ordinary brown stone houses, one of which still remains. As you can see, the apartment house is more than double the height of the old houses, the last remaining of which now looks like a little child by the side of the Chinese giant. Before that place was built, I had the sun shining into my reception room from 9 in the morning until 12 or even 1 o'clock. Now my reception room gets no sunlight at all, while this room in which we are, and which is directly over the reception room, has sun for a few minutes only. The change in the atmosphere of the house is perceptible. My bedroom, which is in front, strikes a chill into me as soon as I enter it, and I am going to change to the back of the house, which has a northern aspect. It used to be the cold side of the house, now it is the warm. My light is seriously interfered with, and I have had to rearrange my office on that account. Then ook at that street. As you see, this side, which never sees the sun, is damp and muddy. The opposite side is nearly dry. It is absolutely essential, in order to get rid of the microbes and germiniferous matter which are to be found in the damp streets of a city, that the sunlight should strike the gutters for some hours during the day. It is just as essential that the living and sleeping rooms of human beings should receive the direct rays of the sun. As to the interior sanitary condition of these apartment houses, I have no statistics which will enable me to speak positively. The massing together of so many families in itself tends to promote disease, while the multiplication of drainage pipes and plumbing affords yet another foothold for disease. Among my own patients I know of some who suffer from the wholesale system of heating. Even if they shut off the steam, the presence of such immense steam ducts in the walls renders their rooms unhealthily hot, and they have to pull the beds into the middle of the room before they can hope to sleep.

A Warning to Drinkers.

Le Journal d'Hygiene publishes a comparative table of the probabilities of life for moderate drinkers and total abstainers. According to this, a moderate drinker at twenty years of age may expect to live $15 \cdot 6$ years; at thirty, 13 ; at forty, $11 \cdot 6$; at fifty, $10 \cdot 8$; at sixty, $8 \cdot 9$. The probability for total abstainers is: At twenty years, $44 \cdot 2$; at thirty, $36 \cdot 5$; at forty, 28.8 ; at fifty, $21 \cdot 25$; and
at sixty, $15 \cdot 285$. at sixty, 15:285.

ENGINEERING INVENTIONS.

A car axle has been patented by Mr George W. Bedbury, of Portland, Oregon. This inven tion relates to divided car axles, and consists in a novel
construction of the hub for connecting and holding the construction of the hes the cobnecting and an oing the have
ends of the two axles, the hub

A car coupling has been patented by Mr. A. Judson Chapel, of Arkansas City, Kansas. This
invention covers an improvement on a former patented invention covers an improvement on a former patented
invention of the same inventor, being more particularl adapted for triple headed couplers, and the coupling pins being designed to operate automatically for coup ing cars provided with the ordinay slot lin
A car truck has been patented by Mr. John McEwen, of New York city. The object is to pro-
mote simplicity of construction and durability of railway car trucks, the peculiar arrangement of springs not only carrying the downward pressure, but at the same me holung the top frame from forwara, backward and lateral movement,
A rotary excavator for removing snow, etc., has been patented by Mr. Edward Leslie, of Orangeville, Ont., Canada. It is designed for removing,
snow from railwaytracks, or make sand and earth cuts, shoving a revolving head in the form of a wheel or disk, having a revovining head in the form of a wheel or disk
fitted with radial cutting heads that are reversible, and with this revolving head is combined a fan wheel, to discharge material at the side of the track.
The propulsion of vessels forms the subject of a patent issued to Mr. Daniel S. Troy, of Mont tion of air reservoirs in the holl of a vessel, and in ai the use of compressed air for propulsion, through a engine, the reservoirs of the vessel to be charged from station.
A locomotive driving bix has been patented by Mr. William J. Healy, if Susquehanna, Pa sides for wedges, to keep it in place, with a cellar of suctonstraction that can can be inserted in the open cially firm and adapted to receive the oil and cotton
waste used to keep the driving wheel journal lubriwaste used to keep the driving wheel journal lubri-

A compressed air and gas locomotive engine has been patented by Mr. Daniel S. Troy, of
Montgomery, Ala. In place of the boilers usually em ployed in locomotives, a strong cylindrical vessel with
double walls rests longitudinally upon the frame, the double walls rests longitudinally upon the frame, the
vessel being divided into two compartments for holding compressed air and compressed gas; there are devices fo controlling the admission of air and gas to the cylinders regulating the amount of expansion and time of explo sion, and numerous details of construction int
render the machive a nractical working motor.
A gas engine has been patented by Mr. Daniel S. Troy, or Montgomery, Ala. It has two cylin ders, each with separate piston connected with the same
crank shaft, and after the compressed gas is expanded in one cylinder it is mixed with air and conducted to thereby drivinder, in which the mixture is exploded thereby driving tene pistion forwara, he phe expansion
other cylinder being driven forward by the of the compressed gas, there being a mixing chamber in which the gas and air are mixed, an automatic valve for admitting the mixture, and an antomatic spark producing device.
A combined steam and hot air engine has been patented by Mr. David Lyle, of Manchester,
Jamaica, West Indies. This invention covers numerous Jamaica, West Incies. This invention covers numeroan that the steam and hot air are produced by one fireplace, and the exhaust steam and hot air serve to heat the cylinders are single acting, and each moves in opposite directions; the diameter of the steam cylinder is? much smaller than that of the hot air cylinder, and the pistons while there is a valve cylinder between the hot air cylin. der and the steam cylinder.

MECHANICAL INVENTIONS.

A mortising and boring machine has been patented by Mr. Edmond N. Camp, of Puckett, Ga.
This invention covers a novel arrangement of two or This invention covers a novel arrangement octiprocting and mortising mandrels on reciprocting carriages, adapted for making a series of mortises or
boring a series of holes at any predetermined place, and boring a series of holes at any predetermined place, and
particularly for doing the same in curved bars of wood, as in the back parts of chairs, etc.

AGRICOLTURAL INVENTIONS.

A hay stacker has been patented by Mr. Thomas S.Adkins, of Fredonia, Kan. This invention clined hinged platform, palleys, rake, back frame, and other novel features, whereby a loaded rake can
readily elevated and its load dumped upon a stack.

A hay ricking device has been patented by Mr. Rees O . Davis, of Milan, Mo. This invention covers improvementson two former patented inventions
of the same inventor, the balancing ropes being so con ne cted with the rack, inclined top bar, and weight, by
means of pulleys, that the rack will be balanced through means of pulleys, that the
all parts of its movement
A thrashing machine has been patented by Mr. Martin Williams, of St. Johnsville, N. Y. The straw is made to pass from the thrashing cylinder upo a grate of tines, where arms or beaters raise and toss it
while moving backward, the movement being assisted by an ordinary beater above, these operations thorough by an ordinary beater above, these operations thorough-
ly opening the straw for the ready separation of the
grain.

MISCELLANEOUS INVENTIONS

A water wheel has been patented by William W. Dunn, of Fort Worth, Tex. This invention its construction is of iron, and it is made in section hich may be readily taken apart for transportation.
An extension table has been patented by Mr. George McLagan, of Stratford, Ont., Canada his invention combines a pawl and ratchet, pulleys and sliding bars, etc., with novel features of construc tension tables.
A self-inking pocket stamp has been paented by Mr. Edwin M. Richford, of 44 Snowhill, London, Eng. This invention relates to the constraction of pad are contained, whereby a better impression may be btained than with other self-inking pocket stamps.
A stove board has been patented by Mr. William P. Cole, of Montreal, Canada. This invention provides for a stove board with an upper external laye asbestos, and a board or frame with an intermediate layer of woven fabric, edge binders, and con
bjject being to protect floors and carpets.
A bag holder has been patented by Mr. Martin Williams, of St. Johnsville, N. Y. It is in-
tended specially as a convenient attachment for thrashtended specially as a convenient attachment for turash Ing machines, to hold the bags that receive he grain from et, making a device which can be readily applied and re noved, and conveniently adjusted at the desired height
A suspender buckle has been patented by Mr. Frederick B. Spooner, of Brooklyn, N. Y. This
invention consists in the combination, with a plate havinvention consists in the combination, with a plate hav-
ing lugs on its back, of a latch plate pivoted on the said plate and resting on the lugs, to facilitate detaching the buckle
end.
An
An earth and coal loader has been patented by Mr. Daniel J. Gilchrist, of Newark, N. J. sliding bars with a scoop held to the same, ropes and pulleys for moving the scoop in the direetion of the
length of the bars into a heap of coal or earth, and ropes ength of the bars into a heap of
fence post has been patented by Messrs. Milton Foreman and Samuel E. Foreman, of
Randolph, Kansas. Combined with a fence post are ingsthereon, each ring having two lugs at right angle to each other for holling the fence and brace wires, the
object being to facilitate making a simple, strong, and jurable wire fence
A combination tool has been patented My Mr. Adon D. Crosby, of Cuba, N. Y. It comprise two lim bs, one having a screw driver at one end, a tack
claw and a wrench jaw at the other end, serrated surclaw and a wrench jaw at the other end, serrated sur-
faces upon opposite edges, a hammer head, etc., making and for various other purkoses.
A float valve for water closets has been patented by Mr. August F. Blesch, of Columbus, ohio rangement of parts whereby the float lifts the valve t t rangement os parts whereby, he hond noisesessly, without
its sumping or water hammer, and the device is also apDicable as a ball valve for water tanks.
A corset steel fastening has been patented by Messrs. David Alcorn, Jr., and Robert A.
Blake, of New York city. Hook plates are combined Blake, of New York city. Hook plates are combined
with and pivoted to the eye plates, with lips for engag ing tha pivored et the ee ye plates, with lips for engag
ing the downward movement, and prevent
A level has been patented by Messrs. James Walsh, Thomas F. Murphy, and Everett A.
Clark, of North Adams, Mass. Combined with a hand Clark, of North Adams, Mass. Combined with a hand
and dial, a pivot is secured to a float resting upon merand dial, a pivor is secured to a tloat resting upon mer
cury, so the mercury will cause the hand to turn more or less as the level is inclined, , making an imp
which cun also be used as an inclinometer.
An automatic vehicle brake has been patented by Mr. Richard R. Pace, of Lineville, Ala. It is so devised that when the horses pull on the chains or straps they pull the outer ends of levers to keep the brake shoes from the wheels, but when the horses hold as to press the brake shoes against the wheels.
A food steamer has been patented by Olive Nelson, of Houghton Lake, Mich. It consists of
box with vertical partition, perforated transverse ortion, and perforated.bottom, with doors and a flange on the under side of the box, and a removable water vessel into which the flange fits, being
A garment hook has been patented by Mr George R. Grimes, of Terre Haute, Ind. It is formed of an arm from which a series of hooks project
downward, on the prong of each of which hooks a curved transverse are hung, the device being adapted to hold a numbe
of garments, and also tags bearing the numbers of of garments, aks.
A shoe has been patented by Mr. William D. Hall, of Beloit, Wis. This invention covers a
congress gaiter with its front and back extended up congress gaiter with its front and back extended up
ward, flaps formed on or secured to the front extension wara, haps lower edges disconnected from the gaiter or
with their he flaps, the object being to provide means for holding the top of the shoe snugly against the leg
An ale and beer pump has been patent ed by Mr. Edward Schlimbach, of Long Island City, N Y. With the pump discharge pipe is connected a cyl-
inder with a valve, the stem of which is connected with inder with a valve, the stem of which is connected with
the pump lever by a a lever and connecting rod, so the valve will be opened and closed by operating the pump lever, the object being also to promote convenience
reliability in packing piston rods and valve stems.
A sleeping car seat has been patented y Mr. Alexander L. Kean, of Elizabeth, N. J. The floor, and combined with theseat is a board held to slide
hinged to the upper end of the board, and means fo
holding the back vertically on the board, making sea which can be easily converted into a bed.
A spring brace for vehicles has been patented by Mr. Edwin J. Strong, of Beresford, Dakota Ter. The braces are hinged together at a point cen orts the springs, to re lieve the springs of the carriage from the strain conse quent to end wise motion, and too much upward motion
A sash fastener has been patented by Mr. James Walsh, of North Adams, Mass. Combine with a vertically swinging sash lift or handle provide with cams are sash locking rods extending from the
handle to the side edges of the sash, heads secured on hande to the side edges of the sash, heads secured on
the rods being adapted to be acted on by the cams, making an improved handle for raising and lowering sashes as well as a sash lock
A roller roughing machine has been paented by Mr. Archibald Mitchell, of New Orleans, La his invention covers a hardened steel milling tool an canemill roller while being revolved, to roughen the surface of roller so they will bite and hold the cane thus drawing it in more effectually than can be
A holder for ornamental and fly paper has been patented by Mr.Vurlin G. Tansey, of Ashland
Neb. Thus invention consists of a frame formed of a Neb. This invention consists of a frame formed of a series of spokes secured to a central plate, and having
heir ends united by a ring to hold paper on the ceiling heir ends united by a ring to hold paper on the ceiling of a room, at the middle or corners, so as not to deface
the ceiling, and allow the paper to be conveniently ar

ned.

An improved beehive has been patented by Mr. Henry S. Gideon, of Crescent City, Iowa.
This invention consists in the peculiar construction and arrangement of parts, which is such that side boxe and frontentrancessoclosed as to secure the honey from mice and insects, with other
A sheet metal vessel has been patented by Mr. Isaac S. Lauback, of Boston, Mass. This invention relates to securing bottoms on such vessels,
and consists principally in forming the bottom interal with the flange that supports the base, and secur ing the bottom to the open end of the body by a lap
or folded joint that clinches the body and bottom together.
A
A wind wheel has been patented by Mr. peculiar construction and arrangement of parts for an easy running wind mill, the wings being automatially so changed during a strong wind that they will that the machine will then run as slow and steady alight wind.
Refrigerator barrels and other like reCptacles form the subject of a patent issued to Mr
ames W. Weston, of New York city. This invention covers an internal structure, with uprights and dia phragms, to make a series of compartments for holding separate articles, so the sizes of the compartments may be varied, and so
holding ice for cooling.
A bridge indicator for billiard tables has been patented by Mr. Charles F. Spaulding, of ng mechan bridge handle is made to raise the ends of the bars
lightly like little buttons above the tops of the rails, slightly like little buttons above the tops of the rails,
and thus indicate where the bridges are without the the
Watchmakers' pliers form the subject of patent issued to Mr. Henry A. R. Horton, of Cleburne
Tex. This invention more especially consists in a cer tain construction of the jaw end portions of the pliers, whereby the utility of the implement will be improved new hands when they are to be filed and otherwise

A baby carriage has been patented by Messrs. Harry M. Ribble and John W. Sammis, of
Dover, N. J. This invention is designed to facilitate turning and steering the carriage, an arm projecting
rearwardly from the pivoted front axle, and a bent rod rearwardly from the pivoted front axle, and a bent rod
connecting the arm to the hande, the rod and arm beconnecting the arm to the handle, the rod and arm be
ing so arranged that the front axle can be turned more ing so arranged
A bottle stopper has been patented by Mr. William Beardley, of Beacon, Iowa. With an aper tured cap fitted upon the bottle neck is an apertured
packing interposed directly between the cap and the packing interposed directly between the cap and the
upper edge of the bottle neck, having upon its inner upper edge of the bottle neck, having upon its inner
surface, around its aperture, a flange and ball valve, making an improved stopper for bottles containing
A combined fire box, grate, and sifter for stoves has been patented by Mr. Isaac J. Wells, of tended upward and in contact, and are held in place by a hooked plate forming the rear wall of the fire box, grate bars, while beneath the bars is placed a sifter to be jarred by the movements of the grate bars.
A mechanical and electrical alarm clock has been patented by Messrs. Isaac S. Moser and Fran-
cis Magee, of New York city. With a mechanical alarm clock this invention combines tongues connected with electric circuit wires, and a circuit closing piect on the
end of the spring for releasing the alarm mechanism, so that when the circoit is closed an electrical bell is sound until the circuit is broken.
A screw threading machine has been patented by Mr. Charles E . Coe, of Leesburg, Kansas.
This invention covers a specially constructed machine This invention covers a specially constructed macine
for turning metals, intended to turn and square up soulders and to cat new sewh have by hand to sup. ply the place of old ones which have become worn in
use, and particularly for forming new screw heads on carriage axles, and to extend the screw head on pipes,

An electric glass cutting machine has been patented by Messrs. Philipp Lange and Ernest
Lindner, of New York city. Combined with a atand suitabiy arranged for holding the article to becce wis a platinum wire adjustably maintained on the surface of the glass that the platinum wire will be made red hot hus heating the glass on the line of desired fracture fter which the glass is plunged into cold water, causing the separation.
A velocipede has been patented by Mr aniel S. Troy, of Montgomery, Ala. This inventio covers a velocipede propelled by a motor operated by and very strong metal frame in which are carried thre cylindrical receptacles for the compressed gas, an ex
plosion cylinder with valvels for regulating admission of plosion cylinder with valve|s for regulating admission of compressed gas and air, and other novel features, to
form a vehicle which will travel rapidly and can be easily steered.
A combined shutter and diaphragm for Hoover, of Buffalo N Y. Two shutters are fitted t ide one on the other in opposite directions, operated toggle bars and springs, adjustable so that the open ans for holding the shutters fixed thus providingcam ras with shutters for instan work, while the may be also arranged to serve as adjustable diaphragms to form a permanent attachment to the lens tube.

NEW BOOKS AND PUBLICATIONS

Tenants of an Old Farm. Leaves from the Note-Book of a Naturalist
By Henry C. McCook, D.D. New
York: Fords, Howard \& Hulbert 1885.

Dr. McCook has gained for himself a very enviabl position among entomologists; by his careful and dilijects His perious wors, and especially his of the agricultural ants of Texas, excited so much in erest that the present book has raised large expecta ions. The "Tenants" is a simple and pleasant ac health among the fields and meadows of an old farm near Philadelphia, and of how his search was rewarded ot only with its object, but with much else in addition The narrative form makes the book more attractive to
young people, who will, as a rule, swallow a large oung people, who will, as a rule, swallow a larg
mount of information if it be properly baited with a mount of information if it be propery baircumstances still an open that the book would be much more ac ceptable, sations, and could the highly interesting facts they contain be separated from the very mild form of fiction diluting them, and be gathered into short, straight-
orward sketches of nature. There are several charac forward sketches of nature. There are several charac-
ters introduced, and even a couple of lovers, but it is the naturalist always who speaks, and one's attention i omewhat distracted by the ingenuity shown in framing e questions assigned them to bring forth th nswers. But it is withal a deeply engaging book, and ther native-born tenants of the old farm will clothe the humble members of the insect world with a new inter est. The illustrations, taken largely from nature, are admirable from their cle
hum or and artistic merit

Treatise on Friction and Lost WORK IN MACHINERY AND MILL- WORK. By Robert H. Thurston.

 The subject of friction losses, which is usually treated ther incidentally in works on mechanism, has bee exhaustive volume It is intended, as stated in the preface, to be used either as a text-book or as a work of reference. Since in all properly designed machinery friction is the only cause of lost work, the consideration mportance only to the study of pure mechanics. Th contents of the work are drawn largely from the author's personal experience, and will have an ad ditional value on this account. They contribute a considerable amount of new information, and detract somewhat from our old store by showing the unreliability of ertain laws and values hitherto accepted in practice In the logical development of the subject the general tion and efficiency of machinery form a very suitable introduction. The laws and theory of friction are natu-
rally discussed at some length. The different kinds of lubricants and the apparatus for their application are ical tests of oils. The quan titative determination of friction is developed under testing machines, and the theoretical consideration of the coefficient of friction. The final chapter, on the finance of lost work of friction, sums up the practical true value to the manufacturer and engineer.

PHOTO-MICROGRAPHY, including a description of the Wet Collodion and Gelatino-Bromide Processes, etc. By A. Cowley Malley. London : H. K. Lewis, 1885 .

Within the past few years Science has brought a grea many agents into her active service, but none, perhaps,
ave better vindicated the wisdom of her choice than the microscope and the camera. Of late, they have been ưed in combination, and photo-micrography has vestigation. It has already accomplished much, and promises more for the future. Mr. Malley's book gives brief description of the instruments employed, and an and attaining a clear, sharp impression. Though it is far from exhaustive, it has the merit of being practical. and contains many useful hints which will save the experimenter much time and labor.

ßusiness and ゆersonal.

The charge for Insertion under this head is One Dollar a line for each insertion; about eight words to a line. as early as Thursday morning to appear in next issue.
city, N. Y.
city, N. Y.
Iron and Steel Drop Forgings; all kinds to order. The "Champion" 6 -lever Padlocks have no 2 keys to pass. Security unequaled. Miller Lock Works, Phil
delphia, Pa. delpha, ra
Manufacturers supplied with Pumps for every servic Valley Machine Works, Easthampton, Mass, Cushman's Chucks can be found in stock in all large
cities. Send for catalogue. A. F. Cushman, Hartford, Conn.
Pocket Shotguns, which are taper-choked, and guaranteed to shoot dust shot close, are of practical benefit
to taxidermists and coliectors. See our adv.on page 316 . A. Ross \& Co., Boston, Mass.
Peerless Leather Belting. Best in the world for swift
running and electric machines. Arny \& Son, Phila. Broom Machinery, Broom Winders, Planters, Trimmers, made by J. H. Dakin, Schenectady,
Frick Company, Waynesboro, Pa., have for sale heavy second-hand 18x36 engine. Send to them for
prices and list of second-hand engines and boilers. All prices and list of second-ha
in good order. Prices low.
Valuable Patent for sale.-Cloth measuring machine; cheap to manufacture; is practical; will sell rapidly and
pay a good profit. Write for descriptive circular to H . pay a good profit. Write for
J. Barrows, Armada, Mich.
"How to Keep Boilers Clean." Send your address The most complete catalogue of Scientific and Me chanical Books ever published will be sent free on ap-
plication to Munn \& Co., 361 Broadway, N. Y. Shafting, Couplings, Hangers, Pulleys. Edison Shafting Mfg. Co.. 86 Goerck St., N.Y. Send for catalogue and prices
Air Compressors, Rock Drills. Jas. Clayton, B'klyn,N.Y Iron Planer, Lathe, Drill, and other machine tools of The leading Non-conducting Covering for Boilers, Pipes, etc., is Wm. Berkefeld's Fossil Meal Composition $\$$ inch thickness radiates less heat than any other covering does with two inches. Sold in dry st
pound. Fossil Meal Co., 48 Cedar St., N. Y.
Every variety of Rubber Belting, Hose, Packing, GasStraps, Printers' Blankets, manufactured by Boston
Belting Co., 226 Devonshire St., Boston, and 70 Reade St., ew York.
Brush Electric Arc Lights and Storage Batteries. Twenty thousand Arc Lights already sold. Our largest machine gives 65 Arc Lights with 45 horse power. Our
Storage Battery is the only practical one in the market. Brush Electric Co., Cleveland, O
Write to Munn \& Co., 361 Broadway, N.
Wanted.-Patented articles or machinery to manufac ture and introduce. Lexington Mfg. Co., Lexington, Ky. Mills, Engines, and Boilers for all purposes and of mill Co., 10 Barclay Street, N. Y.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. For Power \& Economy, Alcott's Turbine, Mt. Holly, N.J Send for Monthly Machinery List
121 Chambers and 103 Reade Streets, New Yor
If an invention has not been Spatented in the United States for more than one year, it may still be patented in
Canada. Cost for Canadian patent. \$40. Various other foreign patents may also be obtained. For instructions address Munn \& Co., Scientific
agency, 361 Broadway, New York
Guild \& Garrison's Steam Pump Works, Brooklyn, N. Y. Steam Pumpin
Send for catalogue.

Machinery for Light Manufacturing, on hand and

 Nickel Plating.-Sole manufacturers cast nickel an odes, pure nickel salts, polishing compositions, etc. Complete outfit for plating, etc. Hanson, Van Winkle \& Co. Newark, N. J., and 92 and 94 Liberty, St., New York.
For Steam and Power Pumping Machinery of Single
and Duplex Pattern, embracing boiler feed, fre and low and Duplex Pattern, embracing boiler feed, fire and low pressure pumps, independent condensing outfits, vac-
uum, hydraulic, artesian, and deep well pumps, air comuum, hydraulic, artesian, and deep well pumps, air com
pressers, address Geo. F. Blake Mtg. Co., 44 Washington
St., Boston; 97 Liberty St, N. Y. Send for catalogue.
Supplement Catalogue.-Persons in pursuit of infor macion of any special engineering, mechanical, or scientific subject, can have catalogue of contents of the Sci-
ENTIFIC AMERICAN SUPPEMENT sent to them free The SUPPLEMENT contains lengthy articles embracing science. Address Munn \& Co., Publishers, New York.
Curtis Pressure Regulator and Steam Trap. See p. 285.
Woodwork'g Mach'y, Rollstone Mach. Co. Adv., p. 284. Wood Working Machinery. Fullline. Williamspor
Machine Co., 110 W .3 d St., Williamsport,
Catalogue of Books, 128 pages, for Engineers and Electricians,
Street, N. Y
Iron and Steel Drop Forgings of every description. illings \& Spencer Co., Hartford, Conn.
We are sole manufacturers of the Fibrous Asbestos asbestos goods of all kinds. The Chalmers-Spence Co 19 East 8th Street, New York
Stèam Hammers, Improved Hydraulic Jacks, and Tub
Expanders. R. Dudgeon, 24 Columbia
Emersonss Book of Saws free. Reduced price for 1885. 50,000 Sawyers and Lumbermen. Address
Emerson, Smith \& Co., Limited, Beaver Falls, Pa.
Hoisting Engines, Friction Clutch Pulleys, Cut-off
Couplings. D. Frisbie \& Co., Philadelphia, Pa.
Send for catalogue of Scientific Books for sale by
Economy Belting for driving belts. Durable and

A Handbook on the Teeth of Gears, \$1. Circular
free. Gear Wheels and Gear Cutting. Send for Catafree. Gear Wheels and Gear Cutting. Send for Cata-
logue S. Geo. B. Grant, 66 Beverly Street, Boston, Mass. Barrel, Keg, Hogshead, StaveMach'y. See adv. p. 2\%0. Wanted.-Patented articles or hardware specialties to on the market. First-class facilities. Correspondence olicited. Address Hull Vapor Stove

Mineral Lands Prospected, Artesian Wells Bored, by Do. Box 4es, Pottsinle, Pa. See p. sa, Pure Turkey Emery, English tanned Walr
Polishers' Supplies. Greene, Tweed \& Co., N. Y.
For best low price Planer and Matcher, and latest improved Sash, Door, and Blind Machinery, send fo
catalogue to Rowley \& Hermance, Williamsport, Pa. Young Men! Read This!
The Voltaic Belt Co., of Marshall, Mich, offe and other send celebrac APLECACOS BEL thirty days, to men (young or old) afflicted with
nervous debility, loss of vitality and manhood, and rll kindred troubles. Also for rheumatism, neu-
ralgia, paralysis, and many other diseases. Com-
plete restoration to health, vigor, and manh suaranteed. No risk is incurred, as thirty days' trial
is allowed. Write them at once for illustrated

Split Pulleys at low prices, and of same strength and appearance as Whole Pulleys. Yocom \& Son's Shafting

HINTS TO CORRESPONDEN'IS.
 Vames and Address must accompany. all letters, or no attention will be paid thereto. This is for our inform

Refrences to former articles or an answers should
give date of paper and pape or number of question.
Inquiries not answered in reasonable time should

(1) M. H. asks: 1. What wire gauge is lement, No. 160? A. American. 2. By using 28 wir in said coil, will it do to light gas: A. Yes. 3. How
are the medical coils made? A. Like the one described are the medical coils made? A. Like the one
in the Supplement, but without a condenser.
(2) C. S.-We know of no means of increasing the volume of sound in the Bell telephone re ceiver, but by using two receivers, one at each ear, the
combined effect of the two is very much greater than
(3) E. A. R. wants some simple way in which to produce the gas and inflate toy balloons, so
they will float in the air when released. A. You can make hydrogen gas for this purpose by pouring slightly iluted hydrochloric acid on an equal weight of zinc in filling the balloon. Ordinarily, we believe, it is found to be more convenient to use the common illuminating gas, and the balloons can thus be directly filled from the
(4) L. C. L. asks: 1. Are porpoises used or anything except oil? A. Besides the oil, the skin is of value for leather, and the flesh is eaten. It is said
that a company has been organized for the purpose of sing the flesh for mince meat. 2. By what kind of nets are they caught? A. The net is of loose mesh, and
sometimes a seine as long as 1,000 yards is used, reachsometimes a seine as long as 1,000 yards is used, reach-
ing to the bottom of the sea. 3. In your Scientific merican of the 14th inst. you speak of turtle oil. I there any established market for it, if so, what is it
market value? A. Not in New York. 4. How is it pre pared, and how preserved? A. According to Spon, it urtle in Brazil and the South Pacificislands, and is use in food and medicine, and for lighting. We presume that it is only of local importance. 5. Is. the shell of the green sea turtle of any value? A. No.
(5) H. A. U. writes: I have a very old volin, and the finish or varnish is all worn off. Can you
ell me how to varnish and stain it so as not to injure it ound? A. Use coarsely powdered copal and glas each 4 oz .; alcohol, 1 pint; camphor, $1 / 2 \mathrm{oz}$.; heat the mixture with frequent stirring in a water bath, so that
the bubbles may be counted as they rise until solution he bubbles may be counted as they rise until solutio is complete, and when cold decant the clear portion.
(6) E. I. writes: Would like to know if you could give me some information regarding the preservation of shrimps for fishing purposes, for say two them alive, but only for two days, is to put them in loose sawdust. Have also tried putting the dea there may be some better way to fix them? A. We now of no other methods than the one mentioned by
(7) G. F. B. writes: I have made a mixput into kill it the disagreeable smell? A. If th odor arises from the kerosene oil, the best thing to do is to use a better grade of the oil, and then it can be
masked somewhat by using some strong aromatic, such as oil of cloves with perhaps a little oil of bergamot. A good quality of the kerosene should be almost entirely odorless. There is an aromatic ammonia described in
the U. S. Dispensatory which, if desired, could be subtituted for the plain article as used in the recipe as
iven by you.
(8) A. P.
(8) A. P.-You can get soda ash from
carbonas. Its preparation as well as that of causti soda is complicated, and unless you have a supply of ap
paratus, you will find it more convenient to purchase it.-It is probably the following: Mix 8 oz . prepared chalk, 2 oz. turpentine, 1 oz. alcohol, 4 dr . spirits of camphor, and 2 dr. aqua ammonia. Apply this mix-
ture to the article with a sponge, and allow to dry befor
(9) F. K. says: In your Notes and Queries of April 25, J. H. asks what harmless pre paration he can use for coating a wooden tank, to supply his house with water, to prevent the water from melted paraffine applied hot, then burn in with a gaso line burning tool, such as painters use for burning of ld paint, the heat will expand the pores of the wood and the paraffine will enter, leaving the surface clean care should be taken not to apply the heat too suddenly, ficiently open.-F. K. asks: What can I use to coat Manila paper, by dipping, to make it impervious to moisture. It must be cheap, contain no poisonous in ine or wax is commonly used.
(10) C. W. B. writes: Please give me a recipe for mixing kalsomine so that I can put on sucessive coats (without mixing with alum or any size
nd not wash up. A. Kalsomine is composed of zinc white mixed with water and glue sizing. The surface to which it is applied must be clean and smooth. For ceilings mix $1 / 2$ pound glue with 15 pounds zinc; for
walls 1 pound glue with 15 pounds zinc. The glue, the ight before its use, should be soaked in water, an liquetied in the morning. 2. Also, will you give me A. Gold size is prepared by grinding calcined red cher with the best and oldest drying oil, and mix the work is to be gilded, first give it a coat of parchment size; then apply the above size where requisite, eithe in patterns or letters, and let it remain till, by touching it with the finger, it feels just sticky; then apply the
gold leaf, and daub it on with a piece of cotton; in bout an hour wash off thesuperfluous gold with spong and water, and,when dry, varnish it with copal varnish.
(11) W. B. C. writes: 1. Will a dynamo upply one or two Edison lamps of 15 or 20 candle power each? A. It may be possible, but it is not prac tical. 2. Can I run an Edison lamp (i5 candle power)
with a battery? A. Yes, but it will take a large number of cells, and will be very expensive. 3. Can you ell me of any work on electricity that would explain constructing a dynamo, and the way electricity is used
or a motive power? A. Consult Du Moncel on electric otors. See also back numbers of the Supievent
(12) E. B. writes: 1. Please explain how phoning. A. Sound waves are not changed into elec ric waves in the telephone. You will find a full ex lanation of the action of the telephone in the back was wound with Supplement. 2. If a steel magne continued to a short distance and wound round a soft ron bar, would the bar of soft iron become magnetic? ere that suddenly varied so as to set up an induced current in the wire. 3. Suppose an electro-
magnet was brought to within a short distance of a magnet was brought to within a short distance of a he iron (the piece covered with copper) be attracted by the electro-magnet by induction? A. Yes. 4. And if
so, would the iron after touching the electro-magnet o, would the iron after touching the electro-magne
adhere to the magnet, or would it be repelled? A. It ould be attracted by the magnet. 5 . Would not meta ods used in the electric lamp, and would not meta e luminous if no electric lamp were used, but simply best adapted to arc lighting. All metals volatilize in
the electric arc, and would therefore be speedily dissi. ated.
(13) W. E. D. desires the formula for uality most desired being absolute impermeability to light. The ink I refer to is intensely black, leaving the nest lines show very distinctly. A. Try the following

Bruised galls Gum........
 Gum........

Soft water.
Macerate for t
(14) W. P. C. asks: ¿Can a good oarsman t 6 miles per hour? A. An expert oarsman in a good oat can do this for a short distance
(15) C. M. B. asks a way of ventilating Mansard third story of a twin house to lessen the han to open vent holes at the base of the Mansard, and at a ventilator on the top, so as to allow a circulation an architect or builder.
(16) G. B. writes: I saw recently an account of filings being made to resemble gold dust so
closely as to be hardly distinguished from it. Will losely as to be hardly distinguished from it. Will政, and the way of using same? me the materials was used for the accomplishment of a fraud. We have no knowledge of the means used, but suppose that the lings were electroplated with gold.
(17) R. R. D.-Water deprived of air by oiling or any other means is a better conductor of eat or cold, and thereby allows the freezing process in water imposes a mechanical impediment to crystal ization, as the act of freezing discharges the air from
(18) S. N. S. writes: In Philadelphia we
are afflicted with bad water. Some are sinking wells
are all impurities moved from wateriby boiling
disease germs or microscopic life that would injur still we tho that certoin boiling water. Well water in cities is unsafe
(19) J.T . McC. asks: 1. What would be (19) J.T . McC. asks: 1. What would be stiffen it into grease? A. Paraffine wax. 2. How should it be properly mixed? A. Melt together and stir until cool. 3. Would you recommend strong lye as a part with other articles to bring it to a proper con sistency? A. Lyes are without effect on paraffine. 4. Would you recommend paraffine tailings as a good and profitable article to mix with the above named
(20) J. F. P. asks for the receipt of how o make the white powder used in making that efferves ing summer drink called "sherbet," or "Persian she tartaric acid, 2 pounds finely powdered loaf sugar, 3 drachms essence of lemon. Let the powders be very
dry. Mix them intimately, and keep them for use in a closely corked, wide mouthed bottle. Put two goo ized teaspoonfuls into a tumbler; pour in $1 / 2$ pint of cold water, stir briskly, and drink off. See also "Sum-
mer Beverages." contained in Scientific American UPPLEMENT, No. 192.
(21) L. H. R. asks how much power can be developed from a 20 and 30 foot overshot wheel
with a 4 inch solid stream of water., A. For 20 feet fall, (22) W. H. C., Leghorn, Italy, and others -That the steamship Alaska was not provided with, an eyebolt for chains on the out
is true; why, we do not understand.
(23) M. E. B. asks for the best way to prevent wrinkles lin transferring photographs on con-
cave glass. A. See elabcrate article on this subject,
No. 8, vol. lii., page 120 , Scientific American.
(24) E. S. G. asks what are "tatties" or tatty," something o cool houses, used in India. A tatta" is a bambco frame or trellis hung at a door or
window of a house, over which water is suffered to rickle, with a view of cooling the air as it enters.
(25) C. T. McM. writes: I am unable to the accepted fact of the moon's presenting reason. A. We, as wellas all of the rest of the world re in the same fix. We have no knowledge of the revolutions of the satellites of other planets, so that we
can draw no conclusionsfrom comparison, but accept the
(26) C. T. J. asks: What must be the di ensions of a steam engine to constitute one horse 60 pounds boiler pressure and 150 revolutions pe minute. If less pressure or number of revolutions, use (27) L A Di
(24) L. A. D. asks (1) how to remove the fatty matter which collects in the pores of the face, ometimes having a black spot on their top. A. See ruary 21, 1885. 2. What will remove freckles from parts A. For rreckes use a mixture consisting of parts sulphocarbolate of zinc, 25 parts of distille alcohol, and it is to be applied twice daily for from half
(28) C. D. C. asks if there is any known solution for plating glass with nickel or copper. A.
We do not believe that there is any solution that can e used to plate glass with either nickel or copper. with tin and mercury.
(29) W. P. S. writes: I wish to get some nexpensive motor to operate a fan to be placed on the
front of a church organ, to render comfortable the rice of that is too hi price of that is too high. A. The best device for your
purpose we think would be a small jet taken from the organ bellows, and employed on the ejector principle to urnish the current of air.
(30) J. S. B. asks whether there is any form of magnet or dynamo which gives a continuous There are several machines that give a continuous current in one direction, but of low tension; the Siemens uni-polar machine and_the Delafield uni-polar machine
(31) M. G. asks: What will take out cratches from a thick plate mirror? A. There is no oolen cloth or felt. If the scratchesare deep,'none bu hose used to such work can grind out the scratches and
(32) H. C. J. asks: Is there any porous abstance that I can use in manufacturing a cheap wate . Noth my family use, that is better than charcoal . Nothing better than charcoal and sand; put th american Supplement, No. 451
(33) A. L.-For aquarium cement use gill plaster Paris, 1 gill litharge, 1 gill fine whit and, one-third gill resin finely powdered. Mix thor oughly dry. Take what may be required for imme little drier. Not too soft. Apply at once, as it set uickly.
(34) L. K. asks: 1. Can an induction coil be used to produce an electric light, either arc or incan ncandescents. 2. Is the quantity of electricity from an induction coil increased by using larger wire for se condary coil? A. Yes. 3. Would common clay cru
cibles do for porous cups for an electric battery? A
; they are not sufficiently porous.
(35) J. F. B.-The horse pushes his col ar, and it is by throwing his weight thereon that he pulls
（36）H．B．S．asks：1．Boes the quality of a violin depend upon the kind of wood which it is made of？A．The quality of a violin is dependent upo
the wood and upon the workmanship with which it is made．It improves as it grows old，and therefore its age is an important factor when its quality is considered． 2.
If so，what kind of wood is best？ If so，what kind of wood is best？A．Pine wood is used for the front and curly maple for the back．3．Is
there any work published in regard to the construction of the violin？A．We are not acquainted with any spe cial book descriptive of the manufacture of the violin but you will find a good dea
in the various cyclopedias．
（37）H．H．asks how to make gum foam or soda water？A．Either of the following can be use with advantage：1．To each gallon of sirup，add from water．2．Quillaya bark， 4 oz．；alcohol， 4 oz．；glyce－ rine， 4 oz．；water， 8 oz．Exhaust by percolation，so as incture to every gallon of sirup will be found sufficien o give every glass of soda water that creamy appear nce so universally liked．
（38）E．D．＇F．asks how high a bicycle track should be banked on the outer edge of a 20 ft ． t．，the rate of speed of wheelman to be 1 mile in 3 min ates？A．Under the speed named man and wheel wil make an angle of $121 / 2^{\circ}$ to counteract centrifugal forc
on a 120 ft ．radius．The radial grade of the track should on a 120 ft ．radius．The radial grade of the track should
incline 1 ft ．in 5 ．But as this is for extreme velocities， e recommend only one－half this grade，There will be n difference in the angle of inclination for differences of height in weight of man or vehicle．

（39）C．F．C．asks：1．How many candl

 power is a German study lamp？A．About 20．2．Can How large a single incandescent lamp the dynamo in Supplement 161 will run？A．Five or 6 candle powe $\begin{array}{ll}\text { of low resistance．} & \text { 4．Can dynamo run an are light？A } \\ \text { A very small one．} & \text { ．How can I construct a simple }\end{array}$ motor to be run by water in a large reservoir for driving the above dynamo？A．Make a small turbine water（40）J．L．S asks：What the mixtures of varnishes are，that is，how to make the different kinds．
1．White varnish？A．A white hard spirit varnish can be made as follows：gum sandarac， 1 lb．；clear turpentine 6 oz．；rectified spirits（ 65 over proof）， 3 pints；dissolve putting 48 lb foreign A ． boiling for 4 hours；during the first 2 hours introduce 1 lb ．of red lead， 7 lb litharge， 3 lb ．dried copperas，and 10 gal．of boiled oil；add one 8 lb ．run of dark gum with 2 gal．of hot oil．After pouring the oil and gum continue the boiling 2 hours，or until it will roll into hard pills like japan．When cool，thin it off with 30 gal．of turpentine or until it is of proper consistence．
This varnish is specially adapted for iron work． 3 ． Common brown？A．A brown hard spirit varnish con eists of sandarac， 4 oz．；pale seed lac， 2 oz ；elemi， then add venice turpentine， 2 oz
（41）J．R．D．desires to know some pre paration that will cause tender skin to become hard and
callous？A．Almost any astringent substance will ac－ complish this purpose，and therefore various solutions， such as vinegar，dilute sulphuric acid，lemon juice，or alum water，may be employed．Rub the parts to which the liquid is applied，and slap them well．
（42）F．W．B．asks：1．Why is the N．Y．， C．\＆St．L．Railroad called the Nickel Plate？A．We believe it was a nickname given because its founder story was that they were not satisfied with steel rails， but must have them nickel plated．2．What is the best fillings between brick walls for a fireproof safe？A Bricks are very good；a mixture of plaster of Paris and alum is much used．Fine sand offers a very good protec－
tion against fire．3．Can an iron body be suspended by a tion against fire．3．Can an iron body be suspended by a
magnet，or held in the air，without being in contact with magnet，or held in the air，without being in contact with on the weight by the attraction of the magnet so nicely as to keep them a given distance，say one－half inch， magnet．

（43）F．B．W．asks：1．How to smoke

 glass slides for magic lanterns，so the black won＇t comeoff？A．You can smoke glass over a small gas flame or over a candle．You can cause it to adhere by subjecting it to steam of alcohol．2．The way to paint on slides
for same purpose？A．For information on lantern trans－ for same purpose？A．For information on lantern trans－
parencies consult Supplements 423，173，424．3．How to get pictures from newspapers transferred to slides， so that they will be transparent？A．Coat the glass with the print face down upon the varnish surface and bur－ nish it well，so that all parts of the paper will be brought into contact with the varnish，and when the varnish has become thoroughly dry，moisten the paper and rub it over with the fingers until it is all removed，leaving the print in the varnish．Finally brush the print over lightly and quickly with a very thin coat of varnish．
（44）W．K．－For elastic moulds，rub－ ber is probably the most durable material．The com－ to a jelly by water，then add 7 pounds molasses．With the amount of water in the smallest proportion to give
it elasticity，a very elastic mould may be made．An－ it elasticity，a very elastic mould may be made．An－
other composition used for the hektograph，and also for other composition used for the hektograph，and also for
printers＇rollers，is made with $11 / 2$ pounds good white printers＇rollers，is made with $11 / 2$ pounds good white
glue soaked in water until soft，the water poured off and 6 pounds glycerine added，and the whole melted and boiled small quantity for trial．The object to be moulded small quantity for trial．The obj
must be greased to prevent sticking．
（45）A．A．－The brass coated zinc plaques are electro－plated．For the brass bath： $4 \not / 2$ gallons pure water，bisulphate of soda 241／2 ounces，cyanide
of potassium 35 ounces．Dissolve，then add the fol－ lowing solution：Water 9 pints，acetate of copper and protochloride of zinc each $121 / 2$ ounces，aqua amm
14 ounces．Or in proportion of all the above for a smaller bath．Filter the bath；it will then become
delorless，and gives under the action of a battery a bras
deposit of a very fine shade，using an anode of bras By slightly changing the proportions of acetate of cop－ per and protochloride of zinc，the tints may be varied rom reddish yellow to greenish yellow．A little ex perience will be required to adjust the strength of th batteries－a weak battery producing a red deposit，
（46）O．O．－We do not know that th limit of speed in wheels has ever been reached．Th mit is entirely controlled by friction of the mechanica parts and the medium in which the revolving motion akes place．About 10,000 revolutions per minute ha why 50,000 or 100,000 may not be obtained in vacuo．
（47）C．M．asks：If a perfect circle i made with a very fine silver wire，and then，by means of four rims，the wire transformed into a perfect square what is the difference in the result of this process and hat of squaring the circle？A．The area of a circle is ircumference of the circle wor instan only equal nches in diameter has an area of 50.2656 inches and the circumference of such circle is $25 \cdot 1328$ inches．T close the same area in a square，its sides must be ． 0898 inches each，or $28: 3592$ for the four sides

INDEX OF INVENTIONS

 s Patent of the United States were Granted，May 12，1885，

AND EACH BEARING THAT DATE

［See note at end of list about copies of these patents．］
Abrading disk，J．G．Buzzell．．．．．．．．．．．．．．．．．．．．．．．．．31
Alarm．See Fire alarm．Grain binder cord alarm．
Animal po
nimal powers，governor for，S．D．Shepperd．．
Annunciator and fire telegraph，C．K．Pevey
nnunciator and fire telegraph，C．K．Pevey
Ares，layn．
Jackson．．
uger，hollow，G．W．England
Auger，post hole，Bense \＆Sieve
Awning，window，t．L．Barlow
Axle box，car，C．H．Shattuck
xle，car，G．W．Bedbury．
xles，device for cuttin
wagou，G．H．Williams
Bag．Sea Mail bag．
Baking powder，A．McDonald
Ball trap，F．C．Damm．
Bath．See Vapor bath．
Bath tubs，apparatus
Hayes，．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Bed bottom，Bulkeley \＆Browning
Bedstead，，W．W．Blak
Belt cleaner，driving
Belt fastener，P．Koch
Binder，temporary，Roach \＆Kroedel ． Blackboard and desk，combined reversible，Smith Blind，inside，F．Keller．
Blind，inside，F．Keller．．．．
Blind，etc．，inside，F．Kelle
Block．See Pulley block
Board．See Blackboard．Ironing board．Stove
Body protector，W．I．Wilde．
Boiler．See Steam boiler．

Bolt machine，Hall \＆Young．．．．．．．．．．．．．．317，530
Book holder，A．A．Fuller．．
$\&$ Stone．．．．．．．．．．．．．．．．．
Boot or shoe，G．Castle．．．
Boot or shoe，L．E．Moore
Boot or shoe heel，Rachler \＆
Bottle stopper，w．Beardsley．
Bole
Bouquet holder，M．H．Jones．．．．．．．．．．．．．．．．．
Box．See Coffee and tea box
Brake．See Car brake．Locomotive brake．
hicle brake．
Brake governor，automatic，G．H．Poor
Brush making machine，J．M．Pickerin
Bucket elevator，F．W．Howell．
Buckle，combined back strap and trace，G．Z．Zitlow
Buckle，combined hame tug and trace，H．B．Ro
ertson．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Buckle，suspender，F．B．Spooner
Buggy top support，Longcor \＆Da
Burner．See Vapor．burner．
Button and sleeve pin，combination cuff，Ril
Button and sleev
Jr．，\＆French．．
Button for gloves，etc．，I．Meyers．．．．
Cable or belt tightener，J．H．Whiting
Call box，F．B．Wood．．．
Can．See Collapsible

Can，T．Yapp

Cans，ete．，，bottom for，T．Burkhard．
Capsule filler，Albach $\&$ White．
Car body truss，J．Stephenson．
Car brake，K，J．Stephenson．．．
Car brake，automatic，S．W．Robins
317，553，
ar coupling，A．J．Chapel．．．．
Car coupling，A．W．Van Dorsto
Car door，grain，S．R．Washer．
dioxide，apparatus for generating
Carbons，ap
Heinrich
Carburetor，gas，H．．．．．．．．．
Carriage，fastener，McFaddin \＆Lucas
Cartridge shell loader，J．T．Baird
Carving fork guard，A．H．North
Casting，divided，J．Yocum，
Casting metals，M．P．Haye
Casting rolls，J．Hemphill．
Cement，machine for testing，H．Faija．
Chain links，machine for putting together，E．
Howe ．．．．．．．．．．．．．．．．．
Chair．See Childs chair．
Chair，G．L．Burdett．．．

Charts and drawings distorted by disproportion
ate contraction，and providing for their cor rect republication，measuring distances and
lengths on，E．R．Knorr lengths on，E．R．Knorr．
Child＇s chair，F．F．Parker．．
Child＇s chair tray，R．L．Bent．．．．．．．．．．．．．．．．．．． Churn，J．A．McRae．
Churn，J．J．Stevens．．．．
Clasp for garments，spring locking，C．J．S．Hay－
Cleaner．See Be．．．er Boilener．
Clipping machine，hair，J． K．Priest．．．．．．．．．．

Clock movement frame，W．C．W
Clover huller，J．M．Thompso
Cocks of gas，etc．，extensible service box for the
stop，S．A．Brown．．．．．．．．．．．．．．．．．．．
Concrete light for buildings，areas，etc．，T．Hyatt
Concrete light for buildings，areas，etc．，T．Hyatt
Conducting cords，flexible tip for，G．K．Thomp
Coping，J．F．Smith．．．

Corset steel fastening，Alcorn，Jr．，\＆Blake．．．
Cotton gin，I．F．Brown．．．
Coupling．See Car coupling．Pile coupling．Thill
J．H．Thomas．．．．．．．．．．
Creaming can，H．Kelsey．
Creaming can， H ．Kelsey．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Cultivator tooth，Helms \＆Trinkle
Cup．See Oil cup．
Cut－offvalve，stea
Dental plate，A．H．Parker
Digger．See Potato digge
Digger．See Potato digger．
Door and gate spring，J．M．Ste

Dress shield，I．A．Canfleld．．
Dress shields，apparatus f

Dress shielas，manufacturing，A．A．Canneld
Drill．See Manure drill．Rock dril．
Drill and sucker rod joint，A．M．Bollinger．
Drill and sucker rod joint，A．M．Bolli
Drilling machine，French \＆Gifford．．．
Drilling machine，T．H．Thompson．
Easel，book，H．Pattcherg．．．．．．．
Egg beater，T．Fletcher．．．．．．
Electric light，Sawyer \＆Man．
Fletric lights，wiring interi

Electric machine，dynamo，C．F．Heinrich
Electric signal．H．D．Winton．．．．．．．．．．．．．
Electric accumulator，J．J．Barrier et al．．．
Electric accumulator，J．J．Barrier et al．．．．．．．．．．．．．
Electrical conductors，vulcanization of rube
coverings for，J．J．\＆\＆M．Smith．．．．．．．．．．．．．．．
Electrical distribution，system of，w．．．．．．．．．．．．．．．．．
Elevators． Elevator．
elevator．
Embalming apparatus，W．T．Baker et al．．．．．．．．．．．
Embroidery，box for packing and displaying，H．
Engine．See Gas engine．Locomotive engine．
Road engine．Traction engine．Wind en－
gine．
gine．
Excavator for removing snow，etc．，rotary，
E．
Leslie．
Excavator，
Extension table，G．McLagan
Feed water heater，M．Funk．
Feed water heater and filter，T．A．Lathrop
317,809
.
3177,664
317,825

Feeder，boiler，G．E．Hall．．．．．．．．．．．．
Fence，J．Bryant．．．．．．．．．
Fence，S．\＆G．Calhoun
Fence，hedge，W．Young．．．．．．．
Fence post，M．\＆S．E．Forema
Fence post，J．J．Vinton．．．．．．．

Sunderland（r）．．

son．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．

Finger ring，etc．，Traitel \＆
Fire alarm，c．J．Crikelair．
Firearm，lectric，F．E．Kinsm
Fire escape，Beale \＆Bangs．
Fire escape，Beale \＆Bangs．．．
Fire escape，C．Hoell．．．．．．．．．．
Fire escape，Scrader \＆Kittler
Fire extinguisher，chemical，T．．E．Connelly
Fire extinguisher，chemical， T ．
Fish plate fastening，W．S．Grub
Floor tube
Floor tube，A．G．Stilson．
Folding box，G．L．Jaeger
Folding box，G．L．Jaeger．．．．．．．
Forging plant，W．Hainsworth
Finntan
Fountain．See Sirup fountain．
Fruit cutter，H．M．Morrison．
Fuel and illuminating घas，apparatus for the
manufacture of vaporous and gaseous，B．B．
Avery．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． Furnace，J．Reuleaux．
Furniture，F．H．Conant．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Gas，apparatus for manufacturing，A．F．Randall．
Gas，apparatus for manufacturing illuminal
C．Salisbury．．．．
as engine，D．S．T

Gas regulator，W．H．Cothren．．．．．．．．
Gas washer，chlorine，J．A．Just．．．．
Gas washer，chlorine，J．
Gate．See Sliding gate．
Glass annealing furnace，C．H．Lauman．．．．．．．．．．．
Glove lacing，E．Forbes．
Governor，C．Prusmann．
Governor，C．Prusmann．．．．．．．．．．．．．．．．．．．．
Governor，steam engine，A．Thierfelder
Grain binder cord alarm，W．M．Whiting
Grain cleaning machine，H．Lampm
Grain separator，J．F．Henderson．．．
Grain separator，J．Lucas
Grain separator，J．Lucas．．．．．．．．
Grain separator，W．H．Mercer．
Grate stove attachment，J．M．Sexmour．．．．
Grates and fireplaces，stove attachment for

Harness rosette，J．R．
Harrow，F．M．Hakes．
Harrow，C．T．Hol

317,801	
377,668	
317,707	
377,718	H
H	
H	

Harrow and pulverizer，combined，B．Wilt
Harvester，J．P．Manny．．．．．．．．．．．．．．．．．． Hat felting and sizing machine，T．Longshaw． Hat，storm，H．M．Sawyer
Hatchway guard，elevator，W．S．Morton
Hay and wheat elevator，P．F．Fleming．
Hay and wheat elevator，P．F．Fleming．．
Hay fork，horse，C．Maginnis．．．．．．．．．．．
tay rake and loader，W．\＆D．Blackston
Hay rake，horse，J．H．Thomas．
Hay ricking device，R．O．Davis．
Hay stacker，T．S．Adkins．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Hay tedder and rake，combined，E．L．Williams．
Hay tedder and rake，combined，E．L．Williams．．．
Heater．See Feed water heater
Heel nailing machine，H．A．Henderso
Heel naling machine，H．A．Henderson．．．．．．．．．．．．．317，646 Heel nailing machine，F．F．Raymond，2d．．．317，672， 377,85 Hinge pin holes，forming，Burdick \＆Sandford．．．
Hoe，plasterer＇s，P．C．Canfleld
Hoist，J．J．White．．．．．．．．．．．．．．．．．．．．．．．．
Hoisting and hauling gear，J．Christie
Hoisting and hauling gear，J．Christie．．．．．．．．．．．．．．．．．．317，727
Lamb．．．317，80
Holder．See Bag holder．Book holder．Bouquet
holder．Lamp holder．Pillow sham holder．
Rein holder．
Horse boot，J．Fennell．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．317，5
Horse boot，elastic，J．H．Fenton．．717，526
Horses to harness，apparatus for training，C．F．
Shedd．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．317，865
Horseshoe，E．F．Lowry．．17，658
Hose tower and fre escape，w．M．Ward．．．．．．．． 317,89
Hosiery，E．E．Scatchard．．717，861
Hub，wheel，G．S．Briggs．．．．．．．．．．．．．．．．494
Hub，wheel，G．S．Briggs．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Huller．See Clover huller．Rice huller．Seed
huller．
Indicator．See Billiard table bridge indica
Station train indicator．
Injector，F．C．Douds．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．317，750
Injector，hydrocarbon，W．M．Brisben．．．．．．．．．．．317，712

Ironing board，J．Delaney．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．317，93
Jack．See Lifting jack．Wagon jack．
Jacket，knitted or cardigan，Steinam \＆Seeligman 317．68
acket，knitted or cardigan，Steinam \＆Seeligman 317．68，
Jar for solid extracts，J．K．Lilly．．．．．．．．．．．．．．．． 317,950
itchen cabinet，S．S．Groves．．．．．．．．．．．．．．．．．．．．．．．．．317，76
Knife handle，C．Ibbotson．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．317，53
Knitting machine narrowing comb，A．J．Wain－
man．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 317,598
vices for，H．L．Hayden．．．．．．．．．．．．．．．．．．．．．．．．．．．．317，773
Ladder，extensible step，H．Temple．．．．．．．．．．．．．．．． 317,884
Ladder，sectional，o．K．Wood．．．．．．．．．．．．．． 317,913
Lamp chimney and globe，S．M．Howard．．．．．．．．．．．317，537
Lamp，eiectric，C．F．Heinrichs．．．．．．．．．．．．．．117，777，317，778
Lamp holder，movable，J．B．Bartlett．．．．．．．．．．．317，917
Lamp，incandescent electric，T．A．Edison，
317,631
to 317,63
Mitchell ．．317，553

Jr．．．317，601
Leather rinishing machise，G．A．Haray．．．．．．．．．．．．．．317，644
Lev，artifcial，H．Haussmann．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．317，885
Level，pendulum，W．C．Thayer．．．．．．．．．．．．
Life preservers，machine for making tule bunches
for，C．Leduc．．37，551
Lifting jack，L．O＇Hara．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．317，95
Light．See Electric light．
Lightning protector，H．
Lock．See Mortise lock．
317,848
Lock，T．Kirwan．．．．．
317,547
317,772
317,571
Locomotive brake，G．H．Poor．．．．．．．．．．．．．．．．．．．．．．．317，571
Locomotive driving box，w．J．Healy．．．．．．．．．．． 317,774
Troy．．． 317,891
Lubricating metallic surfaces，composition for，

Manure drill，J．D．Armstrong．．．．．．．．．．．．．．．．．．．．．．．．317，483
Mashing apparatus，J．K．Hammerle．．．．．．．．．．．．317，769
Match safe for lanterns，J．W．Dick．．．．．．．．．．．．．．．．
Meat shipping can，box，or package，fresh，R．

Metal shears．C．A．Svensson．．．．．．．．．．．．．．．．．．．．．．．．．．317，883
Mill．See Grinding mill．Windmill．
Mitt，A．B．Clarke．．．717，51
Mitt，A．B．Clarke．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 317,511
Model or dummy for dressmaker＇s use，adjustable，
E．\＆A．Merle．．．．．．．．．．．．．．．．．．．．．．．．．．．． 317,830
Moulders＇facings，compound．．．．．．．．．．．．．．．．．．．．．．．．．．． 317,830
Mortise lock，F．A．Hollenbeck．S．Ober．．．．．．．．．．．．．．317，843
317，941
Mortising and boring machine，E．N．Camp．．．．．．．．．．．．．．．．31，7／21
Motion，device for converting，H．Schulze－Berge．．317，584
Motor，J．E．Johnson．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．31，31，542
Mowing machine，J．P．Manny．．．．．．．．．．．．．．．31，816
Musical instruments，transposer for key board，
Metzdorff．．．．．．．．
Nail arranger
Nail arranger，S．Perry．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Nail makers，cold air blast for the protection of
$.317,661$
377,568
Nail making machine，C．W．Cogin．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．77，928
Nail plate feeder，J．C．Gould．．．．．．．．．．．．．．．．．．．． 317,529
Needle，E．\＆E．Cheshire．．
Net for catching porpoises，．．．．．．．．．．．．．．．．．．．．．．．．．．． 317
Net．landing，G．W．McClintock．．．．．．．．．．．．．．．．．．．．．．
Nuts，device for adjusting and removing，P．G．

Ore concentrator，N．Butler．．．．．．
Oven，portable，Gilbert \＆Wend
Oven，portable，A．P．Steward
Package carrier，O．W．Griffith
Packing for stuffing boxes or piston rods，et
Smith \＆Marshall．
Paddle wheel for vess
Pail，dinner，W．．．Gi
Paper cutting machin
Pattern making machine，c．Tourigne．．．．．．．．．．．．．．．．317， 3887
Penein，o．Mussinan，Jr．．．．．．．．．．．．．．．．．．．．．．．．．．317，338
Pencil sharpening machine，W．H．Lamson．．．．．．．．317，550
Photographic camera attachment，L．T．Young．． 317,915
Photographic cameras，combined shutter
317，735 Phylloxera，apparatus for destroying，L．Laborde
Piano action，P．Menges．．．
Piano hammer，M．Junge

eceut	Stoves, oombined fire box, grate, and sitter for,1.	Sodvertisemerts.					
llow sham holder, S. T. \& A. I. Holly............. 317,	Straight-edge and gauge, combined, M, Movel....e.						
Pipe joint, w. T. Jackson......................... 317,794	Tap for bungholes, automatic, Minnitt \& Vickers. 37,561						
	g,						
P1	Thill coupling, H.	as Thursaay morning to appear in next iscue.					
Pow, iA. M. Fritch.i........................... 317							
Poisshing wheel, w. A. Knipe................... 317,800	Thrashing machine, Roberts \& Schafer........... 31						
to digge	Thrashing machine						
to digge							
Power. See Horse power. Preserving food, A. G. T. Ripberger............... 317,673							
311,76							
Printing machine, \mathbf{W}. scott..................................1r,679							
Printing machine inking mechanism, J. W. Osborne..	Traction wheel, J. Burkholder......................................717,719 Train signal, C. Caine.....................	ED					
Printing machine, web perfeeting, T. C. Crowell.: 317,740							
Printing machine, wood, J. .R. Cros............... 317,518		t, Meadowcrott \& Co.					
ting							
Propeller, ship's, A. F. Barth..................... 317,488							
Protectur. See Body protector. Toe protector.							
p, double-acting submerged force, M. ${ }^{\text {a }}$ B.							
mp tubing, well, J. Marsden....................... 317,557 ck. See Whip rack. ck for exhibiting small wares, J. W. Shideler... 317,866	Va						
317,866							
317							
		Yo					
	Volatilizer, F. H. Hubbard............................ 117,538						
273	wa						
29							
Regulator. See Gas regulator. Gas pressure	Weaner, calf, H. B. Stsrant............................ 31						
enu	W1						
ad engine. H. Schulze-Berge......................317.583	wi						
ofing, m gated, J							
${ }_{317}^{317,3}$	w						
317,540	w						
	w						
Saw, dray, J. H. Deam...........................317,75							
37,698							
$\xrightarrow{317,615}$	Yarn, manufacturing cotton, T. T. Abboi......... 317,						
Scale, weighing, M. K.nennedy........................ 317,974							
	${ }_{\substack{10,085 \\ 16,84}}$						
Sewing machine, book, E. \& E. Cheshire.......... 317.507							
Sewing machine embroidering attachment, F. H. Chilton. \qquad 317,509							
it							
ft c							
Sheet delivery apparatus, ,., C. Crowell............ 317,42							
17	, infecting and deodorizing solution, volatile A						
${ }^{317}$	infecting and deodorizing solution, volatile, A. H. Kidney. \qquad						
317	Inks, H. C. Stephens..............................						
fastener, rubber, J. A. Kessel.................... 31778 Bri,67							
e, sea	Medicines, certain named proprietary, I. Gerstle.. 1	C merreaning recreation,					
er, coal							
al							
te,	Shade fabrics, such as hollands and prepared mus-						
Smoke consumer, .E. E. Hedeley..................... 317 ,775	Tobacco, smoking and chewing, Frishmuth Bro. \&						
ing. See spring.	issu						
317							
icator, E. S. Boynton............ 317,616	Broadway, New York. We also furnish copies of patents granted prior to 1866 ; but at increased cost, as the						
m boiler, W. W. Carman.................... 377	must be copied						
317,541		Mover-A A account of the various attempts that have					
	Canndian Patents may now be obtained by the inventors for any of the inveutions named in the fore-						
on. 117,817							
Stool, folding camp, A. H. Hill................. 317,885 Stoper. See Botle stopper.	address Munn \& Co., 361 Broadway, New York. Ot foreign patents may also be obtained.	359. Price 10 cents. To be had at this o all newsdealers.					
Stove, cooking, E. W. Van Duzen, Jr \qquad Stove polish, device for holding and mixing, R. Rietsehlin. \qquad	ROOFING for Buildings of every description. Durable, Light, Easily Applied, Inexpensive. BUIIDING PAPER-Sackett's Waterproof Sheathing. Clean to Handle, Impervious to Moisture, Water, and Gases. NEW YORE COAL TAR GHEMICAI CO.g1O Warten Sto, N. M.						

IMPORTANT BOOKS

SHEET METAL WORKERS The Sheet Mean , Workers Instructor for zing

Treatise on the Application of the Laws of Development

"VULCAN"

 ushioned Hammer. Steel Helve, Rubber Cushions, TRUE SQUARE. ELASTIC BLOW Full LIne of Sizes.P. DUNCAN $\mathbb{*}$
CO.,

Telegraph and Electrical $M_{\text {edical }}$ Sateries ${ }^{\text {Inventors' }}$ Mod

PHOTOGRAPHIC OUTFITS

\%)MICROSCOPES TELESCOPES, FIELD-GLASSES, MAGICLANTERNS BAROMETERS, THERMOMETERS.

List and Descriptions of our Ten Catalogues sent FREE

QUEEN \& CO.

921 Chestnut St. Philadelphia.

 BICHROMATE OF POTASH PIIEES-

PORTLANDD CEMEENT.-THEESCI

\& New Catalogue of Valuable Papers

PULLEYS,

HANGERS.

Pat. ste日l shafting.
PATENT FRICTION CLUTCH,
Internal Clamp Gouplings. A. \& F. BROWN, 43 PARK PLACE, NEW YORK

DON'T BUY AN ATLAS Wid yon see

WATER-POWER WITH HIGH PRES sures, and Wrought lron Water Pipe-A paper -by H
Smith, J. C.E. The problem of utilizing small quant
ties of

EVAPORATING FRUIT
 Full treatise on improved methods., 1 ieldos. profits. prices and general statistics, FREE. AMERICAN MAN'F'G CO. P.O.BOXR. WAYNESBORO, PA.

ELEV ATORS

THE CAMERON STEAM PUMP

 30,000 IN USE.NEAATITNG,

ges
gis.
RK.

ROCK BREAKERS AND ORE CRUSHERS,

WITHERBT, RUGG\& RICHARDSON Manufacturers
of Patent Nood Working Machinery of every descrip-
 HOW TO COLOR LANTERN TRANSPA

13th

WATERPROOFING PAPER AND VEGE-
table Tissues.-A valuable paper by C. R. A. Wright.

Leffel Water Wheels, With Important Improvements.
11,000 IN SUCCESSFUL OPERATION. FINE NAW PAMPELET FOR 1883 Sent free to those intereste
JAMES LEFFEL \& CO., 110 Liberty St., N. Y. City THE CORINTH CANAL-A DESCRIP

CANOE AND BOAT BUUILDING FOR
Amateurs ByW. P. Stephens, Athoroughly practical
work, with 2 thates of working drawings. Price 81.50 .
VOLNEY W. MASON \& CO., FRICTION PULLEYS CLUTCHES and ELEVATORS

Mumbivernavan: The desirable features of this valve are
the positive action ot the disks, being forced
 samples sent on trial. send for catalogue
HOLLAND \& THOMPSONN. PETROLLEUM AS FUEL IN LOCOMO

The celebrated RACINE BOATS and CANOES,
LAPSTREAK BOATS. THOS. KANE \& CO.,

ECONOMIC MOTOR CO.'S GAS ENGINES.

ECONOMIC MOTOR CO., STEAM ENGINE.-THE CADET EN-

ON MANHOOD Exhausted Vitality, Nervous and Physical Debility, Pre-
mature Decline in

$$
\mathrm{P}_{8}
$$

 P. O. Box B. W07: PAYNE \& SONF, Elmira, N. Y.

 officers of which he refers.
Address the Peaboby M Medical Institute, or Dr. W. H.
becon, No. Bullinch Street, Boston, Mass., Who may
beconsulted on all diseases requiring skill and experi-

TO WEAK MEN NEtidetaide
 WEAK NEROOUS MEN xatimitazu DR. H. TRESKOW, 46 W . 14th St, New York FOREIGN PATENTS. 'Their Cost Reduced.

The expenses attending the procuring of patents in duced the obstacle of cost is no longer in the way of a large proportion of our inventors patenting their inven CANADA.-The cost of a patent in Canada is even
less than the cost of a United States patent, and th ormer includes the Provinces of Ontario. Quebec, Ne brunswick, Nova Scotia, British Columbia, and Man
toba. the cheap and easy method now offered for obtaining
patents in Canada is very large, and is steadily increasing. orce on Jan. 1st. enables parties to secure patents in reat includes England, Scotland, Wales, Ireland and the Channel Islands. Great Britain is the acknowledged inancial and commercial center of the worla. and her invention is likely to realize as much for the patentee him at hrmee, and the small cost now renders it possible for almost every patentee in this country to secure a pa-
tent in Great Britain, where his rights are as well pro octed as in the United States
O'THER COUNTLIES
on very reasonable terms in.- Patents are also obtained Austria, Russia, Italy, Spain (the latter includes Cuba and all the other Spanish Colonies). Brazil, British Iudia,
Australia, and the other British Colonies. Australia, and the other British Colonies.
An experience of Forty An experience of forty years has enabled the
publishers of The Scientific Ameitican to establish publishers of The Scievtific aneitican to establish
competent and trustworthy agencies in all the principal foreign countries, and it has always been their aim to
have the business of their clients promptly and properIy done and their interesss faithfully guarded.
A. pamphlet containing a synopsis of the patent laws information useful to persons contemplating the prothis office. MUNN \& CO.. Editors and Proprietors of THe SCIany information relative to patents, or the registry of trade-marks. in this country or abroad, to call at thei
offices. 361 Broadway.' Examination of inventions, con sultation, and advice free. answered.
ddress, MUNN \& CO.,
Branch Office, corr. Fand 7 th Streets, opposite Patent
Oftce Washinaton D. C.

[^0]Sovertisements.

angravings may head advertisements at the same rate
per rine, by measuremeint, tas the letter pmess.
 Industrial Opportunities.
 tion to manufacturers; and many towns and other
organizations are read to welcome, with substantial
inducements, additions to their wealth and prosperity in he shape of legitimate manufacturing enterprises
On the other hand, numbers of manufacturers, invest-
ors, and business men would gladly remove their business to some location where convenieneetor raw material
comparative fredom from competition, and a read
 fthe right party can be found to occupy it to to bring
hese diversifed interests properly together is the prove
nce of our Industrial Department. The extensive sys-

KORTING UNIYERSAL

 D Double tube. INJECTOR FOR BOILER FEEDING.ALL

NO ADJUSTMENT FOR VARYING STEAM PRESSURE. LIFT WATER 25 FEET SEND FOR DESCRIPTIVE CIRC
OFFFICES AND WAREROOMS: Philada.., 12 th \& Thompson

Street. $\begin{aligned} & \text { New York, } 109 \text { Liberty } \\ & \text { Denver, }\end{aligned}$	San Francisco, Cal., 2 Califor-	$\begin{array}{c}\text { Aureet. } \\ \text { nuxusta } \\ \text { wick Street. }\end{array}$

H.W.JOHIS asbesfos PACKING.
 Asbestos Piston Rod Packing Asbetos Wicl Pracking.

sbestos Mill Board and Shenthing,
Asbestos Gaskets
and l inus Asbestos Boiler Coverings.
 ASBESTOS ROOFING.
 H. W. JOHNS M'F'G CO.

175 Randolph St., Chicago. 170 N. 4th St., Phila
Billiter House, Billiter Street, London.

 M дакететиг $=$,
PATENTS. lication of tie Scientific Ambrican, continue to ex-
amine Improvements, and to act as Solicitors of Patents for lnventors
In this line of business they have had forty years
experience, and now have unequaled facilities for experience, and now have unequaled facilies for the prosecution of Applications for Patents in the
United States, Canada, and Foreign Countries. Messrs. Mumn \& Co. also attend to the preparation of Caveats, and Reports on Infringements of Patents. All business intrusted to them is done with
ness, on very reasonable terms.
A pamphlet sent free of charge, on application, containing full information a bout Patents and how to pro-
cure them; directions concerning Labels, Copyrights, cure them; directions concernirg Labels, Copyrights,
Designs, Patents, Appeals. Reissues, Infringements, AsDesigns, Patents, Appeals, Reissues, Infringements, As-
signments, Rejected Cases, Hints on the Sale of Patents, etc.
We also send. free of charge, a Synopsis of Foreign
Patent Laws, showing the cost and method of securing patents in all the principal countries of the world. IIUNN \& CO. ${ }_{36}$ Solieitors of Patents, BRANCH OFFI
Washington, D. C.

RUBBER BELTING, PACKING, HOSE,

 RUB卫REGOOD:MECHANICAL AND MANUFACTURING PURPOSES THE GUTTA PERCHA AND RUBBER MFG. CO.,

JENKINS BROS, VALVES

Gate, Globe, Angle, Cheok, and Safety.
MANUFACTURED OF BEST STEAM METAL. Are the acknowledged standard
conditions, and never have faile TMINKINTE TBIRO:

Beaudry' Upright
Hammer.

NEW YORK BELTING AND PACKING COMP'Y.

$\boldsymbol{\approx}$ OIIDI $\boldsymbol{\sim}$

Emery Whecls
stanalo ohher kinds Imitations, nad Inferior. Our name is stamped in full upon all ou-
NDШT YORIK BMITIING \&z PACISINGCO

MIININTG AND EIOISTIING

WNAT
HARRIS-CORLISSS ENGINE,
With Harris Pat. Improvements, rrom 10 to 1,000 H. P.

1Rider's New and Improved COMPRESSION Hot Air Pumping Engine New and Improved Designs.
IN TERCHANGEABLE PLAN DELAMATER ${ }^{\text {MANUPRONTVRE }}$ WORKS, C. H. DELAMATER \& CO., Proprietors,
CORTLANDT ST., NEW YORK,

The Scientific Portable Forge,
 hand blowers,
 Friction Devices.
12 styles and sizes for all kind
of work. Fully guaranteed.

Fairbanks \& Co. Sole Agents,
311 Broadway, New York.

[^1] 95 MILK ST., BOSTON, MASS.

This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, No. 186,787.
The transmission of Speech by all known forms of Electric Speaking Telephones in fringes the rightsecured to this Company by the above patents, and renders each individual user of telephones not furnish ed by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor.

THERMOMETERS Smammo mow

Incombustible Wiping Towels. Soft as silk, good

COLUMBA ${ }^{\text {Widw }}$ RIGYGLES. BOSTON•• 12 Warren Street, New York. 115 Wabash Avenue, Chicago, ill

The Scientific American.
THE MOST POPULAR SCIENTIFIC PAPER THE WORLD This unrivaled periodical, now in its fort 5 -first year
ontinues to maintain its high reputation for excellence and enjoys the largest circulation ever attained by an Eventific publication.
Every number contains sixteen large pages, beautifully tyle a descriptive record of the most novel. interesting important ad vances in Science, Arts, and Manufac ures. It shows the progsese of the World in respect to ry, Mechanical works, , minnem, embracing Machin Comistry, Metallurgy, Elemricityikelt, Heat, Archi ry, etc. It abounds with fresh and interesting subjects or discussion, thought, or experiment; furnishes hun-
areds of useful suggestions for business. It promotes dustry, Progress, Thrift, and It mmunity where it circulates.
yery Scientific American should have a place in
velling, Shop, Office, School, or Iibrary. Workmen, Foremen, Engineers. Superintendents, Directors, Presidents, Officials, Merchants, Farmers, Teacher Lawyers. Physicians, Clergymen, people in every walk
and profession in life, will derive benefft from a regular Terms for the United States and Canada, $\$_{3} .20$ a year 1.60 six months. Spelmen MUNN \& CO. Check. Publishers, $\underset{361}{\boldsymbol{8} \text { CO., Publisher's, }}$ Broadway, New York.

Scientific American Supplement.
The SCIENTIFIC AMERICAN SUPPLEMENT is a separican, but is uniform therewitb in size, every numbe
containing sixteen large pages. THe ScIvNTific Am-
erican Supplement is published weekly, and includes
a very wide range of contents. It presents the most re-
cent papers by eminent writers in all the principal de-
partments of Science and the Useful Arts, embracing
Biology, Geology, Mineralogy, Natural History, GeoBiology, Geology, Mineralogy, Natural History, Geo Lrapht. Heat, Mechanical Engineering, Steam a d Rail-
way Engineering, Mining, Ship Building, Marine Enway Engineering, Mining, Ship Building, Marine Engineering, Photogriphy, Techhnology, Manufacturing
Industries, Sanitary Engineering, Agriculture, Hortiture, Domestic Economy, Biography, Medicine, etc taining to these and allied subjects is given, the whole profusely illustrated with engravings.
The most important Enyineering Works, Mechanisms, and described in the SUPPLEment.
Price for the SUPPLEMENT for the United States and Canada. 85.00 a year, or one copy of the SCIENTIFIC AM-
RRICAN and one ocopy of the SUPLEM ENT, both mailed
\qquad
MUNN \& Co.. 361 Bicictic Amelican
To Foreign Subscribers.-Under the facilities by post direct from New Fork, with regularity, to subscribers in Great Britain. India, Australia, and all other British colonies; to France, Austria, Belgium, Germany,
Russia, and all other European States ; Japan, Brazil,
Mexico, and all States of Central and South America. Terms, when sent to foreign countries, Canada excepted,
84, gola, for SCIENTIiric AMLRICAN. one year ; $\$ 9$, gold \$4, gol, for SCIENTIFIC AMliRICAN., one year ; ${ }^{\$ 9}$, gold,
for both SCIENTIFIC AMERICAN and SUPPLEMENT for

PRTNTINT TNTE

[^0]: © 1885 SCIENTIFIC AMERICAN, INC

[^1]: ITTTI GAS ANEINA OVER 10.000 IN USE

