

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.
Vol. LIII.-No. ${ }_{\text {[NEW }}$ series.] 19.$]$
NEW YORK, MAY 9, 1885.

IMPROVED COTTON PICKER.

Cotton picking, as our readers are well aware, is now almost universally done by hand, and, as a matter of course, is a slow, tedious, and expensive operation. A machine which would successfully take the place of hand picking has long been needed, but there have been so many difficulties lying in the way of its construction and perfect operation, the work required of it has been of such a delicate and exacting nature, as to make it, of necessity, a most accurate piece of mechanism. The perfect machine should remove all the fiber from every pod, should leave the plants uninjured, should require a minimum amount of care and attendance, and should be rapid in operation.
The cotton harvester illustrated upon this page is mounted upon wheels which stride the cotton row, and is designed to gather the cotton from the growing plants with the least possible damage to them, and to automatically deliver the cotton into a receptacle carried on the machine.
The machine is double, there being a right and left portion, each forming a complete self-operating machine, and the two being connected together by the top yoke portion of the frame, so as to run astride the row, each part of the machine reaching in among the branches on its side of the row to pick the seed cotton. This is accomplished by a series of gibbous-shaped plates mounted on a pair of longitudinal shafts journaled in the frame and revolved by the main driving wheels acting through suitable beveled gears; the picker shafts make about five revolutions to one revo-
lution of the driving wheels. The plates are bounded by two convex ares of a circle, and are rounded at the ends to enable them to part their way among the cotton branches while revolving, and to permit them to crowd any limbs which may chance to lie across the apertures in which they rotate up out of their path Each of the plates is perforated near one edge to receive the shaft upon which they are fixed to project alternately on opposite sides to balance each other; their motion is across the path of the machine and upward through the cotton. 'The front face of each plate is armed with a great many picking teeth set like card teeth to-hook in the direction of their motion to pick the cotton. By the revolution of the plates or pickers the cotton is carried through the apertures in the wall of the brush box, and is there stripped from the pickers by rapidly revolving vertical brushes. The cotton thus accumulates in the brush box against the foot of a revolving toothed apron, by which it is carried up and thrown into a removable receptacle, where it remains until unloaded by hand. The brushes and apron are revol ved by suitable trains of gears connected with the main driving wheels.
The forward end of the machine is supported upon two caster wheels, in front of which are placed sheet iron guards to turn the limbs of the plants out of their paths, the guards converging toward the passage between the two portions of the machine to bring the cotton to the pickers. When the machine is provided with more than one pair of pickers, the second pair is placed above the first so as to adapt the machine to
cotton of any height; the plates of the lower pair are intended to approach within about four inches of each other. The plates of the upper pair are intended to touch a central vertical plane, in order that they may reach entirely across through the row of plants. The picker plates of the upper pair in each instance pass between the plates of the next lower pair, to a distance of about four inches, to prevent the branches being drawn in among them.
The tongue of the machine is attached to the frame at the center of the forward crossbar, and extends forward over the tops of the plants and carries a yoke above the necks of the team. The traces are secured o single trees attached to a double tree pivoted to the frame, and which bends down to the proper level for attaching the team. The receptacle is made of wire cloth supported on a frame, to allow sand and dirt to be jarred out of the picked cotton.
The principal point in this machine consists in the use of the gibbous plates, the teeth of which being thickly set-card-like-on the front side at an angle of 30 degrees, and protected on the outer edge by a rim exactly abutting with the plane of the teeth, which are perfectly true, prevents the possibility of the teeth taking anything but lint; a leaf, or limb; or even the hand, will pass freely over the surface of the teeth. The two tiers of plates extend up about five feet, and if desirable to reach higher, other tiers can be added. As the machine passes over the row, the picker plates come in contact with every one-half inch of the entire

IMPROVED MECHANICAL COTTON PICKER.
open cotton, which is delivered to the receptacle abso lutely free from dirt of every description. The capacity of the machine is measured by the number of acres it can be drawn over in a given time and the amount of open cotton it encounters. For instance, if there were half a bale to the acre, and it were drawn over eight acres a day, this would not be an excessive load for two horses. As the machine weighs about 800 pounds, it would pick out four bales per day, thus doing the work of sixty hands. At this rate this machine could gather cotton at a cost of less than one dollar per bale.
This machine, as will readily be perceived, is simple in construction, the parts are few and not liable to derangement, and it removes the cotton, whether from high or low plants, efficiently and rapidly, and leav the plants in as uninjured a condition as possible.

Additional particulars regarding this cotton picker can be obtained by addressing the inventor, Mr. R. K. Charles, of Darlington, South Carolina.

The Temple of Baalbec.

Rev. Henry M. Field, D.D., after his return from an extended tour through Eastern countries, has published a book on India and the Holy Land which is both instructive and entertaining. Doctor Field, in a letter to the Evangelist, of which he is the editor, thus describes the ruins that mark the place where the grandest of ancient cities is believed to have existed:
The ruins of the ancient city of Baalbec, situated on the plain forty-three miles northwest of Damascus, are the wonder of modern architects.
Everything is colossal. The area is larger than that of the temple at Jerusalem. We may begin with the walls, which are half a mile around, and of such height and depth as are rarely attained in the most tremendous fortress. Where from within I climbed to the top, it made me giddy to look over the perilous edge to the depth below; and when from without the walls I looked up at them, they rose high in the air. Some of the stones seem as if they had been reared in place, not by Titans, but by the gods. There are nine stones 30 feet long and 10 feet thick, which is larger than the foundation stones of the temple at Jerusalem, dating from the time of Solomon, or any blocks in the great Pyramid.
But even these are pygmies compared with the three giants of the western wall, 62 feet, $631 / 2$ feet, 64 feet long. These are said to be the largest stones ever used in any construction. They weigh hundreds of tons, and instead of being merely hewn out of a quarry which might have been on the site, and left to lie
where they were before, they have been lifted 19 feet from the ground, and there embedded in the wall. Never was there such cyclopean architecture. How such masses could have been moved is a problem with modern engineers.
Sir Charles Wilson, whom I met in Jerusalem, is at this moment in Baalbec. Standing in the grounds of the temple, he tells me that in the British Museum there is an ancient tablet which reveals the way such stones were moved. The mechanics were very simple; rollers were put under them, and they were drawn up inclined planes by sheer human muscle-the united strength of great numbers of men. In the rude design on the tablet the whole scene is pictured to the eye.
There are battalions of men, hundreds to a single roller, with the taskmasters standing over them, lash in hand, which was freely applied to make them pull together, and the king sitting on high to give the sig nal for this putting forth of human strength en masse as if an army were moving to battle. A battle it was in the waste of human life it caused. These temples of Baalbec must have been a whole generation in building, and have consumed the population of a province and the wealth of an empire.

How Disease is Spread.

Every one knows that scarlet fever is infectious, bu it is not often one is able to trace the progress of the disease through simple carelessness so easily as in a case which has just come under the notice of the Sanitary World. The story is told as follows: A young Scottish lassie, in domestic service not far from the town of Elgin, died from scarlet fever in her "place." Her clothes were carefully packed up, and her "kist" con taining them was conscientiously sent home to her native village. On its arrival at the station there was the usual difficulty of getting it conveyed over the hills to the place of its destination, so there it had to remain awaiting a friendly lift. Meanwhile the infected kist formed a happy hunting ground for the station master's children, who, in due time, all fell ill with scarlet fever. At last the friendly lift came, and the box (a large wooden one) was carried home, and the content generously distributed among the neighbors. Needless to say that an outbreak of scarlet fever in the village was the result; and"as to the station, where people do congregate and often have long to wait, it would simply be a center from which many a fever track would radiate, exciting the usual wonder whence and how the fever came.

Stinutific Ammeram.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at

No. 361 BROADWAY, NEW YORK.

o. D. MUNN.
A. Е. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

 One copy, one year, postage included....Clubs.-One extra copy of The Scientific Amprican will be supplied
ratis for every club of five subscribers at $\$ 3.20$ each; additional copies a ame proportionate rate Postage prepaid. same proportionate rate. Postage
Remit by postal order. Address

The Scientific American Supplement

is a distinct paper from the Scientific American. THE SUPPLEMENT
is issued weekly. Every number contains 16 octavo pages, uniform in siz is issued weekly. Every number contains 16 octavo pages, uniform in size with SCIENTIFIC AMERICAN. Terms of subscription for SUPPLEMENT,
85.00 a year, postage paid, to subscribers. Single copies, 10 cents. Sold by 5.00 a year, postage paid, to subscribers,
all newsdealers throughout the country.

Combined Rates.-The Scientific American and Supplement will be sent for one year, postage free, on receipt of seven dollars. Both papers to one address or difierent addresses as desired.
The safest way to remit is by draft, postal order, or registered letter.
Address MUNN \& CO., 361 Broadway, corner of Franklin Street,New

Scientific American Export Edition

The ScIENTIFIC AMERICAN Export Edition is a large and splendid periarge quarto pages, profusely illustrated, embracing: (1.) Most of the plates and pages of the four preceding weekly issues of the SCIENTIFIC AMERIAN, with its splendid engravings and valuable information; (2.) ComTerms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the world. Single copies, 50 cents. Manufacturers and others who desire secure foreign trade may have large and handsomely displayed an
nouncements published in this edition at nouncements published in this edition at a very moderate cost.
The SCIENTIFIC AMERICAN Export Edition has a large gua culation in all commercial places throughout the worgd. Address MUNN
\& CO., 361 Broadway, corner of Franklin Street, New York.:

NEW YORK, SATURDAY, MAY 9, 1885.
(Illustrated articles are marked with an asterisk.)

TABLE OF CONTENTS OF
THE SCIENTIFIC AMERICAN SUPPLEMENT,
NO. 488,
For the Week Ending May 9, 1885.

Price 10 cents. For sale by all newsdealers.

Chemistry.-Notes on Three New Chinese Fixed Oils.-Tea oil. Charmaceutical Society of Great Britain..
engineering and mechanics.-a Visit to the Creusot Works.-Giving a description of the works and the projects under taken by the proprietors.-With full page of engravings illustrat ing the Hall of Forges and the 100 ton steam hammer.
Gun Foundry Board to these works..
Plan for the Elevated Railway at Paris................
Engigures..
 Bridge construction.-Pneumatic Foundations.-Construction of
tunnels.-Canals and river improvements.-Military engineering tunnels.-Canals and river improvements.-Military
appliances.-Uses of cement.- Preservation of wood..
II. PHYSICS, ELECTRICITY, ETC.-

Military Purposes.-With engraving. Electricity and Magnetism.-By Prof. F. E. NIPHER. The Hydrodynamic Researches of Prof. Bjerknes.- By C. W. Cooke.- 5 figures.
A New Seismograph.-With engraving................................ at Garden City
Movable Market Buildings. - 7 figures and engraving of movable
flower market at Paris.
Dinocrates' Project.
ing human profiles.
ing human proflles..
The Babylonian \mathbf{P}
HORTICULTURE.-The Stone Pine (Pinus Pinea).-With engrav ing...
H YGIENE, ETC.-The Otoscope. - With engraving. State Provision for the Insane.-By C. M. HUGHES, M.D The Courage of Origin The
The Courage of Originality.
A Circular Bowling Alley.- With engraving
The Universal Exposition at Antwerp, Belgium.-With full page
The Art of Breedin

SQUARE COTTER PINS

Split pins, or "cotter pins," although not strictly and rigidly mechanical, are useful in many places. They are usually made of half round wire or rod, and doubled together, the flat faces meeting so as to form a cylindrical cross section; and while the two ends are left slightly apart "for spring," the doubled middle that forms the upper or handle end is made into a loop that gives a head and imparts a slight elasticity to the blades. For securing intermediate gears on stationary studs and for similar purposes, where the socured piece may be removed and replaced at pleasure, the cotter pin is very handy. Its philosophy is simply that the compressed halves will pass freely through the drilled hole, but that, when the compression of fingers, or tongs, or pliers is removed, the released halves will be forced against the sides of the hole, preventing removal or relaxation of tension by jarring.
Some machinists are like amateur gardeners, always trying some new plan. So, one has determined that a square cotter pin is better than a round one. He takes flat steel with a thickness as to diameter as one is to two, measures the desired length of shanks, and then forges the center of the piece to a thin blade like that of a pair of spring calipers, which he brings to a spring temper. When uncompressed, the blades or shanks stand wide apart; when compressed, they are passed through a round hole in the stud, and the force of the tempered spring end pushes them against the walls of the hole. The corners of the pin effectually prevent it from turning in the hole by the jar of the machinery in motion, and the elasticity of the spring head holds the jaws or blades out securely against the sides of the hole. The rigidity of the unforged steel makes its own seat by its corners, and the pin may be always put back into place. This prevention of turning in the hole appears to be an advantage.

SPRING GAUGES.

In these times of absolute measurements, exact estimates, and precision tools, it is time for spring gauges to give place to those of absolute movement. There is no spring calipers nor spring dividers that are absolute in both movements; one is a compression and the other a release, but only the compression is absolute, and that only to a limited degree. Our ordinary measurers of diameter should be governed by a screw or some other mechanical device that shall control the movement of the measuring points, whether they be " to or from." It is time that this old-fashioned, inaccurate system of measurement was given an indetinite recess. Exact mechanics and their productions have had enough of its "guess and try again "plan.
The spreading of the legs of a pair of spring dividers and the reach of the jaws of a pair of spring calipers depend wholly on the latent tension of the spring at the head of the instrument. This is a flat steel spring, between the legs or jaws, and is usually of a curvature representing nearly a circle. In not a single instance out of twenty-two tests has it been found that the almost circular curvature of the spring head has been of the slightest use. It appears that this form of end spring to caliper and divider is mainly a mechanical tradition, and that, in use, the curve was of no value; all the spring was close to the apex, just as in the main spring of a gunlock all the spring is in the U bend at the apex of the two arms of the spring. It follows, then, that the curve of the head of spring It follows, then, that the curve of the head of spring
calipers and dividers might as well be made of the V calipers and dividers might as well be made of the
form as of the circular form; it is certain that with form as of the circular form; it is certain that
this form they would be more active on demand.
But all this spring business should be taken out of our modern, exact, absolute mechanical work. If it is necessary to have temporarily adjustable gauges (which is doubtful), let them be made on the plan of the screw, which gives and takes exactly the same. Such adjustable measuring machines have been made, and readily usable hand appliances are not impossible.

CUT NAILS AND WIRE NAILS.

When a sliver is cut off the end of a section of thin iron plate, and is formed into a nail by upsetting the larger end for a head, no change in the quality of the iron takes place by the cutting and the upsetting; the fiber is the same, and the material remains of the same strength. If a piece of plate iron is cold short when in a flat plate of one or more inches area, it will not become a flat plate of one or more inches area, ivited into narrow
strong, tough, and fibrous when divided widths. And yet this is the amount of the claim some cut nail makers make for their goods.
There can be-there is-no question about the eco nomic value of cut nails; their introduction has been of the greatest service possible to all who use nails. But there is a point where their usefulness is superseded by better nails. Cut nails, like pegs, hold together super incumbent substances s_{2} : but they do not, like rivets, resist transverse strains. If a nail holds the same amount of resistance to blows, the same quality of directing by blows, the same utility of double usage after being bent and crooked, as a rivet does, it is a good nail. Was there ever a cut nail that fulfilled these conditions? Never. But a wire nail does-all of them. On all its sides its fibers are compacted, and in one direc
tion; its surface is smooth; it does not split; if it i
drawn, it is again useful; if it is crooked, it may be straightened and used again. All the conditions and requirements of nails seem to be met by the wire nail or if not met just now, there is room for improvement. There can be no improvement on the cut nail, except that of original excellence of material; all cut nails are simply cut slices from a presented sheet; on two sides at least there can be no compacting of the material, and they are left ragged. The wire nail, on the contrary has a clean, longitudinally fibrous surface on all sides
There may be cut nails-there are cut nails-that will stand a half twist about their own diameter; that will stand driving through hard seasoned wood; that will clinch on the other side, bending like lead. But these nails are made from Dannemora or other very tough, fibrous iron, and are costly as compared with the or dinary cut nails of the builder's use. These nails should no more be compared with the ordinary cut nails than should the boat builder's cast nails of Muntz metal; the materials are very different. It may be that some establishments, managed by practical mechanics and engineered by men with consciences, make reliable, tough, and really valuable cut nails. If there are any such, to them the article on the sub ject published in our issue of March 28 does not particularly apply; and possibly our readers, especially the wood workers, would be glad to hear from them in our advertising columns.

DIRT, DISEASE AND DISINFECTION.*

br e. dwight kendal.

" This water I purify; this earth I purify; how shal I purify the dwelling? . . . Combat uncleanness, th direct and the indirect."-The Avesta (Vendidad).
Long before that eventful dawn when Darius be strode the historic steed and was uplifted to the throne of Persia, by ascent so extraordinary, \dagger Zarathustra taught the Iranians to avoid bad smells: that those haters of mankind, "the Dævas, who slay a countless number, find joy in all to which stench clings, where are together dissolution, sickness, fever, uncleanness, cold fever, shivering." That antique medicine-man, high priest and prophet instituted laws that forbade accumulations of putrescible and noisome matters allowed free operation of Nature's scavengers and pro tected wells and water courses from contamination After all the centuries and the warning visitations of many filth-engendered epidemics, the people of every land etill hedless of the dangers that accompany impurity, need constant admonition and enforcement of sanitary laws. The ancients excelled in appreciation of the benefits of cleanliness and dislike to dirt: we may profit by their teachings; they recognized in filth the source of national plagues and opposed uncleanness in every form. "The pestilence walketh in darkness," said the psalmist, but the Jewish priests maintained a system of scavenage, themselves supervised the cleans ing of cities and habitations, adopted methods of quarantining and, like other nations of the East, made personal ablution a part of religious duty.
During the centuries when ignorance prevailed and sanative regulations were unknown, successive waves of filth-disease swept over continents and unpeopled realms. Then epidemics were ascribed to sorcery, in visible fiends, the evil eye; to poisoned wells and food to astral influence and telluric agencies, as when the earth emits, from cavern and volcano, poisonous fumes Our good forefathers spoke of "visitations of Providence" (the sin of a people visited on other nations!) and depended more on prayer than purification. Not many years ago, the hypothesis of catalytic action was applied to explain the propagation of zymotic disease
and other theories were favorably regarded by physiand other theories were favorably regarded by physi-
cians. Now the morbific function of filth is shown to be a part of the natural economy and scientists say "specific micro-organisms, septic and pathogenic bacteria: micrococci, bacilli, spirilla; behold them!" The mountain of Ages brings forth the microbes.
We are apt to adopt new conceits and often we are led astray by unfounded hypotheses, but even the luminary of the Middle Kingdom, the great opponent of innovation, who taught that truth lay in most an cient fountains of wisdom, could not have doubted the evidence that demonstrates the germ theory of disease. Science now shows that man is originated, developed and conserved by myriads of vitalized organisms, that work together in harmony and live in accord with cleanliness; that various forms of antagonistic organ isms breed and dwell in filth, and when these invade the cleanly microcosm, they devastate and destroy One foul procreant germ, conveyed into the human body by impure water, tainted food or polluted air, may generate a pestilent swarm. The disorders thus produced, mostly preventable, are classed as filth-diseases. The specific germs of many such diseases are identified: the bacilli of septicæmia, leprosy, enteric
(typhoid) fever, dysentery and tuberculosis: \ddagger the micro

* Nec doctissimis

+ "Aer ex ferto mare."
\ddagger The infectious character of phthisis pulmonalis was recognized by
Isocrates.
cocci of small pox, croupous
diphtheria, and many more.
Whether India's contribution to the plagues of man kind, the virulent septic cholera, is due to the presence of self-propagating organisms or to toxic chemical action, its source and sustenance is excrementitious filth. In the delta of the Ganges, a low and marshy tract, rendered pestiferous by continual heat and moist ure, the cholera is endemic: there it has a permanent home; it is nourished by the unspeakable foulness that
surrounds the huts of low caste. Hindus, a despised and surrounds the huts of low caste Hindus, a despised and and degradation, by sending forth this curse among the nations. It follows the paths of commerce, and where filth is, there it finds an abiding place; "in whatsoeuer contrie lyke cause and matter is, there commyng like ier and cause efficient wil make lyke effecte and dis it cometh by infection and putrefaction as nigh to dwelling places, merishe and muddy groundes, puddles or donghilles, sinkes or canales, easing places or carions, deadde ditches or rotten groundes, close aier in houses or uallies, with such lyke."
We must exterminate the enemy Filth, that invite he pestilence, after rendering the hydra-headed mon ster innocuous: we must improve the plan of Hercules and before decapitating, cauterize, attacking first with disinfectants, while we exclaim, with the Brahmins, in words from the oldest of books, "Whether thou, 0 greatest killer of Vritra, art in the light of heaven, or in the basin of the sea, or in the place of the earth, or in the sky . . . I turn the poison out from thee." In this work, as in therapeutics, chemistry is the ally of the noble profession-honored through all ages-which n every time of pestilence is prolific of heroes entitled to the civic crown. Hippocrates II., greatest of the Asclepiadæ, adopted means of disinfection devised by famed Empedocles, whom chemists claim, and fought a plague, successfully, with fire. Chemical science determines the nature and potency of disinfectants hitherto employed, and presents new agents with peculiar power to extirpate foul broods of parasitic microymes. Many of the old preventives merely masked bad odor, leaving intact the contagium; others are really efficient, in themselves or by agents which they convey: thus when we wish to fumigate large spaces, burning sulphur and the smoke from wood. The sulphnrous acid operates in three ways to destroy organic ife and the smudge from green and resinous wood conains acetic acid, certain hydrocarbons, phenols, creols, xylenols, and acrolein, all having antiseptic qualiies, with power to kill bacteria and cleanse all fomites. No disinfectant, old or new, is adapted to all circumtances: in one place suitable solids, slowly dissolving, will suffice, as quicklime, alums, tannins, salts of lead, zinc, copper and iron; in another we must use a miscible liquid, like solutions of salts and alkalies, acids and phenols; elsewhere nothing will reach the evil but a sarching gas or vapor, such as nitrogen oxides, hlorine, hot air, superheated steam. Dry earth, charcoal, peat and cinders will absorb and fix offensive matters, but have little power to disinfect.
Some disinfectants act by oxidizing, others by deoxidation: one will destroy anaërobic bacteria, the other kills the aërobic-the oxygen-consumers. Other agents, acting on feculent matter, form, by substitution, new and non-putrescible compounds; another lass coagulate albumen and exert an undetermined destructive influence on all micro-organisms. Tannins and mineral astringents attack albuminoid and chitinous bodies. Certain solutions act as antiseptics
and sterilize the mother of infection, while they do and sterilize the mother of infection, while they do tured, like certain vibrios that still live and thrive, and agitate their cilia rejoicingly. The skins of many forms of infusoria contain much cellulose, that resists weak acids, alkalies and feeble oxidizers, but all infusorial life succumbs to phenols and the halogen-elements. Wherever chlorine can be used it is effective; diffused through the air it decomposes and combines with the offensive sewage gases, hydrogen sulphide, methane and ammonia, which are not the causative principles of infection, while it also removes the peculiar and indescribable odors that usually accompany putreactive emanations and seeks out and destroys non dorous seeds of contagion.
It has been said that a quantity of chlorine sufficient to neutralize polluting germs, would prove in jurious to man, but mere pure air is deadly to those nfectant of one familiar with ozone, a natural dischlorine in the air. The use of larger proportions of chlorine, acting for a time within a confined space, is the most efficient of practicable methods of disinfection. Ten grains of chloride of lime, in solution, will disinfect a gallon of city sewage, but other chemicals are often preferable for this and similar purposes. Disinfecting agents should be used understandingly in sician or a competent chemist. Only approved disin-
* The plague Thucydides describes resembled a malignant scarlatina.
fectants should be employed and these in sufficient quantities. A few grains of thymol, a sprinkle of X's mysterious powder, or a spoonful of permanganate solution in a saucer-these are things too puerile for consideration. The refuse from certain manufactural operations may be utilized for the economical disinfection of large masses or areas, and the presence of such residuums in water reservoirs or running streams tends to prevent the development of zymotic germs.
Water may be freed from organic impurity by chemical means, but the best way to render it potable was pointed out by Hippocrates when he declared that suspected waters should be "boiled and strained." Mere filtration will not give immunity from infection, but advantage accrues from the use of freshly burned charcoal or spongy iron.

HOW MUCH SHALL THE DOCTOR BE PAID

What may the physician reasonably demand for his services? is a question that he and his patient are not always agreed on; and there being, unhappily, no fixed charge for medical attendance in this country, the physician, naturally enough, strives to obtain as much as he can.
Unless a contract is made before the services are ren-dered-rarely the case in the treatment of irregular as to the value of his services, and the courts are continually being asked to examine into physicians' charges. The fact that juries rarely sanction these charges would indicate that they are apt to be extortionate.

In a recent paper in the Medical Record on "How Much Shall the Doctor be Paid?" a writer lays down some really excellent rules for deciding upon the value of medical services. He says:
"In considering the question of the amount of compensation due the physician or surgeon for his professional services, there are two or three preliminary points which require an answer favorable to the practitioner. There must be no doubt as to the fact of the services being faithfully and skillfully rendered, and the charge of malpractice must not be raised against him. If there is a question as to the skillfulness of the treatment, the compensation may be seriously cut down; or if an improper or harmful mode of treatment has been adopted, the right to any compensation at all may be denied, and the patient allowed to recover damages instead.'

This is fair as far as it goes, and if the writer had laid down a rule for deciding what medical services are worth when successful, and just how much the doctor should hand over to his patient as compensation for rendering his case more desperate than it was when he began his ministrations, nothing would be wanting to make it as easy to deal with a physician or surgeon as it is with a mason or a brass finisher.

A physician, for instance, who poisoned his patients while experimenting with new qualities of vaccine virus, instead of charging them for the medical attendance necessary to insure their recovery, should pay to each a fair compensation for loss of health, etc.
As to what a physician should be paid when successful in his treatment could readily be determined, were it not for the fact that the unskillful are inclined to regard their services as of the highest market value.

The fact is that although in no profession there is to be found more ability and faithfulness to duty than in the medical, there is at the same time no profession in which quackery can ride rampant with such impunity. The physician who lives in a great house and rides about in state has no trouble in obtaining large fees for his services, even though these consist for the most part in feeding bread pills to old ladies and patent medicine to old gentlemen with the gout, whereas the obscure man, often of really commanding ability, often finds difficulty in obtaining small fees for really skillfully performed operations.
Dickens, a careful observer of character, understood this credulity of the public. His Mr. Bob Sawyer built up a flourishing apothecary business by sending his boy around to leave prescriptions at different houses, and then calling later to explain the mistakes. This gave the impression that he was doing a large business, and was therefore at least a fashionable, if not a skillful, compounder.

Patents in the Hawaiian Islands.

The authorities of the Hawaiian Islands have re ctived enacted a patent law, and the King has sanctioned the promulgation of its provisions. The term far which a patent may be taken is ten years. Applicants are allowed one year after the issue of the earliest patent in another country or the introduction of the article into the islands, to file their cases. The law governing the proceedings before the tribunal, and the final issuing of patents, is modeled after the United States patent laws, and the cost is about the same as an English patent.
Inventions may be secured for one year by caveat. Other particulars may be had on application to the office of this paper.

IMPROVED ANEMOMETER.

The engraving shows a simple and inexpensive device for determining with approximate accuracy the velocity of the wind at the moment of observation, and particularly adapted for the use of riflemen at targetpractice, which was recently patented by Mr. Eaton A. Edwards, of Fort Meade, Dakota. The post or standard has a folding tripod base for firmly supporting it. The vane, B, has a thimble, l, stepped on top of the post to allow free rotation, and the thimble has a pointer, c, moving in connection with a numbered dial, b, for indicating the direction of the wind with reference to the target; in other words, the apparatus being set so that the vane points to the target when the pointer is at

EDWARDS' IMPROVED ANEMOMETER.

zero, the position at right or left will indicate the angle at which the wind blows across the line. Sliding in a slot in the vane is the spindle, d, around which is a spiral spring that takes behind a collar on the spindle, and on the end of the spindle is a disk, g, the area of which is a convenient part of a square foot. On the large end of the vane is pivoted a pointer, h, connected by a link with the end of the spindle, and a properly graduated fixed quadrant, k. The pressure of the wind on the disk causes an inward movement of the spindle, and that in turn swings the pointer so that it indicates on the scale the velocity of the wind calculated from the pressure in pounds per square foot, at any moment.

FOLDING CHAIR.

A folding chair, invented by Mr. G. E. Vandenburgh Box 276, Stillwater, N. Y., is simple in construction, strong, and durable, can be folded very compactly, and can be erected or folded easily and rapidly. It consists of a center piece, A, four hinged legs, B, and four seat supports, C. The center piece is provided with four pairs of jaws, D , projecting from the centers of its sides, and in each pair the upper end of a leg is pivoted through a longitudinal slot. In the bottom and outer edges of the jaws are notches for receiving studs projecting from the sides of the ends of the legs. Spiral springs, H, secured to the middle cross pieces of the legs are connected with bails, J , secured on the pivots, and pull the legs upward, thus drawing the studs into the notches and thereby locking the legs in place. On the lower ends of the legs are foot plates having transverse shoulders to prevent them from slipping on the floor. On the upper surface of the center piece are four pairs of jaws arranged between the jaws, D, and in each of which

VANDENBURGH'S FOLDING CHAIR.
the lower end of a seat support, C , is pivoted through a longitudinal slot. On each side of the end of each bar is a stop lug; these rest on the top edges of the jaws when the bars are at the required inclination, and lock them in place. The seat, made of canvas or other suitable material, is riveted to the upper ends of the seat bars, and is strengthened by two diagonal bands. Fig. 1 shows the chair erected, Fig. 2 is a cross section through the middle part, and Fig. 3 is a plan view. To fold the chair the bars, C, are swung toward each other and the legs are pulled downward to draw the lugs out of the notches, and are then swung upward until they
lie parallel with and next to the bars, C. When folded in this manner, the chair can be placed in a cas ing to facilitate carrying it.

Refrigerator Cars and Perishable Freights.

Railway tonnage has reached its present magni tude in this country by a rapidity of development little dreamed of in the first stages of its growth. It has kept on increasing with scarcely any check during prolonged periods of general business depression, sustained as it is by the ever-increasing products of a vast territory and the industrial activities of a population increasing at the rate of a million and a half a year. The carrying capacity of the roads has grown with the demands made upon it, until there would seem to be no assignable limit to either. Articles are transported every year of a kind that were never trans ported before; and if the cars already in use are not adapted to the new traffic, special cars are soon de vised and built that are suitable for the purpose.
An illustration of this is afforded in the remarkable growth of the transportation of perishable commodities within the last few years by means of refrigerator cars. Every year adds to the volume of this traffic, and although the business is attended with some draw backs in the way of losses from delays in transit, it is bound to keep on increasing to an indefinite extent. The shipment of dressed meats from Chicago and other points further west to the Eastern seaboard has already grown from small beginnings to a heavy traffic, while the semi-tropical fruit products of Cuba, Florida, Mexico, and Southern California are finding their way to Northern markets during the warm season in larger quantities every year in refrigerator cars so well adapted to the purpose as to make the losses from the perishable nature of the freight comparatively light. The extent to which this branch of traffic will be developed in future is at present a matter of conjecture, but it is likely to be large.
In regard to dressed meats, everything depends upon its condition and price at. points of destination as compared with shipments on the hoof. The abuses practiced in live stock transportation from the Far West, under the spur of competition, are necessarily attended with serious shrinkage in weight, to say nothing of the alleged deterioration in the quality of the meat, especially beeves, upon reaching the Eastern stock yards. Only a few years ago the dressed beef business between Chicago and New York was in need of friends to sus tain it against the stock yard interests; but since then it has been steadily gaining ground, and it is now said the number of cattle slaughtered last year in Chicago by the principal dressed beef shippers was 694,026 , which was an increase of twenty per cent over that of the previous year. To this must be added 128,000 sheep shipped in carcass. The number of dressed hogs is not stated.
This would seem to support the claims of the shippers that dressed meats, and especially beef, are received at destination in much better condition for consumption than when shipped alive. It is also stated that the cold storage business is increasing at a corresponding rate, buildings for this purpose having been erected in upward of one hundred Eastern towns, exclusive of the chief cities, for receiving these shipments.-The $N a$ tional Car-Builder.

AN AUTOMATIC DISINFECTER.

In the accompanying engraving is shown a simple contrivance, by means of which all the water used in flushing water closets can, before it passes through the closet, be impregnated with a powerful disinfectant. The device is inserted in the pipe leading from the tank or from the ordinary service pipes, and consists of a small box, closed airtight, and divided into two compartments. The sides of each of the chambers, A F , are perforated to permit the water to flow through the perforations begin a short distance from the bot tom, thus forming in each chamber a shallow tank, B, which is constantly filled with water. Through the airtight screw cap, C, a disinfectant is introduced into the chamber, A, and rests in the tank at the bottom. Water from the reservoir enters the chamber, F through the pipe, D, passes to the chamber, A, and thence through the holes to the pipe, E , and to the closet. The water in the shallow tank, being in constant contact with the disinfectant. becomes strongly impregnated, and at each flushing is displaced by the fresh water and sent through the closet. The small holes in the sides of the chamber, A, prevent the escape of small pieces of disinfectant, and by means of the dividing partition the disinfectant is not subjected to he wash of a rapid current of water. As the wate flows into the box the air in the top is compressed, thus aiding the discharge through the pipe, E, after the closing of the valve. In placing this device in position, no change is necessary either in the closet or connections. It is also applicable to wash basins and other receptacles which would be rendered more safe by the passage of a disinfectant through them
Additional particulars can be obtained from the Automatic Disinfecter Company, of 852 Broadway New York city.

FISH TRAP AND BUCKET

The device herewith illustrated is a combined minnow trap and bait holding receptacle. The cylinder, A , is closed at one end by the head, B , and at one side is cut away, the opening thus formed being covered by the screen, D. Fitting within the open end of the cylinder is a flanged ring, E , within which is an inclined ring terminating in a screen cone, G, having an opening, b, in its apex. A handle, d, is attached to loops secured to the side of the cylinder. To use the device as a minnow trap, the bait is placed in the cymmer and the cap, F, put on. It can then be suspended in a horizontal position in the water by means of the cords, one of which is attached to the eye, e, and the other passes through side eyes across the front to hold the cone in

MCKINNEY'S FISH TRAP AND BUCKET.

perition. The minnow attracted by the bait, find their way through the opening, b, to the interior, and are prevented from passing out by the peculiar shape of the section, G. When the device is used as a bucket, it is carried in a vertical position by means of the bail, the water in the cylinder below the screen, D, being sufficient to keep the bait alive.
This invention has been patented by Mr. George H. McKinney, of Silver Creek, Ky.

The Caspian Petroleum Wells.

The news from Baku shows that the production of naphtha goes on increasing. The Caspian Company has just made a boring 660 feet deep, into which a $61 / 2$ inch pipe has been sunk, and the flow of naphtha equals 1,600 tons per day, or from 400,000 to 500,000 gallons. M. Debour, close to the above company, has a flow of 340 tons a day, while the Baku Company, with its 12 inch bore, is able to regulate the quantity by simply opening and shutting the valve on the top of the bore, and can take up to $1,500,000$ gallons a day. Steamers from Batoum to Marseilles will now run twice a month, and the export trade from Batoum twice a month, and the export trade from Batoum
is rapidly extending. During 1884, from Batoum to Triest, 18,000 casks of distillate (naphtha once distilled) were exported, and to Fiume 13,600 casks, while to Genoa 20,000 boxes of kerosene were sent,

an automatic disinfecter

and to Venice 71,000 boxes. Evidently the whole of the Mediterranean trade will come into the hands of the Russians.

A Large Locomotive.

There is being built at the Tabize works, says Le Genie Civil, a monster of a locomotive which will figure at the Anvers Exposition. This engine will be the heaviest and largest that has ever been constructed since the establishment of railroads. It will have ten wheels of more than a yard in diameter, and will weigh, in running order, 165,000 pounds.

boiler cleaner

The object of this invention, patented by Mr. George A. Galloway, of Le Claire, Iowa, is to provide means for cleaning the fire surfaces of soot and other accumu lations. The cleaner is constructed of two curved pipes connected to a T and bent to the shape of the boiler, their length being according to the extent of fire surface. The ends of the tubes are closed by plugs, and the upper side of the tube is formed with holes made so as to discharge steam at about an angle of 30 degrees. To the \mathbf{T} is attached a tube of suitable length for use in handling the cleaner, and also for supplying steam, for which purpose the outer end of

galloway's boiler cleaner.
the handle is connected by a flexible pipe with the boiler. In using the cleaner, it is inserted in the fire box and moved closely over the fire surface of the boiler , when the jets of steam act to remove the soot and scale. This action renders the surface cleaner, and results in a great saving in fuel by the removal of those non-conducting materials which always accumulate on the fire surface of a boiler.

A NEW AERIAL MACHINE.

We illustrate a new plan for aerial navigation designed by Dr. W. O. Ayres, of New Haven, Conn. In this apparatus the motive power is to be compressed air, which is intended to be condensed within the two dubular framing of the machine the air also fills the tubular framing of the machine. The air will be condensed under a pressure of say three thousand pound to the square inch. The drums and tubes are expected to hold air enough to drive the engines and attached propellers for several hours. The author gives the following additional particulars:
"The plan and form which we suggest is not designed or expected to be by any means exclusive. The illustration shows it very clear ly, and we believe that a machine constructed as here represented can do its work successfully. * The propellers may be made to present a much greater extent of surface than the artist has drawn; the only thing for which we contend is that the principle shall be maintained.
"In order to afford support for our two systems of propellers, we must necessarily have vertical posts and horizontal bearings as well, that is, a table-like frame One of four feet by three, supported by four legs four feet in height, will give us the required space, and if made of steel quarter-inch tubing, will have all the strength needed. The rider sits in a seat like that of a bicycle, suspended by steel wires from the top frame, with which his shoulders are about level.
"The four horizontal propellers have their bearings
on the vertical posts just below the top frame, thu bringing the lifting power as far above the center of gravity as possible. The vertically moving propeller revolves on a shaft behind the shoulders of the rider, midway between the side bars of the top frame. The air cylinders are two, for better division of weight, but

AYRES' NEW AERIAL MACHINE.
a nominal horse power, aided by the efforts of the rider."

A HARPOON of the pattern made over forty years ago was taken from a whale caught near Coos Bay, ago was taken freg, recently.

TRUNE LOCK.

The lock shown in the accompanying cutis especially designed for trunks, and is one that requires a special transverse manipulation of the key to unlock it. Between one of the side walls of the case and a lug, C, on the inside of its back plate are two bolts, D E, sliding independently of each other; the ends of the bolts enter the eye, f, of the hasp, which is hinged to the trunk lid in any approved way. The spring, G, having opposite arms, acts against the opposing edges of both bolts, so as to hold either in the projected or withdrawn po-

DUPONT'S TRUNK LOCK.
sitions. The lower bolt has a notch, shown by the dotted lines in Figs. 1 and 2, to receive the bit of the key, by which it may be thrown either way when the key is pushed in as far as it will go. The arm, \mathbf{J}, is held to the inside of the faceplate by a split collar, K, upon which the arm is free to turn. The arm is connected to the inner end of the upper bolt by a pin entering a slot, so that the arm will throw the bolt either way when the bit of the key is held forward from the back plate so as to come within the hub of the arm. The keyhole in the hub coincides with the keyhole in the escutcheon when the arm is thrown out.
If an attempt were made to open the lock by any one unacquainted with its construction, the key, being naturally pushed in as far as it would go, would throw the lower bolt back, but the hasp would still be held by the upper bolt, to throw which it is necessary to draw the bit of the key outward clear of the lower the arm, J. When this arm has been thrown back its keyhole is out of line with the keyhole of the escutcheon; hence after unlocking the trunk the key can only be withdrawn by throwing the bolt outward.
This invention has been patented by Mr. L. E. Dupont, P. O. box 104, Farnham, Quebec, Canada.

Powerful Refrigerants.

Some experiments recently made by M. Olszewski appear to show that liquid oxygen is one of the best of refrigerants. He found that when liquefied oxygen was allowed to vaporize under the pressure of one atmosphere, a temperature as low as -1814° C. was produced. The temperature fell still further when the pressure on the liquid oxygen was reduced to nine millimeters of mercury. Though the pressure was reduced still further to four millimeters of mercury, yet the oxygen remained liquid. Liquefied nitrogen, when allowed to evaporate under a pressure of sixty millimeters of mercury, gave a temperature of - $214^{\circ} \mathrm{C}$., only the surface of the liquid gas became opaque from incipient solidification. Under lower pressures the nitrogen solidified, and temperatures as low as $-225^{\circ} \mathrm{C}$. were recorded by the hydrogen thermometer. The lowest temperature obtained by allowing liquefied carbonic oxide to vaporize was $-220.5^{\circ} \mathrm{C}$.

A NOVEL TOY.

The body of the toy has rockers or runners secured to it, and is composed of a bottom and curved cover in imitation of a locomotive, the cover being closed at its forward end and open at its rear end, and extended to form side pieces and seat supports, which are braced by a cross piece at the front edge of the seat board. A rail is placed around the seat board. To the cover are secured a smokestack, cylinders, and piston rods in imitation of these parts on a locomotive, and to the tongue of the bell is attached a string by which the bell may be struck by a child sitting upon the seat. Between the forward ends of the rockers is a round to which the tongue is secured, by which the toy may be drawn along the floor. Through the runners are formed

NICHOLS' NOVEL TOY

openings to receive axles carrying wheels upon their ends, upon which the toy may be run instead of upon the rockers. The toy is adapted for use as a sled or wagon, or as a rocking toy, and being made in imitation of a locomotive is very attractive to children This invention has been patented by Mr. John B. Nichols, of 43 King Street, New York city.

HOBBY HORSE.

The hobby horse herewith shown can be propelled by working or rocking it up and down, and can be steered easily. The rear end of the reach, A, is provided with a rigid cross piece whose ends are bent upward to form standards in which the axle is journaled. This axle is bent to form a crank part connected by a rod, L, with the rear part of the horse body, which is pivoted about at its center of gravity on the standard, H, projecting upward from the reach. To the hoofs of the front legs is secured a plate to the under side of which a forked plate, K, is pivoted, the prongs projecting toward the front and having their ends bent to form eyes for receiving the cross piece of a connecting frame, I, having its opposite end pivoted on the crank part, M, of the front axle, journaled in standards pro jecting from the ends of a frame, P, pivoted to the front end of the reach in such a way that it can swing later ally. Cords secured to the ends of the plate, K, are passed through rings in the bridle, and then form reins.

SPITZNASS' HOBBY HORSE.

The wheels are all rigidly mounted on the ends of the axles. By rocking the horse, the crank axles and wheels are revolved and the vehicle propelled. By pulling the cords the plate, K, is swung toward the right or left, and the frame, P , is turned with it, thus guiding the horse. Steering the vehicle does not inter ere with its being propelled
This invention has been patented by Mr. William Spitznass, of New Athens, Ill.

A Day for Tree Planting.

The conservation, so far as possible, of such timber and as we have left, and the encouragement of tree planting in other places, has been earnestly urged by far-seeing men for a score or more years past. To say nothing of the direct value of the wood itself -hitherto so abundant with us as to lead to every sort of waste-the effects of tree growth on the climate and in the prevention of freshets are ad mittedly so great as to make the subject one of the first importance, to which people are becoming awak ened in proportion to the rapidity with which our native forests are being destroyed.
Among the most practical of the means urged for en couraging tree planting, in such a general way as shall be productive of national good, the making of a special holiday therefor, to be called "arbor day," seems to be a popular idea. This was first done in Nebraska about a dozen years ago, and her heretofore almost treeless prairies have gained 250,000 acres of artificia woodland as the result. Several other States now have an "arbor day" the dates of which are annually pro claimed by the Governors thereof; and under the im petus thus given to tree planting, large areas are at present covered with an artificial growth in Dakota, Iowa, and Minnesota. April 16 was "arbor day" in Pennsylvania, and was generally celebrated by tree planting throughout the State, especially by the school children. In New Jersey, New Hampshire Massachusetts, and Connecticut, a similar day was also observed, though not so generally, but the idea to takeroot
We have no schools of forestry, such as there are in Europe, but the National Bureau of Education has recently issued a circular on this subject, more espe cially intended to encourage the planting of trees in school grounds, and by school children, but also calculated to promote the lining in this manner of public highways; its contents are such, likewise, as to impress upon all the importance of doing something toward raising an artificial growth to counteract our present enormous drain upon the original forests. Well wooded as the whole country once was east of th Mississippi River, we can now almost foresee the period when, at our present rate, timber will be very scarce and costly. West of the Mississippi the tracts destitute of timber, the almost sterile wastes, are far larger than most people have a clear idea of. They embrace a large portion of Arizona, New Mexico, Colorado, Utah, Nevada, Wyoming, and also parts of Kansas, Nebraska, and Oregon. Any general movement to promote tree planting throughout the older States should be emphasized in these almost treeless sections, where an increase in forest growth would undoubtedly diminish the regions of droughts, and lessen the force of the terrible cyclones now so frequently experienced there. Trees increase the rainfall, but prevent flood; they mitigate the rigor of winter, and stop the progress and ferocity of storms; and, though tree culture seems so slowly remunerative, some of our best informed agriculturists and economists look upon tree planting as, in the end, among the best paying of investments which owners of land can make.

Interesting Low-Temperature Experiments.

In the course of a recent address by Mr. J. J. Coleman, president of the chemical section of the Philosophical Society of Glasgow, he mentioned the following:

At about -86° C. the flesh of animals, such as mut ton, becomes so exceedingly hard that it rings like porcelain when struck with an iron instrument, indeed crushes by the blow of a hammer into a fine powder, in which muscle, fat, and bone are intermingled; and, what is still more singular, according to the experiments of myself and Prof. McKendrick, recently communicated to the society, it appears that microbia alive in the flesh before the freezing operation can be detected still alive after thawing, even after exposure to -86° C., or -133° F., for one hundred hours-this pointing out to potential animal life in the solid state capable of being brought into activity by heat and by moisture, just as a dry pea shoots into activity by heat and moisture of the soil and the heat of the sun.

Leveling a Turret Bed.

An interesting application of machine power has been carried out on board the turret ship Hecate. From the deflection of the ship by the heavy weights of the guns and turrets, the beds of the turrets, or planes on which they rotate, have got out of line, and it has been found necessary to resurface the fixed beds. To have taken off the turrets and resurfaced their beds would have cost a considerable sum. To avoid this, steam has been got up in one of the boilers, and the engines which drive the turrets have been worked so as to make the turrets revolve at a very slow rate. Fixed to the turrets is a tool held in a slide like a slide rest. The edge of the tool is brought into contact with the fixed bed, and thus made to plane the bed and restore it to its original evenness.

Sorresponderree.

A Hydraulic Rudder.

To the Editor of the Scientific American

If all large sea-going vessels were supplied with the below described auxiliary to the rudder for steering the accident to the Alaska's rudder would not haveen dangered the vessel or have been of greater import to her owners than the mere cost of replacing the broken part. The attachment works admirably with small er craft, either as an assistance to the rudder or alone and without any rudder, and.I see no reason why all steam vessels should not have, it, considering how trifling the cost.
It consists simply of two discharge pipes, placed one at each side of the vessel's stern as far below the wate line as possible, connected with a steam pump capable of forcing a powerful stream of water through the pipes, which, impinging upon the water in contact with the vessel, forces it (the vessel) to the side opposite to that from which the stream is issuing. A one-half inch nozzle operates very well for a boat 30 feet long; a vessel of the size of the Alaska would probably require 6 or 8 inch pipe. To vessels of war it would be particularly useful to enable them to turn quickly, or even without headway.
A. P. Whittele.

San Francisco, Cal., April 4, 1885.

Bumble Bees and Honey Bee

To the Editor of the Scientific American :
In your issue of April 11, you note a curious article of export for New Zealand, viz., bumble bees, but question why honey bees would not do as well. Honey bees cannot extract the honey from red clover. Their proboseis is too short, consequently they never disturb it it is the white clover they seek. This is not the first shipment of bumble bees; the same experiment was tried with Australia some years since, and with success. It is a fact that without the bumble bee in two years we would be without clover, one of the best fertilizers known to agriculture. Few bumble bees live over the winter, and their number is not sufficient to fertilize the first growth of clover, as not more than 5 per cent of the first crop has seed; but by the time the second crop comes on the bees have increased, and as a consequence we get seed, with sapling clover.

James M. Hendricks.
Shepherdstown, W. Va., April 13, 1885.

The Extensive Action of Ocean Waves.

Tote Elitor of the Scientific American:
During a long experience on the several oceans, I have noticed that the heavy waves caused by
winter storms in high latitudes often move far bewinter storms in high latitudes often move far be-
yond the limits of the winds which produce them. The strongnorthwest gales which sweep over thenorth Atlantic abreast the British provinces and New England often send gigantic waves to the southwest far within the trade wind region. These waves at times invade the western coast of Africa from Morocco to Cape Verd, so that vessels have been swamped by
heavy rollers while at anchor in the open roadsteads, heavy rollers while at anchor in the open roadsteads,
notwithstanding light winds and calms prevailed on the African seas. The shores of the tropical Cape Verd Islands are also dashed by heavy waves from the northwest. The island of St. Helena, situated in 16° south latitude, is reached by heavy seas from the same direction, which make it impossible to land while they are in force, and at times vessels anchored near the shore are wrecked. The southwest gales of
the southern ocean often send their waves far into the tropical latitudes, reaching the shores of Peru and Central America in the Pacific Ocean, and the beaches of Guinea in the Atlantic. These waves show their greatest volume during periods of torrid calms, as they have not force sufficient to cross a tropical ocean in the face of a strong trade wind. In consequence of the prevailing gales of the high latitudes being westerly the western shores of continents are dashed by heavier waves than their eastern coasts, even in the tropical regions where the prevailing winds blow from the east
ward.
C. A. M. TABER. ward.
C. A. M. Taber.

Wakefield, Mass., April 9, 1885.

oil on the waves.-A Guide to Fishermen.

To the Editor of the Scientific American:
I recently read of a writer who was unable to account for the numerous smooth tracks he had seen upon the ocean when no vessels were in sight from which oil or grease could have been thrown to cause them. Had
he been acquainted with the nature and habits of fish he been acquainted with the nature and habits of fish
even in a small degree, the mystery would easily have been solved. The menhaden, or moss bunker, is an especial victim for all biting fish, and they, being of a very oily nature, will when bitten by other fish exude oil, which immediately rises to the surface. Thus it will be readily understood that when a large body of bluefish, weakfish, or sharks fall upon a shoal of menhaden and follow them up for miles, it will produce the smooth tracks which the writer referred to could not account for.
If any one is inclined to doubt the statement above
the wind is blowing fresh, and score their sides, the ast them in the water and watch the result.
The first appearance of a " slick" (as fishermen term it) is eagerly watched for by fly net men, as it generally denotes the exact locality of blue or weak fish in the act of feeding upon bunkers or other small fish. I have seen a thousand or more bluefish taken at a single haul by simply casting a net around one of these smooth pots when it first appeared on the surface, and no spots when it first appeared on the surface,
other sign of the presence of fish could be seen.
A few years ago a whale was washed ashore ne Fire Island inlet, and the action of the surf and sand chafed the skin until the oil began to ooze out, causing the surf to smooth down for a considerable distance each way, and when the wind was from the north would make a smooth streak out on the ocean, a mile or more in width, as far as the eye could reach. A dead shark or porpoise at sea will produce the same thing. So the smooth tracks upon the ocean need not onger be a mystery
W. L. Weeks.

Bay Shore, N. Y.

Why Certain Kinds of Timber Localities.

It has often been observed that in certain localities a certain species of timber will prevail, or be more numerous than any, and sometimes than every, other kind. It has been further observed that when any prevailing timber has been cleared away, and the land allowed to grow up again in timber, some other species will prevail. This, I think, has often been erroneously attributed to the inability or indisposition of the soil to reproduce the former prevailing timber. I have observed much on this subject, and I never could see any important difference in the ability or disposition of the soil to nourish any of the different kinds of native trees, and also no important difference kinds of native trees, and also no important
My observations convince me that it all, or mainly, lies in the favorable condition of the ground to receive the seeds of the various species of timber when it happens to fall thereon. A sycamore in the Wabash region will grow as large and rapidly on the uplands, where they are seldom found, as in the sandy bottoms along the margins of the streams, where they seem to best thrive. A white oak when planted will grow as well in the low river bottoms, where they are never or seldom found, as on the hills and ridges near by, where they seem to be the spontaneous product of the ground.
But if an acorn should be blown from a white oak on the hills into the low bottoms beneath, it would fall on ground very unfavorable to the sprouting of such acorns, and it would rot where it fell. So, on the other hand, if a sycamore ball (which contains one thousand o two thousand seeds) should, in the spring time, be blown to pieces after the winter's freeze, and the needle-like seeds be blown upon the adjacent hills, very few of them would light on ground favorable to sprouting them. Occasionally we find a lone sycamore on the uplands, standing among the oak, beech, poplar, and other upland timber, and every year bearing its quota of seed and shedding them on the adjacent ground by the million, none, or very few of which ever take effect, and for reasons before hinted at, but which will be more fully explained further on.
The sycamore seed must fall on ground warm, very moist, but not absolutely wet, and sufficiently bare for the sun to shine on it the greater part of the
day. Otherwise it may not sprout. The acorn, on the day. Otherwise it may not sprout. The acorn, on the other hand, falls a little while before the leaves fall. the leaves of the former year, and is shaded enough to prevent drying or baking from the sun, and is covered lightly by the fall of the current year's leaves, or by a chance wind has the old leaves drifted on top of t, a slow rain with subsequent sunshine will sprout it. It will send out little rootlets, which bore through the underlying old leaves and penetrate the ground, and ince started, no weather or climatic conditions winkil sugar maple, and other upland trees.
During the past two years my work has been on and about the Wabash River banks and its bottoms (flood plains), and I have discovered why it is that in some parts of these bottoms one kind of timber, as sycamore,
will take complete possession of a few acres, while at will take complete possession of a few acres, while at exclusion of everything else, and at other places the soft or water maple will do likewise, and still at another the water elm will monopolize all the space on which a rown tree can stand for several acres
It comes about in this way: The balls of the sycamore, after undergoing the winter's freeze, are dissolved so that the separate needle-like or more properly pin-like seeds (as the outer end has the germ of the root, and swells into a bulb like a pin head) are blown by the wind, the little "fuzz" they hold enabling them to float a great way both in wind and on water. They begin falling early in the spring months, and if a flood is receding at the time, they stick to the soft, moist banks wherever they touch them, and particularly along the highest part of the sand bars. Were it not for the sub-
sequent floods the same spring, there could no other trees grow, as the sycamore, being the first to shed, would seed all the tree-growing space (each large
tree bearing one hundred and fifty million seeds), and their broad leaves would shade the ground till nothing else could sprout. But during their early infancy they are easily killed by an overflow, and this ill fortune happens to the greater portion of them.
The cottonwood is the next in order of shedding seed. If another flood is receding while the cottonwood is shedding, this flood will have killed all the sycamores, which it covered for only a few days, and will sprout all the cottonwood seed that may fall on and along the banks and bars. As the earlier floods are generally the highest, there will be some sycamores not reached by the following floods, and they will hold sway along that margin. If, when the cottonwoods are a few inches high, another flood follows, they too will be killed to the extent that they are kept under water for a few days.
Next to the cottonwood the soft, or bottom, maple sheds its seed. If a flood is receding, this seed will occupy all the space, as, having a smaller leaf than the sycamore or cottonwood, they will grow closer together. They in turn may be killed by a flood when they are very young.
I have forgotten the exact time that each of these trees sheds its seed; something will of course depend on the forwardness of the spring. But along the Wabash banks, last spring, I could see three belts of young trees, and distinguish them by their general appearance. The farther off, the plainer these belts show, till lost to view. The upper belt was sycamore, the second (downward) cottonwood, and the third soft maple. In June following there came a bigger flood than any that caused the seeds to sprout, and killed all of them. There was a bigger flood in the preceding February, but no seed fell then.
It will sometimes happen that the flood that plants the sycamores will be the last one for that year, and when they have lived through one summer they are safe from any danger from overflow. In still other seasons it will happen to favor the cottonwood, or the maple, or elm, or willow. New bars are all the time extending from the lower ends of the old ones; and as the elevation of these will be such as to be sometimes flooded once and not again for that year, the trees that shed their seed with the flood that barely covers such bars will plant them to overflowing fullness of their kind, and once they are secure from other floods they
live out their time of two hundred to three hundred years.
The upper surface of the interior of the bottoms (back from the rivers) is built up by sedimentation, and when built above the height of the average floods, the burr oak, black walnut, buckeye, pawpaw, and bottom hickory make their appearance. Such sycamores, cottonwoods, and maples as live long enough to be relegated to the interior (as very few of them do) by the bottoms building riverward away from them, do not and cannot reproduce themselves, as the conditions that sprout their seeds have moved away from them. They die at the end of three hundred years at most, and leave no heirs to the soil.
How do the occasional lone, stray sycamore and cotonwood find their way to the uplands? I can see how in one case it was not only possible, but very probable. Five miles southeast of where I am now writing (Rockville, Indiana) is a pasture of hill land, so fenced as to include a section of a small stream at the foot of a hill facing north. There stand several half-grown sycamores which bear and shed their seed in this corner watering place. There these seeds are sprouted. There the cattle and horses resort for water. Every thimbleful of mud that may stick to their hoofs is liable to contain from one to five half-sprouted seeds, which are carried up the hillside and on the upland, as the cattle and horses return to their grass, and drop where the sun takes up the unfinished work of growing the tree. The result is that on every square rod of ground near this watering place stand one to five sycamores, varying in age from one to ten years, and they diminish in number as the distance from the watering place increases. It has been used as a pasture about ten years.
I remember when it contained no sycamore at all. Just outside of the pasture fence, to the eastward, the land has never been fenced. The cows may drink where they please, and there are no sycamores scattered over the adjacent hills. If any seeds are thus carried there, the forest leaves and shade prevent their sprouting and growing. But along the little sand and gravel bars of the stream they sprout as thick as grass, only to be killed by the floods from the early summer showers. From this I infer that two hundred to three hundred years ago the deer, elk, and buffalo, in their many wanderings across streams and over hills, have occasionally carried in their hoofs partly sprouted seeds, and dropped them on the hills where the sunshine was unobstructed, and the trees thus got their footing, and once getting it were able to stand afterward. These are the only kinds of trees I have observed, but I presume a similar law governs the distribution and self-planting of thema all.

apparatus for cleaning oils.

The apparatus herewith illustrated is particularly designed for cleaning oil which has been used upon machinery and in the processes of manufacturing. The upper tank has an opening in the upper side protected by a strainer, and is for the purpose of receiving and storing the oil to be cleaned. It is placed on a suitable frame above the filtering tank, in order that the oil will be forced through the filters by hydrostatic pressure. The lower tank is formed with a central cy linder, to each end of which is connected a larger cy lindrical chamber. The central cylinder or tube is inclosed in a steam jacket; and into each end is inserted a removable perforated tube. The filter consists of a rod extending lengthwise through the lower tank, and wrapped with woolen batting or felt between perforated disks, to form a roll of the same diameter as the disks; between the layers of wool are thin layers of wood sawdust. 'The four disks are of the same diameter as the tube, and are placed, one at each end and one just with the end of each of the removable tubes. Be tween the outer disks, at each end, wool alone is used. The upper tank is connected by a pipe, with the annular chamber in one end of the lower tank. Each annular chamber is provided with a waste pipe, and the steam jacket has pipes for the passage of steam.
The oil flows from the upper tank into the an nular chamber, where any water which is present collects with the coarse dirt below the perforated tube, and is drawn off through the waste pipe. While in this chamber the oil becomes warmed and more fluid, and passes through the perforations in the tube and the filtering material to the opposite annular chamber, being further heated and liquefied in its passage. In this chamber any impurity or water which may have passed the filter collects in the lower part, and is drawn off through the waste pipe, while the cleaned oil is drawn off through a faucet (not shown in the cut) at the side. When it becomes foul, the filtering material can be removed and easily cleaned. To cause the oil to flow freely, the second chamber is connected with an open pipe extending above the upper tank; steam may be sent through this pipe for the purpose of cleaning the chamber.
In actual service this cleaner has resulted in a saving of over 50 per cent in the oil used, and the same oil has been passed through it as many as sixty times, and each time being perfectly cleaned. The patentee, Mr. John C. Thornton, P. O. box 302, Mount Vernon, Ind., who will furnish further particulars, has received many letters strongly commending the cleaner.

a portable photographic camera.

The wonderful impetus which has been given to the practice of photography in consequence of the introduction of the modern sensitive gelatine dry plate, and the increased attraction it offers to all who wish to undertake it, by reason of the simplification of the different processes, is evidence that it will, in time, become very popular, and afford useful and profitable amusement to many.
So easily are the sensitive plates worked that any person of ordinary intelligence may obtain, after a few lessons, excellent pictures. The absence of the oldfashioned nitrate of silver bath, which formerly was the most troublesome article, for the amateur, connected with photography, now simplifies the manipu-
lation very materially, and enables one to readily produce one or more negatives without the danger of soilng the fingers.
Ladies, in view of this advantage, are taking up the practice of photography to a very large extent as a pastime, and by the artistic talent which is so generally inherent in their nature often p
few adepts in the art can obtain.

thornton's apparatus for cleaning oils.

It frequently happens, when a long journey is to be undertaken, that a portable camera, small and light, which will not be burdensome, is desirable, and of advantage in permitting the traveler to catch views, as he goes along, of whatever may attract his attention; and it was with a view to provide such an instrument that the apparatus we illustrate in our engravings was invented. If the nature of the article is concealed, so as to appear like something other than a camera, it enables the operator to take a picture without attracting the suspicion of the object photographed, and in consequence lifelike attitudes may oftentimes be easily caught and reproduced. Such instruments have been commonly named "detective cameras."
It will be our purpose to enter into a brief descrip tion of the Parsell camera, invented and recently patented by Mr. H. V. Parsell and Mr. H. V. Parsell, Jr., of this city. The primary object of the invention has been to condense the requirements of a camera into as compact a space as possible, and then to conceal its form by incasing it in a small leather covered rectangular box, provided on the outside with a neat leather handle and lock, as plainly indicated in Fig. 6, where is intended to resemble a lady's reticule, or a case such as physicians frequently carry

The essential features of the invention are the use of a lens of fixed focus, a peculiar snap shutter working within the lens tube, and released by a delicate trigger or pneumatic device, a miniature supplementary lens in connection with a balanced pivoted mirror for reflecting its image upward against a ground glass, arranged above the main lens, to act as a finder, and a receptacle for holding the extra plates.
Fig. 1 shows a longitudinal section and Fig. 2 a cross section of the box, near the front or lens tube end. The box is made in two parts, the upper portion forming a cover hinged on one side to the lower part. Near the front end of the top of the cover is a small square aperture (see Fig. 3), made directly over the ground glass screen, G, of the finder, and when the box is not in use this aperture is closed by a small metal slide.
Below the ground glass, G, of the finder is seen a pivoted balanced mirror, F, which reflects the reduced image from the small lens upward against the ground glass. The shaft which supports the mirror has a spring projection at right angles, which by slight friction bears against the exterior side of the metal finder box. This construction enables the operator to readily alter the angle of the mirror when it is desired to point the camera upward or downward.
It will be noticed the small lens is located directly over the main or view lens.
A pivoted diamond-shaped leather slide or door covers the main and finder lenses when the camera is not in use, and a similar false fixed leather slide is secpured on the outside of the box at the opposite end. The main lens tube is fitted with lenses of the ordinary wide angle type, and is connected and supported at its rear by a conical metal chamber, which is secured to a wood partition provided with a rectangular aperture made to correspond with the size of the sensitive plate that is used.
Located midway between the lenses is a thin metal shutter, B, of peculiar shape (see Fig. 2, a view of the box looking from the rear to the front), which operates through a slot in the tube cut half way through it; the shutter rotates on a pivot supported by a small lug screwed to the outside of the tube. Near the edge of the shutter, in the lens tube, may be seen by the dotted lines a small rectangular aperture, which passes directly in front of the diaphragm of the lens when an exposure is made. Behind the shutter is pivoted an adjustable diaphragm plate, D , which is common to all wide angle lenses, and is used when time exposures are made.
Upon the face of the shutter, B, near the projecting edge next to the interior side of the camera box, are two small metal pins, arranged one above the other in such a manner as to allow the releasing trigger, C, to detain or hold the shutter at a proper point for making a "time" or an "instantaneous" exposure. If the shutter is pushed down until the upper pin comes under the narrow foot of the trigger, it will when released make an instantaneous exposure, as the aperture in the shutter will pass entirely by the diaphragm of the lens. If the lower pin is brought under the trigger, C, the aperture in the shutter will be brought opposite the center of the lens, and a time exposure may be made.
The shutter, B, is operated by a flat steel spring, A, having a slot in its upper end by which it can be passed over the screw peg and retained in position by a thumb

screw nut, which also increases or decreases the ten sion. From the screw peg the spring, A, passes over a triangular lug (see Fig. 2), and connects at its lower end to a metal link, which is also connected to the shutter, as shown. Motion is imparted to the shutter by the pushing action of the spring, through the link.
The trigger, C, is held in proper position by a light spring, and may be operated by a button spring, shown at one of the outside corners of the cover of the box, made to resemble all of the other fixed buttons, or by a pneumatic piston, the cylinder and pipe, E , of which may be seen attached to the interior of the front of the box just below the upper portion of the trigger (see Fig. 2), and connected by means of a simple coupling at the lower side of the box with a short length of tubing and a rubber bulb. This latter arrangement forms a very convenient method of operating the trigger, as by.concealing the pipe under the coat the exposure may be made without attracting attention. The outside pipe may be readily detached from the box, and attached to a shutter for time exposures, affixed temporarily to the outside of the lens tube, when desired.
At the rear of the conical metal lens box is placed the ordinary double plate holder, which is secured in position by two upright flat brass springs (see Fig. 1) Behind this are five other plate holders, which completely fill the box. Metal cells are arranged in this space to keep each plate holder in an upright position
A metal plate is inlaid in the bottom of the box, provided with a screw thread, which allows the box to be supported on a tripod, as shown in Fig. 4, when used for making time exposures.
In taking a picture with the apparatus as shown in Fig. 3, the cover to the lens is first pushed to one side, the coverof the box is thenopened, theshutter, $B_{,}$ (Fig. 2) pushed down until the upper pin is caught under the trigger, C. The slide of the plate holder is next withdrawn and the cover closed; the operator, holding the box in the left hand against the person, looks down upon the ground glass of the finder, and the moment the image appears thereon in the right position, presses with the index finger of the right hand the spring button on the corner of the box, thereby releasing the shutter and making an instantaneous exposure; the cover of the camera is then opened, the slide inserted in the holder, and a fresh plate brought into position.
An important advantage of the form of shutter adopted, is the small size and its rapidity of operation. The lens is arranged at such a focus that objects a few feet or at a great distance will be equally sharp; the size of picture is $21 / 2$ inches square, and may readily be enlarged. The weight of the camera when loaded with six plate holders is only $23 / 4$ pounds.
The tripod, shown spread out in Fig. 4, is made of wood in the form of a large cane as shown, when closed up, in Fig. 7 , and it is divided equally into three triangular sections, the shape of which is plainly seen in the lower end f the section in Fig 5. The upper end of each triangular section is made hollow, and is bound with metal, to receive the sliding metal legs which support the head of the tripod. A hollow headed milled screw passes through the metal band on each section and secures the metal leg or rod at any height, similar to the usual plan of adjusting sliding tripod legs.
Fig. 5 shows a larger view of the construction of the head of the tripod; the screw at the top of the head fits into the screw plate at the bottom of the camera; the head itself is free to revolve in any direction on the spindle in the plate to which the tripod metal legs are attached, but may be secured in any position

Fig. 1.-PLAN OF GALLERY OF PALEONTOLOGY PARIS MUSEUM

Fig. 2.-SKELETON OF THE DURFORT ELEPHANT.
by a set screw shown at one side under the head; this allows the camera to be readily turned and secured in any desired position after the tripod is once leveled.
A thin metal cap having the form of the head of a cane, and provided with bayonet slots at the bottom, fits over and conceals the head of the tripod as shown. A similar cap also protects the bottom spurs of the tripod legs; the two caps thus convert the tripod into a cane, as shown in Fig. 7.
Equipped with a light portable camera and a convenient tripod such as we have described, the amateur photographer can, with considerable comfort, travel about unnoticed, and easily obtain ins' antaneous views and pretty bits of scenery. What has sometimes been considered as iaborious work is thus converted into pleasure, and without realizing it many interesting events and scenes are recorded in such a way as to be of much value and usefulness in after years.
Further information regarding the apparatus can be had from Wm. T. Gregg, No. 318 Broadway, New York city, N. Y., who has also the exclusive control of the invention for the United States.

THE NEW PALEONTOLOGICAL GALLERY OF THE PARIS MUSEUM.

The collections of fossils of the Paris Museum of Natural History have hitherto never been brought together in a special gallery, for the very simple reason that paleontology is, so to speak, a new science in France, and one whose autonomy was not recognized until 1853, the epoch of the erection of the chair of paleontology, which was first occupied by A. D'Orbigny.
The existence of paleontology was not foreseen at the time of the organization of the Museum by the National Convention. About a century ago fossils were considered as petrifactions appertaining to mineralogy. Cuvier, through his admirable researches on fossil bones, laid the foundations of our science, but he studied these objects from the standpoint of comparative anatomy. Later on, Blainville created the word paleontology, and from the day that this science had a name its progress and its popularity have never ceased to manifest themselves. It may be said, then, that paleontology is doubly French in its origin.
Nevertheless, the fossils remained distributed between the different chairs of the Museum. The vertebrates were in charge of the professor of comparative anatomy, and the invertebrates in charge of the professors of geology, malacology, and entomology. The founding of a chair of paleontology in 1853 did not improve this situation much, since the appointee had charge of no public collection. But in 1879 a considerable change supervened, for it was then decided by the Minister of Public Instruction that the fossil vertebrates should be placed under the direction of the professor of paleontology, Mr. A. Gaudry, who was naturally designed for such a position through his splendid work on the extinct faunas.
This learned professor, seconded by Mr. Fremy, the Director of the Museum, then formed a plan to bring together in one gallery those fossils which were most remarkable, and which could not be placed in glass cases on account of their large size. These interesting specimens were scattered through the galleries of comparative anatomy and geology, and the laboratories, where they were scarcely accessible to the public
This new gallery was organized in a few months, and was opened on the 17 th of March, 1885. When we enter the new hall, we find ourselves in the presence, first, of two enormous skeletons-that of the Megatherium cuvieri (No.

1 of the plan) and that of the Elephas meridionalis, or the Durfort elephant, so called from the place where found (No. 2 of the plan). The skeletons occupy the center of the gallery. Behind the elephant are three calcareous slabs mounted like a triptych, and derived from the Eocene of Monte Bolca (No. 3). These show the impressions of fishes and leaves, admirably preserved.
Upon passing along the walls from right to left, we find in succession: The Dinornises, gigantic birds of New Zealand (No. 4); the Glyptodon typus (No. 6), invested with its powerful carapax; the Cervus megaceros (No. 9), surrounded by four magnificent tortoises, the largest of which came from Madagascar (Nos. 7, 8 , 10, and 11); the Acerotherium gannatense, or Gannat rhinoceros (No. 12), surmounted by a viviparous Ichthyosaurus; a beautiful Crocodilus rateli (No. 14); the limbs of the Helladotherium duvernoyi (No. 14), recalling those of the giraffes; and, finally, an Ursus spelocus (No. 15), or cave bear, which appears very small amid the colossuses that overlook it.
The end of the hall is occupied by a nearly complete skeleton of the Mastodon angustidens of Sansan (No. 17), placed between two heads of Elephas insignis (No.
16) and Mastodon humboldti (No. 18.) Continuing to16) and Mastodon humboldti (No. 18.) Continuing to
ward the left, the visitor will remark in succession:

The Pelagosaurus typus (No. 21), a small crocodilian whose bones and carapax are isolated; two carapaces whose bones and carapax are isolated; two carapaces
of edentates from South America; Glyptodon typus (No. 20); Hoplophorus ornatus (No. 23); the doe of the Iceland Cervus megaceros (No. 24); the hind quarters of an enormous edentate, reaching the stature of the Megatheria; the Lestodon armatus (No. 25); the skeleton of Glyptodon typus (No. 27); an immense slab in which is preserved the skeleton of a Palcotherium magnum (No. 30); and, finally, portions of the head of
Dinotherium giganteum (No. 29) and of Mastodon anDinotherium gigan
gustidens (No. 31).
In addition to these large specimens, a few others of less dimensions are mounted in front of the columns of the gallery-such as the long bones of large mammals, elephants, mastodons, and dinotheriums (Nos. 5, 22, 26, 28). Above, against the walls and near the windows, are placed slabs of Mystriosaurus and Ichthyosaurus and of various fishes, and skulls of Bos primigenius, Bison priscus, Bubalus antiquus, Rhinoceros ticho rhinus, Cervus megaceros, etc. Such is the general ar-
rangement of the gallery. We shall now say a few words about the most interesting fossils.
The Durfort elephant (Fig. 2) is the most important specimen in the gallery. Its skeleton measures more than four yards in height. The discovery of this fossil is due to Messrs. Cazalis de Fondouce and Ollier de Marichard. Upon passing near Durfort, these gentlemen perceived the extremity of its tusks just reaching the surface. They began excavating, and found that the entire skeleton was buried in situ, the bones being arranged according to their natural connections. Realizing the importance of their find, these zealous naturalists communicated with the professor of comparative anatomy of the Museum, Paul Gervais, who obtained the funds necessary for disinterring the skele ton. The digging was done from 1873 to 1875 , and the extraction of the bones presented great difficulties on account of their extremefriability. The skillful moulder of the Museum, Mr. Stahl, had to consolidate them in place with spermaceti before disengaging them from the matrix. Thanks to this process, the elephant was carried without accident to Paris, where it was mount ed under the directions of Gervais and Senechal.
The Elephas meridionalis is more ancient in Europe than the mammoth, or Elephas primigenius. Its chin is more prominent, its tusks are less curved, and its molars are remarkable for the distance apart of their blades and the thickness of their enamel. It is supposed that its skin was not woolly like that of the mammoth. At Durfort it had hippopotami and a few other animals of warm climates as contemporaries, while the mammoth lived in company with the thickfurred Rhinoceros tichorhinus and Cervus tarandus, which were accustomed to low temperatures. The Durfort elephant was not lying down, but was in an upright position, its head up and its tusks raised, as if it had been buried in a marsh while alive. The remains of many other animals were found in the same bedfishes, fresh water shells, etc.--La Nature.

a New Hæmostatic.

At a recent meeting of the Academy of Medicine, a Paris, Professor Bonafoux read a paper upon a powder which possesses great hæmostatic powers, and is capa ble, it is said, of arresting the bleeding of large arte ries, so that it will prove serviceable in important surgical operations. This powder is composed of equal parts of colophony, carbon, and gum arabic. Experiments have been tried with it on the brachial artery in man, and on the smaller vessels, on the carotid of the horse, and other blood vessels of the same animal, with marked success. It has always prevented consecutive hæmorrhage. The application can be lifted in the course of two or three days, wher
to be completely obliterated.

National Academy of Sciences.

The regular spring session of the Academy was held at the Smithsonian Institution, Washington, April 21-24, with an attendance of over thirty members Many of the papers read werehighly technical. Among those which were of popular interest the following may be mentioned:
Surgeon-General J. S. Billings detailed the methods of measuring the cubic capacity of crania, as practiced by himself and Dr. Mathews, his assistant. The application of composite photography (Galton's method) to obtain type-pictures of different groups of skulls had at length been successful, by employing proper precautions to secure accuracy of adjustment and superposition of the various negatives and the most desirable length of exposure. The camera and stand and patent lever stand were all leveled by a spirit level. The skulls were adjusted in the craniophore by means of two fine black lines intersecting at right angles. The composite pictures were made from the crania themselves, and not, as in Galton's experiments, from pictures. The re sults were much more satisfactory than those from pictures. From six to sixteen skulls were thus combined in each composite picture. A series of the composites was exhibited.
The duration of exposure depended on many conditions, and it required skill and experience to gauge it correctly. Where many skulls were to be combined, the exposure of each one was shorter than where there were but few. The dry plate method was used. It is not to be expected that the type-pictures of skulls will give race distinctions with the same clearness with which
faces do. Thestandard of one-half the natural size was recommended
For measuring the cubic capacity of skulls, Dr. Mathews devised the scheme-using water instead of solid particles. The laws which regulate the fall of solid particles are not well understood, whereas the siences of hydrostatics and hydrodynamics are well settled and generally known. Earlierschemes for using water as a measure had been very expensive, and not perfectly accurate. The use of wax to render skulls waterproof had been expensive, and the causes of error which it is poured, making a difference in the measurement. Dr. Mathews uses fresh putty instead of wax, used by Topinard. First wash out the crania-a precaution never to be neglected; then let them dry thoroughly, which requires some weeks. They should be kept till the weight is no more than it was before washing.
Then spray the interior of the skull with shellac varnish, using 10 cubic centimeters, which will leave, whendry, a bulk of 1 cubic centimeter. Three minutes uffices for this process. Then the skull must be al lowed to dry, which will not take over twenty-four hours. Then cover any breaks with Indja rubber and adhesive plaster, and fill the orbits and carotid canal with putty, and cover the base of the skull with the same. Place the skull face down, and cover with a sheet of putty. By observing precautions indicated in filling skulls. with water, and in measuring the water, 2 cubic centimeters should be the maximum of varia tion, in place of 5 on the old system. This method requires more time than others, but it gives the advantage of eliminating the personal equation of the operator, and of securing results which are of uni-
versal comparability, whereas those of Broca's method can only be compared when used by persons trained in his laboratory
The very technical papers on winged insects, by S . H. Scudder, and on some forms of extinct crustacea (Syncaridæ and Anthracaridæ), by A. S. Packard, gave rise to an interesting discussion. Professor Cope remarked that science has developed as a generalization what he had observed in vertebrates, viz., the correspondence of past with present orders. Certain characteristics of later times are acquired before others disappear, and sometimes minor characteristics are the most persistent. Professor Gill thought that Scudder's paper militates against the view formerly held of the relative ranks of metabola and heterometabola. The earliest insect life did not develop from a caterpillar. Insects were evolved from a form intermediate between arachnids and crustacea. Professor Cope re-
plied that the evolution of the caterpillar was due to degeneracy in certain portions of life, during which insects become caterpillars. Professor Gill stated that synthetic types were a stumbling block to the taxonomist. These insects and crustaceans break down the barriers between species as they now exist. In paleontological forms we find united in the same individual characteristics which now mark differences between species and even orders.
Prof. Riley rose to speak, but was ruled out of order. He afterward stated privately the criticism he would have made, namely, that paleontologists in many cases unduly exalt trivial distinctions, as in one of Packard's papers, where the length of the fore legs was used as a specific characteristic. No naturalist would so regard it in classifying extant types.
T. Sterry Hunt read a paper on Classification of Natural Silicates. The bulk of the earth's crust is composed of silicates. The former classification, based
solely on sensible characters, was not satisfactory; neither is it sufficient to rely only on chemical constitution. Both must be considered. There is, however, a consonance between them. With increase in density due to chemical constitution comes increase in hardness and in resistance to chemical action. There are three groups of silicates:

1. The protoxide bases. 2. The proto-, per-, or sesquioxides, of which alumina is the mostimportant. 3. The peroxides. This is a genetic system; it has relation to the order of time in which the formations appeared. This system may be extended to the non-oxides, and it paves the way to a truly natural system in mineralogical, as much so as in biological science, the absence of which is the reason that mineralogy has been comparatively neglected. Prof. Remsen remarked that the classification of the carbon compounds foreshadowed these results. The main difficulty is to get the conditions of classification when temperature and pressure differ entirely from ordinary. We must look for results in the direction of synthesis; but as yet we have very little knowledge of the fundamental compounds from which others are derived.
Gen. Comstock's paper on the Ratio of the Meter to the Yard showed that the determination of this ratio in 1880 , which was then considered accurate within one micron (millionth part) of probable error, was too small by the $1-120,000$ part, and the corrected value of the meter is now stated as $=39 \cdot 3699$ inches.
Prof. Elias Loomis' paper On the Cause of the Progressive Movement of Areas of Low Pressure explained sometimes in opposition to the course of surface winds. as due to the prevalence of pressure from the west. In middle latitudes east winds are exceptional, and, even during the prevalence of east wind, the causes that produce west wind are only temporarily suspended. Much of the air on the east side of a storm center rises from the earth's surface, but on the west side it does not rise at all. Hence the storm moves in the direction of least resistance, viz., eastward.
The paper on the Submarine Geology of the Approaches to New York, by J. E. Hilgard and A. Lindenkohl, enumerated three noteworthy features:
2. The submarine valley continuing the course of the Hudson River for about eighty miles in a direction 60° E. of S.
3. Shallow water, extending for one hundred miles south from New York and Long Island, and fringed by a steep declivity.
4. Terminal moraines, extending from northwestern New Jersey in a southeasterly direction far out to sea.
Major J. W. Powell's paper on the Organization of the Tribe was in effect an elaborate homily on the text with which he set out, that "in the light of new material collected throughout the world, a new significance is attached to the kinship of tribes.'
He set out with a theoretical tribe of primitive simplicity, wherein all the men call each other brother; all the women are sisters; the children call all men father and all women mother. Admitting that no such society had ever been discovered, he claimed to draw a legitimate inference from some languages which contain words for these direct relationships, but none for indirect relations. He traced increasing complexity of relationships and the two kinds of descent: the paternal. called by Romans agnate, and the national, which is more usual among savages, and for which he proposes the term enati. He then traced the development of the clan, the chief characteristics of which are kinship. either enatic or agnatic, exogamy, and feud protection. Tribes may be fissiparous, and each tribe into which the original divides may have segments of each clan, or only of part of the clans. In Australia clanship presents several peculiarities nowhere else seen.
Prof. Cope read a paper on the Pretertiary Vertebrata of Brazil. He stated that the Tertiary vertebrata of South and Central America belongs to one fauna and to one geological horizon, the Pliocene. The most important fossil of the Peruvian beds is a reptile of primitive form, the Stereosternum tineidum, which differs from any previously known genus of the Peruvian beds. It had the ribs fixed immovably to the vertebral lobes, hence was incapable of intercostal breathing.
The discovery of this type was interesting to those who adopt the theory, much exploited of late, of the distinct origin of life at north and at south poles; and it certainly did not at all discredit this theory.
Prof. Rowland gave the value of the ohm as corrected by his own experiments as equal to 106.2 centimeters of mercury one millimeter square.
Prof. A. Graham Bell read papers on the Measurement of Hearing Power and on the Possibility of obtaining Echoes from Ships and Icebergs in a Fog.
Prof. Edward S. Holden, Director Washburn Observatory, Madison, Wis.; Prof. Henry Mitchell, U. S. Coast Survey; Prof. F. W. Putnam, Cambridge, Mass.; Prof. W. A. Rogers, Harvard Observatory, Cambridge; and Dr. Arnold Hague, U. S. Geological Survey, were elected members.

Wm. H. Hale.

ENGINEERING INVENTIONS.

A car coupling has been patented by Mr. John A. Craig, of Lauderdale, Miss. Combined with the drawhead is apeculiarly operating bail-shaped
rod link lifter, which is designed to so work that ordinary pin and link couplings may be coupled automatinary p .
An oscillating engine has been patented by Mr. Charles P. Waldron, of New York city. This nvention consists of a new link movement for operating the slide valve of oscillating steam engines, and
also of improved means for discharging water from the cylinder of the engine, making an engine which is
very convenient and easy to attend, while the link mevery convenient and easy to attend, while
chanism will not readily get out of order.
A method of casting car wheels has een patented by Mr. William Wilmington, of Toledo, Ohio. This invention relates to an improvernent upon
a method of casting car wheels formerly patented by a method of casting car wheels formerly patented by
the same inventor, its object being to regulate and facithe same inventor, its object being to regulate and faci itate the melting of rich ferromanganese before enter-
ing the mould, and to incorporate its elements in varying quantities in different parts of the car wheel, par-
ticularly those parts forming the tread and flange parts. A steam boiler has been patented by Mr. Samuel P. Hedges, of Greenport, N. Y. This invention is to improve the construction provided for in
a former patented invention of the same inventor, to a former patented invention of the same inventor, to steam pipe, and consists in combining centrally perorated and concaved plates with the upright cylinder, its outwardly projecting tubes, etc., so the ascend heated steam delivered to the steam pipe.

MECHANICAL INVENTIONS.

A metal punch has been patented by Mr. Gilbert McDonald, of Augusta, Kan. It consists principally of a wedge having cogs or teeth formed upon its edges interposed between the power and the
plunger which carries the punching or cutting tool, being more especially designed for tinners and blackmiths, for punching or cutting plates of metal, hot or

AGRICULTURAL INVENTIONS.

A plow gauge has been patented by Mr . James B. Law, of Darlington, S. C. This invention covers a novel construction by means of which the shoe may be raised or lowered at its rear end, while the for-
ward end remains fixed, so the depth of plowing may be regulated, and the pitch of the plowshare may be directed to throw the earth more or less from the furrow. A corn planter has been patented by lon, Mo. This invention covers a special construction the row marker, hill markers, driver's seat, seed box, plant corn in accurate check rows.
A corn planter has been patented by Mr. Albert J. Wood, of Wilder, Kan. This invention covers novel details of construction whereby the seed
dropping slide may be operated from the drive wheel, and the mechanism can be readily thrown into and out of gear, making a machine which in
A potato planter has been patented by Messrs. Avaj. Agee and Alex Fraser, of Cheshire, The box for carrying the potatoes to be planted is gate, and dropping tube, the attendant regulating the ge of potatoes from the chate potato will rest on the gate at a time; covering hoes earth covering the potatoes.
A corn husking machine has been patented by Messrs. John Johnston and Burnet B. Stewart,
of Algonquin, Ill. It is intended to husk corn which of Algonquin, Ill. It is intended to husk corn which
has been cut and shocked, and provides mechanism to pull theear from the stalks as they arefed to the mahine, to brush the husks back toward and over the butts of the ears, to sever the butts and husks from the orn ears separately, the several mechanisms acting successively and for the most part automatically, so as to
do a a large amount of work with little labor of attenddo a la
ants.

MISCELLANEOUS INVENTIONS.

A pump driver has been patented by Mr. John W. Runyan, of Catawba, Ohio. This inven-
tion relates to a class of devices used for storing and transmitting power, and has for its object to provide means whereby an old style clockwork and weight
may be utilized to work a pump.
A pencil or crayon holder has been paented by Mr. Max Rubin, of Philadelphia, Pa. This invention provides a specially contrived case, of simple
 annot escape or project from the case, and so the lead
A horse power for hay carriers has been patented by Mr. John S. Grabill, of Hayesville, Ohio. tion of horse powers under a former patented invention of the same inventor, that they shall be lighter, strong, and more convenient for use
A dumping scow has been patented by Mr. John Dunn, of Jacksonville, Fla. This invention
combines with a scow a tilting deck or decks, with combines with a scow a tilting deck or decks, with other parts, to facilitate the dumping of a load from a cow, either altogether or in separate parts or quantities. jewelers has been patented by Mr. Noah W. Caughy, of Baltimore, Md. It is in the nature of a secretary bureau,
to be closed for compactness and to contain the machinery, tools, and materials generally used by dentists therewith.

A tilting chair has been patented by Mr. Adam Demand, of Sheboygan Falls, Wis. This instion covers devices whereby the tenc is is the latea dy a yote peiece, so the seat leveling springs may
be adapted to a nicety for the chair to be comfortably be adapted toa niceety for the chair to be
tilted back by heavier or lighter persons
A button hole cutter has been patented by Mr. Max Kamak, of New York city. The object this invention is to facilitate the adjustment of the de-
vice according to the desired length of the cut, there vice according to the desired length of the cut, there
being, on a button bole cutter, a sliding key between the legs at the joint, wh
The manufactur
The manufacture of hydraulic cement forms the subject of a patent issued to Mr. Robert
Bryce, of Louisville, Ky. The process consists Bryce, of Louisville, Ky. The process consists
grinding together limestone and Leitchfield marl shale in certain proportions, using a limited amount of
moisture, compressing into bricks, and burning and moisture, compressi
grinding the bricks
A road or tramway for vehicles ha been patented by Mr. Moses A. Martindale, of Elk-
hart, Ind. Combined with trough-shaped rails and connecting gauge bars are plates to enable taking a dee hold on the ground, with various' novel features of plan and construction to make an efficient tramway ove

An apple paring and slicing machine has been patented by Mr. William T. Elliott, of Mere
dith, N. H. This invention covers a special dith, N. H. This invention covers a special construc
tion and arrangement of parts for a machine to be run either by hand or power, one which will be very rapid in its action, as well as practical, durable, and effectiv

A furnace for manufacturing illuminat ing gas has been patented by Mr. Frederic Egner, of St.
Louis, Mo. This invention covers an improvement in the class of gas furnaces whose gas exit pipe is located but a short distance above an air inlet, and connected with an exhauster for the purpose of drawing
gas and also creating a vacuum in the furnace
A paper wreath has been patented b Mr. Charles Kaufmann, of New York city. It is made of edges cut or punched out, as the contours of a wreath it natural leaves, and having its face printed in colors. in imitation of natural leaves, on which circular piece
A food steamer has been patented by Mr. Le Roy S. Bunker, of Valton, Wis. This invention provides for the use of a round boiler more strong
and durable than those usually employed, and the boiler can be lifted off from the base, or when in place may eheld by clamps, affording an improved means fo A feed cooking app
anted tented by Mr. Joseph J. Cox, of Lawrence, Kansas. I
is a steaming and boiling apparatus, a long boiler being combined with a furnace having separate chambers unchambers extending to opposite ends of the boiler, so small furnace may be used, with great economy of fuel A machine for removing ice and snow has been patented by Mr. Jacob F. Riethmayer, of Lans-
dale, Pa. It is adapted to be moved by hand, for removing snow and ice from sidewalks and pavements etc., and is so operated that its plow may be set at
either side, according to the direction in which the snow either side, according to the direction in which the thrown off, and has a scraper with teet
is
A lantern has been patented
lantern has been patented by Mr Luther B. Wood, of Omaha, Neb. It is designed
burn lard oil or other heavy oil, where means are employed for warming the oil in the reservoir of the lantern, and is contrived to make the lantern heat its own oil, and in such way that the temperature of the oil
may be regulated by turning the tubes a greater or less may be regulated by tur
distance from the flame.

A churning device has been patented by Messrs. Sylvanus B. Wood, Hervey Wood, and Thomas W. Wiley, of Callisburg, Texas. According to
this invention, the cream can is closed and locked in position in a peculiarly constructed frame, so that rests in a frame which may be rocked by a spring ba
by a person standing at the side, so the contents of the can will be thoroughly agitated.

A brick truck has been patented by Mr. Daniel J. C. Arnold, of New London, Ohio. The in vention consists in a pallet truck with two or more
shelves or series of racks arranged one above the other over the wheel axle or springs, and disposed and con
structed so that the load may be readily balanced, being especially adapted for carrying bricks as they ar umped from the moulds on the pallets.
A window screen holder has been patented by Mr. Henry C. Barlow, of Dallas, Tex. Wires bends near their upper ends, and hook eyes are held on the sides of the screen frame and surrounding the wires, so the screen myy be held in frontof the window sorreen

A roller

A roller shelf book case has been pa invention covers a peculiar construction and arrange ment of parts, so that the books, while being put into and removed from the case, will not come into contact with anything but rollers, and will thus be prevented
from being rubbed or marred by coming in contact from being rubbed or marred by co
with the stataionary parts of the case.

A washing machine has been patented by Mr. samuel L. Wagener, of Nepeau, Carlton County Ontario, Canada. This invention relates to machines in
which a convex-shaped vibrating rubber, with bars on which a convex-shaped vibrating rubber, with bars on
its acting surface, works within a fixed concave, also having bars for rubbing and working the clothes, but coers a novel construction and arrangement of A fastening for bag, pocketbook or purse frames has been patented by Mr. Louis B. Prahar, of
Brooklyn, N. Y. It is made with a case having tw latches held in place by two eprings, and a plate and
od engaging with the inner ends of the latches, so the fastening can be unlocked from the ends or center, the
whole device being simple in construction and operaion and inexpensive to manufacture.
A brush for flour bolting machines has een patented by Mr. Jonathan B. Richards, of Pettigrew Mills, Ark. This invention provides such a con-
truction that the brushes can be easily adjusted to suit reel of any size, of which they will brush the entire sur ace, and they can be fixed to drop more or less, thus preventing the
sure on the reel.
A heater frame for lamps and gas burners has been patented by Mr. Alfred M. Rickerby, of Brooklyn, N. Y. The device consists of two tripods
with tubular posts, one tripod to fit snugly in the with tubular posts, one tripod to fit snugly in the
collar of a lamp, and another to fit a gas burner, the outer ends of the arms having projections to receive the posts, the frame being very inexpensive, and ca able of being taken apart and packed snugly
A fire ladder has been patented by Mr. Constantin Lazarevitch, of Brooklyn, N. Y. The in-
vention consists principally of a folding brace or suport attached to the ladder and truck arranged for bracing the ladder directly from the ground when the f the ladder also having permanent water pipes for dapting it when elevated to be used as a water towes. A sod ground pulverizer has been paA sod by Mr. Abijah L. Gordon, of Helix, Oregon. It nders with tapered and scalloped digging flanges, the sods will be cut and torn in pieces without being turned or raised from their places, the construction
being such that the cylinder bearings can be readily being such that the cylinder bearings
oiled, and dust and soil will be excluded.
An expłosive weight for torpedoes has been patented by Mr. James E. Gallagher, of Olean,
N. Y. The object is to insure the explosion of torpedoes placed in oil wells, the weight to be dropped after he torpedo having also, by this invention, a cartridge nd fuse, so the weight can be fired, and in case it misses striking the torpedo, the latter will be exploded by the explosion of the cartridge
A tricycle has been patented by Mr. Carl G.E. Hennig, of Paterson, N. J. This invention relates to a former patented invention of the same inventor, and consists principally in the addition of other
treadles applied to the crank axles, so attached that treadles applied to the crank axles, so attached that
they act at the dead center of the axle; also in the co they act at the dead center of the axle; also in the con-
struction of the fifth wheel, and the employment of truction of the fifth wheel, and the employment of
A filter has been patented by Mr. David iggs, of Castleton Corners, N. Y. It is a vessel dividinto two compartments by a vertical partition, each outlet cock, and the vessel having an inlet pipe with a hree-way cock by which water can be admitted into tion, which can be cleaned easily, and can readily be onnectea with thê Yater pipe
A bag holder and lifter has been patentd by Mr. John A. Hamsch, of Traverse City, Mich. The apparatus comprises a step-like platform arranged to move up and down uprights or guides by means of a rope and windlass operated by suitable gears, an up-
ight ratchet rack, and a peculiar click controlled from the platform for locking it when raised, or at any desirframe of the apparatus.
A bucket or receptacle for malt liquors as been patented by Mr. Saxo W. A. Wiegell, of New ork city. The top is provided with one large and seve so the bucket may be filled through the large opening, and the cover closed, that the strength of the liquor cannot escape, the contents being drawn off through the
small holes without materially exposing the liquor to
A cider and wine press has been patentby Messrs. David G. Higinson, of Spring Valley, N. Y., and CorneliusS. De Baun,
as spring pressed rollers, endless belts, and guide of construction, so that the juice will be expressed from the pomace as it comes from the grater in a continuous operation, and all handling of the pomace will be

A grain measuring apparatus has been patented by Messrs. Omar P. Wagner and Oscar E. Wagner, of Pontiac, Ill. With a vessel having a removable bottom is a revolving vessel with gates hinged on its xed vessel, and a rod connected with the gates on the ottom of the revolving vessel, and with the cam shaft, ceasuring grain or other cereals.
An anti-friction bearing has been paented by Mr. John Flannery, of New York city he shaft wre disks he shaft are disks, on which anti-friction rollers ar the box, thus reducing the friction of propeller shafts in their bearings and at the same time permitting the bearing to be drawn up tight, so that there will be
little or no lost motion lengthwise, and the friction ill not be increased.

A fiber rubbing machine has been paented by Mr. Alexander Scott, of Cronly, N. C. This vention consists in combinations of spirally or transial is passed as the rollers are revolved, and jets o water are delivered, the water being then pressed out by sitable wringer rollers, and the material picked or dering'the fiber of pine needles useful for uphor purposes or for spinning
A perforated glass plate for making medicinal tablets has been patented by Mr. John
E. Schreck, of New York city. The object of this ind by the acids or puictsiluer containd in the arfed an ingredienta of the tableta, guide pina being medic
force the finished tablets out of the holes. A mould for making the plates has also been patented by the sam the upper die a follower, so the plates can be readily cast and removed from the mould.
A fork prong rolling machine has been patented by Mr. Philippe D. Dupont, of Summerville h. It comprises a combination of specially grooved work, with a recess or space for certain of the prong while the other prongs are being rolled, the machin being especially adapted for rolling or drawing the
prongs of agricultural forks, half round prongs, suc prongs of agricultural forks, half round prongs, such
as used in potato diggers, etc. The same inventor ha also patented a machine for pointing or sharpening the prong ends of forks, including spade forks, potato dig gers, and other agricultural implements, the machin having duplicate sets of peculiarly constructed and op rating radial hammers or dies, with special detalls, the pointing or sharpening may be done with great

new books and publications

The Civil Engineer's Pocket Book. corrected, and enlarged by Jovised C Trautwine, Jr. John Wiley \& Sons,
New York. Price $\$ 5$.

Since its first edition in 1871, "Trautwine's Pocke his issue making the popularity among engineers has been published. The writer disclaimed at the out set the idea of publishing a work for the information of "experts," but put forth his book for the benefit of young members of the profession, leaving out the fol
lowing of problems into the higher mathematics, and endeavoring to be as practical in treatment and simple in statement as so comprehensive a work would allow. In the revised edition this principle has not been de parted from, but the contents have been rearranged some of the articles rewritten, and large additions hav been made, the book now consisting of nearly 900 page on mensuration, trigonometry, surveying, hydratlice,
hydrostatics, instruments and their adjustments, hydrostatics, instruments and their adjustments,
strength of materials, masonry, bridges and culverts, dams, railroads, earthwork, etc.
How to Drain a House. Practical in
formation for householders. By
George E. Waring. Henry Holt \&
Co., New York. Price $\$ 1.25$.

This is the last of several works by the same autho

 a branch of sanitary engineering in which he ha come to be considered an acknowledged authority.Good plumbing, the best materials, and simplicity of detail, as far as possible, are here insisted on, and have always been the guiding considerations recommended by the author.
Watch and Clock Makixg. By David
Glasgow. Cassell \& Co., New York. Glasgow.
This is an excellent addition to the series of Manual of Technology already published by the same house workman, and also as a text book for technical clastica giving a history of the development of different improvements
their value
Prairie Experiences in Handling Cattle and Sheep. By Major W.
Shepherd. O. Judd Company, New
York.

This book contains the experiences of an English army officer on a summer's visit to the United States,
together with his comments thereon. He does not keep very closely to his subject, bat rather gives us his idea on this and a host of other topics, much as one would
be likely to do while simply enjoying a summer holibe likely to do while simply enjoying a summer holi-
day, making a book which probably many will read in a good deal the same way.
The American Boy's Handy Book
What to do and How to do IT What TO DO AND How TO DO IT
By D. Beard. New York: Charles
Scribner's Sons, 1882.
The title of this quite prettily gotten up book leads us to expect a great deal from its contents, for we agre
with Master Randolph Miller, Miss Daisy's brother, that "American boys are the best boys," and we naturall expect their books to be the best books. Mr. Beard has the boys' welfare much at heart in writing his book, and while a little more completeness would have added much to its valuc, it will prove a prize to an active, in genious lad, blessed with some constructive talent. Th fanciful division into seasons has been more of a dis advantage, we think, than a gain. There are many dis
tinctively summer and winter sports which would b treated very appropriately under those heads; but to carry the division further is to sacrifice more in ar rangement than is gained by the distinctions. Thus the subject of fishing finds place in three different part Izaak balton will understand that the fish must com before he can be caught an exhaustion of the subject inder onechapter would seem more convenient, and a reference book make it more "handy." The spirit of the book, however, is very praiseworthy, for all its
devices are clearly and pleasantly described, and have the great merit of being eminently attainable. Shor St. Nicholss and the favor with which they were re ceived has already given the book a hearty reception. The International Nautical Mag ane for April is the initial number of a publicatio lightenment of seafaring men in regard to current event in both the marine an d political world. If so commendable a purpose is realized, the magazine will make itself
welcome in many a cabin, and, we would like to add, forecastle, but unfortunately Jack Tar is not much given to reading. The contents of the first number are antipodes, will find in them a ready means for bring ing his information up to date.

ƏBusiness and Personal.
The charge for Insertion under this head is One Dollar a line for each insertion; about eight words to a line. Advertisements must be received at publication office
as early as Thursday morning to appear in next issue.

The "Champion" 6 -lever Padlocks have no 2 keys to pass.
delphia, Pa.
Chucks-over 100 different kinds and sizes in stock.
Specials made to order. A. F. Cushman, Hartford, Ct.
The Cohannet Mills, of Taunton, Mass., start and stop their electric light machines by Volneny
Co.'s Friction Pulleys. Providence, R.1.
Large Size Universal Milling Machine. Especially designed for Steam Engine and Locomotive Builders.
Brown \& Sharpe Mfg. Co., Box 469, Providence, R. I.
Smoking Caps.-Look best made on our machine Smoking Caps.-Look best made on our mach
Lamb Knitting Machine Co., Chicopee Falls, Mass.
Sole manufacturers Prouty Patent Round Swive Base P
Mass.
Combined Caliper and Divider. An indispensable tool. Catalogues free
Chicopee Falls, Mass.
For Sale.-An interest in three inventions on Car Brakes. Address for paat
ond St., Baltimore, Md.

Steph
p. 268.
The most complete catalogue of Scientific and Me
chanical Books ever published will be sent free on ap Oars to face your course with speed and ease. A Alex. Beckers, Hoboken, N. J.
Shafting, Couplings, Hangers, Pulleys. Edison Shafting fg. Co., 86 Goerck St., N.Y. Send for catalogue and prices. The Best Upright Hammers run by belt are made by
W. P. Duncan \& Co., Bellefonte, Penna.
Iron Planer, Lathe, Drill, and other machine tools , Ne ling The leading Non-conducting Covering for Boilers, inch thickness radiates less heat than any other covering does with two inches. Sold in dry
pound. Fossil Meal Co., 88 Cedar St., N. Y.
Try our Corundum and Emery Wheels for rapid cutting. Vitrifled Wheel Co., 38 Elm St., Westfield, Mass. Every variety of Rubber Belting, Hose, Packing, Gas-
kets, Springs, Tubing, Rubber Covered Rollers, kets, Srings,
Straps, Printers' Blankets, manufactured by boston
Betting Co.,226 Devonshire St., Boston, and 70 Reade St., Belting Co.
New York.
Brush Electric Arc Lights and Storage Batteries. Twenty thousand Arc Lights already sold. Our largest
machine gives 65 Arc Lights with 45 horse power. Our machine gives 65 Arc Lights with 45 horse power. Our
Storage Battery is the only practical one in the market. Storage Battery is the only practic
Brush Electric Co., Cleveland,
Write to Munn \& Co., 361 Broadway, N. Y., for cataWem.
Wanted.-Patented articles or machinery to manufac-
ture and introduce. Lexington "How to Keep Boilers Clean." Book sent free by "How to Keep Boilers Clean." Book
ames F. Hotchkiss, 86 John St., New York
Mills, Engines, and Boilers for all purposes and of every description. Send for circulars. Newell Universal
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. For Power \& Economy, Alcott's Turbine, Mt. Holly, N.J. Send for Monthly Machinery List
to the George Place Machinery Company,
121 Chambers and 103 Reade Streets, New Yor
If an invention has not been patented in the United
States for more than one year, it may still be patented in Canada. Cost for Canadian patent, \$40. Various other foreign patents may also be obtained. For instructions
address Munn \& Co., Scientific American paten addency, 361 Broadway, New York.
Guild \& Garrison's Steam Pump Works, Brooklyn, N. Y. Steam Pumping Machinery of every description
Send for catalogue Send for catalogue
Machinery for Light Manufacturing, on hand and Mineral Lands Prospected, Artesian Wells Bored, by Pa. Diamond Drill Co. Box 423, Pottsville, Pa. See p. 25 Nickel Plating.-Sole manufacturers cast nickel an
odes, pure nickel salts, polishing compositions, etc. odes, pure nickel salts, polishing compositions, etc. Con
plete outfit for plating, etc. Hanson, Van Winkle \& C 0 Newark, N. J., and 92 and 94 Liberty, St., New York. Catalogue of Books, 128 pages, for Engineers and
Electricians, sent free. E. \& F. N. Spon, 35 Murray

For Steam and Power Pumping Machinery of Single and Duplex Pattern, embracing boiler feed, fire and lo pressure pumps, independent condensing outfits, vac-
uum, hydraulic, artesian, and deep well pumps, air com pressers, address Geo. F. Blake Mtg. Co., 44 Washington, Send for catalogue of Scientific Books for sale Munn \& Co., 361 Broadway, N. Y. Free on application. C. B. Rogers \& Co., Norwich, Conn., Wood
Machinery of every kind. See adv., page 270 .

Supplement Catalogue.-Persons in pursuit of infor mation of any special engineering, mechanical, or scien tific subject, can have catalogue of contents of the SCi-
entific Amprican Supplement sent to them free entific amfrican Supplement sent to them free.
The Supplement contains lengthy articles embracing the whole range of engineering, mechanics, and physical Anti-Friction Bearings for Shafting, Cars, Wagon etc. Price list free. John G. Avery, Spencer, Mass. Curtis Pressure Regulator and Steam Trap. See p. 285 The Improved Hydraulic Jacks, Punches, and Tube
Expanders. R. Dudgeon, 24 Columbia St., New York. Hoisting Engines. D. Frisbie \& Co., Philadelphia, Pa Tight and Slack Barrel Machinery a specialty. John
Greenwood \& Co., Rochester, N.Y. See illus. adv., p. 284 . Hull Vapor Cook Stovas.-Best in the world; sell everywhere. Agents wanted. Send for catalogue and
terms. Hull Vapor Stove Co., Cleveland, Ohio.

Experimental Tools and Machinery Perfected; al
kinds. Interchangeable Tool Co., 313 North Brooklyn, N. Y.
Woodwork'g Mach'y, Rollstone Mach. Co. Adv., p. 284 Shipman Steam Engine.-Small power practical en gines burning
See page 286.
The best Steam Pumps for Boiler Feeding. Valley Machine Works, Easthampton, Mass.
Wood Working Machinery. Fullline. Williamsport
Machine Co., 110 W. 3d St., Williamsport, Pa, U. S. A.

(1) S. M.-For the city of New York, to keep them in condition is thorough cleaning cevery months. For hard water incrustation, you will find
very full instructions in Scientific American Supple MENT, Nos. 137, 286, 375, and 444.
(2) M. H. writes: What would be the rate of speed of water forced throun from a 15 inch cylinder, having a piston speed of 100 feet per minute, and what should pressure gauge vary? about $11 / 2$ miles through a 12 inch main, then the main contracts to 10 inches, and continues about $3 / 4$ mile to reservoir; under 260 feet head our gauge at pump
shows variation of 10 lb .; on main near junction of 10 shows variation of $10 \mathrm{lb} . ;$ on main near junction of 10
and 12 inches, 20 lb . Can you explain the cause of different variations in different parts of the main, and direrent variations in different parts of the main, and
whate at pump vary as much as else why does not gauge at pump vary as much as else-
where? A. The water in the 10 inch main will have a speed of 225 feet per minute. No pump runs so even that an air chamber can be dispensed with, especially
upon so long a line of pipe. The pump stroke producen so long a line of pipe. The pump stroke pro
duces the variation in the gauge near the pump, which becomes cumulative near the junction of the 12 inch nd 10 inch pipes. A large air chamber near the pump
may relieve you of a source of danger to the pipes Although your pump may be running nicely, your gauges show that the water is not flowing evenly in the pipes.
(3) G. P. writes: We want some plan to revent the noise or work of our lodge room (I. O. O. F.) from being heard in the room below; we have a good
foor and carpet, good partitions, walls plastered, etc., but are willing to go to quite an expense to remedy the present defect on this score. A. Probably you have no
deafening under the floor. In such case, there only two ways that we can suggest for your trouble: To take up he floor and put in a plaster deafening between the of roof felting or paper boards (bookbinders' boards might do, or paper carpet lining). Then lay battens across the floor, and a new floor on the battens. Do not nail the battens to the old floor. Then lay the carpet (4) G. \& S. ask: 1. What is the best ing into the boiler, to prevent sediment or crust form ng therein? An engineer told us that he had used concentrated lye successfully for more than a year, using only sufficient lye to clear the water of lime. We use
clear, hard well water. A. Concentrated lye, or causti soda, is probably as good as anything that can be named for preventing incrustation in boilers, where hard water is used. If convenient, a little tannic acid
may be added from time to time. This may be obtained by soaking oak bark in water. A pound of caustic soda and 2 quarts of oak bark decoction per week is probably enough for a forty horse boiler. Blow out once a
day, and clean the boiler by opening the hand and man oles; wean the boiler by opening the hand and man month. 2. Will the lye in such quantity as stated injure the boiler? A. The lye will not harm the boiler The only harm is in not blowing out and cleaningoften which will heat when the burrs become a little worn, so hat the pressure must be increased; the manufacturers ofised us to put sulphur in tallow and use it instead
of and we have had as much trouble as before Clear tallow does as well as anything we have used. The shaft runs at 1,000 revolutions in a babbitted box,
which keeps nice and clean, but the steel step at the which keeps nice and clean, but the steel step at the
end makes all the trouble; and although there is.an oil groove in the step, the pressure seems to be too great allow the oil to do its duty. Please advise as to our
best course. A. It is possible that the groove in the step is not deep enough or not sufficient to fully lubriate the bearing surface. Cut a second oroove, and make both deeper than their width. Use good oil. Cold pressed sweet lard oil has been proved the best lubricator under heavy pressure. If the trouble is not
overcome in this way, try a steel washer under the foot; it will divide the friction by doubling the surface. In his case botl
(5) N. W. C. desires a receipt for taking ink out of linen. A. Dip the part in boiling water, and rub it with crystals of oxalic acid; then soak in a
weak solution of chloride of lime-say 1 ounce to the quart of water. Under any circumstances, as soon as
the stain is removed, the linen should be thoroughly

Glycerine.............................. 100 parts. Barium sulphate finely powdered (or

Barium sulphate finely powdered
the same amount of kaolin) Water.
First dissolve the glue in water, heat it, add then the
(6) W. E. B. asks: 1. What is the best mode for the recovery of gold from jewelers' sweeps? If by fire, what is the best way to construct the furnace,
and what the best flux? Also, what modes are practiced by sweep smelters, etc.? A. Sweeps are first ignited, in order to burn up all carbonaceous and to drive off all volatile constituents. The sweeps are then
ground and mixed with litharge and sand, and reduced to lead bullion, which is then treated in the ordinary way by cupellation or zinc desilverization. The process is not one adapted to the ordinary jeweler's converectly to the refiner. You will find "The Goldsmith' Handbook," by George E. Gee, an excellent guide for manipulations i
(7) G. W. H. asks for the method of etching on copper and zinc, both in relief and other-
wise. Also the method of printing. A. The copper ate is first covered with a ground of equal parts ashaltum, Burgundy pitch, and beeswax, and then etched out with solutions of nitric acid varying in
strength. A special variety of printing press is necesary to the printing. A description of the process given in Spons' Workshop Receipts, 1st series
(8) H. W. G. asks the best way to take care of a flute. A. The great desirability in the proper
uniform degree of temperature-not too moist, for of the instrument; nor too warm, for an elevated degree of heat will warp and ultimately crack the wood.
The intermediate effects naturally influence the tone of the flute, therefore it is desirable to preserve it in
(9) B. N. N. asks whether wood can be oated with India rubber. If so, how? A. A solution
of rubber in carbon disulphide may be used to coat ood with. The liquid will evaporate off, leaving a film rubber behind. 2. How to clarify or refine a barre il," and used by roofers to some extent? A. Try the following: Place in a close vessel 100 pounds of the crude coal oil, 25 quarts of water, 1 pound chloride ' lime, 1 pound soda, and $1 / 2$ pound manganese dioxide. Themixture is violently agitated, and allowed to rest for twenty-four hours. When the clear oil is decanted and distilled, mix the 100 pounds coal with 25 pounds resin oil; this is one of the principal points in the manipulation; it removes the gummy parts from the oil, and
renders them inodorous.

(10) M. C. asks for a good receipt for | Brazil wood, $11 / 2$ ounce dragon's blood, $1 / 2$ ounce cochi |
| :--- | neal, 1 ounce saffron. Steep to full strength, and strain 2. Also a good varnish. A. For varnish, rectified spirits of wine $1 / 2$ gallon, add 6 ounces gum sandarac, 3 ounces gum mastic, and $1 / 2$ ounce turpentine varnish; put the foregoing in a tin can by the stove, frequently shaking till well dissolved; strain, and keep for use. If you find

(11) T. P. H. asks: How can I make canvas for a tent mildew and water proof? A. Three baths are prepared, the first by dissolving 1 part neutral
aluminum sulphate in 10 parts cold water. For the aluminum sulphate in 10 parts cold water. For the
second boil 1 part light resin, 1 part soda crystals, and second boil 1 part light resin, 1 part soda crystals, and
10 parts water till the soda is dissolved; add $1 / 3$ part common salt, to separate the water and collect the soap oil soap in 30 parts water. This soap bath must be used hot. The third bath consists of water only. Soak the fabric thoroughly in the first or alum bath; next pass it through the soap bath, and lastly rinse in the
water. Boiled linseed oil is sometimes used to render canvas waterproof. Paint the tent with it, using a
(12) J. S. asks: 1. What is the silve soap (so-called for cleaning show cases, metals, and
polished woods) made of, and what proportions? A. The following are among the many preparations used: Mix $1 / 4$ pound jeweler's rouge with $3 / 4$ pound prepare chalk. Or, $1 / 4$ pound levigated putty powder, $1 / 2$ pounc
burnt hartshorn, 1 pound prepared chalk, and 1 ounce rose pink. Or, $1 / 2$ pound fine chalk, 3 ounces pipe clay 2 ounces white lead, $3 / 4$ ounce magnesia (carbonate), and the same quantity of jeweler's rouge. 2. Is the silve plating fluid made of one ounce of nitrate of silver one ounce of cyanuret of potash, dissolved in water injurious if used on teaspoons, knives, and forks? A The solution is poisonous of itself, but as deposite on various articles, no injurious efrects follow. Th
e silver
(13) J. A. T. asks for a description of the process of lithographing, the preparing of the stone
and method of printing, etc. A. There are two and method of printing, etc. A. There are tw
methods of lithography in general use. In the one drawing is made on the stone with a lithographic crayon or with lithographic ink; in the other method the design is made on lithographic paper, which, on being moistened and passed through the press, leave its design on the surface of the stone reversed. In
either method, water acidulated with nitrous acid, oil of vitriol, or hydrochloric acid is poured over the stone and this, by removing the alkali from the chalk or ink,
leaves the design on it in a permanent form, at the same limes that it etches away a portion of the lights, and renders the surface more absorbent of water. The process of printing is as follows: Water is passed over the
stone, the roller charged with printing ink is passed over the surface, the paper is applied, and copy is obtained by the action of the lithographic press. The
same process must be had recourse to for each copy. The nature of thestone is such that it retains with great tenacity the resinous and oily substances contained in
the ink or crayon employed to form the design, and also
to absorb the water freely; this, combined with the pe culiar affinity between resinous and oily substances and
their mutual power of repelling water, occasions the ink on the printing roller to adhere to the design and to leave untouched the lights. The stones are prepared for lithography by polishing in the ordinary way; the style of work for which they are intended determining the degree of labor best swed on them. For crayon drawing the surface should have a fine grain, but the finish of the stone must depend upon the desired soft ness of the intended drawing; for writing or drawing
on in ink the surface must receive a higher polish, and wist be finished off with pumicestone and water
(14) J. L.-Lava tips wherever made are not accurate in the measure of gas burned, only as llow. The mechanical method of manufacture wil
(15) E. M. asks: What material is used to mix with graphite, to hold it in compact form, fo varying quantities to regulatethe etc.? A. Pure clay in is ground with the graphite, the mixture is pencils, through small holes or in dies to form the pencil lead, then baked in closed muffles.
(16) V. T. writes: I find that scraps of zinc put in a stove fire will consume the soot and
effectually clean out the stovepipe and flue. Would the same treatment of a tubular fire box boiler result in any injury to the boiler? A. We would not recom mend a trial of this plan.
(17) W. E. F.-The method of making phosphorated Babbitt metal is only known to those that make it. Try placing in the bottom of a crucible a little pulverized bone and the Babbitt on top. Melt
and stir. A few experiments will no doubt meet your
(18) W. L. B.-There have been published processes for hardening cast iron, principally by (10) W.
(19) W. C. P.-We know of no better way to harden leather for soles or stiffenings of shoes han by thorough tanning and on the lapstone. The best material to stick together leatherboard and stiffen ings is an especial Para cement made for this purpose,
but it is altogether better not to use any leather
(20) W. S. A. asks: What metal or min eral substance, a ball of which placed in a steam boile
(21) W. B. asks for a formula for a paste wichwin well and firmly stick labels on tin cans fo packing and exportation. A. Try either of the fol
lowing: Soften good glue in water, then boil it with strong vinegar, and thicken the liquid during boiling with fine wheat flour, so that a paste results. Or starch paste with which a little Venice turpentine oi dilute solution of gelatin or of isinglass.
(22) W. B.-The Guibal (French) and the Schiele fan ventilators for mines have been largely
introduced in English mines within the last thirty years. Previous to that, and as far back as the be ginning of the century, various blowers and other devices for mechanical ventilation, more or less faulty, success.
(23) J. B.-Leather belting is made by cutting out the leather lengthwise of the hide and pufficient from the fiough an evener, which skives of hickness from the fleshy side to make it uniform in machine for a time, again trimmed straight and to the
(24) R. I. F. and P. H. W. write: Take three wedges of equal dimensions, except one is cut off half way from edge to back. Place the two whole bottom, of course diverging upward; fill this space with the wedge that is cut off; consider all surfaces on which wedges rest; ter wedge-now, what will be resultant strains? What per cent will be conveyed in vertical stress on horiper cent plane? A. The horizontal stress on the wedges at bottom will be, in parts of the vertical pressure,
1732 . The vertical strain upon the plane is equal to the ertical pressure.
(25) J. W. K. writes: I have a profile of Abraham Lincoln, cast in brass, that I would like to me by what process I can do it? A. If your casting is rough, you can smooth it only by filing and chisel ing. Then possibly a bronze lacquer would serve your purpose, one kind of which you may make by dis-
solving $3 / 4$ pound of shellac and $1 /$ pownd sandarac in 3 quarts alcohol, adding enough extract dragon's blood and turmeric to produce the desired color.
(26) R. J. P. writes: Would you suggest any alteration in the following proportion for a small ieam launch? Length of keel 18 feet, beam 4 feet 6
inches, depth in center 24 inches, fitted with a vertical engine, cylinder $21 / 2$ inches by 3 inches, ports $21 /$ inces by $1 / 4$ inch, exhaust $21 / 4$ inches by $1 / 2$ inch, lap on valve $1 / 8$ inch. Vertical boiler with about 35 feet heat ing surface, carrying 120 to 130 pounds pressure. What speed ought I to get with it in smooth water? Should it be clinker built? If not, how? A. The clinker
build is too light and frail for a steamboat. We canbuild is too light and frail for a steamboat. We canportioned wheel you may make 7 miles per hour.
(27) H. E. D.-There is an armor oil sold by gunsmiths, that will keep cutlery in good condition. The following is aid to keep polished ironwork bright: Common resin melted with a little galli-
poli oil and spirits of turpentine has been found to poli oil and spirits of turpentine has been found to to form a coating which will adhere firmly, not chip off, and yet admit of beingdetached by continued scratching.
(28) A. H. asks: 1. By what means do experts determine how long ink has been written on paper,
and is it possible to determine this with any degree of and is it possible to determine this with any degree
accuracy? accuracy? A. Older writings are more difticult to ree
move from paper than those recently written. Experi move from paper than those recently written. Experi-
ence has so much to do with this subject that it is ence has so much to
very difficult in brief space to give a definite idea. 2. How do inks in general (especially mauve or aniline How do inks in general (especially mauve or aniline
inks) affect the texture of paper? Can this effect be detected with a microscope? A. Inks differ principally in consideration of their ingredients, and, therefore, they are distinguished by their behavior with reagents. 3. When chlorine gas or hypochlorous acia
is used for removing inks, it gives to the paper acted upon a yellowish cast. By what process can the paper be restored to its original appearance and whiteness? By
what means is the polish restored and what menstruy is best to wash the paper with after chlorine or hyyoois best to wash the paper with after chlorine or hypo-
chlorous acid has been used as the bleaching x tent? A. A little gum water will frequently restore the appearance of the paper, but an expert can almost pearanse distinguish the erasure. 4. Supposing I have
alwaym
remod a blot of ink from a sheet of white paper removed a blot of ink from a sheet of white paper
with a liquid. This liquid will remove the gloss of the paper in this particular spot only. Now, how can this spot be restored so that it will have the same
gloss, evenness, and appearance of the rest of the perhens a little alum, has been used, but it is practi cally impossible to restore the condition of the paper
(29) F. B. asksin regard to papier mache floor covering: 1. Will it hurt to use printed paper?
A. According to the article "A Papier Mache Floor A. According to the article "A Papier Mache Floor
Covering," we find Manila paper recommended. It is very likely that newspaper would answer, but it is by no means as strong an article as the variety spoken
of. \quad 2. How thick will that covering be? A. The thickness depends upon whether more than a single thickness of the paper is used-probably from on
sixteenth to oneeighth of an inch in thickness. sixteenth to one-eighth of an inch in thickness.
How long will it be before it is ready for use? That depends entirely upon the drying; if artificial That depends entirely upon the drying, if artificial tion could be carried through and the covering finished
(30) J. X. D. asks a receipt for making or mixing the colors used in printing cretonnes or up-
holstery goods, and how to apply them to the cloth. holstery goods, and how to apply them to the cloth. into a suitable pattern by using colored threads pre-
viously dyed or else the designs are printed into the viously dyed, or else the designs are printed into the
material by what is called roller printing. In the latmaterial by what is called roller printing. In the lat-
ter case too complicated processes are necessary to be described in this department.
(31) C. C. S. writes: 1. What is the cheapest and best way for a young man to become a
machinist? where the trade can be learned. 2. What is a trade union? A. An ongumization of wavmen for ricirmir be received, and compel their members to give their etc. 3. What is the best way to make cheap transmit. ters for a short line telephone? A. A simple transmitter has been made by placing two common nails across
each other on a wooden plate, and antaching a pattern oach other on a wooden plate, and attaching a pattern
wire to each of the nails. Then, having the battery and wire to each of the nails. Then, having the battery and
 Munro's transmitter described. See also "How to Make PiEment No 142. 4. If I heat a gun barrel red hot, will the bore of the gun become larger or smaller than will the bore of the gun become arger or smanler than
it was when cold? A. The bore will expand as the barrel becomes heated.
(32) L. E. H. writes: Can you tell of diny way by which theink used with rubber stamps can be
made to resist moisture? Varnishing causes the ink to spread, and so does not answer the purpose. The objection to printing ink is that it destroys the rubber.
A. The following ink is totally indelible. It consists A. The following ink is totally indelible. It consists
of 16 parts of boiled linseed oil varnish, 6 parts of of 16 parts of boiled linseed oil varnish, 6 parts of
the finest lamphblack, and 2 to 5 parts of iron perthe fingest lampplack, and 2 to 5 parts of iron per-
chloride. Diluted with $1 / 8$ the quantity of boiled oil
varnibh. it can we used for only be used with rubber slamps, for the chlorine in the ink would injure metallic type.
(33) G. H. P. asks: 1. What can I do to soften spruce gum sufticiently for chewing $\begin{aligned} & \text { A. We } \\ & \text { would recommend you to remelt the gum, adding a lit- }\end{aligned}$, wie beeswas to the mixixture. Lard, grease, and rosin are
tlommen y frequently added directly to the kettle during the first boiling. 2. How is gum done up in papers for the
trade? A . When the mixture in the pot has become trade? A. When the mixture in the pot has become
sufficiently thick, and is well stirred, it is rolled out in a sufficiently thick, and is well stirred, it is rolled out in a
sheet about one-quarter inch thick, and then chopped sheet about one-quarter inch thick, and then chopped
into pieces about one-half inch wide, three-quarters of an inch long. These pieces are wrapped in tissue pape
and packed in wooden boxes.
(34) L. J. S. writes: We are using several large inspirators to feed our boilers, and we think they wouta work beterer ir we ise to pace an oil cap
on the steam supply pipe for inspirators but on the steam supply pipe for inspirators; but as we use
the steam from these boilers for heating our brewing the steam from these boliers for heating our brewing that would not be detrimental to the water for said purposes, etc.? A. We fail to recognize any advantage to be derived by the use of an oil cup assuggested by you, but the best liquid to use would be glycerine.
(35) J. J. R. writes: What will soften the water in our well, and still leave it fit for drinking and cooking purposes? The water is very hard, and it is
as much as we can do to wash with it. A. By adding as much as we can do to wash with it. A. By adding
lime to the water, and allowing the mixture to stand for lime to the water, and allowing the mixture to stand for
24 hours and then filtering, the condition of the water will be improved. See the article on "How to Soften (36) A. W. asks for information regarding the "castor bean," its value, and mode of making
oil ready for the market. A. See the article on "The Castor Bean Pla
lows: The seeds having been thoroughly cleansed from absorbs lead. Tin lined lead pipe is safe and gives pure
the dust and particles of the pod with which they are the dust and particles of the pod with which they are water. You can make an air condenser by using an un
contaminated, are placed in an iron tank and heated to u usually large amount of surface in iron or tin lined lead such a degree as will liquefy the oil without any risk of ing being known at "first quality." The pressed seed sheaped up; on the following day it is again heated and pressed, and gives a " second quality "oil. Occa ed with corben cake from the second presss a small ditional quantity of thick, dark, common oil. All quall ities need purifying and clarifying. Castor oil is sell-
ing at 17 to 17% cents for barrels, and $17 \% / 2$ to 18 cents case
(37) N. E. C. writes: 1. Will you please explain the nature of ventriloquism? Why is it an acis accomplished by modifying the tones of the voice, and this is done by varying the position of the mouth or pharynx, and either dividing the buccal or ngeal cavity into several compartments or throw ng them into one. 2. Has the ventricle great devel it due to constant practice? A. It has been demonstrated that the vocal organs of the ventriloquist are the same as those of other men, nor is his use of them
materially different from that of others. It is therematerially differen
fore due to practice
(38) S. M. writes: Can you give a formula for a brilliant waterproof finishing polish to be stone and water? The polish to be applied the same as French polish. Use linseed oil 11/ 1b., amber 1 lb. oz. Boil the linseed oil in an untinned copper vessel, and suspend in it the litharge and minium in a small bag, which must not touch the bottom of the vessel,
Contin continue the boiling until the oil has acquired a deep brown color, then take out of the bag and put in a boiling being always continued. Refore the amber is added to the oil it is to be mixed with 2 oz. linseed oil and melted over a fire that is well kept up. When the mass is fluid, it is to be boiled and stirred continualil preserve it in bottles tightly corked. When this var nish is used, the wood must be previously well polished and covered with a thin coat of soot and spirits of
turpentine. When the coat is dry some of the varnis may be applied, which should be equally distributed on every part with a small, fine sponge. This opera-
tion must be repeated four times being always careful tion must be repeated four times, being always carefuu
that each coat will be well dried first. After the last that each coat will be well dried first. After the last
coat of varnish, the wood must be dried in an oven nd afterward polished.
(39) R. R. S. writes: Can you suggest anything that will deodorize kerosene oil of 150 de-
grees fire test without injuring the quality of the oil for
only have a faint odor. Try the following: Chloride of lime is first introduced into the cask or other receptacle containing the oil, in the proportion of about 3 oz. o chlorine gas is evolved in the oil or spirit. If necessary the evolution of the gas may be assisted by pouring in
hydrochloric acid and then agitating, so as to bring che whole of the liquid into intimate contact with the cortainingy slaked lime, which, having an afftinity for the bs the same.
(40) C. N. S. desires a recipe for a whitewash suitable for outbuilangs on a farm; something can be tinted. A. For one barrel of color wash use aalf a bushel white lime, three pecks hydraulic cement
 lime, cut the lampblack with vinegar, and mix well to-
gether, then add the cement and fill the barrel with gether, then add the cement and fill the barrel with
water. Let it stand twelve hours before using, and stir frequently while putting on. This wash is not a clear white, but a light totone color, which may be more or less changed by the other colors. This covers well, hardens ithout scailing, and will not wash off.
(41) M. N. B.-The copying property of inks is due principally to the addition of glycerine sugar, or sometimes a little chloride of lime. But after
taking this quality out by a series of impressions, we no way of restoring it.
(42) E. M. C. desires a recipe for cream candy. A. See the article on "Confectionery at Home,"
(43) W. E. M. and F. X. M.-The following process will probably be the easiest for your work
ing on stones and minerals:
Take a piece of iron about ing on stones and minerals: Take a piece of iron about
2 in. by 8 min , and $\frac{2}{2}$ in. thick, and fasten it to a piece of wood so that the latter can be used as a handle
Then with sharp sand and water grind until a level surface free from hammer marks is obtained. The specimen to be polished is then bound in a frame of 6 in. the edges are filled with plaster of Paris. The grinding process is then continued with No. 60 emery until the surface is sufficiently smooth, then polished off with a little putty powder and felt. The felt can be nailed right over the rubber previously used. Minerals are
generally broken by means of chisels and hammers and then ground as previously described.
(44) C. D. T. writes for the best and most simple means for deodorizing mutton suet or tal
low to be used in the manufacturing of pomades Boil the tallow for ten minutes with about one.third its weight of water, each pint of water to contain a smal quantity of common salt and a little powdered alum; strain the water off, and let the fat rest for some hours before using. Injecting steam is com monly used. Hy-
drogen peroxide would be likely to accomplish your ob-
(45) H. W.-Distilled water obtained hrough a condenser of iron pipe and aerated is healthy, and often used on shipboard when short of other water
supply. Lead pipe is not safe, as the distilled water
pipe, which saves the cost of pumping waterfor cooling pipe, whi.
the coil.
(46) G. C. B. writes : 1 . What is the largest telescope in the worla? A. See ScIENTITIC Ambrican Supplement, No. 485. 2. My son's hair is
yery red; do you know of anything to change its co Yery red; ; o you know oo anything to change its color,
or teast to make it look darker? A. You can lighten the hair by using hydrogen peroxide, or darken it by using Nacquet's Bismuthic Hair Dye, described in SolENTHFIC AMERICAN SUPPLLEMENT, No. 35G. 3. What is
aniline? A. The coloring substanceprepared from coal aniline? A. The coloring substanceprepared from coal
tar. 4. Please to state what will thin my son's hair, tar. 4. Pease to state what will thin my son's hair, as
it is very thick? A. There is nothing that we can recommend for this purpose.
(47) J. R. M.-Patterns for bronze statu ary are modeled in wax, clay, or plaster of Paris, from which sectiops are moulded and cast in zinc or type
metal. These sections are finished and fitted togethe in convenient sections or whole parts for moulding in or brass.
(48) W. H. W.-The black iron work for fireplaces is japanned. The Japan varnish after spread
ing upon the work is baked in an oven at 260 and comes very hard. There is no lacquer or varnish that you can air dry that will stand the heat for freplace
iron.
(49) Z. T. D. asks: How much water
per second will flow through a 14 inch pipe, 80 feet long, with 8 feet head? Also. 18 inch and 21 inch pipes, same
conditions? A. The discharge for 14 inch pipe, 18 cubic feet per second, For 18 inch pipe, 34 cubic feet per
second. For 21 inch pipe, 50 cubic feet per second.
(50) D. F. S. writes: I have a brass clock spring 1 inch wide, and wish to cut a few pieces twelve inches long and straighten them. How can
this be dones A. Draw the spring over. this be done? A. Draw the spring over a piece of
wood, at the same time scratch the divisions with a wood, at the same time scratch the divisions with a
divider. Then hold the spring so that it will not slip fine saw saw along the scratched lines until the hard
(51) A. S. R.-A force of 180,000 pounds er squareinc burned in a chamber only equal to its own volume By dividing 180,000 by the proportion of the volume o the powder to the volume of your chamber, you may
approximate to the pressure which may be obtained. approximate to the pressure which may be obtained.
Thus with a chambera thousand times larger than the Thus with a chambera thousand times larger than the
volume of the powder, you may have 180 pounds pressure.
(52) J. D. \& Co. ask a process to pre vent the smuts from escaping in the air from a lamp
black house. A. Carry the outlet of your lampblack black house. A. Carry the outlet of your lampblack
chamber to one side and into the top of a vertical shaft, where place a rose jet of water. Have the water draught down the shaft. The water will gather the
waste lampblack, which can be either utilized or run waste lampblack, which can be either utilized or run
into the sewer. A vent at the bottom of the shaft may connect with a chimney or into the open air. A pump

INDEX OF INVENTIONS

United States were Granted April 21, 1885,
AND EACH BEARING THAT DATE.
$\frac{\text { [See note at end of list about copies of these patents.] }}{\text { Acid, manufacture of hydrochloric, E. Solvay.... } 316,300}$
Air brakes, automatie pressure regulator for, \mathbf{w}.
Dunbar............................. 316,0
Alarm. See Burglar alarm. Door alarm. Elec-
tric alarm.
Ammonium sulphate, ap
ture of, c. Meyer.

Axle, carriage, W. Jones (r) Axle lubricator, J. A. Lane

Axles or shafts, device for turning, J....................
Bag, pocketbook, or purse frames, fastening fo
L. B. Prahar................
Baling press, J. E. Chidester

Barrel press, W. R. Hallett.........
Battery. See Secondary battery.
Bearing, anti-friction, J. E. Eval
Bearing, anti-friction, J. E. Evans
Bearing, anti-friction, J. Flannery
Bed bottom, T. C. Bentley
Bed, cot, W. H. Moore....
Bed, cot, W. H. M,
Bed frame, spring, G. E. Bedel
Bed or cot, folding, C. T. Sega
Bedstead, G. Crowther............
Bedstead, folding, F. H. Walker
Bee swarmer and hiver, combined, S. E. Fergu
Bevel, J. W. H. Double
Bicycle, W. Clemson .
Bicycle, G. W. Marble
Binder, etc., carrier, C..................
Black-leading machine, E. A. Blake
Blast furnace, F. Brown.,
Block. See Paving block
Block. See Paving block.
Board. See Multiple switch board. Plaiting
Boiler. See Culinary boiler. Heating boiler. Steam boiler.
Bolt. See King-b
Bolt. See King'bolt.
Bolts, machine for forming screw threads on, J .
C. Cochrane
Book case, roller shelf, W. N.
Boot or shoe, W. T. Martin.
W. Heysinger.

Box. See Tree box.
Box fastener, J. L. Stevens
Box fastener, J. L. Stevens........................
Box toes, machine for forming, Tyler \& Taylor Bracelets slide, H. A. Church.
Bracket. See Lamp bracket.
Bracket. See Lamp bracket.
Brewing beer. J. Schafhaus.
Brick truck
Brick truck, D. J. C. Arnold...
Bronzing machine, J. J. Floyd
Buckle, W. H. Har
Buckle, E. Kraft..

Buckle, trace or harness, D. G. Gay................. 316,25
Buggy body, C. P. Kimball.
Bugglar alarm, electric, F. G. Iyon.................................616,277

Button and nec
T. Kelting.

Butcon, changeable, F. A. A. Fox.............................. 316,044
Button fastener, T. E. Keavy............................ $316, \ldots$
Button fastener, E. D. Steele............ $316,304,316$
Buttonhole cutter, Hudson \& Barry....................316,316,366
Buttonhole cutter, M. Kamak........................ 316,151
Button or knob, W. F. Ware................. 360.20
Button setting instrument G. T. Fisher...
Button setting instrument, G. T. Fisher............ 316,025
Cans, screw top for oll and other...................... 319, $\mathbf{3 1 6 , 1 6 2}$
Canvas and folding the edges thereof, machi.. 316,001
Canvas and folding the edges thereof, machine
for slitting, A. M. Cutler.................. 316,337

$\begin{aligned} & \mathrm{Car} \\ & \mathrm{Car} \\ & \mathrm{Car} \end{aligned}$	

Car coupling, P. F. Corbett.............................. 316, 36,11
Car coupling, w. F. Denney.............11 316,128
Car coupling
Car coupling, J. C. Yeiser... 316,213
Car starter, R. W. Thompson......................... 316,417
Carbureting and odorizing natural gas, apparatus
for, S. J. Hayes................................... 316,033
Carding machines, J. Abbott.................. 36,215
316,169
arpet fastener, W. L. Pamelee..................... 316,169
Carrier. See Binder carrier. Wire carrier.
Case. See Book case. Lock case. Watch case.
Caster, S. M. Michelson.............................. 316,382
Centrifugal machines, electric driving apparatus
for, A. Watt..................................316,316, 316,317
Chair. See Dentists chair. Reclining chair.
Spring vibrating chair. Tilting chair.
Spring vibrating chair. Tilting chair.
Chair seat, C. Closterman...............
316,333
316,230
ner \& Von Miller....................... Doe 316,249
Chinaldine, formation of methoxy and ethoxy,
Doebner \& Von Miller............................... 316,248
Chlorine, manufacture of, E. Solvay......... 316,195
Churn, H. S. Carr.. 316,007
Churn dasher, w. H. Gibbs...................36,028
Churning device, S. B. Wood et al............... 316,422
ends of braia, ropes, etc
Clay crushing machine, W. W. Wallace (r)......... 10.584
Clock, calenarar, D. J. Gale................... 136,244
Clock, electric pendulum, F. \& O. Haenichen..... 316,360
Clock movement, electric, J. E. Carey.............. 316,112
Clock striking train, A. G. Hovde..................... 316,364
Clover huller, D. Whiting....................... 316,210
Clover huller cylinder, F. Strobel.316.308
Clover huller cylinder, F. Strobel........................... 316,308
Clutch, friction, J. Thompson.............................3600
316,035
Coal scuttle or hod, It. C. Hinman............
Coal scuttle or hod, II. C. Hinman.................... 316,035
Coflee roaster, J. C. Salzgeber........................316066
Coloring matter derived from naphthol, o. Hoff-
mann.. 316,036
Comb. See Cury comb.
Concentrator, J. E. Clayton............................. 316,11
Concentrator, J. E. Clayton........................... 316,11
Cooler. See Water cooler.
Corn husking machine, Johnston \& Stewart....... 316,150
Corset stays, manufacture of, M. W. Henius....... 316,034
Corset steel clasp or fastening, L. Hill............... 316,148
Cotton gin, C. T. Mason, Jr........316,280, 316,388, 316,379
Couch, T. R. Jones................................. 3166,043
Coupling. See Car coupling.
Coupling device, friction, R. H. Hill................ 316,149
Coupling device, friction, R. H. Hill................. 316,149
Crushing and pulverizing mill, J. Cherney......... 316,31
Culinary boiler, C. W. Geer.................. 316,257

Cultivator, S. A. Moulton............................... 316,164
Cultivator, Torrence \& J Jernigan................ 316,313
Cultivator attachment. J. E. Walker............ 316.085
Cultivator spring, J. Goodnough......................... 316,140
Curry comb. W. T. Gill................... 316,138
Cut-off, automatic, G. W. Parker..................... 316,386
Cutter. See Buttonhole cutter. Feed cutter.
Dentist's chair, O. C. White.................... 316,100
Dentist's chair, O. C. White...........................
Digger. See Potato digger.
Ditching machine, F. lumb...31596
Door alarm, shop, A. Benezit................

Drawer, furniture, E. C. Roberts. .
Drill. See Matchet drill. Rock drill.
Drying apparatus, Free \& Baldwin................. 316,353

Earth loader and conveyer, M. E. Cook............ 316,24
Electric alarm and signal, H. . . Roome........ 36,183
Electric circuits, safety box for, W. L. Stevens... 316,077
Electric circuits, switch or circuit breaker for, E.
Weston............................... 316,097
lectric current to moving objects, apparatus for
the transmission of an, Goldberg \& Fyfe.
the transmission of an, Goldberg \& Fyfe........ 316,139
Electric elevator, S. S. Wheeler (r)............ 10,585
Electric machine regulator, dynamo................ 10ston.. 31,0099
Electrical switch or circuit controller, E. Weston. 316,096
by, W. L. Stevens................................. 316,076
Electricity, system for the transmission of power
by, E. Weston.................................... 316,090
Electro-magnetic motor, E. Weston......36,091 to 316,093
Elevator. See Electric elevator.

End gate, wagon, H. Stow... 316,
Engine. See Steam engine
Engine. See Steam engine.
Excavators, dredgers, etc., conveyer for, M.
Marolle......... 316
Extractor. Se Wee extractor.
Feed cutter, F. Blocki.................................... 31
Feed regulator, boiler, C. F. Wilson............
31
 Fence wire stretcher, C. Konrad...................... 316,165
Fertilizer distributer, J. E. Simpson.............. 316,071 Fifth wheel, J. W. Leete..161624
Filter, W. Dearden..........................301
Firearm, magazine, S. H. Roper............... 316,416 Firearm, magazine, S. H. Roper...................... 316,401
Firearm sight plumb, S. W. Taylor............... 316,416
Fire escape and water tower combined, C. A.
Lieb and.............................. 316,375 Fire escape lad... Swenson...........
Barnes...62,237
Fire kindle, G. W. Brown................ 316,361
Floor, freproof, W. B. \& C. H. Hayden............ 316,175
Flooring, ceiling, or dado, wood, A. Putney..... Flooring, ceiling, or dado, wood, A. Putne........... 36, 36,175
Flour bolting machines, brush for, J. B. Richards. 316,179 Fodder from residual products of distilleries and breweries, process of and apparatus for pro-
ducing, H. Hencke...

Folding machine, L. C. Crowell
Folding table, N. N. Gordon....

Fork for digging vegetables, J. A. Ervien.........
Frame. See Bed frame. Transparency frame. Furnace. See Blast furnace. Straw burning
furnace.

ing. J. M. Brown........ Gauge. See Siding gauge.

 Gas burning apparatus, A. RandolGas lighter, electric, E. H. Wright Gate. L. D. Wade Gate. L. D. Wade.................
Glass cutting or trimming tool, J.
Globe, folding, , D. D. Washhington
Glove fastening, J. Blomstrom. Glove fastening, J. Blomstrom........................
Glycerine from fatty matters, extracting, B. Grain binder, I. I. anc.........er. Grain cleaning and drying machine, J. Ritchie. Grain scourer, M. D. Beardslee Gutters of skylights, roofs, vault
for, J. F. Stuckert.............
Hammock support, V. P. Travers.
Hanger. See Door hanger. Hanger. See Door
Harrow, S. H. Cook

Hay rake, horse, S. R. Ny
Hay tedder, W. E. Knox. Hay tedder, W. E. Knox. Heater. See Feed water heater.
Heating boiler, steam, J. w. Heating boiler, steam, J. W. Latimer.............
Heel attaching machine, F. F. Raymond, 2d... Heel rands from counter blanks, cutting, E. M Hinge for trunks, brace, Ransom \& Sangster.. Holder. See Lamp holder. Paper holder. Pen-
cil and crayon holder. Window screen Hop yard twiner, E. T. Mulligan Huller. See Clover huller
Hydrant, J. Jones
Hydrant, J. Jones.................
Hydraulic elevator, H. F. Shaw Hydraulic press, D. C. Mayo.
Hydrocarbon vapor burner, Hydrocarbon vapor burner, Myers \& Wallace....
mayer..................... Induction and other elect
Gaulard $\&$ Gibss...... Induction machine, P. Haerry. ron, pile for merchant, G.
Ironing table, H. \mathbf{C}. Hough. ziln for burning bricks, tiles, etc............... F. Plumb King bolt, W. C. Shipherd.... King bolt, clip, W. C. Shipherd. son \& Palmer.

amp, G. M. Clute.

Lamp bracket, electric incan
Lamp burner, G. H. Wilson.
Lamp, electric arc, L. Colburn.
Lamp, incandescent, E. Weston.
Brangs.

antern, L. B. Wood
Lasting pinchers, K. K.
Latch, J. W. Helton.
Latch and lock combined, E. R. W
athe drill rest, G. A. Sanders
veather brushing and treating machine, F .
Nelson......

eather trimming, F. L. A. Ernst.
Light. See Skylight.
Lock. See Door lock. Snap lock.
Lock, J. W. H. Doubler
Lock, J. W. H. Doubler..
Lock case, H. L. Spiegel
Locket, C. H. Cooke....
Locomotive traction increaser, G. P. Merrill... rating throttle and brake valv
Lubricating cup, E. A. Wadhams
Lubricating the loose pulley of a shaft, mechan-
Lubricator. See Axle lubricator.
Mail bag catcher, H. De Lanoy..
Malt drier, Platt \& Aitchison.

Marker for seedis
J. E. Paradis

Measuring staff, registering, H. Gregg
Metal bars, etc., machine for straightening, L.
Metal, device for spiraling, J. B. Robinson. M. Williams

Mill. See Crushing and pulverizing mill. Rolling Mould, H. A. Newcomb
Mortar, concrete, etc., apparatus for mixing.
Motor. See Electro-magnetic moto

Packing ring, metallic, L. Schna
Padlock, permutation, F. Egge..
Paper folding machine, F. Von Martini
Paper holder and
Paper holder and cutter, C. C. Johnson.
Paper making machines, suction box for, H.
Paper tubes, machine for sizing, A. Dickerman.
Paraffine from
H. Prentiss.
Paving block, W. C. \& E. F. F. Murdoci
Pencil, artifcial slate, S. Kraus.....
Pencil or crayon holder, M. Rubin
Pencils, colored lead for, S. Kraus
Piano action, W. C. Ellis
Piano action, W. C.
Pin. See Scarf pin.
Plaiting apparatus, J. H. G
Plaiting board, J. Curtin...
Plane, L. C. Rodier
3

$4,316,3$
. 3616

${ }^{2}$
.. 316,3
.. 316,
$.316,315$
$.316,330$
316,315
366,430
3
316,087
t

316,24
315,99
316,29
316,371
. 316,165
316,042
316,070

316,048
316,385

316,181

r, 316,

316,354 316,143 316,209

316,143
316,209
36,363
316,1355
316,397 . 316,1921

$.316,423$ | $.316,155$ |
| :--- |
| $.361,117$ | . 316,697 | 316,422 |
| :--- |
| 316240 | 3162,240

316,088
3,024 316,094 316,003 316,180 316,302

316425 | 316,425 |
| :--- |
| 316,246 |

316,357
316,265
316098 316,427
316.185
$.316,167$
316,074
316006
316,006
316,024

316,122
316,411
316,118
${ }^{316,380}$

316,188	Spinning and twisting machine, W. T. Carroll....
316,345	machines, lever screw for holdin

| weight levers of rolls of, T. T. H. Speakman |
| :---: | :---: |

Splint, plaster-of-Paris, J. P. W.
Spring. See Cnltivator spring.
Spring. See Cnlt
Spring, L. Sterne
Spring holding device, C. Riessner
Spring vibrating chair, J. Edson..
316,221
316129
316,058 Stand. See Bath stand.
$\begin{array}{ll}\text { 316,166 } & \text { Starch, manufacture of, J. C. Schuman.....316,404, } \\ \text { 316,374 } & \text { Starch, treating and pre }\end{array}$

316,402	Starch, treating and preparing, J. C.
Steam boiler, G. G. M. Hardingham.	

| , 101 | Stean boiler, S. P. Hedges. |
| :--- | :--- | :--- |
| Steam boiler, L. Zeller..... | |

steam boiler man-holes and a
manufacture of, J. Tordoff.
Steam engine

316,355
316,012
31
316,296
316,079

6,122	Planing machine attachment, H. Leverentz......
6,142	Planing machines, cross bar shoe for, A. B. Bean.

Planter, corn, A. J. Wood..............
Planter, cotton and corn, L. Easley....
Planter, cotton seec, J. N. Gardner...
Planter, potato, Agee \& Fraser...................
Planter, potato, J. D. Mad
Plow, W. A. Lee...........
Plow,
Plow, steam gang, E. Pen
Plow, sulky, P. Clines....
Plow, wheel, w. Newlin. \qquad 316
6,388 to

関

$\stackrel{0}{6}$

Solverfisements.

CET THE BEST AND CHEAPEST.

Exclusive Agents and Importers forthe United States
of the
PERIN BAND SAW BLADES,

EDISOO Electill LaMPS.
 21 and 23 Ann Street, N. Y.

THE MAY CENTURY.

GEN. GEO. B. McCLELLAN,
in which the writer speaks freely of his relations with Secretary Stanton, and enters fully THEFIRST ADVANCE ONRICHMOND: GEN. JOS. E. JOHNSTON, GEN. GUSTA DUS W. SMIT
GEN. JOHN D. IMBODEN. Gen. Johnston (who
article is a reply to J effe son Davis) commanded against McClellan until
he was wounded. Gen he was wounded. periences at Bull Run wall Jackson
"RECOLLECTIONS OF A PRIVATE" describes the repulse of the troops which Gen.
Johnston was leading when he was wounded.
GEN. GRANT AS A SOLDIER,
by Gen. Adam Badeau, with a full-page por-
trait from a photograph taken in 1864 ;
THE RESCUE OF LIEUT. GREELY,
by a member of the Relief Expedition, ap-
proved by Lieut. Greely; papers on the New Orleans Exposition, Typical Dogs, "Immortality and Modern Thought;" and on Whittier, by E. 35 cents. The Century Co. New-York.

Raw Materials and the Distillation and Rectification of Alcohol Preparation of Amot ther

 Graduate of the royal t. brannt,

SEBASTIAN, MAY \& CO Screw Cutting Lathe

How to prepare lantern slides
 THE HARDEN STAR HAND GRENADE FIRE EXTINGUISHER

 25 Wabash Ave. Citicago A SIMPLE PANTOCRAPII.-DESCRIP

freBrush:

PHOTOGRAPHIC OUTFITS
 MICROSCOPES, telescopes, FIELD-GLASSES, MAGICLANTERNS BAROMETERS, THERMOMETERS. DrawingInstruments, Philosophical and Chemi-
cal 1 Pparatus.
List and Descriptions of our Then Catalogues sent FREE

NEWSPAPER FILE

Cornell University
Mechanic Arts, Mathematics, Civil Engineering. Electrical Engineering, Architsctury, Angrical Chemistry, Chemistry and Physics, History and Political Science, iterature, Natural History, Philosophy, Science, Entrance Examinations begin at II A. M., June For the Uivenisiry Refirstr, firing full informa
 PETROLEUM AS MNEL IN LOOOMO-

BOILER \& MACHINERY FOR SALE

 EMERALD GREEN--A PAPER BY R.

OPIUM
 MORPHINE HABIT

 AERIAL NAVIGATION. - DESCRIP-

WEAK
 NERVOUS MEN

 DOUBLE BOATS.-TWENTY.ONE IL-

The expenses attenairy the procoring of patents in
most foreism countries having been considerantly re.

CA NA DA. -The cost of a patent in canada is even CA NA DA.-The cost of a patent in Canada is even
less than the cost of a United States patent, and the Brunswick, Nova Scotia, British Columbia, and Mani-

The number of our patentees who avail themselves of the cheap and easy method now offered for obtaining
patents in Canada is very large, and is steadily increas ENQLIAND.-The new English law, which went into
torce on Jan. ist. enabies parties to secure patents in force on Jan. 1st. enables parties to secure patents in
Great Britain on very moderate terms. A British patent includes England, scotiand, Wales, Ireland and tie
Channel Islands. Great Britain is the acknowledged
financial and commercial center of the world, and her goods are sent to every quarter of the globe. A good
invention is likely to realize as much for the patentee im at home, and the small cost now renders it possible for almost every patentee in this country to secure a pa
tent in Great Britain, where his rights are as well pro OTHER COUN'IRIES.- Patents are also obtained n very reasonable terms in France, Belgium, Germany,
Austria, Russia, Italy, Spain (the latter includes Cuba and all the other Spanish Colonies), Brazil, British ludia, An experience of Forty years inas enabled the
publishers of THE SCIENTIFIC AmERICAN to establish competent and trustworthy agencies in all the principa
foreign countries, and it has always been their aim to y done and their interests faithfully guarded A pamphlet containing a synopsis of the patent laws of all countries, including the cost for each, and othe
formation useful to persons contemplating the proMIENN \& CO., Editors and Proprietors of The ScINTIFIC AMERICAN, cordially invite all persons desirin trade-marks, in this country or abroad, to call at their offices, 361 Broadway. Examination of inventions, eon-
sultation, and advice free. Inquiries by mail promptly answered. MUNN \& Co Publishers and Patent Solicitor

Shavertisements.

KORTING UNIVERSAL INJECTOR

Operated by one handle NO ADJUSTMENT FOR VARYING STEAMO PRESSURE. OFFICES AND WAREROOMS	Philada., 12th \& Thompson Sts.	New York,
Boston, 61 Oiliver st.		
Street.		

 WANIIED second-hand Planer and Matcher. Modern
build. N. CHURCHILL, Monroe, Wis. THE COPYING PAD.-HOW TO MAKE

H.W.JOHIS' asbesfos ROOFING.

sbestos Roof Coating and Cement for Preasbestos building felt

Asbestos Boiler Coverings.
 A ${ }^{2}$ BESTOS PISTON-ROD PACKING. ASBESTOS WICK PACKING.
Asbestos Gaskets, Rings and Washers, Asbestos and
H.W.JOHNS M'F'GCO.
 Billiter House, London.

PATENTS.

 lication of toe scientific american, continue to examine Improvefor Inventors.

In this line of business they have had forty years experience, and now have unequaled facilities fo

 the preparation of Patent Drawings, Specifications, and the prosecution of Applications for Patents in theOnited States, Canada, and Foreign Countries. Messrs Munn \& Co. also attend to the preparation of Caveats, Copyrights for Books, Labels, Reissues, Assignments,
and Reports on Infringements of Patents. All business and Reports on Infringements of Patents. All business ness, on very reasonable terms.
taining full information about Patents and how to pro cure them; directions concerning Labels, Copyrights,
Designs, Patents, Appeals, Reissues, Infringements, As signments, Rejected Cases, Hints on the Sale of Pa We also send. free of charge. a Synopsis of Foreign
Patent Laws, showing the costiand method of securing Patent Laws, showing the costand method of securing MUNN \& CO., Solicitors of Patents, Washington, D. C.

dJWIKINS BROS: VALVGB. Gate, Globe, Angle, Check, and Safety. mandfactured of best steam metal
 JTNTKINS RRO:

ROOFING.

THE PAYNE AUTOMATIC ENGINE

 APPARATUS FOR ELECTRICAL MEAS

AUSTRALIA. Bona fide American Manufacturers
 ENGINEER'S POCKKT BOOK. BY

WREFROE

STEAM ENGINE.-THE CADET EN

Portable Storage Batteries

 POCKET SIZES. FULLY EFFICIENT.Constant Current Electric Storage Company

SPEAKING TELEPHONES.

 Address all communications to the
AMENE Company
M5 Millt Stret. Boston, Mass.

HOW TO LAY A DRAIN.-A PAPER

WATER-POWER WITH HIGH PRES

Rider's New and Improved COMPRESSION Hot Air Pumping Engine
 DELAMATER IRON WORKS,

IRON REVOLVERS, PERFECTLY BALANCED, Has P . H. \& F. M. ROOTS, Manufacturers,
 SEND FOR PRICED CATALOGUE. THE RAILWAY BUIL'DER. A HAND

PIPG GOVGRING:

Fireproof Non-conducting Coverings for Steam Pines,
Bilers, and int int surf taces. Made in sections three
 CHALMERS-SPENCEE. CO.
STEAM BOILERS - THE BOILER

HARRIS ORORLISS ENGINE,

DROP FORGINGS OF RoN

A SHOE THAL WIL NOT PINCH.-

WITHERRY, RUGG\& RICHARDSON Manuacturers
of Patent Wood Working Machinery of every descrip

The Scientific American.

THE MOST POPULAR SCIENTIFIC PAPER IN THE WORLD.
Published Weekly, $\mathbf{4 . 2 0}$ a Year; $\mathbf{8 1 . 6 0}$ Sls Menthc This unrivaled periodical, now in its forty-first year,
continues to maintain its high reputation for excellence and enjoys the largest circulation ever attainied by any
scientific publication. Every number contains sixteen large pages, beautifully style a deserciptive recorr of the most novel. interesting,
and important advances in science, Arts, and Manufacand important advances in science, Arts, and Manufac-
tures. It shows the progress of the worla in respect to ery, Mechanical Works, Engineering in all branches, Chemistry, Metallurgy, Electricity, Light, Heat, Archi-
tecture, Domestic Economy, Agriculture, Natural History, etc. It abounds with fresh and interesting subjects
for discussion, thought, or experiment; furnishes hunor discussion, thought, or experiment; furnishes hun
dreds of useful suggestions for business. It promote Industry, Progress, Thrift, and Intelligence in every community where it circulates.
The Scientiric American should have a place in
every Dwelling, Shop, Office, School, or Tibrary. Work. every Dwelling, Shop, Office, School, or Library. Work Presidents, Officials, Merchants, Farmers, Teachers, Lawyers, Physicians, Clergymen, people in every walk
and profession in life, will derive benefit from a regular reading of THE SCIENTIFIC AMERICAN.
Terms for the United States and Canada, $\$ 3.20$ a year $\$ 1.60$ six months. Specimen copies free. Remit by Postal Order or Check.
MUNN $\&$ CO., Publishers,

361 Broadway, New York

Scientific American Supplement. rate and distinct publication from 'JHis Scientific Am. ERICAN, but is uniform therewith in size, every number
containing sixteen large pages. THe Screntific American Supplimment is published weekly, and includes very wide range of contents. It presents the most re-
cent papers by eminent writers in all the principal departments of Science and the Useful Arts, embracing
Biology, Geology, Mineralogy, Natural History, GeoBrology, Geology, Mineralogy, Natural History, Geo
raphy, Archæology, Astronomy, Chemistry, Electricity, Light. Heat, Mechanical Engineering, Steam and Railway Engineering, Mining, Ship Building, Marine Enineering, Photography, Techhnology, Manufacturing
Industries, Sanitary Engineering, Agriculture, HortiIndustries, Sanitary Engineering, Agriculture, Horti-
culture, Domestic Economy, Biography, Medicine, ete. A vast amount of fresh and, valuable information per-
taining to these and allied subjects is given, the whole arofusely illustrated with engravings.
The most important Enyineering Works, Mechanisms,
and Manufactures at home and abroad are represented
nd Manufactures at home and abroad are represented
and described in the SUPPILEMENT.
Price for the SUPPLEMENT for the United States and Canada, \$5.00 a year, or one copy of the SCIENTIFIC AMERICAN and one copy of the SUPPLEMENT, both mailed
for one year for $\$ 7.00$. Address and remit by postal order or check, MUN \& Co.. 361 Broadway, N. Y., Publishers Scientific Amenican.
To Joreign Subscribers.- Under the facilities of
the Postal Union.the ScIENTIFIC Americav is now the Postal Union.the Scientific American is now sent
by post direct from New York, with regularity, to subby post direct from New York, with regularity, to sub-
scribers in Great Britain. India, Australia, and all other
British British colonies; to France, Austria, Belglum, Germany,
Russia, and all other European States; Japan, Brazil, Mexico, and all States of Central and South America. Terms, when sent to foreign countries, Canada excepted,
$\$ 4$, gold $;$ for Scientific AmLrican, one year; $\$ 9$, gold, for both SCIENTIFIC AMLRICAN and SUPPLEMENT for one year. This includes pcstage, 刃hich we pay. Remit
$\frac{\text { MUNN \& CO.. } 361 \text { Broadway, New York. }}{\text { PRTMTITM TMTKE. }}$

