
a WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

NEW ẎORK, MAY 2, 1885.

EXHIBITION OF PUMPING ENGINES BY C. H. DE $\begin{aligned} & \text { of even the smallest property owner. They are par- }\end{aligned}$ LAMATER \& CO. AT THE NEW ORLEANS EXPOSITION.
The accompanying illustration shows the exhibit of pumping engines manufactured by the De Lamate Iron Works, foot of West 13th Street, New York city It is particularly noticeable on account of showing the great variety of pumping engines manufactured by this one firm, which extends from the smallest practicable hot air pumping engine to the largest size steam pump.
These works for several years past have been extensively engaged in the manufacture of pumping engines of every variety. They have given pumping engines for domestic use a vast amount of attention, and their exhibit attracts very much notice for this reason, as it contains several machines designed for that special purpose, and they all show the result of skill and thought combined with the knowledge of the varied requirements of the numerous conditions of water supply and the duties to be performed by domestic pumping engines. These pumping engines use atmospheric air for a motive power. The air is alternately com pressed, heated (which expands it, thus furnishing the power), and cooled. The same air is used over and over continuously. There is no exhaust or noise of any kind, and there are no valves in these engines, except in the water pump.
Of these hot air pumping engines exhibited there are two varieties, styled respectively the Ericsson and the Rider. The Ericsson hot air pumping engines, which have been widely introduced within the last few years, are built, as are all the pumping engines manufactured by this firm, under a very rigid system of gauges, which makes the parts perfectly interchangeable, and they are made in such quantities that the cost of one of the smaller sizes comes within the reach
of even the smallest property owner. They are par
ticularly adapted for use in private dwellings, and, as they can be operated by either a gas jet or a wood or coal fire, they are among the most complete and con venient, as well as the cheapest, arrangements for raising water.
The Ericsson hot air pumping engine is a single cyl inder engine in which are two pistons, one called the "main"or air piston, which receives and transmits the power, and the other is called the "transfer" piston, the office of which is to transfer the air contained in the machine alternately, and at the proper time, from one end of the cylinder to the other
The cylinder is provided at its upper end with a water jacket, through which all the water passes on its way from the well to the tank. This keeps the upper end of the cylinder cool, while the lower end is exposed to the fire and becomes as hot as is practicable to make it. By the peculiar arrangement of connections between the air and transfer pistons, the proper relative motions between these pistons are obtained. The operation is as follows: After the lower end of the cyl inder has been sufficiently heated, which usually takes only a very few minutes, the engine must be started by hand, by giving it one or two revolutions. The air contained in the machine is first compressed in the cold part of the cylinder; it is then transferred to the lower end, where it is instantly heated and expanded, thus furnishing the power. 'This engine, like all other hot air engines, is only single acting. The momentum of the fly wheel continues the revolution until it receives an additional impulse by the repetition of the above mentioned conditions, which occur once in every revolution. The same air is used continuously, and is cooled, compressed, heated, and expanded in the regular order and without noise.

Figure 3 in the illustration shows one of these enines with a furnace adapted for burning coal, and Fig. 2 the same adapted for burning wood. Several of these engines are now at work in suburban residences, using wood for fuel, and the owners speak of them in the highest terms. As the furnace is small, the chips from the wood-pile can be used, and the fuel really costs nothing. For use in cities where a gas supply can be obtained, and the water has not sufficient force to flow to the tops of the houses, they are arranged with a gas furnace, as shown in Fig. 5. We are informed that this firm has sold in New York city alone several thousand of these engines, which are so simple and safe that their care is usually intrusted to the hands of the cook or the coachman. A great many suburban residences are unfortunately situated with respect to obtaining pure water, and the owners are obliged to resort to very deep wells, being often compelled to sink artesian wells to a depth of several hundred feet in order to obtain pure water for cooking and drinking purposes. One of these engines at the exposition is provided with a very neat and suitable device, by which the pump can be lowered down into the well a ufficient depth to reach the water, the engine standing on the surface, where it can be easily attended to
Figure 4. is an illustration of the Rider Hot Air Pumping Engine. For the present these engines have only been adapted to using either coal or wood as a fuel. They are somewhat more expensive than the engines previously mentioned, and are intended to do more severe work. This style of engine is extensively used in the large flat houses in this city, and also in the numerous summer hotels at the watering places in all parts of the country, and great numbers of them have been exported to different foreign countries. Theyare (Continued on page 277.)

ฐrixutific gmmiram.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. pUBLISEED WEEKLY AT
 No. 361 BROADWAY, NEW YORK.

O. D. MUNN. A. E. BEACH.

TEREIS FOR THE SCIENTIFIC AMERICAN.
One copy, one year, postage included....
Clubs.-One extra copy of The Scientific amprican will be supplie gratis for every club of five subscribers at $\$ 3.20$ each; additional copies at same proportionate rate. Postage prepaid.
Remit by postal order. Address
MUNN \& CO., 361 Broadway, corner of Franklin Street, New York.
The Scientific American Supplement is a distinct paper from the Scientific American. THE SUPPLEment is issued weeilly. Every number contains 16 octavo pages. uniform in size with SCIENTIFIC American. Terms of subscription for SUPplement,
$\$ 5.00$ a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all newsdealers throughout the country.
Combined Rates.-The ScIEntific American and Supplement
will be sent for one year, postage free, on receipt of seven dollars. Both will be sent for one year, postage free, on receipt of
papers to one address or different addresses as desired.
The safest way to remit is by draft, postal order, or registered letter.
Scientific American Export Edition.
The SCIENTIFIC American Export Edition is a large and splendid peri-
odical, issued once a month. Each number contains about one hundred dical, issued once a month. Each number contains about one hundred
large quarto pages, profusely illustrated, embracing :(1.) Most of the plates and pages of the four preceding weekly issues of the SCIENTIFIC AMERI CaN. with its splendid engravings and valuable information; (2.) Com-
mercial, trade, and manufacturing announcenent of mercial, trade, and manufacturing announcements of leading houses. Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of th
world. Single copies, 50 cents. Manufacturers and others who desir to secure foreign trade may have large and handsomely displayed announcements published in this edition at a very moderate cost. The Scientific American Export Edition has a large guaranteed cir-
culation in all commercial places throughout the world. Address MUNN culation in all commercial places throughout the world. Address MUNN

NEW YORK, SATURDAY, MAY $2,1885$.

Contents.

(Iilustrated articles are marked with an asterisk.)

table of contents of

the scientific american supplement,

No. 437,

For the Week Finding May 2, 1885.

Price 10 cents. For sale by all newsdealers.

CHEMISTRY.-The Production of Ammonia from the Nitrogen of Minerals.-A paper read before the Society of Arts
BEILBY, and discussion following the same. -3 figures. Notes on Three New Chinese
oil.-Cabbage oil.-Wood oil.... The Action of Light on Silver Chloride.-By S. B. Newbury...
II. ENGINEERING AND MECHANICS.-Timber Dry Docks.-The advantages of timber over granite docks.- 2 engravings.............
Modern Railroad Facilities.-By WM. BARET LE VA.-Th fastest trains in the world.-English and French long-distance trains.-America.. 7
Surface and Elevated Cable Rairoads for our Eastern Cities. 9 figures.....................
Military Ballooning. The
Improved Anchor Gear. 4 figures...................................... 7771 Heating Buildings by Steam from a Central Source.- By J. H.
B. Bartlet.-Apparatus required, street mains, expense, etc.-With
map showing the heating system of New York, tables, and two fig-
 Concrete as a Building Material.-By Tноs. PotтEr.-A pape
read before the Society of Architecture............................
II. ELECTRICITY, ETC.-The Thermomicrophone. Illumination of Fountains by the Electric Light.-1 figure......... 7774
V. ART AND. ARCHEOLOGY.-Sixteenth Century Helmets and Armor.-2 engravings.
Mexioan Archæology
Mexioan Archæology.-The bronze age.-Specimens of pottery,
statues, jade, etc.-Characteristics of their art.-In Central
NATURAL HISTORY -The Phenix Cock of Japan
 thigs.
ngird charmers.-With engraving.
The Earthquakes in Andalusia.-2 engravings.
Reply to an editorial in SCIENTIFIC AMERICAN entitled ".......
ent Office Examinations of Novelty of Invention"................

TRADE MARKS AND LABEL REGISTRATION

In former issues of this paper we have discussed and criticised the action of the Commissioner of Patents, in refusing label registration to what he judged to be proper subjects for protection as trade marks. The of the Willcox \& Gibbs Sewing Machine Co. was en cited by us as the great decision on which the practice of the Office should be based. This decision, together with another unreported case, in which a mandamus was granted, sufficed to change the practice in the days of Mr. Butterworth's predecessor, and we held that it should have been the rule for his action also.
The Commissioner named above held that the oppo site interpretation of the statutes was the true one, and believed that the Patent Office authorities should act as judges of the character of the device submitted for registration. To sustain this position, the text of the statute was appealed to. The refusal to comply with the rulings laid down by the Supreme Court decisions in the Willcox \& Gibbs and Schumacher \& Ettinger cases was justified on the grounds that the case had not been fully presented by the former Commissioner, his counsel. This was equivalent to saying that the cases alluded to went by a sort of default. The fallacy of this suggestion of default is shown by the fullness of the opinion rendered in the one now reported, the Willcox \& Gibbs Sewing Machine Co.'s application. It was unusually long, and showed how thoroughly the case had been studied by the judges of the court to whom application for the mandamus had been made, the Supreme Court of the District of Columbia.
Thus matters stood during most of the incumbency of the last Commissioner. The views of the Supreme Court, so fully expressed in one case, and confirmed by their action in a second, were of no avail to determine the practice of the Office. This practice could not be justified by either of the cases alluded to.
The subjects of trade mark or label registration, as a rule, are not of the highest importance. They cannot, on the average, compare for interest or value to their movers with cases involving patented structures.
The Bell telephone patents and the barbed wire patents are held to be worth many millions of dollars. No label or trade mark can approximate to such a value. Yet labels and trade marks are of importance and interest enough to render the Commissioner's action in discriminating within the Office between them very annoying to such as believe his action unjustified by law. Considerable friction between applicants for registration of designating designs and the Patent Office has for some time past been in existence. Both counsel
and the Commissioner of Patents have doubtless wished and the Commissioner of Patents have doubtless wished that the question were disposed of in one way or the other.
At last a case (Moodie vs. Butterworth) was brought to trial, in which a mandamus was applied for from the Supreme Court of the District of Columbia, and was refused by that tribunal. The decision was rendered but a short time before the change of Commissioners and to a certain extent stamped with the seal of court approval the existing practice of the Office. That this interpretation was put upon it by the Commissioner is evident from the way in which notice of it was published in the Gazette. A report of the decision was printed as a statement in the Official Gazette of January 6, 1885. The date of the decision was December 27, 1884. The necessity for thus printing it as a "statement " arose from the fact that the court delivered no written opinion in the matter, and full reports of its voice are not on record. A mandamus was refused. This is all that the "statement" could positively assert about the attitude of the court. Its definite conclusion or opinion is not given. The case seen in this light forms a very imperfect offset to the written opinion rendered in the former suit. The published statement of the decision could not go behind the record, and that was merely a mandamus refused in a particular case. The refusal justifying the Commissioner's action in this suit was cited in the Gazette in support of his views as to all cases. But the question, just as before, is open to discussion. We do not see how the arguments stated in the Willcox \& Gibbs case can be thus lightly disposed of.
Recognizing the fact that every decision in this vexed question was of importance, and regretting that no expression of the court's opinion was accessible, we have succeeded in obtaining the private expression of several of the District Supreme Court Judges' opinions in relation to trade marks and labels. This interesting record we lay before our readers in the present issue, commending it to their careful reading. It will be seen that it does not by any means make the Moodie case a conclusive one. In this suit a mandamus was refused. In other words, the Court adopted a negative action, owing to the trouble of satisfactorily interpreting the statute. The bench of judges acknowledge a difficulty that the Patent Office authorities profess to have no trouble in disposing of.
Mr. Butterworth, after a full experience of the duties of the Commissionership of Patents, takes his seat in Congress as member of the House of Representatives.
It is possible that in this capacity he may try to do
something to secure a better expression of the trademarks and label registration statutes. Such action would be welcomed by all, and the ex-Commissioner's special experience, backed by his legal attainments, would do much toward securing a better state of things. Nothing is so productive of ill in the matter of enactments as uncertainty. The uncertainty of the label and trade-mark statutes apparent on their faces has only been reaffirmed, and in no sense done away with, by the simple decision of the Supreme Court Judges in the Moodie case.
In a recent article on Patent Office examinations of novelty, an allusion was made by us to the departure from the spirit of the opinion in the Wilcox \& Gibbs case, in the Patent Office practice in examining labels and trade marks. This has called forth a lengthy and very able communication from the Examiner of Trade Marks. In it the writer cites the Moodie case, and reaffirms the propriety of the Office practice. In considering our article as directed toward his division of the Office he is entirely in error. It is intended to apply, as indicated by its title, to the practice in the Department of Patents. We incidentally remarked that compliance with the views of the Supreme Court was not to be found in the practice followed in label and trade mark registration. His arguments in rebuttal of this statement are based largely on the Moodie case. This should be only regarded as an implied opinion in a single individual case. The communication alluded to will be found printed at length in the Scientific American Supplement of this week, No. 48%.

RUST CEment.

One of the most adhesive and durable of cements known to mechanics who essay to unite iron surfaces is the oxide of iron itself; with this a joint can be made so perfect and sound that the iron will break before the cement will part. In removing the cast iron pipe of a bilge pump from a ship that had made four Atlantic voyages, it was necessary to take the sections apart. The flanges had been pasted with a cement of cast iron drillings and filings, mixed with sulphur and sal ammoniac, moistened with water. Then the nuts-three in each flange-were set up on the bolts, and the union was completed. The four voyages-going and return-ing-occupied nearly a year. When the separation of the parts was attempted, even the cold chisel was unable to make a division between the solid castings and the intervening cements. The sulphur and ammoniacal salts are simply means to more rapidly oxidize the iron drillings and filings-the iron rust is really the cement If time is allowed, ordinary water or salt water would act as a solvent.
All our iron ores are simply oxides, and when they are exposed to the atmosphere they show the ordinary color of iron oxide-red. This oxide gives the red color to the "brownstone"(red sandstone) so much affected for building purposes. These stones are only sand cohered in mass by iron rust. Their formation can be witnessed even now on some of the New England beaches. The narrow and slightly raised windrows of sand thrown up by some heavy storm or some very high tide, so that they are beyond the redestroying effects of common tides and ordinary winds, can be noticed slowly solidifying. Fragments may be gathered which are only sand slightly held by the oxide, but others may be found which are embryo stone-if such a term may be allowed-solid to the feeling, and capable of being thrown as missiles. Beyond these are the shingles of the beach and the cliffs that define the shores. In olden time this sand and this iron was mixed, subjected to pressure by outerlying layers, and at length became "solid rock," as we call it. And yet this quarried rock of sand cemented with iron is still somewhat soft, and for building purposes requires seasoning-the gradual reabsorption of the water given by the atmosphere; and this water is essentially salt, or it has the oxidizing effect of salt water, for its effect on iron is similar to that of salt water on iron under similar circumstances. It is evident that any substance that induces rust in iron is not a safe one to use in connection with permanent structures of iron. Some years ago an instance of iron in connection with red sandstone-brownstone -was noticed, where wrought iron rods were secured into steps of brownstone. The stairway was removed, and the iron in the stone was disintegrated into mere threads. In this instance the holding of the iron balusters was sulphur. And sulphur is much worse than lead; it is impossible to secure iron in stone, or even in iron, by sulphur. Lead is perhaps as safe as any material that is not too expensive to use. In removing an iron fence, the embedment of the palings in lead, lining the holes in the stone, making a superícies of about fourteen inches, was readily overcome by lever action; while the cross section of the same paling through iron rails, iron on iron, the area being less than three and a half inches, necessitated the use of hammer and cold chisel.
To disquise the Taste of Paraldehyde.-Sutter (Arch. d. Pharm.) finds rum and tincture of emon combined with paraldehyde make it palatable.

VIEWS OF THE DISTRICT OF COLUMBIA JUDGES ON TRADEMARK AND LABEL REGISTRATION.
The following has been furnished to us for publication by a prominent member of the Washington bar, who personally followed up the matter at our request The question of the power of an applicant to the Commissioner of Patents, for the registration of a label, to determine for himself whether the design he presents shall be considered a label or a trade mark, and the further question as to whether the duty of registration involves the exercise of some judicial function or mere ly a purely ministerial action, has been decided by the Supreme Court of the District of Columbia in a more recent case than the Willcox \& Gibbs sewing machine case.
The case referred to is that of the United States ex rel. Schumacher vs. Marble, which will be found in 3 Mackey 32 (not yet published.) The following is a copy of the decision of the Chief Justice, who delivered the opinion of the Court in the latter case, taken from the advanced sheets of said report:

It is objected in behalf of the Commissioner of Pa tents that the act of Congress of June 18, 1874, pro viding for the registration of labels is unconstitutional and therefore void.
A very elaborate, ingenuous, and perhaps, under ap propriate circumstances, successful argument has been made to sustain this position.
But we think the point raised has no application to this case. We do not think it lies in the mouth of a government official to call in question the constitutionality of a law directing him to perform a purel ministerial duty.
If the question was raised between other parties, as, for instance, in a suit for infringement in the use of a label, and the constitutional rights of the parties were involved in it, that is to say, whether one man was prohibited from using it because another man had registered it as a label, the argument might be pertinent, raised here.
raised here.
The next
The next reason assigned by the Commissioner for his refusal to comply with the petitioner's demands is that the dèsign offered for registration is a mere fanciful sketch, which, while it may be used as a trade mark, has none of those descriptive features about it characteristic of a label.
A label, it is contended, consists of a pictorial representation or a written description of the article to which it is affixed; and that a fancy picture, such as this, having no connection with its proposed use or application, cannot be registered as a label. This ques
tion has been settled by this Court in the case of the Sewing Machine Company vs. Marble. We decided in that case that the duty of the Commissioner of Patents, on the application to him to register a label, is a purely ministerial one, as much so as the act of a re corder of deeds in placing upon public record a muni ment of title. The statute has not defined what shall be considered a label, whether it shall be a picture or a writing; whether it shall be descriptive of the article to which it is affixed, or whether it may be a mere ar bitrary design. If the applicant presents it as a label, and appeals to the Commissioner to give it the protection which the law provides for it as a label, the duty of the Commissioner is to register it, and in doing so he gives it only the protection which the statute provides It is not protected as a trade mark, nor as a copy right. The public at large may use and enjoy it, but qua label it is restricted to the use of the party who has registered it for that purpose and no other; with the character of the device the Commissioner is not at all concerned. His function is as purely ministerial as it is capable of being. The writ will issue.
In reference to the case of U. S. ex rel. Moodie vs. Butterworth, No. 25,748, at law, docket 30, in the same court, it appears from the record that a petition was filed by Moodie for a mandamus to the Commissione of Patents to require him to register a label, registration having been refused by the Commissioner, after investigation, because the alleged label did not contain subject matter which could be registered under the statute as a label. This petition was filed on the 4th day of November, 1884. On the 10th day of November a rule to show cause why a mandamus should not issue was passed, and on the 8th day of December the answer of the respondent was filed.
Here the record stops; and no decision, as far as the record is concerned, appears to have been made by the court.
An interview with one of the counsel for the relator disclosed the fact that the court had made a decision, and had decided not to issue a mandamus. Counsel stated that Chief Justice Cartter, with Judges McArthur and James, heard the case, and that Judge McArthur delivered the opinion of the court.
Counsel further stated that Judge McArthur took the ground that the device shown was not a label, and that the Commissioner of Patents had the right to determine whether it was a label, and that the other members of the court differed with this view, but said that owing to the uncertainty of the statutes they would in the case before them discharge the rule. Chief Justice

Cartter said that he had no doubt about the law on the subject, and still entertained his former opinion. The Commissioner of Patents. had the right to decide that a cant, but rilly of an entirely foreign nature, as a bomb shell, torpedo, or a battering-ram, could not be registered, but that a man had a right to call a trademar* a label if he felt so disposed, and the Commissioner of Patents, when requested, would be bound to register t, The Chief Justice further said that the court sometimes, in matters of writs of mandamus, exercised their discretion and refused the writ, and that in the Moodie case the court had taken that course, but that the court had not reversed its former rulings.
Judge McArthur, who delivered the opinion in the Moodie case, said that he had held in that case that the Commissioner of Patents had the right to inquire, upon an application being made to him for the registration of a label, into the character and design of the label, and that if the Commissioner found that the proposed label contained matter properly registrable as a trade mark, and that the proper fee had not been paid, he would have the discretion to refuse registration of the device offered.
Judge McArthur further said that the Chief Justice had had some difficulty in agreeing to the judgment discharging the rule, owing to a former decision made by him, but that the Chief Justice had finally concurred, although not on the same grounds, with the judgment of the court discharging the rule.
Judge James, who delivered the opinion in the Willcox \& Gibbs sewing machine case, said that the whole question was in a cloudy and uncertain state, and that the statutes were not in a condition to admit of a lucid exposition of the law, and that additional legislation was needed on the subject. The Judge said that in the Willcox \& Gibbs case he had held that the duties of the Librarian of Congress in the matter of egistration of labels had been transferred to the Commissioner of Patents, and that his duties were simply those of the Librarian, but that he had recently changed his views somewhat, owing to the want of clearness in the statutes affecting the subject; and that he was now of the opinion that the Commissioner of Patents had more power than had been vested in the Librarian of Congress, but to what extent the power of the Commissioner of Patents went he was not prepared to say. The judge further said that he did not agree with the views that Judge McArthur had announced in the Moodie case, but that owing to his own change of pinion somewhat, and in view of the difficulties surrounding the case, and also in view of the fact that it
was in the discretion of the court whether such a writ as a mandamus should issue, he had concurred in the judgment of the court discharging the rule to show cause.

Compressed Air Power.
At Guinnesec Falls, Michigan, the water power is used to compress air, which is conducted through a 24 inch pipe to the iron mines, a distance of three miles,
where it is used for operating pumps, engines, and where it is used for operating pumps, engines, and
drills in place of steam. The head of water at the falls drills in place of steam. The head of water at the falls
is 47 feet, and drives three turbine water wheels, each of which operates a pair of air compressors, and the whole plant has been in satisfactory operation for over a year. One of the earliest instances of the application of air on an extensive scale in the operation of drills was, says Engineering, in the excavation of the railway tunnel, 28,081 feet in length, which pierces Hoosac Mountain, situated in western Massachusetts, where a rapid river at the eastern terminus furnished the water power which was used to compress air which actuated the drills, while the exhaust served to ventilate the tunnel. Several years ago the manager of the cordage works at Plymouth, Massachusetts, introduced an air locomotive which took the place of some sixteen horses and an equal number of men employed in transporting material from one department of the establishment to another.
The risk of fire prevented the use of a steam locomotive in these ropewalks and mills. The air passes from the reservoir, which takesthe place of a boiler, through a reducing valve into a receiver, where the pressure is maintained at 90 pounds per square inch. Thence to the cylinders, where it is used like steam, except that the refrigeration produced by the expansion of the air
is so great that it is necessary to use very limpid oil for lubrication on such places. The compressed air is furnished from a receiver of boiler iron, which supplies a system of underground pipes, with hydrants at convenient places; and when the air supply at the locomotive is becoming low, it is stopped near one of these hydrants, and a hose with a snap coupling attached, and the air supply replenished with little delay. At one of the fairs of the Charitable Mechanics' Association in Boston, the management forbade any fires in the building; and as a consequence, the exhibitors of portable engines considered that they were deprived of opportunities of showing the operation of their class of engines. One exhibitor showed resources equal to the occasion, for he connected the exhaust
other of his engines, removed the safety valve, and connected the flywheel by belting to the shaft which was kept in motion by the main engine of the exhibition. This method of driving an engine furnished a supply of compressed air into the second boiler, whence it was used for motive purposes. Soon the manager learned that these portable engines were in operation, and assuming that the regulations concerning fire were necessarily violated, sent a worthy colored messenger to examine and report the facts to him. After looking these engines over very carefully, he reported that they were running the engines in question with the "northwest wind or something or other." A group of laborers were examining the engine, and one of them gave his opinion that "cold steam and no fire was the greatest invention yet."

The Education of the Artisan.

Professor Huxley says: For myself, I look upon simple knowledge by itself as of far less importance to the artisan in his career in life than a number of other qualities. I do not say that knowledge is not an extremely good thing; but if a man is to make a good workman, or to do anything in practical life, you must give him an education that fits him for the conditions of life with which he has to deal, and you will not give him that education by filling his head with a number of intellectual abstractions, or even by giving him the largest acquaintance with scientific principles. And I think it is a profound mistake, considering the career to which the majority of artisans or persons in that class of life are necessarily bound, ever to take them out of the wholesome discipline of practical contact with the realities of life, for the mere sake of giving them a greater or less amount of knowledge. A man who is inclined to do so may always pick up knowledge, and he may do so at the same time that he is getting his education, in the highest sense of the word, out of his contact with the realities of his daily life; but if you make a bookworm of him, if you take him away from all that contact with reality and turn him back afterward into it, he has lost touch of life.

I speak with the greatest hesitation, because I have nothing to do with industrial pursuits; but I have had to do with mankind in many stations in life, and it seems to me that what is wanted in a foreman is a man of energy, punctuality, business habits, and power of dealing with men, all of which things are not to be got out of books or laboratory work. These qualifications are the most essential qualifications in a foreman, and what you want besides in such a man is not book learning, but an intelligence sufficiently trained to be able to deal with new conditions, and an amount of know-
ledge sufficient to enable him to know where to go to find more if he wants it.

Columbus, Ga., Waterworks.
At a recent meeting of the Engineers' Club of Philadelphia, the secretary presented, for Mr. Jacob H. delphia, the secretary presented, for Mr. Jacob H.
Yocum, an illustrated description of the recently constructed waterworks at Columbus, Ga., which city has a population of 25,000 . The Chattahoochee River was investigated as a source of supply, but on account of the expense of filtering after its frequent freshets, and of pumpage, it was abandoned, and a gravity system adopted. Among the adjacent hills was found a pure and soft water, delivered through the gravel beds, and a gathering ground of 12 square miles, which would yield, after allowing 50 per cent for absorption and evaporation, a daily supply of $15,000,000$ gallons. The water is impounded in successive dams, respectively $1301 / 2$ and $1151 / 2$ feet above the center of the city. The upper dam is 266 feet long by 21 feet high; area, 20 acres; capacity, $100,000,000$ gallons. The lower dam is 250 feet long by 21 feet high; capacity, $20,000,000$ gallons. The forest ground they occupy was carefully cleared, grubbed, and surface removed to the gravel and clay. The discharge of upper into lower dam is arranged with reference to aeration of the water.

The water is conveyed to the city by 18,000 feet of 12 inch main, which divides at the river into two 9 inch wrought iron pipes laid under the floor girders of a bridge 800 feet long. These pipes unite in a 12 inch main again upon the city side. It is intended to substitute a submerged main for this double pipe. The distribution consists of $10,8,6$, and 4 inch cast iron pipes, fitted with the Cassin double fire-hydrant and the necessary valves. A 1 inch jet can be thrown 85 feet. At the opening test seven streams were thrown 75 feet simultaneously. The works provided abundance of pure, good water during a four months' drought, and have generally exceeded expectations. An additional $400,000,000$ gallon reservoir is, however, contemplated to meet prospective requirements.

[^0]
AUTOMATIC OILER FOR CRANK PINS.

The crank pin is formed with an aperture upon the axial line extending inward from the face, and thence at a right angle to the outer bearing surface. Screwed into the aperture is a hollow plug, to which a tube is attached at a right angle. On the outer end of the tube is a quarter bend that carries the oil cup and its parts. The oil cup is of cylindrical form, and is pro-

hartnett's automatic oller for crank pins.
vided with a feeding cap at one side. At its center it is formed with a transverse tube forming a sleeve around a fixed tube screwed into the end of the quarter bend. The sleeve and tube are provided with apertures to allow the oil to pass through the tubes to the plug, so that a continuous passage is formed for the oil from the cup to the crank pin. The cup has an annular flange fitting over the quarter bend, and at its outer side is a similar flange that is threaded and receives a packing gland whereby the ends of the tube are made tight.
The outer end of the inner tube is screw-threaded and furnished with a set nut taking against the gland so as to hold the cup up to place; and in the outer end of the tube is a screw plug that can be screwed in to more or less close the aperture, and thus regulate the escape of the oil. The tube holding the oil cup projects from the center line of the shaft, so that in the rotation of the crank pin the oil cup simply rotates with the shaft, while the plug in the crank pin, moving with the latter, a centrifugal movement of the oil is set up from the cup through the tubes to the crank pin, thereby keeping up a constant and uniform supply of oil that can be regulated according to the amount desired. In order to fill the cup while the engine is running, it is only necessary to take hold of it to prevent its rotation with the tube, when the cap can be removed. A loop
hand power apparatus for hoisting and conveying broken ice, etc.
The invention herewith illustrated shows an improved arrangement for hoisting and conveying purposes, which has been recently patented by Mr. Henry R. Conger, of Burlington, Vt. It is more especially designed for conveniently and rapidly removing valueless pieces or clippings of ice, as they accumulate in ice houses, to a point where they can be readily carried a way, a work heretofore generally performed by hand barrows and dump sleds, slowly and expensively.
According to this invention, an inclined wire cable or rope is suspended from any point within a building to a point above or near the dumping spout on the other side, the cable supporting a traveling carriage, from which a bucket is so suspended that it can be easily raised or lowered and dumped automatically at the spout. The lower end of the cable is attached to a stationary hook over the dumping chute, but the other and higher end is connected to one extremity of a turn buckle, attached to an adjustable hook, whereby the cable is kept taut, and this hook is adapted to slide in a grooved bracket, extending longitudinally along the opposite side of a room or building. The invention covers special details whereby this hook may be easily located, and then securely fixed at any desired point in the sliding bracket. Suspended from the carriage which travels on this cable is an iron rod, on the lower end of which is a differential pulley supporting a bucket by means of a chain and bail, the latter so adjusted as to hold the bucket upright while it is being filled and moved, until the bucket is tilted and its contents dump ed into the spout by its toe coming in contact with the nose of the spout, from the rapid movement of the carriage with its suspended bucket down the inclined cable. To haul the carriage up the cable, the hauling rope passes over the larger of the two drum shown in Fig. 2, the shaft carrying these drums being attached to the side of the building. The smaller drum carries a special cable for use in tilting the bucket when this apparatus is to be put to some different employment the length of the dumping cable is then regulated according to where the load is to be deposited, and it can be so adjusted that the contents of the bucket may be distributed over a greater or less space as desired. The carriage with its bucket is drawn up the inclined plane by a crank on the gear wheel shown in Fig. 2, and is held while being filled by a friction

hamres combined potato and tree planter

 brake on the larger drum, the bucketbeing lowered and raised by means of a differential apart or nearer together, according as a wider or narpulley; the brake being loosened, the weight upon the rower channel may be required. Secured by nuts to hoisting rope rapidly reverses the movement of the drum, when the bucket runs down the cable and dumps itself. This apparatus, as will be readily conceived, can be used in the building of railroads by extending the wire cable over tripods at each end and made fast to the ground, conveying the earth for cuts and filling of ravines, doing away with horses and carts; also for building trenches for sewers and water pipes, first by opening the trench and commencing laying of pipe, and then extending cable as before, taking out the earth and dumping. back on pipe, thus handling the earth but once; also for conveying from one building to another, and, in fact, in connection with nearly all kinds of excavation, being especially advantageous where it is desirable to lift and remove earth to a distance, it being claimed that it is thus practically applicable up to 600 or 700 feet.

Solidification of Nitrogen and

 of Carbon Monoxide.Nitrogen is solidified at a temperature of -214° and on the under side of the cup is for convenience in taking hold of it to stop its rotation. In the space between tube and sleeve is a wire cloth, which, while allowing the oil to pass freely, prevents any sediment from find ing its way to the bearing.
Additional particulars regarding this patent may be obtained from the inventor, Mr. John M. Hartnett, of Lyons, Kansas,
the inner ends of the short rear cross bars are stand ards; by adjusting the nuts the covering plows can be adjusted to work deeper or shallower in the ground. The covering plows are made in the form of mould boards arranged with forward ends inclined outward. The seed hopper is made with inclined front and sides and vertical back, and the bottom is secured to the top of a pedestal, the lower end of which rests upon the forward cross bar and is recessed to receive the tongue. The hopper is so secured that it can be readily detached from the frame, together with its attachments. In the lower edge of the back of the hopper is the discharge opening, which is provided with a gate. Attached to the gate is a cord which may be wound around a pin to hold the gate at any height to regulate the discharge of seed. The bottom of the hopper extends rearward to form a feed platform, which is rounded and formed with a flange to prevent the potatoes from rolling off. In the outer part of the platform is an opening leading to a spout made of such a length that its lower end enters the space between the rear upper parts of the plates. The dropper's seat can be easily removed when necessary. To one of the crank arms of the axle is rigidly attached the end of a lever, by which the machine can be readily adjusted to open a channel of the required depth, and to raise the plows from the ground for convenience in turning round. The lever is locked in position by a pin passing through holes in the lever and in a curved catch bar. To the inner side of the outer part of the lever is secured a strap which engages with a headed pin on the side bar of the frame, to hold the lever in position when lowered to raise the plow from the ground. When the machine is to be used for planting trees, the hopper and its attachments and the seat are detached, and the young trees are placéd upon the machine or in a box on the frame. As the machine is drawn forward an attendant places the seedlings singly and in the proper places in the furrow between the plates, and soil is thrown around them by the covering plows. This inthrown around them by the covering plows. This in-
vention has been patented by Mr. E. J. Hamre, and parvention has been patented by Mr. E. J. Hamre, and par-
ticulars can be obtained from the Rev. J. G. Riheldaffer, D.D., Minnesota State Reform School, St. Paul, Minn.

Toughened Filter Paper.

At a recent meeting of the Chemical Society a paper was read on "Toughened Filter Paper" by E. E. H Francis. Filter paper which has been immersed in nitric acid, rel. den. $1 \cdot 42$, and washed with water, is re markably toughened, the product being pervious to liquids, and quite different from parchment paper mad with sulphuric acid. Such paper can be washed and rubbed without damage, like a piece of linen The paper contracts in size under the treatment and the ash is diminished; it undergoes a slight decrease in weight, and contains no nitrogen.
Whereas a loop formed from a strip one inch wide of ordinary Swedish paper gave way when weighted with 3 to 5 ounces, a similar loop of toughened paper bore a weight of about 3 pounds. The toughened paper can be used with the vacuum pump in ordinary funnels without extra support, and fits sufficiently close to prevent undue access of air, which is not the case with parch ment paper. An admirable way of preparing fil ters for the pump is to dip only the apex of the folded paper into nitric acid, and then wash with water; the weak part is thus effectually tough ened.

THE "VULCAN" CUSHIONED POWER HAMMER The hammer herewith illustrated presents seve ral important features to commend it as one of the most useful of American machine shop appliances. The improvements it embodies are such as will be at once recognized by a hand accustomed to the use of power hammers, or who has had experience in the stamping out of work with dies, a branch of machine construction which is every day finding new channels of development. Its special adaptation for die work is a consequence of the fact that the ram moves in permanently fixed vertica slides, whereby it must necessarily descend each time in the same place, and deliver a true and square stroke. Perfect elasticity of stroke, with cushioning, are obtained by means of four rubber cushions, mounted above and below the fulcrum bearing of the helve which is a solid steel forging, so that the latter is, in fact, mounted on elastic bearings. The effect of this arrangement is to almost double the stroke of the ram and produce a quick, sharp, and elastic blow The ram, rebounding instantly, does not in the least chill the iron, as in the case of hammers resting on the work. The hammer, being constructed on the dead stroke principle, the helve is connected to the crank shaft by a connecting rod, the length of which may be adjusted by means of a right and left hand nut, so that the distance between the dies can be quickly increased or diminished, as desired. The force of the blow can be completely controlled by means of the treadle. The machine is built entirely of iron and steel, with the exception of the rubber cushions and the necessary brass work. This de sign makes it superior to any modification of the trip hammer, it being impos sible, when the helve works on fixed pivots, to forge square when the work varies in size; but, as will be readily per ceived, it is impossible to forge out of square with this hammer, no matter what may be the size or shape of the work, unless the dies are specially made. Expensive foundations are not needed, since he anvil is heavy enough to receive the orce of the blow.
The perfect ease with which this ham mer can be operated by the most ordinary workman, it simplicity of construction, and the rapidity with which a large class of work can be turned out with its help, are points which have been already well attested in a practical way in leadng machine shops. It is adapted for al kinds of forging and die work, such as edge tools, agricultural implements, springs, machine forging, file makers, tool makers, etc. In the making of all these classes of goods, the exactness with which the hammer can be made to do its work, and the nicety with which its action can be controlled, are points which largely affect the amount of subsequent labor necessary in the finishing as also the ultimate quality of the goods, and in these respects the hammer shown in the accompanying engraving has elements of superiority which practical men will unhesitatingly concede. The manufacturers o of Bellefonte, Pa

Dr. Edward Vanderpool, of New York, recom mends Fowler's solution of arsenic in neuralgia of the stomach, in six to ten drops three times per day. His experience with it appears to have been highly satisfactory in the cases reported.-Independent Practitioner.

DOUBLE PLUNGER GEARED PUMP.

The accompanying engraving represents a well designed and durable pump for feeding boilers or tanks, and for use in tanneries, paper mills, breweries, etc. The pulley shaft is mounted horizontally about in the enter of the frame, and carries a pinion meshing with a large wheel journaled in the upper ends of the frame

DOUBLE PLUNGER GEARED PUMP.

standards. Owing to the form of teeth used, the action of these wheels is exceedingly smooth and noiseless, and the wear upon the contact surfaces is reduced to a minimum. The strength of the pinion teeth is in creased by side flanges. At each end of the main shaft is a disk crank, finished on edge and face, and provided with steel crank pins made large to decrease the wear. The connecting rods are united to the crank pins by a cap and box, so that all wear can be easily taken up when necessary, and are fitted with brass oil cups. The lower ends of these rods are connected o the center of the plunger by a new device, designed by the makers of this pump, by means of which wear can be taken up by simply screwing up set bolts on the upper end of the plunger. The suction and discharge pipes, which are tapped to standard pipe threads, are clearly shown in the cut. There are similar openings for discharge pipes on the opposite side of the pump.
The air chambers are large, and are so disposed as to
orm part of the frame supporting the pullev and crank
same time. Both shafts are of steel. All the journals have oil boxes with covers to keep out dust and grit from the oil holes. The body of the pump and valve chambers have drain cocks, so that the pump can be thoroughly drained in cold weather. The pump is compactly and strongly built, occupies but a small sace considering its capacity, and all its wearing parts are large and well proportioned, insuring easy running and durability. The journals are made large, and are filled with No. 1 Babbitt metal. Additional particulars cạn be obtained by addressing the manufacturers, the Stewart Heater Company, of $40 \& 42$ Clinton Street, Buffalo, N. Y.

The Phelps Induction Telegraph.

A most interesting, as well as wonderful, experiment in telegraphy was successfully tried recently by the B. \& O. Telegraph Company officials. They succeeded in telegraphing on a railroad trait while going at the rate of 40 miles an hour by the Phelps induction system. [This system was described in the Scientific American for Feb. 21 last.] The experiment was conducted by Mr Phelps the inventor and under the direction the B. \&. O. officials. Messrs. Joseph G. Pangborn, the Assistant General Passenger Agent, and Mr McLaren, the Manager of the New York city B. \& O. telegraph offices, went on the car, and Mr Weaver, the B. \& O. electrician, remained at the receiving office in New York. The experiment was tried on the Harlem River branch of the New York and New Haven Railroad.
Soon after the train was started, and while going at the rate of 40 miles an hour, the operator in the car called New York. A direct wire had been furnished through to Baltimore and into President Garrett's private office in the Central Building in this city. The gentlemen in the car awaited the an swer with anxiety. Soon the instrument began ticking as loudly as if in a stationary office. New York had responded. The induction system worked. Major Pangborn then indited a telegram to President Garret saying that the Phelps induction system was a success. The telegram went direct to Mr. Garrett, and an an swer was received by the experimenters on the car 'Your telegram has been delivered to President Gar rett in his private office." Major Pangborn then wrote another: "President Garrett, I am telegraphing to you, on a train going 40 miles an hour, by the Phelps induction system. The wire in our car is $71 / 2 \mathrm{in}$. from the wire laid on the ties of the track." While the operator was sending the dispatch, Major Pangborn no ticed that the train had gone its 12 miles, and that it would soon pass over the wire in the wooden trench. He said nothing, but let the operator continue. The train left the box behind. As it passed over the end there was a fainter sound of the ticking of the instru ment, but the message continued. The induction wa so strong that the current had gone to the wire on the telegraph pole 40 ft . from the track. It seemed marvelous to the experimenters. Sitting in a car with no wire nearer than 40 ft ., and to send and receive messages! When the train return ed the experiments were continued, and it was found that the inductor worked as well as on the other track. The message was sent over the wire in the wooden trench on the other track, 11 ft . away Of course there was a difference in the sound from the one received and sent when the car wes over the wire and when 11 ft . from it. On the return the tele phone was connected with the induction system, and a message on a wire 60 ft away was heard. The sender was in New York; and he was sending a message to his wife in New Rochelle: "I will not be home to-night. Business detains me in the city."
Mr. Phelps stated that a system of bells could be placed on the engines and worked by the induction system, so that trains could telegraph to each other, and a system arranged so that when train were within $1,000 \mathrm{ft}$. of each other a bell would ring, announcing the number o the train ahead.-Baltimore American.

Gallium.-Dr. L. Ehrlich, a German chemist, has succeeded in isolating the metal gallium by an industrial process. A
THE "VULCAN" CUSHIONED POWER HAMMER
shafts. The valve seats-both the valves and valve seats are made of bronze metal-are screwed into the valve chamber. The removing of one nut permits both the suction and discharge chambers to be examined. The bracket supporting the pulley shaft is so formed that it can be placed at either side of the frame, as may
be found most convenient in setting up the pump.
Practically, the machine consists of two separa pumps, which may be operated together or singly, and which may be used to pump different liquids at the
preliminary experiment has yielded 0.6
grain of gallium from 80 kilogrammes of zinc blende. The method followed was a modification of that introduce by M. Lecoq de Boisbaudran, which by lixiviation of the zinc sulphate résulted in a small quantity of mud containing ferric oxide and gallium. The galliferous alkaline solution was then electrolyzed in a platinum capsule, and the metal deposited in fine needles. As th melting point of gallium is low, about $30.5^{\circ} \mathrm{C}$., and it uster brighter than that of mercury, it may be found of useful application by and by.

¥rinntific Amprican.

Healing by Faith.

It is not our purpose to deny, or even question, the verity of cures "by faith." The "mind" so acts on the body, and the brain plays so important a part in the nervous system, by which the whole organism is energized and controlled both in regard to its functions and nutrition, that it is not only quite possible but an absolute fact, that many maladies which are not so far advanced as to be dependent upon changes in structure, or "organic diseases," may be remedied by or through the agency of the mind. We will even go so far as to affirm that a very large proportion of the ailing might be, and probably would be, sound if only they were sufficiently strongly impressed to believe themselves to be so. This influence of the mind on the body has been the stronghold of quackery from the earliest times, and "faith" is as powerful an influenc or good or evil now asit has ever been. Such " mira cles" as the Salvationists are working with their pres age among the emotional classes, whether illiterate or well informed, have uniformly signalized the commencement of a new era in religious enthusiasm. When the first enthusiasm subsides, "miracles cease " of phy sico-mental necessity. The large class of so-called hys terical, cataleptic, and even epileptic affections are distinctly amenable to this influence; so are those nervou disturbances and derangements which consist wholly or chiefly in disorderly activity, as distinguished from actual disease. The mimetic maladies, of which ther are always a very large number of cases, are, of course amenable to the curative influence of faith. Outsid hese classes, however, stand a multitude of badly managed or misunderstood cases which only need to be placed on a new footing-it matters little what-to ge well. A wondrous crowd of ignorant prejudices still hovers over many districts as to the curability or hope essness of special diseases which are better understood and more successfully treated-on common sense prin ciples-in the centers of knowledge.
For example, we know of localities and affection which, being associated, produce the most dire delusions as to the length of time bones usually take to unite in healthy subjects; and how coughs and other distressing maladies are, or are not, under the control of he will. In such combinations of facts and fiction, it is easy to get miracles out of such common matters as th union of the accurately applied ends of a fractured ra dius in three or four days! There is not a word to be said against "healing by faith." Every busy practi tioner has cases under his observation that he would be heartily glad to find so powerfully affected that they could be cured even by this agency. All we are anxious to point out is that an intelligent lay press ought not to lend itself to the promulgation of nonsensical belief and impressions. Of course, it is true that many of the poor people who are reported to be "cured" are actu ally benefited, and by their faith. This is a fact, and there is no sort of reason why the benefits received should not be permanent. If the subjects of these cures are thankful to the Giver of all good, that is not a matter to make merry about. It is as it should be. We are glad of their gain, and pleased to find them moved to gratitude. Meanwhile, if these "cures" need be discussed, let the comments made be neither irreverent, offensive, nor puerile. The modus operand of such recoveries is perfectly well understood, and there is nothing either specially noteworthy or won derful about them.

New Torpedo Boat

Yarrow \& Co. are build gor the Austrian Govern ment a pair of large boats of what may be called th excessive speed class. The length is 135 feet and th beam 13 feet 9 inches. These boats are expected to run 24 knots within the hour when light, and 22 knots with gear on board ready for action. The engines are of the three-cylinder or triple-expansion type. The woriking pressure is to be 140 pounds, and the horse power is estimated at from 1,100 to 1,200 indicated. There wil be but one boiler, of the usual torpedo boat type adopted by Messrs. Yarrow, and it will be a point of great interest to marine engineers, says Engineering to see how far it is practicable to get so great a powe from a single locomotive type boiler.
The dimensions of the first-class torpedo boats have been increasing of late, while the second-class, or origi nal 60 foot boats, appear likely to become extinct, thei place being taken by high speed pinnaces of somewha arger type than those hitherto carried on war vessels. The improvements in machinery, and consequent in rease in speed, enable these craft to be used for torpedo warfare, while they are to be at the same time available for ordinary ships' purposes. The first-clas boats, of lengths from 100 feet to 110 feet, are undoubtedly fit to go through any reasonable weather, and such craft will always prove useful; still, by lengthening the boat from 130 to 140 feet, her powers would be greatly increased, while, generally speaking, no serious disabilities would be added. Of course, there is the question of cost, but the testimony of naval officers appears to be so completely in favor of the larger boat that additional expense would no doubt be warranted.

COMBINED DETACHABLE POCKET AND CAP.

An invention recently patented by Mr. Andrew Hel er, of 2095 Madison Avenue, New York city, provides a pocket for coats which can be readily detached and used as a cap. To theinner surface of the coat is sewed a piece of fabric, C, having a slot coinciding with the pocket slot, D. The edges of the slot in the piece are sewed to the coat at the edges of the slot, and the upper edge of the piece is sewed to the coat, the lower edge forming the tongue, F . The buttons, H and G , re sewed to the piece as shown in Fig. 2, and the sides of the pocket, A , are provided, at their upper edges,

heller's combined detachable pocket and cap.
with holes to receive the buttons. Cords are passed through the upper corners of the pocket, for the purpose of drawing the sides together when the pocket is held on the coat, or for holding the cap on the head.
As will be readily perceived, the pocket can be easily detached and then worn as a cap, the long side covering the back of the head. It can be combined with any coat, and would prove very handy for travelers soldiers, and others.

heat distributer for oil stoves.

The invention shown in the accompanying engrav ing, recently patented by Mr. Benjamin Hunt, of Neosho Falls, Kansas, is designed to distribute the heat and flame of gasoline or oil stoves so that the heat will be applied equally over the bottom of the cooking vesel, thus avoiding danger of burning food from a concentration of heat at one spot. In the main part of the device are radial arms, B, whose inner ends support an inverted sheet metal cone, C. The extension is closed at the bottom by a plate, and at the top by a perforated plate formed with knobs upon its upper surface, for the purpose of slightly raising the vessel to permit the heat to pass out through the holes and come in contact with the bottom. The amount of heat ad-

HUNT'S HEAT DISTRIBUTOR FOR OIL STOVES.
mitted to the exterior can be regulated by a damper D, pivoted in the entrance
The device is placed upon the oil stove, so that the point of the cone will come in the center of the flame, and deflect and distribute the heat equally over the bottom of any cooking vessel which may be placed upon the upper edge of the main portion of the rim, A. The extension may be used when a slow heat is
required. The utility, simplicity, and small cost of the required. The utility, simplicity, and small cost of then
device will recommend it to those using oil stoves.

To an inquirer in the Rural New-Yorker for the ames of a dozen of the best ornamental flowering shrubs, Mr. C. E. Parnell, of Queens, L. I., replies as follows
It is really a difficult affair to select a dozen only, fo there are so many beautiful sorts, and all of them pre sent so many claims to our notice, that it appears to be altogether unjust to neglect the many on account of few. But as there are many who, like your correspond ent, only desire, or have room for, a few, one cannot do less then make the attempt at a selection. First, I would choose Weigela nana variegata, one of the most beautiful shrubs in cultivation. It is of dwarf habit, with clearly defined variegated leaves of a bright golden yellow. The flowers, which are of a pale rose color are produced in the greatest profusion early in June Weigela rosea Desboisii is of erect, compact growth and has deep rose-colored flowers in June. Spiræ Thunbergii is a beautiful low-growing shrub of rounded form, and has delicate green lanceolate foliage, and small white flowers, which are produced early in Ma in such profusion as almost to cover the entire plant Spiræa Reevesiana is a very graceful, slightly droopin species, with white flowers; while S . callosa alba is low-growing variety, producing its small, white flower in large corymbs during June and July. Philadelphus coronarius is rather a long name for a very popular and well-known strong growing shrub that produces it large, pure white, sweet-scented flowers about the middle of June. Hydrangea paniculata grandiflora is so well known as to need no further description than to say that it is one of the best, if not the best, ornamenta shrub we have in cultivation. Buist's Variegated Althæa is another choice variegated shrub, the leave of which are beautifully marked with creamy white. It stands the sun well, is of free growth, and is attractive at all times. Then we must include the Golden Bel (Forsythia viridissima), which is well known as one of the earliest flowering shrubs, the bright yellow flower appearing before the leaves. Deutzia crenata fl pl. alba produces its double white flowers in racemes four o five inches in length late in June, and is a shrub of vigorous growth; while D . gracilis is one of the most graceful of shrubs. It is of dwarf, compact habit, and the pure white flowers are most freely produced. Th Persian Lilac (Syringa Persica) is a shrub of medium size, having small leaves and purple, fragrant flowers.
All of the above are perfectly hardy, and can be cul tivated by any one, even by those who possess but little skill or experience, and, if properly cared for, they will prove very satisfactory. They are not rare or ex pensive, and nice specimens can be obtained at a very moderate price of any of our leading nurserymen.

Ginseng.

A parliamentary paper contains the account of a journey made by the Consul-General of Great Britain in Corea. Some interesting information is given with regard to the production of the famous drug ginseng so prized as a tonic by the Chinese. It is grown from a seed which is sown in March. The seedlings are planted out in beds raised a foot above the level of the surrounding soil, bordered with upright slates, and covered in from sun and rain by sheds of reeds, well closed in except toward the north side, where the are left to open. In the first or second year the ginsen plant is only two or three inches high, and has only two leaves. It is transplanted frequently during this pe riod. In the fourth yearthe stem is about six inches high with four horizontal leaves standing out from it at righ angles, and in the fifth year a strong, healthy plant has reached maturity, though it is more usual not to take it up until it has reached the sixth season. Ordinary ginseng is prepared by simply drying the root in the sun or over a charcoal fire. To make red or clarified ginseng, the root is placed in wicker baskets, which are put in a large earthenware vessel with a closely fitting cover, and pierced at the bottom with holes. It is then placed over boiling water, and steamed for about fou hours.
Ginseng was for centuries regarded as a very elixir o life all over the East; and especially in China and Japan. Its properties were supposed to be miraculous but they were generally supposed to be confined to the Corean ginseng But its enormous price put it out o the reach of the poorer classes. The wild ginseng of Corea has frequently fetched twenty times its weight in silver in China. The export from Corea is a strict monopoly, which affords a considerable revenue, and is said to be the king's personal perquisite. Death is the punishment for smuggling it out of the country. The total export is only about 27,000 pounds avoirdupois.

A Great Steamer

The steamship Etruriag; a sister ship to the Umbria built by Messrs. John Elder \& Co. for the Cunard Company, is now ready to leave the Clyde. Built of steel, her tonnage is 8,000 tons; she is 520 feet long, $571 /$ feet broad, and 41 feet deep, the engines being of 12,500 ndicated horse power. The Etruria is soon to leave Liverpool on her maidén transatlantic trip f:r New York.

exhibition of pumping engines at the new ORLEANS EXPOSITION.

(Continued from first page).

also provided with deep well pumps for artesian and other deep wells, are noiseless, and may be run by unskilled labor.
These engines have two cylinders, one of which is kept cool by the water in a similar manner as the Ericsson, and the other is heated. The compressing is done in the cold cylinder, and the expanding in the hot cylinder. The air is alternately transferred from one cylinder to the other, and in its passage it passes through a regenerator, which is situated between the cylinders. This regenerator is for the purpose of saving as much as possible of the heat which remains in the air after it has done its work and is ready to be cooled and compressed. It is composed of a series of thin plates placed on edge and having thin spaces between them. Through these spaces the air flows. The heated air on its way to be cooled heats these plates to a high degree, and consequently parts with the greater part of the heat contained in it. These plates remain heated until the air, after having been cooled and compressed, returns through them, when the plates give up the heat contained in them to the air. This arrangement effects a very great saving in fuel. These engines, like the Ericsson above described, use the same air over and over. They, however, compress the air to a higher degree. The operation of obtaining the power is theoretically the same in both engines.
Accompanying these engines are several varieties of pumps, each adapted for a particular service, such as deep well pumping, forcing water to extreme heights, etc. The pump usually furnished is intended for what is called "surface pumping," and is secured to the cold side of the engine; it is double acting. The main portion consists of two parts of cast iron. The working barrel is a brass cylinder, and the piston is packed with two cup leathers made of sole leather pressed into shape. The four valves, two for suction and two for discharge, consist of cylindrical pieces of rubber, and, being free to roll with the action of the current of water, the wear is even throughout the entire length. The valve seats are milled smooth to fit the valves. The ports covered by the valves are not, as usual, a series of small openings, but consist of a single port without bridges or grating, thus preventing the inconvenience arising from the seats becoming clogged with grass, etc. The suction valves are situated at the bottom part of the pump, as near the base of the engine as possible. The discharge valves are placed in the upper portion. In designing this pump, great care was exercised in order to prevent the possibility of any "air trap." The
pump rod works through an ordinary stuffing box, which is packed in the usual manner, and provided with a neat cup to catch any leakage; tapped in the cup is a pipe for leading away the water which collects in it; this makes it easy to keep the engine and surroundings dry and clean.
In addition to the above mentioned hot air pumping engines, Messrs. C. H. De Lamater \& Co. manufacture an extensive line of steam pumping machinery, both single and duplex. Figure 1 represents one of their duplex steam pumps, which has many novel points about it, and in which the workmanship and material appear to be of the highest standard. These duplex steam pumps are used for pumping water for hydraulic elevators in large office buildings and hotels, where
is imperative to prevent all noise, as the steady flow of is imperative to prevent all noise, as the steady flow of
water through the pipes is perfectly noiseless and without the slightest jar.
They also manufacture and have on exhibition a very handsome single steam pump, which for smooth working and general design and appearance is quite attractive. These pumps have been made on an extensive scale, and some very large ones have been built. The new steel cruisers recently built by
ment are fitted with these pumps.
ment are fitted with these pumps.
The De Lamater Iron Works have been long and well known throughout the United States, and are at present one of the largest establishments of their kind. The pumping engine department is only one of many in their business, and they make a specialty of surface condensers for all purposes, and manufacture general machinery of all kinds. The "De Lamater" propeller wheel is well known to all steamboat men throughout
the country. The works are situated at the foot of the country. The works are situated at the foot of
West 13th Street, and their general offices are at 16 West 13th Street, and their general offices are at 16
Cortlandt Street, New York. They also have a branch Cortlandt Street, New York. They als
house at 40 Dearborn Street, Chicago.

It has been asserted that the quality of tea may be approximately estimated by the weight of ash which it yields, the value of tea being inversely proportional to the ash. M. Nikatinski has lately, says the Grocer, made a series of experiments with the view of testing
the truth of this assertion, and finds that the ash is a very fair index of the quality of the tea. Thus a good Shanghai tea gave 5.16 per cent ash, a cheap green brick tea 6.87 , and two Orenburg teas, which are known to be adulterated with rose leaves, and of which the price
was 115 s . and 48s. per cwt., yielded respectively 7.87 and $10 \cdot 42$ per cent of ash.

The manner of ascertaining the velocity of a projec tile was lately described and illustrated at the meeting of the New York Electrical Society by Henry A. Sinclair, electrician at the United States Ordnance Proving Ground at Sandy Hook. One of the Boulenge chronographs used at the proving ground was set up quickness and accuracy in determining the velocity of a pistol ball. The instrument was described as being very simple and very easy to work. It consists of an upright brass tube, supporting two electro-magnets, one above
the other. When a test is being made an electric wire the other. When a test is being made, an electric wire connects one of the magnets with the point of firing and another electric wire connects the other magne with the target or objective point of the projectile. A long rod is suspended from the first magnet, and
short rod hangs from the second one.
The projectile in leaving the gun cuts the first wire, and the broken circuit releases the long rod, which drops downward. When the projectile strikes the objective point, the second wire is broken and the shor rod falls, striking a spring which causes a knife blade to mark the descending long rod. The space from the base of the long rod to the indentation is then measured, and by the fixed law of falling bodies the time taken by the projectile in going from the gun to the target is ascertained, and from that the velocity is figured. Mr. Sinclair took a good sized revolver, loaded
it with $31 / 2$ grains of powder and a bullet weighing 133 it with $31 / 2$ grains of powder and a bullet weighing 133 grains, and fastened one end of the wire attached to the first electro-magnet across the muzzle. He then fired at a wired target in a tubular shooting gallery about 4 feet long. The time of the transit of the bullet was determined from the mark on the long rod, and it was speedily announced that the velocity of the bullet was
156 feet per second. A second trial with the same in156 feet per second. A second trial with the sam.
strument showed a velocity of 207 feet per second.
"Why is it desirable to ascertain the velocity of a projectile ?" asked a member of the society.
"Because," replied Mr. Sinclair, "it is a means of comparing the power of a gun, of comparing different kinds of powders and projectiles, of determining their
energy, and approximately their range and penetration into iron plates. Had the officer in command of the Monitor at the time of her memorable encounter with the Merrimac known what his guns would stand, he could have sent projectiles clear through the iron-cov ered sides of the ram. He used only six or seven pounds of powder in a charge when his guns would have stood charges of fourteen or fifteen pounds. Few persons 12 inch shot weighing about 700 pounds, and traveling with a velocity of 1,500 feet a second, would strike as hard a blow as a railroad train consisting of locomo tive and five or six cars (weighing about 100 tons) mov ing at the rate of 57 miles an hour.
Attempts were made to ascertain the velocity of proectiles as early as 1740 , and in 1840 electricity was firs used for that purpose. By the Schultz chronoscope, which Mr. Sinclair said was the most accurate instru-
ment of its kind, intervals of time can be measured from thirty seconds to one five-thousandth part of a second. Mr. Sinclair exhibited specimens of the fuses used to fire large guns, and also showed several varie-
ties of powder. Some of the orains were as large as a hen's egg. The method by which the pressure exerted by an exploded charge on the inside of the gun was measured was explained. The lecturer said that guns had been tested at Sandy Hook up to a pressure of
107,000 pounds per square inch, but that was extraordinary. The average pressure on a gun was about 40,000 pounds to the square inch. The velocity of pro-
jectiles from large guns ranged from 600 to 2,400 feet per second.-New York Times.

American Competition.

The London Globe says:
"A reduced American tariff means closer competition gainst this country in the neutral markets of the world. Every diminution of that tariff will give new impetus to American productions, and will be equivaational competition. Unfortunately for this country there are other elements in the industrial condition of the States which will act to our detriment. One of hese is the silver question, the other is the superior mechanical equipment of American industry and the more satisfactory relations prevalent between capital and labor in that country.
"But our great fear as to the industrial future of this lies in the in inevitable rivalry with the United States, The American is par excellence a mechanical inventor. His natural ingenuity, fighting against the artificial enhancement of prices resulting from the prevalent fiscal system, has driven him to seek relief in mechani-
cal assistance. He had compensated for dearness of material in cheapness of production. Every workman in every manufacturing center is stimulated to study and master the machine under his charge, with a view the improving it. Mechanical development is part of the character of the nation. We may be sure that the
country which produced the grain elevator, the oil pipe pumps, machine-made watches, the high speed print ing machines, the ring frame, and other inventions without end, will develop still greater creative powers under the stimulus of a growing export trade. Where shall we be then? The relations also between the capitalist and labor classes in the States are more of a nature to encourage production and to develop the capacities of rising generations. Greater attention is iven to the physical and moral well-being of the American artisan than is considered to come within the sphere of duty of the British or European manufacturer. A certain spirit of emulation pervades the laboring classes on the other side of the Atlantic, in the place of the leveling down to a general average which prevails in this country. The American artisan works for himself, knowing that his success will be recognized and encouraged. He seeks to rise, and his industry progresses with him. Are we doing all we should and all we might do on this side to keep pace with this progressive movement? We fear not, and yet such social ad vance leaves an indelible mark on its generation, and expresses itself industrially in good merchandise and low prices."

Zinc in Drinking water

A paper on the above subject is given in the Journal of the American Chemical Society, by Dr. F. P. Venabe. It has long been known that zinc dissolves in water, and that soft water, such as rain water, dissolves it more easily than hard water. Water containing carbonic acid is specially able to dissolve it. The use of galvanized iron for pipes and tanks being so much on the ncrease, the subject becomes more and more important, and it is desirable to ascertain, as far as possible, to what extent solution of the zinc coating takes place, and how far water contaminated by zinc is injurious to health. The author quotes several investigators as to the latter point, the evidence being to some extent conficting, but giving a very decided balance on the side of the view that such water is considerably injurious. Investigations made on behalf of the French Government resulted in the prohibition by the Ministry of Marine of the use of galvanized iron tanks on board men-of-war. Professor Heaton has given an analysis of a spring water, with a further analysis of the same water after it had traveled through half a mile of galvanized iron pipe. It had taken up 6.41 grains of zinc carbonate per gallon. Dr. Venable gives the results of an observation of his own, where spring water passed through 200 yards of galvanized iron pipes to a house, and took up $4 \cdot 29$ grains of zinc carbonate per gallon. It allowed to come in contact with zinc.

Chiccory with Coffee.

The chiccory root, which was used more with coffee when the latter brought a higher price than it does now, but which is still greatly used on the Continent, omewhat resembles a parsnip. The stem rises to a height of two to three feet, the leaves round the base being toothed, not unlike those of the dandelionindeed, it is closely allied to that plant. The preparation of chiccory, as carried out in Belgium, is very simple. The older white roots are selected, cleaned, sliced, and kiln-dried, and are then ready for the manufacturer. It is roasted in an iron cylinder, called a drum, which revolves over a coke furnace. When aken out it is of a dark brown color, and while hot it is soft and pliable, but after being raked out and subjected to a draught of cold air, it becomes hard and crisp, and is then ready for the mill. From the mill the powder is passed through a cylinder sieve, from which it emerges as fine as the finest flour; and the partially ground pieces, or foreign matters that may have found their way into the chiccory, drop into a separate bin. The shades of color vary occasionally to suit the taste of the purchaser. The chiccory root is cultivated in Belgium, Holland, France, and Germany. In Belgium, where it is also used as a vegetable, it is very extensively grown, its culture and its manufacture (both of which are unrestricted) forming two of the greatest industries of that country; and its infusion is largely drunk as an independent beverage. For home consumption it is put up in small round and square packets of various weights, with highly colored and attractive looking labels attached, and so dispensed to the public, who can also purchase it in a loose state.
To preserve it in good condition, chiccory should be To preserve it in good condition, chiccory should be
kept in a tightly closed tin box and in a dry place otherwise, it will become lumpy and rank, and unfit for use. Instead of being ground down to a fine powder, chiccory is sometimes granulated-that is to say, ground into grains or small lumps. This is often done when it is intended for export, as in this state it can be packed loosely in barrels, and is less likely to deteriorate. When exported in powder it is packed in tin cases, which are hermetically soldered down to prevent injury from atmospheric changes. The London Grocer ays that large quantities prepared in both ways are annually shipped from Belgium to all parts of the world.

THE GREAT DRILLING MACHINES OF THE FORTH them while hot in a large hydraulic press, from which intended to deal. The tubes are built round about a BRIDGE.
In the Scientific American of April 4, we gave a
description of the main piers of this great bridge,
with the construction and method of erection, and also described and illustrated the caissons used in building $\left.\right|_{\text {to be placed on the tube when required. The longi. }}$ The mandrel, plate edge planer, hydraulic press, and

Fig. 1.-THE FORTH BRIDGE.-ELEVATION AND PLAN.
the piers. From the accompanying elevation and plan tudinal H beams are made up of a deep webbed tee hydraulic crane are very fully described and illustraviews of the bridge, the general dimensions and form and two angles, being partly drilled through these be- ted in the Scientific American Supplemen', No. can be ascertained; Fig. 5 shows a cross section of one fore erection. The circular girders are also partly 478.
of the mammoth tubes, and Figs. 2, 3, and 4 show the drilled before being placed on the mandrel. These The work of building and drilling the tubes is done machines for drilling these tubes.
different parts form the main tube proper, leaving out out in the open (Fig. 4), on what is called the drill
One of the well known features in the design of this the connections to skewbacks, the girder fixtures, tees, roads. These are laid down to suit the drilling maundertaking demands that struts of hitherto unequaled and other minor details, with which it is not at present chines, and at such a distance and with such a length length and capabilities for resisting thrust be employed. The form which best fulfills these conditions is the tubular. As well nigh six miles of tubes are required in the completed bridge, it at once becomes evident that the construction of them could only be effected within a reasonable time by the adoption of special plant. Owing also to their novelty of form and great size, no machinery was in existence capable of dealing with such work. On account of this, and for various other reasons, it was determined to design special plant for the whole work.
The struts required are of various dimensions, ranging from that of the largest, 12 feet in diameter, to that of the smallest, which is only 3 feet. Fig. 5 is a cross section of one of the 12 foot horizontal tubes between the piers. It consists of ten plates and ten longitudinal H beams, stiffened at intervals of 8 feet by means of the circular girders shown in elevation. The girders, again, are made up of diaphragm plates, connected to inner and outer angles, the former being riveted to the H beams, while the latter are similarly fixed to the tube plates.
One of the most difficult operations was the curving of the heavy plates, which are 16 feet by 4 feet 4 inches by $11 / 8$ inch and $11 / 4$ inch thick, and weigh from 28 to 32 hundredweight each. The method now adopted is to bend

Fig. 3.-SIDE ELEVATION OF TUḄE DRILLING MACHINE. as to allow the bracing girders and connections thereto to be placed in position, as the work stands on the ground, prior to the final erection. The roads are so arranged as to be all equally suitable of access for the steam traveling cranes used in carrying the material to position and in building the tubes. This is accomplished by means of traversers, of which there are three, one in the center and one at each end of the drill roads, those at the ends running on rails at right angles and close to the main roads, but fully 12 inches lower, while the center one is run on cross rails, on the same level as the main roads. If it is necessary to change the position of a crane, it is run on to the traverser, and on it carried to the desired point, and there run off. In this way the whole of the ground is commanded by the cranes.
The mandrel, M (Fig. 5), is 45 feet long by 5 feet in diameter, raised on iron trestles, T, to a height, at the center, of 10 feet from the ground. This corresponds with the center of the outer rings of the drilling machines. The great length of mandrel is required to allow of its being carried up at the ends, where. the H beams and plates are built in position. On this mandrel there are now secured, but in halves, temporary iron rings, R, at the horizontal distance from each

Fig. 2.-SECTION OF TUBE DRILLING MACHINE.
other of 8 feet. To these are fixed the radiating plates, P , having holes punched in the outer end for bolting on the first part of the permanent work, viz., the inner angle, A, of the circular stiffening girders. The same bolts are also made to carry the web plates, W , of these girders, on the outer edge of which are fixed the angle irons, I, for making the final connection fixed the shell of the tube. The horizontal H beams, to the shell of the tube.
H , are now placed in position, being securely bolted through the inner angle of the circular girders. On these beams are now placed the shell or tube plates, the ends forming butt joints, while longitudinally they lap one another, this taking place over the solid flange of the H beams. The end joint of the one plate breaks opposite the center, or solid part, of those on either side. The first plates to place in position are the inner, or those lying close against the flange of the beams, beginning generallyatthebottomand coming up on each side. Owing to the passing of the one plate beyond the other, one-half of each remains free to put grabs and drawwashers on, without interfering with the placing of the outer ones in position. So soon as the outer ones have been puton and fixed in a similar manner, there are passed round
all a couple of angle iron rings, for binding and drawing them up to their proper position. The tighten ing them up is done by means of iron wedges between the plates and the rings. After the bottom plates have been fixed in position, the tube is borne up by wooden blocks, built between it and the cradle under neath. The true position of the tubes, both as re gards horizontal distance apart and height, is found by means of a theodolite, placed at one end of the roads, on a fixed platform, in a position such that when it is in line with a stationary point at the other end it always fixes the centers 120 feet apart throughout, and horizontally in the same plane. If the center of the mandrel is not in this line, then it is made so by being raised, lowered, or shifted sideways to suit. When the mandrel is right, the tube mus of necessity be so also, seeing the centers coincide.
When the building of one ring of plates has been completed, the drilling machine is moved forward, the blocks in front being taken out of the way and rebuilt behind as it is traveled along. To enable the drilling to go on continuously, the building of the tube in front is being proceeded with while the machine is still at work on the portion immediately behind. These tube drilling machines-of which there four-are shown in Figs. 2, 3, and 4. Each is self-contained, and on being run along the rails, carries all with it. The principa parts are the wrought iron underframe or carriage, A on the one side of which is fixed the engine, E , and boiler, B, and two large cast iron rings, C, firmly bolted to the main cross girders. These rings have an internal diameter of 13 feet, sufficient to enable them to pass freely round the tube when the machine is being moved along. Five cast iron slides, D, are fixed thereon, and held in position by means of small slipper blocks, \mathbf{F} fitting into a recess in each of the rings, C. On each of the slides are the two heads, H H. Each head is provided with a single drill, and is capable of being rapidly run from one point of the slide to another by rack and pinion gearing. The slides are kept in position, and also turned round the rings, C , in either direction, by means of two worms, W, carried in brack ets, F , one gearing in each ring in the circular racks, R. These racks being bolted to the rings serve also a guides for steadying the whole upper portion of the machine. All the drills point to th \sim center of the tube, and having, as shown, both a circular and longitudina motion, can with ease be made to reach every hole in any part of the structure; some of which are through a depth of as much as 4 inches of solid metal.
It might be here mentioned that some of the slides were specially designed to overcome the difficulty of drilling, say, a flat part in any of the tubes. The difficulty lies in the fact that the drills on any of the fixed heads always point to the center of the tube, whereas in the case just mentioned the holes require to be drilled at right angles to the special or flat part. The mode adopted to overcome this was to make both ends of each slide circled, fitting them into separate heads, which in turn were bolted to the slipper blocks, F, as in the others. On the head at one end is placed a worm, while on the same end of the slide there is keyed a
wheel into which the worm is geared, by turning which
the slide can be made to place and keep the drill the slide can be made to place
pointing in any required direction.
The whole of the drills are fed into their work by an automatic arrangement, the motion being imparted to the longitudinal shaft, L, by a band driven off the main driving pulley. On this shaft slides, and by it also ar driven, the worms, W^{1}, necessary for turning the worn
pally on account of the difference in thickness of the various parts of the tubes. For Figs. 1 and 4 we are indebted to La Nature ; for Figs. 2, 3, and 5 to Engineer.

spontaneous Combustion.

The Boston Manufacturers' Mutual Fire Insurance o. in a recent circular says:

A very considerable loss has lately been incurred by one of our members in a building used for dyeing and drying, which was not suitable to be insured by us, and on which we had refused to issue policies. This fire has been made the subject of close investigation, and is very suggestive.
The building consisted of two sections, divided by a brick party wall, in which there were wide doorways fitted with suitable fire doors. On one side the risk was considered bad, and this part had been fully protected with Grinnell automatic sprinklers. On the other side the risk was considered fair, and automatic sprinklers had not been placed therein, but were about to be
In this "fair" section the fire occurred, and the section, with its contents, was wholly destroyed. The "bad" section was wholly saved by the automatic sprinklers, the workmen having been driven from
wheel, I, which at will can be made to drive the hand wheel, K , thereby feeding the drill into its work. At one end of each of the main slides is overhung the driv ing pulley, P , the power being transmitted from the engine to the whole of these by means of a cotton rope, guided where necessary by supplementary pulleys. The slack is taken up by a shifting quadrant, moving about the engine shaftas a center, assisted by auxiliary pulleys on a wrought iron frame close by the engine.
When starting work on any tube, a drilling machine is moved forward to the point at which operations are to begin. Each of the five slides is now moved around the rings until all the points of the drills face truly any eries of holes in the longitudinal beams. The holes in this line, or series, are all drilled, two drills being at work on each line, then the slides are again placed so as to suit a new set, and so on until the whole of the

Fig. 5.-SECTION OF TUBE AND MANDREL.
tube commanded by the machine in its present posi tion is finished. This is equal in lenyth to 8 feet, and includes the full circumference of the tube. The number of holes in such is about 800 , and the time required to drill all, when working continuously, is from twenty four to twenty-eight hours, varying thus much princi-
the building without being given time to close the fire doors, so that the fire might have passed except for the sprinklers.
The circumstances were as follows: Stock known as camel's hair, dyed with chromate of iron, was in process of drying, under the action of a 56 inch fan operating at nine hundred revolutions per minute.
The fire is attributed to the spontaneous combustion caused by the rapid oxidation of the chromate of iron. In a still air it might have smouldered, but, under the influence of the fan, it burst into flame with the semblance of an explosion; the men were instantly driven from their places, and the section was totally destroyed, while the other division was saved as already stated.
The point of interest therefore is, how to stop a fan automatically, the instant a fire occurs, by the action of the heat; and this problem may be considered not only in connection with drying machinery, but in connection with all fans, and, perhaps, with some or all blowers.
This can be accomplished by automatically throwing off the belt, and it is probable that a different device may be required for each kind of fan; but in every device a fusible link can be made use of, soldered with the same solder which is used in automatic sprinklers, or with solder melting at a high degree, if exposed to more than ordinary heat.
The constant recurrence of fires caused by friction and spontaneous combustion in the processes of drying fabrics, as well as fibers, keeps us in the constant expectation of loss in the processes of drying, and we therefore again revert to the subject.

Hollow versus Solid Shafting.

A shaft made in the shape of a tube is stronger than it would be if made of a solid bar of the same dimensions. From this, however, it does not follow that a solid shaft is increased in strength or better prepared to stand a sudden twist if a portion of the material is bored out along its central line. Frequently workmen entertain the idea that the core of an axle or the bearing of a shaft is a hinderance in the way of strength, and is one of the reasons for making them hollow; this not so, as it is merely the arrangement of the material that improves its strength. Boring out a solid shaft lessens both its weigh t and its strength, but the material is removed from the portion where the least resistance is offered; therefore the loss of weight is greater than the loss of strength. The particles on the outer surface are tested to their utmost when those in the center barely receive any action at all, and from this line to the circumference they are gradually being brought into use until those on the outside are ready to break apart when the limit of strength is reached. In tests that have breen made, results have shown that the weight may be reduced sixteen per cent by boring, while the strength would not be lessened by more than one and \vdots half or two per cent. The success of many designs lies in so arranging the material that where any fracture is likely to occur, as much metal may be used as is likely to be wanted to stand the increased strain.-The Garden.

ASPECTS OF THE PLANETS FOR MAY venus

is morning star until the 4th, and then commences her brilliant career as evening star. On the 4th, exactly at midday, an event occurs in her history that gives her prominence on the annals of the month. She is in superior conjunction with the sun, passing beyond the sun, making her advent on his eastern side, clinging closely to him for a time, and hiding herself in his brilliant rays. As the weeks roll on she will emerge from her seclusion, shine with fitf glow, almost in the full blaze of the twilight, and before the summer wanes will be the loveliest object in the western evening sky, while winter wiil commence in earnest before she reaches her point of greatest distance from the sun. No true lover of the stars can gaze unmoved upon this fascinating planet, as, like a golden bead strung on an invisible wire, she oscillates eastward from the sun until her eastern elongation is reached on the 8th of December. Even more interesting is her return to the great orb, to whom she is linked by chains lighter than gossa

Observers who watch closely the movements of this radiant star will readily perceive the oscillation eastward and westward from the sun, for such is the appearance she presents to spectators on the earth.
In reality, Venus and the earth are both revolving in elliptical orbits around the sun, as would be plain if observers could take the great luminary for a standpoint. Venus, being nearer the sun than the earth, moves faster and in a smaller orbit. She travels 21 miles in a second, and it takes her 225 days to complete a revolution. The earth moves slower, and makes a larger circuit. She travels 18 miles in a second, and completes a revolution in 365 days.
Thus our nearest planetary neighbor and her twin sister, the earth, move on in their shining paths, the former gaining upon the latter all the while. A time must come when the two planets and the sun will be in line, as is the case with all the planets in the system and on the 4 th Venus and the earth will reach that point.
Mathematicians give the exact figures. When Venus has made two entire revolutions and six-tenths of third one, and the earth has made one revolution and six-tenths of a second one, a superior conjunction of Venus will take place, following, of course, a preceding epoch of the same kind. Venus requires 584 days to accomplish this feat. It is therefore called her synodic revolution, and represents the time that elapses between two consecutive returns to superior conjunction. The same law holds in regard to inferior conjunctions.
Venus, then, on the 4 th, is in superior conjunction with the sun, rising and setting with the sun. She is in line with the sun and the earth, the sun being in the middle, is at her greatest distance from the earth, invisible as she passes beyond the sun, and invisible for some weeks to come, being eclipsed by his all-powerful light.

Although at present we may not behold the fairest of the stars with the physical eye, it is none the less sure that the light of her countenance is turned earthward, and that before long she will be visible in the west as evening star, and will throw a spell over the summer nights with her soft, dreamy beauty. She is lovely as in the morning sky she heralds the sun's approach in the glowing east, and even dares to shine in his majestic presence. She is more lovely, in our view, as, in the evening sky, she hangs in the star depths like a golden lamp suspended on invisible chains, sinks slowly in the west, increasing in brilliancy as the shadows deepen, outshining the myriad twinkling hosts that surround her path, and reigning the acknowledged queen of the star-spangled firmament.
But we anticipate the coming glory of our sisterplanet. For, during the month, she can only be seen by the eye of fancy as she makes her way toward us amid the blaze of sunlight that encircles her.
Venus, on the 11th, moving eastward from the sun, pays her respects to Neptune, moving westward toward the sun. The planets are in conjunction, Venus being $1^{\circ} 15^{\prime}$ north.
The right ascension of Venus on the 1st is 2 h .39 m .; her declination is $14^{\circ} 38^{\prime}$ north; her diameter is $10 \cdot \imath^{\prime \prime}$; and she is in the constellation Aries.
Venus rises on the 1si 8 minutes before 5 o'clock in the morning; on the 31st she sets 20 minutes before 8 o'clock in the evening.

JUPI'TER

is evening star throughout the month. His course is marked by an interesting event. On the 17th, at 10 oclock in the morning, he is in quadrature with the most as impressive as Jupiter in opposition. For as the sun sinks below the western horizon, the princely planet comes into view, looking down with friendly eyes from the zenith. It is a fitting place for the most distinguished member of the sun's family, wl. 0 . though three months have passed since opposition, retains the golden luster, the large proportions, and the beaming aspect that marked

Jupiter and Regulus continue to be near neighbor during the month, as they have been for the last six
months. On the 30th, at 7 o'clock in the morning, they are in conjunction for the third time, Jupiter being 41 north. A better opportunity seldom occurs for studying the difference in apparent movement between a planet and a fixed star. The star seems to be unchangeable in its position, being carried westward by the earth's motion eastward in her orbit. The planet is rightly named a wanderer, for he seems to move now forward, now backward, and is now stationary. Thus on the 7th of October of last year, Jupiter and Regulus were in conjunction, the planet after that time being east of the star. On the 14 th of March, they were in conjunction again, changing places, the planet being west of the star. On the 30 th they will be in conjunction for the third time; the planet again being east of the star, to whose vicinity he will no more return until he has completed a revolution round the sun, taking in the whole circle of the zodiac. Regulus is very near the sun's path, being only half a degree from the ecliptic, so that sun, moon, and planets are often passing near it. Mars was in conjunction with the star in May, and Venus in October of last year.
The right ascension of Jupiter on the 1st is 9 h .54 m his declination is $13^{\circ} 58^{\prime}$ north; his diameter is $37 \cdot 2^{\prime \prime}$ and he is in the constellation Virgo.
Jupiter sets on the 1st about a quarter before 'clock in the morning; on the 31st he sets a few min utes before midnight.

NEPTUNE

is evening star until the 13 th , and then becomes morn ing star. On the 13th atonoonday, he is in conjunction with the sun, passing to the sun's western side, and commencing his course as morning star. He is the first of the giant planets to reach the goal, though the other members of the fraternity will follow his exam ole in due time.
It is well to note the difference between the conjunc tion of an outer planet and the superior conjunction of an inner planet, as illustrations of both occur during the month. In the former case, that of Neptune, he passes from the sun's eastern side to his western. In the latter case, that of Venus, she passes from the sun's western side to his eastern, apparently reversing the process. Venus, being the first to arrive at conjunc tion, must meet Neptune hastening to the same goal, and, as already referred to, the planets are in conjunction on the 11th
The right ascension of Neptune on the 1st is 3 h .22 m ; his declination is $16^{\circ} 47^{\prime}$ north; his diameter is $2.5^{\prime \prime}$ and he may be found in the constellation Taurus.
Neptune sets on the 1st at half past 7 o'clock in the evening; on the 31st he rises about half past 3 o'clock in the morning.

mercury

is morning star. On the 25 th he reaches his greatest western elongation, being $24^{\circ} 59^{\prime}$ west of the sun. Al though he is nearly as far as possible from the sun, he is 9° south of him and not as favorably situated for observation as he was at eastern elongation in Apri, when h was $19^{\circ} 26$ from the sun. He will, however, be visible to weather, for it is the first of the three times in the year when there is a possibility of picking him up as mornng star. On the 25th he rises about an hour before the sun, and is in the constellation Aries, but there are no bright stars in the vicinity to point him out. The observer who succeeds in finding him is blessed with keen visual power.
On the 13th, at 3 o'clock in the morning, Mercury is n conjunction with Mars, being $2^{\circ} 27^{\prime}$ south. On the 30th, at 4 o'clock in the afternoon, he is again in conjunction with Mars, being $2^{\circ} 56^{\prime}$ south.
Theright ascension of Mercury on the 1st is 2 h .12 m . his declination is $12^{\circ} 49^{\prime}$ north; his diameter is $12^{\prime \prime}$; and he is in the constellation Aries.
Mercury rises on the 1st about half past 4 o'clock in the morning; on the 31st he rises at a quarter after 3 o'clock.
morning star. He is twice in conjunction with Mer cury, and very near him during the whole month.
The right ascension of Mars on the 1 st is 1 h .32 m .; his declination is $8^{\circ} 54^{\prime}$ north; his diameter is $4 \cdot 4^{\prime \prime}$; and he is in the constellation Pisces.
Mars rises on the 1st soon after 4 o'clock in the morning; on the 31st he rises about 3 o'clock.

SATURN
is evening star. He is now conspicuous in the western sky, but at the close of the month will be too near the sun to be of much account.
The right ascension of Saturn on the 1st is 5 h .24 m . his declination is $22^{\circ} 10^{\prime}$ north; his diameter is $16^{\prime \prime}$; and heis in the constellation Taurus.
Saturn sets on the 1st a fow minutes before 10 o'clock in the evening; on the 31st he sets about a quarterafter 8 o'clock.

URANUS
is evening. star. The month closes with Neptune, Mercury, and Mars as morning stars, and with Venus, Saturn, Jupiter, and Uranus as evening star.:

The right ascension of Uranus on the 1st is 11 h .58 m .; his declination is $0^{\circ} 58^{\prime}$ north; his diameter is $3 \cdot 6^{\prime \prime}$; and he is in the constellation Virgo.
Uranus sets on the 1st soon after 3 o'clock in the morning; on the 31st he sets soon after 1 o'clock.

THE MOON.

The May moons fulls on the 28th at 31 minutes afier 3 o'clock in the evening. The moon does not encounter a single planet in her path until the 12th, when she is in conjunction with Mars, being $2^{\circ} 3^{\prime}$ south; four minutes later she is in conjunction with Mercury, being 22^{\prime} north. She is in conjunction with Neptune on the 14th, about three hours before new moon, and with Venus on the same day about three hours after new moon. On the 16 th , she pays her respects to Saturn, on the 20th to Jupiter, and on the 23d she makes a close conjunction with Uranus, being $1^{\prime} 11^{\prime}$ south. The close conjunction with Mercury on the 12 th is an occultation or observers more favorably situated, and so is the conjunction of Uranus on the 23d, an occultation to observers in some parts of the far south.
The celestial kaleidoscope reveals a brilliant picture for the month of May. Venus is in superior conjunction, Neptune is in conjunction, and Jupiter in quadrature with the sun. Mercury reaches his greatest western elongation. Venus is in conjunction with Neptune. Mercury is twice in conjunction with Mars. The moon, besides swinging her ponderous sphere near the whole family of planets, occults Mercury and Uranus, for the telescopic delight of those observers who chance to be on that portion of the earth's surface where the exhibition is visible.

A Bark Canoe.

The camping out season is approaching, and an accessory to a life in the woods is the canoe. A writer in Macmillan's Magazine gives the following timely information for tourists: A bark canoe is only one man's load; he turns it upside down, and walks with it on his head. A man toiling across a portage in this attitude is a somewhat grotesque sight, suggesting a monstrous new kind of snail. Then the canoe will go over shallows where anything else would stick, and as for handiness, an expert canoeman will almost turn it around with one twist of the paddle. Repairs are frequent but simple, consisting mainly in the free application to damaged places of a resinous gum kept in store for that purpose. Speed is a secondary consideration; you cannot go fast paddling up, and you cannct help going fast coming down. We came down a reach in half an hour that we had taken half a day to work up. Often towing and poling have to be resorted to to make way against a heavy current. Paddling, though a more wasteful application of muscular work than rowing, is less fatiguing when the pace is not forced, and after a little practice becomes a very delectable exercise. The traveler embarked on a canoe voyage has to carry most things with him. Along the river there are only scattered farm houses, and the only certain and comfortable way of securing shelter for the night is to camp out. The tents and other necessaries form the cargo of the canoes. It is astonishing how much stuff can be stowed away in a canoe that looks quite small-another merit of the savage birch bark vessel as compared with European boats. Every night we choose our camping ground, pitch our tents, and make our camp fire; this last is of great importance, not only for warmth and brightness, but for driving away insects, the only drawback in a life otherwise perfect. When people play at camping out in England, they make a fire a foot or two across, over which they hang a kettle on three sticks. In Canada you make a fire of logs five or six feet long, or may be whole roots of pine or cedar, which will burn all night. The trouble of chopping the wood up small would be greater than that of burning it as it is, and its cost is nothing. In many places, indeed, the best fuel is drift wood, which could in no way be made otherwise useful. Even in summer nights the fire is a welcome companion, and after a day's work at paddling, hot tea is the best of drinks whatever the temperature may benot that other drink would be easy to get if one wanted it, but no such want is felt.

Diphtheria in the Chief Cities.
Deaths from diphtheria per 100,000 inhabitants in

Amsterdam	265	85
Berlin	. 245	Hamburg................... 76
Madrid	225	Naples.
Dresden.	. 184	Lisbon.................. ... 74
Warsaw.		Stuttgart................... 61
Philadelphia.		Rome...................... 56
Chicago.		Edinburgh.................. 50
Turin.		Buda-Pesth. 50
St. Petersburg	. 121	The Hague.................. 45
Bucharest.		Vienna..................... 44
Berne.	. 115	London.
Munich.	. 111	Christiania
Stockholm	. 107	Copenhagen.
Malines.		Suburbs of Brussels........ 36
Antwerp	. 104	City of Brussels....... 35
New York		

The Siglo Medico, from which this extract is taken, onsiders Brussels a highly favored city. It is certain-

ENGINEERING INVENTIONS.

A car coupling has been patented by Mr. Jefferson Fuller, of Huntington, W. Va. This invention covers a special construction and combination
of parts of a device intended to couple cars automatiof parts of a device intended to couple cars automati-
cally, having for its object to arrange the link pin to
fall 1 n place at the right time without the ase of springs, and to manage the pin from either side or from the top of the car
A car coupling has been patented by Mr. Isaac Linthicum, of Liberty, Neb. The drawhead a recess or cavity is formed in the upper surface of the bottom, the front side of the cavity being beveled, and at the bottom of the cavity is a magnetic plate, to assist in keeping the

A steam boiler has been patented by Mr. Thomas Kays, of Newton, N. J. This invention covers an improvement on the Lawson pateteded boilier
of 1880, and provides for an additional partition or diaphragm dividing the steam space of the boiler arrangel
above or beyond the partition which divides :he main steam space from the water space, such additional partition having openings in it for the passage of steam of somewhat greater aggregate area than the openings in
the first partition, but still less aggregate area than the opening through which the steam passess to the cylinde opening throug
of the engine.

mechanical inventions.

A shuttle box motion for looms has been patented by Mr. Louis C. Werner, of Broad
Brook Conn. This invention covers a special construction and. combination of partst to provide an im-
proved mechanism for automaticaly proved mechanism for automatically operating shuttle
boxes, made in such a manner as to adapt it to be applied to old looms, and one which is simple in con-

agricultural inventions.

A sulky plow has been patented by Mr. James E. Mohney, of Eight Mile, Mo. This invention Includes a novel system of connections from the front
furrow wheel of the plow to the rear the furrow wheeels will be moved toward and from each other by a swinging of one wheel, also special connec-
tions of the wheels to the tongue, and other novel feations of
tures.

A check row attachment for corn plant ers has been patented by Mr. John K. Voorhees, of Pel
la, Iowa. This invention relates to certain 1a, enta. This a former patented invention of the same inments in a former patented invention of the same in-
ventor, and is istended to facilitate the hills being always dropped to form rows both ways of the fiela, an
so no difficulty will be experienced in effecting the proper adjustment of the parts.

MISCELLANEOUS INVENTIONS.

A screw cutting die has been patented by Mr. Philip H . Class, of Greenfield, Mass. By this
invention screw cutting dies are set eccentrically in the invention screw cutting dies are set eccentrically in the
stock or holder in a manner to allow of their opening and closing, so that screws of different depths or sizes mayge.
A calculator has been patented by Mr. John L. Richardson, of Thuscola, Mich. This invention pointer operated by a ratchet wheel with one hundred cogs, and other novel features,Imaking a simple device
for adding numbers, one which gives reliable results for adding numbers, one

A rotary force pump has been patented by Mr. John Serdinko, of New Braunfels, Texas. It is made with a tubular standard having one or more fexi-
ble tubes with interior half tubess and an interior cylinder mounted upon a crank shaft and having adjustable bars carrying roiners, whereby a liquid can be raised by
the successive action of the rollers upon the flexible

A machine for punching lock plates has been patented by Messrs. Thomas Donahue and
liam W. Cone, of Terryville, Conn. Combined with punch and with a die having an L-shaped slot is a slid ing carriage with a tongue having an L-shaped cross-
section, hopper being located between the sliding carsection, a hopper being located betwen the sliding car-
riage and the die, the plate going into the die forcing riage and the die, the
out the stanuped plate
An adjustable folding table and ironing board support has been patented by Mr. Henry P
Schenk, of Jeffersonville, Ind., deceased (Sophia R. Schenck, adminstratrix). It is formed with two legs, to each of which an L-shaped top plate section is hinged sö that these top plate esections can be esung upward
and united to ofm together a square or rectangular top and united to form together a
plate, with other novel feature
A washing machine has been patented by Mr. Henry D. King, of Nevada, Mo. Hollow projecting beating studs are attached in the form of in-
verted cups to the lower side of the dasher for beating the clothes more effectually than solid studs forcing the clothes in and out of the hollow spaces of the studs with other novel features and special
make an improved washing machine.
A clothes line fastener has been patented by Mr. Thomas McCoy, of Lawrence, Kansas. It is formed of a pivoted lever with a fork at its upper and
a crosspiece at its lower end, combined with another pivoted lever having a cross piece at its upper end, the rope being clamped between the cross preces after it
has been passed over the fork on the upper end of the lever.
A syringe has been patented by Mr. Henry M. Howell, of New York city. It is designed monts, salves, etc., and consists of a shell to be filled with the plastic substance, and inserted into the syringe tube, the plunger of the syringe to be forced into the
shell for expelling the substance, thus avoiding the in convenience of filling the syringe tube.

A safety attachment for elevator cars has been patented by Mr. Prilip Cohn, of Naevo Laread
Mexico. Latches are pivoted to the standards, with means for throwing them outward, the latches being locked in place so as not to catch on racks in the shaft,
but so that when the hoisting cable breaks the latche but so that when the hoisting cable breaks, the latches
are thrown outward and catch on the racks, thus lock are thrown outward
ing the car in place.
A machine for embossing and ornament ing boot or shoe soles has been patented by Mr. William
D. Hall, of Beloit, Wis. Combined with a shaft carryng a toothed die or wheel is a vertically movable shaft adjustably on the shaft, and a check screw for limitin the upward movement of the shaft, for ornamentingthe soles and producing an imitation stitch.
A collar button has been patented by Mr. George Krementz, of Newark, N.J. This inven
tion relates to improvements ona collar button former y patented dy the same inventor; it has a hollow sten formed on a base, and the edges of the head are bent and curved down so as to form a rounded head, and to
prevent theedges of the head from cutting into the skin in case the button is tilted and laid over against skin in cal
the flesh.
A mechanism for converting motion has been patented by Messrs. Daniel D., George L., and covers a special mechanism intended for use with windmills to convert the reciprocating motion of the pump rod into rotary motion for operating churns, grind-
tones, etc., insuring a noiseless movement and intend ed to equalize the irregular speed and power of the Improved bolt work for safes forms the Maryville, Mo. The invention consists in a leve of Maryville, Mo. The invention consists in a lever
o connected with the bolts and so intercepted by atches that it will first extend the bolts and afterward etract them, while impelled continually in one direc tion by a spring or its equivalent, with various othe
novel features. The same inventor has also obtained further patent having for its object to extend the bolts fa afe door by the act of closing the door, to lock
the same, and to unlock the door by time mechanism, so the door may be both locked and unlocked without any means of communication with its lock after the door is closed.

Special.

VIEWS OF THE HON. WM. PENN NIXON.

Mr. Nixon is widely known as the editor of the Chicago
Inter-Ocean, one of the most outspoken and spirited dailies of the present age. Like many other busy editors found that his health was gradually running down. His businessasssociates and his family felt that he was in a
perilous condition, and urged him to take rest-giving up perilous condition, and urged him to take rest-giving up
for a while all editorial labor. His natural ambition and for a while all editorial labor. His natural ambition and
his long habits of diligent work were against this. DeAt last, after fighting for some months with the condition of his system. which was gradually undermining
his vitality, Mr. Nixon concluded to take a few weeks of rest. Of that rest and of what followed it we will let him correspondents, who recently visited him at his editorial ooms sin Chicago.
Mr. Nixon, who now appears in the prime of life, and
in the full vigor of bodily and mental vitality In the full vigor of bodily yand mental vitality saia, sub-
stantially : It was in February, 187, that I took a severe cold. My ysytem had become much workeod down, and,
driven with constant editorial duty, had neglected it. After long consideration I concluded to take needed rest. I went to Florida and Cuba for a few weeks. On
the way I had several hemorrhages from the lungs. was auite sick. and returned in no better condition than
before. My wife was much alarmed about me before. My wife was much alarmeet about me. The physician who attended me on my return gave me inha-
lations, tonics, alteratives, and pills; after taking which, lations, tonics, alteratives, and pills; after taking which,
for about two weeks, I was weaker. I kept at my work, for about two weeks, 1 was weaker. Tkept at my work, come .critical. I lost flesh, and suffered from a severe
soreness in the upper part of my right lung. My wife's soreness in the upper part of my right lung. My wife's
sister, who was in Boston, wrote about a treatment which ister, who was in Boston, wrote about a treatment which
was novel to me-Compound Oxygen. A relative of hers who had been in such poor health that he had been compelled to spend several winters in Florida had been re-
stored by this Compund O Oxyen to such an extent that stored by this Compound Oxygen to such an extent that
he was able to endure the climate of Boston in winter. The little book issued by Starkey \& Palen on Compound xygen was sent me, and after reading it I concluded
hat even if their method of treating my ailments could do me no good, there was reason to suppose thatit would
do me no harm.
"I procured a 'Home Treatment' from the office of Messrs. Starkey \& Palen, in Philadelphia, determining to give it a fair trial, and abide the result. For four or
ive months I took the inhalations at regular intervals, wice a day; continuing my work steadily. At first no our weeks. Then I began to feelt that it was three of good. Ifound that when I was exposed to the cold, and
to chilling draughts, my power of resistance was far o chilling draughts, my power of resistance was far
reater than it had been. There was no exhilaration, greater than it had been. There was no exhilaration,
but there was a constant increase of strength. I still months. The sore spot on my right lung gave me much annoyance. I rubbed my chest with various liniments, and I wore a chest protector. But gradually the sore-
ness went away, as the lung gained strength. And the ness went away, as the lung gained strength. And the
cough, which had so long clung to me, at last went off in an unexpected manner. One of the last coughing spells I had was almost as severe and extended as any I had
ver experienced. It seemed to be the going out of the cough habit. There was probablysome extraneous matter in t
of
"It.
"I ga Ig orined flesh very slowly, but gradually came back
o my original weight, and now weigh more than before my illness. I am more able to resist cold, and, though I ow take cold occasionally, I am far less subject to it
han I was of old. My digestion, which was, of course than I was of old. My digestion, which was, of course,
disordered, is now all that 1 can desire, and I am able to
do my customary work without inconvenience or serious do my customary work without inconvenience or serious
fatigue. I have never given a testimonial to any patent atigue. I have never given a testimonial to any patent
medicine, and I would not; but I do not consider It is a vitalizer and a restorer, and to it I owe my life." it is a vitalizer and a restorer, and to it I owe my life."
"Mr. Nixon, did you ever take any other 'oxygen
Treatment' than that of Messrs. Starkey \& Palen?"
purpose perfectiy, and did even more than I could have
expected of it."
"Do you ever "Do you ever have occasion to return to the use of
"D Compound Oxygen Treatment sinceyourrestoration

to health?"
 "Only occasionally; for instance, if I have been ex posed, and have taken cold. But I keep a ' Home Tre

 posed, and have taken cold. But I keep a ' Home Treat-ment' in my family, for we set a high value on its efficiency in cases of need, and several of my friends have found the advantage of it. You may put me,
as being a hearty and thorough believer in it."
Mr. Nixon's case is not a peculiar one. Thousand Aave been benefited by the use of Compound Oxygen tive properties are Judge Flanders, of New York; Ed ward L. Wilson, the popular lecturer and photogr T. S. Arthur, the well known author, and Judge Keliey of Philadelphia; Mrs. Mary A. Livermore, the
lecturer ; and many others equaly prominet
If you are interested to know what it has done for If you are interested to know what it has done for
others, and what it can do for you, send to Drs. Starkey
\& Palen, 1109 Girard Street, Philadelphia, who will send \& Palen, 1109 Girard Street, Philadelphia, who will send
you free a treatise on this remarkable vitalizer-its dis-

Business and Personal.

he charge for Insertion under this head is one Dollar a line for each insertion; about eight words to a line Advertisements must be received at pubiication office Wanted.-Patented articles or hardware specialties anufacture on contract or to manufacture and place on the market. First-class facilities. Correspondence
solicited. Address Hull Vapor Stove Co, Cleveland,

Grindstone Truing Device.-Price, $\$ 16$, with 7 -inch Grindstone Truing Device.-Yrice, $\$ 16$, with 7 -inc
roll; $\$ 20$, with 12 -inch roll. Brown $\&$ Sharpe Mfg. Co dence, R .
Reliable Dividers for machinists and draughtsmen. lls. Mass.
Special tools and machines of every description, Sk
Skating Caps.-Our machine makes the
Miners supplied with pumps for every service by Rolling Lever Hand Punches, and Shears. Pond achine Tool Co., Worcester, Mass.
Billings' Patent Adjustable Tap and Rean
es. Billings \& Spencer Co., Hartford, Conn.
Stephens' Patent Bench Vises are the best. See adv
Wanted.-Situation by a mechanical draughtsman ex perienced in designing general machinery. Specialty Building," N . Y .
Bual
Detachable Pocket and Cap Patent for sale, or royalty to clothiers and rubber clothiers. See illus.,
276. Address A. Heller, 2095 Madison Ave., New York. Telephones and Magneto Bells, $\$ 10$. W. E. Lewis, Cash Box, with "Champion "KeylessLocks.

The most complete catalogue of Scientific and M chanical Books ever published will be sent free on a Oars to Mun a Co., Oars to face your course w
Alex. Beckers. Hoboken, N. J.
Shafting, Couplings, Hangers, Pulleys. Edison Shafting Mirg. Co.,86 Goerck St., N.Y. Send for catalogue and prices The Best Upright Hammers run by belt are made by

Iron Planer, Lathe, Drill, and other machine tools of modern design. New Haven Mrg. Co., New Haven, Conn.
The leading Non-conducting Covering for Boilers, ipes, etc., is Wm. Berkefeld's Fossil Meal Composition ering does with two inches. Sold in dry state by the pound. Fossil Meal Co., 48 Cedar St., N. Y.
Try our Corundum and Emery Wheels for rapid cut The Providence Steam Engine Co., of Providence, R. , are the sole builders of " The Improved Greene En

Every variety of Rubber Belting, Hose, Packing, Gas kets, Springs, Tubing, Rubber Covered Rollers, Deckle
Straps, Printers' Blankets, manufactured by Bost Belting Co., 226 Devonshire St., Boston, and 70 Reade St. Bew York.
Brush Electric Arc Lights and Storage Batteries. Twenty thousand Arc Lights already sold. Our largest
machine gives 65 Arc Lights with 45 horse power. Our Storage Battery is the only practical one in the market Write to Munn \&
Write to Munn \& Co., 361 Broadway, N
loge of Scientiftc Books for sale by them.
Wanted.-Patented articles or machinery to manufa Wre and introduce. Lexington Mfg. Co., Lexington, Ky "How to Keep Boilers Clean." Book se
Mills, Engines, and Boilers for all purposes and every description. Send forcir
Mill Co., 10 Barclay Street, N.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. For Power \& Economy, Alcott's Turbine, Mt. Holly, N.J. Send for Monthly Machinery List
to the George Place Machinery Company,
121 Chambers and 103 Reade Streets, New York
If an invention has not been patented in the United
States for more than one year, it may still be patented in
Canada. Cost for Canadian patent. \$40. Various other
foreign patents may also be obtained. For instructions
foreign patents may also be obtained. For instruction
address Munn \& Co., Scientific American patent
agency, 361 Broadway, New York.
Guild \& Garrison's Steam Pump Works, Brooklyn,
N. Y. Steam Pumping Machinery of every description. end for catalogue.
Machinery for Light Manufacturing, on hand and
built to order. E. E. Garvin \& Co., 139 Center St., N Y . All Scientific Books and App. cheap. School Electr city, N. Y.
Mineral
Mineral Lands Prospected, Artesian Welis Bored, b

Nickel Piating.-Sole manufacturers cast nickel an odes, pure nickel salts, polishing compositions, etc. Com-
plete outft for plating etc. Hanson, Van Winkle \& Co No paling, et. Hanson, Van W Catalogue of Booke, 128 pages, for Engineers and Electricians, sent free. E. \& F. N. Spon, 35 Murra
Street, N. Y. For Steam and Power Pumping Machinery of Single nd Duplex Pattern, embracing boiler feed, fire and low
pressure pumps, independent condensing outfits, vac uum, hydraulic, artesian, and deep well punnps, air compressers, address Geo. F. Blake Mfg. Co., 44 Washington,
St., Boston; 97 Liberty St., N. Y. Send St., Boston; 97 Liberty St., N. Y. Send for catalogue.
A lot of urow Chuciks of all sizes, slightiy damaged, at

Send for catalogue of Scientific Books for sale by
Munn \& Co., 361 Broadway, N. Y. Free on application We are sole manufacturers of the Fibrus Ase Removable Pine and Boiler Coverings. We mate pure asbestos goods of all kinds. The Chalmers-Spence Co., 19 East 8th Street, New Yo
Steam Hammers, Improved Hydraulic Jacks, and Tube free Reduced prices or $1885.50,000$ Sawyers and Lumbermen. Address
Emerson, Smith \& Co., Limited, Beaver Falls, Pa. Hoisting Engines, Friction Clutch Pulleys, Cut-off Barrel, Keg, Hogshead, Staw Wer's. Se
Barrel, Keg, Hogshead, Stave Mach'y. See adv. p. 270 For Sale.-Complete set of Scientific American
from 1845 to 1885. Noye Manufacturing Co., Buffalo, N. Y. Catechism of the Locomotive, 625 pages, 250 engrav-
ngs. Most accurate, complete, and easily understood ings. Most accurate, complete, and easily understood
book on the Locomotive. Price $\$ 2.50$. Send for catalogue of railroad boois. The Railroad Gazette, 73 B'way, N. Y. For best low price Planer and Matcher, and latest For sest low price Planer and Matcher, and latest
mproved Sash, Door, and Blind Machinery, send for
catalogue to Rowley \& Hermance, Williampport, Pa. C. B. Rogers \& Co., Norwich, Conn., Wood Working achinery of every kind. See adv., page $2 \pi 0$.
Young Men! Read This!
The Voltaic Belt Co., of Marshall, Mich., offe o send their celebrated ELECTRO-Volitaic Belt
and other ELECTRIC APPLIANCES on trial for hirty days, to men (young or old) a afticted with
nervous debility, loss of vitality and manhood, and all kindred troubles. Also for rheumatism, neu-
ralgia, paralysis, and many other diseases. Com-
plete restoration to health, vigor, and manhood puaranteed. No risk is incurred, as thirty days' trial
is allowed. Write them at once for illustrated
in pamphlet free.
Split Pulleys at low prices, and of same strength and appearance as Whole Pulleys. Yocom \& Son's Shafting
Works, Drinker St., Philadelphia, $\mathrm{Pa}_{\text {a }}$
Supplement Catalogue.-Persons in pursuit of informacion of any special engineering, mechanical, or scien entific American Supplement sent to them free. The SUPpIEment contains lengthy articles embracing he whole range of engineering, mechanics, and physical

NEW BOOKS AND PUBLICATIONS

The Rescue of Greely. By ComProfessor J. R. Soley, U. S. N. New In this very clear and straightforward account of will prove attractive even to those who have not hitherto been interested in the progress of Arctic discovery.
While it has been the chief purpose of Commander chley and his associate to relate the circumstances atending the Relief Expedition of 1884, they have added much to the interest of their book by an admirable introduction. One-third of its contents has wisely been the recital of those events which mally inal expedtion imperative. The reader is familiarized with the ground by a brief sketch of the geography of Baffin's Bay and of the ice barriers which impede its navigation. An account of the general plan of the
circumpolar stations as proposed by Weyprecht excircumpolar stations as proposed by Weyprecht explains the mission of Greely and his party at so desolate
a post as Fort Conger. Then follows that dreary chapter a post as Fort Conger. Then follows that dreary chapter
of accidents which made the expeditions of the Neptune and the Proteus so utterly ineffectual, the station at Littleton Island no more than a promise, and the word of a great government an unredeemed pledge. Prepared by this introduction, the reader is placed in a position to follow intelligently the subsequent moverescue. From the firsthe is made to feel that his sympathies are engaged in a successful enterprise, and to share in a measure the enthusiasm of the rescuers. An occasional explanation places some censured action
in a truer and more favorable light, but as a rule the a truer and from comment is fayorably ab served. The book is illustrated by fourteen engraving and three very serviceable maps.
An Introduction to Practical ChemISTRY, INCLUDING ANALYSIS. By Charles L. Bloxam, Philadelphia: P. Blakiston, Son \& Co., 1885.
In this eighth edition of an already well known book, everal valuable additions have been made. The gravimetric methods of analysis have been considerably extended, and a new chapter on volumetric analysis added. The hemical nomenclature has also been modernized. The purpose respectively: General Chemical Experimentation; the Qualitative Analysis of Inorganic Salts and of the more common Organic Acids and Alkaloids; Ex. and the in Qua and Preparation of Reagents. In the appendix, several useful tables have been included. The text is clear, and the eye is materially assisted by a judicious variation in the type. Wood cuts are sparingly used to illustrate the different processes, and are generally satisfactory. The arrangement and style are
excellent. Much valuable information has been con excellent. Much valuable information has been con
densed into convenient space, which will commend the densed into convenient space, which will commend the
book to the amateur analyst, as well as to the student

Modect (Onvins

HINTS TO CORRESPONDENTS.

(1) B. W. B.-Persimmon bark is an as tringent, and is said to have been used advantageously
in intermittents, and in the form of a gargle in ulcerated sore throat.
(2) G. M. W.-You can become an expert runner by practice only. It is possible that you
(3) D. R. R. asks: How many pounds pressure does it require to force water up a half inch
pipe, grade 30 feet, distance 300 feet? A. 15 or more pounds, according to velocity
(4) J. M. H.-While book knowledge is very valuable to mechanical engineering, shop practice
is more important. Both are desirable and necessary. here is noend books which you might rea
(5) C. H. K.-Two and a quarter times as much water will pass though a three-eighth inch
hole as through a one-quarter inch hole under the same
(6) W. F. C. asks if there is any kind of solder that can be used with a soldering iron that will take a plate of nickel and be the same color as the
est of the work. We use high brass and low brass and copper. A. Use pure tin.
(7) A. \& C. H. write: We have a horizontal boiler, and the flues leak around the ends, caused by being heated when there was no water in the boiler.
How shall we remedy this? A. Get the nearest boiler maker to expand the tubes. Anything that you can
put into the boiler to stop the leaks will only be a put into the boiler to stop the leaks will only be a
temporary makeshift, and may give you more trouble temporary
in the end.
(8) O. F. asks: 1. What is best for me to ase for dissolving the Russian isinglass that which is used for:clarifying purposes)? Alcohol does not seem
to answer . Try acetic acid
2 What can I mix with paint in order to produce a lasting and glossy appeara
oil.
(9) E. S. writes: In chemistry is there any such thing as atomic weight? And if so, please signate the weight of any of the clementary substances in comparison with the weight of hydrogen. Thus we accept 1 as the atomic weight of hydrogen, and therefore, finding oxygen sixteen times as heavy, we
to this latter substance the atomic weight of 16 .
(10) J. H. J. writes: In your issue of he 14th instant, you give a receipt for making liquid glwe, in which you say, " 100 parts best Russian glue." Where can Russian glue be obtained? And why Russian? Will not the best American or French answer as well? A. Russian glue is prepared from the intestines of fish, and is considered more tenacious than the ordinary varieties of glue. It can rea "fish sube," which can be procured from any wholesale paint house.
(11) J. B., of the United States Army, asks a recipe for making a brilliant black gloss or pol-
ish applicable to black leather belts and boxes, so that ish applicable to black leather belts and boxes, so that
they will look well at parades and inspections. Also how the brilliant gloss on patent leather is obtained? A. Boiled linseed oil and lampblack, with a drier, form the base of different compounds for leather dressings, but you had better buy one of the many preparations for your purpose. The patent leather gloss is ob-
tained by baking japan on the leather in an oven, and tained by baking japan on the leather in an oven, and
(12) F. L. asks how to imitate walnut graining. A. Try the following: The wood, previously thoroughly dried and warmed, is coated once or twice
with a stain composed of 1 ounce extract of walnut with a stain composed of 1 ounce extract of walnut
peel dissolved in 6 ounces of soft water by heating it peel dissolved in 6 ounces of soft water by heating it
to boiling, and stirring. The wood, thus treated, when half dry is brushed with a solution of 1 ounce potassium bichromate in 5 ounces boiling water, and
is then allowed to dry thoroughly, and is to be rubbed and polished as usual.
(13) S. A.-The white Castile soap is probably the best soap known. It consists of sodaand
pure olive oil. The olive oil is sometimes substituted in part as follows: Olive oil 40 parts, ground suet and tallow 30 parts each. Caustic potash is used instead of
soda but it is more expensive, and the soap is a softer soda, but it is more expensive, and the soap is a softer
article. See the articles on "Soap and its Manufac-

325. 330, and 360.

(14) D. H. B.-The pressure of wind at 20 miles per hour is 2 pounds per square foot. As for your special form of windmill, to determine its power we can only recommend you to make a practical trial, which is far more reliable, and takes in the elements of friction, variuble angle of sails, and back action behind the hood, caused by the angular position
of the windward arm.
(15) L. M. B.-For the volume of spheri-
add the square of the helght of dome; multiply this by $0: 5236$, or $3 r^{2}+h^{2} h \times 0 \cdot 5236$. For volume of a cone: Multiply are
the product
(16) J. P. S. asks: Would a cornet player be able to use his instrument successfully after having his upper teeth extracted and a ralse set put iop
And having false teeth can use his instrument, but canrot play so well; we doubt if there are any very good
players with falseteeth.
(17) J. P. L.-To find how much tin vessels will hold, use the following rules: For the
contents of cylinders: Square the diameter, and multiply the product by 0.7854 . Again, multiply by the heigh (all in inchess). Divide the product by 231 for gallons. For the frustum of a cone: Add together the squares
of the diameters of large and small ends; to this add of the diameters of large and small ends; to this add
the product of the diameter of the two ends. Multithe product of the diameter of the two ends. Multi-
ply this sum by 0.7854 . Multiply this product by the
beisht

ber of gallons.

(18) P. McF.-The right ascension of a planet is its distance from the vernal equinox or the crosses the plane of the equator measured upon the plane of the equator-the distance being measured in hours, minutes, and seconds, 24 horrs representing the
whole circle or 360° The declination north or south is the distance of a planet from the plane of the equator north or south in degrees, minutes, and seconds, reck-
oning from 0° at the equator to 90° at the pole. The oning from 0° at the equator to 90° at the pole. The
diameter is its apparient size as seen from the earth diameter is its apparent siz
in parts of a circle of 360°.
(19) S. L. S.-In regard to throwing two banks across a lake in which other owners might be
interested, you should first ascertain what riparian rights you might infringe. The building of a safe dam on sof bottom is a very precarious undertaking; the
silt being very mobile will not only move out from under the filling, but will also give no anchorage agains the pressure. With a moderate depth of 4 or 5 feet of
silt, a row of piles close together across the lake silt, a row of piles close together across the lake would
be necessary to insure a footing. Then fill in with as coarse material as possible, making a hard rammed partition of clay or cement and sand on the pressure
side of the pipes. Carry the partition as low as posside of the pipes. Carry the partition as low as pos-
sible or below low water. Sheet piling with two rows of horizontal planking spiked and filled in on each side even with top, with broken stone, makes
cheaper spill than surface planking upoi sills as sketched by you. Further, we do not understand from your letter whether it is a natural lake, the widen-
ing of a river, or a cut out from some river, all o ing of a river, or a cut out from some river, all of
which should be considered in any plan interfering with water flow. We do not consider that the current or depth that you speak of now interferes with the quality of the ice. You speak of white straks an this way. These streaks are caused by the condition of the weather in the freezing season, alternate snow and rain, with wind, being particularly detrimental to clear ice crop.
(20) R. S.-One of the very best scour-

Pulverize the oxalic acid and add rouge and rotten
stone, mixing thoroughly, and sift to remove all grit; stone, mixing thoroughly, and sift to remove all grit;
then add gradually the palm oil and petrolatum, incorthen add gradually the palm oil and petrolatum, incor--
porating thoroughly. Add oil of myrbane or oil of porating thoroughly. Add oil of myrbane or oil of
lavender to suit. By substituting your red ashes from

te will be produced.

(21) G. W. W.-Dynamite or giant pow der consists of about 75 per cent nitroglycerine and 2 . Its cenn of some absorbent, generally infusorial earth
It well as being exceedingly dangerous, and unless you ave had considerable experience in chemical manipu lation, you will be unable to prepare it.
(22) S. J. writes: I set out 50 young ap le trees last fall on some sandy soil. Shoula it be dry pomace around them, and how thick would be safe? A es; 4 to 6 in. deep.
(23) W. D. G., Jr., asks: How large main pipe will be reguired to supply 6 hydrants and 50 mweling houses, the water to be brought 1 mile with a
dol head; the hydrants to be used with a $1 /$ nozzle, and there being no probability of more than two being required at a time? A. About a $6^{\prime \prime}$ pipe; a smaller
one would not give the desired pressure for hydrant
(24) E. F. P. asks for a substance for polishing brass trinkets in a tumbler. A. Use leather verized pumice stone for first polishing; finish for a ine with rouge and skivings in anther
(25) T. F. W.-If you require power, it pays to use the exhaust of any engine for heating pur-
poses. Independent of the want of power, and for a mall place, a hot air furnace is the cheapest. For large advantages. Better advise with parties in the steam advantages. Better
heating business.
(26) E. P. O. writes: Suppose a cannon is placed on a rairoad carso as to shoot perpendicularly
into the air, with force enough behind the bullet to carry it a mile high at the rate of a mile a minute, the rail when the cannon is discharged; how far will the cannon and ball be apart when the ball strikes the earth? A. The question supposes an impossibility; one canno shoot a bullet to go a mile high at the rate of only a
nile a minute; if started at that rate, it would drop to the ground as quickly as a marble snapped_from the
(2i) W. D. C.-We do not see how any chemicals can be put on the undressed side of leather to
render it capable of being smoothed with emery cloth. The fibrous character of the leather is of such nature eolling, hammering, or slicking.
(28) E. S. T. asks for a good receipt for good office mucilage? Take 2 parts of gum dextrine solve over a water bath and add 1 part alcohol.
(29) C. E. O. asks what "Sozodont" is composed of? A. Take of:

flavor, sufficient.
(30) B. A. H. asks how to make a polish ng paste for blackening and polishing stoves? A. Try
the following: black lead pulverized, 1 lb; turpentine, gill; water, 1 gill; and sugar, 1 oz .
(31) G. G. writes: Some months ago I was shot in the face; it is all healed, but left quite a have a growth of hair, but not sufficiently strong, there ore ask you the question if there is a remedy that would force hair to grow, and what it is. A. Where the hair possible to produce a growth of hair. The use of borax in the water employed for washing, together with stimulating lotions containing small amounts of tinc ture of cantharides, is frequently of service. Such oz. eau de Cologne, $1 / 2 \mathrm{drm}$. oil of nutmeg, and 10 drop

of lavender

(32) G. B. writes: I want to run a short elegraph line (100 yards) between two offices. Please A. For a telegraph line of the length stated, you may place your battery, sounders, and keys all in one cir cuit; your ground connections at the ends may consis of wires attached to gas or water pipes, or you may connect your ground wires with metallic plates having
bout 20 sq . ft . area, and buried in earth that is con about 20 sq. ft.
stantly moist.
(33) F. B. B.-It is not an easy matter to repair a mirror, but if it is silvered with mercury
malgam, you may be able to repair it by cleaning amalgam, you may be able to repair it by cleaning a
space on the back of the mirror large enough to remove the scratch, then moistening the amalgam on the back the scratch, then moistening the amalgam on the back
of a piece of mirror with a little mercury, and cutting a piece of mirror with a little mercury, and cutting it the cleaned place on the back of your mirror; then carefully slip the patch from the piece of mirror and place it in position on the injured mirror, then place on the back of it a piece of cloth and then a weight. Allow it to remain several days in this condition. If the work
(34) A K
(34) F. A. K. asks if the electric current produced by small jets of steam is of any value? A.
The electric current produced in the manner described
or nopractical value.
(35) W. J. M. writes: 1. I am making some magneto call bells, which do not work satisfactorily ron, becoming charged; bow will I treat them so as to reventthis? I have tried many receipts to soften cast iron, but failed. I hope you will send me a receipt that
will save me further trouble. A. Heat your cast iron will save me further trouble. A. Heat your cast iron
very hot, and bury it infpowderedjslaked lime to cool. 2. very hot, and bury it injpowderedyslaked lime to cool. 2.
What is the best kind of steel to make the permanent What is the best kind of steel to make the permanent
magnets of, such as used in all the telephone call bells? I am using cast steel hardened in salt and water. Is here a better way for doing the same? A. Chrome f the magnets need to be hardened. 3. Is Alvar steel ny good for magnets, if so, where can I procure it? A.
We do not know of any steel by that name. 4. Haver you got a Supplement giving full instructions how to
onstruct an electric bath? A. If you mean an electro construct an electric bath? A. If you mean an electro
plating bath, see Supplement 310. 5. What is the elec plating bath, see Supplement 310. 5. What is the es bout $1 \cdot 48$ volts. 6 . Would you consider it an improve ing soda instead of sulphuric acid? A. It depends
(36) M. \& A.-In hardening such small springs, we suggest the use of a muffle or small cham-
ber made of fire clay in the shape of a half cylinder ith one end closed; or iron will answer the purpose, but will soon burn out. Build the muffle in a small brick furnace, so that the fire may be in contact with top and ottom. The springs can be passed into the muffler with a small tongs, and taken out as fast as heated. In this way a dozen or more may be heating at once. Harden in water or oil in the usual way. For drawing the temper, we think there is nothing better than a pot
of boiling oil (linseed), in which dip the springs a few ij, then quench ine of the same th will leave enough heat in the springs to dry them. For this operation flat-bottom basket made of wire makes a very convenient way of handling 3 or 4 dozen at once. Some use
red hot lead in a crucible for heating articles for hardning. We do not think it best where large number are to be handea, as the springs would have to be held
dee
(37) E. O.-Emery wheels are in common use for grinding tools. A little care only is required to emper.
(38) J. H. S.-We know of no remedy or your wet wall but furring off and newly lathing and plastering in the regular way. It is the cold wall tha condenses the moisture of the rooms. The kitchen is
(39) W. F. K. -To run your copper into ngots, treat it in the crucible with borax and soda as a
fux. Heat the moulds so as to make them perfectly dry before pouring the metal.
(40) C. C. C. asks: Which would be the best test for water works-to have three streams on one
main near each other, or three streams on different and 4 in over the town? The mains esting in the half a mile from town. A. If you are treams as near the source of supply as possible, and also near the 8 inch main. A fair test will be to locate the streams widely apart on one distributing branch.
(41) G. C.-Coke is supposed to be free from sulphur or other deleterious gases. We have little England coke has a high reputation as a steam fuel.
(42) A. B.-Galvanized iron is generally used in damp places. Copper and brass are the only
substitutes, both of which are more expensive their values depending upon the conditions of their use
(43) W. C. H.-Knife sharpeners and glass cutters are made of fine steel only, and given an
extra hard temper. Hard bronze, 75 parts copper to 25 parts of tin, makes a very hard alloy, and can be melthardest steel, but will make very good cutting instruhardest steel, but will make very good cutting instru-
ments. Can be cast in iron moulds. Iron may be readily brazed in a forge, or if small, with a blow pipe.
(44) J. M. C. asks: Will it destroy the power of a balance wheel by running a belt from it to a
shaft? A. It will not. 2. We use a 6 horse power engine set on a cast frame; the fly wheel is 26 inches in diameter, $11 / 2$ 'inch rim, 5 inch face, weighs about 150 pound fly, or about what sut on about a 450 or 500 A. If the engine now runs steady or evenly, more fly wheel will not be beneficial. If there is much shafting
with pulleys and a belt on the present fly wheel, you with pulleys and a belt on the present fly wheel, you
will gain nothing by adding another and heavier fly wheel.
(45) A. F. McE. writes: We carry 60 pounds steam on a boiler used to run an Armington \&
Sims 35 horse power engine for incandescent lighting. Sims 35 horse power engine for incandescent lighting.
The exhaust from this engine is connected into the 8 The exhaust from this engine is connected into the 8
inch main steam pipe of low pressure heating apparatus, inch main steam pipe of low pressure heating apparatus,
on which we carry a pressure of 7 pounds. Will you please tell me, through the columns of your paper, what is the thermal value of the exhaust of this engine in what part of the energy of this boiler is used in running the engine and what part is available for heating purposes? Temperature of feed water is 60° Fah. A.
Your statement does not enable us to Your statement does not enable us to give you a clear
answer. Carrying 60 pounds pressure in the boiler answer. Carrying 60 pounds pressure in the boiler
does not indicate the amount of steam used in the endoes not indicate the amount of steam used in the en-
gine. This can only be done by indicator cards, which show the mean engine pressure, together with the be using for heating ormer hana, you may be said to generated and passed through the engine, with the only exceptions of the amount of radiation and leakage and the heat value that escapes to the atmosphere after heating the building. If you use all the exhaust for heating purposes without wasting, or, in other words, con dense all the exhaust in the heating coils, you may safely conclude that you are running your engine free
of cost while so utilizing the exhaust. The only appar of cost while so utilizing the exhaust. The only apparof back pressure on the engine. The best examples of exhaust service in this vicinity exhibit a back pressure of 0 to $1 / 2$ pound, with the entire absorption of the thermal value of the exhaust in heating buildings.
Minerals, etc.-Specimens have been received from the following correspondents, and ex stated.
J. T. H.-The earth appears to be a light yellow oher, too light in color and not possessing sufficient could be used as a polishing powder and perhaps for in ferior qualities of pottery. Nothing very definite can be said concerning it unless it were first analyzed.

INDEX OF INVENTIONS

For which Letters Patent of the United States were Granted, April 14, 1885,

AND EACH BEARING THAT DATE.

r. see steam boler.			Roor
Se sh		Lif	
and shoe heels, machine for ropicking, T. P .		Lifting jack, T. T. Maxon.............................31,5007	Safe, milk and food, G . W. Gordon................ 31,70
King... 315,636	Siptic springs, bar or plate for, H. B. Dye... 315,2920		
	Fan holoer, B. Brower Frue reeiver rexisel		Saw plates, machine for milling reeeses in, J.E.E. 310,733
退		Locomotive and cars, device for arresting, M. . .	
315,888			
See Traveling box.			
		lubricator.	
	Fence wire winding deriee, w. Logan.	Mea	
		Meat enderer, F. W. Carter...................... 1515723	
	Filtering material, revivifying, J . . . J. R.eford... 1151837	Metalurric eas furnee J. S . Selibert.............. 31,5,46	see
ara			
ton	(ill		
ulato			
Colipers adiustable	Fold		
ine,			
	appling rubber dam clamps,		
		Nut	Shaft couplin
			Stat
315,			
H. Conn			
		Paint composition, roof, D. Brobst.................. $15.45,41$	Shingle and siding g
Care coupling, IL Linthicum.................... 315.501		Painted articles, apparatus for drying, G . \mathbb{C}. J.	Shoe
Sili,67		Pan. see	Shoe stretener, W. Jones...........................isi, 51
${ }_{\text {315, }}^{31592}$		Paper box machine B. E. Becker.................. 315641	
Car, sleeping, J. H. sieicher..................... 115,581	Gas pressure regulator, S C Cabot, Jr..................315,571	Pavements, construction of, S. .W. Cragg.......... $15,7,40$	Snutter fastener
Car			nnal trasmi
son curves	Gear, reversing, C. M. Gididings.................. 15,762		B. Herog.
			Skate lamp. J. C. Howe....................315,633
ming we.rurner.e.		Pipe coupling W. W. Speer.................. 315 565	slea,
rier.	Giove or shoe fastening, E. W. A. Meser........... ${ }^{315,511}$	Pipes, flling attachment for the hubs of, C. Cop-	1 sma
eelt			
Caster,J, w. see...a.......................... 315,560	Grain binder, Feeher 8 Oiin...............a,		Sole leaying
Castur car wheels. W. Wimininton...............31.582	${ }^{315,538}$	\%.	
Cement, manutatature of hydraulic, B . Bryc 115,711			
		${ }_{\text {che }}^{313,5,8}$	
Check rower, , GG. Gilison................... $315,4,44$		Panter, sead, R.L.L Herrick..................... 115,828	
Wese br			
		Plastering, calcimining, and painting machine, T .	Spring ha
Cider and wine press, Higisison \& Dee Baun........ 15.784	Harness pas, die for pressing, C. H. Freeman.... $31 ., 0$ ar	Plow kauge, J. B Lav........................, د15,729	spring moto
mp. S			sland pip
			stea
. Pattyson.	Hunt....................................... 315,64	Power. See Horse power. Power, device fortrunsmittin	Steem
Clock, alarm, W. D. Davies.	Harvesting mathine, R. Brown........................ $31.50,91$	Press. see Bailing press. Clier and wine press.	
Cock for house se	Hea		
Coke oven, E. J. B	Heeling machine, H D. Stone.................... 31, 3 ,75	5,667	stam
	Hemp, etc, machine or spreading, J. Good........ 315,765		Steam
	joint		stit
Orkserew, , P. P. Haff		H. Root......................... 315,992	
Corn cutting machine, green, Woods \& Tindsay..	dier. See rag holier. Dental file holer. Fan holier. Ice holder. Sash holder. Sponge		Stone artiticial lag, Samps
			Stone sam
Harrester			
25	Horse power for hay carriers, J. S. Grabill.......... 15 ,5,94		
		5ism	
linary		Railway signal, H. Johnson........................ 15 I5,729	stove
	Hydroarbon burner, J. Reills................... 315	(in	
tain ixture, J. A. Ilingworth.	achine, w.H. Hanes....................... 315,99	Iway tie, L. Hasa.............................. 31,771	ier for stacki
		Railway train Raluxss con	
Dental flie holider or carrier, H,			
tifrice, J. E. Edmundson	隹 and steel, apparatus for the manutacture of,		Table.
Seck	Jack. see		Tays cutting
ater			
G.E		veting m	
Draminy bara and T		Road machine, S. Penookk..................... 313,51	Telephone,
			Thil couplin, w. Furrman...................... 315
	Lam	Rocking chars, spring attachment to plattorm,	
	Lamp, eleetric, M. M. . . Lynn..................... $11.5,54$		
th............. 115,51			

Tile machine die, Chandler \& Dodds........	
ap. See Ste	
	Traveling box for dogs,
Trench building machi	
	Type writing machine, E. S. Belden.......315,700 to 315,702
	lve, balanced slide, J. E. Bak
Valve, engine, G. Schuhmann..	
	alve gear, G.
Valve gear, steam engine, J. Nenert........... 315,654 Valve, safety, T. Burke................................ 315,475	
Valve stems, revoluble joint for screw, J. H. Blessing. 315,464	
Varnish from sludge tar, manufacture of, R. M. Breinig:.. 315,597	
Vehicle spring, H. B.	
Vehicle step, W. B. Philbert.	
Ventilating mines, apparatus for, M. I. D. Weston.. 315,578	
	Ventilator, c. B.
gon, draug	
Wagon scoop board, A.J.	
ashing mach	
	Watch case, E. C
Watch movement	
	Watch, stem winding and se
Watch, stop, P. V. Perret.......................... 315	
Water meter registering devic	
Weighing and package tilling machine, automatic, C. C. Clawson............................315,729 to 315,731	
Well boring machine, W. C. We	
ell	
Whip core, Mullen \& Noble, Jr..................... 315,653	
Wick adjusting mechanism for oil burners, C. P. Goodspeed. 315,769	
adm	
Wooden vessels, machine for cutting, W. D. Johnson... 315,509	
Yoke, neck, A. D. Shepard............................... 315,561	
DESIGN	
ckle frame, L. C. V	
	ckle
Carpet, J. B. Campbell	
Carpet, A. I. Halliday. Carpet, N. Komori. 16,0	
Carpet, M. R. Loudon	
Carpet, F. E. Smith.	
Dish handle, c. E. Haviland 16,048Dishes, decorative pattern for, C. A. May...... 16,042	
Dishes, decorative pattern for, W. Wood........... 16,043Sewing machine case, N. A. Hull. ${ }^{\text {a }}$. ${ }^{\text {a }}$ (16,039, 16,040	
Shade roller bracket, S. Hartshorn................... 16,037	
	Watch and clock dial, O. Kling. 16,045
Window shade pull, J. G. Brothwell.16,035, 16,0	

TRADE MARKS.
Baking powder, W. P. Clotworthy
Blane mange powder. A. F. Bird..
Blood purifying compound Mexican Medicine
Cheese, W. P. Harvey \& Co................................
Cigars and all other manufactured tobaco, J. De
Cigars, cigarettes, and manufactured tobacco, G
\square
\qquad
Cotton fabrics, black, Hyde \& Burton.
Drugs and chemicals for dyeing, certain named, Egg powder, A. F. Bird.
of, S. B. Nachfolger.

sange...................................

Fish, boneless cod, Caswell, Liv
Jewelry, articles of, E. Naegele
Jewelry, articles of, E. Naegele
Knives, Eagle Pencil Company.
Liniment, family,
Lye, P. C. Tomson

Lye, P. C. Tomson... Medicinal composition

Milk, cream, but
Company..
Company
Purgative co
Company..
Pany...
pany...................
Pork, cured, G. Fowler..
Razors, C. Klauberg \& Bros..
Velvet, silk, A. Wimpfheimer
Watch keys, J. S. Birch \& Co.
Wine, orange, Florida Wine Company
A prined issued since 1866 will be furnished from of any paten cents. In ordering please state the number and date
of the patent desired, and remit to Munn \& Broadway, New York. We also furnish copies of patents
granted prior to 1866; but at increased cost, as the specifications, not being printed, must be copied by
$\underset{\text { inventors for Patents may now be obtained by the }}{\text { Cane }}$ going list, at a cost of $\$ 40$ each. For full instruction
address Munn foreign patents may also be obtained.

12,120
12,115

LAST CHANCE

RALLWAY AND STEAM FITTERS' SUPPLIES. Rue's Little Giant Injector. SCREW JACKS, STURTEVANT BLOWERS, \&C. JOHN S. URQUHART, 46 Cortlandt St., N. Y. Description of a new arrangement of G Grenet's bichro-
mate of potash pile, making it an apparatusof great

ROLLSTONE VARIETY LATHE,

AERIAL. NAVIGATION. - DESCRIP-

A. W. STEEVENS \& SON. AUBURN, N. Y. Manufacturers on Srencr, GrainThreshers and Separa-
Mills, Powercorn Shelles,
tors, Plain and Traction Engines.
Send for circulars. NEW CALORIC PUMPING ENGINE, Dwellings \& Country Seats Simplest! Cheapest! Eeo-
nomical! Absolutely Safe! Delamater Iron Works, C. H. Delamater \&\& Co., 16 Cortlandt Street, nd 40 Dearborn St.,

Telegraph and Electrical Meidal Rattices PPLLIES

THE COPYING PAD.-HOW TO MAKE

FRICTION CLUTCH

 Pulleys and Cut-off Couplings. Petroleum as fuel in locomo

EMERALD GREEN--A PAPER BY R

Mortgage Sall of Shipyart Machinery and Pixtures.
 The property comprises a large amount of valuable
machinery in pood order. For circulars and particulars

NEWSPAPER FILE

The Kooh Patent Filie. for preesving nergyapors

 Adaress
MUNF \& CO.,

Rose's Mechanicial Draming Self-Pangh

 pages, BY THE SAME AÚTHOR.

 the operation of eamp Element in a Slidio-Valve Move-
ment, and illustrating the effects of Variations int heir
proportions by examples carefully selected from the

MIITNINTG AND RIOISETMINTG H2

Prof. Chas. P. Chandiler, Ph.D.,
 Anthony's Semi-Mouthly Photographic BuIIETIN,

591 Broad way, New York.
APHIC outrits AND suppurss.

DOUBLE BOATS.-TWENTYY ONE IL-
 Pricie 10 eners.
newsueders.

THICKS

- Curtis Pressure Regulator,

 THE HARDEN STAR HAND GRENADE

jFIRE EXTINGUISHER Puts Out Fire Instantly.
Seeeditorial notice in Screntric AmeriSee editorial notice in ScIFNTI
cANof November 22d, 1884.
Send for circulars. Adress Henrdēn Hand Grenade Fire Extinguisher C_{0}, 205 Wabash Ave.. Chicago.
10 Oliver St., Boston

 Art.

PHOTOGRAPHIC OUTFITS

MICROSCOPES, TELESCOPES, FIELD-GLASSES, MAGICLANTERNS BAROMETERS, THERMOMETERS. Drawng instruments, Philosophical and Chemi

THE DINGEE \& CONARD CO'S
ROSES

 OTHER VARIIETES $2,3, \& 10$ FOR $\$ 1$

ROCK BREAKERS AND ORE CRUSHERS.

ROOFING.
 Martin Brick Machine Latf.St and Improved Brick Machinery For Both Steam and Horse Power. HENPY MARTIN,INVENTOR,PROPRJETOR

DRAWING INSTRUMENTS.

In intrated oatatiogu
 The ${ }^{\circ}{ }^{2}$ Seibert Cylinder Oil Cup Co,

BOILER \& MACHINERY FOR SALE

ECONOMIC MOTOR CO.'S
CAS ONGEMTME.

 ECONOMIC MOTOR CO.,

MUNN \& CO.. Editors and Proprietors entific american, cordially invite all persons desiring trade-marks, in this country or abroad. to call at their
offices, 361 Broadway offices, sol Broadway. Examination of inventions, con-
sultation, and advice free. Inquiries by mail promptly sultation,
answered.

Address, $\quad \begin{aligned} & \text { MUNN \& CO., } \\ & \text { Publishers and Patent Solicitor }\end{aligned}$

 KORTING UNIVERSAL 2 INJECTOR ADJUSTMENT FOR VARYING STTAMOMRESSURE, LIFT WATER 25 FEET
OFFICES AND WAR FAREROOMS

H.W.JOHNS' asebefros ROOFINC.

PATENTS.
lication of the scientific Amirrican, continue to ex for inventors.
In this line of business they have had forty years'
experience, and now have unequaled facilities for
the preparation of Patent Drawings, Specifications, and the prosecution of Applications for Patents in the
Cnited States, Canada, and Foreign Countries. Messrs. Munn \& Co. also attend to the preparation of Caveats,
Copyrights for Books. Labels, Reissues, Assignments, and Reports on Infringements of Patents. All business ness, on very reasonable terms.
A pamplulet sent fre
A pampllet sent free of charge, on application, conDesigus, Patents, Appeals, Reissues, Infringements, As
tents, etc. We also send. free of charge. a Synopsis of Foreign
Patent Laws, siowing the cost and method of securing
patents in all the principal countries of the world. MUNN \& CO., Solieitors of Patents,

RUBBER BELTING, PACKING, HOSE, RUBBER GOODS,
MECHANICAL AND MANUFACTURING PURPOSES THE GUTTA PERCHA AND RUBBER MFC. CO.,

traction engine
The only steam service esuit
athe or ratian aecon mica
ransportation; al ways read F. \& M. DEPT., HARRISBURG CARMFC.CO.

WOOD, TABER \& MORSE, PORTABLE AND AGRICULTURAL Steam Engines
Off the highest standard, in every respect, of materials
and workmanship. Were pioneers in the manufacture of

 The Standard Portable and Igricultural Engines of the world. Deseriptive circulars sent on application.
Mention this paper.

VOLNEY W. MASON $\mathbb{\&}$ CO.
FRICTION PULLEYS CLUTCHES and ELEVATORS

The Best in the World.
Welmake the Best Packing that can be made regardless
cost." Users will sustain us by calling for the "JEN. KINS STANDARD PaCKING.
Our "Trade Mark" is stag. Our "Trade Mark" is stamped on every sheet. None
genuine unless so stamped. Send for Price List "B." JENKINS BROS.

79 Kilby Street, Boston.

Portable Storage Batteries

POCKET SIZES. FULLY EFFICIENT.

Constant Current Electric Storage Company,
SPEAKING TELEPHONES.
 President. $\begin{gathered}\text { Treasurer. Ger. Gen. Manager, } \\ \text { Alexander. Grabam Bell, patent of March 7, 1876, } \\ \text { owned by this company, covers every form of apparatus. }\end{gathered}$

 akers. sellers. and users will be proceede
Information furnished upon andication.
Address all communications to the
AMERIGAN BELI. TELAPHONE COMPANY
Clark's steel Cased Rubber Wheel
FOR ROLLER SKATES.
For use in dwellings, public ha
For use in dwellings, public halls.
tc. Will notchip or injure common
toors. Noiseless. Ge. Ge.
Wiark.

 HARRIS = CORLISS ENGINE, With Harris Pat. Improvements, from 10 to 1,000 H.P.
Send for copy Engineer's. and Steam User's
Manual. By J.W. Hill, M.E. Price \$ 1.25 .

WITHERBY, RUGG \& RICHARDSON. Manufacturers

The Scientific American. THE MOST POPULAR SCIENTIFIC PAPER IN THE WORLD.
Published Weekly, 83.20 a Year; $\$ 1.60$ six Menthe This unrivaled periodical, now in its fort y-first year,
continues to maintain its high repution and enjoys the largest circulation ever attained by any scientiflc publication.
Every number contains sixteen large pages, beautifull
printed, elegantly illustrated; it presents in popuib printed, elegantly illustrated; it presents in popuia
style a descriptive record of the most novel. interesting and important advances in Science, Arts, and Manufactures. It shows the progress of the World in respect to New Discoveries and Improvements, embracing Machin-
ery, Mechanical Works, Engineering in all branches, Chemistry, Metallurgy, Electricity, Light, Heat, Archi tecture, Domestic Economy, Agriculture, Natural His tory, etc. It abounds with fresh and interesting subjects
for discussion, thought, or experiment $;$ furnishes hundreds of usetul suggestions for business. It promot Industry, Progress, Thrift, and Intelligence in every community where it circulates.
The SCIENTLFIC AmeRIcAN should bave a place in every Dwelling. Shop, Office, School, or Library. Work-
men, Foremen, Engineers. Superintendents, Directors, Lawyers, Physicians, Clergymen, people in every wall and profession in life, will derive benefit from a regular Terms for the United States and Canada, $\$ 3.20 \mathrm{a}$ year ; $\$ 1.60$ six months. Specimen copies free. Remit by

Scientific American Supplement.
the Scientific American SUpplemient is a sepa erican, but is uniform therewith in size, every numbe containing sixteen large pages. The Scientific Am
ERICAN SUPPLEMENT is published weekly, and include very wide range of contents. It presents the most re cent papers by eminent writers in all the principal de-
partments of Science and the Useful Arts, embracing Biology, Geology, Mineralogy, Natural History, Geo-
graphy, A rchæology, Astronomy, Chemistry, Electricity Light. Heat, Mechanical Engineering, Steam and Rail way Engineering, Mining, Ship Building, Marine En gineering, Photogriphy, Techhnology, Manufacturing culture, Domestic Economy, Biography, Medicine, etc. A vast amount of fresh and valuable information per
taining to these and allied subjects is given, the whole profusely illustrated with engravings.
The most important Ensineering Works, Mechanisms,
and Manufactures at home and abroad are represented and Manufactures at home and abroad are
and described in the SUPPLEMENT. and Price for the Sup Su bement
Price for the SCPPPLEMient for the United States and
Canada, $\$ 5.00$ a year, or one copy of the SCIENTIFIC AMERICAN and one copy of the SUPPLEMENT, both mailed
for one year for $\$ 7.00$. Address and remit by postal order or check,

MUNN \& Co.. 361 Bit
No foreign subscribers.- Under the facilities a the Postal Union. the Scientific Amprican is now sent scribers in Great Britain. India, Australia, and all other British colonies; to France, Austria, Belgium, Germany Mexico, and all States of Central and South America Terms; \ddagger ixhen sent to foreign countries, Canada excepted,
$\$ 4$, gold, for ScIEvTIFIC AMERICAN, one year; $\$ 9$ gold, gid oṇe year. This includes postage, which we pay. Remit

PRINTIING TMKKS,

[^0]: The Inventions Exhibition, London.
 The forthcoming exhibition, which opens May 4, is to be magnificently illuminated at night by means of electricity. Ten thousand lamps are to be employed. Of these, 464 are arc lamps and 5,530 incandescent lamps for the exhibition proper, the remainder for the grounds. Eighteen steam boilers will be employed, capable of evaporating $110,000 \mathrm{lb}$. of water per hour.

