

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

THE MANUFACTURE OF AGGLOMERATED FUEL.

The direct utilization of refuse coal in the production of heat is a problem which still awaits a solution, but the indirect utilization of it has for a long time been an accomplished fact, and the manufacture that it has given rise to now constitutes a prosperous industry whose present state in France we propose to make known. The idea of converting refuse coal into bricks is due to Mr. Marsais, an engineer, an . it was from the Chaleassiere Works, which are at present constructing all the materiel necessary for the manufacture of agglomerated fuel, that came the first truly practical press, devised by Messrs. Revollier \& Marsais. This press, which was in the first place hydraulic, has been employed in a certain number of large industrial establishments. It has since béen improved by Mr. Couffinhal, and has become exclusively mechanical.
The manufacture of coal bricks is, in princi ple, exceedingly simple. It consists in forming a paste with coal dross and pitch, passing it through a pug mill in order to mix it thoroughly, and then compressing it strongly in a hydraulic or mechanical press, which solidifies the agglomerate and gives it a form convenient for handling and storage.
We shall first examine the double compres sion machine (Fig. 1), and afterward have a few words to say regarding the manufacture of the paste.
The machine is set in motion by a horizontal shaft-either the driving shaft of any motor whatever or an intermediate one. This first shaft, through the intermedium of a pinion, actuates gear wheels keyed at the end of two shafts that are placed symmetrically with respect to the principal axis of the machine. These shafts are

Fig. 1.-PRESSING MACHINE FOR ARTIFICIAL FUEL.
apper moulding piston and the lower piston. The lower piston that empties the moulds is actuated by a second pair of working beams underneath the mould tables. When a compression is being effected through the descent of the working beams and moulding pistons over the table, there comes a period when the upper part of the brick ceases to descend, through the resistance that is offered by the lower piston, and also because of the friction that the coal experiences against the sides of the mould. At this instant the lower surface, being less pressed than the upper, a reacticn occurs, and the lower surface becomes a fixed point, and the lower piston acts in its turn until the pressure has become the same on both sides. This mechanism recalls that of a nut-cracker, and it could not be simpler than it is.
In order to obtain a good product, it is indispensable that the increase in the compressing stress shall be suspended when the resistance reaches a given limit through the quality of the coal to be treated. 'Io effect this, it became necessary to give the parts of the machine a sort of elasticity. So the action of the levers is not transmitted directly to the compressing plates, but through the intermedium of a hydraulic cylinder that permits of making the pressure upon the bricks regular. This cylinder, which is affixed firmly to the frame, carries two valves, one of which opens inwardly and the other outwardly. If, during the compression, the moulding cylinder meets with a resistance greater than the proportional support that the water in the cylinder (retained by a spring valve) can give it, the valve rises, the water escapes, and the working beam continues its motion without any increase in the pressure exerted upon the brick. When the dead provided at the other extremities with cranks that to a horizontal cross-head that transmits alternate up center of the crank is passed, the entire system deactuate two vertical connecting rods that may be seen and down motions to two working beams, which are scends through its own weight, and the water that in front in Fig. 2 These connecting rods are attached \mid situated above the mould table, and which actuate the has escaped through the valve is sucked up and fills

Fig. 2.-THE MANUFACTURE OF ARTIFICIAL FOEL.-DRYING, GRINDING, AND PRESSING.
the cylinder again in passing through the second valve arranged for the purpose.
A hydraulic gauge, placed at the side of the cylinder, permits of regulating the pressure by acting upon the spring of the exhaust valve. The compression is effected within three distinct periods: in the first, the upper compressor acts alone; in the second, the lower one rises until the pressure is equal upon both surfaces in the third, when the limit of pressure is reached, the piston continues its motion in the hydraulic cylinder until the dead center of the crank is passed.
The moulds are emptied upon a tilting table or end less belt, or even directly upon the floor in cases where carts can be driven into the works.
The table carries from 12 to 14 moulds, which are so arranged as to give the bricks a form such that their height and breadth are half their length. They can then be piled up crosswise, so that four of them form a perfect cube and waste no space. There are four styles of double compression presses that yield bricks of 1, 2 , 5 , and 10 kilogrammes, and manufacture, respectively, $18,50,90$, and 150 tons of bricks per day.
This system of double compression presents numerous advantages, the most important of which is the greater degree of homogeneousness, and consequently greater solidity, obtained. In the old machines, the density of the bricks, as a consequence of the friction of the coal against the moulds, continued to diminish from the surface in contact with the compressing cylinder to the one most distant from it. With double compression, the least dense part is found in the center; the edges are entire and sharp, and waste is, through this fact notably diminished.
The paste for manufacturing the bricks was formerly prepared by means of a steam pug mill; but this is now replaced by a special furnace that heats directly and has a revolving sole. The apparatus may be seen in the center of Fig. 2. The paste consists of a mixture of coal and pitch, that must be as intimate as possible in order that its agglomeration may be afterward effected in the press.
The furnace is circular in shape, and consists of a re volving cast iron platform whose motion is dependent upon that of the agglomerating machine. This platform is surrounded with masonry, which is inclosed within an iron plate jacket, and which supports a spherical dome that is traversed in its center by a cylinder that carries an axle provided with paddles. It is into this cylinder that is emptied the mixture to be prepared. A lateral fireplace, with two opposite doors, permits of obtaining the heat necessary for the elimination of the water, for heating the coal, and for melting the pitch. The flames, after licking the upper surface of the mixture, heat the dome (which reflects them), pass beneath the sole, opposite the fireplace, and from thence, through a flue, to the chimney. In the circuinference of the furnace jacket there are six apertures. The first four of these serve for the introduction of scrapers that turn over the material, and mix it up, so as to permit it to become heated uniformly and to present all its parts to the flames and the sole. Opposite the fifth aperture there are two bars, one fixed and the other movable, which, through the aid of hinged partitions that may be inclined more or less, gradually carry the material from the center to the circumference, while at the same time turning it over and stirring it up just as the scrapers do. Another object of this arrangement is to regulate the thickness of the layer, and, consequently, the time during which the mixture remains upon the sole.
Another scraper, maneuvered by means of a rod exterior to the furnace, acts upon the material in the center, moves it to the zone of action of the preceding ones, and regulates the delivery. The sixth aperture serves for the exit of the properly heated paste.
The furnace, as a whole, is built upon masonry that contains an opening for the passage of the shaft and for the gearings that actuate the sole.
The revolving sole furnace operates continuously, as does the agglomerating press. The coal is well dried therein, an essential condition for obtaining a good product; and the temperature to which it is submitted softens it a little and increases its agglutinative properties, this being followed by a considerable saving in pitch.
The engraving that gives a general view permits one to obtain an exact idea of the mode of manufacture The refuse and pitch, coming in on the right, pass through the breaking and proportioning apparatus, and the coal is then carried by chain and buckets to the sole of the furnace, to be dried, and the pitch to an endless screw, where it mixes with the dry and heated coal The mixture thus begun in the endless screw becomes more intimate in the pug millstationed above the press. The bricks, upon coming from the latter, are piled up, or are loaded on carts and carried away.-La Nature.

In small blasts, 1 pound of powder will loosen about $41 / 2$ tons; in large blasts, 1 pound of powder will loosen about $23 / 4$ tons. One man can bore, with a bit 1 inch in diameter, from 50 inches to 100 inches per day of 10 hours in granite, or 300 inches to 400 inches per day in limestone.

Surintific Agmerican.

HSTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. pUBLISHED WEEKLY at

No. 361 BROADWAY, NEW YORK.

O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.
One copy, one year, postage included...
ne copy, six months, postage included
Clubs.-One extra copy of The Scientific Amfrican will be supplied
ratis for every club of five subscribers at $\$ 3.20$ each; additional copies at Remit by postal order. Address
Remit by postal order. Address

The Scientific American Supplement

is a distinct paper from the Scientific American. THE SUPPLEmENT is issued weekly. Every number contains 16 octavo pages. uniform in size
with ScieNTIFIC AMERICAN. Terms of subscription for SUPPLEMENT, .00 a year, postage paid, to subscribers. Single copies, 10 cents. Sold by Combined Rates. -The ScIENTIFI.
will be sent for one year, postage free, on receipt of seven dollars. Both apers to one address or different addresses as desired.
The safest way to remit is by draft, postal order, or registered letter.

Scientific American Export Edition.

The Scientific American Export Edition is a large and splendid peridical, issued once a month. Each number contains about one hundred and pages of the four preceding weekly issues of the Screstific Ameri CAN, with its splendid engravings and waluable information; (3.) Commercial, trade, and manufacturing announcements of le ding houses
Terms for Export Edition, 85.00 a year, sent prepaid to any part of the orld. Single copies, 50 cents. Manufacturers and others who desire secure foreign trade may have large and handsomely dis
nouncements published in this edition at a very moderate cost. The Scientific American Export Edition has a large guaranteed circulation in all commercial places throughout the world. Address MUNN Co., 361 Broadway, corner of Franklin Street, New York.;

NEW YORK, SATURDAY, JANUARY 31, 1885.
(Illustrated articles are marked with an asterisk.)

TABLE OF CONTENTS OF
the scientific american supplement,
No. 474,

For the Week Ending January 31, 1885.

Price 10 cents. For sale by all newsdealers.
CHEMISTRY AND METALLURGY.-Mineral Acids in Solid PA The Infra-red Emission Spectra of Metallic Vapors.-By H. BecQUEREL..
engineering, mechanics, etc.--New Forms of Swedish Hearth and Welding Furnaces.-By G. A. Forsberg.
Gabert's Revolving Excavator.-4 figures............................
Rairoad Building in the Tropics: Pontoon Bridge across Lake Amatitlan on the Line of the GuatemalaCentral Railway.-5figures, A Project for a Suspended Railway.- 5 figures.
Some Recent Experiments on the Use of High Explosives fo War Purposes.-By Prof. C. E. Munroe.
II TECHNOLOGY.-The Theory of Blast Furnace Slag Refining.
By A. D. ELbERS.. Sand Soap and T
Sand Soap and Transparent Soap......................................
The Manufacture of Candles.-The oldest candle works.-Modern improvements.-Methods and apparatus.- 11 figures...

ARCHITECTURE.- Brighton College.-An engraving.
I. ARCHFOLOGY.-Assyrian Science.-The Land of Nimrod.......
The Maya Alphabet.-Comparison with the Egyptian alphabet The Maya Alphabet.-Comparison with the Egyptian alphabet. 3 engravings..
II. HORTICULTURE, ETC.-The Cultivation of the Ramie Plan
in the United States.-By M. JAGERHUBER........... in the United States.-By M. JAGERHUBE
The Potato Disease.-Several figures.
III. MEDICINE, HYGIENE, ETC.-A New Apparatus for Transfusion, with Remarks on the Intra-vascular Injection of Blood an
Other Fluids.-By Dr. Jos. C. HuTcHivson.- 1 figure Mental Contagion in Inebriety: a Psychological Study.-By Dr. T. D. Crotiers.

The Property of Alcohol which Allures the Neurotic to Drink...... Pasteur's Work.-Researches relating to wine, beer, charbon, an
owl cholera...
-
MISCELLANEOUS.-The Micro-Photoscope.- 1 figure............. 7
The Prison of Louvain. - The only prison in Europe in which the system of absolute isolation is enforceed..........................
The British Nile Expedition.-Towing whale boats through the The British Nile Expedition.-Towing whale boats through the

So wedded are workmen, generally, to familiar methods that even a demonstration of a better way of doing a job is not always convincing. A sub-contractor in a machine shop took certain parts of the work on machine tools to do by the job. He was a stickler for old methods, and did not "take stock" in the kindly meant suggestions of the superintendent, who was disposed to aid him. At last, however, he yielded so far as to allow the superintendent to "fit up" for one job, with the understanding that if the output did not promise to pay, the contractor should bear no expense. The job was the finishing of "ball nuts," so called, nuts to be turned up by hand, and consisting of a central boss for the thread and two short arms ending in balls. The contractor's method was to center each end, drill centers, and turn and finish each ball in the lathe. Then the nut was chucked, and the central cylindrical portion was drilled and tapped. A threaded arbor was then fitted and mounted on centers, and properly dogged on the table of a crank planer or pillar shaper; and so the two sides of the nut and the arms were dressed by the reciprocating motion of the cutter. The arbor was then swung in a lathe, and the ends of the cylindrical threaded portion and the edges of the asms squared up. It will be seen that this was a roundabout way to complete a simple job; indeed, the machine work on the crank planer was slower than hand filing would have been.
The superintendent improved on these methods very sensibly. He chucked the piece, drilled the center hole, and tapped it. Before removing it from the chuck he finished, to turning, the face of the central phuck he finistrec, oy turning, the face of the central portion and the edges of the arms. Then he screwed
in a threaded arbor, reversed ends, either in the same in a threaded arbor, reversed ends, either in the same
lathe or another, and repeated the turning for the other face. While still on the arbor, it was placed on centers on a milling machine, and passed under a gang of milling tools adapted to the profile of the cylindrical portion and the arms; the work was half revolved on the centers, and the job repeated. Nothing now was left to be done but finishing the balls. This was done in a peculiar way. On the two ends of a polishing spindle were mounted hollowed out emery wheels with rests in front. The piece was held, first one end or ball, and then the other, inside the concavity, and slowly turned. 'The ball was cleaned, scoured, and shaped in the wheel of coarse emery on one end of the spindle, and then was finished and polished in the finer wheel at the other end. In all this work there has been no centering, no lathe turning, no slow planing on the pillar shaper, and the amount of handling was greatly reduced from the old method. But the crucial test was the economic result: a saving of twothirds of the time, and even more, for five completed pieces were turned out within the time required by the old method to complete three pieces. The contractor was convinced, and bought the plant.
This single specimen of improvement in methods might be supplemented by instances in the recollection, if not in the practice, of many mechanics. It pays to use wit and judgment, as well as skill and handy manipulation, in the conduct of work.

dROPPING AND STRIRING UP.

There has been great improvement on the old style machines for eutting and heading tacks and nails and forming rivets; the heading machine has been adapted to forging purposes with great advantage. But the limit of the machine is not great; a requisite to accurate work, unless with the result of great strain to the machine, and its final disabling, is that the amount of material fed in for working should be accurately measured. All the blows of the heading machine are absolute as to force and exact as to distance; they are made by means of a crank or an eccentric acting directly on the hammer, or by similar means acting on a knuckle or "toggle" joint; in either case there is no provision for yielding in the event of a superabundance of material to work upon; the material must give, or "get," or the machine must stop or break. So it is necessary that the feed of the heading machine shall be exact as well as accurate; it must not "bite off more thanit can chew." But the drop has plenty of leeway, limited only by the accommodation of the dies, and they are made so as to allow plenty of room for sprues, or overplus of metal. The force of the blow of the drop is graduated by the weight of the hammer and the distance through which it falls, the latter element being changed at will. The limit of the blow is simply the resistance of the material to be worked to the impact of the falling weight. This force varies in effect by the condition of the material; if soft and plastic, at nearly a white heat, it yields as readily as soft putty; if only dull red, it resists impact, and works thard. So, also, the quality of the material adapts itself to the blow of the drop.
From the above it is easy to see that the drop has a much larger range of useful work before it than the heading machine; the latter may work faster and be more exact in its first results; but the drop can be adapted to a much more varied list of articles. At all adapted to a much more varied list of articles. At all
events, the heading machine can never usurp its place.

An Incident of the Late Philadelphia Exhibition.
A rather good practical joke was played on one of the exhibitors of the Philadelphia Electrical Exhibition by a representative of the Scientific American, who was making some sketches for publication. While this gentleman was putting the finishing touches on one of his drawings, his attention was directed to a crowd of sightseers, who were collected about one of the hand electrical machines where shocks were administered to the curious. Three or four would join hands, and after the "end men" had taken the poles of the battery in their hands, the operator would rotate the wheel and administer shocks of gradually increasing severity.
Occasionally curiosity would be excited in the breast of some innocent, and as soon as he had given himself up to the influence, the operator would generate a high current, taking advantage of his inability to let go of the handles, and would very soon have him dancing to any tune he was inclined to whistle.
This sport was very amusing to the spectators, and especially so to the showman. Our artist, after watching several experiments of the nature described, became filled with sympathy, and determined, if possible, to turn the ridicule to the other side of the table.
He soon provided himself with a piece of copper wire, which he passed down his sleeves under his coat, and which he made of such length as to terminate in the palms of his hands. Thus equipped he strolled leisurely to the center of interest, where he found a new subject dancing a Highland fling without any special invitation from anybody. As soon as the unfortunate had been released, our friend stepped before the instrument, and, muttering something about his being very fond of electricity, took hold of the handles, taking good care, however, that the ends of the wires should be brought in close contact with the poles in each hand. Thus prepared, he bade the tormenter begin. The wheel began slowly to revolve, and a good current was very soon indicated, but our hero stood it like a Spartan, and showed no signs of discomposure. The greater the current, the more he seemed to like it. The spectators could hardly believe their eyes, and the operator's amazement and anger could only find vent on the poor wheel, now flying at its fullest speed and generating a current strong enough to kill any man. An occasional voluntary shake of the arms on the part of Mr. Artis further increased the deception. Finally the latter re-
quested to be released, whereupon Mr. Showman quested to be released, whereupon Mr. Showman
stopped the wheel and accused him of holding insulators in his hand, which he quickly disproved by opening his palms and raising his arms, which latter act served to pull the wire out of sight under his sleeve. He then turned on his heel, and as he approached the gaping crowd was received with that absence of elbowing which might characterize the reception of an uninvited visitor from the nethermost world.

How Shot are Made.

Every person who has walked about the lower part of this city, says the New York Tribune, must have noticed a high round tower, as high as the roadway of the Bridge, which rears itself high above the surrounding buildings and has small windows at different places. This tower is in Center Street near Worth Street, and belongs to the Colwell Lead Company. There are several of these towers in this city. They are places built especially for the casting and manufacture of shot. The tower rises to a height of 176 feet, and is fifty feet in diameter at the base. It diminishes in diameter as it ascends, being about thirty feet across at the top. It
is divided into several stories. A circular stairway is divided into several stories. A circular stairway
made of iron extends to the summit, giving access to made of iron extends to the summit, giving access to
the several stories. Great height is essential for casting, as the lead must cool in the descent, and thus assume a spherical shape. If hot, it would flatten when it strikes the water into which it falls.
The first method is making what is called "temper. This is a mixture of arsenic and lead. The mixture is melted in large kettles, and is constantly skimmed and stirred. It is cast in bars, the same as lead. When the temper is made it is carried to the top floor, where there are kettles and a furnace for melting it. The temper is mixed with the lead, as pure lead would assume various shapes in casting; but when mixed with the temper in the proportion of three tons of lead to one ton of temper, it takes the shape of globules when it is cast.
The casting pans are large colanders, round pans with holes perforated in the bottom. The casting is all done on the top floor, and the colander is suspended over an opening in the floor, which goes through the entire height of the building to the ground, where there is a well of water. The lead is melted in large kettles, and is dipped out and poured into the colander with ladles which have long handles. It oozes through the holes in the bottom of the colander, and fallsthrough the opening to the ground floor into the well. The shot is taken out of the well by small buckets fastened to an endless belt, which runs over a wheel, which carries it from the well up to a long hot metal table. Here the shot is constantly stirred by men with long rakes, and the heat rapidly dispels the moisture, and the shot soon becomes perfectly dry.

It is taken from the "drying table" to the "screeners," a series of tables with narrow openings between them, the tables being set at a slight angle. If
the shot is round and perfect, it rolls rapidly along these tables, skipping the openings, until it reaches a box at the extreme end, into which it falls. If it is im perfect, it cannot roll fast, and falls into the openings, ander which boxes are placed.
The shot then goes to the "separators," which are a series of drawers, not unlike a bureau, which rocks backward and forward by machinery. The shot is poured into the upper drawer, which has an iron bot tom perforated with holes of a certain size. The second drawer has holes of a smaller size, and so on down to
the lowest drawer, the bottom of each drawer being the lowest drawer, the bottom of each drawer being drawer above it Tof a size smard and forward motion throws the shot from side to side, letting all the shot the size of the holes or smaller pass through into the second drawer, while all larger than the holes remain in the drawer. The same is repeated down to the low-
est drawer, so that each drawer contains a smaller size of shot than the one immediately above it.
The next process is "polishing." The shot is putinto irregular shaped iron koxes, which continually revolve. When the box is nearly full, powdered black lead is put in. The irregular motion of the box throws the shot from side to side, and the black lead is so ground intofit that it cannot be rubbed off. And it is this that gives it the beautiful shiny appearance.

Bolton Flagging.

Sixteen miles east of Hartford, Conn., in the town of Bolton, is a quarry of remarkable stone, not duplicated in its qualities by any other in this country. The stone is a micaceous slate, but is so thoroughly filled with mica that the slaty matrix is barely discernible by the eye. The best qualities of this stone are not affected by moisture and frosts, are not corroded by acids nor stained by oils, and a slab of it will bend perceptibly before it breaks. As a pavement, its durable quality is also remarkable; there are flags of it on a busy street in Hartford that have been trodden for more than fifty years, and are in good condition now. This stone is in great demand for floors and tables for chemical factories and laboratories, for hospitals, and in public buildings where constant cleanliness is a requisite. The area of these flags is limited; very seldom is one quarried with a superfices of two hundred square feet. The quarries are in the mountains known locally as the " Bolton Range," and forming the eastern boundary of the Connecticut River valley. They are at an elevation of about 1,000 feet above the level of the Connecticut River, and are of considerable antiquity, having been worked continuously for more than sixty years. In 1820, flags of this stone were sent to Washington, Phila delphia, Baltimore, and to New Orleans. At the first, the quarrying was largely done by means of gunpowder; but this destroyed more than was gotten out in a marketable condition. Now gunpowder is used only to remove the superincumbent rock to make the ledge bare; all the slabs are taken out by the use of crowbar and wedge. The ledge has been traced for more than six miles, but much of it is valueless because of the cost of getting out the stone, the layers being at an angle, so that the surface rook may be reached in one place at a depth of less than six feet, but within one hundred feet surface distance it will be sixty feet below the soil. The rock is split into slabs only where natural divisions occur; some slabs may be only half an inch thick, while others are five inches, and as they are they must remain, for no chiseling can effect another division. Indeed, the only means of dressing the stone is by hammering, the edges being dressed in this way; the surfaces remain in their natural state, smooth and glistening. These natural divisions may be traced by the eye, sometimes entirely around a block, and where the minute crack appears, rows of thin iron wedges are inserted and gently forced in by hammers until one lamina can be lifted from the rest like the well-baked upper crust of a pie.

Compressed Air in Birmingham.

A very remarkable kind of public meeting was lately held in Birmingham-a meeting which seems at first glance to be without precedent. It was called by the promoters of the Birmingham Compressed Air Power Company, who have obtained an act of Parliament for the distribution, for manufacturing purposes, over a considerable area of the town of Birmingham, of air strongly compressed at a central station. The Town
Council have accorded their moral support to the scheme, after receiving favorable reports from Sir F. J. Bramwell and Mr. Henry J. T. Piercy; and the object of calling the recent meeting was, says the Journal of Gas Lighting, to explain fully the nature and extent of he proposed undertaking to such of the inhabitants of the borough as might be interested in the scheme, ither as future consumers or as investors.
The meeting seems to have been very successful in every way. Several experts spoke simply and practi-
cally in support of the scheme; and if an intelligent audience of power users-thoroughly alive to every-
hing that might improve their pecuniary interestscannot be got together in Birmingham, it is very difficult to imagine where such an assembly could be collected. Judging from the report of the proceedings, the scheme was thoroughly examined from every point of view, and unanimously approved of on grounds of economy, safety, and cleanliness. All that now remains, therefore, is for the company to get to work and prove that they can earn a dividend. This they are confident of being able to secure; and if their anticipations should be realized, there is no possible reason why the consequential public benefits which they promise to the town hould not be forthcoming. It is a most interesting experiment, and will attract a great deal of attention rom other manufacturing communities.
In New York and some other cities we distribute hot steam from a central station, the circulating pipes extending in the aggregate for many miles underground. There is no reason why compressed air should not be so conveyed, and thus furnish power to run elevators and engines, large and small.

Fireless Tramway Engines.

The system of tramway haulage by fireless locomoives has been tried on a very considerable scale in Baavia, and has given so much satisfaction that it is contemplated to extend it. The Batavia Steam Tramway Company, says Engineering, owns a line divided into two portions: the first, from Batavia to Kramat, having a length of 8 kilometers (5 miles) laid with a double track of Demerbe grooved rails, and the second from Kramat to Muster Cornelis, having a length of $41 / 2$ kilometers of single track of Vignolles rails. The first kilometers of single track of Vignolles rails. The first
piece is almost level, with the exception of short inclines of 1 in 32 over bridges; there are two long curves and a number of short ones of 30 meters radius. The second section has a continuous gradient of 1 in 450 . The haulage is effected by 21 fireless Lamm Francq locomotives and five stationary boilers, the whole of which were manufactured by the Hohenzollern Locomotive Works, Dusseldorf. Two of the boilers are situated at Batavia, and three at Kramat, but one only is in work at each station at a time, the remainder being in reserve.
They are worked 12 hours a day, and fill an engine every $11 / 2$ minutes during about three hours in the day, and every 10 minutes at other times. An engine charged to a pressure of 12 atmospheres (180 lb . per sq. inch) will draw two or three passenger cars from Batavia to Kramat, and from Kramat to Cornelis, up and down again to Kramat. Part of the line was opened in July, 1883, and from the last annual report it appears that the cost of haulage amounted last year to 23 cents per kilometer $(7 \cdot 4 d$. per mile), composed of the 'following items:

	Cents.
Driving engines......	47
Heating boilers.	23
Coals..	14
Packing, lubricating, etc.	$2 \cdot 0$
	Total....... 23.0
(5 cents equal 1 penny.)	

More recently the cost of haulage has been only 17 cents per kilo ($5 \% 24 d$. per mile), the price of coal being 2l. per ton. The consumption of fuel was at first 6 kilogrammes per kilometer ($21 \cdot 3 \mathrm{lb}$. per mile), but recently it has fallen to two-thirds of that amount. Repairs of boilers and engines have cost 2 cents per kilometer, and have consisted chiefly in returning the wheel tires and renewing the felt on the boilers. Since the road has been completed, the receipts per month have amounted to 22,800 florins, and the total expenditure to 12,800 florins, leaving a net monthly profit of 10,000 florins ($800 l$. .). The fare is $21 / 2 d$. for a four mile run, or any part of it. The engines give every satis faction. They are in native hands, and run constantly with little attention and no breakdowns. Two more have been ordered, and will be shipped from Amsterdam this month. It is believed that with a better road the expenses might be reduced to 50 per cent.

Professor william wagner.

The founder of the Wagner Free Institute of Science in Philadelphia died at his home in the latter city Jan. 17, at the great age of 96 years. He was an apprentice of Stephen Girard, but in 1835 retired from business with an ample fortune, and turned his attention to scientific subjects, founding the institution which has since borne his name. In October last we called attention to the work that Prof. Wagner was doing for the promotion of the education of young people, and at that time it was thought that his gifts to the institute had amounted to $\$ 600,000$, while his will now leaves all his property thereto. Prof. Wagner retained his faculties to the last, his death not being attributed to any special disease, but to the gradual wearing out of the vital powers.
Recent excavations at Worms, Germany, brcunght to light about 1,300 feet of Roman pavement and a large number of objects of great interest, including some for playing a game such as draughts, made of glass

BUTTER TUB.

The pail is made of tinned sheet iron provided on th outside with a covering of wood pulp or building paper held on by bending the top and bottom edges of the metal over the edges of the covering sheet. The metal bottom is placed a short distance above the lower edge, so as to permit the cool air to pass beneath. The joints of the paper may be covered by one or more metal strips, B, secured by rivets. Ears are riveted to the trips to hold the bail. The cover is formed with a flange, D , which is so bent as to fit on the upper edge

McADAM's BUTTER TUB

of the tub. Ice can be placed in the cover to keep the butter fresh and cool. A sheet of building paper, E , is riveted to the upper surface of the lid. The bent part of the flange of the cover is formed with a series of slots through which metal tongues, C, are passed and then bent down to the outside to hold the cover on; the tongues are riveted or otherwise secured to the tub The sheets of paper form a very perfect non-conductor of heat, and protect the contents of the pail from atmo spheric influences.
Further particulars can be obtained by addressing the inventor, Mr. James McAdam, of Postville, Iowa

BELT FASTENER

The fastening is made of wire, which for about hal its length is bent into a series of zigzags the angles of which are bent upward at right angles, forming loops, the number of which on each side being equal to the

KELLS' BELT FASTENER.

number of holes in each end of the belt. The holes are made at such a distance from the ends of the belt that when they are brought together the holes will be at the ame distance apart as the rows of loops in the wire In using the fastening, the ends of the belt are brough together, and the ends of the wire are passed through the holes in such a direction as to bring the zigzags on the inner side of the belt. The ends of the wire are then passed through the loops successively, forming second series of zigzags upon the outside of the belt, and are twisted together, as shown in the engraving. In use, the fastening beds itself in the belt so as to leav the surface smooth. The fastener is easily applied, and eliable in use.
This invention has been patented by Mr. Thomas Kells, of 119 Freeman Street. Greenpoint, Brooklyn N. Y.
ugar Made from Potatoes by Electricit
Although glucose can be easily prepared from various amylaceous substances, all attempts to artificially produce saccharose or cane sugar have hitherto been un successful, but it is now announced that the synthesis of saccharose has just been accomplished by Messrs. Aubert and Giraud, and it is naturally anticipated that the discovery may eventually be of vast importance to the sugar industry. The process consisted essentially in submitting amylaceous matter derived from the potato, after it has been converted into glucose in the usual manner, to the action of an electric current equal to about 75 volts. The electrodes were immersed in the solution, and the current reversed from time to time. The reaction terminated in about two hours, and the finish was indicated by the liquid no longer giving
the characteristic color with tincture of iodine or a precipitate with alcohol. The liquid was afterward defecated by means of lime, which was subsequently removed by carbonic anhydride, and the sirup was then decolorized and left to crystallize. The crystallized product upon analysis yielded 88.38 of saccharose, 1 per cent of glucose, 3.67 per cent of ash, and 6.95 per cent of water; it was, therefore, far from being pure cane sugar. At present it has not been decided whether the reaction consists in the dehydration of glucose, the union of a molecule of dextrine with one of glucose, or the hydration of dextrine.

Progress of the Lick observatory

The trustees of the Lick fund have already provided one of the most complete observatories in the world, although the great 36 -inch refractor, which is to be its leading feature, is not yet built. The observatory is on Mount Hamilton, about 4,250 feet above sea level, and has a meridian circle which Prof. Holden thinks one of the most perfect of its class. The flint disk for the great equatorial was completed long ago, but it has as yet been impossible to obtain a crown disk. Aftèr nineteen unsuccessful attempts, two have been recontly cast in Paris, and Mr. Clark, of the firm of Alvan Clark \& Sons, visited Europe recently for the purpose of examining them, but reports that both of them were defective. If these glasses had been perfect, it would have taken eighteen months to have ground and finished them. Already the observatory possesses a 12inch equatorial, a 4 -inch transit, a comet seeker, a vertical circle, and a 6 -inch equatorial. There are five clocks connected by a complete electrieal system. Thomas E. Fraser, superintendent of the observatory, states that the 36 -inch glass, when finished, will be by far the most powerful one in the world, bringing the moon within thirty miles of the earth, whereas eighty miles is the limit of existing telescopes.
Superintendent Fraser states that since records of the temperature have been kept on Mount Hamilton, winters have been growing colder. The lowest point reached during 1881 was 19° above zero; the next year, 17°; the next, 15°; and last season, 13°. Thus far this eason the lowest temperature has been 22°.

IMPROVED SHUTITER WORKER.

The shutter worker, by means of which the shutter may be readily opened or closed, and locked in either position, is applied to the inside face of the lower rail of the shutter. The rocking spring catch is of any approved construction, and is formed with reverse spurs at its opposite ends for engagement with fixed staples to hold the blind both when closed and opened. This catch is placed near the opening edge of the shutter, thereby relieving the latter of strain on its hinges, and keeping it more securely closed in a high wind. The device for working the catch consists of two rods, the longer of which extends nearly the full width of the shutter, and is connected at its forward end with the catch; the other end is provided with a handle and also with an inner laterally-projecting lip. The other rod is pivoted near the hinge edge of the lower rail, and its free end is pivoted to the long rod in advanoe of its lip, which occupies a position over the short rod between its two pivots. That end of the short rod secured to the shutter is pivoted in a position slightly aloove the horizontal plane in which the catch moves, and the ods are so arranged that when lowered the long one will drop below the end pivot and below the level of he catch, until stopped by the lip resting on the short od, so that when the shutter is closed it will be held locked by the dip of the rods. The catch can be easily operated by raising or lowering the handle, and in

BROWN'S IMPROVED SHUTTER WORKER.
opening and closing the blind there will be no necessity to but very slightly open the window, and never any ecessity to lean out of the window.
This invention has been patented by Mr. Robert I Brown, of 35 West.130th Street, New York city.

The engraving represents an improved burglar alarm which rings a bell and fires a cap or cartridge when the alarm is released; the device can be connected with any desired number of doors, windows, etc. On the outside of the box, A, are two bells, between which is a hammer arranged to be operated by a clock work in the box. On the inner end of the hammer is an arm having a hook in its free end, which receives a hook pro jecting from a hammer rod, B, which moves vertically in guides on the inner sides of the box. The rod is pressed downward by a spiral spring, C. On the bot tom of the box and below the rod is placed a firing block to receive the caps, the inside of the box being reached through the door, E. The upper end of the rod passes through a slot in the top of box. Pivoted on top of the box is an elbow lever, D, which is connected by wires and intermediate elbow levers with one end of a lever pivoted to the wall near the window, so that the outer end of the lever can be tripped by an arm on the sash.
The alarm is set by pulling the rod upward, when it will be held by a pin projecting from its upper end rest ing on top of the box at one end of the slot. A cap is placed on the block, and the arm of the clock work is engaged with the hook on the rod. If the window is opened, the wires connected with the elbow lever

SIMS \& SHORKES' BURGLAR ALARM.
D, will be pulled, thereby pushing the rod from the edge on which its pin rests. The spring will force the rod down to explode the cap, and the clock work being released will operate the hammer to sound the bells. Further particulars regarding this invention can be obtained from the inventors, Messrs. J. C. Sims and F R. Shorkes, P. O. Box 255, Maynard, Mass.

On the Canning of Fish, Etc.

An esteemed correspondent, writing from British Columbia, says:
Noticing your reply to a correspondent about canned goods, I (this morning) opened several cans of salmon that were processed in July of 1879, 1880, and 1881, and on comparing them with last season's can found it impossible to detect the slightest difference. hold that if a can is once perfectly sealed, the content will remain unaltered as long as the metal casing re mains intact. A can will keep if every portion of the contents has been subjected to a temperature of 212 Fah., whether the air is expelled or not, as my experi ments have conclusively proved.
When I first.began the business, I was taught that the air unless expelled would cause the contents to de teriorate, and that was the reason the cans were vented.
I soon found that it was a mistake. The venting is done for the purpose of testing for leaks. A tight can has a sound that cannot be mistaken for a leaky one.
If your correspondent boils his fish, flesh, or fowl with the vents open, he will have dry cans for his pains. The vents must be closed when cooking, and opened, in the case of meats, after boiling one hour, then closed hot, and returned to kettle, and boil three hours for fish and less for meat without bone. Fruit is vented, and closed when finished.
S. H.

We noticed in a recent issue that a London scientist was trying to produce cats without tails. The Philadelphia Ledger suggests that the experimenter will be a greater benefactor by producing the tails without the cat. The writer had evidently heard a discussion on his back yard fence, the night before

SPIRIT LEVEL.

Secured on the level, bar over the spirit tube is a guard plate, on which is held a slide that extends partly or entirely over the spirit tube, which it approaches very closely. The width of the slide is equal to the length of the bubble, or the slide can be formed with a slot equal to the bubble. The slide can be so adjusted that the ends of the slot will coincide with the ends of the bubble when the level is perfectly horizontal, thus facilitating the taking of true levels. If two inclined surfaces are to be arranged precisely parallel, the level

TYLER'S SPIRIT LEVEL.

is placed on one of them, and the slide so adjusted that it will be over the bubble. The slide remains in this position, and the second surface can be adjusted until the bubble is below the slide. The uses to which surveyors.and civil engineers can apply this instrument will be apparent.
This invention has been patented by Mr. B. F. Tyler of Bridgeton, N. J.

IMPROVED QUADRUPLE PUMP.

We have lately examined a very powerful p Southall Street Works, Manchester, and pive Southil St erspective view of it This guve here with a porpective This pump has several novel features which tend to increase its efficiency and durability, in both of which respects very satisfactory evidence was submitted to us. The pump is described as quadruple acting, that is to say, it has two double acting cylinders, as shown in the engraving. It is provided with two separate suction pipes, which may draw their water from one source or from two sources, as may be desired, the change being rapidly effected while the pump is at work. A very useful adjunct is found in the provision of air valves to each end of the water cylinders. The suction is led to a hollow base plate which forms the foundation for the pump. The in ternal arrangement of this suction chamber, as we may be allowed to call it, is somewhat peculiar. The inlets to the upper and lower peculiar. The inlets to the upper and lower sides of the pump are in the form of nozzles Between each pair of nozzles is a kind of inrerted flattened dome, carrying the pump barrel above, and supported below by a web connecting it to the bottom plate of the base. The result of this arranyement is the formaion of a chamber on the suction side securng a steady flow of water, while the com paratively contracted ways prevent oscillation of water from one pump to the other. All the water passages have large areas, and especial care has been taken to avoid air traps. The valves are of the circular. grid type, the ways being arranged at an angle in such a manner as to give a whirling motion to the water.
Two purposes are effected by this simple contrivance: first, a larger volume of water is delivered in a given time than when the usual straight ways are used; and second, the rubber valve cover is slightly advanced or turned at each beat, and therefore presents a fresh surface at every stroke, and wears more uniformly, and for a oreate ength of time. Another advantage result ng from the use of this modified form valve is that the pump may be run at greater speed than when the ordinary brass valves are used; 250 feet per minute being the ordinary rate of working. The delivery pipe, as will be seen, has seven outlets, the centralone being prepared as a main discharge. As usual in pumps of this description, the columns are utilized as air chambers. The
steam cylinders are inverted, 14 inches in diameter, the stroke is 10 inches, and the two engines are connected to the crank shaft at a right angle, so that the pump may be instantly started from any position. The water cylinders are each 8 inches in diameter, and are capable of delivering 224 tons of water per hour. The working parts are all unusually easy of access, and an idea of the compactness of the pump majy be gained when it is stated that the floor space occupied is only 6 feet by 5 feet 6 inches.-Textile Manufacturer

Chlorine as a Disinfectand.

An investigation reported upon by Dr. Klein is the application of chlorine as an air disinfectant, especially in respect to swine disease. It has been shown that this disease is highly infectious, and that the infection is easily conveyed by the air, which is the usual manner of the communication of the disease. It was therefore considered by Dr. Klein to be specially suited for ascertaining experimentally the gaseous substance by which it could best combated. It is known that a healthy pig placed in the same stable with a diseased one is sure to take the disease, though the animals are carefully kept apart from each other. Dr. Klein therefore experimented as to the extent to which this atmospheric communicability obtained in an atmosphere impregnated with as much chlorine as the animals could endure without evincing discomfort. It was found that a healthy animal could with safety be placed in the same compartment with a diseased pig, even for so long a time as six hours, for five successive days, provided the air in the compartment was maintained well fumigated with chlorine gas, two good fumigations up to a marked pungency in the six hours being required. It was also found that one good fumigation with chlorine neutralized effectually the virus in a compartment from which a diseased pig had been removed, so that another animal could be placed in it without danger of infection.

Four Engines in Collision.

Two heavy freight trains on the Nickel Plate road each drawn by two engines, collided near Grand Crossing on Jan. 20, badly damaging the four engines; and killing an engineer named Charles Ellis. The loss is $\$ 20,000$.

IMPROVED QUADRUPLE PUMP.

COMBINED GUARD AND WEEDER

The accompanying cuts (Fig. 1 is a plan view of the device as applied to the right and left hand beams of a cultivator, and Fig. 2 is a side elevation) show a combined guard and weeder, lately patented by Mr. Oscar Elce, of Parker, Dakota, the object of which is to protect small plants from clods thrown by the forward shovels, and to destroy weeds and grass that may be growing near. Attached to the beams, A, of an ordinary cultivator are the forward standards, B, and the forward shovels, C. The forward end of the plate, D,

ELCE'S COMBINED GUARD AND WEEDER.

which is about 8 inches high and of any suitable length, is straight, and has its lower edge rounded, as shown in Fig. 2. To its lower edge is riveted a narrow steel plate, E , the forward part of the lower edge of which is rounded, and itslower forward part is inclined inward toward the plants. The middle part, G, of the plate is vertical, and its rear part has an outwardly projecting horizontal flange, as shown in Fig. 1.
When the cultivator is drawn forward, the inclined part of the plate, E, runs close to the plants, from which the weeds are pushed back, while the flange cuts off the roots of the weeds. The curved rear parts of the plates push the weeds below the forward shovels, forming a low ridge, which the rear shovels (not shown in the drawings) level down. The weeder is drawn by the bar, I, the forward end of which is bolted to the beam, and the rear end to the plate, D. At the extreme lower end of the bar is a clamping bolt that passes through a slot in the plate, and by means of which the guard and weeder can be adjusted to work at any desired depth in the ground.

Cleaning Clock and Watch Movements. A bath can be prepared as follows, which will cleanse the movements of clocks and watches to perfection: One quart of water, about one teaspoonful or five grains of liquid ammonia or alkali; into this liquid should be grated or scraped fine, five grains of common soap.
These proportions can be varied as desired, if the following remarks are kept in view: The articles to be cleaned should be plunged into this bath, where they should be allowed to remain at least ten minutes. Twenty or thirty minutes is better, especially for clocks. The articles should be wiped dry when removed from the bath, or polished up with a brush dipped in some polishing powder. The articles ought then to look like new; if this is not the case, they should be placed again in the bath, to which a small quantity of alkali must be added, as it may' have lost some of its strength in the bath.
Remark.-The alkali has the great advantage of not attacking the pieces of steel; when pure, it leaves the temper in all its purity. If the quantity of alkali is increased, the copper will become black, but the steel will not suffer in the slightest. When pure, if used very quickly, the alkali will clean instantaneously gold and silver watch cases, a brush dipped in polishing powder being used to dry the article and brighten the polish.
This bath can be corked and set aside for future use, as it keeps very well. If it loses its strength all that is necessary is to add more alǩali.

A PIANOFORTE railroad car is being built in Birmingham, England, for the London and Northwestern Railway. "Appliances will be provided by which the sound of the carriage wheels will be deadened, so as to preserve the harmony of the music."

How Rubber Boots and Shoes are Made.*

Did you ever see any crude rubber, and have you any idea how it is gathered and worked? There are twenty or thirty varieties of crude rubber, varying greatly in quality, and of all these the best is known as Para, a South American product, obtained in Brazil, about 1,800 miles above the mouth of the Amazon. It is called Para from the city of that name from which it is shipped to foreign parts. The gum is gathered by tapping the rubber trees, as we tap maple trees for sap for maple sugar. The sap is gathered into a large pot into which the native dips a flat wooden paddle, to which gum adheres. He withdraws the paddle and holds it in a smoke made by burning palm nuts, which dries and cures the film of rubber on the paddle. He then dips again, and smokes again, repeating the process until he has on the paddle a bunch of gum weighing several pounds. Then he splits the ball or roll to get the paddle out, and it is ready for market.
These native are not models of honesty, however, as these chunks of gum frequently contain palm nuts, rubber nuts, pieces of iron, or are freely mixed with sand to add weight, which often causes the manufacturer great trouble. The public, or a large share of the public, have an idea that crude rubber gum comes something like tamarac, and that it is melted and cast into whatever form is desired, but this is not true. A rubber shoe factory is not a foundry; it comes nearer being a printing office.
These chunks of rubber are sliced into steaks, you might say, by sharp knives revolving rapidly and kept constantly wetted. When one of these knives strikes an iron spike, there is apt to be "music in the air." The operators are on the lookout, however, and acci dents are so thoroughly guarded against that they ar very rare. These steaks are then put into a chopping machine, where they are made into an article closely resembling boarding house hash, only that this hash is the straight goods, except that it needs cleaning. The small pieces thus formed are then put through a machine which makes mince meat of them, and at th same time washes out all the dirt and sand. This (not the dirt and sand) is now shoveled into a rolling ma chine which compresses the mass into rough sheets. This is the first process. These sheets are then taken to another building and put into a steam drying room where they remain about three months to free them from all moisture.
By the drying process they lose from 15 to 30 per cent of their weight. If the least moisture remains in the rubber when made up into shoes, the heat of vulcanization causes its expansion, and consequently causes blisters in the stock. The dry gum is then run between heavy iron rolls, heated by steam, and called grinders, by which it is softened to permit the admixture of the vulcanizing material.
Rubber in its natural state is unfit for use, and Goodyear's process of vulcanization by the aid of sulphur is necessary to utilize it. This mixing is done by running the ground rubber through still another series of rollers, which press the rubber and sulphur together in one soft, fine body, which is finally run through a calender between great steel cylinders; the mass is pressed out into long smooth sheets of any desired width or thickness. Then comes the printing process. These sheets are fed through steel cylinders on the face of which is engraved the pattern for sole, heel, and upper desired to be produced, and these impressions are as clearly printed on the rubber as this type impression is on this paper.
Then the sheets go to the cutters, who cut out the different parts and send them to their respective departments. The lasting is done similarly to that of other shoes, except that the parts are all put together by rubber cement, and, before removal from the last, they are placed in the vulcanizing ovens, where they are subjected to a degree of heat that transforms the various parts into a homogeneous mass in the shape of a boot or shoe with a seam, nail, or peg. Then, if a dull finish is desired, the last is removed, and the goods are ready for market. Otherwise they are varnished to give the bright finish, and dried, when they are ready.

Electric Lights for Dwellings.

Several different systems of electric lighting are in vogue in French private houses, but, says La Nature they are all somewhat costly. One of the best systems is that of Gaston Menier, in which 150 Swan lamps are used, supplied by a series of 22 accumulators. These nominally yield from 40 to 50 amperes, which are sufficient to supply 60 lamps at a time-a number more than sufficient for any ordinary purpose. The accumu lators are charged each day by a continuous current Gramme machine, regulated by resistances introduced into the circuit. The machine is driven by a 5 horse power "Otto" gas engine. With a little practice, the servant who has charge of the lighting can, it is said, estimate the consumption pretty accurately, and recharge the accumulators; allowing an excess of 10 or 12 per cent for loss-possible errors. When it is necessary to use all the lamps, the direct supply from the machine is added to that of the accumulators.

detachable shirt bosom.

The accompanying cuts represent an invention pa tented by Mr. George W. Lee, of Ridgewood, N. Y. which relates to that class of bosoms which are worn on woolen or other shirts, or over ordinary dress shirts in case the bosom fixed in the shirt is soiled. The bosom is made of muslin, or other material, and is secured on a backing provided at its top with two wings, forming a cape at its upper corners. A neck band is secured to the upper end of the bosom and along the inner edges of the wings or cape. In the lower corner of one wing is a buttonhole, and on the other wing is a button. In wearing the bosoms, the wings, of uniform or nearly uniform depth, where attached to the neck band and orming a pendent cape hugging the sides and back of the neck but not extending out to the shoulders, are adjusted to their place in such a way that their ends come together on the back directly below the neck.
The front collar button or stud is passed through the shirt, the buttonhol3 in the neck-band of the bosom, and through the holes in the ends of the independen collar to be attached. The rear collar buttoa is passed hrough the hole in the band of the shirt, through the holes in the ends of the neck-band, and through the rear buttonhole in the collar. The button on one wing of the bosom is passed through the hole in the other wing, thus holding the ends of the wings at the lower corners, the upper corners being held together by the rear collar button. The lower attached cape formed by the wings, by hugging the sides and back of the heck only, gives an excellent fit, and the bosom is not liable to be shifted or the independent collar to be displaced.
When made as shown in Fig. 1, the wings are united

lee's detachable shirt bosom.
at the rear, and the collar band is opened at the front. In this case the bosom is held by means of the front collar button, which is passed through the shirt, through the holes in the neck-band of the bosom, and through the two holes of the collar, and by the rear button passing through the neck-band of the shirt the neck-band of the bosom, and then through the outer collar.

Draught of Boiler Furnaces

The question frequently arises, What is the proper way to regulate the draught of a steam boiler furnaceby opening and closing the ashpit and furnace doors, r by means of a damper in the flue leading from boiler to chimney?
There is some difference of opinion and practice regarding this matter, which probably arises from differences or peculiarities in the constructive details of various boiler plants, which might make it desirable or even necessary to regulate one way in one case and the ther way in another case.
Our own preference is decidedly in favor of regulatng the draught by means of a damper placed in the uptake or pipe leading from the front end of the boiler, smoke box, or front connection to the main flue. This uptake should be made of wrought iron, and riveted securely to the boiler shell, and the damper should be fitted as close to its lower end or the tube openings as possible, and be provided with a convenient hand attachment whereby it may be. set at any desired point and secured there
There is much less liability of burning out the grates in a boiler furnace when the draught is regulated by a damper than there is when it is regulated by the ashpit door. For, let the ashpit door be closed tightly, and all circulation of air in the ashpit is stopped; there is nothing to prevent the heat from the layer of incandescent fuel being transmitted downward and over heating the grates, and overheating means warping, twisting, and cracking of the bars, and we have known hem to be melted from this cause.
When, on the contrary, the ashpit doors are fully open, there is nothing to prevent the free circulation of air throughout the pit, and the bars are kept cool. We recommend omitting altogether doors to the ashpit, and making the opening through front nearly the full width of the grate, and making a water cavity or trough at least 6 inches deep in the bottom of the ashpit. This should be kept full of water, as it has a great ffect upon the temperature below the grates. For ease and certainty of regulation, a damper placed
in the uptake, as described above, possesses great and
obvious advantages over any manipulation of ashpitor furnace doors. Any onewho has had charge of boilers fitted up in this manner can readily appreciate the truth of this statement.
There is, also, in our opinion, decidedly less loss of heat by infiltration of air through cracks in the setting walls when the draught is governed by a damper in flue than there is when the doors are used for same purpose; for, when ashpit doors are tightly closed, the draught of the chimney will draw air in through every crack and crevice in the walls, and this air entering the furnace at all points has a cooling tendency which it is most desirable to avoid. If the ashpit doors are opened, however, any leakage past the damper will readily be supplied by air passing through the fire, which is always the way air should go into a boiler furnace.
The damper should always be so fitted and adapted to the koiler that, when it is tightly closed as far as it can be by the apparatus provided for operating it, it will allow sufficient draught to just keep the fires going, and carry off any coal gas which may be generated in the furnace.
The foregoing relates more particularly to boilers used for power purposes, and those plants of such size as to require the constant supervision of an engineer or fireman. With many of the small house heating boilers where the draught is automatically regulated, it is deemed expedient by most steam fitters to regulate the draught by the ashpit door. For boilers of this type, this is undoubtedly a good plan in many cases; with the attention this class of boilers receives, there is probably less danger of filling up a house with coal gas.The Locomotive.

The 7th of January marked the centennial of the first aerial voyage-on record-ever made across the English Channel; and it was made by an American, not an Englishman, Dr. John Jeffries, of Boston. He was a successful surgeon in London, and was scientifically interested in air voyaging. He paid a hundred guineas for a balloon trip from London, to Kent, in 1784, with the French aeronaut Blanchard. This was so successful that he agreed to pay some $\$ 3,500$ or more for a voyage across the channel. There were no gasometers for illuminating gas in those days, so ballooning was not an easy matter for long distances-or even short ones.

Blanchard, like someotheraeronauts since, tried hard to escape his contract; even a vest lined with lead, sent home by the tailor to the wrong address, and which it was supposed would make their ascent difficult if not impossible, fell into Jeffries' hands. Finally they got off from Dover at a quarter past one o'clock, "the little hero," as Jeffries called him, "the little heroic captain," being absolutely driven to start by his scientific employer. Jeffries had studied the wind, and was more decided than the pilots were, who said it would not extend (fair) beyond mid-channel. They "had risen considerably" by half past one, and could count thirty-seven towns and villages, with "a formidable view " of the breakers on Goodwin Sands. The same formidable view of the waves continued to enliven the proceedings. They seem to have seesawed most of the way, throwing "overbasket" in their rise and fall, first, their ballast, then books, and even the brandy bottle.
They finally landed about twelve miles from the sea in the wood of Guines, and not so far from Calais but that they reached there (after frequent hospitalities by the way) at one o'clock that night. Dr. Jeffries was made quite a hero at the French Court, and was on the best of terms apparentlywith Dr. Franklin, at Passy, and Mr. Jon. Williams; with Com. Paul Jones, Mrs. Bingham, "a very genteel American, from Philadel phia, and Mr. Bingham." His journai, which is given in the Magazine of American History for January, is second only to Sterne's in its charming and naive account of the France of thatperiod. He "thanks God" for his safe return by sea to Dover, the end of February. Considering that eighty-six years later M. Naya, in that same Paris, could not guarantee any more than Blanchard where his balloons should land, when sentout from the besieged city during the Franco-German war, and that to-day, in the Jeffries Centennial, balloon voyaging is no more manageable than it was then for precision or utility, there is room yet for invention, and capital too, to be expended in air voyaging inventions.

New Turkish War Ship.

Preparations have been made for launching the ironlad frigate which has been nearly seven years on the stocks at Constantinople. Length amidships, 292 feet; extreme breadth, 55 feet; depth of hold, 39 feet; tonnage, 4,167 ; nominal horse power, 800 ; armor, 6 inches, 7 inches, and 9 inches, extending 5 feet below the waterline and 15 feet above it; armament, ten 8 inch Krupps, placed in a central battery arranged for both fore and aft as well as broadside firing. The ship is to carry, in addition, two 6 inch Krupps on the upper deck as ordiaddition, two 6 in
nary pivot guns.

Sorrespondence.

Singular Boiler Explosion.

To the Editor of the Scientific American

On Sunday, the 11th of January, one of the two boilers of the steam screw tug M. Dougherty exploded, completely wrecking the boat, killing two of her crew, and injuring three others. The boat was steaming up the Monongahela near Elizabeth, twenty miles above here. She carried two boilers, 14 feet by 30 inches each, with three 9 inch and two 8 inch lap-welded flues They were allowed 175 pounds of steam. It is well es tablished that there were two full gauges of water and but 160 pounds of steam at the time of the explosion. The shell was of first quality steel. The peculiarity o this explosion was that the larboard boiler exploded throwing the starboard boiler upon the left bank of the river and high up on a neighboring hillside beyond, where the exploded boiler fell. The starboard boiler is sound.
Pittsburg, January 16, 1885.
Opportunities for $\begin{aligned} & \text { Gnventors in the Provision and } \\ & \text { Grocery Trade. }\end{aligned}$
On every side we find that within the last few years improvements have been making rapid strides in every branch of trade we can think of excepting for grocers. The butcher and marketman uses to-day the same tools and nearly the same methods in vogue a hundred years ago. True, there is but little room to improve the knife, cleaver, or steel, but something is surely needed to lessen the labor and time of sawing, not only in the store or market, but also in the large packing houses. We have stood and looked at the band saw doing all manner of difficult scroll work, and wondered why some of the manufacturers have never tried to introduce them among the packers and marketmen.
The patterns already on the market would, we are sure, answer the purpose with one exception, that of the saw slipping on the driving drum or wheel, on ac count of the grease from the meat, but we should not think this much of an obstacle to overcome. The
amount of lost time in doing the work by hand is enoramount of lost time in doing the work by hand is enor-
mous. The blades would have to be tempered harder than for woodwork; the general features of the machine could remain as at present. The circular or jig saw would not answer, for reasons that may be apparent to any one acquainted with the action of the bone under the saw while in the meat. The one item of sawing ham houghs is a big one alone, to say nothing of sawing beef bones to remove the marrow, shoulder, shank, and round bones. In the retail markets, sawing the bone in steaks is about the slowest and hardest work a man has to do. A sawing machine to run by hand, if a good one, would be a boon.
Again, can't some one get up a cheap motive power other than steam to run the grocery coffee mill? Even a spring motor that could be wound up quickly, so as to make from one hundred to one hundred and fifty revolutions of the mill, would be worth something if it could be wound up with a few turns of a crank handle, start, and left to run while the grocer was gecting some other article for the castomer. One who has never been in the business cannot know how valuable every minute is to a man with a store full of customers. You can't grind the coffee ahead, as no one will have it as rule, even were it advisable.-American Marketman.

Progress in Railway improvements.

Railway inventions secure adoption very slowly Looking back over the years, we remember that long after the Miller platform had proved itself invaluable and was largely in use, one of our greatest trunk lines still coupled its cars with link and pin, and endeavored to render the transmit of passengers from car to car less dangerous and unpleasant by keeping a short plank across.
The air brakes too were looked on by many of th older Eastern roads as a new fangled Western device of doubtful utility, and, till appalling accidents compelled, few of the New England railroads had condescend to adopt them; and to-day those selfsame roads find a hundred reasons why they should not adopt a uniform system of signals which has met the approval of a large majority of the railroads of the country.
Talk of insular prejudice! Why, ten years ago nearly all our railroad men scouted the idea of track signals other than a red flag or a ball hoisted on a pole. The complicated system used in England might do for John Bull, they said, but it would never be used here. Today our principal railroads have not only adopted those very signals, but have even improved on the English block system. Now we have signals at short distances apart which indicate to the engineer with unerring certainty whether the track is clear to the next signal ahead, and which he is otherwise forbidden to pass. These signals are worked by the power of electricity, called into action by the passage of the train itself, and depending on no human agency.
Their automatic action is most interesting to watch. You may be standing near one, no train within sight or hearing. Presently you hear the distant rumble or
see the puffs of steam that indicate the approach of a
train. As it nears the signal you see the red disk fall, train. As it nears the signal you see the red disk fall,
or the vane of lattice bars revolve, in time for the en or the vane of lattice bars revolve, in time for the en
gineer to note its action. He sees it change, and knows at once not only that the track ahead is clear, but that till he has passed the next signal head, this faithfu signal will forbid the passage of a following train. You wait and watch as the train disappears, and soon the red disk moves or the lattice bars revolve back to their former position, and you know that the train has safely passed the signal ahead. But this is not all. If the continuity of the track be broken by a rail removed for repairs, or if some straying cow has lain down on the track for a contemplative chew, the signal gives warning of the obstruction, and to fill the measure of its fidelity, if itself inoperative, it display the warning signal of danger. Yet another purpose is served by electric signals. At level crossings and at stations a gong is made to ring when a train approaches
within a certain distance, and the continuous ringing within a certain distance, and the continuous ringing says clearly
But the most perfect of signals can only call attenion to some fact, and so long as the element of human vigilance is required to note them, so long shall we re main liable to accidents arising from human infirmi ties.
The English system of connecting and interlocking witches and their signals, in such a manner that one man controls the action of many without moving from his box, and by which the setting of a switch for a cer tain movement of a train holds all others till that movement is completed, has already been adopted at some

 way Revieu.

Hints for Those Who Intend to Build.

Any one who has built a house will be likely to recognize his own experience in the following article from the Builder and Woodworker: The ordinary man, the writer justly continues, has very little knowledge f the amount of labor required to get out complete working drawings for a good-sized building. Now, the intending builder contemplates building in the spring, say April or the beginning of May. What does he do? Instead of going to an architect during the winter months, when work is slack, and giving him his ideas, so that he may have time to work them out and develop them, he waits until a week or two before he is ready to build. Then the intending builder rushes off to an architect, and wants plans submitted to him at once. But every house must be treated by itself and separately, and the architect, like the physician, diagnoses the case, and takes measures accordingly. First he takes a survey of the ground; notices if there are any irregularities or peuliarities that may have to be overcome in a scientific manner. Then he prepares sketches, plans, and submits them to his client. Nine times out of ten some modification or alteration is desired-an alteration may be trivial in itself, but which may necessitate coniderable careful thought and stuảy.
With the sketch plans will be an appropriate estinate, which will generally come within a few hundred dollars of the actual estimate. Of course everybody wants a $\$ 15,000$ house for $\$ 10,000$, but this is such a trifle that every well educated architect is used to this pleasing trait, and would be disappointed if his client did not develop it. The alterations in the sketch plans having been made, the architect must get out a full set f working and detail drawings, showing with the reatestaccuracy every important piece of construction and furnishing detail, very often full size of carving, or ornamental work or special features. These drawings have then to be traced, the tracings being used by the contractors, and the originals remaining in the architect's office, and becoming a part of the contract. All this takes time, but the builder is anxious to see his house under way, and wants matters rushed. When he drawings have all been prepared, contractors are invited to estimate on the work and furnish their bids, which of course is again a matter of time. But at last the lowest estimate has been accepted, the contract signed, and the ground broken for the foundations. The troubles and tribulations of the architect are by no means ended
As the work progresses and begins to show its shape, he owner takes friends to see his new acquisition. Mr. A. suggests that the house, will be a gem, but it ought to have a smoking room. Then Mr. B. visits the house and likes it ever so much, but there ought to be a little private room for its owner. Architectagain consulted, and in some way or other a room is squeezed in. But these suggestions from the male side of the house are as nothing compared with the orders, hints, and suggestions furnished by the presiding member of the fairer sex. Ladies, as a rule, seem to think that houses willstretch like so much India rubber, and that it is as easy to add a room here, or a picturesque bower there, as it is to purchase the extra half yard for a dress, which every dressmaker finds her patron fails to provide. The moral of all this is that when you make up your mind to build a house, take. plenty of time about it; having
settled on your plans, allow your architect to carry them out, and don't attempt to change them half a
dozen times, because if you do the result will be unsatisfactory.

Prof. Benjasnin Silliman

Prof. Silliman, of Yale College, died at his residence in New Haven, Jan. 14, in the 69th year of his age. He had been ill since Oct. 6 , and his death was caused by heart disease, which induced dropsy and uræmic poisoning.

During the last forty years the name of Prof. Silliman has acquired a steadily growing prominence in the several departments of chemistry, geology, and mineralogy. His father was the first to occupy the chair of Chemistry at Yale College, which he filled from 1802 to 1853, and was then succeeded by the son. The American Journal of Science and Arts, more generally known as Silliman's Journal, was founded by the elder Prof. Silliman in 1818, and the son at an early age became a contributor to the publication, which was afterward conducted by the son, together with Prof. Dana. In 1842 Prof. Silliman began to receive private pupils from Yale in analytical chemistry and mineralogy, and later to take advanced students in physics and chemistry, an enterprise which proved the germ from which has grown the present Sheffield Scientific School of that college.

In 1846 Prof. Silliman published his "First Principles of Chemistry" which became a standard textbook at once, and of which over 50,000 copies have been sold. In 1849 he was elected to the chair of Medical Chemistry and Toxicology in the Medical Department of the Louisville University, which at that time was one of the most flourishing institutions in the United States. He held this professorship for five years, until 1854, when he resigned to take charge of the instruction in chemistry in the Academical and Medical departments of Yale, a position which had been made vacant by the resignation of his father, the instruction in geology and mineralogy having been assigned to Prof. Dana. He resigned his position in the Academical Department in 1870, but continued to serve the college in the Medical Department. In 1853 he had charge of the chemical, mineralogical, and geological departments of the world's fair in the Crystal Paiace in New York, and in connection with Charles R. Goodrich edited, the following year, "The World of Science, Art, and Industry" and "The Progress of Science and Mechanism," in which the chief results of the great exhibition were recorded. In 1858 he published his " First Principles of Natural Philosophy and Physics," a second edition of which was issued in 1861.
He was one of the 50 original members named in the act of Congress of 1863 incorporating the National Academy of Sciences, and served the Government during the war on some important commissions. He made three visits to California-in 1864, in 1867, and 1872occupying his time with professional work in the mines, and mineralogical and geological explorations. In 1868 he presented his private cabine of minerals to Cornell University, where it is labeled with his name. He made important additions to the mineralogical collections of Yale, and the metallurgical cabinet of the Yale Scientific School is the result of his explorations and labor.
Prof. Silliman had been the State Chemist of Connecticut since 1869 , and in this capacity was frequently called to the witness stand as an expert in murder and other trials, and he was also employed as an expert in numerous patent cases calling for an exceptionally good acquaintance with chemistry and physics. He printed, in addition to his more ambitious works, great number of memoirs on scientific and practical subjects and many addresses and opinions which are valuable as contributions to scientific history. He was one of the trustees of the Peabody Museum of Natural History, and was a member of numerous scientific so cieties on both sides of the Atlantic.

The Mersey Railway.

The whole length of the tunnel under the river Mersey, which is 1,300 yards from quay to quay, is now arched in, and the greater part of the land approaches are finished, so that the laying of the permanent way will shortly commence. The total length of the line will be $41 / 2$ miles, independent of some extensions now being proposed. It runs from the London and North western and the Great Western joint lines at Birken head to the Central Station at Liverpool, the course being chiefly under the public streets in the land por tion. The underground parts of the stations at Green lane, Tranmere, and Hamilton Square, Birkenhead with that at James Street, Liverpool, are in a forward state. The hydraulic machinery for lifting train loads of passengers, the machinery for mechanical ventilation, and the locomotives and carriages are in course of manufacture. It is expected that the railway will cost half the mileage rate of the Metropolitan Railway and that the main line of three miles will be opened about June next. The engineers are Messrs. J. Brun lees and C. Douglas Fox; the contractors are Major Isaac and Messrs. John Waddell and Sons.

Gas Tar as a Health Preservative

 The serious outbreak of cholera with which France has recently been visited has caused inquiry to be made as to the extent to which persons engaged in particular manufacturing operations enjoy immunity from or are rendered more susceptible to the attacks of epidemic disease. It has been known almost ever since the estab lishment of gas works that the exhalations arising inthe various processes of gas manufacture, although, perhaps, not specially pleasing to the olfactory organs, are not detrimental to health, but are, on the contrary, highly beneficial in special forms of disease, such as vhooping cough and croup. The extensive use, in throat ailments, of preparations in which some form of carbolic acid figures largely is a testimony to the value of this derivative of coal tar as a therapeutic agent. A recent issue of the Journal des Usines a Gaz contained an article in which particulars are given respecting certain investigations made by a Dr. Lemaire some years ago into the subject of the influence of coal tar and its derivatives upon the health of the workmen employed in the preparation of these substances His inquiries were made chiefly in connection with the employes of the Paris Gas Company. He found that those whose duties did not necessitate a prolonged stay in the parts of the works where tar was to be found were liable to all kinds of ailments, and formed a considerable proportion of the number on the sick list; while among the workmen specially occupied with tar, only three were sick in the course of seven years. This result is all the more striking when the number of workmen in the service of the company at the period referred to is considered. There were altogether $20,553 \mathrm{men}$, of whom 764 were engaged in some occupation connected with tar.
Dr. Lemaire also cites the case of the Bayonne Gas Works, where the workmen had not only not been attacked by cholera during its prevalence, but generally enjoyed immunity from skin diseases. M. Bouley, a professor at the Veterinary School at Alfort, found, as long ago as 1860 , that gas works employes escaped during cholera epidemics; and the communication of this fact to Dr. Lemaire caused him to institute his inquiries into the subject.

Whole Meal Bread.

The late exhibition of breadstuffs at Humphrey's Hall, Knightsbridge, although it was not so largely attended as was expected, has been the means of reviving attention to the subject of whole meal, so strongly advocated by the Bread Reform League and by its indefatigable honorary secretary, Miss Yates. If the chemists alone had to decide the question of the relative values of whole meal and ordinary white bread, the public would have to wait a long time before it could obtain a satisfactory reply; for on this point chemists differ more than doctors. If we inter. pret the opinion of the profession of medicine correctly, there is a growing disposition in favor of the whole meal bread, on practical rather than on theoretical and chemical grounds. The bread which contains all the constituents of the wheat, except the outer, insoluble, and irritating portion of the seed, seems, when the appetite for it has been obtained, to be more satisfying and digestible than the white and fashionable product which is found on most tables, of rich and which is fo
poor alike.
It is believed, too, that for children the whole meal is the best for sustaining growth and for building up the skeleton strongly and in perfect form. The supply of whole meal bread is now much facilitated by the improvements that have been introduced in the decorticated or granulated flour, to which Lady John Manners has called public which Lady John Manners has calledeat Meal attention in her late paper on Wheat Meal
Bread. In the decorticated whole meal the extreme outer coating of the wheat grain is, by a special process of abrading, to the perfection of which Dr. Morfit has rendered able service, cleverly removed. After the abrading process is completed the whole of the grain is reduced to a fine flour, in which there is retained all the substances that are nutriis retained all the substances that are nutri-
tious and digestible. Considering the fact that the whole meal bread, when it is properly manu factured, is easily assimilated, we are lead to the conclusion that it must be more nutritious generally than other bread, in which starch predominates. But we do not wish to be dogmatic, and would prefer, before pronouncing a strong opinion, to hear what medical
men from their unlimited field of observation have to say. It is for this reason we direct attention to a topic which must soon be very widely discussed among all sections of the community.-Lancet.
a simple mode of ascertaining the revolutions of a SHAFT.
To the Editor of the Scientific American:
Noticing a revolution counter in one of your recent numbers, I send you an automatic record of 582 revolu

SIMPLE MODE OF ASCERTAINING THE REVOLUTIONS OF A SHAFT.

Milldams.

A decision by the United States Supreme Court, in a case which was carried from New Hampshire, has just been rendered, which will interest all men who have anything to do with water power in general, or with milldams in particular. Many of the States have laws which authorize persons to maintain milldams on streams which are not navigable, the dam being erected upon property owned by the persons, upon condition hat they shall pay to the owners of the land which may be overflowed such damages as may be assessed. In the case in question, the claim was made that the effect of such a law was to deprive the owners of overflowed land of their property and the uses of it without due process of law, and hence that the statute was in violation of the Fourteenth Amendment to the Federal Constitution. In the opinion rendered January 5, by Justice Gray, of the United States Supreme Court, he sustained the validity of the New Hampshire act, and this may properly be regarded as a test case, and very probably it will result in upholding the milldam laws in other States.
M. Jablocheoff announces another battery of great scientific interest. A small rod of sodium weighing about 8 grammes is squeezed into contact with an amalgamated copper wire, and flattened. It is wrapped in tissue paper and then damped with three wooden pegs against a plate of very porous
tions per minute made by a process less generally known than it should be.
A lead pencil is tied to the end of a shaft so as to re volve in a circle of convenient size. A piece of paper is lightly held against the end of the pencil, which, if the paper is held still, traces a circle upon it; but if the paper is moved backward and forward, the penci traces a series of loops intersecting each other. It is easy to count them, and thus to determine the number of revolutions made while the paper touches the pencil. I inclose a record, which, having been in position ten seconds, shows that the velocity was 582 revolutions per minute.
M. C. Meigs.

The engraving represents a machine for utilizing weights as a power for lifting water or for other purposes. Journaled in brackets on the uprights of the frame is a shaftcarrying a wheel, on one side of which is formed a grooved pulley over which passes an endless rope, and a sprocket wheel over which extends a chain having a heavy weight at one end. The chain also passes over part of a sprocket wheel loosely mounted on its shaft,and provided with a pa wlengaging with a ratchet wheel rigidly mounted on the shaft. On this shaft is a cog wheel that engages with a pinion on the lowest shaft, on which is loosely mounted a drum having a spiral groove in which winds a rope to whose free end is suspended a bucket. The drum has a clutch hub to engage with a clutch sleeve that turns with, and slides on, the shaft. A lever, connected with the sleeve, is pivoted to a cross beam, and has its upper end pivoted to a bar sliding transversely; the lower end of the lever is so placed that the bucket will act on it. (This construction is shown plainly in Figs. 2 and 3.) In the bottom of the bucket is a valve, opening upward, and on its top edge is a hook arranged so as to catch on a wire bail at the end of the spout. A brake shoe is so placed as to bear against the face of the wheel on the upper shaft; the arrangement of the levers for operating this brake is shown in Figs. 1 and 2.
The weight is raised by turning the upper shaft by means of the endless rope. The bucket being at the bottom of the well, the clutch collars are disengaged and the brake lowered to rest upon the pulley, thus preventing the pulley from revolving, and stopping the entire machine. When the machine is to be operated, the lower lever is moved so that the clutch collars will engage, and as the same movement releases the brake the weight descends, the drum revolves, and the bucket is raised. When it arrives at the top, the hook catches on the bail and the bucket is swung to horizontal position, permitting the water to flow into the spout. As the bucket swings up, its bail acts on the lower end of the lever, and moves it in a direction contrary to that in which it was moved to start the machine; the brake then prevents the further descent of the weight. The bucket descends immediately after it has been emptied, a spring, coiled by the unwinding of the rope, regulating the speed. The weight can be so adjusted that by raising it once several buckets of water can be
[The accompanying engraving clearly shows how the pencil is fastened to the shaft and the position in which the paper is held.]

A VERY good artificial stone is made by using one part of Portland cement and three parts clean, sharp sand.

weight.

This invention has been patented by Messrs. M. Vandercook, W. P. Smith, and H. M. Baker, and particulars can be had by addressing Mr. W. P. Smith, of Manton, Mich.

the mason wasp.

There is no one living in a warm country who has not observed certain little earthen structures of irregular form sticking to the beams, wainscoting, and walls of houses. At first sight, we would readily take these little masses for lumps of mud or for heaps of dust piled up by chance and left through the negligence of servants. This is not the case, however, and if we take the pains to examine these bits of earth with some attention, we shall find that they are nests whose architects belong to the family of mason wasps-hymenoptera of the tribe Eumenidæ.
The round apertures formed in the external face of these nests are so many orifices through which the perfect insects have made their exit. These latter, after each of them has undergone its mysterious metamor phoses in a separate cell, finally cast off their chrysalid envelop, and, after a long seclusion, come forth to enjoy life and light.
Let us watch the work of a solitary wasp. The insect resembles a large black fly, and its violet and iridescent wings have a most brilliant luster. Its abdo men, which is separated from its thorax by a very pronounced constriction, renders that comparison very just that our fathers instituted between these elegant insects and our grandmothers pinched up in their long corsets. The last rings of the abdomen are red, and the same is the case with the front, which is varied with fawn color. The mandibles of the male are curved in the form of a sickle. They remind one of the saber of an Abyssinian warrior, and, through their large size, out of all proportion to that of the insect, produce a most curious aspect.
This wasp is a stinging hymenopter of the division diploptera, and is known to science as Synagris calida, Fab. The female does the constructing of the nest. She begins by selecting a place along a beam or in the angle of a window, and, after a careful examination of the surroundings, flies away. Soon she is seen returning loaded with a lump of mortar made of sand that has been moistened with her saliva and kneaded with her mandibles. By means of these latter organs she applies the lump to the wall, spreads it out and shapes it, then makes another journey, and thus succeeds in accumulating a certain quantity of mortar. In a few days there is seen a rounded structure of earth, as long as one's finger, or flat and elongated, as shown in the engraving. The nest is then perforated with round holes, each of which corresponds to a very regular oval cell whose sides are carefully smoothed. The number of these cells is often considerablecertain nests sometimes containing more than twenty. The nest is then thirty times larger than the architect. The mother lays one egg in each of the cells, and accumulates prey around it which, although alive, is incapable of defending itself against the young larva that will emerge from the egg and devour it. This future food is captured and prepared as follows: The wasp, having started on a hunt, hovers about shrubs until she spies a caterpillar. This she swoops down upon like a bird of prey, seizes its neck in her mandibles, and pierces it with her sting. The caterpillar makes a few convulsive movements, vomits up a green liquor, and falls back inanimate, when its enemy seizes it in its mandibles and carries it to her nest, and disappears with it in one of the cells. This operation is repeated twenty or thirty times, according to the number of eggs to be provided for, the mean number being six caterpillars for each. When this work is terminated, the wasp closes each aperture in the nest with mortar, and soon afterward dies near the structure that she has so laboriously built.
We shall now soon see emerging from the egg a small, feeble, blind, white worm, which will at once resolutely attack one of the caterpillars accumulated around it. The caterpillar, which is of gigantic size as compared with its enemy, will endeavor in vain to defend itself its jaws will move convulsively and its rings will contract, but it will be unable to escape, and the gnaw ing worm will keep on penetrating deeper into its.body tearing its sides and lacerating its entrails.
This phenomenon is due to the fact that the caterpillar has been paralyzed, and, although alive, exhibits every appearance of death. The reason of this state of things is known. The wasp stings the caterpillar in the middle of the body in such a way as to reach one of the gang:ions of the chain of nerves. This stinging brings on a paralysis due to the action of the poison It is always at this place that the larva attacks the first caterpillar, and, moreover, the mother wasp takes care to lay the egg nearly on that part of the latter's body which is to be devoured first. After the larva has in creased in size, and its jaws have become stronger, it attacks the other caterpillars at random, and ofte leaves one-half eaten in order to begin on another.
At the end of about a month the larva has reached it full development, stops feeding, and prepares to enter
the chrysalis state. At this time it is a sort of rounded worm about two-thirds of an inch in length, of a creamy white or rose color, fleshy, nearly torpid, and completely destitute of legs. The anterior part of its body is inclined forward, and its little round head resembles a ball of opal from which the mandibles and
jaws stand out in relief through their reddish tint. The arva consists of fourteen segments inclusive of the head. These rings are clearly defined, and are provided on each side with a rounded projection containing an aperture. These are the stigmata, or organs of respiration. There are ten pairs of them. When the larva has reached this state of maturity, it lines its cell with a preliminary network of silk, and then spins and envelops itself in a yellowish white, silky cocoon, tak ing care in doing so to leave its dejections in one cor ner of the cell, and to spin in such a way as to leave them outside of the cocoon. If the latter be opened after a few days, ajwasp will be found therein, but it will be soft and wholly white, and its legs and antennæ, folded along the body, will seem, through their trans parency, to be so many rods of crystal. The wings folded in all directions and partially covering the legs, will seem like stumps. At this stage the mouthpieces are spread out on the prothorax, and the whole insect is bent double. But gradually the eyes become fawn colored, then brown, and finally black. The mouth

THE MASON WASP AND ITS NEST.

pieces take on a color, the different parts of the thorax harden and assume their different tints, and finally the insect appears with all its colors. The Synagris still remains for some time in this nymphal state, but finally the hour of awakening arrives. It then frees itself from and devours the fine pellicle that invests it, tears the cocoon, pierces the wall of its cell, and at length sees the light. At first it is dazzled, but gradually it begins to stretchits wings in the sun and make them vibrate. It stretches out its legs and passes them over its mouth, and finally flies off in space, where it has few days to live.-La Nature.

Sulphur Fires in Cholera Epidemics.

In the autumn of 1872, when sanitary officer at the Sonepore Fair, and during the height of the pilgrimage, when the people thronged in thousands to the bathing ghats, Deputy Surgeon-General Tuson first used sulphur fires as a prophylactic mieasure against cholera. These fires were made at fifty yards apart, and kept aligh during the whole time that the fair was at its height Not a single case of cholera occurred; a remarkable cir cumstance, since cholera had generally broken out at previous fairs. A similar good result was obtained at Dinapore, where cholera was actually prevailing. In the pamphlet on this subject which is published by W. H. Allen \& Co., Waterloo Place, Dr. Tuson has ad duced certainfacts and arguments in support of the contention that sulphur fires are efficacious in epidemics of cholera. The basis of his explanation of their efficacy

Gelatine being now in ordinary use in the photoraphic laboratory, it may not be out of place to point ut some of the purposes to which it may be applied, therwise than in the manufacture of sensitive dry plates.
Mr. Woodbury has already published that a thin five per cent solution of gelatine colored a strong yellow by sufficiency of bichromate of potash makes a good cement for uniting pieces of broken glass. The glass must be warmed, wiped dry, the cement then applied, and the mended glass article then exposed to light for several days. He has also published that a strong solution of gelatine to which a little glycerine and red coloring matter, such as carmine, have been added makes a substitute for wax for covering the corks and upper part of the necks of bottles.
In the form of capsules, gelatine is used by druggists to hold many liquids of a greasy nature-such, for instance, as castor oil-so that they may be swallowed without the unpleasantness arising from their nauseous taste. The capsules are made by the aid of a small egg-shaped, highly polished little knob of iron, having a pointed iron stem by which it is held. The knob is rubbed with a slightly oily cloth, then dipped in the warm gelatinous mixture, after which the pointed stem is put into a hole in a board, while the gelatine on the knob is cooling and hardening. The gelatinous mixture usually consists of six parts of gelatine, twelve parts water, and one sugar. In a short time after dipping, the capsule is cold enough to be removed from the mould, which is done by cutting the gelatine round the upper part of the stem with a knife, then pulling off the capsule dexterously with the fingers.
At this stage it should be elastic enough to pull off without tearing, and to shrink nearly to its moulded shape directly afterward. A syringe with a nozzle bent at right angles to the axis of its cylinder is used to fill it to about three-fourths its capacity; if more were forced in, the gelatinous envelope might possibly break afterward with changes of temperature. The hole is closed with a touch of a strong solution of gelatine, and the same end of the capsule is then dipped in a weak solution of gelatine to give greater security by the thin cap thus applied. The gelatinous solution used for sealing the capsules always contains a small proportion of gum. The capsules having been allowed to dry, a polished appearance is given to them by rubbing them with a slightly oiled cloth.
Gelatine is one of the many substances sometimes used for the coating of pills, in order that they may not stick together in the box, and may not be tasted in the act of swallowing them. The solution used for covering them consists of one part of gelatine to two parts of water. The pills are cleared from any dust or powder which may be on their surface; then each pill is stuck upon the end of a piece of wire four or five inches long, and the lower end of the wire is thrust into a basin of sand, which acts as a kind of a pincushion. The pills are next dipped one at a time into the warm solution of gelatine; then the other ends of the wires carrying them are replaced in the sand, where they look like an assemblage of large pins standing while their gelatine-coated knobs are setting and drying in the air. Sometimes on removing the pills from the wires a little tube of gelatine from the outside of the wire comes off with it; this tube is carefully cut off with scissors. The hole in the gelatine where the wire pierced the pill is then closed with a little warm solution of gelatine, applied by means of a small brush of camel's hair
One fact about gelatine does not seem to have received that attention in photography which it deserves, namely, its curious power of dissolving phosphate of lime-the chief constituent of bones. Furthermore, it always contains a little phosphate of lime, which may or may not by double decomposition introduce a trace of phosphate of silver into all gelatine argento-bromide emulsions. The late Dr. William Gregory, Professor of Chemistry at Edinburgh University, says: "The property of gelatinizing depends on the presence of phosphates; for when gelatine is long boiled with water alone, or with a little alkali, phosphate of lime is deposited, and the solution no longer forms a jelly on cooling." If this be so, the functions of phosphate of lime in gelatine and in photographic emulsions deserve more attention than they have hitherto received. $-W$. H. Harrison, Br. Jour. Photo.

Transparent show bills may be cemented to glass windows in the following manner: Very fine white glue or preferably clean parchment chippings boiled in distilled water in glass or enamel until dissolved, must be applied very evenly with a soft hair brush to the face of the bill. Then press it on the glass, and in a few minutes the bill will be firmly fixed. Glass may be fixed to glass in this way, and the cement will bear a good deal of dry heat.

The World's Fair at New Orleans

It is often the fate of those who conduct great public enterprises to be accused of incompetence and censured for neglect when, had they succeeded, success would have been without applause and diligence without reward. Hence it is that the managers of the World's Fair, if we may judge from the reports in the popular press, are now under the ban of public disapproval.
Special reports leave the city daily for all parts of the country, testifying to the incompleteness of the buildings, the tardiness of the arrangements, and the inability of the managers to handle the mass of exhibits which daily arrives. These reports are sincere, and are written by disinterested persons, though for the most part after only a cursory examination into the facts. That they are unreasonable few will deny who are aware of the obstacles which have unexpectedly appeared to thwart the efforts of the manager \dot{s}.
Considering that the majority of the exhibitors were very late in their demands for space, it is not surprising that the construction of buildings to receive their goods was retarded; and when it is remembered that most of the exhibits, instead of gradually arriving, came at the same time, it is by no means remarkable that the managers were unable to handle them at once. We are not surprised when a dog essays to stand on his hind legs that he does it badly, but that he does it at all. When the railroad facilities were, of a sudden, well nigh swamped by thousands of tons of freight, considerate people could not fail to admire the busi-ness-like means the managers improvised to bring it, though tardily, to the grounds.
The exhibitors, their agents, or consignees, who were waiting to receive it, expected that it would be sent out from the city at once, and were, naturally enough, impatient at the necessary delay. Yet what railroad or other corporation of carriers would go to the expense
of quadrupling their facilities to meet a few days' of quadrupling their facilities to meet a few days "rush "?
Looking at the conditions under which the managers worked, and what they accomplished notwithstanding the obstacles in their way, it would seem that they have used more than due diligence. In a little over thirty days' time the managers handled nearly five thousand car loads of exhibits, the major part arriving at New Orleans within a period of fifteen days. During nearly all this time it rained. To say that the roads were "heavy" will but inadequately describe their condition to those who have had no experience with Southern roads when they are well soaked. To make matters worse, much of this freight was heavy machinery. Notwithstanding this, all of these five thousand car loads were brought to the grounds, classified, and placed.
Under the direction of the managers, the various departments are assuming, day by day, an expression of completeness. New objects are assigned without delay to their respective departments, and to judge from the number and character of the articles already placed, and the rate at which they are arriving, it is not un reasonable to predict that the Exposition will prove a
World's Fair as well in fact as in name.
The plans for an electric railway around the buildings and grounds are now well nigh completed, and the parts are being assembled. This railway is likely to will be nothing new in its construction, the charged rail system being employed. The electric lighting and power companies are rapidly getting their apparatus
into working order. Some of the lights into working order. Some of the lights are now aglow,
and that all were not long since in operation is surprising, since the several plants were in use in the Philadelphia Electrical Exposition. The fact is, the projectors and promoters of these several systems were not altogether satisfied with the pecuniary results of their efforts at Philadelphia, and some of them were averse to any further expense in the way of gratuitous exhibition, each being tempted only by the proclaimed
intention of some rival to appear at New Orleans. There is reason to believe, however, that they will be amply repaid for the efforts they are now making, because the present exhibition partakes far more than did that at Philadelphia of an international character, and the opportunity of displaying the various systems side by side before the official representatives, especially of Mexico and the South American republics, is too good to be lost.
The railroad now about to be built from the city proper to the fair grounds-about five miles-is so obviously necessitated that it seems strange it was not long since projected and in running order. But even this neglect, all things considered, may scarcely be laid at the doors of the managers. A railroad is a costly construction, and with a treasury only adequate to supply the absolutely necessary expenditures for building and grounds, they could scarcely be taken to task for not anticipating in the early days of preparation the grand dimensions which subsequent demands for space have made the enterprise assume.

With the expenses which the managers have been compelled to assume, and notwithstanding the bad weather and the incompleteness of the exhibits, both
of which would naturally tend to keep visitors away it is satisfactory to know that the managers have not
run into debts which. the actual contracts with exhibit run into debts which.the actual contracts with exhibit
ors will not serve to liquidate. This alone will do much to show the financial ability of the managers. We have thc authority of Director-General Burke for saying that the'receipts, or rather the credits, were equal to the current expenses even during the bad weather, and that now the good weather is arrived the revenues are nearly ten times as large, or, in other words, ten times the amount of the estimated expenses.
The cotton exhibit at the fair is, of course, likely to be one of the most important features if not the chief attraction to foreign visitors; and though it is as yet by no means complete, good circumstantial evidence is at hand to indicate that it will constitute a thorough expose of every process in cotton industry, from the pick-
ing to the manufacture. ing to the manufacture. Indeed, this fair commemo-
rates the centennial of the first shipment of cotton from the United States. Since then we have grown to be the chief cotton producer of the world, though not the largest manufacturer. Those whohave got accustomed to lament the rapid advance of India as a cotton producer, and who fear she will finally usurp the market we have come to look upon as our own, would do well to come here and examine the labor saving machinery now being exposed in the cotton section. The more recent arrivals are the cotton picking machine and the Oldham invention for spinning cotton. These mechanisms are designed to greatly facilitate the work of the picker and the spinner, and should they be perfectedfor as yet there is still something lacking-their de signers will have succeeded in accomplishing what heretofore has been regarded as practicable only by those
supposed to be suffering from mechanic lunacy. It is not too much to say that in this cotton picking machine especially the wildest dreams of the cotton planter are
realized. For, as is well known, he can at present plant four times as much cotton as he can pick; and it not infrequently happens, so I am told, that he must eave what would have been hundreds of bales of cotton in the field to rot, because of his inability to pick it. And yet, if the accounts we have read of the first introduction of Whitney's cotton gin years ago are not gross exaggerations, the cotton picking machine ex hibited here is not more remarkable nor more cunning y devised.
It is because of the well known ingenuity of the American mechanic and inventor, of which these machines are the expression and exponent, that has led many experienced persons to believe that we shall be able in the future to overcome the terrors of that bugaboo, "pauper labor," and that the cotton crop of the future will be capable of an infinite expansion.
Of the new spinning machine an authority says: "The new process of ring spinning, which has superseded the old mule system, will itself give way to this, which proceeds somewhat on the principle of the discarded wister; its main feature, by which it promises a great diminution in the cost of production being that two turns of twists are obtained for every rebeing that two turns of twists are obtained for every re
volution of the spindle. It corrects all the defects of volution of the spindle. It corrects all the defects of
ring spinning, including the inequalities of the yarn and renders 'snares' and 'corkscrews' which are o such frequent occurrence where mules are employed, mpossible."
The department of machinery is now very extensive, and if the spaces already bespoken are also filled, there is likely to be a very sea of moving shafts and whirring belts. At present some of the best engines in the world are in motion, as well as some of the least reliable. What is promised for some of these engines by their owners is really astonishing, considering how well informed the general public has become in this regard. Why these absurd claims are made it is difficult to under stand; for when it is remembered that an official record hey are not likely to deceive even the tyro
Three well known and receive even the tyro
have each their machinery in place and in It is hard to understand why there should betion ivalry between them as there would seem to be, for the production of each is excellent in its way, and their re spective machinery seems the one to be contrived as ingeniously as the other
A machine for making barbed wire fence, instead of being placed with the machinery, would have been more properly set agoing in that department of the Music Hall where the new means of teaching articulate speech is to be illustrated, for there would be there no sensitive ears to be jarred by its clatter and clang.
The objections that have been urged against New Orleans as a locality for a world's fair, though well point, are by no means so obvious when other and indeed the chief aims of the project are looked at. New Orleans, besides being the great cotton seaport, is, all things considered, the most convenient point at which to collect exhibits from Mexico and Central and South America; and it is perhaps not too much to say that this fair is looked to to foster and encourage trade between these several countries and the United i States by exhibiting side by side the products of each.

Now, among the many unique features of this fair are the agricultural and horticultural displays, and for these the climate is peculiarly suited. Favored by the balmy air, gardens have been laid out in the grounds, wherein the diverse growths of Mexico, Central and South America, California, and Florida are displayed. Here are to be seen the orange, lemon, and citron, the mesquite, maguey, banana, and other fruits; and, now that the deluge has ceased, hundreds of beautiful flowers, each in its respective section, are being set out. Within the adjacent buildings there are fine collections of grasses, fungi, edible and poisonous, and, what cannot help but be of great interest to very many people, the gathering at one point from the remotest ends of this continent of well preserved collections of insects. These are dividedinto several classes: 1. Insects without a netamorphosis, changing their skin but not their form, as spiders, lice, wood lice, and myriapods. 2. Insects with a metamorphosis: a, those moving in all stages of existence, at first wingless, then with rudimentary and finally with entire wings, including the neuroptera, orthoptera, and hemiptera; b, motionless in the pupa state, but having limbs, including the hymenoptera, coleoptera, and lepidoptera; c, ovate pupæ, wingless and motionless, as the diptera. The agriculturist will be especially interested in these, because, in the case of those which are destructive to plantlife, the various means of preventing their ravages are made to accompany the collection.
In the South Carolina exhibit, large and varied specimens are shown of the now famous phosphate rock, so called. These are grouped together into a huge pyramid, making it easy for the interested and curious o examine the various nodules, all of which are of a grayish hue. It is only since the year 1868 that the reat value of this substance as a fertilizer has become apparent, being now in demand at a rate of 400,000 tons a year.
The modes of treatment, the principal of which is by the use of sulphuric acid, are explained by an attendant. Following is a description of this deposit as given by Prof. Guerard, mineralogist for the South Carolina State exhibit: "The phosphate deposit occurs in beds or strata of rough masses of nodules of a size varying from a part of an inch to several feet in diameter, and is associated with numerous fossil bones and teeth. The remains of numerous extinct animals, such as the mastodon, elephant, megatherium, tapir, deer, horse, occur associated with the beds. Itis found on the bottoms of the shallow creeks and rivers which intersect the coast, and on the lowlands which form a belt of country running parallel to and from ten to fifty miles from the seaboard

The beds are from six to twenty odd inches in thickness, and the limit of a workable deposit is eight feet underground and twenty feet under water. The phosphaic nodules are known as land or river rock according to the element in which they are found. The average yield of the land deposit is from 600 to 800 tons per acre; and though sometimes occurring in "pockets," that is, irregularly, these deposits are remarkably uniform, many contiguous acres often containing a phosphate bearing stratum at an accessible depth. The river rock having been washed into the rivers from the land, has occasionally accumulated in thicker beds than the original deposit of land rock. The river rock is obtained by dredging, chiefly in the Bull, Stono, and Coosaw rivers; the land rock is dug mainly in the section of country lying between the Ashley and Stono rivers and Rantowle's Creek. Extensive strata of exellent quality are also known on the banks of the Edisto and between the Edisto and Ashepoo rivers, but this deposit has not yet been worked to any extent. Carolina phosphate is remarkably uniform is composition, containing on an average from fifty-five to sixtyone per cent tricalcic phosphate and from five to eleven per cent of carbonate of lime. Among its other constituents are silica, oxide of iron, fluorine, sulphuric acid, traces of alumina and magnesia, water, and orpanic matter."
In regard to the vexed question whether or no the great fair shall be closed on Sundays, the managers have decided, and, it would seem, very wisely, that those of the exhibitors who choose to show their exhibits may do so, and those who do not so choose may cover them over. The machinery, however, will not be started during the Sabbath.

Japanese Dentistry.

The Japanese dentist does not frighten his patient with an array of steel instruments. All of his operations in tooth drawing are performed by the thumb and forefinger of one hand. The skill necessary to do this is only acquired after long practice, but once it is obtained the operator is able to extract a half dozen teeth in about thirty seconds without once removing his fingers from the patient's mouth. The dentist's education commences with the pulling out of pegs which have been pressed into soft wood; it ends with the drawing of hard pegs which have been driven into an oak plank with a mallet. A writer in the Union Medicale says that no human jaw can resist the delicate but powerful manipulation of the Japanese dentist.

ENGINEERING INVENTIONS.

A rotary engine has been patented by Messrs. Charles H. Melville and Thomas W. Brown, of enattanooga, Tenn. It has a radially operating abut
ment with an eccentric revolving steam actuated hub for utilizing steam pressure to maintain steam tight contact of the abutment with the hub, and also has an improved contrivance for an automatic variable cat-off.
A sextant has been patented by Phillippe Leuba, of Rue der Nord, No. 4, Aigle, Canton of Vaud, Switzerland. This invention covers a novel confor taking elevations and the other for taking depresfor taking elevations and the other for taking depres-
sions, and in which provision is made for the use of the sextant in the dark or at night.
A valve gear has been patented by Mr. James A. Stout, of Belleville, Ill. This invention covers novel combinations of mechanisms whereby the engineer has to control but two instead of three handles
oo give three movements, and dispenses with one of the eccentrics, its strap and connecting rod, also the lin
nd link block with its rock shaft and connections.
A leveling rod has been patented by Mr. Robert B. Seymour, of Willet's Point, N. made with a friction roller connected with the keeper can be easily and accurately adjusted upon the rod, the friction roller being so arranged that it can be readily A car coupling has been patented by r. David C. Barton, of tion covers a combination of drawhead and coupling pin, with levers pivoted to the car on either side of the
coupling pin, and forked at their adjacent ends, with ther nowl featur of parts.

AGRICULTURAL INVENTIONS.

A sulky cultivator has been patented by Mr. Edward F. Husk, of Malden, Mo. This invention covers novel features in a machine on which a driver may ride while the machine straddles a row of
growing corn, to plow or cultivate the earth on both sides of the corn, and to cut the corn stalks into short gathered
A grain separator and cleaner has been Ind. This invention covers novel features in a machine for separating grain and seeds, and for grading wheat for separating grain and seeds, and for grading wheat
so as to obtain the seed wheat separately, all the seed wheat being saved and separated from the grain passed through as it comes from the thrashing machine.
A hilling plow has been patented by Mr. Rudolph Schuster, of Waldeck, Texas. This inwith a double or right and left hand mould board for throwing soil from both sides of a furrow to form beds or hills, and the plow point is
with the use of only one bolt.
A corn planter has been patented by Mr. William L. Rucker, of Martinsville, Mo. The object of this invention is to provide a mechanism which
may be easily controlled by the driver from his seat for allowing or preventing the dropping of seed, and for setting the mechanism to insure planting in accurate check row. th.
ing in drills.
A hay carrier has been patented by Mr. Thomas C. McNichols, of Belmont, Ohio. A self-acting brake is provided for retaining the carrier in place at
any desired point while a load is being raised or discharged, and by a combination of levers the brake is made self-regulating in its action, while the carrier can
be reversed so as to be operated in either direction from any point of the track.
A combined band cutter and feeder for Harding of McGaheysville vention is to facilitate the feeding of grain to thrashing machines, and it covers an angular vibrating feed spout, a rotary band cutter; one or more grain spreads, an endless apron, and a rotating reel, with various novel fea-
An adjustable cultivator shovel has
been patented by Mr. Myron A. Twitchell, of Kingsley, been patented by Mr. Myron A. Twitchell, of Kingsley,
Iowa. This invention provides a shovel or tooth for Iowa. This invention provides a shovel or tooth for sides or four corners forward, or with any side set at sides or four corners forward, or with any side set at
any desired inclination to the line of travel, so the plow is adapted to do a great variety of work in both right and left handed plowing.
A combined cotton chopper and cultivator has been patented by Mr. Lemuel Z. Grigsby, of
Minden, La. The frame carries a cylinder with central annular groove, with adjustable knives on its face and can concaves in its ends, operating levers connected a
their rear ends by a crossbar pivoted to a crank carry ing the chopping hoe and its standard, whereby stalks, vines, etc., at the sides of the plants will be cat up, the
soil mellowed, and the plants brought to a stand by the passage of the machine along the rows.

MISCELLANEOUS INVENTIONS.

A culinary vessel has been patented by Mr . Thomas G. Beaham, of Zanesville, O. This invenvessel supported by a metal base in such a manner that both can contract and expand independently.

A hitching strap has been patented by Mr. Samuel Birdsall, of Susquehanna, Pa. This inv:
tion covers a coupling device of novel construction for attachment of the brace strap, and is an improvemen An album clasp has been patented b Mr. Ernst P. Hinkel, of Offenbach-on-the-Main, Ge many. This invention covers a novel device of grooved
disk and slide to render the clasp extensible, so that it can be lengthened and adjusted according to the thickalbum.
An envelope has been patented by Mr
the flap is inclined from one corner to the transverse
center line, and frem this point extends to the opposite center line, and frem this point extends to the opposite
side of the envelope in a line parallel with the longitudinal edge

A button has been patented by Mr. Ed ward Berman, of London, Middlesex County, England it has an apertured head, with its under surface recess between the head and shank, so that a material of different nature from that of which the button is made A corner iron for wagon bodies has been patented by Mr. Edward Hutchinson, of New York
city. It is designed to be made of Russia iron struck up in a novel form to give a firmer hold upon the body with increased strength, while it can be made lighte han when made flat in the ordinary
A combined spring jack and annuncia tor has been patented by Messrs. Louis Townsend an Robert W. Moore, of Evansville, Ind. This invention same frame, to make them both occupy only the space
of one, thereby saving half the space in the telephone

A tricycle has been patented by Messrs Thomas P. Hall and James B. Hall, of Toronto, Cana da. Combined with a frame is a shaft journaled in it
rear, on which are the driving wheels, the shaft an wheels being revolved by gearing from levers pivoted to the front of the frame, and there is provided a nove device for steering.
A binding attachment for sewing ma Orleans, La. This invention relates to a former patent ed invention of the same inventor, and covers several
features of improvement thereon designed to features of improvement thereon designed to secure
better work and a more convenient and complete system of adjustment.
A combined truck and ladder has been patented by Mr. John C. Lowen, of Titusville, Pa. The adder, as formed in connection with the truck, is easily moved when needed in the form of a truck, and the tion which may be quickly reversed, so as to form ton which may be quick on which to convey goods.
truck
A folding wardrobe and chiffonier has been patented by Henrietta L. Mehrer, of New Rochelle, . Y. The invention combines with a chiffonier a de adapted to catch on slotted plates on the chiffonier, so
the chiffonier and wardrobe can easily be united or de the chiffonier and wardrobe can easily be united or de tached.
A combined annunciator and spring jack has been patented by Mr. Louis Townsend, of
Evansville, Ind. This invention consists chiefly in constructing the magnet which operates the annunciato the spring jack the the spring jack, the combination being such as to make
A clockwork for mechanical lamps has been patented by Messrs. Frederick Cook and John H Pomeroy, of New Haven, conn. It is made with the work by an elastic driving band of rubber or simila material, to prevent the fan driving band from exertin n injurious side draught upon the fan post.
A post hole auger has been patented by Mr. Alexander C. Osborn, of Clarksburg, West Va
Combined with the central stem are separate blades, with fixed and adjustable connections with the stem, there being also an adjustable disk, braces, and nuts by the auger and prevented from falling back
A game has been patented by Mr. Paul K. Dealy, of Brandon, Manitoba, Canada. Combined with a plate or disk having recesses in its upper surface is a standard in the top of which a lever is pivoted, on one end of which a cup is formed; by striking a lever a not in the recesses of the disk the game is counted. A machine for grading shot has been patented by Mr. Christopher C. Tracy, of New York city. It has plain cylinder drums with perforations al of the same-size in each drum, there being as many nd it is feasible to set the drums at any desired pitch to increase or diminish the speed with which the shot pass through.
A washing machine has been patented y Andrew J. Guffin and Matilda C. Guffin, of Rushindependent drums or wash wheels journaled therein with a clutch mechanism for engaging and holding the shaftstogether, so the wheels may be operated separate
ly or together, and two batches of different kinds of y or together, and two batches
clothes may be washed together.
A composing stick for type setters has been patented by Mr. William Hendrickson, of Brook-
ly, N. Y. It is made with a recessed knee, with lever clamps having their inner arms overlapped and their ater arms bent to overlap the under side of the bothand screw, so the knee can be readily adjusted in any

The manufacture of wire coated articles orms the subject of a patent issued to Mr. Emil Kel-
ermann, of Cincinnati, O. This invention consists in coating the ends of wires in the form of bulbs, by re peated dipping in an adhesive substance, and covering the same with a granular or flocculent material, in or-
der to give an ornamental appearance to vases, baskets, nd similar articles.

A rope socket has been patented by Mr. John H. Banser, of North Clarendon, Pa. It is a clampacility for acility for coupling and uncoupling of the rope by
which the drill used in boring oil and other wells is raised and lowered, the screwing or unscrewing of cer-
tain parts serving to secure or release the hold of the tain parts serving to
socket upon the rope.
A corkscrew has been patented by Mr.
tion consists in the combination, with a corkscrew, of
two loose prongs between which the screw is adapted to revolve, and of a sliding ring surrounding the prongs and serving to hold their lower ends a greater or less distance

A doubling spooler has been patented by Mr. Leonard V. Richmond, of Sand Lake, N. Y. This invention is for facilitating the doubling of yarn upon upright and drum spoolers from cops, spools, and bobbins, by providing a mechanism that will stop the receiving spool automatically should one of the threads break or one of the spools become en
nomizing time and preventing waste.
A curtain pole knob has been patented A Mr. David B. Olmstead, of New York city. This inention covers, as an improved article of manufactur nd having its exterior surface metal plated, whereby laborate designs may be made easily, and such as cannot be ree.dily made in stamped, spun, or hammered

A saw filing machine has been patented by Mr. Hamilton Sherman, of Waverly, Pa. This invention consists in particular constructions of the ma-
chine frame to allow its dismemberment, and of the file chine frame to allow its dismemberment, and of the file rrame guide, with a base plate sliding on a guide bar be movable in horizontal plane, with other novel feares
A shawl strap has been patented by Laura A. Beatty, of Galesburg, Ill. With two bars
having handles, straps are secured to one bar and passed through loops on the other bar, the bars being provided with means for holding them together, the shaw etc., being held by the straps, the device also holding
parcels firmly, and permitting of readily removing and parcels firmly, and
A trunk has been patented by Messrs. liver R. Meredith, James I. Gallacher, and Charles F Jones, of Salt Lake City, Utah Ter. This invention orner piece with a hook lugover which the hasp can be on the corner of the trunk body and the other on the

A fire escape has been patented by Mr. homas P. Hall, of Toronto, Canada. Combined with rame on which the pulley is pivoted, and a brake leve pivoted in the bottom of the frame, a belt being suspended from one end of the lever, making a fire escape
which is compact, strong, and durable, and one which which is compact, strong, and durable, and one which
A drawer has been patented by Mr. richael Meyer, of Waukesha, Wis. The inventio onsists of a pair of intermeshing toothed sectors piv ted to fixed cleats or crossbars of the drawer fram nd to the drawer by links, so a parallelism of move ent of the drawer alizecured, so the drawers will b out from and slid back into closed position.
A machine for making and twisting chain links has been patented by Mr. Charles H. Reinisch, of New York city. It comprises a revolving man-
drel, over which the links are shaped, stationary and movable cutting edges for cutting the links, and means for grasping and holding and at the same time twisting
the links, the holding bar automatically adjusting itself any irregularity in thatomaticaly adjus which the nks are being formed
A baling press has been patented by Mr. William T. Anderson, of Rock Hill, S. C. The upper
part of the press box is made vertically adjustable, and there is an arrangement of the pull ropes or chains of the follower to wind on tapering drums, to lessen the sive stroke of the perating levers as the compression increases in forming the bale, and to correspondingly increase the leverage of the levers, with other novel

Puisiness and Personal.

The charge for Insertion under this head is One Dollar a line for each insertion; about eight words to a line.
Advertisements must be received at publication ofic. Advertisements must be received at publication office

Steam Engine, Corliss system, 10 inch cylinder, 24 stroke, used
New York.
Experimental Machinery Perfected, Machinery Pat
terns, Light Forgings, etc. Tolhurst Machine Works
Swift's Patent Coffee Roasters and Mills, 30 Bermuda Scientific Collections. Naturalist, Box 33

A Patent Shutter Worker for sale or on rovalty. engraving, page 66 of this number. Address R.
Rown, 35 W .130 th St., New York city. Patent Elevators with Automatic Hatch Covers. Cir
culars free. Tubbs \& Humphreys, Drawer 1637, Cohoes culars free. Tubbs \& Humphreys, Drawer 1637, Cohoes,
N. Y.
Snyder Engine Company, 12 Cortlandt St., N. Y "Little Giant" Engines, 1 to 6 H. P. Also Boat Eng
Wanted-A first-class man to superintend a Sask, Blind, and Door Factory; outfitted with all late and improved machinery; working about one hundred hands.
Must be sober, a good manager, and estimater on job Must be sober, a good manager, and estimater on job
work. To the right man a good salary and permanent eglelished business. Address, with full particulars as to age, habits, qualifications, and recommendation, R. F. Learnea, Natchez, Miss,
Wrought Iron Bridges, Roofs, Girders, and Structural , Work. Huabin Scientific Works by Huxley, Tyndall, Spencer, etc.,
very cheap. J. Fitzgerald, 20 Lafayette Place, New York.
Whistles, Injectors, Damper Regulators; guaranteed

Brush Electric Arc Lights and Storage Batteries menty thousand Arc Lights already sold. Our larges
machine gives 65 Arc Lights with 45 horse power. Our Storage Battery is the only practical one in the market. Brush Electric Co., Cleveland, 0 .
The Cyclone Steam Flue Cleaner on 30 days' trial to For Steam and Power Pumping Machinery of Singl and Duplex Pattern, embracing boiler feed, fire and low pressure pumps, independent condensing outfits, vac pressers, address Geo. F. Blake Mfg. Co., 44 Washington, Station, Marine Stationary, Marine, Poraile, Works, Buffalo, N. Y. Wanted.-Patented articles or machinery to manufac , Linen Safety Hose, all sizes, for hotels, warehouses, steamboats. Greene, Tweed \& Co., New York "How to Keep Boilers Clean." Book sent free by Mills, Engines, and Boilers for all purposes and o Mill Co., 10 Barclay Street, N. Y. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N.J For Power \& Economy, Alcott's Turbine, Mt. Holly, N.J Steam Boilers, Rotary Bleachers, Wrought Iron Turn Iron Planer, Lathe, Drill, and other machine tools of

Send for Monthly Machinery List
to the George Place Machinery Company,
If an invention has not been patented in the United If an invention has not been patented in the United
States for more than one year, it may still be patented in Canada. Cost for Canadian patent, \$40. Various othe foreign patents may also be obtained. For instructions
address Munn \& Co., Scientific American patent

Guild \& Garrison's Steam Pump Works, Brooklyn,
N. Y. Steam Pumping Machinery of every description. Send for catalogue.
Nickel Plating.-Sole manufacturers cast nickel an odes, pure nickel salts, polishing compositions, etc. Com-
plete outfit for plating, etc. Hanson \& Van Winkle别 Supplement Catalogue.-Persons in pursuit of infor mation of any special engineering, mechanical, or scien-
tific subject, can have catalogue of contents of the ScrENTIFIC AMERICAN SUPPLEMENT sent to them free
The SUPPLEMENT contains lengthy articles embracing The SUPPLEMENT contains lengthy articles embracing Machinery for Light Manufacturing, on hand and CTM. Curtis Pressure Regulator and Steam Trap. See p. 14
Woodwork'g Mach'y, Rollstone Mach. Co. Adv., p. 14 Drop Forgings, Billings \& Spencer Co., Hartford,Conn Munson's Improved Portable Mills, Utica, N. Y
Catalogue of Books, 128 pages, for Engineers and
Electricians, sent free. E. \& F. N. Spon, 35 Murras street, N. Y.
Anti-Friction Bearings for Shafting, Cars, Wagons,
etc. Price list free. John G. Avery, Spencer, Mass. etc. Price list free. John G. Avery, Spencer, Mass.
Brass \& Copper in sheets, wire \& blanks. See ad. p. 438. The Chester Steel Castings Co., oftice 407 Library St. Philadelphia, Pa., can prove by 20,000 Crank Shafts and
5,00 Gear Wheels now in use , the superiority of Castings over all others. Circular and price list free. The Improved Hydraulic Jacks, Punches, and Tube Friction Clutch Pulleys. D. Frisbie \& Co., Phila. Tight and Slack Barrel Machinery a specialty. John Greenwood a Co., Rochester, N.Y. See illus. adv., p. 438 Magic Lanterns and Stereopticons of all kinds and prices. Views illustrating every subject for public ex
hibitions, Sunday-schools, colleges, and home entertainment. 136 page illustrated catalogue free. McAllister Corundum Wheels; cut faster and wear longer than Blakes Paten Bet Blake's Patent Belt Studs. The strongest and best
astening for Rubber and Leather belts. Greene, Tweed fastening for
$\&$ Co., N. Y.
Mineral Lands Prospected, Artesian Wells Bored, by al enShipman Steam Engine.-Small power practical en
zines burning kerosene. Shipman Engine Co., Boston.

HINTS TO CORRESPONDENTS.

(1) E. J. C.-In the reports for 1883, lomotives upon the following railroads and branches

would be very expensive and troublesome; better purwould be very expensive and troublesome; better pur-
chase a steam engine and dynamo electric machine.
Possibly you mitht use Possibly you might use secondary batteries, and charge
them with a voltaic battery. Crocodile skins are not used in this country.* The alligator skins from the na-
(29) O. D. W.-It is supposed that in applying creosote and paraffine for the preservation of

b

-

tion of creosote varying according to the conditions.
(30) A. V. R. and many others.-It will not be satisfactory to attempt to make liquid shoe pol-
ish solely from a formula which any chemist can furish solely from a formula which any chemist can fur-
nish. There are.,nany details in the manufacture which
a simple knowledge of the original ingredients throws a simple knowledge of the original ingredients throws no light upon, and these details can only be worked up to a
practical success by careful study and intelligent appli practical success by careful study and inteliggent appli
cation. One of the largest manufacturers of shoe dressing in the United States lost thousands of dollars some three years ago by putting out an article, notwithstand-
ing his long experience in the business, which he faifed ing his long experience in the business, which he faited
to make "all right," though the chemical formula
(31) A. P.-To render aniline inks in delible on paper, it will be necessary to coat the repro-
duction with consists of collodion dissolved to the consistency used by photographers with two per cent of stearine added. The following ink is recommended for marking linen:
Triturate 1.75 drachms aniline black with 240 drops Triturate 175 drachms aniline black with 240 drops
strong hydrochloric acid and 42 drachms strong alcohol. strong hydrochloric acia and 42 drachms strongalcoho.
The mixture is diluted with a hot solution of $2 \cdot 5$ drachms gum arabic in 170 drachms water. We would recom-
mend experimenting on the above formula with the vamend experimenting ono. It is impossible to furnish
rious colors used by any positive information on such matters without first
engaging the services of an expert dyer to experiment engaging the services of an expert dyer to experiment on the matter. Rosin and salt are added to s
tures in order to produce a harder cempound.
(32) H. R. W.-It is possible to supply
25 incandescent lamps by means of a battery; the num 25 incandescent lamps by means of a battery; the num-
ber of cells required will depend upon the size or resistance of the lamp. When the lamps fail, nothing re-
mains of them that is of any value. Light produced by mains of them that is of any value. Light produced by
incandescent lamps fed by batteries is much more expensive than gas, and very unreliable and troublesome
(33) Q. P.-We think your tin foil is 粦oo heavy. It is possible also that there may be some im-
perfection in your needle point; the needle should be perfection in your needle point; the needie
capable of longitudinal vibrations only, and its point should be likethat of a leather-sewing needle, and quite sharp. You would be likely to find a phonograph a
some of the stores where optical and philosophical in some of the stores where optical and phiosophical in-
struments are sold. The Supplement referred to con-
tains the most elaborate description that we know of.
(34) O. C. R.-If you desire to go into electric lighting to the extent indicated by your letter we advise you not to follow the description of a smal dynamo referred to, but to copy some of the later ma-
chines-Edison's, Weston's, or Siemens'. You can ob-chines-Edison's, Weston's, or Siemens'. You can ob-
tain full information on construction of dynamos by tain full information on construction of dynamos by
consulting back numbers of the Supplement, or Gordon on Electric Lighting, Schelling on Dynamo Electric Machines, or pater pipe for a ground or return: we do not think the current from a small dynamo such as you propose to make would be liable to injure any one. It would probably have no effect on incrustations of the
pipes. You can get the materials you require or the machine itself from the Western Electric Company of Chicago, Illinois. Bare wire will do for your con-
ductor.
(85) B. F. N. writes: I require for my York a glue or cement that is as nearly waterproof as
possible. I have tried several kinds of glue, and have a last, after nearly seven years, found a cement that is bet-
ter than anything I have yet been able to buy, which I ter than anything I have yet been able to buy, which
make myself. It is composed of Cooper's best white glue (I am obliged to have it light colored), dry white lead, shellac and alcohol, and ammonia. I am obliged to use heat to dissolve it. Can you tell me of anything
to add to this solution to keep it in a dissolva condition when not exposed to the air, or can you name a solu-
tion that is waterproof and in a liquid state that will tion that is waterproof and in a liquid state that will
answer my purpose. I also would like it to cement leather together, etc.; those now in the market do not answer my purpose. A. A waterproof glue may be pre-
pared by adding a small proportion of potassium bichromate to the glue before it is melted, and then ex
posing the glued portions of the article to the light The liquid glues are produced by the action of nitric acid. Thus white glue, 16 ounces; dry white lead, 4 ounces; soft water, 2 pints; alcohol, 11 ounces; stir to-
gether and bottle while hot. The leather cements consist of shreds of gutta-percha dissolved in some suitable substance, generally carbon disulphide or ether, until
the consistency of honey is reached. The surfaces to be united are pared down, heated, and the cement applied See the receipts given for various cements in ScIENTIFIC American Supplement, No. 158.
(36) A. M. S. writes: What material or lining for tanks and their discharge pipes will enable
them to resist for some years the action of acids and other chemicais employed in metal working manufactories where iron, copper, lead, stoneware, and tarred
wood have failed? Or of what material should a tank be made to resist action of a pickle for steel forgings,
composed of dilute muriatic acid and zinc? A. We know of nothing but glass and paraffine that will stand when the articles named have failed. There is no rea son why hard glazed stoneware will not stand (not salt
glazed); perhaps part of your difficulty arises from abrasion by contact from the pieces of steel. Stoneware

strong acids.

(37) J. E. writes: I have two wooden rollers covered with leather which I use for running
wool through, and am troubled with the loose fibers lapping and sticking to the roller. I am troubled the most in dry frosty weather; in wet weather they run all
right. I think it is all caused by electricity; can vou tell
me of anything that would be of benefit. or would help me? A. This difficulty, we think, has been remedied by others, by making the air damp in the room, which may
be done by introducing a little steam iet in or around be done by introducing a little steam iet in or around thing. The moisture tends to dissipate the electricity
the kee the air moist but no
(38) M. E. O. asks for a formula for a blackboard paint. The formula that I am using does not give satisfaction. The chalk rubs into the board instead of erasing, as it should. A. One of the best preparations for this purpose consists of 1 gallon 95 per
cent alcohol, 1 pound shellac, 8 ounces best ivory black, cent alcohol, 1 pound shellac, 8 ounces best ivory black,
5 ounces finest flour emery, 4 ounces ultramarine blue 5 ounces finest flour emery, 4 ounces ultramarine blue-
Make a perfect solution of the shellac in the alcohol before adding the other articles. To apply the slating have the surface smobth and perfectly free from grease; well shake the bottle containing the preparation, and pour out a small quantity only into the dish, and apply
it with a new flat varnish brush as rapidly as possible Keep the bottle well corked, and shake it up each time (39) J. S.
(39) J. S. O'B. asks (1) for a receipt for a good strong cement or glue for wood. A. You will find ber of recipee for cements. Among these there are several suited to your wants. 2. Also a waterproof varnish. in 8 ounces oil of turpentine, then in small pieces soften oil, and boil for two hours over a $\begin{aligned} & \text { 䡒 } o w ~ f i r e . ~ W h e n ~ d i s-~\end{aligned}$ solved add 6 pounds of boiled linseed oil and 1 pound of litharge, and boil until an even liquid is obtained. Apply warm. 3. What liquids are the bestitnon-conduc-
tors of electricity? A. Water and solutions of neution tors of electricity? A. Water and solutions of neution (40) An Hone Wornt
(40) An Honest Workman writes, asking information concerning the coloring of cabinet photos.
A. In outline, it consists simply of first carefully separating the photograph from the cardboard, then poat-
ing the face of the print with tragacanth paster me picture is next attached to the glass, and then made ransparent by immersing in the transparent compound,
which must be parchased. Finally the picture is painted, and last of all backed, etc.
(41) J. W. L. writes: My Canada balsam has become oxidated on the top, and when melted on
the side has innumerable air bubbles in it, which are the side has innumerable air bubbles in it, which are
next to impossible to remove. Is benzole the best
iquid to reduce it with? A A the Canal in rectified of of turpentine and in warm alcohols: For
ond your purpose it will probably be best to first melt it and
then add the benzol. (42) O. C. D. asks (!) if it is dangerous to work over a boiling solution of sulphide of potash heated in a moving sink heated with a coil of wrought iron pipe. I sometimes feel a bloatedness in my
stomach after it, as though I was filled with a gas. A. In all probability the gases emanating from the mixture. such as hydrogen sulphide, are poisonous, and the ill effects experienced by you are due to them. 2. Can
niline colors be used to color spirit lacquers? If so how? A. Aniline colors are as a general thing soluble in alcohol, and therefore can be directly incorporated in the spirit with which the lacquer is made.
(43) W. S.-The tone of steam whistles of the bell, and size (diameter and height) of the bell. Position in regard to the annular aperture for the escape of the steam does not affect the tone.
(44) G. M. V. has a gun barrel that has been defaced by being indented by a charge of buckthe depressions, and repolishing. The old time gunsmith's trade is of the past; we know of no manual on
(
(45) O. T. H. asks: How are gun mount ings colored different shades? A. By heating them in a hot sand bath, after being polished, and quenching in colored (browned) by rusting with acid. The Damascene mottling comesfrom the coils of different colored wire of which the barrels are made. 2. Are breech loading guns (barrels) made of iron casehardened or of steel?
A. Shotgun barrels are usually of iron-never case-
(46) A. K. C. asks: Does steel rolled into heets, rods, shafts, and rails, and drawn into wire, ac-
(47) C. G. T. M.--We think you will succeed very well in platingarticles by adding to tin a very
small proportion of bismuth and antimony. The artismall proportion of bismuth and antimony. The arti-
cles to be plated are first to be thoroughly cleaned by dipping them in a solution of caustic potash, then scouring them with washed emery, then thoroughly cleansing them with washed emery, then thoroughly cleansing them with clean water, then brushing them with a
solution of zinc chloride or soldering fluid, after which
they are washed with a clean cloth and dried and plunged they are washed with a clean cloth and dried and plunged
into the melted alloy, which should be covered with into the melted alloy, which should be covered with
tallow to prevent the oxidation of the surface of the tallow to prevent the oxidation of the surface of the
metal. With these few hints we think you will have no metal. With these few hints we think you will have no
trouble in applying the tin to the articles you desire to
(48) G. B.-We have no knowledge of ny newly discovered metal that is of a silver color that
is likely to come into general use. Most of the newly isc.overed metals have fabulous values. See values in num is the only metal likely to come into general use
that is white like silver, and may take a valuable place that is white like silver, and may take a valuable place i- the arts. A company in Philadelphia attempted to
manafacture it by a new process which it was supposed manafacture it by a new process which it was supposed
would bring its value to a working basis. So far as we are informed, they have not yet made it cheap enough to
widely used.
(49) W. D. G. asks how the rubber covvering on band saw wheels is ground or turned true.
A. The wheels are turned true, but the bands are made true in a mould, stretched upon the wheels, and ary is done by turning the wheel slowly against a quick revolving sand paper wheel.
(50) J. E. M. says: Will you please let me know in your next issue, what is the cheapest arti-
cle that will remove the smell of coal oij from clothing? A. Evaporate the oil by placing the clothing for a sumficient time before an open coal fire. The higher the
tee better, taking care not to inflame the goods.
ne better, taking care not to inflame the goods.
(51) A. L. J.-A turbine exactly suited (50ur supply and height of fall is said to give the o your sapply and height
largest percentage of power
(52) J. Y. S.-The impinging of feed water upon the flue or tube head subjects it to changes of temperature, and consequently, by local expansion
and contraction, disturbs the joint. We recommend the feed pipe placed so as to terminate near the surface of the water,
tube space.
(53) J. A. R. asks a good plan for refining ordinary " refined solder," or half and half, so thgt
it will make a good smooth wiped joint. Every it wil make a good smooth wiped joint. Every how and sweat. A. The metal gets coarse from the absorption of lead in wiping the joints. Keep the sulphur
away, and add more tin until the quality is restored.
(54) W. A. A. asks where magnetic sand can be obtained, and the prices, if it be an article commerce, also where loodstone can be obtained. A. A.
Magnetic sand is not a commercial article, and probably can only be procured locally. It is found along the St. Lawrence River. Loadstone comes principally fro
Arkansas and can be purchased of mineral dealers.
(55) P. B. R.-Britannia metal consists of 1 part tin, 2 parts antimony, 1 part bismuth. Your
spelter or zinc will not run well in iron moulds. Use moulding sand. Or for iron moulds, mix with tin until the required fluidity is found.
(56) P. C. C.-Raw hide is made into mastes sufftcticently thick for spindle bearings, by soaking in water
and drying.
(57) H. W. C.-There is nothing butgalranizing that will prevent pump chains and iron pipe
imparting the disagreable taste of iron rust to water. imparting the disagreeable taste of iron rus
Any painting or bronzing is impracticable.
(58) D. C. B. asks (1) if the production of barytes is now equal or more than the demand. A.
The production of crude barytes in 1882 is estimated to have been 20,000 tons, and "the production could be largely increased to meet an augmented demand
Also where it is mainly produced? A. In 1888 acco Also where it is mainly
to the census returns:

3. If in your judgment an increased production 10,000 tons would find a ready market at nearly the presentpricee A. We cannot express an opming in
this point. A New Haven firm imported during 188, , 0 oo tons of German barytes.
(59) J. E. B.-Fusible alloy melting at 211°, tin 3 , lead 5, bismuth 8.
203°, tin 1 , lead 1, bismuth 4 .
(60) A. D.-Black crocus is not known in the market. Crocus is a crude kind of rouge and is much darker than rouge. Both are made by calcining
copperas or sulphate of iron. The crocus not being so copperas or silphate of iron. The crocus not being so
highly oxidized as rouge gives it a sharper cut as a polishing powder.
(61) W. S. P.-The corrosion of water gange glasses takes place to andight extent under the
most favorable circumstances, but in some parts of the United States the water has an excessively corroding power over what are called the seotch glasses, which
are made ofkelp or the ash of sea weed and sand. The glass contains much potash, which is quickly attacked pressure at which you are steaming your boiler, viz., 00 to 110 pounds pressure, becomes a solvent of silicate of potash. A very small quantity of soda in your feed
water, a half ounce to a hogshead or less, will probably water, a alif once to a hogsiead
(62) W. H. S. asks: 1. What would be correct exposure of a dry plate at 9 A.M., on an object
lighted by bright sunlight in December, when the corlighted by bright sunlight in December, when the cor-
rect exposure at noon would be 10 seconds, all othe conditions being the same? A. About one-fourth longer or twelve to thirteen seconds. 2. Would the ex P.M. as at 9 A.M., and if not what would be the difference? A. Fifteen seconds would be correct, as the light
in the afternoon is not as strong as in morning. The noon December sun is as powerful as the June sun a six o'clock P.M. . 3. Give length of exposure, same con-
ditions, at noon in June. A. One to two seconds. The time of exposure varies greatly, according to the sensitime of exposure varies greatly, according to the sensi-
tiveness of the plate, the brilliancy of the lens, and the tiveness of the plate, the briliancy of the lens, and the
state of the atmosphere. A thick hazy atmosphere re
quires more time than one which is clear and crisp. quires more time than one which is clear and crisp.
(63) S. W.-Venus as morning star is sometimes alluded to as the star of bethlehem. The
general opinion among astronomers is that the star of
Bethlehem was one of the variable stars that have been sethenem was one of the variable stars that have been seen to expand to great briancy for a short time and
then disppear. A few such have been seen diring the
centuries of the Christian Era. The bright morning star now seen is Venus.
(64) T. D. M.-If ball and"cartridge are free to movelin oppsiteldirections, they will, on exposure
of the cartridge, partake of a velocity due to their rela tive weights for a short distance. If the cartridge is confined so ar not to move, the ball will wise proualt to the force as projected from a barrel. Its direction will urery of gunctain. coton in the United States. We under
turers stand that it was started here, but was not found suitable for general use, and has been superseded by ot
high explosives, as nitroglycerine, dynamite, etc.
(65) A. C.-Over 50 years ago both Britannia ware and good crockery were made in the
United States. It is our opinion that the mand of these goods was started during the war of 1812. The composition of Britannia ware has not changed to our as of old, seeveral grades or qualities. The first glas made in this country is said to have been at Jamestown
(66) H. F. M.-Rubber goods are vulcanzed at a temperature ranging from 250° to 300° Fahr If you use a steam vulcanizing chamber with direct
steam, give 25 to 35 pounds pressure in the vulcanizer, but, in order to insure its proper working, the stean should be much higher in the boiler; and th
adjusted in the vulcanizer by a safety valve.
(67) S. T. writes: I wish to use soluble glass as a mineral glue. What can 1 mix with it to
make it more sticky and agglutinative? Which is best make it more sticky and agglutinative? Which is best
for the purpose-silicate of soda, or silicate of potassa? for the purpose--silicate of soda, or silicate of potassa?
A. Soluble glass is of value as a g gue only when it comAines with lime, thereby forming an insoluble calcium siltcate. The sodium silicate is the cheaper, and there fore more commonly used. The difference in solubility is slight, the potassium silicate being the more soluble An excelien deescription of tis substance is
SCIENTIFIC American SUPLIEmENT, No. 317.
(68) F. S. W. asks what materials are used, and how are they used, in a Babcock fire extinguisher. A. The principal liquid used is a solution of
sodium carbonate; when the extinguisher is brought into active service, a smaller receptacle containing sul-
phuric acid is opened, so that these two solutions genephuric acid is opened, so that these tw
rate carbonic acid gas when they melt
(69) H. N. writes: Our wards and hall floors (Soldier's Home), Washington, D. C.., have beff
stained with Vandyke brown and waxed; they are.five or six years old; near the doors where the tread ha been heavy the boards are worn and the stain is worn
away, but by continually waxing the wood is so impregnated that I cannot make these places dark again.
Is tinere anything that will go through the wax and sink into the wood and stain the boards again? I have tried Vandyke brown and vinegar put on hot, but it only washes the wax from the surface and will not soak
into the wood. A. We would recommend you to wash int the wood. A. We wonld recommend you to wash
the locality with turpentine until as much wax as possibe has been dissolved awas, then apply a mixture o turpengine and asphaltum. Thisy you will find, will
darken the wood work m harmony with that previously
(70) $\mathrm{H} . \mathrm{S}$. asks how ${ }^{+} 0$ ink ribbons for or the type writer, and th naterials for the colors or dyes. A. An ink for the type writer ribbons can be made as follows:
\qquad Pure alcobol....
Concentrated glycerine.

15 "
(71) S. \& E. C. H. asks for recipes fo The following will probabhly prove satisfactory:

$\underset{\substack { \mathrm{Coo} \\ \begin{subarray}{c}{\mathrm{Ex} \\ \mathrm{Cliti}{ \mathrm { Coo } \\ \begin{subarray} { c } { \mathrm { Ex } \\ \mathrm { Cliti } } } \\ {\hline}\end{subarray}}{ }$

Glycerin...
Venice turp gals.
pint.
poz.
Steep the glue in rain water until pliant and drain well. Then melt it over a moderate fire, but do no
"cook it." This will take 15 to 25 minutes. Next put in the syrup, and boil for thre-quarters of an hour, stirring it occasionally and skimming off impurities rising to the sarifice. Add the glycerine and turpentine a few minutes before removing from the fire, and pour slowly. Slightly reduce or increas
comes colder or warmer.
(7z) C. F. A. asks: (1) How may eight or ten ounce duck be waterproofed and colored a dead grass color, suitable for hunting coats or suits? A. For
waterproofing, use
solution of rubber in coal tar benzol, and suspend in this mixture a small quantity of burnt umber (in proportion to produce the desired shade). In applying to the duck stir it up thoroughly. 2. Will chilled shot wear the choke of a Damascus barrel shot gun worse than soft shot? A. No. 3. By
what process are chilled shot made? A. The chilled shot are produced by adding a greater amount of tin to the composition with which the shot are coated than
the case with soft shot. 4. How much lighter in weight are chilled than soft shot? A. As far as we are able to diameter there is not any difference 12 , and 16 bore guns

No. 10 equals.....................35 of in in inch			

(73) W. A. P. writes: 1. Give me a simphe receipt for telling oleomargarine from butter? A. There is no very satisfactory test by the use of which
butter can be distinguished from the genuine article. Determinations of the melting points of the two articles are sometimes employed. Microscopic examination is frequently resorted to. It is said that fresh genuine
butter which has been melted appears under the microsotter which has beomposed of ovoid granunules, and contains no cryss. tals. The artificial product contains crystals. Artificial butter does not melt at once, like genuine butter, to a clear oil, but fuses gradually, a whitish sauce being first formed. 2. Tell me if there is anything you can put in loses its gloss? Will oil and varnish answer for outside work? A. Old heavy oil is the only thing that can
be used to produce the gloss. Varnish is sometimes be used to produce the
used, but will not stand.
(74) G. W. R. asks: What size engine
 eet wide, a padale wheel boat? Also, how thick the
ghell of boiler and head should be, and how many pounds ofs team it will hold, and what power engine it would be? A. It is a very, rare thing to see a paddle heel boat so small as you name. We think an engine would suit. About $21 / 2$ horse power. Boiler should
wove abont 30 peet heating surface. After fixing the have about 30 feet heating surface. After fixing the
dimensions of the boiler, apply to the steamboat inspectors for the thickness of iron required.
(75) A. O.-The only device that we can suggest to ignite by a blow is a bit of phosphorus
wrapped up in a piece of paper. This, if struck by a hammer, will, under proper conditions, spring int dame. The handling of phosphorus is exceeding Doelreiner's lamp, which by the action of dilute sul phuric acid on zinc generates a hydrogen gas, which, if a
current be directed on a bit of platinum sponge, pro current be directed on a bit of platinum sponge, pro
duces light, would, we think, be more suitable to your
(76) B. W. S. writes: Several gentlemen and myself have had a dispute on hydraulics relative to
the workings of a pump, and have decided to leave the the workings of a pump, and have decided to leave the
decision to you. These parties claimed to have seen a decision to you. These parties claimed to have seen a
pump that would work any depth, a hundred feet if necump that would work any depth, a handred feet if ne-
cessary, with a cylinder only twenty-five feet from the pump, provided there are valves every twenty feet in pump, provied there are vipe celow the cylinder. Now, theyadmit, according to the teachings of hydraulics, that a pump will not lift theoretically more than thirty-two feet, and practically about twentr-eight, and yet they make that claim and the only explanation they can give is that, as you
create a vacuum from one valve to the other the vater from the lower next section will fill that vacuum, nd so on down to the last one. A. We have seen th ame statement in the papers, but the thing is a fallacy open? Water can be lifted from no greater depth with, than without these valves; their only effect would be to reduce the shock when the valves close, even if they Lead, made wo work by having the supply of sumficien,
(77) A. S. L. asks: 1. What will best leanse brass chandeliers soiled by flies? A. Oxalic acid and whiting, mixed and applied wet with a brush, and brushed again when dry with a soft plate brush, to
polish with dry whiting. 2 . What will take the stain polish with dry whiting. 2. What will take the stain
from a marble mantel caused by water in which flowers have been standing? A. 2 parts sodium carbonate, 1 of pumice stone, and 1 of finely powdered chaik. Mix int the stains will be removed, then wash with soap and water. 3. What is the best varnish for black straw hats, andhow madee A. Best black sealing wax, $1 / 2$ ounce; rectified alcohol, 2 ounces; powder the sealing wax, and put it in with the alcohol into a bottle; digest them na sand bath or near the fire till the wax is dissolved;
lay on warm with a fine soft hair brush before the fire or on warm witha ine soft hair brush before the fire
or the sun. 4. Is the earth attracted by a body howor in the sun. . . Is the earth attracted by a body how-
ever large falling through its atmosphere? A. The at action between any two bodies is directly proportiona tional to the square of theirdistances asunder.
(78) H. J. M. H. asks if in the slide valve of an engine the lock nuts on the valve rod want to
pold the valve perfectly frm, or should there be some play for the valve between the nuts? What is the best work on engineering? A. They should not, yet should not be rigidly tight. Usually leave the nuts so close to the bearirgs that there shall be no loose play of the
valve lug. See "Roper's Engineer's Handy Book," valve lug
$\$ 3.50$
(79) A. M. C. writes: We wish to protect our buildings against fire, by building a reservoir on the hillside, and bring the water down in a pipe to
hydrants, etc. At what height shall we have to place hydrants, etc. At what height shall we have to place
the reservoir, and what size pipe shall we have to use to throw a stream of water one inch in diameter, fifty
feet high? For efficient service the reservor tho 100 feet above the ground floor of the building, 4 inch service pipe from reservoir to and through buildings
with $21 / 2$ inch hose and $3 /$ inch nozzles, outside hydrants be well
(80) L. R.-We have never heard of case of ressuscitation from drowning after the individual le instances of suspended animation, such as has sas some times led to people being buried alive, and that led to he supposition that one had been dead for hours. The recovery is twenty minutes, and then it was supposed two minutes almost always causes death.
(81) A. G. asks (1) the weight of the keaviest locomotives, including tender, in use? A. A
consolidation " of the Atchison, Pacific and Santa Fe Railroud, weighing 115,000 pounds. 2 would it quire greater or less power to draw a wagon over a plane of glass than over a plane of iron or any substance?
A. The hardest and most perfect track has the least friction. Glass is too brittle for a track. Steel is the
(82) E. C. N. writes: 1. Given two grindten inches face, the other ten inches diameter by seven inches face, the shaft of each running at he sam
spect, do they each require the same power, and each grind the same quantity in the same time? The above to be used for grinding apples. A. At the same speed
of shaft the roller of larger diameter requires the most power and does the most work. 2. How can molasses sirup be converted into good vinegar, or can
a better use be made of it? The heat of the past season a better use be made of it? The heat of the past season has sury use. A. Vinegar can be made from the sour
air by leaving out the bungs.
(83) A. D. asks where he can find something more about vaseline or cosmoline. A. The manu
facture of vaseline is ouite simple. When the lighter racture of vaselne is duite simple. When the lightee
liquids, gases, etc., of the petroleum oil have been disliquids, gases, etc., of the petroleum oned over, the remaining product, thetar, is placed in a large open iron boiler, which is suspended over a hot fir in the open air until deodorized, when it is filtered through bone black at such a temperature as to keep it
in a liquid state. This is all there is to it. Further de(84) T. F. H. writes: Can you give a recipe for dissolving crude rubber, so as to make a paste or cement such as printers and stationers use in
making paper tabs? We are using a preparation made making paper tabs? We are using a preparation mad
find it objectionable on account of the unpleasant odor
arising from the carbon, and want to know in what arising from the carbon, and want to know in what
other way a cement can be prepared? A. Rubber is likewise soluble in benzol, in ether, in naphtha, etc. See also answers to querr 2 , Scrientirio Americas, July 14, 1883. Common glue with about five per cent glycerine is likewise used.
(85) M. I. writes from Texas: This country for miles is covered with a mineral commonly called lignite, it resembles coal very much, but it is very soft
and when laid in the air it crumbles up into very small pieces, and when put in the fire it burns, but seems to give very little heat. It is found in places bout or 4 feet below the ground. and is only about 12 nches thick, while in other places it is about 3 feet there is any stone coal deeper in the ground, and if so which would be the cheapest plan of probing for it? A. It is presumed that throughout Texas the geological strata containing coal lie beneath the surface, and from the occasional outcroppings that have been found it is inferred that a very extensive deposit of coal lies throughout the State. The superficial presence of iignite does not, however, suggest the existence of coal be-
neath. Digging and boring are the only methods of demining its existence.
(86) F. T. D.-Gun barrels to be blued are first thoroughly polished, and then packed in char-
coal in a cast iron box which is sealed air tight. The case is then heated till just below red heat, and after wards gradually cooled.
(87) A. B.-We know of no formula for gravity grade except the limiting one of least tracton as approaching a level, and the point of safety in angles be witen od ead level for short distances ofter descent, and one to twenty for short grades. The steepest gradient known that is worked with brakes for any distance is a branch to the mines near Leadville, which has grades of over 400 feet to the milie. We
recommend you to obtain some standard engineering
(88) D. Bros.-Supposing that your compound engine is running at 100 revolutions, and that you have an exhaust pressure of about 5 pounds. Each cylinder is developing about 30 horse power, or 60
horse power for the compound engine. The nominal horse power is supposed to designate the size of an enIne at some received standard of pressure and speed,
while the indicated horse power is variable according to pressure and speed, and may in your case, be any hors power from 30 to 80 . You cannot pulverize bones in steam digester to any advantage. A mill is universally
(89) H. R. C. asks: 1. Is there enpugh of assaying to make it profitable as a business? A only source of income is from their assaying. 2 What prices are charged? A. The pricess vary according to $\begin{aligned} & \text { competition and number of assays. The price in New } \\ & \text { York is generally } \$ 5.00 \text {. } \\ & \begin{array}{l}\text { 3. How long would it require }\end{array}\end{aligned}$ York is generally 85.00 . 3. How long would it require
for one conversant with chemical manipulations to learn ror one conversant with chemical manipulations tolearn
it, if his whole time were devoted to the study? A. Three it, if his whole time were devotec to the study? A. hree
to six months. 4. What prices do chemists charge for analyzing substances, such as articles of food, water etc.? A. From $\$ 10.00$ upward according to the number of ingredients to be determined. Write to Professor
F. Chandler, of New York, for his price list. This wil give you specific information on this point.

INDEX OF INVENTIONS
For which Letters Patent of the
United States were Granted
January 13, 1885
and each bearing that date.

Alarm. See Low water alarm
Alarm lock for tills, Vollrath $\&$ McCread
Amalgamating ores, apparatus for, M. P. Boss (r).
Anchor, P. Protheroe
310,614
Annunciator and spring jack, combined, L. Town-
send..710,750
Annunciator, speaking tube, R. May........... 3101
Arm chair and writing desk, C. W. Vogel........ 310,626

Axlebox lid, car, T. H. Haberkorn.................... 310,820
Axle lubricator, cari, S. J. Wallace............. 310,755
Bag. See Mail bag.
Baluster, J. W. Ferer............................ 310,807
Barbed strips, die for making, A. P. Thayer...... 310,622
Barbed strips, die for making, A. P. Thayer......... 310,622
Battery. See Galvanic battery.
Battery. See Galvanic battery.
Bell, bicycle, R. G. S. 310............. 31020
Bicycle, J. L. Yost....................................... 310,858
Blower for fire grates, S. C. Houghton.........
310,825
Blowers, mechanism for operating fan, Hoffman
\& Weber................................ 310.681
son..70,740
310,812
Bolt. See Flour bolt.
3,
Boot and shoe heels, machine for naling on,
Cote.......................................310.562
Boring doors for lock.
Bosom, detachable, G. W. Lee........................ 310,691
Bottle cover, W. H. Redington.................. 310,615
Bottle stopper, H. C. Walter.....................
Bracelet, Codding \& Atwood..
Bracelet clasp, S. Wallach (r)..
310,795
10,552
Bracket. See Shingling brac
Bridge truss, E. Thach
Buckle, key, S. M. Adkins
310,747
310,588
310,632
Button attaching machine, R. J. Gilmore.
Button setting instrument, E. Kempshall........
Cable or electric railway yoke or frame, etc.,
Cable or electric railway yoke or frame, etc., c.
Bullock................................ 310,
r coupling, D. C. Barton....
ar coupling, J. K. Bywater...
Car coupling,
Car coupling, M. W. McC
Car coupling, W. v. Perry
Car coupling, J. A. Ross.

HE RESIN INDUSTPY IN THE Landes Department.-An interesting paper by A. Re-
nard. giving a full account of the manatacture of resin

ICE-HOUSE AND COLD ROOM.-BY R. PLEMENT, J9. Price t 0 cents. To be had at this offic

Bilers Shop Mols.

 WANTED,Outfit for small Boiler Shop; Power Shears, Roils, and
Punch, and PPeumatic or team Riveter, new or second
hand, Address P.
HORSES. - THE FOLLOWING VALU able papers are contained in the SCIENTIFTC AMERICAN
Surpiement lrice 10 centis oach, sent by maile

 RUBBER BACK SQUARE PACKING. For Packing the Piston Rods and Valve Stems of Steam Engines and Pumps. B represents that on wart of the packing which. When in use, is in contact with the Piston Rod.
A, the elastic back, which keeps the part B against the rod with sufficient pressure to be ste
reates but little friction.

NEW YORK BELTING \& PACKING CO.;
JoHn H. CHEEVER, Treas.

PIPM COVFRIME

TONS OF THE SOIL TO HEALTH

RDEN STAR HAND GRENADE FIRE EXTINGUISHER

 BOULIER'S UNIVERSAL PYROMETER

SHAFTING, PULLEYS, HANGERS.

F. Brown's Patent Friction Clutch.

 SEND FOR ILLUSTRATED CATALOGUE AND DISCOUNTS TO A. \& F. BROWN, 43 PARK PLACP, N. Tgold chiorination in caifor

1SHEPARD'S CELEBRATED Screw Cutting Foot Lathe

 electro-magnetism as a prime

 The desirable features of this value are the positive action ot the disks, beeng forcead against the seats by our novel intermediate HOLLAND \& THOMPSON,

ROOTS NEW IRON BLOWER.

IRON REVOLVERS, PERFECTLY BALANCED, P. H. \& F. M. ROOTS, Manufacturers, S. S.TOWNGONNERSVILLE, IND.

VELOCITY OF ICE BOATS. A COLLEC. tion of interesting letters to the e eitor of the COIITNTIFIO

THE MANUFACTURE OF SODA.-A

 THE CORINTH CANAL-A DEECRIP-

WVATFIR.

Cities, Towns, and Manufactories patent tube and gang well system. WI. D. Andrews \& Bro.. 233 Broadway, N. Y.

FOREIGN PATENTS. Their Cost Reduced.
The expenses attending the procuring of patents in most foreign countries having been considerably re-
duced the obstacle of cost is no longer in the way of a large proportion of our inventors patenting their inventions abroad
CANADA. -The cost of a patent in canada is even less than the cost of a United States patent. and the Jess than the cost of a vited States patent. and the
former includes the Provinces of Ontario. Quebec, New
Brunswick, ${ }^{\top}$ ova Scotia, British Columbia, and ManiBrunswick, ${ }^{\text {T}}$ Tova Scotia, British Columbia, and Mani-
toba. The number of our patentees who avall themselves o the cheap and easy method now offered for obtaining
patents in Canada is very large, and is steadily increasing. Great Britain on very moderate terms. A British Great Britain on very moderate terms. A British pa
tent includes England, Scotland, Wales, Ireland and the Channel Islands. Great Britain is the acknowledged financial and commercial center of the world, and he
goods are sent to every quarter of the globe. A good goods are sent to every quarter of the globe. A good
invention is likely to realize as much for the patente in England as bis United States patent produces for him at horne, and the small cost now renders it possible
for almost every patentee in this country to secure a pa tent in Great Britaiu, where his rights are as well pro
tected as in the United states. OTHER COUNTRIES. on very reasonable terms in France, Belgium, Germany Austria, Russia, Italy, Spain (the latter includes Cuba
and all the other Spanish Colonies), Brazil, British India and all the other spanish Colonies), Brazll, British India An experience of
An expers of The Scientific Americanto establish competent and trustworthy agencies in all the principal foreign countries, and it has always been their aim to
have the business of the ir clients promptly and properhave the business of their clients promptly and
A pamphlet containing a synopssis of the patent laws
of all count ries, including te cost for each, and othe of all count ries, including the cost for each, and othe
information useful to persons contemplating the procuring of patents abroad, may be had on application to
this office. Chis office. \& CO., Editors and Proprietors of The: SCI
MUNN
ENTIFIC AMERICAN, cordially invite all persons desiring any information relative to patents, or the registry o trade-marks, in this country or abroad, to call at their
offices. B 11 Broadway. Examination of inventions, con. sultation, and advice free. Inquiries by mail promptly answered.

Sodverfisements.

WIRE ROPE
 The "6 MONITOR." $\left\lvert\, \begin{gathered}\text { Best BBile Feeder } \\ \text { int } t \text { hhe world. }\end{gathered}\right.$ A NEW ITFTINGANDNON

DR A WING $\quad \begin{gathered}\text { Illustrated } \text { catalogue } \\ \text { sent } \\ \text { sin an application on } \\ \text { w }\end{gathered}$ INSTRUMENTS.

H.W.JOHIS' asbegros
 GTQTID PATNTE ROOFINC.

Fire-proof Building Felt,
team Pipe and Boiler Covering, steam Pack-
ing, Mill Board, Gaskets, heathings, ing, Miil Board, Gaskets, Meathings,
Fire-pIoof Coatings, Cement, \&c.
DESCIPTIVE PRICE LIST AND SAMPLES FREE.
H. W. JOHNS M'F'G CO.,

87 Maiden Lane, New York.
0 N. 4 th St., Phila. $\quad 45$ Franklin St, Ohica

 Simple, Substantial, Safe, Economical.
One horse power will pump p,,00 gallons of water 100 feet
 POWER DETERMINED BY ACTUAL TEST Call and see them, or for circulars and prices address

Double Screw, Parallel, Leg Vises.

踢

HOW TO PREEPARE LANTTERN SLIDES.

ZINC TO PREVENT BOILER INCRUS

Clark's Noiseless Rubber Wheels. SAVE FLOORS.

BEST IN THE MONEY. GEORGE P. CLARK,
OM THE ECONOMIC APPLICATIONS

IMPROVEMENTS OF PRAIRIE ROADS

KORTING UNIVERSAL доивle тивe. INJECTOR postive acton hutanteo voi

Philada, 12th \& Thompson Sts.

BURNHAM'S SELF-ADJUSTING SWING CHECK VALVE.
 Wears, the yore that passes around the seat moves a way from JBNIKINS BROS.

TELEGRAPH.

TELEPHONES.

The United StatesTelephone Mfg Co.

 The United states Trlephone Marufacturing Co.

DRY AIR REFRIGERATING MACHINE.

New Catalogue of Valuable Papers contained in ScIENTIFIO AMERICAN SUPPLEMENT, sent
free of charge to any addres.
MUNN \& CO., 361 Broadway, N. \mathbf{y} MACHINES FOR PRODUCING COLD

Wante.

GEOLOGY. - INAUGURAL ADDRESS

FRET SAW OR BRACKET WOODS, IN CHOICE AND RARE VARIETY, GEO. W. READ OF DESIGNS.

WATCHMAKERS.

187 BROADWAY N. Y.
 HARRISA. CORLISS ENGINE, With
Send Send for copy Engineer's and Steam User's
Manual. By J.W. HIII M.E. Price \$1.25.

INFLUENCE OF AGE UPON THE IN-

LOVE

The Scientific American.

the most popular scientific paper

 Published Weekly, $83 . \overline{20}$ a Year; 81.60 Six Months. nd enjovs the largest circulation ever attanned by any Every number contans sixteen large paxes, beautifully printed, elegantly illustrated; it presents in popuar
styie a descriptive record of the most novel interesting, and important advances in Science, Arts, and Manutaa
 ery, Mechanical Works, Engineering in all branches,
Chemistry Chemistry, Metalurgy, Electricity, Liikht. Heat, Arch,
tecture, Domestlc Economy, Agriculture, Natural His-
 dreds of useful suggestions for business. It promotes Industry, Progress, Thrift, and Intellipence in every
community where it circulates. The Sclivntric Ambencan should bave a place in
 Presidents, oficioias, Merchants, Farmers, Teachers,
Lawers, Physicians, Clergymen, people in every walk and profession in life, will derive benefit from a reevular
and Terms for the United States and Canada, 83.20 a year; 81.60 six months. Specimen copies free.
Postal Order or check.

> 361 Broadwas, New York. T표
Scientific American Supplement.
 containg sixteen ERICAN SUPPLIMMLNT IS published weekly, and includes
a very wide range of contents. It presents the most recent papers by eminent writers in all the principal deBiology, Geology, Mineralogy, Natural History, Geo graphy, A rcheology. Astronomy, Chemistry, Electrictty, Light. Heat, Mechanical Engineering. Steam and Railway Engineering, Mining, Ship Building, Marine En-
gineering, Photogriphy, Techhnology, Manufacturing Industries, Sanitary Engineering, Agriculture, Horti-
culture, Domestic Economy, Biography, Medicine, etc. A vast amount of fresh and valuable information per tainfug to these and allied subjects
 and described in the SUPPIEMENT.
Price for the SUPIIVMENT for the United States and Canada. 85.00 a year, or one copy of the Scientiric AMfor one year for $\$$ \%.00. Address and remit by postal

 by post direct from N(W Tork, with reapularity, to sub-
scribers in freat Britain India. Australi, and all other British colonies; to France, Austria, Belgium, Germany, Russia, and all other European States; Japan. Brazil.
Mexico, end all States of Central and South Amerrca.
 for both Scientiric Ankrican and stpulemwir for
one year. This includes postage, \#hich we pay. Remit

PRINTING TNKS:

