

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

Vol. [NI.-NO. 20.]

NEW YORK, NOVEMBER 15, 1884.

AMERICAN STEAM YACHTS.

The Atalanta, the most famous yacht in America, was built by Messrs. Cramp, of Philadelphia, her keel having been laid there on December 10, 1883. American ship builders have long been noted for their excellent workmanship, but the skill displayed in the construction of this beautiful craft is proved by her great strength, beauty of model, finish, and speed. Her portrait is given in upper engraving.
She is of iron, 230 feet 3 inches length over all, 225 feet on deck, and 213 feet 3 inches on water line. Her extreme beam is 26 feet 4 inches, and her draught 13 feet. She is one foot longer than Mr. Bennett's Namouna, and being of greater beam is the largest in the American yacht fleet. Her lines forward give an easy and graceful entrance in the water; forward give an easy and graceful entrance in the water;
her run is long and smooth, finishing with an elliptical over- lass forward. "The deck house is 80 feet long. Her comple-
hanging stern of the true American type, a striking feature ment of boats consists of one Herreshoff steam launch, one of this most perfect boat. The entire iron plating of the outer skin is overlapped at the edges, the rivet heads being counter sunk. Above the water line the plating is carried up to the top of the bulwarks, which are rather higher than usual on yachts, the top being finisbed by a handsome continuous rail of solid mahogany. The hull is painted jet black, with no ornaments save a gilt eagle at the bow point and her name in gold letters on the stern.

The upper deck is of iron, flush fore and aft, overlaid with a flooring of white pine. The waterways and plank sheer are of solid mahogany, the inside of the iroubulwarks being covered by a bandsomely paneled casing of the same cost-
forward. The deck house is 80 feet long. Her comple-
dingy, a six oared cutter, and a whale boat rigged as a gig. The pipe from the galley ranges discharges into the smoke tack, which is double, having an air space of two inches between the outer aud inner pipe, thereby preventing all burn. ing of the paint.
The crew consists of a captain and two mates, four quartermasters, two boatswains, eighteen seamen, one ship engineer, two assistant engineers, three oilers, six firemen, three coal-passers, one steward, three cooks, and six cabin servants. Her engine, a compound, inverted, direct-acting, with surace condenser, is of 1,000 horse power, with two cylinders, one thirty inches in diameter, the other sixty.
The yacht is lighted throughout with Edison's incandescent ligits, and electric communication with all parts of the

ship is bad by electric signals, a separate engine driving the dynamo machine supplying the lighting power. Each room bas a separate ventilating pipe from a main fan, also a steam coil for cold weather.

In the race of August 10, between the steam yachts of the American Yacht Club Fleet, from Larchmont, N. Y., to New London, Conn., a distance of 90 miles, this remarkable boat wade the distance in 4 hours $443 / 4$ minutes. Allowing some of her competitors one hour's start, she was first in beating the Yosemite, her especial antagonist, by $26 \mathrm{~min}-$ utes. This latter's blowing fan broke down about the middle of the contest, but it is doubtful if without the accident she could have caught up, the Atalanta baving gradually drawn away from her from the start
The day was stormy, with strong head winds. The Atalanta was well prepared for the contest. Her load line just touched the surface. All her boats were in on deck, and her numerous crew gathered way aft at the start, when they moved forward as soon as she gathered full headway. As her propeller took hold of the water, a small mountain of water and foam rose up, almost obscuring her rail, but gradually subsided as her full speed was gained.
When under full headway, a broad sheet of foam spread from her bows, falling away amidships only to rise again toward the stern. The Yosemite on the contrary seemed to gather but little at the bow, but the swell rose amidships, and then fell a way again before reaching the stern. Her disturbance of the water's surface was much less marked than that of the Atalanta, which proved herself in this contest the fastest yacht in American waters.

Boring with Compressed Water.

When the French engineers first began the Mont Cenis Tunnel, says a Paris correspondent of the Boston Herald, the work was done in the old-fashioned way by means of hand drills and blasting. Later, machines were invented driven by compressed air, whicls did away with the hand drills, and by the aid of which the work was successfully completed. Similar but improved machines were employed in the piercing of the St. Gotbard; but when Mr. Braudt undertook the piercing of the Arlberg, he proposed to the contractors to substitute compressed water for compressed air. He invented a special apparatus for the purpose, and the experiments made with it in the Westphalian mines were so satisfactory that his proposition was adopted on the western side, while the piercing of the easteru gallery was to be done by the same means as had been employed on the St . Gothard, known as the Ferroux machine. After a few months' experience it was demonstrated that the Brandt was in perforating power the equal, if not the superior, of the Ferroux machines, while it possessed an undoubted superi ority for the ventilation of the gallery, and consequently for the health and comfort of the workmen. When I saw the Brandt machine at work, I was struck by the contrast between its smallness and the greatness of the task it had to accomplish. In appearance and size it resembles an oldfashioned 6 pound field piece. The drill has a diameter of 30 inches, and consists of a circular auger, which is held powerfully against the rock by means of a hydraulic pressure of from 100 to 120 atmospheres, while at the same time a rotary movement is imparted to it. The pressure against the face of the rock is the result of a column of compressed water contained in the cannon-like cylinder of the machine; inside of this cylinder is a fixed piston rod, a detail in which the Brandt machine differs from all other similar drills, in which it is the cylinder that is fixed and the piston rod that is movable.
The rotary movement is imparted to the drills by means of a cog wheel acting on the cylinder aud moved by a transversal endless screw, driven by two little hydrometric engines placed on either side. The drill will make, according to the nature of the rock, from 5 to 12 revolutions per minute, and it can be driven to a depth of 39 inches. When it is withdrawn a dynamite cartride is inserted, and the face of the gallery is blown down. By means of four of these machines, a gallery 16,300 feet long, with a beading of ten square yards, was driven into the western side of the Arlberg during the same space of time that six Ferroux machines were driving a similar gallery 17,900 leet into the eastern side of the mountain. The daily rate of progress varied greatly, according to the nature of the rock traversed.
Sometimes a stratum of exceptionally hard rock would be encountered, and sometimes the strata would be so friable that the roof and sides of the gallery had to be immediately protected with shoring. At the start the average daily progress did not exceed $61 / 2$ feet, but toward the end 26 feet were the minimum, and 37 feet the maximum, of a day's work. As high as 100 cubic yards of rock were sometimes removed during 24 hours, and an average of 500 cubic yards of masonry were built per day. About $2,000,000$ pounds of dynamite were used in this blast, and most of it was manufactured on the spot, in large frame buildings erected for the purpose in isolated spots at either end of the tunnel. In the construction of the gallery the same system employed at the St. Gothard 'Iunnel was adopted. This system consists in the establishing of a priucipal gallery, and of a second gallery parallel to and above the principal one. The dimensions of the former were 8 feet high by 9 feet wide, which allowed six miners to work at the same time. The upper gallery, 7 feet high by $61 / 2$ feet wide, would only permit four men to work.

OIL is now extracted from the seeds of grapes in Italy. Young grapes yield most, and black kinds more than white.

Sriuntifir Shmericam.
ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at

No. 361 BROADWAY, NEW YORK.

o. D. MUNN.
 A. e. beach.

TELEISS FOR THE SCIENTIFIC AMERICAN.

One copy, one year postage included...
One copy, six months postage included
Clubs.-One extra copy of The Scientific american will be 160 gratis for every club of hive subscribers at $\$ 3.20$ each; additional copies a me proportionate rate. Postage prepaic
Remit by postal order. Address

The Scientific American Supplement

is a distinct paper from the Scientific American. The supplemen I is issued weekly. Every number contains 16 octavo pages, uniform in size $\$ 5.00$ a year, postage paid to Meris of subscription Cor Sophlemen 85.00 a year, postage paid, to subscribers. Single copies, 10 cents. Sold by
all news dealers throughout the countrs. Combined llates. - The Scientific american and Sopplemen will be sent for one year postage free. on receipt of seven dollars. Bot papers to one address or different aduresses as desired.
The safest way to remit is by draft, postal order, or registered letter.
Address MUNN \& CO., 361 Broadway, corner of Franklin street, New Yor

Scientife American Export Edition.

The Sciwntific american Export Edition is a larke and splendid peri-
odical, issued once a month. Each number contains about cne hundred odical, issued once a month. Each number contains about (ine hundred
large quarto pages, profusely illustrated, embracing : (1.) Most of the large quarto pages, profusely illustrated, embracing: (1.) Most of the
plates and pages of the four preceding weekly issues of the Scucritic Commercial trade and manufacturing anno valuable information: (2) Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the world. Single copies 50 cents. Manu facturers and others who desire to secure foreign trade may have large. and handsomely displation
nouncements published in this edition at a very moderate cost.
The Scientific Amumican Export Edition has a large guarunted circ lation in all commercial places throughout, the world.

NEW YORK, SATURDAY, NOVEMBER 15, 1884.

TABLE OF CON'TENT'S OF
THE SCIENTIFIC AMERICAN SUPPLEMENT NO. 463,
For the Week ending November 15 , 1884 . Price 10 cents. For sale by all newsdealers.

II. TECHNOLOGY.-The Mechanical Manufacture of Toilet Soapennd TECHNOLOGY-The Mechanical Manufacture of Toilet Soappand
the Machines Used.-4 engravings.
Exhaustion of Barometer Thubes without Application of Heat.-
4 fgures....

IV. MINERALOGY.-Copper Minerals found in the United States. and their Composition............................
V. NATURAL HISTORY.-Regeneration of the Scales of the German ${ }^{\text {Carp.-By }}$.

- botany. Horticulture, etc.-Native California woods.

THE RETURN SCREW.

To many machinists the production of a return screw for changing a rotary into a reciprocating movement is a difficult job. It is something more, to be sure, than cutting a right and left band screw separately or independently; for the starting and finishing points of the two threads must be the same, and yet there must be no abrupt corners at either end of the screw. To produce such a dual or returning screw, the work should be properly laid out before it is attempted to be completed at the lathe
The return screw is a right and left hand thread cut on a short cylinder, each crossing the other, the terminals meeting at some initial point. In practice it is best to bave the threads square, with slightly inclined sides. The object of the return screw is to con vert a rotary motion into a back and forth movement of perfect regularity. This back and forward mozement canbest be obtained by means of a lever, by which the ultimate throw can be limited or extended. On a return screw of only six inches length, with four turns of one and a half inches pitch, the writer once produced a practically regular and even reciprocating movement of twenty inches. The lever is moved by a substitute for a balf nut that runs in the scores of the thread. Unlike any half nut, it does not reach over two threads-it engages only with one. In fact, it is a crescent sbaped piece of steel, with thinned points, having a pivot at the back of its convexity, so that it may turn freely in either direction.
In action the crescent runs along the channels of the right hand thread, as the screw revolves, until it reacbes the end of the screw, when it turns sbarply on its pivot and traverses the left hand channels to the other end; then reversing and keeping up the reciprocating movement indefinitely. The motion is equable, smooth, and without jar. In some situations this contrivance is better than a cam or an eccentric, or any other method of change of motion from rotary to reciprocatory.
In laying out this return screw, machinists sometimes make the mistake of using one single point for the end returns. This, although agreeable to theory, is not feasible in practice. The crescent shaped traveler cannot turn a sharp corner; its course conforms to the spiral lines of the thread. So the ends of the threads-the places of their union-should be curved similar to the spirals of the screw. Machiuists sometimes content themselves with drilling a single bole as a starter for the screw cutting tool for one thread, and the end of the cut for the other thread. This is wrong, for it leaves a corner or angle of only the turn or diameter of the drill, the width of the thread. Two holes should be drilled at a little more than their diameter apart, and on the finishing they can be connected by means of a little chiseling. This will give a curve just sufficient to throw the guide on to the other thread. In beginning a cut on a return screw, it is well to mark the right hand thread, and then before cutting it to mark the left hand thread; the change of gears is a trifing trouble.

THE ANCIENT INTERIOR AFRICAN SEA.

The very precise accounts left us by classic authors regarding an interior sea in the Libyan region of Africa, bave al ways attracted the attention of geographers. The ancients called it the Bay of Triton, and spoke of it as an arm of the sea in communication with the Mediterranean, and distinguished by an island named Phla, which the waters alternately covered and exposed. Herodotus and Scylax give these particulars, and Ptolemy at a later date describes a river which flowed into it. For a long time the geographic world failed to locate this sea, but from the studies of Dr. Shaw, of Rennell, Sir Granville-Temple, and MM. Tissot and Guerin, it was supposed that in the historic period the lakes had communicated with the Mediterranean and had formed the Bay of Triton. Commander Roudaire, basing his assumptions on this identification, believed that this Bay of Triton was dried at the commencement of the Christian era in consequence of the formation of an isthmus which separated it from the sea, and that it would suffice to dig a canal between the basin of the lake and the Gulf of Cabe to revive this ancient sea. But later examinations proved that this hypothesis was untenable, as the bed of the Djerid Lake was above the level of the Mediterranean, and M. Fuchs recognized in 1874 that the soil of Cabe was formed, not of beds of sand or recent alluvium, but of strata of sandstone, gypsum, and limestone, and was at least 46 meters above the level of the adjoining Mediterranean waters. But recent geographical discoveries show there is a new basin in Tunis, that of Lake Kelbiah, which embraces all the central porthat of Lake Keliab, which embraces ail the central
tion of the Tunisian plateau and the plain of Kairouan.
A large stream descends from Tabessa and empties into the Gulf of Hammanet, where it debouches between Sousa and Erghela. At some distance from the shore lies the great Lake Kelbiab, which the river traverses, reappearing beyond under the aspect of a canal of exit, by which Lake Kelbiah during floods empties its surplusage of waters into the sea. M. Rouire, in the Cosmos les Mondes, gives some notes of a recent visit he paid to this locality. He had previously studied this region, avid bad published his conclusions as to its being the site of the ancient Bay of Triton, which had almost been abandoned by scholars as a real gengraphical locality. His essay awoke a lively discussicn, and he was locality. His essay awoke a lively discussicn, and the was scriptions. A renewed careful study of Herodotus, Scylax, Pomponius Mela, and Ptolemy assured him that the position of Lake Kelbiah corresponded with its surroundings to the descriptions of these authors.

Herodotus describes the Bay of Triton, between his day and the first century of our era, a slore formed between the bay and the sea, and to the bay succeeded a lake which Pomponius Mela aud Scylax describe in similar terms. All these three writers tell us that a large river, the Triton, emptied into the Bay of Triton; but they give us no details as to its source or upon the features of its course. But this gap is filled by Polomy, who speaks of the source of this river in Mount Ousaleton. In its course three lakes lielakes Triton, Pallas, and Libya. These details, with many others, are carefully examined and identified by M. Rouire.
"Thus," he concludes, "source, environs, aud delta of the river Triton, the aspect of the country traversed, the lakes in which this stream empties before meeting the sea, all are found identified upon the environs of this new wate course in central Tunis."

HORSERADISH.

The botanical name of this well known garden plant and popular condiment is Armoracice radia, a native of western Europe. It is remarkably tenacious of life, and spreads itself without arlificial aid, coming up sometimes at long distances from the parent plants in soils adapted to its growith. The root contains an acrid oil similar to, if not identical with, that of mustard, and to the pungent flavor of this oil is due the desire for grated horseradish as a condiment. It is considered medically as a barmless stimulant of use in dyspepsia, and a sirup prepared from the root i used in colds and rheumatism.
Iu some cities, the borseradish is grated at the doors of the customers; or dealers stand at the street corners, and grate from the beaped roots a gill, half pint, or more at the call of the customer. All this work is done by hand, and is intended to counteract the popular idea that turnip forms a large part of the bottled horseradish. This is not so, for the turnip would turn the borseradish black, or discolor it, and, besides, it costs bardly more to raise horseradish than to raise turnips. The absolute whiteness of horseradish (excent the color of the vinegar) is a necessity to its commercial value. This whiteness cannot exist in adulterated horseradish. In the manufacture of the grated horseradish in large quantities the graters must be made of white metal orof sheet tin, as the contact of uncovered iron would black en tbe product.
The cultivation of the root is simple. At the harvest, iu the autumn, those roots which are too small for commercial purposes--less than a pipestem in diameter-are packed away in sand in short lengths of from four to six inches. In the spring these are planted in plowed furrows by means of a band dibble, making a hole to plant the slip in, upper end just below the surface. It grows with the ommonest cultivation-field cultivation-and is barvested by the plow and the potato digger.
In preparation for the market the roots are freed from sand or soil, and are scraped by hand until every discolored portion is removed. The cleaned roots are then put into a tumbling barrel with water, and thoroughly washed. To be ground, they are fed into a bopper over a cylindrical grinder of white metal with its corrugations like those of a nutmeg grater, and held down to its surface by the weight of a hlock of wood fitting, like a piston, the sides of a rectangular box into which the hopper leads. The grated root is mixed with vinegar, bottled, and sealed immediately. And herein is the trouble about adulterated horseradisb. Exposed in a grated form half a day, the borseradish is taste less ; the aroma goes with the air like a whiff. Nor will dry horseradish retain its strength. Horseradish is like the rose; it must be smelled-or tasted-immediately on its ripening, or it is "scentless and dead."

An Artesian Well in Nevada.

A very deep well is being sunk at White Plains, Nevada, on what they call the 40 -mile desert, in the neighborhood of the sink of the Humboldt. The well is being put down by the Central Pacific Railroad Company as a test well, not alone for the satisfaction of obtaining water for their own use, but to determine the feasibility of getting it elsewhere on the line of their railroad, as well as in other parts of the State. The only good supply of water for the desert is brought from the Truckee River, 35 miles west of the new well on W bite Plains, and is bauled in tank cars for the supply of engines and domestic purposes, showing the necessity of testing thorougbly by artesian wells to get water. The desert contains many specimens of Indian curiositiesarrow heads, Indian mortars, etc.-being formerly fine hunt ing grounds.
A record of the progress of this well will be of interest to many persons. They bave found salt water, hot water, and finally. at a depth of 1,650 feet, they came across wood. Mr. W. C. Cbapin, who has charge of the drilling of the well, sent to the Academy of Sciences samples of the wood brought up by the drills, and gave a brief record of the material passed through in boring.
From the surface to 20 feet they passed through clay with a four inch stratum of fine decomposed quartz; then to 36 feet it was tufa and cement ; then two feet of cobbles, sand, and hard shells. At 38 feet they struck a strong stream of salt water in gravel ; from 40 to 70 feet there was sand, cement with seams of rock, and cobbles. This kept on until they reached 144 feet, when they met cement clay, with sand and gravel, which continued to 205 feet, when they met fine brown sand; then down to 300 feet there was cemeut, gravel, sand, and shell conglomerate. From 300 to

340 feet, compact sand or sand rock; to 367 feet, various kinds of cobbles; then followed white tufa, fine sand,
cement, sand, and gravel to 400 feet. A stratum of conglomerate was then found, which passed into cement at 420 feet where cobbles and gravel were met with, and then fine sand at 486 feet bedrock was found. Eight inch driving pipe was driven to the depth of 486 feet, the part above this being all surface wash. From 486 to 520 feet was black ock, when red volcanic rock was met, continuing with slight change to 575 feet, where black basalt was found At 595 feet there was red rock and red mud; then came black rock with seams of clay. From 625 to 635 feet there was a reddish-gray rock with cement, which mixes up with the water-red rock probably from above. Gray muddy rock then came in, and trom 855 to 665 feet a reddish-brown sand rock; then a soft green rock. Between 666 and 685 feet there was very compact black sand, and then hot water was struck.

Between that point and 697 feet was reddish-black sand changing to coarser below, when at 703 they found red rock again, which continued to 745 feet. From there to 950 feet was black, red, and gray rock, in strata. From there to 1,000 feet, and to 1,040 feet was red rock, tine and very hard From 1,040 to 1,050 the rock was slate-colored. From that to 1,140 black (basalt), and then a red slaty clay, followed by blue clay (slate) and volcanic ash. The volcanic ash continued to $\mathrm{i}, 300$ feet, when conglomerates and rock were met, lasting to 1,550 feet, when a soft, muddy, white ock came in, continuing to 1,610 feet.
From 1,610 to 1,615 feet was a fine gray sand, and from 1,615 to 1,624 was a stratum of wood. This wood is not silicitied, but is black and iard, though it breaks readily when bandled. Some large pieces were found. It is rather re markable to find wood at such a depth, and so thick. Iron pyrites were fouud near by. Below this, again, is conglom erate, with some fine sand. At 1,825 feet very muddy rock came in, and also more sulphurets, followed by a soft, dark rock, very loose, and falling in on the drills. From 1,890 to 2,088 feet very hard black rock was met. The well is now down over 2,100 feet, but no water has yet been found, aside rom that which is hot or salt, as mentioued.
The work of sinking is, however, being continued, with Sci. Press.

The Effects of the Excessive Use of Alcohol on the Mental Functions and Brain.
Dr. Clouston, of the Edinburgh Asylum at Morningside, the noted author and specialist, in a recent lecture on this subject writes as follows:
The effects of a single dose of alcohol differ widely in different individuals, and this lies at the root of all scientific inquiries into the matter. The variety of the effects on the mental faculties of different brains is also extreme. This indicates such different qualities and susceptibilities in dif ferent brains as regards this agent, that it makes the whole question of the effects of alcohol a most complicated oue not to be explained by a few unqualified assertions. In re ply to the question, What are the normal effects of alcohol on the mental forces of the brain? the scientific man mus reply, What kind of brain do you mean? Λ nd it is only by a careful study of the qualities, the tendencies, and potentialities of different brains, that we can auswer the first question properly. We need to study the mental qualities of the brain at different periods of life, in the two sexes, in different temperaments and constitutions, in different races, in different states of health and vigor, and with reference to the bereditary tendencies of the organ; for all these things influence the effects of one single small dose of alcohol. So we tind, looking from the point of view of the amount o the doses, the effect is very different. There is, I believe no other agent known which differs so greatly in different instances in the dose needed to produce the same effect on the mental powers as a dose of alcohoi, and herein again we
find that there must be the greatest difference in the powe of resisting the effects of alcohol in different brains. Tak ing the lower animals, that difference is exceedingly small; an ounce of alcohol given to a dozen dogs of the same size will practically have the effect on them all; but an ounce given each to a dozen men has not only the most different effect in the mental faculties it stimulates, as we have seen, but in the amount of the effect it causes. Some brains are exceedingly seusitive to very small quantities; other brains have the power of resisting or tolerating alcohol in a wondrous degree, this being an innate quality quite apart from the effect of the use and custom. These differences are so great as to compel us to conclude that there are enormous inherent disparities in human beings in this respect, and this cohol.
So we also find at the various periods of life, ordinary small doses of alcohol bave very different effects. In a child the effect is extremely great; in a boy or girl it is also great, but it is not so great in a growing adolescent. In the having less resisting power, her brain being usually much more susceptible to the influence of this agent. Looking at different races, the difference of effect of the same dose is also extremely great. There are some savage races that are so subject to its influence that a very small dose indeed-half an ounce-will have greater effect on them
than two or three ounces will have on an ordinary European. The psychulogical, the meutal, effects of small try
doses of alcohol are therefore exceedingly various, and we have not yet discovered the precisequalities of brain which caused these differences. We caunot tell beforehand which brain will be susceptible to its effects, and which will not. Looking at the matter next from a point of view of the effects of a much larger dose, these will be found much more uniform. The effect instead of being stimulating is then narcotic, and we have a deadening, paralyzing, and temporary arrestment of the mental functions of the brain n every individual if a sufficient quantity is takeo. But here we find much variety
In one person we have this paralysis, this deadening, taking place tirst on the intellectual faculties, in another on the emotional, in another on the propensities, and in another on the power of motion. We see a certain kind of mental degeneration of a slight type, which results in those who habitually take an amount of alcohol that is to them excessive. This slow but quite marked type of mental degeneraion a doctor of experience soon comes to observe in his patients; and others a certain change mentally, morally, and bodily, in the man who is taking more than is good for him. The expression of his face and eyes-those mirrors of the mind-you see has clanged, and for the worse. The mental condition of the man is lowered all round, and especially one effect is noticed, that his higher power of control is lessened. I am safe in saving that no man indulges for ten years in more alcohol than is really good for him without bis kind of degeneration being observed, and that although during these ten years he was never once drunk we find him psychologically changed for the worse in his independence of miud, in bis spontaneity. After a man has passed orty, such changes are very apt to be faster, and more decided. We see such a man's work and his fortune suffering, but we dare not call him either a drunkard or dissipated, because, as a matter or fact, he bas never been drunk, and never intends to be drunk. Whether this degeneration takes place soon or late depends upon inherent resistive capacities of bis brain cells. In some individuals the resistive capacity against alcolol is so great that for years they may indulge in its excessive use wilhout this degeneration taking place to any great extent, but in other instances we have very rapidly developed indeed
Some men pass into a premature old age and become old at fifty, when they ought to have lived on and been young men up to sixty, and this merely owing to the excessive use of alcohol. Memory and the power of thinking are affected, but you see the lowering most in the finer faculties, the tastes, the more delicate perceptions of things, and the force of character. This is an effect which, I believe, is especially to be observed in men who bave used their intellectual powers constantly and vigorously. We often see this effect on the brains of men in our professiou of medicine, at the bar, aud even among the clerical profession, in a very marked degree, without their owuers having been once drunk. In such persons, their mental powers baving been greater to begin with, and with a finer edge on them, you notice in a more marked way this degeneration in its progress. This, I may say, is the least marked mental effect of alcohol taken, not so as to produce drunkenness, but taken in greater quantity than the physical constitution of the brain can stand over a long period. In some brains a very small quantity indeed, taken daily, will produce this degeneratiou.

Cechanical Properties of Galvanized Iron and Steel
wire.
At the wire mills of Witte \& Kaemper, a series of tests has been made to ascertain the mechanical properties of galanized steel and iron wire, with the following results:

A torsion test made showed that on a length of 11.81 inches seel wire could be twisted four times before it broke, while the irou wire stood 18 revolutions. For the tensile tests, the length of specimen was $5 \cdot 96$ inches. The galvanzed steel wire is used for wrapping ocean telegraph cables, while the iron wire is used for surface telegraph lines. The steel used is generally made by the Bessemer process, while the iron was puddled from a mixture of Westphalian mill pig, Siegen charcoal pig, and pig from the Georg Marie Hütte at Osnabrück. The quality of the galvanizing is tested either by dissolving the coal in hydrochloric acill or by dipping the specimen a number of times for a given time or each immersion in a solution of sulpbate of copper. The wire must not show any signs of a deposit of copper. For the German telegraph service, the sulphate solution is a mixture of one part of sulphate and five parts of water, and the wire must undergo five immersions of a minute each. For he steel cable wire, the specification is a tensile strength of 53 tons per square inch, an elongation of 1.5 per cent., and a bending test of wrapping the wire twice around a piece of wire having the same diameter and straightening it out without breaking it.

The Louisa County (Va.) pyrites are to be very favorably exhibited at the New Orleans Exposition, in the collection of the National Museum. Samples of massive pyrite, both copper and iron, from veins thirty-seven feet wide, will pen the eyes of foreign visitors to resources of this country.

AN ELECTRIC HAIR AND FLESH BRUSH

Upon the back of the brush, shown in the engraving, are placed a small battery and an induction coil. 'The ebouite cell is held between contact springs at each end, and is procell is held between contact springs at each end, and is pro-
vided with a screw plug which is inserted in one end when the battery is not in use; but when in operation this is replaced by a plug carrying a bar of zinc. The current of electricity generated by the battery-the exciting fluid of which is bisulpbate of mercury-is led to the induction coil, where the strength may be diminished or increased by a tube that slides in and out of the coil. One wire from the

an electric hair and flesh brosh.

The writer a few days ago had occasion to set a trap, one of the round wire kind, to catch a mischievous large rat, which had been seen scampering around the cellar for some ime.
Fruitless bad been the attempt to catch the troublesome ellow, with a variety of tempting bait, when it occurred to the writer that by partially covering the trap with a cloth, possibly the cunning of the rat might be overcome. The xperiment was tried, and a saucer of oatmeal from the breakfast table was placed within the trap. The next morning what ap peared to be a rol frags was found inside the trap which on opening it was found to con ceal a large sized ground mole, who, on being shaken out of his covering commenced eating the oatmeal, with pparent relish How the mole found his way into
coil leads to a metal plate attached to the back of the han dle, and the other leads to a plate in contact with bristles, which are made of a suitable conducting material. When the brush is grasped in the hand, the current passes through the body to that point which is in contact with the bristles. The many applications of this brush will be readily perceived; it may be used as a hair brush to relieve neuralgia, headache, and diseases of the scalp, and it may be applied to the body to alleviate suffering caused by rheumatism paralysis, gout, etc. As it is an electric brush in fact as well as in name, it is applicable in all cases in which the ordinary medical battery is found serviceable.
Full particulars and catalogues may be obtained by ad dressing the Harbach Electric Department, 809 Filber Street, Philadelphia, Pa.

IMPROVED MEASURING CANISTER

The canister is provided with a conical top having a central collar, to which the cover is fitted. The rear side is formed with flanges, Fig. 1, for supporting the canister in position for use. The lower end is connected with a bellmouthed spout, to the end of which is secured the measur ing tube, B , having two flanges, C , in which the square sbaft, F, is journaled. A transverse slot, D, cut balf way through the tube near the upper flange, receives a valve at tached to the sbaft. In the side of the tube opposite this slot are formed other slots (as shown in Fig. 2) for receiving the valve, E , which is also attached to the shaft. This valve may be moved along on the shaft so as to euter any one of the slots, and it is so placed on the shaft that when the valve, D, is pushed in the tube the valve, E, will be removed, and vice versa. On the tube are sleeves provided with slots that may be adjusted so as to coivcide with, or close, the slots in the tube. A spring, G, attached to the side of the tube bears against a lever on the upper end of the shaft, and tends to turn the shaft so as to force the valve, D , into the tube. A stirring bar, H, is pivoted to the upper part of the canister, and is connected to a crank shaft, J, as indicated in Fig. 1.
The canister may contain grain or other material, or it may be connected with a grain spout, when it will be employed for measuring rather than storing. The quantity of the material measured is determined by the space between

CHURCH'S IMPROVED MEASURING CANISTER.
the valves, the operation of which will be readily understood.
Further particulars may be obtained by addressing the inventor, Mr. George S. Church, or Mr. C. W. Thompson, P. O. box 130, Baldwin, Mich.

THE average wages of the French miner, including women and children, was in 188272 cents per day; in Belgium, 59 cents; and in Silesia, 52 cents. In certain parts of France, notably the basin of the Loire, they are about 82 cents a day.
the cellar is an unsolved mystery, but that he was attracted into the trap by the meal is an indisputable fact, and that round moles do eat cereal food can be no longer deuied The habits of the mole have interested both the naturalist and he gardener, and considerable discussion has arisen upon the ubject of their diet, some contending that they live en tirely upon worms, and others that their nourishment is de rived solely from the roots of grass, while it is probably the fact that they partake of both, as they come in their way and can grow fat upon either, for whoever saw an attenu ated mole!

IMPROVED VEHICLE TOP.

The top is formed on bows, on which strips are secured, to which in turn the roof covering is fastened. On the fron and rear surface of each side standard of the bows are secured plates, the edges of which project so as to form grooves. Guide rods pass up through the grooves and are bent parallel with the bows and top, and have their upper ends secured to strips attached longitudinally to the bottom edges of the bows; these strips are arranged in different horizontal planes, so that the rods on oppositesides of the top will not interfere with each other. The curtains are pro vided with linings and between the side edges of the curtains and the linings are held strips on which clips are secured. The rods pass through eyes formed by these clips. Between each two of these clips are secured other clips, which cover the outer edges of the strips. (This construction is clearly shown in Figs. 2 and 3.) Upon the bottom edge of each curtain is a stiff piece, in the middle of which is a handle by which the curtain is moved. A cross piece made of sheet metal is beld between the curtains and linings at about the middle, and another at the top. When the curtains are moved upward, they slide on the curved parts of the rods and their inner ends overlap. The curtains are held in any desired position by the friction of the eyes on the rods.

This invention has been lately patented by Mr. Thomas B. McCurdy, of Lancaster, Texas.

The Phylloxera.

M. Balbiani, professor at the College de France, was commissioned a short time ago by the Minister of Agriculture to report upon the best mode of destroying the winter eggs of the phylloxera, as it has been found that it is in this way the progress of the parasite is very materially checked. M. Balbiani reports that three methods have been employedthe mechanical destruction of the eggs by barking the vines, boiling water, and rubbing the vines with preparations calculated to burn up the eggs. The first named of these methods has been tried in several vineyards near Bordeaux, the workmen rubbing the stocks with a chain steel glove, but the results are not satisfactory, as it is only the old wood which can be treated in this way. The use of boiling water would produce excellent results but for the fact that it is open more than any other process to carelessness in application, and that neutralizes all its good effects. The rub bing of the vines with a preparation composed of nine parts of coal tar to one of oil was open to the objection that the coal tar got so thick in cold weather that it could not be applied, and the cost of heating it again was considerable. Several vine growers tried to liquefy the mixture by adding 15 per cent of turpentine, but this, when applied, killed the vines altogether. M. Balbiani tried several fresh experiments, among others a mixture of oil, naphtha, quicklime, and water. This mixture bas been tried upon a very large scale in the vineyards of the Lot-et-Garonne and the Loire-et-Cher, and it possesses, according to M. Balbiani, the double recommendation of being effectual and cheap, as the cost is under a franc for a hundred stocks.

MOCURDY'S IMPROVED VEHICLE TOP.

This invention has been patented by Mr. John W. Clark, of Banksville, Pa.

Uses of the Passion Flower.

According to Dr. George W. Winterburn, the therapeutic uses of the white passion flower resemble the bromides on one hand and gelsemium on the other. It is one of our best bypnotics, producing a quiet, pleasant sleep altogether different from the comatose stupor of morphia, and from which the patient may be aroused at any moment. It may be given in doses of two or three drops of the tincture or low dilution. Even in the worst form of sleeplessness, that associated with suicidal mania, this drug will produce quiet slumber, from which the patient awakens with clear mind and rational thoughts. In its control of convulsion, passiflora closely resembles gelsemium. It will be found of service in opisthotonos, trismus, and tetanus.Amer. Homocopath.

Keep Out the Cold.

Cracks in floors, around the mould board, or other parts of a room, may be neatly and permanently filled by thor oughly soaking newspapers in paste made of oue pound of flour, three quarts of water, and a tablespoonful of alum, thoroughly boiled and mixed. The mixture will be about as thick as putty, and may be forced into the cracks with a case knife. It will harden like papier-mache.

CANE PLANTING MACHINE

The accompanying engraving shows a cane planting machine recently paterted by Mr. C. C. Coleman, of Honolulu, Hawaiian Islands. The machine is constructed with a double mouldboard plow to open a furrow to receive the seed. The beam of the plow is made short and curved forward, and is pivoted to the rear end of a lever, the forward end of which is pivoted to the rear part of the tongue, to support the draught strain upon the plow. A series of levers connected with the plow are operated by a hand screw, by the turning of which the plow can be adjusted to enter the ground to any desired depth, and can be raised above the ground for convenience in turning around and passing from place to place. To the center of the forward axle is pivoted the end of the reach, which is made in three branches, which are arched to give the wheels a free movement in turning; the rear ends are secured to a frame rigidly attached to the axle. To the forward middle part of this frame is attached a casing, to the front and rear sides of which are journaled two rollers placed a little distance from each other, and parallel with the length of the machine. In each roller are rows of spikes of sufficient length to take a piece of cane from the lower edge of the inclined feed table, carry it over, and drop it into the casing. To the lower edges of the tables are secured guide bars, which are curved to fit against the rollers to prevent the pieces of cane from dropping down at the outer sides of the rollers, while allowing them to come so close to the rollers as to be taken up successively by the spikes. To the lower part of the casing is hinged a tapered spout, the lower end of which follows along the furrow and deposits the cane. The pieces may be placed parallel with the furrow, or crosswise, as may be desired. The casing and spout are divided into two compartments by a partition, so that the pieces from the rollers will pass separately to the ground. Beveled gear wheels on the forward journals of the rollers mesh into gear wheels on a shaft, which is revolved by an endless chain passing around a chain wheel on the hub of one of the rear wheels; the seed dropping rollers are thus operated by the advance of the machine. The pieces are covered by covering plates attached to standards, the pitch of which can be readily adjusted; these plates can also be adjusted at a greater or less distance apart. The plates are held securely in any position by means of a lever projecting upward across an

A Protracted Lawsuit

The famous chancery suits of England, of which every body has read, sink into insignificance compared with th length of time a suit bas been progressing in Northern Europe. The Supreme Court of the Duchy of Brunswick has just given final judgment in a suit of, perbaps, unprecedented duration. It was an ejectment suit by Count Stolberg duration. It was an ejectment suit by Count Stolberg
against the Brunswick Government for possession of the against the Brunswick Government for possession of the
county of Blankenburg and its domains, the market value of

COLEMAN'S CANE PLANTING MACHINE. which was estimated at many hundreds of thousands of \mid admitted to the allopathic asylums during the year, it pounds. The original suit was commenced in the year 1604 follows that about 142 unfortunates either died or were in the Imperial Chamber of Wetzlar, which was the Supreme Court for settling disputes between sovereign princes of the German Empire. It dragged on through various stages till 1649, when judgment was given, and then it fell into abeyance. Subsequently the county, with its appanages, came into the possession of the Dukes of Brunswick. The object of the late proceedings was to revive this suit, for the purpose of declaring Count Stolberg entitled to the title and domains. The court decided finally against his claim.

IMPERIAL DOM PEDRO II. BRIDGE.

The engraving we give ill ustrates a bridge, in the design and construction of which are features of an essentially
ing is from the Engineer. The inception of the work is due to Mr. Hugh Wilson, C. E., and is being carried out under the approval of Mr. A. L. Stride, M. Inst. C. E., the consulting engiveer of the Brazilian Imperial Bahia Central Railway Company.

Comparative Results of Homoopathic and Allopathic Treatment of the Insane.
In an editorial published last month, we gave the results of treatment in the Middletown (N. Y.) Homœopathic Asylum for the Insane as compared with the results in the three similar asylums of the State of New York under the charge of allopathic physicians. In calculating the relative percentages, we inadvertently used the wrong column of figures from the report of the State Board of Charities, and consequently made the percentage of recoveries seem much lower than it really is. The recoveries are calculated from the number of admissions-the only correct method-and the deaths from the total number of inmates treated. The correct statement is as follows: Three allopathic asylums: Recoveries, 25.37 per cent; deaths, 6.49 per cent.
One homœopathic asylum: Recoveries, 40.59 per cent; deaths, 4.39 per cent.

In other words, homœopalhy cures forty patients in each bundred, while allopathy, under similar influences and with equal facilities, and treating similar cases, cures twentyfive in each bundred While homœopathy loses by death 4.4 per cent, allopathy loses 6.5 per cent. As there were 946 patients follows that about 142 unfortunates either died or were
permitted to lapse into bopeless, chronic insanity who, under homœopathic treatment, might bave been restored to health, and returned to their friends and to usefulness. Had the relative percentages of recoveries been reversed, the State Board of Charities would have recommended the immediate discontinuance of the homœopathic institution.-Hahnemannian.

Cremation in Italy.

The municipal council of Florence, in its spring session, May 9, 1884, at the request of a committe for cremation, has allowed 200 square meters to be occupied in the Trespiano Cemetery for that purpose. The Florentines seem to

IMPERIAL DOM PEDRO II. BRIDGE.

arched catch bar. To the ends of the sliding shaft that carries the lever and covering plates are fastened the ends of a chain passing around wheels mounted on vertical shafts held in bearings on the axle. By turning these wheels the shaft may be moved longitudinally, thereby giving a lateral movement to the coverers, to adjust them in relation to the furrow.
Further particulars regarding the construction and working of this machine, or the terms upon which it may be manufactured, can be had by addressing the inventor.
practical character. This structure was designed by Mr. James Cleminson, Mem. Inst. C. E., for the threefold purpose of carrying the Brazilian Imperial Central Bahia Railway, to form a public highway, and lastly a foot bridge across the Paraguassa River, between the cities of Cachocira and Sao Felix, Brazil. The principle that has been observed by Mr. Cleminson in designing and carrying out this work is the elimination of all skilled labor, by utilizing the material just in the condition that it leaves the rolling mill, and rial just in the condition that it leaves the rolling mill, and
its treatment throughout by machinery only. Our engrav
ook upon this metkod of disposing of their mortal remains with some favor.

Trial of a Car Coupler
At the car shops of John W ood, Jr., Conshohocken, Pa., some of the Reading cars have lately been fitted with the selfacting coupler invented by G. W. Curtis-patent of November 9,1880 . The invention has proved on practical trials to be eminently successful.

Wood Pavements.

As containing data and deductions of general interest, we publish a letter written recently by Joseph P. Card, of St. Louis, to O. Cbanute, C.E. While the fact that the writer is the president of a wood preserving company should be given due weight, it should be also remembered that he is an expert in this line of practice, and has diligently studied all the bearings of the case from a business as well as a con structive standpoint:
"In the first place, "says Mr. Joseph P. Card," it is admitted by all, that it is of little use to lay any pavemen without a good and substantial foundation, and none of the substances used requires this more than wood.
" Such being the case, a substantial. concrete foundation is first laid, and it should cost the same, weether granite, wood, or other material be placed upon it; consequently the only thing to be considered is the cost of the wearing surface, the lasting qualities of same, and its desirability as a pavement when completed.
"In my opinion, the trouble with wood pavements in this country bas been: First, the lack of a proper foundation. Second, the people generally bave expected a wood pavement, which should bave cost as usually laid (with a board foundation) $\$ 1.35$ per square yard, to last as long as a granite pavement (with a concrete foundation) that cost $\$ 4.50$ or more per yard.
"Now we will take Broadway, New York, for instance which is 44 feet wide, with a concrete foundation, ready to receive either granite or wood blocks, and suppose granite blocks are laid at a cost of say $\$ 3.60$ per square yard, which would be equivalent to $\$ 8.80$ per front foot for the abutting property.
"On the other hand, a preserved wood block pavement is laid with blocks say $31 / 2$ inches by 5 inches deep, leaving a space of $1 / 4$ to $3 / 8$ of an inch between the rows, to be filled with suitable material, at a cost of $\$ 162$ per square yard, or $\$ 3.96$ per front foot.
" Now what would be the result? The granite pavement would probably last 10 to 15 years with slight repairs, and the wood pavement 5 to 6; but for comparison we will suppose the granite to last 15 years and the wood 5.
"The granite costing $\$ 8.80$ per front foot, the wood $\$ 3.96$ for 5 years or $\$ 1188$ for 15 years (allowing two renewals), and deducting 79 cents difference in interest at 6 per cent, would make wood cost for this period of time $\$ 11.09$ per front foot, or a difference of $\$ 2.29$ per front foot, equal to 15 cents per frout foot per year more than granite, which is virtually nóthing.
"Now, in my opinion, the wood pavement would be more likely to last over 5 years than the granite to last 15 ; but if I am incorrect, who is there living or doing business on a street like Broadway, where property is worth thousands per front foot, that would not willingly pay the slight difference, or many times the difference, to get rid of the incessant noise and confusion incident to a stone pavement?
"I hink the thoroughfares should be paved with wood, and the by-streets with granite or other stone, as it would last indefinitely.
" My reason for using a 5 inch wooden block is, that when the surface of the street becomes worn down to the extent of 2 to $21 / 2$ inches, it becomes so irregular that the remainder of the blocks, whether $21 / 2$ or 5 inches, are so softened with moisture, which accumulates in the depressions from rainfall or by sprinkling, that they soon go to pieces.
Wond on end, if it could be kept dry, would outwear granite, as shown by Col. Flad's tests, made at our water works here, consequently the drier the wearing surface is kept the less wear.
" Fully creosoted wood blocks under heavy traffic wear rapidly, as shown on the Brooklyn bridge, for the reason that the oil keeps the fiber soft.
" There was more wear on the St. Louis bridge, which is paved with wood, in the two months that the bridge was salted, to remove slush and ice, than in the balance of the year.
' In other words, the principal wear of any wood pavement occurs during wet weather, and the aim should be to keep the wearing surface of the wood as dry and smooth as possible.
"With a good concrete foundation once down, the wooden blocks could be renewed, when necessary, during night time, with little or no inconvenience to travel.
' From a sanitary point of view, the concrete foundation would prevent what most people seem to dread, the leaking through of impurities to the soil beneath, while the treated blocks would disinfect any portion that might enter the same."

lvy Lawns.

Ivy lawns are known to but few among the many who are interested in gardening economy. They consist, as the name implies, of ivy only, and they offer some peculiar advantages in cases where grass lawns are apt to occasion more trouble than they are worth. According to the Farmers' Gazette (Dublin), an ivy lawn may be well made in one season, and if theprimary operation of planting be properly performed the lawn will make itself; it will want no cutting, nosweeping, no watering, no protection from the birds that eat the grass seeds to-day and to morrow scratch up the tender plants, as though it was their mission to make grass lawns impossible. And when made, being, as it were, selfmade, an ivy lawn will talse care of itself for any number of years; but if in need of repair or trimming, the knife,
the shears, or the spade may be used with unskillful hands, and with the least imaginable cost of time, for it is not an easy thing to kill, or even to seriously injure, a lawn consisting of ivy solely. Such lawns are unfit for games, and indeed should not be trodden on. They will not therefore supersede grass in a country garden, which perhaps is a mat ter for gratulation; but they will give us the most delightful breadth of verdure in thousands of places where grass is more piague than profit, and, at the very best tends rather to disgrace than adorn the position.

PACKING BOX FOR BOTTLES

The compartment crate or packing structure is formed of thin strips of wood, or veneer, arranged in longitudinal and transverse rows successively one upon the other, the strips in each row being notched on their edges to interlock with those immediately above or below, and spaces being left between the rows for lightness. The ends of the strips project to leave clearance spaces between the outer strips and sides of the box. The compartments thus formed are not made of the full depth of the box, but are sufficient to inclose the bodies of the bottles, this being all that is necessary to give the required protection. This crate rests upon hay, straw, or other soft and yielding material covered by a piece of pasteboard for the bottoms of the bottles to cushion upon. T'he crate is kept down to its place upon the cushions by cleats nailed on the ends of the box, so that there is no tendency of the material used for the cushion to settle a

SCHOENTHALER'S PACKING BOX FOR BOTTLES.
either end while the box is being transported from the box factory to the place of use. These packing boxes have given the greatest satisfaction during their use of over a year by some of the principal bottlers of St . Louis.

Additional information may be obtained from the invent or and manufacturer, Mr. J. C. Schoenthaler, of 1024 N Main Street, St. Louis, Mo.

Renewal of Brain Cells.

According to the novel computation of a German histolo gist, who has been calculating the aggregate cell forces of the buman brain, the cerebral mass is composed of at least $300,000,000$ of nerve cells, each an independent body, organ ism, and microscopic brain, so far as concerns its vital relations, but subordinated to a higher purpose in relation to the function of the organ; each living a separate life individually, though socially subject to a bigher law of function The life term of a nerve cell he estimates to be about sixty days; so that $5,000,000$ die every day, about 200,000 every bour, and nearly 3,500 every minute, to be succeeded by an equal number of their progeny; while once in every sixty days a man bas a totally new brain.

The Cost of Making Steel Rails.

A recent issue of the Pittsburg Penny Press contains an interesting article on the cost of steel rails. The actual cost of producing a ton of stcel rails in Pittsburg is placed at $\$ 26.83$, as shown by the following itemized statement:
cost of pia metal.

cost of pig metal.	
	\$2.20
Limestone	. 50
Ore, scale, etc	10.00
Labor, including repairs.	1.75
General expenses.	. 38
Interest.	. 35
Cost of a ton of metal.	\$15.18
cost of ingots.	
$11-5$ tons of metal direct at \$15.18.	\$18.12
Refractories.	. 20
Lubricants.	. 02
Repairs..	. 24
General repairs.	. 17
Labor.	1.13
General expenses.	9
Spiegel.	2.31
Interest.	20
Cost of a ton of ingots.	\$22.48
cost of rails.	
105 tons ingots direct with initial heat at \$22.48 per ton...	\$23.62
Labor and office expenses.	1.90
Repairs entire	. 49
Steam (natural gas).	. 10
General expenses.	. 35
Interest.	. 22
Tools, files, etc.	5
Cost of a gross ton of steel rails	\$26.83

The Presi also states that the cost of making a ton of steel rails in England at present is $\$ 20.17$.

Sulphite of Soda Intensifier.
Scolik, of Vienna, has recently experimented extensively with the above intensifier, and in a late number of the Photographische Correspondenz recommends the following formula:

> Solution No. 1.
> Bichloride mercury.
Bromide potassium.
> Bromide potassium
Water............
> 50 oz

The above may be diluted four times its volum ϵ if desired, in order that the action may be gradual and less energetic. The fixed and well washed negative is allowed to remain in No. 1 until the film becomes well whitened. If a small degree of intensification is desired, it should be left in but a short lime.
The plate is next slightly rinsed off (a thorough washing not beiug required at this point), and immersed in

Solution No. 2.
Saturated solution sulphite *oda..
The darkening action will be observed to take place gradually, as in the case when ammonia is used, and will impart a rich brown-black color to the negative, which should be well washed; negatives thusintensified are believed to be permanent. Dr. Eder describes the following as the chemical reaction which takes place. The whitened negative contains mercurous chloride (calomel), and this is reduced to the metallic state by the sodium sulphite, just as appears to be the case when cyanide of potassium is used; thus the method now described may be regarded as analogous with Monckhoven's argento-cyanide of potassium method. Mercuric cbloride is not reduced in the cold by alkaline sulphites, because stable double salts are formed; still, at a boiling temperature, reduction sets in, the mercurous chloride being first formed, and then the metallic mercury.
The above fact explains why it is unnecessary to wash away all traces of mercuric chloride before treating with sulphite of sodium.

Fires from Belting.

Herr Boher, illumination inspector of Dresden, bas been making some experiments to determine what part is played by electricity in causing explosions of flour dust in mills. His investigations bave been conducted at the Royal Court Theater, where the powerful dynamos for the electric lights are driven by steam power.
"Here," the inspector says, " the electricity from the belting is so intense that more could scarcely be obtained in the best electric machines. Leyden jars became charged by this means in a few seconds, so that on being discbarged sparks keap one and three-fifths inches. Any person standing on an insulator and placing the hand within four to six inches of the moving belts is quickly charged with electricity, so as to give out long sparks. Geissler tubes, having projecting pointed wire at one end, and metallic connection with the earth at the other end, glowed, when placed near the belts, with beautifully colored lights. In short, every experiment possible with electric machines can be performed by this belt developed electricity. At first I thought that the presence of the dynamo electric machines bad a great influence on this phenomenon, but I bave noticed the same, more or less shown, in many kinds of factories having steam ower.
"In many flour and meal mills the dust bas become ignited without the cause having been discovered. I bave now, from experiments, become firmly convinced that eleciricity devoloped by belts can cause such disaster. In most factories, other than flour mills, the quantity of metal present, and the arrangement of the iron framed machines, is such that a connection among them is established sufficient to conduct safely away the electricity. It is, however, different in flour mills, especially where French burr stones are used, which are made of separate pieces bound together by thick iron bands. The latter are not connected with one another, but isolated by the non-conducting stone. Rims, therefore, which are next to the driving pulleys and belts (generally located just below stones when cogwheels are not used, and pulleys almost equal in diameter to the stones) become surcharged with positive electricity-as shown in the Leyden jar, for instance; the next nearest rim or rims will, by induction, develop negative electricity. These opposite forms of force having arrived at a dangerous degree of tension, the leaping of an intense spark from one stone band to another could ignite the excessively inflammable flour dust. To guard against this danger, it is simply needful to collect the iron spindles of the stones together by a thick wire, a metallic bar being at the same time located nearly touching hoth stone rim and driving pulley. In all other industrial works the precaution would be advisable that no isolated ironwork should be near pulleys and belting when combustible materials are also in the immediate neighborhood."
[The remedy above suggested, we fear, is of little avail. The connection of the spindles as proposed will not prevent the generation of electric sparks. A better prevention is to keep the atmosphere of the apartments where the belts run thoroughly damp.-Ed. S. A.]

At some of the theaters and opera houses in Europe water curtains are used as a safeguard against fire. Between the acts a wide, tenuous sheet of water descends, separating the stage from the auditorium. Its efficiency was recently proved at the opera house at Munich, Bavaria, when by its means a fire was checked instantly.

The Value of our Export Trade

It would be amusing, if the subject itself were not so seri ous, to see the way the partisan papers, or journals with one idea, handle the grave questions that concern our foreign and domestic trade. The first thing pressing on their at tention is the low price of our agricultural products. These are now lower than at any previous date within the remembrance of the present generation. Wheat, which eight years ago sold at Chicago at something over two dollars a bushel has recently sold as low as 75 cents. There was a time when it was said that Western farmers would let the ground lie fallow ratiner than grow wheat at less than one dollar a bushel; now the one dollar would seem to them a great price if they could get it.
To remedy this some bave a theory ready made and duly patented. We only want, they think, a larger population. If foreigners will not buy our breadstuffs for the pincbed and starving laborers now working for a pittance abroad (this is the way they put it), we ought to bring the weary sons of toil with their families to our shores. Once established here and set at work, they will furnish on their tables a ready market at a good price for all that our fields will yield.
But if they are agriculturists, they will only increase the glut by adding to the acres under cultivation. Our theorist has his answer to this all ready: It is the artisans he would bring, the men who work at trades, and whose only con. nection with the wheat product is to consume it. Here the trades-unions find their toes trodden on, and they cry out against the proposition. Wages, in their judgment, are already ton low, and they will not have the number of skilled workmen increased by any foreign importation. And not only the higher class of mechanics, but the mivers, the hod carriers, the 'longshoremen, and the ditchers are reidy with pistol, club, and slungshot to resist every attempt to flood the country with rivals to share in the labor they would monopolize for themselves. Besides, if the immigrants, of whatever grade or character, did not after their arrival produce more in some way than they consume, they would but impoverish the country and increase the general embarrassment.
The protectionist has, as he thinks, a much more plausible remedy. The country is too much given to plain agriculture, and the business of wheat growing is overdone. Home manufactures are the true relief. Let Congress put a probibitory tariff on the work of foreign mills, and let the spindle and loom be heard in every valley of the teeming West. If there is no water power let steam be substituted, and the farmer and the manufacturer exchange their products at each other's door.
But the manufacturing business is no better off than the agricultural. Stocks of fabrics have been piled in warebouse, awaiting a demand which would not come. The auctions bave been crowded with goods which sold at far less than cost, and in the woolen trade alone looms have been silenced for a period that would have added twelve million yards to the stock already pressing for sale. The cotton mills are no better off, and the curtailment from idle spindles is now reckoned at over 100,000 packages of fabrics, amounting to nearly or quite one hundred million yards. If the West and South set up the factory for themselves, the busy industries of the East, many of which are even now temporarily embarrassed for want of custom, if they are to depend on the home trade as at present, must be altogether bandoned.
What, then, shall be done for the relief of the country? If the farmers and manufacturers alike are piling their surplus in the warehnuses, and must either find a new market or check their production, who can suggest a fitting remedy? General Butler's answer is that there is no overproduction, but a want of ability to consume. If this is granted, and the consumption is ever so much stimulated after the Butlerian method, the problem will not be solved. There is no doubt but what some who now fare sparingly could eat a little more, and many who are wearing their old clothes would be glad of a new suit. To satisfy these fully would take off part of the present surplus, but would give no permanent relief. There is a limit even to the capacity of a hungry stomach; and those now poorly clad will be out of
market for a while when they bave all donned a new set of garments.
It is plain that we must find a demand for our produce and manufactures alike outside of the home trade. The vast fertile fields of the West and Northwest and Southwest will grow more grain than can be digested by American stomachs, and the surplus, growing larger with each succeeding year, must be sent to feed the hungry of other lands. In like manner the manufacturing industries of the country are becoming too large for the bome market, and must find customers for their wares and fabrics on distant shores.
Whatever is done in the future in tariff legislation, there fore, if done wisely, will have a special reference to encouraging the export trade of the country. There are still exant some pamphlets from our peo issued over thirty years ago, and compiled largely from editorials in this paper, showing that free trade in raw materials, dye stuffs and the like, with a judicious tariff on manufactured gonds, was then what was most needed to promote the welfare of this country, by building up a large and profitable trade with foreign nations. Numernus editions of those treatises were circulated through the interior, and served a very useful purpose in opening the eyes of the people to their true needs, and the simplest remedy for prevalent embarrassments. Isolation is
not the road to prosperity; if we would thrive we must take the world into our embrace, and be ready to minister to its wants and to share our profits with others, if we would enhance the measure of our own gains. Service of some sort beyond the requirements of self is the one condition of ue success.-N. Y. Jour. of Commerce.

Lord Rayleigh's Experiments on Light

Lord Rayleigh, the president of the British Association t Montreal, has in the past devoted much attention to the subject of light; his papers on the subject have appeared in be publications of various scientific bodies, and in the Philosophical Magazine and other scientific journals.
In some of his earlier experiments he worked at the reproduction of diffraction gratings by means of photography, the latter having such minute delineating power. At first he thought of drawing gratings on a large scale and then reducing them by means of photography, but abandoned the idea, chiefly because he thought it doubtful whether photographic or other lenses were capable of doing the work. He, therefore, began by taking a Nobert's grating with 3,000 lines to the inch, and printing an impressio from it direct, upon a dry photographic plate, just as trans parencies are taken for the magic lantern. In the printing he used almost parallel rays of solar light, so that if the two plates did not touch at particular places, shadow image of the adjacent lines might nevertheless be thrown upon the sensitive surface. He thus produced copies comparing not unfavorably with the original. The plates had to be very flat ; even patent plate was scarcel flat enough, the use of worked glass being the remedy.
The vehicle for the sensitive photographic salts employed by him was sometimes collodion, sometimes albumen, both of which give delicately thin films. With these vehicles al most any photographic dry process would answer the purpose, and after a little practice he could produce copies equal to the originals in defining power, so far as be could see. After partial development he cleared the more trans parent parts with iodine, after w bich the deposit in the inten sifying process fell entirely upon the parts intended to be opaque. With the copies the nickel line between the \mathbf{D} lines is easily seen. He worked in a dark room, with a slit in its shutter, and the grating placed at a distance from the slit No collimator was used. The telescope consisted of a single lens of about 30 inch focus, with an ordinary eyepiece held independently. He prefers this to placing the whole arrange ment upon one stand, as in the ordinary spectroscope.
He also experimented on the reproduction of gratings by means of bichromated gelatine, omitting the coloring matters usually added thereto in the carbon process. He poured on the bichromated gelatine as be would collodion, and allowed the film to dry in the dark. The printing was done by a few minutes' exposure to direct sunlight, and the de velopment by treatment with warm water, which dissolved off the gelatine where not acted upon by light. The gratings thus produced were transparent in every part alike, yet they give brilliant spectra; the effect, therefore, must have been produced hy the alternate linear elevations and de-
pressions of the surface. By pressing soft sealing wax on these transparent gratings, the wax assumed the appearance of mother-of-pearl. He does not think that in the development any of the gelatine was dissolved away, but this con clusion, when viewed by the experience of those versed in the carbon process, is doubtful. The gelatine may have been rendered insoluble throughout its front surface, ye some of its organic constituents may have found their way through the exterior skin. There was uncertainty in the production of these gelatine gratings, but one or two of much perfection were made, giving spectra surpassing the original in brightness. The reason, he says, is that "on ac
count of the broadening of the shadow of the scratch, more favorable ratio is established between the breadths of the alternate parts." From the appearance of these earlier photographed gratings under the microscope, he concluded that 6,000 lines to the inch could be printed by the method, by which, also, the cost
be considerably reduced.
In later experiments be discovered that he could photograph a piece of striped stuff, to produce an image on such a scale that there was room for about 200 lines in front of the pupil of the eye, capable of showing lateral images of a candle. The reduction was effected in a camera. He soon found that optical appliances are inadequate to the procinction of very fine gratings, from inherent imperfections in lenses, as well as from impediments due to the laws of light. Nevertheless, he thinks that by means of special appliances
it might be possible to get 3,000 lines to the inch by this method, although the prospect is not particularly promising.
Direct printing from cut gratings be, therefore, consider to be the best method. He takes care that during the print ing the glass front of the printing frame is at approximately a right angle to the incident light of the sun. Usually he cuts off most of the side light by partially closing the shutters of the room, but he cannot say whether this is neces sary. With the more sensitive processes artificial light may be employed. Lord Rayleigh made some copies of gratings hy the aid of a moderator lamp with its globe removed; the printing was done at a distance of two feet. All the glass surfaces bave to be very clean, the pressure in the printing frame is moderate and even, and when the photographic film is delicate, care must be taken not to scratch it by a sliding rubbing motion. He is careful not to injure the engrav ed face of a grating, so scarcely ever touches it with wash
leather or any other solid. He prefers to wash it, when soiled, with a stream of water from a tap, afterward flooding it with pure alcobol, and then setting it up to dry spontaneously. After taking several hundreds of copies of his gratings, the originals have scarcely, if at all, deteriorated. He finds that out of a package of two dozen 5 by 4 sheets of patent plate, as sold by the dealers, three or four may usually be selected flat enough for the photographing of gratings. Plates of the size mentioned may be cut with a diamond, and will do very well for four gratings, but it saves work and trouble not to cut them until they have been coated with the photographic film.
Lord Rayleigh, after trying many processes, some of which be abandoned, he says, for reasons which might not have necessitated their abandonment in the bands of a skilled photographer, felt most inclined to recommend Mr. G. Wharton Simpson's collodio-cbloride process for preparing be plates. The details of this process may be found in photographic works, but it consists essentially in first coating the plate with dilute albumen, and drying it, then coating it in the developing room with an emulsion of chloride of silver in collodion; the emulsion contains a slight exess of free nitrate of silver. The exposure for printing is about five or seven minutes to the autumn sun; no development is necessary. The plates are washed in water, and then, without any toning, fixed with thi osulphate of soda. He increases the brilliancy of the spectra by tinally washing these photographed gratings with corrosive sublimate, which, however, probably destroys their permanency. The use of very finely divided diffraction gratings is, Lord Rayleigh points out, not necessarily an advantage in the investigation of the solar spectrum, although it conduces to brilliancy. He has two by Nobert, one containing 3,000 and the other 6,000 lines to the square inch. The spectra of the 3,000 line grating were much the best in respect of definition, and the same was the case with the photograpie copies. The extra brilliancy of spectra with more lines is of no use if a bigher magnifying power is necessary than the spectra will bear.
In testing gratings, Lord Rayleigh prefers to work in a dark room with a slit in the shutter, through which a direct beam of sunlight is steadily sent by means of a heliostat. He makes the slits cheaply, instead of using the ordinary appliances, but, at the same time loses the power of regulatng the width by a screw motion. His plan is to coat a heet of glass with tinfoil; weak shellac varnish is used o make the tinfoil adbere; the alcohol is allowed to evaporate, and after application of the tinfoil, the shellac film is softened by heat. Had paste been used, time would have been necessary to permit the drying of the aqueous film between the impermeable glass aud tinfoil. To make a slit, it is next only necessary to cut a straight line in the oil with a sharp knife, and to wipe the line of the cut with rag moistened with alcohol. Broader slits are made by removing the foil between two parallel cuts.
Despite his care in selecting samples of patent plate, it is vident from his records that, altogether, there is much more safety in using samples of worked glass for delicate photoraphic productions of this kind. With worked glass copies rom the 3,000 line grating, he can usually make out nearly, but not quite, all that is shown in Angstrom's map. Among the photographic gratings on picked patent plate there are usually some whose performance is less satisfactory, though most of them, under low powers, will bear fair tests. He is uncertain as to the limits attainable of photographing fine nes in this way, but thinks it possible that with a flexible upport to the film, such as mica instead of glass, ten or twelve thousand lines to the inch might be copied. Gratngs may also be made ou Brewster's principle, by taking a cast. Lord Rayleigh bas obtained fair results by allowing filtered gelatine to dry, after being poured on the 3,000 line Nobert grating. This method is attended with risk to the original, and has other objections.

A Revolving Hearth Gas Generator

A somewhat remarkable form of gas generator furnace intended, in the first place, for the large productions of gas required in iron and steel works, has been designed by M. Pierrugues, and is illustrated in a recent issue of the Revue Industrielle. The generator is circular in plan; the bottom courses of the sides being set in a cast iron curb, supported on short piers or columns above the floor line. The bottom or hearth of the generator is built quite separate from the sides. It is a musbroom-shaped structure of grids slightly inclined from the center, which is pivoted upon a pillar, on which it turns freely. The circumference of the hearth is itted underneath with a rack, similar to that of a mortar mill; and consequently the whole hearth can be revolved by a hand pinion working in this rack. The idea will be sufficiently evident from the following description: The generator is charged in the usual way, through hoppers at the top; the gas outlet being likewise at the top. At any convenient part of the structure, a fixed bar from the side projects a regulated distance over the outer edge of the circular grill; and underneath this point is the truck for removing the ashes and clinker. The clinkering is done by revolving the bearth, by hand or power; so that the fixed bar sweeps off the material into the truck beneath. It is contended bat this arrangement facilitates the regular working of the generator, and thereby enables the poorest and dustiest kinds of fuel to be properly gasified. It is evident that with a generator of any considerable size this convenience must be purchased by a large expenditure of power in rotating the grill with its load of fuel in active combustion.

an electric torchlight procession.

On the evening of October 31, this city was favored with one of the most unique and attractive displays ever seen in a torchlight procession-that necessary adjunct to a presidential campaign, which brings into active play the inventive genius of party managers and enthusiastic followers. That an electric lighting plant, complete in every detail, and in full operation, can be moved at the uneven pace of a procession over the rough paving of a street, without interrupting the current or in any degree changing the brilliancy and steadiness of the light, is a fact which, while of interest to the scientific world, clearly sbows the perfection to which electric lighting machinery has been brought.
The work of preparing the display was done by the Edison Electric Lighting Company, the expense being defrayed by its own employes, who united with insurance men of the same political faith. Placed upon the forward part of a large truck was a dynamo-a 200 ampere machine--behind which was a 40 horse power engine of the New York Safety
five feet on the rope was an ordinary cut-out, or lamp receptacle, slightly cbanged to suit the requirements of this work, and within which screwed a safety catch carrying two wires, which led up the sleeve and through the back of the helmet to an incandescent lamp of 16 candle power. Wires also led to lamps hung upon the bames of each of the horses, and to 24 lamps arranged on a frame built around the truck. The leader of the procession, on horseback, carried a staff surmounted by a 200 candle power light. Altogether there were some 300 lamps distributed along the rope and upon the trucks.
Upon the first and last part of the line of march every part of the plant worked most admirably, and the illumina tion was intense and beautiful, the light flooding every nook and crauny in the streets passed through. But in the inter vening distance, which chanced to be lined with people who were particularly anxious to witness the electric ligh display, this portion of the parade was conspicuous solely account of the darkness that pervaded it. This inter-

Ventilating Hay Mows.

After adding bis testimony to the correctness of our heory as to the cause of frequent fires in barns, an architect from Iowa writes to the American Architect, into which paper our article was copied, the following letter: We believe the idea of the writer is not new, and that patents have been granted for similar models of ventilating hay mows and grain bins, nevertheless the suggestions of the writer are guod.
" As this matter is of more vital importance than most people, even scientific men, are aware of, I will," says the Architect's correspondent, " venture to suggest a mode to ventilate hay lofts, and to give veterinary surgeons something to think of. I believe that one-balf of the diseases in horses and cattle is brought on by feeding spoiled bay, either taken from hay mows or stacks, also from grain feed that has been beated and spoiled. I believe that the heating process, the mouldy parts and must that it produces, will create germs of various kinds that cause diseases in horses and cat-

THE ELECTRIC TORCHLIGHT PROCESSION IN NEW YORK.

Steam Power Company; a belt led from the engine to a
pulley on the armature shaft. Secured to the truck was the pulley on the armature shaft. Secured to the truck was the pole of one of the largest steam fire engines built by the Clapp and Jones Company. The electricians in charge of the display felt assured of the successful working of their dynamo and engine, and in order to have an ample supply of steam, they obtained the fire engine, which they knew to be a rapid and reliable generator while in motion. Extending from this boiler to the engine were two flexible pipes, one leading to the steam chest and the other carrying the exhaust. The latter pipe was provided with a three-way valve, by means of which the steam could be'directed either into the smokestack to increase the draught, or into the open air. Following the fire eugine were two ordinary watering tanks, bolding 950 gallons, which were connected to the feed pump by lines of bose. Between the tanks were the coal carts. The dynamo truck was drawn by six of the Herring Safe Company's mammoth horses, arranged tandem and guided solely by the word of the driver.
Extending from a switch board on the floor of the truck were four covered copper wires, two of which led to a rope upon one side of the truck and the other two to a rope upon the other side. This rope was 1,200 feet long, and was extended up and down the procession so as to form a hollow square, in the center of which was the machinery, before and behind which marched bodies of men. Placed at each
ruption was caused by mud from the water tanks clogging the hose leading to the pump. All went well after the hose had been cleaned.

Fall Plowing.

Joseph Harris thinks that farm horses can be put to no better use in autumn than pulling the plow. In the September Agriculturist he says: " There is nothing pays so well as fall plowing, and getting land ready for spring sowing. The longer I live the more I am impressed with this fact. I say nothing on the disputed question in regard to breaking up sod land in the autumn. It is possible, as some claim, that there is a loss from drainage. But if any one will plow my land in the fall, I will run the risk. But what I have specially in mind is, land not occupied with any crop--corn land, potato land, bean land, stubble land, and weed land. Stick in the plow if you can spare the time; if not, harrow or cultivate. Better still, do both. Light sandy land, plowed and prepared in the autumn, can be sown in the spring without: plowing. Heavy land, if plowed and worked in the fall, may need plowing again in the spring, but the work will be easier and the land better. Kpap the horses busy until snow flies. But the earlier the work is done, the better. One plowing while the land is dry i worth two plowings when it is wet.
tle and perhaps swine. I will now venture to suggest a mode of ventilating hay mows, stacks, or granaries. I will suggest introducing various air ducts through the hay mows, both horizontal and perpendicular, opening directly outside, so as to admit a current of fresh air, which will cool and cure the hay or grain, and leave it in a bealthy state. This may be done by building board ducts and perforating them as much as possible, and then running from the horizontal ducts perpendicular ducts up through the mow, not more than eight feet to ten feet from each other. Or this may be accomplished in another manner, by using some round instrument, six inches to ten inches or even larger in diameter, say a galvanized iron tube; stand it over the openings in the main air duct, and as the mow is filled up, draw these pipes up through the bay, until the top is reached. This will afford complete ventilation, which will be increased as the mow becomes heated; hence the fresh air drawn in will cool and cure the bay ór grain, and by this process thousands of tons of hay and grain can be saved and a vast amount of property will be saved from the destroying elements."

NEanufacture of Wood Pulp.

The author treats the comminuted wood or other vegetable matter with concentrated solution of sulphurous acid and water under a pressure of 5 atmospheres and at tem. peratures ranging from 75° to 80°.-Raoul Pictet.

Restoring Burnt Steel.

At the Nuremberg technical school a series of attempts have been made to restore the original qualities of steel after it has been burnt in the forge. These tests have been carried out with various classes of steel in common use for tools, and with varying degrees of success. Sometimes this accidental burning can be repaired by hammering the piece of steel while hot; but more generally it is only worth returning to the scrap heap. The alteration known as burning is due to a more or less considerable decarburation of the metal. Amoug the processes that bave been devised for restoring burnt steel, the following has given excellent results: The piece of metal is brought to a red heat and suddenly plunged in a mixture composed as follows: Pitch, 2 parts; train oil, 2 parts; tallow, 1 part; with a small addition of common salt. This operation is repeated two or three times.

A Question of Steamship Models.
The speed of the steamer Finance, of the United States and Brazil Steamship Company, which made the trip from St. Thomas to this city in five days, is owing-according to the statement of one of her officers to a Tribune reporter-to her model.
'She is nearly flat on the bottom, and has no keel except her two bilge keels, or rolling keels as we call them. This gives her great carrying capacity as well as speed. Her bows have a fine entrance, but the body of the ship is carried well forward under the water-line, so that when she goes into a sea she rises like a duck and does not stagger. I think that Ameri-can-built ships have a greater carrying capacity and develop more speed with less coal than any others in the world. The swift steamship America is a much larger vessel than the Finance, yet the America only carries about 2,000 tons of cargo to the Finance's 3,166 tons. The America is, of course, the faster ship, but not enough faster to make up for the difference in carrying capacity. The Finance can make 14 knots an bour, and the America 18. The Finance burns from 28 to 30 tons of coal a day, and the America 175.
"There is the ship San Pablo, a typical American ship. She has developed a speed of 16 knots an hour with a consumption of 32 tons of coal. She carries a dead weight of cargo of 4,500 tons. She recently made the fastest passage on record between here (New York) and Gibraltar. She is now running between New Tacoms, on Puget Sound, and San Francisco. The round trip takes 10 days. In 30 days she made three round trips and started on her fourth, and has landed 12,500 tons of coal. In nine months she bas cost only $\$ 26$ for repairs in the engineroom. She is built something on the model of the Finance, but has a keel. The City of Rome burns 320 tons of coal a day and can only carry 1,000 tous of cargo. The great freight ship of the National Line is the England, which carries 3,500 tons of cargo. Sbe makes about 12 knots an bour, and can be pushed to 13 .
The England is 4379 feet long, $421 / 2$ feet beam, and 35 feet depth of hold. The Finance is 300 feet long, 38.4 feet beam, and 23.6 depth of hold. The Finance is not, of course, a fast ship, compared with the grey hounds of the sea, but, as you see, attains a respectable speed, has great carrying capacity, and besides that is a passenger ship. And look at the San Pablo with a speed of 16 knots, a carrying capacity of 4,500 tons, and consumption of only 32 tons of coal. It is all in the model. I believe that a ship as large as the Oregon or America and with much less engine power, built on the flat bottom model, would beat their time badly, and have twice or three times their carrying capacity."

Cocaine Hydrochlorate.

The bonor of discovery of this new local anæsthetic is due to Dr. Kollar, a young medical student, stil! engaged in his studies at Vienna. Hydrochlorate of cocaine has been used in this city with success in many cases, especially in ophthalmic surgery. A few drops applied to an injured eye allays) the pain, produces immediate insensibility of the parts, and enables the surgeon to operate with success. This discovery forms an important step in the progress of medical knowledge. The hydrochlorate has been used in the opening of felons, for sensitive throat, etc.

The Pacific coast has nearly doubled its crop of hops this year over that of last, without materially increasing its consumption.

TWO NEW OPTICAL ILLUSIONS.
All optical illusions which have for result the exhibition of an isolated portion of a live human body, such as a head separated from the trunk, a bust without a body, or a body without a head, always surprise and interest the spectator.

Fig. 1.-an isolated head in the center of a stage.
bodies of all sorts. As an example of the apparent realization of several of these physiological impossibitities, we may cite a singular exhibition that is now being held at London, in Egyptian Hall. A plysiciau and his patient are upon the stage, and engage in a very animated conversation; the sick man seats himself in an arm chair, aud the physician cuts off his head and lays it upon a table. The head speaks, and threatens the physician with the vengeance of heaven, and then the headless body rises, and, by expressive mimicry, joins its reproaches to that of the head. Then it takes the latter upon its arm, and the dialogue goes onthe head always talking, and the body gesticulating.
After seeing this sort of spectacle a certain number of persons go away indifferent to the processes by meaus of which such effects are obtained, while others, on the contrary, are interested therein. It is for the latter that we shall describe in this article two new tricks, that have recently been shown in Paris, at the theater Folies Bergeres, under the names of Stella, and The Mystery of Dr. Lynn.
Stella.-The spectator, upon entering, sees in front of him a large panel in which there is an aperture about 5 feet square closed by a silk curtain. When the latter is drawn aside, there is seen a small and elegantly decorated stage, whose sides may be perfectly distinguished. In the center of this stage, suspended in space, there is a young girl's head, the neck of which starts from a satin collar (Fig. 1). This head is well isclated on every side; one sees the rear of We learned in early childhood that life is impossible un- the stage, the sides, the top, and the bottom, and the light der such circumstances, and yet, if the experiment be well presented, we distinctly see the reality of what our judgment and experience are in accord in declaring impossible. We are tempted then to doubt the evidence of our eyes, not withstanding our daily confidence in those organs.
This sort of contest between the senses and reason lasts a withstanding our daily confid the ince.or our

Fig. 2.-THE WOMAN WITHOUT A BODY.
longer or a shorter time, according to the spectator. It is quick in some, and slower in others; but it may be said that in almost all, this kind of spectacle strongly excites the curiosity. For this reason, ever since the first exhibition of the decapitated talker by Colonel Stodare at London,

Fig. 3.-EXPLANATION OF THE PHENOMENON.

prestidigitators aud physicists have been exerting their ingenuity in order to obtain analogous effects by varied processes; and so there has appeared a large number of decapitated talkers, living busts, half-women, persons with two or three heads, men cut in pieces, and decapilated
leaves no portion in shadow. The head is living; it speaks and smiles, the eyes move, and the exhibitor further proves it by presenting to it a lighted candle, which it extinguishes by blowing it out. The exhibitor then disappears behind the side scenes along with the candle. He now, as it seems, draws out a panel in the back of the stage, and through the aperture thus formed, the spectator very distinctly sees the top of a table, and, upon it, the candle that the head bas just extinguished. Now this aperture is directly under the head, bint much farther off, and is in the direction that the body would occupy if the head possessed one. The absence of the body is therefore well demonstrated, and the curtain drops.
Such was the evidence of the eyes, but the reality was entirely different. The head was indeed real, and was seen directly, and the same was the case with the top and a part of the sides of the stage, but aside from this the rest was ouly an illusion. The stage had no back, no floor, no sides, and the aperture seeu in the rear was not in that place.
The illusion was obtained by means of a simple mirror, which, starting from the upper part of the back of the stage, descended obliquely to the front. In the center of this there was an opening which was concealed by the satin collar of which we have just spoken, and through this the young girl passed her head. The inclination of the mirror was very easy to determine; it was in fact indicated by a gold rod designed to bide the line of junction of the mirror and side. Through their reflection in this mirror the anterior part of the top seemed to be the bottom, and the posterior part of the same produced the back of the stage. The sides, of which only the upper portion was seen, seemed to be prolonged and join the bottom. As for the aperture through which the table was seen, that was in reality at the top; the table was vertical, and the candle, which was firmly fixed to it, was horizontal. The farce of blowing out the candle and carrying it behind the scenes was only designed to make the spectators believethat it was the same candle that was seen at the rear of the stage, while it was only a duplicate.
The arrangement of the top and sides with respect to the mirror may be perfectly ascertained by means of a very simple experiment. Take a small, square mirror and incline it at an angle of about 35° or 40°, while it rests upon a book; then place above i_{ι} a piece of cardboard, or anything else, and it will be found by experiment what inclination should be given it in order to obtain, through reflection, the semblance of a vertical back.

Upon bringing the same cardboard near to the sides of the mirror, the part that will be above the latter will seem to be prolonged beneath. If one wishes to take the trouble to fix several pieces of cardboard in these different positions with pins, he may produce the semblance of a space which is apparently completely empty, while it is cut into two by an inclined mirror. It would be easy thereby to get an idea
of the process used for producing the illusion given by Stella.
The Mystery of Dr. Lynn.-In this new illusion, now being presented at the Folies Bergeres, the stage is larger than for Stellia. It starts from the floor; and it is nearly in front, at a very slight distance from the spectator, that we observe the bust of a woman cut off at the thighs and resting upon a small swing shelf. This woman is alive. Moreover, under a thrust from the showman the shelf moves laterally. At a certain moment the woman seizes the cords, the exbibitor removes the shelf, and the body is then seen suspended for a few minutes. The showman passes a rod beneath the bust, and around it, and shows that it is completely isolated. Where is the body? Such is the question that every visitor asks. In Stella and in several analogous tricks shown by English and French prestidigitators, completely isolated, but immovable, busts or heads were shown to the public, and the majority of these illusions was obtained by means of mirrors. Even with these latter it would be possible to move a bust and swing a shelf, but we believe that The Mystery of Dr. Lynn is obtained by a much simpler process-by a simple effect of illumination.
All painters know that in a too strongly lighted picture the whites and bright colors stand out at the expense of the half tones and dark colors, and this effect is the more pernicious in proportion as the light is brighter. Hence the complaints that are heard at exhibitions of paintings, where the light never suits the exhibitor. This same effect is seen in two objects placed alongside of each other; if a white object be placed alongside of one of somber color, it will prevent the details of the latter being distinguished as well as if it were alone. The visibility of objects is relative, then, and depends more or less upon the brilliancy of that which surrounds them. A thing that attracts the eye is seen at the expense of what is placed alongside of it.
This difference in visibility, which makes itself seen when the illumination of two objects is the same, will naturally be still greater if the white object is in the full ligitt and the somber one in darkness. Now it is upon this principle that the Doctor Lynn trick appears to be based.
If we take a book bound in black or very dark cloth, and place it outside of the cone of light produced by a lamp shade, we shall be able to see it more or less distinctly; but if in the same direction we place a sheet of white paper so that it sball be well lighted by the lamp, the visibility of the book will be null or nearly so, and we will see it anew if we take away the paper. It is for the same reason that a person who at night holds a lamp baving a reflector becomes completely in visible to other people toward whom he turns the light, while he might be seen were the lamp turned in another direction.
Another small experiment will directly explain to us the Doctor Lynn trick. Let us suppose that in the evening a person dressed in black leans upon a table, his head inclined between two lamps provided witb reflectors, which latter may be merely white cardboard, or a few sheets of paper; or the lamps may be replaced by two candles, each shaded by an open book. Under such circumstances the spectator seated upun the other side of the table will distinctly perceive the face of the person placed in front of him, the white parts of the costume, the neck, sleeves, and fore portions of the shoulders and arms, which are well lighted. But if there is no reflection from the ceiling or wainscoting, all the rest of the body placed in darkness will be invisible.
Let, us suppose that all the precautions are taken to make the experiment successful, just as if it concerved a public exhibition, and we shall be able to have in this way a decapitated talker, a living bust, or to repeat the mystery of DCtor Lynn.
As regards this last named trick, a glance at the explanatory figure (Fig. 3) will show how the illusion may be obtained. The lower part of the bust seen is a dummy, upon which the upper part of the woman's body rests, the remainder of her body being extended nearly borizontally upon an apparatus that is capable of swinging and following the motion of the shelf. All this portion is hidden by opaque black drapery so arranged as not to attract the light to any point.
The bust and shelf receive a very intense light; then immediately behind there is seen intense darkness-an absolutely black background.. This latter is rendered still darker by the brilliant cords of the shelf, a metallic chain, a sword suspended beneath it, and a white handkerchief that seems to have been dropped upon the front of the stage by accident. If we add to this, six gas burners with powerful reflectorsturned toward the spectators, it will be seen that the latter are, in a manner, dazzled by everything that strikes their eye in the foreground, and that beyond this they see absolutely nothing but a black background.
Such is the explanation that may be given of the mystery of Dr. Lynn-an illusion that rests upon a curious principle in physics.-G. Kerlus, in, La Nature.

Trade Marks in Japan.

By imperial decree dated June 7, 1884, a trade mark law has been promulgated in Japan, the law going into force on the first of October. Persons who counterfeit registered trade marks and employ them will be punished by imprisonment with hard labor for a term of not less than thirty days and not more than one year, in addition to a fine. A trade mark in Japan runs for 15 years. Nearly all classes of goods manufactured are included under this new act.

C゚orrespandeuce.

The Smartest Old Man in the Country.

Under this heading we chronicled in our paper of Nov. , an account of the walk of seventeen miles by Seth Cook, of Rathboneville, a gentleman 103 vears old. The fol owing curious particulars will be read with interest:

To the Editor of the Scientific American:

Allow me to add a little to the history of "The Smartest Old Man in the Country." I was his family physician for twenty-five years, commencing during the year 1847. He had the appearance of quite an old man when I first knew him.
During that time he lived in constant violation of nearly every sanitary law. His constant drink was pure alcohol, of which he drank large quantities, buying it by the gallon and keeping it in the bouse. I think he rarely ever drank at a bar. I often remonstrated with him for drinking it, telling him it would eat up the coats of his stomach. He constantly affirmed it agreed with him and did him good. I do not remember that be was ever sick during the time. He kept himself what might be termed full, but never saw him drunk.
S. Mitchell, M.D.

Hornellsville, Nov. 1, 1884.

Steam for Extinguishing Fire in Vessels at Sea.

To the Editor of the Scientific American:

In view of the loss by burning at sea of the steamship Maasdam, on the 24th of October last, I suggest the use of steam as an incomparably more effective agent than water in the extinguishment of fire in vessels at sea, or in any confined situation of limited extent. In all vessels driven by steam power, let it be considered a primary necessity that conducting pipes for steam be laid, and so connected with the boilers for generating steam for power, as to make it possible to deliver it at any and every part of the vessel liable to take fire from accidental circumstances, as in the case above referred to; from lightning, not a very infrequent cause; or from the spontaneous combustion of the cargo in remote and practically inaccessible parts of laden vessels.
From the latter cause we quite often hear of the occurrence of fire in the holds of vessels, and particularly those laden with cotton, in which fire has been known, with closed batches, to smoulder for days and even for weeks before the final catastrophe of its breaking out was reached. In such cases, no amount of water that could be supplied short of sinking the vessel would, with certainty, accomplisis the object, because it would inevitably descend to the floor of the vessel and away from the fire. With steam as the active agent, this would be eatirely different. The moment it was ascertained in what compartment, or place in a vessel, fire was located, steam could, by the opening of a valve at or near the boilers, be instantly delivered there, through the
onen euds of pipes, and would with almost absolute certain ty reach and extinguish it.
That the supply of steam for the purpose be assured in all stages and localities of a fire, it would be necessary to have main valves for controlling its distribution situated at a convenient place on deck; also, to have one or moresmall extra boilers, like those for driving steam fire engines, located there, as reserves, to be used in connection with the same system of conducting pipes as those above named. It may be added, also, that boilers of this kind could be supplied and used for this purpose on any and all sailing vessels, carrying large and valuable cargoes, thus practically insuring that class of vessels also against destruction by fire. Of course, the use of steam boilers for such purpose would necessitate the employment and presence of one or more men anong he officers or crews of sailing vessels qualified to use them. In such cases the arrangements for distributing steam to every part of a sailing vessel would be the same as in the other.
The advantages in the use of steam for extinguishing fire are that by aid of its pressure in the boilers it can be forced into and through every compartment or subdivision of a vessel, and by many branch pipes, near the extremities, with open ends, into every crevice, even, of the cargo. Thus, by its dampening effect on all surfaces with which it would come in contact, the tendency to ignite and burn will be greatly lessened, while its extinguishing power results from the exclusion, by its pressure, of a large part of the air necessary to support it, and by the reduction in the temperature in what remains below the point of combustion, thus
ending the danger.
If by the use of arrangements for the purpose, so simple, inexpensive, and efficient, the owners of vessels can secure their comparative safety against fire, why should not passengers, officers, and crews have protection against danger from one of the most remorseless of all destructive agencies known to man?
H. A. Buttolph.

Morris Plains, N. J., Nov. 4, 1884.

Sulphuret of Carbon as a Disinfectant.

M. Peligot has presented a "Note" to the Comptes Rendus on some newly discovered properties of sulphuret of carbon. Contrary to the teaching of the text-books, sulphuret of carbon is soluble in water, in the proportion of 2 3 milligrammes per liter. The compound stops fermentation, and kills microbes. The manipulation of the liquid
is perfectly harmless, and it is erroneous to say that work people, employed in factories where it is used, are poisoned in consequence. No such ill effects as are supposed to emanate from this cause have been detected by M. Peligot in
workmen continually living in the midst of sulpho-carbona. ceous vapors. The respiration of the vapor of sulphuret of carbon occasions, after a few minutes, a state of anæsthesia similar to etherization, which speedily disappears. The aqueous solution has a sweet taste, and produces a sensation of heatin the mouth and stomach. The author thinks that this solution will be useful as a perfect and harmless antiseptic. In cases where the spread of an epidemic through contamination of the water supply is to be feared, he proposes that the supply should be passed through apparatus whereby it may be impregnated with sulphuret of carbon.

Timber and Tools.

It is a fact well known to millmen that it is not always the harder woods, in the ordinary acceptation of the term, that are the most wearing to the saws. Many practical persons marvel at this, and wonder to themselves why a piece of timber showing small crushing, tension, and other strengths, requires more power to work into lumber, and at the same time wears out the saws and cutting tools faster, than other varieties of timber, the strength of which, in most respects, is greater.
According to the Lumber Trade Journal, a log of black walnut and one of burr oak of the same size worked into the same sized stufl: will show widely different results on both saws and machinery. If we attempt to rive or split these logs, the walnut will work much easier than the oak, and so far as the various strengths are concerned the oak is superior by far, but when worked or cut into tools of any description the walnut presents much greater resistance than the oak, and the same is true as regards many other varieties of hard and soft timber.
If we take a longitudinal section of these comparatively soft timbers which are so hard on cutting edges, we will find the minute pores or interstices filled with minute glistening particles or crystals; and subjected to chemical analysis we will find them composed of silica, one of the very hardest minerals known, while with the hard, easy working woods they will be found nearly or quite absent by both the microscope and analysis. These little particles, so finely divided as to be insusceptible of ordinary touch, are really a better grit than ordinary sand, and are the means of cutting off the fine edge of cutting tools, as saw teeth, plane irons, and the like.
Two plane irons, made of a fine quality of steel, as near alike as it was possible to make by an accurate, skilled mechanic, were each hardened in our laboratory by means of mercury, then finely sharpened, that the edges of each pre. sented precisely the same appearance beneath the magnifier.
These were each inserted in an ordinary plane, and wie placed on oak, the other ou a piece of walnut, both pieces of wood having been previously dressed. At the rate of one of wood having been previously dressed. At the rate of one
hundred pounds pressure, each iron was crowded forward four inches. On the oak stick, the pressure from the rear indicated 809.5 pounds, while with the walnut the indicator showed a pressure of over one thousand pounds. The irons were both now withdrawn, and first placed beneath the microscope; the one used on the oak presented a general upset appearance, the edge of the iron showing a slight tendency to turn down ward, there being sufficient heat generated by the friction to partially draw the temper along the minute edge, which, however, would not extend back sufficient to materialty affect the wearing and cutting properties of the ron if in constant use.
The iron used on the piece of walnut showed a scratched, notched appearance all along the minute edge, and by the ad of the most accurate means of measurement at hand, these notches were all of the same depth, but different distances apart, proving conclusively that the particles of grit or crystals which caused them, by being harder than the best mercury hardened steel, were all of the same size, and evenly distributed, as far as regards depth of deposit in the grain of the wood. The small spaces of the iron edge between these notches or scratches were found nearly as the entire edge appeared originally, showing again that the cellular tissue of walnut, outside its mineral deposits, was really softer than that of oak; bence, were it not for these deposits, the timber would cut much easier. Of course, if the iron had been been drawn back, and again shoved through, the notches would have been more apparent and general, increasing each time, and the distance showed until the entire cutting edge had been of itself cut off.
Consulting the laws governing plant or vegetable growth, we are told that all food before becoming fit for assimilation must be reduced to its gaseous state. If this be so, the question arises. How or by what methods of plant growth and assimilation is it possible for silica to appear in its ori ginal crystalline state among the tissues of the growing or matured tree, while it is universally known that this variety of wood grows only where this mineral is abundant in some of its modified forms? This, however, is not of great interest to manufacturers just how it gets there, but that it is present is shown conclusively. To get rid of it, even
were it possible, would destroy the beauty and general characteristics of walnut, and to overcome its action on tools, rapid motion and softer iron is the best, safest, and most efficacious method.

Luminous key hole trimmings and door knobs are said to be in great favor with the bibulous inclined person, avd convenient for others. They are made of glass, and the back is covered with luminous paint. giving forth a light which may be seen considerable of a distance, on the darkest nights.

A Novel Method of Draining.

Recent experiments of Colonel John P. Fort, in southwest Georgia, in pond draining promise a revolution in the malarial sections of the South, which embrace the richest part of the country, and cover millions of acres. The great drawback of Florida, Louisiana, the rice sections of South Carolina and Georgia, has been the fact that white men could not live there on account of brackish drinking water and malaria, inseparable from floods and swamps. Severa years since, Colonel Fort, who owns much property of this description, conceived the idea of sinking artesian wells, holding that when a certain stratum was reached pure water could be obtained in abundance. His efforts were crowned with such success that every town in southern Georgia is sinking artesian wells. The water is perfectly clear, sweet, and pure as the best to be found in the highlauds. This success led Colonel Fort to try the experiment of draining stagnant ponds by running them off through subterranean passages that are known to exist at a distance of from seventy to a hundred feet below the surface. Colonel Fort's experimen was made on his hickory level plantation, in Dougherty County, and the pond upon which lie experimented is situated about two hundred yards from bis pioneer artesian well. The pond covered an area of about two acres, with a depth of ten feet in the center. To drain it thorougbly an outlet must be made in the deepest part. To accomplish this Colouel Fort bound four substantial pieces of timber to gether, floated them nver the center of the pond, and upon this foundation built his raft or pen, which sank as it was added to. When the raft had been built, the foundation resting on the bottom of the pond, the platform was across the top, and on this platform a derrick was set up. To this derrick boring apparatus was attacled. At first a pile driver was used, but when the pipe had been driven down through the bottom of the pond to a depth of thirty feet it rested on solid rock, and then the work of drilling and boring was begun. At a depth of fifty feet below the bottom of the pond the drill struck an opening, and at once the water commenced to sink with a roar through the big pipe, the top of which was ouly a few inches under water. The drill-pipe was drawn out, and the pond commenced to empty itself as fast as the orifice that the drill had made through the rocks would permit the water to flow. When the water in the pond was level with the top of the pipe a a reamer was attached to the drill-pipe, and sent down to open the way for the big pipe to be sunk deeper. In this way the pipe was sunk until a joint of two sections was almost level with the hottom of the pond, and there it was unjointed. Colonel Fort will have a square pit dug around the pipe, and the pipe will then be driven down to a level with the bottom of this pit. The top of the pipe will be covered with wire to keep trash out, and the pit will be filled with rocks, and thus the drain will be kept open. This strange sceue of emptying the pond into subterranean channels has been witnessed by bundreds of people, who see in it the reclamation of the millions of acres of swamp lands in the South. Thus, within two bundred feet of each other were two pipes, that of the artesian well throwing up the purest of drinking-water, and that in the middle of the pond sucking stagnant water into the bowels of the earth, and carrying it away. The experiment cost only $\$ 75$, while there were gained from it over two thousand tons o compost soil.-Boston Tianscript.

The Preservation of Buildings.*

bi dr. r. ogden doremus.
In every case the architect must kneel at the shrine of chemistry. The chemist has been called upon by the architect to make an ink that will fade after twenty four hours; and on the other hand, an ink that will not become visible ill after the lapse of twenty-four or forty-eight hours. The architect finds his work continually crumbling away. Water is the great solvent, especially with the addition of the acids always found in the atmosphere-carbonic, sulphuric, sulphurous, and nitric; besides ammonia, and often ozone. The coal burned in London alone disengages into the atmosphere 300,000 tons of sulphurous acid annually. Theseagents eat away brick and stone. Also water getting in and freezing is the great disintegrator in this climate. How to check this constant crumbling has been the great desideratum.
He demonstrated the porosity of sandstone by passing a jet of illuminating gas through a solid block of fine grained sandstone coated with about fifty coats of varnish, and covered on its sides with iron plates, leaving only a small area ou each side unprotected, to which were applied pipes for the entrance and escape of the gas which was burned after passing through; and of fine Pbiladelphia brick similarly armed, by blowing through two thicknesses of it with force enough to extinguish the flame of a candle. He stated that gas will pass through stone not only without pressure, but even, as demonstrated by Prof. Cbandler, against a pressure of ten to twenty atmospheres.
A result of porosity is that buildings after absorbing water effloresce, or become covered with a coating of salts, especially brick buildings laid in mortar made from sea sand. This means the decomposition of the material, besides a very disagreeable appearance. In Philadelphia, after a rain, the houses are generally thus whitened. This efllorescence cannot be prevented by ordinary paint nor oil.
Another dangerous result of porosity is that buildings ab-
*Abstract of a paper read before the American Institute of Architects,
sorb malaria. Hospitals thus become poisoned with a poison so deadly that he remarked he would sooner give his child the most deadly poison in the laboratory, and trust to the antidote, than expose him to such contagion.
He mentioned many well known buildings that were crumbling away, such as Girard College, the College of New York, Trinity Church, New York. He had dined with Gorringe soon after the obelisk was set up in Central Park, and the subject of the weathering of the obelisk was suggested. Gorringe said that it had stood 4,000 years, and would stand 4,000 years more. But, in fact, the obelisk is crumbling away. He showed several vials full of clippings collected at the foot of $i t$, also specimens of stone found peeled off from nside the new capitol during the visit of the Institute to it in the afternoon.
A simple remedy was suggested, and one which has been extensively applied in St. Louis and to some extent in New York, namely, an application of paraffin mixed with a little creosote. The building is heated by a small furnace, and where there is ornamental work a blowpipe is sometimes required to heat depressions. The paraffin is then applied in melted condition, and sinks in about a quarter of an inch giving a beautiful and indestructible glossy finish, and rendering the material absolutely waterproof and air-tight. In reply to a question about fire, he said that a fire would only drive it in a little. It costs on an average about fifty cents a yard, and never ueeds to be applied a second time, as no chemical agent in the air or in the rain affects it at all. Even caustic potash does not unite with it, of which one has said that 'those who invented sulphurfor helldid not know caustic potash." If the application is made to marble that has been weatherbeaten, the marble should first be cleaned with steel brushes. Marble thus cleaned, however, unless treated with parafin, soon becomes covered with a yellow stain, as appears on the building No. 50 Wall Street, New York.
Some of the buildings in New York which have been treated with paraffin are St.Mark's Memorial Church, houses 124-6 South Fifth Avenue; Huyler's, corner Eighteenth Streetand Irving Place; and a house No. 18 East Fifty-fifth Street, in a brownstone row. Every house in the row except this has its doorsteps "with verdure clad," and the growth of such mosses is destructive to the building material. The paraffin method is confidently commended by Dr. Doremus as the very bestever used.

An Electric Eel Six Feet Long.

A very interesting addition bas receutly heen made, says the London Daily News, to the Zoological Gardens in the shape of an electric eel-Gymnotus electricus. It is said to be nearly six feet in length, and must therefore be one of the very largest specimens of its kind.
Humboldt, when in the native home of this fish in and about the Rio Colorado, measured some that were 5 feet 5 inches in length; but though the Iudians said there wer larger, he himself saw none. The captive in Regent's Park is no doubt therefore a very big specimen, and there can be little doubt of its power. Humboldt thought that the Indians of the locality referred to bad exaggerated ideas on this subject, but they no doubt had bad practical experience while the illustrious traveler seems to have prudently re frained from testing the matter, except in the case of an eel would be what exhausted condition. He admits that a large and strongly irritated gee's self to the first slocks o a large and strongly irritated gymnotus; and though be does
nut mention any case within his knowledge of any human life being lost by a shock from the fish, the mode of catch ing them adopted by the Indiuns seems to render it by no means incredible that, as some have asserted, this fish is capa ble of killing a man.
The Indians, it seems, are accustomed, when they want to catch gymnoti, to scour the country round for wild horses and mules, which they drive into the ponds where the fish are known to be; and so violent are the discharges of the
pent-up lightnings to which these animals are exposed that, though they are not actually killed by electricity, they are so stunned and disabled that usually several of them are drowned. Humboldt once imprudently put both his feet on an electric eel just taken out of the water; and though he does not speak of it as a large one, he says he never experi-
enced from a large Leyden jar a more dreadful discharge than he felt on that occasion. He was affected all day with a violent pain in every joint of his body.

Waste of ofl.

An old machinist, of nearly fifty years' experience, stated in his shop recently that he had run a countersbaft, which he pointed out, on five drops daily of oil, the shaft being one and a balf inches diameter and having three bearings in hangers. "Yet," he said, "that shaft has never squeaked." The shaft carried pulleys which drove a drilling lathe, a polishing and wood turning lathe, a small screw cutting lathe, and a grindstone. Most of the weight of these puleys was between the two bangers on which he lavished two drops of oil a day. He kept his shaft level and in line. The belts pulled almost equally. The boxes were Babbitted. The shaft made about tbree hundred turns.
The experimenter said that he had tested oils as well as He felt. He believed in clear animal oil-whale or lard. He felt assured that good oil was wasted wherever drip pans establishments to sermonize over, where the shaft bearings drip oil and the floors are soaked with it.

Gas from Parafin Oils.

A paper on this subject was read before the Chemistry Section of the British Association, at their recent Montreal meeting, by Dr. Stevenson Macadam, F.R.S.E., of Edinburgh. In the course of it he said that for the last fourteen years he bas devoted much attention to the illuminating values of different qualities of paraffin oils in various lamps, and to the production of permanent illuminating gas from these oils. His earlier experiments were only directed to the employment of parafin oils as oils; and the results prov ed the superiority of the paraffin oils over vegetable and ani mal oils, especially for lighthouse service. His later trials, however, were mainly concerned with the breaking up of the paraflin oils into permanent illuminating gas; and the results formed the basis on which paraffin oil gas has been iutroduced into the lighthouse service of Great Britain, both for illuminating purposes and as fuel for driving the engines of the fog-borns. The following table shows the results of his investigations on the relative values of the crude, green, and blue oils:

	${ }_{98}^{\text {Cruade }}$	102	127
	${ }_{50}^{98}$	102 53	127
Light-value of gas per ton of oil,	499	4741	6044

Successtul Employment of Vaccination for Yellow Fever
Dr. Freire, of Rio Janeiro, in a recent letter to the anitary News, writes as follows
In compliance with your request, I will give you an account of the chief points of interest connected with my studies on yellow fever. I can, of course, give you only a very brief summary, and for further information may refer you to my two memoirs-"The Cause, Nature, and Treatment of Yellow Fever" and "The Contagion of Yellow Fever.' An extended report on all the theoretical and practical bearings of my researches is now in press, and a copy will be sent to you as soon as issued.
The method of culture which I have followed is Pasteur's. I withdraw blood, or any other organic liquid, from persons sick with yellow fever, or from the bodies of the dead, using the most scrupulous precautions, and introduce these liquids into Pasteur's flasks, previously sterilized, and containing a solution of gelatine or beef "bouillon." In these conditions the microbe develops abundantly, and becomes of itself attenuated by the action of the air, which filters through the tampion or amianthus with which the flask is corked. The purity of these cultures is demonstrated by microscopic examinations, of which you will find a good illustration in my memoir, "Experimental Studies on the Contagion of Yellow Fever."
The microbe appears in the form of little black points, like grains of sand (780 diameters); in the mature form it presents the appearance of round cells with an ash-gray or black rim, containing in their interior yellow and hlack pigment and some granulations which will be the future pores. These cells burst at a given moment, and pour out their contents, i. e., the spores, the pigments, and a
nitrogenous substance composed of ptomaines, which I nitrogenous substance composed of ptomaines, which I ave isolated not only from vomited matter, but aiso from
he blood itself, and from the urine. The yellow pigment, being very soluble, produces the icteric infiltration of all he tissues by a sort of tinctorial imbibition which may go on even after death; the black pigment, as well as the deritus, resulting from the rupture of the cells being insoluble, is carried into the general circulation, and produces obstructions in the sanguine capillaries, whence the apoplectic symptoms so common in yellow fever and in the urinary tubules, whence the suppression of the urine, a very requent and terrible symptom in this disease
I have described this microscopic organism under the name of Oryptococcus xanthogenicus; its development resembling that of this genus of algæ.
After baving demonstrated the contagious nature of yellow fever by experiments upon barndoci fowls (see my nemoir), I made experiments in preventive inoculations, frst upon animals and afterward upon men; I did not fear to do this, because a multitude of experiments upon animals had previously convinced me of the perfect safety of noculation with attenuated cultures.
Up to this date I have vaccinated 450 persons, for the most part foreigners recently arrived. Freedom from yellow fever has been pronounced among those thus vaccinated, for they have passed through a quite severe epidemic, and only six deaths have occurred among the 450 vaccinated persons -that is to say, less than two in a hundred-while more than a thousand deaths have occurred among the non vaccinated, the mortality of the non-vaccinated sick being about thirty to forty per hundred. Thus, if we take one hundred vaccinated persons, under the most favorable conditions as regards receptivity, we have only two deaths during the entire epidemic; if we take one hundred nonvaccinated sick, we have thirty to forty decedents, which gives a mortality fifteen times greater among the non-vaccinated. Even if the mortality were only ten times or five times less great among the vaccinated, the preventive measure would be worthy of adoption. The protective inocnlation for charbon gives an immunity to one-tenth, and that of vaccination for small-pox guarantees an immunity

Dr. Domingos Freire,
Professor in the Faculty of Medicine of Rio Janeiro,
President of the Central Junta of Public Hygiene.

engineering inventions.

A valve gear bas been patented by Mr. John w. Taylor, of Pittston, Pa. It is a contrivance of a radially grooved rocking disk worked by an ec-
centric, with valve rod and shiftring lever and connections, makivg a simple, variable cut-off and reversing gear with a single eccentric, and dispensing with the
link motion commonly adopted for the purpose. link motion commonly adopted for the purpose.
A rail chair has been patented by Mr. Samuel M. Beery, of Omaha. Neb. It forms a bearing
for the ends of the rails and holds them together; $i t$ is formed in sections, each with a base plate projecting from the inner surface, and provided with pins, which
pass into apertures in the rails held at their ends bepass into apertures
tween the sections.
A derrick bas been patented by Mr. Patrick Kelly, of Poughkeepsie, N. Y. The invention consists in the combination with the cross beam, braces, post,
and carriage of a derrick, of sliding extension hars and and carriage of a derrick, of siding estension hare and
their operating ropes, so the derrick can be readily secured in place and released, or moved forward ancl
run back to a safe distance when a a blast is to be fired. A link motion for engine valves has been patented by Mr. Thomas J. Walden, of Lehanon, Ind.
This invention covers a novel arrangement and construction of parts, by means of which the steam supstraction of pars, $\begin{aligned} & \text { py means of which the steam sup- } \\ & \text { plo may be cut of or varied at will according to the } \\ & \text { load on the engine, also facilititating the starting of the }\end{aligned}$ engine, constituting a variable cut-off, and preventing waste of steam.
A gripping attachment for traction cable systems has been patentedby Mr. Orlando H. Jadwin,
of New York city of New York city. It may be closed upon the cable with a slight movement of the operating bar, and when
the strain is on the attachment is pulled a little out of the normal line of the cable to avoid hammering a against
the pulleys, whetheroperated in a forward or backward the pulleys, whether operated in aforward or backward
direction.
A mechanical movement has been patented by Mr. Ira F. Monell, of Sugar Loaf, Col. It is adapt-
ed for use with an ore sizer, and to convert rotary motion into reciprocating, giving the pan quick backwaro and slow forward strokes, to cause the prulp to advance
along ascending sieves, to enable the length of the along ascending sieves, to enable the length of the
stroke to be regulated at will, and with oiher novel features.
A water elevator has been patented by Mr Albert. Van Ness, of Lowell, Mass. Itis for raising water
from deep wells, and the driving ehatat and drum carrying the hoisting rope are connected by three eear wheels,
the intermediate oue pivoted to a swinging hanger, and connected therewith by a spring held lever latch, with a trip spring, stop roller, and reversing wheel, so the
motion of the drum may be automatically reversed.
A method of and apparatus for cutting channels in water ways has been patented by Mr . Jobn
Gates, of Porlland, Oregon. It is practicaliy a sluicing process, by directing a current of water forced back from a stern paddle wheel on shoal or bar, and covers a novel arrangement of the vessel to swing on a
pivot at the bowe, and be therc beld while the stern is swung from side to side. The same inventor has also patented a method and means for cutting submarine channels by the action of a harrow hauled over a bar
or river bed assisted by the natural currents of the water way.

AGRICOLTURAL INVENTIONS

A hay rack has been patented by Mr. Robert Griswold, of Woody, Kan. The sills, cross bars,
and side bars of an ordinary hay rack are provided and side bars of an ordinary hay rack are provided
with peccliarly constructed ends and sides to confine the hay while being transported, and allow the rack
sides to be readily detached for convenience in unloadd sides to be readily detached for convenience in unload
ing.
A cotton planter has been patented by Mr. Louis S. Flatan, of Pittsburg, Texas. I has a funnel-
shaped hopper and axle driven by a worm and worm shaped hopper and a asle diviven by a worm and worm
wheel, held erect by astationary tube with flaring upper end, and carrying the furrowing plow, a screw in the
stationary tube causing the seed to be fed out by the stationary tube causing th
revolation of the hopper.

MISCELLANEOUS INVENTIONS.

A shoe fastening bas been patented by Mr. Daniel T. Chambers, of Washington, D. C. It is a blind strap lace of two thi cknesses, the under layer
having eyelets along each of its edges adapted to be successively caught over projecting hooks on the edges
of the sili in the shoe
An incaudescent electric lamp has been patented by Mr. James W. Benson, of North Adams,
Mass. Itis constructed with a spring pawl attached to the globe cap and engaging with ratchet teeth formed upon the outer surface of the insulating ring, so the
A seal lock has been patented by Mr. Owen E. Newton, of Fort Madison, Iowa. It is for locking
freight car and other doors, and may be adapted for a freight car and other doors, and may be adapted for a
spring key, or have a projection by which ihe bolt may spring key, or have a projection by which the bolt may
be driven or a leaden shot may be used as a key, the be driven or a leaden shot may be used as a key, the
construction having many novel features.
A vehicle wheel has been patented by Mr George D. Smith, of Glenn Springs, S. C. This inven tion provides means for excluding dust and dirt from
the wheel bearing, and means whereby the wheel may the wheel bearing, and means whereby the wheel may
be readily taken apart for repairs, the rim being of such const

A bottle for aerated and gaseous beverages has been patented by Mr. James Vidie, of Pantin,
Hraoce. The bottle is made by frst blowing the ba! of metal in a polyzonal mould, and then rolling the ball while distended by blowing in a second mould of cylindrical form, the imp
An indicator lock has been patented by Mr . Thomas B. Ashford, of Clinton, N.C. A wheel is se
to show a different number each time the lock is opened, to prevent the lock being opened and closed by an
unanthorized person, the changes in numbers showing
through an opening in the lock, and giving proof of its surreptitious opening. A fire escape has been patented by Mr.
Alesander J. Windmayer, of Fort Madison, Iowa. It Alesander J . Windma yer, of Fort Madison, Iowa. It
consists of a tubular bag or chute with one end connected to a frame hinged to a truck, with a top cross bar having lateral extensions to rest against a window frame when the bay or chate is extended, the frame
lso being connected to the truck by jointed braces A fire escape has been patented by Mr Sylvester A. Price, of Eureka, Kansas. A drum like Slivester A. Price, of Eureka, Kansas. A drum
device has attached to and wound upon it a lowering wire or rope, with means for attaching the device to
he body of the person descending, and also means for controlling or regulating the descent, embracing nove An automatic feed for printing presses has been patented by Mr. Andrew R. Bennett, of Utica, N. N .
T This invention covers a construction to enable Y. This invention covers a construction to enable many job printing offlces, to be fed by an entirely selfcting mechanism, so the press will require no atien tion except to supply it with the blank sheets in a pile.
A paper cutting machine has been patentd by Mr. Robert Atherion, of Paterson, N. J. I Combination with cutters or knives are devices fo
transmiting motion to them from a drum or roller re transmitting motion to them from a drum or roller re-
volved by the paper passing over it, to cut a roll of paper into bands or strips, as rapidly as the paper is olled without danger of tearing
A machine for scraping and splitting cane Las been patented by Mr. Edward M. Ellis, of Gardner, Mass. It has a series of feed rollers, with mecha-
nism for scraping cane or rattan, with a knife for splitting he cane, with suitable centering devices to guide the cane in such manner that it passes precisely cenA barrel former has been patented by Mr Thomas L. Lee, of Memphis, Tenn. Thisinvention relates to former patented improvements of the same inventor, and consisists in such peculiar construction
nd arrangement of parts as permit a barrel to b quickly made without skilled labor, different forms of A flo
A floor clamp has been patented by $\mathbf{M r}$ Edward W. Holt, of Corinna, Me. The invention onsists in a clamp operated by means of toggle bars, being forced into the floor by the foot of the operator nd the clamp retained and prevented from slacking
A combined ventilator and damper has been patented by Messrs. Franklin R. Hogeboom and Geo O. Woolcocks, of Brooklyn, N. Y. This invention is
intended to be applied in connection with the flues or pipes of stoves and furnaces, and consists in having damper within that portion of the flue that enters the
central portion of the veniliating register, with othe novel features.
A plane bas been patented by Mr. Cbarles H. Pike, of West Troy, N. Y. It i a a wood plane with quired angle with each other, to dress roughed out rocked axially while being passed backward and for ward over the work, the faces of opposite parts of the stock resting on trued edges of the work.

gusiness aud extronal

The Charge.for Insertion under this head is one Dollar a line for each insertion ; about eigltt words to a line.
advertisements must be received at publication offic advertisements must be received at publication offic
asearly as Thursday morning to appear in next issue Wanted.-A salesman experienced in wood and iron working machinery. Fuli particulars apply C. Hofman
J., 2 L Liberty St., N . $\mathbf{~}$.
ELMTRA, Nov. 5, 1884. Wyckoft, Seamans \& Benedict,
281 Broadway, $\mathrm{N} . \mathrm{x}$. Clty.

gentiemen:

The Associated Press dispatches of the election re
turns were taken at the Western Union Offce in this turns were taken at the Western Union offce, in this
city, lastnight by charles F. Lantry, on the Reminaton
The Type-writer. Six copies were taken simu
verfect success.
Very truly,
The Remington type-writer is the m. Clarke. United States oforerment. Wyckofr, Seamans $\&$ Bene-
ict, 281 and 283 broad way Practical Instruction in Steam Eninerions. Practical Instruction in Steam Engineering, and situ
tions furnished. Send for pamphlets. National In ations furnished. Send for pamp.
stitute, 70 and 72 West 23d St, N. Y.
The Cyclone Staam Flue Cleaner on 30 days' trial to For Steam and Power Pumping Machinery of Single and Duplex Pattern, embracing boiler feed, fre and low pressure pumps, independent condensing ootatts, vac-
uum, hydraulic, artesian, and deep well pumps, air comnum, hydraulic, artesian, and deep well pumps, air com-
pressors. address Geo. F. Blake Mfg. Co.. 44 WashingQuinn's device for stopping leaks in boiler tubes ddress S. M. Co South Nem
Mills, Engines, and Boilers for all purposes and o
very description. Send for circulars. Newell Univer Willl Co., 10 Barclay Street. N. Y. Wanted-Patented articles or machinery to manifac
uneand introduce. Lexington Mfg. Co.. Lexington, $\mathbf{K} \mathbf{y}$ "How to Keep Boilers Clean." Book sent free bs
"Mes F. Hotchkiss. 86 . John st., New York. Stationary, Marine, Portable, and Locomotive Boilers
a specialty. Lake Erie Boiler Works, Buffalo, N. Y. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N.J For Power \& Economy, Alcott's Turhine, Mt.Holly, N. J. The Hyatt filters and methods guaranteed to render all kinds of turbid water pure and sparkling, at economi-
cal cost. The Newark Fitering Co., Newark, N. J. Steam Boilers, Rotary Bleacher3. Wrought Iron Turn
Send for Monthly Machinery List
121 Chumbers and 103 Reade Streets, New Yor

Important to Manafacturers and Inventors.cilities for introducing and handung articles of merit, desires to increase its line of steam specialties; als
epecial machines or appliances. Goods purchased out ght, not sold on commission. Address "Important," O. Box 773, N. Y. City.

Iron Planer, Lathe, Drill, and other machine tools o If n design. New Haven Mig. Co., New Haven, Conn. If an invention has not been patented in the United States for more than one year, it may still be patented in
Canada. Cost for Canadian patent, $\$ 40$. Various other foreign patents may also be obtained. For instructions gency, 361 Broadway, Nownertific
Guild \& Garrison's Steam Pump Works, Brooklyn . Y. Steam Pumping
ion. Send for catalogue.
Nickel Plating.-Sole manufacturers cast nickel an odes, pure nickel salts. polishing compositions. etc. Com
plete outft for plating, etc. Hanson \& Van Winkle. plete outft for plating, etc. Hanson \& Van Winkl
Newark, N. J., and 92 and 94 Liberty St., New York.
Supplement Catalogue.-Persons in pursuit of infor tific subject. can have catalogue of contents of the Sc ENTIFIC AMLILICAN SUPPLIMMLENT sent to them free. The SUPPLizment contains lengthy articles embracing he whole range of engineering, mechanics, and physi-
cal science. Address Munn \& Co . Publishers, New York.
Machinery for Light Manufacturing, on hand and Electrical Alarms, Bells, Batteries. See Workshop Munson's Improved Portable Mills, Utica, N. Y. Mineral Lands Prospected, Artesian Wells Bored, b a. Diamond Drill Co. Box 423. Pottsville. Ea. See p. 141 Curtis Pressure Regulator and Steam Trap. See p. 286
Woodwork'g Mach'y. Rollstone Mach. Co. Adv., p. 286. C. B. Rogers \& Co Norwich Conn Wood Working C. B. Rogers \& Co.. Norwich, Conn., Wood
achinery of every kind. See adv., page 270.

Drop Forgings. Billings \& Spencer Co., Hartford, Conn We are sole manufacturers of the Fibrous Asbesto asbestos goods of all kinds. The Cnalmers-Spence Co 19 East8th Street, New York.
Clark's Rubber Wheels. See adv. next issue. Steam Hammers, Improved Hydraulic Jacks, and Tub Emerson's 1884~Book of Saws. New matter. 75,000 Hoist Hoisting Engines. Friction Clutch Pulleys,
Couplings. D. Frisbie \& Co., Philadelphia, Pa
Barrel, Keg, Hogshead, Stave Mach'y. See adv. p. 302.
Blacksmith Drilling Machines for $1 / 8$ to $3 /$ inch diame er, \$22.50. Pratt \& Whitney Co., Hartford, Ct.
For best low price Planer and Matcner. and lates mproved Sash, Door, and Blind Machinery, Send for
catalogue to Rowley \& Hermance, Williamsport, Pa The Porter-Allen High Speed Steam Engine. South-
wark Foundry\& Mach. Co., 430 Washington A ve.,Phil.Pa Split Pulleys at low prices, and of eame strength an ppearanceas Whole Pulleys. Yocom \& Son's Shafting
 HINTS TO CORRESPONDENTS.
Name and Address must accompany all letters,
or no altention will be paid thereto. This is for ou ame and Atend Aress must accompany all hetters
on no a atention will be paid thereto. This is for ou
information, and not for publication.
eferences to former articles or answers should Teferences to former articles or answers should
give date of paper and page or number of question
Inquiri es not answered in reasonable time should
be repeated, correspondents will bear in mind that
some answers require not a little research. and,

(1) C. E. R. asks (1) how to preserve the carapax of a turtle. The scales onthe outside surface Ways peel off. What will prevent it from peeling? such as is used for stuffing birds or animals. This is made of camphor, 1 ounce; corrosive sublimate, 1 ounce;
alum, $1 / 2$ ounce; sulphur, 1 ounce; all finely powdered, alum, $1 / 2$ ounce; sulphur, 1 ounce; all finely powdered,
and mix. It is then hung up in some loft to dry out and finally varnished. 2. Please give recipe for a good Any good solid body varnish will do. French polishfactory. This varnish can be purchased fromalmost
(2) C. E. W. writes: 1. I want to know how much water my engine is using, by card. I have Bacon's formula, which I need not quote; also Roper's
method, viz., divide the constant number 859.375 by the M. E. P. and the terminal volume. I have worked up a card by both rules, and the results are very far
apart. Which is right? I want to get hold of a general rule that is applicable to all kinds of engines, and one that is right. A. Bacon's is approximatelycorrect, only there should be deducted from the weight of steam, as
obtained from card, the weight of steam compressed by the piston, as this steam enters this cylinder at the next stroke, and hence is a portion of the steam by which the card of the snaceeding stroke is produced. 2. What is the use of making the clearance a factor in
a problem of this kind? Does not the terminal volume take cognizance of the clearance every time? A. No the clearance spaceis a part of the space filled by the
incoming steam, and in which the steam expands as in the cylinder. No correct comparison between the card produced and a theoretically correct card can be made without taking the clearance space into the account.
widery. I have Haswell, but he foes not agree with ard facts about steam, something I can bet on? I want a good handy book on indicators, etc., one that ordinary brains can take in, and that means sans algebra. A. Regnault's table of the properties of sieam is the standard generally accepted; you will find it in "Barou will findicator;" "Goodeve on the Steam Engine ndicator "Rray's 20 Years with the Indicator" will give ou much information; also Steam Engine Indicato by Le Van.
(3) M. C. W. writes: Can you recommend an article or how to prepare a substitute to represent My trouble is a thickening of the mucous lining of the bronchial tubes of a non-inflammatory character; every hing in the way of treatment has proved useless. A The gases generated by the combustion of coal are principally carbon monoxide and carbon dioxide; both frich arepoisonous. It may be that the oxyge it is both cheapest and best to consult some competent hysician.
(4) A. L. asks for information for making n alloy of copper and aluminum Does it require pecial flux for oblaining a good soft and ductile prouct? If so, what kind of flux? I have tried withou flux, only covered with charcoal powder, and got the
metal very brittle. Are blacklead crucibles to be used, or sand crucibles? A Use sand crucibles with bora or sand crucibles? A. Use sand crucibles with bora
nux. Use only from 5 to 10 per cent aluminum. Melt he copper first, add the aluminum in small pieces. tir with a charred stick of hard wood held in a smal ongs. For large quantity,as a 25 to 50 pound melting the plumbago crucibles may be used.
(5) G. W. L. asks (1) the best cement for a fish aquarium. A. Take equal parts flnely ground measure, and wist ala plaster of Paris b horoughly dry, make into a putty with boiled lineee oil to which a little drier has been added. Beat the mixture well, and let it stand 3 or 4 hours before using . This makes a strong and durable cement for bot resh and salt water. 2. With what shall I paint the pirits of wood alcohol with zinc white thin enough to low freely with a brush; paint quickly, for it drie at once. A small portion of gutta percha dissolved with
(6) E. N. asks how to make a good covering to steam boiler, to apply upon it like plaster or nortar, and a void caloric radiation. A. Mix asbestos with a little clay and plaster of Paris dry. Then wet
the mixture with water quickly, and put on boiler with trowel. Mix in small batches, as the plaster of Pari ets quickly. Short cattle hair makes good feltin reated above in place of astestos. Chopped straw has so been used where nothing beter is at hand.
(7) C. S. P. asks if there is any acid that will mix with oil. If so, what is it? A. Most of the
essential oils are soluble in concentrated acetic acid.
(8) M. E. S. sends impressions of three coins, and desires to know what they are and their value. Also where a catalogue can be obtained. A.
No. 1 is a Danish coin of no value. No. 2 is a U. S oken piece: would sell for about 50 cents. No. 3 is a
(9) J. J. A. asks the size boat to make for n engine $21 / 2 \times 31 / 2$ inches, and boiler that will furnish plenty of steam. A. 22 to 24 feet length, and 4 feet
beam. Vertical tubular boiler, 25 inches diameter and 4 to 46 inches higb.
(10) E. W. S. writes: Will you give me a receipt for an enamel or varnish that will adhere to a temperature of 210° Fah., will neither taste the bee or come off? A. There is noihing to our knowledg that is trustworthy for holding hot beer, but a clean,
pure copper surface. If there is anything, it would pure copper surface. If there is anything, it would
have been discovered before this by the brewing community.
(11) H. L. S. asks: Will a bullet fired from smooth bore have as much penetration for the same
monnt of powder as one fired from a riffed gun? Or other words, does the twirling of a bullet add to it ower of penetration? A. Round bullets of the sam weight, and with the same weight and quality of pow der, also with equal length of barrel, are supposed to have the greatest range and penetration from the
smooth bore. The riffing of guns is for accuracy of mooth bore. The rifing of guns is for accuracy of
ange, and for the purpose of giving elongated bullets spinning motion, to prevent turning over as well a its power of penetration.
(12) J. G. G. asks how to make "Cbinese cement" for leather and other articles. A. Chinese glue is made by covering shellac with strong liquid olution takes some time to form, and is facilitated b tanding, placing the bottle (well stoppered) in a mod anding, placing the bottle (well stoppered) in a mod trvals. Bleached shellac gives a lighter colored cement, but it is not considered as strong.
(13) C. N. S asks how to project on a creen the object through a microscope. I understand that can be done very succers to construct such an and 1 should lik can project microscopic objects on a screen by using the microscope objective in exactly the same manne a magic lantern tube is used, with proper illumina ion and a condenser for concentrating the light on the object; you would have no difficulty in projecting the objects.
(14) J. C. S. asks whether there are any mal boats now running by means of chemical engines. driven by chemical engines.
(15) E. H. McF. asks how to make a soldergolution that does not contain any acid. A. Try oil,
(16) J. H. C. asks how the direct and first shadow of an o.
Only by lenses.
(17) D. D. O. asks what kind of varnish is ased in the nitric acid process of etching designs on blades of razors, etc., and also how it is done. A. As
phaltum varnish or beeswax will answer your purphaltum varnish or beeswax will answer your pur-
pose. The varnish is put on with a brush and allowed pose. The varnish is put on with a brush and allowed
to dry; the beeswax is applied by warming the steel and allowing it to melt on the surface.
(18) J. W.-Steam boxes are not generally painted; oil paints are soon decomposed. Would re-
commend you to try coal tar, such as is used for anchors commend you
and chains.
(19) G. S.-The ingredients used in putting together emery whells vary with different manufacturers. and they keep the exact particulars to themselves. You might try this: A solution of pure gum
in naphtha mixed with finely ground sulphur; thorin naphtha mixed with fnely ground su phur; thor
oughly mix with emery, place in a mould, and subject to great pressure: then vulcanize by heating to
nearly $300{ }^{\circ}$ Fah. See article on carbon points in SoI entific American Supplement, No. 98.
(20) R. H. K.-The French method of polishing is by using a piece of fine pumice stone and
water; pass regularly over the work with the grain until water; pass regularly over the work with the grainuntil
the rising of the grain is down, then with powdered the rising of the egrain is down, ine
tripoli and boiled linseed oil polish the work to a bright face. This will give a very superior polish, but it re
(21) J. H. asks the best kind of round belt where a flat belt cannot be used; is there anything be use proposed and the size needed. Twisted leather and raw hide are good in some places, while for various purposes rupes might do. There is, however, a sort of
triangular shaped built-up leather belt which may be made to convey a good deal of power.
(22) R. F. T. writes: Where is a common playing marble manufactory located, and what is its
address? A. Marbles are all imported from Germany. address? A. Marbles are all imported from Germany.
There is no special house or houses that manufacture There is no special house or houses that manufacture
them. They are made in small quantities by the peasants, and so
(23) E. P. A. asks if jeweler's oil is made from jaw bone of porpoise. If it is reflned, or as pro-
cured from the bone. What is it worth. A. Yes; it sells at 15 cents for a small bottle. We believe how ever that in reality most the oil st sold is obtained
from the blackish. Some 6 quarts of a very limpid from the blackith.. Some 6 quarts of a very limpid
oil sometimes called melon oil is obtained from that oil sometimes called melon ortin
portion of the bead which reaches from the spout hole to the end of the nose and from the top of the head to the upper jaw. This oil is said to have an unusually
low congealing point, and to have no corrosive effect on metallic surfacess,and is specially prepared by a few frms in the U
mechanisms
(24) M. L. asks what product or preparation is used for separating wool from dry sheepskins. has of late been a a yood deal used for this purpose, bet
various other preparations of lime and lime with arvarious other preparations of lime and lime with ar-
senic are used.
(25) A. P.-There are several so-called kid revivifiers, whose composition is only known to those who make them. Yrobably olive oil, egg yolk, and
alum would make a good hase to work from; we fancy most of the revivifers actually lessen the life of the kid, but the above could not be injurious. Shoe and
boot dubbinge are principally mixtures of oil and tallow, and may be colored to suit. The hest waterproo boot polishes are simply made waterproof by carrying so minch oil as to fill the pores of the leather, and thus
repel water. Any preparation for cleaning brown tops repel water. Any preparation for cleaning brown
should be adapted to the leather, whichmay be of sheep goat, or calf. Sod oil is mixed both with degras and
tallow or other oils for currying purposes
(26) W. M. M. writes: Will you please give me (1) directions for silvering looking glasses that
are spoted. A. Clean the bare portion by rubbing it gently with fine cotton, taking care to remove any traces of dust and grease. If this cleanirg be not done
very carefully, defects will appear around the place revery carefully, defects will appear around the place re-
paired. With the point of your knife cut upon the back of another looking glass around a portion of the silvering of the required form, but a little larger. Upo
it place a smalldrop of mercury; a drop the size of pin's head will be sufficient for a surface equal to the size of the nail. The mercury spreads immediately, the knife, and the required piece may now be lifted to the place to be repaired. This is the most diffecult part of the operation. Then press lightly the renewed
portion with cotton; it hardens almost immediately, and the glass presents the same appearance as a rew one. 2. Also, howI can waterproof blue sample bozes
so as to enable me to wash same when they become dirty. A. It will be necessary to waterproof the paper
before the box is made. The operation consists in disin 4 pints of water, and 2 ounces of cum arabic and 4 ounces of glue separately in 4 pints of water; mix the solutions, heat slightly, dip in the single sheets, which havg up to dry. You might try coating the boses (27) J. M.-The known boiler explosions in the United States. for 1888 , were 184 , causing 263 death and 412 persons injured; of these 40 per cent were in saw
mills, ehowing careless management in such estab lishments as a class. The above is somewhat large than the average of previous years.
(28) T. E. L. asks the various methods of engraving, etc., names on door plates. A. The ancien
and hoorrable way of engraving door plates is to draw and honorable way of engraving door plates is to draw
the forms of the letters upon the plate with a steel point or even a pencil, and dig out the letters with a
graver according to your fancy or design. A way of etching the letters with acid has been in practice. With
a complicated design some very pretty work is done in
this way. The next is machine engraving, one kind
being done by a routing machine carrying an automatic racer traversing a pattern. Of these engraving ma hines there are several in the market under variou iners, while some claim universal work.
(29) E. J. N.-Boilers cannot burn that are sept clean and with water at full height. Oil is the
most pernicious element that can be fed to a boiler tgathers the sediment and forms oil cake, which set tees upon the fire sheets, causing the iron to becom ice. A little soda added occasionally to the peed oxidation from acid waters
(30) J. H. H.-There is no cheap material known suitable for conveying vinegar. Rubber hose
and pipes of oak are probably the cheapest that are good. Porcelan or glass tubing is the best, and if pro erly protected is the cheapest for durability.-Powants is the best known remedy. Steaming is practiced in some places where a small jet can be used with high
peessure, so as to blow the steam into their hidin (31) L. W. writes: I have several parrs of
(31) L. W. Writes: I have several pairs of
ne elk horns, but being exposed to sun are considerane elk horns, but being exposed to sun are considera-
bly bleached. How can I restore the brown color, or an ory name a stano that will produce a brow
A. Soak the horns for 12 hours in a solution of manganese sulphate, then wash with sodium carbonate brown shade desired.
(32) E. C. asks how to make the glossy narking ink used for marking show cards. A. Mark oughly with sufficient turpentine to make it thin nough to flow from the brush. The addition of sugar slycerine, or gum arabic will impart a gloss to the ink.
(33) J. C. asks what they stain oak with in A. An oak stain can be produced by mixing powdere ocher, Venetian red, and umber in size, in proportions to suit; or a richer stain may be made with raw sienna,
burnt sienna, and Vandyke. A light yellow stain of raw sienna alone is very effective. To darken oak,
trong coffee is sometimes used. To make it very strong coffee is sometimes used. To make it very
dark, iron flings with a little sulphuric acid and water, put on with a sponge and allowed to dry between each (34) H. G. H. asks what solution of chemi cals can be applied to wood to render it fireproof, or remove danger of fire from stove pipe in close prox-
mity to it. A. Coat the wood with zinc chloride or oda silicate. Another paint used is a saturated aque us solution of 3 pounds alum and 1 pound conperas, with which the wood is twice painted; after drying, a
solution of copperas in which powdered clay is sus. poution of copperas in which powde
(35) J. S. W. asks: What is a carbon re ducing agentor material for molten metalsp A. According to Greenwood, reduction is the process of separa-
ting the metal from its ore or its chemical combination. the substance effecting this separation or reduction is
The called the reducing agent. In the metallurgy of iron we lic'iron. This is principally accomplished by the indirect action of the carbon contained in the fuel. So that the iron oxide is reduced to iron by the carbon taking up
he oxyeen from the ore, forming carbon dioxide, thus lien oxygen from the ore, forming carbon dioside, thus,
iron oxide
carbon carbon diozide.
 rial (generally fuel, as coal, wood, etc.) that gives up
ts carbon to unite wilh substance with which the metal is carbon to unite with substance with which the metal ase given, iron oxide or hematite
(36) J. A. T. asks the necessary qualifications in order to pass an examination as mechanical
engineer. A. A good draughtsman and experience in the construction of machinery are the principal points. A knowledge of the practical application
geometry and mathematics, with a fair knowledge he history of mechanical science, are mediums of suc
(37) F. W. D. asks how to make a stain to apply on the bottoms of boots and shoes that will give
them a hard and clean bright polish. A. The polish is them a hard and clean bright polish. A. The polish is
different from the stain and comes, after proper samnying of the leather, , itht the use of rub stock or hamow furnished by the aniline dealers for either oak or hemlock or any immediate finish, and probably as "acid" tanned will not usually take a permanent stain he acid working through. Nearly every prominen manufacturer has some information he keeps secret in
regard to staining bottoms, but we judge aniline color ill give the simplest way of reaching any desired stain
(38) E. L. H. asks: Is there any method of eaving a scar? A. It is extremely improbable that tattoo remarks can be removed from the skin. A writer in the Chemical Nevs has stated that if the tat-
tooing is performed with some carbonacoous matter. tooing is performed with some carbonaceous matter
he marks can be made to disappear by being first well rubbed with a salve of pure acetic acid and lard, then with a solution of potash, and finally with hydrochloric
acid. Pricking with milk has also been partially effec
e in
(39) L. E. B. W. asks if water and glycerine mixed will answer for a hot water apparatus for Louse warming. A. Water mixed with from one to five
per cent glycerine will be safe and proper for hot water circulation only for heating purposes. For generating steam you might be troubled with foaming aud the ormation of scale cake.
(40) J. W. S. writes: Is not the variation in hiape of that body? Is it not a disk, or more properly hape of that body? Is it not a disk, or more properly
period of 5 days 17 hours and 36 minutes ? A. unnatural phenomenon among planetary or stellar mo tions. The common opinion among those who have nvestigated the observed conditions of this variable of the primary, and at a distance of about lwice ins diameter, is revolving about the primary in a plane
coincident with our solar system, making a revolutio n 68 hours 48.8 minutes.
(41) P. B. S.-Neptune and Uranus cannot be seen with the naked eye. You will not recognize
them except as the faintest stars in 2 inch hem except as the faintest stars in a 2 inch telescope
Stars have no measurable diameters. Poor telescope may give them a false diameter. The distance hetween Zeta and Delta Orion is about $3^{\circ} 42^{\prime}$. The hourly as eension is reckoned from the visual equinox, and
urned into degrees by multiplying the hours an minutes by 15 , divide the minute sum by 60 , adding the egrees to the hoursum.
(42) J. P. C. asks for a device for polishing the edges of No. 28 iron suitable for taking solder; be done about an inch wide on the edge of sheets, to scale off, or polish sheet iron edges suitable for solder-
ing, by passing a revolving emery wheel along th dges-the emery wheel to be 'mounted upon a swing ing frame; or by dipping the edges of the iron in 2
hallow bath of hydrochloric acid 1 part, water 3 part shallow bath of hydrochloric acid 1 part, water 3 parts,
or a half to 1 hour, or until the scale is removed; wask he sheet in warm soda and water to free it from acid, nd tin the edge required to be used for soldering wit a copper and soldering fuid. If there are a great many the cheapest way is to make a shallow sheet lead trough; make a frame to hold the sheets vertical, al the whole operation 20 or more
(43) H. S. writes: I noticed in the Scr ntific American of September 27, that citric acid was ased in the preservation of meat, etc. But it stated
also that the soluble citric acid could not be used etc. Please state what kind of citric acid is used and in disint manner and proportion, etc. A. Citric acid is combinations of the anhydrons acid with other ele ments than hydrogen are soluble, and cannot be used For instance, such as sodium citrate or iron citrate,
etc. cannot be used. The proportion of acid used deetc., cannot be used. The proportion of acid used de-
pends largely upon the substance with which it is used. pends largely upon the substance with which it is used.
The manner of employment is by mixing the solution e acid with the smbstance
(44) P. T. H. asks: 1. Suppose a boat 36 feet long, 8 feet beam, 20 inches draught, what horse ower of engine would be required to drive it six miles A. We think an engine 8 inches cylinder by 8 inche troke would suit. 2. Is a long stroke or short stroke engine better for such boats? A. Shortstroke prefera-
ble. 3 . Would I gain much (on the coast), using such ble. 3. Would I I gain much (on the coast), nsing such
aboat mainly for pleasure, but sometimes for towing by having masts and sails fore and aft the engine to bo mall propellers preferable, and what size in either in stance, and about weight and cost of propellers? A. Two propellers better for towing, one for speed only er; if two 34 inches to 36 inches diameter. 5 . Is ther any United States law which forbids a man to use mall steam lannch or yacht, and to carry with him who-
ever goes of his own will, provided he does not carry reight or passengers for money? It is said that license after inspection by a government offlial, iro bearing the government stamp, licensed engineers pilitas, or at sea navigators, etc., are required for
boats drivell by steam. What is the law? A. There
(45) W. F. McK. asks formula for pad fo rubber stamp, called ever ready ink pad. A. The fol wing is said to be a cushion that will give color per composition, saturated with a suitable color. The cushion fulfills its purpose for years without being recushion falfills its purpose for years without beng ree-
newed, always contains suffcient moisture, which is drawn from the atmosphere, and continues to act as a color stamp cushion so long as a remnant of the mas ushion or pad is too soft to be self-supporting, but hould be held in a low, fiat pan, and have a permanen cloth cover. The composition consists preferably of part gelatine, 1 part water, 6 parts glycerine, and 6 parts coloring matter. A suitable black color can be
made from the following materials: 1 part gelatine lue, 3 parts lampblack, annline black, or a suitable quantity of logwood extract, 10 parts of glycerine, soap, one-fifth part salicylic acid. For red, blue, or iolet, 1 part geatine glue, 2 pan a arts slycerine, 1 part Venetian soap, and one-fifth part salicylic acid. The following are two additional receipts used for this pur pose: 1. Mix and dissolve 2 to 4 dr . aniline violet, 1 l
ounces alcohol, 15 ounces glycerine. The solution poured on the cushion and rubbed in with a brush. Aniline violet 90 grains, boiling rain water 1 ounce; to
which is added a little glycerine and a small quantity of tracle. The quantities of the last two ingredient will vary with the season, but half a teaspoonful will fed.
(46) J. G. E. asks for (1) the best and cheap est way of dissolving corrosive sublimate-alcohol of
slycerine-so that it will readily combine with linseed iil, and also with water. A Corrosive sublimate ca di then mixed with theolingeod preferably in glycerine and then mixed with the linseed oil; 53.96 parts of the Also how to clarify and deodorize fish oil er the oils through charcoal, or if that is impossible and 10 parts calcined magnesia.. Mix them carefnlly in a Courcineux vessel of glass or tinned iron, let it tand during three days with occasional agitation, and then during three days with occasional agitation, and the
filter through paper or felt. 3 . Would a weak (aque
ous) solution of corrosive sublimate do as an insecti-
ide for a compost heap? And of what and cide for a compost heap? And of what strength? A.
instead of corrosive sublimate, we would recommend the use of iron sulphate (copperas), or else a spoonful ach of alt and lead nitrate, dissolved separately, an ed in a pail of water.
(47) A. W.-Composition for ornamenting picture frames is made as follows: Dissolve 1 pound
of glue in 1 gallon of water; in another kettle boil toether 2 pounds of resin, 1 gill of Venice turpentine nd 1 pint linseed oilf mix allogether in one kettle, and ontinue to boil and stir them together until the wate Las evaporated from the other ingredients; the dd finely pulverized whiting till the mass is brough hard when cold, but when warmed can be moulded to any shape.
(48) J. L. G. asks if blood albumen is still argely employed as a mordant in calico printing. Also pound also the title of any work on the subject 4 Blood albumen is still extensively used in calico print ing a of the albumen used is imported. It is manufac ther places where there is much slaughtering. Its price varies from 10 cents to 20 cents per pound, according to quantity. A. Klipstein, of 52 Cedar Street,
and J. L. \&D. S. Riker, of 45 cedar Slreet, handle it

enow no speciar book on the subject.

(49) A. M. P. asks for a receipt for ginger ale easile
back fles:
Browu sugar........................... 2 pounds.
Boiling water...............................lons.
Cream on tance.
Bruised gingerroot.................... 2 .
afase the ginger in boiling water, and your sugar and cream of tartar; when lnkewarm, strain; then add hale
pint good yeast. Let it stand all night, then bottle; if pint good yeast. Let it stand all night, then bottle; if
you desire, you can add one lemon and the white of an yon desire, yo
egg to fine it.
(50) L. C. writes: 1. I have made a Devinport writing desk of quartered sycamore; have oiled it, and given in body of white shellac. Please tell me
through your Notes and Queries how I can give it a good polish. A. The Freuch method of polishing consists in passing regularly over the work with the grain, sisg a piece of fine pumice stone and water, untiun tripli
rising of the grain is down; then wih powdered tripoli and boiled linseed oil polish the work to a bright face. This will give a very superior polish, but it required considerable time. 2. Is there anything poisonous about a lizard if taken into the stomach, by being boiled in water or otherwise? A. The flesh of certain lizards is considered a great delicacy, and is highly
prized as an article of food in portions of South America

INDEX OF INVENTIONS
For which Letters Patent of the United States were Granted
October 28, 1884,
AND EACH BEARING THAT DATEE

Car door lock, Pugh \& Le Gros......................
Car ventilating appuratus. E. L. Brady........ Car wheel, self-lubricating, W. R. Jenkins, J Dugas
Carbureting apparatus, air, J. Blondel, Fils Carpenter's gauge. W. Wells.... Cartridge magazine, W. B. Franklin
of, E. E Childs

Cask, ale or beer, H. A. Reute
Caster, stove leg, J. Sullivan..
Channels in waterways, method of and apparat Chimney cowl, J. S. Early. Churn, M. M. Green
Cisterns, device for cleaning J. E. Pattison Clamp. See Floor clamp.
Clamp fastener, J. Badger.
Clasp for the bands of neckscarfs, etc.,. J. Elson Cock, R. H. Marshall....
Cock, gauge, W. E. Granger
Coloring matter derived from aurin, c. Lowe....... Compasses. C. H. Alapaw....
Cooler. See Liquid crioler
Corn husking and eleaning machine, S. M. Schin Corn husking machine,

Corn sheller L. Knauer

Keene
Cotton opener and cleaner, S. D. Keene Keene
Coupling. See Car coupling. Thill coupling. Culinary vessel, C. Halstea
Cutter. See Bolt cutter. Buttonhole cutter Twine cutter.
Derrick P. Kelly.
Derrick P. Kelly.......................................
Dimetthyl phenylooxypyrazul, preparation of,

Doors, stay roller tor sliding, A. B. Matto
Double furnace. G. Rhoden.............
Drains. device and method employed in Drawing board, R. \&. We rotte
Drier. See Wool drier.
Drill. See Grain drill.
Seed drill.
Electric circuit indicator. T. L. Dennis.
Electric machine. dynamo. C. H. Bento Electric machine, dynamo, H. A. Gorn . Electric machine, dynamo, W. W. Griscom Electric motor, W. W. Griscom Elevator. See Grain el
Elevator, T. W. Taylor
End gate. wagon, G. N. Bacon Wind engine
Ensilage, packing, A. C. Carey Evaporating brine, etc.., T. G. Walker (r).... 10 , , , Pierce................. Evaporation of salt brine, e
Eye shade, H. W. Wagenet.
Faucet guard, C. O. Cole.................

Firearm, breech-loading, J. Duval
Firearm, magzine, R. L. Brewer..
Firearm, magazine, M. L. Burke
Firearm. magazine, E. A.
Fire escape, S. A. Price
Fiange, V. L. Wilson
Flanging machine, R. H.
Fioor clamp, E. W. Holt.
Floor clamp, E. W. Holt. Tweddell et al. Flour and erain conveyer, E. s. E. Edmonson...
Flowers, etc., compound for preserving Frame. See Stretcher frame. Fruit jar, W. Damerel nace.
Furniture spring, G. J. Hartman Gauge. See Carpenter's gauge
Garbage receiver, J. J. Slevin
Gas, apparatus for manufacturing, A. Mayer Gate. See End gate. Railw
Glass, decorating, E. Lloyd
Glass vessels, ornamentation of, A. H Merria Gold savin a apparatus, Brown \& Fleld.

A. Chaineux

Grain, apparatus
Gillen........
Grain binder kno
Grain drill, A. D. Alezander Grain elevator, dump, and register, automati Grapple, J. Carpenter
Guard. See Keyhole guard. Hack Ing machine, C. E. Ramu
Hame hook, J. L. Woolard....
Harrow, J. H. Hisey...
Harvester and husker. corn, Randali \& Snow. Harvester pitman, A. Bratschie.
Harvesting paatform adjustment, S. C. Shepard Fetter................
Hay pitcher, 0. H. King llay rack, R. Griswold..
Heating apparatus, steam, W. W. Forrest
Heel burnishing machine. T. Nolan Holder. See Bit holder. Newspaper and lett Hoof expander, D. Mace.
Hook. See Hame hook. Snap hook.
Hop separator, A. Zoller
Horseshoe, J. M. Keith.
Mydrauic motor, W. W. Woodburn
Indicator. See
Indicator. See Electric circult indicator
Inkstand, F. W. Hutehins
Jack. See Lifting jack.

Jar. See Fruit jar

Jaw wrench, spring. F. L. French.
Joint. See Railway joint.
Journal box, self-lubricating, H. Still.

$\begin{aligned} & 30,139 \\ & 307,087 \end{aligned}$	Keybole guard. G. McGovern Kritting machines, mechanism for supporting and
	adjusting the burr holders of, A. \& . Tomp-
	${ }^{\text {kins. }}$
	Lamp, Big
	chim
.. 307,364	hold
	p, in
	p. 1
269	Lamp, eafety, R.N
	Last block
	h, do
	Lediger and
	Leaker Mayer
.. 307.173	Lifting ja
	Liquid cooler, C. K. H. M.
,326	liquid cooler Loading and
30,080	Lock. See C
	lock. Seal lock.
	tive ash pan, A. A. Bi
	Locomotive side b
	Locomotive traction
	Loo
	Loom seroli, J.c. Pot
	Lubricat
. 307,339	Mach
	Mag
	Meat clam
	Mechanical power, E. B. Jones
	Metallic
	Minerals and metalic ores, apparatus for recuc-
307	Spring motor.
	Necktie fastener, L
	Nut
	Oil
	Oil from
	Org
	Ox shoes
	Packin
	Packing
	Padlock,
	Pan
	Paper cutting m
	Paper,
	wa
... 307,387	Paper stock, process
	ing,
	Pencils and pe
	Pillow block, A.
307.266	${ }^{\text {Pipes, union }}$
	Plane
	Planter, corn, A. C. Ev
	Planter. coton, L
377,362	Planter. pot
307,101	Plow. C. w
	fen
	Pocket fa
	Po
307,273	Printing pre
307.175	
$300,2$	
307,	
	${ }_{\text {Pump, arir }}$ Pump valve, C. L L. Broals
	Rack.
0r, 157	Rail
	way crossing gates, ele
	wa
	Railway train signals, connecto Marshall
	Refrigerator
	Rezulator. See steam pressure regulator.
	Riddle, grain.
	Riv
	Riveting machine, hydraulic, R. H. T........... ${ }^{3}$
	Riveting machine, hydraulic, R. H. Tweddell
$\begin{aligned} & \mathbf{3} 30,386 \\ & \hline 16,307,377 \end{aligned}$	ng macline, portable, R .
$159,307,160$	
	reting machines, apparatus for raising. lowering, and directing portable, Tweddell \& Field-
	ing
	, J. he alag
	eting machines, ap,
	table, R. B . Twed
. 307,34	Rolling machine, tire, J
225	Roonng to buildin
	fs,
	for, A.
, 32	Rose engine. A. Schwitt
	Sand distributing mact
	guard. J. G. Grorf.......
	Stil carriages, feed
$\begin{aligned} & 307,191 \\ & 307.347 \end{aligned}$	sto
	Screwdriver, and adjuste
	Seal lock, O. E. Newton
	(ediment, device for rem
	from cotton, J.J. Green
	Seeding machine and fertil
	Separator.
307	chi
	Sharts, aduustable sleiggh . I.
	Sheet metal. automatic folder or hook mas for, E. Jordan
	bing.

Shoe insole, A. J. Johnson..
Signal. See Railway signal Snap hook, J. H. Farmer .. soldering forceps, adjustable, C. P. Carter
Soldering machine, E. W. Bliss Soldering machine, Norton $\&$ H(ıdagson Spark arrester, A. B. Benjami
Spoke socket, C. F. Buker... Spraying, etc., apparatus for,
Spring. See Furniture sprin Spring. See Furniture spring.
Spring motor, C. I. Kidder... Spring motor, C. I. Eidder...
Sprinkling machine, J. Dahn. Square, T, C. A. Smith......
Stand. See Umbrella stand Starch yielding materials and apparatus there for. treatment of. J. H. S. Wildsmith. Steam boiler, H. Grimm Steam pressure regulator, D. c. Kellam.
Stitching horse, S. H. Kandall. Stitching horse, S. H. Randall....
Stone dressing machine, E. R. Cheney. Stone dressing machine,
Stove, cooking, J. Laxton...
Stretcher frame, W. Kevife Stretcher frame, W. Keuffel Submarine harrows, method of a
working, J. Gates.............
Switch. See Automctic switch. Switch. See Automctic switch.
Table. See Amalgamating table. Tablet, memos ial and inscription, L. Macy.... ... 307,129
 E. Pattison.

Tanks, cisterns, etc., device for removing sedi-
ment from the bottoms of J. ment from the bottoms of,J. E. Pattison...
Targets, trap for throwing, 'reipel \& Bandle...
 for, E. T.Gilliland. Telephone station apparat

$$
\begin{aligned}
& \text { Triasning macnine Dand cutt } \\
& \text { Driller................... } \\
& \text { Tile, ornamental, R. G. Jones }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Tile, ornamental, R. G. Jones } \\
& \text { Time controlling system. electric, W. F. Gardne }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Tinner's fre pot, W. .. Winebrenner. } \\
& \text { Tongs. metal, W. W. Winegar........ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Tongs, metal, W. W. Winegar.. } \\
& \text { Tongs or wrench, pipe, E. F. \& } \\
& \text { Tongue support, F. Brechting. }
\end{aligned}
$$

$$
\begin{array}{|l|l}
\text { Tool, carpenter's combinatior } \\
\text { Top, spinning, J. B. Broome. } \\
\text { Tor banks. safe lock for, 1. E. }
\end{array}
$$

$$
\begin{aligned}
& \text { Toy banks. safe lock for, l. E. Zet } \\
& \text { Traction engine, A. P. Broomell. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Traction engine, Kelly \& Dieter... } \\
& \text { 'rrunk desk attacnment, L. Garric }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Tunneling machine, H. S. Craven } \\
& \text { Tunneling machine. T. English.. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Tunneling machīne. T. English..... } \\
& \text { Turning tool, metal. F. H. Richards }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Twine cutter, C. Irake. } \\
& \text { type, . . . Thorp...... } \\
& \text { Type writing machine, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Herzog.. } \\
& \text { Type writing machines, line indicator for, E. } \\
& \text { Belden... }
\end{aligned}
$$

Carricaburu Valve gear, J. W. Taylo

Valve gear, engine. L. C. Lugmayr
Valve, triple, A. s. Lasley............................
Valves, link motion for engine, T. J. walden.
Vapor burner, M. L. Best
Vehicle, two-wheeled, J. A. Bilz
Vehicle, two-wheeled, w. C. Pitn
Vehicle wheel, G. D. Smith
velocipede, J. Knous
Velocipede, J. Knous.........
Velocipede, Millward \& Leni.
Ventilator. See Window ventilator.
807,083
307.41
307100

307.411
30740
3077116

Water closet basins, deffector for, J. Reid....
Water closet bowls, drip pan for, Q. s. Back Water elevator, A. Van Ness... Water gavee, safety, F. Hardie Wells, etc., apparatus for digging. J. Shillings. Wheel. See Car wheel. Propeling wheel. Vehicle wheel.
Whiffletree tug
astener, J. A. Little
Whip and rein holder, combined, J. H. Huntress. Whip socket, Gordon \& Cunningham. Wind engine, c. Learitt....
Window ventilator, w. . Sch
Wool drier. R. S. Jennings
Wool, machine for removing c
eous matter from, A. Bailly
Wrench. See Jaw wren
Wrench, H. A. Reuter
Ing car

Yoke center, neck, J. H. Hilil.
DESIGNS.
Boot and shoe calk, E. V. Mundy.............15,490, 15.491
Bottle, Royce \& Allen
Carpet, J. L. Folscm..
Carpet, O. Heinigke
Carpet, H. Hunt................
Clock case front, ©. C. Spring
Clock case front, s. c. Spring
Coffin screw, W. E. Stevens..
Costume, girls. L. Tully....
Costume, Iad's's. J Q. Reed
Costume, lady's. J Q. Reed.
Costume. lady's,.
Costume. lady's, S. S. Shres
Costume, lady's, M. Turner
Fireplace niche, J. A. Read
Ornamental ring. D. rieer.
Skirt, lady's walking, J. Q. Re
Type, printing, H. H. Thorp..

TRADE MARKS.
Bitters and cordials, stomach, Tonquin Bitters Co. 11,594
Flour. wheat, Holt \& Co...
Mint julep, J. H. Magruder
Soap powder, N. K. Fairbank \&
Soaps, laundry and toilet. C.
Soaps, laundry and toilet, C. L. Jones \& Co.
Thread, linen. In. Campbell \&

A printed copy of the specification and drawing of
any patent in the foregoing list, also or any patent
issued since 1866. Will be furnished from this office for 25
cents. In ordering please state the number and date
of the patent desired. and remit to Munn \& Co., 861
Broadway, New York. We also furnish copies of patents
granted prior to 1866 ; but at increased cost, as th
Canadian Patents may now be obtained by the
inventors for any of the inventions named in the fore-
907.153 going list, at a cost of $\$ 40$ each. For full instructions
307,182 address Munn \& Co., 361 Broadway, New York. Other

IMPORTANT to INVENTORS

 tronage of Her Majesty the Queen and the preste palc－of His Royal Highness the Prince of Wales，will be held
in Londonin 1885． The Exhibition will be opened in May， 1885 ，and wi
 nstruments of a date not earlier ethanples of M M usica
ment of the present cen ury and of Historic Collection
 jects，without ang restriction as to date．
Meadil．in Gold，Silver，and Bronze，and Diplomas of
Honor will be awarded on the recommendation of Juries． It is expected that
No charge for space．
LICION will take a prominent place in this UNBITION， and for the convenience of Exhinitors of
States the latest date for the reception
APPLICATIONS FOR SPACE APPLICATIONS FOR SPACE December，1884．
Such applications must be addressed（postpaid）to the
Secretary International Inventions Exhbition，London All necessary information a and Printed Forms will be
supplied on application in person or by post（marked on
theo utside ． EDWARDS，EsQURE，

SIMPLE MECHANICS

2．000 COMMON THINCS．
 RIPON CATHEDRAL．－FULL＂PAGE illustration and brief description of this ancient English

OPTICAL GOODS

FARLEY＇S REFERENOE－DIRECTORY OF THE

MACHINISTS
IRON，STEEL，AND METAL WORKING TRADES A．C．FARLEY \＆CO．，Publishers，Philadelphla
VARICOCELE P Patione

OPIUM合置 WHISKY HABITS まuan oive

ONLY $\$ 1.00$ BY MAIL，POSTPAID．
 A Great Mevicical Work on Manhood． Exhausted Vitality Nervous and Physical Detility，Pre－
mature Decline in in an and the untold miseries infesh is
heirto．bookfor every man，young．midide－aged，and

 the guthor by the National Medical A ssociation，to the
offreers of which he refers．
Address the Peabody Medical Institute，or Dr．W．H

PATENTS．

lication of the scientific Ambrican，continue to es－ amine Improvements，and to act as Solicitors of Patents

 for Inventors．thas thexty－erght years experience，and now have nnequaled facilities for the prosecution of Applications for Patents in the Cnited States，Canada，and Foreign Countries．Messrs． Munn \＆（＇o．also attend to the preparation of Caveats， Copyrights for Books，Labels，Reissues，Assignments， and Reports on Infringements of Patents．All business intrusted to them is done with special care and prompt－ A pampry reasonable terms．
A pamphlet sent free of charge，on application，con－ cure them；directions concerning Iabels，Copyrights， Designs，Patents，Appeals．Reissues，Infringements，As signments，Rejected Cases，Hints on the Sale of Pa
tents，etc． We also send．free of charye．a Synopsis of Foreign
Patent Laws．siowing the cost and merhad of securing
patents in ali the principai countries of the world． DIUNN A Solicitors of Potent DIUNN \＆CO．Solicitors of Patents，
BRANCH OFFICE1 Broadway．New York．
Washer of F and 7th streets，

ITTIO FAS GNEINE OVER 10.000 IN USE

THE CAMERON STPAM PUMP

OTANDARD OF MXOM工工MINOF． 30，000 IN USE．

 ROCR BREAKERS AND ORE CRUSFERRS．

FRET SAW OR BRACKET WOODS，

GEO．W．READ \＆CO．，
Manufacturers Mahogany and other Cabinet Woods．
o New Catalogue of Valuable Papers contained in S
free of charge to

WATCHMAKERS．

NEWSPERFECT

 MUNN \＆CO．，

For Sale or Lease，Handle Factory

AN OPTICAL WONDER $\begin{gathered}\text { For Pleasure } \\ \text { and Business．}\end{gathered}$

SCIENTIFIC AMERICAN SUPPLE－

ROOT＇S NEW IRON BLOWEA

IRON REVOLVERS，PERFECTLY BALANCED， P．H．\＆F．M．ROOTS，Manufacturers， S．S．TOWNSEND，Geen．Agt，．，22 Cortland St．，9 Deg 日r，
COOKE \＆CO．，Selling Agts．， 22 Cortland Street， JAS．BEGGS \＆CO．，Selling Agts． 9 Dey Street， SEND FOR PRICED CATALOGUE．

PRINTERS＇ROLLERS．BESEAPANTD
 THE LAWSON This is the oniy steam boilerever

 GOLD MINES OF SIBERIA．－INTEREST－

FINISHED PULLEYS

TO ALOSE OUT STOCK ON HAND． THE JOHN T．NOYE MFG．CO．，BUIFALLO，N． \mathbf{y} ． PAPERS UPON INDUSTRIAL CHEM－

FOREIGN PATENTS． Their Cost Reduced．
The expenses attending the procuring of patents in most foreign countries having been considerably re－
duced，the obstacle of cost is no longer in the way of a duced，the obstacle of cost is no longer in the way of a

CANADA．－The cost of a patent in canada is even less than the cost of a United States patent，and the
former includes the Provinces of Ontario．Quebec，New Brunswick，F＇ova Scotia，British Columbia，and Mani

The number of our patentees who avall themselves of the cheap and easy method now offered for obtaining
patents in Canada is very large，and is steadils increas－
ENGLAND．－The new English law，which went into Great Britain on very moderate terms．A British pa tent includes England，Scotland，Wales，Ireland，and the Channel Islands．Great Britain is the acknowledged fnancial and commercial center of the world．and her
goods are sent to every quarter of the globe．A good invention is likely to realize as much for the patentee in England as his United States patent produces fo
im at hrme，and the small cost now renders it possibl for almost every patentee in this country to secure a pa－ tected as in the United States．
OTHER COUNTRIES．－Patents are also obtaine on very reasonable terms in France，Belgium，Germony on very reasonable terms in France，Belgium，Germany
Austria，Russia，Italy，Spain（the latter includes Cuba
and all the other Spanish Colonies），Brazll，British ludia， An experience of tHIRTY－EIGHT years has enabled lish foreign countries，and it has always been their aim to have the business of their clients promptly and proper－ ly done and their interests faithfully guarded． A pamphlet containing a synopsis of the patent laws
of all count ries，including the cost for each，and othe information useful to persons contemplating the pro－ this office．
MUNN \＆CO．C．Editors and Proprietors of The sct－ FNTIFIC American，cordially invite all persons desiring
any information re＇ative to patents，or the registry of trade－marks．in this country or abroad，to cull at their
offices． 361 Broadway．Examination of inventions，Bon－ sultation，and advice free．Inquiries by mail promptly answered． Adress
ddress，

Savertisements.
 out eight words to a line Engravings may head advertisements at the same rate
per line by measuremint, as the letter press. Adverper line by measuremint as the letter press. Adver
tisements must be received at tublication ofice as early
as Thursday morning to to

SEBASTIAN, MAY \& CO.'S. IMPROVED 860
Screw Cutting Lathe
 Dogs, and masechinistsk and ama
teurs outfta. Lathes on trial.
Catalogues mailed on
©i
Cincinnati,
Ohio.

F., Brow's Patatent CLUTCH.
Send for Illustrated Cata-
logue and Discount Sheet
to

The "MONITOR." $|$| Best Boiler Feader |
| :--- |
| sin the worid |

EjECTORS

 Sedrathan manuaigivinc company,

WITHERBY, RUGG \& RICHA RDSON. Manufacturers tion. Facilities unsurpassed. Shop formerly occupied
by R. Bail \& Co., Worcester, Mass. Send for Catalogue.

H.W.JOHISS ASBESTOS
 LIQUID PAINTS ROOFING.

Fire-proof Building Felt, team Pipe and Boiler Covering, Steam Pack
ing, Mill Board, Gaskets. sheathings,
Fire-poof Coatings, Cement, dc. descriptive price list and samples free. H. W. JOHNS M'F'G CO. 87 Maiden Lane, New York. 170 N. 4th St., Phila. 45 Franklin St., Chioago.

BARNES'

 KORTING UNIVERSEL
 NO ADJUSTMENT FOR VARYING ALL CTEAMTIONTE. PRESSURE. IFT WATER 25 FEET. SEND FOR DESCRIPTIVE CIA
OFFICES AND WAREROOMS:

Augusta, Ga., 1026 Fenwick St.
San Tranciso, Cal., 2 Califor-
nianver.
nitreet.

BURNHAM'S SELF-ADJUSTING SWING CHECK VALVE.
 weare, the yoke that pasaet arounc the seat moves away ron

SPEAKING TELEPR

GASKILL'S STEAM PUMPS, GASKILL'S high duTY pUMping engines. or public water supply. Manufactured by
THE HOLLY
MFG. Co., Lockport, N.

Steel Castings

 THE BEST STEAM PUMP.

 a

Leffel Water Wheels,

With lmportant Improvements.
11,000 IN SUCCESSFUL OPERATION. FINE NEW PAMPELET FOR 1883
free to those intereste
JAMDS LPFFEL \& CO.,
Springfield, oh

110 Liberty St., N. Y. City.

FOOTLATHES
 The best for A mateur, Electrician, and Work Shop use. Swing zi8 ins. Improved foot power, tool carriage.

 COLUMBIA BICYCLES AND TRICYCLES.

VOLNEY W. MASON \& CO. FRICTION POLLETS CLUTCHES and ELEVATORS, providence, r. 1

Rug

タcientific Ammericam
FOR 1884.
The Most Popular Scientific l'aper in the Worldo
Only \$3.20 a Year, including postage. Weelsly. 5: Numbers a Year.

This widely circulated and splendidly illustrated aper is published weekly. Every number contains six een pages of useful information, and a large number of riginal engravings of new inventions and discoveriea, ew Inventions, Novelties in Mechanics, Manufacture Chemistry. Electricity, Telegraphy. Photography, Arch all Agriculture, Horticulture, Natural History, etc All Classes of Readers find in the SCIENTIFI ormation of the day; and it is the aim of the publisher e form, avolding as much a his journal affords a constant supply of instructive eading. It is promotive of knowledge and progress every community where it circulates.
Terms of Subscription.-One ce
Terms of Subscription.-One copy of the SCIEN-
TIFIC AMERICAN will be sent for one year- 2 nuen postage prepaid, to any subscriber in the United State or Canada, on receipt of three dollars and iwemy ents by the publishers, six month, \$1.00; thre
Clubs-0 AN will be supplied gratis for everyclubof five subscriber at $\$ 3.20$ each; additional copies at same proportionat
One copy of the Scientific American and one copy for one year, postage prepaid, to any subscriber in th for one year, postage prepaid, to any subscriber in the
United States or Canada on receipt of seven dollars bv

The safest way to remit is by Postal Order, Draft, or Express. Money carefuny placed inside of envelopes, stray, but is at the sender's risk. Address all letters and make all orders, drafts, etc., payable to

MITJNIV \& CO.

361 Broadway New York.
To Foreign Subscribers.-Under the facilities of
 scribers in Great Britain. India, Australia, and all other ritish colonies ; to France, Austria, Belgium, Germany Mexico, and all States of Central and South Amertce Terms, when sent to foreign countries, Canada excepted, \$4, gold, for Scientific Amirican, one year; ${ }^{\text {\$9, }}$, gold
for both Scientific Ambrican and Supplement for by postal order or draft to orderof
MUNN \& CO., 361 Broadway, Ne \mathbb{Z} York.
PRINTING INKS.

