a Weekly journal 0f Practical information, art, Science, mechanics, chemistry, and manufactures.

	NEW YORK, OCTOBER 25, 1884

THE THOMSON-HOUSTON EXHIBIT AT THE INTERNA- Switching the current it could be made to leave the arc making a sufficient number of convolutions, the terminal is

TIONAL ELECTRICAL EXPOSITION, PHILADELPHIA. lights and supply the requisite energy for an incandescent
Visitors to the Exposition, upon entering the main gate plant and then turning to the right, had their attention attracted, The peculiarity of the Thomson-Houston dynamo may before they had proceeded far, by a multitude of powerful be said to lie mainly in the armature, the construction of are lights suspended above a raised and richly carpeted which is strikingly original. This armature is made of a flooring. Here were displayed a series of finely wrought mechanisms, from an exposed core of a dynamo to the perfected machine. This was the headquarters of the Thom-son-Houston Electric Company, of Boston, Mass., which of late has become widely known for the efficiency of its ap paratus and the business-like thoroughness of its system.

In the general exhibit this company had five dynamo machines in constant action, two having a capacity of 30 are lamps, two more of 12 lights capacity, and still another of 6 lights. Besides these there were models of the unfinished Thomson-Houston dynamo, so arranged that the parts could be inspected, and other specimens of the latest improved type.

To those who had the time and inclination to attentively study this exhibit-and there were many such-conclusive evidence was presented of its possession of novel and striking features when compared to other systems of the same type. It was noticed that the hissing and sputtering, so common in some arc systems, were here reduced to a minimum, and the lights were powerful, constant, and steady. A diminutive dynamo and plant designed by Prof. Thomson illustrated the system in all its workings far better
than could have been done by a plant distributed to distant than could have been done by a plant distributed to distan
parts of the building. It showed clearly the relations between current, electromotive force, and work. A small dynamo generated a constant current, which kept aglow six arc lights, each of the intensity of sixty candles, and by
 spheroid, surround this. Insulated copper wire in three
arc circuits.
series is wound on this core. Starting at that part of the carried out to a segment of the commutator, the beginning of the wire being attached to a coupler near that portion of the shaft which is opposite the commutator.
A like direction is taken by the second series of wires which are kept at an angle of sixty degrees with the first, and the third series of wires follows at another angle of sixty degrees. The initial ends of these last two series are affixed to the coupler to which the first is altached. Hence all of them are electrically connected. To different plates of the commutator the three free ends are affixed. Thi method of winding has proved to be very efficient, two se ries being constantly maintained in the field of force.
By means of a combined motor and generator shown in the exhibit, the arc light or motor circuit can be made to feed incandescent lamps, an alternating current being used. The system employed is that of building on the same shaft the armatures for both the motor and the lighting apparatus, and any kind of current as to character or potential may be taken off.

What attracted not a little attention to this exhibit was the running of are lights in multiple series. This is an invention of Professor Thomson, and a very important one, for, as seen at the Exposition, it permits the running of arc lights of altogether different intensities from a single circuit, some of them being in series, while others are in multiple arc or in multiple series, and renders practicable di visions and redivisions of lights as well as the rejoining of
shaft opposite the commutator, the wire of each of these For the benefit of scientific institutions and the lecture series is led over the longitudinal circumference of the core, room generally, the Thomson-Houston Company make a and, in order to avoid the shaft, changes its course and re- hand dynamo. As exhibited, it showed that it is capable

THE THOMSON-HOUSTON EXHIBIT AT THE INTERNATIONAL ELECTRICAL EXHIBITION, PHILADELPHIA.
or providing a strong and constant current for other purpose of illustration or experiment, at times showing nearly a one horse power energy
The motors displayed by this company showed themselves particularly adapted for the transmission of power from a distance, which from present appearances would seem to be one of the great problems of the future.
Perbaps the most important feature of the ThomsonHouston exhibit was the little mecbanism inclosed in a small hox by which the electric current can be transferred from arc lights, and made to feed incandescent lights of from twelve to sixteen candle power. It is called the Thomson-Rice incandescent distributor. Heretofore little has been done in this direction; either arc or incandescen lights being exclusively distributed, because it was found that the cracking of one or more incandescent lamps usually led to the breaking of many more in the same group. By the device exhibited, however, an arc light can be turned out, and a group of eight incandescent lights be made to glow instead. Furthermore, all the lamps or any particular number of these in one circuit can be turned on or off with the same facility as gas jets can be operated, and without danger to other lights in the circuit. The little mecbanism acts automatically and electrically, and is at no time subject to accident by reason of careless bandling As a whole, the Thomson-Houston systom shows, as exhibit ed, that it is founded upon a correct interpretation of na tural laws, and that its workings are directed by men who are conversant with the theory as well as the practice of electrical engiveering.

The National Academy of Sciences.
A session of this society was held at New port, R. I., Oct. 14 to 18. The National Academy was incorporated by Congress in 1863, to " consist of not more than fifty ordinary members," and the custom has been that these shall be selected specialists such as will best represent every department of knowledge. We believe there are now about one hundred members of the Academy, but it is nevertheless a very select organization as compared with that much larger body, the American Association for the Advancement of Science, and mauypapers read at its meetings are such as would be of lit the interest to ot her than specialists in the subjects treated of Among the papers read was one by Prof. E. D. Cope to show the evolution of certain bones of the ear in Pelicosauria involving a study in comparative anatomy as well as evolu tion.
Prof. Fairman Rogers, of the University of Pennsylvania, described experiments on the motion of animals, as depicted by instantaneous photography. In some experiments con ducted last summer at Fairmount Park, Pbiladelphia, forty cameras were placed in a row, and so adjusted as to be suc cessively opened by the motion of an animal passing in front of them. These experiments will throw light on the mechanism of animals, and, it is suggested, may give valua ble application in machinery. For instance, marine engineers do not agree on the best form of steamer screws, and it is intimated that an exbaustive study of the fisb's propeller would throw light on this. There will probably be no diffi culty in arranging a glass tank through which fish can be made to swim, and be photographed in transit. The motion of dogs, horses-especially racers-deers, and other-animals, in running, were described; and interesting and prolonged discussion ensued. Professor Rogers stated an interesting point to be the flexure of the long pastern. When a horse gallops, he moves in a horizontal line. His body keeps al most a uniform direction, notwithstanding that his feet rise and fall. He bends his pastern to keep level. In race horses it touches the track. He cited as an instance a celebrated race horse, which used to make eight marks on the ground, four for the pasterns as well as the four foo tracks.

Professor Tylor, of Oxford, England, the eminent anthropologist, considered at great length the "Civilization of the American Races," particularly the Zuni, Navajo Mojave, and Wallopi tribes, among;which he had traveled.
Among those present at this meeting of the Academy were President O. C. Marsh, Professor of Paleontology o Yale; Home Secretary Asaph Hall, Astronomer of the National Observatory; Treasurer J. H. C. Coffin, United States Navy; W. H. Brewer, Professor of Agriculture Yale; G. J. Brush, Professor of Metallurgy, Yale; Josiah P Cooke, Professor of Mineralogy, Harvard; Edward S. Dana, Professor of Physics at Yale; Walcott Gibbs, Professor of Chemistry at Harvard; Julius Hilgard, Superintendent of the Coast Survey; Samuel P. Langley, astronomer in charge of the Allegheny Observatory; J. S. Packard, Professor o Zoology at Brown University; Edward C. Pickering, direct or of the United States Geological Survey; Samuel H Scudder, editor of Science, of Cambridge Mass.; Williau P. Trowbridge, Professor of Mechanics at Columbia College; and Francis A. Walker, President of the Massachu setts Institute of Technology.

A New Pavement in Berlin.

A new form of paving has been in use in Berlin since last year. Layers of bricks are put down impregnated with asphalt. After a time they absorb from 15 to 20 per cent of he bituminous matter, becoming remarkably elastic and capable of resisting pressure and damp. This new paving, it is said, lasts much longer than any of the other kinds, and it offers a sure foothold to borses. It is a very popular pavement in the capital of Prussia.

zrientific esmexican.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at

No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERIS FOR THE SCIENTIFIC AMERICAN.
One cony, one year postage included...
One copy, six months postake included

..
$\ldots 390$
..
60

Clibs.-One extra copy of the Scientific American will be supplie same proportionate rate. PostaRe prepaid.
Remit by postal order. Address
MUNN \& CO., 361 Broadway, corner of Franklin street, New York.

The Scientific American Supplement

is a distinct paper from the Scientific american. The suphlemien' issued weekly. Every number contains 16 octavo pages, uniform in siz ith Scientiric american. Therms of subscription for Supplement
5.00 a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all news dealers throughout the countrs.
Combined llates. - The scientific american and soppligment will be sent for one year postage tree. on receipt of
papers to one address or different aduresses as desired. The safest way to remit is by draft, postal order, or reekistered letter. Address MUNN \& CO. 261 Broadway corner of Franklin street, New Yor

Scientific American Export Edition.

The Scientific american export Edition is a larke and splendid peridical, issued once a month. Each number contains about ine hundred large quarto pages, profusely illustrated, embracing: (1.) Most of the
plates and pages of the four preceding weekly issues of the Sciw Ames and pages of the four preceding weekly issues of the Sctivntric ommercial, trade, and manufacturing announcements of leading houses Terms for Export Edition, 85.00 a year, sent prepaid to any part of the
orld. Single copies 50 cents. Manufacturers and others orld. Single copies 50 cents. Manu facturers and others who desir
o secure foreign trade may have large, and handsomely displayed nouncements published in this edition at a very moderate cost.
The Scientific am niucan Export Edition has a large guarauteed circu
Iation in all commercial places throughout the world. A
CO., 361 Broadway, corner of Franklin street, New York
NEW YORK, SATURDAY, OCTOBER 25, 1884.

TABLE OF CONTENTS OF

the scientific american supplement

NO. 460,
For the Week ending october 25, 1884.

Price 10 cents For sale by all newsdealers

CHEMISTRY. ETC.-Woipert's Method of Fstimating the
 ENGINEERING AND MECHANICS.- - Links in the History of the
 I. TECHNOLOGY-A Reliable Water Fiter.-With engraving..e.
Simpre Devices for Distiling Wateritr.ine
lmproved Fire Damp Detecter.-With full description and e

 ARCHITECTURE AND ART.-The National Monument at Rome.

- With full page engravraro
On the Evoution of Forms of Art. From in paper by Praif

A PRIZE FOR INVENTORS.-NEED OF PASSENGER AND

 FREIGHT CAR BRAKES.Railroad officials seem to have arrived at the settled conviction that no essential improvements can be made in pas senger car brakes; that the air or vacuum brakes, with ail their faults and deficiencies, are as nearly perfect as can be, and that it is useless to seek further. And as practically all the roads bave adopted these brakes for their passenger traffic, they naturally oppose the introduction of any improvements that would depreciate their costly investments. For the present, then, the passenger car brake question may be cousidered settled, but it is not so with the freight car brake.
It may be asked why the air or vacuum brake is not as well adapted to freight traffic as to passenger traffic. In reply the roads say that the cost of the air or vacuum brake is greater than the freight service will bear; that the air or vacuum brake must, to be effective, be continuous, or connected for all the cars in a train; that this necessary continuity or connection of all the brakes in a train can, without much trouble, be assured in passenger traffic, wherein the interchange and mixing of cars rarely occurs, but that the conditions obtaining in freight traffic are such that each car must be equipped with a brake that will act independently of any other in the train.
On all the principal lines of railroads the majority of the freigbt trains are partly made up of "wild " cars (cars from other roads) and these cars are necessarily distributed throughout the train in the order of their arrival, so that one "wild"car without the air or vacuum brake in a train equipped with the air or vacuum brake might render all the brakes on the train ineffective.
Another objection which the roads make to the air or vacuum brakes for freight traffic is that the brake nose connections deteriorate from exposure, and that the couplings offer irresistible temptation to thieves.
If in spite of special care and watch in the yards the nose ennnections often give out and the brass couplings are almost daily stolen, what, they say, would become of the brake on freight cars which are run off and held on sidings all along the road for days and weeks, waiting to be loaded or unloaded?
There are other minor objections to the air or vacuum brake for freight traffic, but these meutioned appear to be iuseparable from this class of brakes.
Not only, then, are the lists open to a suitable freight brake, but the roads are united in seeking for it.
This is one of the broadest fields for inventors, and will yield most abundant reward to the successful ones.
Great fortunes bave been made from the air or vacuum passenger car brakes, and yet the whole number of passenger cars in this country are less than one-thirtieth of the number of freight and coal cars, which are all in want of number of freight a
their special brake.
Freight trains are still operated by the common hand brake, and though many other kinds have been proposed, the roads prefer to hold to their old friend until something in all respects superior shall be produced.
It is true that the band brake requires a crew of two or three brakemen to a train, while a suitable brake would require no brakemen; it is true that it cannot quickly control a train running at high speed, and consequently that for safety the trains must be run slowly; and it is true that its persistent use daily brings death or injury to one or more poor railroad employes; but nothing yet devised for the pur pose possesses all its virtues and fewer faults and is, at the ame time, cheap enough
For the benefit of inventors we have given this brake problem long and careful study, in which we have been aided by a number of prominent experts in railroad matters.
We can say, then, that a brake which shall fulfill all the requirements of freight train service must be cheap, simple, and durable, and require no special skill to repair or keepit in order, and it must possess the following functions and advantages:

1. It must be thorougbly automatic, and entirely under the control of the engineer.
2. It must adjust itself automatically, to suit either direction in which the car is pulled.
3. It must operate at any and all rates of speed.
4. It must be complete in itself on the car to which it is attached, and independent of the action of other brakes in the train, so that " w ild" cars will not interfere with its action.
5. It must be capable of bringing a train to a "full stop," and, if on a descending grade, of "holding it."
6. It must admit of a train being moved a short distance at slow speed, and yet be operative to stop it again.
7. It must not interfere with the backing of a train, nor in any way with the handling of a train in yards.
8. It must provide for the stopping of the rear portion of train when broken loose.
9. It must never cause sliding of the wheels.
10. It must never interfere with the use of the hand brake staff.
11. II must be easily rendered inoperative.
12. It must operate with slight motion of the drawbar, and not be injuriously affected by excessive motion thereof
It should be applied in place without removing car truck or axle.
And finally, it should be so constructed that but one trusk n a car need be equipped with it.

It is well understood that these functions and advantages can probably be combined only in a momentum brake; but no one has yet been able to construct a brake embracing them all.
But several so called automatic momentum brakes, how ever, have been invented, some of which are noteworthy for their ingenuity, though lacking in some one or more esseutial features.
None, we believe, are constructed and arranged to stop the rear portion of a train when the train breaks apart. When it is considered that about 40 per cent of the accidents to freight trains occur from the breaking apart of the trains and the subsequent collision of the two portions, it is no easy to overestimate the value of a brake that will prevent such accidents, and at the same time possess all other re quisites.
Did the limits assigned to this article permit, we could easily advance many reasons why a brake such as we have described would also be superior for passenger traffic, but that ground is perbaps too well occupied for present ad vance upon it.
Here, then, is an opportunity for the exercise of inventive talent; upward of a million oi cars in this country alone are lacking the equipment of a perfect automatic momentum brake, and the railroad companies are all demanding it.
Who will carry off the prize?

the heavy gun question.

Now that Congress has made something like an effort toward protecting the coast, those officers of both military arms who have made a specialty of heavy gun manufacture are doing their best, as might have been expected, to see that this effort is not misdirected. A committee of officers was it is true, appointed, at the suggestion of the last Congress, to determine the very weighty questions as to national and private foundries and the quality of guns to be made therein. But, as is well known, only a few of the many experts to be found in the general service could be accommodated on the committee, and, precisely because the subjects to be considered are so weighty, suggestions by those who been over the ground are at once timely and welcome.
Among those officers whose suggestions may fairly claim the serious attention of the committee, is Captain O. E Michaelis, U.S.A. In a recent paper read before the Amer ican Society of Civil Engineers, Captain Michaelis goes into a careful and detailed consideration of the subject, content ing himself with presenting the recent experience in gun manufacture rather than attem pting to determine the method or to formulate the policy from which the best results may be expecterl. Now that there is a disposition on the part of Congress to properly protect the coast, and new and costly foundries are to be established, we are confronted with what seems to be a very serious question, viz., who shall own or control these plants-the government or private parties, or both conjointly? The evidence as gathered by Captain Michaelis shows that each system has serious defects.
Up to the Franco Prussian war the French foundries were owned and maintained by the government; a board of officers, baving charge of the work of gun making, met only in secret session, and resisted the introduction of new pro cesses or public criticism of the old ones. The German sys tem of relying upon a single private company for arming the country has also little to commend it; the company in orde to mantain itself must Ineeds look for large foreign con tracts, and when the decisive moment comes are either seri ously bampered or in a position to take advantage of the state's necessities, and demand exorbitant prices. Nor has a partnership between the State and private parties proved altogether sal isfactory.
One of the evils of this system is shown by Captain Michaelis by a recent experience of the British government, which, in addition to being charged exorbitant prices for war material, was forced to pay $£ 65,000$ to close an agree ment, while the company, besides its profits on manufacture, came into possession of a complete working plant at a mer nominal valuation.
Curiously enough, Captain Michaelis, after setting up the dummy that a copartnership between the State and private parties leaves the latter free at times to take advantage of the Scate's necessities, as shown by the evidence adduced by bim, he proceeds to knock it down by expressed approval of a similar project as contained in a letter of General Benet, of the Ordnance, to Commodore Simpson. In this Gen. Benet suggests that the government shall provide a private corporation "with some of the more costly plant, such as new
furnaces, steam hammers, large lathes, cranes, etc., the furnaces, steam hammers, large lathes, cranes, etc., the
foundry to reimburse the goverument by paying a certain percentage on all work performed with said plant until the whole cost is repaid."
There is an objection to such a plan, which is, perhaps, even more serious than the threatened danger of extortionate charges in the bour of extremity. Even the great gun manufactory of Herr Krupp, at Essen, has not enough gun making to keep all hands employed the year round, and must needs take large contracts for material in no way connected with armament or war. In this latter employment Herr Krupp bas many competitors in Germany, but if bis plant had been supplied by the government at a nominal figure and upon easy payments, it is not unreasonable to suppose that no German firm could compete with Krupp, even in
the manufacture of those mechanisms which are not allied the manufacture of those mechanisms which are not allied
to the art of war, and hence the imperial government would
be but assisting Krupp to force other manufacturers out of the business.
In our own country, the spirit if not the letter of the Constitution is opposed to the State entering the market as a competitor with private parties, and such an arrangement as that suggested by Gen. Bevet, and supported by Capt. Michaelis, smacks strongly of this. It would enable a private firm or company to come into the immediate possession of a costly plant, which, when not employed in gun manu facture, could be used in turning out other kinds of work in vast quantities, to the great disadvantage of all other private oncerns engaged in a similar manufacture.
The system now in use in France bas been accepted by the board of officersappointed at the instigation of Congress as the proper standard for imitation, and is commended by Capt. Michaelis in his paper. This system contains, perhaps, fewer objectionable features than any other tha has been suggested during the long controversy now happily ended. In this system the government maintains the gun manufactories itself wherein the parts are machined and assembled. For foundry work, on the other hand, the private companies or corporations are depended upon. None of these are supplied with plant nor in any way assisted in preventing competition, this being the rather encouraged, and in France some of the foundries have been induced, on their own motion, to establish gun factories to supplement the government shops.

Concerning the quality and character of the guns that are to be, Capt. Michaelis brings together much and varied information.
Though the exact cost of solid cast-steel guns has not yet been ascertained, he believes that it will be found to be about one-third the cost of hammered steel guns. It has, he says, the range of tensile strength from 50 to 30 tons per square inch, and the corresponding elongation of 7 to 28 per cent, and is therefore destined to replace not only iron castings, but iron and steel forgings, which are very much more expensive and no stronger.
In regard to castings, a conviction has prevailed in some quarters that we had no open hearth plants equal to those at Terre-Noire, in France, where the manufacture of large castings is a specialty, and the best methods of annealing and tempering to be applied to the metal, in order to give it all the mechanical properties corresponding to its chemical ac-
tion a study. Yet Captain Michaelis says that we have open hearth plants fully equal, if not superior, to those at TerreNoire, and that the tensile strength of ordinary castings in this country, now sixty thousand pounds, may, with careful manipulation and special methods of casting, possibly under compression, be doubled. Indeed, Mr. S. T. Wellman, of the Otis Iron and Steel Company, whom he quotes, says be is very sure that we can produce a metal good ennugh for heavy gins without pressure; but with pressure we could do as well as Whitworth, who, so far, has beaten the world.
It is not so many years ago that our great guns, our ma chine guns, and breech-loading rifles had no equals in Europe, hut now, on our own models, vast improvements have been made, and, says an author quoted by Capt. Michaelis: "If we don't soon begin to manufacture ourselves, everything American will be brought back to us with a foreign name. Our mammoth powder will become 'pebble,' and perforated cake be known as 'prismatic,' our pressure gauge as a 'crusher gauge,' and the Hotchkiss case shot be credited to Col. Boxer. Prof. Treadwell's system of gun construcion of 1840 is known as Armstrong's of 1856, but no one as seen Armstrong's patent for it; Krupp bas appropriated the Broadwell system bodily, and Eastman's slotted-screw breech plug is known as the French breech loading gun. Mr. S. B. Dean invented a method of mandreling bronze guns by which strength and hardness are greatly increased and two years after bis patents were taken in Austria, bis gun was brought out there as the Uchatius gun, and a vast achievement. Their whole artillery is armed with it. The Russian government built a great foundry at Perm to carry out Rodman's design on a large scale, and took his powde and his experience along. Mr. Hotchkiss has established a large factory near Paris, where he has very extensive orders, and bas beoome in his line the main reliance of the French government."
Surely, a nation like ours, which has through the genius of its sons furnished the bases for all great gun manufacture ow in use abroad, should be able to at least equal in effidesigns.

TWO REMARKABLE METEORS.

A correspondent in Lafayette, Alabama, gives an interest ing account of two meteors observed by him on the nigh of the 14th of August.
The first meteor was unusually large and brilliant, exhind. It was seen about midnight
The second meteor was seen fifteen or twenty minutes ater, was as large as its predecessor, and exploded in a south-southeast direction. After the explosion of the fire ball, a train of light remained visible for eight or ten miutes, at first motionless, and then slowly changing from a straight to a curvilinear form. The moon shone brightly at the time, the atmosphere was clear, and both meteors were sufficiently brilliant to make the shadows of the two bservers and the shade trees in their vicinity almost as

Our correspondent thinks that the first phenomenon could ot have been a meteor, because it came to a sudden "standstill," and asks, "What was it?
Both phenomena are probably due to the same origin, the matter that circulates in inter-planetary space, and, ac cording to size, isolation, or constituents, takes form as me teoric stones, fire balls, or shooting stars, all being classed under the head of aerolites, and being merely varieties of the same phenomenon. They vary in weight from the meteoric stone in Brazil estimated to weigh 14,000 pounds to the shooting star weighing a few grains. They vary in brilliancy from meteors shining brightly in the noonday presence of the sun to the tiny falling stars that only sharp sence of the sun to the tiny falling stars that only sharp
sighted observers can discern as a vanishing point of light. sighted observers can discern as a vanishing point of light.
They vary in continuance from the fire balls that burst and leave behind, in a few recorded instances, luminous trains shining for an hour after the body disappeared, to those that plit into fragments, and leave scarcely a trace of their presence. They vary in the noise they produce from detonations like thunder or the firing of cannon to the slight sounds that only a vigilant ear can detect. They vary in number from the countless myriads that people the meteor ones to the solitary specimens that from time to time show hemselves in our sky, and then vanish forever.
They are all due to the same cause. The earth as she moves in her orbit, encounters these cosmical atoms in he course. Both bodies are moving with immense velocity and in opposite directions. The meteors rush headlong against our atmosphere, are ignited by the concussion and fall to the earth as stones, or are crushed into impalpable dust. The two meteors observed by our correspondent probably belonged to the class known as fire balls. It is not impossible, if the train of the second meteor was yellow in color and it radiated from the constellation Perseus, that both meteors were members of the August meteor zone, through which the earth was passing about that time.
Meteors belonging to this group have been observed of great size and brilliancy, and with an estimated weight of seven pounds. The observer of the meteors also records a fine show of falling stars on the 10th. As the show often continues for several uights, we are somewhat inclined to this theory, for we bave not infrequently seen members of the group as large as the planet Venus exploded with a sound distinctly audible, aud leave behind a shining train.

The Prime Meridian Conference.

This body, which assembled in Washington, October 1, ncluded forty members, representing twenty-four govern ments, as follows:
Austria-Hungary, Brazil, Colombus, Costa Rica, Den mark, France, Germany, Great Britain, Guatemala, Hawaii Italy, Japan, Mexico, Netherlands, Paraguay, Russia, San Domingo,San Salvador, Spain, Sweden and Norway, Switz. erland, Turkey, Venezuela, and the United States. The conference was not as prompt to adopt the general meridian of Greenwich as had been expected, but a resolution to that ffect was finally passed, and that meridian recommended to all governments for adoption, the representatives of twentyone governments voting in favor of it, San Domingo agains it, and France and Brazil abstaining from voting.
The conference also resolved that longitude continue to be counted as at present in two directions, up to 180°, instead of in one direction up to 360°, as had been recommend ed by the Roman conference. Although the Greenwich merjdian has long been the standard for four-fifths of the world's navigators and geographers, its adoption by all will be a common benefit. The ancient gengraphers drew the frst meridian through Ferro, the westernmost of the Canary Islands, and this is yet followed to some extent. The French have also used the meridian of Paris, the Spaniards that of Madrid, while we have used both that of Greenwich and Washington. The French representatives appear to have made the principal objection to the adoption of the Green wich meridian as seeming to be an English standard, but as it extends from north to south through the whole of West ern France, they could remedy this by setting up an observa tory on that line, and styling the reckoning accordingly.

Henry T. Anthony.

Mr. Anthony, who was one of the pioneers in taking up he famous invention of Daguerre, and afterward among the most prominent in developing and extending the business of photography, died at bis residence in New York city Oct. 11, aged 71 years. The immediate cause of death was the result of injuries received from a fall in attempting to run out of the way of a cab car. Mr. Anthony was graduated from Columbia College in 1832, studied engineering and became a surveyor on the Erie Railroad, was employed on the Croton Aqueduct, and was also an engineer on the Hud son River Railroad. His name has for many years been most familiar, howe ver, as that of a member of the firm of E. \& H. T. Anthony \& Co., manufacturers of and dealers in photographic materials. He had especial charge of the manufacturing department, and was the originator of many improvements in practical photography.

Raw Umber.

This is an ocher found on the island of Cyprus. It is known in the trade as Turkey umber, and the genuine arti cle is a soft brown pigment, transparent in oil, and abound ing in manganese, from the presence of which it derives its arving properties.
an improved screw cutting lathe.
The accompanying illustration shows a screw cutting font lathe, manufactured by Sebastian, May \& Co., of Cincinnati, O. It is specially designed to meet the wants of model makers, inventors, electricians, sewing machine agents, amateurs, and others having use for a small lathe to run by foot power.
With this lathe can be turned iron, steel, brass, wood, bone, or ivory; also screw cutting, polishing, drilling, milling, or any other kind of work that can be done on any large lathe proportionately.
It is strongly and durably built, and can be easily operated.
The bed of the lathe is $41 / 2$ incles wide and is 34 inches long, is thoroughly braced, has four Vs, will swing 8 inches over bed, and take 20 inches bet ween centers.
The head spindle is made of $11 / 4$ inch solid steel, and tail spindle is $7 / 8$ inch steel. The back gear is thrown in and out by a cam. The tail stock sets over for tapers, and is fastened down by a cam. The head is detachable, so as to admit readjustment if spindle becomes untrue.
The treadle is of wrought angle iron. The rod supporting the driving wheel runs on friction wheels. The tops of the pitmans are of gun metal, and the bottoms of the pitmans slip through holes in the foot bar, so as to adjust the length of the stroke.
The carriage and rest are of the most approved and latest design. The carriage is detachable for hand work, aud it can be thrown into feed instantly for turning or screw cutting. All threads for screws are bastard, that is, half square, half V .
With this lathe is furnished a face plate, two pointed centers, wrenches, and gears to cut from 3 to 40 threads.
Any further information may be obtained by addressing the manufacturers.

mail bag.

Formed on the top edge of the back of the pouch is a flap which folds over on the front. Both the front and flap are provided with vertical slots which coincide with each other when the flap is folded. On the inner surface of the back of the pouch is riveted a leather strip, above which is

armstrong's mail bag.
secured to the outer surface a piece of leather having Vshaped recesses formed in its bottom edge. Onthese pjeces is secured a piece of leather, between which and the back slides a strap. Pivots are held in the back of the pouch, and are so arranged as to pass through the slots, the outer ends being formed with a button. On the inner end of each pivot is an arm baving a sliding section, the outer end of which is pivoted to the strap. At one end of the strap is a ring, and at the opposite end is a slot.
When the bag is filled the flap is swung down, so that the pivots pass through the slots when the strap is pulled; this swings the arms and turns the buttons in such a manner that they cross the slots. The slotted end of the strap is then swung over the front of the pouch, aud the padlock applied as shown in Fig. 1. By disengaging the strap and pulling it in the opposite direction, the pouch may be opened. Fig. 2 shows the pouch opened, parts being broken away to show the arrangement of the pivots and arms.
This invention has been patented by Mr. B. F. Armstrong, of Engle, New Mexico.

A Machine for Producing Rain.

A mong the last inventions reported from Australia is a machine for producing rain storms. It is intended to force a rain supply from the clouds during a perind of drought. The apparatus is in the form of a balloon with a charge of dynamite attached underneath it. The balloon is to be sent into the clouds, and when there the dynamite is to be fired by a wire connecting it with the earth. A trial of this novel contrivance is to be given upon the dry districts of New
South Wales, and the result is looked forward to with interest by some of the residents of that colony.

Dr. Henry Tucker recommends, in the Southern Medical Record, the use of the following very simple remedy in the treatment of hiccough, namely: Moisten granulated sugar

SEbASTIAN, MAY \& CO'S IMPROVED SCREW CUTTING LATHE.

Machine Borers.
An interesting lecture was recently delivered at the Edin burgh Forestry Exhibition by Professor McIntosh, in which ed attention to the serious damage inflicted upon submarine woodwork by marine borers. Among the most destructive of this class are the crabs known as the Cheluria terebrans and the Limnoria lignorum, or Scotch gribble, of which the former is the most mischievous, as being able to make larger and more oblique excavations. The ravages made by the gribble in the fir beams that supported the beacon on the Bell Rock were described by Mr. Robert Stevenson a long time ago, the rate of destruction being an inch a year. It was thought that the gribble paid attention ouly to timber, but it is now known that it is equally unremitting in its attentions to the sheaths of gutta percha and other materials which protect submarine cables. The ravages of the gribble, great as they are, are surpassed by those of the Xylophaga, a very small bivalve occupying a position between the stone and rock boring pholas and the woud boring teredo. The tunnels which the latter made into timber were of astonishing the latter made into timber were of astonishing
length, varying from one to two feet in the common teredo to three feet in the case of the great teredo.
Up to the present time no wood has been found capable of resisting the attacks of these little creatures; and although various remedies have been tried in the shape of immersion of the wood in silicated lime, bitumen, and creosote, by forcing them under great pressure into the tissue, the latter material was the only one which had been found to be efficacious, while mechanically nothing short of metallic sheathing protects the timber. On the
with good vinegar. Of this give to an infant from a few grains to a teaspoonful. The effect, he says, is almost instantaneous, and the dose seldom needs to be repeated. He has used it for all ages-from infants of a few months old to those on the down-hill side of life, and has never known it to fail. The remedy is certainly a very simple one, and although no theory is advanced to account for its wonderful action, it merits trial.-Therapeutic Gazette.

CAR COUPLING.

The drawhead is formed of two like sections, in the outer end of each of which is a half funnel-shaped recess, bebind which is a triangular recess forming, when the sections are united, a chamber in which slides a buffer block that is pressed outward by a spiral spring. Near the rear end of the drawhead is formed a fixed collar that is surrounded by a stirrup suspended from the bottom of the car, and that serves to hold the two sections together at that point. The extremity of the drawhead is surrounded by a powerful buffer spring. The sections are prevented from moving longitudinally on each other by a key. Near the rear of the drawhead is formed a recess to receive the head of a rod a ttached to the bottom of the car for limiting the longitudiual movement of the drawhead.
A pin entering a slot in each section retains the buffer block in place when the sections are spread. The sections of the drawhead are operated by means of two levers arranged as shown in the perspective view.
When one of the rounded heads of the link bar enters the funnel-shaped mouth of the drawhead, it forces the sections apart and passes into the front part of the inner chamber. The end of the head strikes the block, and the spring breaks the shock. When the head has passed the offisets, the sections spring together and bold the link rod in place. The link rod is released by moving the sectious by means of levers. The inward convex curve of the recesses forming the link opening is such that a ridge is virtually formed in

MoPHEETERS CAR COUPLING.

the opening, against which the link will strike in case a car is derailed, thereby spreading the sections and allowing the head of the link to come out of the drawhead
This invention has been patented by Dr. S. B. McPheel ers, of Medoc, Mo
other band, the Professor pointed out that the bor-
ers were frequently useful in their proper place, and particularly in the case of drifted timber and old wrecks, which would be very dangerous to vavigation were they not rapidly disintegrated by the action of the teredo. The subject is one that is worthy of very close attention at the hands of those scientific men who would be connected with the marine laboratories now being established.

JOINT FOR ELECTRIC CONDUCTORS.

The annexed engraving stows a joint for electric wires ecently patented by Mr. Richard W. Kear, of 206 South

KEAR'S JOINT FOR ELECTRIC CONDUCTORS.
Center Street, Pottsville, Pa. A short tubular socket is provided with a longitudinal slot, diametrically opposite which is a screw threaded aperture containing the binding screw. The ends of the wires are passed into oppasite ends of the socket until they meet below the aperture, when the screw, being turned down, presses and bends the ends of the wires down into the slot, as shown in the upper view, thus holding the ends of the wire in such a way that they cannot be withdrawn. The screw and the tubular socket form a good electrical connection between the wires. The manner of using the socket with coated wires will be readily under stood from the engraving.

The World's Telegraphs.

The telegraph appears to bave made more progress in the United States than in any other country. The number of American telegraph offices in 1882 was 12,917 , and the number of telegrams forwarded during the year was $40,581,177$. The number of telegraph offices in Great Britain and Ireland in 1882 was 5,747 , the number of teiegrams forwarded being $32,965,029$. Germany had 10,803 offices, the number of telegrams forwarded being $18,362,173$. France had 6,319 offices, the number of telegrams forwarded being $26,260,124$. Russia had 2,819 offices, the number of telegrams fowarded being $9,800,201$. Belgium had 835 offices, the number of telegrams forwarded being $4,066,843$. Spain had 647 offices, the number of telegrams forwarded being $2,830,186$. British India had 1,025 offices, the number of telegrams forwarded being 2,032,603. Switzerland had 1,160 offices, Italy 2,590, and Austria 2,696. The number of teleg three last mentioned countries was $3,046,182,7,026,287$, and
$6,626,203$ respectively.

ELECTRIC MOUTH LAMP AND LARYNGOSCOPE.

 In diagnosing lesions of the teeth ard associated parts the small electric lamp shown in the accompanying engraving will be found an invaluable assistant to the dentist, and by its aid the exact location of the disease may be determined. By the use of the appliances heretofore in vogue this could not be accurately ascertained, and as a consequence many sound teeth have been sacrificed in the fruitless search for the seat of neuralgic pains for which, owing to the insufficiency of the means of diagnosis, no satisfactory cause could be established. This lamp illuminates the oral cavity so brilliantly that any departure from normality can be unerringly detected; and as it is placed within the arch, behind the object to be lighted, its rays fall upon the lingual surfaces of the teeth while the eye of the operator is directed to the labial surfaces, and thus every portion of the teeth and gums is thrown into strong relief-the sound teeth appearing translucent and showing no variations in texture while the unsound teeth bave an opaque or dark appearance.The lamp, E, is an incandescent electric iight mounted permanently in a non-conducting case of hard rubber, and provided with metal conductors which pass outside of the smaller section of the case. The lamp is carried in another hard rubber cylinder, D, called the lamp holder, which is also supplied with metal conductors fitting those on the case, the two parts when adjusted being clamped together by the set screw, F, thereby bolding the lamp firmly in its socket. The conductors of the lamp holder are connected to the han dle, A, by hinged joints, so that almost any desired adjustment can be readily secured. This handle is called a resistance handle because it is wrapped with wire of a low con ducting power, by which, through the agency of the ring, I, the flow of current is regulated. When the ring is placed at the end of the handle nearest to the battery cord, the re sistance is reduced to the minimum, and the current from the battery flows freely to the lamp. Sliding the ring to the opposite end of the handle compels the current to trave through the wire with which the bandle is wrapped to the ring and back again, thus forming a resistance. The connection to the battery cord, B, is made by the spring coup

electric modth lamp and laryngoscope.
ling, C. A non-conducting shield, G, is placed over the lamp globe for the double purpose of preventing the radiation of heat and of directing the light to any desired point. At H is a screw for breaking the circuit, which should be broken occasionally during a prolonged examination, and also, whenever the lamp is not in use, to prevent its becoming so hot as to be unbearable in the mouth. In order to admit of the examination of posterior cavities a mirror, set at an angle of forty-five degrees, is attached to the end of
the guard. With this attachment the lamp forms a perfect aryngoscope.
The battery to operate this lamp consists of three improved Bunsen cells having large carbons. The porous cups are filled with the bichromate solution (made in the following proportion: One-half gallon of boiling water, in which is dissolved half a pound of bichromate of potash; when cold there are added ten fluid ounces of chemically pure sulphuric acid), and the glass jars with water to which two ounces of chemically pure sulphuric acid are added. This battery is

pecially adapted for the work required of it, and produce strong current of great constancy.
This useful device, which the surgeon and physician, a well as the dentist, will find of great value in the examin tion of the mouth and throat, is made by The S. Whit Dental Manufacturing Company, of Philadelphia, Pa.

Hardening Steel Mill Picks.

When it is desired to harden a piece of steel, it should be known to a certainty for what specific purpose the material is to be used; for iustance, it is very reasonable to suppose hat a tool that is made to do its work by blows, as a cold chisel, a knife that cuts by means of an even, constant pressure, a tool that must combine strength with cutting qualities, or one intended for soft. another for hard work, must not receive the same treatment in manufacture in order be good tools for their respective uses.
Take for example the matter of mill picks; these are or dinarily made of cast steel hardened and tempered in an antbracite forge. Double refined cast steel is used, and should be manufactured for this express purpoce. In drawing out the steel great need of caution is essential, inasmuch as, if the iron is not worked right, it seems really im possible to temper subsequently. The plan generally followed hy the best makers is to draw out the pick with an anvil and hammer, both of which have very smooth faces, and the steel is heated not above a dark cherry red. When it comes to finishing, the best artisans claim the steel should be hammered only on the flat side, and the lighter and more rapid the blows the better the resulting tool, the blows, light and quick, being continued till the steel is quite dark. For tempering, a bath made of two gallons of soft water and two pounds of salt is used; this will last for tempering a dozen picks, but some care is needed not to have the bath too cold, as it tends to chill; hence the workmau often dips a hot iron in his bath before he begins to terper his picks. When the begin to temperk picat it is dipped just at the a dark cherry heat, it is dipped just at the point, the rest being cooled in the ordi nary way. We suggested mercury to a skilled workman as a good thing with which to temper, but the great trouble is to control this substance for this purpose; it makes the steel so hard that it is brittle, the entire edge often cracking off, so sudden is the reaction.
As to the comparative merits of American chrome and English steel for making picks, opinions vary; though American steel seems to have the most friends. When English steel is used, the tool is heated only moderately in forging-not sufficient to scale-and when the redness leaves it is not hammered; it is hardened by heating to a low red heat, dipping in warm salt water, and tempered to a brown; while with the American steel it is heated to a yellowish color for forg ing, to a low red for bardening, and at once quenched.
The best weight for a pick seems to be about four pounds and to be perfect should be ground only with moderate pressure, with plenty of water, down to the edge, but not sharpened on a large stone.-Midland and Industrial Gazette

Value of Hay for Stock.

Experiments have been made in England as to the comparative value of good bay for stock, with the result that it is estimated that 100 pounds of hay are equal to 275 pounds of green Indian corn, 400 pounds of green clover, 442 pounds of rye straw, 360 pounds of wheat straw, 160 pounds of oat straw, 180 pounds of barley straw, 153 pounds of peastraw 200 pounds of buckwheat straw, 400 pounds of dried corn stalks, 175 pounds of raw potatoes, 504 pounds of turnips, 300 pounds of carrots, 54 pounds of rye, 46 pounds of wheat, 59 pounds of oats, 45 pounds of mixed peas and beans, 64 pounds of buckwibeat, 57 pounds of Indian corn, 68 pounds of acorns, 105 pounds of wheat bran, 167 pounds of wheat, pounds of linseed, and 330 pounds of mangel-wurzel.

Acorn Bread
The Indians scattered along the foot-hills of the Sierra re a quiet, inoffensive people. They do not appear to be governed by any tribal laws, yet adhere to many of their old raditions. One or two men of superior ability and industry orm a nucleus around which others less ambitious gather. Hence they fence with brush and logs a tract sufficient for their requirements of hay-making, pasturage, etc. Although they often indulge in the food of civilized nations, the acorn is still a favorite article of diet in every well-regulated wigwam. The process of converting this bitter nut into bread is curious. Under the branches of a grand old pine I found them at work. They had shucked and ground in the usual manner a large mass of the acorn meats. A number of circular vats had been hollowed out of the black soil, much in the shape of a punch-bowl. Into these was put the acorn pulp. At hand stood several large clothes-baskets filled with water, and into these they dronped bot stones, thius heating the water to the required temperature. Upon the heating the water to the required temperature. mass of crushed
water, making it about the color and consistency of cream. Not a speck appeared to mix. A buxom muhala stood by each vat, and with a small fir bough stirred the mass, skillfully removing any speck that floated upon the surface. The soil gradually absorbed the bitter waters, leaving a firm white substance, of which they made bread. I asked to taste it, at which they said something in their language, and all laughed. I asked again, and after more laughter I was banded a small particle on a fig leaf, and found it sweet and palatable. They began to remove it, and so adroitly was this done that but a small portion adbered to the soil. They spread it upon the rocks, and in a short time it was fit for use. This, I am told, they mix with water, put it into thin cakes, and bake before the fire.-San Jirancisco Chronicle.

HOISTING MACHINE.

The boiler, engine cylinders, the Loisting drum, and all the other parts of the machine are supported upon a truck resting upon wheels. The bed plate carrying the boiler and engines is formed with rear stands on which the cylinders re attached at an inclination of forty-five degrees. The tands are made with guides for the crossheads, and the rods are connected to the same wrist pin on the crank disk of the shaft, so that the engines work at right angles and carry each other over the dead center. The driving shaft carries wo cccentrics for operating the valve rods of both engines through the medium of links. (The construction and arrangement of these parts are shown in Fig. 2.) By the movement of a lever the links are simultaneously shifted to reverse the engines.
On the driving sbaft is a pinion, attached by a feather, so bat it can be moved on the shaft by means of a lever to engage with the internally toothed rim on the end of the drum. The rim is provided with flanges, between which is

VIERNOW'S HOISTING MACHINE.

a brake strap operated by a lever. The drum is in two parts, the larger portion fixed on the shaft and the smaller end portion filted to slide on the shaft, the two parts being connected by pins in a middle head. A nut bolds the sliding part up to place, so that when it is necessary to take up or let out the hoisting rope the nut is screwed back and the part moved on the shaft, and then rotated to wind or un wind the rope. The ropes pass off from opposite sides of the drums over pulleys, and to the platforms, so that in operation one platform is raised as the other is lowered. By this construction and arrangement the machine is rendered very compact, and can be conveniently operated, especially or supplying material to buildings in course of erection and it can be easily moved from place to place.
Further particulars concerning this machine may be obtained by addressing the inventor, Mr. G. M. Viernow, Room 33, S. E. corner Olive and Fifth Streets, St. Louis, Roon
Mo.

Governor Begole, of Michigan, in a late address as serted that he had found, from an acrurate study of statis tics, that 91 per cent of the crime and pauperism of the | State came directly from the use of intoxicating drinks.

stray Plants.

An interesting botanical lecture was lately delivered by Prof. Rothrock, in Horticultural Hall, Fairmount Park, Philadelphia, on Stray Plants. The lecturer stated that he did uot intend confining himself to those larger plants which we can all see, but would embrace also a brief statement of those minuter forms which we never see by the unaided vision, and whose presence was only generally recognized by the evils which they wrought and by the enormous death ates which they induced.
Twenty years ago or more, Beutham and Hooker, the two most distinguished English botanists, began preparation of their great book, the Genera Plantarum. It was intended to bring together in the natural order of their structural affinity all the flowering genera of the existing flora on the globe. What are genera or, as used in the singular, what is a genus? All the species of pine constitute one genus, all the spruce nother, all the firs a third, all the cedars a fourth, and al hese are grouped in the order of cone-bearing trees. Modern sience teaches that all these have descended from a few species of parent plants, and that time and physical suroundings have produced the variations we now see in the vast aggregate of plants representing the order. A study of the Genera Plantarum shows a marked tendency in the smaller orders to a localization in a portion of the globe The larger orders are, as might be expected, more widely spread. The very increase in the number of their genera implies the greater diversity of physical coudition which they have encountered in their descent through the ages Genera are in the main more localized than the orders. This oo, is to be expected. Thus, for example, the genus Cras sula, of 120 species, was maiuly localized at the Cape of Good Hope. Just in the same way the asters and golden rods found their maximum development in our own region Sometimes, however, plants would wander off from thei birthplaces. Illustrating this, we had the hickory group, of hich there are but ten known species. Nine of these grow in the United States and one in Mexico. It is strange that he Mexican species has a four-winged fruit, and strange still that the Pecan bickory, which, on the whole, is it nearest geographical associate, should also show a marked tendency to the production of fruit of the same kind.
Just, too, as there were in the past vast migrations of men who invaded and took possession of other lands after extir pating the native population, so there had been such migra tions among plants. The original forest on the island of aint Helena bad been superseded by European cone-bea ing trees. Instances of the same thing on a much large cale could be named. The strangest examples were where the same species of plaut would be found here and in Japan but nowhere else. Our blue cobosh was such an instance Hardly less remarkable was it that of the two species of podophyllum (May apple), one grew here and the other in the far-off Himalaya region. We have no reason to doubt that they are blood relatives, but how is it that one or both bave strayed from the original birthplace?
It is one of the unexpected things (which Professor Gray has so well shown) that we have more plants here of the Japanese flora than Europe has, and that even the Pacific coast of America has not so many of them as the Atlantic slope has. Europe may have received (by natural means) some few American plants; but, in the main, the line of plant migration has been from the Old World to us-from west to east.
The lecturer then introduced the invisible stray plants, which are only seen clearly by the best powers of the best microscopes, plants that are destitute of the green color which makes our larger and more familiar forms self-sustainiug. They (more than the mistletoe) are parasitic. They are the habitual associates of decay, disease, and death; though a yet it would be premature to assert that they are the causes of disease, yet the facts a ppear to point to that conclusion Thus we have one supposed to be the cause of diphtheria another of splenic fever, another of pulmonary tuberculosis, and another of cholera. Take the one last named (comma sla ped), $i . e$., that of cholera.
First. It is found in persons suffering from cholera
Second. It is found only in the organs affected by cho era, and, therefore
Third. It is not found in healthy persons.
Fourth. It diminishes in numbers as the patient con valesces. Hence it is proportionate in number to the gravi ty of the disease.
Fifth. It has marked powers of locomotion.
Sixth. It lives and multiplies rapidly in the clothing of cholera patients if this be kept damp for twenty-four hours.
Seventh. It will die if kept dry fur twenty-four hours.
Eighth. It develops only in substances which have a alkaline reaction.
Ninth. It dies when brought in contact with solutions which contain only a little free acid.
These are substantially the conclusions reached by Koch who has been the most careful investigator of the subject. Clearly they point to the following cautions in cholera seasons: Cleanliness of the person, of the clothing, and of the surroundings; isolation of cholera patients; destruction by fire of clothing and bedding used by the sufferers; absolute purification and frequent acidulation of drinking water, and he rejection of all water which can in the slightest degree be tainted with sewage from cholera infected districts. All of these conclusions are amply sustained by the experience which epidemics have but too largely furnished. One
thing more the importance of this subject teaches. It is,
that local, State, and national health boards should be absoutely free from political restraints or from any measure of party expediency; that they should be invested with power which is final; and that they should hav
active co-operation of every good citizen.
These germs of disease then come fairly under head of Stray Plants. They float in the air we inbale and in th water we drink. And once started in their career of de structiou, it is possible for them to incircle the globe with badges of mourning.

TREATMENT OF DEFORMITIES OF THE NOSE

This is the season of the year when contests at font ball base ball, bicycle riding, fox hunting, and kindred outdoor ports are at their beight, bringing in their train broken arms, dislocated shoulders, sprained ankles, and not in requently broken noses. The surgeon's skill is called into equisition more at this time of year than at almost auy ther, and the cause of this fesults in casualties of a greate variety than occur to persons in their ordinary pursuits, and ence the doctor and sisrgeon is sometimes puzzled to de rmine the best meajs for treating the peculiar case befor im. W. J. Walsham, Assistant Surgeon in charge of the Orthopædic Department at St. Bartholomew's Hospital London, communicates through the Lancet his experience in reating deformities of the nose following injury, which is timely, and will no doubt be found useful to the surgica rofession.
"During the last few years," says the distinguished writer 'I have had a considerable number of cases of deformities of

MASK FOR STRAIGHTENING THE NOSE

the nose due to injury under my care; and as the treatmen of such deformities is but lightly touched upon in works on urgery, it may be interesting to some to learn the result of my experience. . . . For convenience of treatment the may be divided into those affecting, first, the lateral carti ges and, second, the nasal bones.
" 1. The Cartilages.-These may be variously bent or twisted o one or other side, or they may be depressed at the spo where they join the nasal bones, giving the nose in this in stance a sunken appearance. In the former case the septum asi (the central column of support) will as far as I know b ways found deflected in a direction opposite to that of he bent lateral cartilage, blocking up more or less com petely the correspoding nostril. In the latter case, i.e., when the cartilages are depressed, the septum may not only be deflected, but also, as is unfortunately too often the ase, fractured with lateral displacement of the fragments r else dislocated from the maxillary crest. In addition to he deformity, therefore, there will exist the usual train of symptoms accompanying nasal stenosis from other causes one of voice, etc. Iu neither class of cases will eithe operative or mechanical treatment alone suffice. The sep tum must be straightened, and the lateral cartilages at the sametime be forced into position, and there retained by aechanic

For retaining the septum in position, in my earlier cases, used Adams' retentive apparatus, modified suas not to in jure the columnella. More recently I have had an instru ment made of vulcanite, which, however, is open to the objection that the vulcanite is apt to become softened by the heat of the nose, and lose its shape and retaining powers. The advantages of the softer vulcanite may be obtained by having the blades of a steel instrument coated with this ma erial. For solid ivory plugs I have now substituted hollow lugs of vulcanite, which can be worn with greater com ort, as they allow the patient to breathe through them. Many forms of retentive apparatus for bolding the latera cartilages in position were in use before I found one which ulfilled all the indications. At first the ordinary nose truss, which is fastened to the forehead by a band round the head was tried. This, however, proved of little service, inas much as it is liable to shift, and thus give no fixed point to work from. The same objection holds to the spectacle method of flxing the truss. At length this difficulty was overcome by having a mask accurately moulded to the face shown in the accompanying wood cut. A plaster of Pari cast is first taken of the face, and in this the leather for th mask is moulded, apertures being left for the mouth, eyes, and nose itself. The mask when thoroughly dry is lined with soft chamois leather, and fits accurately to the irregu larities of the face, so that no movement can take place.
is secured by suitably arranged straps around the head

Having thus obtained a fixed point to work from in the mask, it is easy to bring pressure to bear upon the nose in ny direction required by means of suitable screws, springs, tc., attached to the mask.'

A Telegraphic Contest.

A prize contest for fast telegraphic transmission took place, on August 17, in the Western Union Telegraph Con pany's building. The prizes were three in number-the first gold medal, the second a silver medal, and the third decorated telegraph key. They were given by J. H. Bun nell \& Co., of New York, and the only conditions were tha he Morse steel lever key should be the one used. The prizes were for "clearness of character and speed combined." The judges of the contest were J. H. Dwight, night forc manager; W. B. Waycott, cable manager; and E. F Howell, chief operator, all of Western Union. The affai was in charge of Mr. F. Catlin, chief operator.
At eleven o'clock, when the contest began, over one bun dred leading operators and telegraph managers were present. On a printed slip was the work to be done. This consiste f 500 words, 15 periods, and 4 commas, in all 2,368 charac ters, as published in the Operator of August 15. The mes ages were sent on a local circuit There were ten contes nts, all of whom did remarkable work, and at one o'clock he contest was finished. Shortly afterward the judges an nounced their decision, which was as follows: First prize W. L. Waugh, "superior" work, each letter and characte erfect; tıme, 11 m 27 s . Second prize-W. M. Gibson 'good" work; time, 11 m .3 s . Third prize-F. J. Kıhm, fair" work; time, 10 m .32 s . It is notable that not on of the winners is a Western Union man, Waugh belonging to the Commercial Telegram Company Stock Exchange Gibson to the Bankers and Merchants' Stock Exchange, an Kihm to the United Press Association
The names of the other contestants, with their time, are a follows: J. W. Roloson, 10 m .10 s ; L. E. Liddy, 11 m 58 s. ; M. J. Doran, 11 m .32 s ; W. A. Hennessy, 11 m .51 s . E. Delaney, 11 m .52 s . ; Harry Ziegler, 12 m .29 s ; P. J Byrne, 13 m .50 s.
Roloson's time of 10 m .10 s . is the most remarkable on record, but his work was too indistinct and unreadable to obtain a prize. He is an operator of the Bankers' and Merchants' Company, aud with coaching will be a mos formidable opponent. The prizes are quite bandsome. Th gold one is a bar from which bangs a shield-shaped pendant on which are the name and date of the contest, and in th enter the design of a band holding the lightning. The sil er one is a bar to which hangs a round medal, the top o which is cut out, and in its place stands out the same design as the gold one contains. -Electrical World.

Great Rafts.

The Cleveland Press tells the following: Two of the larg est rafts of pine logs ever brought to this port, and the only rafts ever brought from Lake Superior, lie just outside th reakwater. One covers about five and the other eight acre of territory. The largest raft contained about $3,000,000$ feet f lumber, and the smallest a little over $2,000,000$ fee There are in both rafts about 16,000 logs, ranging from 12 16 feet in length. The rafts left a point on the south shor of Lake Superior, between Grand Marias and Grand Island about 100 miles west of the Sault, a little more than tw weeks ago. They were made up in two sections each, pear shaped, and inclosed in booms. Through the rivers the sec tions were towed separately, and they also went through the rapids in the same shape, without loss or damage. The un is about oue mile in length, and the fall in the neighbor hood of 20 feet. The entire distance from start to destina tion is about 600 miles. The run from Detour was made i 14 days, the average speed being about $11 / 2$ miles an hour.

A Perilous Pathway

The travels of the native East Indian explorers, their stratagems and their disguises, their bazards and sufferings, their frequent hair-breadth escapes, are teeming with excite One of them describes a portion of his track at the back of Mount Everest, as carried for a third of a mile alon the face of a precipice at a height of 1,500 feet above th Bhotia-kosi River, upon iron pegs let into the face of th rock, the path being formed by bars of iron and slabs of tone stretching from peg to peg, in no place more than 18 inches, and often not more than 9 inches wide. Neverthe less this path is constantly used by men carrying burdens.
One of the finest feats of mountaineering on record wa performed last year by Mr. W. W. Graham, who reached an levation of 23,500 feet in the Himalayas, about 2,900 fee bove the summit of Chimborazo. Mr. Graham was accom panicd by an officer of the Swiss army, an experienced mountaineer, and by a professional Swiss guide. They as cended Kabru, a mountain visible from Darjeeling, lying to he west of Kanchinjunga, whose summit still defies the trength of man.

Burnt Umber.

To produce this most important pigment the crude umber is put in iron retorts and subjected to a heat more or less intense The result is the changing of the tone of the color to a very much deeper and more red brown. The drying property is lso increased by burning. Burnt umber, with white and range chrome yellow, will give a variety of shades of clea warm drabs. Burnt umber, with white and lemon chrom yellow and scarlet lake, will give a rich shade of tan color.

The International Electrical Exposition, Philadelphia.

(sixth paper.)

More than usual interest and an increased attendance $\mathbf{h a}_{a}$ marked the closing days of the Exposition. The recent experience has shown the managers that three weeks, at least is required to get a great coilection of electrical apparatus into smooth running order. Aside from the usual dilatoriness of exhibitors in general, many of whom do not make up their minds about coming until they learn of the intentions of their rivals, there is the delay attendant upon setting up and experi menting with complicated machivery. Taken as a whole, the Exposition may be said to have been fairly successful, if not from a financial, at least from a scientific staudpoint, whic is the more gratif ying.
It was, of course, a disappointment to discover, when all the exbibits were in, that the Exposition was international in little clse but the name. This was not the fault of the Institute under the auspices of which the Exposition was given. It was within its power to invite, but not to enforce
attendance. But it was within the power of the managing attendance. But it was within the power of the managing
committee to arrange for the official testing of apparatus at committee to arrange for the official testing of apparatus at
an early day. This they neglected to do, or at least they were dilatory, so dilatory that a week will bave passed after the closing of the doors ere the testing of a large and very important class of apparatus can even be begun. This department is under the direction of Prof. M. B. Snyder, a competent man, and it is not his fault that the work of testing is so far behindband. He could not begin until be had been furnished with the means of testing and the apparatus to be tested, and the amiable but somewhat slow moving theorists who compose the management, forgetting that art is long and time fleeting, when asked to bestir themselves would seem to bave adopted the stereotyped reply of the Mexican Si, mañana (Yes, to-morrow).
The plan of doing away with the custom of awarding prizes, and the adoption of the system in vogue at the Vienna Electrical Exposition of giving certificates of official tests commended even by the exhibitors themselves. Notwithcommended even by the exhibitors themselves. Notwithstanding this, the somewhat extraordinary spectacle is pre-
sented in the gallery of a company interested in a secondary battery in the act of officially testing their own apparalus. There is no reason to doubt that a reputable company, as this is, may be relied upon to fairly test their own apparatus, but such a proceeding must be regarded as irregular and objectionable, even if nominally supervised by a member of the committee of the Exposition; nnd if the committee really propose to atlach their official signatures to the record of these tests when completed, the act may not unreasonably be looked upon as wholly inconsistent with the theory advanced and promulgated by themselves, to the effect that no person in any way pecuniarily interested in an apparatus should have a hand in testing it. If these people get an official certificate of their own results while testing their sec ondary battery, surely no other exhibitor should be compelled to submit to the hardship of accepting tests made by strange even if uninterested hands. And should such a course be adopted, the official certificates which each exhibitor would carefully tuck into his innermost pocket upon leaving would, in reality, be as valueless as any other description of tests made out by an interested person, except so far as it might possess the power to deceive the ignorant or impose on the unwary.
Such tests as are made by uninterested persons-and the public cares little for the others-will not be given to either the scientific or the popular press; it having been decided to keep them for a montbly publication of a certain
institute. This will, of course, still further retard their apinstitute. This will, of course, still further retard their ap-
pearance, if it does not succeed in keeping them wholly out of the view of the public for which they are intended. It is an unusual course to pursue regarding the results of a great public exposition, and furnishes still further proof, if pronf were wanting, that such enterprises in behalf of the inventor and the manufacturer should never be tied to the apronstrings of any particular society or corporation.
There is a general feeling of regret that the Exposition mnst needs close on the appointed day, as the interest which it has awakened afar and anear is largely in excess of what was expected, and the attendance, instead of showing a gradual falling off, is on the increase. A canvass of the princi-
pal exbibitors, however, shows that they are not prepared to remain longer than was at first proposed. The benefits which come from comparison have perhaps rarely found better illustration than within the balls and galleries of this Exposition. Here we have the various dynamos side by
side, the gas-motor working by the steam-motor, gas burnside, the gas-motor working by the steam-motor, gas burn-
ing alongside of electric lamps. What makes a fair comparison here possible is the fact that everytning is in almost perfect running order. The incandescence lamp need not be compared with an ancient and clogged gas jet, nor a great regenerative gas burner of the improved ty pe to an electric lamp purposely designed to show only a faint glow. A comparison of the incandescence lamps while at their best shows that they differ from each other not as one star differs from another, in magnitude only, but in their color, their
shape, and the size of their filaments, and above all, in the shape, and the size of their filaments, and above all, in the
life of the lamp itself, or rather of the glow within it. life of the lamp itself, or rather of the glow within it.
These incandescence lamps, shown as they now are with all their latest improvements as to ilament, vacuum, shape, and current-conductors, merit some little attention. The
Swan lamp, used by the Brush Company in this country, has a filament consisting of carbonized cotton and parch-
ment. In shape it is a sprral, and its resistance cold is about 40 ohms. A no small advantage possessed by this lamp, besides efficiency, is the small cost at which it can be constructed. The latest filament of the Edison lamp is made of fibers of bamboo cane, cut longitudinally, the fibrillæ left un disturbed and carbonized by heat. It is shown principally with inteusities of ten, sixteen, and from in electrical resistance varies from seventy-elght to ninety ohms pole, and calls for a current of bigh tension E. M. F. in order to bring it to the point of incandescence The ten candle power lamp is principally interesting because it was designed to represent the real and not the ideal gas jet in intensity, and succeeds admirably in accomplishing this purpose. It was a cunning mind that thus clearly
comprebended what was before everybody and yet nobody saw. There is no deception about it, nor is that said in it avor which may not be realized. When the idea of making he incandescence lamp marketable was first entertanned, the current was so divided that each lamp should be of the intensity of the gas jet. Now the ordinary tive-foot burner when new and clear is of the power of sixteen candles. It when new and clear is of the power of sixteen candles. It
does not, as we know, remais very long in this condition; he aperture becomes more and more clogged, and the flame emitted suffers greater or less diminution, according to the ature of the gas burned in it. Hence few burners give the maximum intensity, and, as a result, the general public is accustomed to a light of less than sixteen candle power.
Now the theory of charges made by the projectors of incan Now the theory of charges made by the projectors of incan descence lighting, is to give the public the same amount o ight, similarly diffused, as they have been in the habit of receiving from the gas companies, and at the same price. So ar as intensity is concerned, it would matter little whether he incandescence lights represented gas jets in good order, when they were at their best, or when they were burning with greatly diminished flame. The electric meter now in use would readily indicate by its transference of copper
electrolytically from one electrode to another just how mucl electrolytically from one electrode to another just bow mucb did not appreciate the difference between an electric light with a constant intensity of sixteen candles and a gas jet intended to give a sixteen candle power light, but, by reason of incomplete combustion and other causes, giving out only about ten on the average. He wanted the same number of burners with the same amount of light, and was willing to
pay for electricity what before he had been paying for gas. pay for electricity what before he had been paying for gas.
This being the case, a computation was made of the intensity of the average gas jet, and an incandescence lamp was con structed which should bave a similar intensity. Hence the ten candle power incandescence lamp.
The Maxim lamp shown in the Exposition is in some respects altogether dissimilar from its origiual forms. In the earlier incandescence lamps of the present type, the life was life, that they were fit for little else but laboratory experiments. Nature hates a vacuum, and enough oxygen usually remained, when the lamps were removed from the mercury pump, to insure so much combustion of the carbou loop as to constantly threaten the life of the lamp. By some in genious experiments, Mr. Maxim discovered that the vapo of gasoline, when made to take the place of the extracted air, would keep the carbon loop in repair by making a deposit upon those parts of the loop which had become disintegrated by combustion. Soon, however, it was discovered that the vapor of gasoline had also its defects, for that, besides mak ing a deposit of carbon upon the loop where it was needed, it made still another in the sides of the glass globe, where it
was not. As the Maxim lamp is now constructed, the filawas not. As the Maxim lamp is now constructed, the fila-
ment is of carbonized cardboard, which previous to being ment is of carbonized cardboard, which previous to being
sealed in the lamp is raised to incaudescence in a carbonaceous vapor, such, for instance as a hydrocarbon gas, the result being that a fine layer of carbon is deposited upon the filament. The present type of the Maxim lamp is the result of the labors of Mr. Weston, the electrician. Its electrical resistance when cold is from 40 to 60 obms.
In the Stanley lamp carbonized hair is used as a filament It is of twenty candles power, and has a resistance of abou 80 ohms cold.
The big electrical clock shown near the main entrance to the hall has played a by no means unimportant part in this placed in different parts of the buildings, and has been used generally in most delicate experiments; in all cases-so it is said-having given satisfaction. Being purely electric it has neither springs nor weights, and may fairly be compared with the best astronomical clocks. Among the multitude of secondary clocks which are connected to it by wre, some move once a minute, others once in two seconds, and still
others every second. The big clock is connected by wire with a telegraph company outside the building, and, at noon, is put in circuit with the Nationul Observatory at Washington, whence the exact time is transmitted.
The storage batteries at the Exposition have proved of great interest, and very naturally, it might be said, for though most people are familiar with the theory upon which they are constructed, only few there be among the general public in this country who have seen them. In the Old Country it is otherwise. Electrical tricycles are sometimes seen in the
higbways, and electrical launches occasionally appear in the rivers. Such contrivances have, therefore, ceased to be a noveliy.
Two batteries of the Planté type are exhibited by a manu320. Near by is a rheustat of the Plante pattern cont
with the larger of the batteries. By this connection the difference may readily be distinguished between the currents of high and low intensity.
The battery is joined in multiple arc, and requires two cells of low intensity to charge it. Being joined in series, it shows the possession of an E. M. F. of 640 volts, notwith standing the fact that the original current bad a force of only 4 volts If now the condenser be cbarged by this sec ondary current in a similar manner, and the poles of the con denser be joined in series, an E. M F. will be formed of suffi cient electrical energy to generate a spark of one inch through he air. As may very readily be understood, this increase of ntensity may not be had for nothing; it represents a pro portionate loss of current
The litlle pocket batteries, from which jewels for the stage or salon are lighted up by electricity, have often been described and sometimes illustrated in these columns for the readers of the Scientific American. At the Exposition hey are shown, and their workings explained by an employe of the manufacturing company among the exhibits of which they are numbered. The little battery for the pucket is only 3 inches square, and before being used is charged from ralvanic cell of the common type. A very fine wire of sili cions bronze comes up out of the pocket, and reaches to th jewels on the head. The turning of a little switch, which closes the circuit, is all that is required to light up the jewels.
A London manufacturer exhibits a number of the well known type of Faure-Sellon, formerly called the Faure-Sellon-Volckmar, secondary batteries. What makes these batteries particularly interesting is the alleged fact that some f them bave been in practical use for nearly a year, and do ot, it is said, show any diminution of their former power when properly charged.
They are connected up with several small motors and a number of lights of the incandescence type, and it may be said that they do what is required of them at least effi ciently, if not economically, although it should be said on the part of their proprietor or agent, that he claims for bem an efficiency of ninety-five per cent. They are said to be shown here particularly in the interest of a company which proposes to light up railway cars and steamboats, the current being.furnished the lamps through the agency of these secoudary batteries
The Brush storage battery makes a very excellent showing in the halls of the Exposition, there being one of twenty one cells in the gallery and another of similar power in the main hall used to run a loom. The form of this battery, though supposed to be a secret, is well understood to be a series of lead plates in a bath of sulphuric acid, having before this immersion been chemically prepared. Tie current used has an E. M. F. of forty volts, and is of about tifty-two amperes. Forty incandescence lamps, each of an intensity of sixteen candles, can be kept aglow in either series. Only one dynamo is required to charge the two series, and by means of an automatic current manipulator, the current is turned on or shut off from the dynamo, according to the necessities of the batteries.
A very ingenious and altogether new contrivance is the electrically operated propeller attachment for small boats. It is so arranged that any one who has a boat may attach one of these little machines to its stern, place the battery under the seats, aud move about a river as though impelled by an invisible power. Curiously enough, the boat when fitted with one of these little propellers does not require any rud der; the propeller doing the steering as well as the propel ling. One of these boat attachmeuts has a battery of 12 cells, the plates being $4 \mathrm{in} . \times 4 \mathrm{in}$., a double induction motor and apparatus for propeller.
With such a battery, an ordinary boat would probably not make more than four miles per hour in still water, and possibly would not do as well as that, but with a horse-pow er battery-according to Molesworth's engineering formula, a horse-power is equal to the power displayed at the oar by about eight men-a much bigher speed could be obtained. Of course, until electrical charging stations shall have been established along our river banks, whoever owns an electrica launch must nced also possess a dynamo to charge its bat tery, and a steam engine to work the dynamo.
A particularly interesting mechanism is the semi-incandescence lamp invented by a Philadelphian and exhibited here. Unlike all other incandescence lamps, this one has no vacuum, but glows steadily in the open air. It cannot, of course, be said to be altogether original, save in the simplicity of its parts and its perfected movement. Reynier invented and Wiedemann improved a somewhat similar lamp, as will be remembered, though neither of these contrivances was of a practical nature, as is the one now shown in the Exposition. It is of about forty, perbaps forty-five, candle power in intensity, and can readily be fed by a small battery, say of ten cells; giving off a current of about twelve volts. The negative p nle is of graphite of conical form, and bearing upon its inclined surface another piece of graphite, which represents the positive pole. This latter is free to move about, and as its tendency is to fall outward in the direction of the cone s base, an almost perfect contact is at all times had. To the metallic slepve which contains the positive pencil is attached the positive wire from the generator, and upon the advent of the current the small positive pencil becomes incandescent by reason of. its resistance to the current. Worn away by the current, this pencil recedes gradually by its own weight upon the negative disk, which latter disappears much slower.

MARING GAS FROY CRUDE PETROLEUK

Petroleum has long been looked upon by the scientific and industrial world as one of the best materials from which to obtain light and heat, and, as time passes, the assertion that in the future it will do all that coal now does is received with a steadily increasing confidence.
This belief is strengthened by the many peculiarities which characterize both the product and its surround ings; when properly treated it is one of the best known il luminants and possesses great heating power, and it can b luminants and possesses great heating power, and it can be brought at a minimum expense
which Dame Nature has kindwhich Dame Nature has kind-
ly placed it in inexhaustible ly placed it in inexhaustible
quantities. But the proper puriquantities. But the proper puri-
fication of the crude material, the elimination of all those constituents which decrease the effects following combustion, has proved to be an obstacle of no mean importance, since, here tofore, the accomplishment of this object could only be attained at a cost that was practically prohibitory.
Although we have for many years been dependent upon mi neral oil for a large portion of our light, yet gas made from this source bas not, until recent ly, been introduced upon an ex tensive scale, mainly because of the difficulties attending its manufacture and its poor quality. It is a simple matter to place oil in a retort, and by the aid of a little fire obtain a gas: but to so purify that gas that it will contain no element except those which promote combustion is a part of the pro blem which bas been long studied unsuccessfully
The North American Petrole um Gas Company, of 145 Broadway, this city, has produced an apparatus by which a gas baving superior heating and
lighting qualities is generated at a small cost comparatively from crude petroleum. The apparatus is simple in all its parts, requires but little attention, being almost automatic in operation, and from it arise none of those odors which are so conducive toward rendering the ordinary gas works a nuisance in any neighborbood. Our engraving shows a petroleum gas works built by this company at Brighton Beach, Coney Island.
The oil, in the same condition as when it left the well, is raised by means of a small haud pump from a barrel placen outside of the building to a small tank located in a room adjoining the retort room. This tank is placed at such an elevation that the oil will flow to the retort, which it enters through the dome, spreading and falling to the bottom of the upper compartment, the floor of which, though at a the upper compartment, the floor of which, though at a
cherry red heat, is covered with a substance which prevent cherry red heat, is covered wi
"spluttering," and at the "spluttering," and at the same time removes the heavier impurities. The gas bere generated then passes through other chambers, arranged vertically, in which any remaining impurities are detained, and finally issues from the retort through a pipe which conducts it to a partitioned water box placed alongside of the retort. Here the gas is separated to insure each particle coming in contact with the water. The gas is then led to the condenser, consisting of a series of vertically arranged pipes, coupled in pairs and placed so that their lower ends enter the water contained in a closed box. This gas is so rich that before it can be used for ordinary purposes it must be mixed with about 40 per cent of air. This is accomplished by the mixer shown in the foreground of the engraving.

The furnace is placed in
the center of the retort, immediately beneath the chambers, and the grate dumps into a long water trough. The beat is so distributed and utilized in its passage through the retort that all parts are subjected to just the right degree, while the consumption of coal is reduced to the lowest point. By means of flues and dampers the heat in any particular section can be controlled at will. The dome of any retort can be readily raised by the aid of a traveling block and tackle, thereby exposing the interior, which can then be cleaned, and the substance collecting the
impurities renewed. So slight is the attention required that man and boy can easily take care of ten retorts.
This apparatus generates from 80 to 100 feet of gas from one gallon of crude petroleum, which costs four cents; and each retort yields from 150 to 250 feet per hour. The gas is a fixed gas, being unaffected by either cold or great presure.
Since it mixes readily with coal gas, an inferior qual ity of the latter can be raised to any desired standard of illuminating power by the addition of a small amount of

IMPROVED GLASS ROLLING TABLE.

GLASS ROLLING TABLE.

We give an illustration of a machine constructed by Messrs. Robert Daglish \& Co., St. Helens' Engine Works and Foundry, for rolling out cut glass into sheets. Our en graving is from Engineering. The table is portable, being mounted on four wheels, so that it can be moved with ease to any part of the glass works. The moulding tables are of cast iron, and of widths varying from 2 feet 9 inches to eet 2 inches The surface is either plain ribbed, checkered form with any device thich it ind, checkered, the glass. On each side of the table a rack is mounted on the frame of the carriage, and gearing into each rack is a toothed wheel mounted on a shaft, which also carries a plain ron drum the width of the table The melted glass is poured on the table in front of the roller which is then passed to and fro by means of the handwheel hown, and the rlass is thu spread out into a sheet. An ad justable guide is placed at the back of the roller to regulate it travel, and means are provided of varying the thickness of the sheet rolled.

Trade Mark Rights in words.

Until this year the Registra of Trade Marks in England has steadily refused to admit to regis tration any mere words, howeve anciful, as trade marks. An exception was always made in favor of words used as trade marks before August, 1875. Thi exclusion of the right to use fancy words as trade marks eemed, however, an unneces ary restriction on business. What manufacturers wanted wa What manufacturers wanted was
protection for a fancy title which should come to designate their particular products. The aventor of a scent or a sauc passing both together through the purifiers, or by passing | Wants protection for his "Paradisina" perfume or his the petroleum gas directly into the bokler, this forming a thorough mixture; the latter is the preferable method. The company claims that one barrel of crude petroleum will pro duce gas greater in amount of illuminating value than the coal gas produced from two tons of the best Pennsylvania gas coal; less fuel being required, no lime, and the bandling of material being greatly reduced. A comparison-made by the chemist A. T. Schuessler-of this gas with ordinary coal gas shows that the former is 4.90 times superior in illuminating power, and therefore one cubic foot of the former will give almost as much light as five cubic feet of latter.
Through the courtesy of the president of the com pany, Mr. Isaac D. Guyer, we recently had an oppor

APPARATUS FOR MAKING GAS FROM CRUDE PETROLEOM. Tiberius" relish. This is much more useful to him than mere protection of a certain design which he may print on his labels. The public buy the perfume or the relish, and do not trouble themselves about the presence or absence of an anchor, a crown, or a cross-keys on the labels.
So the government granted this power of registering fancy words as trade marks, and the result is now beginning to appear. Last month we published, says the Chemist and Druggtst (London), some correspondence which had passed between Mr. Haydon, of Birmingham, and the Registrar of Trade Marks. Mr. Haydon seems to have directed atten tion to the registration of the terms "Domestic Tea" and "Mitre Tea," and to bave asked on what principle such "Mitre Tea," and to bave asked on what principle such
titles are admitted to registration. The answer of the Registrar showed that the subject had been considered, and it can easily be seen that to draw the line fairly is a task of extreme delicacy. The act says he may register as a trade mark any distinctive impres sion of the name of the firm or the signature of a firm, or "a distinctive device, mark, brand, heading, label, ticket or fancy word or words not in common use."
The Registrar decidedfairly enough, the edito thinks-that he ought to regard as a fancy word, not necessarily an absolutely new word or meaningless combination of letters, but any word used outside of its or dinary significance. The term "Mitre," as applied to tea, seems to be, on that in terpretation, quite a fancy word, but the adjective " Do mestic" almost approache description. The Registrar however points out that the combination of words "Domestic Tea" is not "Domestic Tea" is not a combination of "words in
gas with water gas, issuing from burners of the same size The petroleum gas was under a pressure of one inch, while the other was two and a half inches. The petroleum gas flame was much larger, more brilliant, and of a purer color than the other.
An important advantage possessed by this gas arises from the fact that the plant necessary for its manufacture upon a large scale can be erected at a cost much less than that re quired by the ordinary gas works; and in addition, the space occupied is small in comparison.
common use," like "Souchong Tea" or "Green Tea," common use," like "Souchong Tea" or
which, as such, would clearly be excluded.

The Salvation Army's Trade Mark

The Official Trade Mark Journal, London, in its issue of August 20, publishes an application from "William Booth, General of the Salvation Army and Minister of the Gospel," to be registered, as the proprietor of a trade mark, in which the design of a cross and crown and the words "blood and fire" form the principal part.

ANCIENT HYDRAULIC CLOCKS.*

The clocks of the ancients were based upon a uniformity in the velocity with which a liquid of constant level flows through an orifice. Heron, of Alexandria, composed a treatise (now lost) upon hydraulic clocks, and Philo, of Byzantium, in a recently discovered fragment of his Pneumatics, indicates several of the apparatus that were in use for obtaining a constancy in the level of the liquid motor in cases where there was not at one's disposal a continuous feed which permitted of employing the very simpie waste pipe arrangement.

Fig. 1.-constant level apparatus.

Fig. 1 shows one of these apparatus. Let H T be the vessel, in which a constant level is to be obtained at the height, \mathbf{Z}, despite the outflow that occurs at T. This vessel is surmounted with a reservoir, A C B, containing three aper-tures-one at C , for the introduction of the liquid; one at R, for the reception of a tube, R P, that serves to feed the vessel, H T; and one at B, for allowing of the passage of the tube, $\mathbf{Q} \mathbf{Z}$, which puts the upper part of the vessel in communication with the lower one at the level, Z .
The upper vessel is filled through the aperture, C, while the orifice, P, is closed, and then the former is closed and the latter opened. The liquid then flows into the vessel, H T, and the air enters through Z Q. If the discharge from T , and the air enters through Z Q . If the discharge from
RP is greater than that from the orifice, T , the liquid will then gradually rise in H T, until it reaches the level, Z. The apparatus will then be charged; since, as soon as the level of the water will have risen above Z, the air will no longer enter through R Q, and the flow from the upper vessel will stop, and will not begin again until the level, upon lowering, uncovers \mathbf{Z}. This level will oscillate, then, between two very approximate limits until the upper reservoir is emptied.
I have selected the preceding arrangement from among the four given by the Greek author, because it is adapted to the production of one of those little prodigies that the ancients delighted in. It will be seen, in fact, that if the lower vessel be replaced by an urn with a wide mouth, and the bottom, A B, by a sieve, we might thus have a fanciful explanation of the action of Providence sending rain at periodical intervals to supply the sources of rivers.
Before the Greeks had thought of establishing constant levels, the Egyptians bad devised clepsydras based upon the properties of the siphon. A Greek grammarian, named Horapollo, who taught belles-lettres at Alexandria in the fourth century of our era, has left a few details upon this subject which I can only quote in Latin:
"Rursus æquinoctia significantes idem animal Cynocephalum sedentem pingunt; duobus enim anni æquinoctiis, duodecies in die, per singulas nimirum horas urinam reddit; idemque noctie facit. Quare non immerito suis horologiis届gyptii cynocephalum sedentem insculpunt, a cujus membro aqua difluat idque propterea quod duobus quas jam dixi, in quas æquinoctii tempore dies et noctes ex æquo dividentur, horas significet. Cœterum ne foramen illud acue artificioseque constructum, per quod in horologium aqua profluit et excernitur, aut latius fit, aut rursum auctius, remedium hoc excogitarunt, est quo quiquid pilorum est, ad caudam usque abradentes, pro hujus crassitudine ferream quondam fistulam in usum jam dictum fabricentur."
Fig. 2 gives the restoration proposed by F. Kircher, for the Egyptian clepsydra of Horapollo.
The cynocephalus, M, contains a brass vessel which serves as a reservoir for the water whose flow is to measure the hours. CD is a glass cylinder whose bottom contains an aperture for the passage of a tube, K, that forms a siphon with the bell, E F. It will be seen that the water that flows from the cynocephalus' body into the cylinder, C D, will rise in the latter until its level reaches the upper orifice of the tube, I K. At this moment the siphon will become primed, and the water will flow into the vessel, G H. If the discharge from K is sufficiently great with respect to that from the cynocephalus, the vessel, C D, will empty entirely
at the end of a certain time. Between the contents and discharges of the cynocephalus and the vessel, C D, ratios may be so established that the cynocephalus shall supply the clock for 24 hours, and that the cylinder shall fill up in 12 hours and likewise empty in 12 hours. It will then only be necessary to mark upon the cylinders, C D, and E F, divisions that shall correspond to these hours. The ascending divisions on the cylinder, C D, will represent, for example, the 12 hours of the day, and the descending ones on E F, those of the night. These divisions will not all be exactly at the same distance, since the velocity of the flow varies

Fig. 2.-EGYptian hydraulic clock.
with the height of the liquid above the orifice through which it runs.
One might, by daily modifying the discharge from the cynocephalus, by means of cocks, succeed in having the cylinder, C D, fill during the time that elapses between sunrise and sun set, and in having it empty between sunset and sunrise; but the operation would be a very delicate one, and the ancients solved the problem in another way-by the aid of curves analogous to those that serve for the equation of time in sun dials.
In the clock that I have just described, the cynocephalus is supposed to be filled with water every twelve hours. In order to surmount such an inconvenience, it is only necessary to cause water to flow from a fountain, A, into a basin provided at its upper part, for the overflow, with a cock for keeping the level constant, and at its lower with a sip for Ieading the water into the large cylindrical vessel.
Kircher asserts that he has read in Heron's treatise upon bydraulic clocks that the Egyptians had apparatus of this kind that began to work automatically at sunrise. For this purpose there was employed as upper reservoir a very thin glass or metal globe, which was provided internally with a siphon, D E, rising to a little above the center. Through an orifice, A, water was poured into the globe nearly up to the siphon's curve, and then the aperture was hermetically closed. It will be seen that the first rays of the sun

Fig. 4.-HERON's CONSTANT DISCHARGE SIPHON.
that struck the globe expanded the air, and, causing the water to rise in the siphon, primed the latter. The discharge then continued until the globe was empty. With wo clocks of this kind running alternately it was unnecessary to rise at daybreak unless the sky was cloudy-an occurrence that seldom happens in Egypt.
In the apparatus shown in Fig. 2, as well as in that in Fig. 1, the discharge from the upper vessel diminishes in measure as the level of the contained liquid lowers. Heron measure as the level of the contained liquid lowers. Heron
mits of rendering the discharge from a siphon constant, and even of causing the velocity with which this constant discharge flows to vary at will. In order to render the discharge constant, it is only necessary to affix the shorter leg of the siphon to a float (Fig. 4), when it will always preserve the same length over the surface of the water. The velocity of the outflow is made to vary by increasing or diminishing such length by means of a screw, D , that actuates a crosspiece, c, movable between the two uprights of a frame affixed to the float. The shorter leg of the siphon is fixed to this crosspiece, and its ex-

Fig. 3.-EGYPTIAN HYDRAULIC CLOCR SET IN ACTION BY THE SUN.
tremity slides with slight friction through a tube, A B set into the float.
It will be seen that 200 B. C., the screw was already practically utilized; but the nut was not as yet manufactured, and it will be seen from the Alexandrian engineer's description that this device was replaced by a simple pin which was fixed to the crosspiece, and which engaged with the thread of the screw.

Fig Cultivation in Sicily.
There are several varieties of the fig tree in Sicily, some yielding a large, others a small fruit, and this fruit varies in its degree of sweetness, also in color from white to black. The fruit of some varieties ripens sooner than that of others. The trees grow equally well in poor and rich soil, and bear abundantly when planted on the mountain side and in the valleys. Consul Woodcock, on Catania, says that the favorite varieties of Sicilian figs are the Sangiovannaro, the Sottuno, the Melinciano, and Ottalo. The Ottalo has smooth leaves, the peduncle of the flower and fruit is longer, and the fruit is sweeter than that of the other varieties. The Ottalo fig is considered to be the best for drying. The fig is propagated from the suckers that spring up from the roots, cuttings from the tree being also used, and these are set in the montbs of February and March. In orchards the dis tance maintained between the trees is about twenty-six feet. The fig is long lived, as it is constantly being renewed by shoots that spring up from the roots taking the place of the main trunk when it becomes old and decayed. The soil is worked in the spring, and also in November following. The best varieties in Sicily are grafted, and also budded upon the stock of the wild fig, this operation being performed also upon healthy trees of the best varieties, and the time chosen for it in March, or when the trees are in blossom in June. Great care is exercised in the cultivation of the tree to remove all dead and diseased branches, and to avoid too much cutting and pruning. The fruit is dried in the following manner: It is gathered when partially ripe, that is, when the fruit is more green than ripe, and immediately plunged into boiling water, and allowed to remain only a very few minutes. It is then placed in a spot sheltered from the sun, and the next morning, at sunrise, spread upon a platform in order that it may be flooded with sunlight, care be taken not to place it upon the ground on account of its dampness. While drying, shallow willowwork baskets are used for holding the fruit, and these are never placed upon the ground, but kept in an erect position. At sundown the fruit is covered to protect it from the night dews or unexpected showers of rain, and this operation is continued for several days until the fruit becomes thoroughly dry. When dry it is placed in layers in small boxes or baskets, these layers being arranged very neatly and artistically, the fruit being pressed down firmly by hand until the box or basket is full, when they are securely covered and kept in a dry place ready for shipment.

A Poor Inventor Who Became Rich.

An inventory of the estate of the late Cyrus McCormick, he inventor of the harvester, has been filed in the Probate Court of Cook County, Ill. The total is not far from twenty million dollars. The executors of this colossal trust furnished a bond for thirty millions.

שurxewnulemit

a Letter from the Garden of Eden.

To the Editor of the Scientific American.
Referring to the paragraph on the Seychelles Islands, printed in your monthly edition for May, I beg to correc the statement that there is a grove of palms here which grow in pairs, and which, if one is cut down, the other dies also. This is an error. A quintuple beaded cocoanut tree, which has been sketched by that indefatigable peintre et voyageuse Miss Marianne North, is the nearest approach to the Siamese twin palms which the Seychelles can boast.

As regards the other assertion, viz., that General Cbarles G. Gordon had discovered here the site of the original Garden of Eden, I can affirm that I have heard from that brave and devoted soldier's own lips his theory aud argument that the Garden was located at or near Seychelles, that the bread fruit represented the tree of life, and the coco-de-mer, which grows in no s,ther part of the known world, was the uudoubted tree of good and evil.

Evelif P. Mussey.
United States Consulate, Port Victoria, Mabe,
Seychelles Islands, September 6, 1884.
[The Seychelles Islands, from which our correspondent writes, consist of a group of small islands in the Indian Ocean, situated 300 miles south of the equator and about 1,200 miles easterly from Zanzibar, east coast of Africa. Mabe, the principai of the islands, is from 3 to 5 miles wide and 16 miles long, very luxuriant in vegetation, tropical but delightful climate. Port Victoria, from which our correspondent writes, has a population of about eight thou sand. It is a calling place for whaling vessels.-Eds]

Underground Telephone Wires.-A Correction.

 To the Editor of the Scientific American:In the fifth paper upon "The International Electrical Exposition," published in your issue of October 11, 1884, cer tain statements are made which are at variance with the facts of the case. I am so accustomed to expect correctness in the columns of the Scientific American, that I am constrained to believe that your correspondent is for once not writing from bis own knowledge, but has received a garbled report from interested parties, and I have therefore no hesitation in requesting the publication of this letter. The statements referred to are on page 332, and relate to a paper read by myself which was criticised by Mr. W. H. Preece.

The statement is made by your correspondent that Prof. Preece believes that wires may be efficiently and economically buried.
That at a recent meeting of the telephone managers a paper was read by an employe of the American Bell Telephone Co., whose duty it is to keep the lines in running order.
That the object of the paper was to show that telephone lines could not be efficiently operated underground. '
That at the conclusion of the reading Prof. Preece took the writer severely to task for the incorrectness of his conclusions, remarking that "if that was the result of his investigations, he must sadly bave neglected his business."" And that results with underground telephone wires are more than eucouraging, etc. "
In the first place, Mr. Preece lays no claim to a professor-ship-he is chief engineer of the British telegraphs, and a Fellow of the Ruyal Society
Second. The paper was not read at any meeting of the telephone mauagers, but at the afternoon session of the fourth day of the National Conference of Electricians.
Third. The duty of the employe of the American Bell Telephone Co. who read the paper (myself) is not to keep the lines in order
Fourth. Not being actively engaged in the business of telephonic communication, the A. B. T. Co. has no lines.
Fifth. The object of the paper was not "to show that telephone lines at least could not be efficiently operated underground." The subject theu under consideration by the conference was:
"Induction in telephone lines, long line telephony, and underground wires," and the paper related to the subject as a whole, was prepared by request of the U. S. Electrical Commission, and only incidentally touched on underground telephony.
Sixth. Prof. (?) Preece did not take the writer severely to task for the incorrectness of his conclusions, although be freely criticised his premises
Seventh. Although Mr. Preece did make the remark cited, it was by no means with reference to underground wires, but merely referred to the omission from the paper of several methods for preventing induction which had gone into use in England.
Eighth. The inference that Mr. Preece held the opinion that telephones could be worked for considerable distances underground is not warranted by the facts. The paper stated that telephone wires could not be successfully and commercially operated underground for a greater distance than twelve miles, and Mr. Preece fully concurred in that statement both at the Montreal meeting and at the Philadelphia conference; while the remark that "even telegraph wires are constructed underground at four times the expense of overhead wires, while they are but one-fourth as efficient, the Society of Arts in England
Ninth. It is not true that the resulta so far obtained with
underground telephone wires have so far been encouraging. On the contrary, they have been discouraging. The articulation invariably becomes sluggish when the underground conductor exceeds two miles in lengtb, and this effect is greatly accentuated when an overhead line of several miles in length is connected with the underground line. Increasing the sectional area of the conductor ands material ly in overcoming the sluggisbness.
It is not necessary here, however, to enter into the question of the relative efficiency and economy of underground and overhead lines, as my only olject in forwarding this communication is to give a correct statement of facts, which can readily, if necessary, be attested from the records of the conference.
Boston, October 11, 1884.
Tноs. D. Lockwood

REVERSIBLE WALL SCRAPER
The end of the shank is pivoted to the center of the stee blade of the scraper. One edge of the blade may be firmly

COLEMAN'S REVERSIBLE WALL SCRAPER.

clamped to the shank by means of a thumbscrew that passe through a slot in the shank, as indicated in the sectional view, the nut bearing directly against the blade or against a plate interposed between the blade and nut. The blade is made about square in shape, with two corners rounded, with two opposite edges sharpened, and with the other edges fiuished square across the thickness of the blade. The sharp edges are specially intended to be used in removing accumulations of paper or calcimine from sound walls in preparing the surfaces to receive new work, and the square edges for like work upon unsound walls which might be further in jured by the sharp edges of the blade. By loosening the nut the bolt may be moved along the slot to permit the brade to swing around. The handle may be of any suitable length, and may be made in extensible sections, as required by the work to be done.
This invention has been patented by Mr. J. E. W. Coleman, of 924 Folsom Street, San Fraucisco, Cal.

LUNAR CHART.

The engraving represents a device for which a copyright was recently obtained by F. W. Coleman, M.D., of Rodney, Miss. It consists of a picture representing the appearance of the new moon each month of the year; in other words, it shows whether the moon lies with its "horns" in a per pendicular, horizontal, or oblique manner, also whether it appears due west, or varies to the north or south. At the same time is shown the date of the year, month, day, hour, and minute, and lime of day that the new moon appears. Of course, there is a separate picture for each munth of the year and for each year.
A represents the new moon, B the arc of a great circle

coleman's lunar chart.
with points upon which the degrees are marked, C is a base line whose ends are marked with the points of the compass -north and south. Within the arc is the date of the year, month, day, and time at which the new moon appears.

Such a series of pictures will be appreciated by that large class of people who firmly believe that the position of the horns of the moon indicates whether the weather during the

Dr. Raymond on the Divining Rod.
An interesting feature of the Philadelphia Electrical Exhibition was a lecture given by Professor Rossiter W. Raymond, before a large audience of attentive hearers. The following extracts are from the Progressive Age: After an introductory allusion to the prevalence, even at the present day and in this country, of a belief in the divining rod as a means of discovering springs, mineral veins, hidden treasures, and oil deposits, the lecturer described its various forms, the commonest of which resembles a letter Y, and consists of a forked brance of witch-hazel having this form The ordinary forked rod is held in the two hands, each gyasping the extremity of a prong, with the fingers closed and the palms upward, the shank or stem being horizontal, or vertical, or variously inclined, according to the preference of the operator. Carried in this manner over the sur face, the rod is said to turn or dip over or near treasure, veins, springs, etc., and even to give more complicated information by means of its movements, which bave been al different times elaborately codified.
The lecturer proceeded to trace the mythical origin of the divining rod and its use in ancient times-principally, if not wholly, for moral purposes, that is, for the discovery of guilty or the decision of important questious or the indication of future events. Its physical application for the discovery of hidden springs, metals, etc., seems to bave been a later origin, and to bave become general throughout Europe in 1he sixteenth century. During this period its action was either attributed to a mysterious natural affinity between the material of the rod and the material affecting it, or else to the agency of evil spirits, or to a divine gift bestowed on the operator.
In the seventeenth century numerous treatises were writ ten, both as to the facts and as to the theory of the rod-the latter being referred, in accordance with the dominant Cartesian philosophy, to "corpuscular effiuvia." According to the school, there were "corpuscles" of springs, minerals, thieves, assassins, lost landmarks, etc.-each kind exerting a different influence upon the sensitive expert, and possessed of extraordinary levity and permanence, so that they could be traced, suspended in the air, after the lapse of days or years. Many years later an electrical theory was popular. It, however, was thoroughly refuted in 1782, in the case of Blaton, by the simple expedient of mak ing and destroying the insulation of the operator without his knowledge, and thus proving that such knowledge was an essential part of the so-called electrical action.
The lecturer adopted, with some modification, the theory of Chevreul, suggesting that, in the case of springs (and of mineral veins which are the conduits of springs), there are differences of temperature, heat conductivity, etc., which might affect sensitive persons so that the unconscious volition and minute muscular movements of Chevreul night be thus occasioned. In the main, however, he regarded the present theory and practice of divining with the rod as the small, lingering remnant of a once powerful superstition, and entitled to the same respect as "planchette"-the object of curiosity, or of study from the standpoint of psychology, but not worthy of the attention of geologists or prospectors.

A Destroyer in the Spruce Forests of Maine

According to accounts of observations published in the third Bulletin of the Entomological Division of the Department of Agriculture, the ravages of the spruce bud worm (Tortrix fumiferana) have been extensive and destructive in the coast forests of Maine west of the Penobscot River. The damage appears to have reached only a few miles inland from the coast, but the belt in which it has prevailed is marked by extensive masses of dead woods. The trees are attacked in the terminal buds, which are eaten away, and when that is doue, the case is hopeless. The fatal character of the attack is owing to the fact that the spruce puts forth but few buds, and those mostly at the end of the twigs, and, when these are destroyed, it has nothing on which to sustain the season's life. The attack is made in June, when the growth is most lively, and just at the time when the check upon it can produce the most serious results. The larches are also attacked by a saw fly, but with results that are not as necessarily fatal as in the case of the spruce. They are more liberally provided with buds, some of which may escape and afford a living provision of foliage. The larch, moreover, sheds its leaves in the fall, and is in full foliage before its enemies attack it. Hence, while the spruce and fir succumb to the first season's assaults, the larch can endure two years of them.-Science Monthly.

Artificial Sea Air.

Many, indeed, are the luxuries that the magician's wand of iuvention now brings into the midst of our homes. As an instance, to produce a sea atmosphere for the sick room, a foreign contemporary suggests the use of a solution of peroxide of hydrogen (10 volumes strength) containing 1 per cent of ozonic ether, iodine to saturation, and $2 \cdot 50$ per cent of sea salt. The solution placed in a steam or hand spray diffuser can be distributed in the finest spray in the sick room at the rate of 2 fluid ounces in a quarter of an hour. It communicates a pleasant sea odor, and is probably the best puritier of the air of the sick room ever used. It is a powerful disinfectant, the same author writes, as well as deodorizer, acting briskly on ozonized test solutions and papers. It might be well to test the subject in some ward of one of our hospitals.

The opening of the Arlberg Tunnel and Rallway. In view of the recent opening of the Arlberg Railway for its entire length, a brief history of the origin of the railway will be read with interest. Although the building of the line itself has by no means been an easy task, the construction of the tunnel and its approaches has presented the chief difficulties to the engineer. The tunnel pierces he high watershed extending from the Silvretta (the point where the frontiers of the Tyrol, Vorarlberg, and Switzerland meet) to the north as far as the Arlberg (forming the frontier between the Tyrol and Vorarlberg), and the eastern slope of which sends its waters to the Black Sea, the western to the German Ocean. The lowest point of this watershed is the Arlberg (5,800 feet), which has given its name to the most western province of the Austrian Empire, the Vorarlberg. The latter may justly be described as a jewel among the territories belonging to the crown of Austria, for it is not surpassed by any of the other provinces in beauty, wealth, trade, and industry. But the inhabitants of Vorarlberg were almost completely separated from the mother country as regards trade, being dependent upon the neighboring States, for the postal road leading from Bludenz over the Arlberg to Landeck and Innsbruck was not at all sufficient for the requirements of the traffic. Thus it happened that Vorarlberg became gradually more estranged from the mother country, and that far-seeing men have been endeavoaing to establish closer connection by means of a railway. A look at the map shows that the most direct route of communication between the greater portion of the Austrian monarchy and Switzerland and the South of France leads over the Arlberg, and a line of railway such as that now on the point of being opened is the most important link for the trade of Aust ria with the west of Europe.
When, in 1859, Austria lost Lombardy, she was anxious to permanently secure the possession of Venice by the construction of a direct road-the Brenner Railway. But before it was commenced (the Brenner Railway was opened in 1867, when Venice had been ceded to Italy), the idea was suggested of connecting it by additional lines from Innsbruck with Switzerland, Soutbwest Germany, and France. Since 1864, then, the principal engineers and political economists of Austria began to take active interest in the question of a railway by way of the Arlberg. For a number of years petitions poured into the Reichsrath and upon the government from the communities and chambers of commerce of the Tyrol and Vorarlberg, asking for the railway; but a deaf ear was turned to these appeals, until, in the spring of 1880, parliament resolved to construct it at the expense of the State. From 1864 to 1880 a number of pamphlets, written both from a commercial and engineering point of view, made their appearance; but there is no need to enter upon them bere. All writers were unanimous in their opinion, bowever, that the climatic influences and the geological conditions of the Arlberg rendered a railway over the mountain impossible. The Arlberg Pass is one of the most inhospitable and exposed passages of the Alps. The winter lasts from seven to eight months, the temperature Calls as low as 25° Reaumur under zero, and not unfrequently snow falls at one time to a depth of fom 8 feet 10 feet. Constant storms between the Rhine aud Inn valleys lift up the snow in large masses, causing enormous
drifts and destructive avalanches. Large landslips and drifts and destructive also of frequeut occurrence. There are several projects with a much shorter tunnel, involving less expense; but it was found that a railway with a short tunnel, situate higher up, was very risky for the working of the railway traffic, and the present long tunnel was finally decided upon.
The Arlberg Railway runs from Innsbruck to Landeck through the Inn valley, from Landeck to St. Anton through the Rosanna valley (a branch valley of the Inn valley), from St. Anton to Langen through the Arlberg, and from Langen to Bludenz through the Kluster valley. From Innsbruck to Landeck-Plettneu the railway runs south of the Inn, and rises nowhere more than 66 feet alove high water of the river. With the exception of a short portion the railway ruus from Plettneu to St. Anton along the northern bank of the Inn, and rises from 132 feet to 264 feet above the bottom of the valley. From Langen to Biudenz the northern side was chosen, and for about nine miles the rail Way is 120 feet above the bottom of the Alfenz valley, the at Roppen by a bridge of 250 feet span, the Putz valley at at Roppen by a bridge of 250 feet span, the Putz valley at
Imst by another of 132 feet span, the Inn valley at Landeck by a bridge of 198 feet span, and the Putznau valley at Weitzberg by one of 394 feet span. There are besides a number of bridges of various spans, all being executed in the best manner. The Arlberg Railway consists of two sectionsthe valley railway from Innsbruck to Landeck (45 miles long) and the mountain railway from Landeck to Bludenz (39 miles long), in the middle of the latter being the great tun nel, 10,250 meters ($6 \cdot 13$ miles) long. The first section of the railway was commenced in November, 1881, and opened for traffic on July 1, 1883. Tl:e mountain section was begun in September, 1882, and will be opened for rassenger traffic on September 15 next, as has been stated. The tunuel has been constructing siuce July 25, 1880, and was finished in the middle of last July.
The boring of the great Arlberg tunnel proceeded very rapidly, far more rapidly than that of any other tunnel pre viously constructed. Instead of the estimated daily progress average rate of 9.50 年
tion of the tunnel, which took place on November 19, 1883 a little over three years after its commencement, is a per formance which has never been equaled. The excellent dispositions made, and the engineering skill displayed, are the main causes of the rapidity of the work. But it must not be forgotten that the experience gained in the construction of the Mount Cenis and St. Gothard tunnels was of the utmost value, and served as a guide. On the eastern side of the Arlberg tunnel Ferroux boring machines, driven by compressed air, on the west Brandt machines, worked by water under a pressure of from 80 to 100 atmospheres, were employed. The tunnel has two lines of rails, and is walled up along its whole length. In places where great pressure showed itself, the walling has been made very thick, and headings for carrying off the water have been driven at intervals for nearly 60 feet into the sides of the tunnel. From St. Anton, where the tunnel entrance is 4,272 feet above the and falls from this point toward Langen (entrance 3,991 feet above the sea) 15 per 1,000 for a length of uearly 4 miles. The cost of the finished tunnel is $4,200 \mathrm{fr}$. per meter run (slightly over $£ 50$ per foot run). Besides the great tunnel, the Arlberg railway has nine small tunnels, varying in length from 214 feet to 696 feet. Their aggregate length is nearly one mile. All these tunnels are also completely walled up, the average cost being only 850 fr . per meter run. For securing the railway against freshets, stone and snow avalanches and landslips, a large number of supporting walls, aqueducts, and roufings for protection against avalauches had to be constructed at great expense. The total cost of the Arlberg Railway and tunnel is, in round numbers, £3,480,000.-London Morning Post.

Dynamite Shells.

The San Francisco Chronicle gives an account of the recent experiments with dynamite shells at Port Lobos. It quotes Gen. Kelton as saying of them:
" The experiments were made under my charge, and with the authority of the Chief of Ordnance," said Gen. Kelton. "The piece of orduance used was a condemned 3 inch rifle gun, made of wrought iron; the gun was a sound one, save that it had become honeycombed by use and exposure to weather; it was a good gun for the experiments. I was ably assisted by Mr. Quinan, till recently a distinguished officer of the 4th U. S. Art., who resigned to undertake the bazardous business of improving the methods of manufacture of high explosives, for which task his scientific attainments eminently fitted him. Experiments of the kind in question need the supervision of an expert in high explosives, and Mr. Quinan's knowledge of dynamite came into great service-in fact, any one outside of a dynamite maker would be uufitted for the work of loading the shells, etc., as be would be so appalled by what he had heard of the wholesale destruction wrought by dynamite that he would be almost certain to blunder at the critical point of the work. Mr.
Quinan in person loaded the shells, each shell, an elongated 3 inch rifle projectile, being charged with seven ounces of dynamite. The selected place of experiment was Lobos Beach, with the ocean on one side and a precipitous cliff on the other, the place being selected that no possible danger could occur to any one. When the gun was fired, our party was over 100 yards from the piece and under protection. The gun was placed in position 150 yards in front of a huge rock. The tirst projecting charge was a quarter pound of cannon powder. The rock was struck by the shell, the dynamite ignited by percussion, and the shell broken into innumerable fragments, whereas by ordinary powder it would only have broken into a few large fragments. The second ment was attended with equally good results. It did just what was expected; the shell was expelled, and did not ignite until it struck the rock. The third charge was a pound of powder service charge. When the gun was fired the ex plosion of the charge, the bursting of the shell, and the stat tering of the gun appeared to be simultaneous. The gun was torn into fragments. One fragment, including the breech, and weighing about 200 pounds, was burled to the rear fully 20 feet; the muzzle part bung to the carriage by a trunnion, the carriage being only slightly injured; the third fragment of the gun, weighing several hundred pounds, flew high in the air, in a nearly vertical course and over the cliff; the immense piece of iron went up a distance of fully 90 feet. Then, as a matter of course, our experiments or the day ceased."
The results of the experiments were, in the opinion o Gen. Kelton, "exceedingly satisfactory, forthey conclusively showed that shell loaded with dynamite can be used in warfare. Seven ounces of dynamite rent the gun as a charge o 100 pounds of powder could not have done. Powder would have opened a fissure in the iron, thus permitting the ga generated by its combustion to escape; but while the combustion of powder, while rapid, is progressive, the combus tion of dynamite is so instantaneous that the enormous vol ume of gas thereby generated seems to want to escape a once; this fact was shown by the sudden rending of the gun into fragments.
"If the dynamite shell should strike the side of the vesse and explode without penetrating the armor, the destructive effect would be greatly in excess of the damage worked by the ordinary shell made of gunpowder. But the dynamite shell must penetrate to some extent to produce its futh efiect I am satisfied that experiments will show that it can easily be
t explodes. The necessary penetration-about one-half the length of the shell-would be effected in the thousandth part of a second after it had reached the ship. Then the exploding dynamite would instantaneously rend asunder the entire side of an irouclad. In defending a fort against a land attack, these dynamite shells would be very effective. One of these shells exploding in the midst of a body of attacking roops would produce as much consternation as a thunderbolt; its explosion would be like unto the explosion of a powder magazine in their very midst. No troops in the world, however brave, could stand more than a few of such shells. So destructive, in fact, would be these shells that their introduction in active warfare would vastly diminish the duration of wars, if it did not make wars an impossi-

In conclusion, Gen. Kelton expressed satisfaction that the experiments had been so successful. While experiments had been made by others, he did not think that any had gone so far or succeeded so well; these experiments with dynamite can only be conducted on the most favorable conditions, and by men who understand the dangers of dynamite and can take every possible precaution against premature explosion.
Captain Daviel M. Taylor, of the Ordnance Department, and an aide-de-camp on General Pope's staff, said: " The experiments conducted so successfully by Gen. Kelton show that a compound many times more destructive than gunpowder will add to the havoc of the battlefield in future wars. One peculiar property of dynamite may somewhat interfere with its usefulness as a destroying and rending agent, and that is the fact, authenticated by experiments, that its destroying power operates vertically and with its main effect in a downward direction; in other words, a dy-namite-charged shell would not scatter death and destruction in every direction, as a gunpowder-charged shell so frequently does.

Captain James Chester, of the 3d Artillery, has paid great attentiou to the subject of dynamite in its connection with the art of war. He maintains that dynamite can be used with great success in active warfare if rockets are employed to throw the deatu-bearing material into the ranks of the enemy. He holds that dynamite shells can be thrown by means of the rocket with fair accuracy and to very long ranges. He calls these rocket-propelled shells aerial tor pedoes, in coutradistinction to submarine torpedoes, and holds that with the submarine torpedo defense in the hands of the navy and the aerial defense in the hands of the army. the country would be safe against any attack."

Haulage by Rods.

Rziha, the well known tunnel engineer, has recently decribed a system of haulage on the east end of the Arlberg Tunnel, designed by Ceconi, that is pec:lliar, and has been remarkably successful in meeting the special circumstances of the case. From the portal at Langen, 1,214 meters above sea level, the tunnel has an up grade of 15 per 1,000 for a length of 6,170 meters to a beight of 1,310 meters above sea level, or a total rise of 92.55 meters; while from the St. Anton portal, 1,302 meters above sea level, it has an up grade of 2 per 1,000 for a length of 4,100 meters. The high est point in the tunnel, therefore, is located more than 2,000 meters nearer the east end than the west end, and even if both tunnel beadings bad been driven at the same rate of advance, it would be necessary to hoist from the face of the east end over a section of 1,200 meters with an adverse grade of 15 per 1,000 . This section, however, became much longer, owing to the fact that the western heading progressed much more slowly than the eastern. This rendered hoisting over the section in question a difficult matter, because the use of men and horses was out of the question, 200 of the latter being ultimately required.
As the advance heading was driven only single-track width, chain or rope baulage would bave been difficult, par ticularly because the space in the heading would be much contracted by guide rollers and rope or chain. These con siderations led Ceconi to use a wooden rod united in sec tions, on wheels running on the track, and bauled over the section in question by three Krauss locomotives in the fol lowing mancer: 'The train, consisting of from 70 to 74 cars, was made up in the heading, and then the rod train was pushed into the heading until its end came into contact with the end of the train, and both were coupled together. Then the engines drew out rod aud train on a side track in the level part of the tunnel. Then they were uncoupled, and the train of cars was switched on to the train track and hauled out of the tunnel by two locomotives, the wooden rod train being left standing on the side track. Aiter dump ing, the car train was pushed back into the tunnel until the steep section was reached, and then was divided into single cars, which were run to the face of the heading singly, with a man at the brake. The hauling, therefore, required from 70 to 74 brakemen, and from 10 to 12 men on the rod train. The rod train consisted of 21 by 12 centimeter timbers $7 \cdot 6$ meters long, mounted on two four-wheeled trucks. In October, 1883, the rod train was 1,070 meters long, and it will reach a length of 1,200 meters. It weighs 52 kilogrammes per running meter, or 55 tons in all. A full train of 75 cars weighs about 230 tons, and an empty train, 2625 meters long, 129 tons. There are ten trains in twenty-four hours moving a gross weight of 8,591 tons, an exceptional duty under the circumstances. An entire train with rod train ha over 400 axles, and is 1,400 meters long. The trains are run on regular schedule time.

engineering inventions.

A stuffing box bas been patented by Messrs Willidm Dingle and Wiliam Jenkins, of Lake Maho pac, $\mathrm{N} . \mathrm{Y}$. It is made in two parts, with a smooth in er surface, its bolt-receiving lags being perforated to receive the perforated heads of the gland fastenin bolte, and having a gland made in 1 wo parts wtth
smooth outer surface, and overlapping lugs perforated oreceive the fastening bolts, so the gland can be se, cured in the strffing box by exterior bolts and nuts and can be readily applied and remored.

mechanical inventions.

A bench stop has been patented by Mr. John Adams, of Hancock, N. Y. The casing has a pos with a la teral stop or arm capabbe of rotary movement and carrying a clamp, with its jaw adapted with said
stop or arm to effect the clamping operation, making a bench stop tadapted for universal use.
A screw driver bas been patented by Mr. Willis B. Gilmore, of Minneapolis, Minn. The bit ha an annular recess to contain a loose spring, with on end entering an aperture or connected with a surround ing sleeve fitce upor holding the screw on the end the bit, with other novel features.
An apparatus for striking moulds for hand rails bas been patented by Mr. Frederick R. Bodley, of Denuction to produce moulds for rails of eny revire pitch, size, and shape, without requiring special skil for ils operation, and so the most diffcult mould ca be str
forms.
A power transmitting pulley has been palented by Mr. John T. La Turno, of Armstrong, Mo. is made in two sections placed loosely on a drivin ne of the pulley sections carring the peen them, ace, and the other section carrying the palley rim or ion with a lutch splined to the driving shet, giving radual strain between driving and transmitting powe gears in starting.

AGRICULTURAL INVENTIONS.

A sorghum and corn cutter has been patent ed by Mr. Charles E. Coe, of Leesburg, Kansas, It consists of a shearing mechanism, wilh means for ad-
vancing it upon the ground to cut the stalks, laying hem to form a bunch, holding the bunch till it is larg sugh, and dropping tat the wit? of the operator.
A baling box has been patented by Mr Oliver Buikeley, of Dexter, Texas. Fixed standard enards, so he be end boart, and there are hinged side
 heir ends reaccing over the upper edges, when the bal be baled packed therein, and the whole tied by the
 emall larmers in ballng hay.

MISCELLANEOUS INVENTIONS

An axle skein has been patented by Mr. Edmand N. Hatcher, of Columbus, O. Combined with an axle and its skein, the hood, band, and bolts
are all formed in one piece, thus strengthening the parts at the points usually the weakest

A spool holder has been patented by Mr mos W. Judd, of Chatranooga, Tenn. spiral spring of small diameter for holding and in a fastener fixed to the ends of ihe spring an

A pump has been patented by Mr. James Sinclair, of Waverly, Md. The wate combined with a hood arranged on the outside of the
casing for collecting escaping gases, whereby they may e destroy to prevert the apreading of noxious va jor
A beehive bas been patented by Mr. Marin Van Ensley, of McMinnville, O. The bottom made double, with passage and ventilating openings, aud there are other novel features, covering improveventor.

An elevator has been patented by Mr. Chas W. Hays, of Orange, N.J. It is constructed with arm attached to the well door to engage with the carrifrom moving up or down before the door is closed, thus locking the carriage in place when the door is open.

A draught equalizer has been patented by Mr. Oliver C. Beck, of Rickreal, Oregon. The inven ion covers a combination of single trees, a double tree horse drawing at one end of a tree or cross bar by
A hydraulic dredge has been patented by Mr. Johu H. Anderson, of Shelby, Neb. It is a sectional dredging vessel comprising a main boat and supnarrow or wide, channel, the invention being an im provement on a former patented invention of the same inventor.
An apparatus for working electric bells has been patented by Mr. Wilbur F. Horn, of Carlisle, Pa. The bell is rung or other electrical effects produced by citing fluid, by a novel device, one plate being permanently immersed and the other normally out of contact with the exciting fluid.

A scraper and elevator has been patented by Mr. Titus H. Apple, of Meadville, Pa. It is fo loading siow, earth, sana, sawdust, stones, or such
materials into carts, wayons, or other vehicles, for which the parts are novel in delail of combination, and very easily and rapidly.
An tlectric lock has been patented by Mr. Hilborne L. Roosevelt, of New York city. The armaspring, and bolt, and a trip pla wit terposed betwe the armature and swinging plate, with other novel fea tures, the invention being an improvement on a forme

A machine for making horseshoes has been patented by Messrs. Joseph Rigby and John W. Gor sucb, of Ottawa. Kansas. A former is fixed on an iro
casting fastened on a block, and around it the sho casting fastened on a block, and around it the esho
blank is bent by hand levers, the invention affording in impoed device for bending invention afordint he form of horseshoes by hand.
A saw jointer and set has been patented by Mr. James K. Brides, of Woodstock, III. This inven
ion covers a simule device to joint the teeth of crown ing covers a simple cevice to joint the teeth of craw et the teeth of thick or thin saws, and to gange the of the teeth to ascertain any irregularities of the set and enable them to be correcled.
A windmill has been patented by Mr. Jos hua G. Benster, of Duncan, Neb. This invention hua G. Benster, of Duncan, Neb. This invention covers improvements in the construction and arrange porting frame, the frame itself, the wheel, and trans mitting apparatus, and the apparatus for mounting a operating the tail vane, all intended to provide a sim ple, substantial, and durable mill.
A machine for spinning and winding yarn hread, etc., has been patented by Messrs. Oscar Hanaa aud Hiram W.T. Earnshaw, of Dover, Ky, This device which may be attached direct to the condenser card, to the jack frame, or to the twister frame, when ed to the spinning of roving as it comes from the condenser.
A wagon end gate has been patented by Mr. Charles P. Krenson, of Munster, Ill. The end astened in place in the wagon box by hinged rods and evers, the rods being hinged to one side of the box
and adapted to be engaged with levers pivoted to the and adapted to be engaged with levers pivoted to the
other side of the box, the levers being held and locked ther side of the bos, the lever's being held and locked the hinged rods to hold the gate from working up.
A copy case has been patented by Mr. My on A. Sherman, of Grant Fork, Ill. It is made wi sheet metal body with the upper parts of its side and outward, upward, and inward, forming groove and having a cover with a glass plate in a sheet met off at either end of the case, and so the edges will not ear or scratch the copy.
A device for holding photographic plates in developing trays has been patented by Mr. Samue B. Pratt, of Boston, Mass. In combination with a aeend of a photographic plate, and adapted to be raised for lifting one end thereof out of the liquid, so the photographic plates may be easily held in and removed rom the liquid without immersing the fingers.
A hay press has been patented by Mr. Herman L. Whitehead, of Island City, Oregon. There are mproved contrivances for working two followers from case by means of a single or double lever arrangement with power applied by a windlass by horse power, mak ing a simple device for applying great force in a low
down case. while the pressed bales may also be lifted down case. while the pr
out by one of the levers.

new books and publications.

Magneto-Electric and Dynamo-Electric Machines. By Dr. H. Schellen. Translated and enlarged by Nathaniel S. Keith.
Vol. I. D. Van Nostrand, New York.
The work of Dr. Schellen, who had previouely been a publicist of considerable mark in several departments of physics, was deservedly popular in Germany, and had reached its third edition before the close of last year. Taking this book as a foundation, Mr. Keith proceeds to add descriptions of dynamos and allied the work being designed to cover everything of practical value or special interest experimentally which has been done in this field up to the present time. Mr Keith has heretofore written much, and made many valuable original investigations on applications of electricity to practical ends, so that he comes to this task amply equipped with all the qualificatious necessary to
present the public with a work of standard value in present the public with a work of standard value
the two volumes of which the first is just issued. Illustrazioni della Ferrovia Metropoli tana e Campi Flegrei, Naples, Italy This is a book of illustrations showing an elaborat
scheme for the improvement of the city of Naples, to scheme for the improvement of the city of Naples, t
which Mr. Lamont Young has devoted the last ten year which Mr. Lamont Young has devoted the last ten year
He has also had the assistance, in this task, of Mr. A. Caprani, founder of the Royal Hotel in that city now fairly in the way of having our modern street rail acious boulevards, etc.

Steam Boiler Incrustation. By Charle T. Davis. Industrial
pany, Washington, D.

This treatise is largely devoted to methods for preventing corrosion and the forming of scale, determinboilers, compounds and apparatus for purifying it, ap paratus for feeding chemicals with the water, etc.

gusimess and extsonal.

The Charge.for Insertion under this head is one Dollar
a line for eachl insertion; about eight words to a line a line for each insertion; about eight words to a line. Advertisements must be received at publication office
asean ly as T'lursday inorning to appear in next issue All books and everytbing relating to electricity cheap school of Electricity, N. Y
Pays well on small investment.-Stereopticons, Magic Lanterns, and Views ill ustrating every subject for pubic xhibitions. Lent. 136 page illustrated coschools, a , Wanted.-Information as to forms of American Mag-
netic Ore Separators which can be used in treating con er ores Separators which can be used in treating copdress E. R.. P. O. 1422, N. Y. City
Shipman Steam Engines.-Small power practical en See page 253.
The Cyclone Steam Flue Cleaner on 30 days' trial to reliable parties. Crescent Mfg. Co., Cleveland, O For Steam and Power Pumping Machinery of Single nd Duplex Pattern, embracing boller feed, fire and low pressure pumps, independent condensing outsts, vac-
uum, hydraulic, artesian, and deep well pumps, air compressors. address Geo. F. Blake Mfg. Co.. 44 Washing-
ton St.. Boston; 97 Liberty St.. N Y . Send for Catalogut Quinn's device for stopping leaks in boiler tube Address S. M. Co., South Newmarket, N. H.
Mills, Engines, and Boilers for all purposes and of
every description. Send for circulars. Newell Univerevery description. Send for circulars. Newell Univer al Mill Co., 10 Barclay Street. N. Y.
Wanted--Patented articles or machinery to manufacBruch Fle Lich Brush Electric Arc Lights and Storage Batterie machine gives 65 Arc Lights with 45 horse power. Our Storage Battery is the only practical one in the market. Brush Electric Co., Cleveland, 0
"How to Keep Boilers Clean." Book sent free by Stationary, Marine, Portable, and Locomotive Boile secialty, Lake Erie Boiler Worjss, Buffalo, N. Y Presses \& Dies. Ferracute Mach. Co., Bridgeton. N. The Hyatt filters and methods guaranteed to render all kinds of turbid water pure and sparkling, at econ Steam Boilers, Rotary Bleachers, Wrought Iron Turn

Send for Monthly Machinery List
to the George Place Machinery Company,
Chambers and 103 Reade Streets, New York Iron Planer. Lathe, Drill, and other machine tools of modern design. New Haven Mfg. Co., New Haven, Con For Power \& Economy, Alcott's Turbine, Mt.Holly, N. J. If an invention has not been patented in the United States for more than one year, it may still be patented in canada. Cost for Canadian patent, \$10. Various othe
toreign patents mayalso be obtaiued. For instructions address Munn \& Co., Scientific American Paten agency, 361 Broadway, New York.
Guild \&Garrison's Steam Pump Works, Brooklyn
N. Y. Steam Pumping Machinery of every descripIn. Send for catalogue
Nickel Plating.-Sole manufaclurers cast nickel an des, pure nickel salts. polishing compositions. etc. Com
plete outfit for plating, etc. Hanson \& Van Winkle plete outat for plating, etc. Hanson \& Van Winkle
Newark, N. J., and 92 and 94 Liberty St.. New York. Supplement Catalogue.-Persons in pursuit of infor-
mation on any special engineering. mechanical, or scienmation on any special engineering. mechanical, or scien-
tiff subject. can have catalogue of contents of the Scrtifl subject. can have catalogue of contents of the Scr-
entific ameican Supplicmicnt sent to them free ENTIFIC AMEHicAN SUPPLicm int sent to them free. the whole range of engineering, mechanics, and physi-
cal science. Address Munn \& Co . Publishers, New York. Machinery for Light Manufacturing, on hand and
built to order. E. E. Garvin \& Co., 139 Center St., N. Y Curtis Pressure Regulator and Steem Trap. See 2 Woodwork'g Mach'y. Rollstone Mach. Co. Adv., p. 222 Drop Forgings. Billings \& Spencer Co., Hartford, Conn. Brass \& Copper in sheets,wire \& blanks. See ad.p. 222 The Chester Steel Castings Co., office 407 Library St. Philadelphia, Pa... can prove by 20,000 Crank shafts an
15,000 Gear Wheels. now in use, the superiority of thei Castin The Improved Hydraulic Jacks. Punches, and Tube Hoisting Engines. D. Frisbie \& Co., Pbiladelphia, Pa. Hoisting Engines. D. Frisbie \& Co., Pbiladilpia, Pa.
Tight and Slack Barrel Machinery a specialty. John Eletral 1 . Electrical Alarms, Bells, Batteries. See Workshop
Receipts, v. 3 \& \& ..00. E. \& F. N. Spon, 35 Murray St., N.Y. Knurling Tool, self-centering, for lathe use. Pratt Khitney Co., Hartford, Conn

HINTS TO CORRESPONDENTS
and Address must accompany ali fetters,
aitention will be paid thereto. This is fer our

give dqıe of paper and page or number of question.
In quiries not answered reasonahe time shonld
be repeated; correspondents will bear in mind that
some answers require not a little research, and,
though we endeavor to reppy to all, either by letier
or mail. each must take his turn.

(1) Reader desires to know which of the fol owing contains the most nutriment-rice,beans, peas,or 88 per cent; beans, 87 per cent; oatmeal, 74 per cent.
(2) C. E. B. asks: What amount of salicylic cid per gallon will prevent the fermentation of cider cylic acid to each forty gallons immediately after the cider has left the press, and no fermentation will take (2)
(3) C. B. S. asks how to make a glue suitable for gluing sea shells together, one that will set
quick, and be stiff after set, and yet not crackle or quick, and be stif afer
break easily. A. Use the following:

Dissolve the gum, add the sugar, and boil until the
(4) C. S. R. asks: What material will mix with anthracite coal ashes, to make a walk that will Mix with Portland cement one part, ashes wo parts: make into a mortar quickly, spread on path and smooth
trowe
(5) B. T. S. writes: It is said that about one-twentieth of water is air; now if I convert the and take that water direct out of a vacnum back into the boiler, and use it over and over without its coming in contact with the air, what proportion of air will there be, if any, still left in that water? A. Practically no air; but any fresh water that may be pumped into
the boiler contains air, which will mix with the steam nd enter the condenser.
(6) E. P. M. asks: 1. Is it practicable, by ny known plan, to manufacture, in glass, frusta of hall be about a quarter of an inch this whose shells shall be about a quarter of an inch thick. tapering in terior section to be circular to within of inch, being allowable to strengthen or stiffen the shell by exterior flanges as desired? A. Yes, make a model of your cone in wood or any other material. Send it to a glass house and have cones blown, or if they are to be exact have them pressed in a mould, which the glass blower can have made to suit your pattern. 2. In the
conversion of rectilinear reciprocal to rotary motion, conversion of rectilinear reciprocal to rotary motion,
what per cent of power is lost by the imperfections of the ordibary crank in the varying force exerted at different points in the circle described by the pin? A. The crank value is 0.63 of the direct pressure.
(7) Upsilon desires to know recipe for acid compound that will restore worn or blunt files to ntility. A. Clean the files by brushing them clean of dirt and eeth; then dip in a strong alkali for a few minutes to remove all traces of grease from the bottom of the teeth; rinse in clean water, then dip a solution of 1 part Time 5 seconds 3 parts sulphuric acia, to 7 parts water Rine in warm lime water, dry, and oil slightly. Finally brush with powdered cbarcoal to take off excess of oil and give them the peculiar look of new files.
(8) H. B. asks the process for making counter dies for the ordinary seal press and metal used, to ace of tet iesin. A. Cast and solder it to the brass backing piece while io the press in order to get a good register. 2. Formula for making ink to print on tin with the ordinary printing inks.
(9) Brazoria asks if there is any device for measuring distance, close or far, without the use of ods or chains. How is distance measured ? A. You kind to begin with. Long distances are obtained by triangulation for which an accurately messured base is necessary. See any book on trigonometry.
(10) G. R. H. writes: Can you explain how it is that although water expands in freezing, a piece ime? That it is so I have proved repeatedly, although I bave heard the fact disputed. A. The expansion of water ceases at the moment of congelation. Ice conracts by cold more than wood.
(11) J. N. asks the most extensive place in the manufacture of cutlery-Sheffield, England, or Turner's Falls, Mass.? A. Sheffield, England.
(12) G. A. D. writes: Will you please informme what kind of shoe blacking that is which
some private valets use for blacking their masters' stioes and where it can be bought? It is said to keep
the leather soft and give a good polish, A. All the leather soft and give a good polish, A. All
blacking which gives a good polish on shoes is in its blacking which gives a good polish on shoes is in its nature non-beneficial to the leather, and many of the
best polishes contain acids which are injurious. The leather, however, may be kept in fairly good condition by using the blacking sparingly and occasionally sponging off, when a slight application of neatsfoot oil and tallow will help restore the life to the leather. There
are too many good blackings in the market for us to particularize here, but more depends upon'their use and the care taken of the leatherthan in the differences in
their quality. (13) J. F. M., of Ohio.-The signing of the patents by the Acting Secretary is lawful, and such
patents are perfectly valid. This has been so held by patents are perfectly valid. This has been so held by
(14) E. L. I. askg: What substance loosens printer'sink so that newspaper pictures can be transerred to other paper! A. The liquid to be used is in 1 pint hot water, adding when nearly cold $3 \not 1 \not 2$ fi. oz. spirit of tarpentine, and shaking thoroughly together. This fluid is applied liberally to the surface of the printed matter with a soft brush or sponge (being careful not to smear the ink, which soon becomes soflened), and allow it to soak for a few minntes; then well damp the plain paper on which the transfer is to be made, place it upon the engraving, and subject the
whole to moderate pressure for about one minute. On Whole to moderate pressure for about one minute. On
separating them a reversed transfer will be found on the paper. This transfer will not be equal to the
original, as only a part of the printer's ink is re-
moved. If the printing be very old, a longer soaking moved. If the printing be very old,
and more pressure may be necessary.
(15) C. H. K.-Starr died in 1847, when about 25 years old. He was interested in the first patent mentioning incandescent carbons. He employed, of the electric current, recommending platinum as the bestmetalfor the purpose, and the best carbon that of gas retorts. He made an electric candelabrum with twenty-six lights symbolizing the twenty-six States of
the Union, which Faraday is said to have greatly ad-twenty-
the Uni
mired.
(16) A. B. asks: Which nation stands, statistically, as the first in the matter of inventions? A.
England standsfirst in respect to the early development and grant of patents for inventions. The United
(17) H. B. V. asks the earliest date of the vound piston valve engine. A. The earliest rotary
valves for steam engines were those of Marquis of Worc
ago.
(18) E. A. S. asks the best way to remove from cloth, paper, or ivory the stains from the purple
aniline pencils now so of ten used, and from the aniline ink, which has driven out of the market almost every other variety. I find that hypochlorous acid wili take out the greater part of the stain from an ivory paper
cutter, but traces of the spots still remain. A. We would recommend you to try hydrogen peroxide. Its use for bleaching ivory is unexcelled. Follow it up
by treatment with alcohol. A description of its appliby treatment with alcohol. A description of its appli-
cation to ivory is given in Scientricic American SupNo. 339
(19) F. A. W. asks: How can I make water dissolve the largest amonnt of bicarbonate of soda?
That is, can I dissolve more to a gallon of water, and have it stay in solution, than by simply adding the sod o cold water? A. The bicarbonate of soda is soluble in 13 parts of cold water, and is decomposed by boiling
water. Therefore it is most soluble at just about 158° ah. (70° (\%), where $14 \cdot 64$ parts of the theoretical an hydrous salt becomes soluble in 100 parts of water, and 1669 parts of the
amount of water.
(20) J. C. H. writes: I saw in one of your numbers a recipe for a hektograph or copying pad con-
sisting of 100 parts good or common glue, 25 parts baric sulphate or kaolin, and 375 parts water. I took of the llue 4 ounces, kaotin 1 ounce, and 15 ounces water. When first made it stack to the paper and peeled up
with it; after it got harder it did not take up enough nk to make a good copy. The ink used was a con by the recipe. A. The formula originally given you is ral reasons considered superior to any other. Th ollowing may prove more satisfactory, and we sugges its trial: Take good carpenter's glue 4 ounces, soften it in very cold water by soaking an hour or two, remove when entirely soft, then heat four ounces by weight of glycerine till vapor arises from it, then add the glue to
the hot glycerine, and stir till dissolved; then keep the vessel in a water bath
(21) L. M. J. writes: In the process of past ng the photograph on the glass, in doing electograph, bined with the starch paste to prevent blisters an peeling off the glass when dry? A. We presume you
use the starch too thick; thin it hy adding more hot water. It is also essential that the glass should be thoroughly
but starch.
(22) L. R. G. writes: Will you be good enough to give sufficient directions for the preparation
and subsequent treatment of the photographic copying papers giving the following results: White lines on lue ground, blue lines on white ground, and black blue process, giving white lines on blue paper, is described on page 52 of the Scientific American for
July 28, 1883. The reversed blue process is as follows July 28, 1883. The reversed blue process is as follows: Well sized paper is painted over with a brush with the
following solution, freshly prepared: 30 volumes of crrate of and 5 and 5 a ron perchloride (1 to 2). The mixture appears limpia at first, but soon grows thicker. The paper is dried in the dark, then exposed for a few minutes under a negapotassium ferrocyanide in 5 parts of water applied with a brush. It is fixed with dilute hydrochloric acid
1 to 10 , washed thoroughly, and dried. For black line n white ground the paper is immersed in the followng solution: 25 ounces gum, 3 ounces sodium chloride 0 ounces iron perchloride, 45° B., 5 ounces iron sul phate, 4 ounces tartaric acid, and 47 ounces water. The developing bath is a solution of potassium ferricyanide or potassium ferrocyanide, neutral, alkaline, or acid After being exposed, the positive is dipped in this bath
and the parts which did not receive the light take dark green color; the other parts do not change iark green color; the other parts do not change. cess of the cyanide, and dipped into a bath containing acetic, hydrochloric, or sulphuric acid, when all the substances which could affect the whiteness of the
paper are removed. The lines have now an indigo ack color. Wash in water and dry
(23) J. B. asks for a preparation for nickel plating without a battery. A. The process is described May 24, 1884. 2. Also a receipt for making scarlet ink A. Half a drachm of powdered lake and 18 grains o powdered gum arabic dissolved in 3 ounces ammon A receipt for making ink for stylographic pens? A. 20 grains of brown shellac are dissolved in a warm so lution of 30 grains of borax in 300 to 400 grains of wate and filtered hot; to the filtrate is added a solution containing 7.5 to 10 grains of water. Soluble nigrosine, $0 \cdot 3$
nk dry quickly, if there is a mixture, and what? A. Printing ink is composed essentially of lampblack and varnish. A quick drying varnish can be used in the
preparation of the ink. Borate of manganese and lead salts, such as litharge and lead acetate, can be added to he varnish to increase its drying qualities. But all good inks require time to dry.
(24) M. B. P. writes: I am troubled a great ealwith red ants. Can you inform me of any receipt or destroying them? A. If powdered cloves are scat-
tered around where the ants are, it will be found ver effectual in driving them away. The better quality o
Persian insect powder is excellent.
(25) W. S. P.-Hammered brass work is
very old art revived. It consists of making the sur face of ornamental articles in brass or other metals ap-
pear as if indented in concave facets, which is done ith polished hammers or sets driven with a hamme The thickness of brass to be used
the article and fineness of the work
(26) M. H. writes: 1. I have a field glass about $21 / 5$ feet long, and have tried to look at the sun
with it by putting a piece of smoked glass outside over with it by putting a piece of smoked glass autside ove hall I proceed? A. Place a piece of paper or whit card 6 to 8 inches from the eye end of the telescope, and
properly focusing the image of the sun upon it you will ave the most acceptable view of the sun. If you pas he object end through a dark curtain in an open win ow that commands a view of the sun, and darken the number of persons at the same time, without in an way injuring the eyes. You may make a wire frame that will hold the paper screen attached to the telescope, so that, in moving the telescope to follow the
un, the screen will move with it. 2. Is there any othe kind of faucets that can be used wooden ones? A. There is nothing better than maple
faucets for cider.
(27) W. A asks a formula for a liquid shoe polish that will not injure and crack the leather, but is
a leather preservative; people complain of the polishes as sold as spoiling and cracking the leather. A. Put aquart bottle or jug, cover it with alcohol, cork tight, and put it on a shelf in a warm place; shake well several times a day, then add a piece of camphor as large as a hen's egg, shake it well, and in a few hours shake it again and add 1 ounce lamplack. If the
alcohol is good, it will all be dissolved in two days; then hake and use. If the materials are all good, it will ry in about five minutes, giving a gloss equal to pa off. This will make perhaps one of the least harmful of liquid shoe polishes, which are in general no way leather preservatives, except as they afford a coating
preventing wear. 2. What composes the liquid glue preventing wear. 2. What composes the liquid glu and leather, etc? A. Take a wide mouth bottle an dissolve in it 8 ounces best glue in half a pint water bi
setting it in a vessel of water and heating until dis solved. Then add slowly $21 / 2$ ounces nitric acid 36° Baume, stirring all the while. Effervescence takes place under generation of nitrous gas. When all the acid has been added, the liquid is allowed to cool. Keep it
well corked,and it will be ready for use at any moment . What is the best exterminator for moths, especiall carpet moths? I have tried black pepper, camphor etc., but it does not kill. Can you give me a good re-
cipe of one that will kill them? A. The genuine Peran powder is considered the best preventive for moths, but once they have taken poss
moval is best effected by beativg, etc.
(28) A. V. R.-A very satisfactory method producing an insoluble glue is effected by adding a solved for use, and then to expose the glued part to the light. The proportion of bichromate will vary with of the amount of glue will suffice. By this means eve water has no effect upon the glue
(29) J. W. A. writes: Please state the cause of small warts appearing through the hair on the scalp. also cure for same. A. The warts are probably due t some irritation of the scalp produced by causes we
cannot determine. Dichloracetic acid or anhydrous hromic acid will remove these: in using the first men tioned compound, it is best to grease the portion of the calp adjace to wart, thereby preventingany per nicious effect on the skin.
(30) H. E. K. wishes a good recipe for reooving pimples, freckles, and small running sores, nd also a greasy look from the skin; something that . Pimples and running sores may be caused by s many different things and are of such variety that it Fould be best to consult a physician in regard to them he gressy look of the skin will disappear on washin ith soap.
(31) J. H. M. asks: What composition is sed for tinring knives, and how is it put on to make it o tinning? A. Pure block tin is used for tinnin mives and iron spoons. The articles are thoroughly cleaned from oil or grease in a hot alkali bath; then if free from scale dip in a solution of muriate of zinc to which has been added a small piece of sal ammoniac,
dry quickly over a hot plate of iron, or furnace, and mmerse in a bath of melted in for a few second, Have the surface of the metted tin kept clean by
(32) J. G. O. writes: I get the water for a engine from a pond about 12 feet below the boiler nd distant 290 feet, with four elbows. I put an in
spirator up connected to the feed, and the discharg pipes are $11 / 4$ inch diameter each, steam pipe $3 / 4$ inch, but it would not work more than 2 or 3 minutes at frst. Three engineers gave different opinions as t
the failure. What shall I do about it? A. There i great difficulty in making an injector work reliably on $\left\lvert\, \begin{aligned} & \text { as long a suction pipe as you describe. We do not } \\ & \text { think that your connection pipes are at fault, nor the }\end{aligned}\right.$
water at 80° Fah. too warm. Put a leather seated suc
ion or foot valve below the water on end of pipe tion or foot valve below the water on end of pipe a
pond. Have the pipe pitch all the way upward toward the injector, so that the air will rise naturally when the pipe is filled ; place the injector as low as possible, even to digging a pit for it. Place a vertical pipe from the above the level of the injector, with a cap that can be made perfectly tight. Start the injector, and get all the air out of the pipe if possible. If the injector con in the pipe or a leak, in which case take off the cap the stand pipe and fill with water, closing the valve a he injector. If there is a leak in the pipe, it should
sow by the water falling in the stand pipe. You will now what to do in this case.
(33) P. F. asks (1) a receipt for a good firegines. A. For paint for boiler and smoke stack use coal tar and asbestos or a good asbestos paint. 2. A
preparation for taking the grease off an eugine so it can be painted again? A. Use strong solution of caustic soda to remove old paint and grease. 3. A preparation cleaning brasses use pulverized pumice stone and kerosene oil, and polish with dry rotten stone on leather.
For removing rusty spots on the finished iron work use For removing rusty spots on the
fine emery paper or emery cloth.
(34) H. B. B.--Carp culture has met with uch success, and assumed such importance that the American Aseociation, Philadelphia, proposes publish-
ing a monthly in its interest. We consider the fish owever, coarse and tasteless and not worthy of cultur waters that can be used for a better class of fish.
(35) L. K. -We do not know the compos ion of the special oils you mention. Paint your shad green with a mixture of chrome yellow and indigo sinted.
(36) R. S. D. asks: 1. Does the micro phone, Fig. 4, Supplement, No. 163, require an induc used either with or without an induction coil. 2. Please ive directions, that 18, size and amount of wireneces annealed Bessemer steel wire answer to make the co of? I mean such as is used as binding wire. A. Make the spool about three inches long, to contain a core o ne, very soft iron wires, the core being about five ixteenths of an inch in diameter; wind apon the spoo three layers of No. 18 wire; cover this with one thick-
ness of ordinary writing paper, and wind upon this will ten layers of No. 36 copper wire. Bessemer stee 3. Is the call in the telephones in use through th country electric or magnetic? If electric, is the sam induction coil used as the transmitter uses? A. Th
calls generally used are magneto-lectric machines; in alls generally used are magneto-electric machines; in
ductiou coils are seldom or never used for calling pur
(37) A. D. S. asks: Is there any known hing that will be a conductor of electricity only whe ight strikes it? A. We think selenium willimeet
wants.
(38) H. L. C. writes: In Scientific Amerimachine. 1. Should the plates be varnished on both sides? A. They may be varnished on both sides. 2. nented before or at a ward. The varnish itself will form a very good ce-
ment. 3. Will white shellac do to varnish with, and how many coats? A. One coat of white shellac var
(39) G. A. H. writes: 1. I am making an electric induction machine, of the Von Holtz type, and ame, and what size spark can we expect of same, i carefully made? He plates are or thanest French plat re two inches in limeter. I om The lingoil disk ton on same, fastened with shellac varnish; will hat do? For Leyden jars, I am using two battery jars distances. Are these too large? What should be the hree-sixteenths inch plate from stationary plate? A. Lead buttons will not answer as well as buttons of brass, because the lead will wear rapidly, and the parti-
cles of it may become scattered over the glass plate The proportions of your plates are about correct. your machine is properly made, you may expect to get a spark from six to seven inches long. Your jars are too large; jars two inches in diameter would be large
enough. The distance between the stationary and novable plate may vary from three-sixteenths to three eighths of an inch. 2. I am also making a Whinhurst is the proper size of the tinfoil pieces for 12 inch plate? By making the pieces larger, and less nume
ous, would that increase size of spark, or would narro and more pieces of tinfoil increase spark? Also will I get a larger spark by using Leyden jars? A. Divide your plates into 24 equal spaces, and make your tinfoil pieces to fill the alternate spaces, leaving an inch and
half at each end of each piece. We do not tlink would be advantageous to make the pieces larger. Le dill increase the size of the spark.
(40) C. C. C. writes: I have made a Daniell's battery, using a bladder instead of a porous cell, an tery is exceedingly weak. Please tell me wherein the rouble lies. Wherecan Ican get a porous cellfor Daniel's battery? A. The tinned copper will answe as well as any for battery, provided you put the coper with a por think your battery would work bet battery is not very strong in any case. You can pro cure porous cells for Daniell's
(41) J. M. writes: In filling a barometer tube without heat, or without vacuum produced on cison my cistern, and filled the cistern full; the end of the
tuke was even with the surface of the mercury. Then 1 put ρ my leather and cover and turned the tube to its proper position, but the tube stil remained full to the
extreme upper end. How can I lower the mercury in the tube to correspond to the inches on the dial of the barometer? A. You can produce a barome-
ter in the manner described by you, but it will not be absolutely perfect, for theresis always a film of air adhering to the inner surface glass tubes which must be expelled by boiling the mexfsy. Your best way to wraduate your dial would be to odpare your barometer with a standard instrument. 2. A much mercury is vell? A. The cistern of the barome marometer work sufficient mercury to supply the turfe whis the mercury is at its greatest height, and cover tielowitend of the
tube sumfiently to prevent the entect, air. 3 . tube sufficiently to prevent the entivep
What is the reason all barometer tubes, are
long? A. Because that is about the length of a edzmn
of mercury sustained by ordinary air pressure. 4. will not any length do, say from 24 inches up tor38 grees Fah. represent the boiling point of many de212° under ordinary circumstances. 6. How many the boiling point of mercury? A. 644․ 7. Where can I get barometer tubes, and what is the cost of them? A. Address any dealer in glass tabes or chemical apparatus in this city. 8. Tell me simple formula used to find the cubic feet in a round spar 4 inches dame the big end and 18 inches in the small end, 90 feet long. A. Find the square root of the product of the areas of the two ends; to this add the two areas, and multiply this sum by one-third the length. 9. Tell me the philosophy of the working of an inspirator. A.
Consult article on Giffard injector in SuPPLEMENT, No Consult article on Giffard injector in SUPPLEMENT, No. 212; see also articles on
$42,153,112,57$, and 356 .
(42) H. F. C. asks whether chickens hatched in incubators differ in any way whatever from those hatched by the natural process. A. There is no
difference between chickens hatched in incubators and (13) C. I.
(43) C. M. L. asks how the smallest possi as electrical battery can be made, or where purchased, ions, which can be fastened to the lapel of the opera-有s coat. A. By using plates of carbon and zinc, and mploying bichromate solution as the exciting flaid, arge current for a short time.
(44) B. F. P. asks: If a stamp on a steel tool has been obliterated by hammering, can it be re-
newed so as to render it legible? A. If the stamp has not been absolutely as well as apparently obliterated, grinding the place and heating over an open fire suffcient to color the steel. The stamped portions of the steel will show a different shade from the other portions.
(45) R. asks: Can I learn or be able to alyze or assay, for my own pleasure, ores and minerals, through the instruction of some work on the sub-
ject? Theoretically, I have a fair knowledge of the science, but have only a limited idea of the working example aud apparatus. A. It is possible for one acquire such a knowledge as you desire. Of course, a desirable, but a satisfactory knowledge can be acquired rom books, In blowing, besides the work you men tion, Professor H. B. Cornwall's Manual of Blowpipe Analysis (\$2.50) and Platner's Manual of Qualitative and Quantitive Analysis of the Blowpipe ($\$ 5.10$), and Elderhurst's Blowpipe Alialysis and Determinative
Mineralogy ($\$ 2.50$) are excellent guides. For assaying, Mineralogy ($\mathbf{\$ 2 . 5 0}$) are excellent guides. For assaying,
Rickett's Notes on Assaying is probably the best book to get.
(46) F. S. asks an easy test for glucose in The readiest means of detection is as follows: A solumixed with alcohol, gives a heavy whit phile tural honey only becomes milky under the same cir cumstances. Glucose gives a red precipitate with Feh ling's solution. The United States Dispensatory will give you the information necessary for the proper man-
ipulation of this test. It can also be applied quantitavely as well.
(47) F. B. B. writes: With a solution of perchloride of iron and gallic acid, I get a purple ink. How can I wash the writing in to make it jet black? . We think, however, that as the writing ages it wil den.
(48) S. T. G. asks a recipe for mending lamp tops. A. Use a cement prepared by boiling 3 part position forms a soap, which when mixed with half it weight of plater of Paris sets firmly in about thre quarters of an hour. It is said to be of great adhesive power, not permeable by kerosene, a low conductor
heat, and but superflially attacked by hot water.
(49) W. G. F. asks how calcium sulphide is . the calcium sulphide made into a paste with warm water and starch. Sometimes soap lye is used instead
o water. The paste is spread on paper and applie of water. The
like a plaster.
(50) H. E. W. asks: 1. If ground connec tions for telephones are attached to lead water pipes, ill any galvanic action take place, to injure the solder What can be used to remove the grease, etc., from waste pipes from sinks and wasi basins, that wiln no potash.
(51) F. S. B. asks: What will clean zinc and make it look bright? A. Whiting or reflned chal and make it look br

INDEX OF INVENTIONS			DESIGNS.
	ne. See Gas engine. Ho		
For which Letters Patent of the United	ana	Postal cabinet. L. C. Gray 306.243	
	F. A. Schorr	Pot. See Tea or corfee pot. Power. See Sewing machine han	Carpet, J. B. Georre 15.444
	and fatty oils, purifying and bleaching, J .	Press. See Fruit press. Hay	440
October 7,	W. Moseley.......306, 168 to	Pul	
And eadh mearing that dater		Pulley, power transmittink, J. T. La Turno........ 306,267	
		izer	
[See note at end of list about copies of these patents.]		Pump. S. E.	
			RADE MARES.
brake attac		Pump, compression, T. Cook s00,060	Bitters. L. E. L. Arp..................... 11,544
			Bluing in leares, packages of laundry, Troy Laun-
		Rallway switch, automatic street, i.c.e. Powers... 30 of.100	Cikarette paper. J. schnab) \& Co........... 11,588
oys containi	Fire escape, J. Haege \qquad 306,149	Rallway tie. R. Mofly............................ 306,090	Cigars, I. Rattray $\&$ co c......................... 11.557
oss, manufa			Cigars. Havana. Grommes \& Ulirich.................. 11,550
Allors, manufacture of metallic. G. A. Dick $306 ; 29$		Reef. See Centrifugal reel. Fishing	Dentifrice, J. H Hamilton........................ 11.551
			Dyesturf used chieffy for wois. H . D. Dupee...... 11.549
e, carriage, E. Blou	ade for, H . D .	regulator. Spring	
			Medical and surgical appliances, certain, A. A. A.
Axle skein, E. . . Hatcter -....... 306,	Fishing ree		an...... 11,566
		Rice, etc., machine for cleaning and scouring, D.	
			Remedy for cancers, tumors, and all humors. E.
Battery in normally closed circuits, d			man.............. 11.546
${ }_{\text {Be }}$			Tobacco, cigars, and cigarettes, cut chewing and
Beehive. J. W. Smith...............................	Garden im	Sawing	
			re Brothers 11.544
Belting, machinery, R. Belting, mamp. J. Birch			Toilet powder, J. T. J. Lubin.
		Screw threads, machine for rolling. Clark \& Har-	
${ }^{\text {B }}$ Biccle latern halder, C. C. . Richardson 306,23			
	Ga		
boat.	Gas machine, Gardner \& Grewar.................. ${ }^{\text {Gen }}$	5	
ng machine. Br			gra
Boots and shoes, making. D. S. Sherwood............... 306,1			
Bottle stopper, R. M. Williamson 300,302	Glove fastening, w. J. Walden 306.196		
30tle stopper, A. H. Wirr.................. 306.307			
W. He Chane................			
Brrck, J. Darrigan.. 306, 137			
Brick			
${ }^{\text {Bran}}$ Brorer.			(addrritwemsutis
Buockie, E. A. Daniel.............................			
Buckle, W. T. Schenck.... 306.114	${ }_{\text {Ha }}^{\text {Hu }}$	soda	Bnck Page, ench insertion -. - \$1.00 a line.
Bugky shifting rall, H			
Burner. See Vapor burner. Button, G. W. Prentice 00,101	Hand rails		Engravings may head avertisementst at the same rate per line, by measurement.as the letter press. Adver-
Button and fastener, G. W. Prentice............. ${ }^{306,103}$	M. Bodey. .-............................. 306,215	Spinning	
Button, cuff. J. B. Williams...		Spinning trame yarn gulde and guard, A. Pet-	
Buttor			
Cake mach			
Calipers, C. W. Wessman... 30.123	Hit	Sppoling machine bobbin holder, B. Saunders 3006,109	
Can for ashes, garbage. etc.i. T. W. McKeever. 30.0039	Hats, pr	Spring motor regulator, T. M. Ofrutt........ 300,345 Steam heater, Lewis \& Ascher.... 306,270	
Car brake, S. S. Erret........ -......... 30,142			
	Hay fork, J. Ney.		
	Heater. see Feed water heater. steam		Erclusive Agents and Importers for the United States,
Car plattorms, safety gate for, E. L. Tevis....... 306,364	Heddele frame, J. L. Latriesono.......... 30,264	ne	- BAND KA
Car replacer, J. . w. Yothers..................... 300,373			RIN BAND SAW BLADES,
at. A. P. Johnson	Holder. See Bag holder. Dentist's flle holder.	Sugar filter bags, method of and apparatus for	r. finish,
Car whees. device for constructing metal, w. H.	,	Tea kettles. swink frame for, E. B. Manning...... 309,271	
$\begin{gathered} \text { See } \\ \text { see } \end{gathered}$		Telegraph, printing, c. G. Burke...306,055, 30,	
Cush and parcel transmitter, w. S. Reed.......... 30.3535	Hot air	Telegraph, printing, H. Van Hoevenber	
ster. A. Rein..................306; 3828		'relephone, C. E. Allen .	
box, street car drivers, J. G. İ.iolden...... 30\%:252	Hydrant valve. S. w. Lewis......................... 300	Telephone and telegraph purposes, conductorfor,	
Cheese hoop. Loomis \& Hauenstein 300,087	Hydrocarbon vapor generato		
arn. J. W. Ciark	dex. M. B. Smyth	hon	
俍	Indicatro.		
Clasp. See Garment clasp.	Insulators, press for moulding		
Clay mill, J. L. Durrough....... 306,088	Insulators, press for moulding glass, Gray \&	Telephone support, T. N. V. Vail.................... 30.2936	
${ }_{\text {Clothes }}$ cleaner. dier, J. A. Carpenter 308,319	Iron breaker, pit.		
Cluteh. friction, J. C. Blevney....... -... -...... 30,127	Iron, m		
Cocoants, remoring the shells from, H. A. Gray 306,148	Jack. See Lieting jack. Joint. See Railwayrail	Telephones, individual call instrument for, J. P.	S. 1 fir circularsto Sit
	Journal		
Opy case, M. A. Sherman........... -............ 306,290	Kin. See Brick k ill	Thill cou	
30,244		Thill couping, E. Yeiser......................... 30,372	
${ }^{3}$	Lathe tools	Tobace	
pling	Leather		
Covers to vessels, tool for applying fastenings to	Leggin, waterproni. T. Hawleg.......... - 30.0077	Tra	
secure, W. Dumerel........................30, 30.226	Lifting		
A. Goldman........... 36,242	Lifting jack. T.	Type writing machine. C. E. Tilton................. 3066295	
Ws tie and fastening of the rails thereto. \mathbf{B}.	Lock. See Electrical lock.		
${ }^{360,139}$ 30683	Locomotive steam encine, G. A . Crosby 306,136	Va	
cultivator and hoe, combined. A. G. Christman.. 306.19	Loom harn	Valve, trap. J.	
tivator tooth, H. Keller. .-..................30,159		burner for lighting purposes. H. S. Belden. 30.1255	
trators, carriage for stradale row, Н. H.	Loom picking mechanism. Knowiton \& Meyer... 306.10		
ter. see	Loom temple, J. E. Wi	Ventilating marine veseels. J. M. J. Barton....... 306,209	
${ }_{201}^{398}$	Loop for hanging garments,		
	Met		
play frame, jointed, S. S. . Higley............... ${ }^{\text {s }}$		Washing machine, Allen \& Kibbe................ 30 00.204	
mes, running gear for revolving, warner \&	A. from th irores, apparatus 1 or separating,		
寿	Mill. See C		
Dour hanger, E. N. Hutchins......... 306,099	Nut lock, J. T. La Du 30¢0.085		
	Ore pulveres and metals, machine for separating and con-		
		Weavers' harness, machine for making, J. s.	
drops, wire f	Padde wheel for steamboat Paint compund for rooss,	Wheel. See Car wheel. Fitth wheel. Padde	
ectric alarm cal			
ric bells, ette.. apparat	Paper box, E. B. Munson 306.122		
	Paper box, M. F. Wisison....................... 306 ciso4		
	S. B. Pratt....... 006,281		
evator doors, device for operating, C. W. Bald win			

Lowthian Bell's New Book. PRINCIPLES OF THE
MANUFACTURE OF IRON AND STEEL, Economic Conditions of their Production
D. VAN NOSTRAND, Publisher es MURRAY AND 2% WARREN STS., NEW $\mathbf{Y O}$ ADULTERA'TION OF DRUGS IN AMERI

LOVE $=\mathbf{F}=$㮰ShotGus Jit Revolvors
To Electro-Platers.

MACHINISTS

IRON, STEEL, AND METAL WORKIN
A. C. FARLEY \& CO., Publishers, Philladelphia

OPIUM$\&$ WHISK HABITS

VARICOCELE Patione

ONLY \$1.00 BY MAIL, POSTPAID.

KNOW THYSELF,
Great Medical Work on Manhood

PATENTS.

lication of the Scientific Ambrican, continue to ex amine Improve
for Inventors.

In this line of business they have had thirty-erght the preparation of Patent Drawings, Specifications, and the prosecution of Applications. for Patents in the United States, Canada, and Foreign Countries. Messrs. Mumn $\&$ Co. also attend to the preparation of Caveats, Copyrights for Books, Labels, Reissues, Assignments, and Reports on Infringements of Patents. All business intrusted to them is done with
 A pamphlet sent free of charge, on application, con taining full information a bout Patents and how to pro Desigus, Patents, Appeals Reissues, Infris, Copyrighte, ignments, Rejected Cases, Hints on the Sale of As Lents, etc. Patent Laws sinowng the cosi and method of seoreign patents in all the principal countries of the world. MIUNN \& CO. $\begin{aligned} & \text { Solicitors of Patents, }\end{aligned}$

 RUBBER BACK SQUARE PACKING. BEST IN THE WORLD.
For Packing the Piston Rods and Valve Stems of Steam Engines and Pumps. B represents that part of the packing whies. When in use. is in contact with the Piston Rod.
A.the elantic back which keeps the part B against the rod with sumficient pressure to be steam-tight, and ye
creates but little friction.

NEW YORK BELTING \& PACKING CO.
JoHn H. CHEEVER, Treas.
JOHN D. CEEEVER, Dep'y

NEW CALORIC PUMPING ENGINE, For Dwellings \& Conatry Seats Simplest! Cheapest! EcoDelamater Iron Works, C. H. Delamater \& Co., Proprietors, 16 New Yorkindt U. Street, And 40 Dearborn it., Chicago, III.

THE NORTHERN PACIFIC RAILROAD

 Maturn

WHAT SHALL BE DONE WITH THE Seme
o. New Catalogue of Valuable Papers

NEWSPEAFECT FER FIE

WATCHMAKERS.

GOLD MINES OF SIBERIA.-INTEREST

ROOT'S NEW IRON BLOWER.

IRON REVOLVERS, PERFECTLY BALANCED, P. H. \& F. M. ROOTS, Manufacturers, P. H. CONNERBVIILE IND.
 SEND FOR PRICED CAT

BOLIVIAN EXPLORATION.-BY REV.

 SCIENTIFIC AMERICAN SUPPLE

 THE ELECTRIC LIGHT IN THEATERS

FOR TINNERS OR PATENTRIGHT MEN

FOREIGN PATENTS.

 Their Cost Reduced.The expenses attending the procuring of patents in
most foreign countries having been considerably reost oreign countries having been considerably re
uced, the obstacle of cost is no longer in the way of arge proportion of our inventors ptenting their inven tions abroad.
CANADA.
CANADA. -The cost of a patent in canada is even former includes the Provinces of Ontario. Quebec, New

The number of our patentees who avall themselves of the cheap and easy method now offered for obtaining ENGILAND.-The new English law, which went int torce on Jan. 1st. enables parties to secure patents in
Great Britain on very moderate terms. A British pa tent includes England, Scotland, Wales, Ireland, and the Channel Islands. Great Britain is the acknowiedge
fnancial and commercial center of the world, and he goods are sent to every quarter of the globe. A good
invention is likely to realize as much for the patentee in England as his United States patent produces for for almost every patentee in this country to secure a pa-
tent in Great Britain, where his rights are as well protected as in the United States.

IR IES.-Patents are also obtained A very reasonable terms in France, Belgium, Germany
Austria, Russia, Italy, Spain (the latter includes Cuba And all the other Spanish Colonies), Brazll, British India, An experience of THIRTY-HIGHT year the publishersof The Scientific A merican to establibh competent and trust worthy agencies in all the principal foreign countries, and it has always been their aim to
have the business of their clients promptly and properiy done and their interests faithfully guarded.
A pamphlet containing a synopsis of the patent laws
of all count ries, including the cost for each, and othe Information useful to persons contemplating the pro-
curing of patents abroad, may be had on application to this office.
MNUN \& CO.. Editors and Proprietors of The ScIany information relative to patents, or the registry of mices, 361 Broadway. Examination of inventions, con answered.
dress, MUNN \& CO.

ghurtitarments.
 zngravings may head advertisementst at the same rate
per ling, by measurrementent, as the letter press.
Adver-

 SEBASTIAN, MAY \& CO.'S. Screw Cotting Lathe

 tion

 BIG PAY to sell our Rubber Printing Stamps Samples

EVERY USER OF MaCHINER How to Use Loose Pulleys
 F. Brown's. Patent FRICTION clutch.

A. \& F. BKOWN, 43 Park Place, New York.

The ${ }^{6}$ MONITOR." $\left\lvert\, \begin{aligned} & \text { Best Bioiler Feede } \\ & \text { in the world. }\end{aligned}\right.$ A NEW IIFTINGAND NON-
LIFTING INJECTOR.
R
 Ejections Water Elevators

WE ARE READY.

 PLANING AND MATCHing machine

Special Machines for Car Work, and the latest improvéd
Wood Working Machinery of ail kinds.

H.W.JOHIS Asestios GIQTID PATNTIS ROOFING.
 Fire-proof Building Felt, descriptive price hist and samples fref
 H. W. JOHNS M'F'G CO., 87 Maiden Lane, New York. 170 N.4th St., Phila.
 BARNES'

 BARNEO

\%JMNEINE PATMNTE VATVGE,

Gate, Globe, Angle, Check, and Safety.
MANUFACTURED OF BEST STEAM METAL.
 THINKINIS BROS.
 York. Send for Price List "A

KORTING UNIYERSAL DOUBLE TUBE. INJECTOR

NO ADJUSTMENT FOR VARYINALL STOVOMTINERESSURE,

Double Screw, Parallel, Leg Vises.

SUPPLY DEPOT

 amateur and Protessumal Meemanics. gay five sixidy

WIRE ROPE

 CHALMERS-SPENCE, CO.

COLUMBIA BICYCLES AND TRICYCLES.
 59\% Washingtonst., Boston, Mass.

GASKILL'S STEAM PUMPS, gaskilles high duty pumping engines.

 VAN DUZEN OU TIFT, Cincinnati, 0 .

HARRIISinal and Only Builder of the
With Harris' Pat. Improvements, from 10 to 1,000 H. \mathbf{P} Send for copy Englneer's and Steam User's
Manual. By J.W. HIII M.E. Price \$1.25.

家

GAS TNGINGS,

 POWER DETERMINED BY ACTUAL TEST.
Call and see them, or for clreulars and prices add THE CONTINENTAL GAS ENGINE CO., No. 231 BROADWAY NEW YORK.

Emerson's NewRI

 Emend your full adress to (Lt).), Beaver Fistributilion.

MROSLU

ฐricutific Ammericau

The Most Popular Scientific Paper in the Worid.

This widely circulatated and splendidy ylustrated
puper is published weekly
Every number contains sixpaper is pubished weekly Every number contains six-
teen papes of useful information, and a large number of
 epresenting Engineering Works, Steam Machiners,
New Inventions, Novelties in Mechanics, Manufactures, Chemistry, Electricity, Telegraphy, Photography, ArchiAll Classes of Renders find in the screviviric AMERICAN a popular resume of the best sclentific in-
formation of the day; and it is the alm of the publishers to present it in in an atractive form, avoiaing as much as
possible abstruse terms. To every intelligent mind, reading. It is promotive of knowledge and progress in
ind every community where it circulates.
Terms or Sybscription.-One copy of the ScienTrFic AMERTCAN will be sent for on e year -52 nimbers-
postage prepaid, to any subscriber in the United States or Canada, on receipt of three dollars numl twemty celits by the publishers; six months, 81.60; three
months, 81.00. Clubs.-One extra copy of the ScIENTiPII A AmRIat $\$ 3.30$ each; additional copies at same proportionate
One copy of the Scientific Ambrican and one copy Por one yean, postage prepaid, to any subseriber in the
United States or canada Unitea states or canada on receipt of seven dollurs br
the publishers. the publishers.
The safest way to remit is by Postal Order, Draft, or Express. Money carefuuly paced inside of envelopes,
securely sealed, and correctly addressed, seldom goos astray, but is at the sender's risk. Adadress all letters
and make all orders, drafts, etc.. payable to

$$
5-2+20
$$

MITJINAN \& CO.,
361 Broadway New York. To Moreign Subscribers.- Under the facilities of

the Postal Union.the SclevTITIC AMERICN is now sent | $\begin{array}{l}\text { by post direct from New York, with reapularity, to soub- } \\ \text { scribers in Great Britain Inda, Australia, and all other }\end{array}$ |
| :--- | British colonies; to France, Austria, Belgium, Germany

Russia, and all other European States; Japan, Brazit
 Termm, when sent to toreien countries, Canada excepted,
844 goli, for ScI EvYIPrC

 MUNN \& CO., 361 Broadway, Ne , York.

PRINTING INES,

