
a WeEkly Journal 0f PRactical inforination, art, ScIENCE, MECHANICS, CHEMISTRY, and Manufactures.

THE AMERICAN WATCH WORKS. by н. с. ноvey.

A watch is a machine. It used to be supposed that its delicate parts could only be made by manual skill; and in a large portion of the world this notion still prevails. The idea that a machine can be made by machinery, much of which is automatic, is essentially Americaa. In its application to the watchmaking industry it originated with Aaron L. Dennison, a Boston watchmaker, who began his experiments in 1848 . In company with Edward Howard and Samuel Curtis, a small factory was started, in 1850 , at Roxbury, Mass., which was removed four years later to Waltham, ten miles from Boston, a place already famous for the first cotton mill started in this country. After struggling with numerous unforeseen obstacles, these pionzers in a new

balance making room.
that in turn gave way to the immense structure now in use and that ba now in use, and that has far at this one factory, of which 500,000 were made during the been wholly built since last eighteen months! The present capacity of the works is 1878. 1,250 watches daily, which by recent improvements will A few figures will soon be increased to 2,000. There have actually been sent perbaps convey an idea of
the magnitude of the Waltham Watch Works in their present form. The factory itself is a brick building, with numerous long wings, several towers, and inclosing three ample inner courts, besides an elegant suite of offices at one end and an observatory at the other. The total leuglh of the front is over 700 feet. The floors cover nearly five acres. There are $3 \frac{1}{6}$ miles of work benches, mostly made of cherry plank, 2 feet wide and 2 inches thick. There are 4,700 pulleys; 8,000 feet of wall rods; 10,600 feet of main shafting, and 39,000 feet of belting, varying in width from 2 inches to 2 feet. All this machinery is driven by a Corliss engine of 125 horse power.
When Mr. Robbins took hold of what was then regarded as a forlorn enterprise, only 5,000 watches had been made in all Now over $2,500,000$ have been made thus

industry failed financially; and their property was bought, in 1857, by Royal E. Robbins, for Appleton Tracy \& Co, the name being subsequently name being subsequently
changed to Robbins, Apchanged to Robbins, Ap-
pleton \& Co. In 1858 the pleton \& Co. In 1858 the
property was bought hy the American Watch Company. The original stock capital of $\$ 200,000$ has been increased to $\$ 1$, 500,000 , with an equally large surplus. The number of hands has grown ber of hands bas grown
from 75 to 2,400 . And in from 75 to 2,400 . And in
place of the small factory existiug in 1857 , there was built a much larger one,

biring the dials.
AMERICAN WATCH MAKING, AS CONDUCTED AT WALTHAM, MASS,

Srientific ©

ESTABLISHED 1845

MUNN $\&$ CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERIMS FOR THE SCIENTIFIC AMERICAN.

 One copy, one year postage included....One copy, six months postage included
Clubs.-One extra copy of The Scientific American will be supplied same provortionate rate. Postage prepaid.

Remit is postal order. Address

MUNN \& CO.. 361 Broadway, corner of Franklin street, New York
The Scientife American Supplement is a distinct paper from the Scientific american. The Supplement is issued weekly. Every number contains 16 octavo pages, uniform in size
with SCIENTIIC AMEICAN. Terms of subseription for SUPHEMENT, $\$ 5.00$ a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all news dealers throughout the countrs.
Combined Bates. - The ScIENTIFIC
will be sent for one year postage tree. on receipt of seven dollars. Both papers to one address or different addreesses as desired.
The sutest way to remit is by draft, postal order, or registered letter.
Address MUNN \& CO., 361 Broadway, corner of Franklin street, New \mathbf{Y}.

Scientife American Export Edition.

The Scientific Ambrican Export Edition is a large and splendid peri-
odical, issued once a month. Eich number contains about odical, issued once a month. Eitch number contains about cone hundred large quarto pages, profusely illustrated. embracing: ©.) Most of the platee and pages of the four preceding weekly issues of the Scluntific
AMEricar, with its splendid engravings and valuable information: (2.) Commercial, trade, and manufacturing announcements of leading houses. Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the
world. Single copies 50 cents. Manufacters and others who desire world. Single copies 50 cents. Manufacturers and others who desire
to secure foreign trade may have large. and handsomely displayed an nouncements published in this edition at a very moderate cost. The SCIEMTIFIC AM wilicAN Export Edition has a large guarivteed circulation in all commercial places throughout the world. A
CO., 361 Broadway, corner of Franklin street, New York

NEW YORK, SATURDAY, AUGUST 16, 1884.

REMOVAL.

The Soientific American Office is now located at 361 Broadway, cor. Franklin St.

table of contents of
the scientific american supplement No. 450,
For the Week ending August 16, 1884. Price $\mathbf{1 0}$ cents. For sale by all newsdeaters

1. CHEMISTRY.-Pyroxylin-Gun Cotton.-What strength of nitric acid will yield the best results.-By G. Pise....................
Liquefaction of Gases.-The freezing of ether and alcohol.
II. ENGINEERING and mechanics.-Lifting Bridge for Double Track Railway.-Full page engravings
The Heavy Guns of 18844 -A lecture by Col. E. MATITLAND, Supt. Royal Gun Factory. Woolwich.-Improvements in powder, in mechanical appliances, and in production of large masses of steel.
-Relative excellence of latest types of heavy guns.-Compara--Relative excellence of latest types of heavy guns.-Compara-
iII. TECHNOLOGY.-Retouching Gelatine Negatives Photographing a Pistol Ball and Sound Waves.
Bleaching Agents of the Future.-By E. DwIGHT of Cooke and Wheatstone's Telegraph.-Fardely's and Leonhardt's Receivers.-Siemens and Halske's dial telegraph.-Jacobl's tele graph, etc.-28 figure
V. DECORATIVE ART, ETC.-Sheraton Drawing-room Furniture.-
7 figures....
VI. Astionomy.-How the Earth is Weighed.--The Cavendish ex-
periment.-1 figure
VIL GEOLOGY MINING, ETC. - The Calumet and Hecla Mines and
Plant. - The extent of the property. - The vein. - Mining. - The shafts. -The surface plant... The Extinct Lakes of the *reat Basin.-Decrease in size of
Great Salt Lake. - The "foss 1 lake."-Topography of the Great
dIII NATURAL HISTORT-Prize Dogs of the Vienna Dog Siow.With several figures... 7889
A Dog Plans and Executes with Reference to the Future....... 7189 IX. MISCELLANEOUS.-The Captive Balloon at the Tarin EixhibiMilitary Tournament The Guise Co-operative Experiment...
The Economic Uses of the Mesquite.-Uses of different parts of

THE GREELY EXPLORERS AT HOME.

It was on the 17th of July that the telegraph brought the news of the return of the Greely relief expedition to St . John, N. B., with Lieut. Greely and five of his companions who were rescued alive, and the bodies of twelve who had perished. Since then, with the more full details that have been furnished, the general sentiment of the country has strongly expressed itself in words of earnest commend ation for both rescued and rescuers. The steamers composing the relief expedition, the Bear, Thetis, and Alert, were ordered to remain at St. John until metal caskets could be obtained for the bodies of the dead, and then to come homeward gradually to more southern latitudes, so that the yer feeble survivors might not be suddenly exposed to extreme warm summer weathe
In accordance with this plan, the first official reception to the returning party on United States soil was given at Portsmouth, N. H., Aug. 4. There was a procession, in which Lieut. Greely was too weak to take a part, but which he reviewed from a balcony, and speeches were made by Secretary Chandler, Senator Hale, Representative S. J. Randall, Commander Schley, and others. The scene was an affecting one, and the exercises were marked by a simple dignity well according with all the circumstances of the oc casion, Secret ary Chandler concluding his address by saying: "To the rescuers and the rescued are these receptions most fitly given, and we are here assembled to do them honor; but our first duty is to pay our tribute of praise and of mourning to those devoted men who, after months of suf fering and starvation, borne with heroic fortitude aud patience, perished as truly on the rield of duty as if they had met their fate at the cannon's mouth.'
Lieut. Greely, in a letter which was read, bore strong testimony to the energy and skill of Commander Schley and the officers of the squadron, who so determinedly pushed their vessels through the ice packs to Cape Sabine earlier in the season than was ever before accomplished, adding. "Had they known our exact condition and locality, they could not have reached Camp Clary in time to have saved another life." In view of the blundering management of the former relief expeditions, however, the following portion o Lieut. Greely's letter must seem almost like grim sarcasm to the officers who had charge of them: "Never for a moment, in our darkest or gloomiest hour, did we doubt that the American people were planning for our rescue, and from day to day, as food failed and men died, that faith and that ertainty gave strength to us who lived."
The business of the relief ships was formally ended on the 8th inst., when the remains of the dead were formally delivered by Commander Scbley to General Hancock, at Gov ernor's Island, New York. Each of the caskets was placed on an artillery caisson, and a column thus formed, the mili tary with arms reversed, the band playing a dirge, and minute guns being fired, the procession moved to the hospital, where the bodies were left for final disposition according to the wishes of the friends or relatives of the dead heroes

SCREW BOLT HEADS.

While machine screw heads are of the solid metal from which the shanks of the screws are turned, most of the screws and bolts used in woodwork have their heads struck up cold, as are those of rivets and of nails, or else hand forged or machine forged from the red bot bar. Rivet-made heads are necessarily made at one blow, the metal being cold, and to such an extent has this possibility of work been carried that bars of Norway iron, seven-eighths of an inch diameter, are worked cold into headed bolts, a single blow forming a head one inch and a quarter diameter. The amount of heat generated by the blow necessary to instantly change the direction of the fiber of the Iron is such that the dropped bolt cannot be handled with bare hands for some time after its formation
If the heat thus generated could all be utilized and concentrated on the head formation, the result might be something approaching a weld, and the head be a solid. But these rivet-headed bolts are not solid headed; the fibers of the straight bar are " broomed out,', like the rays of a mushroom, without solid connections. This is caused partially by the suddenness of the change from perpendicular to transverse, and partially by the dissipation of the heat engendered by the blow, which is con
itself to the die and its surroundings.
Welf to the die and its surroundings.
When these heads are formed by successive blows while the iron is hot the result is somewhat different, as the fibers are gradually bent to the new direction, and near the shank they are partially welded. The beads of boiler rivets are generally welded, being brought to form under a white heat. But in the attempts to form heads by upsetting, it may be questioned if the violent redirection of the fibers of the iron in the cold rivet heading, or the slower bending of the fibers hot, retains the original tensile strength of the iron. It is certain that with the increasing diameter of the formed head from that of the original shank, the fibers of the iron must beforced apart, and cousequently they must become less coherent as farther apart they go.
Machine screws generally are made on an entirely different principle. Instead of the shank being the original of the diameter of the screw, the head is taken as the measurement, and the difference between head and shank is turned off into chips. At first sight it would seem that there is a very great waste of material to produce the required result; but as an
compensates for much of this loss, and the uniformity of the product is particularly desirable. Beyond this is a claim made by thoughtful mechanics that the undisturbed relation of the fibers of the iron in head and shank is a source of strength
However this may be, it is certain that the Spencer system of producing machine screws excels in rapidity, in exact ness, and in uniformity of the product. The waste brings back more than half of the first cost of material, and at leas seventy-five per cent of the oil used is saved by means of the centrifugal machine.

STRAIGHTENING SHAFTS.

Managers of machine shops and foremen of men some times allow shop practices that are ruinous to tools and in jurious to the mechanics themselves. One of the most fre quent abuses of this sort is the methods of straightening shafts for turning in the lathe. A common practice is to suspend the shaft on the lathe centers, and then, with a bar, using the tool carriage or the vee-ways of the lathe for a fulcrum, spring the shaft with a powerful leverage. Of course, the centers and the two spindles of the lathe have to bear the brunt of this trying ordeal, as may be supposed to their detriment as accurate portions of an accurate ma chine. Perhaps a worse practice is that of striking the shal with a hammer while thus suspended on the lathe centers. Hardly less injurious to the shaft itself is the straighten ing on the anvil by sledge blows, the projecting ends of the shaft being left unsupported; it has been demonstrated by tests that the vibrations caused by this treatment diminish the torsioual resistance of the bar. If a bar or shaft is to be straightened cold on the anvil, the ends of the bar should be supported on wooden horses. For short crooks in the sbaft the hammer straightening should be preceded by heatng to a "black" heat
The proper way to straighten a shaft is the obvious one by pressure-screw, or cam, or lever pressure. A frame with ways like those of a lathe can be made, either of iron o wood, to receive two head stocks with centers, one of the centers or both of them to be projected and retracted by a screw and band wheel, as is the center and spindle of the ordinary lathe foot stock. If lthe frame is long enough, a supplementary double head can also be used between thes two, having a center at each end, so that the process o straightening two short shafts may go on at the same time. There should be a sliding carriage t t traverse the way between the beads, carrying a horse-neck screw press, and two vee-scored blocks, which can be moved nearer together or farther apart as the crook in the shaft makes vecessary The operation is simple. The sbaft, having been centere by its ends, is suspended, and its " outs" ascertained and marked by rotating by hand and marking with chalk. Then, released from the centers, it rests on the carriage, which has been moved to one of the chalked points. A turn of the screw, the lower end of which is provided with a shallow vee-scored block that swivels on the screw, gives a pressure between the sliding vee-scored blocks on the carriage, when the carriage is moved to ancther chalked spot, repeating the same performance. The carriage is held to the ways of the frame by hooked clips that are attached to it, or it may be held in place by a bolt, bar, and cam, or wedge lever, as is the foot stock of some lathes.
With this contrivance two men can do a large amount of accurate work very rapidly. The rapidity of the work may be increased by substituting a cam lever for the screw, on the same priuciple as the lever used in bending and straight ening railroad rails

STREIT TESTs.

So many are the varieties of so-called steel nowadays tha it is difficult to have a test that shall apply equally to all. But for tool steel its quality can be readily assured by a common smith's test. It should be understood that steel for tool purposes-for the cutting of the metals particularlyshould be a composition capable of being hardened and drawn to temper. To be sure, it is claimed that there is suitable tool steel for certain cutting purposes that leaves the smith's hammer in good condition for use. It may be so, but it is evident enough that the proper condition of this steel depends upon its manipulation, and as that is less or more, the steci varies in resisting and durable qualities in use. Chrome steel and Mushet's steel are both valuable for certain purposes, but it is not always known when the proper quality or condition for these certain purposes is reached. Mechanics generally will prefer to guide the coming to condition by their own judgment, rather than to trus to the exactness of the manufacturer in proportioning the components, properly mixing them in a melted state, and fterward working the resultant.
The old-fashioned method of testing tool steel is as gond a practical method as that of a careful chemical analysis. It is simply the heating and drawing under the hammer to a slender point, plunging while red bot in cold water, and when chilled striking it with a hammer across the edge of the anvil. If the steel will barden it will break, under these conditions, without bending back and forth. Steel that will not harden under these conditions is not fit to temper and will not retain a cutting edge. Steel that is so "high" that it cannot be heated red hot and chilled in water withou flying may do for some purposes, and retain a sufficiently rigid edge by air hardening. If a piece of steel can be forged into a cold chisel, be hardened, tempered, and used, such steel is good steel, and may be relied upon for all ordinary shop purposes.

Experiment Stations.

The time has come when the profit of farming in the older States is so much a matter of shrewd management and carefulattention to every point that the farmer who neglects these things is pretty sure to fail in his vocation. You cannot now simply "tickle the earth and make her laugh with a harvest;" you have got to do far more. Farmers have now begun to realize this as they never did before; and, among the many instrumentalities which they bave called in to their aid, one of the newest and most important is the Agricultural Experiment Station.
The Experiment Station is not an American invention. It grew from a necessity which only the older countrie vividly feel; and so it was imported here, if we are not at fault, from Germany. There is no subject on which the Germans do not spend thought; and even in their universities, where the subtleties of Fichte and Hegel employ the human mind at one end of the scale, the practical work of the house doctor suggests thought at the other. It must seem well that this is so and that all the agricultural interests are made a public concern. For farming is the occupation that feeds the world. If it is prosperous, the Wall Streets of the world are prosperous too; and this means universal comfort and success.
But the reader asks, perhaps, what it is that the Experiment Station does. The Hour, published in this city, gives the following brief account of its object: The Experiment Station is a farm, fully equipped and officered by the State, and set apart for the purpose of making experiments with fertilizers and original manures, soils, waters, milk, cattle food, etc. It examines seeds that are suspected of adulteration, or that are imperfect in any way; it classifies and reports upon all the various weeds, and makes studies of the different iusect pests, while not forgetting to name the insects which are beneficial to the farmer. It is evident that in this way, through scientific investigators, a body of information can be procured which sonn becomes of the utmost value to every farmer, and which he could not possibly afford to attain, if be could by any means attain it, for himself.
In the single matter of fertilizers-which are described as "commercial," because they are manufactured for salethe benefit which the Connecticut Experiment Station has done alone has been incalculable. Hundreds and thousands of tons of worthless stuff had been sold to farmers before careful experiments proved their worthlessness, under names of attractive sound, that can no longer be sold to farmers who keep abreast of the times, and which are, therefore, virtually driven from the market. Even the relative value of fertilizers that are good is a point desirable 1.0 know; and the Experiment Station gives it, crediting the exact proportions and kind of matter that enter into each, so that all who will may know about them and make no mistike.
New York, Connecticut, and Ohio are among the few States that have established the Experiment Station; and the second annual report of the latter bas just been issued. Its experiments the past year have been especially thorough with reference to wheat and corn culture, and are extremely useful to farmers everywhere. Those relating to wheat were published in September last, in a separate bulletin, and were widely circulated before the present Larvested crop was put in. The experiments were not simply confined " to comparative tests of varieties, or yields of definite areas under the influence of different methods of culture and different manures." They include, as well, a careful study of the quality and vigor of the seed: the growth of the root; " the result of checking growth in one direction in order to stimulate at another; the effects of self and cross fertilization;" the best time and condition for performing the various processes of planting, manuring, cultivating, harvesting, and marketing; the treatment of insect enemies and diseases; a study of climatic couditions, etc. All these matters, so far as they can be, are well tabulated, and accompanied by literal text iu explanation thereof.
The station takes into consideration also potatoes and garden vegetables, grasses and forage plants, and fruits and
flowers. Its work upon the dairy and upon forestry is also given, so that nothing which concerns the farmer has been left undone. Fifty analyses of different kinds have been made, and over four hundred kinds of seeds have been tested during the past year. A great variety of grasses, weeds, grain, fruit, and vegetables have been received from farmers to be named and identified, and answers have been given in every case. In fact, the station is a natural bureau for inquiry, and wherever it exists it expects to be serviceable through private correspondence to the great constituency which it represents. Its montbly bulletins and yearly reports are accessible to all, and agricultural papers, and the press generally, circulate its conclusions on all the subjects to which it is devoted.

Other things which it does are to investigate and sugges remedies for rust, smut, mildew; to show the effect of dif ferent ratious used to fatten stock, and the effect of the same upon the various dairy products; and the susceptibility of different breeds to different influences. All the processes of setting milk, separating cream, making butter and the diseases of horses and cows, come within its province. Nor is drying and preserving fruit forgotten. The rapid and reckless forest destruction-how the best trees can be easily and cheaply grown from the seed. The best
time to cut timber, and the way to preserve it, is likewise
shown. This service alone will be, in time, of untold Nenefit, not only to one State but to the whole country.
No Stas ever devoted the public fuds
No State has ever devoted the public funds-small in amount though they are for this service-to better account than they render through the Experiment Station. The services such an institution renders in a single tield in one year vastly overpays the whole expense of the Station for a long term of years. It is lamentable that the great body of farmers, as yet, themselves know so little about it; but they will come to know, in time, when its means of doing good will be immensely increased.

The Economics of Lead.

At the works of Messrs. Locke, Blackett \& Co., London, may be seen the manufacture of sheet lead, lead tubing, red lead, and white lead. The sheet lead is prepared by pouring melted lead on a flat iron plate, and after ward rolling it between iron rollors. In the production of lead tube the lead is contained in a cylindrical vessel heated to a degree sufficient to soften but not to melt it. A piston propelled by hydraulic power forces the softened lead through an orifice the size of the pipe desired, in which is fitted concentrically a mandrel, or cylindrical core, the size of the interior of the pipe. The pipe, as formed, is passed over a pulley, and a coil of the desired weight is wound off on a windlass. " Compo" gas tubing is made in a similar manner.
To nake red lead, the metal is melted in a shallow laye in a reverberatory furnace, by the products of combustion from a coal furnace passing over its surface; being thus gradually oxidized and converted into litharge. It is then extracted, and well ground and lixiviated with water. After this it is again exposed in a furnace similar to the first, when the litharge takes up more oxygen, and is converted into red lead. After another grinding aud lixiviation, and drying by exposure to heat, it is ready for use.
The manufacture of white lead is rather more complicated. Litharge is ground and well washed in water until it is converted into an impalpable paste. A certain proportion of common salt is then mixed with it, which has the effect of precipitating an insoluble chloride of lead. This is allowed to settle, and is then treated with carbonic acid gas, which is supplied by means of a lime kiln. This secures the formation of white lead, which consists of a mixture of oxide and carbonate of lead. It is well washed, in order to remove all traces of soda, cblorine, etc.; and the white lead is then dried for use. The process for extracting silver from lead was also to be seen. For this purpose zinc is added to the lead which is less fusible than the lead, and at the same time lighter in specific gravity. Taking advantage of this principle, by means of a progressive process, passing the less fusible portions forward from one pan to another, an alloy of zinc and silver, containing but a small proportion of lead, is ultimately obtained. This is cast into hollow cylinders, and submitted to a blowpipe heat in peculiarly constructed furnaces, which has the effect of volatilizing the principal proportion of the zinc and lead, leaving the silver in a comparatively pure state.
Another process of manufacturing litharge was also in operation, consisting of blowing steam into contact with melted lead. The litharge yielded by this process is in a peculiar crystalline condition, well suited for the manufacture of white lead as above described.

Nutritive Value of Branny Foods.

At a recent meeting of the College of Physicians of Plil adelphia a valuable paper on this subject was presented by Drs. N. A. Randolph and A. E. Rousel. The following ar their conclusions:

The experiments of Rubner leave no doubt that a white bread contains more assimilable nutriment than one made from the whole wheat does, but this does not render it a de-
sirable foodstuff for exclusive use. On the contrary, a weaned but still quite young omnivorous mammal thrive better upon an exclusive diet of bran bread than on white, and, presumably, because the earthy and alkaline salts are present in greater abundance in the former, and also because contents that bulk and consistence which are essential to the hygiene of the digestive tract. But, as has been shown by Edward Smith and others, the branny scales are needlessiy irritating, and unduly hasten the passage of food* but par tially digested. The end which popular bygiene attempts to effect by the retention of bran in breadstuffs can be better attained by other means. Thus, the nutritive salts of food so frequently lost in ordinary methods of preparation are readily restored by the concentration of the liquor in which meats and vegetables are cooked into a soup stock, as is practiced in almost every French kitchen. Again, the variou fresh green vegetables used as salads yield in abundance thes inorganic foodstuffs, the presence of which we have seen is
indispensable to normal tissue activity. A further advantage of these and other succulent vegetables lies in the fact that their cellulose, while efficient in giving proper bulk and con sistence to the stools, is, as compared with bran scales, sof and unirritating to the digestive tract.
From the facts, old and new, which bave been presented the following deductions appear to us justifiable:

* An observation worthy of mention in this connection is that of Rab-
er, who finds that, while the presence of much woody fiber and harder cellulose in the intestinal contents induces the parpage of stools contain ing an excess of undigested proteid foods, the absorption of fats unde
the same conditions is not materially affected.
I. The carbohydrates of bran are digested by man to but slight degree.
II. The nutritive salts of the wheat grain are contained chiefly in the bran, and, therefore, when bread is eaten to the exclusion of other foods, the kinds of bread which contain these elements are the more valuable. When, however, as is usually the case, bread is used as an adjunct to other foods which contain the inorganic nutritive elements, a white bread offers, weight for weight, more available food than does one contaiuing bran.
III. That by far the major portion of the gluten of whea exists in the central four-fifths of the grain, entirely independent of the cells of the fourth bran layer (the so-called "gluten cells"). Further, that the cells last named, even when thoroughly cooked, are little if at all affected by pas age through the digestive tract of the healthy adult.
IV. That in an ordinary mixed diet the retention of bran in flour is a false economy, as its presence so quickens per istaltic action as to prevent the complete digestion and ab sorption, not only of the proteids present in the branny food but also of other foodstuffs ingested at the same time.
V. That, inasmuch as in the bran of wheat as ordinarily roughly removed there is adherent a noteworthy amount of the true gluten of the endosperm, any process which in the production of wheaten flour should remove simply the three cortical protective layers of the grain would yield a flour at once cheaper and more nutritious than that ordinarily used.

Some Facts about Peppermint.

It may not be generally known, but it is nevertheless the fact, that the United States is the leading producer of peppermint and peppermint oil in the world. It is principally grown in the State of Michigan and in Wayne County, New York. Our production of the oil in 1878 reached as high as 150,000 pounds, but in 1883 the yield was computed at not more than 35,000 pounds. This year a larger acreage has been planted, but prices have advanced on account of the decreased stocks. The usual annual consumption of the world is about 100,000 pounds, but it is expected there wili be a considerable increase this year, as also in other essential oils, on account of appreheusion of cholera. Peppermint is grown to best advantage in good garden soils, but requires an abundance of moisture. An acre will grow plarts enough to yield from eight to fifteen pounds of oil, according to the age of the plant and the locality, and the price is from $\$ 3.25$ to $\$ 3.75$ a pound. There are no large farms entirely devoted to this product, but it is cultivated in small quantities by many farmers. It is used in medicine, confectionery, and for perfumery, and is diluted with alcohol and water to make essence of peppermint. It is also largely used by sanitary engiueers for testing joints and traps, a few drops poured in a wash bowl or closet making its presence sensible to smell at any imperfect joints in a pipe leading therefrom, its pungent odor not being apparently at all affected by the sewer gases. Peppermint is to a considerable extent adulterated with castor oil, oil of tur pentine, and oil of pennyroyal, but these adulterations can be detected without much difficulty.

Freight Cars.

The rapidity with which freight cars are constructed at the Mt. Clare shops of the Baltimore \& Ohio Railroad is quite remarkable, the National Car-Builder says. A gang of nine men can build a box car of the kind that is illustrated and described in the Car-Builder, in one day. A car has been built in nine hours, by as many men, but ten hours is considered the regulation time. In the old freigbt shops at this place there are four tracks for construction, and upon these four gangs of men turn out 24 cars per week. If more than this is done, the men are paid for overtime. The side and end frames are put together on the floor of the car, and then set up. The sides are set up in four sections, but and then set up. The sides are set up in four sections, but
without the plates. The plates are then lifted and held to without the plates. The plates are then lifted and held to
the level of the girths by blocking sticks underneath. The the level of the girths by blocking sticks underneath. The
plates have no holes in them for the rods to go through, but plates bave no holes in them for the rods to go through, but
there are six castings bolted to the plates, and the rods are run through these castings, after which the stick is lifted upon the frame and driven into place. The end frames are then lifted, the corner posts put in place and pinned to the side frames. The whole end frame, like the sections of the sides, is framed separately and is set up in a few minutes. The use of castings and sill bolts makes this method of framing possible, and leaves the timbers solid where they would be the most weakened by boring holes. The bolt holes for the castings pass through the neutral axis of the timber, causing little or no diminution of its strength.
The specifications for these cars call for first class timber, the inspection of which is very rigid. An abundant supply of oak is obtained along the line of the road; it is of excellent quality, and the sources from which it comes are not likely to be exhausted for a good while yet.

The New England Institute Fair, Boston.
The fourth annual industrial exbibition of the New Eng. land Manufacturers' and Mechanics' Institute will open iv Boston, Sept. 3. So far as can be judged by present indica tions, this year's fair will compare favorably with the highly creditable expositions which have preceded it. A specialty will be made of the agricultural and mineral wealth of the South and West and of Mexico, and New England industry in all its branches will be fully represented. Boston and its vicinity bave many places pleasant to visit in the early fall, and these exhibitions have proved very attractive.

Atmospheric Changes at Nice.

Since the appearance of the brilliant sunsets, Messrs. Thollon aud Perrotin have noticed that the sky at Nice seems to have lost much of its ordinary transparency. They have been accustomed, on every fair day, to examine the sky in the neighborbood of the sun, placing themselves near the border of the shadow projected by one of the observatory buildings. When thus sheltered from the direct rays of the sun, they have noticed in former years that the blue of the sky continued to the very borders of the solar disk. If they were so placed that the disk was almost a tangent to the border of the screen, but, still invisible, no increase in the hrilliancy of illumination indicated the place where the point of tangency would be found. This is now no longer the case. Since the month of November, even upon the brightest days, the sun appears constantly surrounded by a circular fringe of dazzling white light, slightly tinged with red at its outer edge, and with blue on the inner edge. There is a sort of ill-defined corona, with an apparent radius of about fifteen degrees. It would be interesting to know whether this fact is general, and whether it can be considered as connected with the volcanic dust or other causes of the late brilliant twilights.-Ohron. Industr.

PORTABLE BARN.

The frame of the barn is formed of transverse sections, each of which is composed of a center post and two side posts, united by horizontal bars. The central top beam is mortised to fit tenons on the center posts, and its ends project beyond the frame, and are provided with short standards in which a long roller is journaled. The roller is turned by a pulley at one end. A piece of sail cloth, rubber, or other suitable material is secured at its middle to the roller. At the top of each side post is a notched bracket, in which the side top bars, which also project beyond the ends of the frame, are held. In the ends of the bars are journaled end

Orange, as submitted by Mr . Croes, is $\$ 329,860$, though much of this work would not be needed for some years.
Rain water is to be excluded. The estimate covers the laying of 40 miles of stoneware sewer pipes, calked with oakum and packed with cement.

SPRING SEAT FOR WAGONS

The illustration herewith represents a way of holding wagon seat and similar springs in place, to prevent them from canting over when the wagon tips on sidehills or in passing over obstructions. The bars on which the ends of the seat rest are loosely connected with a stay bar, the latter passing down through keepers in the frame on which the springs rest, and also through keepers in the cross piece be low. The bars on which the seat rests are rounded, and the stay bar is bent at the end below the cross piece to prevent its being withdrawn from itskeepers. The loose connection between the stay bars and the bars on which the seat rests, with the rounding of the latter, tends to prevent the stay bars from being broken, while allowing the seat to move sufficiently in a lateral direction to ride easily over rough roads.
For further information relative to the patent which has been granted on this seat, address Mr. John Hodgess, Loyalton, Cal.

What Next?

The Mechanical World (London) makes the following invidíous remarks respecting an American invention: The resources of inventive genius are not yet exhausted in the United States, the writer truthfully remarks, and then he proceeds to say that some one who has probably heard somebody's grandfather remark that it is much more economi cal to supply boiler furnaces with heated air in preference to air under ordinary atmospheric conditions, has conceived the idea of heating the air before going to the furnaces by first passing it round the steam dome of the boiler. This is about the latest development we have met with of the notion of robbing Peter to pay Paul, and reminds one of the story of the four persons who went on an excursion and played cards all the way with such good luck all round that each one made his expenses for the out ing. Probably the inventor has not reflected that if air be heated from $32^{\circ} \mathrm{Fah}$. to 512° Fath. no chemical change would be effected, but its bulk would be doubled, and be would require to send twice the volume of air through his furnaces to burn the same amount of fuel. For example, if the oxygen of 300,000 cubic feet at atmospheric temperalure be re quired for the combustion of
rollers, each of which has a pulley and a piece of cloth at tached to it.
A portable barn made after this plan can be erected or taken down very easily and quickly, and folded very compactly for transportation.
This invention has been patented by Messrs. B. C. Keys and A. J. Slaughter, of Murray, Ky.

Sewerage for a Town of 10,000 .

The town of East Orange, N. J., population about 10.000, bas lately introduced water, and is now about to put in a sewerage system. The water consumption is 300,000 gallons daily, and that is the estimated amount of sewerage to be disposed of. As this is an inland town, surrounded by several other cities, without communication with the sea, it is necessary to adopt some local method for the disposal of sewage. The engineer, Mr. J. J. R. Croes, has advised the sawdust filtration system, using the Farquhar-Oldbam filter, with the addition of a small percentage of perchloride of iron. The peculiar construction of this filter will be seen by reference to the illustration in Scientific American by reference to the ill
Supplement, No. 291.
The plan recommended includes a tight masonry receiving tank at the outlet, and a steam pump to lift the sewage 20 feet above the filter into another tank, where the perchloride of iron is added to deodorize the sewage; the discharge from the filter is clear and harmless.
To purify 100,000 gallons of sewage per day the tank and pumps are estimated to cost $\$ 3,000$, and a filter, 8 feet in diameter, $\$ 3,000 ; 5$ gallons of perchloride of iron, costing $\$ 1.50$, and 60 cubic feet of sawdust would be required daily.
To purify 300,000 gallons per day the cost would probably be $\$ 15,000$ for plant; the labor in both cases is estimated at $\$ 5$ per day. The preparation of land for receiving the filtrated sewage and transmittingit to the streams would cost about $\$ 350$ per acre; three acres of ground would suffice for the present demands of East Orange. Sub-surface irrigation, by laying a network of tile drains 10 inches under ground, would cost $\$ 2,000$ per acre.
The approximate estimate for the entire sewerage of East
one ton of coal, it would require that of 600,000 cubic feet if raised to 512°, a volume which, as C. Wye Williams points out, no natural draught would be equal to. Sir Humphry Davy tells us that by heating gases strongly which burn with difficulty the continued inflammation becomes easy, so that we have his testimony in favor of heating the gas rather than the air, and although he did not try the effect of heatiug the air and thus expanding it, he tried the effect of condensing it, and he ascertained that both "the light and heat of the flames of sulphur and hydrogen were increased in air condensed four times." But then Humphry Davy lived some time ago and is old-fashioned, and we shall expect next to hear that some other aspiring genius will have taken out a patent for heating the air by passing round the whole boiler before going to the furnace. Probably the best results will ultimately be obtained by combustion under pressure with heated air, for it is certainly true that the air must be heated before itncombines with the fuel. How to do this successfully before passing the grate bars bas yet to be solved.

The Mosquito's Instrument of Torture.
A writer in the London Sportsman thus describes a mosquito as seen under a microscope:
It appears that in the " bill" of the little beast alone there are no fewer than five distinct surgical instruments. These are described as a lance, two neat saws, a suction pump, and a small Corliss engine. It appears that when a "skeeter" settles down to his work upon a nice tender portion of the human frame the lance is first pushed into the flesh, then the two saws, placed back to back, begin to work up and down to enlarge the hole, then the pump is inserted, and the victim's blood is siphoned up to the reservoirs carried behind, and finally, to complete the cruelty of the performance, the wretch drops a quantity of puison into the wound to keep it irritated. Then the diminitive fiend takes a fly around just to digest your gore, and makes tracks for a fresh victim, or if the first has been of unusual good quality he returns to the same happy hunting ground. The mosquito's marvelous energy, combined with his portable operating chest, make him at once a terror and a pest.

Changeable Signs.
Make a wooden sign in the usual manner, and have a pro jecting moulding around it that projects one inch out from the face of the sign; now cut thin grooves into the moulding, one inch apart, allowing each cut to reach to the surface of the sign; in each of these grooves insert strips of tin, one inch wide, and long enough to reach across the signboard; when so arrenged take out the strips of tin, and place them

HODGESS' SPRING SEAT FOR WAGONS.
edge to edge on a level surface; paint any desired words on their united surface; when dry, reverse them and paint other words on the other side; now finish your lettering as usual on the signboard, and put the thin strips in correct order in the grooves; this will complete a sign that will read three different ways.

LUMBER GRADER'S COMBINATION TOOL

Upon the lower end of a handle made of strong, tough wood is fitted a steel head, B, provided at one end with an ax blade and at the other with a canter, which is inclined toward the handle and has a chisel edge end. The other end of the handle is squared and is fitted with a metal band, across which and the end of the bandle is formed a groove, from the bottom of which extends a recess into the handle. Fitting in the recess is a saw blade, H, provided with a tubular handle, F , that fits in the groove. At one end of the saw handle is a thumbscrew for holding a lumber lead, J , in place. At the center of one side of the handle is a flange, O, above which rests a thumbscrew in the band to hold the saw in place, Near the head upon one side of the bandle, A, is a stud, K (Fig. 3), and upon the other side is a scale of inches. Upon one edge of this handle is placed a thickness gauge, consisting of a bar, L : having two prongs adapted to be driven into the handle, and having a finger, M, projecting upward from one end. Sliding upon the bar is a finger provided with a thumbscrew. Fig. 2 is a section hrough Fig. 1.
With this tool the grader need not stop to turn the lumber, as by entering the canter point beneath the board it can be

CALL'S LUMBER GRADER'S COMBINATION TOOL.
easily turned up for inspection. He can always stand over the center cross pieces of the pile of lumber, from which position the lumber can be easily handled. Frozen boards can be separated by a sharp rap with the point, D, at one corner of and between the boards. The gauge is for trying the thickness of the lumber, and may be set to any desired fraction of an inch. By placing the stud against one edge of a board, the width can be seen at a glance. The saw is convenient for trimming off the ends of boards, and the ax for chop. ping off ice and trimming off the stubs short.
Further particulars regarding this handy tool may be obtained by addressing the inventor, Mr. Jamas F. Call, of Clear Lake, Wis

Railroads of the United States

The seventeenth annual issue of ' ' Poor's Railroad Manual," which has just appeared, fully maintains the high reputation beretofore attained by this publication. It is a complete compendium of information touching the railroads of the United States, giving their length, equipment, share capital, funded and floating debts, cost of roads and equipment, traffic operations, earnings and payments, etc. All who have investments in such property or who think of thus employing their means, cannot fail to do so with a better understanding after looking over the facts presented in this volume.

There were 6,753 miles of railroad built in the United States in 1883, making a total length of 121,592 miles of road built up to the 1st of January last. We bave nearly half the railroad mileage of the world, Germany, Great Britain, France, Russia, and Austria following next in order, but the length of our railroads considerably exceeds that of all the European lines com bined. The total amount of liabilities of our railroads, on account of stock and debts, is now $\$ 7,495,471,311$, an enormous amount, certainly; but it appears that their uet earnings for 1883 were 4.49 per cent, which is an extremely good average showing, when it is remembered how largely their stocks and bonds have been watered The "Manual" estimates the actual cost of these railroads at only about one-half of the amount of their funded and floating debts, and that they are thus really paying an annual interest equal to 9 per cent of their cost.

The railroad freight transported in 1883 amounted to $400,453,439$ tons, the value of which, at only $\$ 25$ to the ton, would have exceeded $\$ 10,000,000,000$. The total length of all tracks was 149,183 miles, of which 78,491 miles were laid with steel rails. The number of locomotive engiues employed was 23,823 ; of freight cars 748,661; of passenger cars, 17,899; of baggage mail, and express cars, 5,948 .

MEANS FOR TRANSMITTING MOTION

The object of an invention recently patente by Mr. W. A. Rollins, of Wyattville, County of Surrey, England, is to provide a device for transmitting motion from one part of machinery to another, in onc direction, in such a manner that the parts can be revolved independently in the reverse direction. The independent shafts, A, are each formed with an enlargement, B, on the end surface of which are ratchet teeth. These enlargements projectinto the tubular ends of squared hollow bosses, c, projecting from the opposite sides of a wheel, D , beld betweens the ends of the shafts. In each boss is held a block, E , in such a manner that it can slide longitudinally, but must turn with the boss. On the outer end of each block are ratchet teeth, and between the blocks and wheel are springs for keeping the blocks engaged with the enlargements. When the machine is moved so that the teeth will engage with each other the wheel, D, will revolve, but when moved in the opposite direction the teeth will slide past each other. Shaftscan be coupled in a similar manner, and when this improvement applied to tricycles the running wheels are operated from the middle wheel, the other parts remaining unchanged. Fig. 3 is a cross section through $x x$, and Fig. 4 a sec tion through $y y$. In addition to simplicity and cheapness of construction, this arrangement admits of perfectly plain drive wheels being used in mowing machines, thus avoiding the expense of making a geared driving wheel and the necessity of replacing this expensive wheel entire if a cog in it gets hroken. The clogging by grass, dirt, etc., in the gearing of the drive wheel is entirely obviated in this device. It is not contemplated to alter, further than this, the systems now in use, but to apply this arrangement to existing machines. Further particulars may be obtained from Messrs. Seely \& Howell, of 14 Stone Street, New York City

Dry Batteries.

MM. Becquerel and Onimus bave been experimenting on dry batteries. Many bave endeavored to obtain a dry cell by mixing sand with chlorhydrate of ammonia. The two above mentioned obtained a modification of this process by mixing plaster with the exciting liquid, and then allowing it to solidify. As this plan can only be adopted with those cells which work only when the circuit is closed, the chlorbydrate of ammonia and chloride of zinc cells are the only ones that can be used to any advantage. Instead of using plaster only, MM. Becquerel and Onimus sometimes mix peroxide of manganese or sesquioxide of iron with it. In these cases the E.M F is slightly greater. When the battery has run down, all that is required is to moisten with more exciting liquid. The quantity of exciting liquid being a minimum, the total electrical energy is also a mini-mum.-The Electrician

ROLLINS' DEVICE FOR TRANTGMITTING MOTION.
bebind each of the openings, \mathbf{Q} and a valve is hung in each of the two openings, R, in the rear part of the heater, on on each side of the partition. The former admit or cut of hot air from the rear part of the passage, while the latte admit or cut off cold air from the rear part of the passage.
The fire brick lining, G, composed of sections fitting in the sides and euds of the fire chamber, is formed with ver tical channels passing through from top to bot om The shanels terminate in receso bade in the lower end of the lining. This recess per mits the air to pass up through the channel in the lining to the chamber above the fire pot.
The air is isolated from contact with the wall of the furnace, and, being heated, the combus tion of the gases is more surely effected. The crown sheet, C, made in separately removable sections of cast iron, is fitted upon the fire chamber and extended to the rear. 'The ai chamber and deflector, E, forms the fire back of the pot, and between its upper end and the crown sheet is an opening for the passage of the products of combustion. The lower end of this chamber opens into an air inlet unde the ash pit, and its sides into a surrounding air chamber.
The upper end and sides of a second air cham ber, F, placed midway between that just de scribed and the end of the furnace, open into the surrounding air chamber, while its lower end is a little distance from the furnace bottom. Pass ing through the crown plate and the lower plate is a series of air tubes, L, whose upper ends are flanged, in order that they may be supported without the use of rivets or similar fasten ings
A hot air chamber surrounds the fire chambe and the case inclosing the tubes and deflectors The entire beater, save the fire chamber, is di vided longitudinally by a vertical partition into wo equal compartments of about equal size Two dampers, K , are hung so as to be operated independently from the outside. Similar damp ers are arranged in the smoke pipe. Either compartment is readily accessible to permit sepa rate cleaning, the purpose being to permit the cleaning of the heater without extinguishing the ire. Heat is conducted from the heater through a pipe at the top

Further information regarding this invention may be obtained by addressing either Mr. J | chamber has an extended area of grate surface to permit the | Travis or Mr. J. W. Travis, 104 Franklin Street, Chicago, Ill. |
| :--- | :--- | :--- | :--- | building of a thin fire, and at the same time secure the requisite amount of heat with an ordinary draught. The grate is supported upon flanges, J, upon the sides of the fire pot, which are provided with air passages, s, that conduct the heated air up into and through the fire pot lining, whence passes over the upper edge of the tire pot to promote com hustion of the gases.

The perpendicular walls of the ash pit are arranged, one in line with the front side of the fire pot, while the other

In this city, on Fifth Avenue, between 32d and $33 d$ Streets, there is heing laid a pavement which is new to this country, although some 500,000 square vards of it have been put down in Paris, and 800,000 in London. In principle it is a concrete pavement covered with a wooden cushon or arpeting.
The description of the process by which it is laid is de scribed by Engineering News as follows: The roadhed is firs covered with a 6 inch coating of concrete composed of P ort nd cement and broken stone, finishing off with a top dress ing of Portland cement and fine gravel or sand. Upon this are laid blocks of com mon red pine of the size commonly used in Nicholson pavement. Between these blocks are left spaces of about one-third of an inch wide into which i poured bitumen or asphalt for an inch in depth. This fastens them to the foundation of concrete and to one an other. After this has set, the crevices ar filled completely with Portland cement and the whole is covered with fine sharp gravel, which is ground into the pores of the wood and forms a protective coat ing. The wooden blocks are previously reated with creosote to protect them m decay and to prevent them from olling lut len bes the curbing on each side as a species of expansion joint.
The actual first cost of this pavemen is somewhat more than that of Belgian blocks, but the plan upon which it ha been put down in Paris is that known a the annuity system, in which the company
or above the fire pot as occasion may require; by this means the exact amount of air necessary for the consumption of he gases from the fuel in combustion can be obtained. The bottom of the ash pit is made of a thin meial plate, H, that forms the upper wall of an air passage, the bottom of which is formed by the bottom plate of the furnace. Air entering through the two openings, o, is affected by the heal of the thin boltom plate of the ash pit. The air passage is divided about centrally by a partition, \mathbf{D}, and has two openings at its front and two at its rear, the latter admitting the air to the compartments of the heater. Placed at right angles to the partition, D , are deflectors, P , which cause the air to travel over the greatest possible space. A valve is arranged
contracts to lay the pavement and keep it in repair for eight contracts to lay the pavement and keep it in repair for eight
een years for an annuity of about one dollar per square me ter. This annuity was computed on a basis which should render the expense to the city one-half the cost of mantaning a pavement for the eighteen years previous to the contract.
In this connection we give the statistics compiled by Col. Haywood, the London engineer in charge of street contruction, in regard to the security of footing affiorded by different kinds of pavement. As a result of observations extending over sixty days he found that a horse would travel 117 miles on asphalt, 134 on stone, and 446 on wood pave ment before falling, and that falls occurring on wood pave ment were by far the least serious.
the head, bat to make a pure, warm, evenly distributed a mosphere in a car is unknown, or at least unpracticed.

The tracks, rail joints, switches, frogs, ties, and ballast taking on and putting off baggage; storing and selling tickets; accommodating, assorting, and directing passengers receiving, handling, and delivering freight in packages or in bulk, are all subjects capable of improvements, which would appeal to the pocket of the "soulless corporations," and be of advantage to the successful inventor, and a benefit to the public
There is no use of trying to invent the Westinghouse brake again, nor the old-fasbioned coupler, neither can the
coupler be ro, nor the Jennings appropriated
The numerous railway patents which never see the light of even an experimental use can only have the effect of dis couraging those who see them, from trying to make advances in the same branch. Those who have inventions may be sure of having them appreciated, notwithstanding the contrary experience of the many patentees.
Remember that a patent only gives an exclusive right. It simply excludes all others from using the thing patented without. paying or arranging with the patentee for so doing, and must be without value, the Journal adds, unless the thing patented is such that others will elect to use it, and pay the license fee or royalties for the privilege.

Insoluble Soap

The term soap commonly designates a product prepared by the action of caustic alkalies-potassium or sodium caus tic-upon fats, fatty oils, and resin, e. g., tallow, lard, whale, palm, olive, cocoanut, linseed, cottonseed oil, and colophony. It has been shown by the experiments of Cbevreul relative to the chemical nature of fats, that they are composed of oleic, palmitic, and stearic acid, and glycerine as the basic constituent; hence, fats are natural products to which chemistry the term salt applies. By substituting alkali for glycerine in fats, soap is produced; the process of substitution is called saponification. When sodium caustic is employed as substituting agent, sodium soap-castile soap -is produced; potassium caustic forms also soaps which are of a more or less jelly-like consistency; while glycerine beof a more or less
comes liberated.
It is not our purpose to describe the process for makiug ordinary soap, but to study the condition which canses the formation of insoluble soap; and we shall also notice that not sufficient attention has been paid to the importance of these latter preparations in diverse branches of practical art. Alkali soap is soluble in water and a few other liquids; all other soaps are insoluble. This insolubility is turned to advantage, and becomes the very principle of chemical processes. When a small quantity of an aqueous soap solution is added to water which contains carbonate of lime, the characteristic property of the solution becomes destroyed, it has ceased to impart to the water the teudency of lather; a further addition of the solution will ultimately transfer to the water the property of forming a lather when agitated. The cause of this deportment has to be ascribed to the preseucefof lime, which transforms the alkali soap into au insoluble calcium soap.
Upon this fact is based the determination of the hardness of water by means of an alcoholic or aqueous soap solution; and it is also evident that the use of such water for washing purposes involves a loss on soap. A similar result is obtained when water contains other metallic salts; the pres ence of magnesium sulphate causes the formation of insoluble magnesium soap, copper sulphate precipitates insoluble copper soap and sodium or potassium sulphate. Thus, an insoluble soap is produced when a solution of the respective metallic salts is introduced into a soap solution.
Insoluble soaps constitute the essential part of paints. When zinc oxide is used with oil as paint, the formation of a waterproof coating depends on the production of an insoluble zinc soap; and in all paints and varnishes containing metallic oxides or metallic salts such a process takes place. In medicine insoluble soaps are called plasters, e g., lead plaster. The most valuable property of these preparations is their impenetrability for water. When casts of gypsum are covered with dust it is quite difficult to cleanse them, yet when the surface of such casts is impregnated with stearic acid they have the appearance of meerschaum, and are not affected when washed with water. Another product of saponification, which gives to casts of gypsum, when applied as a coating, a heautitul green, bronze-like color, is prepared by introducing copper and ferrosulphate into an aqueous soap soution; the precipitate, consisting of a mixture of iron and copper soap, is mixed with litbarge and wax.

Of all metallic oxides for the preparation of insoluble soaps, alumina is the nost valuable; it possesses a great affinity for organic fiber, and thus becomes a suitable medium for fixing dyes upon cotton goods. The fiber, being impregnated with aluminum acetate as mordant, is steeped into a dyebath and is immediately coated with an insoluble lake, or when introduced into a soap solutiou hecomes covered with an insoluble aluminum soap, which also fills up
the pores of the fiber. By this process the fabric has acquired the prc.perty of being waterproof. It has been sug. gested some years ago to increase the durability of railroad ties and wovd in general by impregnation with aluminum oleate. It suffices to impregnate the wood with aluminum acetate, and then immerse it in a soap solution; by repeating this procedure the desired result will be obtained. Sucb a process is employed in the manufacture of sized paper;
the material of which the paper is made is soaked with a solution of wax, resin, or oil soap, and then treated with a solution of aluminum sulphate; in this manner insoluble aluminum oleate is produced upon the fiber. Zinc sulphate is often used as a substitute for aluminum sulphate.
Though common writing paper being not quite waterproof yet, by comparing it with unsized paper, it is not difficult to conceive that the impermeability of unsized paper for li quids will depend on the formation of iusoluble soap.--In dustrie Zeitung.

Professor Tuck's electric submarine torpedo boat looks a little distance very much as if it had been constructed by laying a large row boat, upside down, on top of another large row boat, fastening it there, and painting them both sea green. The shell is of iron, however. The boat is thirty feet long. It is ballasted with lead, so as to sink to the water's edge, and its displacement is twenty tons.
In the center of what may be called the deck is sunk a well bole. By a simple air lock arrangement it affords a passage between the interior and the exterior of the vessel, even when the vessel is wholly uuder water. It is also the captain's look out station, and is capped with a dome of neavy glass, so that if he chooses he can exclude the water and stand in the pit with his head and shoulders above the top of the boat, or he can leave the glass off and stand there in a diving suit. Close to bis hand is a signaling steering apparatus, which transmits his orders to the helmsman down below. The boat hasthree rudders, one an ordinary vertical rudder at the stern, and the other two horizontal blades on the port and starboard quarters. These last help to govern the boat's movements up and down. To sink her, water is pumped into her compartments; to raise her, air is pumped in, and the water is forced out. Compressed air is stored aboard in six inch pipes. There is also an apparatu for reoxygenating air that has already been breathed. Moreover, there is a simple arrangement by which the ends of two rubber tubes can be floated up to the surface of the water and opened to the supply of fresh air up there.

An electric motor, driven by force from storage batteries, runs the propeller. The interior, which is arranged for a crew of four or tive men, is lighted by incandescent lamps. An indicator shows the distance of the boat beneath the surface. The estimated speed of the boat under water is eight knots.
The torpedoes are to be carried outside the vessel, one at the prow and one at the stern. They are to be held there in iron cylindrical sheaths by electro magnets, which will release them when the current is cut off. They are ballasted with cork, and after placing one of them the torpedo boat re tires to a distance, unreeling as it goes two wires, by which, at a proper distance, the torpedo is fired.
The lead ballast proved insufficient to sink the boat below the water. On a recent trial near the Delamater iron works, this city, a crew of three men went aboard her, and, with Mr. John Rice as captain, a test was made of the electric engine. It drove the boat several miles up and down the river at a speed of ten knots, says the New York Sun She answered her rudder well. She will soon be tried under water.

Waterproof Varnish for Paper

Says the Photo. Neros: In very many cases waterproof varishes are useful, and among their uses may be mentioned their application to laboratory labels and their use for the fixing of drawings.
There are many such varnishes, but, according to our own experience, one of the best is a thin solution of gutta percha in benzole, and such a varnisb may be made by dissolving one or two parts of fine gutta percha foil in a hundred parts of benzol. The heat of a wat er bath serves to make the gutta percha dissolve tolerably quickly, but if it is necessary to have the preparation at once, the gutta percha may be dissolved in a little chloroform, and this is then mixed with the required bulk of benzole. Paper which has been coated with this varnish can be easily written, drawn, or painted upon; and it must be remem bered that the gutta percha varnish does not make the paper transparent or spotted. It is known that gutta percha slowly oxidizes in the air, and becomes converted into a brittle resin; but this oxidation product is itself a waterproofing agent.

Alcoholic solutions of resins tend to make papers more or less transparent, but the following varnish, prepared with acetone, is not subject to this drawback.
One part of dammar is dissolved in six parts of acetone, the materials being allowed to digest together for some weeks; the clear liquid is now decanted off, and mixed with its own volume of plain collodion.
Another method of making a waterproof varnish for paper consists in digesting 30 parts of white sbellac with 300 parts of ether, and then agitating the solution with 15 parts of finely powdered white lead; on filtering the solu tion, it will be found that the white lead has been very ef. fectual in clarifying the solution.
The above resinous varnish gives more luster than the gutta percha varnish, but the tatter gives farmore flexibility, a considerable advantage in many cases.
Not only silver prints, but also collotypes, and often pho-to-mechanical impressions, may often be advantageously treated with one of the above varnishes; and it must not be forgotten that anything which protects a silver print against damp serves to diminish the tendency to fading.

DREDGING AT OARLAND, CAL.

A part of the extensive harbor improvements in progress at Oakland, near San Francisco, consists in the excavation of a tidal basin to improve the scour, at or near the harbor entrance. The material removed by the dredging operations is deposited in adjoining salt marshes, and retained there by means of embankments constructed along the shore line, so that a considerable area will be reclaimed. Fig. 2 shows tie floating discharge pipe that carries a way the mud. The dredg floating discharge pipe that carrie
ing machines employed are, says ing machines employed are, says
Engineering, on the same priuciple Engineering,on the same priuciple
as those used at the Grand Amas those used at the Grand Am-
sterdam Canal Works, that is to say, they belong to the type in which the material to be raised is first reduced by suitable machinery to a condition of mud, and then pumped to the surface, and delivered by means of a pipe line.

Fig. 1 illustrates the general form of the dredging machinery used at Oakland Harbor. The submerged and mixing part of the arrangement consists of a horizontal wheel with plowshares attached around the lower face. By means of steam power on the boat, rotation is given to this wheel, which is inclosed in a casing, so that water can enter only on the under side. On the top of this casing is fixed the rising main, 20 inches in diameter, of a centrifugal pump, 6 feet in diameter, placed on the boat.

The delivery main of this pump,
also 20 inches in diameter, is extended from the vessel by a line of wrought iron pipe, with ball and socket joints and rubber connections; it is supported in position to the marsh where the mud is delivered. By this arrangement, which is shown clearly in the engravings, the material excavated, after being mixed, passes directly through the pump and delivery mains, and only comes to rest when it is discharged. As much as 40 per cent of solid matter can be carried in this way, but 15 per cent is found by experience to be the most convenient amount; one obvious advantage resulting from this dilution being that the solid material is more widely and uniformly distributed over the area to be reclaimed.

The pump is driven by a pair of engines baving cylinders

Fig. 2.-The floating discharge pipes.
consumption of smoke in their locomotives. It is believed that success bas been attained in No. 85, and those who travel behind that big locomotive the coming summer will not bave to close the windows of their cars, either in the tunnel or elsewbere, so far as smoke in concerned. The smoke consumer is iu itself simple enough, being merely two pipes, one in frout of the firebox and one in the rear each of which admits jels of steam into the flames, rising ther fect com bustion, and while completely consuming the smoke makes a gain also in the heat obtained Usually, when the fireman is throwing in coal or stirring the fire, and for a few moments after each operation, a cloud of smoke pours from the chimney of the locomotive. In the whole trip to Albany (where the engine was taken off) nothing that was visi ble came from the chimney except the escape steam. The improvement was wonderful, and the Central officials seem to be justified in feeling that they are a little ahead of the rest of the world with their new device. So far only two or three locomotives have been supplied with the smoke consumers, but others are to be soon.
"The trip to Albany was also noteworthy because the engine ran the whole 147 miles from New York without stopping for water, oiling up, or anytbing else. The company are aiming
tion of the material as it is delivered. The cost of previous dredging operations on the Pacific coast by ordinary appli ances has averaged 24 cents, or 1s., per yard, while the maximum expeuse per yard, with the system we now describe, is a maximum of 6 cents, falling in some cases to 5 cents per yard. The Oakland Harbor dredging operations are under the coutrol of Col. G. H. Mendell, of the United States Vorps of Army Engineers.

One Hundred and Forty-seven Miles without a Stop. The New York Central and Hudson River is runniug special newspaper trains to Albany, and of a recent trip the New York Tribune speaks as follows:
all their fast trains. Of course to introduce this idea in all their fast trains. Of coursc water enough could be carried in a tender sufficiently large for such a trip. But the weight would heat the journals. The plan adopted is to scoop up a fresh supply of water from troughs laid at intervals between the rails, the train holding its headway and never stopping a moment. To run an engine so far without oiling requires alterations in the oil cups, etc., but all the difficulties hare been overcome, and the long run was made successfully The improvement shows that the Central Road keeps up with the times.'

Keeping Wood in Moist Ground

A Brooklyn, N. Y., carpenter writes us that, in 1864, he

Fig. 1.-DREDGING APPARATUS AT OAKLAND HARBOR, CALIFORNIA

16 inches in diameter and 20 inch stroke, and two other engines with cylinders 12 inches in diameter and 12 inch stroke drive the cutting and mixing gear, the winches, hoists, etc. Steam of 90 pounds to 95 pounds pressure is supplied by two 100 horse power boilers. The greatest length of delivery pipes employed has been 2,850 feet, and through this length 41,000 cubic yards of mud were delivered in 190 hours. During a period of eight months one of these machines raised and deposited 250,000 cubic yards,
"For the trip of the Tribune's special train from New York, Mr. Toucey, General Superintendent of the Central and Hudson River roads, detailed locomotive No. 85, George Remington engineer. No. 85 has only recently come from the shop, where certain slight but importaut alterations were made in the engine, in which Mr. Toucey and Mr. Buchanan, Superintendent of Motive Power, have been greatly interested. For ten years the New York Central Company has been trying to perfect some plan for the
laid down some old painted balf-inch door panels as a floor ing for a coal binat the rear of his yard, and that, on taking them up seven years afterward, they were just as sound as if they bad been but recently cut from a thrifty living tree, although so pliable with moisture that be could bave bent one of them around a six inch stove pipe. Our correspondent suggests that the painting of railroad ties, or coating them with white lead and oil, would be very efficacious for their preservation.

CHE AMERICAN WATCH WORKS

(Continued from first page.)
out 30,000 in a single month, and 30,000 watches are needed all the time in the finishing rooms to enable the hands to work to advantage.
Out of the American Watch Company all the others bave originated, namely, those at Elgiu, Rockford, Aurora, and Springfield, Ill.; at Springfield, Mass.; Lancaster, Penn.; Nashua, N. H.; Columbus, O.; Fredonia, N. Y.; Marion N. J.; besides others that have failed and others just starting. Taking no notice of cheap, inferior goods, there are made, on an average, 3,650 watches a day by nine first-class factories. According to Mr. Robbins' estimate, the value of a year's product of gold and silver watches in this coun try exceeds $\$ 16,000,000$; and the business directly and indirectly furnishes employment for 100,000 persons.
The factory at Waltham is located on an expansion of the Charles River, and is environed by parks maintained at the company's expense. The rooms are thoroughly ventilated, and all the sanitary arrangements are excellent. Conse quently the operatives are a remarkably bealthy, cleanly and bright set of people, mostly young persons, whose unimpaired eyesight and steady nerves qualify them for the delicate work before them. Intelligence and integrity are also required in a business involving the handling of quanti ties of precious metals and jewels.

For certain kinds of work female operatives are preferred, on account of their greater delicacy and rapidity of manipulation; and it should be added that women get the same wages as men for doing the same kind and amount of work All the apartments are lighted by large windows by day time, and for night work there are 200 incandescent electri lamps and 3,500 gaslights, requiring over $221 / 2$ miles of piping. There are 38 furnaces using gas as fuel.

There are 25 distinct departments, each baving its foreman, and all in telephonic communication with the central office. Mr. Ezra C. Fitch is Superintendent, recently at the head of the salesrooms, at No. 5 Bond Street, New York. G. H. Shirley is Assistant Superintendent, E. A. Marsh is the Master Mechanic, and D. H. Church Master Watchmaker, through whose kindness the writer had access to the various departments.
Most of the foremen and a number of the bands have been in the employ of the company for from twenty to twentyfive years. The "Foremen's Association," of which Mr. H N. Fisher is President, meets once a month to discuss matter relating to the advancement of the work. Probably few persons realize how many distinct operations are required to produce a single watch. The managers themselves did not like to make a statement until at my request the question was laid before the foremen: "How many distinct mechani cal operations are required in order to construct one of the grade of watch movements described as an 18 size, full plate, stem-winder, jeweled 4 pairs?" Each foreman made a list of the operations in his own department, and the startling sum total was 3,746 ; and the number would be considerably larger for some of the higher grades.

It is evident that the mere finish of a watch is no test of its excellence. The greatest pains are taken by the American Watch Company in perfecting the original model. Every variety of design and appliance that buman ingenuity can devise is sought for; and a retinue of special artists, dranghtsmen, and inventors is continually busy to make each part and process as economical and accurate as possible. The various machines are thoroughly and exquisitely exact. They are all made in the extensive machine shops
the pivot that works in it. A few turns of the polisher would make a change. Hence microscopic measurement has to be resorted to in fitting pivots to jewels. But ordiarily, in assembling parts together, no measurement is necessary, but they are used exactly as they come from the machines. Furthermore, automatism in tools is the coming necessity for cheapening labor. The American Watch Company already uses many automatic and semi-automatic tools nd is constantly inventing more. The work thus secured is so nearly perfect that should any part of a watch fail in actual use the owner need only send on the number of the movement to enable the factory to supply an exact dupli cate of the part. Tbe order could be sent by postal card, and filled by return mail. To facilitate th is a sysiem atic record is kept; and this is so well done that any watch ordered could be located at any stage in its manufac ture; and the same could be done for 1,000
 or for 10,000 watches
The "movement" of a watch is made up of two plates which the lever imparts motion through the medium of the and the wheels, etc., between them. It may be as well, be- roller jewel passing alternately in and out of the fork, regu fore going further, to refresh the reader's memory as to the lates the whole machine. It consists of a comparatively general mechanism of a watch. The plates are known as heavy wheel running on an axis with finely adjusted pivots, the pillar plate and the top plate. On full plate watches the and with the least possible friction; and a hair spring at most peculiar thing is the barrel bridge, the object of which tached at one end to the balance wheel and at the other to is to allow room for the main spring. A three-quarter plate the balance cock, which is fastened to the top plate. The is flush and the top plate not cut through, the main spring value of the hair spring is to determine the speed with which

the case making department.
being narrower than in the former. All American watches have what is called a going barrel, instead of the fusee, preferred in the English system, though long discarded by the Swiss as superfluous. The going barrel contains the main spring, and drives the center wheel and pinion, which revolve once an hour, carrying the minute band. The third wheel and pinion are simply intermediate bet ween the center wheel and the fourth wheel, which carries

the american watch co.-the pinion room
belonging to the company. A great hue and cry has been \mid on its staff the second hand, revolving once a minute. The raised in Europe against machine-made watches, as if necessarily clumsy and defective; whereas the reverse is true. In the anxiety to secure a high finish, many a hand-made watch is polished to death. The aim of the American Watch Com pany is to secure actual interchangeability of pieces. It may be too much to say that the corresponding parts of all their watches are identically alike. But they will come within one ten-thousandths of an inch of it! e. g., a jewel hole should be two ten thousandths of an inch larger than
fourth wheel also drives the escape wheel, so called because it only lets one tooth escape at a time, bringing the machine to a dead stop five times every second. They used to make all watches with 14,400 beats to the hour (or 4 to the second); this is called "slow train," and is now obsolete except for one-quarter second or "stop watches." The English standard was advanced to 16,200 beats to the hour ($41 / 2$ to the second). The Swiss and American standard is 18,000

Experiments have also been made up to 21,600 beats to the hour (or 6 to the second), called "fast train;" but results are not satisfactory. Experience has proved the "quick train" watches to be the best timekeepers.
The factory watches are all "lever escapement," universally accepted as best for pocket timepieces. The ever consists of a pallet and fork, aud receives an oscilla ory movement from the escape wheel. The balance, to

SCREW MAKING ROOM.-AMERICAN watch co.

the balance wheel vibrate (i. e., five beats a second) The balance is bimetallic, to correct the contraction or expansion of the hair spring, so that the watch may run true regardless of temperature.
The minute and hour wheels are located under the dial, and are driven by a system of gearing. The cannon pinion fits fyiction tight on the center staff, being so put on to enable the hands to be set. The cannon pinion drives the minute wheel, and the minute pinion drives the hour wheel; the proportion being such that while the former revolves once an hour, the latter revolves once in twelve hours. Most of the watches now made are wound up by turving the stem of the case, and the hands also are setby a similar device, dispensing wholly with the watch key.
The safety of all this complicated movement from any injury that might result from the breaking of the main spring is secured by a safety-pinion screwing on to the spring is secured by a safety-pinion screwing on to the
arbor of the center wheel by a triple left hand thread. arbor of the center wheel by a triple left hand thread.
Should the mainspring break, the recoil would merely unscrew this pinion, and thus release the whole movement without any consequent damage.
A volume would be needed to describe all the 3,746 operations required for the construction of an ordinary watch. But a general description of the main departments may meet the demands of the present article.
The Plate Room is where they manufacture the pillar and top plates. The material used is generally brass, although nickel is used for some of the more costly watches. The plates are rough punched by the Scovill Manufacturing Co., at Waterbury, Conn., and brought in this form to Waltham. Eighty operations are required for the pillar plate alone. These include facing off both sides; punching for dial feet, which are guides through all subsequent operations; turning for diameters; drilling, countersinking, burring, recessing, tapping, stoning, numbering, finishing both sides; putting in the pillars and turning and drilling them; making and inserting the click stud; cutting recesses for the lever arm, the barrel, and the various wheels; putting in the minute wheel pinion, and drilling and cupping the train holes. The pillar plates are then distributed in sets of ten trays, ten boxes to a tray, ready to receive the other parts. The top plate also goes through a like process, being punched, recessed, milled, pierced by screw holes, numbered, drilled, tapped, and stoned, potance put in, and the plates distributed. The parts being assembled and screwed together, several operations are performed, after which they are taken apart and finally distributed. During this process, at various times, the plates have to be boiled in soapsuds to clean them from dirt. The barrel bridge is also punched, trimmed, stamped thrice, milled, recessed, and distributed. The balance cock is trimmed, flatted on
emery wheels, turned to thickness, the star wheel regulator
put on (an improvement on the arm regulator); it is stamped, burred, drilled, tapped, beveled, etc., and finally they are strung up by bundreds to be sent to the jeweling room.
The ratchet cap for the winding wheel is turned, drilled, recessed, etc., finished, and sent to the gilding room. Thus there are 157 operations in the plate room alone, as I made out my list going from bench to bench, only a portion of which are indicated above, but each requiring great care which are indicated above, but each requiring great care
and precision. My first intention was to go through each and precision. My first intention was to go through each department with equal thoroughness; but the task would
bave taken a month, and the results would bave required bave taken a month, and the results would have required
many explanations to make them generally intelligible to any but experts. Hence in describing re maining departments I shall give salient points instead of detailed processes. The Press Room is in cbarge of N. P. Mulloy. The first thing that was exhibited was a sort of cabinet, in whose glass jars and tiny drawers are myriads of parts of watches, each sort labeled, e. g. regulators, yokes, forks, cam clicks, leve springs, winding wheels, train wheels, gold and steel balances, hour hands, minute hands second hands, etc., everything in short that can be made by punching.
The effect is striking of seeing so many objects of a kind massed together, e. g., 10,000 second hands in one jar-the result of one day's work in that line, the monthly order calling for 160,000 . The counting is done by weight. A box of center wheels, was weighed in my presence, and found to weigb $1463 / 4 \mathrm{oz}$. A single ounce was then weighed, and the wheels were counted and found to number 136. Consequently it was ascertained that there were 19,979 wheels in the box. Some idea of the multiplicity of operations in this department may be had on learning that there are over 200 different sorts of hands now made! Many parts made here, and in other departments, are so small as to be almost microscopic, and measurements have to be made by a fine gauge micrometer. Curious to see the working of the instru-
ment, I measured a single hair, finding it to be $\frac{5}{1000}$ of a cenment, I measured a single hair, finding it to be $\frac{6}{1000}$ of a cen-
timeter in diameter. Minly operations have to be verified to within $\frac{1}{20 \pi}$ of a centimeter, i. e., to $\frac{1}{10}$ the thickness of a human hair!
Visitors always notice with interest the double row of iron tumblers whirling oddly in every way, used for brigbtening by attrition the steel works which are too minute to be polished by hand.
The Pinion Room, in care of Martin Tbomas, who has been in the employ of the company for 23 years, bas another cabinet of jars, boxes, and drawers, with pinions of every sort and in every stage. Probably as much is involved in perfecting the pinions as in any other department of watch making. Everything must be as exact as possible. The process begius with cutting the wires to be used in lengths of 18 inches. Then these are cut automatically to the right lengths, roughed out, and pointed. Five or six turnings follow, and then the leaves (or teeth) arecut. It has long been known that these should be epicycloidal in form ; but under the old system it was difficult to effect this with desirable exactness. Drawings on a large scale could be made with mathematical precision; but it was another thing to reproduce them in almost miscroscopic miniature. And then, it is said, that many workmen had a singular prejudice to these peculiar teeth, fancying than to resemble bishops' miters! Here the superiority of machinery over handwork is visible. Machines have no prejudices nor æstbetic notions, and are as able to shape a little pinion exactly as the great wheels of the largest engine. The cutters and polishers of the machine for making the pinions are themselves kept true and in perfect order by a machine invented for giving the exact epicycloidal form. The final result is that, when all the parts of the watch are assembled and set in motion, the action is perfectly smooth and continuous, an end that cannot be secured in any other way. This statement bolds good for all grades of watches made here, the cheapest as well as the most costly.
After the leaves have been cut, the pinions are hardened and tempered, polished and finished ready for use. Seven barrels of flour a month are consumed in making dough for various uses, besides many barrels of pith, and quantities of rouge and Vienna lime. At the time of my visit pinions for 100,000 watches were actually going through the works.
The Screw Department exhibits the perfection of automati machinery more visibly than any other. The foreman, Mr. C. H. Mann, assured me that, were it not for the necessity of hand finishing some of the finest work, there would not be needed more than a dozen workmen to make the daily average of 100,000 screws. There are twenty-four of these automatic machines, each making from 3,000 to 4,000 screws a day, not including night work. There is also an automatic pin machine that makes 20,000 pins a day for use in fasten ing hair springs. All these machines were invented and

the american watch co.-the gilding room.
volved are such as have been determined by repeated experi ments, but cannot be easily explained without voluminous detail. This department is in charge of Mr. H. N. Fisher. The escape wheel cutting is done by an automatic machine carrying six cutters, three steel and three sapphire. Fifty wheels are cut at a time, and it takes six cuts to make each of the fifteen teeth. The machine stops when they are done. Each wheel is then set on its pinion and topped, to make it sure that it will run true in the round.
The garnet pallet stones are placed 30 or 40 together, on a steel block ground, and finished on one side and then on the other. The edges are finished the same way. They are then stacked on a graduated plate, and marked with a diamond to be broken off to a length. They are then put in a grooved plate, set at the desired angle for the impulse force. All are finished with diamond dust on ivory laps. The polishing is done with an oscilla tory motion, so as to give less bearing for the escape wheel. Jewel pins are shellacked into a spindle, in rectangular slips, turued with a diamond to remove corners, then ground with copper laps, and polished with shell laps charged with diamond dust. One side is flattened for one-third its length, and than they are ready for setting.
Matching the escapement is done in the watch, which is regarded as preferable to the old method of doing it by the depthing tool.
The Jewel making department is under the direction of Wm . R. Wills. The first object exbibited was a cabinet containing
$\$ 1,715.00$. Most of the screws, of course, are of a larger size than this. It should be added that in this room is in-
cluded the roughing out of work for various parts of the cluded the roughing out of work for various parts of the

Gilding Room.-All the brass movements have to be gilded, which is done under the direction of Mr. C. B. Hicks. The parts must first be stoned, then inspected, after which they are put through a bath of nitric, sulphuric, or muriatic acid. Having been rinsed, they are brushed with revolving wire brushes to prepare them for the gilding bath. Then they are rinsed in alcohol, dried in saw-dust, inspected, and such as are ready for the finishers are folded in tissue paper and sent to their rooms. The gilding is done both with electric dynamos and with old style Daniell battery. From $\$ 40$ to $\$ 50$ worth of gold is put on the works of 1,000 watches in the process of gilding. An exbaust fan carries off all deleterious fumes, perfect ventilation is itsured, and every precaution is taken agai
effects from the various chemicals used.
Balance making begins with a plain steel blank made of best steel. According to the foreman, J. L. Keyser, there are 85 operations in all required for making an expansion balance. The principal steps are as follows: First the center hole must be drilled, after which the disk is turned to a true diameter. It is then forced into a recess of a low brass cap-
 agates and other materials for making polishing laps Then a safe was opened containing about $\$ 50,000$ worth of precious stones. To some extent Brazilian diamonds are used for splinters to drill with. But for general purposes African diamonds are good enough. Diamo nd bortz, in the rough, costs $\$ 1.50$ a carat, or $\$ 225$ an ounce; and the company requires about 12,000 carats a year. It should be noted, however, that, contrary to the popular notion, no watch jewels are made of diamonds, because they could not be drilled. Glass also is never used, nor quartz crystal. The stones used are rubies, sapphires, garnets, and occasionally crysolite and aqua marine. A ful jeweled watch takes 19 jewels, called, for the pieces to which they belong, balance, end stone, escape, pallet, third, fourth, and center jewels. Every watch has the same grade throughout, e. g., one will have all garnets, another all rubies, etc.
The balance jewel, however, in all watches is either ruby or sapphire. There are 40 different grades of garnets; but the only sort used here is the hard violet from Bohemia and Germany. The process of making diamond dust is, first, by means of a crusher, and then a steel mortar held down by heavy weights. The result is a powder one-fifth diamond and four-fifths steel. After separation the dust is used in that state for diamond saws only; but, for polishing, it is graded by successive precipitation from olive oil. The jewels, having been sawed into thin slabs, are next rounded to size, shaped, drilled, and faced. The jewel bole is opened to a certain size, varying from 0.005 to 0.020 of a centimeter, in order to fit the pivot-a process requiring the finest possible finish and polish, regardless of the quality of the stone. There were made, in the month of June, 350,000 jewels, employing 255 hands, of whom 175 were males.
The Hair Spring is a tiny thing, but has a department of its own under Mr. Thomas Gill. The material is steel wire 0.022 of a centimeter in diameter, and spun for this special use. It comes in coils, and the first thing done is to draw it through ruby and sapphire dies down to 0.018 of a centimeter. Next, it is rolled flat between hardened steel rollers, and afterward drawn between pairs of diamond dies, from which it comes out 0.027 of a centimeter wide and 0.908 thick. It is then cut into lengths of 14 inches, which are wound in little boxes, three in a box, these wired together in pairs, face to face, and hardened and tempered. They are then separated, cleaned by acid, and blued The spring is now attached to a brass collet in the center, and to a steel stud at the
sule, and a ring of high brass is inserted between them Having been prepared with a borax flux, it is heated suff ciently to melt the bigh brass on to the steel. It is then faced off to a definite thickuess, turned, and rolled to condense the brass. The back is ground and the face recessed; afte which the steel is punched, leaving the arm. Drilling, tapping, and finishing follow. Finally, the screws, 22 in number, are put in, being of different sizes, weights, and metals to conform to the varying strength of the hair spring.
The Escapement includes the roller, roller jewel, pallet with its two jewels and arbor, fork and guard pin, screws, escape wheel and pinion-thirteen pieces in all-requiring escape wheel and pinion-thirteen pieces in all-requiring
outer extremity. Gauging the hair spring is a delicate operation. The gauge is a dial plate, inches in diameter, beneath which is a spring of known strength attached to the center staff and jeweled. This dial is accurately divided into 2,000 divisions, each 0.01 of n inch wide. The hair spring is put on the end of the taff, where it is held by friction; the stud being attached to an arm held by an outer ring revolving about the dial, which is stationary. One revolution is made each way, and the strength of the hair spring determined by an index hand attached to the staff. It is seldom equally strong both ways, the variation amounting to from 5° to 10°; the aver age strength is about $1,000^{\circ}$. It takes so many degrees o strength in a hair spring to run a certain weight of balanc and make the requisite number of beats per hour. All
balance wheels are weighed; the average being 8 grains. One degree on the dial equals about 4 seconds of time an hour, and in the balance 0.01 of a grain makes the same difference. An exact record is kept of the weight of the balances, which goes with the work till it is completed. The last step is the actual timing and toning the hair springs in watches; after which they are laid away to be used according to their numbers. Each hair spring belongs to its own balance and each balance to its own watch, but they do not meet each other till the watch is done.
To show how greatly raw material can be enbanced in value by skill, it is worth mentioning that out of one pound (troy) of fine steel wire, worth from $\$ 2.70$ to $\$ 5.40$, may be made 17,280 hair springs, worth $\$ 7,152$ at lowest wholesale prices.
The Dial Making Room is under Mr. Charles Moore, who has been with the company since 1859. The dial has a copper foundation, which is pressed and pierced at one opera tion. Next, the dial feet are brazed in. Pulverized enamel is laid both on the back and the face, and then fused on, or "fired." Having been smoothed they are fired a second time, inspected, and sent to the Painting Room, of which E. L. Hull is foreman. Here the face is spaced into 12 equal divisions that are indicated by lead pencil marks. Two circles are drawn likewise, to mark the length of the letters or figures. Dabs of paint go on where the hours are to be; enamel paint being applied by a camel's hair brusb. When dry, the tops and bottoms are cut off to the proper leugth, then by suitable tools straight spaces are cut through, leaving the heavy lines of the "hours," and the surplus paint is carefully scraped off. Painters then draw in the hair lines of the hours, and put on the name of the company. The "minuters" next, by the aid of an accurately graduated machine, paint on the minutes. After inspection the dials go back to the third firing. A circular cut is then made through the enamel on both sides, and the intervening copper is burned out with acid, thus making a hole for the seconds dial, which has been undergoing operations similar to what has been described. After the edges of the hole and of the "seconds bit" have been ground and polished, the bit is soldered to its place.
Time regulation is, of course, very important. Two superior clocks are kept for this purpose; one for mean time, and the other for a constant rate. The Watch Company waut to keep as near to the standard time as possible ; but
for ractical purposes the main thing is to fix a uniform for practical purposes the main thing is to fix a uniform rate for adjusting their watches. Hence they are not con tent with Harvard time, because they evidently think they can do a little better ; Harvard running its excellent side real clock for mean time rather than for constancy in time keeping. The Waltham observatory has a transit instrument, and an astronomical clock electrically connected with all the rooms where the timing of watches is an object. A chronographic record is kept, and a daily record of errors aud variations of temperature and barometrical pressure. The clocks themselves are kept in a dark room whose temperature is maintained at 70° Fahr. all the year round. The barometrical pressure is regulated by an air pump the constant timer, which is kept in an air tight case.
The Case Department is managed by Mr. Daniel O'Hara. Silver cases only are made at Waltham ; the gold ones being all made at New York. The silver comes in bars, which are first rolled down and pressed into shape. Then the material goes to the turning room, where the pieces are snapped together and fitted. After the turners are through,
the jointing and soldering are done. Now the cases are the jointing and soldering are done. Now the cases are milled through for the joints, and the caps put on.
opening room the winding crown is put on, aud the joints fixed so that the case will open at right angles. It next goes to the springing room to receive the lifting spring and catch spring. The case is then taken apart for polishing, and the backs are sent to the engraver and engine-turner. It is now matched up again, and the pins put in, and finally polished; when it is backed and glassed ready for delivery. There are 150 operations needed to manufacture an ordinary watchcase. The department produces 650 silver cases a day, employing 400 bands. At the time of my visit they had on
hand $\$ 90,000$ worth of silver, and about $\$ 10,000$ in gold for joints, etc., to guard which three large vaults bave been constructed. The washings of aprons and bands, and the sweepings of the floors, and the cast-off garments of the workmen, are all saved up to be reclained in the refining room; and thus a large amount of metal is saved monthly.
While, as has been stated, it is the object of this article to treat the watch as a machine, rather than as mercbandise, it ougit to be stated, in conclusion, that the American Watch Company, besides its salesrooms at No. 5 Bond Street, New York, and at 403 Washington Street, Boston, has its agencies at Cbicago, London, and Sydney. Most of the watches made are sold in this country ; yet their excellence is appreciated abroad, as is proved by their increasingly large exportations.
Having inspected the shops at Waltham, a new delight was felt in looking at the finished watches as displayed to the public. My attention was especially directed to a newly invented case having no springs nor hinges, all parts screwing together, thus making the watch secure from dust and moisture. Also to fine timers with chronograph attachment, a Swiss invention for marking any particular moment, to within a quarter of a second, without interfering with the general movement. By pressing a spring, the sweep second hand is arrested; by another pressure it is made to fly back to 12; and by still a third pressure it is made to go again.

The explanation is that the attachment is thus first lifted clear from the movement and temporarily detached, being afterward, by the same p
by means of a heart cam.
In reply to my inquiries, the following statement was made by Mr. Robbins, showing the augmentation of value of mate
sidered:

From these, and others taken at random, the conclusion
was reached that the average weight of a watch movement was reached that the average weight of a watch movement
is about $11 / 2 \mathrm{oz}$. of metal, being nine-tenths brass, one-tenth steel, worth $31 / 2$ ceuts, brass being worth 30 cents a pound and steel being worth 62 cents a pound. These finished movements are worth, at manufacturers' prices, from $\$ 3.50$ o $\$ 100$ net.
Justice to the writer requires me to add that this article lays not the slightest claim to merit as from an expert, and quite possibly is in need of indulgence for errors of a tech ical sort. Yet for the general reader it may possess a cer tain interest and value of its own, as an impartial descrip tion and an unsolicited tribute to the science, perseverance and skill characterizing one of the finest, most praiseworthy and truly wonderful of our manifold American industries.

Photographs of Metallic objects.

Although many persons will prefer to have a plain print of such an object as a medal or a piece of plate, there are others who may think that a pbotograph showing a metallic uster, and consequently very nearly resembling the original, is more satisfactory; and as it is very easy to make an excellent reproduction of a bright metallic object by transferring a transparent photograph to a metal or metallized surface, we propose to give some practical directions whic will enable any person to make such reproductions.
The negatives for such pictures must be taken with uni formly dark backgrounds, as any light places would natu rally show the metallic luster of the backing, and the effect of the picture would consequently be completely spoiled. In short, the background should be uniformly black, and ought to be reproduced on the'negative as clear glass, or something very near to it.
As far as our experience goes, the best reproductions of metallic objects are made by developing a carbon print diectly upon a metal plate-copper, either gilt or silvered, being most convenient. The prepared copper plates, which are sold at a moderate price for use by the engraver, are exremely convenient, as they may be had in a great variety of stock sizes, while the prepared surface is smooth, and in a good condition for being gilded or silvered. It is not worth while for us to give directions for gilding and silvering, as such work is done at a very low price by the trade
platers and gilders, who abound in Clerkenwell. The commercial " brown"tissue is a good color for general work. As vigorous reproductions are generally required, it is well to use a rather weak bichromate bath for seusitizing-say about two per cent; and in other respects the mode of working is precisely that recommended for making carbon transparencies on page 359 of the present volume, the metal plate being used instead of glass.
The direct method on metal renders it necessary to use a printed from, it ise; and when an ordinary negative is to the support upon which it is developed, and this transfer may either be made upon a plate of metal or upon a sheet of metallized paper. When the carbon print is to be transferred after development, it is best to develop it upon a flexible support, as directed upon page 332, and to transfer it to the metal plate or paper-gilt or silvered-in the manner directed for ivory on the one hand, and for canvas on the other hand.

As many of our readers are not so far practically acquaintd with the process of carbon printing as to be in a position o make an occasional print with a tolerable certainty of success, it is satisfactory to know that excellent metallic pictures may be obtained by making a transparent picture upon glass, in such a way that the image shows unreversed when lonked at through the glass, and backing up the transparency with a piece of gold or silver paper. Transparencies made by the gelatino-bromide process of Mr. Welling ton (page 79) are excellent for this purpose, but collodion, gelatino-chloride, collodio-chloride, or, indeed, transparenies by any other process, may be used.
M. Geymet recommends a somewhat complex process of ransfer with collodio-chloride, which we may summarize as folluws: A stout paper is coated with a moderately thick layer of plain gelatine, such a layer as would be produced by drawing the paper quickly over a solution of one part of gelatine in four of water, and this is coated with collodiochloride, and printed as directed by Dr. Liesegang on page 772 of our volume for 1883 . When toned and fixed the print
is placed in water at a temperature of about 80° Centigrade, is placed in water at a temperature of about 80° Centigrade, ened by the dissolving of the gelatine, a clean glass plate, which is about half aninch smaller each way than the print, is laid on a table, and the collodion print is laid down smootbly upon it, and after all inclosed air has been expelled by stroking with the hand, the loosened edges of the film are turued over the edges of the glass. It will now, in all probability, be easy to strip the paper away, leaving the col-
lodion on the glass plate; but if the gelatine should not be sufficiently softened for this, the back of the paper must be
treated with a sponge saturated with hot water. When the paper has been removed, the same sponge serves to clear away all traces of gelatine from the film. A sheet of white paper is next taken and laid upon the film, care being taken to insure contact all over by stroking it down with the hand or with a squeegee. The edges of the collodion film, which were previously turned over the glass, are turned back on the paper, and the paper, now carrying the film, is slowly stripped off the glass.
All is at last ready for transfer to the final support, whether this be gold paper, silver paper, or a metal plate; but this support should have been previously gelatined by baving a solution of six parts of gelatine in one hundred parts of lukewarm water poured over it. The surface thus gelatinized is allowed to dry, but should be dipped in water mmediately before the final transfer is made. The collodion film (now supported by the paper) is laid down on the final support, and the paper backing is next smoothed down with the hand so as to expel all air bubbles, and the whole is allowed to dry. It is now easy to strip off the paper covering, and the picture should be varnished with an amber and chloroform varnish.
If it be desired to imitate the appearance of an old and tarnished metal object-say antique bronze-a little green and yellow aniline color should be added to the gelatinous and yellow aniline color should be added to the gelatinous
mixture used in making the final transfer.-Photographic mixtur
Newos.

A New and Startling Invention

Under the above heading the N. Y. Mail and Express de cribes a new railway improvement which certainly has the merit of novelty. It is believed to be the invention of Major Bundy, the editor of the above journal, notwithstanding he credits its authorship to a citizen of Connecticut. The frequent attempts of railway trains to pass each other on the same track have been attended so uniformly with disastrous consequences, that it has become to be the general belief that the feat is impossible, and that engineer will do well to desist from further efforts to accomplish it. To the ordinary mind it seems inevitable that if two trains approach each other on the same track, and do no slacken their speed, a collision must ensue. But there is a man in Connecticut whose mind is not ordinary. Of course, we do not mean by such a statement to insinuate that the Nutmeg State possesses only one man gifted with extraordinary mental endowments. The woods there are full of them, but so far as heard from, there is only one who has exercised his genius in solving the problem of how to enable two trains to pass on the same track without collision.
The plan of this ingenious person is very simple, as al really great plans and ideas are. He proposes to place on the front of every locomotive going in one direction a long inclined plane, upon which are two rails. These come close to the track at the forward end of the plane, and at the hinder end are connected with other rails that run along the tops of the cars, and down to the main track again on another inclined plane in the rear. When the train provided with this attachment meets another on the same track, the latter simply goes over the former, its weight making the connection of the front of the inclined plane and the rails of the main track perfect, and acting at the same time as a brake on the speed of the train underneath.
If this invention had been made a few years sooner, the number of double track roads in the country would not now be half as great as it is. A single track, with occasional switches for heavy freight trains, Major Bundy says, would answer all purposes, and the cost of constructing railroads would be decreased 25 per cent. The system will, of course, be adopted immediately on all single track roads, and within a few years the sensation of riding over or under another moving train will be so common as to pass almos unnoticed. This is a great country.

Power for the New Orleans Exhibition.
Director-General E. A. Burke has accepted the following proposals to furnish engines for the World's Exhibition:

	No. Engines.	No. H
Cummer Engine Company	180
Cummer Engine Company. 2	300
W. A. Harris.	.. 1	650
W. A. Harris.	1	150
E. P. Allis \& Company...	. 1	500
Brown Engine Company	.. 1	400
Robert Wetherill \& Company.	- 2	600
Armington \& Sims Engine Comp	... 4	500
Westinghouse Engine Company.	. 2	400
Taylor Manufacturing Company	. 1	200
Smith, Meyer \& Schuer.	. 1	20
Novelty Iron Works.	. 1	200
Buckeye Engine Works.	1	125
E. M. Ivers \& Son.	. 1	100
Lane \& Bodley	1	75
Jerome Wheelock	1	280
Hooven, Owens \& Rentschler.	. 1	500
'Total	$\frac{1}{23}$	5,360

Flight of an Exploded Boiler.

A Lynn, Mass., correspondent, referring to a recent remarkable flight of a boiler illustrated in these columns, reminds us that, about two years ago, there was a notable boiler explosion of a similar character in that city. The lying portion formed a large part of the whole boiler, describing a circle high in the air, and lauding 900 feet from where it started.

electro-pNevmatic valve.

It is impracticable to open and close valves such as are used upon steam pipes by the direct agency of electricity. Many appliances have been used to close valves on air pipes or the draughts of furnaces by clockwork set in motion by electricity, but these have proved unsuccessful for the reason that only small and easily moved valves could be operated, and the mechanism was large, complicated, and expensive. The device herewith illustrated-the invention of Prof. W. S. Johnson, an electrician of Milwaukee-makes use of compressed air which acts directly upon a piston, or its equivalent, and actuates the valve, which may be of any size. Since the electricity only performs the simple duty of admitting or releasing the compressed air from the chamber that operates the piston, a very feeble current is all sufficient, and, what is more important, the same quantity of electricity will move the largest valve in the world as readily as it will move the smallest, in other words, a single cell of any battery will stop the largest engine. The air is stored in a small tank, that is filled as occasion requires by means in a small tank, that
of a small air pump.

The valve shown in the sectional view, Fig. 1, is used on all pipes of steam, water, or brine systems. Fastened to the upper end of the stem is a saucer-shaped piece, H, above which the umbrella-shaped piece, J, is held by standards Upon the under side of the piece, J, and fastened firmly to its edges to produce an air tight joint, is a flexible diaphragm, K , made of cloth and rubber. There is an opening through the pipe, M, into the chamber formed between the piece, J, and the diaphragm. It is easily seen that if air under pressure be admitted through the opening, M, the valve pressure be admitted through the opening, M, the valve
will be pushed downward to its seat; when the air is alwill be pushed downward to its seat; when the air is al-
lowed to escape from the chamber, the spring, b, will open lowed to escape from the chamber, the spring, b, will open
the valve to its full extent. The force with which the valve is seated will be quickly perceived, when it is remembered that the area of the diaphragm is much greater than that of the valve. When the area of the valve is 0.78 of an inch and the steam pressure 60 pounds per square inch, the pressure upon the valve disk is 47 pounds. The area of the diaphragm is 9 inches. If the air pressure should be 10 pounds per square inch, the valve would be pounds per square inch, the valve would be
seated with a force of 90 pounds, or 43 seated with a force of 90 pounds, or 43
pounds in excess of the steam pressure. Since pounds in excess of the steam pressure. Since
the area of the diaphragm may be increased at pleasure, it is evident that the valve can be operated against any pressure of steam.
The compressed air is admitted to the chamber by the elec-tro-pneumatic valve shown in side elevation in Fig. 2. The pipe, M (Fig. 1), is attached to nipple F, while a nipple on the opposite side and not shown in cut is connected by a short rubber tube to the iron gas pipe that leads to the reservoir of compressed air. When the valve operates, the compressed air passes freely through it from nipple 1 to 2 , and thence to the diaphragm valve. When the electric circuit is broken, the valve closes the outlet to the compressed air reservoir, and opens the outlet to the diaphragm valve, which, being relieved from pressure, opens again. The engraving shows the electro-magnets, the armature, the lever moved by the armature, and the piston valve, which is lifted by the armature when the valve moves.
By means of a thermostat, the electric valve may be used

Fig. 1.-SECTIONAL VIEW OF DIAPHRAGM VALVE.
to control temperatures, the electric circuit being closed when the apartment reaches the desired temperature. The valve permits the compressed air to enter the diaphragm valve and shut off the steam, hot air, circulation of water, or whatever is the source of beat. Common gravity batteries are employed to operate the device, or it can be arranged so as to be worked by an open circuit battery like the Leclanche. But a few minutes' work each week are required to keep the pressure in the reservoir up to 10 pounds. This system is simple, automatic, and noiseless, and the many uses to which it may be put will be evident to our readers. When placed upon the heating pipes of a building it insures not only a temperature just warm enough, but
one in which there are no fluctuations beyond the fractio of a degree. When applied to heating apparatus, the same battery and air reservoir answer for all the valves, a small gas pipe conveying the compressed air from the reservoir to
all parts of the building. These devices are made by the Milwaukee Electric Mfg. Co., of Milwaukee, Wis., and will be exhibited at the International Electrical Exhibition to be held under the auspices of the Franklin Institute, Philadelphia

HOW OUR CARP ARE DESTROYED.
There is a little plant, common enough in nur ponds, and known as bladder-wort, which has suddenly sprung into importance for breeders of carp. The bladder-wort (genus Utricuaria) is a rootless plant fond of still water and usually found

FISH EATING PLANT-UTRICULARIA.
floating half in and half out of water, the branching and stem-like leaves forming the submerged thoat from which rises the flower stem. To the leaves areattached curiously insect-like bladders filled with water, and varying in size in the different species, reaching at times a diameter of one-fifth of an inch.
It was formerly, and with much probability, supposed that these bladders sel'ved the purpose of floats; for until a few years ago it was taken for granted that air and not water filled them. It is now known, however, that the bladders serve a more useful purpose than merely to keep the head of the plant above water; they are the digestive organs of the Utricularia, and at the same time are so constructed as to form a very ingenious but extremely simple trap for catching food. It is into these bladders that tiousands of carp eggs find their unwitting way, together with many insects, crustacea, and other tiny objects, both animate and inanimate.
It is only recently that the Utricularia has been accused of destroying carp eggs, but for nearly thirty years it has been known as a receiver of small insects and crustaceans, and it has been known as an insect feeder for atleast twenty years. Mrs. Treat, of this country, ir 1875 gave a full and interesting descriptiou of the interesting descriptiou of the
habits of one species (Utricuhabits of one species (Utrich-
laria clandestina), and Darwin and others, of Europe, studied the habits of other species in Europe and elsewhere.
In its cbaracter as an insectivorous plant the bladder-wort might fail to arouse general interest, but as a destroyer of carp it bas a commercial as well as botanical and scientific characbotanical and scientinic charac-
ter. The common bladder-wort (Utricularia vulgaris) affords the easiest subject for study, inasmuch as its bladders reach the largest size and may be satisfactorily examined with a moderate
 agnifier.
The bladder is pear-shaped,

Fig. 2.-SIDE ELEVATION OF ELECTRO-PNEUMATIC VALVE.

ductive secretion here, as in the case of many insect destroying plants, the great naturalist's surmise is probably correct.
Some of the insectivorous plants, on catching their prey, at once pour out a digestive fluid analngous to the gastric juice of the human stomach, but with the Utricularia it is not so. The insects or other food when caught in the bladder are merely captives, and swim about in their confined quarters with eager activity in their endeavor to find an outlet, until asphyxia for lack of oxygen comes on. Even now
the plant makes no effort to digest the animal food, but waits patiently until decay takes place, and the animal matter is by putrefaction resolved into fluids which the numerous papillæ lining the bladder can absorb.
Darwin's experiments showed not only that living animals could make their way into the bladder, but that inanimate objects falling on the valve would be engulfed with lightninglike rapidity. With all this information to begin with, it is not strange that naturalists should turn to the bladder-wort to seek a solution for the great destruction of the carp, for the carnivorous plant was known to possess facilities not only for the capture of floating spawn, but even of the newly batched fish. Examination and repeated experimen proved conclusively that the greedy little bladders were making sad havoc with the fish, and in consequence carp breeders are bidden to open war vigorously on Utricularia and all its species. It may seen at a basty glance that the small bladders can hardly be responsible for any very exten. sive destruction of eggs or small fish, but the doubters of the ability of insignificant agents, acting together, to produce stupendous effects may be referred to the microscopic rhizopods or the earth worms, each in their own way per forming wonderful feats in the way of earth building and earth preserving.

Apple Tree Borer

Inanswer to correspoudent respecting tree borers, the Albany Cultivator states as follows: The apple tree borer known as the round headed borer, in its perfect state is a beetl three-fourths of an inch long, with two broad whitish stripe running the whole length of its back, with rather long and curved horn-like antennæ. This beetle lays its eggs in the bark of the tree near the ground early in summer, and ou till midsummer. These soon batch, and the young larvæ begin to gnaw their way inward, cutting gradually into the solid wood. They are about three years in reaching maturity, when they come out in the form of the beetle already described. Their presence in the tree may be readily detected by the fine sawdust-like castings from the boles. They are easily reached and killed by clearing a way the openings of the holes with the point of a knife, and then punching them with a flexible wire or small twig. We have never found anything better than a small flexible twig from which the bark has been stripped to make it small enough to enter the holes. The operator knows when he reaches them by the peculiar touch. It is better to examine the trees often enough to find the larvæ when they are young, and before they have penetrated far into the solid wood. A partial remedy for pre venting the laying of the eggs, is coating the bark from the ground well up with sof soap, or soap madeas soft asthick paint, with washing-soda and water. If applied in fai weather, it becomes dry and will not so soon wash off. It may be applied two or three times from the first to the end of June. This insect attacks the pear, quince, mountain-ash, and thorn. The flat headed borer is half an inch long, more with an opening at the small end. Around the mouth are antennæ-like projections or bristles, which, according to Darwin, are for the purpose of warding off and keeping out insects of too great size. The mouth is closed by a valve which yields readily to light pressure, but offers an immovable barricr to the once captured creature. The utmost strength compatible with such a structure has apparently been attained. The valve is a thin and transparent plate, and by means of the water behind it, is made to stand nut a bright spot, which Darwin thinks may attract prey. Something certainly attracts the tiny denizens of the water, for they swim up to the mouth and crawl into the bladder by the readily yjelding door. As there is no se-
or less, of a shining greenish-black color. It is very common in the Western and Southwestern States, and is also found far north. It attacks the trunk of the tree from the ground up to the limbs, and lays its eggs at the South late in May, and in Canada in June and July. The eggs soon hatch, and the worms bore through the bark into the sapwood. It is much shorter-lived than the round headed borer. Sickly trees are more liable to its attacks than strong and healthy ones. The larvæ are easily found by using the knife, and are destroyed; and the eggs may be mostly excluded with the soap and soda already mentioned. This insect attacks the oak, soft maple, and several other trees.

Manufacture of Glass Beads.

The above manufacture includes turned massive beads, pressed, drawn, and blown descriptions. The first named kind was first manufactured in Venice, and about 200 years ago was introduced into the Fichtelgebirge district of Bavaria. At first the beads for rosaries were the principal articles made, and they are still produced in Bavaria, whence they are exported in quantities to Spain, Portugal, etc. The manufacture is, however, less important than formerly. As an illustration of the scale of production, it is remarked that a workman can make of some kinds of beads as many as 36,000 per day.
In contrast to the beavier Bavarian descriptions comethe Venetian productions. These are mostly beads for embroidery. The process of manufacture is a curious one. The glass is drawn into thin tubes and then cut up. The beads are afterward placed in heated drums, where the sharp corners are rounded off. After being rubbed in chalk and charcoal, they are strung together. In B_{0} bemia a kind of bead for trimming is made in a similar manner.
In making the blown or so-called lamp beads, a bellows is employed, with which a paraffine or gas flame is brought to a blowpipe flame. In this process, as carried out in Venice and Thur ingia, drawings are made on the glass balls or beads with pointed implements made of glass, and these designs are burnt in by the flame. The deadening process so extensively employed is both cbemical and mecbanical in its character In the chemical operation, hydrofluoric acid is used, by means of which the surface of the glass is removed. There was formerly another pro cess used in France which was a secret. A German workman, however, found it out by accident. This is the sand process, which is now used in Thuringia for the operation of deadening.
The manufacture of pressed beads is effected by pincers, of suitable form. The glass is heated on a moderate fire and brought into the mould. In this manuer beads and buttons are produced in very effective styies, both plain and colored. Of course the beads have to pass many times through the workman's bands before completion. To this branch belong the amulets, which are sent to the Gold Coast, and are used in various sizes according the rank of the wearer. Originally these amulets were made of agate, but as this substauce is eight or ten times dearer than glass, the latter material has been adopted.
The Central German Society of Industrial Art bas lately been giving attention to this subject, on which a lecture was delivered by Herr Rettmann, of Frankfort, himself a manufacturer of the articles in question.

A RUSSIAN FLOWER BASKET.
The accompanying illustration gives a good idea of a unique style of flower basket which was shown at the late

A RUSSIAN FLOWER BASKET

International Horticultural Exhibition at St. Petersburg. It represents what many ladies will consider a great convenience when carrying flowers, as it obviates the necessity of carrying a basket, or of stooping to place the flowers in a basket on the ground, and may be used if desired as a walking stick. The standard of the basket may be stuck into the ground in any convenient place, and moved about as required, while it may be made as light to carry as ordinary sun umbrellas. In fact, the device shown seems to suggest the idea of making the basket so it may be closed up umbrella like

AN AUTOMATIC FIRE : EXTINGUISHER.

The apparatus herewith illustrated, which has been per fected by Mr. Grinnell, of Providence, R. I., and is known as the Grinnell sensitive automatic fire extinguisher, is in tended to arrest a fire in its earliest stage by the action of the heat of the fire itself. Although this apparatus bas been used extensively in this country for several years, it was but recently introduced in England. The essence of the extinguisher, says The Miller, in describing a recent experiment in London, resides in the fact that metal sprinklers, connected with pipes leading to water under pressure, can conech by solder, which when cold is perfectly capable of
be closed by
holding a previously locked device; and yet which is cer-

Fig. 2. GRINNELL'S AUTOMATIC FIRE EXTINGUISHER. Fig. 1.

Gas from Seaweed.

In the course of a lecture on the "Economic Applications of Seaweed," recently delivered before the Society of Arts by Mr. Edward Stanford, F.C.S., the lecturer spoke of the stablishment in the Hebrides of works for the recovery and reatment of seaweed. The principal product sought to be made in these works was iodine; but, in the process, the weed was calcined in retorts, and the works were lighted by the gas produced during distillation. It was stated, however, that owing to the presence of salts of sodium, the gas after pass ing through a series of purifiers still burnt with a strong monochromatic yellow flame. Iron retorts, heated by coal or peat, were first used, but have been superseded by brick ovens. The tangle weed swells in the oven and produces a very light and porous charcoal, without sulphides, from which the salts are easily washed out. This charcual is more like animal than wood charcoal. Ammonia is collected from the distillate, and is used on the farm attached to the works, and the tar is util ized on the roofs, etc.

CUSPIDOR STAND

This is a useful and ornamental device, and, as represented in Fig. 1, entirely conceals the purpose for which it is designed, except as that might be in part apprehended from the lighters or matches in the receptacles at either side, or the ash receiver at the front of the stand, which is tastily designed, with a mirvor in the top. The is tastily designed, with a mirror in the top. The principle on which this cuspidor stand is con structed will be readily understood by an examina tion of the cross sectional elevation in Fig. 2, where may be seen the box, A, drawer, B, with hinged tain to fuse at a temperature of say 155° Fah. To protect cover, C , the latier operated by the curved arm, I, through any building from fire by this extinguisber, lines of small the roller, J, and the rod, K, sliding vertically in the stand pipe are carried through the building near the ceilings, and from eight to ten feet apart; these are all connected with a larger pipe leading from the public water main, or any source of supply that will keep the water in the pipes under pressure. Should a fire start at any point the heat an once rises to the ceiling, where the temperature is very soon raised sufficiently to melt the solder, which then releases the valve, and the water is profusely distributed on the fire.
Fig. 1 shows the sprinkler closed; Fig. 2 shows it in action. The base of the extinguisher is formed by a thin metallic diaphragm, capable of yielding to the internal water pressure, and in the center of which is an opening through which the water is discharged. Around the opening is the valve seat, the valve being a disk of soft metal held in a circular brass plate, which bas a toothed edge and acts as a deflector, by which the stream of water is cut into spray and distributed on both ceiling and floor. The valve is held against the seat by a pair of compound levers, one of which bears centrally on the deflector. Both levers fulcrum on a thin brass yoke secured to the body of the extinguisber, and the long arm of the second lever is secured to the yoke by the fusible solder.
When the heat of a nire softens the solder joint between the second lever and the yoke, the diaphragm, with its valve seat and the valve, moves a sufficient distance to completely sever the joint before the water can escape to cool it. The levers are thrown from the yoke; the deflector is forced from the opening to the notches which form the fulcrums that held the levers, and the deflector is in the position shown in Fig. 2.
The system includes an alarm gong or whistle, tbat works simultaneously with the fire extinguisher, and thus calls attention to the fact that a fire bas started somewhere in the building. The test is thus described by our contemporary: " The Hlooring of a light wooden shed, 30 feet by 20 feet, which was fitted with a system of piping and six jets, was covered with wooden shavings, which were in a moment kindled into a fire that threatened the whole structure with speedy destruction. The flames, however, had not raised their head for more than half a minute before the extinguisher began to rain down a shower that in fifteen seconds left no other trace of the fire beyond some blackened bits of shavings. We left the scene with the conviction that the Grinnell automatic extinguisher is a most powerful weapon again

Test for Sulphite of Soda
By the use of sulphite of soda in the pyro developer, negatives of a superior color and quality are produced. The purity of the soda is quite important, and a simple method of testing a given quantity has been recently suggested in the Photo. News as follows:
The best method of testing a sample of sulphite is to add nearly sufficient of a strong acid to convert the salt into bisulphite, and to notice if any effervescence occurs. If effervescence takes place, carbonate of soda is present, and the sample of sulphite should be rejected.
To be more exact, first put 4 drachms of the sodium sulphite into a glass flask; add 6 fluid drachms of water, and heat gently, so as to cause the salt to dissolve. Allow the solution to cool down to about 85° Centigrade, and add a mixture of 1 fluid drachm of strong hydrochloric acid and 2 fluid drachms of water. The slightest effervescence or the formation of minute bubbles of gas on the sides of the fla will indicate the presence of carbonate in the sulphite. ard, D , the rod, K , having a projecting arm, T^{\prime}, with a connecting rod, T, pressing down on which opens the cover At the back of the top of the standard is hung an ingeniously contrived sand box shown in Fig 3 formed of iwo troughs, the upper one of which is shown at L, and both secured on a plate, N. These sand troughs have end pieces, P and Q, connected by a bar and operated by a bandle, R with which the rod, T, may also be connected when it is desired to cover with sand the expectorations in the box, B; the sand from the sand box, as also the ashes and other deposits from the cup, G, flowing down the tube, H. The drawer is supposed to always contain a portion of sand, sawdust, or some similar material, and of course permits of as frequent change as desired; while, for use in a sick cham ber, the sand may be mixed with any approved disinfectant.

For further information relative to this patent apply to

SCHEIDLER'S CUSPIDOR STAND.
Mr. Andrew A. Scheidler, of No. 103 West 56th Street, New York city.

A local paper of Dakota is responsible for the following: A Dakota farmer in 1881 planted a single grain of spring wheat and from it grew twenty-two stalks, each bearing a full head of wheat, yielding in all 860 grains of wheat; 760 of these were planted the next year, producing one fifth of a bushel of splendid wheat. This was planted last spring, yielding seventeen bushels, making 1,020 pounds of wheat from one grain in three years.

ENGINEERING INVENTIONS．

A railroad switch has been patented by Mr． David H．Foreman，of Lancaster，Pa．This invention provides a asfety＂facing point＂feature，safety trail
ing actions，and self－locking arrangement，designed to insure absolute safety for fast trains upon a main line regardesss of auy lack of duty，confusion，or misi
pretation of sigmals on the part of the engineer．
pretation of signals on the part of the engineer．
A railway cable grip has been patented by Messrs．Henry Dods and Yrank Hindes，of Virgini City，Nev．The grip plate is arranged to shift alon
he car when griped to the cable，with piston rods an clinders at each end，and springs on the pistons be cylinders at each end，and springs on the pistons be
ween the grip plates and cylinder heads，with air ween the grip plates and cylinder heads，with air
cushions，and various novel devices of construction and arrangement．
An automatic car brake has been patented by Mr．Ed ward Ebi，of Cedar Rapids，Iowa．The ten der has a bar held to slide longitudinally under it，with buffer at the front end of the bar，a hand lever， locking pawl，and otherde eces，intended to afford mean matically by the momentum of the cars，at the pleasur natically by the
An apparatus for making steel by the Bes Aner process has been patented by Mr．Alfred Davy， of Shefiliel，York County，Eng．The invenion con－
sists in employing，with a portacle vessel，stand pi pe adapted to discharge air into the metal in the vesse bencath the surface by pipes dipping in from above hus enabling cast iron founders to make sttel and steel castings without the costly plant now provided for th
purpose．
An improved arch for supporting evapo rating pans for sugar making and other purposes has
been patented by Mr．Chaunce y C．Alfred，of Fairfax Vt ．The invention covers a novel construclion an shape of the arch，whereby a more even and perfect shape of the arch，whereby a more even and perfect
distribution of the heat is obtained under the bottom of the pan，the firebox of the arch having a grate ar－
ranged within a drawer，so the fire may be readily drawn when the sugar has been sufficiently exposed to he heat．
An apparatus for removing incrustations from water mains and pipes has been patented by Mr．
Edward H ．Keating，of Halifax，Nova Scotia，Canada． This invention provides a novel constiuction of com－ pound plowing machines or machine scrapers，to be propelled by natural gravity，force，or power of the
water furnished from the reservoir or fountain head， water furnished from the reservoir or fountain head，
or from he ordiuary stationary engines，for cleaning or from he ordiuary stationary engines，for cleaning
ut any water pipe or main which may have become out any water pipe or main which
foul by incrustations，stones，etc．

mechanical inventions，

A saw tooth has been patented by Mr Philip V．Conover，of Uvalde，Texas．This invention and in combining with the same a spring bolt，whereby each tooth and its locking key are held securely in position，with facility for detaching as required，and
so that any drawing action in cutting the wood tight－ ns the attachment of the tooth．
An attachment for squares for builders＇and joiners＇use has been patented by Messrs．Andrew G Olson and John McFarlane，of Duluth，Minn．The in suring attachment for squares，whereby increased fa ilities are afforded for measuring or laying out rafter r bereling the toes and heels thereof，and also fo laying out stairs and other purposes．

agricultural invention

A cable railway for plantations has been patented by Mr．George W．Thomas，of Cypre Mort，La This invention covers an improvement on a portable combines with such railway a system of endless cable for propelling cars，and also for dıawing agricultural
A grain drill has be
A grain drill has been patented by Mr Francis B．McCabe，of Lewistown，Pa．The invention
consists in improved shifting devices for ranking and consists in improved shifting devices for ranking and
cleaning the hoes，and means for automatically work－ ing them，in the construction of an adjustable lock pring hoe，in a fertilizing feeding device，and in ifting device for the hoes．
A combined sulky plow and cultivator has been patented by Mr．Thomas Huddlestone，of Portage
la Prairie，Manitoba，Canada．This invention covers la Prairie，Manitoba，Canada．This invention covers a novel arrangement of parts for such construction of combined plow and cultivator as may be readily ad justed for any desired kind of plowing，and to pro mole chive．
A plow has been patented by Mr．James W．Montgomery，of Thomasville，Ga．This invention hovel plows orcultivators，and narrowed or widened to suit the widths of rows to be cultivated，and its ob ject is to adapt the plow stock and beams so the plows may be set at different relations to each other fore and aft，and at different distances apart transversely，etc．

miscellaneous inventions．

A sleigh shoe has been patented by Mr Henry A．Morrell，of Pittsfield，Me．The invention covers a sled runner shoe with one or more longitudi
nal ridges along the lower side or bottom of the shoe to prevenc the sled from sliding laterally on wads slop ng sidewise，and to enable the sled to ran with less

An escapement for time pieces has been patented by Mr．Angust W ．Kientoff，of Dallas，Ore－
This invention relates to balance wheel or pendulum scapements，and provides a novel construction and rangement of parts，making an escapement which can als
wheel．

A harness pad has been patented by Messr Oscar L．Dorr and Thomas J．Tamplin，of South Wal
pole，Mass．This invention consists in an imitatio heepskin pad，in which the wool of the sheep or othe in place of the skin，so the filling can be frequent

An indicator for public assemblies has been patented by Mr．Harry S．Grimes，of Portsmouth， 0 It consists of an endless apron of flexible material ove receivesheets on which are letters，the operator thu publicly exposing messages to be read at fairs，mee An indicator for
An indicator for merchandise has been pa ented by Mr．John Wayer，of Syracuse，Ind．The in
vention consists in a casing having openings and vention consists in a casing having openings and
containing slides carrying numbers，the slides being ocked in place automatically by suitable springs ent size or number contained in the receptacle．
A luggage carrier for tricycles has been pa ented by Mr．Charles R．Zacharias，of Newark，N．J． This invention provides means for readily attaching laggage carrier to the tube containing the steering rod of the vehicle，and its adjustment to or detachment
therefrom as required，and so the carrier when not in se may be conveniently attached to be out of the wa An automatic feed device has been paten ed by Messrs．William Schwarting and John F．Tras－
ter，of Wolcott，Iowa．The invention consists in an attachment for hopuers which，being connected to th feed gateand pressure board，effects the regulation o the feed to the grinding rollers，and wherever mate rial is to be supplied from a feed hopper．
An automatic governor has been patented by Mr．William J．Radoff，of Rudd，Iowa．It is de signed more particularly to regulate the wind gates o lides of thrashing machine cleaners，and consists in mproved mechanism ior use in connection with cen cifugal the wind gates，and regulate the wind currenis， A tongue support has been patented by Mr． Nathaniel Johnson，of Harrisburg，ill．This inventio overs improvements on a former patent issued to the sle curved hounds having their fromb ends connecte with or made integral with longitudinal hounds，be ween which the rear
An adjustable bench hook has been pa ented by Mr．Harry Cooper，of San Antonio，Texas， It is made with a plate carrying a sliding bar，to whic being lacked secured a hook，the sing bar and hoo he plate，and the plate and its attachments are locked to the bench front by a stationary lug attached to the

A mixing machine has been patented by Messrs．John McKeage and William Wells，of Brook－ yn，N．Y．The mach ne is intended for mixing four， es that it is revolved with a peculiar wabbling gyra ory action，causing the material inside to be tumbled from sily mixed．
A brick machine has been patented by Mesers．Charles A．Carpenter and Joseph Hill，of Keo nism for fillis invention covers an improved mech pressers and partly pressing the clay，another pair o pressers completing the pressing，then shifting them
to a discharger，and discharging them，all being done to a discharger
A cotton gin feeder has been patented by Mr．Thomas F．Swinnie，of McFarlans，N．C．Thi nveution provides a mectranical cotton gin feeder to levator and a self－adjusting mechanical rake bein located relatively to each other in a novel way in con－ nection with a removable sided independent box，with arious other novel feature

A combined hat and coat hanger has been patented by Mr．Wiliam R．Cole，of Pottsville，Pa． is constructed to form a long and separately pivoted pendent button hook attachment or coat hanging boo and is a compact device，few parts serving to form th oat hanging hook，the hook hy which the device A floor jack has been patented by Mr．Em mett J．Lobdell，of Northville，N．Y．A movable head ted to ace itele pivote to the outer 1 piv bead，and there is a thrust block adapted to be fasten d in position and attached to the lever by a pin and sot connection，thus making an inexpensive and e ective jack for closing the joints of flooring，etc． A fire grate has been patented by $\mathbf{M r}$ James D．Ricbards，of Patriot，Ind．This invention ombines，with the walls and front bars of tbe grate he bottom bars made longitudinally adjustable，two bar for so connected to or engaging with them，an oscillate the bottom bars，the grate being specially | $\begin{array}{l}\text { oscillate } \\ \text { adapte } \\ \text { fuel．}\end{array}$ |
| :--- |

A stem winding watch has been patented by Mr．George F．Johnson，of Aurora，Ill．The inven－
 pring controlling the latter，whereby the spring ope ates to hold the setting lever in position．both when from dropping，and by striking the cover when closed case interfering with the closing of the case
A device for protecting balance wheels watches has been patented by Mr．Everton J．Arrick igned for use in watch repairing，and consists in langed holder for balance wheels，which will admi from the wheel．and of the wheel being chucked in th lathe at either end of the staff，free from all risk

busimes and きersoual．

The Chargefor Insertion under this head is One Dollar Adve asearly as Thursday

Parties desiring to sell or exhibit goods or patents a he Fall Exhibition，Boston，
4 Congress St．，Boton，Mass．
Machine Shop Outfit for aile． $7^{\prime \prime}$ Pond Planer； Lathes， $13^{\prime \prime} \times 20^{\prime \prime}, 12^{\prime} \times 24^{\prime \prime}$, and $6^{\prime} \times 16^{\prime \prime} ; 33^{\prime \prime \prime}$ Blaisdel
Drill Press， 2 Lathe Chucks，Bolt Cutter，Boring M hine，Forge， 2 Wood Lathes，set Pipe Tools，Tap Reamers，Mandrels，set of Lathe．Planer，and Black－
smith＇s Tools，Shafting，Pulleys，Hangers．Steel，Iron， 1，600；rare bargain．S．C．Forsaith Machine Compan Manch
11／8 in．Steam Whistles，by mail， 55 cents．A．G．
Brooks， 81 N． 3 d St．，Philadelphia．
Sturtevant Blowers，Lidgerwond Hoisting Engines，
New York Safety Steam Power Co．＇s Engines，Water＇ overnors，Duplex Pumps，ar nell， 135 N．3d St．，Phila．，Pa．
For Steam and Power Pumping Machinery of Single nd Duplex Pattern，embracing boiler feed，fre and lo uum，hydraulic，artesian，and deep well pumps，air com－ pressors．address Geo．F．Blake Mfg．Co．． 44 Washing－
on St．，Boston； 97 Liberty St．，N Y．Send for Catalogue St．，Boston； 97 Liberty St．，N Y．Send for Catalogue．
Soapstone Pa¿king，Empire Gum Core，and all kind Soapstone Pasking，Empire Gum Core，and all kin
Rubber Packing．Greene，Tweed \＆Co．，New York． Quinn＇s device for stopping leaks in boiler tub Quinn＇s device for stopping leaks in b
Address S．M．Co．，South Newmarket，N．H．
Cyclone Steam Flue Cleaner saves Fuel，Labor，and
Hercules Water Wheel－－most power for its size and
highest a average percentage from full to half Gate
of any wheel．Every aize tested and tables guaranted．Send for
If you want the best cushioned Helve Hammer in th Mills，Engines，and Boilers for， Mills，Engines，and Boilers for all purposes and of
very description．Send for circulars．Newell Univer sal Mill Co．， 10 Barclay Street，N．Y．
50，60，and 75 H．P．Corliss Engines；second－hand good order．Henry t．Snell， 135 N．3d St．，l＇hila．，Pa． Wanted．－Patented articles or machinery to manafac Brush Ele wenty thousand Arc Lights already sold．Our larges achine gives 65 Arc Lights with 45 horse power．Ou torage Battery is the only practic
Brush Electric Co．，Cleveland， 0 ．
For Freight and Passenger Elevators send to L ． S
＂How to Keep Boilers Clean．＂Book sent free ＂How to Keep Boilers Clean．＂Book
Stationary，Marine，Portable，and Locomotive Boile Stationary，Marine，Portable，and Locomotive Boile
specialty．Lake Erie Boiler Woris，Buffalo，N．Y． Presses \＆Dies．Ferracute Mach．Co．，Bridgeton，N．J
The Hyatt filters and methods guaranteed to rende all kinds of turbid water pure and sparkling，at econom

Railway and Machine Shop Equipment．
Send for Monthly Machinery List
to the George Place Machinery Company，
Chambers and 103 Reade Streets，New York．
Steam Boilers，Rotary Bleacher3，Wrought Iron Tur
tables，Plate Iron Work．Tippett \＆Wood，Easton，Pa ＂The Sweetland Chuck．＂See ad．p． 44.
Iron Planer，Lathe，Drill，and other machine tools of modern design．New Haven Mfg．Co．，New Haven，Conn． For Power \＆Economy，Alcott＇s Turhine，Mt．Holly，N．J． If an invention has not been patented in the United Statesfor more than one year，it may still be patented in
Canada．Cost for Canadian patent，$\$ 40$ ．Various othe oreign patents may also be obtained．For instruction address Munn \＆Co．，Sceientiric
agency， 361 Broadway．New York．
Guild \＆Garrison＇s Steam Pump Works，Brooklyn， ．Y．Steam Pumping Machinery of every descrip

Nickel Plating．－Sole manufacturers cast nickel an odes，pure nickel salts，polishing compositions，etc．Com plete outfit for plating，etc．Hanson \＆Van Wink
Newark，N．J．，and 92 and 94 Liberty St．，New York．
Supplement Catalogue．－Persons in pursuit of infor ific subject，can have catalogue of contents of the Sc entific amlilican supplemint sent to them free The SUPPLigMENT contains lengthy articles embracin the whole range of engineering，mechanics，and phys Machinery for Light Manuf acturing，on hand and Electrical Alarms，Bells，Batteries．See Worksho Receipts，v．3，\＆2．00．E．\＆F．N．Spon， 35 Murray St．，N．Y Curtis Pressure Regulator and Steam Trap．See p． 78 Munson＇s Improved Portable Mills，Utica，N．Y．
oodwork＇g Mach＇y．Rollstone Mach．Co．Adv．，p． 77. C．B．Rogers \＆Co．．Norwich，Conn．，Wood Workin rop Foring Biling \＆Spec Co Her
rass \＆Copper in
The Chester Steel C＇astings Co．，office 407 Library St 15，000 Gear Wheels，now in use，the superiority of the Castings over all others．Circular and price list free． The Improved Hydraulic Jacks．Punches，and Tub Hoisting Engines．D．Frisbie \＆Co．，Philadelphia，Pa Tight and Slack Barrel Machinery a specialty．John Heavy English Wairus Leather， reene，Tweed \＆Co．， 118 Chambers St．，New York． Knurling Tool，self－centering，for lathe use．Pratt Whitney Co．，Hartford，Conn．
Mineral Lands Prospected，Artesian Wells Bored，by

（1）G．C．R．desires a formula for making mastic preparation for covering brick work outside．A． Mastic cements are generally mixtures of tho parts each These ingredients carefully mixed and well worked to－ gether will have the consistency of moist sand，but gradually acquires the hardness of ordinary sandstone A waterproof mastic cement consists of 1 part red lead o 5 parts ground lime and 5 parts sharp sand with boiled oil．Or， 1 part red lead to 5 of whiting and 10 of sharp sand mixed with boiled oil．
（2）P．C．G．asks how to make a good gold writing ink．A．Gold ink is prepared by taking gold is reduced to the finest possible state of division， agitate with 30 parts of hot water，and allow it to settle． Decant the water and repeat the washing several times； naly dry the gold and mix it witha ittle gua wab ber stamp ins te simply solutions of aniline．Rub mixed to a proper consistency with glycerin
（3）J．W．C．asks：How can I blue mallea ble iron similar to the blue of steel squares，nails， heat them over a charcoal fire until the blue color comes， then cool them in dry sand or qshes．A pan of hot （4）E．N． ．N．P．asks：Wha都就 to nickel plate with by just rubbing the mis are over it．It only plates brass，copper，zinc．A．The y pren is probably a silvering solution，such as made ix parts wa a solution of one part potassium cyanta queous solution of silver nitrate（free from acid）until the precipitate is redissolved．The foregoing solution iously nixed with be applied in the manner described in your letter an it may be possible that you have in mind the Stolba process which is described in our answer to query
28 ，in the Scientific American for May 24,1884 ．
（5）W．H．S．asks：What sort of a crucible will answer wherein to melt gold？Will a small one of by jewelers．The ordinary sand cracibles，such as used
（6）S．L．W．asks：Does increase of lev－ orage necessarily decrease speed？A．Yes．This is one
（7）T．H．S．asks if a driving belt composed a a band of thin steel covered with leather would pos－ f not peperies of a leather belt，in ad afford eather lined steel belt would no doubt be very rigic The mechanical difficulties attending its applicatio property of staying in its place upon the pulles．A reatly to the elasticits of leather bett．The roude face of the pulley could not easily control a rigid flat
（8）W．R．B．－The pitching of a ball in a curved line is a well attested fact．But the pitching alteraately around 4 posts as sketched by you is ex MENT，Nos．402， 410 ，for a discussion of this subject． （9）M．E．L．asks bow to obtain more ive power，as a sequen of the labor of Dr a A．We have no further information on this subjec han we have already printed．Dr．Raydt＇s exper ments possibly open up a new feld，but all previou ttempts to utilize

INDEX OF INVENTIONS

For which Letters Patent of the United
July 29，1884，
AND EACH BEARING THAT DATE

Alarm．See Burglar alarm．

Annealing box，J．\＆T．McNeil．．．．．．．．．．．．．．．．．．．．．．．． 302,688
Auger bit，H．L．Shaler．．．．．．．．．．．．．．．．．．．．．．．．．．302，595
Auger，hollow，S．H．Newcomb
Auger．post hole，Mottram \＆Mundy．．．．．．．．．．．．．．．．．．．
Automatic register for grain，seed，etc．，J．Whe
ry，Jr ．．．．．．．．．．．．．．．．．．．
awning，M．F．Wiedeman
Axning，M．F．Wiedemann．．．．
Baling press，cotton，C．Baum．．．．
Baling press，cotton，C．Baumgarte
Battery．See Secondary battery．
Bedstead，sofa．w．Ott
Beehive，B．Franklin．．．．
Beehive，I．．Litingto
Beehive，I．A．Livingston ．．．．．．．．．．．．．．
Beer cooling apparatus，P．Mc
McCauley．

 ingravings may head advertisements at the same rate
per line, by measururement, as the letter press.
Adver

THE BOSTON WRENCH
 For gquare nuts, pipes, or any shaped article, Mechan

Mile COPE

New Patent Agency.

J. E. M. BOWEN,

Late Principal Examiner Patent Office, procures patents
in all countries, and acts as general counsel in patent In all countries, and acts as general counsel in patent
and trade-mark cases. offices: 605 Seventh St., N. W.
opposite U. S. Patent Office. Washington, D. C., and 137 Temple Court, New York City
MANGANESE BRONZE.-A PAPER BY M. P. Parsons, C.E., giving a brief history of bronzes,
reviewing the theoretical considerations which led the the
author the the production of mananenese bronze, and giv-

COMMON SENSE CHATRSAND ROOKKERS. stuff, but good, honest home comports. Shecial dis-
count to clergymen. Send stamp for catalogue to For sale by all frivt-class Eunnitureat Dealers.

WITUERBY, RUGG \& RICHARDSON. Manufacture oor Patent iood working wachinery of every descrip
tion. Facilities unsurpasso. Shop formery ocupled
by R. Bail \& co.. Worcester, Mass. Send for Cotalogue OLD ENGLISH FURNITURE.-ILLUS
 his office and fromall Price 10 centealers. To be had

HY.JOHIS As8Esice LIQUID PAINTS. ROOFINC,

Fire-proof Building Felt, Steam Pipe and Boiler Coverings, Steam Pack ing, Mill Board, Gaskets, Sheathing
H. W. JOHNS M'F'G CO., 87 Maiden Lane, New York. 170 N. 4th St., Phila. 45 Franklin St., Chicago.

The" MONITOR.
 The "MONITOR."

Water Elepators

BREAKFAST.

SPEAKING TELEPHONES.

 Wned by this company, covers every form of ap aparatus
including Microphones or Carbon Telephones, in which
the voice of the speaker causes eleetric und ations

 an be procured airectly or throigh the authorized
agentsof the empany.
All telepinones.otanined except trom this company, or
its authorized licensees. are infringements, and the

THE PAYNE AUTOMATIC ENGINE

A NEW BATTERY.-DESCRIPTION BY

COLUMBIA BICYCLES AND TRICYCLES.
 ines. sent for stamp.

KORTING UNIVERSAL

 Double tube. INJECTOR

NO ADJUSTMENT FOR VARYINGL STEAM PRESCSURE. OFFICES AND WAREROOMS:

The Hardien Hand Grenade Purso Extingusisher,
 Send for circulars. REARING OYSTERS.- A VALUABLE

Double Screw, Parallel, Leg Vises.
 Emerson's New Dx Book of SAW S

GASKILL'S STEAM PUMPS, GASKILL'S HIGH DUAD PUMPING ENGINES.

BOOKS ON BUILDING, PAINTING, Wa. .

BARNES

THE PLATTSMOUTH BRIDGEE-FULL

 2nthe same subject ma.
27ice 10 cents.

WMT. A. HEARERTS,
HARRIS = CORLISS ENGINE,

Cornell University.

 Electrical Engineering, Mechanical Engineering, Civil Engineering and Architecture.
Entrance Examinations Begin at 9 A. M., June 16 and Sept. 16 1884.

 For the UNIVERSITY REGISTER, ontainning fullstatements
regarding
requirements
for admission,

APPARATUS FOR ELECTRICAL MEAS urements.-Illustrations and description of the various
interesting apparatus for measuring electricity that
were shown atthe

TO INVENTORS AND MANUFACTURERS

Amexican In@titut θ,
 tion to secure proper space and classification. For
blanks and information, adress
General Suprt, American Institute, N. Y. City.

Scientific Ammericay The Most Popular Scientific Paper in the World. Only \$3.20 a Year, including postage. Weekly. 52 Numbers :
This widely circulated and splendidy illustrated
paper is published weekly. Every number contains sixteen pages of useful information, and a large number of original engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery,
New Inventions, Novelties in Mechanics, Manufactures, Chemistry. Electricity, Telegraphy, Photography, ArchiA II CIasses of Readers find in the ScIEvTIFIO AMERICAN a popular resume of the best scientific in-
formation of the day; and it is the alm of the publishers to present it in an attractive form, avoiding as much as possible abstruse terms. To every intelligent mind,
this journal affords a constant supply of instructive reading. It is spromotive of knowledge and progress in
every community where it circulates. every community where it circulates.
Terms of subscription.- One copy of the SCIENpostage prepaid, to any subscriber in the United States or Canada, on receipt of three dollars and ivemy cents by the publishers; six months, $\$ 1.60$; three
months, $\$ 1.00$. months, 81.00 .
Clubs.-One extra cony of the SCIENTific Amicri-
AN will be supplied gratis forevery clubof five subscribers t $\$ 3.20$ each; additional copies at same proportionate One copy of the Scientific Amiiricican and one copy for one year, postage prepaid, to any subscriber in the United States or canada on receipt of seven dollars br
the publishers. The safest way to remit is by Postal Order, Draft, ol
the publisers. Express. Money carefuny placed inside of envelopes, astray, but is at the sender's risk. Address all letters MITJNIV \& CO., 361 Broadway New York. To Foreign Subsclibers.-Under the facilities of
he Postal Union.the ScIENTIFTC AmIRICAN is no wsent by post direct from New York, with regularity, to sub-
scribers in Great Britain. India, Australia, and all other British colonies; to France, Austria, Belgium, Germany Cexico, and all States of Central and South America \$4, gola, for SCIENTIFIC AMVRICAN, one y ear ; $\$ 9$, gold
for both SCIENTIFIC A MVRICAN for both Scientific Amiricin and SUPPLEMENT for
one year. This includes postage, which we pay. Remit by postal order or draft to order of MUNN \& CO., 361 Broadway, NeN York.

PRINTING INRS:

