A WEEKLY JOURNAL OF PRACTICAL INFORMATION，ART，SCIENCE，MECHANICS，CHEMISTRY，AND MANUFACTURES．

	NEW	YORK，	JUNE 7， 1884.	

WROUGHT IRON TUBE FOR CABLE RAILWAYS．

In view of the success attending the introduction of the cable railway in San Francisco and Chicago，there can scarcely be any doubt that it is the street railway system of the future，destined to supersede the present mode of pro－ pelling street cars by horse power，owing to its many ad－ vantages，such as greater speed，economy of motive power， and occuparey of much less space in the streets．

The engraving we present in this issue illustrates a new system of tube for cable railways．
This tube is made up sections bolted together，each section being a self－contained girder，the upper chord of which has a continuous slot，admitting the grip bar to the interior of the cable tube．Each section consists of two opposite side plates，the upper portions of which are bent soas to con－ verge toward each other．To their upper edges are riveted angle bars of proper shape，far enough apart to form the con－ tinuous slot above referred to．The lower edges of these side plates are connected with angle bars to a bottom plate． The side plates，and preferably also the bottom plate，and the top and bottom angles，extend throughout the entire length of the section，thus forming a self－contained girder， of which the upper angles form the top chord，the side plates，the webs，and the lower angles and bottom plate the bottom chord．
To provide against lateral pressure on the sides of the tube from the pavement and from vehicles crossing over the top chord angles，a series of braced frames are riveted to the sides and bottom of the tube，consisting of angle ribs，lower transverse channel beams，or heavy angles，and inclined brace bars，riveted to the upper end of the angle ribs，and to the ends of the lower transverse channel beams or angles． The body of the girder or tube is about 33 inches deep； the transverse channel beams are 8 inches deep．The clear the transverse channel beams are 8 inches deep．The clear
width of the body of the tube in its lower portion is 12
inches，and the length of the transverse channel beams is 40 inches；being the widest part of the tube at any point．The sections are made in convenient lengths of about 16 feet，the connection between two consecutive sections being made by bolts through angle ribs at their ends．Thus a continuous tube or conduit is formed，complete in itself．
The work of laying the tubes is extremely simple．A trench is dug 3 feet deep from the surface and 3 feet 8 inches wide，for a distance of a block at a time，into which are lowered the tubes，and，after having been properly leveled up and bolted together and connected to the track stringers by three quarter inch round rods attached to the angle ribs on the tubes，the work of closing up the ditch begins．First the space under and alongside of the tube is filled with con－ crete to within a foot of the surface of the street，sand to the depth of several inches is then thrown on，and the whole paved over with Belgian blocks．
Every alternate tube is provided with a manhole in one of the web plates，affording access to the tube for the pur－ pose of introducing or removing the cable，oiling the sheaves， etc．At each of these manholes a chamber is made in the concrete，accessible from the street through a square open－ ing alongside the track，which is covered with a cast iron lid It will be seen that the whole process of laying these tubes is so very simple，that the advantages of this system of tubes are quite apparent．The limited width of the trench， which leaves the tracks wholly intact，enables the construc－ tion of the cable railway to proceed without interfering with the running of the horse cars，or requiring any temporary side tracks or movable bridges，where existing iines of horse railway are changed into cable railway．In this connection Mr．George Rice，Chief Engineer of the Cable Division of the Union Passenger Railway Company，of Philadelphia， which company is now completing the laying of 20 miles of
＂I have made a careful examination of the different cable roads in California and Chicago，and I believe our Phila－ delphia system of cable tubes is the best for several reasons． It is simple in its construction，and consequently cheaper thau any of the existing systems of tubes that have any claim to permanency．These tubes can be laid more rapid－ y，and for construction on an existing line of horse railway， without interference with the traffic，this system has no rival．
＇It would be impossible to build a cable line，such as is in use in Chicago or on Market Street，San Francisco，without side tracks or some device，such as a movable bridge，on which to pass the cars over the break in the street．In a narrow street the side tracks are not admissible，and the bridge device would be a cumbersome and expensive means of keeping the cars in motion over the work，＂etc．
Any further information in regard to the tube，relating to the construction，cost，etc．，can be obtained on application to the inventor，A．Bonzano，Chief Engineer of the Phœnix Bridge Company，at Phœnixville，Pa．This system of tubes is patented in the United States and Great Britain．

Dynamite．

At a recent meeting of the Engineers＇Club，of Philadel－ phia，Mr．J．J．De Kinder presented an illustrated descrip ion of a method of removing condem ned machinery by dy－ namite，as practiced by him in the case of the side levers of the old Cornish pumping engine at Spring Garden Water Works，Philadelphia，which weighed 29,000 pounds each． Drilling，tapping，and breaking each beam in two，with a half pound of dynamite，and without injury to the building or other machinery，occupied thirteen hours．Even bad dis－ patch been unnecessary，it might have taken two weeks to do this work by the ordinary methods．

a NEW SYSTEM OF WROUGHT IRON TUBE FOR CABLE RAILWAYS．

ダrimtifir Ammiram.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at
 No. 361 BROADWAY, NEW YORK.

o. D. MUNN.
A. E. BEACH.

TEERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year postage included...
$\begin{array}{r}\$ 320 \\ 160 \\ \hline\end{array}$
Clubs.-One extra copy of The Scientifio American will be supplied gratis for every club of five subscribers at $\$ 3.20$ each; additional copies a same proportionate rate. Postage prepaid.
Remit by postal order. Address
MUNN \& CO.. 361 Broadway, corner of Franklin street, New York.
The Scientific American Supplement
is a distinct paper from the Scientific american. 'The supplemen't issued weekly. Every number contains 16 octavo pages, uniform in siz with Scientiric american. Terms of subscription for Supplement
$\$ 5.00$ a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all news dealers throughout the countrs.
Combined llates. - The Scientific american and Supplement will be sent for one year postage free. on receipt of seven dollars. Both
papers to one address or different addresses as desired. papers to one address or different addresses as desired.
The safest way to remit is by draft, postal order, or re The safest way to remit is by draft, postal order, or registered letter.

Scientife American Export Edition.

The Sciencific american Export Edition is a large and splendid periodical, issued once a month. Each number ecntains about one hundred
large quarto pages, profusely illustrated, embracing : (1.) Most of the plates and pages of the four preceding weekly issues of the Scientific american, with its splendid engravings and valuable information: ommercial, trade, and manufacturing announcements of leading houses Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the
world. Single copies 50 cents. Manufacturers and others who desire o secure foreign trade may have large, and handsomely displayed announcements published in this edition at a very moderate cost. The SCifntific Am meican Export Edition has a large guaranteed circu lation in all commercial places throughout the world. Address MUNN \&

NEW YORK, SATURDAY, JUNE 7, 1884.

REMOVAL.

The Scientific American Office is now located at 361 Broadway, cor. Franklin St.

TABLE OF CONTENTS OF
the scientific american supplement
NO. $4 \mathbf{I N O}^{\circ}$

For the Week ending June 7, 1884. Price 10 cents. For sale by all newsdealers I. CHEMISTRY AND METALLURGY.-The Union of Bodies by H. | rale |
| :---: |
| Brit |
| Brit |

Gatinul Gurow witho.-ASYTNBX Wesciption of the latest forms of these Euns

 iII. Horsich ELECTMICITY, ETC.-J.echne and Lerkseh's Ther

 V. ARCHMECTURE, ARTA ADARACH AEOLOGY. Panel from th
 BowRers...iaures and Antitiouit
The worr of Major Di Cesnola
VI. NATURAL HISTORY.-Submarine Explorations.-M Mollusks col-

threaded head eud of the wire shank
The press forms the setting into a cup shape for the glass or porcelain head, and this, when inserted, is held in position by having its edges turned in over the head by a press. The wire shank is pointed in a rotary press which draws the wire down to a point in dies or scores that form the pointed portion four sided. On two of these sides a film or sprew is left that is removed by a trimming press.
The formation of the screw thread on the other end of the wire shank is somewhat interesting. The thread is not cut with dies-in fact, it is not cut at all. It is rolled up from the material of the shank, and the threaded portion becomes larger than the original wire. There is a fixed die in a press, the die having been milled on a slant to represent and these scores are simply cuts of a V-form running diagonally across it. Another die exactly like the fixed one is attached to a reciprocating arm, so as to traverse across the fixed die. Between these dies the shank is passed under pressure, and the result is a perfect thread at the rate of at least one hundred gross per day, the only attendant being a boy.

softening and hardening cast iron.

Questions have lately been asked as to the possibility of altering the texture or changing the qualities of cast iron by heating and chilling. In the respect of resistance to the superficial changes which are induced on steel by heating and sudden chillings, cast iron stands alone. It is amenable to the gradual influences of heat, but it will not contract nor harden, like steel or wrought iron, under sudden change from heat to cold. And yet hard cast iron may be annealed, as it is done daily by tons, the heat being supplemented by the pyrogenous oxide of iron, the hot oxidized scale, such as is seen at the base of the blacksmith's anvil. It can be annealed also, if the articles are small enough, by being heated in a bituminous coal fire, and then buried until cool in a bed of the coal siftings. This sort of annealing is en tirely unlike that for hard wrought iron or obdurate steel, as in these cases only clean charcoal is to be used, any taint of sulphur being a source of injury. But in avnealing hard cast iron the softening qualities of the sulphur contained in bituminous coal is what is required. Some of the most intractable specimens of cast iron, no larger in diameter than a pipe stem, that refused to yield in a genial charcoal fire when packed with bone, lime, and charcoal, softened to usable condition by one heating in bituminous coal.
As to hardening of cast iron there is no ordinary proces that is generally convenient, except that of caselardening. In this the cast iron article should be polished as well a finished-the surface being made as homogeneous as can be -so that the flux of casehardening be given as large a sur
is a boneycomb instead of a solid; and it is not even a series of layers of fibers, as is wrought iron, or of a network of fibers, as is cast steel, but it is a mass of material of which pure iron itself is not always the largest part. Recent improvements, however, have given the pure metal a preponderance over the foreign palpable matter and the air spaces. But this constitution is uot common.
Even heating is necessary to casebarden cast iron; and yet the heat must be less than that allowed for wrought iron and low steel, for at much less than the white heat for wrought iron or the "high heat" for carbonized steel, the cast iron would disintegrate. The cast iron should be heated to a soft red heat and then sprinkled with powdered prussiate of potash and sal ammoniac in proportions of two of prussiate and one of sal ammoniac, and then immediately plunged into a cold water bath. It will not do, in the matter of casehardening cast iron, to return the iron to the fire or to use the flux as a paste. Put it on as a powder, and plunge immediately into cold water.

The Petroleum Industry.

From recent statistics it appears that there are 20,000 pioducing oil wells in Pennsylvania, yielding at present 60,000 barrels of oil a day. It requires 5,000 miles of pipe line and 1,600 iron tanks, of an average capacity of 25,000 barrels each, to transport and store the oil and surplus stocks. There are now nearly $38,000,000$ barrels of oil stored in the region in tanks. This oil would make a lake more than one mile square and ten feet deep. The money actually invested in petroleum production since 1860 is estimated to be more than $\$ 425,000,000$, of which $\$ 200,000,000$ was capital from New York city. Since 1880 more than $\$ 12,000,000$ has been us.ed in building iron tanks, and nearly as much in pipe lines, all by one corporation. The tanks cost on an average $\$ 8,000$ each. A 35,000 barrel tank is 90 feet in diameter and 28 feet high; 100 tons of iron are used in constructing one. The aunual loss from lightning by the use of iron tanks is very great, as they form an attractive path to earth for electricity. The speculative transactions in petroleum represent more than $\$ 400,000,000$ annually. The lowest price crude petroleum ever brought was 10 cents a barrel, in 18b1. In troleum ever brought was 10 cents a barrel, in 1861. In
1859, when there was only one well in existence, Colonel 1859, when there was only one well in existence, Colonel
Drake's Pioneer at Titusville, the price was $\$ 24$ a barrel. Besides the 5,000 miles of pipe line in use in the oil regious, there are in operation 1,200 miles of trunk pipe lines connect ing the region with Cleveland, Pittsburg, Buffalo, and New York, and lines building to Pbiladelphia and Baltimore. In the line between Olean and New York 16,000 barrels of oil are transported daily. These lines are all the property of the Standard Oil Company, except one between Bradford and Williamsport, Pa . The Standard employs 100,000 men. The product of its refineries requires the making of 25,000 oak barrels of 40 gallons each, and 100,000 tin cans holding 5 gallons each, every day The first American petroleum ever exported was in 1862. Cbarles Lockart, of Pittsburg, sent nearly 600,000 gallons to Europe in that year, and sold it for $\$ 2,000$ less than the cost of transportation. In 1883 nearly $400,000,000$ gallons were exported, for which $\$ 60,000,000$ were returned to this country.

Simple Intensifier for Gelatine Negatives.

The mercury intensifier for gelatine plates, now largely used by photngraphers, has been somewhat improved by Mr. H. J. Newton quite recently.
The advantages claimed for it are its simplicity, speed, and in giving to the negative a good color. The intensifier combining mercury, iodide of potassium, and hyposulphite of sodium, sometimes gives to a negative a yellow color, which makes it a slow printer. The solution will not keep well, but soon precipitates.
Mr. Newton's formula overcomes these objections. He first takes 10 grains of bichloride of mercury, pulverizes it in a mortar, and dissolves in 10 ounces of water. He next dissolves 190 grains of iodide of potassium in 3 ounces of water, and gradually pours the same into the mercury soluion. A red precipitate occurs, but will be redissolved when he whole amount of iodide of potassium has been adad.
The 13 ounces of concentrated solution thus formed is now diluted by the addition of 24 ounces of water. The intensifier will keep clear fora long time, and so retain its trengtb.
To intensify, Mr. Newton pours a sufficient quantity of the intensifier into a tray, and immerses in the same the dry or dried negative. The action of the intensifier takes place in a few seconds, and the intensification is completed in two or three minutes.
The plate is then washed and immersed for a few seconds in a very dilute solution of hyposulphite of sodium, again washed, and dried. Negatives in which there was very little detail in the sbadows have been very easily brought up to good printing density with this intensifier. It is essential that the hyposulphite of soda shall be eliminated from the plate before intensification. To avoid an extended washing or that purpose, Mr. Newton quickly dissolves out the hypo from the film by pouring over the latter, after fixing, a solu sion of 5 to 10 grains of nitrate of lead to the ounce of water.
Its action is easily observed by the formation on the film of a milky precipitate, which may be easily washed off.

Among the recent patents is one for the combination of a holy water font and a poor box.

To Cure a Damp Cellar.

A correspondent inquires of the editor of the American Architect what remedy he would suggest for curing a damp cellar.

The difficulty to be overcome, presents the questioner, in a new house is the wet cellar. Conditions present, concrete not strong enough to resist the hydraulic pressure through a clay soil. No footings under wall (which are of brick). No cement on outside of wall. The water evidently, how ever, forces its way through the concrete bottom.
(a) Will recoucreting (using Portland cement) resist the pressure of water and keep it out?
(b) If not, will a layer of pure bitumen damp-course be ween the old and new concrete do the work?
(c) Will it do any good to carefully cement the walls on the inside with rich Portland cement, say 3 feet high, to ex clude damp caused by capillary attraction through the brick wall?
In reply to the above queries the editor gives the following hints, which are equally applicable to builders of new house as to those occupying old houses with damp cellars:
It is doubtful whether even Portland cement concrete would keep back water under sufficient pressure to force it through concrete made of the ordinary cement. The best material would be rock aspbalt, either Seyssel, Neufchatel, Val de Travers, Vorwohle, or Limmer, any of which, melted, either with or without the addition of gravel, according to the character of the asphalt, and spread hot to a depth of three-quarters of an inch over the floor, will make it perfectly water tight. The asphalt coating should be carried without any break 18 or 20 inches up on the walls and piers, to prevent water from getting over the edge; and if the hydrostatic pressure of the water should be sufficient to force the asphalt up, it must be weighted with a pavement of brick or concrete. This is not likely to be necessary, however, unless the cellar is actually below the line of standing water around it.
This, although an excellent method of curing the trouble, the asphalt cutting off ground air from the house, as well as water, will be expensive, the cost of the asphalt coating being from 20 to 22 cents a square font; and perhaps it may not be necessary to go to so much trouble. It is very un usual to find water making its way through ordinary good concrete, unless high tides or inundations surround the whole cellar with water. If the source of the water seems to be simply the soakage of rain into the loose material filled in about the outside of the new wall, we should advise attacking this point first, and sodding or concreting with coal tar concrete, a space 3 or 4 feet wide around the building. This, if the grade is first made to slope sharply a way from the house, will throw the rain which drips from the eaves, or runs down the walls, out upon the firm ground, and in the course of two or three seasons the filling will generally have compacted itself to a consistency as hard or harder than the surrounding soil, so that the tendency of water to accumulate just outside the walls will disappear; while the concrete as it hardens with age, will present more and more resistance to percolation from below.
For keeping the dampness absorbed by the walls from affecting the air of the house, a Portland cement coating may be perbaps the best means now available. It would have been much better, when the walls were first built, to brush the outside of them with melted coal tar; but that is probably impracticable now. If the earth stands against the walls, however, the cement coating should cover the whole inside of the wall. The situation of the building may perbaps ad mit of draining away the water which accumulates about it by means of stone drains or lines of drain tile, laid up to the cellar walls, at a point below the basement floor, and car ried to a convenient outfall. This would be the most desira ble of all methods for drying the cellar, and should be first tried.

Sulphuric Acid Tests.

As we all know, this acia is one of the most commonly used for technical purposes; it also forms an important part in the manufacture of carbonic acid gas. The large and constantly increasing consumption renders it necessary that it sbould be of a pure nature. Ingredients which happen to be found in sulphuric acid during the process of manufacturing may not be of any consequence for some purposes, but will for others. It should not contain any arsenic, subnitric or sulphurous acid, nor any chlorine; which ingredients act more or less injuriously.
For carbonic acid gas we require, without doubt, a product which should be entirely free from the above ingredi ents; and although manufacturers may wish to deal fairly with the consumer in every way, it may sometimes happen that one or more of the above impurities are found in it. Without special test they cannot be detected. It is, therefore, advisable to always test purchases of sulphuric acid for their purity, and get convinced that it is in such a condition that it will not injure the product to be made. A simple test is for this purpose of great advantage, and the following method will be of some use in places where no chemist is employed:
A small portion of the sulphuric acid is evaporated on a platinum sheet, which is subsequently brought to a red heat. Good sulphuric acid should not leave any residue; if there is any, it is generally sulphate of potash, or soda, or even lead. These are derived from the manufacture, and cannot be classed among adulterations. We may say here that on account of the cheapness of the sulphuric acid it never is
willfully adulterated, but may contain many foreign ingre dients.
A little sulphuric acid is diluted with water, and a few drops of concentrated muriatic acid added; if the solution which was clear before, becomes milky, it indicates the pre sence of lead, which can be more safely identified by letting a curre
liquor.
Another ingredient which is often found in sulphuric acid, particularly such products as are made from pyrites, is arsenic. For the manufacture of carbonic acid gas, it is especially required that the acid be entirely free from arsenic, and also nitrous acid and subnitric acid. Arsenic is detected by the so-called Marsh test. If mixed with water and granulated zinc, hydrogen gas is liberated, which should not contain
any trace of arsenic. The hydrogen gas is ignited, and the flame allowed to strike a cool porcelain plate, on which, if rsenic is present, metallic arsenic is deposited.
Subnitric or nitric acid may be detected by throwing a small piece of copperas in the questionable acid; if it shows a brown coloration where it touches the liquid, the presence of the above impurities is indicated.
Chlorine or muriatic acid, also injurious for many purposes, is detected by adding a few drops of nitrate of silver
into the diluted sulphuric acid; a precipitate or a milky appearance of the mixture shows the presence of chlorine or muriatic acid.
Subnitric acid, derived from the manufacture, is shown by adding iodide of potash and starch mixture to the sulphuric acid; a blue coloration shows subnitric acid.-Nat. Press and B. A.

An Optical Test for Iron and Steel.

The question of distinguishing between iron ana steel still engages considerable attention on the Continent, wheie Committee of Arts and Manufactures, specially appointed caused much astonislment and dissatisfaction, by maintaining the faculty of tempering as the sole distinctive characteristic of steel. The committee are believed to be reconsidering this judgment; and, meanwhile, the Revue Industrielle observes that researches are being prosecuted with a view to discover some simple method of examination which will serve for the recognition of cast metal. The importance of this question, both from the trading and technical standpoints, is universally recognized wherever people who pay for steel wish to see that they get it; but it is peculiarly pressing in all protectionist countries, where differential duties are imposed on various brauds of iron and its varieties.
M. Alfred Evrard, Director of the Firminy Steel Works, has carefully studied the matter, and has presented the results of his observations to the French Society of Mineral Industry. The French Ironmasters' Association admit that "the word 'steel' ' is to be attributed not only to products, not cast, which take a temper, but also to all cast malleable products, whether they are susceptible of tempering or not." According to this definition, there is no such thing as cast
malleable iron. The question resolves itself, therefore, into one of detecting, by some reliable process, the traces of welding in welded products. A series of striking experiments was conducted with this object at Firminy. A number of lengths of iron and steel wire of different qualities were cut into pieces, reunited, heated together in a forge to a yellow oxidizing temperature, and tempered in cold water. After this operation the wire was heated again to a cherry red, then well hammered, and finally beaten into a flat band of from 0.4 to 0.8 millimeter thick. If during its handling the wire cooled, it was rebeated. The drawing out accomplished, the portion drawn was again returned to the fire, heated to an oxidizing yellow, at which temperature it was kept for a minute, and then very slowly cooled in the fire. When it became reduced to dark red, the metal was plunged into cold water. The sheets were afterward polished on both sides, a bright finish not being desired, but only so much of the metal removed to obliterate all trace of the xidation produced by the intense heat. This operation ples; but it is insufficient to absolutely distinguish the metal, if produced from blooms.
After being polished, the sheets were dipped in nitric acid, in order to show the grain of the metal under this energetic attack. The result showed that steel has a uniform surface, and preserves a gray appearance; the attack of the acid bit into the metal equally all over the surface. Iron, on the contrary, showed a rough surface, the attack of the acid being very irregular. The metal showed brilliant characteristic grains ranged in longitudinal lines beside other portions showing a gray surface like steel. The " bloomed" iron also showed black bands, due to contained impurities. The welds of mixed irons appeared very prominent. The distinctive character which permits of the recognition of a welded from a cast product is the appearance of brilliant, shining spiculæ. In the bloomed metal these are very numerous, and form broken longitudinal lines. In fagoted bars these bands follow the welds all along their length. Another experiment conclusively showed that the presence of bright spiculæ is due to welds. A number of bars of extra soft cast steel were welded like iron, and afterward drawn outinto a sheet, as already described, when not a
trace of welding appeared until the acid test was applied, which immediately distinguished them by lines of brilliant spiculx perfectly separable in appearance from the gray metal in which they appeared. Thus the presence of lines
of bright grains in metal is due to welding; they enable us to distinguish clearly between a product welded and a product of casting-that is to say, to distinguish between iron and steel.
Any user of metal can employ the proceeding already de-scribed-to roughly polish the sur face of a suspected metal (a sample flattened under the hammer, if possible), and test it with acid for bright lines. M. Evrard, however, adds a few remarks on the rationale of the process, as carried out at Firminy. The first operation-the tempering of the iron at an oxidizing yellow heat-was to open the welds of the metal. The wires of hard steel broke under this treatment. The second operation-the forging of the wires-like the preceding, opened the metal, which, spread into thin sheets, offered a large surface for examination. The third opera-tion-reheating and tempering of the sheets-by keeping the metal at a yellow heat for a certain time, the texture taken by it under the hammer was destroyed, and it was caused to crystallize in large grains. The tempering at dark red rendered the welds visible. For the fourth opera-tion-the acid test-it is necessary that the samples should be polished on the surface, in order that the test should be equal at all points. The test should also be a severe one; and, in order to secure this, the following arrangement might be made: The samples should be placed in a glass jar, partly filled with nitric acid of from 10° to 15° Baume. The attack by the acid is at first very energetic, and after exposure in this way for ten or fifteen minutes, the samples may be withdrawn, washed in water, and immediately wiped dry. The volume of dilute acid should not be too large in comparison with the samples, or it will not rise sufficiently in temperature to act in the strongest possible way upon the metal. These operations require neither laboratory nor skilled operator; they are applicable to all descriptions of iron or steel samples, from the finest wire to pieces cut from structural bars; and they furnish certain and indisputable results.
In order to display in the most striking manner the indications thus obtained, M. Evrard makes use of two Molteni lenses, for projecting an image of the tested surfaces upon a screen, whereby the bright spiculæ and lines of welding are rendered very conspicuous. The practical value of the tests, however, to users of iron and steel does not depend upon refinements of this order.

While the city authorities are debating how to provide a sufficient supply of water for the millions that are and are yet to be inbabitants of New York, private individuals are solving the problem for themselves in a very practical way. Almost all the brewers of the city bave artesian wells or are sinking them. Several dry goods and other business firms are also adding to their liquid stores in the same direction. Tracy \& Russell are boring on the sidewalk of their big building on Greenwich Avenue, and have gone as deep as 815 feet to find a flow of brackish water averaging about eight gallons a minute. They have been at it about six weeks. They expect to sink a couple of hundred or more feet before they come to a good supply of clear, sweet water. George Ebret, on East Ninety-second Street, is also sinking a well on his premises, and at a depth of 575 feet finds a flow of about 1,000 gallons an hour of brackish water. At a depth of 430 feet Mr. Button, the driller, struck a stream of living water from the East River, the trend of which was from northeast to southwest. He thought it flowed from the vicinity of One Hundred and Sixth Street toward the rocky ridge of Fourth Avenue, and then took a turn, and a few blocks south of Ninety-second Street flowed back to its source. . In the well that is being sunk for Mr. Ebret it is found that the rise and fall of the water correspond with the ebb and flow of the tides in the river. That there is an open channel between the well and the river was also proved by the bringing up in pieces of a tish about ten inches long which bad been cut by the drill.
Λt the depth of about 520 feet another stream was struck. The water is brackish, and is evidently from the river. At the depth of 575 feet it was of the same character, but with an increased mixture of sweet water. At the depth of 800 feet Mr. Button expects to strike below the limestone bed of Ward's Island, and to obtain a abundant supply of good drinking water. This will be tapped at its own level for brewing purposes, while the brackish water will be tapped at the higher level for lavatory and other uses.-The Iron Age.

Liquid Carbonic Acid.

It appears, as a result of the labors of Dr. Raydt, of Hanover, that liquid carbonic acid is speedily destined to take its place as an article of commerce, susceptible of important chemical and mechanical applications. The liquid is con tained in wrought iron or steel cylinders, holding 10 liters, in which this quantity of liquid, under a pressure of 36 atmospheres represents 450 times its bulk of gas. Dr. Raydt's im provements comprise not merely the commercial production of liquid carbonic acid, but also relate to the arrangements for disengaging it at a regulated pressure. When the price of this liquid is sufficiently low, it will find many uses wherein great pressure is required to be applied within a small or confined space. At Krupp's Steel Works 'liquid carbonic acid is used to compress cast steel while cooling in moulds. For this purpose, by heating the reservoir of liquid to 200° C., a pressure of 1,200 atmospheres has been obtained. In this form also pure carbonic acid in considerable quantity for chemical purposes, may be easily stored and transported.

Alcohol in Glutinous Liquids.

The author puts 100 to 200 grammes of the substance into a roomy flask, filted with a cork having two perforations. In the one is a bent tube which merely passes through the cork and is connected at the other end with a condenser and a receiver. Through the other passes a tube bent at right angles, its longer end passing down nearly to the bottom of the flask, while the other is connected with any convenient steam generator. The flask is fixed in a water bath, and by means of the current of steam all the alcohol is quickly driven out of the glutinous mass and into the receiver. $-E$. Borgmann.

OLDING EGG CASE.

The egg case herewith illustrated is the invention of Mr . W. G. Ruge, of Washington, Mo., and can be folded very compactly so as to occupy little space while being returned to the shipper. Two side boards and two end boards are fastened to the bottom, the side boards being a little higher than the others. Ends are hinged to the bottom in such a manner that they can be folded down, and when raised their outer surfaces will rest against the inner surfaces of the end boards. Upon the upper edges of the side boards are placed sides of such a height that their upper edges will be flush with the edges of the ends. The sides are held in place by bars having hooks on their lower ends to catch on studs on the side boards. At each end of the cover is an under cleat so arranged as to project beyond the ends when the latter are raised. Secured to the ends are screw pins, which pass through the cover and receive winged nuts. Lateral displacement of the box is prevented by braces secured to the side edges of the cover, as shown in Fig. 1, which is a perspective view of the case. Fig. 3 is a longitudinal sectional elevation through the same.
When the box is to be filled the ends are swung up, the sides are beld on the side boards by the bars, the cover is

placed on, and the uuts screwed down. When the box is to be folded, the cover is removed, the ends are swung down, the sides are removed and placed on the folded ends, the cover is placed on the side and end boards, and the nuts turned on the screw pins projecting from the end boards. The side boards are made higher than the end boards on account of the cleats projecting below the surface of the cover. Fig. 2 shows the case folded.

Remarkable Surgery.

A remarkable case of recovery from what was thought to be a fatal gun shot wound brought many eminent piysicians to Bellevue Hospital, this city, last week. A young German who shot himself in the head some months ago had been the subject of a number of remarka ble surical oremarka ble surgical operations. The bullet en tered the brain immediately above the
nose and passed through the bead, lodging in the base of the hrain, from which it was removed by boring a hole in the skull. A drainage tube was inserted as a drain for the blood and matter from the wound. Subsequently the tube was withdrawn, the wound healed, and insanity did not result.

The operation for a new nose in plastic surgery was not long since performed in Bellevue Hospital, with more than ordi nary success. The French and Italian method of building up a nose from the cheeks or the arm has little to recommend it, because, there being neither bone nor cartilage, the flesh sinks into the face, a shapeless mass. In the Bellevue Hospital case, Dr. Sabine used the middle finger of the left haud as bridge and septum, taking off three phalanges. This he cov ered with pieces of flesh from the cheeks. The patient, a messenger in the hospital known as "Tommy," was suffering from the terrible malady called " lupus.' He is now much improved in appearance, and a living example that the bridge of the nose as well as the nostrils can be replaced by a skillful hand.

WOEHRLE'S ELECTRIC DOOR KEEPER.

and 3 , with the beveled ends protruding from the slots in the shell; but when the door is closed the bolts will be Fig. 2, and distending those in Fig. 1, and the latter, when the lower pawl is drawn down by the magnets to free the
cog wheel, serve to draw the keeper within the shell and away from the front of the bolt, thus liberating the door so that it may be forced open by the action of the spring attached to it in the ordinary way. The parts then assume their original position. When closed, the door cannot be opened except by operating the bolt directly, by door knob or key, or by passing a current of electricity to the magnets. Circuit wires connect the magnets with the poles of a bat tery and with buttons situated in the different stories of the building.

CANAL BOAT.

A tunnel is formed in the bottom of the boat from fron' to rear, the ends being open. At the bow of the boat the tunnel terminates in a lateral enlargement, and a gratingor screen is formed to prevent floating objects from entering. Near the front end the tunnel has two curved branchesone on each side-between which a compartment is formed as shown in the plan view, Fig. 2. A shaft is journaled in a standard in the compartment, and a standard in the enlargement. On the front end of the shaft is mounted a propeller wheel, and on the inner end is a crank on which are coupled means for revolving the shaft.
Water, drawn in at the bow by the screw, passes through the tunnel, and being discharged at the stern, assists in propelling the boat. It is claimed that as the water is drawn in at the front of the boat, the bow need not force the water to one side, and thus no billows are formed to wash out the banks of the canal. As the boat advances, the discharged water fills the space just vacated by the boat.

McDONALD'S CANAL BOAT.
This invention has been patented by Mr. Angus McDonald, P. O. Box 17, Au Sable, Mich.

Krakatoa.

The size of Krakatoa was formerly $331 / 2$ square kilometers; of that 23 square kilometers have subsided, and $101 / 2$ square kilometers remain extant. But on the south and southwest side the island has been increased by a large ring of volcanic products, so that the size of New Krakatoa is now, accord-
 Verlaten Island has become much larger it was formerly $3 \cdot 7$ and is now 11.8 square kilometers in size. Of the Poolsche Hoedje nothing remains.
In the place where the fallen part of Krakatoa once stood there is now every where deep sea, generally 200 , in some places even more than 300 meters deep. It is remarkable that in the midst of this deep sea a rock has remained which rises about 5 meters above its surface. Close to this rock, which is certainly not larger than 10 meters square, the sea is more than 200 meters deep. It is like a gigantic club, which Krakatoa lifts defiantly out of the sea.

Housekeepers are frequently annoyed by oil marks on papered walls against which thoughtless persons have laid their heads. These unsightly spots may be removed by making a paste of cold water and pipe clay or fuller's earth, and laying it on the surface without rubbing it on, else the pattern of the paper will then likely be injured. Leave the paste on all night. In the morning it can be brushed off and the spot will have disappeared, but a renewal of the operation may be necessary if the oil mark is old. The experiment will be likely to result most satisfactorily on plain papers, or that with the least number of colored tigures.

DEVICE FOR HOLDING AND GUIDING THE FINGERS IN WRITING.
A metallic rod, A, made about two inches longer than the width of the band,?and having each end rounded, is passed under the hand as shown in Fig. 1. To the lower portion of the rod is attached a ring, B, encircling the fourth finger The ring, C, upon the first finger, is provided with a loop through which the rod is passed; this allows the device to be adjusted to hands of different sizes.
The use of this device does away with the habit of doub-

Fig: 2.
DEVICE FOR HOLDING AND GUIDING THE FINGERS IN writing.
ling under the third and fourth fingers and of allowing the hand to rest on its right side upon the desk; the penholder cannot fall below the knuckle joint. The thumb, fore and second fingers are free for any movement, and as the writer has complete command of his fingers he is not inclined to hold them too straight or the penholder too tightly. While a correct position is at once assumed, the writer is bound to keep his wrist off the desk.
This invention has been patented by Ignaz Bergman, of Fort Madison, Iowa.

n Antidote for Hydrophobia.

The celebrated French chemist, M. Louis Pasteur, claims to have discovered a complete antidote for hydrophobia. In an interview with a Paris Figaro correspondent he is reported as saying:
"Cauterization of the wound immediately after the bite, as is well known, has been more or less effective, but from to-day anybody bitten by a mad dog has only to present himself at the laboratory of the Ecole Normale, and by inoculation I will make him completely insusceptible to the effects of hydrophobia, even if bitten subsequently by any number of mad dogs.
' I have been devoting the last four years to this subject. I found out, in the first place, that the virus rabique loses its intensity by transmission to certain animals, and increases its intensity by transmission to other animals. With the rabbit, for instance, the virus rabique increases; with the monkey it decreases. My method was as follows: I took the virus direct from the brain of a dog that had died from acute hydrophobia. With this virus I inoculated a monkey. The monkey died.
"Then with the virus-already weakened in intensitytaken from this monkey I inoculated a second monkey. Then with the virus taken from the second monkey I inoculated a third monkey, and so on until I obtained a virus so weak as to be almost harmless. Then with this almost harmless virus I inoculated a rabbit, the virus being at once increased in intensity.
"Then with the virus from the first rabbit I inoculated a second rabbit, and there was another increase in the intensity of the virus. Then with the virus of the second rabbit I inoculated a third rabbit, then a fourth, until the virus had regained its maximum intensity. Thus I obtained virus of different degrees of power. I then took a dog and inoculated him, first with the weakest virus from the rabbit, then with the virus from the second rabbit, and finally with the rabbit virus of maximum intensity. After a few days more I inoculated the dog with virus taken directly from the brain of a dog that bad just died of acute madness. The dog upon which I had experimented proved completely insusceptible to hydrophobia. The experiment was frequently repeated, always with the same successful result.
"But my discovery does not end here. I took two dogs,
and inoculated them both with virus taken directly from a dog that had just died of acute bydrophobia. I let one of my two dogs thus inoculated alone, and he went mad and died of acute hydrophobia. I subjected the second dog to my treatment, giving him the three rabbit inoculations, beginning with the weakest and ending with the strongest. The second dog was completely cured, or rather became completely insusceptible to hydrophobia."
M. Pasteur then went to a kennel and caressed a dog that had undergone this latter operation. "Voyez!'s said Mr. Pasteur, "comme ilestbien gentil. Whoever gets bitten by a mad dog bas only to submit to my three little inoculations, and he need not have the slightest fear of hydrophobia."

Manufacture of Pearl Buttons.

At Springfield, Mass., there is a manufactory of pearl buttons, and a reporter of the Republican stepped into the factory the other day, and he tells briefly what he saw:
The Springfield Pearl Button Company has now had a year's life, and if increase of working force is any criterion, it is a vigorous infant. It is unique among New England button making industries in that it uses only simple machinery, depending mainly on the trained hands and eyes of its twenty-five or thirty workmen for the perfection of its products. The marine shells from which the mother of pearl is obtained-shells of the pintadina variety, coming from the East and West Indies, California, and, in fact, all quarters of the world-are taken as they come packed, are rinsed in water, and are then ready for turning. The shell is made up of the mother of pearl inside, this being of a creamy or up of the mother of pearl inside, this being of a creamy or
varied coloring, and a thinner outer layer of a bony texture. The shell is pierced through a number of times by a hollow boring tool, fitted to a common lathe, some dozens of small disks being the result. Each disk then goes through three or four or sometimes a half dozen more operations at the hands of the men standing in a line at one work bench, each having a lathe and a three-cornered file, sharpened to suit his work. The hony part is cut from the disk and the button shape given it while revolved by the lathe against the sharp steel held in the workman's hand, no gauge being used. Some of the buttons are grooved with a few lines on the face, and a few holes are punched in each. Part of the buttons are subjected to a mysterious coloring operation in a revolving box, but the best grades are finished in the natural colors. The polishing is mainly done by hand.
The whole process is very quick, and the method has the great advantage of being immediately adapted to any style of button desired, no change in machinery being required, but merely a fresh adjustment of flesh and blood. All sizes of ordinary buttons are turned out, as well as some "collar buttons," though no fancy articles are made. The lightcolored material is the most valuable. Fifty cents a pound is paid for the rough shells, but the buttons are worth from one to seven or eight cents each.

PHOTOGRAPHING A FLASH OF LIGHTNING.

The accompanying engraving was made directly from a photograph sent to us by Mr. W. C. Gurley, of Marietta Observatory, who writes as follows:
" C The reproduction of a flash of lightning by photography would, a few years since, have been deemed quite an impossibility, but the introduction of the rapid bromo-gela-

tine process has rendered it not only possible but compara tively easy of accomplishment.
The accompanying photograph is from a negative taken by myself during a thunder storm which passed several miles south of the observatory on the evening of May 4.
Wheatstone has demonstrated by direct experiment that the duration of a single flash of lightning cannot possibly exceed a millionth of a second. That a photograph showing the detail of the one mentioned could be taken in this inappreciably short time seems quite wonderful, not to say in-
credible. The plate employed was one of Cramer's extra rapid, and developed with strong py rogallic developer.
It will be observed that the flash is not of the usually depicted zigzag form, and that it seems to be alternately contracted and expanded in its passage through the atmosphere.
Taking the interval between the flash and the report, I estimated its distance from the camera to have been about five miles."

CUT-OFF VALVE GEAR.

The valve is operated by a rod connected with a rocking lever provided with a pin which enters an irregular or eccentric adjustable groove in a disk mounted on the crank shaft. The disk is flanged and is provided with an eccentric track, half of which is formed by the inner surface of the flange, and the other half by a cam ring (shown in the lower part of Fig. 2) held to slide between the remaining half of the flange, and a ridge projecting from the surface of the disk, parallel with and close to the flange. One end of the ridge is united to the flange, but the other end is open to permit the cam ring to pass in and out. A segmental ridge of varying

mocarter's cut-off valve gear.
thickness projects from the inner surface of the disk, and also forms an eccentric track.
A neck projects from the disk around the central aperture, and between this neck and the first ridge is formed a segmental slot. Upon the outer side of the disk is a collar, around which fits an eccentric ring (shown in the upper part of Fig. 2) provided with a cam projection, diametrically opposite which is a hole for a screw. This ring is held in the space between the collar and the segmental ridge. Fitting loosely in the outer collar is a ring secured to a plate which extends to the periphery of the disk. A screw passes through a hole in the plate, through the slot in the disk, and into the eccentric ring. A roller, mounted on a pin in the rocking lever, passes into the irregular groove formed by hese parts. The cam ring, the eccentric ring, and the plate projecting from the ring encircling the collar move together. Fig. 1 is a face view of the disk with the parts in position, the shaded portion showing the path of the roller.
When the piston is at that end of the cylinder farthest from the shaft, steam will be admitted to the rear of the cylinder, and the piston will be moved toward the shaft, the slide valve remaining motionless. The projection, c, then strikes the roller, the lever is shifted, and the steam is cut off. Theslidevalve does not move untilthe stroke has been completed, when the end, a, of the ridge strikes the roller, swings the lever and rod in a direction from the shaft, thereby shifting the valve so as to admit steam into the front end of the cylinder. The valve again remains stationary, until the end, d, of the cam ring strikes the roller, when the steam is cutoff. During the stroke toward the shaft the valve is opened to admit steam by the projection, b. The points, a and b, which govern the admission of steam arefixed, but the points, c and d, which govern the cut-off are movable. The cut-off mechanism can be so adjusted that steam will be cut off at any desired part of the stroke. As will be readily seen, the device can be applied to stationary or marine engines or locomotives, and will work equally well with either a slide or other form of valve.
This invention has been patented by Mr. M. J. McCarter, of Norristown, Pa.

Toronto, Canada, 1834-1884.
Toronto is one of the few citics outside of the United States on our northern border which seem enough like our selves in the go-aheadativeness, intelligence, and thrift of its inhabitants to really form an integral part of the Great Republic, instead of forming, as it does, a pleasant neigh bor under a " foreign" flag. The city celebrates its semicentennial from the 30 th of June to the 5th of July next, and on one side of the card containing the elaborate programme are views of the " then" and "now"-one being a pleasantly located bamlet, with windmill and Indian canoe in the foreground, and the other a great and handsomely laid out city, with the evidences of a large lake commerce and prosperous industries. The jollification should be a hearty one.

The manner Jerseys the Favorite. The manner in which the Jerseys have been bred of late vears serves as a lesson to breeders of all classes of stock. It is well known that the most experienced breeders flattered
themselves that their knowledge of the points required in regard to form, texture of hair, color, escutcheon, and general appearance would enable them to annually improve the herds and increase their powers of production. But, despite all the care exercised in breeding for external marks, the quulities of the animals did not follow the arbitrary rules and regulations laid down for the breeders as a system to be pursued, and it became evident that the influences governing the adaptability of the animals to practical purposes surrounded certain families without regard to the desires of the breeders in other respects. There is nothing remarkable in some of the best cows, so far as outward appearances are concerned, but there is an inherent quality transmitted to succeeding generations that does not diminish by being passed from one to the other.
While the cows of admired form were receiving the highest consideration at the parish shows, they were beaten at the pail by some that could not compete with them except in production, and the attention of breeders was directed to the fact that actual improvement depended more upon the ability of the cow to produce largely than upon exterior indications, and after following the lines to which such pedigrees traced, the system of breeding was changed to that which was sure to increase production and mako the descendants more valuable.
We find that the greatest value is now placed on cows possessing the blood of ancestors that were remarkable for production only, and even the bulls are discarded unless their pedigrees are royal and trace back to the fountain head graced by some favorite valuable cow. Coomassie is handed down through her sons, and her grandsons bring fabulous prices in all quarters. Eurotas, valuable and noted as she was, is still more highly prized through her sons, Duke of Darlington and Pedro. We find close inbreeding strictly adhered to as long as the blood of Rioter, Jupiter, and Prize can be secured, and no out-cross is allowed unless it is one that is known to be an improvement.
As we stated before, the lesson is a good one. The same course in breeding Jerseys may be followed with advantage in breeding sheep, swine, and horses. It is careful selection, with the aid of beaten paths to tread, and if persisted in will surely lead to the best results. The only objection is the tendency to breed closely, but so far there apparently seems to be no damage done, yet the rule should not be too imperative. The best cows have always been produced by inbreeding, and such animals are usually capable of transmitting their qualities to their descendants, but care should be exercised in order to avoid loss of vigor and strength. be exercised in order to avoid loss of vigor and strength.
Happily, so far, the Jorseys are as vigorous and productive Happily, so far, the Jorseys are as vigorous and productive
as ever, and the improvement seems to better with each as ever, and the improvement seem
generation.-The Jarm and Fireside.

Protection of Vines from Frost.

Monsieur G. Jouanne, in a recent number of Le Gaz, says it is widely known what losses are occasioned to viniculturists in wine producing territories through the destructive agencies of the early spring frosts, as in the course of a few hours the prospect of a plenteous harvest is blighted. The symptoms of a hoar frost, usually manifesting themselves shortly before suurise, unfortunately can only be discovered or detected by careful, vigilant watching throughout the entire night-even then it is difficult to foresee them, as this sort of supervision cannot be prolonged to any considerable extent without entailing upon the watcher great fatigue and decided personal inconvenience

- The preventive appliances hitherto used must be ready at any and every moment; and among such appliances may be mentioned stationary covers, small planks, straw mats, metal disks, as having been employed for protecting the vines from the killing hoar frost. All of these being in the nature of stationary covers, often possess but little value, as from any sudden change in the course of the wind their utility as a shield is good only in one direction.
The formation of artificial clouds, produced by the burning of tar, is, without doubt, one of the best protectors that cau be used; and as gas engineers are directly interested in advocating and applying this system, we believe it will not be void of interest to them to learn the method adopted successfully in experimenting with tar smoke for the purpose of protecting vines against frost.
A row of flat bottomed, open mouthed porcelain vases, each containing 5 to 6 kilogrammes (12 to 14 pounds) of tar, is placed around the borders of the land to be protected. The vases are usually set from 20 to 25 meters (66 to 81 feet) apart. To facilitate and hasten the lighting a piece of oakum or a bunch of straw saturated with petroleum is stuck in the middle of the filled tar vase; with a similar piece of burning oakum, fastened to the end of an iron rod, the contents of the whole row of vases can soon be ignited. tents of the whole row of vases can soon be ignited.
Almost immediately a thick, heavy smoke arises, continuing to ascend during the progress of combustion; and being blown by the wind, from whichever quarter it comes, soon spreads over the whole field. As it is generally during a
calm that the frosts are most dreaded, the absence of the calm that the frosts are most dreaded, the absence of the issues from the vases and hovers among the vines; it is most efficacious, therefore, at the time it is most needed. The efficacious, therefore, at the time it is most needed. The
vases should be provided with a lid, made of a simple piece of wood, when it is intended to place them in position in ad-
vance of the time of their being needed, in order that their contents may not be exposed for too long a period to the action of the elements. These tar pots, arranged in this manier, and on the side of the field most exposed to the prevailing winds, are ready to be at once put to the use of protecting the vines as soon as the first symptoms of frost are felt.
In order that the vine grower may be notified of the near approach of the frost, the following is suggested. A mercurial thermometer should be armed with a float and an electric contact so arranged that when the column of mercury would fall to a degree corresponding with a temperature approximating near to a hoar frost, the circuit of the pile attached to the thermometer would be closed, and thus put in action an electric alarm clock. This clock could be stationed in the proprietor's sleeping apartment, or in that of his superintendent; the thermometer might be placed in the field, or in any convenient location outside the house, in such a position as to be at once affected by any decided change in temperature. By this means the frost itself would sound the signal of alarm, and all would be in readiness to avert the threatened danger.

The Star of Bethlehem.

The theory concerning the "Star of Bethlehem" is based on a poetical foundation, having little to support it. In the year 1572 Tycho Brahe, a Dutch astronomer, discovered a new star near Caph in the constellation Cassiopea. It increased in brilliancy until it was as bright as Venus, and could easily be seen at noonday. It continued to shine brightly for a month, then gradually grew dim, and in 16 brightly for a month, then gradually grew dim, and in 16
months disappeared from view. It was looked upon as a new creation or a sun on fire, and the general opinion was tiat it would never again shine in the star depths.
Forty years later the telescope was invented. When it was turned to the position in the heavens occupied by the blazing star, a minute star was found near the identical spot. This telescopic star is still there, and is doubtless the same one that blazed forth in 1572. The discovery that it existed led astronomers to search astronomical records, and it was found that similar bright stars had appeared in the same region of the sky in 945 and 1264 . Counting back three periods from 945, we are brought to the near vicinity of the birth of Christ. Observers gifted with poetic fancies have naturally connected the two events, and have inierred that the star in the east, pointing to the place of the Nativity, was a sudden outburst of this wonderful star. For this reason it a sudden outburst of this wonderful star. For thi
has received the name of the Star of Bethlehem.
About 24 of these temporary stars have appeared in the last 2,000 years, subject, like the star in Cassiopea, to sudden outbursts followed by a return to their normal insignificance. They are now classed as variable stars, subject to sudden outbursts due to eruptions of blazing hydrogen, and which are followed by long periods of quiescence. According to this theory, the star of 1572 is a variable star, with a ing to this theory, the star of
period of a few more than 300 years. The last period was 308 years, if the bright star of 1264 was one and the same; we may therefore hope for a repetition of the incomprehensible phenomenon in the immediate future. The star was due in 1880; if it appears at all it will surely blaze forth by 1885. There is a possibility, therefore, that the long-lost Star of Bethlehem, the Pilgrim Star, the star of 1572 , or Tycho Brahe's star-for it is known by all these names-will once more become a shining wonder in the sky. Such a celestial visitor will be warmly welcomed by astronomers, and far more acceptable than a great comet spanning the heavens with its gossamer tail.-Providence Journal.

African Ants.

The bashikonai ants must be a terrible plague. They travel night and day, in armies miles long. The elephant and gorilla fly before them; the black man runs for his life so soon as the ants are seen. It is related by a traveler that as he was going up one of the mouths of the Zambesi, he saw a whole village suddenly deserted by the inhabitants, who fled with all they could carry off, a proceeding which, as there was no foe in sight, rather puzzled him, till he as there was no foe in sight, rather puzzled him, till he
found they were fleeing from the ants. When these ants enter a hut, they clear it of every living thing in a few minutes. Huge corkroaches, almost as large as mice, centipeds, mice, and rats are instantly devoured. A strong rat is killed in less than a minute, and in another minute its bones are picked. A leopard, dog, or deer is soon dispatched and devoured, for they kill by their numbers. They are quite half an inch long, and one variety is so strong that it will bite pieces clean out of the flesh. They possess, however, one meritorious quality-they mortally hate, and, whenever they can, put to death the mischievous white ants
which make such destruction in houses. In addition to which make such destruction in houses. In addition to these and the sand ants, which bite like scorpions, leaving a flies which sting horribly, such as the igogonai-small gnats -whose bites go through the tough hide of the negroes, causing a terrible itch; the ibolai-flies or gnats-which sting as though with a needle, and whistle as they dash at you; the richouma, which fill themselves with your blood before you know they are there, and then leave an itching that lasts for hours, varied at intervals by certain sharp stabs of pain; the sloway, or nest-building flies, not quite so big as a bee, which cling to a man even in the water, and assail the natives with such ferocity that if a canoe, by chance, touch one of their nests, the men instantly dive overboard.

Bad Water, Bad Cloth.

The following facts related by the Deutsche Wollen $G e$ Derbe convey andinstructive lesson. A German mill, almost exclusively engaged in the weaving and dyeing of army cloth, received many complaints of the cloudiness of its scarlet cloths. These cloths are required to be dyed with cochineal, and so simple is the operation that the proprietors of the works were puzzled to know the cause of the defect. Every measure was tried to obtain a clear and uniform shade. From 100 to 150 pieces were dyed at once. The weaving was so reorganized that the dyeing went on coninuously. The cloth was singed and washed in the piece in order to remove every particle of impurity, and then passed through a bath of bran.
Despite all this care the goods came out with as many cloudy spots as ever, and, driven to desperation, the proprietors took steps to have their cloths dyed at a neighboring works. Before sending them the thought suggested itself that perhaps the cause of the damage lay in the wate used for the vats. This was tak en from wells sunk through alluvial deposits into the rock below, and upon analysis it proved to be pure.
Attention was next turned to the steam, and there was found the cause of all the trouble. A portion of it condensed, treated with chloride of tin and gradually raised to 90° Centigrade, formed on its surface a thin layer of grease of a blackish gray color, that could be removed with a glass spatula. A solution of stannate of soda and lime now added to the water revealed the presence of indigo. Pushing the investigations, the cause of its presence was soon found out. Three boilers, connected together, draw their feed water from wells which derived their supply by a ditch leading from a neighboring stream. On the banks of this stream was a wool bleachery, and between it and the dye house a machine shop. Little by little, and seemingly unobserved, a portion of the drainage from the bleachery, in which 10,000 pounds of wool were cleansed, and, for the most part bleached daily, found its way into the ditch which supplied the wells that fed the dye house boilers. As the steam from them heated the contents of the dye vats by being turued directly into them, the dyes became impure and the dyeiug clouded. This indicates how drinking wells may sometimes be contaminated.

Removal of Nitrate of Silver Stains from Marble.
The Liebig statue at Munich, which was set in place less than a year ago, is of marble, and its beautiful color tempted some dirty rascal to try to spoil it. For this purpose a iquid containing in solution permanganate of potash and nitrate of silver, two of the substances which produce the most ineffaceable stains upon cloth, was squirted with a syringe over the statue, covering it with black spots, which penetrated deeply into the soft stone. As soon as the injury was observed, competent chemists were set at work to devise means for repairing it. An analysis of scrapings from the surface of the stained marble showed the presence of silver and manganese, and the form in which they were employed was readily guessed, since the nitrate of one and the sodium salt of the other are the only soluble compounds of them in common use.
The nature of the stains being discovered, it was neces sary to invent a method for converting the substances which constituted them into others which could be removed from the stone, and the experts resolved to attempt their transformation into sulphides, with a view to their subsequent solution and removal by the aid of cyanide of potassium. In order to secure the continuous application of sulphur necessary for the complete conversion of the spots, fire clay saturated with sulphide of ammonium was plastered over hem, and renewed at intervals until the action was com plete. The paste was then removed, and the marble washed with? pure water until all the alkaline sulphides were removed. Another fire clay paste, saturated with solution of cyanide of potassium, was then prepared, and applied to the spots in the same way as the first. The sulphides formed in the marble were dissolved by the new reagent, and the solution absorbed by the clay; and on the final removal of the paste the spots were found to be perfectly removed.

The sixteenth and seventeenth annual report of the Trustees of the Peabody Museum of American Archæology and Ethnology (Vol. III., Nos. 3 and 4) has just been published, and in addition to the list which it contains of valuable additions to the museum at Cambridge, is a series of paper upon the researches carried on under the auspices of the museum in different parts of the country. These papers, many of them, are very in teresting, and call attention to the careful study which is being made of the customs and habits of our Indian tribes. The character of the work that has been carried on is shown forth in the titles of some of the a icles, viz.: On the Social and Political Position of Woman among the Huron-Iroquois Tribes, by Lucien Carr ; Notes upon Human Remains from Caves in Coahuila, Mexico ; White Buffalo Festival of the Uncpapas; Religious Cere mony of the Four Winds; Shadow or Ghost Dance; The Wa-wan or Pipe Dance of the Omahas, etc. The de-
scription of the ceremonies and festivals of these tribes is scription of the ceremonies and festivals of these tribes is a valuable acquisition to what literature we already have upon these different subjects, and the reports upon the discoveries that have been made in the burial mounds of these tribes, and the examinations that have been made upon the human remains found within the mounds, constitute by no means the least valuable feature of the work.

A Lead Boring Insect.

To the Editor of the Scientific American :

Eighteen months ago a tank was lined here with 4-pound sheet lead, and after being in use about six months the owner was troubled by its leaking. On examination two small holes were found, supposed to be made by nails; these were repaired, but after a short time it leaked again, and another hole was found. So I tore off a small piece of the lead, and found that the holes had been eaten through both the wood and lead by a small insect, of which I send you a specimen. As I have had twenty-ive years' experience in plumbing, and never before heard or knew of anything of the kind, I thought it might be interesting and also instructive to your numerous readers if you could give some information on the subject.

Wm. F. Ashenhurst.
Little Falls, N. Y., May 16, 1884.
Ans.-The insect referred to in Mr. Ashenhurst's communication proves to be Phymatodes dimidiatus, Kirby (family Cerambycidæ or longicorn beetles), which in the larva state infests the oak. Several insects of various orders, but more especially coleoptera and their larvæ, are known to bore through lead or other soft metal if forced to do so, but the fact is not of common occurrence. In the case related by Mr. Ashenhurst, the larva of the Phymatodes lived in the wood of the tank before this last was made, and the beetle in order to make its way out had to eat through the lining sheet of lead. The duration of the larval state of many longicorn beetles exceeds two or even more years, and it is, therefore, not astonishing that the beetle issued from the tank after this had been in use for eighteen months.
E. A. Schwarz.

A Big Blast.

The Salt Lake Tribune gives the following account of a tremendous blast recently set off at Salt Lake City, Utah, on the 29th of April: About 100 persons assembled at the limestone quarry, north of Warm Springs, to witness the discharge of a big blast. Stone had been quarried out so as to leave a paling 100 feet wide and over 100 feet high. This face was nearly perpendicular, but had a bench or step extending up from the base forty feet. From this point a tending up from the base was in on the dip of the ledge forty-three feet, and at the lower end a crosscut forty-three feet long was made. At each end of this crosscut a well was sunk nine feet deep, bringing the bottom about on a level with the floor of the quarry. In one of these wells 100 kegs of powder was placed, and in the other 125 kegs. This powder was placed in bulk, and wires so arranged as to enable the two masses to be fired at the same time by electricity. The powder and the wires once in position, the wells were filled up with tamping. The manner in which the tunnel crosscuts and wells were arranged made it easy to contine the exclusive force of the powder so as to be more effective. Wires were stretched up the hill about 700 feet to a safe place, and a portable battery was carried to the spot. The crowd of spectators viewed the quarry and such features as were visible, and then retired to the valley below, 1,000 feet away, where they had a good chance to witness the explosion. Mrs. Frank Pascoe touched off the powder just at 4 o'clock by merely pressing a key of the machine, and at once the whole face of the quarry was raised and fell in an immense mass of broken rock, from the size of an egg up to that
nearly of a house. Mr. Pascoe estimates that the blast brought down and loosened up between 30,000 and 40,000 tons of rock. The report of the explosion was not heavy-in fact, less than is often made by a stick of giantbut the tumbling of the rocks made the earth tremble for quite a distance. The amount of smoke which rose in an immense cloud gave some idea as to the amount of powder used, and for a time obscured the view.

Some Words to Inventors.

It is a saying attributed to the great chemist Liebig that the state of civilization of a country could be measured by the consumption of soap per capita. It would, we think, be a more correct generalization to infer the condition of a nation from the diversity of its industries, in which are included two important elements, namely, the extent to which it has developed its natural resources, and reduced the percentage of waste in its industries. In this last direction a rich field is open to the enterprising inventor, and we know of no more instructive book for the ambitious technologist and man of practice to read than Simmonds' '" Waste Products and Undeveloped Substances," in which he will find a hundred suggestions, with latent possibilities of rich reward to inspire his zeal.
It is unnecessary to refer to books to teach the lesson we wish to convey. There is not a single industry, great or small, that is not susceptible of improvement, either in the cheapening of its processes or in the diminution of its losses by waste, and the opportunities at the disposal of the inventor who is observant enough to notice where improvement is needed, and intelligent and industrious enough to apply his time and energies to supply what is wanted, rarely fail of obtaining his reward.
We hear much about the trials and tribulations of inventors, and the fact is often paraded that not one invention in a dozen repays the cost of taking out a patent. But these things simply prove that there about the same proportion of
pursuits. Select a dozen men baphazard, engaged in as
many different kinds of business, and it is doubtful if more many different kinds of business, and it
than one out of the dozen is successful.
There are many who labor under the impression that luck or accident has much to do with the production of useful inventions. Nothing could be farther from the truth. There is probably no direction in which human activities are engaged where the element of chance plays a more subordinate role, or in which intelligently directed industry is more generally called into play. The history of successful inventors will testify to the fact that they have commenced by bintelligently using their faculties of observation to ascertain in what direction an improvement was demanded; and that having ascertained this, they have gone to work intelligently and industriously to supply what was wanted. The unfortunate inventors are made up largely of the class that lack that most useful of commodities-common sense. They comprise the numerous visionaries who fancy themselves wiser than their fellows, and toil over such impossible problems as prepetual motion; and the more numerous class we devote their energies to the production of inventions that nobody wants. They comprise those whose ideas are disjointed, and who find, after they have wasted time, energy, and money, that some simple but insuperable obstacle interferes with their success, and which intelligent observations beforehand would have revealed. They comprise the self-opinionated persons who, though mere dabblers in mechanics, essay to make mechanical inventions though destitute of chemical or metallurgical knowledge, do not hesitate to attack problems that have vexed the brains o savants. Let no thoughtful, plodding student, no mechanic, master of his art, be deterred from entering the lists because of the failure of such as these, whose destiny it would ap pear to be to fail at everything they undertake, but rather let him profit by the lesson their failure teaches.-Manufacturer and Builder.

The Present Limit of Visibility.

Although there is perhaps much to be desired in the im provement of microscopic objectives, we may still conside our present state quite an advanced one. Although the present theoretical limit of visibility is fixed at 146,528 lines to the inch, we need not be deterred from attempting to pass this point. The limit which was accepted some years ago as the true one, although considerably lower, was quietly ig-
nored as the angular aperture in objectives increased. It is only a few years ago that the majority of microscopists refused to believe that A. pellucida, which has about 100,000 lines to the inch, could be resolved, and now it is the work of beginners to do so.
But supposing 146,528 lines to be the limit, it is evident that a one-eighth or one-tenth objective with a one-half inch eyepiece is of amply sufficient magnifying power to make the lines visible to the eye, and there is therefore no need of using more. It is a good rule to follow, under all circumstances, not to use a greater power than is necessary to com fortably do the required work. - E. Bausch.

Corrosion of Cast Iron Pipes.

In the course of a paper read by Mr. McElroy before the Western Society of Engineers, on the causes of corrosion of cast iron pipes, the author observed that a prominent cause of corrosion is the class of materials used, and also the method of manufacture of pipes in ordinar y foundries. In the first place, a cheap and easily melted pig is selected-specifications and the inspection of quality and mixture not being strict-and the castings (for convenience of handling) are generally made in greensand moulds laid at a slope of about 10 degrees from the horizontal. Impure metal is
therefore run in a way that aggravates its defects. The core bars are coated with straw ropes, which may be more or less soft and loose, coated with loam more or less soft and wet, and sprinkled with sand.
If not very carefully wedged, these bars will rise; and they are seldom stiff enough to resist the upward pressure of the molten metal. The usual spring at the center for the core of an 8 inch pipe is $\frac{1}{16}$ or $1 / 8$ inch; or as much as $\frac{3}{16}$ inch with a 6 inch pipe. The metal, poured in from the upper end, first fills the lower section of the mould; and as it rises round the core to fill the upper section, its weight springs thicker at the lower, and thinner at the upper side. 'The deuser, hotter, and purer metal fills the lower portion; the impurities naturally floating upward to settle in the thinner metal as it cools. Here gather portions of the sand coating of the mould; while the bubbles of the metal, caused by the development of gas from the vegetable matter of the loam,
and from its dampness, tend to perpetuate themselves in blisters and air cells.
The usual defects in these cheap castings are, therefore, nequality in thickness, air cells and blisters, sand holes, cold chutes from chilled metal, and mixtures of sand and iron. Such pipes are also frequently out of line, from the effect of unequal contraction. Pipes of this description are peculiarly liable to corrosion; containing as) they do mixtures of metal of different densities, together with much graphite. The duration of such pipes in the ground is largely affected by the amount of disturbance they receive. If well inue a good depth, and thoroughly backed, they may con to become suddenly prominent upon comparatively slight to become suddenly prominent upon comparatively slight
external interference. In favorable circumstances they may
last more than 30 years; but the majority if tested after less use will show flaws that would have insured their rejection f detected when new.

Poisonous Plants and Some of their Antidotes.
It is important that all who ramble in the woods should be able to identify the poisonous plants, not only that they may avoid them, but that they may feel secure when such plants are near them. Some of the most dangerous plants which are used for medicinal purposes may be handled with perfect safety. I am not aware, on the other band, says Wilson Flagg in the Boston Iranscript, that any bad effects come from the internal use, of the juices of either of the two poison sumacs, which cause a violent inflammation wheu handled by certain people. If I remember correctly, Kalm, the Swedish botanist, tried a variety of experiments with the puison dogwood. He rubbed its leaves on his face and hands, and drank a decoction of its leaves. All this was done with impunity. If I am incorrect in this statement, I would thank any reader who has a correct knowledge of the facts to set me right. I have no means, adds Mr. Flagg, of examining the source of my information. The inflammation caused by the poison ivy and the poison dogwood resembles erysipelas; but it is not dangerous. It yields gradually to a wash of a weak solution of sugar of lead. There is a popu lar belief that if one has suffered an attack from it he is rendered more liable to be affected by any future exposure to the baneful influence of the plant. I have reason to believe this to be an error.
Some persons are very susceptible to the poison, while others are not affected by it at all. But I have known per sons who were badly poisoned in their early days who could, after becoming adults, handle the plant with impunity. An intelligent farmer, who had such experience in his own case, believed that any one who is subject to ivy or dogwood poison might counteract his susceptibility by frequently handling it. He cited his own experience as proof of his theory. Another theory is that the woods are full of antidotes to the effects of ivy and dogwood, and that the habit of many persons of occasionally chewing the ends of a pine twig is a preventive. The chewing of the tender sprouts of the common pear tree is also considered a safeguard. I mention these notions without professing any belief in them, but they may be correct. If they seem insignificant remedies, because these plants have no powerful medicinal qualiies, we must consider that the two noxious sumacs do not manifest any properties of taste or smell that would lead us to suspect their poisonous nature. Dr. Rush remarks, in one of his medical essays, that it is not safe to declare that any plant is wanting in medicinal virtue on account of its deficiency in taste or smell, though he admits that the poisonous vegetables for the most part have a decidedly nauseous and disagreeable flavor. Opium is bitter, and tobacco is pungent and nauseous.
But as these properties of poisonous plants do not exist in all species which are poisonous, it is prudent for all persons who frequent the woods, either for labor or recreation, to learn how to determine upon their own safety. Now, with regard to the poison dogwood, I may say that it is not to be found in every wood, though not a rare plant. It is an elegant shrub, seldom a tree, but appearing in clumps like the common alder. The leaf is pinnate, resembling that of the American ash, but larger, and having a greater number of broad, ovate leaflets. As I have said in another essay, this tree is equaled by no other species in our woods for the splendor and variety of its autumn tints. There is more exposure to the poison ivy because it grows everywhere. There is hardly a wood or woody pasture in the lowlands that is not covered with it, and hardly an old stone wall that is not festooned with its elegant foliage. This climber resembles the Virginia creeper in its general aspect and climbing habits, and the two plants may be distinguished by their leaves. The leaf of each plant is compound, but the ivy bears only hree leaflets, while the creeper has five in a whorl; hence, when one is at a loss to determine the identity of the plant, he must count its leaflets. Neither of the two poison sumacs bears a conspicuous flower or fruit. The flowers and fruit are greenish, small, and without any beauty. If one is doubtful, therefore, about the identity of a plant, he may be sure, if it bears a handsome flower or fruit, it is neither the poison ivy nor the dogwood. As there is no other plant in our woods, however poisonous as a drug, that may not be safely handled, the rule given above may insure any one's safety.
In conclusion, I would remark that I cannot regard the poison ivy as a very dangerous plant; if it were more so, we should hear of more frequent instances of its poisonous effects. As it grows almost everywhere, it is hardly possible for parties to spend half a day in the woods without fre quently handling it. Some caution is, nevertheless, advisable. If I had an estate, with trees near my house which were covered with this beautiful climber, I should not remove it. I should consider how extremely small is the liability of any one to be affected by it, and that his exposure would be reater in crossing almost any rude pasture that contained any shrubbery than by visiting my grounds.

Treatment of Earache.

It is said that by the following simple method almost instant elief of earache is afforded: Put five drops of chloroform n a little cotton or wool in the bowl of a clay pipe, then blow the vapor through the stem into the aching ear.-Med. blow the
Record.

IMPROVED STEAM HAMMER

The accompanying engraving illustrates a power hammer constructed by Messrs. Breuer, Schumacher \& Co. As may be seen, the frame consists of two strong uprights, whose well proportioned bases are secured to a very solid bed plate, while their upper extremities are connected by means of the wide base of the steam cylinder, and of bolts that support no stress. To give greater rigidity to the whole a few strong cross braces are placed between the uprights, which latter, like the cylinder, are strengthened by flanges. The anvil stock is completely isolated from the frame of the machine, and is mounted upon a strong piece of wood and secured in position through an aperture in the bed plate. The sides of this stock are placed obliquely with respect to the axis of the machine, the object of this arrangement being to permit the operator to easily dress the piece in one direction and flatten it in the other, without being interfered with by the uprights.
The anvil naturally has a direction corresponding to that of the stock. It is fixed firmly to the latter by dovetails and steel keys, and its faces are constructed of forged steel, The body of a hammer is a piece of forged steel of the first quality, planed, and adjusted between two guides that are ar ranged in such a way as to take up all wear.
One interesting peculiarity of this machine consists in the con struction of the piston and its rod out of a single block of steel The rod runs through a wide stuffing-box lined with bronze rings that can be changed with the utmost facility. The flange bolts run through the shell of the stuffing-box, and their head are set into the base plate of the steam cylinder. These details of construction, like those of the hammer guides, have been studied with care, since upon the carefulness with which they ar carried out the good perform ance of the machine very ofte depends.

It is in the steam distributing mechanism, however, that we find the most interesting im provements. This consists in bronze cylinder in which runs bronze piston which is so ar ranged that it can be balanced Motion is then given the slide valve by means of a bent leve which is placed in contact with a spring. While operating, th hammer communicates motio around a center of oscillation to the lever, and these motions are transmitted to the valve rod The position of the latter's point of attack can be changed; by separating them a variable ex pansion is produced, while by bring them very near one an other the steam is admitted under full head.
It is proper to add that the point of oscillation of the bent lever is arranged eccentrically, and connected with an externa lever that permits of varying the stroke of the piston at will.
Finally, we may state that th admission of steam into the distributing box occurs through a cock whose valve is actuated by a third lever arranged between the uprights of the ma chine.

The use of a variable expan sion in power hammers offer great advantages as regards a saving in steam, and conse quently in fuel. All the opera tions of a forge can thus be performed without any fear of causing the pressure in the boiler to fall, as occurs in workshops where the power of the generator does not correspoud to the work developed by all the machines in operation.

The type of power hammer under consideration has been more particularly devised for machine shops, rail way shops, and ship yards, and for testing steel in steel works.-Revue Industrielle.

Mr Richard A. Proctor holds that if the full power of the arms and legs can be so applied to ingeniously arranged mechanism as to work wings more or less resembling those of a bird, there is little reason of doubting man's power of sustaining himself in the air and even traveling with great rapidity through it. Probably, he adds, it will be much easier for him to sustain himself while traveling, rapidly on ward than while hovering over the same spot.

The annual domestic revolution dear to housekeepers, and known by the name of "spring cleaning," bas this year, owing to the cruel easterly winds, been deferred to an unusually late period. However, during the last few days, to judge from the uproar from carpet beating, etc., arising from every backyard and adjacent mews, the process is now in full swing. We have no wish to decry this periodic purification, but merely to point out rules for its better con duct and efficiency. The usual process in households, which cannot afford to have it carried out by special agency, is first to take up the carpets, and sweep the walls and ceilings, and then to wash the floors. While the latter is drying, work must be found for the idle hands, and they cannot be better employed than in beating the carpets in the courtyard or back garden, a work attended with a horrid din and clouds of dust. It will be unavailing, we know, to complain of the noise-no appeal in this direction will gain a moment's sympathy; but we hope more attention will be paid to the other nuisance. When we reflect on the nature of the dust thus raised, we are surprised that sane persons allow to be thus stirred up under their noses all the nause-

IMPROVED STEAM HAMMER. heit.

Explosion of Brass Pipe.

We had occasion a few days ago to inquire into an accident of a kind new to us, and interesting to architects, plumbers, and others who use brass pipes for any purpose In the present instance a piece of beavy drawn brass tubing bout three-quarters of an inch in diameter, was used to connect a hot water tank in the basement of an office building with a cold water tank on the roof. The height of the pipe was about 93 feet, and the pressure at the bottom therefore about 45 pounds to the square inch, but the meta was nearly an eighth of an ivch thick, and should have been capable of withstanding with perfect safety a strain of two or three hundred pounds. The flow through the pipe was always downward, so that the temperature of the water in it was nearly constant at from fifty to sixty degrees Fahren-

After the pipe had been in use about two years it suddenly gave way, the length of straight pipe tearing in long, ragged seams, in two or three places at once, and letting the wate escape in a flood over the basement. On shutting off the upply it was found that so many lengths of pipe in the stack were affected that it was necessary to replace the whole. This happened in warm weather, so that there could have been no question of the freezing of the water in the pipe, and even if it bad occurred in winte its situation in a building kep warm throughout, and its prox imity in the basement to a steam furnace which was constantly burning, would have excluded the idea of freezing. From the testimony of the engineer of the building, and of a plumber of experience, it would appear that such mishaps are not infrequen with brass pipe, and tbat they are perhaps more common with the heavy than the light tubing
The only explanation which seems likely to be well founded is that the particles of brass, in being forced over the mandrel by the enormous pressure which it is necessary to exert, ar thrown into a state of internal tension, like that which exists in badly proportioned or unskillfully cooled iron castings; and that this internal tension, espe cially if aided by other circum stances, may determine the dis ruption of the pipe at any mo ment. In the present case, the pipe carrying only a steady flow of water, and hammering in the pipes having been carefully guarded against by air cham bers, the molecular disturbance seems to bave been alone re sponsible for the accident. It is said that the manufacturers of the tubing have learned from experience to anneal it before putting it on the market. In that case it would be very desira ble for those who use it to be furnished with some rule for judging whether what they buy has been subjected to the annealing process or not. If any one of our readers can throw more light on the subject, we shall be very glad to hear from him.-Anueri can Architect.

Salt in Western New York.

It is estimated that the salt fields of Western New York will this year produce 900,000 barrels of the best salt manufactured, and that the production will be doubled the follow ing year.
ous accumulations of dining room, bedroom, and stair car pets, to say nothing of door mats, etc., into a fine dust, and which thus dispersed finds its way again into our bouses in a form most readily accessible to our respiratory organs. In deed, it is fortunate if the dust thus roused is only nauseous and not infective, since the desquamated cuticle of scarlet fever, the scabs of small pox, the dried sputa of consump tive or whooping cough patients, living parasites, and hair from mangy cats and dogs may thus invade our rooms.
Carpet beating, we are aware, is forbidden in public thooughfares; but it should, in any form, be prohibited within a reasonable distance of dwelling houses; and for those who cannot afford to pay the small sum required to have their carpets and mats properly cleaned, the authorities should set aside some open space, to which on stated days and at certain hours persons might bring their carpets and have them beaten, without causing annoyance or danger to them selves or neighbors.-Lancet.

A few years since a well was sunk at the little village of Wyoming, on the Rochester and Pittsburg Railroad, forty miles southwest of Rochester. The diggers were looking for petroleum, but found instead a deposit of rock salt. Wells were shortly after put down in various places within a radius of 100 miles, and the results bave been wonderful.
The most prominent place in this territory, perhaps, is Warsaw, Wyoming County, where there are eight wells. Solid salt is found at a distance from the surface of from 1,600 to 1,800 feet. The beds are about 90 feet thick. Dr. Guinlock is manufacturing from one well an average of 300 barrels daily. The Warsaw Salt Company manufacture 500 barrels from four wells, the Crystal Salt Company 600 barrels from two wells, and the Standard Works 100 barrels from one well. Pans are used for evaporating in all the above works except the last named, where steam kettles are employed. The industry has imparted great activity to the village, and many workmen are employed.

the isatis, or arctic fox

Thanks to Mr. Delalande and Lieutenant Veron, the Museum of National History of Paris is now in possession of two representatives of a species of carnivorous animal rarely seen in zoological gardens, but the skin of which is well known to furriers. This species is the isatis, or Arctic or blue fox, known to the Russians as Pessi or Pessez, to the Greenlanders as Terreniak, and to the Samoyeds as Noga.* In zoological catalogues it bears the name of. Vulpes lagopus, the specific name being in allusion to the presence of very thick hairs that form around the animal's feet a sort of furry shoe-an arrangement which is certainly in accordance with the habitat of this species of fox. At the present time, in fact, the isatis is confined to the Arctic regions of the two worlds, and it is only accidentally that it is met with further worlds, and it is only accidentally that it is met with further
south, and, when it is, it must be because it has been transsouth, and, when it is, it must be because i
ported thither by some iceberg, or because an exceptionally severe winter bas en larged the limits of its hunting grounds. Being destined to live in a severe climate, the blue fox had need of soft fur, a gift which nature did not refuse. The body of the isatis, indeed, is so abundantly pro vided with hair that the animal appears to be larger than it really is. Yet its size is notably smaller than that of our own fox, with which, how ever, it could not be confounded, since its paws are flatter, its body istmore elongated, its head is shorter, its ears are rounder, its snout is less pointed, its tail is more tufted, and its coloring is entirely different.
In its own country the isatis is, during summer, of a brownish, smoky, or leaden gray, or brown glossed with blue, but, in winter, of a whiteness as immaculate as that of the fields of show amid which it seeks its food. But between these two so diverse coats-the one light and the other dark-the transition does not occur abruptly, but takes place, on the contrary, by gradations, so that at the change of of seasons the animal exhibits a spotted aspect. So it is not astonishing that, on various occasions, travelers and uaturalists have seen the isatis in these different costumes, and have described as different species individuals that were either in their winter or summer coat, or in a state of transition. But we now know positively that the names blue fox, white fox, Arctic fox, smoky fox, pied fox, rock fox, etc., are applied in reality to one and the same specific type.
The two specimens that are to be seen at the Jardin des Plantes were captured in Iceland, but the animal is likewise met with, and more commonly still, in Greenland, in Southern Scandinavia, in the portion of Siberia situated beyond 60° of latitude upon the banks of Behring Strait, in the Aleutian Islands, and in the northern part of the American continent, beginning at the 50tb parallel. Everywhere where it is not disturbed it scarcely takes the trouble to excavate or burrow, but is content to take shelter under a rock or bush in order to sleep or watch for its prey. The latter consists principally of small mammals and birds of different kinds, of which it devours both the aduit and young. It is not, however, particular in the selection of its fond, and, for want of living animals, will devour such carcasses as are thrown upon the beach by the waves. Moreover, it enters with astonishing boldness the very center of the encampments of travelers and seizes not only provisions, but also bags, coverings, and woolen and skin clothing. The naturalist Steller and his ralist Steller and his
companions, who were cast by shipwreck upon Behriug's Island, and who had to stay there for ten long months, were obliged to suffer much from the incursions of these carnivoræ. It was in vain that they tried to drive them off by firing at them, setting traps for them, and capturing a few individuals which they afterward exposed to the eyes of their companions, for every night the foxes returned to the charge, disarranged the stones under which provisions were hidden, and gnawed gloves, shoes, hats, and even the reindeer skins which served the shipwrecked party as beds.
The isatis may, then, by good right, be considered as a noxious animal, and the war that is waged against it would be perfectly justified even though its skin had no commercial value. But the skin. is valuable, however, and so the hunting oi the animal has, during the last century, consid-

* The Chippewyans call it $K k a s-b a$, "white beneath," and the hares *The Chippewyans call it $K k a s-b a$, " white beneath,"
Kka-pa, a name having the same meaning.-Translator.

THE ISATIS. OR ARCTIC FOX.

annually reach the markets of Europe to be 90,000 . These skins are of two kinds, pure white ones from Arctic America and bluey-gray ones either from Archangel or Labrador. The former are worth at wholesale 6 to 15 francs each, and the latter bring from 45 to 90 , and are usually cut into strips for trimming ladies' cloaks,'or are more rarely put together in such a way as to form magnificent carpets or rich coverings. But all the skins of this kind do not reach Europe, for there is also a very important trade in them with China, which for the last century has annually imported severa thousands for ornamenting the cloaks and robes of the mandarins. Some of these peltries must likewise be utilized upon the spot, and others are sold in large uumbers to the United States. Finally, it is certain that many animals are massacred without profit to the industry or become a prey to eagles and gyrfalcons; so that we may, without exaggeration, estimate the number of these carnivoræ that annually disap pear as 300,000 . Under these circumstances the species is urely fated to extinction in a very short time, and, if it has not as yet been totally destroyed, the fact is due to its re-

A WHALEBONE ARCH

markable fecundity, every female giving birth each spring to eight or ten young.
Despite its limited intelligence, the Arctic fox, when captured young, is easily tamen, and shows that it is capable of being educated to a certain degree. Whatever may have been said about it, it even appears that two individuals of this species may be confined in the same cage without any trouble, since those at the Jardin des Plantes seem to live in harmony. These animals, during the exceptionally mild winter that we have just passed through, underwent no change in their coloration, but remained of a uniform gray. In Russia, on the contrary, if we are to credit Mr. Brehm, some foxes of this species that were kept in a heated room assumed their white costume at the same epoch and in as complete a manner as the wild animals living around the polar circle. Evidently there are new observations to be another. does not altogether settle the question at issue.

A WHALEBONE ARCH.

 mountainous country many diseases.erably extended. Its capture presents no difficulty, since its
instinct for self-preservation is but feebly developed, and it instinct for self-preservation is but feebly developed, and it
possesses a singular mixture of stupidity and cunning, and cowardice and boldness.
It is asserted that the Ostiaks Samoyeds have no need of traps in order to capture the isatis, but proceed very simply as follows: When the ground is covered with a winding sheet of snow in winter, they start upon a campaign armed with nothing but shovels made of the antlers of the reindeer. As soon as they discover the mouth of a burrow dug through the snow they quickly ascertain its direction, open the gallery with their shovels, seize the semi-torpid animal by the ries this dash its brains out against a rock. In other coun gun.
ade upon this subject, and we trust that the specimens at the museum will live long enough to allow us to ascertain whether trausportation decidedly deprives these carnivoræ of the power of modifying their coloring, according to the season.-La Nature.

The Red Sunsets.

Mons. M. J. Jamin, a member of the Academy of Sciences, communicates to Revue des Deux Mondes an article on the red sunset phenomenon which prevailed in nearly every part of our globe last winter. He believes the volcanic theory, and the conclusion reached by bim is that the eruption of Krakatoa was one of the most important manifestations of volcanic forces the world has known; that the magnitude of the forces then put in motion renders it entirely credible the forces then put in motion renders it entirely credible
that an immense mass of volcanic ashes mixed with watery vapor was propelled from Krakatoa to a height probably almost coextensive with the limits of the earth's atmosphere; that this dense mass of fine and principally microscopic ashes floated above or on the surface of the atmosphere as oil floats on water, and that it was gradually diffused by the air currents until it had become visible over nearly three-fourths of the earth's surface. To the objection of the advocates of the cosmical tireory that some traces of this volcanic dust ought to have been found on the surface of snow somewhere, M. Jamin replies by adducing evidence that it has actually been found, and at points considerably distant. from one

He also produces a strong argument from analogy by citing the case of a similar eruption which occurred on an island in the Mediterranean in 1831. In that case the same peculiar optical phenomena were noted, and for two months red sunsets and sunrises were observed, not only in various parts of Europe, but also on the continent of America. He refers further to the contemporary accounts of that erup-
tion of Vesuvius in A.D. 79 which resulted in the destruc tion of Herculaneum and Pompeii to show that the same aspect of the heavens was then visible, though naturally it was not ascribed to the true cause. The objections against the duration of the phenomena are met with careful reasoning showing the possibility of the persistent flotation of the extremely attenuated matter composing these clouds of mingled ashes and vapor. It may, be said, adds the editor of the New York Tribune, from which we copy, that parts of M. Jamin's argument appear to conflict somewhat with Professor Nordenskjold's theory of cosmical dust, it seeming possible that the Professor's supposed meteoric dust may have been of the same nature as the volcanic ash clouds. The article is extremely interesting, carefully written, and makes a strong showing indeed for the volcanic theory, if it

In former years the city of Hamburg was one of the great whaling ports of Europe; but since 1850 no whaler has sailed from Hamburg, as the business did not pay. Among the many relics of the time that whalers sailed from Hamburg the most noteworthy is the arch formed of two enormous whale jaw bones erected on the site of the former rope yards at St . Pauli. These jaw bones are quite intact, and will probably remain so for many years.
The annexed cut representing this arch is taken from the..Illus trirte Zeitung.

Military Skating.

A corps of skaters is said to be attached to the Norwegian army, the members being men serected for good physique and accurate marksmanship. These skaters can be maneuvered upon ice or over the mountain snowfields with as great rapidity as the bes trained cavalry, and as an instance of their speed one of the corps, it is reported, recently accomplished 120 miles in eighteen and a half hours over a

To prevent haystacks firing, scatter a few handfuls of common salt between each layer. The salt, by absorbing the humidity of the hay, not ouly prevents its fermentation and consequent heating, but it also adds a salty taste to this forage, which all cattle like; besides, it stimulates the appeite and assists their digestion, and so preserves them from

Industry and Veracity

There are some virtues which seem to have a peculiar affinity for one another, each strengthening and developing the other by its own power of growth. Such are industry and veracity. Of course we cannot say that the busiest people are invariably the most truthful, but only that the tendency of industry as such is in that direction. It is true that industrial occupations sometimes offer temptations to untruthfulness, and might thereby seem calculated to retard rather than to stimulate the virtue of veracity. The inducements to prevarication in regard to the quality and quantity of goods and labor, and still more to the suppression of facts which would affect their value, are numerous and strong, and some undoubtedly yield to them.

We have, however, thoroughly learned the lesson that mutual confidence is the cornerstone of all social industries, and that truthfulness in word and deed is the only basis of mutual confidence. Truthfulness, therefore, naturally acquires a much higher rank in the minds of an industrious community than it can in any other. With us, in publicestimation at least, it occupies the post of honor, and though doubtless many people infringe it in secret, none can be found bold enough to defend it. It is held as a test of noble character that a man is candid, sincere, and trustworthy, that his word is reliable and his promises secure. On the other hand, falsehood, evasion, and deceit are esteemed disgraceful, and those who deal in them are chiefly concerned lest they should be found out.

Mr. Lecky, in his History of European Morals, asserts tbat different ages and nations have different rudimentary virtues, or virtues upon which they lay the emphasis. Sometimes it has been loyalty to a leader, sometimes patriotism, sometimes the reverential spirit, sometimes independence, sometimes humility. Whoever in any particular community is decidedly lacking in such a rudimentary virtue is below the average of moral excellence, because he has neglected what is generally esteemed the very first element of righteousness. Our own term "common honesty" implies that this is at least one of our rudimentary virtues, without which no one can hope to rise in the scale of moral progress.
If we compare our state of things in this respect with that which exists among indolent nations of southern climes, or other thriftless communities that love ease better than labor, we shall find a marked difference. Instead of feeling vain in our fancied superiority to such people, perhaps if we compared our practical devotion to what appeals to us as the foundation of all virtue, with their devotion to something else that occupies that place to them, we might feel cause rather for self-abasement. We may rightly feel glad that we have learned the value of veracity, that our industries have proved it to be one of the foundations of all social welfare, of all true business relations, of all progress in morality and civilization. And yet, how far are some from embodying this accepted belief in their daily practice! How many are the evasions, concealments, and iusincerities of which men are guilty, how many silences where truth demands speech, how many promises unredeemed, or kept to the letter, but broken in the spirit! It is for what we admit, for what we believe, for what we know, that we are responsible; and if we hold truthfulness in such high repute that we plume ourselves over others on account of it, then we are doubly blamable if we disown it in the conduct of our daily life. Increasing civilization and increasing knowledge open up to us more and more the nature and respective value of the qualities that constitute true manhood. But that manhood can only be realized by constantly infusing the knowledge we gain into our daily life, by vitalizing it in our hearts and conduct, by following closely the ideal we form, and by giving the whole allegiance of our nature to those principles which we honor in our thoughts and with our lips.-Phila. Ledger.

A French Wheat Cleaner

At the recent Nice Exhibition was a machine shown by M. A. Maurel, of Marseilles. In the upper part of this machine is placed a hopper immediately over a cylindrical and open topped receiver. Horizontal stirrers on a vertical shaft work in this receiver, motion being given by bevel gearing and a pulley driven off the main shaft of the implement. The wheat to be treated is fed into the hopper and falls thence into the cylindrical receiver beneath, where it is subjected to the action of water delivered at a sufficient pressure to keep the sound wheat at the level of a discharge opening in the side of the receiver, the stones and heavy impurities falling to the bottom, and dust, chaff, etc., floating to the top, where they pass off by an overflow. The sound wheat being carried as described through an opening below the water level, is taken with the stream along a slightly inclined trunk rectangular in section, and in the bottom of which is set a series of catch plates to receive and hold any stones that may have been brought over with the wheat. From this trunk the wheat falls into the bottom of a vertical drying cylinder, after having been previously separated from a part of the water by means of a centrifugal fan. The drying columns, of which there are one or more, have perforated sides containing a series of inclined blades mounted on a vertical shaft and driven at a considerable velocity. By this means the weight is raised to the top of the first column, where it passes out by a discharge to the bottom of the second column, and is again raised, by which time the operation of cleaning and drying is supposed to be complete.

CUFF HOLDER

The invention herewith illustrated was recently patented by Mr. H. D. Bishop, of West Hampton, N. Y. Fig. 1 shows the device in place on the sleeve, Fig. 2 is a longitudinal section, and Fig. 3 is a face view. Two thin strips of spring metal are so constructed as to form concave jaws, brought to an edge at their point of contact. The outer strip is of corrugated shape on its face between the jaws, thu forming swells upon opposite sides of the center, where itis united to the center of the other strip, which is provided with side wings that are turned over upon the outer strip. The outer strip is properly tempered so as to retain its bent form, and its spring is strong enough to hold the sleeve and

cuff between the jaws. Pressure upon either of the swells causes the depressed portion beyond the swells to bear ou the under strip, there by opening the adjacent jaws to allow the entrance of the cuff or sleeve.
. The device, while being cheap, simple, efficient, and easy to work, may be manufactured so as to present an ornamen tal appearance.

WATCH MAKER'S HAND VISE AND RING BENDER

The main jaw is formed at one end with a cylindrical head that is so cut away as to form diverging cheeks. The opposite jaw is reduced in size at its upper end to form a nose, which closes in between the cheeks of the first jaw for grasping a wire, ring, or other object. The jaws are pivoted together at their lower ends, and between them is placed a spring by which they are forced apart. Passing through corresponding openings in the jaws is a bolt (Fig. 3), which is locked in the opening at one end and is provided at the other with a thumb nut, by turning which the jaws may be opened or closed.
When the tool is to be used for bending rings, the bolt will be removed; and in order that this may be done without taking off the nut, the head is formed with a small plate which passes through slots in the openings; the bolt is locked in

WATCHMAKER'S HAND VISE AND RING BENDER.
place in the jaws by turning it so that the plate or cross head will be at right angles to the slots when it enters shal low recesses formed at the back of the jaw. When used as a ring bender, the tool will be placed in an ordinary bench vise, and the ring placed between the jaws, which will be forcibly brought together by the vise. Various other uses to which this tool can be put will be readily perceived.
Further particulars may be obtained from the invento Mr. C. B. Rubert, of Owego, N. Y.

How to Determine Expansion.

Mr. C. E. Emery made a very complete series of experiments some yevrs ago upon the engines of the United States revenue cutters Rush, Dexter, Dallas, and Gallatin, from which he deduced the following simple rule (subject to certain limitations) for the best ratio of expansion in steam engines:
Rule—Add 37 to the steam pressure as shown by the gauge divide the sum by 22 ; the quotient will be the proper ratio of expansion.
Example: An engine is running with a pressure of 90 pounds per square inch; what should be the ratio of expan-

Temperature of the Earth at Different Depths.

At a recent meeting in this city of the American Society of Civil Engineers, observations upon the temperatures of the earth as shown by deep mines were presented by Messrs. Hamilton Smith, Jr., and Edward B. Dorsey. Mr. Smith said that the temperatures of the earth vary very greatly at different localities and in different geological formations. There are decided exceptions to the general law that the temperature increased with the deptb. At the New Almaden quicksilver mine at California, at a depth of about 600 feet, the temperature was very high-some 115 degrees; but in the deepest part of the same mine, 1,800 feet below the surface and 500 feet below sea level, the temperature is very pleasant, probably less than 80 degrees.
At the Eureka mines in California, the air 1,200 feet beow the surface appears nearly as cool as 100 feet below the surface. The normal temperature of the earth at a depth of 50 or 60 feet is probably near the mean annual temperature of the air at the particular place. At the Comstock mines some years since the miners could remain but a few mo ments at a time on account of the heat. Some ice water was given them as an experiment; it produced no ill effects, but the men worked to much better advantage, and since that time ice water is furnished in all these mines and drunk with apparently no bad results.
Mr. E. B. Dorsey said that the mines on the Comstock vein, Nevada, were exceptionally hot. At depths of 1,500 to 2,000 feet, the thermometer placed in a fresh drilled hole will show 130 degrees.
Very large bodies of water have run for years at 155 de rees, and smaller bodies at 170 degrees.
The temperature of the air is kept down to 110 degrees by orcing in fresh air cooled over ice.
Captain Wheeler, U. S. Engineers, estimated the heat exracted annually from the Comstock by means of the water pumped out and cold air forced in as equal to that generated by the combustion of 55,560 tons of anthracite coal or 97,700 cords of wood. Observations were then given upon temperature at every 100 feet in the Forman shaft of the Overman mine, running from 53 degrees at a depth of 100 fee to $121 \cdot 2$ degrees at a depth of 2,300 feet. The temperature increased:

$$
\begin{aligned}
& 100 \text { to } 1,800 \text { " "" ". } 10 \text { in } 30.5 \text { " } \\
& 100 \text { to 1,800 } \\
& \begin{array}{l}
1^{\circ} \text { in } 30 \cdot 5 \text { "، } \\
1^{\circ} \text { in } 32.3
\end{array}
\end{aligned}
$$

A table was presented giving the temperatures of a large number of deep mines, tunnels, and artesian wells. The two coolest mines or tunnels are in limestone, namely, Chanar cillo mines and Mt. Cenis tunnel, and the two bottest are in trachyte and the "coal measures," viz ,the Comstock mines in trachyte and the South Balgray in the "coal measures." Mr. Dorsey considered that experience showed that limestone was the coolest formation.
Mr. Theodore Cooper gave a description of a curious slide or slump which recently occurred near Dover, New Hamp shire, a large section of a clay formation having gone bodily into the adjacent river, moving trees with it, but leaving between the river and the cavity a bank of considerable width

Bleaching Sponges.

As is well known, chlorine and its compounds cannot be used for bleaching sponges, as they impart a yellow color to the latter, which in addition become hard and lose their fine texture. The method now generally employed is a water solution of sulphurous acid, and requires from six to eight days, and considerable manipulation. According to the latest researches made in Germany, the bleaching of sponges can be performed more conveniently and expe ditiously by means of bromine dissolved in water. As is well known, one part of bromine requires thirty parts of well known, one part of bromine requires thirty parts of
water to dissolve it, and thus a concentrated solution can easily be obtained by dropping a few drops of the former into a bottle of distilled water and shaking it. The sponges are submerged in this solution, and after the lapse of a few hours their brown color changes to a lighter one, the dark red bromine solution, changing at the same time to light yellow. By treating the sponges to a second immersion of a fresh solution, they acquire the desired light color in a short time. They are improved still more if finally dipped in diute sulphuric acid and washed with cold water. It seems strange that such closely allied bodies as chlorine and bromine should act so differently toward the coloring matter in spanges.

Cooking and Heating with Gas.

Dr. J. B. Rich, of this city (37 West 22d Street), has been conducting for some time past interesting experiments with gas stoves. The Doctor weighs the articles he bakes, boils, roasts, or otherwise cooks, and keeps an exact record of the quantity of gas consumed and the time occupied in cooking each article, or all together. The manner in which the experiments are conducted impart interest in the Doc tor's investigations, and will insure, when completed, a pretty accurate conclusion as to the relative cost of coal and gas for cooking and heating purposes.
The gas stoves used in the experiments are from different manufacturers, and the Doctor has one of his own invention but unlike most sanguine persons he does not think his stove much better than some others. But that there is vast economy in the use of gasfor all kinds of domestic purposes the Doctor has not a doubt, and when through with his experiments the gas companies, gas stove makers, and the public are all to have the benefit of his investigations.

The Colossenm.

This remarkable edifice formed the subject of a lecture lately given at the Royal Institution by Mr. Hodder M. Westropp. The vast size, massive proportions, and repetition of simple features in the Colosseum inspired us, the author remarked, with a sense of grandeur and magnificence which silenced criticism, although, as a matter of fact, there was no single feature free from blame. It was built for the exhibition of gladiatorial shows to amuse the Roman people, and was elliptical in form, consisting of the auditoria of two classic theaters, built face to face so as to permit the largest number of people seeing and hearing at the same time.

By the Romans it was considered the most wonderful structure ever erected, and this feeling of admiration continued throughout the middle ages, as the frequent reference to it by writers testified. So impressed by its size and appearance was the Venerable Bede, that he predicted that it would endure as long as Rome itself. Its name, the "Colosseum," was but a modern appellation, for it was known to the Romans as the Amphitheatrum Flavian, from the fact that it was commenced by the Emperor Vespasius Flavius. It was not, however, finished by him, having been only gradually developed in its ultimate completeness. Vespasian chose a site at the foot of the Esquiline, on the lowest level in the city, but was only able to inclose the arena and construct the three stages of seats around it. To these his son Titus added two more tiers, and dedicated the edifice with shows of the utmost magnificence in the year A.D. 80. It was finally completed in a manner which showed the tasteless extravagance of his age by Domitian, who constructed the upper portion of wood, and arranged in the arena docks, so that sea fights could be represented. In the time of Macrinus the woodwork forming the upper part was struck by lightuing and consumed; it was partially restored by Heliogabalus and Alexander Severus, and early in the third century of our era was completed in stone by in the third
Gordian III.
The gladiatorial combats were continued with even greater luxuriance and waste of human life, and were not finally suppressed till 403, when an Oriental saint named Telemachus made a pilgrimage to Rome expressly to protest against these demoralizing and inhuman shows, and was, while making that protest, martyred in the arena of the Colosseum. The latest exhibition of wild beasts was in the reign of Theodoric. In 1130 the Colosseum became a fortress of of Theodoric. In 1130 the Colosseum became a fortress of
the Frangipani, and in 1332 the benches were restored, and a bull fight, of which Gibbou has reproduced for us a graphic description, was held in the arena. In the fourteenth century the Colosseum was despoiled, the cramps binding the stones being cut out for the sake of the iron, and the masonry removed for building purposes, and even for burning into lime. For a time the depredations were checked, as Pope Eugene IV. granted it to the monks of the adjoining convent; but public opinion was against making it private property, and it was, after a time, resurrendered to the people. At a later period, it was again used as a quarry, and from it the palaces of the Farvisi and Barbarini families were largely built, but it was afterward again placed under the protection of the Popes, and is now national property.

The first archæological excavations in the arena were made between 1810 and 1814 by the French. They only went down some 10 feet below the surface, being deterred went down some 10 feet below the surface, being deterred level. In 1874-75 a fresh series of explorations was commenced by the Italian Government, at the instigation and under the direction of the late John Henry Parker. Twenty-one feet below the present level, the excavators were rewarded by discovering the original floor of the arena, with the wonderful series of substructures built upon it in the time of Commodus. Turning aside to give a geveral dethe time of Commodus. Turning aside to give a general de-
scription of the building, Mr. Westropp mentioned that it scription of the building, Mr. Westropp mentioned that it
was 65 J feet along the major axis of the ellipse and 513 feet across, and rose, as completed, to a tota! height of 157 feet above the surrounding ground. This immense outer wall consisted of four stories, of which three were of Vespasian's structure, and the fourth, a loftier and very different one, represented Gordian's addition. Three stories were decorated with columns, and the upper one with pilasters, each of a different order. The columns were of equal diameter, and divided the circumference into 80 arcades on each level. That on the ground story, which was 30 feet in height, had a Doric order; the vext, 38 feet high, was Tuscan; the next, also 38 feet high, was Ionic, and the upper stage, 44 feet bigh, which had no arcading, but instead a series of rectangular window openings, with shields between, had pilasters of the Composite order, a style which was excellently fitted for its lofty position by the boldness of its volutes and general treatment.
In the lower story seventy-six of the arches were ordinary entrances, aptly termed "vomitoria," and each bearing a distinctive number; the other four openings were reserved for the Emperor and other distinguished personages. Each voussoir in these three lower arcades had a mortise and tenon on its edge, so that they could be fitted to each other in each half of the arch, without necessitating the use of centering during construction. Behind these arches on each floor, and between the outer facade and the tiers of benches, was a spacious corridor leading to the seats, and to stair cases leading to the upper levels of the arena. Each stage was marked off by an entablature, and the whole was crowned by one of greater boldness, above which was an attic. This upper entablature was supported by brackets, and in it were pierc-
ed a series of holes through which formerly passed the
ropes by which the telum or velarium, an immense curtain, protecting the spectators from the sun and rain, was drawn toward or from the mastin the center of the arena. The materials used for walling were marble and travertina for the exterior, pepinino for the internal walls, and tufa and brick for filling in. The seating was by movable wooden benches. The lowest level next the arena was known as the podium, and was protected from the animals by a low wall, and was reserved for the emperor, consuls, and other distinguished
personages; above this was the mœnianum, or seats for the equestrian order; above these, those for the populace, and women were admitted to the upper gallery only. Great discrepancies existed between the statements as to the numbe of persons that could be accommodated in the Colosseum; but Mr. Fergusson, on a careful calculation, estimated that
no fewer than 50,000 persons could be provided with seats. The excellent adaptation of the building to its purpose, and the skillful arrangements for free ingress and egress, deserved the highest commendation.
The arena itself was originally formed by Titus on the ground level, but this was found to be too low to be easily seen from the auditorium, and thus, probably in the time of Trajan, and certainly before that of Commodus, its level was raised 21 feet by means of substantial substructures, between which were left five longitudinal grooves or docks, three straight, the other two curved, which could be filled with water from a neighboring aqueduct for floating galleys upon, and also a numerous series of square pits in which were placed the cages of animals; in recesses under the podium and seating were other dens for wild beasts. The
arena, as raised in the days of Commodus, had an internal diameter of 287 feet by 180 feet; it was paved with bricks over the solid substructure, and the docks and square apertures were covered in with boarding. In the central dock, during the recent excavations; part of the timber framework for raising decorations and scenery was found, and also the socket in which the velarium mast was lifted, and at one end was a drain protected by iron bars, through which the water was run off. It was evident that lifts were provided n the square holes for raising the animals' cages at the proper moment. In conclusion, the lecturer quoted descriptions of combats and pageants held in the Colosseum, and emarked upon the singular fact that, although this was one of the vastest andmost greatly admired of ancient structures, he name of no archite

Gas in Iron and Steel.

The following is a summary of a highly interesting paper on the subject, published a short time ago by Dr. Friedrich C. G. Müller in our German contemporary, Stahl und Eisen, xperiments:
It is an undeniable fact that iron of every description, whether solid or liquid, and whatever the temperature may be, is possessed of the faculty of absorbing gases. This faculty applies in the highest degree to hydrogen, and in a smaller degree to oxide of carbon, carbonic acid, and nitrogen. From a series of experiments it would appear that hydrogen, the same as palladium, is able to form a sort of alloy with iron, and to exercise a very great influence on the physical properties of the metal alluded to.
Inasmuch as all iron obtained by known metallurgical processes comes into contact with the aforenamed gases while n the course of formation, it is obvious that it must necessarily absorb a larger or smaller quantity of such gases. In point of fact, gases of an undeniably combustible nature escape from it both in its liquid state and in the course of its solidification; but even after the iron has become solid and cold, gases may be extracted from it by heating in a vacuum, or by other physical or chemical methods. In each instance n which an analysis is resorted to, it points to the presence
of a mixture of $\mathrm{H}, \mathrm{CO}, \mathrm{N}$, and CO_{2}.
For the practical metallurgist the secretions of gas in bubble form which take place within the metal are of incomparably greater importance than the mere presence of gases or the silent emanations of gases which are invariably to be ound in every smelting process. The phenomena of secreion are essentially of two kinds, viz., (1) scattering or spitting, and (2) rising. I have at all times attached great im-
portance to this distinction, and shall continue to do so in the future, having fully satisfied myself that many fatal errors spring entirely from one of these two phenomena being taken for the other, and vice versa.
Scattering consists in a secretion of gas, which takes place within the liquid metal while it is cooling down to its point of solidification. In this case, as in that of a recently uncorked bottle of seltzer water, bubbles are formed throughout the liquid, and rise to its surface. While the surface of the iron remains in a liquid state, a frothing and fizzing takes place in consequence of this, but, as soon as the surface is solidified, the gases keep some minute channels open, through which they spit out particles of liquid metal. It is obvious that the bubbles which come up to the surface can do no direct harm whatever. Apart from the surface, which, of course, is not to be relied upon, there is no reason why steel of the description named should not yield sound ingots. The dangerous time is when there is but little liquid metal left, forming a narrow channel in the center of the block. If the width of this channel increases from the base upward, the block becomes dense and compact, but if it closes up at the top, the gas that escapes below mus gather in larger quantities. It, therefore, stands to reason
that, in casting a very restless sort of steel, it is as well to see that the casting incroases in a regular way from the base upward.
In the case of the second description of secretion of gas. ., the rising, or ascent-the well known worm tubes, which spread radially, come to a development. While, in the case f scattering, the central portions of the block are most in danger, the parts immediately beneath the surface are principally endangered by the rising. When rising takes place, quantity of the liquid metal in the interior, corresponding to the volume of the pores, is pushed with great violence toward the surface, which is thereby raised or broken. The experiments undertaken by me have shown that the gas intercepted in the pores of the cooled down steel is still possessed of a pressure of 60 pounds to the square inch; it must, therefore, be assumed that at the moment when it escapes its pressure cannot be less than 300 pounds to the square inch. If, while cooling down, the metal be exposed to a still greater artificial pressure, the gases will not be able to escape at all.
If the shell be closed up, blocks with very dense cores are lways obtained in the case of steel that rises quietly, and it s to be assumed that in such like cases a good deal of gas oozes out into the open air through the thin outer crust.
However great the difference may be between scattering and rising, both phenomena may yet be found existing side by side in one and the same piece of metal. Thus, e.g., Thomas-Gilchrist steel, which is restless and spits, shows yet a certain tendency to rising. The radial channels, which are found in a horizontal position in the ordinary description of blocks, are the outcome of an exhalation of gas from the metal-which, having already been solidified, has entered upon the transition stage-and cannot, by any possibility, be looked upon as gas bubbles formed in the liquid metal and intercepted, as it were, by the process of solidification. Both the form and the arrangement of the worm tubes are calculated to controvert such a theory.
In turning out the liquid core of a partly solidified block f rising steel, a hollow body shows itself, the inside of which, though perforated, is exceedingly smooth. Hence it becomes apparent that iron does not solidify like sulphur, the inside of which shows a whole mass of pointed crystals in the liquid part, which crystals might very well intercept rising gas bubbles. While in the case of properly rising steel the metal is found perforated like a honeycomb beneath a thin non-porous crust, it is quite another thing in those instances in which the rising tendency is but slight. In instances in which the rising tendency is in whe slight. In
the of pores gets more and more into the these cases the wreath of pores gets more and more into the
interior, and the outer crust becomes thicker and stronger in proportion. At the same time the pores are getting more and more rounded off. This much is certain, that in those cases the secretion of gas is attended and supported by the well known phenomenon of contraction, which, even in the case of absolutely dense steel, produces deep central cavities. As regards the nature of the gas to which the formation of worm tubes is to be traced, Stead's experiments have corroborated the result of mine, viz., that the pores of the refrigerated steel contain hydrogen mixed with 15 per cent of bitrogen; but, on the other haud, they contain neither oxide of carbon nor carbonic acid, or at most but traces of these; the quantity of gas brought out was in keeping with the volume of the pores, and the pressure amounted, on an verage, to 60 pounds to the square inch.
All these facts go to support the proposition set forth by me, that the immediate cause of the rising-not of the scat-tering-is to be sought in the secretion of absorbed hydrogen and nitrogen. In reality, this is not a hypothesis, but rather self-evident statement of facts; the more so since hydrogen has, in each instance, shown up as an integral part of the gases whenever drilling experiments have been made or an analysis of the gases given out by iron and steel spontaneously or in a vacuum has been resorted to.-Ironmonger.

Purification of Water by Motion

A discovery has been made by Dr. Pehl, of St. Petersburg, which promises to have a very important bearing on many industrial processes. The water of the river Neva is ery free from bacteria, having only about 300 germs in a cubic: centimeter. The canals of St. Petersburg, on the conrary, are infected with bacteria, their number reaching 110,000 in a cubic centimeter, even during good weather. The same is true with regard to the conduits of water for the supply of the city. While the chemical composition of the water passing through these city conduits hardly differs from that of the Neva (by which they are supplied), the number of bacteria reaches 70,000 , against 300 in the water reely taken from the river; and the worst water was found in the chief conduit, although all details of its construction re the same as in the secondary conduits. Dr. Pehl explains this anomaly by the rapidity of the motion of the water, and he has made direct experiments in order to ascertain that. In fact, when water was brought into rapid motion for an hour, by means of the centrifugal machine, the number of developing germs was reduced by 90 per cent. Further experiments will show if this destruction of germs is due to the motion of the mass of water, or to molecular motion. If this discovery of Dr. Pehl's be confirmed, it will become possible to destroy bacteria, and render a water comparatively pure simply by passing it through a centrifual machine. The subject is of special interest to brewers, who suffer perhaps, more than any other manufacturers from the attacks of bacteria.

ENGINEERING INVENTIONS.

A stock car has been patented by Mr. Henry Hess, of Canfield, Ohio. The floor of the car can be preventing the stronger from trampling on the weaker and the car platform can easily be arranged for use a an ordinary cattle or freight car.
A compound to prevent the fusion of cin der has been patented by Mr. Wesley Case, of Topeka,
Kansas. It consists of bicarbonate of ammonia, saltKansas. It consists of bicarbonate of ammonia, salt-
peter, bicarbonate of soda, resin, and other ingredient mixed and used after soda, resin, and other ingrederen the formation of clinker in the combustion of coal A car coupling has been patented by Mr Charles Uebinger, of St. James, Ind. In combination with a drawhead is a spring bar beneath, with a bev eled block secured to the free end of the spring and in high and low drawheads may be guided within sqid high and
drawheads.
A car coupling has been patented by Mr Joseph F. Fairfield, of Alma, Neb. The coupling is formed of a forked drawhead, in the outer end of which a coupling pin is pivoted, the inner end of the sliding bar being connected with the locking frame on the
drawhead, and the locking frame connected with a bar projecting up on the side of the dra whead, the coupling being done automatically and so the cars can be readily
An electric block signal for railways has been patented by Messrs. Stephen J. Swayze and John C. Lane, of Sag Harbor, N. Y. This invention covers
improvements on former patents issued to same invent improvements on former patents issued to same invent
ors, including electric locking a rrangement for locking the signal until the train that set it reaches the next signal station, when the signal board of the signal next in rear will be released, indicating that
clear between it and the first signal ahead
A steam trap has been patented by Mr Robert Bo Morse, of Naugatuck, Conn. This inventio covers a simple and easily applied device more particularly designed for steam heating apparatus, and con-
sists of a circular or disk valve on an axial stem at right angles to the lengthrof a steam pipe, with such coonections that, as the steam pipe expands and con-
tracts by heat and cold, the valve will turn for opening and closing the ports:for the escape of water condens ing in the trap.

MECHANICAL INVENTIONS.

An oil cup has been patented by Mr. Wil liam A. Foster, of Fitchburg, Mass. This invention reuates to oi cups where an anjustable valve spindie reg. the spindle, so it may be set for any desired rate feed, and readily changed to a close or open feed. A process of fastening diamonds in tool has been patented by Mr. Thomas W. Collins, of New
York city. The fastening is obtained by means of metal deposited by electricity around the diamond and the adjoining parts of the toon, thus fastening diamond ting tools, as stone saws, rock driils, etc.
An insertible saw tooth has been patented by Mr. William B. Risdon, of Trenton, N. J. This inby which insertible saw teeth can be wsed in places where it is desirable to remove and replace the bits or teeth without taking the saw from the mandrel, or re moving the holding spring from its seat.
A pulley belter has been patented by Mr. James N. Wilson, of Higginsville, Mo. This is a nove adjustable clamp device to clamp on a driving pulley across the face, and for running the belt on the pulley,
it being especilly desioned for use on thrashing ma. it being especially designed for use on thrashing ma-
chines, where belts are apt to run off from being long and crooked and run at high speed.
A means for transmitting motion has been patented by Mr. Walter A. Rollins, of Wyattville, Sur-
rey, England. Combined with a shaft having ratchet rey, England. Combined with a shaft having ratchet
teeth on its end is a tubular bar, into which the end of teeth on its end is a tubular bar, into which the end of
the shaft projects on the other part of the machinery, with other devices, whereby motion may be transmitted in one direction in such manner that the parts can re volve independently in the reverse direction.
Improved machinery for rolling wire bas been patented by Mr. William H. Jackson, Jr., of Tren-
ton, N. J. The wire is passed throagh a series of rollers, and through one or more intervening furnaces, the speed of the rollers being easily regulated in such man ner that it can be roied down to a diameler of about one-eighth of an inch, instead of ha
A pressure feeder for pulp grinders has been patented by Mr. Edward F. Millard, of Marinette,
Wis. A steam or water pressure feeder or presser is Wis. A steam or water pressure feeder or presser is
contrived to so feed the wood to pulp grinding stones that the piston will be withdrawn by suction or a
vacume when the blocks are orround up and thus avoid vacuum when the blocks sare eround oup, and thus avoid the use of packing, and save the cost of keeping the packing in order.
A brick machine has been patented by Mr. William S. Smith, of Dayton, \boldsymbol{O}. The machine has a
wheel with mould openinss, a cam driven pawl for revolving the mould wheel intermittently, and plungers worked by cam driven levers, so the bricks will be made and discharged automaticaly, thus faciliaing the manufacture of pressed
construction of machines.

miscellaneous inventions.

An ear ornament fastener has been patented by Mr. George Krementz, of Newark, N.J. The in-
vention covers a nut fitting on an ear wire, for holding an ear or
the wire.
A bib for children has been patented by Mr. George E. Kimball, of Franklin, Mass. The bib has on its front a pockel for a a nursing bottle, so the clothee
will be protected, the bottle held conveniently aud th contents not apt to be spilled nor the bottile broken.

An anchor has been patented by Mr. William Lewis, of St. John, New Brunswick, Canada. nishinvention covers a peculiardesign for an improved struction, not easily fouled, and which will readily take sruction, not easily
A harness saddle has been patented by Mr. Daniel B. Holsburg, of Granville, xul. This invention, by a novel construrtion and arrangement of parts, pro-
vides to so support the thills that they will not make any side to side motion of the pad, to chafe or gall

An incubator has been patented by Mr. James Rankin, of South Easton, Mass. Improved means are provided whereby the water employed to aintain the required heat is also made to regulate the form degree.
A necktie fastener has been patented by Mr. Frederick Kubec, of Riverside, Iowa. It is made of two pieces of spring wire, to which the material of the necktie is stitched, the wire being so shaped as to
ceadily hold the necktie in position without being at readily hold the necktie in
An eaves trough hanger has been patented by Mr. Henry J. Hoepfner, of Athens, $\mathbf{0}$. The hanger is formed of a metal strap, with ends secured to a cross
piece in one continuous piece of wire, which is provided with loops through which the nails or screws for g the hanging wire to the roof can be passed A thill coupling has been patented by Mr Milton E. Campany, of Muskegon, Mich. This inven. of parts whereby the clip is so held on the axle that ratting is prevented, and coupling and uncoupling are quickly and easily effected.
A stay roller for sliding doors has been patented by Mr. Le Grand Terry, of Horseheads, N. Y. nidinention covers an improved arrangement for eld sufficiently of a sliding door, the roller being ermitted to revolve freely, and without undue friction A pneumatic lock has been patented by Mr. slonzo W. Fuller, of Boston, Mass. In a lock with woo piston cylinders, connected at heir opposite ends to a bolt mechanism, is a third cylinder with an air
compressing piston, connected with and operating the ther cylinders and bolt by a suitable valve mechan-

A ship windlass has been patented by Mr. me arrangement of the brake lever and ratchet wheels is ach that the brake lever ranges parallel with the drum of the windlass compactly, and affords a simple means of applying great power to the working of the indlass.
A metallic barrel hoop has been patented by Mr. Ellsworth Ford, of Westville, Conn. This in vention consists of a half round metal hoop blank age and bold the ends firmly together, and with a rib dapted to bed itself in the wood and hold the hoop in
ace without nalis.
by d by Mr. John T. Preddey, of Carson, Nevada. The set in the top, in front of which is a reflector, and in ont of the reflector the casing has a hinged wire netin construction, clean, and durable.
An oil cup bas been patented by Mr. Wilach construction as will afford facility in filling the cup, free from liability to loss of filling plug or stoppe positive lock for means for adjusting the feed, and the oil is
An improved horse power device has been patented by Mr. Homer Adkins, of Concordia, Kansas. A balanced tipping or tilling horizontal driving whee is provided, with its whole support below, and means or tipping or tilting the same and making it run steady,
ightness being combined with strength, and an easy nd steady motion obta ined with but little friction.
A bench dog has been patented by Mr. Riley Doty, of Leonardsburg, Ohio. It consists of a notched transversely near the upper end to form teet or engaging the work, and iuserted in the bench at a slight inclination from the vertical, being capable of holding work firmly either flat or edgewise.
A bag holder has been patented by Mr. Herbert R. Royston, of Chicago, III. This is a simple contrivance of a base piece for attaching to the wall, counter, or other support, with an elastic band stretchdetween two points of the piece, between which being held so as to be pulled out one at a time as wantbeing held
A bung borer has been patented by Mr. Gustav A. Stanger, of Chester, Conn. It consists of a of which is held a blade, a bottom plate on one edge end of the casting having an aperture forming a cutting nd, and with a gimlet pointed screw, making a borer hat catches the chips and prevents their dropping into he barrel.
A wire stretcher has been patented by Messrs. Charles S. Older and Leander L. Deering, of Independence, Iowa. Combined with a gripping device
and gravity clutches is a lever, and a looped bolt formand gravity clutches is a lever, and a looped bolt form-
ing the pivot of the lever, and with its loop adapted to ing the pivot of the lever, and with its loop adapted to
receive the bar upon which the gravity clutches are arreceive the bar upon which the gravity clutches are ar-
ranged, so the wire is drawn up every time the lever is oved in either direction.
A cider mill has been patented by Mr. Alpheus D. Lair, of Mexico, ind. It has two endless receives the pomace from the grinding mill and carries it over rollers, above which is a presser plate, the
pomace afterward being carried between presser rollers, he pomace and cider being automatically separated, and the mill operating very rapidly.

A marking and shading pen has been pa tented by Mr. Elbert . Alderman, of Portville N. Y.
The forkiing end or shading piece is made of India rubber, and by suitably holding or turning the the hand it will make marks of required width for coarse or fine shading, having a steady feed and being er mark.
A music holder bas been patented by Mr. George Burt, of Fort Madison, Iowa. The body of the holder is made of sheet metal, cut and stamped into any ornamental form, and bent at its lower end into two ars, a apring actuated clamp with slots being pivoted construction, for holding music on a drum or othe A fire alarm has been patented by Mr Charles A. Judson, of Greenville, S. C. In combinatlon with a wire having highly fusible connections is a
spring connected with a mechanical bell ringing mech spring connected with a mechanical bell ringing mech-
anism, several lines of wire from different parts of a house being so arranged that the melting of any oue of them will give the alarm, and record the place of fire
A bailer for cleaning oil wells has been p tented by Mr. James S. Moody, of Summit City, Pa. lower end, and a steel neck and valve closing upwardy at its upper end, with a stem connected with the drill line, so a sand line is unnecessary, the gas is allowed
to escape and the bailer can be entirely filled before it is drawn out, so the well can be cleaned more rapidly nd thoroughly than at present.
A simple and cheap device to lower the draught on platform wagons has been patented by Mr.
Foster H. Cheney, of St. Louis, Mo. There is a broad Foster H. Cheney, of St. Louis, Mo. There is a broad inner and outer clevis swung from the gear at desire height or place by springs, which relieve any jerk, and the axle. The evener bar is firmly clamped by the inthe axle. The evener bar is irmily clamped by
ner clevis and a flat spring bar through which the even er bolt passee, so wood. There is also a detachment device to quickly release the draught animals.

©usiness and extsual.

The Chargefor Insertion under this head is one Dollar a line for each insertion ; about tight words to a line. Advertisements must be received at pubbication office
asearly as Thursday norning to appear in next issue.
All Scientific Books cheap. School Electricity, N. y. Corundum Wheels ; cut faster and wear longer than mery. Pratt \& Whitney Co... Hartford, Conn.
Manufacturers wanted for specialties in shelf hardware, house and store furnishing goods; recently pa-
tented. Send for illustrated circular to c. La Dow, Albany, N. Y .
Mechanical Engineer and Machinist of over 20 years hop; now open for engagement as manager, suphin shop; now open for engagement as manager,
tendent, etc. Box 385 , Post Office, Philadelphia.
Springs. List free. T.F. Welch, 11 Hawkins St., Boston. Patent for Sale.- $\$ 500$ will buy U. S. patent for
clothes Line Holder. J. A. Worley, 117 Laurel st.,

If you want the best cushioned Helve Hammer in the Steam Gauge making-vacuum, low pressure, and ydraulic; repairing all
60 Lathes, new and secoñō-hand, $11{ }^{\prime \prime}$ and $14 /$ swing, Mills, Engines, and Boilers for all purposes and o ${ }^{1} 1$ Mill Co., 10 Barclay Screet, N. \mathbf{y}.
Wanted.-Patented articles or machinery to manufac Brush Flectric Arc Lights and Storage Bateries Brush Electric Arc Lights and Storage Batteries
wwenty thousand ArcLights already sold. Our largest machine gives 65 Arc Lights with 45 horse power. Our Storage Battery is the only practical one in the market. Brush Electric Co., Cleveland, O.
Cyclone Steam Flue Cleaner. The best in the world. For Freight and Passenger Elevators send to L. S Sewing machine, water closet, \& other light casting ade to order. Lehigh Stove \& Mfg. Co., Lehighton, Pa "How to Keep Boilers Clean:" Book sent free by Stationary, Marine, Portable, and Locomotive Boile Railway and Machine Shop Equipment. Send for Monthly Machinery List
to the George Place Machinery 103 Reade Streets, New York
The Hyatt filters and methods guaranteed to render all kinds of turbid water pure and sparkling, at econo
cal cost. The Newark Filtering Co., Newark, N.J. "The Sweetland Chuck." See ad. p. 316.
Steam Boilers, Rotary Bleachers, Wrought Iron Turn
 Iron Planer, Lathe, Drill, and other machine tools o
modern design. New Haven Mfg. Co., New Haven, Conn For Power \& Economy, Alcott's Turbine, Mt.Holly, N. J. If an invention has not been patented in the United States for more than one year, it may still be patented in
Canada. Cost for Canadian patent, \$40. Various other foreign patents may also be obtained. For instructions address Munn \& Co., Scientific
agency, 361 Broadway, New York.
Guild \& Garrison's Steam Pump Works, Brooklyn N. Y. Steam Pumping
tion. Send for catalogue.

Presses \& Dies. Ferracute Mach. Co , Bridgeton, N J. Nickel Plating.-Sole manufacturers cast nickel anodes, pure nickel salts. polishing compositions. etc. Com plete outatt for plating, etc. Hanson \& Van Winkl
Newask, N. J., and 92 and 94 Liberty St., New York.

Supplement Catalogue.-Persons in pursuit of infor mation on any special engineering. mechanical, or scien ifitic subject, can have catalogue of contents of the SCI-
ENTIFIC AMERICAN SUPPLIEMIENT sent to them free. The Suppiement contains lengthy articles embracin the whole range of engineering, mechanics, and physi cal science. Address Munn \& Co . Publishers, New York Machinery for Light Manufacturing, on hand and Drop Forgings. Billings \& Spencer Co., Hartford, Conn Electrical Alarms, Bells, Batteries. See Workshop Brass \& Co) hiladelphia, Steel Castings Co., office 407 Library St. 5,000 Gear Wheels, now in use the superiority of thei astings over all others. Circular and price list free. The Improved Hydraulic Jacks. Punches, and Tub Friction Clutch Pulleys. D. Frisbie \& Co., Phila. Tight and Slack Barrel Machinery a specialty. John Cot Catechism of the Locomotive, 625 pages, 250 engrav
ings. Most accurate, complete, and easily ngs. Most accurate, complete. and easily
book on the Locomotive. Price $\$ 2.50$. Send for catalogue

NEW BOOKS AND PUBLICATIONS

Die Physikalischen Grundsaetze der
By Joseph Popper. A. Hartleben,
This pamphlet of fifty-five pages is an introduction to he study of the transmission of power by electricity numerating the physical principles involved, togethe th their mathematical proofs.
mber of Commerce of New York, An
NUAL REPORT, 1883-84. By George
Wilson, Secretary. Printed for the Chamber.
Mr. Wilson's many years' experience as secretary of of Chamber, and the care and good judgment he esercises in compiling this record, not only of the
proceedings of that body, but of the most importan tatistics of New York business, renders this volume an especially valuable one, making, as it does, a work unique in its way. The special trade reports cover nineteen leading articles of commerce in New York, all
prepared by acknowledged authorities on the subjects reated of.
Workshop Receipts for Manufacturers Third series. E. \& F. N. Spon, New The two former volumes of this series have been re o electrical and metalurgical matters. The atticl "Electrics" explains a wide range of methods in the practical applications of electricity, and in this spe cialty, as well as in the department of metals, thei alloys and different ways of working, the information given is brought down to the latest dates, and set

24uct (burains

HINTS TO CORRESPONDENTS.
No attention will be paid to commumications unles writerpanied with the full name and address of the
then Names and addre
We renew our request thatcon o former answers or articles, will be kind enough to ame the date of the paper and the page, or the numbe of the question.
Correspondents whose inquiries do not appear afte a reasonable time should repeat them. If not then pub-
lished, they may conclude that, for good reasons, the Ished, they may con
Editor declines them
Persons desiring special information which is purely of a personal character, and not of general interest as we cannol be expected to spend time and labor to obtain such information without remuneration.
Any numbers of the Scientific American SuppleIENT referred to in these columns may be had at the ffice. Price 10 cents each.
Correspondents sending samples of minerals, etc. tabel their specime so to avid arror in label their s
fication.
(1) J. A.-Transfer paper is made by rub ing of 2 ounrong tissue paper with a composition consist, int of linseed oil and sufficient lamplack to make of the consistency of cream. These should be melted ogether and rubbed on the paper while hot. When
(2) J. M. F. writes: Can I obtain through your correspondents' column some information conhe Scientific American Supplement, for May 29 880, No. 230? A. Modeling clay is any clear gray clay r if preferred, porcelain clay moistened with water and is a modeling school in the Cooper Union where yo may obtain both information and instruction in model
(3) C. T. B. asks: 1. How much greater, if any, is the specific gravity of water in a lake or ocean
at 1,000 feet below the surface than at the surface? A. The specific oravity of water at great depths is no create than what is due to its compressibility, which is virtually nil. 2. Is there a point in the depths of water at which body whose specific gravity is just a little greater than water at the surface will, if placed in that water, cease
sinking before it rests on the bottom? A. We believe
that the theory that bodies of about the same spe-
cific gravity as water float at a certain depth is no longer held. 3. If a body whose specific gravity is less than water is submerged in the water of a reservoir, and is of such shape and so placed on the bottom of the reervoir that no water is beneath it'or any part of it, will A. It will stay there just as Iong as the pressure of the water is confined to its top and sides.
(4) D. \& N. write: We have been endeavoring to construct a cheap barometer by suspending opposite ends ofa balanced beam, with the expectration that the varying weight of the atmosphere filling the open one would cause them to rise and fall, and thus foretell the weather. The open one will go up on the approach of fair weather, but it will not go down on the approach of rain. Why does it not work both ways? A. The changes in temperature have too much influence pon the action of the barometer that you have made purpose. In fact, we cannot see the value of the cylin der with the hole in it over a solid counter weight The whole as light as possible; and balanced in all poitions and varnished with shellac to preve of moisture that will gather upon the surface upon change of weather. The difficulty is probably with
mechanical construction of your barometer; your theory mecbanical
(5) J. H. R. writes: I have a hydraulic ram; the air chamber gets full of water upon an average of
once in two weeks, and stops the ram. Now, is there any remedy for this? A. A hole one eighth to threesixteenths inch diameter at point above connection in drive pipe is said to remedy the trouble,
is a small leak about the air chamber.
(6) O. S. V. asks: 1. Are ports $1 / 4$ inch $x 1$ nch and exhaust $1 / 2 x 1$ inch the right size for a cylinder $21 / 2 \times 5$ inches? A. Better make them $\frac{5}{16} \times 11 / 2$ and $\frac{8}{8}$ $x 112$ inches. 2. Is a half inch pipe large enough for steam pipe for same? A. Make your steam pipe 1
inch diameter and exhaust $11 / 2$ inch diameter. 3. Is a $5 /$ pipe large enough for exhaust; if not, what size 300 revolutions What power would the engine have at Supplement, No. 253. 4. What diameter and what weight should the fly wheel be? A. Wheel 18 or 20
inches diameter, and weight boout 75 pounds. 5. Will inches diameter, and weight about 75 pounds. 5. Will
a vertical boiler 16 inches in diameter and $31 /$ feet high a vertical boiler 16 inches in diameter and $31 / 2$ feet high
furnish sufficient steam? A. No; it should be at least furnish sufficient steam? A. No; it should be at least
20 inches diameter and $41 / 4$ feet high. 6. Would a 20 inches diameter and $41 / 4$ feet high. 6. Would a
plunger pump $3 / 4$ inch in diameter with 1 inch stroke what size should feed pipe be? A. No; it should be $11 / 8$ what size should feed pipe be? A. No; it should be 11/8
inch diameter and 3 inches stroke at least. Make pipe $3 / 4$ inch diameter.
(7) J. A. R. writes: I have an engine of the following dimensions: Cylinder is $8 \times 141 / 2$, ports $5 / 8$ Now, the valve will open but $\frac{2}{1}$. Is there not too much
lap? If so, shall I cut the valve down? Does the valve travel far enough? Please tell me how to fix it. You do not give the lap of the valve nor the width of bridge, hence we cannot say what alteration should be made, but we infer you have too much lap or too little
travel, or both. 2. Steam pipe 11/2 inch, a short piece 4 inches long from the governor to steam chest, 114. inches long from the governor to steam chest, $11 / 4$.
Boiler 36 inches by 10 feet, two 12 inch flues, 60 pounds of steam, revolutions 160; how many horse power? A. Your steam pipe should be at least $21 / 4$ inches diameter. Your steam piper see rule in SuPpLEMENT, No. 253. 3 .
Ior horse powa
I want to run a saw 50 inches; diameter of fly wheel, 48 inches; what should tue pulley on the saw shaft be to give 725 per minute? Or should I run engine faster?
Pulley now is 20 inches. I think it is too large. Am I Pulley now is 20 inches. I think it is too large, Am I
right? A. With pulley on saw shaft 20 inches the pulright? A. With pulley on saw shaft 20 inches the pul
ley on engine shaft should be $71 / 2$ feet diameter, or you an reduce both pulleys in proportion
(8) Mrs. C. B. S. asks: Is not electricity visible in St. Elmo's fire, and also in the electric light in which the electric arc is in vacuo; or if we do not see the
electricity itself, what do we see? A. It is supposed that electricity itself is invisible. Its effect on certain substances is torender them visible.
(9) H. E. D. writes: 1. I have made a pen (electric) from the directions given in SUPPLEMENT No. 166, but I can't make it perforate close enough; the that hole until the pen is moved a sixteenth of an inch or more, then makes another. The coil I use gives a half inch spark. A. Try less current and thinner paper.
2. How can I make a good storage battery? A. See Sup2. How can I make a good storage battery? A. See Supplement, Nos. 322, 301, 338, 286.
(10) B. G. W. writes: I wish to make an electric circuit to indicate when water is rising above a
certain height. What terminals should I use at the certain height. What terminals should I use at the
water end, the idea being for the rising water to cover water end, the idea being for the rising water to cover
over the terminals and hence complete the circuit? And over the terminals and hence complete the circuit? And
as the space between need be but a fraction of an inch, I suppose the resistance will be but slight, and that the A. Mere wire wonld not auswer for a terminal. Use a plate of metal having an area of one or two feet, or operate a pair of metallic contacts by means of a float.
(11) J. B. G. asks how to preserve flowers so as to keep their color and brightness. Also how to
preserve butterfies and otherinsects. A. Flowers may be preserved by immersing them in a bath of liquid to become completely coated with the wax. Insects and butterflies are generally preserved by placing pieces of camphor in the case in which they are kept. Some-
times insects are dipped in a strong solution of (corrosive sublimate) mercuric chloride.
(12) F. T. J. asks how calcimine is made, the different ingredients, etc. A. The process of cal-
cimining depends largely upon the condition of the walls. If they are new, nothing further than a coat of good Paris white with just enough glue size added to
bind it is required. If the work is inferior and very bind it is required. If the work is inferior and very
porous, it will require a preparation of strong size, soft soap, and a handful of plaster of Paris. Spons' Work-
various receipts to be used for conditions thatare likel
to occur; also giving the formulas for the various col
(13) T. C. C. asks how to make heavy can as so water tight, by painting it with some kind of oil or paint, that when anything porous is on the inside
water cannot soak through. A. Linseed oil is generally used for this purpose. See also the Scientific Amer can Supplement, No. 317, which gives descriptions of
seven processes by which cloth can be made water seven processes by which cloth can be made wate
proof.
(14) M. S. asks: 1 . What is considered to be the best speed for drills in cast iron, wrought iron,
machinery steel, and tool steel? A. The speed depends machinery stee, and tool steel? A. The speed depends
upon the size of the drill and the condition of the maerial. The fastest speed we ever used was 1,600 revo
utions for a drill of No. 18 steel wire. Muchinery lutions for a drill of No. 18 steel wire. Machinery steel
can be drilled at a higher speed than cast iron, wrought iron, or tool steel. The question cannot be answered the drill are given. 2. Does the increase twist a drill take out the chips faster than the regula twist? A. The pain twist of a drill is an advanage in the rapid removal of chips, especially in wet work-oil o soda water. But the drill should have not only gain
twist, but increased width of score to act well How much more duty does a twist drill do than the old fashioned flat drill? A. The twist drill is generally at least twice as effective as ihe flat drill, requiring less presinstances it will do fourfold more work than the fla drill. 4. What formula is used in designing cone pulleys so that the belt will run with equal tension on an of the corresponding steps of the cones? A. There is
no definite formula. The conditions of desired dliameters of largest and smallest cones and of distances of spindle cone and counter cone apart, are necessary
These being known, or at least, the distances apart being determined, lay out a scale diagram and measur the distances, which will give the length of belt. This will determine the diameters of the cones between th largest and smallest steps. It must be remembered straight parallel line measurement.
(15) J. A. asks whether soap or ammonia would be injurious to vulcanized rubber, and also what will destroy oil or grease on vulcanized rubber without injury to the rubber itself? A. Soap would not be
likely to affect the rubber; the use of ammonia would not be desirable. We would recommend you to use for the removal of the grease a weak solution of either po tassium or sodium hydrozide or else ether mised with
alcohol.
(16) T. G. C. asks if slight scratches can be removed from sheet glass by any chemical. A. Ann-
monium hydroxide (hartshorn) will probably take the monium hydro
scratches off.
(17) A. R. S. asks for a receipt for making a covering or paint for a wooden aquarium, so the
water will not penetrate it. A. Use a lining of melted asphaltum. A good asphaltum varnish would likewis be suitable. SCIENTIFIC American Suppleme
(18) E. M. asks: Is there any method t your knowledge for removing freckles from skin? zinc, 25 parts of distilled glycerine, 25 parts of rose daily fond 5 parts scented alcohol, 25 and then washed daily wor from half an hour to an hour and cold washed freckles. We do not recommend such applications,
(19) H. M. D. asks for a receipt for a perinen with a rubber parts of boiled linseed oil varnish, 6 parts of the finest lamp black, and 2 to 5 parts of irou perchloride, diluted
with one-eighth the quantity of boiled oil varnish; it can be used for a stamp. For color, use 1 part gelatine glue, 2 parts aniline of desired color, 1 part absolute
alcohol, 10 parts glycerine, 1 part Venetian soap, $\frac{1}{5}$ part salicylic acid.
(20) J. L. P. asks how he can casebarden strips of tire steel $11 / 2 \mathrm{inch}$ by $1 / 4 \mathrm{inch} 14$ inches long. The steel is of too poor a quality to harden in the or-
dinary way. Can he pack say 50 strips in a boz with leather, horn, or bone, heat and allow to cool gradually without opening the box until cold; then heat singly in a common forge fire, and treat the same as good cast steel in hardening? If not possible to do it by this
means, what course should be followed? A. If you are means, what course should be followed? A. If you are the most care. The plan that you have tried should ac complish the purpose with the addition of dipping the
files in a saturated solution (hot) of ferrocyanide of potassium (yellow prussiate) before packing in the carhat you kept the work at a full red heat, we sugge that you keep up the heat longer than before; you should succeed. A few trials will give you the proper (21) time for roasting.
(21) L. A. writes: A tank is full of water he discharge pipe goes through the botlom of tank and up nearly to the top of the water, say 10 inches below
the surface of the water in tank. Will the force of the discharge be increased by shortening the pipe? A

(22) W. S. writes: 1. In cutting rafters,

 what is termed third pitch? I claim that the raftersraised one-third of the width of the building is third pitch; others say it is not. Who is right? A. One line from end to peak plumb line or the horizonta building for a single roof, or one-sixth the width of the building for a double roof. 2. If I take 8. inches on the blade of my square and 5 feet 4 incbes on the tongue, will it give the bevels for a third pitch? A. by 24 inches will be correct. 3. In drawing water from a well, over a single wheel, does a 10 inch wheel draw ny harder than one 20 inches? A. A 10 inch whee porionate and in good order. 4. Is there any part or
place on a locomotive drive wheel that is at rest while
the locomotive is running? If so, what part? A. The
part of a wheel that touches the rail is theoretically at
(23) E. E. P.-Common plate is unfit for enses. Good clear French or Belgian plate, such as the arge plates that are put into store fronts, if you can find a broken one or a piece at a plate glass establishment,
will make a tolerably fair lens. Flats for Newtonian telescopes should be made of speculum metal. A prism is good but espensive. A lens or glass of any kind is useless for closing the end of the telescope
not in use.
(24) M. \& B. ask what it is that a cow chews he food thrown back into the mouth? Do cattle eve lose their "cud"? If so, what is the remedy? A Cattle chew their cud, which is a ball of fiber supposed
to be derived from their fodder. They sometimes lose to be derived from their fodder. They sometimes lose The remedy is an artificial cud.
(25) F. G. writes: I am a farmer. I want pect to tay up solid walls of boards or planks 8 inches wide, and as dry as I can get. Then line this with three thicknesses of tarred paper, and finish with matched pive boards nailed on vertically. Now, the inside of hese walls will rot, I fear, being so solid and air tight, nd how can I prevent it? Shall I smear every board with gas car and lime before laying? Shall I bore holes rom top to botlom of the wall,and soak the whole with these things flavor the ensilage, and hence the butter? A. We do not approve of wooden walls for a silo. Anything like coal tar or petroleum will give the ensilavor the products of the dairy. We do not think the proposed wooden structure and its preserving material s as cheap in the end, nor will it be as air tight as a concrete wall that can be made with hydraulic cement and of carbonic acid gas generated by a slight retention ion for the perfect preservation of its contents from the destructive influence of the air. The pas being the destructive infuence of the air. The gas being
heavier than air settles to the bottom, filling the entire silo to the exclusion of air. Hence the necessity of making it gas tight. See Concrete Silo, in Supplement No. 242.
(26) W. H. asks: 1. What acids or what process to put brass through to tin or lead line the
brass. A. Dip the tubes in a solution of hydrochloric cid to which zinc has been added. This solution must be rubbed in the inside of the tube; then proceed with the tinning process, for which see the article on ElecNo. 310. 2. How to mix a solution to zinc cast iro, and how to treat the castings before dipping? A rThe solution as just mentioned consists of hydrochloric acid into which zinc is put. The castings are tinned, and soldered with resin.
(27) A. N. asks if all the sparrows seen in ar streets are English sparrows, and if all the male reasts or necks. A. All of the English sparrow stock. The males are distinguished by the dark spots.
(28) F. S. asks (1) whether there is any way of inlaying bronze or brass letters in stone except by heating process. Can it be done in a similar way to
Illing teeth in dentistry? A. Letters and devices cut in gems are filled with gold foil by pressure with small ools. Letters are cast and inserted in artificial stone byaking the stone and inserting letters (name and daress) before it sets, then finishing off the surface. malgam of copper flings and mercury which after etting may be finished with the surface of the stone Metals may be also deposited in such cuttings by the lectrotype process. 2. Is there any way of filling eams in hard wood by using fine sawdust and glue? If so, how should it be prepared to make it waterproof,
as it is for a hard wood floor? A. You may fill seams in floor with sawdust and shellac varnish that will be (29) F. W. H.-The wire is composed of sinc, and is probably alloyed with something to harden it, such as aluminum. It is likely that it will have to
be procured by special order. If we knew more of its be procured by special order. If we knew m
history, perhaps we could tell more about it.
Minerais, etc.-Specimens have been reeived from the following correspondents, and xamined, with the results stated:
R. M. L.-The mineralogical name for the Arkansas Pulaski novaculite. It is founcs (there called Oua chita oil stone) and at Whetstone Mountain. The mount found is probably small,as less than $\$ 100$ worth is annually sold. The stones are prepared by grinding suitable pieces on revolving grindstones.

INDEX OF INVENTIONS For which Letters Patent of the United

May 20, 1884,

AND EACH BEARING THAT DATE.

Biard marking, apparatus for, R. Bateman.....
Blind slat operator, w. H. Keeran.................
Boar. Se Game board.
Boiler. See Agricultural boiler. Steam boiler.
 Bottle capper, C. May....................................
Bottle carrying box, T. Drummond.....
Box. See Bottle carrying box. Letter box. Box covering and trimming machine, G. Munro.. 298,879
Box strap or band, w. Morrison, Jr....... 298,999 Box strap or band, W. Morriso
Brace. See Shoulder brace.
Brake. See Automatic brake.
Brake shoe, G. N. Sceets298,897
Brick machine, W. . Gregg
Bre.............. Brick machine, w. S. Smith Buckle, D. D. L. Smith
Buas Buckle, harness, H. A. Fonteine. Buckle, trace, C. C. Bauder....................
Building, portable, J. S. \& R. M. Simmons Building, portable, J. S. \&
Bung borer, G. A. Stanger Bung borer, G. A. Stanger 2988,9953 Burner. See Gas burner.
Button and cuff holder, combined, C. H. Lowell.. ${ }^{298,993}$
Button fastener, J. F. Thayer 298,996 Button fastener, J. F. Thayer 298,796
Button setting instrument, e. Kempshall....... 298,984
\qquad

Car coupling, J. F. Fairfield.Car coupling, G. W. Smith
Car, dumping, , stonCar, hand, Dunbar \& Kinley
Car starter and brak
Car. stock, H. HessCard, wood exhibiting, Brooks \& ReedCarpet stretcher, F. J. Hubbard..Carriage bow, F. A. Wittich.Carriage, child's, H. C. Seely88.84,
Carriage curtain strap fastening loop, H. Higgin.Carriage curtain strap fastening
Carriage door, siding, F. P. Stone
Carriage, infant's. C. w. Trow ...
Carriage, infant's. C. W.
Carriage top, R. H. Pfaff.
Carrier. See HayCart, road, McCollum \& StranCart, road, McCollum \& Stran.moulds for, J. Demogeot.
Chair. See Spring chair
Cbair. See Spring chair.
Check rower and corn plat
Churn, C. J. Le Roy....
Churn, W. H. Nicholson
Churn cover, J. G. Pri
cider mill, A. D. Lair to prevent the fusion of, W
Clamp. See Saw clamp.
Clevis, draught. F. H. C
Cutch, H. Schweitzer...Clut
Clutc
Cock
Cock, or filtering faucet, hydraul
Collar, F. Beiermeister J. A. Holt
ollar fastening, horse, I. P. Hoff
Corn sbelling machine, hand, L. Blue, J. S. Sc.........
ling. Thill coupling.
Cultivator, G. W. Brown...
Cuttivator, 1 ngueless, J. M. McClen
Cupola furnace, Clapp \& Griffiths (r)
Curtain roller, H. H. Bryant Cutter, See Stalk cutter. Wire cutter.
Dental engine angle attachment, A. Webe
Diamonds ine Time detector.
Ditching machine, F. Plumb
Door check, pneumatic. J.Door securer. Franke \&
Doors, stay roller for slidin
Draught equalizer, T. PaDrilling machineDriling machine, coal, L. P. Moran...
Dyes from the aromatic diamines, obtainingbrown, P. Monnet...
Ear ornament fastener
Earring, I.
Earring, II. G. MackinneEducational purposes, figure, map. and chart for
M. E. Guirey...
Electric battery, o. Milliard.
Electric'machine, dynamo,
soctic machines, operating dynamo, T. A. Edi-son ...
$\begin{gathered}\text { Electric motors and dyamo electric machines. } \\ \text { armature for, Vetter \& Putnam }\end{gathered}$armature for, Vetter \& Putnam
Electric multiple switch boardElectric multiple switch board system, T. N.....Electrical conductor covering, F. ..
Electrotype or stereotype plates, mortised wood-299,03298,751
299,012en block for, Ringler \& Alfeld
Elevator. See Skid elevator. Water elevator.
Enameling metal for jewelry.End gate, wagon, l. Cruzan..
End gate, wagon. G. W. Hurd ...Engine reversing gear, W. A. Clarke....
Exercising, striking bag for, A. B. Rumsye bars, manufacturing W. A. Rumyeglasses, E. Goldaacher.....

Fire extinguisher, G. W. I'aylor et al.................. . 299, 036		Velocipede, water, E. F. Steele	
	Pneumatic lock, A. W. Friller........................90.0.06		
Flushing apparatus for cl	290		Silver Finish.
	Pristing and rignetting frame, 0. P. Scott........ 28.9 ,91		
ure, knocka			${ }^{+}$
	Pup, apparatus for fo		
	Pup, apparatus for moulding articies		
Class pot oto ot For-		Wire cutter, F Stevens	
	Pulp, machi	Wire cutting machine, J. Houghton................. 298,974 Wire rolling machinery, W. H. Jackson, Jr 298,977	
ale.	$\xrightarrow{\text { Pulpomame }}$	Wireot	
ferr. see Eavesestrough hanger.	L. Chas	W. Sargent.......e. .a.	
	Pump		
		DESI	
29895	${ }_{\text {Rack }}^{\substack{\text { Rack } \\ \text { Railway }}}$	Actors shiole C. C. F. Walaron.	
- 298889	Rai		
cose			
25		Letters, capita,	
		${ }^{\text {Organ ca }}$	
2en	,	Paper. note, W. \cdot	
Pen holder. Pillow sham holder. Plaque holder			
Hoop. see Barrel hoop.		trade marks.	
	Sadae, harness. D. B. Hosisury ...	Beasteas, wardrobe, spieeel \& 8 Co.	
ad.		Matches, A Actiengeselschat	
		Penels, pencll holders, pen holiers, and	
ric, Schenck \& Stowe, 299,017. 299	Saw fling machine, gin, A. P. Gathright. 298,743 Saw jointer, B. S. Bozard............................ 298,820	Soap powder or powdered soap, Fis ing Company....	
		Tobacco and cigars. plug and smoking, S. W. Ven- able \& Co \qquad	
		Varnishes and liquid driers, D. Rosenberg \& Sons. 11,190	
	$\left\lvert\, \begin{aligned} & \text { seed } \\ & \hline \text { ened } \end{aligned}\right.$	nt	
$\xrightarrow{288,788}$			
${ }_{\text {209, }}^{29096}$		te	
	Sewing machine, buttonhole, F. Egge................ 298, 298,957		animulumy Cincinnati, Ohio.
		specifications, not being p	Distribution without eccen-
ring E. P. Haft			
, 8 , 83	Shutter worker D. F. F Iiver		
$\xrightarrow{298839}$	${ }_{\text {ska }}$	fore	
		aldurtiementi	JD ENG
兂	ski	(xamm	
			FUSIBLE PLUGS.-AS A SAFEGUARD
	sound an apparats.		
aring	Spool feeder, E. Allen....................................... . 299, 047		
	$\underset{\substack{\text { spri } \\ \text { spri }}}{ }$		
78	Stacking frame, W. J. Darrah............................. 298,833	and Jo	
	Stam trap. . B. Morse............................. 298888		
Schu			
mill.	Stone channeling machine. W. W. L. Saunders 29.090	9 Burlington	
s. puriflers, etc., feeder for, Bonnard \& G			
Id flask, H. Adams 298,811	$\begin{aligned} & \text { Stove, } \\ & \text { Strap. } \\ & \text { Street } \end{aligned}$	Challenge roller skate LEDGED BY EXPERTS AS THE	
ent. device to prevent retrograd ht.			
		T DURA	
	spith.		
	Tabel eeaf support, H. . . Goola................. 288 ,987	C. HENLEY RIOHMOND, HD.	
	Telerraphs,	PATENT FOR SALE, Elastic or ${ }_{\text {che }}$	NSONS PORT
$\xrightarrow{29890688}$		Seter	
an.	Telephone	Problems of Nature	OTH
		Problems of Nature.	N.Y. U.S.A
115	${ }_{\text {Te }}$	wit	
pres mat C.S. Hamiton...................2088.88	Theaters border 112ht for, J. T. Prededey $288,8,8$		
nes hart bearing, device for, T. Y . W. Winter....2929,096			
kine	Tile machine, F. M. Harrist tal29, 29.8		
		LWAY and steam fitrers' stiplies,	
Pand water protective. Pott ¢ ¢ stratton.........290.088		jector.	
	$\left.\right\|_{\substack{\text { A.L. } \\ \text { Tobaco }}}$		
228,870	Topogr		
	To	Cra	
硅			
		RIET	
Planter check rowers, tappet wire for corn, G. W. .	Valve, balancea sile, W. W. A. Pearson................ $29,0,04$		

(FLAT AND SWIVEL BASES.)
SOLID JAWS; STEEL-FACED OR SOLLD STEEL

 NATHAN STEPHENS, Prop.,

BARREL, KEG, Hogshead,
STAPE MACHINERT.
E. \& B Holmes,

NERVOUS DEBILITY in IEEN
 266th EDITION. PRICE ONLY \$1
 A Great Medical Work on Manhood

 oncers of which he refers. by the young for instru ction
This book should be read
and by the afficted for relief. It will beneft all.- Lon
don Lancet. There is no member of society to whom this book will
not be useful, whet her youth, parent, guardian, instruct-

PATENTS.

lication of the scientific Amprican, continue to ex-
amine Improvements, and to act as Solicitors of Patents amine Improve
for Inventors.
In this line of business they have had thirty-eight years' experience, and now have unequaled facilities fo
the preparation of Patent Drawings, Specifications the prosecution of Applications for Patents in the Munn \& Co. also attend to the preparation of Caveats Copyrights for Books. Labels, Reissues, Assignments,
and Reports on Infringements of Patents. All business intrusted to them is done with special care and promptness, on very reasonable terms.
taining full information about Pe, on application, concure them; directions concerning Labels, Copyrights, signments, Rejected Cases, Hints on the Sale of PaWe also send. free or charge, a Synopsis of Foreign
Patent Laws, showing the cost and method of securing patent Laws, showing the cost and method of securing
patent all the principal countries of the world. MUNN \& CO., Solicitors of Patents, 361 Broadway, New York.

[^0]
,

 RUBBER BACK SQUARE PACKING. BEST IN THE WORLD. For Packing the Piston Rods and Valve Stems of Steam Engines and Pumps. of the packing which. When in
ich keeps the part B against th

NEW YORK BELTING \& PACKING CO.;
John H. Cheever, Treas.
Nos. 13 \& 15 Park Row, opp. Astor House New York.
\qquad
Nos. 13 \& 15 Park

E" ROCK BREAKER.

For Mncndam Rond making, Ballasting of Railronds. Crushing Ores use of Iron Furnaces,
 blake Crusher co., Sole Makers, New Haven, Conn.

${ }^{\text {最 }}$Rider's New and Improved COMPRESSION Hot Air Pumping Engine New and Improved Designs.
INTERCHAN CEABLE PLAN
 No. And 40 Dearborn Street, Chicago, ill. THE DINGEE \& CONARD CO'S

The only estabishment making a SPECIAL

Special Machines for Car Work, and the
Wood Working Machinery of ail kinds.
Telegraph and Eilectrical SUPPPLIES

THECOMPLETE HOME. Agents wantea

BIBB?S Timp Pidufinoddorio $\underset{\substack{\text { Ma } \\ \text { B. } \\ \text { Best } \\ \text { guar }}}{\substack{\text { B. }}}$ $\underset{\substack{\text { Ballitimore } \\ \text { Mid } \\ \text { SON, } \\ \text { Sostworkmanshin }}}{ }$

 VTATPIR. Cities, Towns, and Manufactories Supplied by Green \& ShawTUBE AND GANG WELL WI. D. Andrews \& Bro., 233 Broadway, N. Y

WATCHMAKERS.

THRTSN:

Ortered. Address
Secretary, Board of Trade, St. Peter, Minn.
PERFECT
NEWSPAPER FTLE
The Koch Patent File, for preserving newspapers.

ROOT'S NEW IRON BLOWER.

POsirive minst
IRON REVOLVERS, PERFECTLY BALANCED,
P. H. \& F. M. ROOTS, Manufacturers, S. S. TOWNSENNEREVEILLE, IND.
 SEND FOR PRICED CATALOGUE.

TELEPHONE $\begin{gathered}\text { with } 200 \text { fet wire, } 83.50 . \text { Send for } \\ \text { circular. }\end{gathered}$

PIPF GOVFRING.

 FOREIGN PATENTS.

Their Cost Reduced.
The expenses attending the procuring of patents in most foreign countries having been considerably re-
duced, the obstacle of cost is no longer in the way of a arge proportion our inventors patenting their inven CANADA.-The cost of a patent in canada is even less than the cost of Provinees of Ontario, Queueco, New
former includes the
Brunswick, Nova Sootia, British Columbia, and Mani-
Toba.
The number of our patentees who avall themselves of The number of our patentees who avalil themselves of ing. Great Britiain on very moderate terms. A Aritith pa-
tent includes England, Scotland, Wales, Ireland, and the Channel Islands. Great Britain is the acknowledged financial and commercial center of the world, and her goods are sent to every quarter of the globe. A good
invention is likely to realize as much for the patentee in England as his United States patent produces for
him at home. and the emall cost now renders it possible for almoste eerry patentee in this coontry to secerue a pa-
tent in Great Britain where his rights are as well protected as in the United states.
on very reasonable terms in France. Belgium, Germany on very reasonabbe terms in France, Belegium, Germany
Austria, Russia, Italy, span (the latter incluces Cuba
and and all the other Spanish Clolonies), Brazi, British Iudia Australia, and the other British Colonies.
An experience of tHIRTY-IIGHT years has enabled Lhe publishersof THE Scientific Anericav to establish
competent and trustworthy agencies in all the principal forpeten countriess and it thas almays been their aim to
fore the business of their clients promptly and propery done and their interests faithfully guarded.
A pamphlet containing a synopsis of the patent laws of all countries, including the cost for each, and othe
information useful to persons contemplating the prothis office. this office.
MUNN \& CO., Editors and Proprietors of The sci-
ENTIFIC AMERICAN, cordially invite all persons desiring any information relative to patents, or the registry of
trade-marks, in this country or abroad, to call at their fffices, 361 Broadway. Examination of inventions, con sultation, an
answered.
Addr

Address,
MUNN \& CO.,
Branch Office, cor. F and 7th Streets, opposite Paten

 Engravings may head advertisem.nts at the same rate
per line, by measurement, as the letter press, Adver per line, by measurement as the letter press. Adver
tisements must be received at publication oftce as earl as Thursday morning to appear in next issue.

F. Brown's Patent

FRICTION CLUTCH.

A. \& F. BROWN, 43 Park Place, New York

The " MONITOR."
A NEW IITHINGAND NON

510

 GNKINS' PAPBNTH VATVME; Gate, Globe, Angle, Check, and Safety.MANUFACTURED OF BEST STEAM METAL.

James Boyd. Puiladelphia. Pa.
Reas.
Reno
Rebs.

TO INVENTOB

We would like to secur $\stackrel{\circ}{\circ} \stackrel{D_{0}}{3}$ clusive right to manufactio atented Articles, such as are mode in whole or part of Iron, and such as will command a ready sale among the Hardware, Stove, or Agricultural Implement trade. Household articles or Agricultural Implements preferred. Address
J. W. WILLIAMS \& SON,

OLUMBIA BICYCLES

BOOK S ON BUILDING, PAINTING,

BARNES'

HARRIS-CORLLSS E EFCINE, With iar ruy Empreenens.

A x^{2} meswez

METALLIC SHINGLES.

Double Screw, Parallel, Leg Vises Made and WARRANTED stronger than any other Vise
by EAGLE ANVIL WORKE only, Trenton, N. J.

 will pump 500 galloss 100 feet high with 25 feet of gas.
POWER DETERMINED BY ACTUAL TEST cal and see them, 1 ror circulars an pricesaadress
THE CONTNENTAL GAS ENGINE CO. No. 231 BROADWAY, NEW YORK.
 SHEPARD'S CELEBRATED Screw Cutting Foot Lathe

 Ho kuranied tobe

MRE ROPE

Adress JoHN A. ROEBLING's SONS, ManufacturSheist and Rope
Send for circular.
SOCTHWARK FOUNDRY \& MACHINE COIIPANY, Engineers \& Machinists, Porter-Allen Automatic $\begin{gathered}\text { Sid } \\ \text { Cat-0ff }\end{gathered}$

Cornell University.

Electrical Engineering,
Mechanical Engineering, Civil Engineering and Architecture. Entrance Examinations Begin at 9 A. M., June

 Emerson's New lx Book of SA W S

 Never failing of success. Now read for for fistribution.
Send your fuli adress to
Emerson, Smith \& Co., Beaver Frils, Pa.

SPEAKING TELEPHONES. THE aBJERICAN BELL, TLLLEPIIONE COMPANY
 Alexander Graham Rell's patent of March 7, 1876,
Wved by this company, covers every form of appatus,
ncluding Micromhones or Carbon Telerhones, in which orresponding to the words spoken, and which articula ave decidided thiser of to thenttrand the true men. Sir cir cuit cour
he validity of the patent has been sustained his claim

 makers. sellers and uners will be procee
Information
Adress all communication apolication

9ROSNRUM

ฐ̌ientific samurician
FOR 1884.
The Most Popular Scientific Paper in the Woridd. Only \$3.20 a Year, including postage. Weelily.

This widely circulated and splendidyly Illustrated
paper is published weekly. Every number contains six paper is published weekly. Every number contains six teen pages of useful information, and a large number of
original engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery,
New Inventions, Novelties in Mechanics, Manufactures, Chemistry, Electricity, Telegraphy. Photography, ArchiAll Clariculture, Horticulture, Natural History, etc american a popular resume of the best scientific inormation of the day; and it is the aim of the publishers possible abstruse terms. To every intelligent mind, eading. It is promotive of knowledge and progress in every community where it circulates.
Terms of Subscription.-One copy of the ScIENific American will be sent for one year- 52 numberspostage prepaid, to any subscriber in the United States
or Canada, on receipt of three dollars and twenty cents by the publishers; six months, $\$ 1.60$; three months, $\$ 1.00$.
Clubs.
Clubs.-One extra cony of the SCIENTIFIC AMERI-
CAN will be supplied gratis forevery clubof five subscribers t $\$ 3.20$ each; additional copies at same proportionate

One copy of the Scientific American and one copy
f the Scientific American Supplenent will be of the SCIENTIFIC AMERICAN SUPPLEMENT will be sent
for one year, postage prepaid, to any subscriber in the
United States or Canada, on receipt of seven dollars by the publishers.
The safest way to remit is by Postal Order, Draft, or
Express. Money carefully placed inside of envelopes, ecurely sealed, and correctly addressed, seldom goes stray, but is at the sender's risk. Address all letters

MITUNAV \& CO.,
361 Broadway, New York. Th Foreign Subscribers.-Under the facilities of by post direct from New York, with regularity, to subBritish colonies; to France, Austria, Belgium, Germany, Kussia, and all other European States ; Japan, Brazil,
Mexico, and all States of Central and South America. Terms, when sent to foreign countries, Canada excepted, $\$ 4$, gold, for Sclentific American, one year; $\$ 9$, gold,
for both Scientific Ambrican and SuPPLEMENT for one year. This includes postage, which we pay. Remit MUNN \& CO., 361 Broadway, New York.

PRINTING INKS:

[^0]: BRANCH OF
 Washingtion, D.

