

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

	NEW	YORK	MAY	17, 1884.	$\left[\begin{array}{c}\$ 3.20 \text { per Annumm } \\ \text { [POS'TAGE PREPADD.] }\end{array}\right.$

THE PAINT AND VARNISH MANUFACTURE AS CONDUCTED BY F. W. DEVOE \& CO. [See page 308.]

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. pUblished weekly at
 No. 361 BROADWAY, NEW YORK.

o. D. MUNN

A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.
One oopy, one year postage included..
160 Clubs.-One extra copy of The Scientific Am ERICAN will be supplied
cratis for every club of five subscribers at $\$ 3.20$ each; additional copies at same proportionate rate. Postage prepaid.
Remit by postal order. Address
MUNN \& CO., 361 Broadway, corner of Franklin street, New. York.
The Scientific American Supplement
is a distinct paper from the Scientific american. 'THE SUPPLEMENT with scientific american. Terms of subscription for Stpplemert $\$ 5.00$ a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all news dealers throughout the countrs.
Combined Rates. - The Scientific American and SUPplement will be sent for one year postage free. on receipt of s
papers to one address or different addresses as desired.
The safest way to remit is by draft, postal order, or registered letter. Address MUNN \& CO., 361 Broadway, corner of Franklin street, New York

Scientific American Export Edition.
The Scientific american Export Edition is a large and splendid periodical, issued once a month. Each number contains about one hundred
large quarto pages, profusely illustrated, embracing: (1.) Most of the plates and pages of the four preceding weekly issues of the Sciexilfic American, with its splendid engravings and valuable information: (2.) Commercial, trade, and manufacturing announcements of leading houses.
'I'erms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the world. Singlecopies 50 cents. Manufacturers and others who desire to secure foreign trade may have large, and handsomely displayed an ouncements published in this edition at a very moderate cost. The SCIENTIFIC AMmelican Export Edition has a large guaranteed circu-
lation in all commercial places throughout the world Adress MUNN \& Co., 361 Broadway, corner of Franklin street, New York

NEW YORK, SATURDAY, MAY 17; 1884.

RTMMOVAL

The Scientific American Office is now located at 361 Broadway, cor. Franklin St.

TABLE OF CON'TENT'S OF

the scientific american supplement NO. 437 ,

For the Week ending May $17,1884$.
Price 10 cents. For sale by all newsdealers.
I. ENGINEERING AND MECHANICS.-Bange's Artillery System. Siege and fortress guns.- $\boldsymbol{3}$ engravings.
Planetary Wheel Trains.-Action
wheels, and formulæ or equations for the same.-With 13 figures. Single Spindle Profling Machine--With engraving. Proposed Suez Ship Railway. - With full page of engravings Auber's Tubular Boiler with Movable Fire-box.- 1 engraving...
Submarine Explorations.-A puaratus used on the Talisman collecting water at different depths.- Electric light in the sea.Effect of the pressure of the water at great depths.-Deep sea and surface fishes taken by the Talisman.
II. TECHNOLOGY:-Notes on Pharmaceutical Apparatus.-Paper read by CHAS. SYMES at a meeting of the Liverpool Chemists' As ociation.-With 3 engravings. .
Amalgam Retort and Condenser.- With engraving.
II. ELECTRICITY.-The Play of the Need

The Great Discoveries in Electricity
-With 1 figure.
.............
History of the Electric Telegraph.-How Morse first thought of he telegraph.-Description of Morse's different apparatus.-With ve engravings and d
The Drawbaugh Telephones.-Wi...................................
ures... elentists.-By Prof. Taif.
IV. ASTRONOMY.-Prof: HeYer on Comets.-A letter to the Editor, 6972
V. PHYSIOLOGY, ETC.-The Six Gateways of Knowledge.-By Prof WM. Thoms.
cigceluanmous - How to Mave
Brooders. -6 figures.
Two Useful Geometrical Problems.

ELEVATED CITY RAILWAYS CAUSE EYE TROUBLES

The introduction of the elevated railways in this city has also brought in a peculiar class of optical troubles, due to the lodgment of iron dust in the eyes of pedestrians and others who have occasion to travel or pass under the railway structures. Hundreds of such cases are now treated at the hos pitals, and most of them are successfully cured, the parti cles being removed by a gouge-sbaped instrument about the size of a sewing needle. The pieces are too firmly held to be removed by maguets.
The trains have a high speed between stations, and are quickly brought to a stop. This requires strong braking, which grinds off the iron from the shoes in fine showers and the iron particles fly in all directions.
A magnet applied by us to the tops of the crossties at tracted a large quantity of very fine iron dust. Each pass ing train deposits its quota of iron, not only on the cross ties, but upon the street below. We passed a magnet along th gutter of the street near the stations, where dust usually ac cumulates, with the result that large quantities of iron par ticles were secured upon the magnet. The same experiment was also tried in Broadway, through which no elevated rail road runs, and while iron particles were attracted, the quantity was far less than at the railways. By passing the magnet along a distance of only six feet near a railway station, more iron was attracted than by passing it along an entire block on Broadway.
These particles varied in size from one-sixteenth of an inch to dust so fine as hardly to be distinguished by the naked eye, and were frequently entirely invisible, requiring the aid of the microscope to reveal them. Viewed under the microscope, their dangerous character becomes apparent. The greater part were bordered by a jagged fringe with very fine points, compared with which the pointof a cam bric needle appeared dull. Not infrequently the projection were hook-shaped and barbed similar to a fish hook, which will account for the difficulty experienced in removing them from the eye, into which they have been driven-the clos ing of the eyelid and the rubbing which thoughtlessly followed, assisting to more firmly embed them in the cornea In order to determine whether iron particles could be at tracted while floating in the air, a magnet exposing about one square foot of surface was suspended in mid air under one of the railroad tracks, and although the magnet was by no means a strong one, it attracted to itself iron particles in spite of a strong wind which blew at the time.
Further, the awnings of shop keepers along the lines of the elevated railroad are discolored by iron rust in a very short time, and require frequent renewals; since washing fails to remove the stains which the rust produces.
The evil above described being manifest, the question of its prevention naturally suggests itself. The subject is worthy the attention of inventors.

THE LITTLE SHOP

It is time that notice should be taken of the work done a well as of the place taken by our small shops. The " big concerns" do not monopolize all the skill and mechanical capability in the country. They may profess to do the best work and produce the best results, because they are fur nished with the best tools. But they do not monopolize all the mechanical skill, nor collect all the best workmen Many of the best manipulators, and a very large proportion of the most exact meshanics, are in the little shops; con tent, may be, to be the foremen, when in a big shop they would be only first class workmen. The small shop men are valuable in any shop where mechanics, rather than operatives, are required, because they are generally " men at pinch," "expediency men," and generally excellent work

The proprietor of a large manufacturing establishment building fine tools of a particular character, claims that his best men come from small shops where makeshifts and contrivances are the rule. "Such men," he says, "can make the shop hum" by their methods.
It is very convenient to have a shop full of adapted tools but it is also convenient to have in the shop graduates from "the little shop" who can contrive as well as tend a machine.

The Blanchard Lathe.

The "last lathe" of Thomas Blancbard is an invention that proves itself worthy the name in perpetuity instead of being confined to the turning of wooden lasts. This inven tion was made public more than sixty-three years ago-Janu ary, 1820-and was afterward adapted to wheel spokes, ha blocks, wig blocks, and a large number of other irregula forms. Although Mr. Blanchard made many improvement on his original device, the main design is retained in the latest adaptations-that of guiding a rapidly revolving and longitudinally feeding cutter head by a model. Except fo exact corners, there is hardly any simple form that cannot be reproduced by the Blanchard method; of course, a produc tion with a body and members, as a statuette, or a vase, o many other articles, could not be turned as a whole in the lathe.
A few changes have been made in the Blanchard lathe within the last twenty years, but these were mainly adapta tions of well known mechanical movements for the specia work to which the particular lathe was assigned. The
writer well remembers Mr. Blanchard, thirty years ago, and in conversation he then stated that of all his inventions that
radical change. Yet he would be surprised to see one of his machines turning out from 600 to 700 carriage wheel spokes every ten hours, made from the toughest bickory, and not only that, but changing its feed automatically to suit the work. This change is quite ingenious. There aretwo feed to the longitudinal progress of the cutter head along the machine, and where the sawed spokes are small and the mount of material to be removed is little, the feed is very rapid; but as the cutter head approaches the hub end of the poke the curve makes the material to be removed more, beause the spokes as sawed present only straight lines from end to end. The feeds are by pulleys and belts, and when he time comes for changing the movement of the cutter head, it releases a lever and holds another, each carrying dler pulleys, so that, the fast or swift feed pulley is released and the slower pulley takes its place. The work is so nearly automatic that the attendant has only to take out the turned poke and put in a sawed blank; but at the rate of over one a minute bis place is no sinecure.

Disinfection of Egyptian Rags.

In relation to the proper disinfection of rags imported into the United States from Egypt, the State Depart ment has, upon careful and mature consideration of the subject commensurate with the interests involved, decided upon the following methods of disinfection, either of which will be satisfactory to the health autborities of New York city, New Haven, and Boston, who have been consulted in espect to the matter, viz.

1. Boiling in water for two hours under a pressure of 50 ounds per square inch;
2. Boiling in water for four hours without pressure; and 3. Subjection to the action of confined sulphurous acid gas for six hours, burning $11 / 2$ to 2 pounds of roll brimstone in each 1,000 cubic feet of space, with the rags well scat ered upon racks.
Full and explicit instructions have accordingly been given to Mr. George P. Pomeroy, Agent and Consul General a Cairo, and Mr. Francis McNally, a citizen of the United States, has been designated as the Inspector. He will have immediate supervision, under the Consul-General, of the process of disinfection, will be required to give the subject bis earnest personal attention, and furnish a proper certifi cate. Mr. McNally's certificate will show the foilowing acts: The name of the consignee in the United States, he place where the rags were disinfected, and the process of disinfection, which must be one of the processes hereinefore described.
After that the Consul-General is to authenticate the certi fate given by the Inspector. This process is to be observed in the case of every bale of rags, which is to be also marked "Thoroughly inspected," with the name of the inspector.

The Parasites of Money

The Frankfurter Zeitung states that Dr. Reinsck bas ound, as the result of a long series of minute investigations, that the surfaces of 50 -pfennig pieces (sixpences) which have been long in circulation are the home and feeding ground of minute kind of bacteria and vegetable fungus. An ex ended series of observations showed that this is the cas with the small coins of all nations, the thin incrustation of organic matter deposited upon their surfaces in the conurs of long circulation rendering them very suitable for thi parasitical settlement. Dr. Reinsch scraped off some o these incrustations, and with a small scalpel divided them into fragments, which were subsequently dissolved in dis tilled water. The employment of lenses of very high powe showed the bacteria and fungi distinctly. This is a matte f no little importance from a bygienic point of view. It has now been conclusively established that bacteria form the chief agency in the propagation of epidemic disease. The evelation that they have a chosen domicile in the most widely circulating medium which probably exists in the world presents us with a new factor in the spread of infec tous disease. There is, however, a remedy. Where coins have been in circulation for a number of years, if they are washed in a boiling weak solution of caustic potash they will e cleansed from their organic incrustation, and so freed from the unwelcome guests which they harbored.

A Cough Remedy.

One of our English contemporaries, in reply 10 an inquirer, commends a sirup made of the following ingredients for olds and coughs: Take 18 ounces of perfectly sound onions, and after removing rind make several incisions, but not too eep. Boil together with $131 / 2$ ounces of moist sugar and $3 / 4$ ounces of boney in 35 ounces of water, for three-quarters f an hour; strain, and fill into bottles for use. Give one tablespoonful of this mixture (slightly warmed) immediately n attack, and then, according to requirement, five to eight balf tablespooufuls daily. It is said that this recipe was that used by the Zulu Caffies when visiting Europe some wo years since, and who suffered much from the climate, but invariably recovered upon its use.

Orange Judd, who bas ably managed and edited the American Agriculturist for thirty years, has retired from the atter paper and removed to Cbicago, where he is employed as editor of the Prairie Farmer. We wish Mr. Judd great success in his new field of labor, and we congratulate the Prairie Farmer on its good fortune in procuring the service Prairie Farmer on its goo

Casting of a Heavy Gun.

On May 6th, the largest gun ever constructed in this country was cast at the South Boston Iron Works in fulfillment of a contract with the Government. In the advance foundry of the works is a large pit, which is always used when guns of any size are 10 be cast. This pit is about 40 feet decp and a dozen feet wide, built in a circular form, the outside being of large iron plates riveted together; and as there is only a depth of about 12 feet to the level, these plates.have to be anchored down to keep them in posiliou and to withstand the pressure of the water. Next to the iron plates is a brick wall 12 inches through, and inside of this a thick layer of cement and sand. This pit, to be made available for the work, had to be made deeper and a number of other alterations made. Into this had been placed for the casting, termed a flask or circular mould, which is made in sections, and consists of an exterior body of iron with a layer of sand and cement on the inside about six inches thick, which is covered with a composition of blacking. In the interior of the flask, which was about four feet in diameter, was placed the core, consisting of a long wrought iron flue, around which is placed a layer of rope, and over this a thickness of sand and cement. Into the interior of this core during the casting cold water is run in by a pipe down one side and forced out boiling hot on the other side.

Near the pit are situated three furnaces, each of which contained about 36 tons of iron, which at 4 o'clock in the afternoon, after having been subjected to an intense heat for twelve hours, had been reduced to a molten mass. Connected with each of the furnaces were long troughs for the conveyance of the hot metal to a large iron tank a few feet from the pit, known as the pool or mixer, and from which two short troughs ran into the flask.
At a few minutes past 4 o'clock it was announced that everything was in readiness. Superintendent Asbrand and Foreman Wonds took their positions near the pit, and the begrimed workmen with ladles in hand arranged themselves on each side of the troughs and near the flask. Each one was silently and patiently waiting when, at 4:24 o'clock, the foreman sang out, "Let her go," and immediately from each furnace came a stream of molten iron which threw out thousands of sparks in every direction. The hot mass ran into the flask with a seething noise. At the end of twentyfour minutes the flask was filled to the brim, and those in charge announced that as far as it had gone the casting had been very satisfactory. While the iron is cooling the streain of cold water will be kept running through the core, and a woodeu fire will be kept burning outside and all around the flask. The core will be removed as soon as the iron is cooled sufficiently.
This casting was made with the breech up, and in order that the gun may be perfectly strong the mould is constructed about five feet longer than what the gun is intended to be finally, and the part not wanted is cut off. When completed it will be about thirty feet in length, of 12 inch rifle, weighing 212,000 pounds, and worth $\$ 28,000$, about half the sum that a steel gun would have cost. It is calculated to be able to throw a projectile six miles. This company is also under contract to furnish to the United States a 10 inch wire-wrapped cast iron rifle gun, a 12 inch rifled mortar, and another gun similar to the one cast, but sborter.

Evergreens.

Mr. W. D. Boynton communicates to the American Garden an article on planting evergreens, which should interest a great many persons, for there are but few varieties of trees which are more beautiful than-groups of balsams, pines, and firs, and they are among the most likely to thrive after transplanting.

As to the season for transplanting, says Mr. Boynton, either fall or spring is good. The when is not so important as the how. I lean a little toward the spring planting, however, as the ground is then more moist, and no other vegetation in the way about the roots and stems to obstruct the work of taking up the young trees.
My first and main precaution is to secure the body of mould immediately around the tree that contains most of the feeding roots in a tree of small growth. I have this lifted out carefully with the tree in the center, as little disturbed as possible, and then wrap coarse sacking about the whole, drawing it up around the trunk and tying firmly. In this shape they can be loaded into a wagon box that has a thick layer of straw in the bottom, and taken home. They should be set out at once, watered, and staked.
The reader will understand that this way of taking up can only be practiced on short distances, where the trees can be taken home and set out in a few bours at the most. If they are to be shipped, the mould must be detached, and moss worked in among the roots and bound around them. Even here I hold to the idea of wrapping coarse sacking around the whole, and fastening around the stem. The whole mass
is then moistened, after which treatment they will stand quite a journey and come out in good condition.
If the planter finds that the roots are at all dried up when he comes to set them out, the tree may as well be pitched into the brush heap at once, for it will sooner or later find its way there. Never use manure of any kind around the roots of a young evergreen tree. Vegetable mould is good, but they do not need a rich soil. They should always be staked firmly, for they offer a thick top to the wind, and if twisted about, the roots cannot get a hold.

Death of Prof. Samuel D. Gross.
This eminent physician, lecturer, aud autho:, who has been prominent in the medical world for the last half century, died in Philadelphia, May 6, in the 79th year of his age. He was born near Easton, Pa., and graduated from the Jefferson Medical College of that city in 1828. In 1833 he became a lecturer at the Medical College of Ohio, and in 1840 he ac cepted the chair of surgery in the University of Louisville. In 1850 he succeeded Dr. Valentine Mott in a similar posi tion in the University of New York, and after that was for 26 years Professor of Surgery in Jefferson Medical College, until 1882, when he resigned from advanced age. Dr. Gross was active as a lecturer and author throughout all of his long life. His lectures on the "Elements of Pathological Anatomy," published in 1835, at once took a high place, but his " System of Surgery," which first appeared in 1859, is his most elaborate work; it has ever since been a standard authority among surgeons, and up to 1872 had passed through five editions. An honorary degree was conferred upon Prof. Gross by the University of Oxford, and also one by Cambridge, and he was a member of the American Pbilosophical Society; the Imperial Medical Society, in Vienna the Medical Society of Christiania, in Norway; the Royal Medical and Chirurgical Society, of London; the MedicoChirurgical Society of Edinburgb; the Medical Society of London; the British Medical Association, and of almost all the medical societies in this country. The remains were cremated, according to the special directions of Prof. Gross, at the Wasbington, Pa., crematory.

Incidents in the Life of a Distinguished Doctor.
In a memorial sketch contributed to the New York Medical Journal by Doctor W. Gill Wylie, on the life and works of the late Doctor J. Marion Sims, many interesting facts and incidents in his life are given. We omit what the writer says of Doctor Sims' professional work, and confine our extracts to the biographer's testimonial of his deceased friend's personal habits and methods, which carry with them good example for others to follow:
" He was truly master of himself. Vices he had none, not even of the smallest kind. The animal in him was completely under control. His babits and his appetites were lways guided by his reason. I have known him, day after day and month after month, rise at seven, take a simple breakfast, consisting of a glass of milk and Southern hominy, bread and butter, and sometimes an egg. At eight enter his carriage and make a few morning calls on severe cases. At nine return to his office and see patients til one or one thirty, and take a simple lunch of steak, pota toes, etc. At two enter his carriage, visit patients, operate,
etc., returning home usually about five or six, write letters, and at seven take a plain dinner of one kind of meat and vegetables. He never took wine, nor coffee, nor tea, nor
condiments of any kind. At the table he was usually talkative and playful, talking about the topics of the day, the theater, of which he was very fond, etc. After dinner he usually wrote letters and did light work, reading journals, etc., or passed his time with his family or friends in the drawing room. About nine thirty he would usually go to his bedroom, where he read or wrote, sometimes lying in bed, until midnight, when he would retire for the night. It was always marvelous to see him so continuously and persistently intent upon his work. He had a habit of writing down ideas at night, by means of a pamphlet, the edge being placed on paper so as to guide his pencil without a light.

When one was familiar with his capacity for endurance, his power of concentration, his unbounded enthusiasm, bis deliberate, persistent, painstaking work, backed up by his unselfishness and undaunted moral courage, it was not surprising to witness his success. His motto as a boy was it had become a habit for bim to do what he thought was right. Difficulties, obstacles, and trouble were as nothing to him when once he had made up his mind to act. He went directly at a thing, and be kept at it until it was mastered. It was this great painstaking and persistent
work that made things so clear and so definite to him, and euabled bim to express his ideas so lucidly. It was also this power that developed his self-reliance and his moral courage, and made his instruments and his methods of operating so near perfect that those who claim to improve or modify them are merely working backward over the same ground
that Marion Sims traveled over in perfecting them. His was the inductive method, or working and perfecting method-a developing method. He cleared away complications, and gradually simplified ideas and instruments till they approximated the truth and the best.
'He was no idle dreamer; he never wandered into intangible mysticism; there was neither confusion about his work nor indefiniteness about his aims.
" His mind was always aggressive, progressive, receptive, "ogenious. He was a leader-a practical genius."

The Cincinnati flood of 1884 will probably never pass ou fie minds of those who were there at the time, but the height to which the water rose is well illustrated in a handome photograph sent us by the Cordesman \& Egan Company, manufacturers of woodworking machinery. The water is here seen to surround their large building up to the
second story signs, but they write us that they were all straightened out and their machinery running within a week after the water subsided.

[From the Rochester Union and Advertiser.]

The Patent Question.

Mr. George Ticknor Curtis appeared lately before the House Committee on Patents, and advocated a bill for the appointment of a commission to revise and amend the patent laws. This bill was introduced by your member, Colonel Greenleaf, some weeks ago. It provides for a commission of three persons, one of whom shall be a lawyer of at least ten years' practice in patent cases, and assigns to them the duty of examining, revising, and improving the patent system ; the report of the commissioners to be made in print at the beginning of the next session of Congress.
Mr. Curtis said that he had seen with great concern a state of feeling, of alarm and apprehension, suddenly arising among the inventors of the country, caused, doubtless, by the pending in this Congress of an unusual number of bills, some of which are considered as radical and injurious to the interests of inventors, while others, whether wisely framed or not, touched upon malters on which the patent system needs, or is supposed to need, amendment. But he did not appear in the interest of any particular class, or of any individual. He came before the committee to suggest that something ought to be done to quiet the apprehensions that had been excited, and to satisfy the great patent interests of the country that the House of Representatives is not inimical to them, or disposed to legislate in a spirit un riendly to them.
The bill for a commission, introduced by Colonel Greenleaf, was, he thought, the very measure whicl would assure these great interests of the determination of the House to deal justly with the inventors ; and at the same time would fford ample opportunity to introduce, after suitable in quiry, all the changes and improvements in the system that an be reasonably required.
Mr. Curtis said that what he wanted to see was a well digested, harmonious, and consistent patent code, accomplishing on the one hand all that protection and encouragement of the arts and sciences that Congress is constitutionally bound to give, and on the other hand properly guarding the public interests. He went through with a great many particular topics in the patent laws-such as the remedy or roceedings in the courts, the duration and extension of pat ents, damages recoverable, innocent purchasers of patented articles, reissues, the principles which define an invention and infringement, the specification and claims, and a great many other heaad-pointing out the expediency of now bringing all the laws relating to this peculiar species of property intc one comprehensive and exact text. He dwelt particularly on the present unsatisfactory state of the law concerning the effect of a foreign pateut on an American patent as to the time of expiration of the latter. He suggested many other questions which he thought could be and ought to be now settled by positive enactment, so that inventors may know what to expect. He thought it was a mistake for Congress, some years ago, to take from the Commissioner of Patents the power of granting extensions under a standing law. It was true that three years had been added to the term. But legislate as you will, he said, declare what public policy you will, make the term of a patent whatever you will, there will always be cases which will come to Congress for special relief, because the patentee bas not received, or thinks he has not received, the remuveration which he should have had. If he thinks so, you cannot shut him out, for he comes here by the right of petition.
This brings a crowd of cases before the committees of Congress, which cannot and do not investigate them as they ought to be investigated; and yet there is now an inclination to require applicants for extension to make out their whole case to the full satisfaction of the committees before they will report a bill giving leave to go before the Commissioner and prove that the extension ought to be granted.
Mr. Curtis' remarks were listened to by the committee with close attention, and subsequently they voted to report he bill to the House with a recommendation that it be passed.

A Stenographic Patent Bill

The bill introduced by Mr. Young in the House of Representatives is as follows:
Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, That secion forty-eight hundred and eighty-six of the Revised Statutes of the United States be delared to include, and it is hereby amended so as to include, in the meaning of the words "useful arts," the art of phonography, stenography, or short-hand, and that any invention, discovery, or improve ment new and useful therein shall entitle the discoverer, inventor, or improver thereof to a patent on the terms and conditions set forth in said section.
[Phonography or short-band is recognized by the Patent Office as one of the useful arts, and any new and useful im. provement therein may be patented. It therefore seems like waste of talent for Congress to re-enacta law that is already in operation.]

The work has been commenced on the structure of the New York approach to the Brooklyn Bridge. An excellent engraving of the improvement as it will appear when completed, was published in the Scientific American of April 12.

COLLECTING AND REMOVING WASTE FROM SPINNING MACHINES.

The apparatus herewith illustrated can be attached to any kind of spinning machine, and will keep the roller beam and flocr clear of waste, beside enabling the spinner to do a third more work than could be done without it. Beneath the electrical rod, G, travels a belt carrying two cushions that touch each face of the rod; these are followed by a comb. All the loose fibers and broken threads are drawn to the rod, thus keeping the roller beam clean, and by gathering the waste that would accumulate on the floor, prevent it from becoming dirty and worthless. The waste is taken from the comb by the rapidly revolving brush, I, and deposited in the box.
By the use of this device the threads are prevented srom running double or winding around the rolls, thereby lifting them and forming imperfect threads. The rolls being kept clean, the usual under cleaner is dispensed with. The roller beam and mule carriage being kept clean, the fly waste is kept out of the yarn and off the spindles. The waste is saved in a clean condition instead of becoming dirty refuse. One of the most important features of this device is that by using it manufacturers can avoid the making of a very large per cent of what is now styled imperfect cloth.
Further particulars regarding this invention may be ob tained from the patentee, Mr. W. A. Delmage, 11 Bridge Street, Lowell, Mass.

Fall of a Meteorite.

It is reported that the French Academy of Sciences has the engraving have their bearings against superimposed just received an interesting account of a meteorite
not long ago near Odessa. A bright serpentine trail of fire was seen one morning to passover tha town; and the editor of one of the papers, surmis. ing that a meteoric mass might have fallen from the sky, offered a reward to any one who would bring it to him. A peasant, who had been terribly frightened by the stone falling close to him as he worked in the fields, and burying itself in the ground, answered this appeal. He had dug the stone out of the soil, and preserved it, keeping the matter quite secret from his neigbbors, as he feared ridicule. This stone was found to be a shapeless mass weighing nearly eighteen pounds. The fall of another meteorite, which in its descent wounded a man, was also reported; but it had been broken into fragments and distributed among the peasants, who preserved them as talismans.

IMPROVED WRENCH.

An invention recently patented by Mr. D. M. De Silva, of Corning, N. Y., is shown in the accompanying engraving. The tapering jaws and the handle are pivoted between two plates forming a bead block; each jaw bas a curved arm extending back from the pivots in the direction of the handle. The handle has cams that bear on the inner sides of the curved portions when the jaws are open, and they move along the curves when the handle is passed to the rightthe jaws having been placed on the object to be turnedand wedge the arms apart, forcing the jaws together with great power for gripping the object. Since the force of the grip is in proportion to the force applied to the bandle, the object offering great resistance will be gripped accordingly. The jaws are opened by a spring, placed between them, when the handle is shifted back. A hook onone of the jaws comes

DE SILVA'S IMPROVED WRENCH.
in contact with a shoulder formed on the handle to limit the backward swing of the handle to a line with the jaws. In order that the arms may be set to grasp small articles, one of the arms is provided with an adjusting screw that can be set in against the cam to lessen the extent of opening of the jaws. One or both of the jaws may be serrated to obtain greater holding power; one may be made with a beveled face, whereby the corners of the serrations at the highest side of the face will bite quickly, causing the jaws to grip more securely and without slip.

Measuring the Height of Trees.
In a recent number of the Scientific American SuppleMENT we gave a description, with illustrations, of a simple instrument for measuring the heights of trees, monuments, etc., with directions for its use. It is a cheap and efficient contrivance, styled a dendrometer, and was said to have

apparatus for collecting and removing waste from spinning

We are now, however, in receipt of a communication from a subscriber in Vienna, Austria, saying that the writer used this instrument to his great satisfaction forty and more years ago in buying timber for mining purposes. 'The invention was awarded a first class silver medal by the Scottish Arboricultural Society.

CAR TRUCK.
The axles of the wheels of the railway car truck shown in the engraving have their bearings against superimposed wheels which are so placed as to hear upon opposite sides of

moconnell's car truck

the journals of the axles above their centers. The superimposed wheels are made as large as is practicable; and are arranged in pairs-one upon each end of an axle extending across the frame. The arrangement and construction of the truck will be readily understood from the cut, in which a portion of the frame is cut away in order to show more clearly the journal formed by the superimposed wheels.
This plan makes a slowly rolling bearing for the car axle, and the large size of the upper wheele causes their journals to turn at such a reduced velocity as to have but very little friction, so that all liability of heating is obviated. Thus wear of the bearings is reduced, and a large saving of oil and waste effected. Increased steadiness in running is also accomplished by this method.
This invention has been patented by Mr. A. E. McConnell, 197 Clio Street, New Orleans, La.

English vs. Arab Swords.
An English manufacturer of cavalry swords has recently made some severe criticisms of the manner of testing swords for the British army. The sword blades are taken to an official viewer, who is a civilian, and by him tested as regards balance, weight, and length. They are also gauged as regards size. Then the real test is applied. They are struck on a butcher's block by the viewer, and, if the result is considered favorable, they are passed. The operation is, of course, liable to great uncertainty, as no two men will strike with equal force, nor will the same man at different periods of the day. A method of testing swords much more severely, and in a way certain to be uniform, is afforded by a machine now in use by private manufacturers of the best goods, but it has not been adopted by the Government. The swords used by the Arabs in the Soudan have a heavy curve, and an edge which is kept as sharp as a razor, for use in cutting only, and not for thrusting, which is the only practice known in European swordsmanship. The Eastern swordsman seldom or never guards with his sword, and the hilt is made so small as to allow no play whatever to the wrist, so that when he cuts be does so from the shoulder, bringing into action all the strong muscles of the forearm and the back. The terrific force of a cut made in this. way may be estimated from the accounts we have of the Sikh war, and many battles in India, where arms, heads, and legs have frequently been taken off at a single blow, which far exceeds anything that bas been or probably can be done by the light, slightly-curved sword used in the European fashion. This is the reason why the hilts of all Eastern swords are made so small-not wholly in consequence of the smaller hands of the natives, but because a larger hilt would be a disadvantage, by weakening the firmness of the grasp, and consequently the force of the blow, in this method of cutting.

Traps for Inventors,
As soon as the United States Government grants an inventor a patent, and the Official Gazette of the Patent Office announces the fact, that iuventor receives an alarming addition to his mail every day for a week. Advertisements, circulars, and letters come to him from patent agents, patent venders, patent institutes, bureaus, and all sorts of companies, firms, and individuals. All of these letters and circulars express a warm interest in the invention in question, and a desire to bene ${ }^{-}$ fit the inventor. They are all philanthropic in tone, and suppress any indication of desire for gain. It is for the inventor's good only that they write. On closer investigation it is found, however, that every one of these disinterested individuals needssome pecuniary acknowledgment before any business can be done with them. One man wants a $\$ 5$ or a $\$ 10$ fee for advising the inventor what to do; another wants money to print circulars of the invention; auother wants to exhibit the model in a room with other models, or wants to make a model; others want to negotiate for territory or sell rights, and so on. But every one needs more or less money in hand to do these things.

The inventor who gets his first patent is dazed at all these offers, and sees so many tempting methods employed to make money that he is often deluded into parting with his coin without any very definite understanding of what he is to get in return. All sorts of traps are set for unwary inventors. There is a class of men who prey on them. Inventors, as a class, are enthusiastic and sanguine. They believe their devices are of the greatest benefit and highest importance. Men who acknowledge and recognize this, and who praise their inventive genius, are apt to gain their confidence, and too often this confidence is abused. Any respectable and reputable patent soliciting firm will advise its clients to be exceedingly careful of the persons with whom they transact business in patents or patent article. There are so many frauds that it is difficult to segregate them from people in legitimate business.-Mining and Scientific Press.

A NEW LOCK.

The bolt of the lock herewith illustrated has two studs projecting from its lower edge, to form a recess in which enters the toe formed at the upper end of the weighted tumbler secured to the knob spindle. The bar shown in the lower part of Fig. 1, and detached in Fig. 3, is turned by a key to a position in which it will not interfere with the movement of the tumbler; or to the position indicated in Fig. 1, where it locks the tumbler and prevents the shifting of the bolt. Threaded into the lock case is a screw pin, which enters a hole in the side of the bolt as a further security against unlocking. When the lock is used as a latch only the lock bar is swung back and away from the tumbler, leaving the latter free to be moved by the knob spindle. When the knob is released, the bolt will be thrown outward by the downward movement of the tumbler acted upon by its own gravity. The lock can be readily made for either a rigbt or left band door, and as it is entirely devoid of springs or delicate parts liable to be broken, it can be cheaply, strongly, and durably made; it can be used either as a latch or lock, the adjustments for either being easily made.

MIKESELL'S NEW LOCK.
This invention has been patented by Mr. M. L. Mikesell, of Muscatine, Ia.

A writer in the Medical Times and Gazette recommends the use of hot milk as a restorative. Milk when beated above $100^{\circ} \mathrm{F}$. loses its sweetness and density, but has a most beneficial influence over mind and body when exhausted by labor or mental strain. Its effects are more invigorating and enduring than those of alcoholic stimulants.

Digging Wells.

The Massachusetts Ploughman some time since had the following directions in regard to digging wells:
The old way of digging a well and stoning it up so as to leave it about 3 feet in diameter, is a very good one if the water is to be drawn up with buckets; but if only with a pump, it is a very poor way; for if, as is the usual custom, the well be covered at the top, it leaves a very large space for dead air, which often becomes so bad that it affects the quality of the water, and also makes it unsafe to enter the well. When a well thus stoned has only a pump in it, the covering should be under water, or very near it ; but if it is known that only a pump is to be used, the expense of stoning may be saved, and the water kept in a much better condition. This is done by digging the well in a dry time, and when dug as low as possible a cement pipe, some 2 feet in diameter and 2 or 3 feet long, is sunk at the bottom, and worked down as low as possible by digging out the inside. The pipe should be covered over with a flat stone, through the middle of which a two-inch hole has been drilled; directly over this hole stand up drain pipe, then begin to fill in the hole. When filled as high as the top of the first piece of drain pipe, put on another, being careful to bave it straight with the other and the line perpendicular; continue filling and adding drain pipe until it is as high as the surrounding ground; or if the pump is not to stand directly over the well, then when it is filled within 4 feet of the surface put in the pump pipe and lead it off in a trench to where the pump is to stand. When it is found that the pipe is all right, finish filling the well, leaving some durable mark that the position of the well may be known.
A well of this kind is reliable and permanent, requiring no repairs; the water is cool and free from impurities that open wells are subject to; no insects or animals can find their way into it, and the cost is not more than one-half that of a well that is stoned. If dug, as it should be, when the springs are low, a constant supply of water that is as pure as the underground springs is secured. As the well is always full, there is no chance for bad air to injure the water, and, in fact, but little danger of being polluted by surrounding cesspools compared to that of open wells.

The Victims of Car Coupling.

Notwithstanding the great number of automatic couplers invented, probably most railroad men to-day are not convinced that there is one that meets the requirements. Even if they were, they would hesitate to adopt one which might not couple with the cars of their connections. Thus to the necessity of finding an efficient apparatus by which cars may be coupled without going between them there is added the further necessity of uniform and simultaneous action by the railroad companies ennceruing a matter not well understood, and regarding which opinions at presentare likely to be very diverse.
But the crushing and mangling of men by the thousands calls for some effort, at least, to prevent it, even if the way is not quite clear and action will be difficult. It justifies extraordinary methods, efforts, and expenditures. If it is true, as it probably is, that the railroad companies do not
generally know of apparatus that will prevent the coupling generally know of apparatus that
slaughters, they should lose no slaughters, they should lose no
time in finding out, in testing whatever has any promise with such thoroughness and completeness that they will all thereafter know what can and what canknow what can and what can-
not be done by the appliances not be done by the
offered for their use.
ffered for their use.
If they had had to pay for the killed and maimed brakemen, as they do for killed and maimed passengers, they would have been terribly exercised about the matter long ago; for the stockholder, not coming in contact with the victims, feels such tbings only in his pocket; and the pressure of the stockholder to save money plus the bumanity of the operating officer is certainly more effective than the humanity alone. But even a modification of the employers' liability law, which would give liability law, which would give
the employe substantially the the employe substantially the
same rights as the passenger, might not greatly belp in this matter; for, as we have said, the sufferers in car coupling are largely guilty of "contributory negligence," which would exonerate the company, even if a erate the company, even if a
passenger were a victim. This passenger were a victim. This
kind of contributory negligence, kind of contributory negligence,
though a good reason why the though a good reason why the victim should not receive by means of its engagement with the lever, is swung damages, is not always a good reason why the employer should not pay them.
This matter should not be allowed to rest, but its agitation by the inventors of car couplers alone is hardly likely to be fruitful. The railroad men should take it up, and they should need no other incitement than the regiments of men their cars have crippled and the companies of them they have killed.-Railroad Gazette.

ENJALBERT'S PHOTO-REVOLVER
(Fig. 1.-One-half actual size. Fig. 2.-Slightly reduced. Fig. 3.-Sensitive plates-actual size.)

A PHOTOGRAPHIC REVOLVER FOR AMATEURS.
The apparatus which we are about to describe, and which is mauufactured by Mr. E. Enjalbert, is very ingenious, very well conceived, and will, we believe, meet with great success. It is a true pocket revolver with barrel, stock, and cock, but instead of serving to throw deadly leaden balls it is designed for taking very small photographic negatives four centimeters square. Upon pulling the trigger the sensitized plates succeed one another, and the operator can thus sitized plates succeed one another, and the operator can thus
suddenly take ten successive photographs without touching his weapon. These small photographs may be afterward enlarged, and serve as useful documents for tourists, ama teurs, and artists.
With this little revolver there is no longer any focusing to be done, no more plates to be changed, and instantaneous views are obtained by an exposure of one-fittieth of a second. The apparatus is always bermetically closed to the light, and it permits of following objects in motion with great facility, and without its being necessary to take accurate aim as with an ordinary revolver, since it is merely a question of taking such a general view as is comprised within the field of the objective.
The apparatus consists of five principal parts, which are shown in detail in the annexed figure.

1. The Barrel.-In this is adjusted the rapid, rectilinear objective, which consists of two achromatic menisci that are symmetrically arranged to give a focal distance of 0.042 mm . The revolver may be used from a distance of 45 meters, since, owing to the combination of the lenses' curves, the different planes are then all in focus. The ever tedious operation of focusing is thus avoided. The diaphragms accompanying the apparatus are placed in the very interior of the objective, between the two lenses.
2. The Camera.-This consists of a cylinder, H , that contains a shutter, A, and a frame bolder, C. It is into the front and of this chamber that the barrel is screwed. The shutter, A, is capable of revolving freely upon its axis. It contaius an aperture, B, equal to a quarter of its surface, and carries a small clockwork movement that gears with the pinion of the axis of the camera. This clockwork movement, when its spring expands during its revolution, necessarily carries along the shutter. The spring is wound up by recarries along the stutter. The spring is wound up by revolving the cylinder, G, when it is in place. At this moment,
in fact, it catches and holds the end of the axle, which enters a square aperture in its center. Upon pulling the trigger the two teeth seeu at K are thrust forward. The first of these, which, when at rest, stops the shutter, now frees it and allows it to make one revolution that opens and instantaneously closes the apparatus. The shutter, on reaching the lower end of its travel, abuts against the second tooth. The shuttle-motion that occurs in the rear when the trigger is freed disengages this second tooth, and allows the first to engage with the starting notch again, so that the shutter is then ready to operate anew if the spring is sufficiently taut.
The frame holder, C, is hinged beneath, at D , and terminates above in a bent tooth, E , which causes it to advance or recoil a distance equal to the thickness of one of the frames, according as it has in front of it the upper or lower case. This motion is obtained by means of the rabbet, F , at the bottom of the cylinder. 3. The Plate Cylinder.-Tbis is divided into two rectangular compartments in /which slide two plates that are thrust forward by spiral springs. The upper case contains the sensitized plates held in their frames (shown of actual size in Fig. 3), while the lower one collects them in measure as they have been exposed.
The cylinder, G, revolves through the friction of its edges against the chamber, H .

When the upper case is opposite the aperture, C , the tooth, E , forces back the frame holder, the first frame enters the open space in front of it, and the glass is thus in place for the operation. In order to removethisglassand substitute the succeeding one for it, the cylinder is made to perform one entire revolution. The first glass remains in the aperture, \mathbf{C}, in the camera, when the cylinder begins to revolve. Then, the revolution continuing, when the second compartment comes opposite this glass the tooth, \mathbf{E}, enters the rabbet, \mathbf{F}, and the glass naturally enters the said compartment. The revolution still continuing, the cylinder takes its position again, and tion still continuing, the cylinder takes its position again, and
the second glass, now become the first, is, in its turn, made to enter the camera.
3. The Movable Breech, which is fixed upon the stock by a dovetail, serves to shove the cylinder, G, up against the camera, H. It carries a spring cock, whose extremity, I, enters a recess in the back of the cylinder and prevents the latter from revolving, and also indicates the position of the latter from revolving, and also indicates the posit
cases when they are well opposite the objective.
5. The Stock connects the different parts of the apparatus with each other. The trigger actuates a lever that passes under the cylinder, G, and that terminates, as beforestated, in two teeth, K . The small turn button, L , beneath the trigger serves as a catch.
The manipulation of the apparatus is simple, and may be sufficiently understood from the foregoing description without further dwelling upon it.
This photo revolver offers but one drawback, and that is that in certain cases it may frighten those at whom it is directed. Bat it is easy to remedy this by covering it with a handkerchief so as to hide its terrifying aspect.-La Nature

AMERICAN INDUSTRIES.-NO. 89.

[see first page.]
the mandfacture of paints, varnishes, brushes, and artists' materials.
Only those directly connected with the business can fully realize how enormous has been the increase of American production in this line during the present generation. The growth has been far more than proportionate to the increase of the population, for two reasons-first, the manufacture here has been so improved that we now import very little except raw materials; and second, the condition of the great body of the people has been steadily improving, so that we have more comfortably and tastily fitted up homes, workshops, and business houses, to say nothing of the great demands which modern railway and steamboat traffic have given rise to. And all these causes contribute to making the business in paints and varnishes of much more importance, proportionately, in our industries, than it was a generation
In our first page illustrations we give representations of some of the most important details of the manufacture, as conducted at the extensive paint works of Messrs. F. W. Devoe \& Co., in New York city, and at their varnish factory in Newark, N. J. Their manufacture includes colors of all kinds, either dry, ground in oil or water, or in pulp, ready-mixed paints, colors in japan for coach and carriage and railway car painting, and fine varnishes and japans, with every variety of brushes, artists' materials generally, and mathe matical and surveyors' instruments.
Although in many pigments the manufacture has been greatly changed within a recent period-more especially since the introduction of the aniline colors-the making of dry white lead and of zinc white, which constitute a large portion of all the paint used, and form the basis of many of the colors, has remained substantially unchanged through a long period. Formerly white lead was largely imported, but there are now some forty corroding establishments in the United States, and imported white lead is almost unknown. In zinc white, however, we still import our best qualities, Messrs. Devoe \& Co. using the Vieille Montagne product, made in the largest establishments of the kind in the world, at Paris and Liege. Tbis is a purer article than that made here, from the fact that the American zinc white is made direct from the ore, while that which they import is made from the metal, and, although the house makes all grades of colors which have a popular demand, they sell none carrying the label of their own name and trademark which is not strictly what it is stated to be. White lead and zinc white are much adulterated, for the cheaper paints, with chalk, barytes, and other adulterants.
In making and preparing for use the various pigments which go to make up the great variety of colored paints, an extended knowledge of cbemistry is indispensable. Chemically manufactured colors, such as chrome yellow and green, Prussian blue, and vermilion, are not durable when in exposed conditions, but either of these may be mixed with vehicles which will add greatly to their permanence. Ultramarine blue, as now made-for that made from lapis lazuli has been entirely superseded by the cheaper artificial blueis a durable color, but care is required in mixing it with white lead to be sure that the lead is pure, for that adulterated with barytes is very injurious, causing the blue to fade quickly. Carmine, also, if mixed with varnish instead of oil, is a durable color, although much of the durability of any color is largely dependent upon the ground on which it is spread and the exposure it receives, as well as the vehicles used in mixing. There has long been a good deal of difference of opinion among painters as to the use of white lead and zinc-some strongly advocating one and some another -but these differences are now resolving themselves into pretty general unanimity of opinion that zinc white has many advantages for interior work, and that for exposed situations the most durable white is a mixture of white lead and zinc white in nearly equal parts. But however the painters or the public may differ in opinion on this point, the doctors all strenuously oppose the use of white lead as eminently injurious to those who make it and the painters who use it.
In the manufacture of all their goods the firm start with the raw material, and carry it forward through all the successive stages. Mr. Isaac W yman Drummond, E.M., Ph.D., has direct charge of the chemical examinations and experiments necessary, and the importance of the most careful attention in this department for the making of durable colors cannot be overestimated. The permanence of colors in secondary or mixed paints depends primarily on the chemical relations of the colors and pigments employed. These secondary colors are produced by various combinations, and the rule is to use the least number of colors possible to se-
cure the desired tint. It is thus that, with the best of skill cure the desired tint. It is thus that, with the best of skill
in the chemical manipulations, and experts to attend to the
mixing and all the details of the manufacture, a variety of colors and an excellence in quality is attained which it would be impossible for any single workman to hope to reach.
In our illustrations are given thirteen views of as many different departments of the business, besides one showing the interior of the large and handsome store at the corner of Fulton and William Streets, New York.
In the left hand corner at the top of the page is shown the mixing and grinding of the pigments for standard colors, while adjoining it in the center is a view of the process of making the tiner artists' colors furnished in tubes. The engravings are necessarily small, from the desire of the artist to bring into the group as many departments as possible. There is nothing, perhaps, that would be entirely new to the well informed mechanic in the manner of mixing and grinding the colors, but the advantages possessed by a large
establishment for doing this work, with ample power and establishment for doill, make it an easy matter to secure great fineness and uniformity in the product. The constituents required for the different colors and shades are accurately weighed and measured out before they are put into the mills, and the work is afterward done with mechanical precision. The grinding of the artists' tube colors is done on a circular glass table on which, in a regularly changing ellipsis, revolves a heavy granite block.
On sanitary grounds alone, the extent to which ready ground and mixed paints have come into use within the last few years is a matter of public good fortune. The grinding and mixing of paints were among the most unhealthful parts of the business, when done in the old way, as the dry powder was to some extent absorbed by the skin or taken in by breathing, while its being directly taken in through a scratch in the skin was not uncommon, and all tended to give a high death rate among painters before the attainment of middle life.
The pulverizing of dry colors, shown at the left, about the middle of the page, is done with powerful mills, the pigments, when large enough to require it, being first passed through a breaker and then ground between heavy stones, and bolted to secure uniform tineness, much in the same way hat flour is ground.
The white lead and zinc grinding, shown immediately beow, forms a most important part of the business. The lead or zinc, with its requisite quantity of oil, is placed in a mixer, which has a trough or gutter in a circle, on a bed about six feet in diameter, in which rolls around a stone also about six feet in diameter, and eight inches face, until the oil has been horoughly incorporated to make a paste or pulp. Thence this s drawn by pipes into mills on the floor below, where it passes between powerful grinding stones, and comes out slowl in a thick paste of great fineness and entire uniformity.
In the grinding of colors for house painting, or what should be more properly styled the making of the ready mixed paints for use without change, the firm do an extensive business. A large portion of their goods are simply ground in oil to a paste consistency, leaving the painter to thin and put in such drier as deemed best; but in those goods sold cans, pails, etc., ready for use, the requisite driers and all necessary ingredients are incorporated, and the buyer only has to select the color or shade required from the sample on the label or specimen sheet.
The making of vermilion, shown in one of the views, requires a large department. This is principally made from catbonate of lead and bichromate of potash, with water, the resulting liquid being left to settle in large tanks, the sediment being laid out in batches to dry, the final moisture being absorbed by chalk blocks on which the rough cakes are placed. This vermilion has been in practical use for several years; it does not turn brown or blacken, but retains its brilliancy under exposure to sun or weather.
In all the varieties of umber and sienna made, of which the manufacture includes everything known to the trade, the raw umber and sienna are imported by the hundred tons, and burnt, ground, and passed through all the requisite processes on the premises, as is also the case with the various grades of Vandyke brown. For their ivory black the firm buy ivory chips from the manufacturers of billiard balls and ivory goods, and burn it themselves, to be entirely sure of having a perfectly pure article, which they sell in the powder or in the form of drop black.
As a substitute for the chrome or Paris green, the firm have for several years been making a very popular shade of green, known as the "Park Lawn Green," which is much used for window blinds, agricultural implements, ornamental iron work, and machinery, and they also make another shade, known as " Clover Leaf Green," which is strong and brilliant, and with great covering properties.
Of coach and car colors, ground in japan, the firm make a specialty, and furnish all the supplies required by several prominent railway lines. It is absolutely necessary that the identical shade adopted shall be preserved in all subsequent orders, and that the materials shall be the same, so that the wear will be uniform, and on this account they usually make up large lots at one time, so as always to have a supply on hand. For these colors the firm received a gold medal at the National Exposition of Railway Appliances in Cbicago last year.
Not the least among the departments of the business is the large tinshop, where the pails, cans, and painters' tinware are made. Everything of that kind required is made on the premises, the most improved machinery being employed, and every piece being made by a pattern that cannot fail to secure absolute uniformity.

The brush making department of the business covers the manufacture of every kind and grade of brnshes known to the trade, from the fine sable to those made of bristlebrushes for the japanner or varnisher, the painter, or the artist-and for all classes of work. The deftness with which the hands put together this work, the facility with which they even up the tufts of almost silky fineness, or separate bristles which have split points, or which have been laid with the roots where the points should be, is something quite wonderful to one who has never seen the work in progress. Everything in this room is made according to sample, and specimens to work by are hung up near every work table.

The making of artists' canvas boards requires a large department. Only the best English linen is used, made especially for the purpose; this is first stretched tightly on the frames, and workmen go. over each inch of the surface to remove all pin heads or imperfections of the flax-then come successive coats of specially prepared lead and filling, to make a smooth, firm surface, such as best adapted to make an even and permanent surface for the artist's work.

The manufacture of surveying and mathematical instruments, to be used in railroad construction and for engineers, architects, and draughtsmen, as well as for technical schools, has naturally grown out of the gradual expansion of the business into the filling of all the wants of artists, and everything required by contractors who use their paints. A view of this department bas been necessarily omitted from our illustrations, but here are made squares, triangles, compasses, pantographs, and a large variety of other instruments, while the transits, theodolites, and levels furnished by the firm have been approved by and are in the use of the United States Coast Survey.
For the making of varnisb and japan the works are at Newark, N. J., and representations of some of the leading details in this branch of the business are shown in the views on the right of the page. The first operation in order is the chipping, which is in reality little more than the removal of the outside crust or coating, and the separation of any impurities. There are in all some thirty different resins or gums of which varnish is made, included in which are principally amber, copal, gum cowrie, animé, and common resin. There are natural lacquers from India and China, and drying oils which resinify by oxidation in the air, but oil varnishes proper are composed of an intimate combination of a drying oil with a fused resin, which hardens by the oxidation of the air. Besides these there are varnishes which have a volatile liquid holding in solution resins or gums which, on the evaporation of the solvent, leave behind a vitreous coating on the surface varnished.
The oil used is principally linseed, which from its high drying property and its general constancy in quality is the great favorite in nearly all varnishes. It is obtained as new, sweet, and free from rancidity as possible, and then clarified and allowed to settle for weeks, after which it is drawn off for use. By boiling, the fatty constituents of the oil-glycerine, palmitine, etc.-are volatilized. The various methods of mixing the oils and gums or resins, and the manner and extent to which they are heated together or separately, necessarily vary with the particular kind of varnish orjapan being made. It is a branch of the business which calls for the greatest knowledge, experience, and care, together with a skill which can only be acquired by long practice and observation. The resin must be so prepared as to be readily soluble in oil, and then so incorporated as to form a compound which shall be perfectly soluble in turpentine, and so that, on the evaporation of the latter, a hard surface will form before dust, under ordinary circumstances, will attach to the varnished surface. The high success of the firm in this branch of their manufacture, through many years of steadily increasing business, affords the best criterion of the quality of their goods.
The works of the firm in New York city have a frontage of 200 feet on Horatio Street and 175 feet on Jane Street, with a floor space of about four acres. This part of the business is under the especial superintendence of Mr . James F. Drummond, a member of the firm who has attended entirely to the manufacturing since 1856. A view of the main salesroom, at the corner of Fulton and William Streets, forms one of our illustrations, the business department being under the direct personal supervision of
the two other members of the firm, Messrs. Frederick W. the two other members of the firm, Messrs. Frederick W. full size of the ver Page. The first floor above, of painters' sundries, including an assortment of almost everything even remotely connected with painting and decorating. The firm have a branch house in Chicago under the style of Coffin, Devoe \& Co.

A Suggestion about Color Blindness.

May not some people, who know well the difference between colors, yet fail to characterize by their proper names the colors recognized? This question is asked by a Kentucky correspondent, who suggests that some of the raiload employes discharged because of not being able to recog nize a red, a white, or a correen light, may still, as many of them undoubtedly are, be able to distinguish a light which means danger from one that does not. It is so simple, in such a matter, to learn to call things by their right names, where there is the capability of distinction, that we should be inclined to think the failure to do so indicated too low an intelligence for its possessor to be in any way intrusted intelligence for its possessor to b
with responsibility for human life.

Curregnowleurs.

A Suggestion as to Railway Sleepers.

To the Editor of the Scientific American

Your article in a late number of the Scientific American, calling the attention of inventors to devise a substitute for the increasing demand and diminishing supply of railroad sleepers, suggests one feasible and practicable way of meeting this great demand. There are thousands of acres along the lines of all roads that might be planted to chestnuts. The chestnut tree will grow on all except wet land, and when once planted is always there, as they sprout from the stump.
The chestnut is a rapid grower, and is all useful for sleepers, poles, and stakes. About fifteen will grow on an acre at six feet apart, and at twenty-five to thirty-five years (according to soil) they will be worth a dollar each-better than money at compound interest.
Would it not be well for railroad companies to consider this, and encourage the planting of chestnut trees?
E. Myrich.

Ayer, Mass., May 5, 1884.

The Walled Lakes of Iowa.

To the Editor of the Scientific American:
In the Scientific American of April 19, in speaking of the walls around lakes, whether they are the work of an extinct race or natural formations, you say that in his "Geology of Iowa," Prof. Charles A. White presents as a theory 'that in shallow portions of lakes, the ice along the shore freezes fast to everything along the bottom, whether sand, gravel, bowlders, or mud, and the expansive poover of water infreezing is exerted upon them, acting upon them from the center of the lake in all directions toward its circumference." I have resided on the shore of a walled lake for 24 years, and bave recorded observations and measurements two or three times a day of the outward mnvement of the ire, for months at a time, together with the temperaure.
Ice never expands when freezing, but water in the act of changing intc ice expands. After the ice is once formed, it is subject to the same laws as other bodies, and is expanded by heat and contracted by cold. The ice in these lakes, as months of careful measurements and observations bave demonstrated beyond a doubt, invariably expands when the temperature is rising and contracts when the weather is growing colder. I have seen it shove up on the shore ten to fifteen feet in the course of a month without gaining an inch in thickness, keeping about twenty-two inches thick. The most fragile vessel can be filled with water and frozen solid without bursting, provided a small vent hole is kept open for the escape of the surplus water. The only expansion in freezing is just this, and no more: each crystal of ice as it forms occupies a larger space than the water did of which it is composed. When a tight vessel with water begins to freeze ice soon forms all over the top, surrounding the water with an uny ielding coat. The little crystals of ice as they are formed are forced into the water, causing such a pressure that the water bursts out at the weakest point. This same cause, heat and cold causing the expansion and contraction of ice, is the principal cause of the glacial movement, forcing rivers of solid ice to move on down to the sea or plain with a slow but irresistible movement.
E. H. Atwood.

Maine Prairie, Minnesota, April 26, 1884.

Sea Monsters Unmasked.

In all probability, monsters wonderfully and fearfully made equaling in ugliness those described in the fables of bistory, inhabit the sea and occasionally present themselves to view, assuming to the excited beholder both the appearance and movement of a serpent. In the Scientific American of Dec. 27, 1879, one of these monsters was most graphically portrayed by Daniel C. Beard, who in bis description pointed out the fact that a giant cepbalopod moving upon the surface of the water would appear to have all the charncteristics of a huge serpent. "The fin, or what was supposed to be the serpent's tail, can be readily accounted for by the fact that in some species of the cephalopod the long. est tentacle widens and flattens at the end, and might easily be mistaken for a caudal tin."
Mr. Henry Lee, in his work "Sea Monsters Unmasked" (London, 1883), admits the probable existence of monster sea serpents, and clearly shows that nearly all of those which have been seen can be accounted for by the forms and habits of known animals-calamaries or squids of great size. During the past ten years our knowledge of the inhabitants of the vast deep has been enlarged and extended, especially in regard to the so-called monsters; deep see dredgings have brought up fishes of unknown species; cuttle fish measuring more than sixty feet have been met with on the coast of Newfoundland.
The cuttle fish is described as being most sensitively timid, watching its captor, and upon the slightest movement belching forth its ink, which rolls over and over like a volume of smoke and mixes with the water with marvelous rapidity. It is very intelligent, soon learning to discriminate between friend and foe, and in time becomes quite tame, ceasing to shoot its ink unless irritated.

Squids propel themselves backward by forcing out a stream of water from a tube pointed in a direction contrary to that in which the animal is going. The body tapers toward the
tail, which is provided, at a short distance from the end, with two flat fins, one on each side, so that this portion of the body resembles in shape the government " broad arrow." When swimming in smooth water, the tail is raised above the surface to a height which might be three feet or more in a large individual; "and, as it precedes the rest of the body, moving at the rate of several miles an hour, it of course looks, to a person who has never heard of an animal going tail first at such a speed, like the creature's head. The appearance of this 'head' varies in accordance with the lateral fins being seen in profile or in broad expanse. The elongated tubular looking body gives the idea of the neck to which the ' head' is attached; the eight arms trailing behind (the tentacles are always coiled away ard concealed) supply the supposed mane floating on each side; the undulating motion in swimming, as the water is alternately drawn in and expelled, accords with the descriptiou, and the excurrent stream pouring aft from the locomotor tube causes a long swirl and swell to be left in the animal's wake, which, as I have often seen, may easily be mistaken for an indefinite prolongation of its body. The eyes are very large and prominent, and the general tone of color varies through every tint of brown, purple, pink, and gray, as the creature is more or less excited, and the pigmentary matter circulates with more or less vigor through the curiously moving cells."

The author concludes that we here have the "long marine animal" having "two fins on the fore part of the body near the head;" the " boiling of the water," the " body round and of a dark color," the "waving motion in the water bebind the animal, from which the witnesses concluded that part of the body was concealed under water," the "head raised, but the lower part not visible," the "head being long and small in proportion to the throat, the latter appearing much
greater than the former," causing the spectator to think greater than the former," causing the spectator to think that "it was probably furnished with a mane."

TOMBSTONE.

The invention lately patented by Mr. S. R. Miller, of Mount Union, Pa., relates to that class of tombstones on which the photographs of the deceased are held in suitable

MILLER'S TOMBSTONE.
frames. The photograph is placed within a glass covered casing which is bolted to the tombstone, and which is made air and water tight, so that the picture will not be injured. When the casing is made circular as in Fig. 1, a cap is screw ed on firmly. When the picture holder is square as in Fig. 3, the cover is pivoted at its top, so that it can be swung to one side. The inner side of the cover is provided with a packing of rubber-shown in the sectional view, Fig. 2--so
that the cover will at all times form an absolutely close joint with the frame.

Preservation of Cast Iron.

The common practice of painting the unfinished portions of machines is not very attractive, and that of making all cast iron of some uniform color for all machines is almost offensive. In most cases the use of paint on the cast
iron is intended to make a contrast between the unfinished material and the polished parts; incidentally it is also to pre vent oxidation and a blotchy appearance. But if the oxidation was general, and even, and permanent, nothing could be finer; for the red oxide of iron is even more agreeable to the eye than the blue-green oxide of copper or bronze, which is so much admired. There is no question about the
durability and the permanency of iron oxide in color and texture any more than of that of bronze or brass; the brown ed gun barrels of fowling pieces are instances.
Experiments have been made to avoid the dauby annoy ance of paint by less mechanical means. The cast iron, after being pickled to remove the scale, was left to dry with the acid still on it. Then it was cleaned with a wire brush, and scraped* with a coarse file. The result was a mottled surface, the lower portions being a grayish brown, and the outer or upper portions bright. The surface was then swabbed with crude petroleum, and before it was dry was changeable surface, and gives an agreeable color. Even witbout the petroleum the rust of the acid insures a very pleasing and permanent effect; but the petroleum prevents after stains, and mellows and blends the tints. In either way used it is an improvement on paint. Cast iron has a beauty of its own that is no more dependent on paint than that of bronze or brass.

Sorghum Sugar.

Prof. Collier, late chemist of the U. S. Department of Agriculture, has long been an ardent believer in the idea bat sorghum is in time destined to furnish all the sugar needed in this country, and probably yet more for export. He bas just published a volume* presenting the most important facts bearing on this subject, as obtained from ex tended examinations of different varieties of sorghum, and the actual working results of numerous trials on a practical scale. In an address before an agricultural convention in Connecticut, four years ago, the Professor predicted that, within five years from that time, we would be producing our own sugar. He then referred to the large possibilities of making sugar from corn stalks, then, as now, almost entirely wasted; pointed out the wasteful manner in which sugar was made at the South and in Cuba from the sugar cane and claimed that, either from sorghum or beet raising, thougb preferably from sorghum, we could more regularly and economically obtain all the sugar the country would consume.
We are very far as yet from baving attained the development of this industry that was then predicted, but that we are progressing toward it there is much proof. Counting the average consumption of each individual at about forty pounds a year, we produce only about one-eighth of the total supply required. The trouble seems to have been that, though the sorghum has been demonstrated to have sufficient saccharine matter, and can be raised at a cost not greater than that of sugar cane, the amount of crystallized sugar obtained therefrom has generally been far below what had been expected. In some of the trials most excellent results have been reached, but more often, owing to the planting of wrong kiuds of sorghum and defective methods of manufacture, the results bave been disappointing to those who at first were most confident of an early and brilliant success. Prof. Collier has enjoyed exceptional advantages for the ob servation of all that has thus far been done in the United States in this direction, and now admits that "there are still many unsolved questions relating to the perfection and cheapening of working processes," but claims that, with proper conditions, and attention to the rules for practice which experience has shown to be necessary, the "successes will greatly outnumber the failures" in the manufacture of crystallized sugar from sorghum.

Turning and Grinding.

A good finish to a turned cylinder, as a shaft or stud, can be obtained by means of the turning tool-the square nosed tool fed with water. But it may be safely asserted that the apparent truth will not stand the test of trial, except as an approximation to truth. It is almost impossible-probably it is absolutely impossible-to turn a shaft or stud perfectly true; and in most cases the deviation is so great as to be sensible to the touch. Resting thumb and finger against opposite sides of a turned and finished shaft while revolving fast site sides of a turned and finished shaft while revolving fast
will most cases prove that, however carefully turned, the will in most cases prove that, however carefully turnen, the
shaft is not round. Still more exact tests have demonstrated shaft is not round. Still more exact tests have demonstrated
that the best specimens of turning, from the cleanest and most bomogeneous steel, retain in a proportion the faults of the less carefully wrought specimens.
The reasons are obvious; the stud or shaft is suspended on centers at the ends, the intermediate length being unbraced, except in the occasional use of the steady rest. And the tool post. and carriage and the tool of a lathe are parts which as a whole are not absolutely rigid. In turning, also, the speed is not so rapid as to prevent vibration, or repulse and return.
The best results are obtained by grinding; a swiftly revolving corundum wheel traversing the more slowly revolving shaft. By this means the plug and template gauges are constructed, which are so perfect that the plug inserted in the template is air tight, although it turns so freely as to suggest perfect lubrication. This method of finishing for fits is becoming quite general-in the fitting of journals in the best machine tool manufactories; almost absolute perfection in the fit of boxes and bearings having been already assured.

A Sheet Iron Hen.

The Inter-Ocean describes a novel invention as followe It. was not patented through the Scientific Americas Patent Agency.
An ingenious fellow in Ohio has constructed a sheet iro hen that promises to lay him a golden egg. It is finished up to life, full size, cackles, clucks, and looks with one eye at a time so naturally that it will deceive the oldest ben hawk in the country. It is so arranged that when a bawk, mink, or polecat pounces on to it, the back springs open and the wings fly up and force the assailant on to a ravenous buzz saw that makes 1,700 revolutions per minute. After moving half a minute the saw stops, the hen closes up, folds its wings, and begins to cackle as thougb it had just lajd an gg. One winding up will answer for three massacres, provided the rather delicate machinery does not get clogged up too much with the blood, bones, and feathers. He set a fresbly painted one out in the sun to dry the other day, which attracted the attention of a fine old cat belonging to a doctor who had been poking a great deal of fun at the fool thing. The hen is there, but the cat is hence.

* Sorghum; Its Culture and Manufacture Economically Considered as Clarke \& Co., Cincinnati, Ohio.

Hickory.
Some of our native woods cannot be equaled or be superseded by any foreign woods; in all our knowledge of natural history there has been found nothing possessing the excellent qualities of our native hickory. It is not, as commonly supposed, that good hickory must be grown in the north to be of the best; its habitat extends from the Green Mountaius in Vermont, following the coast range, the Alleghavies, and the Blue Ridge tbrough the Carolinas, and even to upper Florida. And, contrary to general supposition, the very best of the bickory used in the arts, where toughness is required, is obtained from North Carolina and eastern Tennessee.
"It is wonderful what toughness the hickory timber of that mountain region is capable of," said a wheel maker recently. "We can turn a piece completely around a circle without breaking a fiber." This, of course, after it is thoroughly steamed.

ERICSSON'S SUN MOTOR.

We illustrate the curious sleam engine designed by Capt. John Ericsson, and built by him in this city in 1883, in which the use of coal is dispensed with, and steam power is generated by the heat of the sun. The generator consists of a large concave reflector, in cradle or trough form. The rays of the sun fall on this reflector, and are by it concentrated against the outer surface of the horizontal bar or heater, which stretches across and above the reflector. Said bar is hollow, and so are the side pillars that support the bar or heater; they are hollow, and contain water; they constitute in fact a portion of the boiler. When the hollow horizontal bar is highly heated by the sun's rays its contained water is couverted into steam, by which the engine is worked. Such in brief is the construction of this novel and economical steam motor.

For tropical countries, and wherever sunshine is plentiful, this engine would seem to have great utility. The bottom of the rectangular trough consists of straight wooden staves, supported by iron ribs of parabolic curvature secured to the sides of the trough. On these staves the reflecting plates, consisting of flat window glass silvered on the under side, are fastened. It will be readily understood that the method thus adopted for concentrating the radiant heat does not call for a structure of great accuracy, provided the wooden staves are secured to the iron ribs in sucb a position that the silvered plates attached to the same reflect the solar rays toward the heater. Fig. 2 represents a transverse section of the latter, part of the bottom of the trough, and sections of the reflecting plates; the direct and reflected solar rays being indicated by vertical and diagonal lines.
Referring to the illustration, it will be seen that the trough, 11 feet long and 16 feet broad, including a parallel opening in the bottom 12 incbes wide, is sustained by a light truss attached to each end; the heater being supported by vertical plates secured to the truss. The heater is $61 / 4$ inches in diameter, 11 feet long, exposing $130 \times 9 \cdot 8=1,274$ superflicial inches to the action of the reflected solar rays. The reflecting plates, each 3 inches wide and 26 inches long, intercept a sunbeam of $130 \times 180=23,400$ square inches section. The trough is supported by a central pivot around which it revolves. The change of inclination is effected by means of a horizontal axle-concealed by the trough-the entire mass being so accurately balanced that a pull of 5 pounds applied at the extremity enables a person to change the inclination or cause the whole to revolve. A single revolution of the motive engine develops more power than needed to turn the trough and regulate its inclination so as to face the sun during a day's operation.
The motor shown by the illustration is a steam engine, the working cylinder being 6 inches in diameter with 8 inches stroke. The piston rod, passing through the bottom of the cylin der, operates a force pump of 5 inches diameter. By means of an ordinary cross head secured to the piston rod below the steam cylinder, and by ordinary connecting rods, motion is imparted to a crank shaft and fly wheel, applied at the top of the engine frame; the object of this arrangement being that of showing the capability of the engine to work either pumps or mills. It should be noticed that the flexible steam pipe employed to
convey the steam to the engive, as well as the steam chamber attached to the upper end of the heater, has been excluded in the illustration. The average speed of the engine during the trials last summer was 120 turns per minute, the absolute pressure on the working piston being 35 pounds per square inch. The steam was worked expansively in the ratio of 1 to 3 , with a nearly perfect vacuum kept up in the condenser inclosed in the pedestal which supports the engine frame.-La Nature.

CAPT. JOHN ERICSSON'S NEW SOLAR ENGINE.
globose shrubs, sometimes growing out from a rift in the side of a rocky coast or mountain, or creeping by means of Their snake-like stilts-the aerial roots-along the surface of the soil, until they become many yards in circumference. Such are screw pines "at bome." As to their uses, they are almost as valuable to the natives as palms. Their pine-apple-like fruits are eaten in a variety of ways; the roots are used as ropes, and are made into baskets, mats, and hats, as are also the leaves, which are, moreover, used for paper making, nets, etc. In Mauritius the leaves of P. odoratissimus are made into bags, in which coffee, sugar, and grain are exported, and the "bases"used by fishmongers in this country are made from the sugar bags.
In the Palm House at Kew there are several gigantic specimens of Pandanus, the immense plant of P. odoratissimus being one of the attractions of the house, and perhaps the finest specimen of the kind in Europe. For horticultural purposes the screw pines are much valued in this country, only, however, in a small state. The most popular, perhaps, is P. Veitchi, a graceful variegated species from the South Sea Islands. Whether used for table decoration, or as an exbibition plant, this is always effective, and as it is easily grown and propagated, it has become one of the most frequently used among plants for decoration and exhibition.
Before the introduction of this species we possessed in P. javanicus variegatus our only variegated Pandanus; and if not so graceful as P. Veitchi, and less fitted for decorative uses, owing to the strength and sharpness of its spines, it still ranks second, its beautifül variegation being much more permanent than that of P. Veitchi, which is apt to "run out" when the plants get large. P. utilis is a dark green species with purple spines; it is quite as graceful as the variegated species and equally useful. The plant known as P . candelabrum must be referred to this species, as also must some of the screw pines, known in gardens under the names sylvestris, odoratissimus, and media. It is a native of Mauritius. P. pygmæus is the P. graminifolius of gardens.
It is a pretty little plant, more like a Freycenetia than a Pandanus. The leaves are narrow, pale green, and edged with white spines. It branches when only a foot high, and continues to grow horizontally rather than in an upright direction. It is a native of Madagascar. P. inermis, a spineless, bluisb-green leaved species; P. Pancheri, a broad leaved plant with white marginal spines and a flesh-colored keel ; P. decorus, P. ornatus, and P. Vandermeeschi are other species cultivated in gardens, aud all more or less ornamental when young.
It would be difficult to refer all our garden scraw pines to their . proper botanical position, the characters of young plants being so very different from those of flowering specimens. Being all natives of extremely hot countries, the Pandanuses will thrive only in our warmest stoves; they require plenty of water always, and grow well in a mixture of peat and loam, with a little sand added. The variegated kinds should have a light position close to the glass, in order to fully bring out their beautiful markings. In fact, all the species prefer a light position, although they thrive fairly well in a shaded one. We must remember that naturally they grow in very open places, seldom, if ever, occurring under the shade of trees.-The Garden.

The Health of Cincinnati Im-
 proved by the Floods.

For the second time it has been proved in Cincinnati that a flood, instead of being fol lowed by sickness, prepares the way for a period of unusual healthfulness. It was so after the flood of last year, and is so now. A prominent physician says that the flood cleaned and purified that part of the city which has always been the starting place for all the diseases which have prevailed. The flood ing of the lower stories of filthy buildings, the moving of house hold goods to other parts of the city and the moving of them back again, and the general cleansing which the flood made necessary seem to have destroyed the lurking germs of disease. In the bottoms, where there is usually more or less of diphtheria, scarlet fever, malaria, etc., at this time of year, there is now hardly a case of sickness reported. Iv other words, the hu man pig sties have been washed ramify freely, and so afford safe anchorage to the tree out. The doctors are complaining that they have nothing against strong winds and heavy rains; the large sheaves of long sword-shaped leaves borne on the end of the branchesthese are all characteristic features of the Old World tropics, and especially of the Mascarene Islands.
But screw pines are not tree-like in habit; we have the graceful little P. pygmæus, the small unarmed P. inermis, and the bushy, variegated P. Veitchi and P. javanicus. These form either flat-topped, table-like plants, or dense

Hot Lemonade for Diarrhœea

Some people prefer hot lemonade to the usual form, but is only recently that we have seen it recommended in diarrhœa. Dr. Vigouroux recommends a glass of hot lemonane every hour, or half hour, as an easy, agreeable, and efficient treatment for diarrhœa.
dr. Le plongeon's latest and most important disCOVERIES AMONG THE RUINED CITIES OF YUCATAN. (Continued from page 294.)
On the eighth day of the work, while Dr. Le Plongeon was making moulds in a grand castle, not very distant from the spot where he discovered the stone work illustrated in last issue, he suddenly heard much shouting, and soon a man arrived, breathless with man arrived, breathless with excitement, to tell him that
they had "found a queen"! Arriving at the spot [Plate 1] we saw a figure on its back, about one and a half meters north from the center of the monument, and exactly ou a level with the surface of the earth. The figure was thickly coated with loose mortar One leg was broken off below the knee, but we found it under the figure, and afterward adjusted it in place to make a picture. The head of the statue rested on a ston painted bright red, that rep aiuted bright red, that rep resents the tongue of a ser-
pent, the peculiar shape of pent, the peculiar shape of
which Dr. Le Plongeon long which Dr. Le Plongeon long ago discovered to be the letter chi or ch of the Maya alpha bet.
When the figure was placed upright we hardly knew what to call it, it appears so buman, yet so apish. In the position it occupies it is ninetyseven centimeters (about three feet) high; so if standing would represent a very tall person. It is made of white limestone, and painted dark brown. The head is flat at the top and back, and apparently hair less, bat painted blue, and over that are red streaks from the forehead down to the shoulders. The eyes are open, and painted blue round the lids. The nose is not pierced, but pain ed blue round the lids. The nose is not pierced, but
the clumsily made ears have each a large hole. The mouth is closed, and lips painted red. On the back part of the top of the head a hole is pierced, so that a string can be passed through, perhaps to secure a bunch of plumes, perbaps to keep a banner in place, for in the palm of the right hand there is a groove, as if for a round stick to fit in. The bands are not altogether human; where the fingers begin there seem to be mittens, the other ends of which are nowhere visible. [Plate 2.] The fingers, like the toes, were furnished with nails made of shell, and fitted in place with mortar, so as to look very natural, even in color Unhappily, nearly all were fallen, but we found some of them. A vecklace is indicated by a line f red paint around the throat. Garters, below the knees, are painted blue and red. The loins are covered with an ornamented uitt, a scanty garment yet in use amoug the aborigines, and anciently worn by Egyptian laborers. The right oot is turned in, as if the individual had been club-footed. The sandals are painted blue, and close up round the heel, but the very elaborate and fanciful fastenings are red. On one heel is the name Cay Canchi, written with red paint. This limage may possibly represent the sacred monkey of the Mayas, as the Cynocephalus was emblematic of the god Thoth among the Egyp tians. On the facade of a very grand and extensive edifice at Chichen we see, close to a written and illustrated account of the creation, a figure exactly resembling the Cynocephalus of the Egyptians. We have also found it in Izamal and Usemah, both kneeling and sitting, and it was doubtless a much venerated object among the Mayas.

Stimulants for Chrysanthemums.

Last year I was induced to try an experiment in chrysanthemum growing, and for this purpose I purchased one pound of sulphate of ammonia, which I bottled and corked up, as the ammonia evaporates very rapidly. I then select ed four plants from my collection, and put them by themselves, and gave them a teaspoonful of ammonia in a gallon of water twice a week. In a fortnight's time the result was most striking, for although I watered the others with liquid cow manure they looked lean when compared with the ammonia watered plats, whose leaves turned to a very dark green, which they carried to the edge of the pots until the flowers were cut. As a matter of course the flowers were splendid. The ammonia which I used is rather expensive, as I bought mine from a chemist's shop; this year I intend getting agricultural ammonia, which is much cheaper. I have also tried it on strawberries, with the same satisfactory result, the crop being nearly double that of the others; it is very powerful, and requires to be used with caution.-The Gardeners' Chronicle

Plate 2.--THE FIGURE AS IT APPEARED WHEN SET UP

These larvæ are expelled in the fæces, and are believed to pass through their intermediate stages in dirty water, from which they are conveyed to the intestine of their unfortunate host by being swallowed by drinking.
Once in their proper habitat-the duodenum-they cut their way through the intestinal mucous membrane by means of their sharp hooks, and suck the blood; here they rapidly reach maturity. On their removal a tiny spot from which he blood oozes is left, sur rounded by an area of conges tion.
The disease caused by these bloodthirsty worms is known by the various names of Egyptian chlorosis, tropical anæmia, and anchylostoma disase. The symptoms are those f progressive anæmia (loss of red blood corpuscles), plus welling and pain of the upper portion of the abdo men, diarrlhea, and intestinal bemorrhages. The affection is often accompanied with a longing for strange and innutritious substances, such as chalk, clay, and wool.
Tropical anæmia is usually a fatal disease, though if but few worms have been introduced into the intestine the symptoms are but slight, and life is not materially shortned. Victims of the disease may die in collapse within few weeks or even days
Plate 1.-DISCOVERY OF FIGURE IN MOUND may drag on a wretched exist many observers have noted its occurrence in Egypt, Brazil,
Austria, and in most tropical and semi-tropical countries; ence for months or many years

hroughout Northern Italy it is tolerably common.

The parasite may be described as follows: The male measures four lines the dema 1 lis for male measures four lines, the female six lines in length; the head
is tapering and pointed, and is flexed forward, the mouth t is tapering and pointed, and is flexed forward, the mouth
being directed toward the ventral surface. The mouth is

Another terrible parasite is the Guinea or Medina worm Dracunculus medinensis). It has been known from time im mol he be little doubt of the "fiery ser ents" which afflicted the Israelites being only examples of oid, and Plutarch clearly refers to it in his "Sym posiacon." The Medina worm measures from one to six feet in length, and is about one-tenth of an inch in thickness. The body is cylindrical, and terminates in a curved and pointed tail The head is somewhat convex and flattened, and provided with a central mouth surrounded by four equidistant papillw.
The Dracunculus produces living young, the body containing an immense number of hatched embryos held within the uterine ducts.
The adult worm lives in the subcutaneous cellular tissue, especially that of the feet and legs, but may occur in almost any part of the body. In these situations it lies somewhat coiled, and sometimes stretched out, and single individuals or sometimes many examples are found in the same person.
By the irritation caused by its presence first an abscess-accompanied by various severe local and general symptoms-and then a consequen sinus is formed, from which the microscropic, sharp-tailed embryos already spoken of make heir escape, never maturing in the tissues which contain the parent worm. These find their way into some pool of water, and there effect an en rance into the bodies of microscopic crustaceans belonging to the genus Cyclops. Here the embryos change their skins, increase in size, and complete their larval development.
Should one of these crustacean bearers with its contained parasites be swallowed with drinking water by man, the worms arrive at sexual maturity in the stomach of the latter, and here too sexual congress probably takes place. The fe males then make their way to the sites already mentioned, while the males probably die and are cast off in the fæces.
The Guinea worm, as its name suggests, is most common in North Africa and neighboring countries; it has, however, been found in almost all tropical lands. The attacks of this parasite are almost always accompanied with great suffering and injury to health, and even death is by no means an infrequent occurrence.
The order of the nematoid worms contains many genera dangerous to man, besides the two examples above described, among which may be mentioned the dreaded Trichina spiralis, and the little less dangerous Filaria bancrofti; the latter armed with four claw-like hooklets arranged irregularly, lives in the blood, and is the cause of a most dangerous which converge toward the center of the oral cavity. The fe- and intractable form of chyluria and bloody urine.
male bas a sharp pointed tail; that of the male is blunt, and is provided with a bi-lobed, cup-like hood, which is supported by eleven horny rays-the median one dividing into two at its summit.
The females are much more numerous than the males, and the mode of reproduction is oviporous, the larve reaching maturity within the maternal body, and being expelled ali ve.

Ат Norwich, England, a drive well has been put down to a depth of 157 feet, and might have been driven deeper if required. The tube was two inches internal diameter. At Montreal, Canada, a drive well tube has been driven 174 feet.

Green Corn for Pigs.

In the summer and early fall feeding of pigs, we have found sweet corn one of the best and most convenient kinds of fodder. Pork is made to the best advantage by putting the pigs, as soon as they are weaned from the sow and have learned to eat milk and meal, into the pen, and keeping them there under full feed until they are ready for slaughter in November or December. With a good breed of swine there is no difficulty in making March pigs weigh from 250 to 300 pounds at eight or nine months old. With plenty of Indian meal and skimmed milk they will grow rapidly until the corn is large enough for cutting. About the first of August, this should be given as an additional ration. The pigs will eat the green stalks and leaves with the greatest relish after the ears have been plucked. It is an excellent appetizer, belps the digestion of more solid food, and promotes the thrift of the animals. Field corn may not be quite so nutritious, but no better use can be made of that, after the ears are in milk, than to cut and feed it to fattening swine. It costs much less to make pork in summer than in cold winter weather.-American Agriculturist

How to Handle Bees.

A bee raiser in Ireland communicates to the H'armers' Gazette (Dublin) his experience in the management of bees, from which we extract as follows :
Some people get into a fury of excitement whenever they see a bee or hear its hum, though it be only intent on gathering a little honey from the nearest flower. They shout and wallop about them with hands or handkerchiefs, as if they were being attacked by an enemy. Such are just the people who generally get stung. Let the bee alone, even though it be buzzing close to your face. In all likelihood it is only animated by curiosity. Make a fuss aboutit, strike it, or get it entangled in your clothes or hair, and blame yourself if you feel its javelin. When engaged in collecting honey or pollen from the flowers, no amount of teasing will cause it to sting unless you hurt or entangle it. Even when a swarm fills the air you may safely walk about in the midst of it, only let your motions be slow and deliberate. Should they alight on your hands or face, never mind, they will soon fly again; they are only resting. In such a case go slowly aside, and give yourself a gentle shake or two, but refrain from brushing or beating at the bees. Avoid, however, standing in the line of the flight of bees going from or returning to their hives. At such times they have such an impetus that before they are aware of your presence they get entangled in your hair, and are apt to resent your obtrusiveness. So much for one's passive behavior. Let us now suppose ourselves engaged in necessary action. First let us learr these principles:

1. Bees never attack when their stomachs are filled with honey or other liquid sweet. This is their normal condition when swarming, and therefore they are then harmless, as also when returning laden to their hives.
2. Neither do they attack when thoroughly frightened. We frighten bees by blowing smoke among them, or by rapping rather violently on their hives.
3. When bees are alarmed in a bive by smoke or concussion, their first impulse is to fill their honey bags from their combs.
4. Bees in a hive that is constantly being rapped against will in a few minutes rush bodily out from among their combs into any empty skep or box set over them.
Suppose now we wish to get all the bees out of a common straw hive. We provide the needful empty skep and four wood or iron pins, six or seven iuches long, a roll of burning rags, unless we possess a modern bellows, smoker, or tobacco pipe, and a stool or empty pail, on which to steady the hive while operating. We now approach the hive, blow three or four whiffs of smoke into the entrance to drive in any loiterers, gently raise the edge from the floor board, and repeat the smoking. Without the least jar, now lift the hive boldly up, and gently turn the mouth upward. If the bees show any sign of being ill-natured, give them a puff occasionally. Set the crown of the hive on to the stool or pail, and see that it is steady, and having the side where the bees are thickest raised an inch or two, now fix the empty skep over the other by sticking two of the pins into the lower hive, about an inch or two below the highest part of its edge, so as to support the edge of the empty skep. The other pins, sharpened at both ends, are placed as supports between the skeps. They will thus touch each other at one side, the other being open so as to give a full view.
Now commence rapping, gently at first, but gradually with more force, against the sides of the lower hive. In a few seconds the bees will commence to run as if for life to the upper hive. Among them may be seen the queen if a sharp lookout be kept. The great art bere is in keeping the bees in one continuous, steady stream. Once they take a stand it is not so easy to dislodge them. Five to ten minutes should suffice to tinish the operation if the room be warm. The driven bees may now be shaken about or tumbled from one hive to another without the slightest risk of stings.
If the weather be cold, or the operation be performed at a season when there is no unsealed honey in the hive, a little warm sirup should be sprinkled on the bees before commencing to drive.
In our modern hives we use less ceremony in dislodging the bees. After a whiff of smoke, we simply lift the frames of comb ove at a time, give them a shake in front of the hive or skep we want to get the bees into, and in a minute whisk off the few that remain with a feather.

In getting bees into a hive we either pour them down in front of it, directing their course to its entrance with a feaher, or shake them at once on the top of the frames, and cover instantly with a cloth.
To secure a swarm that bas issued and clustered on a tree or bush, we advise, if possible, to cut the branch off after all re settled. If this be done gently, the bees can then be caried to the stand they are to occupy, laid down at the door of their new hive, and directed with a feather, as before; otherwise we hold an inverted skep below the cluster, give the branch one sharp rap, cover the skep, into which the bees will fall, with a cloth, and carry it to its future abode.
To make a simple examination of a colony in a bar frame hive, the quilt is removed, a puff or two of smoke given, and the frames are lifted one at a time, with as little jar as possible. Both sides can be examined, the queen seen and captured if desired, and the entire secrets of the hive discovered without hurting a bee or receiving a sting.

FOUNTAIN ATTACHMENT FOR MARKING BRUSHES,

A rubber bulb is provided with necks at opposite ends, through which the handle of a marking brush of the usual construction is passed. The lower end of the brush handle is flush with the end of the lower neck, which has a vent extending from its lower end up into the bulb. The lower neck is flanged so as to keep the brush proper away from a table or surface upon which it may be laid. A cap is passed over the lower end when the brush is not in use.

FOUNTAIN ATTACHMENT FOR MARKING BRUSHES.

To fill the fountain bulb. its sides are pressed together, the air being thereby expelled, and its lower end dippedinto the ink. When the pressure is removed, the bulb expands and the ink is drawn into it through the vent. A slight pressure ou the bulb forces a small quantity of ink through the vent to the brush. Fig. 2 plainly shows the construction. The attachment can be applied to any brush of the common form, and can easily be taken from one and applied on another. The handle need not be changed in any way to adapt it to be used with the fountain bulb.
This invention bas been patented by Mr. P. C. Forrester, of Leavenworth, Kansas.

To Photograph Silverware,

Says the Brit. Jour. of Photo., is somewhat difficult, owing to the white or frosted parts impressing the sensitive film before the burnished portions, which in silver, under certain conditions, are practically black.
But if the burnished portions be dulled, much of the difficulty vanishes.
One method of dulling the surface is by dabbing the burnished or excessively bright parts lightly but evenly with piece of common glazier's putty. This produces a dead sur face which photographs remarkably well, and euables the most delicate designs to be clearly depicted.
After the photograph has been made the putty is easily removed by brushing it over with clean, dry whiting, or better still precipitated chalk.
If the putty itself is made of precipitated chalk, all chance of scratching the surface of the silver will be avoided. A little of the chalk mixed with almost any kind of oil will answer.
Another method is to dull the surface with moisture by causing a dew to form upon the surface of the silver in the following manner:
After the image is focused and the plate is ready for exposure, a piece of ice is placed inside the vessel. The metal being a good conductor of heat soon becomes very cold, and moisture of the atmosphere quickly condenses upon it in the form of dew, and so dulls the surface.
When this occurs the exposure must be made immediately, before the formation of tear drops.
A long exposure should be made, and the development re strained, in order that the detail in the darker portions may be fully brought out. Some skill is required in arranging a set of silver pieces as to light and shade, so that each may be brought out in geod relief.

Electric Girls.

The introduction of illuminated ballet girls has greatly added to the attractions of the spectacular stage. Girls with electric lights on their foreheads and batteries concealed in the recesses of their clothing first made their appearance a year ago, but as yet the use of illuminated girls has not spread beyond the stage. There is, however, a great future awaiting the grand idea of incandescent girls, and there is reason to believe that in a very short time private houses will be lighted by girls instead of stationary electric lights. The formation of the Electric Girl Lighting Company is an event second in importance only to the invention of electric lights. This company proposes to supply girls of fifty candle power each in quantities to suit householders. The girls are to be fed and clothed by the company, and customers will, of course, be permitted to select at the company's warehouse whatever style of girl may please their fancy. A very beautiful design for a front hall girl is now on exhibition at the company's office, No. 409 Gold Street. The present system of lighting the front hall of a dwelling house has the disadvantage that the light-whether it be a gas light or an electric light-must be kept burning all the evening, and that a servant must be employed to answer the bell. Thus there is a double expense-the cost of the light and the cost of the servant. The Electric Girl Lighting Company will furnish a beautiful girl of fifty or a hundred candle power, who will be on duty from dusk till midnightor as much later as may be desired. This girl will remain seated in the hall until some one rings the front door bell. She will then turn on her electric light, open the door, ad mit the visitor, and light him into the reception room. One girl thus performs the duties of lighting the front ball and answering the bell, and her annual cost is much less than that of a servant and a gas light. If, however, any householder should desire to keep the electric girl constantly holder should desire to keep the electric girl constantly
burning and to employ another servant to answer the bell, burning and to employ another servant to answer the bell,
there can be no doubt that the electric girl, posing in a picthere can be no doubt that the electric girl, posing in a pic-
turesque attitude, will add much to the decoration of the house.
Under the present system electric lamps or gas burners are fixtures, and canuot be moved from place to place. The electric girls, on the contrary, are movable. One girl can be made to give as much light as a large sized drawing room chandelier, and she can be moved from one room to another, leading the way to supper, for example, and placed wherever she can do the most good. There can be no comparison between a beautifully designed and chastely executed electric girl and a massive chandelier that constantly threatens to fall on somebody's head; and every householder of $æ$ sthetic instincts will be glad to exchange h chandeliers for girls.

An inexpensive electric girl of one or two candle power will be of great use when a person desires to go from one room to another in a dark house. Instead of having to carry a candle in his hand and incur the risk of dropping it or of having it blown out by a draught of air, the happy possessor of an electric girl can turn her on and send ber before him to light the way. The student who is now troubled by the flicker of his gas light, or his inability to move the electric light from one part of his desk to another, can be made per fectly happy by an electric girl with a ground glass shade, who will take any position that the student may desire in order to throw light on his book or paper. No one who becomes accustomed to such a girl will think of returning to old fashioned methods of lighting.
The new company propose to furnish the new light at a little less than the cbarge made by the Edison and Brush Companies, and promise that in a short time their light will be decidedly cheaper than gas. Their plant already comprises 2,500 girls, and both electric boys and footmen will be at the command of the public as soon as certain experiments as to the possibility of enabling electric boys to give a steady light are completed. $-N$. Y. Times.

A Watch Made to be Pounded.

When a visitor to the office of the American Bank Note Company sat down to talk to Mr. Lee, that gentleman put piece of white paper under a stamp, pounded on it, and laid the paper aside. When the visitor arose to go away, Mr. Lee put the paper under the stamp again, and pounded it once more. "You talked eight minutes," said he; "that wasn't bad." He showed the piece of paper to the caller, who saw upon it two printed clock dials. One showed the hands at four minutes to 4 o'clock, the other showed them at four minutes past 4 o'clock. "We keep that stamp," he said, " so that you sha'n't go away and say you came hereat 11 o'clock in the morning, or that you had to wait an hour and a half, or make any other misstatements which can be uarded against."
"No," he added a moment later; " that stamp is the latest wrinkle in office furniture. It is an ordinary stamp with a clock attachment. The hour hand is simply a raised point upon a movable circle. The minute hand is an arrow on another revolving circle. The usual inked tape passes over these indicators and the outer circle of hour figures. Beside the clock face is a cylinder with several faces, each bearing a word—one is ' approved,' another is 'wired,' another is 'answered,' others are ' delivered,' ' Lee,' ' received.' Thus a business man is able whenever he sends away a letter, telegram, or package, receives an order, or transacts any business whatever, to record the precise moment at which the thing was done. It costs $\$ 20$. I did not invent it. I bought it."-N. Y. Sun.

Sumac.

Ever since the war sumac has been an article of regular production in the United States. Previous to that time the use of sumac grown in this country had been comparatively insignificant, while we imported a good deal annually from Europe. After the war the negroes and poor whites in Virginia were encouraged to gather the leaves of the sumac, then growing abundantly in a wild state there, by the ready sale it commanded, and mills for its grinding were set up in Richmond, Petersburg, Lynchburg, and other places. This was immediately heralded by the newspapers as a new industry, which was the fact, but far greater importance was given to the matter than it really deserved. The American sumac was from the first, and is still, a direct competitor, for many uses, with that raised in Sicily, but the latter has steadily sold at a materially higher price, its value in the market to-day being $\$ 100$ to $\$ 110$ per ton, as compared with $\$ 75$ to 80 per ton, which is the selling figure for the American. The article is used in dyeing, as a mordant, and in tanning, for the manufacture of goat skins into morocco. The American sumac is said to be fully as strong in tannin as the Sicilian, although the analyses made have varied greatly, which is probably mainly due to the different plants tested, and the different stages of their growth; American sumac, however, has a greater proportion of coloring matter than the former, but is not, as a rule, as carefully gathered, cured, and ground as the Sicily article. The plant has been carefully cultivated in Sicily for generations, while most of that gathered here is of wild growth, although the probability that it would make a good paying crop, under proper cultivation, has been repeatedly urged.
The owners of sumac mills urge upon collectors the following points: The leaf should be taken when full of sap, before it has turned red, begun to wither, or been affected by the frost; either the leaf bearing stems may be stripped off, or the entire stalk cut away, and the leaves allowed to wither before carrying to the drying shed, but they must be neither scorched nor bleached by the sun. The Virginia crop reaches from seven to ten thousand tons annually, and is collected between the 1st of July and the earliest frost.

Characteristics of Criminals.

Recently, in France, considerable attention has been paid to an examination of the criminal class with reference to its physical and associated characteristics. M. Lacassague bas drawn attention to the frequency of tattooing among criminals, and the violent nature of the scenes depicted by them in this voluntary mutilation. The same writer has also pointed out that criminals, as a class, are tall; thus in 800 subjects examined by him, 623 were taller by 6 centimeters than the average, and some exceeded the normal height by 10 and 20 centimeters. These observations were corroborated by M. Ferri, in Italy.
In 1882 Dr. Manouvrier has remarked that among criminals, notoriously with murderers, the jaw is more developed than ts usual; and that while the cranio-mandibular index normally varies between 12.8 and 13 , among the convicts it attains the remarkable number of 14%.
MM. Heger and Dallemagne, in a comparative study of the skulls of assassins and ordinary persons, have confirmed the statement that the forward projection of the skull is greater among the former. They have also shown that criminals have a larger facial index and smaller vertical index than
the peaceable citizens, but no difference is observed in the cephalic index.
M. Heger bas affirmed the larger capacity of the criminal skull over that of the usual type, the relative proportions being as 1,538 is to 1,490 . But this has been contradicted by a number of observers who claim the reverse, but it is suggested that this may be explained by supposing that the former examined the crania of murderers only, while in the later studies those of all classes were included, among which the incendiaries are said to have small heads. M. Flesch has said that affections of the heart exist among criminals to the extent of 20 per cent; the persistence of Botal's orifice, 10 per cent; contraction of the vascular system, 5.5 per cent. But his researches upon cerebral lesions are much more important. He has demonstrated a certain atavism iv the cere-
bral convolutions, already indicated by Benedikt, as, for instance, the medium lobe of the brain being shaped as among the mammals, the separation of the eulcarian fissure from the occipital, the opening of the fissure of Sylvius, and the formation of an operculum of the occipital lobe.
Histology has also detected certain anomalies in the brains of those criminals whose autopsy has been made. Thus Spika has found the pigmentation of the nucleum of the tenth, seventh, and fifth pairs in a murderer's brain; also
Golgi and Marchi have detected the pigmentation of the Golgi and Marchi have detected the pigmentation of th neryous cells in the brain of a convict.
The school of criminal antbropology in Italy has also made important contributions to this list of facts. M. Mano has examined the hands of criminals, and he has discovered among individuals convicted of murder, among those guilty of inflicting wounds, a great preponderance of large and short hands; while with thieves the frequency of long and narrow hands is less considerable. As to the question of tattooing, he finds that the larger number of tattooed persons is among the assassins and assailants.
M. Lombraso, together with M. Mano, has studied criminality among infants. They examined 980 infants, and especially 160 from the houses of refuge. They found that the criminal type could be recognized at that age, associated
with bad tendencies in the proportion of $7 \cdot 4$ per cent. The
loss of a moral sense was recognized in 44 per cent, and a veritable propensity to crime in 10 per cent. Out of 29 in fants they have observed the disappearance of the criminal tendencies partly through non-inheritance, partly under the beneficial influence of their surroundings, and partly because their criminal passions existing at a certain period disappear in maturity.
The typical criminal physiognomy has been recognized among murderers in Germany in the proportion of 36 per cent, among thieves in that of 25 per cent, among insolvents and persons convicted of bigamy to the extent of 6 per cent. Among females this type was found in 28 per cent. With ordinary men and women this type was only found 14 times among 815 individuals, 8 of whom were doubtful.
Tomasira, Bono, and Depaoli have asserted the great capacity of the orbits or eye sockets and prevalent daltonism. M. Bono
criminals.
criminals.
But perb
But perhaps the most curious observations were made upon the different strength of the two hands. By means of the dynamometer MM. Mano and Lombraso observed that 23 per cent of the criminals examıned possessed more power in the
left hand, while the number of ordinary subjects having this peculiarity was only 14 per cent. In addition, in examining left-handed people their number among the criminals far exceeded that among others, with a stronger showing to this effect among women than men.
It was also found among criminals that the right lobes of their brains were more developed than the left, while the weight of the brain was in many cases excessive. In general
sensitiveness and in sensitiveness to pain the criminals fell sensitiveness and in sensitiveness to pain the criminals fel very deficient, requiring three and five drops of nitrate of very deficient, requiring
amyl to provoke a blush.
M. Henri Ferri has shown that the jaws of criminals are arge, that in fact a jaw of large dimensions coexists not only with the greatest development of the negative functions, but with greater ferocity and stubbornness, being nals' skulls are flattened.
These scattered facts, selected from many others, indicate to what interesting and possibly useful conclusions this study of criminal anthropometry may lead.

Prof. R. A Strange Coincidence.

Pitor . .. A. Proctor, the English astronomer, and also f articles on Coincidents and Superstitions, many which he relates as occurring in his own experience; others are obtained from various sources.
But the circumstance I am now to relate, says Professor Proctor, seems to me to surpass in strangeness all the coincidences I have ever heard of. It relates to a matter of considerable interest apart from the coincidence.
When Dr. Thomas Young was endeavoring to interpret the inscription of the famous Rosetta Stone, Mr. Grey (afterward Sir George Francis Grey) was led, on his return from Egypt, to place in Young's hands some of the most valuable fruits of his researches among the relics of Egyp-
tian art, including several fine specimens of writing on papyrus, which he had purchased from an Arab at Thebes, in 1820. Before these bad reached Young, a man named Casati had arrived in Paris, bringing with him from Egypt a parcel of Egyptian manuscripts, among which Champol lion observed one which bore in its preamble some resemblance to the text of the Rosetta Stone. This discovery attracted much attention, and Dr. Young having procured a copy of the papyrus, attempted to decipher and translate it.
He had made some progress with the work when Mr. Grey gave him the new papyri. "These," says Dr. Young, "contained several fine specimens of writing and drawing on papyrus; they were chiefly in hieroglyphics, and of a cribological nature; but two which he bad before de were brought, through his judicious precautions, in excellent preservation, both contained some Greek characters, written apparently in a pretty legible hand. That which was most intelligible had appeared at first sight to contain some words relating to the service of the Christian Church." remarks that it was the first in which any intelligible characters of the enchorial form had been discovered among the many manuscripts and inscriptions which had been examined, and it "furnished M. Champollion with a name which materially ad vanced the steps leading him to his very
important extension of the hieroglyphical alphabet. He had mentioned to me in conversation the names of Apollonius, Antiochus, and Antigonus, as occurring among the witnesses, and I easily recognized the groups which he had deciphered ; although, instead of Antiochus, I read Anti machus, and I
omitted the m."
Now comes the strange part of the story:
"In the evening of the day that Mr. Grey had brought me his manuscripts," proceeds Dr. Young (whose English, by the way, is in places slightly questionable), "I proceeded impatiently to examine that which was in Greek only, and I could scarcely believe that I was awake and in my sober senses when I observed among the names of the witnesses Antimachus Antigenis (sic); and a few lines farther back, Portis Apollonii, although the last word could not
have been very easily deciphered without the assistance of have been very easily deciphered without the assistance of
the conjecture, which immediately occurred to me, that this
manuscript might perhaps be a translation of the enchorial manuscript of Casati. I found that its beginning was, 'A copy of an Egyptian writing,' and I proceeded to ascertain that there were the same number of names intervening be-
tween the Greek and the Egyptian signatures that I had identified, and that the same number followed the last of them. The whole number of witnesses was sixteen in each.

I could not, therefore, but conclude," proceeds Dr. Young, after dwelling on other points equally demonstrative of the identity of the Greek and enchorial inscriptions, "that a most extraordinary chance bad brought into my possession a document which was not very likely, in the irst place, ever to have existed, still less to have been preserved uninjured, for my information, through a period of near two thousand years; but that this very extraordinary translation should have been brought safely to Europe, to England, and to me, at the very moment when it was most of all desirable to me to possess it, as the illustration of an original which I was then studying, but without any other reasonable hope of comprehending it-this combination would, in other times, have been considered as affording ample evidence of my having become an Egyptian sorcerer."
The surprising effect of the coincidence is increased when the contents of this Egyptian manuscript are described. "It relates to the sale, not of a house or a field, but of a portion of the collections and offerings made from time to time on account or for the benefit of a certain number of mummies of persons described at length in vèry bad Greek, with their children and all their households."

The Seventeen Year Locust.

This is "seventeen year locust" season in Virginia. According to the Prairie Farmer, considerable alarm is felt in some quarters at the announcement. It is a blessing to the country that these voracious fellows are by nature prevented from making a raid all over the country the same year. The history of this insect is curious and interesting. The eggs are deposited in small slits made by the female in the branches of trees. In a slort time the eggs hatch, and t.he young larvæ follow down the branches to the trunk, down this to the roots, along the roots to their tips, where they fasten themselves by the beak, through which they draw sustenance. They also attach themselves to other succulent roots. Here they remain for nearly their entire existence of almost seventeen years without other change than a gradual increase in size. They come nearer the surface as the period of transformation ap proaches. They make cylindrical holes some half an inch in diameter, which they carefully cement and varnish, so as to be impervious to water. In this they remain for several days. They finally ssue from the ground, crawl up a tree or stump, take a rest, and cast their skin. They come out in the evening, and by morning the perfect insect is ready for flight. They seem to prefer the oak to other trees, but will take up with many thers, having rather a liking for the apple tree. They usually appear in the latter part of May, and they disappear in about six or seven weeks.

Animal Remains in Coal

Professor Miall, F.G.S., in a lecture on "Animals of the Coal Period," recently delivered at York, England, said that there were to be found associated with seams of coal, and especially with beds of shale even below coal seams, the lattened impressions of various creatures which once had life. There had been seen shells and other fossils, and the queezed impressions of the bodies of crustaceans or insects. These remains were, however, extremely fragmentary, and were as black as the slale in which they were embedded; it was, therefore, a matter of considerable difficulty to put them together in order to find out their original shape or to what sort of animal they belonged. But during the last 100 years a number of naturalists had engaged themselves in this ask, and had brought to light a variety of results. Naturalsts, indeed, believed that our common pond mussel was epresented by an ally in that very remote period. It was ound that the fresh water animals of the coal period were ery much more like recent animals than were the marine forms of the earlier times like those of the present day. Many of the common shells of Europe were represented in extremely remote antiquity. But marine shells and other productions of the sea were not mixed up with the beds in which had been discovered land shells and the remains of and animals. All the marine productions kept, as it were, o themselves, and they were found in special beds or layers; but the marine beds seemed to mark the time when some low barrier which kept the sea at a distance was suddenly broken down, and the water of the ocean made an incursion upon either a fresh water area or a land area, and left behind it some marine shells.
Fossil centipeds, such as might now be commonly seen in our gardens and fields, had been discovered in coal measures. Scorpions, too, had been traced by their fossil remains, and thus proved to be closely akin to the scorpion of our own day. Cockroaches resembling in all essential features those with which most of us are familiar had been discovered in considerable numbers, and those of the present time formed perhaps one of the most ancient types of animal life now to be found upon our planet. Then there came the crayfish, which could be tolerably matched nowadays. But there had been animals which had disappeared from the earth altogether, without having left behind them any animal very similar to themselves.

ENGINEERING INVENTIONS.
A car coupling bas been patented by Mr. Alexander M. Fraser, of Bathurst, N. B., Canada. The invention consists in the peculiar construction and arrangement of a sliding couping hook combined with adjusing devices, so the ordinary drawba.
may be used, and the action is automatic.
A car coupling affords the subject of a paent issued to Mr. A. Judson Chapel, of Arkansas City, Kan. It is automatic, and the drawbars are of ordilink, but there is a special form of holes in the upper and lower faces of the drawbar, conforming to a pecaliar shape of the coupling pin.
A gas pump has been patented by Mr. Wil liam J. Ferguson, of Baltimore, Md. The piston has a valve iucorporated in it, and there are improved means
for tightening up the stuffing box in the lower ena of for tightening up the stuffing box in the lower end of
the cylinder, making a pump especially adapted for the cylinder, making a pump especially adapted for
changing the tension of a gaseous medium in refrigerchanging the tens
ating machinery.
A car coupling has been patented by Messrs. Franaz F. Von Ainbach, of Heutzenbuch1, and
Anton Hanger, of Judenburg, styria, Austria-Hungary. The coupling includes specially devised conpling cylinsocket joints, the drawbars having hooks, or mouths forreceiving, the links, os as to form a a yielding connec-
tion, with other specially devised and arranged parts. A ditching machine has been patented by Mr. Elmer H. Smith, of Quinton, N. J. The invention covers an improved, plow shifting and elevator belt
tightening apparatus, giving an endless elevator that tightening apparatus, giving an endless elevator that
may be shifted up and down with the plow, and there may be shifted up and down with the plow, and there
is a contrivance for shifting the plow and lower roller is a contrivance for shifing the plow and lower roller
frame and belt tightener by one hand wheel, making the machine very simple.
A water tube steam generator has been paented by Mr. Charles Ward, of Charleston, West Va.
This invention is an improvement on a former pa This invention is an improvement on a former pa
tent issued to the same patentee, and consists principally in placing the "separator" inside the circulating system of pipes and inclosing it with frebrick, so that it serves as a
A car coupling has been patented by Mr. George C. Loar, of Quincy, IIl. On top of the drawhead is a housing, in which is a vertical bolt with its lower end beveled, so that when the link enters the
throat it forces up this bolt against a spring, and as throat it forces ap this bolt against a spring, and as
soon as the hole in the link passes under the bolt the spring forces the latter down, with other device

mechanical inventions.

An improved nut lock bas been patented by Mr. Jacoo McAfee, of Dallas, West Va. The invention
consists of a split nut, with an inclosing band, and a consists of a split nut, with an inclosing band, and a
key or wedge to be inserted between the band and the nut, to force the two sections of the nut to closer embrace
A machine for reciprocating tools has been patented by Mr. Fred. R. Patch, of Sutherland Falls,
Vt. The invention consists in the combination with two cylinders, each with an open and closed end, and he ends of the cylinders connected by a tube, of pistons and piston rods. one of the pistons being reciprocated, and the pressure of the one
other to which the tool is fastened.
A forge hammer has been patented by Mr. James H. Baker, of Westrille, Ohio. The invention relates to improvements in die blocks, and consists in
the peculiar construction and arrangement of parts; the peculiar construction and arrangement of parts;
the rack and pinion can be combined by suitable mechanism with the hammer to shift the die block automatically after each stroke, so that the stock
struck in a different. place each time if desired.

agricultural inventions.

A fertilizer distributing attachment for rollers has been patented by Mr. Sardford C. Meddick of Ovid, N. Y. A reciprocating bar with plates on its
lower and prongs on its upper edge is so arranged in lower and prongs on its upper edge is so arranged in
the hopper and geared with one of the roller shafts, by the hopper and yeared with one of the roller sharts, by
simple mechatism, as to effect a uniform distribution simple mechanism, as to effect a unit.
of the ferilizers as the land is rolled.
A milking stool has been patented by Messers. Czar D. Goodman and Frederick J. Smith, of Messrs. Czar D. Goodman and FreaerickJ. Smita, of
Granby, Conn. The invention covers an improved milk pail holding attachment, contrived for ready and requirements, and so the pail may be readily lifted off he holder for emptying and replaced without changing the fastening devices.

miscellaneous inventions.

A botlle stopper has been patented by Mr. Max Rubin, of Philadelphia, Pa. This invention covers an improved construction and arrangement to facilitate
the discharging of liquids from bottles, with security the discharging of liquids from
A faucet has been patented by Mr. Edward Myers, of Webb City, Mo. It has auger points to bore their own way into a barrel, and is so contrived as to
keep the borings out of the faucet, thus boring its own keep the borings out of the faucet, thus boring its own
hole of entrance and straining the fluid from the shavings so made.
An eight day clock alarm has heen patent dey Mr. C. Fred. Luqner, of Montgomery, N. Y. It as to sound an alarm once each day for eight succesas tive days without winding, the alarm mechanism having to be wound only once a week.
A trunk has been patented by Mr. William J. Large, of Brooklyn, N. Y. Iu this trunk the tray i hinged to suitable arms or links, so the tray may be
swung apward out of the trunk, while at the back is an swung apward out of the trunk, while at the back is an
auxiliary tray with the front or movable tray hinged to auxiliary tray with the front or movable tray hinged to
it, with means for securing it to the body of the trunk

A spring bed bottom has been patented by Mr. John McIlhone, of St. Louis, Mo. Itis a one piece ormed of spring, with two conicai coils and a tie and crosshead, the parts being easily made and assembled, and giving great elasticity, with a large surface 1 apport for the mattress.
Λ rein fastener has been patented by Mr Norman N. Hazelton, of Lamoni, Iowa. It is an improved hook and catch device for connecting harness straps, particularly tugs and reins, being contrived for and more substantially than with buckles, and riveting can be made very cheaply in malleable iron.
A heating stove has been patented
William A. Winfree, of Elizabethtown by Mr. William A. Winfree, of Elizabethtown, Tenn. The
stove is composed of inner and outer cylinders, with the space between divided by an inclined flange, so the smoke and other products of combustion are distributed between the two cylinders, and traverse an extenive heating surface before passing to the flue.
A shifting buggy top has been patented by Messrs. George Engelhart and Charles Weidner, of At-
tica, $\mathbf{0}$. The buggy top supporting rail and the " lazy tica, 0 . The buggy top supporting rail and the " lazy
back "supports are so made that the rail may be readily back "' supports are so made that the rail may be readily
taken off without taking off the lazy back when it is desired to remove the top and use the venicle as an open buggy.
A bird cage has been patented by Mr. Jahez S. Musgrave, of Bloomfield, N. J. The invention
consists of making an inclosure, of any suitable mateconsists of making an inclosure, of any suitable mate-
rial, suspended within or attached to the inside of the cage, in such way as to afford quick and easy access cats, or other birds or animals.
che the
A fire escape bas been patented by Messrs. David Ware and Charles W. Richman David Ware and Charles W. Richman, of Philadelphia,
Pa. The invention relates to that class of fire escapes in which the rope runs over friction devices in a cas-
ing, a rod being secured on one of the side surfaces of the block, holding a traveler, to which a band or b is fastened, with a hook or like device at its free end.
A wagon tongue support has been patented by Mr. Jacob Bower, of Lafayette, Ind. It is an im proved front wagon gear, in which the tongue has a
pivoted button on its. upper side near the wagon, in connection with a spring, hook, and chain beneath, by which the tongue may be held up so the horses will be dropped.

An enlarging camera has been patented by camera box specially devised for the use . This is bromide of silver gelatine paper, as a substitute for th more expensive solar cameras heretofore used, and in
which artificial light may be used; it also provides in which artificial light may be used; it also provides in
creased facilities for focusing and enlarging portions creased facilities for
A fire escape has been patented by Mr. Francis D. Parmelee, of Hillsdale, Mich. This inven tion covers a special arrangement and construction for controlling the movement of a rope by means of a case
in which are friction pulleys, an attachment heing made in which are friction pulleys, an attachment heing mad the rope having a haruess attachment which may be fastened about the body.
An improved plastering has been patented by Mr. James Morrisou, Jr., of New York city. The invention covers a plastering slab, that can be fastened
to walls and ceilings and is fire and water proof; ther are long strands of cocoanut fiber extending longi tudinally the length of the slab, aud embedded therein the slab being made of plastic plastering material, and A method of and means for cultivating ruits and vegetables has been patented by Messr City Pa . The City, Pa. The invention covers a method of growing ment of such vessel to rotate horizontally, with a pe forated water supply tube in the vessel, and variou A trunk lock has been patented by Mr. Edward A. Judd, of New Britain, Conn. The invention is in that class of locks in which a stop holds the bolt,
or the bolt is released upon the closing of the lid, ba it is novel in construction and arrungement, making very convenient and cheap lock, with no protruding parts, so that it is especially adapted for roll desks,
pianos, etc.
A die for pressing clay fence posts has been patented by Mr. Ephraim Ivett, of North Ferrara, 0 In order to make such posts with an ordinary brick or
tile machine, a die is provided with an apertured plate on which sliding plates are so held that they can be ad justed for making posts of a greater or less diameter, or any shape, rods

An adjustable proscenium has been patent by Mr. Imre Kiralfy, of New York city. In combi nation with the proscenium wall of a theater is an adjustable frame for decreasing the size of the stage opening as much as the nature of the play may require,
it being adjustable for height and width as desired for ballets, society plays, or spectacular pieces, according the number of persons
A fire escape bas been patented by Mr. George Sinfield, of Portland, Oregon. This invention provides for raising a rope ladder by means of a pole,
and so that when a crossbar reaches the desired window it will be pushed through the window opening and the bar will catch on the edges thereof, or a hook will catch on the sill, the apparatus
specially devised truck therefor.
An improvement in calendars has been patented by Mr. Joshua F. Tannatt, of Springfield, Mass. oculiarly slotted and perforated flat holder, of card ea calendar sheet, which may be printed on both sides, so that by suitably turning the sheet and changing the positions of its folded portions the different months are

A hose coupling bas been patented by Messrs. Garritt M. Van Riper and James O. St. Clair handle an elastic packing between the meeting end por tions of the coupling sections, so that when the handle piece is closed to lock the sections it compresses the
packing, and the handle piece goes into a locked posipacking
tion.
A tension device for sewing machines has been patented by Mr. Hiram Holden, Jr., of Spencer Mass. This invention is applicable to wax and dry thread machines, and is particularly intended to slack the tension while the needle is passing the thread in duplicate, both tension wheels being on one supjusted without interfering with the other.
A fire escape has been patented by Mr Charles I. Pittman, of Halifax, N. S., Canada. The invention consists of a brake block with a sling sus which the descent is made is rove, so the weight of the rider produces pressure on the rope to graduate the de scent, making a simple and efficient device, adapted to be placed in a sm
side of a window
A process of and apparatus for the treat nent of ramie and jute have been patented by Mr. rived floating wharves are made to carry a raft, which oaded with the stalks, may be sunk for their thoroug wetting, then raised and the water pressed out by roll ers; from thence the partially dried material is pressed between corrugated rollers to further dry it and break
up the woody fiber, after whick a scratcher or beater with blades or knives on drums, beat the broken up stalks
terial.

NEW BOOKS AND PUBLICATIONS

Through Spain on Donkey Back

W. Parker Bodfish has illustrated, for D. Lothrop Co., a very attractive little volume on travels in Spain. The sketches which embellish the book are
numerous and well executed, and the descriptive accompanying the drawings enable one to form a very good idea of the peculiar manners and customs of the Spanish people.
The United States Art Directory and Year Book. Compiled by S. R.
Koehler. Cassell and Company, New
York, London, and Paris. The design of this book is to furnish a practical guide or art patrons, students of art, etc.,by poinling out the more notable art objects of the United States, and the an art chronicle of exhibitions held during the year recent monuments, notable buildings, the growth of
museums, etc., with detailed mention of national and ocal institutions, and has a list of 76 illustrations.
The English Illustrated Magazine. Macmillan \& Co., New York.
This is an attractive monthly profusely illustrated with finely executed views of English scenery, manu-
acturing towns, etc. The May number contains a defacturing towns, etc. The May number contains a de gravings of the different kinds of lace manufactured here, and descriptions of the processes by which th different varieties are produced.
Glue; its Raw Materials and their
Fabrivation. Covering also gelatine,
gelative veneers and foils, isiuglass,
cements, pastes, mucilages, etc. By F.
Dawidowsky. Henry Carey Baird \&
Co., Philadelphia. Price \$2.50.
The author of this book, a German technical chemist, nade a thoroughy pract expas easily comprehended by the ordinary workman, and met with great success in
Germany; but the rranslator, Mr. William T. Brannt Germany; but the translator, Mr. William I. Brannt, has made extensive additions to the original, including The subject istaken up, at the beginning, with an ac count of the different sources of the raw material and theration of a glue factory is described in detail; the operation of a glue factory is described in detail; the
different ways of preparing gelatine are given; the various kinds of glue and gelatine, with special directions for their preparation, are mentioned with degree of fullness which cannot fail to be of value to all who use either to any extent, while there are more than fifty pages on cements and pastes, giving a great
number of receipts. The book seems to be the product of a thorough acquaintance with all the estab lished methods of conducting the business, both in thi country and Europe, but the author says the glue in ustry has reached its highest development in the
United States, adding that "many improvements which would be derided as chimeras in Europe have been in troduced here, and give to the American glue industry an ascendency which will render competition by the Enropean glue boiler impossible for at least ten years come." It is interesting, in this connection, to re provements in this industry, in which he laid th foundation of his fortune, and there are New York leather merchants of the present day who well remem-
ber how he used to visit the hide and leather stores in ber how he used to visit the hide and leather stores
the Swamp, half a century ago, gathering up the horn the Swamp, half a century ago, gathering up the horns
and offal of hides and skins to make into glue and gelatine. Owing to the improved manufacture and ex.
tended use of glue, tanners are now able to obtain more than the nominal sum Mr. Cooper used to pay for this glue stock, and all who are interested in learning the details of the manufacture, and the various kinds
and qualities of product, can find in this book the best presentation of the whole subject that has ever yet been
zusiurss and extronal.
The Charge for Insertion under this head is one Dollar
a line fon each insertion ; about eight words to a a line for each insertion ; about eight words to a line.
Advertisements must be received at publication Advertisements must be received at publication office
asearly as Tluursaay norning to appear in next issue.

Electrical Alarms, Bells, Batteries, etc. See Workshop R.
60 Lathes, new and second-hand, $12^{\prime \prime}$ and $14^{\prime \prime}$ swing, Blacksmith Drilling Machines for $1 /$ to er, \$22.50. Pratt \& Whitney Co., Hartford, Ct.
Mills, Engines, and Boilers for all purposes and of very description. Send for circulars. Newell Univer-

Wanted.-Patented articles or machinery to mannfacSind introduce. Lexington Mig. Co., Lexington, Ky. Speaking of Raleigh's first expedition to Carolina,
Bancroft says: " The keenest observer was Hariot, the Bancroft says : "The keenest observer was Hariot, the
historian. He observed the culture of tobacco; accusomed himself to its use, and was a firm believer in its healing virtues." This was in 1585. The famous tobacco
of the Indian council is now that of the Golden Tobacco elt of North Carolina. It is no longer crude leuf as the Indians smoked it, but still a natural and pure leaf, prepared for the pipe or cigarette in the shape of Black-
well's Durham Long Cut.
Wanted.-Patented articles and machinery to manuAll Books . McGill, New Haven, Conn.
Brush Electric Arc Lights and Storage Batteries. wenty thousand Arc Lights already sold. Our largest
machine gives 65 Arc Lights with 45 horse power. Our Storage Battery is the only practical one in the market. rush Electric Co., Clana,
Cyclone Steam Flue Cleaner. The best in the world. For Freight and Passenger Elevators send to L. S. , \& Son. Rochester, N. Y., or 46 Cortlandt St., N. Y. Sewing machine, water closet, \& other light castings "How to Keep Boilers Clean." Book sent free by
Stationary, Marine, Portable, and Locomotive Boilers
apecialty. Lake Erie Boiler Woriss, Buffalo, N. Y.

> Railway and Machine Shop Equipment. Send for Monthly Machinery List

Send for Monthly Machinery List
to the George Place Machinery Company,
The Hyatt filters and methods guaranteed to render Il kinds of turbid water pure and sparkling, at economi-
"The Sweetland Chuck." See ad. p. 316.
Steam Boilers, Rotary Bleachers, Wrought Iron Tarn
Tables, Plate Iron Work. Tippett \& Wood, Easton, Iron Planer, Lathe Drill, and other machine tools of odern design. New Haven Mfg. Co., New Haven, Conn. Pumps-Hand \& Power, Boiler Pumps. The Goulds
afg. Co., Seneca Falls, N. Y., \& 15 Park Place, New York. Best Squaring Shears, Tinners', and Canners' Tools If an invention has not been patented in the United tates for more than one year, it may still be patented in
anada. Cost for Canadian patent, \$40. Various other oreign patents may also be obtained. For instructions address Munn \& Co., Scientific American Patent gency, 361 Broadway, New York.
Guild \& Garrison's Steam Pump Works, Brooklyn, ion. Send for catalogue. For Power \& Economy, Alcott's Turbine, Mt.Holly, N. J. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. Supplement Catalogue.-Persons in pursuit of information on any special engineect. can have catalogue of contents of the ScIvtific amprican sipplemant The SUPpLigment contains lengthy articies embracing
the whole range of engineering, mechanics, and physiMachinery for Light Maf and ailt to Nickel Plating.-Sole manufacturers cast nickel andes, pure nickel salts, polishing compositions, etc. Comete outfit tor plating, etc. Hanson \& Van Winkle,
Jewark, N. J., and 92 and 94 Liberty St.. New York. Curtis Pressure Regulator and Steam Trap. See p. 286. Woodwork'g Mach'y. Rollstone Mach. Co. Adv., p.286. c. B. Rogers \& Co.. Norwich, Conn., Wood Working achinery of every kind.
Job lots in Rubber Belting, Packing, Tubing, and
Hose. 75 per cent ofr belting. John W. Buckley, ${ }^{156}$ Hose. 75 per cent off
South Street, New York.
Drop Forgings. Billings \& Spencer Co., Hartford, Conn. We are sole manufacturers of the Fibrous Asbestos sbestos goods of all kinds. The Cnalmers-Spence Co., 19 East 8th Street, New York.
Steam Hammers, Improved Hydraulic Jacks, and Tube Expanders. R. Dudgeon, 24 Columbia St., New York. Emerson's 1884 Book of Saws. New matter. 75,000. Hoisting Engines, Friction Clutch Pulleys, Cut-off Coupling. D. Frisbie \& Co.. Philadelphia, Pa.
Barrel, Keg, Hogshead, Stave Mach'y. See adv. p. 302. Mineral Lands Prospected, Artesian Wells Bored, by
Pa. Diamond Drill Co. Box 423. Pottsville. Ea. See p. 301. For best low price Planer and Matcher. and latest mproved Sash, Door, and Blind Machinery, Send for The Porter-Allen High Speed Steam Engine. SouthStenen's Vises. Stephen's Vises. Special size for amateurs. See p. 301. Split Pulleys at low prices, and of same strength and ppearance as Whole Pulleys. Yocom \& Son's Shafting
Works. Drinker St., P'hiladelphia. Pa. Gears.

HINTS TO CORRESPONDENTS.
No attention will be paid to commumeations unless accompa
writer.
writer.
Namesand addresses of correspondents will not be given to inquirers.
We renew our request that correspondents, in referring name the date of the paper and the page, or the numbe of the question.
Correspondents whose inquiries do not appear after
reasonable time should repeat them. If not then puba reasonable time should repeat them. If not then pub-
lished, they may conclude that, for good reasons, the lished, they may concl
Editor declines them.
Editor declines them.
Persons desiring special information which is purely
of a personal character, and not of general incerest of a personal character, and not of general interest,
should remit from $\$ 1$ to $\$ 5$, according to the subject, as we cannol be expecterd to spend time and labor to obtain such information without remuneration.
Any numbers of the Scientific American SupplesAENT referred to in these columns may be had at the
office. Price 10 cents each. office. Price 10 cents each.
Correspondents sending samples of minerals, etc., for examination, should be careful to distinctly mark or
label their specimens so as to avoid error in their identilabel the
fication.
(1) E. R.-An inducement for making canaries sing, as practiced by fanciers, is to place the bird near a singing bird. The bird will probably
singunder any conditions until after moulting time.
(2) F. W. G. says: In your issue of April 12, answer No. 2, C. S. F. asks in relation to the
power required at top or center of small saws, and your eply is that they require less power to cut when stock just clears flange, and that is the way makers make
benches, etc. I have had an experience of sixteen beaches, etc. I have had an experience of sixteen
years such saws and handling men who are The reason the makers put table close to flauges I have always been told and believed was so a given diameter hard cutting we like to have the saw just barely reach through, and think should you or C.S. F. take a saw trame suitable for a 14 inch saw, and put on a belt a narrow as will drive it, so it will slip at any increase of work, then saw a 2 inch or 3 inch piece with table down and another cut with table up, and prove experimentally hat it rips easiest and with less power witb stuff a as I mare a mayinted with saws and machinery than with pen, but would like you to try it and see if you were not wrong in your answer as given, if not in your
(3) E. P. C.-Carbon bisulphide is the same as bisulphide of carbon. The original patent
states that "lead nitrate is beated in the retort," presumably dry. By this means the hyponitric acid is obtained-peroxide of nitrogen is synonymous with hyponitric acid. Nitrobenzine is equivalent to nitrobenzol, and may be described as benzol in which one of the
atoms of hydrogen has heen replaced by one of nitrogen dloxide. In order to make these various chemi cals, a knowledge of chemistry together with a certain amount of manipulatory skill is essential. These pro-
cesses of manufacture may be found accurately described, in Roscoe and Schorlemmer's 'Treatise on Chemistry.
(4) E. O. K.-The heating of factories by steam in pipes, placed about two feet below the
ceilings, is much in vogue now, as being quite safe and convenient. There has as yet been no publication in regard to the detail of this system. There is little market here for hickory tool handle stock. Tool handles are made in large quantities in Maine
shire, where the stock is very cheap.
(5) G. E. W. asks: What metal in the shape of a small bar or rod will espand the most when
exposed to heat of 105 degrees? Please give size of exposed to heat of 105 degrees? Please give size of perty of expanding. The size of rod is not material expansion is simply a factor of its length. A receipt as follows is frequently given as an expansion metal:
Melt together 9 parts of lead, 2 parts of antimony, and Melt together 9 p
1 part bismuth.
(6) L. L. M. asks: What would you sug gest as a means of taking out lemon stains from
cloth? A. Wash out with warm soapsuds or ammonia
(7) A. W. G. asks (1) for a recipe for a powder or mixture that will kill the nerve of a hollow
tooth. A. Use creosote. 2. Will above be painful tooth. A. Use creosote. 2. Will above be painful
while operating? A. No. 3. Will it in any way injure A. No, 4. After the neve is killed, can the tooth be filed without pain? A. Yes. 5. After the nerve of tooth is killed, does the tooth stop decaying? A. No.
(8) C. G. L. asks if there is any way to for binding books. A. When the leather is seen in a for bished binding, it is often impossible to tell by the books alone, so closely is theimitation made to resemble the genuine; but the waar very quickly shows, the mitation being generally of sheepskin, and quickly becoming ragged and unsightly with such use as would
not at all injure the genuine. Goatskin, from which not at all injure the genuine. Goatskin, from which
genuine morocco is made, is of a closer, stronger genuine morocco is made, is of a closer,
texture than sheepskin, which is of a spongy fliber, and one of the weakest leathers made; morocco, too, is with alum. Unumac, white stion is very poor one gen erally needs to cut a piece of leather, or even see it in the whole skin, in order to closely determine its kind and quality, but such examinations being impracticable in book stores, as also in shoe stores, the ordinary
customer has to take most of his purchases at retail in this way largely on faith in the representations of the
(9) J. R. asks: 1. How is papier mache unces white soap, and dissolve them in a quart of wances white soap, and dissolve them in a quart o
water; into another vessel dissolve2 ounces gum arabic and 1 ounce glue, in the same quantity of water as the former, and add the two solutions together, which
is now kept warm and the article dipped into it, and is now kept warm and the article dipped into it, and then suspended until perfectly dry. A second immersion increases the efficacy of the treatment. 2. How are ferns and leaves bleached? A. Steep the leaves
into a solution prepared by mixing about 1 drachm chloride of lime with one pint water, adding sufficient chloride of lime with one pint water, adding sufficient
acetic acid to liberate the chlorine. They should not be allowed to remain in the solution too long (about en minutes), as they are apt to become brittle.
(10) E. J. T. incloses the following clipping rom a Western newspaper, and asks if the assertion
therein contained is correct? "Sirius, the brightest star in the heavens, is said to be one hundred millions of miles away from the globe that we inhabit. It is as big as sixty of our suns put together. Its light, though traveling at the enormous rate of one hunared and eighty-six thousand miles a second, reaches us after a journey taking sixteen years." A. Sirius is about 20 millions of millions of miles distant, and supposed to of the same intensity. It has a companion about seconds distant, or 40 times the distance of the eart from the sun. This companion must also be of im mense size to enable it to be seen from the earth. A ray of light from Sirius is three and a quarter years, not sixteen years, in reaching the earth.
(11) N. S. writes: I have a small, thin ivory le that is warpededgewise, how can I staighten it? A. about 212° for a short time, letting it cool slowly, may straighten it for a time, but we do not think it will be
(12) S. H. asks: 1. What is your advice to young man of 21 who wishes to be a first class maof mechanics a specialty? If so, where, and where to address for particulars? A. We think that much bene-
fit will come from entering one of the mechanical fit will come from entering one of the mechanical
schools for study during winter, and doing practical schools for study during winter, and doing practical
work in a machine shop during summer. Best schools work in a machine shop during summer. Best schools
are Stevens Institute, Hoboken, Cornell University, Ithaca, N. Y., Troy and Boston Polytechnics, etc. 3. What is the best kind of oil to use in a cylinder What is termed here cylinder oil is much approved. What is best oil to keep a boiler free from lime
There is no oil that will prevent lime deposit.
(13) W. H. G. asks if there is any way to make white metals and alloys fill and take fine impreswork? A. Yes. Use type metal.
(14) W. W. asks whether the increase twist a drill takes out the chips better than the regular aist? A. For holes of 3 or 4 times the diameter we ar think tbat the increase twist is a favorite.
(15) A. B. W.-Volcanic rocks that are porous are so little known here that it will be very dif-
cult to suggest any practicable way of quarrying it Much depends upon its disposition to split in any particular direction. This could be ascertained in a very short time by any practical stonecuter. If it cannot be split off from a ledge by wedging, or by drilling and wedging into the drill holes, we cannot suggest a bette way than to drill and blast off very large blocks, and
saw the blocks into shape with sand saws. We have publi
you.
(16) H. R. T. asks what he can use to paint an engine and pulleys to make them look like new? A. lowing:

Asphaltum.............................. 8 ounces.

Mix by heat, and when cooling thin with turpent Then coat them with a suitable transparent or light
(17) F. S. W. \& Co. write: What would be most durable for the roof of our bakery? We had on tin, and in less than two years the sulphur from the fires and the steam destroyed it so that you can break through with the ingers. It has a fall of about in 10 , which
will be too flat for slate. We were advised to use galvanized iron, how would copper do? A. Galvanized iron would not be any better than tin; copper is better
than either. We should think, however, that by using than either. We should think, however, that by using
some coal tar roofing or asbestos paint, a more suitable material and far less expensive than copper would be obtained.
(18) J. H. sends for name of Floridian plant the leaves of which, he states, are used as a febrifuge.
A. The plant is Viburnum obovatum. We should judge from the gentian-like bitterness of the leaves that they might possess tonic properties. One other species of the genus (V. lentago) has been used in
domestic practice as an antiperiodic, and possibly the plant under consideration*may have the same reme dial qualities
(19) F. M. C. writes: In the Boston Globe of the 18th March, I read a note describing a locomotive
built by the Portland Locomotive Works for the Northern Pacific Railroad. In the course of the description it said: "It has Joy's valve motion, an Enghere," etc. I would like to know if this is the only valve," motc. I would like to know if this is the only are there? A. It is an error to say that this Joy's valve gear is the first used in this country. They are in use both on locomotives and propeller engines. In Joy's valve gear, also Strong's, Marshall's, and some others,
the motion is obtained by link connection, without the usual link of Stephenson and other similar valve mo-
tions. You will find a description of Joy's gear in Engineering (English) for April 14, 1882, and of Mar-
(20) G. W. M. asks bow to dress and treat fur bear skin. A. The following is recommended: skin by soaking, remove the fatty matter from the in side and soak it in warm water for an hour. Nes mix equal parts of borax, saltpeter, and Glauber's salt (sodium sulphate) in the proportion of about half an ounce of each for each skin; spread this with a brush over the inside of the skin, applying more on the thicker parts than on the thinner; double the skin toAfter standing twenty-four hours, wash the skin clean and apply in the same manner as before a mixture of 1 ounce sal soda, $1 / 2$ ounce borax, and 2 ounces hard white soap, melted slowly together without being al owed to boil; fold together, and put away in a warm place for twenty-four hours. After this dissolve 4 ounces alum, 8 ounces salt, and 2 ounces saleratus in
sufficient hot rain water to saturate the skin; when cool sufficient hot rain water to saturate the skin; when cool 12 hours; then wring out and hang it up to dry. When till the skin is sufficiently drying two or three time side with fine sand paper and pumice stone.
(21) W. A. E. asks for a preparation which will securely attach coarse cotton cloth to glass when with the least possible. quantity of water, and melted Wenice turpentine. If desirable this can be mixed with
Vear starch to form a thick paste. See also list of cements given in Scientific American Supplement, No. 158.

- Minerals, etc.-Specimens have been re ceived from the following correspondents, and examined, with the results stated:
C. H.-The sample is clay such as is used in making
certain varieties of pottery. Its value will depend certain varieties of pottery. Its value will depend upon the percentage of its constituents, and a chemical caating of red on several of the specimens is indicative of iron, in which case its value would be very

INDEX OF INVENTIONS

For whieh Letters Patent of the United tates were Granted

April 29, 1884,
AND EACH BEARING THAT DATE. [See note at end of list about copies of these patents.] Alarm. See Burglar alarm. Clock alarm. Ammonia from bone-black retorts, apparatus for

Auger, sand, J. Sicker

Axle skein, W. P. Brown................... Bag. See Mail bag.
G. R. Brown.
Bale tie, H. Rust

Bale tie buckle, C. R. Smith
Bed bottom, spring, J. Mcllhon
Bed bottom. spring, D. F. Stambaugh
Billiard and other game tables, chalk holder for
T. Dougherty....

Bird cage, J. S. Musgr
Bit. See Bridle bit.
Blanks, manufacture of split. W. Garrett
Blast furnace appuratus, J. F. Bennett.............
Boots or shoes, machine for uniting the uppers
and soles of, S. W. Robinson
Bottle corking machine, T. R. Lowerr
Bottle stopper, M. Rubin.......
Bottle stopper, M. Rubin..........
Box. See Miter box. Wooden box.
Box making machine, J.
Box making machine, J.
Brace. See Rail brace.
racelet and ornamenting wire therefor, E. A.
Bra
Brake. See Wagon brake..........................
Breeching supporter
Brech ink supporter, R. S. Boulte
Brick machine, C. Chambers. Jr...
Brick machine, F. W. Shelley..
Brick machines, clay tempering and expressing
device for, C. Chambers, Jr.........................

Chambers J

ridges, guard gate
Bridle bit, J. Murphy.....
Brush bride, A. S. Miles
Brush bridie, A. Scrubbing. Miles. E. Be
Buckle, harness, E. Hoxie
Buckle, trace, W. Lerchen.
Buggy top, shifting, Engelhart \&
Burglar alarm, w. H. Reiff
Button, J. F. Atwood
Button fastener, J. H. Goodfellow.
Button lap and staying piece for garments, com
bined, G. Boxley...................................
bined, G. Boxley...
Button, sleeve, J. B.
Buttons to fabrics, apparatus for securing, A. G
Calculator, Intere.........................
Calendar, J. F. Tannatt
Calendar. J. F. Tannatt
Camera. See Enlarging camera.
Cam fllling machine, A
Can top, H. R. Allen
ane julce, process of and apparatus for defeca
ing, W. A. Riggs, Sr....
Capsule machine, A. B. Hall
Car brake, automatic, D. J.
Car coupling, A. J. Chapel..
Car coupling, A. M. Fraser
Car coupling, A. M. Fraser..
Car coupling, D. T. Linegar
Car coupling, G. C. Loar...
Car coupling, I. J. Merrick
Car coupling, G. Ulsmer
Car coupling, Von Ainb
Car starter. J. Wilson
Cars, ventilating railway, J.
Carriage cover, H. H. Frick........................
Carrier. See Cash and parcel carrier. Trace car.
rier.
Cart. J. \& J. Mills...

Cartridge implement, H. T. Hazard................ G. M. Peters.

Cash and parcelcarrier, G. R. Elliott.
hain, drivie, T. F. Hall
Chain, elevator, © S. Warner................................
manufacturing, , , Sch1mmel..
Check, baggage, c.
Churn, J. J. Curd
Hgar piercing device J. Ungere
Cigar wrapper cutter, J. R. williams................
Clasp. See Garment clasp. Pencil clasp.
law bar, H. Robertson............................ 297.849
Clay railway ballast, apparatus for making,
Clock alarm, eight-day. C. F. Luquer
locks, automatic winding reminder for E 2
erman...
Coal from ashes, etc., machine for separating,
o. Frazier.............................
Cock, gauge, w. Casey....
Cock, qauge, L. B. Fulton
Coffee separator and assorter, J. s. Thompson.
Collar, A. Whited............................
colloring matters, manufacture of yellow and 29
orange, Roussin \& Rosenstiehl.................. 297,
Comb for flax, wool, etc., W. F. Hall.......
Copying, device for manifold, H.G.\& J. B. Bar
low...
Corn husking, silking, and cutting machine, G.
D. Baldwin..
Cotton press, w.
oupling. See Car coupling. Shaft coupling
Crocheting fork, J. Vett
Cuff, T. R. Boone.........
Cuff holder, H. D. Bishop
ff holder, H D. Bishop
cultivating fruits and vegetables, Groves
Cultivator, D. Archer. .
Cultivator, H. H. Sate
Cultivator, adjustable seat lift, Hi.............
Cultivator beams, drag bar for, B. C. Bradie. Curtain fixture, W. B. Noyes..
Curtain fixture, Page \& Weber
Derrick, hoisting, A. B. Morrison......................... 297,62i 297,831
Desk, J. Klar..................................... 297,
Disintegrating and separating machine, J. M.

Door, Filer \& Neff........................ 297,774
Door opener, electric, J. H. Bunnell
Doors, stay roller for sliding, S. Ide................... 297,805

Egg preserving device, G. Conant ..676
Ejector, J. M. Marty.....................
Electric arc light. T. A. Edison ...297,58
Electric cable, W. H. Sawyer.........
Electric currents, apparatus for the production
and utilization of secondary, Gaulard \& Gibbs 297,924
Electric cut-off. C. . Goebel........ 297.928
Electric machine, dynamo, T. A. Edison,
297,582, 297,583, 297,584, 297,587
$\begin{aligned} & \text { Electric machine, dynamo, C. J. Van Depoeele... } 297,888\end{aligned}$
Electric motors and
Electric motors and generators, commutator and
brush for, E. A. Sperry........
Electric wires and pneumatic tube combined, un
derground conduit for, c. H. Goebel...........
Electric wires, underground conduit for, C. H.
Electrical cond uctor, T. A. Edison...
Electrical purposes, indestructible compound for
coating wires for, J. H. Page 297.626
Electroplating apparatus, C. F. Brush........... 297,69
Elevating apparatus, T. Keith........................... 297,6696
Elevator bucket, C. W. Hunt.
Engine register, C. Chambers, Jr.
Engine register, F. W. Tattersall.
Engine register, F. W. Tattersall
Enlarging camera, T. C. Roche..
Fan, F. Sternheimer
Faucet, E. Myers....................
Feeder, boiler, W. Cunningham...
Fence machine, barb, J. D. Curtis.................. 297,
Fencing, machine for twisting
Fencing, machine for twisting and spooling
burbed wire. D. C. Stover
Fertilizer distributing attachment for rollers,
C. Meddick.

Fifth wheel, wagon,
File, paper, W. D. Doremus
File, paper, W. D. Doremus.
File, paper, E. W. Woodruff
Firearm, breech-loading, Anson \& Deeley.
Firearm, breech-loading, P. T.
Fire escape, M. C. O'Connor.
Fire escape, F . D. Parmelee
Fire escape, F. D. Parmelee
Fire escape, C. I. Pittman....
Fire escape, G. Sinfleld
Fire escape, Ware \& Richman.
Fire escape. automatic, G. W. \& F. P. Murphey
Fire escape ladder, H. P. Griswold.................
Fire extinguishers, supporting and operating
chemicul, J. E. Gillespie.
Flask. See Moulder's fask.
Flour, apparatus for manufacturing, J. M. Case.. 297,757
Flourbolts, atmospheric elevator for, J. M. Case. 297,758
Flourbolts, atmospheric elevator for, J. M. Case.
Flour, gradual reduction machine for manufac
turing. J. M. Case.... 297,760
Forge hood, J. F. Winchell............... 297,901
Fork. See Hay fork.
Frame. Se Saw frame
Frame. See Saw frame.
Freezer and refrigerator, combined cream, A
Furnace. See Smelting furnace. Smoke prevent
ing furnace.
Furnace, J. P. Cotiart...
Furnace, J. P. Cotiart...... 297,768
Furnace door, L. F. Johnson............ 297,808

Gas as a fuel, method of using natural, A.
schaefer...
Gas pressure regulator, G. A. Sr., \& G. A. Hyde,
$\mathrm{Jr} . ~ 297,69 ~$
Generator. See Steam generator.
Glass press, L. Fischer............
Glove fastener, G. W. Prentice
297,590
297,950
Grain brushing and scouring machine, L. Gath mann.
997.880 $\begin{aligned} & \text { Grain meter, automatic. Marsh \& Arnold........................ } \\ & \text { Grain reduction and separating machin }\end{aligned}$

Case..............
297,712
297,686
297,686
297,783
297703
297,793
297,650
297,639
297,800
297,800
297978
297956
297,956
299.898
297,897

297,849
297,644
297,672
297,612
297,694 ${ }^{297,591}$
 7,700 297,852

297,556

Grinding cutter knives,
A.

Halter, C. R. Robinso
Hame, J.P. Quinette..
Hammer, forges, J. H. Baker
Harrow, disk, F. Bramer....
Harvesters, grain delivering apparatus for, J. R.

Hatchet, A. C. Rex.....
Hay fork, S. S. Wilson.
Hay knife, W. H. Carter....
Hay rack, Peasley $\&$ Dodge
leat regulator, w. S. Johnso
Hinge spring casing, T. A. MacDcnald.
Holdcr. See Brush holder. Cuff holder. Leaf
Hook. See Ladder hook. Siding hook.
Horse power, J. T. McCarney.
Horses from cribbing, device
Hose coupling, Van Riper \& St. Clair
Hose grapple, A. H. Green....
House, portable, O. H. Smith
Ice creepar, C. F. West
Illuminating burner, C. Clamon
Indicator. See station indicator.
Injeletor, J. L. E. Dodge.
Injector, lifting feed water, W. McElroy
nsect powders, ejector for, A. Isaacs
Insulator pin, electric, J. M. Klein....
Insulator pins, machine for making, W. Snee.
Intrenching tool, J: H: Patterson ournal boe Lasting jack. Jifting jack
Krife. See Hay knife.
der
Lamp, E. B. Requa
Lam, gaso-electric, J. H. Loder..
Lamp, incandescent electric, T. A. Edison bined electric, H. Van Hoevenbergh.. Edison............ Lathe dog, O. D. Wartield
eaf holder, J. W. Braam
Level and boring guide, co
Level, spirit, L. L. Davis Lifting jack, H. W. Mohany. Lirting jack, A. White. Lock. Trun
Lock, F . Ballin
Locomotive driving gear G. Enghofe
Loom picker staffch eck, Lombard \& Pollard.. A. W. Holway...
ubricator, M. S. Cabell
Lubricator, T. Nel..
Marking Fqplement, W. A. Ki. Kibbe
ing, machinery for, R. Morrisocess of spool
Mechanical power, W.S. Gray.
Metal rods, machine for straightening, J. Agne. Metallic bars, weaving, H. D. Plimsoll
Meter. See Grain meter. Water meter Middlings . T. Hooker
Mill. See Grinding, reducing Roller mill. J. M. Case
Miling, gradual reduction machine for
Millstone, J. C. Wedekind
Miter box, W. L. Bovyer.
Mould. See Coliar mould.
Moulder's flask, E. Thoma
Motor. See Electric motor. Spring motor.
Nut lock, C. B. Cragin.
Nut lock, L. H. Davis.
Oculists and opticians, trial frame for, Smith \&
Oil cakes, machine for forming, Moss \& Sittell.. extraction of Bang \& Sanguinetti zocerite and other so
ing. J. C. O. Chemin
Packing, metalicic ring, J. Wheelock
and rod for winding, J. L. Firm
G. H. Dickerman....

Paper holder, A. C. Moore....
Parer and slicer, apple, W. E. Brock
Paving streets,
for, L. Haas.
Pen holder, O.S. Warner
Pencil clasp, G. A. Schlechter.
Petroleum and for bleaching other oils, apparatu
for improving the fre
Photographs, producing ornamental relief bo ders or foregrounds for, C. M. French Pin. See Insulator pin.
Pianter, check row corn, w. L. Kellar
Planter, corn, F. Wiskocil
Planter, corn, F. Wiskocil...
lisering, J. Morrison, Jr
Plows, stopper pulling, Bacon \& Boardman.
Plow, double, J. L. Laughlin
ost. See Binding post.
on, Kurth \& Beyermann.
Power. See Horse power.
chanical power.

DESIGNS.

Chain, watch, C. K. Glles
Chair, c. J. Bruschke...........
Currycomb back, W. P. Kelogg.
Floral piece, foundation frame f
 Keiser. ..989, 14,975
Watch case, J. C. Dueber.............

TRADE MARKS.

Cigars.J. Meade.
 $$
\begin{aligned} & \text { File holdersand cases of shelv } \\ & \text { or paper, E. W. Woodruff. } \\ & \text { Flour, Land \& Swaggard...... } \end{aligned}
$$

Lumber, boards, logs, and staves. A. 111,147
Potash and lye, caustic, E. N. Hall.......... 11,152
11145
Soap, olive oil, Liebman \& Butler..................... 111,148
Spool cotton, Clark Thread Company11,140 to 11,144
$\frac{\text { Watches, vacheron \& Constantin 11,150 }}{\text { A printed copy of the speciffeation and drawing of }}$
any patent in the foregoing list, also of any patent
issued since 1866. will be furnished from this office for 25
竍
issents. In ordering please state the number and date
cof the patent desired, and remit to Munn \& Co., 361
on Broad way, New York. We also furnish copies of patents
granted prior to 1866; but at increased cost, as the specifications, not being printed, must be copied by
hand. Canadian Patents may now be obtained by these
inventors for any of the inventions named in the fore-
going list, at a cost of $\$ 40$ each. For full instructions going list, at a cost of $\$ 40$ each. For full instructions
address Munn \& Co., 361 Broadway, New York. Other

 Engravings may head adver tisements at the same rate
per line, by measurement. as the letter press Adver. per line, by measurement. as the letter press. Adver-
tisements must be received at publication office as early
as Thursday morning to appear in next issue.

HYDRAULIC ELEVATORS AND MO-

NEWSPAPER FILE

MUNN \& CO.

WATER SUPPLY OF SMALL TOWNS.-

FOSSIL MEAL TUBES FOSSIL MEAL COMPOUND

FOSSIL MEAL CO., 48 Cedar Street,
 CHIPPENDALE FURNITURE.-ILLUS-

THE SWEETLAND M'H'G COMPANY,
"The Sweetland Chuck."
The mineralogical localities

WATER-GAS_A PAPER EXPLAINING

Some of the industrial uses of

Wvavevaw
ROOFING

THE
Practical Draughtsman's Book of Industrial Design.

 plates, selections from and examples of the most use
pul ani generally emploved mechanism of the day
BI Willim Johnson, Assoc. Inst. ..E. Illustrated by
fifty folio steel plates and fifty wood-cuts. A nev

Rose. - Mechanical Drawing Self-Taught: Comprisin ing Instruments, Elementary Instruction in Practica
Mechanical Drawin, together with Examples in Sim-
ple Geometry and Eiementar Mechanism, including

 whole coverin Arts, sent free and free of postage to any one in
pitad to the HENRY CAREY BAIRI, \& CO.,
Industrial Booksellers, Pubishers, and Im porters,
810 WALNUT STLEET, PHILA DELPHIA, PA.

FIRELESS LOCOMOTIVES FOR TRAM ways.-A paper by G. Leutz, describing a type of fireless Germany for use in Java. Illustrated with five fig

THE "UNIVERSAL" GAS ENGINE. A new and very simple gas engine invented by Messrs tained in SCIENTIFIC AMEILICAN SUPDEEMENT, No
360. Pricelocents. To be had at this office and from
3ll newsdealers.
MENS NERVOUS DEBILITY in MEN
 CONSUMPTION.
 266th EDITION. PRICE ONLY \$1
 A Great Medical Work on Manhood

 There is no member of society to whom this book will
not be useful, whether youth, parent, guardian, instruct-
or, or clerguman. Address the Peaboy Medical Institute, or Dr. W. H.
Parker, No. Bulinch Street. Boston, M, Ms., who may
be consulted on all diseases requiring skill and expery-
 without an instance of failure.

PATENTS.

ication of the Scientific Amiricican, continue to ex amine Improvements, and to act as Solicitors of Patents or Inventors. In this line of business they have had thirty-ight the preparation of Patent Drawings, Specifications, and the prosecution of Applications for Patents in the United States, Canada, and Foreign Countries. Messrs. Munn \& Co. also attend to the preparation of Caveats, Copyrights for Books. Labels, Reissues, Assignments, intrusted to on ness, on very reasonable terms.
A pamphlet sent free of charge, on application, taining full information about Patents and how to pro cure them; directions concerning Labels, Copyrights designs, Patents, Appeals, Reissues, Infringements, As tents, etc.
We also send, free of charge, a Synopsis of Foreign Patent Laws, showing the cost and method of securing patents in all the principal countries of the world.
MUNN \& CO., Solicitors of Patents,
361 Broadway, New York.
BRANCH OFAngion, D.
 ENGINEER AND MDACHINIST
The New Baxter Patent Portable Steam Engine.
 1 Horse Power, \$150. $\left.\right|^{3}$ Horse Power, \$290.

Sena for deseriptive circular. J. C. TODD, Paterson, N. J., Or No. 36 Dey St., New York.

Themoring salale and keeping Jour boilers glean, ues

APPARATUS FOR PRINTING BY TH

ITTTI HAS DNHINQ OVER 10.000 IN USE 9

ROOT'S NEW IRON BLOWEA

ibon peyolversive perfectiy balanced, P. H. \&F. M. ROOTS, Manufacturers,
 SEND FOR PRICED CATALOĠUE

Rabber Stimps. Rest made. Immense Catalogue

$\$ 5$ to $\$ 20$ per day at home. Eamples

The expenses attending the procuring of patents in most foreign countries having been considerably re-
duced, the obstacle of cost is no longer in the way of a large proportion of our inventors patenting their invenCANADA. -The cost of a patent in Canada is even less than the cost of a
former includes the Provinces of Onterio, Quebec, New Brunswick, Nova Scotia, British Columbia, and ManiThe number of our patentees who avall themselves of patents in Canada is very large, and is steadily increasing. ENGLA ND.-The new English law, which went into torce on Jan. 1st. enables parties to secure patents in tent includes England, Scotland, Wales,Ireland, and the Channel Islands. Great Britain is the acknowledged financial and commercial center of the world, and her goods are sent to every quarter of the globe. A good
invention is likely to realize as much for the patentee Invention is likely to realize as much for the patentee
in England as his United States patent produces for him at home, and the small cost now renders it possible for almost every patentee in this country to secure a patent in Great Britain, where his rights are as well protected as in CoUNTRIES.
O on very reasonable terms in France, Belgium, Germany
Austria, Russia, Italy, Spain (the latter includes Cuba and all the other Spanish Colonies), Brazil, British India Australia, and the other British Colonies.
An experience of tHIRTX-EIGHT years has enabled the publishersof T'He Scientific American to establish competent and trustworthy agencies in all the principal
foreign countries, and it has always been their aim to foreign countries, and it has always been their aim to have the business of their clients promptly and
ly done and their interests faithfully guarded.
A pamphlet containing a synopsis of the 'patent laws
of all countries, including the cost for each, and othe information useful to persons contemplating the procuring of patents abroad, may be had on application to this office.
MUNN \&
MNUNN \& CO., Editors and Proprietors of The SclENTFIC AMERICAN, cordially invite all persons desiring
any information relative to patents, or the registry of trade-marks, in this country or abroad, to call at their
offices, 361 Broadway. Examination of offices, 361 Broadway. Examination of inventions, con-
sultation, and advice free. A member of the firm is sultation, and advice free. A member of the firm is
always in attendance between the hours of 90 'clock A. M. and 5 o'clock P.M. Inquiries by mail promptly anwered. Address,

MUNN \& CO.,
Publishers and Patent Solicitors,
Branch Offlee, cor. F and 7th Streets, opposite Patent

Pavertisements.

Steel Castings

 HERMOMETERS $\begin{gathered}\text { Photoprrphto outhat for } \\ \text { Hirasompes }\end{gathered}$

THE DUPLEX INJECTOR
\%

H.Y.JOHIS' ASBESTOS LIQUID PAINTS: ROOFINC,

Steam Pipe and Boiler Coverings, Steam PackIng, Mill Board, Gaskets, sheathings,
H. W. JOHNS M'F'G CO. $\mathbf{8 7}$ Maiden Lane, New York.
170 N. 4th St., Phila. $\quad 45$ Franklin St., Chicago.

The Rider Hot Air COMPRESSION PUMPING ENGINE MMPROVED. Absolutely Safe. Any house servant can run it. Has
reeord of nine years. Send for
"Catalogue E." "Catalogue E." \& 34 Dey St., N. Y. City.

FRICTION
CLUTCH.
Send for Mllustrated Cata-
logue and Dlscount sheet
to
A. \& F. BROWN, 43 Park Place, New York. 804isispulir jumb

OR SALE A patent just ranted for stering

HOLLAND \& THOMPSON,

30 to $\mathbf{3 0 0}$ Horse Power. Send for III strated Cirenlar and Reference Liss STATE THE HORSE POWER REQURED,
ASK OUR PRICES!
THE WESTINGHOUSE MACHINE CO. Adres, if molt TSB TVRC PA.

FRICTION CLUTCH Pulleysand Cut-off Couplings

COLUMBIA BICYCLES AND TRICYCLES.

WATCHMAKERS.

boynton furnace co., 94 BeEkMan street, new fork Mfrs of Boynton's Latest Pattern Furnaces, Ranges, and Heaters ROCK BREAKERS AND ORE CRUSHERS

STAINEDSUBSTITUTE CLASS

Rider's New and Improved compression Hot Air Pumping Engine Newand Improved Desigss
INTERCHANCEABLE PLAN DELAMATER MAOAVEN WORKS, C. H. DELAMATER \& CO., Proprietors,
No. 16 CORTLANDT 5 T., NEW YORK, N. Y And 40 Dearborn Street, Chicago, III.

BOOKS ON BUILDING, PAINTING,

VATIER

Cities, Towns, and Manufactories Patent tube avid gavi weli sistem. Wm. D. Andrews \& Bro.. 233 Broadway, N. Y

NEW YORK BELTING AND PACKING COMP'Y.

Cornell University.

Electrical Engineering,
Mechanical Engineering, Civil Engineering and Architecture. Eutrance Examinations Beefin at 9A. M., June

VOLNEY W. MASON \& CO.,
PRICTION PULLEYS, CLUTCHES, and RLEVATORS PROVIDENCE, R.
SPEAKING TELEPHONES.
the ambrican beld thelepione contrany W. H. Folieses, W. R. DRivile, THilo. N. VAlL,
Treasurer.
Gen. Manager. Alexander Grabam reell's patent of March 7. 8 . 876 ,
owned by this company, eovers every form of aparas.
including Microphones or Carbon Telephones, 1 w which
 corresponding to the words spoken and which articiula.
tions produce siniar articulate sounds at the receiver.
The commissioner of Patents and the S. Circuit
 junctions and flual decrees have been obtained on them.
This ocmpany also owns and controls all the other
telehonic inventions of bell, Edisol, Berliner, Gray,
Blake. Phelps Watson, and others.

§rientific Antricau

The Most Popular Scientific Paper in the World.
Only $\$ 3.20$ a Year, including postage. Weeligy
This widely circulated and splendidly illustrated paper is published weekly. Every number contains six-
teen pages of useful information, and a large number of original engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery,
New Inventions, Novelties in Mechanics, Manufactures, Chemistry, Electricity, Telegraphy, Photography, Archi tecture, Agriculture, Horticulture, Natural History, etc.
All CInsses of Readers find in the Scientifio American a popular resume of the best scientiff in-
formation of the day; and it is the aim of the publishers to present it in an attractive form, a voiding as much as
possible abstruse terms. To every intelligent mind, this journal affords a constant supply of instructive
reading. It is promotive of knowledge and progress in every community where it circulates.
T'erms of Subscription.-One copy of the ScienTIFIC AMELIICAN will be sent for one year- 52 numberspostage prepaid, to any subscriber in the United States
or Canada, on receipt of three dollars and weuly cents by the publishers; six months, $\$ 1.60$; three months, \$1.00.
Clubs. ()ne
AN will be supplied gratis for every club of fivesubscribers $\$ 3.20$ each; additional copies at same proportionate

One copy of the Scientific American and one copy
of the Scientific American Suppleninit will be sent of the SCIENTIFIC AMERICAN SUPPLENINT Will be sent
for one year, postage prepaid, to any subscriber in the United States
The safest way to remit is by Postal Order, Draft, or
Express. Money carefully placed inside of envelopes, securely sealed, and correctly addressed, seldom goes
astray, but is at the sender's risk. Address all letters astray, but is at the sender's risk. Address all letters
and make all orders, drafts, etc., payable to

MITJNTV \& CO.,
361 Broadway, New York.
To Foreign Subscribers.- Under the facilities of
he Postal Union. the ScIEvific Americav is now sent the Postal Union, the SCIENTIFIC AMERICAN is now sent
by post direct from New York, with regularity, to subscribers in Great Britain. India, Australia, and all other British colonies ; to France, Austria, Belgium, Germany,
Russia, and all other European States; Japan, Brazil Russia, and all other European States; Japan. Brazill,
Mexico, and all States of Central and South America. Yerms, when sent to foreign countries, Canada excepted,
\$4, gold, for SCIENTIFIC AM ERICAN, one year; $\$ 9$, gold,
for both SCIENTIFIC AMEPICAN for both Scientific ambican and Supplement for
one year. This includes postage, which we pay. Remit one year. This includes postage, which we pay. Remit
by postal order or draft to order of

PRINTING INKS:

