

A WEEKLY JOURNAL 0F PRACTICAL INFORNATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

	NEW	YORK,	APRIL 19, 1884.	[\$3.20 per Anium.

DR. LE PLONGEON'S LATEST AND MOST IMPORTANT DISCOVERIES AMONG THE RUINED CITIES OF YUcatan.
A recent letter from Alice D. Le Plongeon, dated at the ruins of Chichin Itza, Yucatan, gives a very interesting account of Dr. Augustus Le Plongeon's latest discoveries, from which we make the following extracts. The letter was accompanied by several fine photographs, two of which we have engraved. The others will soon appear.
In 1875, when Dr. Le Plongeon brought to light the then beautiful statue that for good reasons he called Chaacmol (Leopard), people who knew nothing about it said that he had given that name at random, or for some fancy, which assertion was as foolish as it was unjust. As among us we have Mr. White, Mr. Black, Mr. Long, Mr. Short, Mr. Wolf, Mr. Fish, so the Mayas had for names animals and other objects, and when their portraits were made, instead of inscribing their name beneath, as we frequently do, they put a picture of the animal or object whose name they bore, above their head or on their breast, sometimes both. Thus we see a dignified looking gentleman, elegantly dressed and well armed, with a pretty goblet above his head; he is Mr. Cul, cul being the Maya word for cup. From certain indications of mural paintings and sculptures, Dr. Le Plongeon was led to look in one place for ihe statue of a man named Leopard, and when on reaching that he saw a monument with a sculptured leopard on the top, and slabs with leopards carved on them round it, his conviction was confirmed. He then unearthed the statue of Chaacmol; and it was to the memory of that warrior that the monument I propose to describe was raised. It consisted of two apartments, the outer, without any front wall, being more like a grand portico. The front balf of the triangular arched roof rested on massive round stone pillars with feathers carved on the with feathers carved on the
front and sides, while on the front and sides, while on the
other part the scales of the other part the scales of the
serpent's belly are represented. The base, formed of a monolith two meters long, one meter fifty centimeters wide, and one meter twentyfive centimeters high, resembles a serpent's head with open mouth, whose projecting tongue alone requires two strong men to move it. (See engraving.)
But the roof of this front room fell, burying beneath its debris the pillars and other beautiful objects between them. A thorough excavation brought to light a stone altar; the upper part, or table, consisted of two stones fifteen centimeters thick, that together were two meters ten centimeters square, or be it six feet ten inches. Most six feet ten inches. Most
unhappily, the roof, in fallunhappily, the roof, in fall-
ing, broke the table into fraging, broke the table into frag-
ments; nevertheless, as the piece remained in place, it is not difficult to see that it was sculptured in bas-relief, representing twó men, one seated, the other standing. The edge of the table is also exquisitely carved, showing priests in various postures, making offerings; of the parts least injured Dr. Le Plongeon made moulds. Smashed, even pulverized in some parts, by the enormous stones, weighing hundreds of pounds, that ing hundreds of pounds, that
fell on it, the table yet served fell on it, the table yet served
to protect fifteen figures that supported it as caryatides. These were placed three abreast, five deep, with their arms upraised. They are sighty-five centimeters high,

THE MONUMENT OF CHAACMOL, AT CHICHEN ITZA, YUCATAN.

INNER APARTMENT OF CHAACMOL'S MONUMENT, WITH STONE ALTAR SUPPORTED BY FIFTEEN CARYATIDES.
back of each figure is sculptured to imitate a mantle of feathers, but in each the feathers are differently arranged. Their hair is cut short in front and combed straigbt, to come partly over the forehead, thus we see that it is a very old fashion to bang the hair. The eyes are two-thirds natural size; some are decidedly feminine, and theirdress seems to be that of women. The eyes are open, foreheads broad, noses correct in shape according to our present ideas of beauty, rect in shape according to our present ideas of beauty,
some quite small and fine; lips thin and firm. Some have the upper row of teeth visible, and they are small and even, not filed like a saw, so that fashion was evidently not compulsory, though some followed it, as we learn from the Chaacmol statue and others. All have ornaments in their noses, and some of them consist of two small disks, linked by a tiny straight bar. It is very possible that these links were made of some metallic substance. Besides the ornaments fastened on the outside of the nostrils, several have one banging from the cartilage, down over the lips. As well as disfiguring a pretty face, it must have been most uncomfortable, and shows that people in those times made themselves the foolish slaves of fashion, just as now. One face is so covered that the features can hardly be seen; two serpent heads face each other on the forebead, and their bodies encircle the eyes; other snake bodies surround the mouth, the heads resting on the cheeks.
It is not easy for the pen to give an exact idea of how these caryatides are formed. The bodies do not correspond to the size of the faces, yet the feet are large, to serve as a firm base for the table they supported. From the knees up to the throat there is very little form, and though we little form, and though we see that the arms are upraised,
the hands are not defined, but lose themselves in the flat part of the stone that is above the head, and on which the table rested. As far back as where the ears should be, the faces are completely in the round, but from there the stone extends on each side, and on that stone, in the place where ears should be, are large circular ornaments. One figure has square tablets instead, and on them a finely chased inscription that causes us to exclaim: "They must have had metal to work with!" The large circular ornaments have for center the face of an old man, but not all alike; so they may have been portraits of individuals celebrated among them.
The toe nails of these figures bave fallen out; for the Maya artists made nails and eyes of shell for their statues, which were also painted in vivid colors. The feet are shod with sandals, each fastened with a different bow, knot, or clasp. From their necks are suspended badges, necklaces, and other ornaments. One has an animal carved on the badge. Some have handsome waist belts, and three cornered aprons, trimmed in divers manners, especially with flat plaiting.
As so little care has been given to the body, it is not easy to decide upon the shape of the garments, but some certainly have a short tunic folded round their hips, closing in front by one end lapping over the other, the corners being curved from waist to bottom of garment.
We bave reason to suppose that these figures were likenesses of individuals attached to the warrior Coh, and they supported the altar on which
offerings were made to the manes of that chieftain. The room beyond the altar seems to have been a funereal chamber. The concrete floor was painted red; in spots the color is still bright. Opposite the doorway there is an estrade, half the width of the room, which is narrow, and two or three yards long. The walls are perpendicular to a height of three meters, then slant inward, forming a triangular arch, the total height of the room being about six meters. Throughout the ruins the same shaped roof is used, in some cases without any capping stone. This room has its walls covered with paintings, from floor to apex of roof. Red, blue, green, and yellow are the colors that form the pictures, but the outlines are drawn with a dark brown paint (bister); another color is also used, that I may, perhaps, call maroon, to paint boats and other objects that represent wood, for among the paintings are large boats; in one of them people painted blue are fighting with others painted yellowish-brown, and these last are apparently quite overcome by the men painted blue. Our future studies will doubtless give us a clew to all this.

High Buildings in Cities.

The burning of the St. George's Flats, in New York City, April 7, was but one more strong proof that it is indeed high time we had some comprehensive legislation governing the whole matter of high buildings in cities. Were it not that such structures are almost in variably claimed to be absolutely fireproof, there is no doubt but their erection, to be used as dwellings, would have been prohibited ere this. But here we have a representative structure of this kind entirely burned out, except the walls, like a tinder box, or as though the whole affair was a furnace, in which the interior partitions, furniture, etc., formed the charge, and the walls were the shell. It presented an imposing appearance, was seven stories high from the sidewalk and eight stories high in the rear; the front was of stone, ornamented with terra cotta; the spacious entrance hall had polished marble columns, while the stairways in front were of stone, and the halls tiled-the apartments renting at from $\$ 1,300$ to $\$ 1,800$ a year-but there was a rear dumb-waiter and air shafts of wood, with wooden stairs, floor beams, and flimsy partitions; so the destruction of the building was very rapid, notwithstanding the best efforts of the fire department. The question naturally arises, How many of our so-called fireproof structures are of this character?
The law now provides for the thickness of walls, according to the height it is proposed to build, and the building department can enforce the erection of fire escapes, but there is no limit to the height to which structures for either husiness purposes or dwellings may be carried. A bill is before the Legislature limiting the height of d welling biouses "intended to be used for more than one family" to eighty feet, and in streets less than sixty feet in width making the limit seventy feet; but much more than this is needed. With many it is by no means clear but that such high buildings should be absolutely prohibited, except in special locations, apart from other buildings, for they so much shut out the light and air as to greatly lessen the comfort and healthfulness of adjoining houses. This may be thought a hardship, in a city like New York, where the value of land affords such an incentive for piling story upon story, but there can be no questioa that the law should prevent the erection of such buildings unless they can be made fireproof in fact as well as in name. And to do this, with all the combustible material it is customary to use in the luxurious furnishing of such apartments, calls for a most specific enactment, with a thoroughness of inspection which householders have been slow to see the necessity of, and at least some builders will try in every way to shirk. Such regulations, in so far as they would increase the expense of putting up these great structures, and thus limiting their number, would be doubly satisfactory. Some legislation in the same line is also needed for tall factories, employing many hands, while there are here and there office buildings, likewise, altered over perhaps to accommodate more tenants, which are not only highly dangerous to surrounding property, but quite likely at any time to furnish a human holocaust, although their owners have nominally complied w ith all the require ments it is at present in the power of the building depart ment to enforce. Let us have the law before its need is further emphasized by the loss of human life in some of these unsafe structures.

Turpentine in Infectious Diseases.

The Med. Record tell us that H. Vilandt writes in the Ugeskrift for Laeger, concerning the value of the oil of turpentine in the treatment and prophylaxis of diphtheria and the exantbematous diseases. He states that he has never seen any of these diseases spread from a sick child to other members of the family when this remedy was employed. In many of his cases no isolation could be attempted, as the mother was the only female in the family, and was obliged to take care of both the sick and the well, continually passing back and forth from nne to the other. His method was to pour from twenty to forty drops of a mixture of equal parts of turpentine and carbolic acid into a kettle of water, which was kept simmering over a slow fire, so that the air of the sick room was constantly impregnated with the odor of these two substances. He claims also that by this means a favorable influence is exerted upon the exudation in diphtheria, although it is by no means curative of the disease, and shoul never be relied upon to the exclusion of other remedies.

srimitifir बmmeriam.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at

No. 361 BROADWAY, NEW YORK.

o. D. Munn.

A. e. beach.

TERMS FOR THE SCIENTIFIC AMERICAN.

One copy, one year postage included...
One copy, six months postage included
$\$ 320$
160
Clubs.-One extra copy of The Scientific American will be supplied same proportionate rate. Postage prepaid.
Remit by postal order. Address
MUNN \& CO., 361 Broadway, corner of Franklin street, New York.
The Scientife American Supplement
is a distinct paper from the SCIENTIFIC AMmRICAN. THE SUPPLEMENT is issued weekly. Every number contains 16 octavo pages, uniform in size
with Scienviric American. Terms of subscription for Supplement, $\$ 5.00$ a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all news dealers throughout the country.
Combined Rates. - The Scientific American and Supplement will be sent for one year postage tree. on receipt of s
papers to one address or different adduresses as desired. The satest way to remit is by draft, postal order, or registered letter. ddress MUNN \& CO., 361 Broadway, corner of Franklin street, New Yo

Scientific American Export Edition.
The Sciwntific american Export Edition is a large and splendid periodical, issued once a month. Each number cantains about one hundred
large quarto pages, profusely illustrated, embracing: (1.) Most of the plates and pages of the four preceding weekly issues of the Scinerific American, with its splendid engravings and valuable information: Commercial, trade, and manufacturing announcements of leading houses. world. Single copies 50 cents. Manufacturers and others who desir to secure foreign trade may have large, and bandsomely displayed announcements published in this edition at a very moderate cost.
The ScIENTIFIC AM MMICAN Export Edition has a large guarant The SCI Entipic Am wil can export Edition has a large guaranteed circu-
Iation in all commercial places throughout the world. Address M UNN \& Co., 361 Broadway, corner of Franklin street, New York.

NEW YORK, SATURDAY, APRIL 19, 1884

REMOVAL.

The Scientiftc American Office is now located at 361 Broadway, cor. Franklin St.

TABLE OF CON'TENTS OF the scientific american supplement No. 433,
For the week ending April 19, 1884.
Price 10 cents. For sale by all newsdealers.

DR. AUGUSTUS LE PLONGEON'S Latest and most remarkable discoveries in yucatan.
Among those who have made valuable additions to our means of studying the character and institutions of a once great but now almost unknown American people, Dr. Augustus Le Plongeon has performed conspicuous service For some ten years he has been, at his own expense, pur suing a series of investigations among the buried cities of Yucatan. We give a record to-day of his latest and most important discoveries there, written for us by a member of his family participating with him in these explorations. Dr. Le Plongeon believes that the Maya civilization was con temporaneous with, if not anterior to, that of the most ancient Egyptian, and he certainly brings to the support of his conclusions some very remarkable facts; as presented by him they show the apparent similarity of the architecture, the language, the religion, and many of the customs of the Mayas with those of the Egyptians, so far as we can judge of either by such monuments as they have left in broken and buried statues, in the ruins of what were once ex tensive cities, and in the almost undecipherable bierogly phics common to both people
To reason, from such ground, to the possible connection in early days of the dwellers in the Nile Valley with those on the south of the Gulf of Mexico, is to open a wide door for speculation, and suggests at once the Platonic story of the sinking of the great and populous territory of Atlantis, which is said at one time to have bridged the distance be tween the Eastern and Western hemispheres. But there have been instances, in the prosecution of scientific investi gation, where hypotheses that seemed more violent than this suggested connection of the Mayas and the Egyptians have been successfully demonstrated.
The pictures we give are the photographs themselves cut upon wood, untouched by draughtsman's pencil. The views presented are therefore, as nearly as possible, the actual reflections of the wonderful objects themselves. The Egyptic characteristics of these remains will be evident at a glance. In following numbers of the Scientific American we shall soon give additional illustrations. Dr. Le Plongeon has sent us a number of beautiful photographs of remarkable interest, which are now in the hands of our engravers for reproduction.

PROTESTS FROM MANUFACTURERS:

The unwise legislation against patents lately attempted in the House of Representatives has aroused a feeling of alarm among manufacturers in different parts of the coun try, and they are sending to the Senate some very strong protests against the passage of any ill-advised measure. It is as yet uncertain what action the Senate will take. It is known that some of the Senators are strongly opposed to any tampering with the patent laws or to the enactment of any scheme for the depreciation of patent property. But it is feared the majority in the Senate may, like that in the House, be disposed to do real mischief. A hopeful sign however is that the sending in of remonstrances has had the effect in the Senate to postpone action upon the patent bills; and the presentation of additional protests, will unquestiona bly have much influence in extending the postponement, and perhaps finally defeat the bills. We therefore urge the friends of home industry everywhere to continue their efforts to put a stop to these measures. They should send individual protests; call meetings of suitable corporations and societies to pass resolutions; ask their several State legislatures to do the same; request the editors of local news papers to discuss the sulject editorially; send marked copies to all Senators and Representatives. In short, use every possible exertion, without loss of time, to enlighten the rembers of Congress and influence their action as far as possible against the commission of these legislative errors.
It must not be forgotten that two very obnoxious bills, those of Mr. Calkins, 3,925 , to compel owners of patents to pay counsel fees to the lawyers of infringers, and of Mr . Vance, 3,934 , to allow anybody who chooses to infringe until he gets notice, and after that to deprive the patentee of the control of his patent, have passed the House by overwhelming majorities, and are now before the Senate for concurrence.
The bill introduced by Senator Voorbees, which practi cally gives to anybody who wants it the free rigbt to use any patent, and openly robs the holder of a patent of the exclusive right of manufacture, is now before the Senale, and its passage will be strongly advocated. The House hill of Mr. Anderson, 3,617 , reducing the lifetime of patents from 17 years to 5 years, has not yet passed, but very likely will go through. The adoption of any one of these bills by both branches of Congress would have disastrous effects upon all manufacturing properties and industries. These, to the enormous extent of eight-tenths of the gross capital employed, are, according to Senator Platt, of Connecticut, based directly or indirectly upon patents.
If any editor wishes for first-rate data on which to write interesting articles concerning American inventions and manufactures, we would refel him to the recent speech upon the Reorganization of the Patent Office, by Senator Platt, given in full in Scientific American Supplement, No. 432. In this remarkable document will be found a most valuable array of facts and figures, beginning with the early history of the country and brought down to current dates. The Jarvis Engineering Company, of Boston, has a large capital employed in the manufacture of various patented devices, such as furnaces, steam engines, injectors,
lathes, etc. We give below a copy of the protest lately sent by them to each of the seventy-one Senators in Congress; we advise all other manufacturers to speak out strongly at this juncture, and let the Senate promptly hear from them. senatorial protest of the jarvis engineering co.
Dear Sir: We wish, most respectfully, to protest against the House bill No. 3,617, in regard to reducing the life of patent from seventeen years to five years. We are doing busiuess under patents issued to Mr. Kingsbury M. Jarvis in the year 1876, and it took us over five years to get them introduced and put on a paying basis; this was only accomplished after sinking a large amount of money and doing the hardest kind of work.
We wish, also, to protest against Senate bill No. 1,588, as we feel that, if it passes, inventors and owners of patents will bave no protection. We have spent thousands of dollars in defense of our patents, and, under this law, all our labor and expense will have been thrown away.

Yours respectfully,

Jarvis Engineering Co.

A. F. Upton,

Boston, April 4, 1884.

improvements in men and machines.

It would be a curious study to ascertain how far the improvement in machines and in tools had kept pace with that in the skilled mechanic. One thing is certain, at the beginning of the inquiry, that a skilled mechanic is of just as much value to-day as ever. How much he has improved is a question for scientific examination rather than one for absolute statement. It would be a queer assertion that the men of fifty years ago were inferior to those of the present. All the facts of the past, as well as those of the present, show that our present mechanics are no more mechanics than those of half a century ago. Ali the great improvements in hand tools and machine tools for the last tifty years have come from the individual efforts of men who had done their work before the present advent of machine and automatic tools. These men-these workmen and inventors-
made possibilities out of sugrestions, and realities out of imaginings. To them belong the realities of the present machine shop.
It would seem from this that it is not the tools and the appliances that make the workmen, but the workmen who make the tools. There are just as good mechanics to-day, with all our mechanical appliances for good work, as there were when every job required a new arrangement of tools for work. In fact, the improvement in machines presupposes the capacity of the machine makers.
And yet these improvements have their influence on the workman ; the better the tool, the more exactive the workman. There are gray beaded, almost superannuated, workmen in our shops who have voluntarily discarded all their old time notions to take up with some "new fangled trick" that has been proved to be an advance toward perfection. Every improvement in tools--induced and perfected by mechanics--tends to an advance in the true mechanical improvement of the workman.

american standard for boilers.

"The American standard for horse power, as generated in steam boilers, is described by the Scientific American as the unit of 30 pounds of water evaporated hourly. This datum applies to the boiler only, and is irrespective of the engine by which the steam is utilized. The Committee of the Centennial Exhibition of 1876, to whom was referred the testing of steam engines and boilers, first formulated the testing of steam engines and boilers, first formulated termination has since been generally accepted by American engineers. Hence the nominal horse power of a boiler is ascertained in use, without reference to heating surface, by observing the weight of water evaporated hourly, and dividing by 30. It has been found that the best class of engines, in good working order, will give 1 horse power from the steam of 18 pounds of water per hour, or less. On the other hand, badly constructed engines, out of order, have consumed as much as 60 pounds of water, in the shape of steam, per horse power per hour. The weight of the fuel consumed in steam generation is a product of the combined excellences and defects of engine and boiler. A good boiler will evaporate 11 or 12 pounds of water per pound of coal, which is equivalent to the production of the standard unit of horse power with as little as $21 / 2$ pounds of coal per.hour. On the other hand, many boilers scarcely evaporate 5 pounds of water per pound of coal. Combining the best qualities and performances of both engines and boilers as given by the American writer, it will be seen that $21 / 2$ pounds of coal should evaporate 30 pounds of water, which should produce nearly 2 horse power in the engine, or a net result of little more than $11 / 4$ pounds of coal per horse power per hour. It might be interesting to learn when, and under what conditions, any such record of a working performance was ever obtained."一Journal of Gas Lighting.
While we approve the general tenor of the above criticism, we would call the attention of the writer to the clause, "The weight of fuel consumed in steam generation is a product of the combined excellences and defects of engine and boiler."
Here appears to us a slight error: The weight of fuel consumed in steam generation depends upon the excellences and defects of the hoiler only; the character or condition of the
engine by which the steam is used or consumed has nothing whatever to do with the generation; even if the steam was blown off by the safety valve, it would have no. bearing or effect upon the question of economical generation.
The writer, by assuming what may be considered the very best of boilers as generators, and the very best of engiues as consumers of steam, arrives at the result of one horse power for $11 / 4$ pounds coal per hour, and asks if such result was ever obtained. Now, if he will examine closely results obtained at test trials, where everything is supposed to be in best adjustment and condition to secure economy, he will find that this economy of $1 \frac{1}{4}$ pounds coal (or within a small fraction of it) per horse power per hour has been accomplished.
We do not, however, pretend to claim that this economy has been frequently attained, even in careful tests for economy; average results of every-day practice are much more wide of such result.
Now, the writer has assumed the very best condition of boiler and engine in the calculation given above; but let us take the case of good every-day practice, and we assume 8 pounds water evaporated per pound of coal, which is fully up to a verage evaporation. Then 30 pounds water will require $33 / 4$ pounds coal per horse power per hour, assuming quire $3 \% 4$ pounds coal per horse power per hour, assuming
that 30 pounds are required by the engine, which we think is rather below than above the average of engines now in use. But if we allow that only 24 pounds per hour are required by the engine, then the consumption of coal will be $21 / 2$ pounds per horse power per hour, which is not a very uncommon result with compound engines.

SUGGESTIONS FOR INVENTORS.

There are many inventive minds that are comparatively idle for the reason that the wants of the people are not thoroughly understood. In order that inventors may get an idea of what is needed in the way of improvements, and that would be tolerably certain to bring a reasonable reward to the inventor, a brief mention will be made of a few needed improvements in railway appliances.
The numerous and frequent accidents and delays to railway trains on account of snow, point to the fact that better appliances for removing snow and ice are needed, and now is the time for observation and experiment. The man who will bring out an improved snow plow and flange clearer will be well paid for his labor.
Accidents from broken parallel rods are becoming more frequent than formerly, and an improved construction of that overworked and abused part of a locomotive is called for. But in order to be successful in designing an improved parallel rod it is necessa:y to study the nature of the various strains, jars, shocks, and vibrations-lateral, centrifugal, ànd otherwise-to which the rod is subjected. Owing to the
peculiar duties the rod has to perform, it is desirable that peculiar duties the rod has to perform, it is desirable that
its strength be increased as much as possible without a corresponding increase in welght.
Notwithstanding the fact that our railway lines bave adopted the most approved signal appliances for the safe running of trains, collisions are yet ton frequent, and something reliable in this line is needed. Some of the systems now in use are reliable when in good order, but their liability to derangement renders them dangerous, and there is room for improvements in this direction. Many disastrous collisions are caused by defective drawtackle. Pins and links break and draw bars pull out, and trains breaking in two is a fruitful source of disaster. Better fastenings for draw bars, and links made of wire cable by some process
yet to be discovered, would yield a fortune to the in ventor. It would not seem to be a difficult matter to make a machine that would convert wire into links by a winding and welding process; that is, make a wire link. The nut lock men have not yet succeeded in producing a perfect lock. There are those that will give satisfaction in certain places, as in agricultural machinery, carriages, etc., but no satisfactory lock has yet been devised for track fixtures. As the safety lock has yet been devised for track fixtures. As the safey
of railway travel depends largely on the condition of the rail joints, a more efficient nut lock is among the wants of railway officers.
A great many serious railway disasters have resulted from the spreading of rails. On roads of heavy traffic the ordinary spikes are inadequate to resist the strain imposed upon them, and the plan of double spiking is objectionable on account of injury to the cross ties. Moreover, the extra spikes do not always previent spreading, and a "rail brace" is sougbt for. This must be so formed that a single spike passing through the brace will give greater resistance to strains than two, or even three, ordinary spikes driven in the ordinary way. This is not impossible, and the manner in which it may be accomplished may not be regarded as a conundrum by any one who will give the matter a little thought.
Timber for railway ties is rapidly growing scarce, and the time is now at hand to cast about for a substitute for wood for this purpose. Indeed, inventors are already in the field with various plans of relief for the coming want. Glass has been suggested and tried in Europe. Cast and wrought iron have been used with some degree of satisfac-
tion in countries where frost was not injurious to those materials, and a combination of wood and iron may be made a comparatively cheap and desirable substitute for wood for cross ties in any climate. Straw and sawdust can be made to do duty as wood cut from the tree for many purposes. In cutting ties from timber it is necessary that the trees be
of suitable size. There is a vast amount of small, crooked,
gnarled timber that is entirely unsuited to the manufacture of ties. Perhaps, by some process yet to be invented, this imber may be utilized and brought in shape for ties and other purposes. Perhaps other waste material may be utilized for this purpose. A combination of materials that are now regarded as waste or "in the way" may, perhaps, be made valuable by study on the part of inventors. In producing a substitute for wood for ties the inventor must not lose sight of the fact that a certain amount of elasticity nust be provided for. There is a bonanza for the inventor of the coming railway cross tie.
Accidents at crossings are yet numerous, notwithstanding all that has been done to prevent this class of horrors. The proper place for an alarm is at the crossing, and it must be so located that it will be sure to warn people in time for them to avoid collision. There are some automatic alarms in use, but, like other automatic appliances, are susceptible of improvement. In short, there is hardly any safety railway appiiance but may be improved, and inventors who are seeking for profitable fields of labor will do well to investigate the causes of railway accidents and devise means of greater safety to life, limb, and property.
The foregoing will indicate the direction in which inventors may work with profit, and although the ground in the main has been worked over, there is yet room for valuable mprovements. With many inventors it is as difficult to know what to invent as it is to perfect the device when once in hand. "What shall I invent?" is a question often asked by prolific inventors who are equal to any task set for them, but who are at a loss for ideas to start them in the right direction.

THE CHEAPNESS OF COST.

The time has gone by when cheapness was considered one of the good qualities of tools. Fussy finish also, that indicates nothing but the idle fancy of the tool fashioner, is held as slightly in favor by mechanics. The main object in the production, the choice, and the use of tools is to make, select and use the best, with much less regard to cost or price than to absolute value and useful life.
This unquestionably has improved the quality of the resultant work, and.within twenty-five years this improvement has been so great as to attract the attention of those who are merely casual observers. Such fits, and accuracy, and exact results as are common now, but would have been deemed almost impossible twenty-five years ago, have been brought about largely by the use of accurate and costly tools. Adjustable and interchangeable lathe and planer tools are steadily taking the place of the forge-fashioned bars of steel although costing very much more at first. The bits or cutting portion of these tools are forged and milled accurately and finished to exactness. Some of them are threaded for adjustment; some are carefully milled to unequal sides, so that a cross section would be a trapezium instead of a square or a diamond, and some are accurately termed disks fitted and finished by gauge. But with all their cost of labor and price of money they do the work so much better, last so much longer, and require so mucb less attention that heir cost is cheapness.
Not many years ago the tap wrench was scarcely dignified by the title of tool in the shop; any bar of iron, of convenient length, with a hole punched through it somewhere between the two ends, to go over the squared top of a tap, or a reamer without turning around on the squared top, was a sufficient tap wrench. One of the most prominent builders of large machine tools and small hand tools, as taps, dies, reamers, etc., said recently that he had much difficulty in introducing a perfectly balanced tap wrench to accompany his taps; the purchasers of the taps believing that anything that would turn the tap, if nothing more than an ordinary wrench, was sufficient. Such purchasers broke a much larger proportion of hand taps than of machine taps the torsion of which is necessarily even. But a balanced and exact tap wrench in the hands of a careful workman will add vastly to the useful life of the hand tap. This view is reasonable, for in use the tap and its wrench are essentially one, and should be moved accurately and synchronously together. This exactness in the making of so simple a tool as a tap wrench is an illustration of the advance that has been made in the improvements which demonstrate the cheapness of cost.

Grief in the Dog.

Mrs. Walter Odell, of Stapleton, Staten Island, died at 3 o'clock on Tuesday morning, March 25. A Scotch terrier, Fido, had been her pet for twelve years. During the two months of her illness Fido remained beside her bed. After her death he persisted in lying beside the coffin. He followed it to the hearse, and tried to jump inside the hearse When the procession reached the grave, Fido was there. After the funeral he took up his former position beside the bed lately occupied by Mrs. Odell. He refused to eat.
Two days ago he found a pair of shoes that formerly beonged to Mrs. Odell, but had been thrown out of doors. These he took up in his mouth and carried to his self-assigned post near the bed, and, placing the shoes on the floor, aid his fore paws and head across them, in which position he remained several hours. During Monday night, 31, he roused the household by his mournful cries. At 3 o'clock on Tuesday morning, exactly one week to an hour after Mrs. Odell's death, Fido died beside the bed, his head and paws resting on the shoes.-N. Y. Sun.

NEW LATHE CHUCK

Those who have been annoyed by the difficulty of firmly holding tapered or headed work in the ordinary chuck will be interested in an invention recently patented by Mr. James S. Gilmore, of 4,727 Penn Street, Philadelphia, Pa. A selfadjusting jaw face, shown in side elevation in Fig. 2 and front elevation in Fig. 3, is fitted in each jaw by making the jaw proper concave on its face in the direction of the axis of the chuck, and grooving it in the same direction; the jaw face is provided with a corresponding convex back and tongue. This jaw is secured by a stud pin screwing through one side of the jaw to a notch between two short side ribs on the tongue. The jaw faces, being free to move along their seats within the limits of the ribs, will come selfactingly to a bearing on a tapered object when screwed up

GILMORE'S NEW LATHE CHUCK.
to grip them, whether by a universal adjusting device or an independently acting one.
The jaws are also constructed with undercut notches (Figs. 1 and 2) to make a clear space behind the gripping faces to enable them to grasp the shank of a bolt over the head.

IMPROVED TORPEDO BOAT

We give an illustration of a new torpedo boat constructed for the English navy by Yarrow \& Co. Engineering, from which our cut is taken, says: These Engineering, from which our cut is taken, says: These
boats form part of the equipment of the large war vessels in the navy, and consequently both the dimensions and weight are very limited. The system formerly adopted for discharging the torpedo from this class of boat may be briefly described as follows: Ôu each side of the boat there was a skeleton steel cradle or frame provided with suitable guides into which the torpedoes were placed. These cradles were slung in davits and arranged so that they could be easily lowered below the surface of the water. When the torpedo was completely immersed, it was allowed to pass out of the cradle by its own mechanism, taking a direction parallel to the boat itself, and very excellent practice has been made with this plan; but as a considerable loss of time must clearly ensue in the lowering and starting, and as it was found difficult to aim when the boat was traveling at anything but a very slow speed, the arrangement was not satisfactory. Messrs. Yarrow \& Co. have since then adopted a system of steam impulse; it consists in building into the forward part of the hull-as will be seen from the illustration-two troughs or half tubes, parallel to each other, in which the two torpedoes comprising the armament of the craft lie ready foruse. Immediately behind, and under a steel covering, are a couple of impulse tubes, consisting simply of two long thin steel cylinders, provided with pistons and piston rods, the forward end of which press against the extreme after end of the torpedo. There are hinged covers which are lowered when the torpedo is in its place; this steam impulse gear is so arranged that at the will of the officer in charge, either one or both torpedoes can be instantaneously ejected by steam from the main boiler -without causing any loss of speed
to the boat or necessitating the presence of any of the \mid principally cotton, and are washed in public. Projecting crew on deck. The speed trial of one of these second class torpedo boats, loaded, built for the Admiralty, took place on the Thames last year, when $17 \cdot 27$ knots were obtained. After the speed trials were terminated, the steam impulse gear was tested at Portsmouth, and was found to be higbly satisfactory, being, without doubt, far better than the side cradle system previously in use.
into the river may be seen hundreds of little stalls, which are rented by the day or hour for a small sum, and here the women assemble and wash the soiled rags of the town. The silk weavers are physically an inferior race, and many of the young men are exempted from military service on account of weakness." In 1883 the silk industry of Lyons gave employment to 150,000 persons.

A Bill to Assist Inventors in Making Drawings.

The following neat little bill has been introduced in the House of Representatives by the Hon. Mr. Vance, of North Carolina:
Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, That drawings intended to explain any device or anything whatever that is patentable shall be made at the cost of the Government, under the direction of the proper authorities in the Department of the Patent Office, and without cost in any case to the inventor.
If all members of Congress were as willing to encourage inventors as the Hon. Mr. Vance, the probability is that many thousands more of new ivventions and new industries would be annually brought to light. This bill is very good as far as it goes, but does it go far enough? Is it just the thing to allow the inventor to go hungry or thirsty while he is waiting at the Patent Office to give explanations about his drawings? Ought not Mr. Vance to add another section to the bill, covering refreshments, together with lodgings and transportation.

The silk Weavers of lyons.

Mr. Porter in a letter to the Tribune states that it is impos sible to compare the earnings of silk operatives in Germany and France with those in the United States, because power machinery is almost exclusively used at home, while in France and Germany 90 per cent of the work is done on the hand loom. The raw material is given out either directly to the men by the large manufacturers or by what are called patron masters, who are really a species of "fogger." These small masters make a decent living, earning from 2,400 to 2,500 francs a year, or about $\$ 500$, which enables them to live comfortably. The poor weaver of black silk dress goods only makes 2 francs (40 cents) a day, and on the finer grades 3 francs (60 cents). Many of the toilers at Lyons are born, live, eat, sleep, and die in the same room. While walking through the streets the clatier of the loom is heard away up to the sixth and even seventh story.
"The loom occupies the largest part of the room. Upon a tiny stove the next meal is cooking, and while watching it the wife is arranging the shuttle. There is an air of barrenness about the room, and nothing homelike. A common print or some religious symbol is on the whitewashed wall No carpet is on the floor. With the weaver it is work or the cafe. The weaver and his wife and children wear outer garmeuts that are clean. They will appear better on the street than their Euglish brethren. Their garments are

IMPROVED TORPEDO BOAT WITH IMPULSE GEAR.

To the cover of a plain memorandum book, of a size adapted to be carried in the pocket, is attached a slip pad. The other cover of the book is provided with a carbon paper attachment, which is composed of a heavy paper flap attached to the cover by rivets. The frame holding the car bon paper folds back upon a leaf that folds in between the leaves of the book-as shown in the upper engraving-so that when the book is closed the leaf, frame, and paper serve as a bookmark; the leaf also serves to hold the carbon paper

SILBERMAN'S MEMORANDUM BOOK AND PAD.

in its proper place, so that when the book is opened for making a memorandum it is only necessary to tip the frame over upon the right-hand side of the book to bring the carbon paper into position for use. A slip is then taken from the pad, placed upon the carbon paper, and the memorandum written with a lead pencil; a facsimile will be produced upon the leaf of the book. The frame will then be raised sufficiently to permit the sheet having the memorandum written upon it to be turned, when the parts will be arranged as before, and the book placed in the pocket ready for the next entry. The book is very convenient and easily used, and, by the use of the frame, the carbon paper is always held in a flat position.
'This invention has been patented by Mr. S. J. Silber man, of 79 Canal Street, New York city.

Steam Engine Practice
As a comment on the able re sume of "Present Steam Engine Practice" in the Scientific Ameri Can of March 8, 1884, it is not im proper to state that, from a number of personal observations and from reported results, the introduction of "high speed" engines in machine shops and iron and other metal manufacturing establishments is not satisfactory.
There are places where the rapidly running engines, with a piston speed of 600 or more feet per min ute, are at home; but their proper place is not the machine shop, if reports and facts agree. One of the largest and best known manufactories of metal goods in New England ran its works satisfactorily with a slow moving engine. To accommodate additional demands, the cylinder was rebored and other changes made that added largely to the capacity of the engine. Except for this enlargement the engine re quired no doctoring, and before and after the change could be relied upon to do its work.
An addition to the works was made three years ago, and a little buzzing engine put in to run it. The claim was made that the little wasp had more power than the old fashioned traveler. But the result comes in frequent repairs and in convenient stoppages; six hundred dollars having been expended in repairs on the rapid moving engine within two years-four times as much as has been expended on the old engine, that has run evenly for eighteen years.

There are slow moving engives of thirty years ago or more, in the New England States, built, some of them, by concerns now out of existence and bearing the names of men on their claim plates who have "gone over" and left only their memories as mechanics, which do their work as honestly as some of the machines that to-day assume to displace them. They were built for their work, and not to place them. They

An Instrument for Measuring Hearing Capacity.
At the conversazione held by the Cambridge Medica Graduates' Club, at the Marlborough Rooms, London, Feb. 29, Mr. Dalby lent for exbibition an instrument, the accu racy of which many of those present had the opportunity of testing. We subjoin the description:
"Professor Hughes invented this instrument to be used with the induction balance as a scale of sound for compari son with it. During the past twelve months I have made use of it for the purpose of measuring variations in hear ing power, and registering such variations with absolute accuracy. The registration can be made with perfect faci lity by the patients themselves. The telephone being ap plied to the ear, the patient can move the sliding coil from left to right until the clock movement can be heard. The point can then be registered in millimeters, which are 200 in all. It is an electrical instrument, and is used in con nection with the telephone. The nature of its construction s as follows:
" At each end of a wooden bar divided into millimeters a flat wire coil is fixed, and a similar coil is mounted on the bar, capable of being slid from one coil to the other. One of the end coils is much smaller than the other two, in order to shorten the scale. To the middle coil the telephone is attached; the battery (in the circuit of which is a microphone) and clockwork for making and breaking the circuit are in connection with the two end coils. The wire on the said coils is wound in the reverse direction, so as to produce a neutral point between the coils. The middle coil being slid upon the bar, currents are induced in it relative to its position between the coils, its maximum point being next to the large coil, and its silent position near the smal coil. The position of the coil is read off by figures on the scale. The electric currents are of short duration, being produced at the moment of making and breaking the circuit by the clockwork. One cell is sufficient to work the apparatus. It is advisable to put the clockwork at some distance from the sonometer, that the noise from the wheels running may not interfere with the somnds in the telephone."

THE ATMOSPHERIC TURBINE.

The accompanying engraving (from La Nuture) represents a new form of wind motor called by its inventor, Mr. A. Dumont, an atmospheric turbine. The principal value of this apparatus lies in the form of the sheet iron sweeps that store up the power of the wind, these possessing the remarkable property of revolving more rapidly under the action of a slight breeze than under that of a strong wind. For example, when one of these motors, free from all constraint, is actuated by a breeze of two meters per second, its driving wheel runs at the circumference at the rate of four meters per second, a velocity double that of the wind. When actuated by a wind of ten meters per second, the same wheel acquires a velocity of eleven meters only, or one about equal to that of the wind. In this, the apparatus forms an exception to the general rule, which is that all known windmills revolve with a velocity proportional to and thrice that of the wind, that is to say, with so great velocity that during gales they must be stopped in order to prevent them from breaking.
The turbine under consideration owes to such a property the sensitiveness of its wide spread of sail to the least breeze; and to it, likewise, it owes its excellent performance during those strong winds that alone possess true power, while all other wind motors have to be stopped in order to prevent them from being destroyed. According to data furnished by the inventor, it appears that this turbine possesses a mean motive power triple that furnished by any similar motors tbat have hitherto been employed.

Resemblance of Boron Com-
pounds to those of Acetic pounds to those of Acetic
Prokofjew presented a paper to the Russian Chemical Society in November last, in which he pointed out certain curious analogies between the acetic acid residue $\left(\mathrm{C}_{2} \mathrm{H}_{3}\right)$ and boron. Beginning with anhydrous boracic acid $\left(\mathrm{B}_{2} \mathrm{O}_{3}\right)$ and acetic acid $\left.\left(\mathrm{C}_{2} \mathrm{H}_{3}\right)_{2} \mathrm{O}_{3}\right)$, be showed that each was really a sesquiozide; that borax $\left(\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}\right)$ corresponds to a compound obtained by combining acetic anhydride with potassium acetate, $\left.\left(\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{H}_{3}\right)_{4} \mathrm{O}_{7}\right)$; while the boride of nitrogen (BN) represents acetonitrile ($\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$).

THE ATMOSPHERIC TURBINE.

The accompanying engraving represents an invention recently patented by Mr. R. W. Kellen, of Albion, Cal. Fig. is a side view showing the tooth and shank in place; Fig. 2 is a perspective view of the tooth, and Fig. 3 shows the shank. The back of the tooth is curved and grooved, as usual, but the front is made in the ogee form, the shank being made to correspond; and as the inner end is wider than the central portion, the possibility of its flying out is prevented so long as the shank remains in place. A long and strong nib on the shank euters a groove in the tooth and holds it securely against being pressed out laterally by the file. A

KELLEN'S SAW TOOTH.

groge extending along the back and end of the shank its a rib in the saw plate
Au oval rivet is placed in an oval-shaped hole formed between the shoulder of the shank and the spur of the plate; a quarter turn of the rivet draws the shank firmly down to place, and tightly secures the tooth. The rivet is held in place by upsetting. By this construction the tooth is held firmly, and by making the joint between the tooth and shank a reversed curve, the centrifugal action of the tooth causes its gradually curved inner end to wedge up between the
pper end of the shank and saw plate, thereby automatically tightening itself.
M. Pasteur and his collaborators have announced to the French Academy of Sciences the fact that by inoculation they can render all dogs absolutely proof against the effects of rabies, in whatever way or quantity the virus may be administered.

An Invention that was ${ }^{6}$ Not $\boldsymbol{\prime}$ Patented.
Sir Henry Bessemer had made several iuventions before he commenced the investigations that led to the completion of the Bessemer converter. One of these inventions was the manufacture of bronze powder. This was selling in Eng land in 1840 at about $\$ 28$ per pound, while the raw material cost only 22 cents a pound. The manufactured article came from Germany, and how it was made was not known in England. Young Bessemer set to work to manufacture the powder by machinery, and, after two years' persevering effort, succeeded. In order to obtain all the advantage possible from his invention he determined to keep it secret, and therefore sent sectional drawings of the machinery needed to different engineering works, thus obtaining the parts piecemeal from different portions of England. This machinery he put together himself-a work that occupied him nine months-and then engaged confidential assistants, paying them high wages on condition that everything was to be kept strictly secret. His five machines, thus started, produced as much as sixty skillful operatives could by the old methods.
To this day the mechanical means by which this famous gold paint is produced remains a secret. The machinery is driven by a steam engine in an adjoining room, and into the room where the automatic manufactory is at work none but the inventor and his assistants have ever entered. When a sufficient quantity of work is done, a bell is rung to give notice to the engineman to stop the engine, and in this way the machinery has been in constant use for over forty years without having been either patented or pirated. Its profit was as great as its success. At first he made 1,000 per cent profit; and though there are other products that now com pete with this bronze, it still yields 300 per cent profit. "All this time," says the successful inventor, thirty years afterward, "I have been afraid to improve the machinery or to introduce other engineers into the works to improve them. Strange to say, we have thus among us a manufac ture wholly unimproved for thirty years. I do not believe there is another instance of such a thing in the kingdom. believe that if I had patented it, the fourteen years would not have run out without other people making improve ments in the manufacture. Of the five machines I use three are applicable to other processes, one to color making especially; so much so that notwithstanding the very ex cellent iucome which I derive from the manufacture, I had once nearly made up my mind to throw it open, and make it public for the purpose of using part of my invention for the manufacture of colors. Three out of my five assistants have died, and if the other two were to die and myself too, no one would know what the invention is."
Since this was said, in 1871, Sir Henry has rewarded the faithfulness of his two surviving assistants by handing over to them the business and factory.

A Model of the Eads Ship Railway.

As an aid in getting the capital to build the Tehuantepec Ship Railroad, Capt. Eads is having a working model made to illustrate in detail the devices needed for raising and lowering ships at the harbors, and distributing their weight on the wheels of the cranes on which the ship will rest during its transit across the isthmus. The Railroad Gazette mentions this as a conve nient method of explaining contrivances to non-professional persons, but one from which the engineer can seldom gain much information as to the feasibility of the methods used when ap plied to a gigantic and complicated structure. The model will also show the method of side tracking the loaded cradles and the means by which the di. rection in which the traveling cradles is changed by turn tables instead of curves. The ship will be 7 feet long and the cradle 76 inches. The floating dock will be 90 inches long and 30 inches wide, and the basin in which it floats will hold about 500 gallons of water.

According to the latest surveys, the heaviest gradient on the Atlantic side does not exceed 42 feet per mile, while that on the Pacific is only 52 feet for about eight miles, and the remainder of the route will have no grades exceeding 26 feet per mile. It is said that no exceptionally heavy work will be encountered either in cuts or embankments, and the entire road from the Coatzacoalcos River to the Pacific harbor will be only 134 miles long.

Society of Amateur Photographers of New York.
Under the above title a new photographic association has lately been organized in this city; and if we may judge from the numerical strength and varied talents of the membership, the society has before it a very interesting and useful career It embraces people of literary pursuits, editors, lawyers, scientists, clergymen, bankers, merchants, etc. It is evident that a very littJe effort on the part of such members would give spirit and interest to the general proceedings. The meetings are to be held monthly. Good rooms are to be provided, with library, fine instruments, and laboratory specially arranged for photographic experimental purposes; the latest and best processes and improvements in the art will be exhibited and explained; adventures and experiences related, new pictures by members thrown upon the screen; exchange of pictures by mail arranged; reports of proceed ings prepared for publication, etc.
All who are interested in photography and its innumerable applications in practice will enjoy many advantages from membership. A local name has been adopted simply to fix the permanent headquarters of the society; but the membership is by no means intended to be local. Amateur photographers residing in any part of the country, both ladies and gentlemen, may become members on payment of the annual dues, $\$ 5.00$ a year. For this purpose the secretary of the society, Mr. C. W. Canfield, 1321 Broadway, tary of the society, Mr. C. W. Canfield, 1321 Broadway,
New York, should be addressed. The other officers are New York, should be addressed. The other officers are
Mr. F. C. Beach, president ; Mr. W. H. Gilder, vice-president; Mr. J. S. Rich, treasurer.
The recent improvements in photography have almost revolutionized the art, and greatly increased the number of amateur photographers. The old, sloppy, wet plate system has almost passed away; the finest pictures are now taken by means of dry sensitive plates. With a supply of these by means of dry sensitive plates. With a supply of these
in hand and a light camera, the lover of nature, wherever he in hand and a light camera, the lover of nature, wherever he
goes, may instantly secure the image of the landscape or goes, may instantly secure the image of the landscape or
other object that attracts his fancy. For the amateur the practice of this art is overflowing with advantages. Not only is the taste for beauty insensibly increased and the mind expanded, but subjects for study and conversation originated; better than ali, physical health and strength are gained by the delightful exercise in the open air which picture taking requires.

Tin Casing to Retard Flames.

The principal cause of the rapid spreading of flames in modern buildings is found in the fact that the elevator shafts furnish such perfect flues for making a strong draught. When, added to this, these openings through the floors of a building, from top to bottom, are incased with wood, alone forms the partition walls separating such a flue from the different stories, it will be readily seen that we have a surprisingly perfect arrangement for the quick spreading of a conflagration from cellar to roof. A cheap and easily obtainable means for partial protection from this danger, in buiflings where the most improved construction has not been followed, would be to line the elevator shaft and the connecting doors and casing, as well as the car, with tin This would not, of course, make these openings proof against the action of a fire which had been some time in progress, where the accumulated heat would be like that of a furnace, but it would interpose a measure of protection which would effectually check a fire in its initial stages, and prevent the sudden flashing into a blaze, through this channel, of all the floors at a time of a great store or warehouse. This is a precaution which may be taken with so little trouble and expense that it is wortl the consideration of every owner or occupant of a building where the elevator shaft is of the old style of combustible construction.

The Art of Thinking.

The object of the teacher is to teach to think. The pupil thinks enough, but he thinks loosely, incoherently, indefinitely, and vaguely. He expends power enough on his mental work, but it is poorly applied. The teacher points out to him these indefinite or incoherent results, and deout to him these indefinite or incoherent results, and de-
mands logical statements of him. Here is the positive advantage the teacher is to the pupil.
Let us suppose two pupils are studying the same lesson in geography or grammar or history. One reads to get the facts; he fastens his eye on the page and his mind to the subject before him; he makes the book a study and acquires information from it; his object is to acquire knowledge. He attains this end. The other also studies the book, but while reading he is obtaining lessons in thinking. He does not merely commit to memory; he stops to see if the argument is sound, he analyzes it to see if the conclusion is warranted by the premises.
The one who thinks as he reads is quite different, it will be seen, from him who simply learns as he reads. To read and think, or to think as one reads, is the end to seek. To teach to think is then the art of the teacher. The reader for facts gets facts; he comes to the recitation seat and reels off those facts. His mind, like Edison's phonograph, gives back just what it received. While this power is valuable, it is not the power the world wants.
The teacher will find his pupils come to the recitation to transmit the facts they have gained. He must put them in quite another frame of mind. Instead of recitations they must be made into thinkers. The value of the teacher is measured by his power to teach the art of thinking.-Teacher's Institute.

In giving a summary of the number of boiler explosions in this country in 1883, the Locomotive says that "the
number of recorded explosions reaches a total of 184 , by which 263 people were killed outright, and 412 injured. As many of the latter were reported fatally injured at the time of the explosion, it is probable that the number of deaths considerably exceeded 263 . This reckless waste of human life is entirely unnecessary, and might be, to a great extent, prevented by the exercise of even ordinary care and prudence."
The concluding senteuce is remarkable: "This reckless waste of human life is entirely unnecessary, and might be, to a great extent, prevented by the exercise of even ordinary care and prudence." This is strong language, but it is not the unthinking and intemperate outburst of some indignant engineer who is angered at the belittling of his business by pretenders. It is the calm, published statement of a responible company which keeps a corps of competent men examining boilers, and lives by warranting the life of boilers, or paying for the damage done by their explosions-the Hartford Steam Boiler Inspection and Insurance Co. If this "reckless waste of human life" is in any degree preventable by "the exercise of care and prudence," it is time hat some care and prudence were exercised by the legal that some ca
There is, in some States, a superficial examination of engineers to determine their qualifications so far as to ascertain if these are sufficient to give them control of an engine and presumably a boiler). But even this examination is of the most flimsy sort, if the experience of the writer is a pecimen; and as for firemen, any man who can shovel coal and wheel ashes fills that bill, generally. But in most places and cases there is no other recommendation for an engineer and a fireman but that of cheapness. In fact, there are engines and boilers run in our cities without either engineer or fireman.
An economical firm recently put in a boiler and a secondhand engine, having previously hired power. On a visit to the new establishment the boiler was found in a dark cellar, and to see the pump a kerosene lamp had to be lighted. This establishment had no engineer nor coal heaver. When the speed went down somebody was sent to stir up the ire, and, as the principal of the firm said : "We pump in water twice a day." The boiler had a glass gauge and two gauge cocks, but the glass was opaque from dirt, and the lower had rusted (oxidized) in its seat.
The Locomotive gives a similar instance of ignorant neglect: A boiler insured in the company was found at the first quarterly visit with the safety valve so "jammed" that it could not be moved by manual lift at the end of the lever with a boiler pressure of 100 pounds. It was stated to the inspector that the fireman and engineer was "any one who
wanted more steam." The insurance policy was canceled. wanted more steam." The insurance policy was canceled. life, compelled a temporary shutting down of the works.

The Inventor of the Locomotive

A beautiful memorial window has just been erected in Newburn church to the memory of the late William and Thomas Hedley, the one the inventor of the locomotive engine, who was born at Newburn, and the other bis son, the practical founder of the Bishopric of Newcastle. The sub jects chosen by the artist are "Noah and his three sons building the ark," illustrating the genius given by God to man, and the parable of the talents, typifying the good use of the genius and wealth that man is blessed with. Above the first group is a scroll with the text, "And thus did Noah according to all that God commanded him," and above the other, "Well done, thou good and faithful servant." The work has been executed by Mr. W. H. Atkinson, of this city. At the base of the window is a large brass plate, en-
graved by Mr. A. Reid, of this city, bearing the following inscription: "The above window is dedicated by William Hedley, of Newton, in this country, to the glory of God, and in loving remembrance of his relatives interred in the adjoining churchyard, amongst whom are his father, William Hedley, of Newton and of Burnopside Hall, near Lanchester, Esquire; and his brother, Thomas Hedley, barrister-at-law,
also of Newton, Esquire. By the inventive genius of the former, the locomotive engine was first brought into successful operation, A.D. 1812 and 1813, at Wylam; and chiefly through the munificent bequest of the latter the Bishopric of Newcastle-on-Tyne was created in 1882." At the bottom of the plate is the representation of a railway engine, and underneath are the words, "Drawing of the first
locomotive invented by William Hedley, originally placed locomotive invented by William Hedley, originally p
in Kensington Museum."-Northern Evening Exppess.

Indelible Stamping Ink.

E. Johanson, of St. Petersburg, gives the following ormula for a convenient ink for marking clothing by means of a stamp: Twenty-two parts of carbonate of soda are dissolved in 85 parts of glycerine, and triturated with 20 parts of gum arabic. In a small flask are dissolved 11 parts of nitrate of silver in 20 parts of officinal water of ammonia. The two solutions are then mixed, and heated to boiling. After the liquid bas acquired a dark color, 10 parts of Venetian turpentine are stirred into it. The quantity of
glycerine may be varied to suit the size of the letters. glycerine may be varied to suit the size of the lett
After stamping, expose to the sun or apply a bot iron.

Information of one more remedy alleged to possess special virtues in curing "cancer" reaches us through a correspondent from Brazil. Dr. Ignacio Alcibiades Velloso, of Recife, Pernambuco, introduced the remedy to notice, and in a communication to the Journal de Recife gives his experience of its use.
He states that the plant, which is popularly known by the name of the "alvelos," belongs to the Euphorbiaceæ, and is indigenous to Pernambuco. He alleges that a magistrate who was suffering from epithelioma of the face, and who had returned to his estate despairing of relief, was entirely cured of his disease by the topical application of the juice of this plant. Dr. Velloso learning this, was induced to employ the same remedy on two patients at the Hospital Pedro II. --one a case of cancroid of the nose, the other of epithelioma of the lip-with the result that the first patient was "completely cured" in forty days, and the second in less than two months, " much to the surprise of the other professional men of the establishment." Such results, he thinks, justify a trial of the remedy, especially in uterine cancer.
The action of the juice of the plant, as others of the same natural order, is irritating, producing a spreading dermatitis without much pain ; and the application of the cut stem or the juice of the fresh plant to the diseased part, is said to result in destruction of the morbid tissue, which is replaced by healthy granulations-doing the work, in fact, of the chloride of zinc paste.
Upon this we need only remark that if the remedy really possess the escharotic action described, there is less reason for doubting its efficacy in such localized morbid formations as those mentioned than there was for questioning the alleged virtues of other remedies, such as "condurango," which'flourished for a time, but which were supposed to operate after they had been taken into the stomach. It is clear, however, that the use of the "alvelos" must be clear, however, that the use of the "alvelos" nust be
limited to the regions in which the plant grows.-Lancet.

Condensed Milk.

Several successful prosecutions have been conducted against the retailers of condensed milk in Liverpool, which the Analyst thinks will doubtless cause considerable consternation amoug the large milk condensing companies, who have up to the present time escaped the operations of the "Sale of Food and Drugs Act."
Condensed milk has been lately extensively employed in connection with what may be called a new industry, that of " milk blending," or in other words, letting down rich dairy milk, so that the analytical results agree with the figures for solids not fat prescribed by the Society of Public Analysts. Large quantities are daily consumed in this way by milkmen, and to such an extent has the trade increased that condensed milk is imported in churns, especially manufactured for the convenience of dairymen; these churns being returned to the factory for a further supply.
The difficulties of condensing rich milk, although much scientific attention bas been devoted to it of late years, are well known to those engaged in the trade, more especially when the milk is preserved without the addition of sugar, but there is now no difficulty whatever in preparing condensed milk of fair average quality containing the whole of the cream present in the milk previous to condensation. The excuse that a large proportion of the fat was mechanically carried over in the operation of condensing in vacuo has been repeatedly proved to be erroneous. In fact, it is not unusual to add to the milk, during the first stage of concentration, clear butter fat, in order to prevent the excessive frothing which takes place and causes considerable trouble, requiring great care to prevent the milk from rising over and mixing with the condensing water.
Manufacturers of condensed milk have, therefore, no more right to deprive the milk of its cream previous to condensation than the ordinary milkman ; in fact, the offense becomes in their case more serious, as, instead of declaring the article as condensed skim milk, it is described as milk, guaranteed to be pure cows' milk, and is highly recommended for invalids' and infants' diet, as being more wholesome and nutritious than fresh cows' milk, and especially milk from cows fed in cowsheds in large towns; the milk is the richest and best, the water having been abstracted and pure loaf sugar added. The heinousness of selling condensed skim milk under cover of this guarantee is obvious, more especially as the offense is not committed by a small milkman in one of the poorer districts of our large towns, but by large companies, presumably with extensive capital and controlled by educated men, who, simply for the sake of underselling, put forward an article deprived of one of its most valuable constituents, and represent it to be richer in quality than genuine milk from cows fed in cowsheds in large towns.

Analysis of Chrome Iron Ores.

The insolubility and infusibility of chromic iron render its analysis one of the most tedious. Schwarz recommends smelting the finely pulverized mineral with chlorate of potash and caustic potash, in a silver crucible. The fused mass is dissolved in water, and the quantity of potassic chromate estimated by running in a solution of ferrous sulphate, then titrating the excess of the latter with permanganate solution. The residue insoluble in water is dissolved in hydrochloric acid, and the iron titrated with stannous chloride. a good silver crucible will stand one hundred fusions.

Calming the Waves with oil.

To the Editor of the Scientific American:
In looking over some odd volumes of the Penny Magazine, an old London weekly, I came across a paragraph "On the effect of oil in stilling waves." This article is con tained in the issue of May 28, 1842, a testimony of Sir Gilfred Lawson, " who served in the British army at the defense of Gibraltar. He relates that the fishermen of Gibraltar were accustomed to pour a little oil on the sea, in order to still its motions, that they might be enabled to see the oysters lying at its bottom; Sir Gilfred had often seen this done."
' Dr. Franklin was informed that many of the divers on the coast of Italy were accustomed to take a little oil in their mouths before they dived; when they had descended to a certain depth they allowed the escape of the oil, which, rising to the surface by virtue of its lightness, spread in a thin film, which smoothed the water rippies and allowed light to descend to a considerable depth. The âshermen of Lisbon, when about to return into the river, it they saw before them too great a surf upon the bar, were accustomed to empty a bottle or two of oil into the sea, to stili che breakers."
Franklin thus narrates: " In 1757, being at sea in a fleet of ninety-six sall, boand against Louisbourg, I observed the wakes of two or the ships to be remarkably smooth, while all the others were ruffied by the wind, which blew fresh. Being puzzled with the differing appearance, I at last pointed it out to our captain, and asked him the meaning of it. 'The cooks,' said he, 'have, I suppose, been just emptying their greasy water through the scuppers, which emptying their greasy water through the scuppers, which
has greased the sides of those ships a little!'and this anhas greased the sides of those ships a little !' and this an-
swer he gave me with an air of some little contempt, as to a person ignorant of what everybody knew. In my own mind I at first slighted this solution, though I was not able to think of another."
Franklin did not drop this subject, but conversed with "maritime men" on the matter, and found that most of them knew of it. He made some experiments on Clapham pond, but found that if applied upon the leeward side of the pond, where the waves were largest, the oil was driven upou the shore. But on dropping a teaspoonful of oil on the windward side, it produced a "sudden calm over a space of several yards," until it gradually made the pond of perbaps half an acre, " as smooth as looking glass." He explains it thus: "I imagine that the wind blowing over water thus covered with a film of oil cannot easily catch upon it, so as to raise the first wrinkles, but slides over it, and leaves it smooth as it finds it. It moves a little the oil, indeed, which, being between it and the water, serves it to slide with and prevents friction."

Fort Wayne, April 2, 1884.
A. L. R.

Substitutes for India Rubber and Gutta Percha.
The Swiss Gewerbe-blatt thus discusses the subject of a substitute for India rubber. In the first place, such a substitute must be cheaper than real India rubber. There are many kinds of material that fulfill this requirement. Sulphur is one of the things that is unattacked by acids, alkalies, and salts. Its great brittleness gives place to a softness, pliability, and elasticity similar to rubber if it is poured into cold water while melted. (It melts twice at different temperatures, and it is only after this second melting that it postures, and it is only after this second melting that it pos-
sesses this elasticity.) It remains soft enough to be moulded sesses this elasticity.) It remains soft enough to be moulded
for several days, and these qualities it retains permanently if it is mixed with more or less linseed oil varnish before it is poured into water.
There is no doubt that sulphur is of importance in making artificial substitutes for India rubber, and no less so as a substitute for gutta percha. The first thing is to endeavor to discover some permanently elastic substance which shall destroy that crystalline structure which makes the sulphur brittle, and render it impossible for it to return to this condition.
Next after sulphur, alumina soap deserves consideration, for it is likewise a teuacious substance that can be stretched, and it undergoes many curious changes when melted with thick linseed varnish and resin. Zingler bas, in fact, patented a composition of sulphur, copal, oil of turpentine, and albumen.

Although substitutes for gutta percha may be obtained with the aid of some of these substances, it will always be difficult to imitate the elasticity of India rubber, so that its substitutes will find use only where its elastic property does not come into prominence.-Poly. Notizblatt.

Artesian Wells on the New Jersey Coast.

Dr. George H. Cook, the New Jersey State Geologist, describes the successful opening of artesian wells, 400 feet deep, at Ocean Grove and Asbury Park last summer, and says the cbaracter of the sand and marl found in the boring is so well marked that it may be reasonably expected to yield water for the supply of all the towns and villages on the sea coast. The water is absolutely free from contamination with organic matters, and is soft enough forlaundry purposes. The well at Ocean Grove is a flowing well, yielding 60,000 to 70,000 gallons daily; it is lined with six inch iron tube for 50 feet, the bore lower down not being tubed. The water has a temperature of $60^{\circ} \mathrm{F}$., and contains 8.5 cubic inches of carbonis acid per gallon.

Siphonage of Traps by Capillary Attraction.

A correspondent of the Hydraulic Plumber, of New York, relates a story of his employment, some time ago, to investigate the causes of a foul smell in a certain bath room, where other plumbers had worked before him in vain. The pipes had been swabbed out; the closet, an old-fashioned pan apparatus, had been burned out, and disinfectants applied in vain. The wastes of bath and wash basin, according to the old practice, entered the water closet trap, cording to the old practice, entered the water closet trap,
but no sign of leakage could be discovered about this or the waste pipes. The new plumber, not knowing what else to look for, removed the closet and filled the trap with water. As soon as the agitation had ceased, he measured the depth of the water, and then left it to itself for twenty minutes. At the end of that time the water level had fallen half an inch. Twenty minutes later it had fallen still more, and in an hour the seal was so far broken as to allow a slight current of sewer air to enter the room. The plumber then left the room for two hours, locking the door and taking the key with him. When he returned the place was full of foul air, and on passing his band under the bend of the trap he found a space of about an inch and a quarter between the surface of the water and the under side of the bend of the trap.
The next step was to cut away the crown of the trap, so as to expose the upper portion of the bend. An opening was made, 4 inches long and $31 / 2$ inches wide, but examiaa tion through this showed nothing out of the way until the trap was refilled, when a wet line was observed over the bend, which proved to follow the course of some hairs, twelve or fifteen in all, which bad been caught, together with some lint and ravelings, in the slimy lining of the bend. By detaching the lower part of this collection from the walls, allowing it to hang down free in the outlet pipe 70 or 80 was observed to drip from the end at the rate of 70 or 80 drops a minute. The whole was then cleared away and the closet replaced, and no more trouble was expe rienced.
The plumber in question then made some very interesting experiments, to ascertain the amount of conducting substance necessary to cause the emptying of traps in this way, using a small beaker glass in place of a lead trap. He found that with five pieces of No. 80 spool cotton, about 7 inches loug, hung over the edge of the beaker, the wate level was lowered 3 inches in nineteen hours, and $1 / 2$ inch in about fifteen minutes. With five long hairs the lowering amounted to 1 inch in ten hours, and 3 inches in about a day and a half. With five hairs and two threads, of the same size as before, the lowering in seven and one-half hours was $11 / 2$ inches. One piece of cotton twine lowered the water $3 / 4$ of an inch in four and one-half hours. Two pieces of twine drew over 1 inch of water in two hours, and 2 inches in less than four hours. A bit of cotton cloth, half an inch wide, siphoned over $3 / 4$ of an inch of water in an hour and a quarter. There was apparenty the action, whether the thre
on the surface of the water.
In the sunshine the drying of the absorbent material was so rapid as sometimes to stop the capillary action, but in he shade it went on steadily, even when the beaker was placed in a strong current of warm air. As nothing is of more common occurrence in drain pipes than lint or hair, it seems likely that this observation will explain many cases wise to be accounted for.

Siemens, Bessemer, and the German Patent System.
It is related that the late Sir William Siemens, who was born and educated in Germany, but made England his home after his twenty-fourth year, was principally moved to change bis residence from the greater security afforded in ventors by the English patent law. The English patent law was not then (1844) as liberal as it now is, but the advantages thereunder were greatly superior to those afforded in Germany, where great inventions bad been often refused any protection, while inventors of small mechanical improvements were allowed patents for only a short
period. The early German policy was well illustrated in the manner of treating the Bessemer process. Before Sir Henry had taken the preliminary steps to obtain his German patent, Herr Krupp had entered into negotiations therefor, and agreed to pay $£ 5.000$ for the use of the invention. The inventor accordingly sent all his papers to Krupp, who in due course applied to the Prussian Government for a patent, and was told the invention was not a new one, but that $\mathbf{M r}$. Nasmyth had made the invention previously. Mr. Nasmyth denied this, and the Prussian officials of patents then said some one else had made the invention, and they would find out in a few days who it was. This excuse continued to be made during six weeks, during which the Commissioners promised from day to day to find a previous inventor, when they finally told Krupp: "If we do not find it to-morrow, we will grant your patent." This answer was then again repeated until a week of to-morrows had passed, when, as Krupp called the last time, he was shown an English hlue book, coutaining the publication of the English patent, and he Commissioners said : "Now, seeing it is a publication in Prussia, we cannot grant you a patent by the law of Prussia." Of course, after this answer Herr Krupp had the use of the invention without any legal obligation to make
any payment to the inventor.

The Old Trade Guilds in Germany.
The late Sir William Siemens, who was borv in Hanover in 1823, and received his early education at Lubeck, has time in vogue:
"When a boy at school," he says, "I was living, under the full vigor of the old guild system. In going through the streets of Lubeck J. saw Carpenters' Arms, Tailors' Arms, Goldsmiths' Arms, and Blacksmiths' Arms. These were lodging houses where every journeyman belonging to that trade or craft had to stop if came into the town. In commencing his career, he had to be bound as an apprentice for three or four years; and the master, in taking an ap prentice, had to enter into an engage ment to teach him the art and mystery, which meant the science of his trade. Before the young man could leave his state of apprenticeship be had to pass a certain examination; he had to produce his Gesellen-stück, or journeyman piece of work, and if that was found satisfactory he was pronounced a journeyman. He had then to travel for four years from place to place, oot being allowed to remain for longer than four months under any one master; he had to go from city to city, and thus pick up knowledge in the best way that could have been devised in those days. Then, after he had completed his time of travel, on coming back to his native city, he could not settle as a master in his trade until he had produced his Meister-stïck, or master-piece. These masterpieces in the trade were frequently works of art in every sense of the word. They were, in blacksmithy, for instance, the most splendid pieces of armory; in every trade, and in clocks above all others, great skill was displayed in their production. These were examined by the Guild Masters' Committee, and upon approval were exposed at the Arms of the Trade for a certain time, after which the journeyman was pronounced a master; he was then allowed to marry, provided he had made choice of a young woman of unimpeachable character. These rules would hardly suit the taste of the present day, but still there was a great deal of good in those old guild practices." .This system was abolished in Germany in 1869, but the stimulus it afforded to excellence of workmanship appeared to have made an early and lasting impression on his mind.

Rusting of Iron and Steel.

M. Gruner bas lately published in La Metallurgie, the reults of a year's researches into the comparative oxidizability of cast iron, steel, and soft iron, under the influences of moist air, sea water, and acidulated water. Having done justice to the earlier labors of Mr. Robert Mallet, of Dublin, and Messrs. Phillips and Parker, of London, he explains the arrangements made to secure a perfectly fair trial. The ollowing results were obtained. The experiments with moist air are still proceeding; but so far, it was found that in twenty days the steel plates lost from 3 gram. to 4 gram. or every two square decimeters of surface. Chrome steel rusted more, and tungstated steel less, than the ordinary carbureted steel. Cast iron lost only about balf as much as the steel, and spiegeleisen less than gray iron. Sea water dissolves iron rapidly, and acts upon it more powerfully than on steel, most powerfully of all upon spiegeleisen. In vine days the steel plates with 2 square decimeters of surface lost from 1 gram. to 2 gram., while the Bessemer metal lost 3.5 gram., phosphorized iron 5 gram., and spiegeleisen 7 gram. Tempered steel was less affected than the same steel twice annealed, soft steel less than chrome steel, and tungstated steel less than the ordinary steel with the same proportion of carbon. It is evident from these experiments that manganese sheets ought not to be used on the hull of vessel. Acidulated water dissolves cast iron much more rapidly than steel but not spiegeleisen.

A New Fire Tank.

Several large fires in the lower part of New York city bave demonstrated that the supply of water from the hydrants is insufficient for the purpose. To overcome this evil one of the Fire Commissioners has invented an apparatus whicb seems to be well adapted to its work, where circumstances require and conditions permit its use. The device consists of a large tank, mounted on wheels, which s supplied with water pumped from fireboats situated in the iver. In the trial the tank was placed a mile away from the boat, and the two were connected by hose. The pumps of the fireboat threw water into the tank without trouble, and the fire engines drew from the tank as successfully as from a hydrant.

The Patent Bills Analyzed by "6 Puck."

"The Register" in Puck dissects the patent bills now before Congress, and draws the following apt conclusions and illustrations: "If these bills go through, the next edition of Webster's Dictionary ought to define 'Legislation' as robbery by representatives.' Suppose a bill. were introduced to shorten the term of all railroad company charters o five years-a melodious outcry there would be, wouldn't there? But rob the inventor of a patent car wheel of twelve years' profit on his invention, and you find only six men in the House of Representatives to see the iniquity of the pro-ceeding-six out of one hundred and twenty voting. Truly, the age of pure reason has not dawned yet; and there is not so vast a distance between prehistoric man and the dude as the dude's shirt collar would imply."

Borax Lake.

In speaking, recently, of boracic acid and its possible sources of origin, we mentioned the Sulphur Bank on the northern side of Clear Lake, in California. South of this, at a distance of less than a mile, is another spot which dis plays an immense outpouring of boracic acid, though here the emission has been only in times long past, and the acid has all entered into combination with soda, as the name above given indicates.
Borax Lake is very insignificant in its appearance, but fifteen years ago it completely revolutionized the borax trade of the United States, though of that we do not propose to speak to-day. It seems absurd to give the title of lake to it, for it is only a large pool of shallow water, with muddy shores and bottom, and without either inlet or outlet. The length of this oval " mud hole" varies with the season. At the close of the dry season the water has sometimes, though not commonly, entirely evaporated, leaving only a space of mud incrusted with salts, while after an extremely wet sea son the water is five or six feet deep in the middle, with a length of a mile and a half. This water, even in its most diluted condition, is intensely alkaline, its strength, of course, increasing with the progress of the summer's evaporation.
It is separated from the Sulphur. Bank by a ridge somewhat over six hundred feet in height, and the two localities have apparently no relations, the one with the other. The ridge is composed of volcanic materials, scoriæ, obsidian, pumice, etc., and is continued in horseshoe form around three sides of the lake, leaving the southeastern end open.
There is no evidence of a crater having ever existed here and yet the water plainly occupies a cup-like cavity of unknown deptb, for the bottom is filled with an exceedingly smooth and plastic mud, which has been bored to the extent of thirty feet without reaching its lower limit or fiuding any change in its character, and explorations show that it stead ly deepens from the shore oward the center. When the depth of the water is four feet, which may be reckoned a fai average, and which gives a length of about three-quarter of a mile, it holds in solution 18.75 grains of salts to the fluid unce. These are salts soda, in the following pro portions: Sod. carbon., 0.618 od. chlorid., $0 \cdot 204 ;$ sod bibor., $0 \cdot 178$. Each gallon of the water, therefore, holds about a quarter of a pound of borax.
This amount, however, is f small consequence in com parison with that which lie n crystals below in the mud The change from water to mud" is very gradual, the upper portion being semifuid. In this part no crystal are to be found. At the depth f perhaps a foot, when has acquired sufficient consistency to be called liqui mud, the fingers in rubbing it can detect what feels like very fine "grit." This,when washed clean, shows under the microscope, of course, its true nature, and every particle is seen to be a most exquisitely beautiful crystal of pure borax. Going still|acid were injected below. The space occupied by the jet deeper, the "grit" becomes "sand," for the crystals have become larger and are manifest to the eye, without assist ance. As the mud becomes firmer the crystals become larger, being at the depth of two feet a quarter to half an inch long.
At the depth of three to four feet the mud suddenly changes its character. Above this it has been of a grayish brown, some of it inclining to reddish, which ceases abruptly, being replaced by a firm, tenacious blue clay, the plane of distinction being as sharply marked as that of a course of brick upon stone. In this upper mud the crystals had been gradually increasing in size as the depth increased, until in its lower part they were from an inch and a half to two inches long. Every crystal was distinct and perfect in itself, and-a most wonderful feature-though often lying in contact, they were not adherent.
This last item is very difficult of explanation. We hav in unnumbered instances seen them as the mud was removed lying in " layers" or " pockets," from one to ten pounds of separate crystals of the borax lying in one mass, as clean and free from mud as though they had been washed, and as loose and distinct as pebbles on a beach. Each crystal had its own existence. These "layers" were never uniform, and were scattered without apparent order, the adjacent mud often showing no crystals whatever.
When the "blue clay" is reached all this ceases, aud crystals of a new style commence. Each one lies by itself, in a firm matrix, from which it can be picked out like a bul let from its mould. They have an individual appearance suigeneris, so that it is easy to distinguish even the smalles of them from the largest of those in the mud above. Bu their chief feature is their size. We have taken out many
them which weighed more than a pound each, and "blue clay" crystal of less than a quarter of a pound seldom occurs. But they cease about as abruptly as they commence, for they are confined absolutely to the upper two feet in thickness of the clay. Abundant examinations have shown that below that no crystals of any sort exist. The mud however continues to be of the same look and quality to the greatest depth reached (thirty feet), and though showing no crystals it holds everywhere a uniform amount of the salts of soda, being sixteen per cent. of its entire weight when dried. The proportions vary somewhat from those of he water above: Sod. carbon, 0.554 ; sod. chlorid., $0 \cdot 164$; sod. bibor., 0.282. We will show at another time the manner of obtaining the crystals. It was done in sections of four feet square, and we have often seen 900 pounds taken from that extent of the mud; and from the imperfection of the manipulation a large amount, certainly not less than a hundred pounds, escaped back into the lake.
We pass all other points at the preseut time, barely to consider the enormous quantity of boracic acid which we bave here represented. Taking the data just given, the borax held in the water, the tangible crystals down to their lower limit in the upper part of the "blue clay," and the amount contained in the clay below that down only to the distance of which we bave knowledge, it is perfectly safe to say that Borax Lake held, and holds how, not less than $9,400,000$ pounds of borax to the acre of surface. The ground so rich in crystals does not extend over all the area, but at least twenty-five acres (and this is far within the reality) will come up to our estimate, and we have thus clearly over $200,000,000$ pounds there existing.
The mode of its formation we will see later, but whence ould this boracic acid have come? Here is a cavity like a crater, though its volcano is not appareut. Admit that the cup was filled with mud rich iu soda and that jets of boracic
was manifestly quite restricted, for the acid did not in it full force reach laterally even to the crater's border, and yet they came strong enough and long enough to combine with the soda to the amount we have given. But the amount of work done is the least surprising part, as we will see.

The Walled Lakes of Iowa.

The questions whether the so-called "walled lakes of Iowa" are the work of some extinct race or are natural formations, have periodically appeared for discussion. In his "Geology of Iowa," Prof. Charles A. White presents as a theory that in the shallow portions of the lakes the ice along the shores freezes fast to everything upon the bottom, whether sand, gravel, bowlders, or mud, and the expansive power of the water in freezing is exerted upon them, acting from the center of the lake in all directions toward its circumference. By this means whatever substances are frozen nto the ice are pushed up upon the shores as far as the expansive force is exerted, and there left as the ice melts in the spring. By this means embankments have been formed, varying from 2 to 10 feet in width and from 5 to 20 or 30 feet across. The ice, during long ages, has brought these materials together in this manner, having in some instances moved large bowlders and piled them up with other materials.
In corroboration of this, a writer in the Sun states that he has "seen the ice piled up on the shores of Walled Lake, in Wright County, pushed up along these embankments, and containing earthy materials of which the walls are made. Occasionally these walls were found along the old margin of some dried-up prairie slough, proving the existence of an open shallow lake in some time past.'"

American Car Wheels.

"There are more than $10,000,000$ iron car wheels in use on American railroads,". said the master mechanic of one of the trunk lines, " and it requires about 525 pounds of pig iron to make one wheel. About $1,250,000$ wheels are worn out every year, and the same number of new ones must be made to take their places. The iron men are called upon for only a small proportion of the 312,500 tons of material required for these new wheels, however, for nearly 290,000 tons are supplied by the worn out wheels themselves Formerly, the life of a car wheel was estimated at eight years, but the reduction of the railroads generally to the standard gauge, and the improvements in loading and unloading facilities, have materially decreased the length o service that a wheel may be depended on to perform. The uniformity in gauge keeps cars in more continuous use, while the decrease in time of loading and unloading enables them to be put to more active service even where they are run only on short local routes.

These figures do not include the wheels on palace coaches and the better class of passenger coaches. The wheels on that grade of rolling stock are for the most part what are known as paper wheels. That is, the wheel i made with steel rim or flange and iron center or hub, but the fillingor web betweenhub and rim is composed of sheet of paper cemented together. They are as serviceable as the wheels of solid iron, and combine lightness with strengthgreat desideratum where speed and economy in motive power are of paramount importance."

the sectional steamer le stanley.

A river run was lately made in the Thames with a small essel of peculiar construction, and for a purpose which may some day single it out as one of the steamers with an epoch making history. Le Stanley is the name given to this small steamer, in honor of the celebrated African explorer. She has been built near London under the inspection of Mon sieur Delcourt, Chief Engineer of the Belgian Govern ment, for L'Association Intersationale, of Brussels, of which the King of the Be]. gians is the head. It is an association having for its object the opening up to com merce and civilization of the unknown regions of Africa, said to be wholly without political aim, and what it is doing must therefore be looked upon as for the uni versal good. Mr. Stanley, who is engaged establishing numerous stations, is the head of the expedition in Africa the little steamer is to assist him in his operations, especi ally in the district of the Congo and its tributaries and some idea of the magni tude of an expedition of this kind may be formed when it is slated that no less than 500 natives have already been en gaged to accompany the steamer and assist in its trans port overland. About the middle of last year the Bel
rian authorities placed themselves in communication with Messrs. Yarrow \& Co., with a view to build a thoroughly serviceable steamer of exceptionally shallow draught and able to steam in places where there is not water sufficient for vessels constructed in the usual way. The main point, how ever, was to design something that could be easily trans ported overland, so as to pass by and avoid the numerous rapids and cataracts which render navigation impossible. With these requirements before them Messrs. Yarrow \& Co have constructed the present steamer; it consists of six gal vanized steel square-shaped pontoons, 18 feet long by $81 / 2$ feet wide by 4 feet deep; these sections, each of which is watertight and therefore floatable, are placed side by side to these are added a bow piece and a stern piece, making together a hull 70 feet long by 18 feet beam. By means which we sball describe at more length at another time these ections can be readily united and disunited, and this can be done alloat. On the bow division are placed two boilers, and on the stern division the engines, which are designed fo a working pressure of 140 pounds per square inch, and have cylinders $101 / 2$ inches in diameter by $21 / 2$ feet stroke, which, by means of a crank on each side, drive a paddlewheel situated aft, well clear of the stern. The engines are each made up on a steel tube as a frame. The strain due to these weigbts being concentrated at the extreme ends of the boat is taken by a system of light steel tie rods above, secured to tubular king posts; the effect of this system is at all times to throw a compression on the hull, thereby tending to keep the varions sections together in close contact and free from alternat ing strains. Above the vessel, and completely covering it, is a wooden awning deck, which in an African climate is very necessary to protect the passengers and crew from the sun. The boilers are made with very capacious grates, and
of course wood is the only fuel procurable, and will no always be the driest and best adapted for making steam. It is intended to ship this steamer, in her several sections, direct to the mouth of the Congo, waere she will be put together afloat, which, it is contemplated, will not occupy more than tweuty-four hours. She will at once proceed, under her own steam, as far up the river as it is navigable; then be taken to pieces for transport overland; and in this operation will be seen one great novelty in ber design. After the machinery is removed from the deck the hull will only draw 6 inches; it is then brought into exceedingly shallow water, and the operation of disconnecting the various sections proceeded with. To each section whilestill afloat will be secured four large light steel wheels baving very wide tires. This being done, the divisions are ready to be hauled out of the water and over land, and what was once a section of a boat now becomes the body of a wagon of ample capacity to con vey the liguter portions of machinery and stores. On arrival at the next navigable part of the river, these wagons so constructed are run into the water, the wheels are removed and the various divisious reunited, forming again an entire vessel. In this way the journey can be continued, the steamer being taken to pieces and put together as often as circumstances require.
At the preliminary trial the vessel went through numerous maneuvers; the mean draught was 14 inches in working trim, and with a steam pressure of 100 pounds per square inch a speed of nine and a half to ten miles an hour was ob tained-an excellent result, taking into consideration the proportion of length to beam and other peculiarities of the craft. Great steering power is of course necessary, and the most striking performance was the marvelous facility with which the boat could pivot on a center only a little within a point a few feet from the stern, which was very remarkable, and clearly rendered this type of steamer admirably suited for tortuous and wind ing rivers. On the deck is a small, well ventilated saloon, and the steering wheel is placed high up on a bridge some 12 feet above the water, giving the pilot a good view all around.
It would seem to us that this system of construction, namely, that of uniting together a number of floating sections so as to iform a vessel of moderate and useful dimensions, and of good carrying capacity, opens up a new field, as the difficulty hitherto experienced in the development of trade with Africa has been due in a great measure to practical difficulties in placing -vessels of light draught on the rivers.

The Florida Everglades.
A correspondent of the Boston Journal thus speaks of the drainage work already accomplished in the Florida Everglades, under the direc tion of Capt. R. E. Rose "From Sanford, on the St. Johns River, the Florida Central Railroad brought us through 40 miles of incipient
towns with wiater hotels to Kissimmee on the edge of Lake Tohopekaliga, which is near the upper level of the great swamp region. Imagine a shallow basin from 30 to 50 miles wide and 150 long, sloping slightly to the south and divided by low dams across it into shallow ponds or lakes, slowly oozing and overflowing from one to the other until the whole is lost by evaporation in the Okeechobee Swamp. Canals 40 feet wide and of a depth increasing as the water lowers, have been cut from one lake to another, the Kissimmee River channel almost made anew, and the greatswamp connected by direct channel with the Calobahaichie River, emptying into the Gulf. A steamboat 130 feet long and 30 feet wide, lying here at the wharf, has come from New Orleans across the Gulf and up the artificial canals. The work of cutting has been done by endless chains armed with buckets, lifting the earth from the bottom and discharging on each side, and working down stream and then back again until the requisite depth is obtained. So that the first boat, all the materials of which were hauled here by ox teams or cut from the surrounding forests, has actually dug its way to the sea. The lake in front of us has already been lowered seven feet, turning from impassable morass into arable land about 150 square miles. I have seen sugar cane growing where two years ago the first dredge boat came to anchor."

In the opinion of the Medical Press, most physicians are very decidedly in favor of the total abolition of corporal punishment in schools. The editor asserts that the London University College School, which is attended by 500 boys, has been carried on from the first without corporal punishment, and is equal to any school in England with respect to discipline.

MODE OF TRANSPORTING THE SECTIONS OF THE STEAMER.

How to Attain old Age.

Until the South African mines were discovered the diamond was always found in sands and gravels, different from the mineral in which it was believed to be formed. At Griqualand West, however, the consolidated eruptive mud of the mines was believeà by some to be the true matrix of the diamond; but opinions differed on the question, and arguments were found on both sides. M. Chaper, a French geologist, has, however, during a scientific mission to Hindostan, succeeded in finding the diamond in its mother rock. At Naizam, near Bellary, in the Madras Presidency, M. Chaper has found the diamond in a matrix of rose pegmatite, where it is associated with corundum. The tract of country is almost denuded of trees, bare and rocky, and the rains wasting the rocks, every year expose fresh diamonds in the soil. The rock is traversed by veins of feldspar and epidotiferous quartz. Here the diamond is always found, associated with epidotiferous rose pegmatite. The diamund crystals observed are octahedral, but less distinct in line than the stones of South Africa, which seem to bave been formed in a freer matrix. It follows from M. Chaper's discovery that diamonds may exist in all rocks arising from the destruction or erosion of pegmatite, for example, in quartzites with or without mica; clays, pudding stones, etc.

Time by Telephone.

A lawyer whose office is in the Leffingwell building stepped up to his telephone one morning, watch in hand. He did not ring or talk into the transmitter, but listened intently for several seconds with the tube at his ear, and his eyes fastened upon the face of the watch. "Just ten minutes past 11 o'clock," he remarked, as he returned the watch to his pocket and hung up the tube. "I am precisely half a minute slow."

The Psalmist David allowed seventy years as the natural duration of life, Pythagoras placed the limit at eighty, London's hygienic philosopher, Dr. Richardson, gives us ten more, while Flourens believed that man ought to live one hundred years.
There is no doubt that the physiological limit of human life has been slightly increased in the present century, and a hundred years later it may be found that old age comes on still more slowly and gently. For, with the increased uncertainty as to a future life, human energ-es are directing themselves with greater earnestness toward solving the problems of a more healthful and longer terrestrial existence.
The physiological chemist tells us that after the age of forty or forty-five, disassimilation gradually begins to exceed assimilation, and the structures of the body slowly waste. Muscle and nerve, which are the "master tissues," feel this first. The dynamic coefficient of both striped and unstriped muscle decreases after forty; the limbs become less supple, and the hollow viscera have a feebler expulsive force; the nervous system is less sensitive and plastic; im pulses travel between center and periphery with more difficulty. The individual loses spontaneity, and becomes more automatic, more a creature of determined habits.
The lower tissues also undergo very marked and characteristic changes. The fibrin-factors of the blood increase in amount, the bones become drier, the cartilages ossify, and the arteries especially become the seat of fatty degeneration and calcareous deposits.
Dr. Richardson announces that "his experiments show" that the colloidal matter (protoplasm?) of the body in old age contains less water, and that its particles are consequently more cohesive. It is true, at any rate, that the total amount of water in the body is less.
The essential fact as regards senile changes is that the metabolic function is weak ened. Consequently the food, instead of being built up into good tissue, is oxidized into less complex substances. The protoplasm turns out fat instead of new protoplasm, the circulatory apparatus becomes weaker, the blood stagnates, carbonic acid precipitates, and earthy salts, which it kept in solution, are deposited.
Now, certain recent philosophers have thought that, by preventing these fatty and calcareous changes, old age could be delayed. A Swiss physician, a few years ago, argued that lemons, i.e., citric acid, would accomplish this end, and saw immortality in lemonade. More recently, a writer in Knowtedge, Mr. W. O. Dawson, has presented a new regimen sanitatis, which he claims is the most rational and certain means of retarding old age. It consists in avoiding all food rich in earthy salts, and in taking, daily, two or three tumblerfuls of distilled water with ten or fifteen drops of dilute phosphoric acid in each glass-
Only a few of the local telephone subscribers are aware ful. The food freest of earthy salts is: fruits, fish, and of the fact that they can ascertain the correct time by sim- poultry, young mutton and veal.
ply listening at their telephone instruments. A clock apparatus has been connected at the central office with all the circuits, by which there is given at the end of each minute the hour of the day and the number of minutes past the hour. The beats signifying this are distinctly audible, although not loud enough to interfere in any degree with conversation. The attachment of this time apparatus explains the ticking sound which has mystified many persons within the last few days. The apparatus is not connected with the clock in the Yale Observatory, although it is regulated by the observatory standard.
Manager Fairchild, of the Telephone Company, said: " The apparatus was put into the office Monday by way of experiment. It is worked by batteries, and gives the hour and the minute simultaneously. over all our circuits. To ascertain the precise time it is only necessary to step to your instrument. At the end of every minute there is clicked off the hour and then the number of minutes which have elapsed since the bour was struck. If it happens to be thirteen minutes past there is one beat, then a short pause, and then three more in quick succession. The attachment works successfully, and the only question about retaining it is the cost. The expense will be about $\$ 1,000$ a year, and if our subscribers are willing to pay for the accommodation they can have it."
"But suppose the subscribers on some of the circuits are willing to pay and those upon others are not?"
"We can render it useless on any given circuit by putting on an attachment called the confuser. This mixes up the beats so that no one can tell what they mean."-New
Haven Register. Haven Register.

We can testify with Mr. Dawson that this kind of diet is harmless, but we are profoundly skeptical as to its efficiency.
Old age is part of the life history of the organism. There is that in the child at birth which determines very nearly when old age shall appear. Senility is a failure of nutrition. We can only delay its appearance by living a life which puts no undue strain on the organism, and by furnishing it with the easiest means of working. We cannot expect to accomplish this end simply by cutting off certain deleterious supplies. If one would live long, let him especially take care of his " master tissues"-the muscle and nerve-when young. This means rational exercise of body and a well balanced cultivation of mind. Brain workers live long, brain and muscle workers longer still. No one has yet given better advice for the retarding of old age than did Christopher Hufeland, a century ago. Let those who wish old age study him, and put no trust in distilled water.Medical Record.

To Prevent scratching Matches on Paint.
A correspondent in Florida, of New Remedies, speaking of the defacement of paint by the inadvertent or heedless scratching of matches, says that he has observed that when one mark has been made others follow rapidly. To effectually prevent this, rub the spot with flannel saturated with any liquid vaseline. "After that people may try to strike their matches there as much as they like, they will neither get a light nor injure the paint," and most singular, the petroleum causes the existing mark to soon disappear, at least when it occurs on dark paint.

The Decay of Westminster Abbey.
The atmosphere of London has played havoc with the stone in this famous building, and although the interior is in good condition, beneath the coating of grime and dirt with which long ages have covered the structure, and which conceals the decay from the eye of the casual observer, there has been long going on a process of decompusition which, if not arrested, will speedily cause ruin. The London Times states that in 1882 a well known architect examined and reported upon the condition of the Abbey. The wall surfaces round the clear story windows, wherever the fire stone has been allowed to remain, bave become very seriously decayed, the decay in some places penetrating to a depth of seven or eight inches, "so that the architect is surprised that the heavy cornices and parapets should have found a sufficient support in so ruinous a wall." Before the report was made, in some of the worst places in the uave, the superstructure had been removed and the face of the wall rebuilt; but the architect was of the opinion that "immediate and very extensive repairs and restorations were urgently needed for the whole of the masonry of these clear stories." The conclusion was the same regarding the tlying buttresses supporting the clear story walls, which in some places are dangerous and in others so decayed that pieces of stone are constantly falling from them upon the lead roofs. In regard to the south side of the nave, over the cloister roof the report says:
" Large pieces of stone are continually falling, being detached by the rusting of the iron clamps with which the masonry was thoughtlessly put together. Very considerable damage has from this cause been done to the western towers, the whole surface of which is disfigured by the bursting off of triangular and other shaped pieces of stone; these heavy pieces fall not infrequently, and do much damage."
The transept on the south side has been recently restored, and the porch of the north transept is also new, but above the porch the masonry is in places very loose and unsafe, and demands complete and extensive repairs. The stone of the clearstory of Henry VII.'s chapel, of the flying buttresses, and of the pinnacles is also badly decayed.
It is estimated that the cost of the restorations will be from $£ 60,000$ to $£ 80,000$, and the Times asks the pertinent question: "By what means may future generations be spared the periodical scandal of discovering that this great historical church has fallen into decay?" Judging from the rapid rate at which disintegration is now going on upon some of the buildings in this city, it will be but a few years before the above question may be applied to many of our finest edifices.

To Prevent Railroad Accidents.

Railroad spikes pull out of ties by the spring of the rails under the weight and pressure of engines and trains. The spreading of rails, for this reason, is one of the principal causes of railroad accidents. General Manager F. K. Hain is putting in "interlocking bolts" on the curves, switches, and frogs of the elevated roads, where the greatest danger is encountered, as a protection against accidents. These are the device of Capt. 'Thomes J. Bush, of Lexington, Ky., and are without beads. They are put in from the upper side of the tie. Holes are bored vertically on either side of the rail in the places where the spikes would go. They cross under the rail, forming the letter X. The bolts have threads turned on the upper ends, which are bent so as to cause the nuts, when the bolts are inserted at angles, to come squarely down on the flange of the rail. A slot is cut in the side of one bolt, which is inserted first. The side of the other bolt is beveled up to a point where a notch is cut on the under side to come squarely against the shoulder and in the slot of the first bolt, and in that way the two lock. The nuts are then screwed down, and the rail is held as if in a vise. The pressure against the side of the rail, tending to turn it over, is resisted by the lower part of the X-like adjustment of the bolts, and nothing but the tearing out of the solid wood will release the rail. The device is expected to greatly deaden the sound, and in case a rail should break it would still be held in place. A number of roads are experimenting with the bolts, among them the New York Central, the Pennsylvania, the Erie, the West Sbore, and the New York City and Northern, and Elevated Railroad.

Glue, Paste, or Mucilage.

Lehner publishes the following formula for making a liquid paste or glue from starch and acid. Place 5 pounds of potato starch in 6 pounds (3 quarts) of water, and add one-quarter pound of pure nitric acid. Keep it in a warm place, stirring frequently for 48 hours. Then boil the mixture until it forms a thick and translucent substance. Dilute with water, if necessary, and filter through a thick cloth.
At the same time another paste is made from sugar and gum arabic. Dissolve 5 pounds gum arabic and 1 pound sugar in 5 pounds of water, and add 1 ounce of nitric acid and heat to boiling. Then mix the above with the starch paste. The resultant paste is liquid, does not mould, and dries on paper with a gloss.
It is useful for labels, wrappers, and fine bookbinder's use.
Dry pocket glue is made from 12 parts of glue and 5 parts of sugar. The glue is boiled until entirely dissolved, the sugar dissolved in the hot glue, and the mass evaporated until it hardens on cooling. The hard substance dissolves rapidly in lukewarm water, and is an excellent glue for use on paper. $-P$. Notiz.

ANIMAL TRAP.
A powerful coiled spring surrounds a shaft, on one end of which is mounted a ratchet wheel with which a pawl, pivoted on a loosely mounted elbow lever, engages. The bent end of a rod is journaled in bearings secured to the base plate in such a manner that the rod can swing in a vertical plane parallel with that of the spring. Upon the free end of the rod is a serrated knife. The rod passes loosely through the jaws of a U-shaped piece pivoted to the end of one arm of

HALL'S ANIMAL TRAP.
the elbow lever. The other end of the lever rests against one arm of a cross-shaped piece centrally pivoted to the base. A beut lever is pivoted to the base in such a manner that the arms of the cross can rest against the bent section. On the other end of the lever are a plate and two prongsfor holding the bait-this end of the lever being in a separate compartment of the trap. Pressing against the side of this lever is a second one. A mouse nibbling at the bait would pull the lever forward, thereby freeing the cross-shaped piece and allowing the sbaft to make a complete revolution, during which the knife would descend, decapitate the animal, and ascend to its normal position. The mechanism will continue this operation until the spring has been uncoiled.
This invention has been patented by Mr. Charles Hall, of Changewater, N. J., aud further information may be obtained from Messrs. J. Hill, Jr., and V. Castner, of same place.

FIRE ESCAPE.
On a truck formed as shown in the engraving is an up-

Letton's fire escapd.
right frame to which is connected, at each side near the end, a lazy tongs extension frame-one of the bars of a
joint being pivoted to the frame. The other bar of the joint has a bar connected to it, which extends downward over the drum of a windlass, to which it is connected by a chain or rope. At the junction of these two bars is a friction roller that rolls along the side brace for support. The two extension frames are connected together by rods forming the pivots of each joint; to each alternate rod is connected the upper end of a short ladder, the lower end of the lowest ladder resting on the drum, and the lower ends of the others resting on the next ladder below. When a hand crank shaft, with which the drum is geared, is turned so as to wind the chains upon the drum, the extension frames will be projected upward; by unwinding the chains the frames and ladders will be lowered and folded down on the truck.
The bars pivoted to the upright frame are placed between disks provided with stops, to arrest the extension frames when elevated to the desired extent; when the windlass is strained up and made fast, the bars will be held firmly between the bearings thus formed, holding the James rigidly in their working position. To the upper connecting rod of the frames is attached a pulley block and rope carrying a the frames is attached a pulley block and rope carrying a
basket, which can be used for letting down persons or goods. Detachable braces stay the platform laterally, and pivoted bars swung down to the ground prevent the truck from rolling on the wheels. The device can be used from stationary platforms, awnings, etc.
This invention has been patented by Mr. T. P. Letton, and further particulars may be obtained by addressing Mr. F. M. Curtis, Ottawa, Kansas.

The Cost of Running a Train.

As the passenger sits at a car window and sees the mile posts whirl past, he seldom stops to reflect what it has cost the company to pull the train a mile. A party of gentlemen, some of them experienced business men, sat in the lobby of the Kennard House yesterday, when the question as to the cost of running an ordinarily heavy passenger train was raised. Several of them made estimates, but every one of them was far below the amount. The average cost of run ning an ordinary passenger train of from six to ten coaches is from $\$ 1$ to $\$ 1.25$ a mile. This may seem large at first, but when the several items are taken into account one will suspect, after all, that the estimate is too small. One of the principal items is the running of the locomotive. It has been the study of master mechanics to reduce the cost of running an engine, and each claims to be a little closer in his calculations than the other. The average cost duriug January of running the engines on the Bee Line, for example, was 15.7% cents per mile. Freight engines run at a cost per mile of 17.73 cents. Passenger engines cost less, viz., $17 \cdot 24$ cents per mile; while switch eugines, which are credited with so much mileage per day, regardless of the distances run, are run at so low a cost as to reduce the average to $15 \cdot 77$ cents per mile. The engines rav 34.63 miles to a ton of coal, and 16.38 miles to a pint of oil.
Added to the expense of motive power is the outlay for wear and tear of cars; it is estimated that it costs 3 cents a mile to keep a sleeping car running, and the wages of train bands, etc. The expense from the item of wear and tear is increased by an increase of the speed of a train. The special trains on the Lake Shore, running at a speed of about forty miles an hour, and the fast mail, at about thirty-seven
mat miles, are the most expensive trains on that line. It is not generally known what the Government pays the Lake Shore people for running the fast mail from New York to Chicago, but it ought to receive at least $\$ 800$ to fully compensate it. Another little item of railway operation is the expense of stopping and starting a train, which an experienced railroad man said yesterday could not be effected at a less expense than from 18 to 25 cents at each stop.-Cleveland Herald.

Analyses of Dry wood, and the Relation of Composition to Heat of Combustion.

Ernst Gottlieb has been investigating the elementary composition of wood dried at $115^{\circ} \mathrm{C}$. (239° Fahr.), and the amount of heat that each is capable of yielding when burned. The carbon and hydrogen were determined directly by combus tion, weighing the carbonic acid and water produced. The remainder, after deducting ash, represents the total oxygen and nitrogen. The actual quantity of the latter was determined only in a part of the samples.

	Oak.	Ash.	Yoke elm.	Beech	Birch	Fir.	Pine.
Carbon..... ...	50.16	49.18	48.99	49.06	48.88	$50 \cdot 36$	50.31
Hydrogen......	6.02	6.27	$6 \cdot 2$	${ }^{6} \cdot{ }^{6} \cdot 11$	${ }^{6}$ 6.06	6.92	6.20
Oxygen)				$44 \cdot 17$	$44 \cdot 67$	$43 \cdot 39$	4308
Nitrogen ${ }_{\text {A }}$ Sh.....	0.37	0.57	050	0.09 0.57	- $\begin{array}{r}0 \\ 0 \\ 0 \\ 0\end{array} 10$	0 0 0 08	0.04 0.37

(It will be noticed that in no case is there sufficient oxy gen to combine with all the hydrogen, hence a portion of the latter must exist in the form of a hydrocarbon.)
For the determination of the heat of combustion, the author constructed a particular form of calorimeter, described in Journal fur Prak. Chemie, in which the wood was burned in pure oxygen gas. The operation required but three minutes
The results were higher than those calculated by Dulong's formula for the same composition. Wood containing 49.03 per cent of carbon, 6.06 of hydrogen, gave out 4,785 calorifics, whereas the amount calculated would be 4,139 , if car bon gives 8,080 , and hydrogen 34,180 units of heat.

ENGINEERING INVENTIONS

A combined feed pump and condensing apparatus for engines has been patevted by Mr. John
Houpt, of Springlown Penn. oupares of two former patents issued to the same patentee, and the combined apparatus covers a primary condenser, by which the exhanst steam is cooled to a lemperature a little below that of boiling water, under ipartial vacuum, a secondury condenser, operating to
produce a good vacuum in front of the piston, and to produce a good vacuum in front of the piston, and to keep a higher temperature
aary condensing engines.

MECHANICAL INVENTIONS.

A slide rest, for use on turning lathes, to guide the tool in forming the work, has been patented by Mr. Jacob Fitz, of Hanover, Pa. TThe invention
consists in a sliding block and a guiding form interposd between the usual longitudinaly slicing carriag and the tool rest carried thereby
An automatic felt guide for paper machines has been patented by Mr. Benjamin A. Schubiger, of
Montoursville, Pa. The guide roll and cone guides are Montoursville, Pa. The guide roll and cone guides are
mounted on a supporting bar with a center pivot, and there are carrying rolls on the opposite ends of the bar for supporting the ends, so that the felts may be automatically corrected when tending to run sidewise or out of line, from the tension of the web vary
stretching of some parts more than others.

miscellaneous inventions.

A flower pot has been patented by Mr. Daniel O. Martin, of Marshall, II. It is so constructed that a quantity of water will be retained in the lower
part of the pot and at the same time air will have acpart of the pot and at the same time air will have acthereby promoting rapid growth.
A wire crimper has been patented by Mr . Matthew M. Jones, of Kokomo, Ind. A box with its Pront end closed and perforated for the free passage of
wire has a transverse bar in combination with a hinged or pivoted lever handle, combined with other devices,
for crimping wire in constructing picket and other fences.
Improved barbed metallic fencing forms the subjectoof a patent issued to Mr. Albert Potts, of
Philadelphia, Pa. The metallic fencing strip, notched upon its edges, is combined with pointed wire staples, ing their pointed ends together so barbs are formed ing their pointe
upon the strips.

A sample trunk or case has been patented by Mr. Henry W. Mattoni, of New York city. It is and sides and the ends and sides of its trays, so the latter will be kept in place and protected against sud-
den jars, arched metal springs and re-enforcing rubbe len jars, arched metal springs and re-enforcing rubber A pump has been patented by Mr. Orlin W. Hammond, of Belmont, N. Y. It is an improved
lift and force pump for adaptation to small bored lift and force pump for adaptation to small bored
wells, and has an air chamber attachment to the rod for working the piston, the rod being hollow and forming the water co
water from the pump.
A coal dumper has been patented by $\mathbf{M r}$ Thomas Wallwork, of Litchfield, Ill. The invention
consists in the combination, with a frame, of a box consists in the combination, with a frame, of a boz
hinged therein at one end, the frame being provided at one end with gates hinged to the top and bottom, the gates so connee
automatically.
A caster wheel and die for making it have been patented by Mr. Walter S. Ravenscroft, of Parkers-
burg. W. Va. The caster wheel is made of woody burg. W. Va. The caster wheel is made of woody
aber or wood or paper pulp, and has its central portion additionally compressed, for which purpose the dies have plungers operated b
give any desired pressure.
give any desired pressure.
A washer for vehicle wheels has been patented by Mr. Bartholomew Masterson, of Milford,
Mass. The washer is jointed or hinged, so it can be Mass. The washer is jointed or hinged, so it can be
secured on a spoke very easily and rapidly, withoutthe secured on a spoke very easily and rapidy, without above the shoulder, where it will prevent any longitudinal movement of the spoke.
A door check has been patented by Mr. Frank M. Sears, of East Saginaw, Mich. Combined transverse and a verical aperture, a pin or bolt being held in the latter, and resting on a spring adjustable by a screw, making a convenient device for holding a doo open, and preventing it from being opened too far.
An improved sleeve for coats and other like garments has been patented by Mr. Charles F. Butter worth, of Troy, N. Y. The object is to make an elastic
warm fit about the wrist, for which purpose is provided warm fit about the wrist, for which purpose is provided a holiow annular fur band, and a spring within it, and
a securing strip, with one edge secured to the wristlet a securing strip, with one edge secured the turned in portion of the sleeve and its lining.
A ball trap, for throwing targets, has been patented by Mr. Charles F. Stock, of Peoria, Ill. Thi invention relates to certain improvements formerly pa
tented by the same inventor, and covers an improved tented by the same inventor, and covers an improved
clamp for bolding the target, while a rear weight with
a lip or projection is substituted for the rear extension a lip or projection is enbstituted for the rear extension
of the arm and stud for suddenly stopping the swing of of the arm and stud for suddenly stopping
the arm.
A baling press has been patented by Mr A baling press has been patented by Mr
Andrew Johnson, of Greensborough, Ala. It has slot ted ends, with ratchet bars at the sides of the slots, and fulcrum bars susperded near the ends, the press
box being provided with a follower strengthened by a box being provided with a follower strengthened by
truss, and carrying spring-held catch bars to engag truss, and carrying spring-held catch bars to vice, to facilitate the baling of cotion, hay, etc.
An improved sewing machine has been pa Ontario, Canada. The iuvention relates especially to
the needle and take-up , mechanism, which is so com-
bined as to accomplish by one movement the work o two essential paxs, and they are so arranged that the thread will be slackened as the eye of the
the goods, whether they be thick or thin.
A folding box has been paten
A folding box has been patented by Mr Henry Krog, Sr., of Washington, Mo. In combination
with the bottom section and cover are removable sid with the bottomsection and cover are removable side
and ends, a chain, screw bolt, and nut for pressing th attom and cover against the bottom and top, edges of the sides and ends, and a fastening device in the end pieces of the bottom section, for holding the lower end of the chain.
A traveling brick machine has been patent ed by Mr. Henry Stelzmann, of Leech Lake, Minn. A lank it carries into is contrived to feed the clay from pressing, when it is passed through a press, and delivered in properiy formed brick upon the surface of the ery geared with the propelling engine the only hand labor being that of substituling full for empty clay

exsimess and extsonal.

The Charge.for Insertion under this head is one Dollar Advertisements must be received at publication office

Wanted-To sell State or county rights for the Foldng Adjustable Climax Ironing Stand or Table. Patented Feb. 27, 1833, and Jan. 8, 1884. Patented in Canada Feb.
28, 1884. Canada patent for sale cheap; best selling article out. Send for
The best Piston Rod Packing for steam or water is the Selden patent "Rubber Core" Packing, manu
factured in all sizes by Kandolph Brandt, 38 Cortlandt Street, New York.

Roller Velocipede. Circular free. O. T. Gleason,
Temple, Me.
In the pipe Blackwell's Durham Long Cut Tobacco is even more luxurious than in the cigarette, for then it is
a fuller smoke. its flavors are longer drawn, and its ragrances play around you like odors in a garden of
ries.

Drop Forgings. Billings \& Spencer Co., Hartford, Conn Nickel Emery. We are selling pure Nickel and Emery at largely reduced rates. Greene, T'weed \& Co., New York Wanted.-Patented articles or machinery to make nd introduce. Gasnor \& Fitzgerald, Lexington, Ky. Sewing machine, water closet, \& other light castings "How to Keep Boilers Clean." Book sent free by
mes F. Hotchkiss, 86 John St., New York. Stationary, Marine, Portable, and Locomotive Boiler
a specialty. . Lake Erie Boiler Woriss, Buffalo, N. צ.

Railway and Machine Shop Equipmen
Send for Monthly Machinery List
the George Place Machinery Compan
to the George Place Machinery Company,
The Hyatt filters and methods guaranteed to render The Hyatt filters and methods, guaranteed
all kinds of turbid water pure and sparkling, at economi-
al cost. The Newark Fittering Co., Newark, N. J. If yon want the best cushioned Helve Hammer in
be worid, send to Bradley \& Company, Syracuse, N. Y Iron Iron and Steel Drop Forgings ot every
R. A. Belden \& Co., Danbury, Ct.
"The Sweetland Chuck." See ad. p. 252.
Hoisting Engines for Mines, Quarries, Bridge Builders Railroad Construction, tcc. Send for catalogue.
Copeland \& Bacon, New York.
Iron Planer, Lathe, Drill, and other machine tools of
modern design. New Haven Mfg. Co, New Haven, Conn. modern design. New Haven Mfg. Co, New. The Goulds Pumps-Hand \& Power, Boiler Pumps. The Goulds
Mfg. Co., Seneca Falls, N. Y., \& 15 Park Place, New York. For Freight and Passenger Elevators send to L. S.
Best Squaring Shears, Tinners', and Canners' Toots Lathes 14 in. swing, with and without back gears and Lathes $14 \mathrm{in}$. swing, with and without
screw. J. Birkenhead, Mansfield, Mass.
If an invention has not been patented in the United tates for more than one year, it may still be patented in
Canada. Cost for Canadian patent, 840 . Various other anada. Cost for Canadian patent, 840 . Various other
oreign patents may also be obtained. For instructions address Munn \& Co., ScIENTIFIC AmLrican Patent gency, 261 Broudway, New York.
Guild \& Garrison's Steam Pump Works, Brooklyn,
v. Y. Steam Pumping Machinery of every N. Y. Steam Pumping Machinery of every descripor Powe
Presses \& Dies. Ferracute Marhe, Mt.Holly, N. Supplement Catalogue.-Persons in pursuit of infor mation on any special engineering. mechanical, or scien-
ific subject. can bave catalogue of contents of the tific subject, can bave catalogue of contents of the SCi-
ENTIFIC AMIRICAN SUPPLEMENT sent to them free. The SUPPLILMENT contains lengthy articies embracing al science. Address Munn \& Co. Publishers, New York. Cotion Belting, three, four, five. and six ply, for drivg belts. Greene, Tweed \& Co., New York.
Machinery for Light Manufacturing, on hand and
built to order. E. E. Garvin \& Co., 139 Center St, N. Y. Nickel Plating.-Sole manufaclurers cast nickel an-
odes, pure nickel salts, polishing compositions enc. Comdes, pure nickel salts. polishing compositions. etc. Complete outfit for plating, etc. Hanson \& Van Win
Newark, N. J., and 92 and 94 Liberty St., New York. Curtis Pressure Regulator and Steam Trap. See p. 222. Oodwork'g Mach'y. Rollstone Mach. Co. Adv., p. 222. C. B. Rogers \& Co., Norwich, Conn., Wood
Machinerg of every kind. See adv., page 221. Ajax Metal Company, Phila. Clamer's Ajax Metals for Job lorling mill, engine bearings, cocks, and valves. Job lots in Rubber Belting, Packing, Tubing, and
ose. 75 per cent off belting. John W. Buckley, 156 South Street, New York.

We are sole manufacturers of the Fibrous Asbestos
Removable Pipe and Boiler Coverings. We make pure Removable Pipe and Boiler Coverings. We make pure
asbestos goods of all kinds. The Cnalmers-Spence Co asbestos goods of all kinds.
419 East 8th Street, New York.
Steam Hammers,Improved Hydraulic Jacks, and Tube Emerson's 1884 Book of Saws. New matter. 75,000 Address Emerson, Smith \& Co., Beaver Falls, Pa Hoisting Engines. Friction Clutch Pulleys, Cut-off
Barrel, Keg, Hogshead, Stave Mach'y. See adv. p. 238. Mineral Lands Prospected, Artesian Wells Bored, by Hand and Power Bolt Catters, Screw Plates, Taps in Fior best low price Planer and Matcne For best low price Planer and Matcner, and latest
mproved Sash, Door, and Blind Machinery, Send for mproved Sash, Door, and Blind Machinery, Send for
atalogue to Rowley \& Hermance, Williamsport, Pa. The Porter-Allen High Speed Steam Engine. South-
wark Foundry\& Mach. Co., 430 Washington Ave.,Phil.Pa. Stephens Bench Vises are the best in use. See ad.,p.237 Split Pulleys at low prices, and of same strength anci appearanceas Whole Pulleys. Yocom \& Son's Shafting
Works, Drinker st., l'hiladelphia. l'a. Gears.-Grant, 4 Alden St., Boston.-Water motors.

NEW BOOKS AND PUBLICATIONS.

Through Spatn on Donkey Back. Drawings by W. Parker Bodfish. Boston: D. unique binding, $\$ 1.50$.
This is an entirely unique volume. Its illustrations are novel and numerous, and its letter press remarkais to meet with surprising adventures, and see much
more than the ordinary traveler sees. It introduces us to the homes of the people. It takes us into out-of-the way places and among out-of-the-way people. We learn their ways and amusements, their weakuess and strength; we meet noblemen and peasants, priests and
beggars, soldiers and citizens, women and children, beggars, soldiers and citizens, women and children,
people of fashion and husbandmen, dancers and sing. ers, watersellers and herdsmen, shoemakers and fruit-

Berly's Universal Electrical DirecTory. A reference book for industries connected with Electricity and Magnet-
ism. Wm. Dawson \& Sons, London ism. W m. Dawson \& Sons, London This book is a comprehensive directory for the use of al engaged, experimentally or practically, in any of
the numerous applications of electricity to the arts and sciences. With much valuable information as to the present state of our knowledge in this department, it
gives classified lists of manufacturers and dealers in gives classified lists of manufacturers and dealers in
articles required for every use to which electricity has articles required for every use to which electricity has
thus far been put, in America, in Great Britain, and on the Continent of Europe. The mere. enumeration of the articles now called for in this line would make an
extended catalogue. The kinds of wire alone afford an immense variety of brass, copper, iron, galvanized iron, German silver, phossphor-brorze, steel, insulated
in various ways, or with different coverings; then there are all kinds of telegraph and telephone materials, electric light and dynamo machine appliances,
chemicals for use in batteries, etc., and this book gives chemicals for use in batteries, etc., and this nook gives
the buyer the means of reaching first hands through all the buyer the means of reaching first hands through all this field. It also gives the officers and 1,111 members
of the London Society of Telegraph Engineers and phone, cable, and electric light companies of the world. Foundations and Foundation Walls By stock, New York. Price $\$ 2.00$.
This.is a revised and enlarged edition of a book which It treats particularly of pile driving, building stoues and bricks, as well as of mortars, limes, cements, and concretes, gives tables of weight of materials, and prac-
tical explanations of the various methods of building tical explanations of the various methods
foundation walls for all kinds of buildings.

瘤

HINTS TO CORRESPONDENTS.
No attention will be paid to communcations unless
accompanid with the full name and address of the accompa
writer.
Names and addresses of correspoudents will not given to inquirers.
We renew our req
We renew our request that correspondents, in referring name the date of the paper and the page, or the numbe of the question.
Correspondents wiose inquiries do not appear aftel
arsonable time siould repeat them. If not tien pub ished, they may conclude that, for good reasons, the Editor declines them
Persons desiring special information which is purely of a personal character, and not of general interest,
should remit from $\$ 1$ to $\$ 5$, according to the subject, as we cannol be expected to spend time and labor to obtain such information without remuneration
Any numbers of the Scientipic American Supplement referred to in these columns may be had at the office. Price 10 cents each.
for examination, should be careful to distinctly mark or label their specimens so as to avoid error in their ident fication.
(1) M. D. D. asks: Is there any difference in the manufacturing of silver steel and ordinary cast
steel? Are circular and cross cut saws made of silver steel better than those made of the ordinary cast steel? A. Alloys of steel with lese than one five-hundredth
of silver have been made in England for fine cutting instruments, but not known to have come into trade
use. Cutlery has been imported from England, and

The silver part bere, under the name of silver stee its finish thant had more relation to the high luster of number of grades of cast steel suitable for the variou kinds of tool making. Saws are not made of the highgrade, as they require to be tough and elastic
(2) W. M. asks: Can the
(2) W. M. asks: Can the bone of an ox be softened to such a degree by boiling with steam of
high pressure that it may be crumbled by the thumb high pressure that it may be crumbled by the thumb
and finger like a boiled mealy potato? If so, please and finger like a boiled mealy potato? If so, please
state how great the pressure must be, what the temperature must be, and how long must it be used. Please inform me of the best cement for cementing a patch o a ruiber boot? A. By using, superheated steam at
temperature at which the bones will not become char red or burnt, you can accomplish your purpose. See article on page 71 of Scientific American for Feb 2, 1884, on "Two New Processes for Making Artificia Ivory." For cement see rubber cements, on
Scientific American Supplement, No 158.
(3) J. S. writes: An expert in this city claims that a copper ball perfectly air tight, used as a and still be air tight or not leak. Some of us sink, it; won't you give us light? A. Floats that are called air tight are not always tight, especially if there is any steam boilers, and are now occasionally used in Franc for low water detecters. They are not reliable. They may be abmolutely tigit when first put in, but do not
stay so. The hot water and steam has a disintegrating fffect upon the joints, and the pressure in time fills the
the water and steam has a disintegrating efoct upon the joints, and the pressure in time fills hat hater. If there is no pressure, as in a hot
float win float with water. If there is no pressure, as in a hot
water tank, the hear, of the water expands the air upon the inside of the float, producing pressure, which will let out the air through a leak that does not otherwise show. When the water is cold, there is a corresponding pres-
ure inward which carries in a little water. Revetition of this what which carries in a little
(4) C. L. B. writes: 1. I wish a power for small mill, and I would ask if it is advisable to run it by sand power? A. We do not think that sand storage power is as yet practicable. 2 . Which is the best-
the vertical or horizontal flouring mills? A. The horizontal mills are considered best. 3. Which is the best -an upper or under running stone (I mean portuble
mills)? A. The under running stone is considered the best. 4. Should cogged gearing be greased or run dry such as a thrashing machine horse power? A. All quick runu
greased.
(5) D. R. W. \& Co. write: Can you furnish us with information for building oven for japanning iron castings? If there is any work in print treating on he subject, please let us know, and we will send price.
A. We know of no practical work devoted to the subject of japanning. For japanning you will require,from 240° to 260° temperature. The ovens are usually mad pipe passing around the room, the fire being upon the pipe passing around the room, the fire being upon th
outside. Some place a heater (such as is used fo dwellings or stores) in a chamber below the drying oom, arranged to let the hot air pass up into the dry ing room. There should be no communication between the hot air chamber and the open fire that could possibly admit the vapor of the varnish to the fire. Steam is
also used in coils of iron pipe laid around the room. Itso used in coils of iron pipe laid around the room.
It n a pressure of from 60 to 80 pounds in the coils It needs a pressure of from 60 to
to make a useful temperature.
(6) L. F. writes: I ba
ake bur trying to make butter color, according to the receipts you give in
STPPLEMENT, No. 316. After carefully following your direction I have been able to impart but a slight tinge to the olive cill I have been using. Can you sug. gest any improvement in the process, and thus help me out? A. We are unable to assisi you in your difflculty. Both the annatto and turmeric are substances capable of imparting their color to oils and butter,
when treated in the manner as described, and we fail o comprehend why they do not act in your hands. Perhaps, by using a larger quantity, the desired result will be accomplished, or it may be that the heat is not ontinued for a sufficient length of time
(7) H. G. K. writes: I have bought two enses, with which I wish to make a telescope. They are a double convex lens for object glass, about.one
and three-eighths inch diameter with focus of about 72 inches, and a plano concave lens for an eye piece about, five-eighths inch diameter land $1 \cdot 1$ inch focus.

1. How far should I arrange the lenses from each other: 1. How far should I arrange the lenses from each other: A. Place the concave lens the distance of its own focus
within the focal point of the convex or object lens. 2 . within the focal point of the convex or object lens. 2 .
What will be tie magnifying power? A. The power will be the focal length of the object lens in inches di_{i} ided by the fucal length of the eye lens in inches, or
5 times. 3. Does not the concave eye piece make the 5 times. 3. Does not the concave eye piece make the
bject smaller, and as I have a double convex eye piece yet of about, one inch focus, would it not be better to yet of about one inch focus, would it not be better to
use that? A. You can use the double convex eye piece by placing it its own focal length beyond the focal point of the object glass. 4. What would be the magnifying power then? A. Power as above, or 72 times. 5 .
When it is said chat a telescope magnifies 100 times, When it is said chat a telescope magnifies 100 times,
does it mean that it makes the object ten times higher does it mean that it makes the object ten times higher
and ten times wider? A The magnifying power means diameters, or 100 times wider and 100 times higher
(8) C. S. H. writes: 1. We have a phrenoogicall bust that has become much soiled from dust, tc.; the faculties are all labeled. How can I cleanse pearlash, one part; the stearine and soap cut small and mixed with 30 parts of solution of caustic potash, boiled or half an hour, stirring continually. Add the pearlash issolved in a little rain water and hoil a few minutes; stir until cold and mix with more lye until it is quite
liquid; keep well covered up. Remove all dust and liquid; keep well covered up. Remove all dust and
stains from the plaster, and apply the wash as long as it tains from the plaster, and apply the wash as long as it
is absorbed. 2. Some old putty has discolored my new is a bsorbed. 2. Some old putty hasediscolored my new
nickel plated irons. How can I remove the color? A. Poish the nickel with a little rouge; first however apply Poish the nickel with alitte rouge, putty stain. 3. Can cider be kept in glass cans or jars, if put in when cider is new, and kept well sealed? A. of pepper seed and other spices is sometimes desira-
(9) A. L. writes: Can you tell me where can flid directions for making plaster casts, say of a
head, arm, or foot, from the living subect 9 The
trouble is with the moulds. trouble is with the moulds. A. We donot know of an work trating of plaster casts. It is not difificult. Use
boiled linseed oil to keep the work from sticking toboiled linseed oil to keep the work from sticking to-
gether. So divide the subject that each section will draw ofl when set. little linseed oil and working, answers for a bed or sto when a hall mould is to be started. For instance, a
hand may be laid flat upon the soft putty and partially embedded, so as to be even with the parting lines; the raise a thin wall of the putty or a piece of tiv around
the hand to keep the plaster from spreading, then pour the freshly mixed plaster upon the hand. The plaster should be just thin enough to pour easily; a few tria will enable you to make the best misture. In a few
minutes it will set, when the hand the putty and the mould taken from the hand, rrimmed and gauged or doweled by making a few countersum holes on the flat part outside of the hand for steadying the opposite mould; then oil well the mould and the hand and lay the hand in the mould, upside do wn from
its original position; put the piece of tin or a wall of putty around as before, and pour in the plaster, allo to set, then part the mould and let it dry. Then oil the inside, horougly put together, and tie with a string; is then ready for the flual cast, which we think will b
clear to you. To cast a face or head is much more difl cult. The hair requires to be laid smooth with a mizture of lard and tallow, so as not to stick to the plaster a tube for the nostrils to facilitate breathing. A fron
face can sometimes be taken in a single cast. It will face can sometimes be taken in a single cast. It
be safer to become familiar with other parts of the body as the hands, feet, etc., before attempting a face When you are ready to try a face, commence by sec
tions, as a quarter side, chin, and mouth, and in thi way learn to combine the part
(10) P. J. N. writes: I have a very old superior violin. In having it somewhat repaired, the ig norant repairer also, thinking, I suppose, to add to its
appearance, gave it a coat of bright red dye, and then appearance, gave ita a coat of bright red dye, and then
of varnish, not thereby injuring the tone, but com-
petelyspoiling its looks, pletely spoiling its looks. I have removed the varnis and dye from it. and wish th recolor and varnish
again please inform me what dye I shal use (some dye commonly used for such purposes)? Also
what varnish? A. We would recommend you, if the in what varnish? A. We would recommend you, if the in once in the hands of some competent violin repairer An escellent brown can be prepared by putting 2 ounce dragon's blood, bruised, into a quart of oil of turpen
tine; let the bottle stand in a warm dissolved steep the work in the mixture. If this be to dark colored,it can be diluted by using a larger amount of the oil of turpentine. The formula for a suitable varinsh is give
March 8, 1884 .
(11) A. McK. asks (1) how to lay thin veneers on lumber on-eighth inch thick. A. A good
manner of laying veueers on thin work is by clamping with screw clamps or weights between two plank dressed flat, with paper each side of the veneered parta liquid glue. A. Liquid glue-4 ounces hard glue, 16 ounces acetic acid; dissolve by soaking and heating.
Spaulding's glue is supposed to be ordinary glue dis. solved in good, strong vinegar. Another way is to add a little
(12) S. B. G. complains that ever since enlarging his weil the water has tasted bad during the hot months, although previous to the change the water
was pure all the year round. A. You have not given us the essential facts in regard to your well. You say that before you enlarged it the water was good during
the hot months. Did you put a wooden curb in? If so, wasit oak or pine? Does it taste of rotten wood
or of decayed animal matter, or fishy from minute in or or decayed animar matter. or 1 ishy from minute in-
sects or animalcules living in the water? Possibly the well is so large that there is both vegetable and anima drowned in wells without being noticed, having lodged in the stone work. Frogs are known to taint wells
where the upper part is loose. A trout in a well will often keep it clear of small water nseets and larve. (13) W. C. S. asks: 1 . What metal or alloy must I use to secure the greatest and most rapid ex.
pansion aud contraction when exposed to the flame of an alcohol lamp or gas jet, and afterward allowed to
and cool off? A. Zinc expands most, but does not return to metal for your purpose. 2. The length of the piece to be used being about one inch, of what shape and thick ness should it be to reach the desired end? It must b
capable of standing the heat of the flame for a consid erable lenglh of time. It must not melt. A. A cyl indri-
cal tube would probably be best.
2. Where can I find cal best ould probabiy be best. . Where can 1 find
the best infrmation concerning the expansion and (14) F. W. W. writes: 1. A common hard coal base burner in sitting room of dwelling house here on being tonched by the finger of a certain person, gives
a spark one-eighth to one-quarter inch long. No unusual conditions surround either stove or person, but son cannot get spark from any other thove or object
son
and only from this one when temperature is 20° or more and only from this one when temperature is 20° or more below zero. A. This phenomenon is common in houses
warmed by furnaces, and in other dry houses. The friction of the feet upon the carpet is sufficient to generate
enough electricity to yield a spark which will light gas enough electricity to yield a spark which will light gal
and give a perceptible shock. The persons who could not produce the spark had something about the cloth
ing or person which dissipated electricity as fast as gen ing or person wich ensitented electricity ns fast as gen
erated. 2. A freight engine, Denver \& Rio Grande road : In cub an iron brace passes within a quarter of an inch In cab an iron brace passes within a quarter of an inch screw touches nothing but wood. Passenger engine
on same road: Brass message hooksscrewed in wood of on same road: Brass message hook'screwed in wood or
cab, entirely insulated from any metal; hook has sprin guard over it to keep messages on it; point of hook and guard a quarter of an inch apart; both touch no other
metal. Now, in both engines a spark can be seen bemetal. Now, in both engines a spark can be seen be
tween brace and screw head and between
popper or safety valve in dome, and at no other time emperature has no effect in this case. A. A form o electric generator has been devised which operates by
a jet of steam. The locomotive in these cases was an ectric generator of this class
ravity battery suficient to 1 . Is one $11 / 2$ quar ravity battery sufficient to make a dining room bell
ring? A. Yes, provided the bell is adapted to the curring? A. Yes, provided the bell is adapted to the cur
rent.
3. 1s not a bisulphate of mercury battery negative substance being a carbon cell, one of the
strongest small boat (say two feet long) be run by about three bi sulphate of mercury batteries, which are about two
inches in diameter and the eame in depth? A. Not very suceesfully. Better use a bichromate battery. 4. Could make a small dynamo (for giving shocks) cheap, and dynamo is not well suited to your purpose. Better make a magneto. There is no way of making a good machine cheaply. Wind enough No. 36 wire on you armature to give it a resistance of at least 2000 ohms. 5 he z zinc a gravity battery, which is the best-to hav me. The couper ple largest. or to have them the the zinc. 6. I have a pumber of carbons such as are burned in the arc lights; would they be any better (after he copper is filed off, for the negative plate than cop(16) E. E. R. writes: The following ques tions save been discussed here by several mechanics; no
two a gree; please give formulas. There are a number Two agree; please give formulas. There are a number
of us take your paper from our book store. 1 . If you have an engine of 60 horse power with a cage speed of om of a shaft,and what will it haur up with a gradient of 1 in 3 ? A. The weight lifted, 3,300 pounds, and on the incline 9,900 pounds, less friction
of plane, but this assuming that the power is 60 horse of plane, but this assuming that the power is 60 horse
power net; that is, deli vered at the rope. This weight power net; that is, delivered at the rope. here should be some deduction for friction of rope and cage. 2. If you have an engine 12×24 on first motion,
with a drum of 10 feet diameter, 40 revolutions per minute, 70 pounds steam pressure, how much will it ift from the bottom of a shaft 250 feet deep? A. As orse power net with conditions same as above, 792 pounds weight. 3. If you have an engine 12×24 second motion, geared with a 12 inch pinion to a 5 foot drum,
how much will it lift from the bottom of a shaft 220 low much will it lift from the bottom of a shaft 220 A.et Aeeps? Of course you can assume speed and steam ame as No. 2 , power=30 horse power with condition
ame as No. 1, 7,717 pounds; but from this must be de ucted the allowance for friction of 2 inch motion shaf nd geuring.
(17) J. N. W. asks for a receipt for making off color" diamonds appear perfectly colorless. Thero is a receipt. I think it is a misture of Prussian blue and alcobol, but I do not know what quantity to use,
an you tell me? A. Diamonds having a yellow hue can you tell me? A. Diamonds having a yellow hue are said to be rendered colorless by being dipped into a
solution of the aniline violet well known as mauve, aliulion of the aniline violet well known as maue,
violet de Paris, methyl violet, etc. A thin coat remains volet de Paris, methyl violet, etc. A thin coat remains
on the stone,and as violet is the complementary color oid yellow, the diamond appears perfectly white or slightly
(18) which renders it still more valuable.
(18) H.C.-The pump will work with hot lops if the packing and valves are not leather. If they pump makes an 18 inch stroke, and 10 strokes per minute, it will discharge 1,000 gallons per hour and
(19) E. B. H. asks how to do japanning on malleable iron. A. Paint the work with the japan nust have no direct communication with the open fire, s the evaporation of the volatile spirit of the varnish ixed with the air makes an explosive compound. Use furnace outside of the oven, with the pipe passing
round the oven. Make the oven of brick or iron. If eam at 60 pounds pressure, you can make pose, which is far safer than a stove
(20) S. O. H. asks: 1. Will a boiler 9 feet inches long. 48 inches diameter, with 1202 -inch tubes and with a good draught, furnish steam for a 17 horse power engine? A. Yes. 2. We now run a boiler 19 deimeter-which of the two boilers consumes the most uel? A. We think the tabular boiler would prove most a sleam pump with steam cylinder 13×14 inches, water 25 feet, disch 50 strokes per minute, 40 pounds steam pressure of pisTon. What horse power, does the pump exert? A.
bout 71 horse power, depending somewhat on ar About $71 / 2$ horse power, depending
rangement of pipes and the friction.
(21) M. R. S. asks: Can you explain to your eaders the operation of the storm glass? The larger phor, leaving a small air space. The instrument certainly indicates, to some extent, approaching changes
of weather. But how can itdo this, when it is hermetiof weather. But how can itdo this, when it is hermeti-
cally sealed? It is affected, somewhat, by heat and cally sealed I It is affected, somewhat, by heat and
cold. A. No satisfactory explanation of this pheomena has ever been given, so far as we know. It has
been suggested by certain English authorities that elec ricity was the means of effecting the changes in the
(22) L. McN. asks for a receipt for making crumbling or falling off, as I want to line a hot blast gas furnace with it. Also a receipt for making crucibles that will stand the intense heat of the hot blast gas furnace. I would like the cement to be non-conducting. A. A good fireproof cement is given in an-
wer to query 58 , on page 28 of the ScIENTIFI A AmRL An of January 13, 1883. The black lead or graphite Crucibles will be found most suitable for your wants. mater used is fire clay
(23) F. A. L. asks for a receipt for a good eipts, and find all too expensive. The following quite cheap, and will, we think, meet with your appro-
bation: Mix $11 /$ fluid ounces oil of lavender, $1 /$ fluid bation: Mix $11 /$ fluid ounces oil of lavender, $1 / 2$ fluid
ounce oil of rosemary, 1 fluid ounce oil of lemon, ounce oil of rosemary, 1 fuid ounce oil of lemon,
and 20 drops oil of cinnamon with 1 gallon alcohol. (24) J. M. R.-The following are both French polishes; 1. Shellac, 3 poand\&; wood naphtha, 3 pints; dissolve. 2. Shelluc, 2 pounds; powdered
mastic and sandarac, of each 1 ounce. Copal varnish, $1 / 2$ pint; spirits of wine, 1 gallon; digest in the cold till
(25) J. D. asks how to make a good chocoBoil equal parts of pine and alder barks in in six times their bulk of water until all the coloring matter is e tracted, and when cold add a small quantity of alco-
hol. Saffron boiled for 12 to 15 hours makes a good
Hown stain, to which alcohol must be added to make
(26) W. H. C. asks (1) bow to obtain gright, glosss polish on a black walnut counter. A. A verized asphal tum, and put it in a jar or bottle, pour put in a warm place, and shake occasionally; whe put in a warm place, and shake occasionally; when or stiff brush; should it prove too dark, dilute with turpentine or benzol. If desired to bring out the grain more, apply a mixture of boiled oil and turpentine When the oil isdry, polish the wood with a mixture of parts shellac varnish, boiled oil 1 part; shake well before using. Apply with a cloth, and rub briskly. 2
Also a bright, glossy polish for a Georgia pine floor. Also a bright, glossy polish for a Georgia pine floor.
A. For the pine, use white bleached shellac, 3 ounces; white gum benzoin, 1 ounce; gum sandarac, $1 / 2$ ounce; mhite gum benzoin, 1 ounce, gum eandarace, $1 / 2$ ounce;
sirits of wine or naphtha, 1 pint; dissolve. 3 . Also a will readily wash off A. For amber color paint: Mix French yellow in boiled oil, adding suffcient red lead or litharge to produce the desired shade.
(27) H. D. H. writes: We desire to know how to make linuid gold for use in china decorat-
ing. A. Powdered gold, which is prepared by grinding gold leaf with white honey on a porphyry slab
until reduced to the flnest possible state of division; thisis mized with thick gum arabic and powdered orax. With this misture the design is traced on
china, etc., and baked in a hot oven. The gum is then burnt and the borax vitrified, and at the same time
(28) J. W. L. asks what material white clay pipesare made of. A. The clay pipes are mostly clay pipesare made of. A. The clay pipes are mostly
imported, and are largely made in England. It is probable that suitable clay for this purpose is found chiefly in the potteries. Pipe clay is of about the same quality as that used for the manufacture of potter
To bum white, the clay should be free from iron. burn white, the clay should be free from iron. (29) G. H. L. asks for a receipt for dyeing the lining of carriages, etc., without removing it from he carriage. Something that could be applied with brush or sponge. A. Apply an aqueous alkaline solu-
tion of aniline blue while hot, with a brush; and then go over the work, using another brush, with dilut
(30) W. McK.-The width of the English (31) S. B. H. asks for a receipt for mak precipitated chalk, also for stove polish? A. Take with a sufficient quantity of distilled water. Dis. solve the calcium chloride and the sodium carbonate each in 2 pints (Imperial measure) of the water
Mix the two solutions, and allow the precipitate oo subside. Collect this in a calico filter, wash with boiling water until the washing ceases to give a precipitate with silver nitrate, and then dry the product tove polish as answer to query 7 in the Scientiric
(32) M. W. F.-The ball is moving at its eatest velocity at the moment of leaving the gun, and Priction of the air gradually retards its motion during its fight. No projectile moves in a straight line,'but (33) T. S. V - A
paste shoe blacking is alpable powder, 1 ounce; molasses, $1 / 2$ ounce; sper oil, $1 / 8$ ounce; sulphuric acid, $1 / 4$ ounce; hydrochlori acid, $1 / 1 /$ ounce; mix the first three ingredients, then
add the acid with enough water to reduce to proper add the acid with enough water to reduce to proper
consistence. Triturate together until a perfectly homo geneous pastc is obtained.
(34) A. J. L. writes: Suppose a two inch (diameter) pulley on shaft is driven six hundred turns
per minute by a one and a half inch belt, moderately tight, and the shaft is doing as much work as it can without slipping the belt. How much power is con sumed in driving the belt, thit is, about how much power is the machine using from a line shaft or other
appliance for driving it? A. Nearly one horse power estimating the lap upon the pulley at $0 \cdot 4$.
(35) O. V. D. writes: I have bad a great deal of troube if hardening small steel pinions, etc.; would
beobliged for your advice. How can I harden small articles of polished steel without discoloring or
scaling them? A. You do not tell us what your troubles are. To keep the pinions bright, cove them with a little hard soap. Heat in an alcohol flame lamp does not heat to the proper degree use a blowpipe, open flame. Some prefer to lay the pinion upon a ing; heat with the bl ittle groove to keep it from ron quickly throw into water. If the pinion is long and slender, it may be liable to spring by throwing into the enable you to plunge it endwise. Experts can do this by making the groove near the end of a piece or char glide into the water endwise.
(36) G. T. E. asks: How can I make brass
 of material should I use to make my monld? A. To hat brass castings smooth, mould in very fle sand low top soil from the prairies, Or better. obtain som fine moulding sand from a foundry, where they have experience in selecting the right kind. Face the mould dusting finely pulverized charcol four upon the face of the work. Use the sand as dry as will mould
without breaking up. If too wet, it will blow the cast${ }_{(37)}^{\text {ing. }}$ C. C. M. Works ask: Where is the nost successful steam heating company in the United States? A. The New York Steam Heating Company is supposed to be the most successful, as they have sup. plied steam very stesdily over a large district for about three years. There is one in St. Paul, Minn., that
claims to have been successful, but we have not heard claims to have been successful, but we have not hearc

from them duringthe past year. There is also one a | Belleville, Ill. The Troy, N. Y., Co., have failed, as |
| :--- |

(38) A. S. G. asks in what respect the tremendous wheel illustrated in No. 10 of Scirevtifio American, used by the Calumet and Hecla Mining flour mill? A. The elevator bucket system as used in mills, when enlarged to the of the Calumet and Hecla Mining Company, would weigh, with its elevated frame work and guides, more than the great whect, and would have a great number of loose or working joints carrying successively
great strains, which would cause rapid wear dnd break great strains, which would cause rapid wear ind break
age. The friction of this class of machinery is mucl than the simple bearings of a single whee
(39) J. W. H. Jr., asks the horse power of the following two engines, each having 60 pound
steam pressure: No. $1.21 / \bar{x} 4$ inch cylinder, ports $1 / \times 1$. steam pressure: No. $1.21 / 2 / 24$ inch cylinder, ports $1 / 14 \times 1$,
xhaust $1 / 2 \times 1,1 / 2$ inch steam pipe, 300 revolutions per minute, well built, horizontal, and all works easily, rock shaft for steam chest valve. No. 2. Same style as No. 1, but $3 x 5$ cylinder, $3 /$ inch ports, $3 / 4$ exhaust, 60 pounds pressure, 250 revolutions per minute, 3 , supply pipe. You will tell me where I can find rules for calculating the power of engines, the above data being known. A.
No. $1.13 / 4$ horsepower. No. 2.2% horse power. For IENT, No. 253 . (40) W. L. S. asks: 1. Where can I get a cory of the U.S. statutes in regard to the inspection of iver steamers, licensing of masters and engineers for r write to the Treasury Department, Washington. 2. pringses on the lever of asafety valve? A. No ont except specially fitted for the work.
(41) R. O. F. writes: We have a question nad got into the machinery which generates the elecric light for a large Chicago frim, and by placing his orefeet on one of the dynamos and his hind feet on he other caused the current to pass through his body, short circuit which immediately extinguished the lights; it also stated that they could get no light until the rat Now, we desire to know if this is a current might kill a rat, and the rat might possibly forma connection between two wires sufflicient to start
an arc and thus stop the lights on the circuit, but the nt would be rapidly cremated
(42) O. W. asks the receipt for making cement pavement. A. Cement pavements may be made
with Portland cement, broken stone, and sand. If for oot walks, 3 inches in depth of small broken stone nay be rammed evenly upon the earth bottom. Mix cream and pour over the surface, spreading with stiff broom. When hard, spread with fine gravel mixed with cement and water $11 / 2$ to 2 inches deep. Then a coat 1 inch deep of sharp clean eand (such as is used for making mortar), mixed with equal parts of Portland cement, with enough water to make the mass like
mortar. Lay evenly and smooth. This will set trong nough to walk upon in from 1 to 2 days. See Scien(43) G. H. WUPLIEMENT, No.
(43) G. H. W. asks: 1. Will the dynamo machine described in SUPPLEMENT No. 161, run one
of Edison's incandescent lamps (8 candile power)? A A. will wht is thee during the day and night, sufficient electricity to maintain three or four of the above lamps during the evening? A. It is rather small for the purpose, but it achine be wound with coarser or finer wire than No. ${ }^{18, \text { to } \text { give the best results with the storage battery? }}$
(44) W. F. S. asks for the composition of he waxused for engraving relief line maps. Or refer the wax is spread on copper plates. The engraviug is ade, the wax and the electrotypes made direct; but I sed. If required of dark color, melt and thoroughly used. If requred om black, or, what is better, the bone back from the artist furnishing stores. paraffine and make a very tough wax.
(45) P. H. W. asks: Suppose a riffe ball be shot d econd, and another ball sent vertically upward (starting with the same velocity). Will the force of gravity cause the first to reach its target in any less time than the other, the distance being the same? If so, why
do we give to the gun sight less elevation when shooting at an angle downward than when shooting at an elevated target? No practical sportsman, standing on
the bank of a river 30 feet high, would elevate his sight to shoot tance. A. The ascending bullet would be retarded by erated by gravity, and would reach its target first. Be-
cause, when firing downward the bullet is accelerated
by gravity, and the trajectory will be a smaller curve by gravity, and the trajectory will be a smaller curve than in horizontal firing, jequiring the breech sight to
be low. When firing upward, the bullet is retarded by gravity, making the trajectory a greater curve than in horizontal firing, requiring the breech sight to be high. In shooting at game on the water, however, it is neces (46) W. A. G. asks: Are there any coal gas machines that are small enough for one or two amilies, and what price? We have here good coal or $\$ 1 . \%$ per ton. h. Werks for a few lights. Naphtha and oil gas machines are made of suitable sizes for factories and hotels. Air gas machines, made by vaporizing gasoline and mixing the vapor with air, are numerous in thi market, and of suitable size for small establishments. (47) C. C. H.-For a durable drive way, a bed of asphalt and coarse sand two or three inches thick, laid upon a well rammed bed of broken stone three or fourinches thick, is the best. A concrete bed
of Portland cement and gravel laid upon broken stone of Portland cement and gravel laid upon broken stone
is also good. The tar from a gas house, mixed with is also good. The tar from a gas house, mixed with
sand and laid upon broken stone wellrammed and covered with a thin coat of loose sand and rolled, and given a few days to dry and harden, makes a very cheap (48) C. E. De P. asks: 1. Where can I obtain the monoxide of copper, or how can 1 prepare sulphate of copper with a solution of potash, but the precipitate instead of being black powder is a green insoluble substance. What is the trouble? What is
the cheapest way to get it? A. Copper monoxide is the cheapest way to get it? A. Copper monoxide is
prepared by calcining metallic copper at a red heat with prepared by calcining metallic copper at a red heat with
full exposure to air, or, more conveniently, by heating the nitrate to redness, which then suffers complete decomposition. 2. What is the process of coloring kid loves? What is the coloring material that and the The gloves are generally stuffed with cotton, and the 3. How can the gloss be best removed from photograph before coloring? A. To accomplish this, rub the picture with a little finely pulverized
(49) B. W. asks: Will a 4 inch pipe draw any more water out of a reservoir running down a hill 400 feet, than it will running down $331 / 3$ feet, each having same head over mouth of pipe? A. We understivery; if this is correct, your 400 feet of pipe would deliver slightly less than pipe $331 / 3$ feet.
(50) S. P. B. writes: In No. 6, Scientific american, vol. xxxii., of 1877, your paper gives a notice of the building at that time of a "two foot cheap
railway," between Billerica and Bedford, N. H. Did his road prove a success? What is its capacity in this rood prove a success? What is its capacity in
freight? A. This road, proving unsuccessful, was (51) C. B. U. asks: 1. Can the string of a piano be made to vibrate hard enough to endanger its
strength by continually striking its key note on some other instrument near by. Again, can a bridge (suspension) be made to vibrate by striking its key note trength? A. The induced vibration of the string the piano would, we presume, in time be sufficient to endanger its strength, although it willbe less in volume han that from the strings of the initial instrument Theore tically, yes.
(52) A. D. H.
(52) A. D. H. asks how to remove pimples from the face. A. The removal of pimples depends largely upon a correct diagn osis of their condition and
knowledge of their cause. Therefore, we would re commend coneultation with a competent physician in regard to your difficulty. A receipt for the removal of comedones is given on page
AMERICAN, for January 28, 1882 .
(53) R. B. asks: 1. If the pressure per square inch of a boiler is 90 pounds, will the pressure in the water glass be 90 pounds per square inch also: A. The
water gauge glass should and does have the same preswater gauge glass should and does have the same pres-
sure as the boiler per square inch. If not, something is wrong. 2. Does an engine of 10 horse power with 9 in. stroke take more steam than a 10 horse power engine with 12 in. stroke? A. A 10 horse engine should take the same quantity of steam at 9 in . or $12 \mathrm{in.s}$ stroke.
The diameter of the cylinder should vary inversely as the stroke for the same power. 3. Will a box of an engine that knocks because it is too loose become heated
A. A knocking box will be more liable to heat than properly fitted box, the knocking having a tendency o throw out the oil and make the box dry. 4. Will a at the same speed? A. If you take simply the weight of the two shafts into consideration, the large shaft will heat more quickly than the small shaft at same speed,
because it has a greater weight, and contact surface because it bas a greater weight, and contact surface
rubs at greater speed. If, however, the shafts sustain rubs at greater speed. If, however, the shafts sustain
considerable weight, so that thedifference in the weight of shafts themselves becomes an unimportant factor in smaller shaft will heat more rapidly than the larger, wing to the greater weight per square inch of hearing surface upon the former.
(54) A. W. asks if a Plante storage battery quare inches of surface is sheet lead, having 7,000 candescent lamp for one hour? A. The battery referred to would run a small electric lamp for an hour. It
would not, however, run one of the ordinary high re would not, how
sistance lamps.
(55) R. M. asks: 1. Whetber "rotten wood ashes, principally from beach and sycamore," are valuable as fertilizer on red clay land, in which there is a mixture of gravel? A. Wood ashes are al
ways valuable as fertilizers. \quad 2. Would the refuse of a lime kiln having been exposed to the weather for a long time have value as a fertilizer? A. The lime kiln refuse is good in itself, and better mixed with muck 3. My wife fails of success in using the bread recipe of
"S. H.," in the Sctentific American of Feb. 2, 1884 . Is anything left out in the published recipe? A. The recipe of S. H. is the old-fashioned "salt rising,"
where yeast is not at hand. It is the production of
east and bread sponge at the same time. If the con-
ditions are observed and the flour is good, there need be no failure.
(56) S. R. writes: 1 . What is meant by the pitch of a toothed wheel? A. The pitch line of a wheel pitch is the distance between the centers of the teeth upon the pitch line. 2. And the simplest way to take the pitch of any wheel? A. In properly constructed teeth the pitch line should be seven-tenths of the dis seven-tenths of the depth of one tooth multiplied by two, plus the diameter of the wheel at the boitom of he teeth, is the pitch diameter. This sum multiplied by $3 \cdot 1416$ gives the pitch circumference. This sum divided by the number of teeth gives the pitch. 3. Is it practical to line a horizontal engine without taking the piston out of the cylindler; if so, the best way to do it? A. It is practical to line a horizontal engine without work with outside lines. Lay a line a practiced the cene to the piston by plumbing down to centerof head and rod; another line at the side of the piston on a level with the centers of head and rod. Measure your ceuters from each line, and set shaft and crank pin-the engine bed being first made level both ways, and the
shaft bearing centers also made level with your cenalignment.
(57) G. H. E. asks: Why are not dry gas meters used in place of wet ones? A. The dry meter is now the standard meter used by the great gas compaeeze in cold weather.
(58) E. Le D. asks how to clean nickel plated goods, so as to keep them bright? I have an Albo heat keeps it dull. A. Too much polishing with the heat keeps it dul. A. Too much polishing witb pow-
der will soon destroy the nickel plating. Wipe thoroughly with a cloth moistened with kerosene oil as often as necessary. Occasionally add a little whiting or chalk to the cloths. If any partsare not burnished that require to be cleaned, a small brush with chalk (59) W. A. M. asks: 1. If an engine with oscillating cylinder $11 / 3 \mathrm{in}$. bore and $33 / 4 \mathrm{in}$. stroke would drive a boat 12 ft . long by 2 ft .9 in . beam? A. Probably about 5 miles per hour, if the boat is of good
model. 2. What size boiler would suit the above engine? A. Boiler should have about 43 sq . ft. fire sur-
(60) J. F. H. asks: Which of the two ex bausts do you consider the best-a single or double noz engine? If you have preference for either, will you please state why? A. If strong draught is required a single nozzle is best, as it can be central to the chimney, but it must be borne in mind that with one nozzle, for exhausting from two engines, whatever be the back
pressure produced, it affects $b o t h$ engines more than a
double or twin nozzle.
(61) F. W. C. asks: Will a 3 in. pipe 50 rods ong supply sufficient water for 2 rams, one using a in. feed pipe, one a in. Yeed pipe A. What head is
there on the 3 in. pipe, or how high is the reservoir which re the if this 8 ft or 3 . afficient
(62) W. S. M. asks for a receipt for stick ing brass ornaments on to vegetahle ivory? A. The tory in attaching any metallic substance to glass porcelain, will undoubtedly be satisfactory to you: Mix oz. of a thick solution of glue with 1 oz . linseed oil varnish or $3 / 2 \mathrm{oz}$. Venice turpentine; boil them together,
stirring them until they mix as thoroughly as possible stirring them until they mix as thoroughly as possible The pieces cemented should be tied together for 2 or 3
days. See also receipts giveu on page 131, ScIENTIFIC days. See also receipts give
(63) J. B. McC. asks if there is a composiion that, put on rusty shafting, when taken off will with a solution of one part of sulphuric acid in ten parting of water. On withdrawing the articles from the acid solution, they should be dipped in a bath of hot lime water and held there until they become so heated that they will dry immediately when taken out. Then if
they are rubbed with dry bran or sawdust, there will be they are rubbed with dry bran or sawdust, there will be ill adhere readily
(64) W.H. H. asks: Can you state the name the vessel which first crossed the Atlantic between England and America by steam? A. The American pool in 1819. This was the first steam propelled vessel ss the Atlantic.
(65) S. E. asks: What is the drawing and lifting power of the strongest magnet? A. You do not say whether you mean permanent or electro magnet.
There is scarcely any limit to the size an electro magnet can be made. Without knowing something of what
(66) B. asks: What is the greatest speed ever attained by an ice boat, and if it attains a greater speed than the rate at which the wind blows at the time fact that boat goes faster than the wind ? A. With a twenty mile per hour breeze ice boats have run, on fine ice, at the rate of 70 miles an hour. If you squeeze a
suitable wedge between thumb and finger, you will find suitable wedge between thumb and finger, you will find
the wedge to move further and faster during the squeeze the wedge to move further and faster during the the ame
than the fingers that impart the movement. On the same principle the ice boat, which is the wedge, may be driv when the latter acts against the inclined side or sail of the boat. If the wind were directly abaft, the boat
would not go quite so fast as the wind
(67) J. E. E. writes: 1. I have made one of the dynamo electric macisied it will work well if I can get the commutator in the right position. I cannot understand how or when it should change. A. The change should take place when the poles of the armaHow large a machine will I require to produce a light
equal to two 4 ft . gas burners? A. A machine three o
our times the size of the one referred to should affora
as much light as two 4 ft . gas burners.
(68) A. McD. G. writes: I have a Daniell's battery of 4 cells, with which I am trying to do some electrotyping. Construction of the battery is correct, connections all right, and a good carrent is produced. nouthe mould in powder, which crumbles on heing
touched. Please tell me what is the matter ? A. Try our battery for a quantity current
(69) H. G. E. asks: 1. What weight pe square foot would solid ice 2 feet in thickness sustain,
the ice resting upon the water surface? Could a train of cars cross in safety? A. Ice 8 inches thick will bear a weight upon sledges of 1,000 pounds per square foo Haswell). We have no doubt that ice 2 feet thick will bear a railroad train if the rails are properly laid on the ice. 2. What ratio will correctly give the horse power of aboy of water of different heads? A. To compute the power of a fall of water, multiply the volume of the
flowing water in cubic feet per minute by 62.5 (the weight of a cubic foot of water), and this product by 33,000 for the horse power. (70) A. N. J. asks: What form of a solid noidal, or other form? A. The cylindrical.
(71) J. M. G. asks: 1. What is a Bun(1) J. M. G. asks: 1. What is a Bunsen gas burner is one that burns with a non-luminous long over an ordiuary gas burner, and drilling air holes in the tube opposite the top of the gas burver. 2. What kind of a thermometer is used for high temperatures,
such as melted cast iron, lead, or tin; and what is it ach as melted cast iron, lead, or tin; and what is it
made of? A. Pyrometers are used for high temperatures. See our advertising columns for these instru-
(72) F. J. H. asks: 1. What the meaning of terms, mounted in tension and arranged for quantity? the positive pole of one cell is connected with the nega tive pole of the adjacent cell, and so on. A battery is connected for quantity when all the positive poles com. monicate with one conductor, and all of the negative hall I arrange a bichromate of potash battery fo incandescent electric lighting? A. Connect it for ten
sion. 3. What shall I coat an at sion. 3. What shall I coat an oak box with to protec You might soak the wood in paraffine. Better use lass jars.
(73) O. A. B. asks: What size and quantity magnet wire should be wound on a round iron cor 4 in. y 10 in, to make the strongest magnet, for telephone size? Wind the opposite ends for $21 / 2$ in
with No. 24 silk covered copper wire. Let the depth of with No. 24 silk covered copper wire. Let the depth of
(74) E. A. G. asks: 1. What is the value or trength of exhaust steam as compared with live steam? must escape from the cylinder under pressure, and will detract so much from the efficiency of the engine; but incompound engines, where the exhaust of the high
pressure cylinder operates the piston of the low pres sure cylinder, a great gain in economy is claimed. 2. If exhaust steam is worked three times in an engine what is the comparative strength of the steam in the workings? A. It depends altogether upon the manner
in which it is worked. We doubt the utility of the third cylinder. 3. From whom could one get a disin terested, yet practical and scientific, opinion of the
merits of a newly patented steam engine as compared with other engines? A. In any of our engineering schools ou will find persons who would make the required
(75) W. F. L. asks: How the carbon but eadily polish the carbon button of a Blake transmiter by using the finer grades of French emery paper. Place the emery paper face upward on a level surface
(76) C. W. C. asks: What size pipes should be used to bring 15,000 gallons of water every 24 hours 4 miles under 150 feet head? Want the smallest that
would do the work. A. This depends much upon would do the work. A. This depends much upon
bendsin the pipe and smoothness of the bore We We would not recommend pipe less than $13 / 4$ inch diame-
(77) C. A. W. asks: Can you inform me how the papier mache fruit, etc., as used on the stage is made? Papier mache leaves, fruit, etc., are made by
pressing the moistened paper, thick or thin according to the kind of work, in moulds, and then drying in the mould. Moulds should be slightly oiled with linseed oil boiled. Fruit is pressed in halves, and glued to
gether. There is something in Scientific American or Supplement about papier mache.
Minerals, etc.-Specimens have been reeived from the following correspon
C. P. C.-The specimen sent has no economic value as far as we know, except to dealers in minerals
valuation of it, however, would be very low.

INDEX OF INVENTIONS
For which Letters Patent of the United
States were Granted

April 1. 1884,

AND EACH BEARING THAT DATEE. [See noteat end of list about copies of these patents.]
Air and dust separator, J. P.
Animal trap, H. B. Swartz.
Bag holder, P. Cole...
Ball trap, C. F. Stock......
Baling press, A. Johnson.
Barrel lifter and carrier, W. H. Ibelle
Barrels, casks, etc., head for, P. Mas
Barature of, C. . Wash
Battery. See Secondary battery.

Electric wire, manufacture of compound, J. J.
Williamson................................ Electrical eonductor and connecting device
therefor ; J. Kruesi. Electrical conductors, manufac Ellipsograph; Li. Abbott Embroidering machine, R. Freitag.
Enameling iron ware, H. C . Enameling iron ware, Se C. Milliga Engine reversing and cut-ot Evaporator furnace, T. \& J. M. Scantlin Extension bit, W. Steers Fabrios to a background, application of,
Freschl
Fastening, metalliz, H. Harris
Fastering, metallic, F. A. Smith, Jr
Faucet, H. Mattullath.
Feed regulator. J. Lucas.... ...
Feed water purifier, J. T. Mead.
Fence post, Moil $\&$ Hottes Fence post, E. Rutz.. Fence post, T. J. Smith Fences, metal post for wire, L. Go....... Fertilizer distributer, J. W. Spangler Fibers, machine for opening, cleaning, and conFile, letter and bill, G. W. Plummer. Filter, J. M. Learned

Fire escape, E. F. Sh Fire escape, R. Stevenson. Fire escape ladder, s. E. D.
Flower.pot, D. O. Martin. Foil, manufacture of orn Folding box, H. Krog, Sr. olding fabrics and inserting pressing boards be tween the folds thereof, machine for, Römer
Forge lever, detachable, J. F. Winchell.
Frame. See Spectacle fr
Fruit can. . Cogswell....
Furnace. See Blast furnace. Evaporatir fur-
nace. Gas melting furnace. Metallurgical gas furnace. R
ing furnace
Furnaces, apparatus for feeding fuel to and in,
T. Sr., J. Sr., T. Jr., \& J. Vicars, Jr Gauge. See Compressible gauge. Miter gauge. Game table, F. R. De Foy bon, W. F. M. MeCarty Gas, generating, G. Jones
Gas generatcr, G. Jones...............................
Gas, manufacturing . hydrocarbon, W. F. M

Gate or valve, P. Giovannini
Gearing. apron, G. N. Clapp...
Gem setting, J. H. Shoemaker
Generator. . See Gas generator
Glass, apparatus. for applying powdered sub-
stancesta Glass melting tornaces of, H. Schulze-Berge... re, machinery for decorating. H. Schulz

integrating, D. W. Birming ham. rain.bnder, J,
chinery for, J. Birkenhead
Guitar, J. C. Cooke
Hame attachment, o. P. Letchworth
for tools, J. R. Hood Harness rosette, R. W. Jones.
Harrow. H. M. Sherwood
Harvester, D. W. Bovee.
Harvester, J. R. Severanc
Harvester cutters, mechanism for driving, Dungan \& Lacrone
Hisp lock, G. Crouch......
Hasp lock, T. S. E. Dlyon
Hay and grain rack. W. H. Lintz
Hay and other elevators, c. S. Ambruster
Hay press, T. D. Aylsworth.
Hay shears, W. Millspaugh.
Hay stacker. W. . yc coma
Hilling and fertlizing machine, R. W. Allen Hoes, machine for making
Holder. See Tool holder.
Hook. See Tce hook. Whittetree hook. Horse power, A. Zastrow... Hose coupling, T. E. Wells. , J. Holingswort Ice hook, D. F. Burgess....
Insulated conductor, T. Miner Jack. See Lifting jack
Jack or mule, self-operating. W. F. Turnbull. Jewelry, manufacture of. H. C. Boniface Knife and penholder, combined, I. Phillips Knitting machine, w. Osborne. Lamp and torch support, band, J. S. Conwell. Lamps, automatic cut-out for electric, Buck nsend.

Latch, door, J. Romig.

Lead, manufacture of spongy, Williams \& How
Sawyer....
Lifter. See Barrel lifter
Lifting jack, Mottram \& Mund
Line reel, W. M. Lockwood...

lock. Seal Lock, M. Voigt

Locks, attaching, J. Kuster,
Locomotive. Buss \& Kiih
Locomotive, T. S. Tew.............................. Loop forming and stampin Lubricator, C. H. Parsha
Lubricator, C. E. Peas
Mail bag fastener, Hill \& Webb
Mattress support, T. Burdick........................
Metallurgical gas furnace, Durfee \& Egleston. Miter gauge. E. Hipolito....
Motor for Hight machinery, J. W. Qutbert

Musical instrument, mechanical, A. H. Hammond ... Nut and bolt lock, C. Van Dusen, Oil can, incased, C. . .. Tallman...................
Oil cloth, manufacture of, A. F Buchanan (r). tracting, W. Krutzsch
Oil, lubricating . E. Gill. Oil presses, divisi Oiler, crankpin, C. H. Parshall...........................
Ordnance, breech loading, H. \& F. H. Durell.... Ore separator, Fairfleld \& Sh Ore separator, Shead \& Fairfleld.............
Ore separator, magnetic. F. \mathbf{V}. Rouleau..
Ores and for other purposes res and for other purposes, apparatus for treat ing, T. R. Timby.......... Oven, portable bake, E. P. Genest
Overshoe or arctic, J. B. Belcher Packing, car axle, W. H. Wright.
Packing, piston rod. T. A. Myers. Packing, piston rod. T. A. Myers.......................
Paper, apparatus for feeding sheets of, F. Thielscher.
Paper box covering machine, L. Weston Paper calendering machine, M. Solinger
Paper cutter and die press, J. H. La wlor Paper cutting machine, B. T. C. Kraus.

```
Schubiger
```

```
Paper wallet, A. L. Sewell
Pencil, T. M. Kenney.
```

Pencil, pen, or toothpick case, A.H. Wood ward
in. See Curtain pin.
Pitcher cover, I. Blumenthal..
Plane, variable bench, A. Fale
Planer attachment, metal, E. R. Bryant.
Planter and fertilizer distributer, combined see
w. C. Pickle......................................
Planter check row attachment, seed, Eberhart
Planter, corn, G. W. Tarbel
Plastic materials, machine for shapmg, w. Kilia
Plow, G. B. St. John.
Plow attachment, J. Lawrie
Plumber's trap, T. Dark....
Pole, clothes line, M. Bartlett
Polishing compound, H. H. Be
ool rack H W. Collender
Póst. See Fence post.
Pot. See Flower pot.
Potato digging machine, A. L. Higley.
Potter's mould, A. Woeber..............
Pressure regulator, W. Burnet
Printer's quoin, J. Polhemus.....
Process apparatus, N. G. Gurney.
ropeller, screw, A. Von Buonaccorsi di Pistefa
nlley, belt. A. T. Irwin
Pump, o. W. Hammond..............................
combined feed, J. Houpt.
Rack. See Pool rack.
Railway switch, horse
always, ap paratus for preventing accidents on
D. \& D. Roberge, J
Reel. See Line reel.
Refrigerator, air cooling. D. Sanderson
Refrigerator car, T. L. Rankin
Regenerator furnace, G. Jones.
Regulator. See Feed regulator. Pressure regu
lator.
Reverberatory gas furnace, W. L. McNair .
Ring. See Curtain pole rin
Rolling mill bearing, W. Steel

N. S. White...........................
Rulng machine, paper, J. C. Form
Safe deposit box. J. Farrel
safety attachment. . G. Harley
ash fastener, E. O. Ladd....
Saw. J. D. Abbott........
Saw guide, w. Williams.
Sawmill, circular. C. Esplin.....
aw, pruning W. K Stansbury
Saw vise, G.W. Burton................
Scraper, earth, O'Connor \& Williams.
craper, road. M. E. Cook.
eals, fastening tin strip. E. J. Brooks
Secondary battery, A. Haid
seeding mactine, J. L. Riter
, iter 27
separator.
Swing machine, G. A. Annett
ewing machie, G. A. Annett...........
Baker (r)
ewing machine shutte, J. Hoefler
Sewing machine table, I. E. Myrick

Beardslee.............................
Sewing machine tuck creaser, E. Bostock
Shaft tip, carriage. W. S. A
Shears. See Hay shears.
Slate washer, H. T.
side rest, J: Fitz
Sliperer, , Juck J. J. . Bickicko
Snöw cearer, J. Forster...
oda, apparatus for the manufacture of bicarb
nate of. C. Wigg...
Sole edge cutter, rotary. W. D.
Spectacle frame, J. H. Nichols
Spectacle frame, J. H. Nichols
Speeder for the manufacture of rovings, coarse
yarns. etc... J. F. Randall
Spinning trame spindle and bolster, J. Birken-
Sinning machine flier. J. Binns
pinning machines, apparatus for collecting and
removing waste from, w. A. Delmage...
pout, sap. C. C. Post
Sprocket wheei, B. A. Legg
Square, try, W. A. Gabriel
Square, try, W. A. Gabriel.:

Starch refi use, etc., apparatus for separating sollia
and liquid portions of, P. . . Grimm........... Stave crozing machine, , S. F. Maxwell... Staying piece for garment slit openings,
Turner........................ Staying piece for garments, G. E. Norris.
Steamer. vegetable, L. M. Marr...........
Steels, combining, J. J. Williamson Stereoscope, H. E. Pierce...
Stereotype plates, method Stereotype plates, method of and apparatu
drying matrices for, Pearce \& Hughes.. Stereotypes, device for locking removable, E. E Pratt...
Stitches, ha
Stitches, hand apparatus, for forming, c. Stickel.
Stone, cutter for dressing, F. Trier............
Stone, manufacture of artificial, M. McNamara...
Stove, Stove, hot blast, J. J. Airey
Straightening, bending, and punching machine
J. Cosgrove ... J. Cosgrove
Straw cutter, E. W. Ross. Straw cutter, E. W. Ross..........................
Sugar, cooling and drying, Niese \& Dinkel......
Sugar cooling apparatus, Niese \& Dinkel.. 296,040, Superbeater, G. Jones...
Superheating
Superheating furnace, G. Jones
Suspender end, C. C. Shelby .
Suspender end, C. C. Sheiby
Swing and chair, combined, F. Robinius
Table. See Game table.
Tag, metallic, M. Kersten
Tap wrench, M. S. Brooks..................
Telegraph or other pole, G. F. Brot
Telegraph or other pole, G. F. Brott...............................
Telonone, Cook \& raves.....
Telephone, mechanical, H. \& E. Seligman
Telephone, mechanical, h. \&. E. Se. J. Dudley.......
Theatene signaling apparatus, W. Jinance hydraulic, R. G winner et al. Theater appliance, hydraulic,
Thermostat, M. D. Porter.... Thill couphing machine. J. A. B Thrashing machine, J. M. C. Jones

Thrashing machine J. M C. Jones
Thrashing machines, self-feeding and ting attachment for, S. S. Barr... .

Smith............................ Tire tightener, W. Campbell
Tool holder, C. D. Hawley... Trace trimming, , J. M. Basinger.
Trap. See Animal trap. Ball tren trap.
Tray, dinner, F. Neumiller et al... Tray, dinner, F. Neumule Trunk or case, sample, H. W. Mattoni. Truss. hernial, W. L. Tucker
Type writer, T. A. Edison.
Type writer, T.A. EC. Chambe......
Umbrella tie. w.J. Calve, straight-way. P. B. Page Vapor as a motor power, liquid for and proces
of generating a compound, w. L. Lowrey of generating a compo
Vapor burner, Z. Davis..
Vegetable eutter, C. L. William
vehicle spring, C. A. Behlen...
Vegetable eutter, C. L. Willia
Vehicle spring, C A. Behlen
Vehicle spring seat. L. Warr
Vehicle spring seat. L. Warren.
Vehicle top, E. Warren.......
Wagon brake, Hocking \& Jones.
Wagon brake lever, I. J. Davies
wagon, lumber, o. Kinsley.....
Wash bench and step ladder, J. S. Nelson..
Washer. See Slate washer. Whel washe
Washer. See Slate washer.
Washer cutter,.J. Rath...
Washer cutter,.J. Rath............
Washing machine, J. W. Rhoades
Watch novemement, H. .. Mears...................
Water closet seat cover, D.
Water cooler. C. F. Wisloh
Water cooler. C. F. Wisloh.......
Waterproofed textile fabric, I. F. Williams.
Waterproofed $\begin{aligned} & \text { Weatber strip, D. Gibbon } \\ & \text { Wheel. See Car whee }\end{aligned}$.
Wheel. See Car wheel.
Wheel washer, vehicle,
Wheel washer, vehicle,
Whiffetree, H. Clark..............
Whifferree hook, J. B . Williams.
Windlass, F. A. Grater.
Windows, Fhade bar, H. . . Jud. Jud.
Window
Window shades, device for operating, Blank \&
Anthony
Wire bending machines, C.
Wire crimper, M. M. Jones.
Wire crimper, M. M. Jones...........................
Wire, deviee for handling spooled barb, T
Burrows

Woodworking machine knif
Wrench. See Tap wrench.
DESIGNS.
Air box or case, o. S. Rixford..
Bottle or flask, J. K. Cummings
Bottle or
Carpet, A. Danby....
Carpet, H. Mitchell
Carpet, H. Mitchell.
Carpet, E. Poole
Carpet. E. G. Saue
Carpet, S.Smith ...
Carpet, F. C. Swan

Knife handle, G. W. Korn
Newel post. H. Textor..
TRADE MARKS.
Bitters, T. Ripke..............
Boot and shoe pegs, W. Flint.

Cigars, Harvey \& P Cigars, J. Powell..

Cigars, Reid, Murdoch \& Fische
Cigars and cigarettes, H. Segnitz \& Co.................
Cigars and cigarettes, J. ©. sullivan.................
lumber driver's calks, Lumber Driver's Calk Com
1.umber driver's calks, Lumber Driver's Calk Com-
pany 11,063

Schandein. ..
Salt, fine dairy and table, Warsaw Salt Company.
Sheep dip, A. Mitchell..... Sheep dip, A.
A. Cameron \& Co............................
Tobacco, cigars, and cigarettes. plug, twist, and smoking, A. Cameron \& Co.......11,057 to 11.059,
Tobaceo, smoking wind Tobaceo, smoking, Wellman \& Dwire Tobacco
Company53 to A printed copy of the specification and drawing o
any patent in the foregoing list, also of any paten any patent in the foregoing list, also of any paten
issued since 1866. will be furnished from this office for 2 cents. In ordering please state the number and dat
of the patent desired, and remit to Munn \& Co., Broadway, New York. We also furnish copies of patents spesifc
hand.
Canadian Patents may now be obtained by these inventors for any of the inventions named in the fore-
going list, at a cost.of $\$ 40$ each. For full instru tions
address Munn \& address Munn \& Co., 261 Broadway, New York. Other
foreign patents may also be obtained.

aldurritsements.

SECOND SERIES.

"The Sweetland Chuck."

Edwards' Works onthe Steam Engine. Modern American Marine Engines, Boilers, and
Screw Propeltrs. Thir Design and Construction
Showing the Present Prictice of the most Fminent

THE CENTRAL PACIFIC R. R. FERRY.
 ail newsdealers.
 THE MUSK CATTLE OF AMERICA-
 $\$ 350.00$ per Mon th, Salary and Commission,

NERVOUS DEBILITY in MEN
CONSUMPTION.

RUPTURE

266th EDITION. PRICE ONLY \$I

KNOW THYSELF,
a Great Medical Work on Manhood

NEW YORK BELTING AND PACKING COMP'Y.
 NEW YORK BELTING AND PACKING CO,

HOLLAND \& THOMPSON,
 LIQUID VOTEX RIN RINGS-CERTAIN

SEWAGE DISPOSAL FOR ISOLATED

 Bell on the resistance of crystalline selenium wer an
manageabile limits.
mathotohonic tranminiters.
Iangement of apparatus for the reproduction

INFLUENCE OF AGE UPON THE IN

NEWSPAPER FILE

 MUNN \& CO.

VOLNEY W. MASON \& CO.
FRICTION PULLETS. CLJTCHES. anid ELEVATORS
\qquad
HYDRAULIC. MACIINNERY APPLIED
to operating the Lock Gates of the Des Moines Rapids
Canal- A paper by R. Ralston Jones givin a general

ERICSSON'S NEW CALORIC
PUMPING ENGINE

Dwellingsd Country Sea
Delamater Iron Work
Delamater \& Co
Proprietors
corthidt Sire
ework, U. S. A.
40 Dearborn St
HEAT IN RELATION TO CHEMICAL sults that bave recently been Abtained by experimenters
in the branch of physics know as thermochenistry.
Description of apparatus used by M. Berthelot in his

OPTICAL TELEGRAPIIY. - DESCRIP

FRICTION CLUTCH
Pulleys and Cut-off Couplings.

ROOT'S NEW IRON BLOWER

Has Fower Parts than any other Blower.
P. H. \& F. M. ROOTS, Manufacturers,
 JAS. BEGGS \& CO., Solling Agts. 9

> POSsimive BXAssw IRON REVOLVERS, PERFECTY BALANCED, SEND FOR PRICED CATALOGUE.

OZOKELRITE, OR EARTHW AX.-BY William L. Lay. A paper on the deposits of earthwax
in Europe and A rica. describing thi origin, compo
sition, products. and application of this important mate-

PROGRESS OF THE NICKEL METAL
\qquad

MICROSCOPES! FIELD CLASSES,
MACIC LANTERNS, THERNOMETERS,
DRAWINC INSTRUMENTS,
 QUEEN \& CO.,Opticians, PHILADELPHIA
PATENTS.
MESSRS. MUNN \& CO.. in comnection with the pub-
lication of the ©cientific American, continue to ex-
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

BRANCH OFFICE.-Corner of F and 7th Streets,

3avertisements.
 Engravings may head advertisements ts the same rat

CETRICERATORS
 TO GET THE BEST, Buv the Leonard Clean- able, with Movable Flues, able, with Movable Flues, Hard wood, Carved Panels. Warranted First Class Elegant and Dur Grand Rapids Refrigera
 Steel Castings

The Rider Hot Air PUMPING ENGINE For Residences or Institations. Absolutely Safe. Any house servant can run it. Ha
a record of nime years. Send fo
catalogue E," SAYER \& CO., 19 IE EY ST
After May 1st, 1884, 34 De
THE DUPLEX INJECTOR.

COLUMBIA BICYCLES AND TRICYCles.
Yew Hustrated for page Catalague

10
$=40^{2}$
$4 V^{2}$
F. Brown's Patent

FRICTION CLUTCH.
 A. \& F. BEOWN, 43 Park Place, New York. SHAFTS PULLESSHANGERS

WATCHMAKERS.

H.W.JOHNS ASBEEMTS

 87 Maiden Lane, New York,

HARRIS-CORLLSS ENCINE

The " MONITOR.

We make the eest Packing that can be made regarclies
of cost.
Users suil
lustan KINS STANDARD PACKING."
genuine unless so stamped. Send for Price List " \mathbf{B}. JENKINS BROS.,
 RO우 BREAKERS AND ORE CRUSHERS.

ALAND PATENT BLOWERCO.

30 to $\mathbf{3 0 0}$ Horse Power. send for Illastrated Cirenlar and Reference List STATE THE HORSE POWER REQUIRED,

ASK OUR PRICES!

THE WESTINGHOUSE MACHINE CO. Aares, it morer Thimelurc, PA.

 ON THE STABILITY OF CERTAIN

Shingle Machinesis

CHEMISTRY OF BUALONER'S SONS, omro, Wis.
OFING MATE-

SPEAKNG TELEPHONES

 Al telephonem obtained except from this company or
ts authorized licensees. are infringements, and the akers. selters. and users will be proceed
Information furnished upon application
Address all com

Scrientific Ampricau

The Nost Popular Scientilic Praper in the Workl. Only \$3.20 a Year, including postage. Weelily.

This widely circulated and splendidy illustrated aper is published weekly. Every number contains sixoen pages of useful information, and a large number os
original engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery,
New Inventions, Novelties in Mechanics, Manufactures, New Inventions, Novelties in Mechanics, Manufactures, ecture. Agriculture, Horticulture, Natural History, etc. American a popular resume of the best scientific inormation of the day; and it is the aim of the publishers possible abstruse terms. To every intelligent mind, reading. It is promotive of knowledge and progress in every community where it circulates.
Terms of Subeription.-One copy of the ScienTIFIC AM RIICAN will be sent for one year-- numbersCanada, on receipt of turee dollars aud wenty cents by the publishers; six months, $\$ 1.60$; three
months, $\$ 1.00$. Clubs.-(O)ne extra coby of the Scientific AmiriAN w.2l ee supplied gratis foreveryclubof five sudbscribers
One copy of the Scientific American and one copy of the SCIENTIFIC AMERICAN SUPPLEMENT will be sent
for one year, postage prepaid, to any subscriber in the
United States or canada, on receipt of seven dollars by United States or Canada, on receipt of seven dollars by

The safest way to remit is by Postal Order, Draft, or
Express. Money carefully placed inside of envelopes, securely sealed, and correctly addressed, seldom goes stray, but is at the sender's risk. Address all letters
,

$$
361 \text { Broadway, New York. }
$$

To foreign subscribers.-Under the facilities of
he Postal Union. the SCIEvTIFIC AMERICAN is now sent by post direct from New York, with regularity, to sub-
scribers in Great Britain. India, Australia, and all other British colonies; to France, Austria, Belgium, Germany,
kussia, and all other European States; Japan, Brazil, Mexico, and all States of Central and South America.
Terms, when sent to foreign countries, Canada excepted, \$4, gold, for SCIENTIFIC AMLRICAN, one year; \$9, gold, for both Scientific ambitcan and Supplement for
one year. This includes postage, which we pay. Remit
\qquad
PRINTING INKS:

