

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

THE FLOATING STEAM FIRE ENGINES OF NEW YORK.-BURNING OF THE FERRYBOAT GARDEN CITY.-[See page 100.]

Surntitic Ammerian.

ESTABLISHED 1845

MUNN \& CO., Editors and Proprietors. published weekly at

No. 261 BROADWAY, NEW YORK.

O. D. MUNN.

A. е. Beach.

TERMS FOR THE SCIENTIFIC AMERICAN.

 One copy, one year postage included..One copy, six months postage included
Clubs.-One extra copy of The ScIevrific AMERICAN will be supplied
gratis for every clut of five subscribers at $\$ 3.20$ each; additional copies at same proportionate rate. Postage prepaid.
emit by postal order. Address
The Scientific American Supplement
is a distinct paper from the Scientific american. 'the supflement is issued weekly. Every number contains 16 octavo pages, uniform in size with SCIENTIFIC AMERICAN. T'erms of subscription for SUPPLEMENT,
$\$ 5.00$ a year, postage paid, to subscribers. Single copies, 10 cents. Sold by $\$ 5.00$ a year, postage paid, to subscribers.
all news dealers throughout the countrs.
Combined Rates. - The Scientific American and Scpplement will be sent for one year postage free. on receipt of seven dollars. Both
papers to one address or different addresses as desired. papers to one address or different addresses as desired.
The safest way to remit is by draft, postal order, or regi
The saifest way to remit is by draft, postal order, or registered letter.
Address MUNN \&CO., 261 Broadway, corner of Warren street, New York
Scientife American Export Edition.
The SCILNHIFIC A merican Export Edition is a large and splendid peri-
odical, issued once a month. Each number contains about cine bund odical, issued once a month. Each number contains about one bundred
large quarto pages, profusely illustrated, embracing:
(1.) Most of the plates and pages of the four preceding weekly issues of the Scicstric American, with its splendid engravings and valuable information : Commercial, trade, and manufacturing announcements of leading houses.
T'erms for Export Edition, 85.00 a year, sent prepaid to any part of the T'erms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the
world. Single copies 50 cents. Manu facturers and others who desire world. Single copies 50 cents. Manufacturers and others who desire
to secure foreign trade may have large, and handsomely displayed announcements published in this edition at a very moderate cost.
The SCIENTIFIC AM ELICACAN Export Edition has a large guaranteed circulation in all commercial places throughout the world. Address MUNN
Co., 261 Broad way, corner of Warren street, New York.

NEW YORK, SATURDAY, FEBRUARY 16, 1884.

TABLE OF CONTENTIS UF
the scientific american supplement
NO. 424,
For the Week ending February 16, 1884 . Price 10 cents. For sale by all newsdealers

the position of inventors.

An accurate conception of the meaning of a patent and of the true status of an inventor is far from common. The fact that inventors are the possessors of a iimited monopoly, that is frequently of great value, weighs against them in the
estimation of the less enlightened class. To form such a estimation of the less enlightened class. To form such a
conception, regard should be paid to the opinions of those conception, regard should be paid to the opinions of those
most familiar with the subjects of inventious, with patent laws, and with the struciures themselves. The most enlightened source for an opinion leading to such conception will be found in the decisions of the judges of the courts in which patent rights have been decided. Some of these judges have
acquired great emineuce in this field. In preparing their acquired great emineuce in this field. In preparing their
decisions they had to study the patens, their scope, utility, and in many cases their commercial importance. Besides having the judicial mind, developed by years of experience upon the bench, they were familiar with the practical aspect of the subject from the studies alluded to.
Of the older judges none attained higher reputation than Judge Story. It is he who gave to Patent Law its famous appellation, "the Metaphysics of the Law." His opinion of the dignity of inventors and the value of their services to the
country at large is worthy of record. In one of his early decisions, given over fifty years ago, he says that "patents are not to be treated as mere monopolies, odious in the eyes of the law, and therefore not to be favored." It appears from this that the monopoly part of the question had been even then agitated. But this judge was always opposed to such views as those referred to. In another place he says that the Constitution of the United States, in giving authority to Congress to grant such patents for a limited period, declares the object to be to promote the progress of science and the useful arts, an object as truly national and meritorious and well founded in public polic:y as any which can possibly be within the scope of national protection. It seems a pily bat our Representatives, before considering the bills for the limitation of the rights of inventors, did not study and apply hese principles to their actions.
Judge Story declares the protection of patents to be a matter of public policy. How impolitic, then, does the recent action of the House of Representatives appear. But he is not alone in his ideas of the rights of inventors. Other judges at more recent periods reaffirm these views. One, speaking in 1847, says that the true rule of construction in respect to patents is to apply to them plain and ordinary principles, and not to yield to subtleties and technicalities
likely to prove ruinous to a class of the community so inconsiderate and unskilled in busiriess as men of genius and inventors usually are. A little earlier Judge McLean had stated that the patent law gives a monopoly, but " takes nothing from the community at large, but secures to them the greatest benefit." The same judge, later on, speaks of the patent right as a compensation awarded the inventor Following these judicial utterances to a later period, we find patents declared not to be odious monopolies or restrictions on the rights of the public. To still further define the monopoly side of the question, we may quote from Judge McLean again. In 1855 be said: "A monopoly takes from the public what belongs to it, and gives it to the grantee, whereas the right of a patentee rests entirely on bis own nvention or discovery of that which was useful, and which was not known before." Thus we find the monopoly of patent declared proper compensation, and a politic one ou
the part of society. There should be no reasou for disturbthe par
ing it.
If patent lawyers be consulted, they will be found generally of the opinion that a patent is a contract between the inventor and the Government. The case of Ransom vs. New York is cited in support of this view. Accepting this as the correct doctrine, the Government would play a poor part in changing the status of patents already granted.
But there is another point of view that may be found indicated in the judicial opinions we have cited. The real policy of the Pateut Law is a selfish one on the part of the Government. Vastly greater benefits have been reaped from it by society at large than by the inventors themselves. It has evolved the enormous amount of ingenuity represented by a quarter of a million of inventions. All this work is devoted to the manufacturing industries of the country. By the law only human inventions can be protected, so that no natural principle can be monopolized. It would be hard to imagine where we would stand in the industrial world unbacked by these inventions. If an inventor seems in some instances to receive an undue reward, this is only the exception. It is because of their unselfishness and devotion to the arts that inventors are apt to lose the reward due to their in dustry and talents. The public often reaps the benefit of inventions loug before the patent bas expired.

Every American prides bimself on his country's progress in this path. With the abrogation of the patent laws invention would cease almost entirely, and we should bave to look to other countries for new devices in machinery and processes. The national position would be a humiliating one in place of a proud one. Every such measure as those recently passed in the House of Representatives aims a blow at these laws. We can only hope that it will prove as ineffectual as it is ill-judged and impolitic.
It will be noticed that the views given on the position of inventors favor them and their rights. They are given by eminent judges, who were especially dispassionate and impartial in the decisions cited, because no appeal to favor from them is discernible in the history of such cases. Their
were any needed. But the statute now in force is the frui of many additions and amendments. It has done well in the past, and is good for some time to come, as it seems reasonably near the goal of adaptability and efficiency. It is out only inventors, but the public at large, that should resist any change in it that will affect its efficiency and range of action. The public are more interested in it than are the inventors. This is no paradox, for inventors are the servants of the public, and protected inventions are the property of the world of industry, withheld from common use for a short term of years.

THE PONS-BROOKS COMET

We have received a communication from Adamsville, Michigan, in which the writer asks for information concern ing a comet he first " discovered about the 18th of January in the southwest, about the same distance from Venus as Venus is from the sun, and a little south, with a tail extending east." He thinks the Scientific American was perbaps mistaken in stating that the comet was visible in the northwest.
The comet seen by our correspondent in the southwest is the same comet that was, as we stated, seen in the northwest when first visible to the naked eye. It was faintly perceptible on the 27 th of November, and looked like a small nebulous star. About the 21st of December it became a plain though not a conspicuous object in the northwest, being then in the northern constellation Cygnus. It has been visible every clear, moonless night since that time, pursuing its course over the sky with a speed marvelous to behold, having traveled from a position high in the northwest to its present locality low in the southwest. It will continue to move in the same direction till it is so far away as to become invisible in the largest telescopes. It will probably be visible in this latitude till the latter part of February.
The reason the comet could not be found in the northwest was because it was then a faint object almost impossible to pick up unless one knew just where to look for it. When seen on the 18th of January, it was a little beyond its greatest brightuess and nearest point to the earth. This it reached about the 14th. On the 26 th , it passed its peribelion, or nearest point to the sun, and, since that time, has been our departing guest. The comet's real course is southeast, as any observer who notes its position from night to night will readily perceive. It is carried westward by the motion of the earth, in the same way that Venus is, who, though moving eastward, seems to be moving westward like the tars.
This comet, known as the Pons-Brooks comet, was discovered in 1812 by M. Pons. It was predicted that it moved in an ellipse with a period of 71 years. Therefore, it might be expected to return in 1883. Mr. Brooks discovered it in September of that year, and its identity was soon proved. It was called the Pons-Brooks comet from the two discoverers. The great interest it has excited all over the world is due not to its size or brilliancy, but to the fact that after its ong absence it has returned to the clime of the sun at the time predicted by astronomers.
Our correspondent desires information in regard to the best book that will " educate him in the revolution of our planet, also others as far as possible." We recommend Lockyer's " Elements of Astronomy" and Newcomb's Popular Astronomy" as reliable and comprebensible guides.

PECULIAR WOOD WORKING

The auger is intended primarily for making holes in wood, yet the only cutting or boring portion is the chisel lip on its lower end; and if the implement could be kept at its work and guided in its course, the gimlet screw at its point and the spiral above its cutting portion might be dispensed with, as the screw merely pulls the custer into the work and the spiral guides the auger and elevates the chips. So the auger, deprived of these portions, becomes a rotary cutter by which straight or curved recesses of a definite width may be cut. Mortises for tenons are made with such an implement, and it is used also for many other similar purposes.
An adaptation of the circular saw is more peculiar than this. It is the cutting of a wide kerf with a thin saw; thus a saw of one-fourth of an inch thickness, or ''set," cuts a score, or slot, of three-quarters of an inch or more. In appearance the saw is anything but mechanical, and at first thought the method is "sloppy " and foolish. But the result of the work is good. The effect is produced by placing a circular saw on an arbor somewhat smaller than the hole through the saw, and canting the saw to an angle by means of convex faced glands or flanges. When rotated the saw's periphery bas a "wabbling" motion, so that twice in its revolution the saw cuts out of its true kerf on either side. It will be seen that if the quarter inch saw is set one quarter of an inch out of truth on its side, it will cut one-quarter of an inch on each side, making, with the primary thickness of the saw itself, a cutting width of threequarters of an inch. This apparently crude method produces very satisfactory results. It might be supposed that such eccentricity of movement from side to side would leave very coarse score marks on each side of the cut, but the velocity of the saw's rotation compared with the feed insures perfectly clean work. The advantages of this method are that the ocwer required to cut a wide kerf with a narrow saw by gradations is much less than to cut the full kerf at once with full wide cutters, and that while a saw can be
of diameter large enough to cut through a wide or thick piece of lumber, there is a much lower limit to the econom ical and effective projection of chisel cutters from a head. One of the largest manufactories of agricultural and domes tic machinery and implements in the country has used ci cular saws in this manner for years.

a menace to prosperity.

Sooner or later every act of Congress is brought to the test of Constitutional sanction or to that of practical working. If it fails in the one, it is invalid; if in the other, it is pretty sure to be repealed as soon as its vicious tendency is discovered. Temporary delusion or local or party prejudices may secure the passage of a bad law; but an unjust and impolitic law is not likely to long withstand the will of the multitude, who directly or indirectly suffer by it.
On this ground it is fairly certain that the invasion of the property rights of patentees threatened in certain patent bills now pending cannot long endure, even if by any misfortune they should pass both houses of Congress and receive the Executive signature. Nevertheless, in a single year, such laws as House bills Nos. 3,925 and 3,934 contemplate would prove very hurtful if not widely disastrous to national prosperity.
The influence of new inventions, as a factor of industrial development and national wealth, is sufficiently conspicuous and generally recognized to make unnecessary any extended argument to prove it here. Nevertheless, a few facts bearing upon the question may be not without interest. Official inquiries made some years ago demonstrated the fact that something like nine-tenths of all the manufactures of the country were of articles recently patented or made by patented machines or processes. The same is not less the case to-day. The census of 1880 found our factories turning out products worth, that year, $\$ 5,369,000,000$, by far the greater part being manufactures involving pateut rights. In 1870 the annual products were worth $\$ 3,385,000,000$, and in 1860 only $\$ 1,885,000,000$. Thus, in twenty years, the increase had been nearly threefold. Meantime, the United States patents issued had increased in number from 26,641 to 223,210 ; now they approach 300,000 .
Inventions were not the only, perhaps were not among the main, factors of this phenomenal industrial development, but they were an obvious and potent factor, since the advance was chiefly in industries called out or radically modified by recent inventions. In agriculture, the conditions of labor in which had been materially changed for the better by the inventor's labors, the annual product had increased in value from $\$ 1,400,000,000$ in 1860 to $\$ 1,800,000,000$ in 1870 and $\$ 2,200,000,000$ in 1880 . It may be a surprise to some to note that the manufactured products of the country now excel in value the agricultural nearly two and a half times. Both these great productive interests increased in
value much more rapidjy than did the population of the value much more rapidly than did the population of the country, demonstrating a largely increased individual capacity of production, thanks wholly to the labors of inventors. In 1860 the population was $31,000,000$; it rose to $38,000,000$ in 1870, and to $51,000,000$ in 1880.
Meantime the aggregate wealth of the country increased from $\$ 16,000,000,000$ in 1860 to $\$ 30,000,000,000$ in 1870 and $\$ 43,000,000,000$ in 1880 ; all this in spite of the grievous lagacy of debt, depreciated credit, heavy taxation, and all the other evils incident to an exbaustive civil war.
Thus twenty years of unexampled progress were coincident with a period of unprecedented activity on the part of inventors. No one presumes to say that such progress was not desirable and beneficial, or that it could have existed or is likely to continue without a continuance of a like degree of activity on the part of those who more than any others make industrial progress possible.
Yet there seems to be in Congress a majority disposed to change all this by removing the great incentive to inventive effort, the hope of large reward through the inventor's absolute control of his invention for a term of years.
It seems to us that the country has not yet reached that stage of industrial pre-eminence and stability at which it can safely say to inventors, "There is no further need of your efforts," or "We cannot any longer afford to protect you in the ownership of your inventions."
Our example in the matter of liberality to inventors has set half the world at work along the same line of policy, looking to the development of useful arts and manufactures through increase of invention called out by guaranteeing to inventors some chance of profit from their labors. Everywhere (save in the House of Representatives) the tendency is to increase rather than lessen the inducements held out to inventors and introducers of new inventions; and other nations are not likely to take the back track if we do. Hither to the advantages of liberal patent laws have been on our side; reverse this condition of things, and how long will we be able to lead in the industrial race?
Curiously, those legislators who profess to be most anxious to extend and expand our foreign trade, to build up an American mercantile marine, and all that, are those very ones whose anti-patent tendencies would soonest make it impossible for Americans to command their home market, much less invade successfully the neutral markets of the world in competition with our increasingly inventive rivals. The last improvement in any article commands the trade; if we cease to make these improvements, or the majority of them, our hope of ever at
have nothing to rest
But a more immediate menace to our industrial prosperit
appears in those bills which take away the legal safeguards of the patent rights of those establisbments which contribute most of the five billion dollars annual product-a product that would in two years purchase all the farms of the United States at their assessed value. Deprived of the power to
defend in the courts their property against infringers, there defend in the courts their property against infringers, there
would be little to induce manufacturers to undertake the commercial development of a large part of the most widely useful of all new inventions; and millions of dollars now invested in the manufacture of specialties would be lost, or withdrawn for safer uses. To take from the patentee the absolute control of the manufacture and sale of the article patented would in many, perhaps most, cases forbid his making any effort to develop it, or prevent his getting financial assistance for such work; for who would run the risk of proving the utility of an invention and makirg a market for it when the control would be wrested from him as soon as his
done?
The experience of Cauada and other British colonies that hoped to enjoy " free trade in inventions," in other words get for nothing the inventions of other nations by allowing no patent rights for foreign inventions, is instructive here Naturally the plan failed. So long as foreign inventions were reefto all, no one cared or dared to bear the expense of introducing them; their manufacture began as soon as!protection was given to manufacturers under patent rights, insuring an absolute though temporary control of any new industry hey might establish.
Our manufacturing interests are too vast and too inti mately dependent on patent rights to endure a wanton disturbance of such security without national injury. Even the threat of such disturbance should call out protests from every honest manufacturer.

THE FEBRUARY FLOODS

At Wheeling, Pittsburg, and Cincinnati, great damage has been done this year by the rapid and great rise of the Ohio River and its tributaries. The snow fall had been high, while a good deal of rain has faller course, made rushing torrents of all the feeders of the Ohio which rise in the elevated portions of Western New York, Pennsylvania, and Virginia. Nearly every year floods similarly caused do more or less damage, but last season's loss was so great on this account, that most people will be surprised that such great disaster could be inflicted in two following years. Last year the water in the Ohio at Cincinnati reached a depth of 66 feet; on the evening of Feb. 8, it had reached 63 feet, and gave promise of reaching the extent of ast year's flood. Large numbers of people were compelled to leave their homes, most of the railroad communications of the city were interrupted, and there was great damage to property, although there appears to have been no loss of life.
At Wheeling one-half of the city was submerged, men, women, and children having to be removed from their houses by small boats stopping at the windows. About the railway stations only the stacks of the locomotives wer to be seen, and numbers of factories were inundated.
At Pittsburg a large portion of the business part of the city was flooded. Between five and six thousand buildings were flooded, including the homes of 25,000 people.
Besides these principal losses there was much damage done at many smaller places on the Allegheny, Monongahela, and lesser streams, as well as on the Ohio; but the principal disasters have been on the Ohio and its tributaries

A REMARKABLE PHENOMENON SEEN AT SULPHUR

 SPRINGS, OHIO.A correspondent in Sulphur Springs, Ohio, refers to THe Scientific American of the 19th of January, which cou tained an account of a remarkable phenomenon seen in Porto Rico on the 21st of November. He also describes a wonder of the sky seen about that time in Sulphur Springs, though ie is not certain as to the exact date. The phe
witnessed by several observers besides himself.
The object was seen in the southwest in a vertical posi tion. It consisted of a bright nucleus in the center with two tails, one pointing downward and the other upward. The nucleus, observed in a four-inch refracting telescope, under a power of 20 , was ruddy in color and quite bright. Our correspondent incloses a sketch, giving the general view as it appeared to the naked eye, though the nucleus is repre sen ted as it was seen in the telescope.
We can give no explanation of this strange phenomenon. It was not a comet, or it would have been visible all over the northern world. Its conical form suggests the zodiacal light, and this soft, faint column of light has already been ob served and described as unusually brilliant, as well as in advance of its usual period of visibility. It is seldom seen in this latitude until February and March.
The zodiacal light is a lens-shaped appendage of a mysterious nature surrounding the sun and extending a little be yond the earth's orbit. As seen from this planet, it extends upward from the sunset point nearly in a line with the ecliptic, or sun's path, reaching to a point in the heaven near the Pleiades, but has no appearance of a nucleus.
In the tropics the zodiacal light is almost constantly visible, and is sometimes sufficiently luminous to cause sensible glow in the opposite quarter of the heavens. It is of a ruddy hue, especially at the base, where it is brightest, and puts out the light of the small stars. Sometimes un and puts out the light of the small'stars. Sometimes un
dulations and flashes mingle with its soft, nebulous light.

We are, however, inclined to think that the celestial henomena observed at Hamacas, in Porto Rico, and at Sulphur Springs, in Ohio, are connected in some unaccount ble way with the superb afterglows that have formed a delightful feature of the season. Flashing lights, flaming banners, varied and fantastic cloud-forms, and every imaginable tint of color have diversified the sky, and made the winter of 1883-84 one long to be remembered for its briliant sunsets and sunrises. The phenomenon is ascribed to the presence of volcanic dust, meteoric dust, or moisture. We may never discover the cause of the gorgeous illuminaion thathas surrounded the path of the setting and the rising un, but it will be long before we shall cease to remember its esult.

PATENT OFFICE WORK OF 1883.

The Hon. Benjamin Butterworth, Commissioner of Pa tents, submitted his annual report to. Congress Jan. 29. From it we learn that the total receipts of the office for the ear 1883 were $\$ 1,146,240$, and the expenses $\$ 675,234$. There was in the Treasury to the credit of the Patent Office, at the commencement of the year, $\$ 2,205,471$; and adding he excess of receipts over expenditures for the twelve months, this fund amounted, on the 1st of January last, to $\$ 2,676,476$.
The total number of applications relating to patents was 34,576 , of which 33,073 were for inventions, 1,238 for designs, and 265 for reissues. There were 2,741 caveats filed, 915 applications for registry of trade-marks, 834 for registry of labels, 18 disclaimers, and 640 appeals, making a total of 39,724 cases for investigation and action.
The number of patents issued in 1883, including designs, was 22,216 , and there were 167 reissues, or a total of 22,383 , against 19,267 patents and reissues in 1882 , and 16,584 in 1881. There were also 902 trade-marks registered in 1883, and 906 labels, while 8,874 patents expired, and 2,366 were withheld for non-payment of the final fee.
New York State received the largest number of patents, 4,359, Massachusetts following with 2,173, and Pennsylvania with 2,168 ; then come Illinois with 1,792 ; Ohio, 1,604 ; Consecticut, 883; Michigan, 727; Indiana, 712; Missouri, 625; California, 596; Iowa, 445; Wisconsin, 394; Rhode Island, 327; and Minnesota, 310. Tbe United States Army is credited with 6 and the Navy with 3 patents. According to population, the District of Columbia received one patent n the average for 318 inhabitants, Massachusetts one for 320, Connecticut one for 705, and Rhode Island one for 845 , the fewest patents in proportion to population being issued to Mississippi, which received one for an average of 22,188 . The patents issued to citizeus of foreign countries numbered 1,259 , or 124 more than were so issued in 1882. Engand takes the lead with 435 , followed by Canada with 251, Germany 235, France 179, Austria 33, Switzerland 22, and Belgium 20.
The Commissioner closes his report by directing attention to the inadequate room allowed for conducting the great and steadily growing business of the Patent Bureau, the insufficient force, and the necessity for paying better salaries to command a higher grade of talent in the examining corps. Similar views were expressed by Commissioner Marble last year, but they were unheeded, and the growth of the business now invests them with added force. I is not as though the cost of such additional help and improved service were to be made at the expense of the tax payers, for the funds therefor bave already been accumuiated from the fees paid by pateutees, and it is no more than justice that sufficient should be appropriated from the receipts to insure the best possible administration of the business of the office.

Removing Stains from Cotton or Linen Goods, Curtains, etc.

Grease spots are best removed by soap; stains from oil colors, as a rule, do not resist the action of a mixture of soap and caustic potash. If spots of tar or axle grease are unaffected by soap, they will usually yield to the solvent action of benzine (so-called), ordinary ether, or of butter, which may afterward be removed with soap and water. For ink stains, dilute hydrochloric acid, which must subsequently be carefully washed out, will generally be found effectual. For the same purpose oxalic acid or salts of sorrel (hydrogen potassium oxalate) may also be employed, and that most economically, in fine powder to be sprinkled over the stains and moistened with boiling water.
The action of these solvents may be hastened by gently rubbing, or still better, by placing the stained portion of the fabric in contact with metallic tin. If there is much iron ust to be removed, dyer's tin salt (stannous chloride) will perform the work at less expense than the oxalic acid compound. Another solvent for such stains consists of a mixture of two parts argol with one part powdered alum,
Bilberry stains usually yield to the stains of burning sulphur. Stains caused by red wine, white wine, and fruit juices in general are treated successfully with salts of sorrel or with solution of hypochlorite of soda. The latter especially must be carefully removed when the ends have been attained.
Another well-tried plan, when space is available, is to spread the stained fabric on the ground in the open air, smear the spots with soap, and sprinkle ground potash or common salt upon them. Water is added and replaced when lost by evaporation. After two or three hours' exposure the whole fabric may be washed, and will be usually freed from its stains.-Industrial Record.

DEVICE FOR LUBRICATING WHEELS AND PULLEYS
The lubricating hub herewith illustrated is designed for loose wheels and pulleys of different kinds, including car, wagon, or carriage wheels running loosely upon their axles. The hub portion of the pulley, shown in cross section in Fig. 2 and in longitudinal section in Fig. 3, is made with the usual oil receptacle or chamber extending around the interior of the hub and in open communication with the bore. Ordinarily the oil is introduced through a simple radial hole in the hub, so that when the wheel is rotated or left standing with the hole in a downward position much oi escapes. In the case of loose running wheels of cars used in mines it is seldom that the hole in each hub will be in such a position that oil can be poured in, and consequently the car has to be moved in order to bring the holes into pro per position.

The waste thus caused is, to a large extent, at least, avoided by inserting or casting in the hub a tube, in open communication with the exterior of the hub and arranged to project within the chamber to the full extent of its depth, so that its inner end is in line with the walls of the bore. By means of this tubular feeding projection within the chamber the oil, when once put in, is prevented from escaping by any way except that which serves to lubricate the axle. Made in accordance with this plan it does not matter in what position the wheel is allowed to stand, since the oil cannot find a passage to the inner opening of the tube. This is shown clearly in Fig. 2, in which the tube is directly beneath the axle.
This invention bas been patented by Mr. William P Daniell, of Girardville, Penn.

High Buildings in Cities.

Old fashioned people, as well as some who cannot claim that designation, are not generally disposed to look with approval on the increasing number of high office buildings and residence flats in all our large cities. Perhaps most of the dangers from fire, in nine, ten, and eleven story structures, are removed by the exclusive use of brick, stone, and iron, not only for walls and staircases, but for ceilings and partitions. But, even if this be so, there is yet room for the conviction that many apartments are so filled with furniture and other combustibles that it would require no strange occurrence of circumstances to convert one of these great structures into a vast smoke house, where suffocation might be as fatal to many as the flames have frequently been in other cases. Besides, there are many who doubt that all of these said-to-be fireproof structures would really be so if put to a severe test.
Of much greater importance, probably, than the above considerations are the hygienic
questions involved in the building of so many of these great apartment houses. Dr S. Oakley Vauderpoel, in a recent paper read before the Medical Society of New York, says that in them it would be impossible to properly isolate the sick in the case of a general epidemic; that either through necessary attendance, contaminated clothing, or currents of air, the epidemic poison would be carried to all occupants. The air sbafts from the bottom to the top, into which open windows from each floor, make facile means of distributing poisoned air, which any defect in plumbing or accident in the water or soil pipes might give rise to. It is also pointed out that such structures have a baneful effect in shutting out sunshine
from the streets and from surrounding bouses, so that private dwellings before cheerful and healthy become gloomy and unhealthy.
In striking contrast with these conditions in house building here, we note the subject of a paper recently read by Mr. John Honeyman, before the Sanitary Institute, Glasgow, Scotland. There, it seems, it is proposed, in a police bill draughted by the Corporation of Glasgow, that on land bounded by a new street forty feet wide, dwellings shall not be more than two stories high. In this case it is supposed the tenements will be in stories of ten feet high each, but the writer argues, with a detail which seems quite superfluous to us here, in favor of allowing the buildings on a street of that width to be four stories high, each story of eight feet, claiming that such a building is not too high where land is valuable, and that rooms eight feet high will ordinarily be as well ventilated as those ten feet high. This, in deed, seems like flying from one extreme to the other.

Bellows for lnsect Powder and Liquids.
It is now well known that emulsions of kerosene are our best insect exterminators. Persian insect powder (the ground leaves of certain Pyrethrums), hellebore, sulpbur, ete., are also valuable. But their application has bitherto been laborious and uncertain. Two years ago we began to use several kinds of bellows known as the Woodaston bellows, for sale by most seedsmen. They are made in different sizes, costing from one dollar upward-one set for the use of powders, the other for liquids. The latter are constructed on the plan of the little "evaporizers" sold by druggists, except that instead of pressing a little rubber bag to induce the spray, we use the handles of the bellows, the same as if " blowing the fire."
Previous to their use we had poured kerosene upon the perches, in the cracks and nests of our hen houses to rid them of vermin. Now we use the bellows, and the spray reaches every crevice and hole, while one-tenth the quantity sepves and the operation is performed far more effectually in one-tenth the time. These bellows will project a fine spray for six feet, so that vines, small trees, or plants infested with aphides, bark lice, or insects of any kind may readily be reached. The powder bellows serve just as well for sulphur, hellebore, Paris green, and the like, as the spray bellows do for liquids, and we commend their use to all of our readers who are obliged to fight insect foes, whether in the hennery, kitchen, conservatory, garden, or field.-Rural New-Yorker.

A CANADIAN SNOW PLOW

We in England know comparatively little of the inconveniences of winter, and although we hear occasionally of a rain being snowed up in the North, the occurrence is so are that it is chronicled in the journals as an instance of unduly severe weather. Across the Atlantic, however, in the northern portion of the United States and in Canada, the winter is so long and severe-this week the thermometer marked 48 degrees below zero in Dakota-that the railway authorities have to make great preparations for the safety of their traffic. Not only are bridges roofed over to prevent the accumulation of a mass of snow which might eventually break down the structure, but large steam plows are

A SNOW PLOW ON THE GRAND TRUNK RAILWAY, CANADA.

MECHANICAL MOVEMENT.

The device herewith illustrated consists of a pair of toothed wheels geared logether, and so arranged that continucus rotary motion is communicated to the wheels, one pawl acting on one of them when the lever moves in one direction and another pawl acting on the other wheel when the lever moves the other way, the wheels thus driving in the same direction, but turning in opposite directions. On a suitable frame, C, are geared two spur-toothed wheels, A B. Pawl levers, D, are set so as to, act on the teeth of the wheels for driving them in opposite directions. The pawls are formed on the ends of short rods, E_{1}, that are fitted to the sockets, F , of the pawl levers for being worked by them, and they rise and fall in the sockets in order to pass over and drop into the teeth for working the wheels, the springs, G, forcing them down. The pawl levers, D, are connected to a working bar, H , which is to be reciprocated by power applied

kubec's mechanical movement.

to it in any approved way. A lever, L, may be pivoted to the frame, C, and have one arm, K, worked by hand, and the other by the feet. One or both of the pawl levers may bave an arm, M, by which the power may be applied by hand, the lever, L, being dispensed with. The pawls are convected to trip levers, N , by which they may be raised out of contact with the wheels, when it may be required, to permit the working lever to be shifted to a more favorable point for starting the machine. The trip levers are connected to a rod, O , worked by a hand lever, P , on the power lever, when it may be worked at the same time that the hands are employed on the power lever, the hand lever being connected to any one of the trip levers by a rod, U. The power may be transmitted from the wheels, A B, by a pinion, Q.
An important feature of the device is that power may be applied by long or short strokes which may be varied within a considerable range, according to the number of teeth the pawls may be made to take at each operation. The leverage of the transmitting gear may thereby be varied, according as the work is light or heavy. This invention has been patented by Mr. Frederick Kubec, of Riverside, Iowa.

Church Fires.

The Chronicle states that nearly eight hundred churches-an average of about eight per monthhave been destroyed by fire in the United States in the past nine years. According to the fire yeables of the aboved named tables of the aboved named journal, there were one hundred
and nineteen churches destroyed and nineteen churches destroyed
during the year 1882, at a loss of $\$ 672,170$, and a loss to insurance companies of $\$ 312,280$. Among the principal causes ascribed for these fires are defective flues and heating apparatus and incendiarism. The incendiary is no respecter of buildings, and not only bears his flaming torch through the thoroughfares of our large cities, but also appears at intervals in our smaller cities and ob-
constructed, which, propelled by several locomotives, are capable of penetrating and clearing away huge quantities of snow from the line, through which no locomotive unaided could possibly force its way by itself. Many of the locomotives are fitted, in event of emergency, with small suow plows of sheet iron, sharp edged and backed with stout timbers. These, however, frequently prove insuffi cient, and passengers have to turn out of the carriages to assist in shoveling the snow off the line. The plow in our engraving, however, is a far more serviceable apparatus and with good steam power behind it can clear away a great depth of snow off the track. - London Graphic.
scure country towns. Churches, and particularly those located in country towns, are too often built of the cheapest and weakest material, and present strong temptations to the inherent lovers of fires and easy prey to the fire fiend. Church societies owe it to themselves to pay more attention to the building of their edifices as well as to the prevention of fire.

The will of the late Sir William Siemens covered personal estate of the value of $£ 382,000$. The testator makes provision by his will for the carrying on, under the same management as during his lifetime, of his civil engineering business, including his patented inventions.

Electric Lighting by Primary Batteries.

We have no wish to discourage inventors of primary batteries, but, on the contrary, we would urge them to renewed exertion, for there is a large and we believe remunerative field before them. But let them not spend their time in at tempting impossibilities, or in writing treatises to demonstrate facts which were published thirty years ago with much greater minuteness and accuracy. It is not the cost of the zinc which has hitherto prevented the use of batteries, but the expense of the liquids, which generally increases as that of the zinc diminishes, their acid nature and unpleasant fumes, and, above all, the unmechanical construction of the cells and the difficulties caused by corrosion, creeping, leakage, and the like. A battery which was free of these objections would have an extensive sale for electric lighting.
The reason that isolated installations increase so slowly is the prejudice people feel to introducing gas or steam engines, with their attendants, on to their premises, far more than on account of their cost, and if these could be replaced by a series of boxes which would only need skilled attendance once in three months (say), we shouid find a rapid increase in electric lighting, even if the cost were double or threefold that of gas in large towns.-Engineering.

"PERCENTOGRAPH."

The device shown in the accompanying engraving is for reducing common fractions to decimals, and is particularly designed to be used by railroad and other transportation companies for determining percentages and proportions in dividing rates, revenues, or expenses on the basis of mileage; but the uses to which it may be put are extensive, as will be readily seen from the description.
A stationary triangle, A , has a percentage scale, B , arranged along its hypothenuse; a similar triangle, C, is fitted to slide in the fixed triangle, and is likewise furnished with a scale, D, on its hypothenuse, which represents a series of numbers the percentages of which are to be ascertained. The numbers in the scales, B and D, increase from the right upward to the left, the former extending from 0 to 100 and the latter from 0 to 1,000 , or from 0 to any number higher than 1,000 according to the value given to the graduations; thus, if each graduation is made to count 2 instead of 1 , the scale D will indicate 2,000 as the highest number. In the engraving the scale D is marked off to indicate both 1,000 and 2,000 at the end, two sets of numbers being used, one double the other, to mark the graduations. When the scale D is moved against the scale B the graduations will exactly register with each other, and the percentage numbers will correspond with the numbers whose percentage of 1,000 or 2,000 they represent. The base of the movable triangle is provided with a slot, E , and a set screw by means of which it may be adjusted and held in any given position.
The vertical side of the stationary triangle is provided with a stretched cord, G, or equivalent device, which serves as a marker on the scale D. Tbis cord is connected to set screws, H I, and is arranged at right angles to the base of the triangle. A second cord, K , is attached to a collar loosely mounted on the pin, I, and its other end is attached by a set screw, O, to a slide that moves on a segmental bar, Q, the circle of which is drawn from the pin, I. This cord is used to mark the percentage on the scale, B , and also to wark the numbers on both scales.
If it be desired to ascertain the relative proportion of railroad lines, in interest aggregating say 1,400 miles, move the scale D until 1,400 intersects cord G on its upper edge, then tighten set screw. The cord K is then moved until it intersects the number of miles of road forming a part of the $1,400 \mathrm{miles}$, when the relative proportion will be indicated on the stationary scale, B. Thus, if cord K be moved until it intersects 490 miles, the scale B will indicate 35 per cent, and remaining distance, 910 miles, in proportion, forming the total 100 per cent. From this it is obvious that the percentage which any part of 1,400 bears to the whole will be indicated on the scale B by moving the cord K to the number of miles required (of the 1,400).
In many instances there are roads which from their position demand an arbitrary proportion, and will not prorate on mileage basis. The percentograph provides for this emergency. For instance, if line Springfield, Mass., to New York demand 20 per cent of any rate on business to Petersburg, Va., thus leaving 80 per cent for lines New York to Petersburg, Va., move the cord K until it intersects 80 per cent on the scale \mathbf{B}, then move scale \mathbf{D} until 388 miles intersects cord K (distance N. Y. to Petersburg, Va.), then move cord K until it intersects 98 miles (N. Y. to Philadelphia), and scale B will show $20 \cdot 2$ per cent; and so on each road its proper proportion of the 80 per cent, as indicated.
Further information may be obtained from the patentee, Mr. S. J. Tucker, of Richmond, Va., or from Mr. M. S. Foote, of same place.

The relative efficiency of electricity, gas, and oil, for use in lighthouses, is being tested in England, where the Trinity Board has selected certain ranges about three miles inland from the South Foreland lighthouse as lines of observation, along which measurements are to be made. These experi ments are expected to last several months.

FIRE ESCAPE

A frame made of iron or steel bars is pivoted to eyebolts, B, projecting from the wall of the building such a distance below the window that when the frame is held against the wall its outer edge will be below the sill, as shown in Fig. 2. Strong wire netting is secured to the frame, whose outer end is curved upward. Chains, D, are secured to the outer corners of the frame and to the wall or window frame, to hold the frame in a horizontal position when lowered. A brace rod, E , pivoted to the middle of the outer edge of the frame, rests on a projection, \mathbf{F}, of the wall. Secured to the frame is a chain or rope ladder, G, which is folded and held within the frame when the latter is not in use. When the frame is swung down the ladder will unfold and the free end will pass down to the ground, or to a like fire escape at the

EYL'S FIRE ESCAPE.

next window below. Persons fleeing from the fire step on the balcony formed by the frame and netting, and then de scend by means of the ladder. Fig. 1 is a perspective view, showing the escape in position to be used, and Fig. 2 is a wall.

$$
\mathrm{T}
$$ wal

This invention has been patented by Mr. Emil C. Eyl, of Jefferson City, Montana.

Inventions of a Half Century.

The number of inventions that have been made during the past fifty years is unprecedented in the history of the world. Inventions of benefit to the human race have been made in all ages since man was created ; but looking back for half a hundred years, how many more are crowded int the past fifty than into any other fifty since recorded bis tory! The perfection of the locomotive, and the now world-traversing steamship, the telegraph, the telephone, the audiphone, the sewing machine, the photograph, chromolithographic printing, the cylinder printing press, the ele-

TUCKER'S "PERCENTOGRAPH."

vator for hotels and other many storied buildings, the cotton gin and the spinning jenny, the reaper and mower, the steam thrasher, the steam fire engine, the improved process for making steel, the application of chloroform and ether to destroy sensibility in painful surgery cases, and so on through a long catalogue. Nor are we yet dove in the field of invention and discovery. The application of coal gas and petroleum to heating and cooking operations seems to be only trembling on the verge of general adoption; the introductiou of steam from a great central reservoir to general use for heating and cooking has been in part a success; the navigation of the air by some device akin to our presen balloon would also seem to be prefigured, and the propul- engine
sion of machivery by electricity is even now clearly indi cated by the march of experiment.
'There are some problems we have hitherto deemed impossible, but are the mysteries of even the most improbable of them more subtle to grasp than that of the ocean cable or that of the photograph or telephone? We talk by cable with an ocean rolling between; we speak in our voices to friends a hundred miles or more from where we articulat before the microphone. Uuder the blazing sun of July we produce ice by chemical means, rivaling the most solid and crystalline production of nature. Our surgeons graft the skin from one person's arm to the face of another, and it adheres and becomes an integral portion of the body. We make a mile of white printing paper and send it on a spool that a perfecting printing press unwinds and prints, and delivers to you, folded and counted, many thousand pe hour. Of a verity this is the age of invention, nor has the world reached a stopping place yet."

Rotary and Reciprocating Steam Engines.

In a recent letter to the Tribune, Prof. R. H. Thurston, of the Stevens Institute of Technology, gives the following : It is assumed that the reciprocating engine is essentially defective; that the conversion of the reciprocating motion of the piston into the rotary motion of the crank and fly wheel involves, necessarily, some appreciable loss of power and efficiency; that the variation of speed of the reciprocating parts, from a state of rest at the "dead points" to maximum velocity at half stroke, must necessarily caus loss of power, increased wear and tear, and dangerous impact at high speed, and must thus restrict, to a very seriou extent, the development of greater power by the adoption of higher velocities of piston. It is these notions which have been the usual stimulus to inventors who have, during the past century, been endeavoring to produce rotary en gines capable of competing successfully with the always standard reciprocating machine. The patent records teem with such devices, many of them ingenious, more of them crude and unmechanical.
Rotary engines have usually proved to be wasteful in their use of steam, subject to rapid depreciation in power and efficiency, and to great loss of power by friction of working parts. Engineers are, therefore, likely to look with interest, and with a little surprise, upon a motor of this class which is not subject to these defects, even though it may not prove to be the superior of the best engines of he more common type
But the assumed objections to the reciprocating form of steam engine are, to a considerable extent, imaginary. The conversion of a reciprocating motion into rotation does not ecessarily involve loss of power, and need not, and in good engines does not, cause objectionable jar or injury of the working parts. The limit to the increase of speed of the modern "high-speed" engine is not set by the difficulties of the kind above described met with in its operation, but rather by the impossibility of carrying more than a certain amount of power through fast running machinery with ab solute certainty that lubrication may be secured, without interruption for an instant, day after day, indefinitely. The inertia of parts, which has been so generally assumed to be detrimental to the action of the machine, has an equilibrat ing effect with the irregularity of steam distribution due to the expansion of the steam; and this balance may be ad justed for speeds greatly exceeding even the highest attained by the most radical of the high-speed engine builders of the day. The rotary engine has not, thereifore, the advantage in this respect claimed for it in the past by many engineers as well as by non-professionals. It has, however, evident advantages which have been hitherto more than compensated by the appareut impossibility of securing that economical distribu tion of steam which is easily and satisfactorily oblained in the standard forms of engine, and by the failure of nearly every form of rotary, in competition with the reciprocating engine, when compared with respect to freedom from internal friction and leakage of steam past the piston. It is always safe for the layman, when asked to put his capital into rotary engines, to assume that the machine possesses these defects to a fatal extent, unless the contrary has been proved to be the case by careful tests made by engineers of known skill and integ. rity.
The engineer is, therefore, pleasantly surprised when he finds one of this class of engines doing good work, and be will be still more pleasantly surprised when he finds the difficulties which have hitherto been met, in the endeavor to secure good steam distribution, high economy, and perfect regulation, such as is seen in the best reciprocating engines, combined with the undeniable special advantages of the rotary engine.
'These latter impediments being overcome, the rotary will supersede the reciprocating engine, but I think not till then, except for very small powers. Our small reciprocating engines do not compare favorably with larger sizes, in respect either to economy, exactness of regulation, or power per pound of weight of machine. They are usually capable of great improvement, but a small machine of this class will probably never do as good work as a large one. For the present, at least, the best rotary engines
engines.

THE FLOATING STEAM FIRE ENGINES OF NEW YORK.

The immense value of the property lying along the imme diate river front of this city, comprising storehouses, docks, and vessels and their cargoes, and the impossibility of effectually guarding it against fire, because of its inaccessibility except from the shore side, made imperative the adoption of some means of protection from the water side. Several years ago the steam propelier $W \mathrm{~m}$. H. Havemeyer was equipped for the service, and, with steam constantly up manned by an efficient and well trained crew, has never delayed responding to an alarm. It is difficult to estimate the importance of the services rendered by a boat of this description in confining a fire to the locality in which it started, yet this is one of the most essential duties of the river branch of the department. But some idea of the work required may be formed from the fact that during the year 1883 this boat responded to 139 alarms. At the warehouse fire in East Street, which began January 14 last, the pumps were running full capacity for 3 days, and the boat was kept on duty for 19 days, during which she worked for 413 hours.
But the territory to be protected is large, and last year a second boat-the Zophar Mills-took its station on the river. This boat is larger than the Havemeyer, and furnished with more powerful machinery, yet the general plans of the two do not vary essentially. They look like large tugs.
The Havemeyer, shown on the left in our engraving, is 115 feet loug, is built of wood, and is provided with two double pumps of the Amoskeag patte:n, of 5 inches diameter by 12 inches stroke, so arranged as to be worked either combinedly or independently. There are eight streams, all or any of which may be used, arranged to deliver from either side of the boat. When working full capacity, the pumps will deliver 1,400 gallons of water per minute, which is about equal to five first-class fire engines.
The Zophar Mills has an iron hull, is 126 feet long, and has two pairs of duplex pumps $71 / 2$ inches by 9 inches, with steam cylinders $161 / 2$ inches diameter. These engines will throw 2,200 gallons per minute through eight pipes, and will throw a two-inch stream 300 feet.
Each boat has a boiler capacity in excess of that required for pumping, in order that she may be propelled at the same time her pumps are in operation. The speed is about 12 miles per hour. These boats have delivered a large stream through 1,000 feet of hose. The Havemeyer is kept at the Battery and the Zophar Mills at Thirteenth Street North River.
Our engraving vividly illustrates a fire where the services of these boats could not be replaced-a fire in mid-stream, and almost directly under the flooring of the great suspension bridge. On the morning of December 13, 1883, the double deck ferry boat Garden City, plying between James Slip, this city, and Long Island City, was discovered to be on fire just after she had left her pier on the up trip. The superstructure being light wood the flames spread rapidly, and the upper deck was enveloped before help arrived. Streams from several tugs which happened to be in the vicinity were turned upon ber, and the progress of the fire was considerably checked, but not until the arrival of the Havemeyer was there a sufficient supply of water to confine the fire with any degree of certainty. As soon as possible the boat was towed to the shore, where fire engines were waiting to lend their aid. As it was about noon there were but a few passengers on board, all of whom escaped without injury.
The small engraving represents the engine room of the Havemeyer.

Tree Planting.

So small would be the money outlay, so inconsiderable the labor required, to insure for the next generation a wealth of timber land equal to that of which we have the benefit, and shade and shelter trees in even more adequate supply that it is a great wonder to us, amid all the forcible facts brought forward against the rate at which forest destruc tion is going on, there has been no more general movement in favor of tree planting. In Germany and Austria, for upward of half a century, the number of trees planted has borne a good proportion to those annually cut down, and it is certain that this is the case now, year by year. In France, Italy, and England, also, tree cultivation is now general, and is held to be a most important matter of public concern. But here, with the characteristic improvidence which has come to be considered a marked feature of American character, we are destroying our great virgin forests with a rapidity never before equaled in any other country, and with out takiug any measures to insure their future growth.

Spurious Tartar Emetic.

M. Castelhaz has in a recent circular called the attention of consumers to the sophisticated, or rather spurious, samples of antimony potassium tartrate now in market. This compound is used on the large scale for fastening certain coal tar colors upon cotton, and being of course costly the attempt has been made to employ the corresponding oxalate as a substitute. The effects of this new salt both upon the fiber and upon the colors are not in all cases satisfactory, and its admixture with, or clandestine substitution for, the double tartrate is certaiuly a fraud. For its detection the following simple test is proposed: A portion of the sample is dissolved in distilled water, acidified with pure acetic acid, and a solution of calcium chloride is added. If an oxalate is present a white precipitate is formed, while in case of a genuine double tartrate the solution remains clear.

A writer in the North American Review gives the follow. ing list of inventions recently patented in the United States by women. But the writer has omitted from his list a large number of patents which have been granted to the fair sex, some of which have proved of considerable value to the patentees.
The writer commences his list with a spinning machine capable of running from 12 to 40 threads; a rotary loom doing three times the work of an ordinary loom; a chain elevator; screw crank for steamships; a fire escape; a wool feeder and weigher, one of the most delicate machines ever invented, and of incalculable benefit to every wool manufacturer; a portable reservoir for use in case of fire; a pro cess for burning petroleum in place of wood and coal for steam generating purposes; an improvement in spark ar resters, to be applied to locomotives; a danger signal for treet crossings in railways; a plan for heating cars without fire; a lubricating felt for subduing friction (the last five all bearing upon railroad travel); syllable type, with adjustable cases and apparatus; machive for trimming pamphlets; writing machine; signal rocket used in the navy; deep sea elescope; method of deadening sound on elevated railways; smoke burner; bag folding machine, etc. Many improvements in sewing machines have been made by women-as, a device for sewing sails and heavy cloth; quilting attach ments; the magic ruffer; threading a machine when it is unning; an adaptation of machines for sewing leather, etc This last was the invention of a practical woman machinist, who for many years carried on a large harness manufactory in New York city. The deep sea telescope, invented by Mrs. Mather and improved by her daughter, is a unique and mportant invention, bringing the bottom of the largest ships to view without the expense of raising them into a dry dock. By its means wrecks can be inspected, obstructions o navigation removed, torpedoes successfully sought for, and immense sums annually saved to the marine service. A machine which, for its complicated mechanism and extraor dinary ingenuity, has attracted much attention both in this country and Europe, is that for the manufacture of satchelbottom paper bags. Many men of mechanical genius long directed their attention to this problem without success. Miss Maggie Knight, to whose genius this marhine is due, it is said refused $\$ 50,000$ for it shortly after taking out her patent. Miss Knight has since invented a machine doing the work, the writer says, of 30 persons in folding bags, and herself superintended the erection of the machinery at Amherst, Mass.

An Electric Microscope.

A number of gentlemen lately assembled at the exhibition court of the Crystal Palace, by invitation of the diectors, to witness the first representation in England of Les Invisibles, an exhibition of natural objects magnified and displayed by means of the great electric microscope. The apparatus used in the exhibition is the invention of Messrs. Bauer \& Co., and Les Invisibles has quite recently attracted a good many visitors to the old Comedie Parisienne, where, as well as at the Athenæum at Nice, a series of representa tions has been given. The invention may be described in a few words as being the application of electric light to the microscope, and the result, so far as the spectacle is concerned, is a sort of improved and enlarged magic lantern. Every one is familiar with the former exhibitions at the Polytechnic and elsewhere of the animalcules in a drop of water, magnified and thrown, by the aid of the lime light, on to a white screen. Precisely the same sort of effect was produced on Saturday by Mr. F. Link, the London agent for Messrs. Bauer \& Co., with this difference, that the magnifying power was enormously in excess of that attained in the old magic lantern entertainments. The electric microscope has, in fact, made it possible to exbibit in a most attractive form the appearances presented by minute natural objects when placed under the most powerful magnifying glass. Indeed, the difflculty with which Mr. Link bad to contend on Saturday was the smallness of the screen upon which his pictures were thrown. For instance, only a small section of a butterfly's wing could be shown at a time, although the screen was as large as the size of the entertainment court would permit, while the living organisms in a spot of water and the mites in a small piece of cheese were enlarged until they presented a perfectly appalling spectacle to a timid mind. The capabilities of the apparatus may be imagined from the fact that the eye of a fly was presented in a form no less than four million times its natural size. The electric microscope, which is worked by an ordinary primary battery, may be said to have extended almost indefinitely the possibilities of presenting in an attractive and instructive manner the wonderful facts of natural science.

Death of Dr. Elisha Harris.

Dr. Harris, the Secretary of the New York State Board of Health, aged 60 years, died in Albany, January 31, from peritonitis. In 1855, he was placed in charge of the New York quarantine, the details of whose system he perfected, establishing in 1857 the floating hospital helow the Narrows.
During the Civil War he was a member of the National San During the Civil War he was a member of the National San
tary Commission, and devised the railway ambulance, afte ward adopted in the German army. Dr. Harrishas been co spicuously active as a member of the city and State Boar of Health, and in 1869 took a leading part in making the fi thorough tenement house sanitary survey in New York city
over 50,000 windows were put in according to his suggestions. He was also very active in establishing the system of public vaccinatiou. Dr. Harris was identified with the Association for Improving the Condition of the Poor, and was a member of the County Medical Society, the New York Academy of Medicine, the Physicians' Mutual Aid Association, the Society for the Relief of Orphans and Widows of Medical Men, the Medical Journal Association, and the Public Health Association of New York. He was also an active or honorary member of various other associations and societies in this country and Europe. He was consulting physician to the country branch of the Nursery and Cbild's Hospital. He was a voluminous writer of works on sanitary and philanthropic subjects and also on questions relating to vital statistics.

Milk Diet in Bright's Disease.

Since we know not at present any drug that possesses therapeutic value to any marked extent in this terrible and fatal disease, and since it is daily making sad havoc among human beings, and principally among that class who, by reason of their valuable public labors, are particularly necessary to the welfare of the world, therefore, it becomes a medical question of paramount interest that we should discover some potent method of combating this very prevalent disease. Some years since Carel first called attention to the treatment of Bright's disease by the use of a milk diet, and since then Duncan, as well as many other prominent physicians, has written on this subject.

We have ourselves seen some remarkable results follow this treatment, while Dr. S. Weir Mitchell, of our city, is now quite an enthusiast on this subject. This method of treating a formidable disease has received sufficient distinguished indorsement to recommend it seriously to our notice. We would, therefore, ask all physicians who read this article to try this method of treatment and to furnish us with their experiences, which we will publish. The milk is used thoroughly skimmed and entirely freed from butt r. To procure the best results, it has been advised that the patient shall restrict himself absolutely to milk and continue the treatment for a long time. If it disagrees with the stomach (as it will in some cases), Dr. Mitchell advises that the patient be put to bed and the treatment commenced with tablespoonful doses, to which lime water is added, until the stomach tolerates the milk, when from eight to ten pints daily should be taken, and absolutely nothing else. The sanction of such a distinguished physician as Dr. Mitchell forces us to seriously consider the merits of this treatment, and we trust to receive the experience of all readers of this journal who may have cases of Bright's disease to treat.Med. and Surg. Reporter.

Built Up Wood.

Several thin sheets of wood-they are called veneers, though they are sometimes an eighth of an inch thick-are glued one upon another, with the grain of each sheet cross. ing the grain of the sheet next above or below it at right angles; and, when the whole complex fabric has lost all power of resistance through being almost saturated with steaming glue, it is pressed into an almost homogeneous board without any cleavage whatever, and so without possibility of splitting. Every sort of wood, of course, can be built up. The inside layers can be cheap and the outside choice. No matter whether or not the different sheets naturally swell and shrink evenly together. They are too thin to exert much force. Their separate identities are lost in the common and overmastering union. The advantages of economy, strength in every direction, and immunity from cracking are enough to give the fabric the readiest possible acceptance for whatever uses it may be adapted. It is already in use for broad, flat surfaces in cabinet work, especially where strength or permanence is wanted. It already competes with canvas for the use of artists, and with binders' board for book covers. Its availability for any purpose appears to be a matter of expense and skillnever of quality. That it will be adapted to many uses not now thought of is as sure as the inventive fertility of our mechanics.

Weighing Silver Dollars.
In the mint at San Francisco there are fifty women em ployed at a salary of $\$ 2.75$ per day. The bours are from nine o'clock in the morning until four in the afternoon, with the exception of Saturday, when work ends at two. Their business is to weigh the gold and silver after it bas been rolled, annealed, cut, and washed, and they are known as adjusters. Each piece should weigh $4121 / 2$ grains for a silver dollar to be up to the standard, a slight discrepancy being allowed on either side. If a coin is found to be out side the limit, it is returned by the adjuster; if too light, it is condemned, and must be remelted; if too heavy, it is filed to its proper weight.

The Reis Telephone of 1864.

Mr. H. F. Peter is a teacher of music in the village of Friedrichsdorf, Germany, which was for many years the home of Philipp Reis, and which contains the Garnier In stitute, where he was instructor in physics. Herr Peter states that he was present at Reis' experiments, and can testify that audible speech was actually reproduced by his telephone. He says that many members of the "Physi kalischer Verein," of Frankfort-on-the-Main, were als present.

Currepmadexte

The Life Line Mortar for Ships.

Tö the Editor of the Scientific American:
In your Feb. 2, 1884, number, "Life Saving Appliances at Sea," I was very much impressed with the idea you brought out of how impotent the saving appliances are in a heavy sea.
It appears to me, that the first piece of apparatus a vessel should possess would be a mortar for throwing life lines; it could always be loaded, fuse, hammer, cap, and line attached, and ready to be fired in a few seconds.
All the life saving stations are equipped with a mortar, and are found to be of great use. It would be so much easier and sure to throw a line to the shore than from the shore to vessel.
If a wreck occurred at some distance from a station, a line could be thrown from the vessel and passengers landed before the apparatus could be brought from the station.
Equally important, at sea, to make connection between could not live.
A. S. P. could not live
Paterson, N. J., Feb. 4, 1884.

${ }^{66}$ Pneumatic Propulsion " Revised

To the Editor of the Scientific American :
In your paper of February 2 Mr . Henderson takes me to task for my "erroncous ideas as to the action of the air on the water." Now, I am very ready to acknowledge my errors, but I am also very ready to stand up for the right, and, inasmuch as your correspondent did not succeed in striking one of my manifold delinquencies, but took that which was just the reverse, he was not successful in his criticism.
He says "the air on escaping from the nozzle would pass along between the keels in a solid body," and in this way the friction caused by the air, "instead of assisting to propel the boat forward, would be retarding its progress." At that rate all I have to do is to turn the nozzle forward and try to drive the boat astern, and away she goes ahead, which was the very thing we were trying to do. I had not thought of that.
But, in simple fact, the whole operation is very different. When the jet from the pipe strikes the water its force is ex pended upon the mass of the water, which is practically a fixed body, and as action and reaction are equal, and the boat movable, the latter is driven forward on her course. She passes over the expelled air, but it is air at rest, for all its force has been expended upon the water and it simply stops. The difference in the friction of the boat against thi air and the adjacent water will be in favor of the air, though it will be very slight.-Try again. There is abuudant room for criticism, but it needs to come in a different line.

Exhibition of American Machinery in Corea.

To the Editor of the Scientific American:

Your numerous readers will no doubt remember the late visit to Washington, New York, and Boston, of H. E. Min-Yong-Ik, the Corean Minister. He has just sailed from Marseilles, in the United States steamer Trenton, via Suez Canal, for his home in the far East, after a short visit to Paris and London, upon special invitation of our Govern ment, through the courtesy of the President.

As the special envoy and representative of the Tah Chosun Government, and president of the agricultural depart ment, his excellency takes a deep interest in the exbibition or museum being formed in Seoul, the capital of Corea.
In connection with this exhibition will be established an agricultural park for the practical display of the various descriptions of farming, mining, and geological implements, machinery, etc.
Before his departure from this country, the minister desired that I should take steps to make known to our manu facturers and business firms generally the desire of his government to have exhibits sent out, of such goods as may be adapted to the wants of an Oriental people, largely dependent upon agricultural and mechanical pursuits for their daily living. Up to the present time there has been no favorable opportunity of shipping to Shanghai and Corea by steam. The new American steamer San Pablo, to leave New York about the 25th of Feb. for Shanghai direct, via Suez Canal, offers a very favorable chance to intending shippers, both as regards time and reasonable rates of freight. The San Pablo should arrive at Shanghai about the 10th of May, and the goods should reach Corea about the 1st of June.
At Shanghai the steamers of the China Merchants'Steam ship Company, leaving every few weeks direct for In-chun, the seaport of Seoul, will take these exhibits; and, as I am informed by the State Department, the freight charges from Shanghai to Seoul will be borne by the Corean Government.
All exhibits will be catalogued in English and Chinese, having the names of contributors or manufacturers attached.
The Tah-Chosun Government should have the privilege of The Tah-Chosun Government should have the privilege of purchasing these exhibits, at the invoice prices,
poses of early introduction among its ow n people.
My firm at Shanghai-Frazar \& Company-will take charge of any goods, for transshipment to Corea, under instructions from shippers hel.e.
On behalf of H. E. the Corean Minister, I shall be pleas-
ed to give any further information in my power that may be required, to assist in the opening up of the future trade be tween Corea and the United States.

Yours faithfully, Everett Frazar.
73 South Street,
New York, Feb. 7, 1884

Boiling of Oxygen.

In a paper presented to the French Academy, M. S: Wroblewski refers to his experiments in the liquefaction of oxygen, and attempts to make use thereof as a refrigerating agent. This he found to be exceedingly difficult, owing to the necessity of using the liquefied oxygen in closed vessels of great strength, and the very short duration of the ebullition. By means of a thermo-electric method the author was able to get an approximate measurement of the temperature at which liquefied oxygen boils when the pressure is suddenly released, which is stated to be $-186^{\circ} \mathrm{C}$., or
$302 \cdot 8^{\circ} \mathrm{F}$. below zero. This is probably the lowest tempera$302 \cdot 8^{\circ} \mathrm{F}$. below ze
ture ever recorded.
The author subjected nitrogen, after being compressed, to the action of this extraordinary cold. When the nitrogen was then allowed to expand a little, it solidified, and fell like snow in large crystals.

Chaperon and Lalande's New Battery.

In this form of single fluid battery, oxide of copper and metallic zinc are subjected to the action of a solution of caustic potash. Its construction is thus described iṇ the Polytech nisches Notizblatt:
The oxide of copper is put in an open box of sheet iron which sits on the bottom of the glass jar, and to it is riveted a copper wire insulated with India rubber. This constitutes the positive pole of the battery. The negative pole consists of a half inch cylindrical bar of amalgamated zinc coiled into a spiral, and fastened to the lid so as to remain supended some distance above the box of oxide of copper. The upper portion of the zinc, where it rises to the lid, is covered with India rubber tubing, so that it may not bs in contact with the liquid. The exciting fluid consists of a solution of 30 or 40 parts of caustic potash in 100 parts of water. Potash is preferred to soda, although the latter is cheaper, owing to the tendency of soda to effloresce. To prevent absorption of carbonic acid from the air, the jar must be provided with a close fitting lid or cover.
A mong the advantages claimed are these, that the contact of the iron with the oxide of copper depolarizes the positive electrode. The reduced copper can be easily oxidized again by exposing it to damp air. If a current from a dynamo be passed through this battery in the opposite direction, the reduced copper will absorb oxygen, the dissolved zinc will be again reduced, and tien regenerated. The new element is said
to be very constant. One of these was used to ring a bell at the Vienna exhibition from beginning to end, with no other attention than the replacing of the evaporated water from time to time. A picture of the battery may be seen in the of the zinc pole is shown, but other forms will probably be found to answer as well.

Production of Iron and Steel.

The total production of pig iron in the United States in 1883 was $5,146,972$ net tons against 5,178,122 net tons for the previous year. The past year was one of low prices,
but of greatly reduced production. The American Iron but not of greatly reduced production. The American Iron
and Steel Association has received complete statistical reports from the companies owning the fifteen Bessemer steel works in operation in the United States in 1883, from which it is learned that the quantity of Bessemer steel ingots produced last y ear was $1,654,627$ net tons against $1,696,450$ tons in 1882. This is a much smaller decrease than has been generally supposed. It was, however, the first decrease that bas occurred in the history of the Bessemer steel industry in this country. The quantity of Bessemer steel rails produced in 1883 by fourteen of the works referred to (the other company not producing rails) was $1,253,925$ net tons
against $1,334,349$ tons produced in 1882 , showing a decrease against $1,334,349$ tons produced in 1882 , showing a decrease f 80,424 tons.
Great Britain's exports of iron and steel to the United States, in December last, show a falling off of 12,908 tons, as compared with similar exports in November. For the year 1883 there was a decrease of 506,929 tons as compared with similar exports to the United States in 1882, the exports being 688,187 tons for 1883 against 1,195,116 tons for 1882. Our imports of iron and steel in December were less than in any month since July, 1879.

Novel Thermometer.

The ordinary mercurial thermometer is, as is well known, based on the dilatation of bodies by the action of heat, and on the difference of dilatation between mercury and glass. A new thermometer, in which the mercury column sinks with a rise of temperature, has, moreover, been introduced by M. D. Latschinoff, who has based his instrument on the discovery of Koblrausch that the coefficient of dilatation of ebonite is greater than that of mercury. Latschinoff has made the reservoir of his thermometer of ebonite, and the result is that the level of the mercury falls in it when the temperature rises, and, on the contrary, rises when the tem perature falls. A rise of 20 degrees ,Cent. lowers the mer cury 25 millimeters.

Micro-Organisms and Disease.

The public generally was not a little surprised when, something over two years ago, a German professor announced that he had made such progress in the microscopical examination and cultivation of different forms of bacilli and bacteria as to lead to the hope that thereby a means might be found of checking consumption, typhoid fever, and many other diseases, when established, or for their prevention, as small-pox is so largely preventable by vaccination. Since that time European savants have been yet more diligently following up this line of investigation; many different forms of micro-organisms have been successfully cultivated and made to assume widely different variations, so that one which was a virulent poison in one form, for a particular organization, might be innocuous to another, and vice versa. The end sought in these investigations is to so trace the immediate causes and propagators of all diseases as to materially aid in their prevention and cure, the theory being that inoculation with a mild type of micro-organism of a certain disease will overcome the more micro-organism of a certain disease will overcome the
virulent, and thus prevent danger from that disease.
The knowledge thus obtained has thus far, also, been of almost incalculable benefit in the treatment of all diseases, especially those of a contagious nature. It was to enlarge our information in this field that distinguished French and German scientists visited Egypt during the cholera of last summer; freely endangering their lives in the prosecution of investigations in the hospitals and lazarettos of Cairo and Alexandria. It is greatly to be regretted, however, that American experts are contributing so little to this braüch of the world's knowledge in this eminently humanitarian field, concerning which we quote as follows from the Sanitary Engineer:
"It is a shame that while these investigations are being pushed in Germany, France, and Great Britain nothing of the sort is going on in this country, the good commencement which was made in this direction by the National Board of Health having been totally abandoned for want of funds, while at the same time our legislative tinkers are at their wits' end to know what to do with the surplus in the treasury.
"Little by little the patient workers in European laboratories are tracing the life histories of the minute organisms whick are found in the blood and tissues of men and animals affected with various diseases, and are learning to distinguish those which may be said to cause disease from those which only accompany or follow it.
"They have shown that a certain form of pneumonia is caused by an organism so minute that it appears only as a hardly perceptible dot or speck under the most powerful microscope, and yet which, nevertheless, they have cultivated in a series of tubes, and with the sixth or seventh culture have produced in animals pneumonia precisely like the case with which they started, showing that it breeds as true as wheat would do. Professor Quist, of Helsingfors, announces that the extremely minute particles of vaccine matter can be cultivaied in the same way outside the living body and with the retention of their specific powers; and if this discovery be confirmed it solves the problem proposed by the Grocers' Company of London, who offered a large prize for the discovery of such a process.
"The last discovery of this kind is announced by Dr. Struck, of Berlin, who has been studying the micro-organism which appears to be the cause of a very fatal disease which sometimes affects the bones and marrow of man, and is known to surgeons as acute osteo-myelitis.
"The peculiarity of this organism is that it produces no apparent ill-effects when inoculated in animals, so long as he bones are sound. But if a bone in the animal is crushed or injured a few days before the inoculation is practiced, the injured limb is rapidly affected by the germ, and death follows in from ten to fifteen days.
"The fact that in order to produce this specific osteomyelitis we must not only have the specific germ present. but must also have a certain damaged condition of the tissues, is a very suggestive one as indicating a possible explanation of the fact that in other specific diseases, such as diphtheria or typhoid, only a few out of many persons exposed to the specific cause may suffer any ill effects. The soil in which the seed is planted must be of the right kind and in proper condition, or the seed will not multiply. For some of the specific germs an inflamed tissue affords the most favorable conditions; as, for instance, in diphtheria, where a slight sore throat from ordinary causes appears to strongly predispose to an attack. Others, again, flourish in feeble and poorly nourished persons, whose blood is thinner and paler than in health, while still others appear to select as their favorite victims the ruddy and the strong, those who are apparently in blooming health, although such cases are exceptional. Those who have been breathing impure air laden with the emanations of cesspools, or of sewers of deposit, which are only another form of cesspools, or the ir of overcrowded tenements, which contains almost as much foul organic matter as that of the cesspool, have been preparing in their own throats and lungs and blood a suitable medium for the growth, and reproduction in countless number, of these deadly little parasites.

Much remains to be done in the study of the conditions under which these germs preserve their vitality and multiply outside the living body; in fact, we are only on the threshold of this part of the inquiry, and yet it is precisely this which is of the greatest interest to the health officer and sanitary engineer."

The Inventor of the Steam Plow

The death is announced of the Rev. William Fisken, Presbyterian minister at Stamfordham, Northumberland, who was a septuagenarian, and had labored for thirty-seven years a few miles from Wylam, on the banks of the Tyue, where George Stephenson was born. Mr. Fisken, who was a native of Perthshire, while engaged in his religious labors, diligently pursued mechanics, in which his brothers, Thomas and David-of whom Thomas is a survivor-were equally proficient. Mr. Fisken was one of the two inventors of the steam plow, the other being his brother Thomas. Several years ago an important trial came off at Westminster upon the merits of the invention. The parties were the Messrs. Fisken and the Messrs. Fowler, the eminent implement makers at Leeds, and the finding of the jury was that the Presbyterian minister at Stamfordham and the schoolmaster at Stockton-uponTees were the original discoverers.

It is somewhat singular that the appliance which perfected the plan of the brothers, who had been working together at the steam plow, suggested itself to each of them independently and almost simultaneously. The late Mr. William Chartres, of Newcastle-upon-Tyne, the solicitor employed by the Fiskens, used to tell how the two brothers wrote to him on the same day about the final discovery, but that he received William's letter first.

Mr. Fisken also invented a potato-sowing machine, an apparatus for heating churches, and the "steam tackle," which has helped to render the steam plow of so much practical use. Mr. Fisken was much respected in Northumberland, in every part of which he was well known, both as an inventor and as an ear

The First Steam Fire Engine.

A correspondent calls our attention to an article quoted in the Scientific American of January 26, page 49, from the Chicago Herald, under the above caption, in which the writer describes a visit to Mr. Greenwood's shop in Chicago in 1864, to see the new steam fire engine. Our correspondent thinks the article conveys the impression that this was the first steam fire engine made in the United States, which is incorrect, as he remembers to have seen steam fire engines on exhibition in the Crystal Palace, New York, in 1858.
Our correspondent is right; steam fire engines were shown at the Crystal Palace exhibition, and prior to that time trials of them had been made in this city. One of the early plans for a steam fire engine was illustrated in the Scientific for a steam fire engine was
American, Oct. 25, 1851.
American, Oct. 25, 1851.
We believe the first steam
We believe the first steam fire engine ever tried in this country was in New York. This was in 1842. It was a steamer built by the Matteawan Company for and on behalf of the insurance companies of this city, and was maintained by them for some time, doing good ser vice at several fires whenever it was permitted to be used. But the firemen of New York were jealous of the new comer; they wrought themselves up to a bitter opposition; for if allowed to work it would distance all competitors, render hand engines of no account, and the occupation of " Mose" and the b'hoys would be gone. The insurance companies became satisfied that with hostility on the part of the firemen their losses would be increased rather than diminished, and the steamer was withdrawn

${ }^{6}$ Floating ${ }^{9}$ Oysters.

This is a term known among oyster packers as describing a way of making these bivalves look large and fat, although a close inspection will show that
oysters so treated lack solidity and firmness, and are rather fluffy and bloated. The oysters are transferred from their native beds to tanks with different and a larger proportion of fresh water, and the operation became known as 'f float ing" because, at first, the oysters were transferred from the vessels bringing them in to floats, which were towed to local ities having the desired change of water, and there submerged. Oysters treated in this way are not only likely to lose their delicate flavor, but sometimes acquire a taste that is anything but desirable, which must have been the case in at least one instance in Chicago, where a dealer advertised that he did not sell "kerosene oil oysters."

Fig. 2.-THE SAME CONVERTED INTO A BOAT.

The accompanying engraving shows a novel tricycle invented by a Mr. Terry, of England, and capable of being converted into a boat.
When used on terra firma the apparatus is like an ordinary two wheeled velocipede with steering wheel behind (Fig. 1). The operation of converting it into a boat is very simple, and takes but half an hour.
The two large wheels are made in two parts, which are fastened together by bolts. Two sections, placed parallel with each other at a distance of a meter, are used to form a space for the rower to occupy. The other two sections, fixed vertically, and external to the first, serve to give leng and make a boat with rounded ends. Two steel tubes, which connect the small wheel with the body of the tricycle, serve to fix the two parallel sections at their upper parts and to hold them at a distance. A wooden rod which is of no use in locomotion on land, being passed beneath and in the center of the sections, keeps them in place aud answers as a keel. The frame of the boat is completed by a cord, which, starting from the extremity of the upper part of one of the vertical sections, connects the extremities of all the rest with each other, and serves as a support for a tarred canvas that covers the whole boat with the exception of the central space reserved for the oarsman.
All mounted, the apparatus forms a decked canoe 3.6 meters in length, $1 \cdot 2$ in breadth, and 0.6 in depth, that is to say, combining all the conditions necessary for proper buoyancy, even at
Fig. 1.-TERRY'S BOAT TRICYCLE. for proper buoyancy, even at used in unless it is properly sawed and seasoned, and then sea (Fig. 2). The bapacity each, which are attached to the in pieces of proper size. By and by the seasoning of wood by artificial means will become a science. It is con stantly being proved that it will come to this. There are plenty of wood workers who talk long and loud about the "natural" process, and throw cold water on all others. In these days of discovery they might as well say that people should go naked because they were born so. The`natural process has failed miserably, so far as it prepares certain sinds of lumber for certain purposes. The Lumberman is confident that in the near future elm, maple, beech, gum and the other cheap woods will be used in high grade furniture, with no fear that they will perceptibly warp or shrink

Professor Klinkerfues.

Professor Ernest Frederick William Klinkerfues, the Ger Pan astronomer, shot himself in the observatory at Gottin gen on the 28th ult. He was in his fifty-seventh year, having heen born in Hof geismar, March 29, 1827. He studied at the Polytecinnic School at Cassel, and was employed as an ir bags of 20 liters capacity each, which are attached to the wo sides at the upper part of the open space. Mr. Terry started from London on his velocipede, Wednesday, July 25, at seven o'clock in the morning, and at 8 o'clock at night entered Canterbury after a journey of 58 miles. On the afternoon of the next day he was at Dover, a distance of fifteen miles only from the last named town. Friday he rested, and the next day, at nine o'clock in the morning, he eft Dover in his tricycle converted into a boat. But three hours after his start the sea became rough, and it was not till five o'clock on Sunday morning that he touched land at Andreselles, a small village situated near Cape Gris-Nez. Having reckoned upon crossing the Channel in six or seven hours, he started without provisions; but, fortunately, Saturday evening he spoke a fishing boat from Boulogne, whose captain gave him cheer and pointed out the direction that he should take in order to land without danger.
The custom house officers, thinking they had a new sort of a smuggler to deal with, took him to Boulogne, where everything might be explained. Converting his boat into a engineer in the construction of the Main-Weser Railroad. $\begin{aligned} & \text { tricycle he went from thence to Saint-Pierre-les-Calais, to }\end{aligned}$ the house of Mr. Maxton, a manufacturer of that town, to whom he had been recommended, and where he arrived Tuesday morning. Thursday, August 2, he started for Paris, and reached it after a journey of five days by the following route: Ardres, Saint-Omer Bethune, Saint-Pol, Doullens, Amiens, Montdidier, Clermont, Chantilly, and Saint-Denis. Distance, 290 kilometers. Mr. Terry, the inventor of this vehicle, is 29 years of age and has served for several years in the English navy.-La Nature.

Gas in Philadelphia.

Notwithstanding some abuses in the past in the public management of its own gas works by the city of Philadelphia, the report of the Trustees of the Gas Trust of that city for 1883, makes a very favorable exhibit. The price of gas was reduced, the city

He afterward devoted himself to the study of astronomy, and in 1851 was appointed assistant astronomer to Gauss at Gottingen, and succeeded bim as Director of the Observatory, a position which be held to the time of his death. Professor Klinkerfues was the inventor of several astronomical instruments, principal among them being a new hygrometer for practical observations in meteorology. He was also the discoverer of several comets. He published a number of valuable articles in the review of the Scientific Society of Gottingen, and was the author of a work entitled "Theoretical Astronomy," published in 1872, and "The Theory of the Bilfilar Hygrometer," 1875.
lighting was done free, except the
cost of $\$ 7.35$ per lamp for maintenance, the whole plant cost of $\$ 7.35$ per lamp for maintenance, the whole plant
was greatly enlarged and improved-the mileage of gas mains now reaching 748 miles-and the wages of employes were increased, but the works made a net profit to the city during the year of $\$ 332,127$. The accumulated profits from this source now amount to $\$ 4,871,085$. The price of gas in Philadelphia is $\$ 2.15$ per thousand feet against $\$ 2.25$ per thousand in New York city. The Philadelphia people are supposed to get twice as much light from the same quantity of gas as the New Yorkers receive
No wonder the stocks of our city gas companies command a high premium.

Feline Prescience.

I must give a fact which was communicated to me many years ago by an old physician, of which the good old man assured me he was an eye witness. In his house were two cats, each with a litter of kittens but a few days old. One of the cats was very young, it was her first litter, and the old cat was her mother. It was noticed that the younger cat did not seem well. Each one had her litter by herself, although both were in the same room. As the old cat lay suckling her own litter the young cat came to her mother and made a low mewing, then went to her own litter. The old cat followed her and immediately began removing the grand-kittens, adding them to her own. The truth was, she had adopted them, and seemingly at the request of their mother, for not many minutes more had elapsed before they were orphaned by their mother's death.-S. Lockwood, Amer. Naturalist.

PERIOPHTHALMUS.

In the swamps and brackish waters lying not far from the sea, in the torrid zone, especially in Western and Eastern Africa and in some of the islands of the IndianSea, is found a species of fish called periophthalmus, which on account of the peculiar formation of their gills are able to live longer out of the water than other fish, and pass the greater part of the day in the wet mud. This fish is about fifteen centimeters long, of many changing colors and markings, but it has generally a light brown ground marked with silver and brown spots. A black band edged with white runs through the length of the upper balf of the second dorsal fin ; the other fins are also marked with spots and dots.
If any fish deserves the name of "tree climber" i is the periophthalmus, for its pectoral fius are constructed so that it is able to climb; they are rather feet than fius, and are used only as feet. These fish lie upon the mud, run along the shore like lizards, and rush upon their prey with such rapidity that they seldom fail in capturing it. If they are pursued they move swiftly over the mud, bore into it, and conceal themselves.
Pechuel-Loescne says that be has seen this strange fish only within the brackish water at the mouth of rivers or their branches, and never in the very salt lagoons. He has observed them at the mouth of the Kuilu on the coast of Loango. At low tide and in pleasant weather they may be seen by dozens, upon the flat, bare shore, generally on the brink in the shade of the mango trees. They avoid dry ground and ground grown over with grass and weeds. If they are not frightened they jump with a slight curving and stretching of the body, supporting themselves by their tail and fins. With short springs forward they make their way through the mud, leaving behind them a perceptible track, or they lie comfortably scattered upon the soft mud; then one attempts to leap, as if from excess of spirits, and sometimes a number of them jump about as if playing or chasing one another. It happens sometimes that a fish will suddenly spring from the ground upon a mango root, firmly clasping it with its fins. When frightened it will drop from the root. They can remain out of the water for hours.
They are moderately shy, and at the approach of any person raise themselves to an erect position by means of their fins, If one remains motionless and surprises them by coughing, whistling, or knocking, they will bend down and escape with quick leaps into the deep water, when they instantly disappear. These leaps are about twice or three times the length of the body. The native boys of ten shoot them with arrows, and lightly wounded fish will jump about a table in a lively man ner. Their food consists of crawtish and insects.-From Brehm's Animal Life.

Effect of Gas on the Voice.

Our English exchanges inform us that Dr. Moffat delivered a lecture lately in Glasgow on voice training by chemical means. Dr. Moffat maintained that the presence of peroxide of hydrogen in the air and dew of Italy had some connection with the beauty of the Italian vocal tone. A series of illustrations by people taken from the audience, who inhaled a chemical compound made to represent Italian air, were largely satisfactory-a full, clear, rich, mellow tone being produced by one application. Several gentlemen present gave their favorable opinion of the new idea. Dr. Moffat's o wn illustrations were quite unique. Taking what was originally a voice of power and resonance, but destitute of intonation, he showed by chemical means this could become a tenor of great range. Some twenty notes, ranging from the lower to the higher register, were sung without any effort by the possessor of a voice of this character.

Oil of Wintergreen as an Antiseptic.-This oil, methyl salicylate, is obtained by the distillation of Gualtheria procumbens. It is here pronounced more efficacious than phenol, though it has the disadvantage of being more costly.

A CURIOUS CASE OF FREEZING

Many of our readers will no doubt have had their atten tion called to the curious shapes which ice assumes under different conditions of freezing. Our engraving represents a form to which our attention was drawn a short while ago It seems that a small cylinder shaped mustard bottle, partly filled with water, had accidentally been left out in the cold. In the morning it presented theappearance shown-in the center an oval nucleus of snow-ice from which thread-like air bubbles radiated in every direction. The experiment was repeated with different shaped vessels, and the sam peculiarity was manifested in those with sloping sides. The explauation of the phenomenon must be sought for

a CURIOUS CASE OF FREEZING

in the fact that ice is first formed on the outside surfaces of the water, thus imprisoning the air, which is separated from the water by the freezing of the ice. This air, as the freezing progresses, is forced toward the center, and since ice forms by shooting out crystals, the air is imprisoned between them, and presents the appearance shown. A specimen which had been thoroughly boiled to remove the air was frozen, but showed only very slight indications of this peculiar formation.

Amazons of the Insect world.
A lecture upon ants was recently delivered at Cooper Institute, this city, by the Rev. J. G. Wood. The geographical area of this wonderful creature is circumscribed; it is strictly a child of the South. In the tropics it is found

PERIOPHTHALMUS, OR LAND FISH.
in its full glory, but as it approaches the temperate zone it diminishes in size and interest until a point is reached where it disappears. Ants, bees, wasps, and hornets, which all belong to the same order of hymenoptera, may be divided into two grand sections-the solitary and the social. All that need be said of the former is that a male and a female pair off and make a rude nest with a few cells. All the interest and all the intellect may be said to be centered in the socials. "Here we have a queen, males or drones, and a multitude of smaller unwinged insects rightly called work-
ers, which were once thought to be neuters in sex, but which are now known to be females whose growth has been arrested. They in fact resemble girls whose growth should be stopped at twelve years of age, and who should satisfy hemselves with being housewives and nurses, without ever arriving at the dignity of motherhood. There can be no mistake about their sex, because they can sting and bite, and it is a certain fact that all wasps, hornets, bees, ants, and mosquitoes that either sting or bite are female. The male can do neither. The females do all the work and all the mischief, and show all the ingenuity. The males, in many cases, cannot even feed themselves.
"Among the workers there is an immense division of labor, which is not interchangeable. There are two great divisions, the warriors, or Amazons, and the civiliaus; and the former have become so accustomed to a purely warlike life of rapine and adventure that they cannot even feed themselves. Among some ants the workers are not of the same race, but are slaves captured by the Amazons, and it is a most singular fact that though they fight most stubbornly for their liberty, yet when once within the nest of their captors they become the tenderest of nurses and servants, feeding their mistresses, storing the eggs, looking after the grubs, tearing open their cocoons, storing up the honey dew, milking the ant cows, which are the green aphides that feed on the roses, and taking charge of the whole administration of the colony in the most disinterested and intelligent manner. They are never guarded, but though far more intellectual than their conquerors they never attempt to escape.'

The Young of the Lobster.

The early life-history of the lobster is most interesting. The eggs are, upon extrusion, found attached to the "swimmarets" of the abdomen (the so-called tail of the lobster), and constitutes what is generally known as the " berry." A single female lobster will bave from 20,000 to $30,000 \mathrm{eggs}$ -as nearly as possible the same as the female salmon. At tached in this "berry" form, the eggs remain for some three or four months, and then the young are batched. "No nutritive or other than a purely mechanical relationship subsists all this time between the parent and its egg-clusters, the passing of its small brush-like claws among them to rid them of any extraneously derived substances, and the occasional fanning motion of its swimmarets to increase the stream of oxygenated water through and among the eggs, representing the sum total of attention they receive." The young animals that issue from the eggs of the lobster are distinct in every way from the adult. If, on the con trary, they were like their parents, they would at once sink to the bottom of the water in the immediate neighborhood of their birthplace, and the area of their distribution would be extremely limited. Nature bere, however, as in the case of the great majority of marine invertebrate animals, has provided her offspring with special facilities for becoming dis tributed to long distances, their bodies being so lightly constructed that their specific gravity scarcely exceeds that of the fluid medium they inhabit, while they are additionally provided with long feather like locomotive organs, with which they swim at or near the surface of the water. As such essentially lree-swimming animals, they now spend the entire first month or six weeks of their existence, in whico time, it is scarcely necessary to state, they may be carried by the tides and currents many miles away from their places of birth. During this interval, however, the little lobsters by no means retain their primitive shape; their delicate skin, the rudiment of the future shell, is constantly getting too tight for them, and is thrown off to give place to a larger and looser one that differs each time in many structural points from its predecessor.-Fisheries of the World.

Effects of Rum on Pigs.

Mr. W. Mattieu Williams once witnessed a display of drunkenness among three hundred pigs, which had been given a barrel of spoiled elderberry wine all at once with their swill. "Their bebavior," he says, "was intensely human, exhibiting all the usual manifestations of jolly good-fellowship, including that advanced stage where a group were rolling over each other and grunting affectionately in tone that were very distinctly impressive of swearing good-fellowship all around. Their reeling and staggering, and the expres sion of their features, all indicated that alcohol had the same effect on pigs as on men; that under its influence both stood precisely on the same zoological level."

Prompt Cure of Ringworm.

R. W. Taylor, M.D., in the Journal of Cutaneous Diseases, reports the best results from the use of a paint composed of tincture of myrrb and four grains to the ounce of bichloride of mercury. Other skin affections are cured by the application of this remedy.

SIDE SPRING FOR VEHICLES.

The body of the vehicle is attached to jacks consisting of steel bars, serving to some extent as springs, and being tointed to the ends of short half elliptic springs, which are ciipped at the center of their backs to the backs of longer similar springs, which have one end connected by shackles with a cranked bar suspended from under the front ends of the side bars. The other ends of the large springs are connected with a cranked bar suspended from the rear ends of the side bars in pivot bearings, thereby enabling the rod toswing sufficiently to accommodate the lengthening and shortening of the springs. The upper springs are connected to the others at about the same distance nearer the hind ends, as the weight of the riders is nearer these ends when seated in the carriage, thus permitting the springs to be more flexi

SHINNICK'S SIDE SPRING FOR VEHICLES.

ble in front than rear in the proportion that the load is lighter.

This spring is applied to a rigid side bar frame without a reach. The strain on the upper sections of the springs is relieved, when forced down by the load, by the elastic action of the jacks, which work freely in the eyes by which they are connected to the springs. The lower sections of the springs, taking their share of the load, have free range for expansion and contraction by reason of the pivotal arrangement of the rear bar. The forward cranked bar, being rigidly connected to the side bars, makes less joints for wear and prevents the swing of the body forward and backward that would otherwise occur. The whole makes a spring that equally distributes the strains over all parts, thereby reducing the chances of fracture.
This invention has been patented by Mr. William Shinnick, of Shelbyville, Kentucky.

Quicksilver Mining in California.

The quicksilver industry on the Pacific Coast cannot be said to be in a flourishing condition. The long prevailing depression in prices has had the effect of closing down many producing mines, and only the larger ones can now afford to work, and they are not making much money for their owners.

There are altogether about 1,200 men directly employed in the quicksilver mines and furnaces of California, in addition to whom a large number are occupied as wood choppers, teamsters, etc., working on contract. The leading nationalities of the miners and furnace men may be stated in the following order: Mexicans, Cornishmen, Swedes, and Chinese, with comparatively few Americans. The Mexican miners, as in so many other instances, have developed a special fitness for this class of work, and their intelligence in finding ore amounts almost to an instinct. For the regular underground work of a mine, such as drilling, blasting, timbering, etc., the Cornishmen and Americans probably take the lead.
Miners at day work are paid from $\$ 2$ to $\$ 3$ per shift of ten hours, and on contract work from $\$ 2.50$ to $\$ 3$ per shift of eight hours. The wages of furnace men are $\$ 2$ to $\$ 2.50$ per shifts of ten or twelve hours. The New Idria mine gives employment to about 120 men. There the wages of white miners average $\$ 2.25$ cents per day, the men boarding themselves. Blacksmiths and other mechanics and overseers are paid $\$ 4$ per day. The Great Eastern mine employs 35 men, half of whom are Chinese. At this mine white miners are paid $\$ 2.50$ per day, boarding themselves, and the Chinese, $\$ 1.25$. The Napa Consolidated employs from 60 to 70 men at about the same wages. At the Sulphur Banks, when at work, 90 men are employed, and the same wages are paid as at the Great Eastern. In all these mines mechanics and foreman are paid from $\$ 3.50$ to $\$ 4$ per day. The Great Western gives work to 25 men ; white miners are paid $\$ 1.25$ per day and board; Mexicans $\$ 2.50$ and $\$ 3$ per day and board. At New Almaden, where a force of 500 men is kept at work, the average daily wages are $\$ 2.50$.

An estimate has recently been made from the working results of different mines, showing that for every flask of quicksilver produced nine days' actual labor (calculated as if done by on man) is required. This, at the low average of $\$ 2$ per day, would make the amount paid for labor $\$ 18$ for every flask manufactured, or between 23 and 24 cents a pound. This, at present prices of quicksilver, does not allow much margin for profit after accounting for the other expenses, such as supplies, fuel, powder, flasks, steel, transportation, etc.Mining and Sci. Press.

FILTERING CISTERNS.

BY G. d. Hiscox.

For the instruction of a large and increasing populatio that are more or less dependent upon cistern water for culi nary purposes, and also in many parts of the United States or in foreign countries where there is nothing but rain water available for human thirst, we have prepared a few illustrations of the most approved forms and materials for filtering rain water that is stored in cisterns, especially for drinking and cooking purposes.

Among the things to consider in determining whether cis tern water is safe to drink, are the cleanly or dirty condition of the roof, and the materials it is made of ; whether leaves from overhanging trees fall upon the roof and lodge in the gutters; whether birds foul the roof ; whether it is made of wood, slate, or tin, or of materials inimical to health-as lead, copper, or covered with deleterious paints.
The water taken from a cistern fed from a roof encumbered with leaves from an oak tree has been found so strongly impregnated with tannic acid as to turn water black when boiled in an iron pot.
In order to obtain the best results from filtering cisterns, the roof and gutters should be kept free from leaves and dirt, and it is also advisable to arrange the leader with a switch valve, with the handle convenient for operating within the building, so that the first wash may carry away the dust, dirt, or other foul matter, and thus save only the best water.
Caution should be exercised in locating cisterns that are intended to furnish drinking and potable water, that they be away from the influence of cesspools and privies, as clean water readily absorbs the odors, gases, and germs of foul air.
The materials selected for filter beds should be in accordance with the resources of the lacality in which the filter is to be used, for the purpose of renewal.
We recommend such materials only as have proved reliable, leaving out all textile or organic substances, as we deem such unfit for this class of filtration.
Pulverized charcoal mixed with sand, or between layers of sand and gravel, so long used for filtering purposes, has a cleansing or antiseptic power, probably derived from the
 acme of a filter. purity. inches.
and roasted ; pulverized magnetic iron ore and clean scales from a blacksmith's anvil, pulverized and mixed with clean, sharp sand, have been much used and experimented with in Europe with great success, in not only making fetid water sweet, but it is also claimed that the iron mixtures destroy bacteria and their germs.
A combination of the two extremes, a large carbon surface in charcoal and the pungent oxidizing qualities of the spongy iron, orits equivalents, will no doubt become the

From experiments made with the tilters of public water

works in Europe, for the quantity of water that a filter will yield per square foot of surface, it has been ascertained that, with a filter composed of 10 parts fine, sharp sand, 1 part coarse sand, 15 parts spongy iron mixed with one-third its bulk of fine gravel, laid upon a strainer of perforated galvanized iron-a bed of brick laid close-or a stratum of gravel covering a perforated iron pipe, a yield of one gallon of clear, pure water for each foot in depth per hour for each square foot of surface ; four feet being the greatest depth with a yield of four gallons per foot per hour-illustrating the probable fact that the velocity of the water corresponds with the depth of the filtering material for equal

Figure 1 illustrates a method of preparing an ordinary house cistern for filtering. The pipe and fittings should be of galvanized iron; black or plain iron is better, as long as it lasts, as it rusts fast; in either case it is better to waste the water first drawn, for the water absorbs both the zinc and the iron when standing over night. The zinc is not healthy, and the taste of the iron is unpleasant.
The perforations should equal three or fourtimes the area of the suction pipe, which in ordinary cisterns may be $11 / 4$ inch pipe, while the branches may be $3 / 4$ inch pipe. The boles, if $1 / 8$ inch, should number at least 200 , distributed along the lower half of the pipes. Smaller holes are preferable; of $\frac{1}{16}$ inch holes 800 will be required.
For the filtering material we recommend a layer of fine gravel or pebbles for the bottom, 3 or 4 inches in depth, or heaped up over the perforated pipes; upon this a layer of sharp, clean sand, 9 inches in depth, upon this a stratum of pulverized charcoal, not dust, but granulated to size of peas or beans, or any of the material above mentioned, 4 inches deep; and upon this a stratum of fine, clean sand from 6 to 2 inches in depth, making a total depth of from 16 to 20

Such a filter should be cleaned at least twice in a year by pumping out all the water, taking out the mud or settlings, and one-half the depth of the top layer, and re placing with fresh sand.
The double filter cistern, Fig. 2, has much to recommend it, having a large receiving basin which in itself is a filter placed in a position for easy cleaning. The recess at the bottom may be covered with a perforated plate of galvanized sheet iron, upon which may be laid a filter bed of gravel, sand, charcoal, spongy iron, and sand in the proportions as stated above. This enables the frequent cleaning by removing the top layer of the filter bed without disturbing the water supply. The cover should fit tight enough to keep out insects and vermin.
A double bottomed basin perforated and filled with clear, sharp sand and charcoal should be at tached to the bottom of the pump pipe as shown in Fig. 2.
This enables the small filter to be drawn up and cleaned, without the, necessity of emptying the cistern or interrupting the water supply.

The half barrel or keg filter, as ilmstrated in contact of a large carbon surface. Pulverized coke has been used, and is considered a fair filtrant, but less effective than
charcoal. Bone charcoal has also been recommended as being highly antiseptic, besides having a strong absorbent power, due to the variety of its chemical components. It can be obtained from the dealers in New York.
Spongy iron, or pulverized hematite mixed with sawdust such as is used for liquors or beer. Take out one of the
beads and cut away the edge, so that it will just drive into the end of the keg; fasten two battens of oak across the head with oak pins left long enough to serve for legs for the filter to rest upon.
Bore this head full of holes one-quarter inch diameter In the otker head bore a hole $11 / 4$ inches diameter, aud bolt an iron flange into which the pump pipe is to be screwed. Let the bolts also fasten upon the inside a raised disk of galvanized sheet iron, perforated with a sharp point or chisel. Proceed to charge the filter by turning the top or flanged head down, and placing next the perforated plate layer of fine gravel 3 inches thick, then a layer of skarp, clean sand 4 inches thick, then a layer of pulverized charcoal free from dust, 3 inches thick, then a layer of sharp, clean sand mixed with spongy iron, pulverized magnetic iron ore, or blacksmith's scales, followed by a layer of coarse sand, gravel, and broken stone, or hard burut bricks broken into chips to fill up. Place the perforated bottom in as far as the head was originally; bore and drive a balf dozen oak pegs around the chine to fasten the head. Then turn over the filter, screw the pump pipe into the flange, and let it down into the cistern.
Such a filter requires to be taken out and the filling renewed in from 6 to 12 months, depending upon the cleanliness of the water catch. With the precautions mentioned above in regard to the care of the roof, such a filter should do good work for one year.

Dr. Meldon's Electric Motor.

Electricity, both as a means of lighting and locomotion, has made, during the past few years, such vast strides in public favor that it is not surprising many discussions have been raised concerning it, or that the minds of the leading scientists have lately become engrossed with the study of so interesting a subject. Up to the present, however, owing to the enormous amount of electricity required to work even a medium sized dynamo, all attempts at electric propulsionespecially as regards boats-may be considered as purely experimental, its most ardent advocates being unable to claim for it any economical advantage over steam.
Many theories have been adduced toward, and several electricians have applied themselves to the task of, surmounting this difficulty; but it is to the intelligence and ingenuity of an eminent Irish physician that the scientific world is now indebted for the discovery of an important principle, which will, without doubt, be recognized in future in the construction of all magneto-electric machines. To Dr. Austin Meldon, of 15 Merrion Square, Dublin, belongs the credit of having designed a motor which not only does away with the manifold disadvantages and drawbacks attendant on the employment of dynamos, but also creates the largest amount of driving power with the least expenditure of electrical force.
Dr. Meldon, in his first attempt at motor construction, made use of twelve magnets, but when the machine was tested it was found that although each of the magnets would lift half a cwt., or attract a heavy iron bar from one inch, yet the whole twelve, when bound together, would only lift or attract exactly the same weight. Seeing that something was evidently wrong he sought information as to the cause of so singular a circumstance, but although he received a very large number of suggestions not one of his correspondents hit upon a solution. Nothing discouraged, Dr. Meldon persevered in his investigation, with the gratifying result that after some trouble he found that the inertness of the magnets was due to neutralization, and that by magnetically insulating the bars-about to be described-with copper instead of iron bolts, and putting a few layers of gutta-percha between the bars and the rims of the wheels, he could develop full power-a fact which seems to have been hitherto unknown.
The armature of the new machine is formed by joining together two 15 inch solid pulley wheels, with seven flat bars of iron, each bar being 24 inches long by 3 inches wide and $1 \frac{1}{2}$ inches thick, and, as has been observed, the bars are laid upon gutta-percha, copper bolts being used to fasten them to the wheels. A. shaft of $11 / 2$ inch steel passes through the center, and the whole is supported by a hardwood frame, stayed with iron. Each side of the frame, where the shaft emerges therefrom, is supplied with an ivory commutator, the one on the right having three, and the other four brushes, each of which communicates with a magnet. Attached to the frame are seven electro magnets, the tbree larger ones being made of 2 inch soft iron, and wound with No. 14 wire, without bobbins, and the other four of $11 / 2$ inch iron and wound with No. 11 wire. The total weight, as at present constructed, is a little over 3 cwt.
The first trial of the motor took place in July last, in a boat 22 feet long and 5 feet beam, and the battery used on the occasion consisted of thirty-six cells of bichromate of calcium, with zincs 6 by 4 inches, and carbons 6 by 5 inches, the latter, as will be observed, being larger than the former. Half of the cells passed through a commutator into one set of magnets (the whole charge going into one magnet at a time), and the remainder of the cells, through the other commutator, into the second set. The great utility of this arrangement was experienced during the trip, as when all the cells were made use of the boat went at tull speed, but when only one commutator was employed, half speed was obtained, and ou a long trip the second battery could, of course, be recharged. The motor is capable of could, of course, be recharged. The motor is capable of
making about 900 revolutions a minute, but this in the trial
trip was reduced to 400 , when the boat went over, with a slack tide, 9 miles in a little more than one hour, a single quently, when the tide was more favorable, 11 miles wer quently, when the tide was more favorable,
gone over in an hour. A little over two horse power has gone over in an hour. A little over two horse power has
been registered from only twenty-four cells; and here it may be remarked that Dr. Meldon, who takes an unusua interest in anything that relates to this science, has man aged, by a very simple contrivance, to get over the difficulty hitherto experienced in keeping up a continuous light for many hours; that gentleman has had five Swan lamps in his house during the past two winters, and he makes his bichro mate cells last twelve hours, by using large zincs and car bons, which at first are only immersed a short distance in the fluid, and then after two hours lowered a few inches more, and so on, using, of course, a larger number of cells than is absolutely required.
It is to be regretted that, owing to the small size of the launch, the battery, which was placed in the forward portion of the boat-eighteen cells being arranged on each sideoccupied so much space that there was only room left for four persons to sit with any degree of comfort, and consequent ly he was obliged to abandon the idea of working his motor with a battery; but, judging by the actual results obtained, he is confident that with twoo storage cells of an accumulat
an hour.
The advantages claimed for the motor over a dynamo are : 1st. Only one-tenth of the battery power is required to are $: 1 \mathrm{~s}$. Only one-tenth of the battery power is required to
obtain a single horse power. 2 d . As there is no dead center it will start instantly, and there is, therefore, no loss of power. 3d. The whole force of the battery passes into one magnet at a time, so that very little power is required. It should be remembered that the launch Electricity had forty five accumulators of the latest type on board, which were calculated to supply power for six bours at the rate of four horse power, the mean speed obtained having been 9 miles an hour. Dr. Meldon's had only thirty-six cells and did a mile in seven minutes, and it should be noted that the battery was nearly exhausted when this trial took place.-Journa of Science.

sorghum Sugar in Massachusetts.

The practicability of growing sorghum for sugar making in Massachusetts was carefully tried last year by Mr. Heury B. Black well, and the value of the cane tested by Mr. S. P Sbarples, State Assayer, in nineteen different experiments made at frequent intervals from August to the end of cember. The season was an unfavorable one for growing
sorghum, and this was also the case with sugar cane. Early Amber seed was planted, from Rio Grande, N. J., and from fiveto seven per cent of sugar and seven to nine per cent of sirup were obtained from the weight of the cane during a period of three months. Fifteen tons of cane were raised to the acre, yielding, by diffusion, over 4,500 pounds of sugar and sirup.
The yield of sugar was less before and after maturity, and in warm weather the cane deteriorated if not worked as soon the season, and one sample, cut October 15, and stored in woodshed, yielded thirty-eight per cent of sirup, said to be "equal to the Porto Rico or New Orleans," at the end of December. These results, on the whole, seem to compare favorably with those obtained with the sugar cane at the South.
The yield of sugar on a 500 acre plantation in the parish of Ascension, La., is reported to average 3,600 pounds to the acre, but the planters this year are complaining bitterly o hard times, protesting against the Mexican and Hawaiian treaties to admit more raw sugars free of duty, and claim ing that their industry would be utterly prostrated were it oot for the present tariff.
Planters of sorghum for sugar making, therefore, while they may fairly count upon as good remuneration as they would be likely to obtain from other staple crops, if they heed the lessons of recent experience in this line, would be foolish to suppose that this new departure will at once prove a veritable bonanza to them, although, with intelli gent and systematic effort, there is every promise of a steady increase in the production of sorghum sugar.

Spouting oil Wells in Russia.

It is reported that on the 10th of September last a well was tapped at Baku, from which petroleum commenced to spout with a jet 300 feet high, at the rate of two million gallons daily. According to later official reports, the fount ain was still flowing at the end of November; and the efforts of the owners to stop it had so far only resulted in checking the outflow to 1,000 tons of oil per day. During November a oother well at Baku, which has been giving a regular supply since 1874 , suddenly commenced to "play," and threw up 500 tons of petroleum every 24 hours. The effect of this sudden outburst is disastrous to the district, pending arrangements for disposing of such a vast quantity of oil. Whole lakes of crude petroleum have been drained into the sea or set on fire, to get rid of the liquid, and the price of petroleum has sunk to $31 / 2 \mathrm{~d}$. per ton on the spot
The great local refining firm of Nobel Brothers have four teen spouting wells capped over and idle, it being cheaper for them to buy oil than to use their own. This firm an nounce that by next spring they will be able to distill 75 mil lion gallons of kerosene, and to transport 90 million gallons
and East German markets via the Volga; but a new line of railway just opened will convey the product to the southern European markets. It is believed that oil exists over 1,100 square miles of the Baku region, of which only a small area has been bored. The supply is regarded as inexhaustible, and is expected to keep down the value of petroleum oils and spirits in Europe, notwithstanding the condition of the American center of production.

The Artificial Formation of Minerals and Rocks.
Nearly all the interesting researches that have been made in forming minerals by artificial means are due to the chemists and mineralogists of France. Among these none are of more importance than those performed by Messrs. Fouque and Michel-Levy in the formation of various volcanic rocks and minerals through fusion. Recently they have collected their researches, heretofore scattered in several periodicals, in the form of an important volume entitled " Synthese des mineraux et des roches." They em ployed platinum crucibles incased in fire clay and kept at a high heat for several days, by means of a gas blast. By making use of the principle that minerals crystallize from the fluid magma in the inverse order of their fusibility, and by keeping the melted minerals at different temperatures, carefully chosen, a number o artificial products closely resembling natural minerals and rocks were produced. Thus from a fused mixture of anorthite and augite, plaginclase crystals were obtained by a white heat, kept up for forty-eight hours, and on a second heating at a lower temperature, augite crystals were formed, and the characteristic structure of an ophitic diabase was obtained.
Most of the basic basaltic rocks were thus artificially ormed by one or more fusions of a mixture of minerals. The acidic rocks, or those containing quartz, orthoclase, muscovite, hornblende, etc., could not thus be produced An amorphous or glassy mass was obtained, and the latte minerals would not crystallize out of a fused mass.
The interesting conclusion is therefore reached that granite, gneiss, and other acidic rocks, with their inclosed minerals, are not the result of igneous fusion. Tbis is in accord with the generally accepted belief of geologists, de rived from many considerations.-Amer. Naturalist.

Be Somebody.

Robert J. Burdette, the facetious editor of the Burlington Hawkeye, has been lecturing to large audiences in different parts of the country, and in his amusing style he imparts to the rising generation some wholesome àdvice. The follow ing is from one of his lectures:
'Be somebody on your own account, my son, and don't try to get along on the reputation of your ancestors. Nobody knows and nobody cares who Adam's grandfathe was, and there is not a man living who can tell the name of Brigham Young's mother-in-law." The lecturer urged upon his hearers the necessity of keeping up with the every day procession, and not pulling back in the harness. Hard work never was known to kill men; it was the fun that men had in the intervals that killed them. The fact was, most peo ple had yet to learn wbat fun really was. A man might go to Europe and spend a million dollars, and then recall the fact that he had a great deal more fun at a picnic twenty years ago that cost him just 65 cents. The theory that the world owed every man a living was false. The world owed a man nothing. There was a living in the world for every man, however, provided the man was willing to work for it If he did not work for it, somebody else would earn it, and the lazy man would " get left." There were greater oppor tunities for workers out West than in the Eastern cities, but men who went out West to grow up with the country must do their own growing. There is no browsing allowed in the vigorous West. An energetic man might go out into the far West, and in two or three years possess himself of bigger house, a bigger yard, a bigger barn, and a bigger mortgage than he could obtain by ten years' work in the East All young men ought to marry, and no young man should nvy old men or rich men. In conclusion, Mr. Burdette aid that a man should do well whatever he was given to do and not despise drudgery.

A Novel System of Contracting.

The method of paying for the work and materials enter ing into the construction of the magnificent building now being erected by the Mutual Life Insurance Company on the site of the old Post Office, this city-described in our issue of October 20, 1883-is novel, and growing rapidly in favo for structures of this class. The architect, Mr. Charle W. Clinton, thus describes it to a Tribune reporter: "Each contractor renders every month a sworn statement of the cost of materials used by him and the amount paid by him for wages. To this is added a percentage, sometimes as low as 8 per cent of the whole, which is paid as contractor's com mission. By this method we not only secure efficient work at lower than market rates, but we are enabled to change ou plans and make such alterations as we wish in the course of construction, thereby getting rid of the frequent annoyance and disputes consequent on bills for extras.
Further than this, the plan here pursued insures the use of material at least equal in quality to that demanded by the specifications, and muless there be collusion between the contractor and seller, the bills represent the actual valte of the materials. This system ought to be agreeable to the contractor, since he is relieved of risk and receives interest on the capital he invests.

ENGINEERING INVENTIONS.
An elevator has been patented by Mr. Geo. A. Saxer, of New Brighton, N. Y. By various combi nations of devices in connection with the hoisting rope
including pawls, brakes, and safety wedges, the stop ping appliances being moved independently of the car a great degree of safety is obtained, and every facilit afforded for managing the car.
A safety shell for blasting has been patent ed by Mr. George Freund, of Durango, Colo. This in improvements on invention patented by same invent or last year, the object being to obtain greater safet
not only in handling material not only in handing material, but in tamping tio
charge and connectung the fuse to the stick, candle, charge and connecting the fuse
other form of explosive material.
A bell ringing attachment for locomotives has been patented by Mr. Pennock M. Way, of Thurlow,
Pa. The bell is suspended in the usual manner from journaled yoke or shaft, and by suitable bell or cearing is connected with the running part of the locomotive
but so that this gearing may be thrown in and out very easity, thus enabling the bell to be rung automaticaliy
A steam boiler or novel means of combustion of gases in the ifre box before they pass to the boiler tubes, has been patented by Mr. John Alves, of Dunedin, New Zealand. A construction is provided
for by which air passes under the grate bars and in the for by which air passes under the grate bars and in the
rear of the bridge wall, from the sides of which it is rear of the bridge wall, from the sides of which it is
discharged over the fre, and also from a projection forward from the bridge walls into the center of the fur-
A nace. steam pumping engine bas been patented by Mr. Edward G. Shortt, of Carthage, N. Y. It is direct-acting, with the pump piston and steam piston ing case, one end of which forms the pump, the othe having valves and ports, and making an engive within
the same case. This invention covers several features of improvement on a patent issued to the same invento in 1881.

A furnace for treating ores continuously has been patented by Mr. Amedee M. G. Sebillot, of
Paris, France. This invention covers an improvement Paris, France. This invention covers an improvement
on an ore furnace of the same inventor patented last year. In a tunnel-shaped furnace is a tunnel-shaped muffle, connected by flues with a receiver for the gas of the materials in the cars, which fit closely within the
mufle, and are slowly:moved therein by an endless chain in a gutter or trough in the bottom of the furnace, the
chain having catches to take hold of projections from the bottoms of the cars.

MECHANICAL INVENTIONS

An improved saw set has been patented by Mr. John S. Long, of Murphysborough, IIl. It is novel construction and arrangement of parts, to be
worked by the foot of the user, and so the hammer delivers upon the saw teeth a blow of uniform force, regube made heavy or light, for thick or thin saws, but its force is adjusted as desired by the thumb serew.
A lifting jack has been patented loy Mr Benjamin F. Mansfield, of Centerville, Oregon. A tooth ed wheelis rigidly mounted on a screw spindle below
the liead, the wheel being held between the shanks of the forked end of a lever; two pawls are pivoted on opposite sides of this forked end, their inner ends be-
ing pressed outwardly by springs, so the outer ends en gage with the teeth of the toothed wheel, the who
An improved jack has been patented by Mr. Samuel J . Wisdom, of Montgomery, Ala. The ob
ject of the invention is to obtain a compact and power ject of the invention is to obtain a compact and power-
ful means of purchase for removing piston rods from the means of purchase for removing piston steam engines, etc., for which is pro-
vided a cone-pointed screw, a nut in which it. works, vided a cone-pointed screw, a nat in which it. works,
and means to take the wedge strain, by which great power can be applied without need of hammering or bruising the fiuished parts.

An improved loose collar attachment for hanging circular saws has been patented by Mr. Wil liam D. Sherman, of Grand Haven, Mich. By this
means the lug or driving pins projecting from the fast means the lug or driving pins projecting from the fast
collar of the arbor, and passing through holes in the saw and loose collar, are so connected as to relieve the loose collar as firmly as a fast one, while preventing irregularities or obstructions in the holes of thelug pins and saw.

AGRICULTURAL INVENTIONS

A corn planter has been patented by Mr . Thomas Bell, of Shelby City, Ky. It is simple in con-
struction, strong, light, and durable, will drop the corn struction, strong, light, and durable, will drop the corn
at the required distances, and has an automatic marker indicating the position of the corn dropped, thereby making it easy to pass obstructions and plant the corn in straight rows

A separator for grain has been patented by Mr. Frank L. Kidder, of Terre Haute, Ind. This inven-
tion provides for a separator formed of screws, with connected threads intermeshing but not in contact with each other, and mechanism to rotate the adjacent surfaces of each pair of screws in opposite directions, in
combination with a suitably arranged box, supply tube, hopper, ete.

miscellaneous inventions.

A mail sack tag has been patented by Mr. George W. Dwenger, of Brooklyn, N. Y. It is formed of a rigid piece with a longitudinal beveled slot, a tran-
verse slot, and a spring tongue, and can be easily and verse slot, and a spring tongue, and can be easily and
rapidly attached and detached from mail sacks or bags. A toy target has been patented hy Messrs. Arthur H. Hoffman and William F. Lloyd, of East New York, and Joseph H. Block, of Brooklyn, N. Y.
It is a simple and amusing toy for children, combining It is a simple and amusing toy for children, combining
to cannon with different targets, figures, etc., aual can toy cannon with difierent targe
he manufactured at small cost.

A skewer puller has been patented by Mr. Augustus F. Friend, of Gravesend, N. Y. It is intendmeats, and provides for handles pivoted to each other at their for
A broom holder has been patented by Mr. Herman C. Berg, of College Point, N. Y. This is an exceedingly simple device, made of a single piece of
wire, bent in such shape that it may be altached to the vire, bent in such shape that it may be attached to the
wall and will hold the broom in an inverted position by the whisk thereof.
A shading pencil has been patented by Mr. George B. Hecklinger, of Streator, PII. It provides for by side, which permits of two or more such leads being used simultaneously, so that a mark shaded in different colors may be made at a single stroke.
A door and gate latch has been patented by Mr. Charles Wormuth, of Little Falls, N. Y. This in vention covers improvements in latches with reversely Looked ends to engage catches on door or gate frame
and the wall, and, while simple, strong, and durable and the wall, and, while simple, strong, and dur can be used to hold a door or gate open or closed.
A butter cutter has been patented by Newton H. Sweet, of Stephentown Center, N. Y. It is an improved device for removing butter, lard, etc. rom jars and tubs, in regular shaped cakes or blocks, used as a buter trier and that which is not required may be placed back in the tub.
A sole for rubber boots and shoes has been patented by Mr. Henry A. Wattson, of Granite, Colo. This invention covers the making of the soles and heels
of rubber boots.and shoes with metallic studs embedded in the solid body of the sole, thereby greatly increasing
their resistance to wear, and in this way being especially esirable for miners' use.
A filter has been patented by Mr. Justin Durel, of New Orleans, La. This invention provides or filtering, under pressure of a force pump, such liquors as the cane juice or sirup of sugar plantations, so from rather than be forced through thil filter prop rom rather than be forced through
and the filter can be easily cleaned.
An improved roller fixture has been patent ed by Mr. James H. Skidmore, of New York city. It is cosstructed with a bracket with an open bearing to re
ceive a roller pivot, and with a fastener so the pivot will be kept from accidental displacement,to prevent shade, towel, and other rollers from getting out of their sup-
A checker and baseball combination game has been patented by Mr. Hicam S. Towner, of Dutton,
Mich. The game board is divided after the manner of checker board, with additional outside squares, and the game is played with two sets of stones of nine men
in each set, designaled by letters in the way players of aseball are put down in the score books.
An asb sifter has been patented by Mr . William T. Adams, of Baltimore, Md. This is a comination of a sieve, slanting shelf, and drawers, inclos refuse coal and ashes are dumped together, the box may be closed, the sifting done without dust, and the coa
deposited in one receptacle and the ashes in An improved tuyere has been patented by Mr. Enoch P. H. Martin, of Wilmington, Del. An annular space surrounds the central space through which cinders and ashes fall from the fire above, this space be ing protected from the cinders, and from thence air
distributed to the fire, so the fire will not clog, a better onsumption will be effected, with economy of coal
An apparatus for bottling and siruping
erated beverages has been patented by Messrs. James aerated beverages has been patented by Messrs. James
McEwen and Simeon Spencer, of Manchester, Eng. There is an aerated water cylinder, and vatve operated by a cam or eccentric on a revolving shaft, an adjusta-
ble valve controls the sirup charge, there are revolving bottle carriers, and the operation is such as to allow the air to escape from the bottles being filled.
An unlocking attachment for time locks Has been patented by Mr. Hiram P. Pruim, of Grand by the mechanism of the lock, and connected by a pawl and ratchet wheel with a train of gear wheels operating a rack bar with a trip arm to engage with the trip latch
of a time lock, so the latch can be tripped by the con inued movement of the combination lock mechanism.
A recording table or desk bas been patent d by Mr. Mathew S. Holt, of Weston, W. Va. This invention covers a novel construction whereby, with a
supplemental leaf, a large book may be held with its right hand cover in line with the writer's arm, and if many leaves are turned over, the adjacent leaf may be
lowered, to bring the surface of the page being written lowered, to bring the surface of the page
on in same plane with the top of the table.

A separator and conveyer has been patentd by Mr. John S. Fairly, of Charleston, S. C. This invention covers a screw conveyer with flights in sec
tions, armed at their outerfedges with flexible or plia ble material, and combined with a perforated trough or hels of cotton seed from the hulls after passing through he huller.
An improved pearl button has been patent ed by Mr. Henry Smith, of Newark, N.J. The object
of this invention is to improve the construction of buttons for which a patent was issued to the same invento last year, the tuhular rivet being provided with transverse openings in its sides for the cross bar, and other button.
A sash holder has been patented by Mr. William A. McDonald, of Minneapolis, Minn. It is
imple in construction and action, is entirely out of sight, permits the free raising and lowering of the sash while holding it in the desired position, is durable, and
prevents the sash, door, etc., from rattling by the wind. It consists of a novel construction in that class of fas teners where a friction roll is pressed by springs.

A polishing machine bas been paten ted by Mr. Jean Pierron, of Elizabethport, N. J. The object of this invention is to furnish an improved machine for
polishing wood, stone, and other materials, and to thi polishing wood, stone, and other materials, and to this
end there are various devices whereby the position of end there are various devices whereby the position of
the abrading wheel may be adjusted and its work definitely gauged, its disk being pressed on the material by A steam heated evaporator has been paten ed by Mr. Robert W . Turner, of Thornton, Tex. This invention is primarily designed to facilitate the reduc tion of cane juice to sirup, and covers a receptacle with
a surrounding chest, both of which are contained in a vat, a steam coil surrounding the chest and steam pipe connecting with it as desired, and also a pipe for Cbangeable scenery for theaters forms th subject of a patent granted to Mr. Lafayette W. Seavey,
of New York city. Each separate piece or portion is of New York city. Each separate piece or portion
mounted on rollere arranged to rest upon the stage, mounted on rollers arranged to rest upon the stage, so
that all may be revolved in either direction. To bring that all may be revolved in either direction. To bring
a sel scene into any desired position tie rods are built up in sections, and suitably connected, to serve as guides for the rotation of the

A sad iron has been patented by Mr. Al fred R. White, of Stevens Point, Wis. The ironing block or baseis of approximately diamond shape, and from the center of its top projects a post, which has ter preferably made in two parts; tbis handle can be adjusted in a lengtthwise or crosswise position, to bet-
ter adapt the iron for working on wide or narrow surter adapt the iron for working on wiae or awh
faces.

A fire escape has been patented by Mr. Robert Stevenson, of Ferrysburg, Mich. A balcony is
devised for each floor of the building, the balustrade devised for each floor of the building, the balustrade
and floor of which fold up against the side wall under the windows, and are secured by catches, connected on supporting brackets and the balustrade swings upright by springs, ladders being provided with the balconies to be let down by hooks.
A washing machine has been patented by Mr. Lars Christiansen, of Council Bluffs, Iowa. A sud box or tub has a series of brushes on fhe bottom, stand
ing vertically, with another series fixed to the sides, while a hub standing in the center has brushes on its circumference, working in combination with a vertical
shaft with radial arms, so portions of the clothes may shaft with radial arms, so portions of the clothes may
be held between the cover and arms, and other portion bed against the stationary brushes.
A polisher and cleaner for metal and other surfaces has been patented by Mr. William Heard, of ing and polishing culery in tially designed for clea ing and polishing catery in kitchen use, bat used as a
scrubber for floors, walls, etc. There is a container, and a percolator of cork, rubber, leather, or an equivalent, the container holding the polishing material, and the percolator being adapted to distribute the same
over the surface to be polished or cleaned, as the pol isher is passed backward and forward over it.
An apparatus for the application of com pressed air to the manufacture of glass has been patent
ed by Messrs. Adrien A.and Leon A. Appert, of Paris, France. It may be adapted to the goblet maker's cha ing can be done mechanically there for all kinds of such work, and the escape and expansion of the com pressed air can be atilized for the cooling of the glass,
as well as other metal or monlds, thus facilitating th as well as other metal or monds,
manufacture and saving moulds.

A barrel finishing machine has been patented.by Mr. Robert O. Dobbin, of Waterloo, Ontario, Canada. This invention, while recognizing former pa-
tents in the same line, provides new and special mechanism for finishing barrels after they are set up in trus hoops. There are two rotating chucks and a stationary
chuck with adjustable jaws, so a barrel may be cenrally compressed until the end chucks are secure drawn, and the barrel may be revolved. There ar numerous special features, and while the machine ca be adjusted to different sizes, one machine for each size is most economical, and all the hoops, heads, staves,
etc., of one barrel will fit any other of the same kind, reducing the cost of both manufacturing and repairin An apparatus for the manufacture of carbon black has been patented by Mr. George G. Shoemaker of Edenburg, Pa. This invention relates more particu larly to making the black from crude petroleum and fineries, the fuel being supplied under pressure to burners charged with asbestos or other incombustible are rotated, their apex upward, and over their upper surfaces cold water is distributed from perforations, so the flames strike cool portions of the cones, and the
fumes are condensed, while steel scrapers extend up the opposite sides of the cones and detach the carbon black formed as ihe cones rotate, the black descending
into a funnel and thence into a trough or tube for removal.

NEW BOOKS AND PUBLICATIONS.

Observations of the Great Comet of
1882, made at the United States 1882, made at the United States
Naval Observatory. Prepared by William C. Winlock, Assistant Astrono-
mer. Government Printing Office, Washmer. Go
ington.
This appendix to regular report of 1880 is valuable s affording a complete and chronologically arranged September 19, 1882, to April 4, 1883. The comet observed was the visitor whose nucleus presented so many of forms, which are well illustrated in the exquisitely beautiful plates here given. No theories respecting comets find place in this concise record, which em braces the observations of Prof. A. Hall, Commander
W. T. Sampson, Prof. J. R. Eastman, and Prof. Edgar Skinner and William C. Winlock

§pecial.

REVIEW OF A GREAT AND BENEFICENT WORK
human life have been completed since we began this work. It is meet that we
make a halt, long enough at least to take note of the region over which we have journeyed, and to examine Twice seven years ags up to u
Twice seven years ago one of us started single-handed
to inaugurate and develop a new use, at once scientific and practical, professional and commercial, businessike and beneficent. They only who have tried it know the difficulties to be encountered in creating an entirely new business and securing its recognized entrance into
the rank and file of business. That we have done this ives us the right to speak.
For eight years this single-handed work was prose-
cuted. The operator had a conviction that in the Compound Oxygen he had found a mode of redeeming his fellow-men from the sufferings of disease, more poten
and benign than the world had ever seen. This inspired him with the courage to abandon a lucrative practice which he had been twelve years in building, and to over come all obstacles in the way of realizing his dream-o
proving to the world that his conviction was securely ands of mproved health-stand ready to testify.
Sixteen years ago the senior partner had his attention
called to a few persons who were taking the Compound called to a few persons who were taking the Compound
oxygen. They declared that they were improving with oxygen. They declared that they were improving with
satisfaction. He felt sure that they were being stimu lated; and that, consequently, they would soon show the
effect of all stimulation, and retrograde below the point
of health at which they began the treatment.
By carefully watching the cases for several months,
his prediction failed of verification in a single case. He then induced several of his own patients-cases which any physician would have considered very doubtful un-
der any system of medication-to try the effect of the der any system of medication-to try the effect of the Compound Oxygen. With surprise he watched them ike good results.
All this provoked a conflict in his mind. He had proof that in the Compound Oxygen there was an agent that would cure many sick ones whose condition would baffe many oth ers whom he might cure in six or twelve
months would get well in as many weeks nder the acmonths would get
tion ofthatagent.
Now the question forced itself upon his mind and per
emptorily demanded an answer: " What are you going do with this latter class of patients, who confide to your care the restoration of their health? As a faithful phy sician, is it not your duty to take the surest and shortest Way to secure to them that for which they are paying
you?" Well, what is the proposition? "Evidently send you. Watients where you know they can be better served than they can be under your care and ministration."
But that would be suicidal. "No, the proportion of such patients would be small.", True, but the public will not
discriminate. They will see only that the doctor discriminate. They will see only that the doctor sends lacks confidence in his own medical skill. "Well, there is one way ont of the dilemma; get possession of the
superior curative agent, and thus make peace with your uperior curative agent, and thus make peace with your professional conscience and prove yourself a friend to
suffering humanity." What, and be jeered by one's That and tabooed by one's pro alternative?", Result: He gives up his hard-earned practice, secures at a great price the knowledge of and the ight to administer the Compound Oxygen in this city.
Thisincluded only the Office Treatment in Philadelphia. Soon he was exercised by the fact that the opera-
tion of an office business was very limited. Something tion of an office business was very limited. Something must be done to dispense the blessing far and wide. Ac cordingly, at no little expense, he hastened to make
known to his professional brethren the virtues of Compound Oxygen, and to furnish them with outfits for ad ministering it. As he ought to have known would be the case, his efforts excited ridicule and reproaches.
Nothing daunted, he entered upon a long series of exwas a much better method of accomplishing the end in view than the one which had failed. Hence the widely nnown Home Treatment.
In this untried field he labored for a year; meeting ard at dely required. On the last of June, ten years ago, the
practicability of the enterprise was demonstrated. But practicability of the enterprise was demonstrated. But
he had exhausted his resources, broken his health, and he had exhausted his resources, broken his health, an lmost sacriftced his life. The ship was built and
launched, but three years' struggle proved to him that he could not freight and man it. Six and a kalf years
ago he found a man who could appreciate the value of he work in hand. Our united A new departure was theer
A new departure was the order of the day. The first
and essential thing to be done was, to let those who needed our curative agent know that we were in posses-
sion of it. Knowing that many fortunes have been sunk sion of it. Knowing that many fortunes have been sunk
in advertising, we decided to put that part of the busiin advertising, we decided to put that part of the busi-
ness into the hands of one whose skill and experience had been proven. It is enough to say that the method
which he adopted have revolutionized important branch es of advertising.
From the outset we have dealt truthfully ith the suf-
fering sick, reaizing that they at least had a right to de eering sick, reaizing that they at least had a right to de
mand such dealing. We knew that agent superior to any other in the world, and therefore the simple truth about twould be the best credentials
could have; hence we were not tempted to invent testi-

The growth of the business has been phenomenal During the frrst year the business doubled each month.
During the last four years we have recorded in our book Dutatements of diseases, reports of progress, repeated
advice and prescriptions, of over twenty thousand per sons. Much more could be said in proof of the succes of our work as a commercial enterprise; but let this suf-
fice. It is of much greater importance to prove that our professional success has exceeded the other
What,bave we to show in this direction? During those Among these a large proportion had been sick for years.
They had exhausted the skill of the best physicians of ll schools, different sanitariums, various natural healt resorts, shops of nostrum-mongers, and months of hygi to remove the baleful effects of the treatment practiced on them, than those of the original disease. How many of them have been desperate cases may be inferred from
the fact that we have filled scores of orders he fact that we have filled scores of orders-sent uncon reach of any remedy on its arrival. And out of this un-
promising mult:tude, ninety per cent. have been eithe
cured or rraetis benefted
We have proved that a
cured or greatiy benefited.
we have
common consent have been assigned to the category of "incurables," no longer been ans there. We have cured a were brothers whose father one brothe ter had died of the same disease. We have treated four cases of Locomotor ataxia, or progressive pararaysis. In all
of these the progress of the disease has been arrested of these the progress of the disease has been arrested
(which no system of medication has ever been known to do), and the patients have made genuine progress toward
health. We almost never fail to cure asthma-even of health. We allosost never fail to cure asthma-even of
nfteen years' standing-unless the case has been spoiled hifteen years standing-unless the ease has been sponed
by the use of narcotics, which served as palliatives but constantly aggravated the disease. The same can be of consumption-connfrmed phthisis-which the Compound Oxygen has cured can be counted by scores. We are confident that we make more genume cures of caall the catarrh specialists in the country
A distinguished member of the New York Bar, who
appeared to be a wreck both physically and mentally and who had settled up his worldly affairs, resumed his active business after three months' treatment; and thi
business he has successfully followed for a year. Mrs Mary A. Livermore, who had been disabled for nearly for a year and a half been prosecuting her professiona work with more ease and energy than ever before. The
Hon. W. D. Kelley, the Father of the National House of Representatives, will tell any one that he owes the last
ten years of his life to Compound Oxygen; and it can hardly be disputed that during this period his labors have not been surpassed by those of any other member
of Congress. William Penn Nixon, of the of Congress. William Penn Nixon, of the Chicago Inter
Ocean, says that he owes his life and some years of ac tive usefulness to the virtues of Compound Oxygen. The public know very well the unqualified testimony which Mr. T. S. Arthur has borne in favor of
pound Oxygen as exhibited in his own case.
pound Oxygen as exhibited in his own case.
But why multiply examples? We have
many hundred statements in the patients, published guage of the effects of Compound Oxygen in almost every kind of disease.
Now what of the
Now what of the future? Having accomplished
what we have, and against such odds, our progress henceforward should be broader, more successful, and
more beneficent. As was to have been expected, proprietors of sanitariums and health resorts, whose business has been diverted from them by the popularity of inert. But until they can rationally account for the thousands of wonderful cures effected by it, their tirades are
in vain. Of course there are-and there will probably be in vain. Of course there are-and there will probably be
more-imitators of the Compound Oxygen. Some have more-imitators of the Compound Oxygen. Some hav
already stolen our title, our literature, and even our testimonials. One of thom, having obtained his own case, now publishes it as though Mr. Nixon was cured by his treatment instead of ours! Some of those
agents may be innocuous; but we have a good reason to agents may be many of that are positively injurio They will have their day.
bat despite all factious opposition Compound Ox gen must become increasingly popular, so long as possesses the ability to effect such remarkable cures now attest its merit.
For full information regarding the treatment and
Drse, address
Drs. STARKEY \& PALEN,
1109 and 1111 Girard St., Philadelphia.

The Charge.for Insertion under this head is One Dollar a line for each insertion; about eight words to a line. Advertisements must be received at publication offic
asearly as T'lursday morning to appear in next issue.

All Books on Electricity, Cheap. School Electricity,N. Y "The Sweetland Chuck." See ad. p. 108. Address wanted of manufacturer of gasoline stoves. A. Roesler, Market Street, Char'feston, S. C.

Wanted.-Superintendent for agricultural implement
factory near New York. Must understand machine shop, wood shop, foundry, blacksmithing. etc., accord ing to modern customs, and be a man of proved ability.
Address, stating experience, expectations, etc., "Wood Address, stating experience, expectations, etc.," " Wood
and Iron," care of William Young. 21 Park Row, N.
Street Telescope, M. T., 835 Linden St.,, Camden,N. J. If yon want the best Helve Hammer in the world,
send to Bradley \& Company, Syracuse, \mathbf{N}. send to Bradey a conn.
Iron and steel drop forgings of every description. R.
A. Belden \& Co., Danbury, Ct. Thread Cutter.-Something
to all kinds of sewing machines and useful, adapted to all kinds of sewing machines. Patent for sale. Ad
dress, Gavino Gutierrez \& Co., 192 Front St., New York Hoisting Engines for Mines, Quarries, Bridge Builder
Railroad Construction, etc. Send for catalogue. Railroad Construction, etc. Send for cat
Copeland \& Bacon, New York.
Quinn's device for stopping leaks in boiler tubes. "Hass S. M. Co., South Newmarket, N. H.
"How to Keep Boilers Clean." Book
Iron Planer, Lathe, Drill, and other machine tools of modern design. New Haven Mfg. Co., New Haven, Conn. Pumps-Hand \& Power, Boiler Pumps. The Goulds
Mfg. Co., Seneca Falls, N. Y., \& 15 Park Place, New York. Fox's Corrugated Boiler Furnace, illus. p. 354. Hart-
mann, Le Doux \& Maecker, sole agents, 134 Pearl St.,.N. Y . For Freight and Passenger Elevators send to L. S.
Graves \& Son, Rochester, N. Y. Best Squaring Shears, Tinners', and Canners' Tools
at Niagara Stamping and Tool Company, Buffalo, N. Y. Lathes 14 in. swing, with and without back gears and
screw. J. Birkenhead, Mansfield, Mass. The Best.-The Dueber Watch Casse.
If an invention has not been patented in the United States for more than one year, it may still be patented in
Canada. Cost for Canadian patent, $\$ 40$. Various other Canada. Cost for canadian patent, $\$ 40$. Various other
foreign patents may also be obtained. For instructions address Munn \& Co., Scientific American Patent
Guild \& Garrison's Steam Pum
Guild \& Garrison's Steam Pump Works, Brooklyn,
N. Y. Steam Pumping Machinery of every deserin, N. Y. Steam Pumping Machinery of every descripNickel Plating.-Sole ma
Nickel Plating.- - Sole manufaclurers cast nickel an peste outfit for plating, ett. Hanson \& Van Winkl
Newark, N. J., and 92 and 94 Liberty St., New York.

Lists 29, 30 \& 31, describing 4,000 new and $2 d$-hand Machines, ready for distribution. State just what machines
wanted. Forsaith \& Co., Manchester, N. H., \& N. Y. city For Power \& Economy, Alcott's Turbine, Mt.Holly, N. J. "Abbe" Bolt Forging Machines and "Palmer" Powe
Hammers a specialty. Forsaith \& Co., Manchester.N.H

Railway and Machine Shop Equipment.
Send for Monthly Machinery List
Ito the George Place Machinery Company,
121 Chambers and 103 Reade Streets, New York.
Wanted.-Patented articles or machinery to make Water purified for all purposes from hous Water purified for all purposes, from household sup
pies to those of largest cities, by the improved filters manufactured by the Newark Filtering Co., 177 Commerce St., Newark, N. J.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J Split Pulleys at low prices, and of same strength and appearance as Whole Pulleys. Yocom \& Son's Shaftin
Supplement Catalogue.-Persons in pursuit of infor mation on any special engineering. mechanical, or scientific subject, can have catalogue of contents of the ScrThe Suppranent contains lengthy articles embracing the whole range of engineering, mechanics, and physial science. Address Munn \& Co.. Publishers, New York Machinery for Light Manufacturing, on hand and
built to order. E. E. Garvin \& Co., 139 Center St,, N. Y. Fossil Meal Composition, the leading non-conducting Straight Loine Ens, pipes, etc. See adv., p. 108
Straight Line Engine Co. Syracuse, N. Y. Best in design, materials, workmanship, governing; no pack
Improved Skinner Portable Engines. Erie, Pa. Drop Forgings. Billings \& Spencer Co. See adv., p. 398 Curtis Pressure Regulator and Steam Trap. See p. 78 Woodwork'g Mach'y. Rollstone Mach. Co. Adv., p. 78. C. B. Rogers \& Co., Norwich, Conn., Wood Working Machinery of every kind. See adv., page 77.
American Fruit Drier. Free Pamphlet. See ad., p. 94. Brass \& Copper in sheets,wire \& blanks. See ad.p.94. The Chester Steel Castings Co., office 407 Library St., 15,000 Gear Wheels. now in use, the superiority of their Castings over all others. Circular and price list free. The Improved Hydraulic Jacks, Punches, and Tube Expanders. R. Dudgeon, 24 Columbia St., New York.
Friction Clutch Pulleys. D. Frisbie \& Co., Phila. Pa Tight and Slack Barrel Machinery a specialty. John Greenwood \& Co., Rochester, N. Y. See illus. adv. p. 93 . Magic Lanterns and Stereopticons of all kinds and prices. Views illustrating every subject for public ex-
hibitions, Sunday schools, colleges, and home entertainment. 116 page illustrated catalogue free. McAllister
Manufacturing Optician, 49 Nassau St., New York. Hand and Power Bolt Cutters, Screw Plates, Taps Lightning Screw Plates, Labor-saving. Tools,

HIN'S 'IO CORRESPONDENTS.
No attention will be paid to commumications unless ccompanied with the full name and address of the
writer.
Names and addresses of correspondents will not be iven to inquirers.
We renew our request that correspondents, in referring
former answers or articles, will be kind enough to former answers or articles, will be kind enough to
name the date of the paper and the page, or the number name the date of
Correspondents whose inquiries do not appear after reasonable time should repeat them. If not then pub Editor declines them. Persons desiring
of a personal character, and not of general interest,
hould remit from $\$ 1$ to $\$ 5$, according to the subject s we cannol be expected to spend time and labor to obtain such information without remuneration.
Any numbers of the Scientific American SuppleIENT referred to in these columns may be had at the ffice. Price 10 cents each.
Correspondents sending
Correspondents sending samples of minerals, etc.
for examination, should be careful to distinctly mark label their specimens so as to avoid error in their indenti fication.
(1) C. M. asks: In what proportion of bulk atmospheric air is reduced by compression into $2,3,4$ etc., atmospheres? I mean, for instance, what room
will 1 cubic foot of air occupy after having been com pressed to $2,3,4$, etc., atmospheres, showing a pressure of $45,60,75,90$, etc., 1 lb . respectively? A. The pressure resulting from the compression of atmospheric air in
volumes after cooling to the normal temperature isvolumes compressed into one-
$\frac{2 \mathrm{vol} .}{15 \mathrm{lb}} \quad \frac{8 \mathrm{vol} .}{30 \mathrm{lb}} \quad \frac{6 \mathrm{vol} .}{45 \mathrm{lb} .} \quad \frac{8 \mathrm{vol} .}{60 \mathrm{lb} .} \quad \frac{10 \mathrm{vol} .}{90 \mathrm{lb} .}$, etc. At the instant of compression the pressure arising
from the liberation of the latent heat carries the pres-
sure somewhat higher.
(2) H. M. B.-We should infer from the de scription that the substance was some sort of slag hav-
ing a melting point lower than the heat to which the bricks were exposed. It is probably a silicate of lime or iron. To positively determine its nature an analy
sis would be necessary, the expense of which would be from $\$ 10$ to $\$ 20$, and a larger quantity of the coat

(3) J. L. T. wr

(d) J. L. T. writes that hammering and Never strike a pick or any steel tool on edge where the red heat has left it; let all the hammering be on the flat surface, and the last blows right along the point of the
tool to bring the steel close where the greatest resist ance to the blow is required. Clean, cold, soft wate
with salt enough in it to float a common potato. Give
the pick a cherry red heat, and dip without drawing temper; if the steel is good, you will have a pick that will
give good service, and you can draw them down just as thin as you want them and give them from $11 / 4 \mathrm{in}$, to $1 / 2$ in. clear temper.
(4) F. W. M. writes: 1. Suppose I have a gear wheel with a loose journal-bearing surface 2 in and another loose gear wheel just like the first, only that the width of its journal-bearing surface is half an inch, and it revolves on a shaft 6 inches in diameter. Will the bearing surface in both cases be the same, vi., $9 \cdot 4248+$ sq.in.? A. The bearing surface will be on the 6 in . shaft is to be revolved only one-fourth as fast as the wheel on the $11 /$ in. shaft, would the friction dhe small shaft will be A. The friction and wear on the larger. The contact surfaces in both instances are the same, but in the former case the same particles while the other shaft is revolving once; and since the weight upon hoth shafts is assumed to be the same, instance as in the other. 3. Would it require the one nstance as in the other. 3. Would it require any more
power to operate one than the other? I have been thinking that under the above circumstances the whee with the large shaft would suffer no more wear or friction, 'and take no more power, than the wheel with the smaller shaft. But if they were both to make a revolution in the same time, the former would wear four times as fast and take four times the power. A. It is impossible to answer the question of power positively, as the conditions are not fully enough given. We above conditions will be about the same for both shafts, although theoretically a little more power will be re quired to overcome greater wear of smaller shaft.
(5) O. F., Jersey City, asks what sized a chamber is required to sustain about $2,000 \mathrm{lb}$. dead weight in water? A. A chamber containing 32 cubic or air is sufficient if made of wood.
Minerals, etc.-Specimens have been received from the following correspondents, and examined, with the results stated
S. P.-The sample consists of pyrite (iron sulphide).
In order to determine whether it carried gold in paying In order to determine whether it carried gold in paying quantities, an assay, costing $\$ 5.00$, will be necessary.-
C. B. S. - The specimen is decomposed limestone, of no

INDEX OF INVENTIONS

For which Letters Patent of the United

January 29, 1884
AND EACH BEARING THATE DATE
[See note at end of list about copies of these patents.]

Alarm. See Lamp alarm.

Baling press, Seeley \& Buckman.
Bar. See Hitching bar. Jail bar.
Barrel finishing machine, R. O. Dobbin Barrel making machine, S. Wright. . Barrel mange, A. Hansen.................
Bed lounge
Beer finings spreader, J. Schafhaus. Beer finings spreader. J. Schafhaus.
Bicrcle. W. H. Davis................
Billiard table attachment, J. Docksta Bit and drill brace, J. D. Richardson Boiler furnace, T. E. Jones. Bolt heading machine, J. Bruderer. Boot and shoe counters, machine for bending, Boot and shoe sole, rubber. H. A. Wattson. Boot or shoe stiffeerers, molding, N. J. Simonds...
Boot or shoe upper, machine for pebbling or em Boot or shoe upper, machine for pebbling or em
bossing, J. H. Parker...................... bossing, J. H. Parker............. Bottling and siruping aerated beverages, appara
tus for, McEwen \& Spence tus for, McEwen \& Spencer.......................
Box. See File box. Letter box. Mail box. Paper Brace. See Bit and drill brace.
Bracket. shelf, or victure support, J. E. Wickham. 292,523
Broom holder, H. C. Berg.................... Bucket, G. A. Spross...
Buckle, C. s. Wells..
Burner.
Burner. See Gas burner. Vapor burner.
Button, H. Smith....
Button, E. Wuerfel.
Button fasteners, implement for setting, J.
Buttons to fabrics, etc., instrument for attaching
P. H. Sweet, Jr....................
alculator, tax, interest, and percentage, w.
alculator
Kiser.
Can holder and funnel. combined, w. M. Doty.
Can opener, F. Sharp (r).
Car coupling, J. Coup et al
Car coupling. F. A.Hoyt.
Car coupling, C. G. MeCorm
Car coupling
Car coupling, M. M. Shur
Car coupling, w. stamp.
Car coupling, P. Wineman.
Car rooing. W. H. Paige.
Car, sleeping.
Car spring R Shorey...
Car spring, R. Vose..
Cars of cable roads, pilot or guard for, w
Bohm...
Cars, etc.. pr
Cars, etc., propulsion of street, Graham \& Young.
G. G. Shoemaker

Carriage. R. C. Huse
Clay crushing roller, J. w. Penfield.292,556. 292.57 Clay crushing roler, J. W. Penfiela.292,556. 292.577
Clevis for chain cables, etc., swivel, F. Joseph.... 292,49
Coal screen, J. Jones......................... 292,500 Coffee and other grain, machine for cleaning, J.
Reaney...681 Coffee, etc., machine for cleaning and grading, G.
S. Hungerford..............................292, Coin counter for money drawers, c. G. Raber...... 2992,58
Copper, tinning sheet. A. A. Cowles................. 292,540
Creamer, centrifugal, Lefeldt \& Lentsch...292,661, 292,662 Creaming milk, centrifugal machine for, Lefeldt
$\&$ Lentsch (r). Cultivation and harvesting, system and apparatus cultivaton, R. Romaine... 292,51
Cultivator, H. W. Ferguson................................. 292, 29,639
Cultivator, R. C. Norton....................... 292,674
Cut off, automatic spring valve, J. L. Mitchell...2 Cutter. See Butter cutter
Die. See Hammer die.
Digger. See Well digger.
Dredging machine, H. .. Carter............. 292,732
Drill. See Ratchet drill.
Dust pan, J.I. Flanagen.......................................292,477
Electric accumulator, G. Philippart.......
Electric cable, compound, H. Van Hoevenbergh............292,7672
Electric circuit conductor, E. Weston.................... 292,717
strips in, E. Weston...........................
lectric circuits, fusible safety strip for, E. Wes-
ton..................
Electric conductor, A. A. Cowles.............
Electric machine, d nnamo, w. F. Buckley.
Electric machine, dynamo, W. F. Buckley. 292,625
Electric machine, dynamo, J. S. Bellon...
Electric machine, regulator, dynamo, E. Weston... 2929,715
Electric signaling apparatus, L. J. Crossley et al... 292,542
Electrical circuit breaker for annunciators and
gas lighting apparatus, T. I. Rhodes. 292,58
Electrical generator or motor, E. Weston........... 292,719
Electrical indicator, E. Weston.................. 292,714
Electrical transmission of power, system for the,
E. Weston

Elevator safety gate, F. K. Bartlett.................. 29,462
Elevator stop mechanism, F. Scooneas........ 92,686
Engine. See Locomotive steam engine. Pump-
ing engine.
Evaporator, steam heated. R. W. Turner.. 292,76
Evaporator, steam heated. R.
Excavating machine, H. C. Carter.... 292,4688

Fatty acids, solidifying liquid or semi-liquid,
F. M. McCarty.................
F. M. McCarty
aucet. P. Huff.

Felly planing machine, S. T. Kennan.............
Fence, flood, I. McDougall.
Fences, strand wire for barbed, B. B. Scutt

F
F
F

Fire escape, H. E. Doren.........
Fire escape, R. Stevenson.
Fire escape, R. Stevenson...292,7674
Fire escape, F. J. Underwood................. 292766
Folding table, E. C. D. Kirkpatrick...................... 292, 29,657
Furnace Se Boiler furnace.
Furnace. See Boiler furnace.
Furnace for treating ores continuously, A. M. G.
Sébiliot...292,492
Furnace rarate, M. C. Jnenes................ 292,587
Furnace joint, E. ©. Condit......
Furnaces, device for indicating the temperatue
Furnaces, device for indicating the temperature
in annealing, M. A Lhuissier.........................42,497
in annealing, M. A Lhuissier 292,497
Furnaces, manufacture of non-calcareous linings
for metalurgical, J. Keese................... 292,508
for metallurgical, J. Reese......................... 292,508
Gage. See Liquid or water gage. Sawyer's gage.
Gage, J. H. Fenety.................................... 292,551
Game apparatus, G. A. Lilliendahl............. 2923

Gas and water regulator. A. E. Cohn................. 292,536
Gas, apparatus for proucucing, G. W. Billings. 292,62
Gas burner J. G. Sanderson
Gas burner. J. G. Sanderson.......292,49
Gas scrubber, C. W. Isbell.................
Glass, apparatus for the application of compressed
air to the manufacture of, A. A. \& L. A.
Appert..729,730
Glass articles snap for holding, H. C. Schrader.... 292,685
Glass articles snap for holding, H. C. Schrader.....
Glassware, manufacture of ornamental, W. F.
Ruse
Russere, 292, 66
Glassware manuacture of spangled, w. Leigh-
ton, Jr.. 292.66
 292,663

Gran,
Grinding mill, J Q. Adams............................. 2926,612
Grinding mill, W. E. Gorton................... $292,74{ }^{2}$
Grinding mill, F. Wilson..292,524
Hammer die, J. Withington............
Hammer die, J. Wilhngtlo.......................... 292,60
Handle. See Tool handle.
Harness, S. Funk ..292,742
Harness loop, J. M. Basinger...............
Hat bodies, apparatus for stretching, J. Eaton... 292,634
Hat boaies, machine for felting and sizing, J.J.
or. C. A. Helbig., A. Solmans
Hat sizing or felting machine, J. J.
Hay rake, horse, J. N. \& T. Wallis..
Hay rake. horse,S. F. Weaver....................
Heat and fire resisting valve, W. A. Goodyear

Hide scouring and fleshing apparatus, A. Whiting. 292,723
Hinge. w. Patterson.............................. 292,574
Hitching bar, horse, F. Taylor
Hitching loop and strap, safety. R. W. Jones...............292,561 Holder. See Bag holder. Broom holder.
 Interlucking switch apparatus, O. Gassett. 292,74 Iron. See Sad iron.
Jack. See Iifting
Jack. See Lifting jack. Railway Jack. Screw
jack. Soe maker's jack.
Jack, S. J. Wisdom725

Jeweling tocl, J. R. Parson.
Joint. See Furnace joint.
Jug top, Lang \& Lauster
Knapsacks, means for carrying, A. Mendel....
. 292,660
292.566
Knife. See Cigar dealer's knife.
Knitting machine, W. D. Huse...
Lamp alarm, electric, J. Olmste
292,490
292761
292,720
Lasting machine, A. W. Wearson......................... 29292,720
Latch, door and gate, C. Wormuth.......... 292,727
 Strait

292,510 292,753

Cloth, H. L. Einstein.
Costume, child's, C. O'Hara
Glove, Reyssier \& Gottschalk
Harness
Harness breeching ring, H. C.
Harvester cover, w. H. Hill.
Hinge, blind. Shepard \& Adams,
Lace pin, H. Marcus..
Lamp chimney, W. J.
Mitt, A. G. Jennings
Mitt, W. P. Jennings
Pendant, B. Dreyfus
Salt and pepper box, L. Casper.
Stany
Type, font of printing. C. II. Beeler., J.
Type, font of printing G. F. Giesecke
 TRADE MAR

Bitters. Cook \& Bernbeimer
Canned provisions, Pratt $\&$
Canned provisions, Pratt \&
Canned provisions, Scollay
pany
Chocolate. J. Collier \& S
Cocoa, J. Collier \& Sons

Faucets, bibs, cocks,
Sniffen Company...
Sniffen Company,
Flour, family, D. Brainard.
Gas cocks, lock, Meyer Sniffen Company
Grease traps, Meyer Sniffen Company
Hair grower, Benton Hair Grower Company.
Liqueur or cordial, M. M. Grézier...
Medicine, lung, A. P. Witt .
Nets and other reticulated fabrics, hair, A. G. Jen
nings \&
Perfumery and perfumed soap, F. A. Richter.
Perfumery and perfumed soap, F. A.
Rum. whisky, and gin, E. \& J. Burke
Saurkraut W,
Saurkraut, W. M. Johnston \& Co
Tobacco, smoking, B. F. Weyman
Tobacco, smoking, B. F. Weyman...................
Tobacco, smoking and chewing. J. H. Harris' Son
chewing, Marburg Brothers.......
Water closet, Meyer Sniffen Compan
Water closets, water closet cisterns. and their fil
tings and appliances, Meyer Sniffen Company
Whisky or beveraces compounded of whisky,Cook
$\&$ Bernheimer............................ 10,88
Whisky, rye, E. B. Bruce \& Co.
Wine and liquors, Violet Fréres
Yine and liquors, Violet F'réres
wool and silk, P. Schulze
A printed copy of the specification and drawing
any patent in the foregoing list. also of any patent
issued since 1866 , will be furnished from this office for
cents. In ordering please state the number and date
of the patent desired, and remit to Munn \& Co.. 26
Broadway, New York. We also furnish copies of patent
granted prior to 1866; but at increased cost, as the
hand.
Canadian Patents may now be obtained by th
inventors for any of the inventions named in the fors
going list, at a cost of $\$ 10$ each. For full instruction
address Munn \& Co., 261 Broadway, New York. Othe
Yoreign patents may also be obtained
$\begin{array}{r}10,93 \\ .70,88 \\ \hline 70,898\end{array}$

NO PATENT
namenan TRAVELERS

OF HARTFORD, CONN.

bUT IT HAS NEARLY AS GREAT A
MONOPOLY
Of the business in America as though there were.
Only Great Accident Company on the Continent.
Paid Policy-Holders $\mathbf{\$ 1 , 1 5 4 , 0 0 0}$ in 1883.
Rates as low as will Secure Full Payment of Policies.
Has the money to pay its bills, and Pays Them.
Only $\$ 5$ to $\$ 10$ per year, for all Ordinary Occupations, secures $\$ 1,000$ in case of death, and $\mathbf{\$ 5}$ weekly indemnity for disabling injury.

PERIN BAND SAW BLADES,

SECOND SERIES.
 Two Dollars, postage prepaid.
E. \& P. N. SPON, 35 MURRAY ST, NEW YORI.

THE SWEETLAND MM'G COMPANY,
" The Sweetland Chuck."

$\$ 5$ to $\$ 20$ darday at home. samples. worth $\$$ freee half interest in U. S. PATENTT 8 For "Switch Operator" may be had cheap. T.P.'HALL,

ROUND SHOULDERS, OR ANTERO-POS terior Curvature of the Spine, -By Chas. F. Stillman, M.
S.
S., M.D An inquiry into the anatomical and physiolog-

PROOE
Sample and Circular Free by mail
U. S. MINERAL WOOL CO., 22 Courtiandt St, N. Y. RAISING AND MOVING MASONRY

UINTTIESAT

 PROGRESS OF THE NICKEL METAL

Rose's Mechanical Draw-

 ing Self-Taught.

NEW YORK BELTING \& PACKING CO.;

 his adaress. HENRY CAREY BAIRD \& CO.,
Industrial Publishers, Bookselers, and Importers,
810 WALNUT STRE ET, MHILADELPHIA, PA. THE CENTRAL PACIFIC R. R. FERRY.

 THE MUSK CATTLE OF AMERICA.
 Contained in SCIENTIFIC AMERICAN SUPPIEMENT, No
400. Prie 10 cents. To be hadat this office and from

I CURE FITS!

1.2.t. 919. wiven CONSUMPTION.
 RUPTURE

266th EDITION. PRICE ONLY \$I

 $\frac{\text { Gear: PERKLINS, west winted, Sol }}{\text { PERFECT }}$

NEWSPAPER FILE

SOLTHWARK FOLNDRY \& MACHIVE COMPANY,
430 Washington A venue, Philadelphia, Engineers \& Machinists, Porter-Allen Automatic Cut-Off Steam Engine

EADS' SHIP RAILWAY FOR THE

 Only, en and sio.oon milly

ROOTS NEW LRON BLOWER:
 RON REVOLVERS, PERFECTLY BALIANCEU, P. H. $\&$ F. M. R. ROOOS. Manurachecturers,
 NEW YORRI.

 Government Railways of New South Wales ONTRACT FOR THE MANUFACTURE AND
PLY OF 150,000 TONS OF STEEL RAILS. To Ironmasters, Manuriacturera, and Others,
The Government of New South Wales, being desirous
of encouraging the development of the locall Iron Mining and Iron and Steel Manufacturing Industries, are
prepared to receive Tenders for the supply of 150,000

 and at the Pubiic works Office, sydney, not later than
the loth February, 1858, at which latter pace the whole
of the thars will be opened at 11 o'clock, A.M., on the
da last named Each Tender must be accompanied by a Bank Deposit
Receipt to the credit of the Commissioner for Railways
in the sum of (\&i,000) one thousand pounds sterling as a
 have been decclared, but the deposit of the successfur
fenderer will be coned as security for the due per
formanee of the Contract. TTenders not accompanied by
 Yorkk
Deeivery of the rails is to commence not later than 1st
Dencol Contractors must give full information and particulars
in their Te nder at to the proces of mann mature they
intend to adopt, and also whether they will be prepared
to manut
 the ralis under this Contract.
Contractors must state in then Ten der whether they
intend to manufature the rails from native materials
only or whether intend to manuracture the rails from native materials
only, whether and to what extent, they intend to use
imported material, giving a separate price per ton in

 tives Cofony
therers wishing tormation of per sons desiring to Tender it
may be stated that the offical al returns show that there were imported into Ne New South Warse and Victoria there
two Colenies join each other, and are connected by
tailway) within the list 10 years1.250,000 tons of iron and steel inclusive of the perrmanent way material required
tor Govenment and other Railways construct ed during
the period mentioned. Department of Public Works,
Railway Branch, Sydney,
, ist October, 1883.

WATCHMAKERS
Before buying, see the Whitcomb Lathe and the Web-
ster root whee, the by te the AMERICAN WAVCH
TOOL CO., Waltham, Mass.
WANTED a situation, by ap practical Hammerman,
Address VULCAN, make shatsburgh, Pa. Park of Iron or Steel.
 and chilled work. Best retrerences required. Address
a. 0. Box 87 , Atlanta, Ga.

PATENTS.

MESSRS. MUNN \& CO... in ennmection with the publication of the scientific Ami ricas. continue to ex
mine Improvements, and to act as solicitors of Patents for Inventors.
years' experience business they have had thirty-eight the preparation of Patent Drawings, specifications, and United States, Canada, and Foreign Countries. Messrs. Mumn \& Co. also attend to the preparation of Caveats, and Reports on Infringements of Patents. All business intrusted to them is done with special care and prompt-
A pamphlet sent free of charge, on application, con aining full information a bout Patents and how to pro cure them; directions concerning Labels, Copyrights, Designs, Patents, Appeals, Reissues, Infringements,
signments, Rejected Cases, Hints on the Sale of
tents, etc.
We aiso send free of charge a Synopsis of Forei Patent Laws, showing the cost and method of securing patents in all the principal countries of the world.
MUNN \& CO., Solicitors of Patents,
BRANCH OFFICE.-Corner of F and 7th Streets,

H.W.JOHIS'
 asersic

ASBESTOS ROPE PACKING,
ASIBESTOS WICK PACKING,
ASBESTOS ILAT PACKING, ASBESTOS SHEATHINGS,
ASMEG'NGGASKENS,
ASBESTOS BUILD
H. W. JOHNS M'F'G CO., 87 Maiden Lane, New York,
Sole Manufacturers of H.W. Johns' Genuine

WM, A. HARRTS,

HARTFORD
STEAM BOILER
Inspection \& Insurance COMPANY
W. b. Franililin.V. Pres't. J. II. ahlien, Pres't. J. B. PIERCLE, Sec'y.

BOOKS ON BUILDING, PAINTING,

 $\left\lvert\, \begin{aligned} & \text { Best Boiler Feede } \\ & \text { in the worle } \\ & \text { - }\end{aligned}\right.$
 The "MONITOR."
 or Water Flerator convesing Fin

JWYKINS' PAFWINT VATVES,
Sw. A Jate, Globe, Angle, Check, and Safety.
Kivis FACTURED OF BEST STEAM METAL.
, see that valves are stamped "Jenkins Bros"
JHNIXINS BROOS.
Ahrens, WAEETS:
 R)w , San Fra

H

Best Boiler and Pipe Covering Made!

Double Screw, Parallel, Leg Vises.

SHEPARDSS CELLEBRATED

Telegraph and Electrical SUPPPLIES Medical Batteries, Inventors'! Models, Exper1-

METAL WORKING MACHINERY

LATEST IMPROVEMENTS. GOULD \& EBERHARDT,

IN OUTFITS

the United States
on 1 to 3 days trial
before buys
 Fiolin
Outfits

 Han Duzen's Pat. Loose Pulley Mile A two years' test by Pedigree.
manufactiverers

 50 Iarge New Gali, siliver eite ehromg Caras,

VVATPR.
Cities, Towns, and Manufactories Patent tube and gang well system. Wm. D. Andrews \& Bro., 233 Broadway, N. Y. Infringers of above patents will be prosecuted.

$\underset{\text { Is guarated }}{\text { VISIOP }}$

 BIG PAY to sell our Rubber Printing Stamps. Samples ABSOLUESY W/LSON'S
TEEST.
LIGHNNGSEWER!

 GASENGINES,
 POWER DETERMINED by ACTUAL TEST CHE CONTTNENTAL GAS ENGINE CO., No. 231 BROADWAY, NEW YORK

Remington Standard Type-W riter.

Wyckoff, Seamans \& Henedict,

SPEAKING TELEPHONES.
THE MMERICAN BELL, TELEPHONE COMPANY
 Alexander, Graham 1hell's patent of March 7, 1876,
 tions produce simiar articulate sounds at the receiver
The Commissioner of Patents and the U.S. Circuit Court
 This company aso owns and controls all the other
telephonic inventicns of Bell, Edisisn, Berliner, Gray,
Blake. Phelps. Watson. and others.
 All telephones obtained except from this company, or
its authorized licennees, are infringeements. and the
makers. sellers, and users will be proceeded against

§rientific Anrcxicam
The Most Popnlar Scientific Paper in the Word.
Only $\$ 3.20$ a Year, including postage. Weekity. 52 Numbers a Year.
This widely circulated and splendidly fllustrated paper is published weekly. Every number contains sixoriginal engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery, Chemistry, Electricity,Telegraphy,Photography, ArchiAll Agriculture, Horticulture, Natural History, etc AMERICANses of Readers find in the scientifio formation of the day; and it is the aim of the publichers to present it in an attractive form, avoiding as much as possible abstruse terms. To every intelligent mind, reading. It is prords a constant supply of instructive every community where it circulates.
Terms of Subscription.-One copy of the Scien tific American will be sent for one yar 52 numerspostage prepaid, to any subscriber in the United States
or Canada on receipt of thiee dollavs and Iwenty cents by the publishers; six months, $\$ 1.60$; three Clubs.-One extra copy of the Scientific Ameri
CAN will be supplied gratis for every club of five subseribers at $\$ 3.20$ each; additional copies at same proportionate
rate. One copy of the Scientific American and one copy for one year, postage prepaid, to any subscriber in the United States or Canada, on receipt of seven dollars by The safest way to remit is by Postal Order, Draft, or Express. Money carefully placed inside of envelopes, securely sealed, and correctly addressed, seldom goes
astray, but is at the sender's risk. Address all letters and make all orders, drafts, etc., payable to

MIUIVIV \& CO.,
261 Broadway, New York.
To Joreign Su bscribers.-Under the facilities of
the Postal Union, the Scientific American is now sent by post direct from New York, with regularity, to sub-
seribers in Great Britain. India, Australia a and all British colonies ${ }^{\text {jon }}$ to France, Austria, Belgium, Germany, Russia, and all ther European States; Japan, Brazil, Mexico, and all States of Central and South America. ${ }_{\$ 4}$ Terms, when sent tor Sor foreign countries, Canada excepted for both Scientific amprican and Supplemegt fo for both SCIENTIFIC AMERICAN and SUPPLEMENT fo
one year. This include nostage, which we pay. Remit MUNN \& .,261 Broadway, New York.
PRTNTING INNES:

