

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCLENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

Voll	NEW	YORK,	Jandary	26,	

RAILROAD BUILDING ON THE BANK OF THE HUDSON.
The west shore of the Hudson River is bordered, at inter vals for a great part of its length, by high, rocky bluff which descend abruptly into the water. In many places there is no shore, the rocks extending far beneath the water and at so great an inclination that it is impossible to construct a shore either by filling in or by the use of crib work. This formation taxed the skill and ingenuity of the engineers of the New York, West Shore, and Buffalo Railway, whose line, in mayy places, skirts these bills at the water's edge, and to successfully overcome these obstacles was a work of great magnitude, and necessarily incurred heavy expense The engravings show four points on the line of the road, each of which presented difficulties peculiarly its own, and called for treatment specially adapted to its own circumstances
Emerging from the West Point tunnel the road passes through Target Hill, a large gravel knoll used by the cadets for target practice, and then around the base of Storm King mountain. The filling shown in the foreground was taken from the T'arget Hill tunnel. The telegraph pole shown in the picture, taken as having a length of thirty feet, is a good scale by which to judge of the height of the vertical cut at the inside of the track.
Dunderberg mountain is just north of Caldwell's Landing, and dips into the river in a nearly perpendicular line. Both here and at Storm King the engineers, when running their
to the trees above, and in many places holes had to be cut labor was lost, as the material slid off into deep water. The in the rock to receive the legs of the transit, the smooth face bridge spanning the bay is a through truss double intersecof the cliff offering no resting place even large enough for tion, having a length of two hundred and ninety feet and a that purpose. Men suspended in the same way drilled holes width of thirty feet between centers. To erect this bridge in the rock, and from the pockets thus blasted out in the in its place in the line of the road was next to impossible, side of the mountain the excavation was carried forward in \quad since there was no foundation for the false work. It was either direction and downward until the grade of the road \quad therefore decided to erect the bridge on a line fifteen feet was reached. Along Dunderherg mountain the depth cut back from the road line. The piers upon which the ends of out varied from fifty to seventy five feet, according to the the bridge were to rest were extended this distance and covline of the road and the inclination of the slope. ered with iron plates. The bridge was then erected, there
The third engraving shows a small cove located at the being no difficulty in finding places for the frame work base of the hill upon whose summit is Cozzens' hotel. This across the bay. After the bridge had been finished it was cove, or, more properly speaking, indentation in the face of moved fifteen feet into position by means of hydraulic the bluff, has a steep rock bottom sloping toward the river jacks.
channel and presenting no ledge near the shore that would
scribed. An attempt was made to make a ruadbed by fill
securely hold filling. To have made the line of the road emoval of great quantities of rock on each side, and rather Buffalo during the recent very cold weather. On the lake han do this a bridge having a span of two hundred and ten shore, where the breakers run high, a train of cars was placed feet was built. to protect the adjoining tracks from ice forming from the spray. The Buffalo Express says that "for a quarter of a little bay, the bottom of which is precisely similar to the one mile they are a solid wall of ice. Most of the cars cannot just described. The road, after passing through an open thick. The spaces between the cars are filled solid with ice, cut in a rocky nose projecting into the river-shown in the and the space betweeu the wheels under the entire length of foreground of the fourth engraving-crosses this bay and the train is a miniature Mammoth Cave-a gallery of stalacers upon a ledge excavated in the manner already de- tites and stalagmites. Several of the cars have crushed ng in and also by was
and caved beneath the weight of the ice. It is a veritabletrain of ice."

stimutific gmmiran.

HS'NABLISHKD 1845.

MUNN \& CO., Editors and Proprietors. bublished weekly at
 No. 261 BROADWAY, NEW YORK.

o. D. MUNN

A. E. Beach.

TERIRIS FOR THHE SCIENTIFIC AMERICAN.

One copy, one year postage included...
$\$ 3.20$
160
Clubs.-One extra copy of The Scientific American will be supplie ratis for every cuub of tive subscribers at
Remit by postal order. Address
The Scientific American Supplement is a distinct paper from the SCIENTIFIC AMERICAN. 'THE SUPPLEMENA wissued weekly. Every number contains 16 uctavo pages, uniform in size
witicic AMERICAN. T'erms of subseription for SUPPLEMENT, with SCIENTIFIC AMERICAN. Terms of subscription tor SUPPLEMENT
$\$ 5.00$ a year, postage paid, to subscribers. Single copies, 19 cents. Sold by all news dealers throughout the country
Combined Rates. - The Scientific American and supplement will be sent for one year postage tree. on receipt ot s
papers to one address or different addresses as desired.
The satest way to remit is by draft, postal order, or registered letter.
Scientife american Export Edition.
The Sciwntific american Export Edition is a large and splendid peri dical, issued once a month. Eath number ccntains about one hundred
arge quarto pages, profusely illustrated, embracing:
(1.) Most of the plates and pages of the four preceding weekly issues of the Sci wrerryic
AMERICAN, with its splendid engravings and valuable information: (\%) Americav, with its splendid engravings and valuable information : (2. Terms for Export Edition, 85.00 a year, sent prepaid to any part of the worms for Exnglecopies 50 cents. Manufacturers and others who desire to secure foreign trade may have large. and handsomely disp
The Sci meviric Amulican Export Edition has a large guaranteed circu lation in all commercial places throughout the world. Address MUNN \&
CO., 261 Broadway, corner of Warren street, New York.

NEW YORK, SATCRDAY, JANUARY $26,1884$.

Contents

Illustrated articles are marked with an asterısik.)

TABLE OF CON'TEN'S OF the scientific american stpplement

No. 421,

For the Week ending January 26, 1884

Price 10 cents For sale by all newsdealers
engineering and mechanics.-Farcot's Six Horse Power
Foot Lathes.-With engraving...
Endless Trough Conveyer.- 2 eng
Railroad Grades of Trunk Lines
English Express Trains.-Average sp
A pparatus for Separating Substances Cong runs, etc............. Waters of Paper Mills, etc. -2 figures
TECHNOLOGY.-An English Adaptation of 671 cesses.--Several engravings
cesses.-Several engravings.
Large Blue Prints.-By W. B. PARSONS, JR..
III. Efectricity, ETC.-Electrical Apparatus for Measuring and for Demonstration at the Munich Exhibition.-With descriptioǹ and numerous illustrations of the different machines.
A New Oxide of Copper Battery. A. New Oxide of Copper Battery.-By F. De Lalan haperon.-With description and three illustrations
MATHEMATICS, ETC.-To Find the Ti
A New Rule for Division in Arithmetic.
Experiments in Binary Arithmetic.....
ARCHEOLOGY.-Grecian Antiquities.-With engraving of the Monument of Philopappus.- Tomb from the Ceramicus. -Tower of the Winds.-The Acropolis.-Old Corinth.-Temple of Jupiter. The Parthenon-Temple of Theseus, etc
VI. NATURAL HISTOKY, ETHNOLOGY, ETC. Poisonous Serpents and their Venom.- By Dr. ArcHie STockwel.--A serpent
mouth, fangs, and poison gland.- Manner of attack.-
venom.-Action of venom.-Remedies......
Ethnological Notes.-Papuaus.-Negritos
VII. HORTICULTURE, BOTANY, ETC.-The Hornbeams.-Uses to which the tree is put.--Wood for manufactures.-For fuel.-Dif ferent varieties. - With engravings of the tree as a whole, and of its leaves. fruit. flowers, etc...
Fruit of Camellia Japonica.
midiong
Abstract of a lecture by Capt. Douglas Galton.-Treating of the domeract of a lecture by Capt. DoUGLas Galton.-Treating of th ditions to observe in house drains, etc... Pasteur's New Meth
Convenient Vaults.
IX. MISCELLANEOUS.-Spanish FIsherin.................... Duck Shooting at Montauk. The laries Exhibition

bills for the nullification of patents.

We noticed last week the introduction of three bills in the House of Representatives, the direct effect of which, if they become laws, will be in any case to largely impair, and in probably the majority of instances to utterly nullify and destroy, the rights of patentees as they exist under our present laws. The bills referred to, as also two others of similar cbaracter, will be found in full in another part of this paper. One of the latter is also from an Indiana representative, thus making three proposed laws by members from that State aimed at the nullification of the patent laws. The bill of Mr_{r}. Wood gres even further than those of his colleagues, for, besides protectiang the infringer who can claim a want of knowledge of the invention, it prohibits the trial of patent cases in the United States courls where the amount in controversy does not exceed $\$ 200$. This would leave the investigation of all the technicalities of invention, and the construction of the almost distiact science of patent law, with local courts and juries, and when a decision had ouce been reached it would not be worth anything except in a very limited section.

anNealing and case hardening.

Many articles of cast iron are so hard when removed from the mould that it is impossible to use drill, file, or chisel on them. Even the softest of gray iron may turn out hard when cast in thin shapes, the sand mould clilling them as effectually as a designed cast iron chill. These castings may be made useful, instead of being relegated to the scrap heap, if properly treated. Those from gray iron may be annealed be being packed in coarse sand (quartz) in iron boxes and subjected to a red heat for forty-eight hours. A little common lime, unslaked, added to the sand may quicken the annealing, but is liable to "rot" the iron. If the castings are of "white" iron, they should be packed in cast iron boxes with powdered sal-ammoniac and forge scales in the proportion of one by weight of sal-ammoniac to twelve of forge scales. Usually twenty-four hours' heating will be sufficient to soften the most obdurate castings and render them amenable to tools. But the heat should be kept up to a generous red, a "soaking" heat, during the period of aunealing. Where small castings, requiring after-treatment with tools, are an important part of the manufacture, proper ovens are ready to receive the castings. In fact this last method is that employed for the conversion of ordinary castings to malleable cast iron, only that the exposure to a red heat ex tends to seven, sometimes nine, days. Where annealing of castings is only occasionally required, no very expensive contrivance is necessary. In some cases only a protecting blanket of material is necessary to insure even heating and a continuous temperalure; in others the material of the packing is an essential, as it affects the iron to an appreciable depth; as, for instance, the use of forge sc:iles, or the progenous oxide of iron in other forms, as the tail slag of the foundry. These depend on the quality of the irou used in the castings.
Cast steel can be readily annealed by similar means. Usually an exposure of twenty-four hours to a red heat while packed in lime is sufficient to anneal any cast steel. Bars of fine cast steel used for hand engraving are so annealed, when the material cuts as soft as pure silver. -f course, none of these methods are necessary where the usual "black'neal," or the heating and burying in the forge ashes, is sufficient to render castings tractable to tools.
Case bardening is so simple a process that it is surprising that machinists do not generally understand it. They ought to know enough of the smith's department to temper steel and to case harden iron. For small articles a section of gas pipe with cap thimbles screwed on the ends is a sufficient box, but for larger articles a cast-iron box is preferable; and in either case it is well to have the covers luted with fire clay. But if the heating is done in a charcoal fire the cover may be dispensed with. The packing should be either char coal, with bits of horn, raw hide, and leather, or better broken or ground bone. The ground bone makes a steel surface sooner than the charcoal. An exposure of two or three hours to a red heat is usually sufficient to case barden for general purposes. A quicker method, which gives a superficial coating, is that of heating the piece red hot and then covering it with a powder of prussiate of potash and sal-ammoniac in equal proportions. This flux melts immediately, when the piece should be plunged in cold water Articles case harden best when most polished.

PROPOSED AMENDMENT OF THE COPYRIGHT LAW.

The copyright law as it stands requires the author to author is thure ber to produce new and original mat ter for the benefit of the public.
House bill 62, introduced by Mr. Rosecrans, of California, reverses all this, as it permits any person who has ever written anything, at any period of his life, after it has been published in any new spaper or periodical, no matter how long ago, to take out a copyright on any portion of his old stuff. Should this bill be passed, it looks as if it would give rise to many complications. For example, a newspaper editor would not be able to republish or make quotations from articles or items in the back numbers of his own journa 8 without the risk of violating somebody's copyright; for al-
though the articles may have been originally written for and paid by the editor, he has under this bill no right to repropaid by the editor, he has thereof. In fact, the bill is so
duce the
worded that it would be dangerous for an editor to reprint the back numbers or volumes of his periodical
The bill is evidently very crude, and requires amendment. It ought to provide that no article shall be copyrighted after having been once published, unless the words "copyright intended" shall be printed over the article at the time of tirst publication. Furthermore, some limit of time after publication ought to be fixed, during which a published article may be copyrigbted, say sixty days.

IS OUR WATER POWER FAILING?

It is quite manifest that the streams, ponds, swamps of all this part of the country, including certainly New England and the Middle States, are most remarkably destitute of water. And this deficiency has beeu steadily becoming more strongly marked and more troublesome for some time past, certainly as much as three years. The complaints from the large manufacturing towns where their dependence is on water power have been great, and reasonably so, and manufacturers have been discussing seriously the question whet her their trust must not be placed on steam instead of water.
The records correspond with this general impression Taking New Haven as a fair example, the rain-fall there for the past ten years bas averaged $42 \cdot 9$ inches, while for the last four years it has been but 364 , and of the last two it has been $31 \cdot 6$. The average from 1873 to 1879 inclusive was $46 \cdot 9$, and Mr. Schott, in the Smithsmian Contributions, vol. xviii., p. 93, gives it for the years from 1804 to 1867 (though the records are incomplete) as 44.43 .
It becomes for us certainly a very serious question whether this is merely a phenomenon, an aberrant affair which will be temporary and transient, or whether we are to accept the belief that a change is in progress which involves failure of precipitation, with all the evils and the desolation which it must bring. And if so, have we at command any means of arrestivg the difficulty even partially?
We hear much said about the injury caused by clearing the country of its forest growth and the death and desolation which must follow from it. But while it is manifest and certain that land lying open to the sun must be subject to more evaporation than that which is densely shaded, yet the laws of vegetable growth do not permit any such fearful results as have been suspected, nor does experience slow that such results bave occurred. The immense quantity of exhalation from the forest leaves, placed in correlation with the evaporation by solar heat when that forest land has been cleared and cultivated, is an element not to be disregarded It is constantly stated that springs have dried away, and streams dwindled much in size, as our lands have been stripped of their trees. In a smill way and in limited areas this may be trae, and doubtess is so, but not to any great extent. And that our rivers are pouring into the sea les water than they discharged two hundred years ago, we bave no reason to believe. And this we say in face of the statement quoted in commencing, and in face of the fact that the water supply throughout New England is at this moment so lamentably deficient.
We cannot regard our present condition as anything more than temporary, for several reasıns. In the first place, it is merely local, for while we bave been suffering trom want of water here, it has been necessary to go but a moderate distance to find precisely the opposite state of things. No fur ther than merely beyond the A!leghanies, their complaint has been of excessive rains and destructive floods. And still again, we are but experiencing that which has repeatedly occurred siuce the founding of the colonies, a cycle of drought which after a few years will have passed away. According to the best information which we can obtain, there is no good reason for believing that our average rain-fall, taking a properly extended series of years, is any less now than it was in the times of our earliest history.
And it is certainly not possible to refer the scanty rain fall of the last two or three years to any effect of forest clearing, for no such thing has taken place. The great tree destruction of New England and the Middle States was done and its effects experienced long ago.
We must therefore look to some other cause for our pres ent state of drought, and it may be to a great variety of causes. And in doing so we slall encounter the question whether the average precipitation throughout the world is undergoing gradual diminution, not to be measured by human life time, perhaps scarcely by that of nations, and yet capable of being traced in human history. It is a ques tion full of interest.

The Blind.

The last English census reveals the encouraging fact trit the proportion of the blind to the population has decreased with each successive enumeration since 1851, in which veat account of them was taken for the first time. The decrease in the decade ending in 1881 was much greater than in either of the preceding decennial intervals, the number of cases returned on this latter occasion being 22,832 , equal to one blind person in every 1,138. This decrease is fairly attri butable to the progressive improvement in the surgica reatment of affections of the eye, and to the diminished prevalence among children of small-pox.

Exhibition programmes for 1885 are now in order. A National Hungarian Exbibition is to open May 1, 1885, and continue to October 15. In connection therewith will be an international section for tools, machines, and motors, agricultural machines, patented inventions, etc.

BRASS FINISHING BY ACIDS

Many articles of brass cannot readily be finished by the file or by abrading substances, owing to the intricacies of their surfaces. Especially is this true of brass castings of an ornamental character. But a most elegant inish can be obtained by means of acids, which may be protected, if desired, by means of a lacquer or varnish; the acid finish however, is generally preferred without the addition of a varnish.
If the work to be finished is greasy, it should be cleaned by heating and dipping in acidulated water-vinegar and water, or washing soda in water-and then in clear water. The finishing bath may be either nitric acid two parts, water one part; or one part sal ammoniac, one part sulphuric acid, one part nitric acid, one part water; all by measure and the sal-ammoniac to be dissolved in water until a saturated solution is obtained. The articles should not be allowed to remain in the acid more than ten seconds, then taken out, plunged into clear, cold water, thence into hot soapy water, and dried in hot sawdust.

Hooks and Eyes.

For more than a dozen years the manufacture of hooks and eyes for women's and children's dresses may be said to have been dead, buttons baving superseded them. But there are indications that hooks and eyes are again to come into use, at least to a considerable extent. If this should prove to be the case, it will gladden the hearts of some who have preserved their machinery from the scrap heap. Thirty years ago the State of Connecticut had manufactories within her territory that produced these little articles to the value
of $\$ 112,000$ annually at fifteen cents a gross. Previous to 1830, or thereabout, hooks and eyes were made by hand and sold at $\$ 1.50$ per gross.
The machines for making hooks and eyes are quite ingenious, those for the hooks being capable of making ninety per minute and those for the eyes one hundred and twenty per minute. That for making the hooks takes the wire from a reel through a straightener, cuts off the wire to the exact
length, when a blade strikes the piece in the middle of its length, and two side blades moving simultaneously bend the wire double, laying the two halves of its length close to gether and parallel. Then two pins rise, one on each side of the ends of the wire, to form the eyes of the hook, and two semi-rotating pushers bend the ends round the pins, making the eyelets for sewing the hook on to the fabric. The unfinished hook is still perfectly flat, when a horizontal pin, and a vertical bender working upward, curve the double end of the hook, and a presser flattens the end to a "swan bill." The eye is formed in another machine, but by means of similar appliances. Brass wire is used for silvered hooks and eyes and iron wire for the black or japanned goods. The silver coating is made by mixing an acid precipitate of silver with common salt and the cream of tartar of commerce to produce a paste. Certain proportions of this paste and of the brass hooks and eyes are placed in a tumbling barrel, and by attrition and affinity the brass and silver unite. The articles, as they come from the tumbling barrel, are of a lusterless white, but are polisibed by being placed in cotton cloth bags with bar soap and rubbed with hot water under the vibrating arm of a washing machine.

A New Torpedo and Shrapnell Shell

Under date of Constantinople, January 9, the New York Herald prints a dispatch which states that at the trial of torpedoes recently on the Bosphorus, Danud Bey, a Turk, produced a torpedo, invented by himself, the motive power of which is obtained by means of rocket tubes. Daoud's weapon attains a speed of 200 yards in 20 seconds, and is de clared by experts to eclipse any torpedo yet in vented.
It adds to this an account of Gen. Berdan's invention, viz.: a fuse for shell projectiles that cannot possibly fail to effect explosion at the right moment. Briefly stated, the principle involved consists in utilizing the rotary motion of the projectile to ignite a fuse after the former has made a certain number of revolutions. The rifling of the gun de termines the space passed over in each revolution, thus permitting the adjustment.

The habit which the editors of some so-called practical journals have of sneering at and deprecating the use of symbols for indicating mathematical operations is a very pernicious one, and is an insult to their intelligent readers It is almost superfluous to say that any man who does not
know that + means plus, and - means minus, and that $\sqrt[3]{3}$ know that + means plus, and -- means minus, and that $\sqrt[3]{3}$
denotes that the cube root is to be extracted, does not know enough to perform the operations indicated, even though they be expressed in the plainest English possible. Those who do know enough to add, or subtract, and extract the cube root, know the value and convenience of the symbols denoting those operations, and the only effect any attempt to decry their use can possibly have upon their minds is to create a feeling of contempt for those who ridicule thei use.-The Locomotive.

Petroleum wells to the number of 2,890 were put down in 1883, against 3,260 in 1882, and 3,852 in 1881. In 1883, 245 dry holes were found, against 180 in 1882, showing that the limits of the different oil fields are now pretty well de fined, and the prospector who goes outside of them has a pretty cood chance to fail in "striking oil."

Making leather is now essentially the same in principle as it was in the days of the Pharaohs. Improvements have been made in the methods of depilating, or removing the
hair, from hides and skins, and machincry helps to forward the work in both tanning and finishing, but the aid of a vegetable astringent-tannic acid-is necessary in combination with the gelatine of the hide to make true leather And this is a long operation, requiring, for sole leather from four to eight months, and the lighter harness and upper leathers less in proportion. It is now claimed that thi long tanning process can be shortened by electricity, and an English patent has been issued with this object. It is well known that hides being "sweated" for unhairing give off a great deal of ammonia, from the combination of the nitrogen of the gelatinous tissue with kydrogen. This pro cess of decomposition is immediately checked when the hides go into the tan liquors, but the precise chemical reaction which take place in the vats have never been clearly under stood. In heavy sole leather it is claimed that, in many cases, tannin is deposited by precipitation in the hide cells, besides that which is directly taken up by combination with the gelatine.
The new process proposes to hasten the tanning by en hancing chemical affinity by means of electrical currents, and thus making these reactions more active. The method to pass a current of electricity through the vats containing the tannin infusion and the hides. The vat become imply a large voltameter, in which gases are evolved by the decomposition of water-hydrogen at the cathode and oxygen at the anode. The arrangements are such that the hy drogen alone acts upon the hides, where it rapidly combines with the nitrogen of the tissues and produces decomposition of the gelatinous matters. After a short period, according to the usual manner of changing tan liquors, the solution of tannin is replaced by a more concentrated one, and the cur rent is reversed in direction, so that oxygen is evolved among
the-hides, where it oxidizes the tannin and precipitates it in he pores and intercellular spaces in the tissues.

The First Sieam Fire Engine.

Along in 1864, an errand led the writer into Greenwood' foundry, at Ciccinnati, and having to wait a while to se Mr. Greenwood, I was allowed the privilege, then seldom granted, to go into the work room where the inventor of the steam fire engine was at work. It was a long, high room, the walls on the east side being hung with drawings of the engine. Beneath the drawing ran a long work bench, and at this stood a very diminutive specimen of a man, shor and spare, stoop-shouldered even to deformity. He had a quare white paper cap on his head, and was busy measur ing something while I looked at him. I saw that his head redeemed his poor body, for it was massive, and the eye had in them the light of genius. In a moment he turned to me and asked: "Did Mr. Greenwood give you permission o come in here?"
"He did, sir; he told me to come and see how the stean ire engine was getting on, so I could report its progress to Mr. Probasco" (of the great hardware house of Tyler David on \& Co.).

Ah, very well," said the inventor, "very well. My name is Latta, Moses Latta, and Mr. Probasco knows me well, and, as you come from him, you shall see what few see. Can you in any way or to any extent understand drawing on the wall?" I confessed that I could not 'Well, it is very simple. Let me explain. The engine is inteuded to throw at any time eight streams of water-four rom each side-and whenever the water can be obtained in ufficient quintity for the eight streams, there will be no rouble in supplying them to the eight lines of bose. It is intended, of course, to take the engine to the scene of the fire with horses-four horses. As the engine starts out the furnace is fired up, and ordinarily, by the time we shal arrive at the fire, steam will be up and the engine ready for ervice. Eight of these large streams forced out on to a fire with the pressure we shall be able to command will drown any fire; even four of them, well directed, will be of wonderful value. But," added Mr. Latta, "the trouble is that there is no certainty that this or any other steam fire engine will ever run to a fire. You are not aware, probably, how bitter the feeling of the volunteer firemen is against this en gine. They say it shall never throw a stream on a fire in this city. The recent riots here show what a mob can do in our city, and I fear sometimes that I shall never live to ee this grand idea brought into the service of the world. My steps are dogged; spies are continually on my track; I am worried with all sorts of anonymous communications, threatening me with all sorts of ills and evils unless I drop work on this engine and pronounce myself a failure."
The old man's eyes flashed as he said: "I'll never give it up! I'll build it, and there are men enough in this city to see that it has a fair trial, and it shall have it. When it is finished, it will be heard from at the first fire, and woe to hose who stand in its way!
With that we separated. As the time approached for the public trial of the engine, the volunteer firemen were in a ferment. It would never do to destroy the engine before it bad a trial, and to destroy it after a successful exhibit of its powers was made equally useless, so it was understood that o demonstration, pro or con, would be made on it until it should come to a fire; then it was to be rendered useless, and all who had a hand in its working were to be rendered useless, too.

The public trial came off. The engine far exceeded in fficiency anything that had been claimed for it by its invent or or by his backers, and a feeling of satisfaction swept ver the city at the knowledge that such a great auxiliary power was with them to fight fire. Still it was known, or bel:eved generally, that its first appearance at a fire would be the signal for as bloody a riot as had ever disgraced the city. The volunteer fire department was there, as everywhere else, a political ring, far more efficient, under ordinary circumstances, at the polls thau at a fire, and its members were to a man selected for their "inflooence "at the voting precincts and for their ability to make the contents of the ballot box, when it was emptied, show "by a large majority" their man ahead, no matter what kind of ballots had goue into it. Then, if this "steamer" was of any account, it would ruin and break up not only the companies, but their friends and backers, and the manufacturers who built hand engines.
One night an alarm rang out from some great warehouse on Third Street, near Main, A minute or two elapsed to the listeners on Main Street, above Fourth, and then down came the great steam fire engine, four mammoth gray horses in front of it at a gallop, the smoke streaming from its stack, the fire flashing from its grates, its ponderous wheels grinding the cobble stones into powder as they struck them, and, as the greal monster went down the hill, people woke s out of a trance, and started after it
The engine was brought in front of the block, and soon stream after stream shot from it. The warehouses were among the most valuable in the city, and were stored with costly goods. The time had come, the engine was there, four streams had been gotten on, when the cry, "The hose is cut!" rang out. Then the melee began, but the citizens were stronger than the volunteer firemen, and after a struggle the "steamer" drowned the fire and was taken home.
The next morning Moses Latta awoke to find himself famous, and the action of the appreciative citizens of Cincinnati soon put him in a position where his genius was made more available to the world. The "steame:" of today has little in it outside of the fact that it is built to effect the same purpose as was Latta's engine, but that was the germ of all those which now at the tap of the electric bell seem to hitch themselves to the horses and tear down our streets when an alarm is struck.-Chicago Herald.

olling the Waves.

Wm. J. Card, captain of the coasting schooner Turban, reports some interesting particulars of his use of oil to break the force of waves, on a voyage from North Carolina to Nova Scotia, in September last. The schooner was of 163 tons registered, with a cargo of 300 tons railroad iron, which loaded her down until her guawales were not more than two feet above water. On the third day out the weather became boisterous, and on the following morning, soon atter daybreak, the vessel ran into a gale. The wind was varying about from southeast to northeast, and blew up a heavy sea, the fury of which was increased by a cross sea, caused by the hurricane that had prevailed for some days to the southward of the vessel's position. The schooner, by reason of her deep loading, was completely at the mercy of the seas, which broke over her with terrific force.
Soon after noon Capt. Card stationed a man in the bow of the schooner-it being unsafe to venture on the jib-boom, which was in danger of heing carried away by the seasand directed him to throw over from a small oil can a little oil at the approach of every "comber." The oil was poured out through the spout of the can, and the Captain estimates the quantity thrown over each time at rather less than an ordinary tumblerful. As the supply on board was limited, it was thrown out only at the approach of very heavy seas.
At first petroleum burning oil was used, and while this had some effect, it was not heavy enough to thoroughly break the wave, and linseed oil-some ten gallons cf which had been laid in for painting purposes-was then employed. The result was in every way satisfactory, and the use of the oil was continued for about fifteen hours, hy which time the supply was exhansted. The fury of the gale bad, however, subsided, and the schooner reached port in safety. Capt. Card says that without the use of the oil the vessel could not have lived out the gale-the effect of the oil having been to level the comb of the wave and prevent its breaking over the vessel.

Something new in a conductor's outfit has recently been introduced on one of the Brooklyn horse car lines. In the fare-recording apparatus swung from their necks, so the passenger can see his fare noted, is fixed a watch, so the passenger can also see the time. Of this innovation a con ductor lugubriously said to a reporter of one of our contem poraries: "I come pretty near getting mad sometimes, when a passenger catches hold of me and turns me around like a wooden man, to see what time it is, but as that is what the watches are for I don't know as I ought to object. I suppose at this rate they'll keep on fitting us out with things for the accommodation of the public until a man won't be considered fit for a car unless he has got a calendar stitched on to the back of his coat, a thermometer hanging from one buttonhole, and a city directory hooked to a strap around his waist."
Cure for Cramp. - The simplest and best method, says he editor of the Pacific Medical and Surgical Journal, is a handage applied above or below the knee, preferably the former.

metallic PLastering surface

During the last few years there has been considerable attention directed to the use of wire cloth for plastering pur poses, and attempts have been made to obtain the requisite solidity of the cloth combined with strength, cheapness, and durability. By corrugating the wire cloth at intervals about six inches apart and applying it directly to the wooden beams, joist partitions, board partitions, columns, girders, etc., it is stiffened and made firmer. It is secured by staples passed tbrough the cloth in the corrugations, which are placed in such a manner that they run transverse to the joist or studding. By this arrangement the whole body of the cloth is stiffened and for the most part it is set out away from the edges of the joists, so that when the plaster is ap plied it will key around and through the corrugations and close around the edges of the joists, perfectly sealing them and preventing fire from passing from joist to joist. The patentee claims that this method is cheap, since no wooden or wire furring is required thereby saving in the cost of materia and time. The increase in strength is apparent, as the ribs in reality form a series of small girders six inches apart which impart rigidity to the cloth The durability of the plastering results from the fact that it will not crack since the foundation is free from the shrinkage accompanying the use o laths. It requires no skilled labor to put it in place, and as every beam or joist is sealed, the danger arising from fire spreading is greatly reduced. The cloth may also be used in place of deaf ening boards to deaden noise and also for interlathing in frame structures.
The large engraving shows the cloth applied to partitions, walls, ceiling, columns, etc., the plastering bein broken away in order to show the po sition of the cloth on the beams and joists. Figs. 1 and 2 clearly indicate the position of the corrugations in re gard to the timbers. In the left of Fig. 1 is shown the method of uniting two pieces of cloth, the joint being formed in one of the corrugations.
This invention has been patented in this and foreigncountries by Mr. James Stanley, of 114 East 83d Street, this city, who may be addressed for further particulars.

SHOW BOX COVER.

The object of an invention recently patented by Mr. John G. White, of Pensacola, Florida, is to provide a hinged cover that can be secured on tobacco boxes after the usual cover has been removed, so that the box is kept properly closed, the removal of the tobacco facilitated, and the con tents of the box exposed to view. To a frame made of either plain, stained, or painted mouldings, is hinged a second rame which fits into the opening in the first, and in which is a pane of glass. On the inner sides of the large frame are fastened strips a short distance from the outer edge, so that when the frame is placed on the end of a box, the outer sur faces of the strips will rest agaiust the inner surfaces of the

White's show box cover.
sides of the box, and the outer edges of the moulding will be flush with the sides of the box. Thumb screws pass through the strips and into the box to hold the frame in place, as shown in the section, Fig. 4. The inner frame has a handle knob at its swinging end, and is held shut by a spring catch. It is beld open, as in Fig. 1, by a brace pivoted to the large frame and provided with a longitudinal slot, terminating in a notch at its free end as shown in Fig 3. A stud projecting from a jaw on the movable frame passes through the slot and is furnisbed with a head to prevent thre brace sliding off. The cover prevents the entrance of dirt, and prevents the obacco from drying out or becoming too moist and mouldy.

STANLEY'S METALLIC PLASTERING SURFACE.

Testing Machines.

While the use of n atural gas economically and safely is till a problem in Pittsburg, according to the Telegraph, a company at Kittanning seems to have gone much farther toward practical success. The association was formed some months ago, and has pushed the fuel into general use. The well which supplies the gas is situated about two and a quarter miles from the town. The flow is steady and strong. The diameter of the tubing is five and three-eighths inches. The conduit pipe is three and a half inches, lajd to a depth of a little overtwo feet, to the borough limits, where connections are made in various directions. These pipes are

At a recent meeting of the American Society of Civil Engineers, a paper by Mr. A. V. Abbott, on "Some Improve ments in Testing Machines," was read by the author, and illustrated by a stereopticon. A 200,000-pound testing ma chine was first described, its general construction providing for weighing the forces applied by means of platforms and levers somewhat similar to those used in ordinary scale work wilh special arrangements to reduce friction. To secure the direction of the pressure upon the test pieces in the axis of the machine, both ends of the piece are connected with seg ments of spheres moving freely in spherical sockets, which take the proper position upon the firs application of the stress, Arrange ments are also made by means o wedges to gripe and hold uniformly the ends of the test pieces. The ma chine is arranged to test in tension compression, for transverse stress, for shearing, bulging, and torsion. In the machine illustrated, the action of ap plying stress is automatic, and at the same time the same power gives a autographic record of the stress applied and of any variations which may occu during the continuance of the stress, and with an instantaneous autographic record of the result at the conclusio of the test. The stresses are applied by means of weights which slide upon two paralle) lever beams, the one regis tering up to 10,000 pounds and the other up to 200,000 . By means of remarkably ingenious electrical attach ment connected with clock work, th movement of these weights is continu ous and automatic, and the registering apparatus is also controlled by the same electric current. Diagrams automatic ally made by the machine were ex hibited and described
A number of broken pieces of stee were exhibited, and also specimens of woods which had been tested in various ways. Machines of smaller power were also described, and a number of
buried deep in the soil, to prevent injury from the effects of either heat or cold; but to make this important matter
doubly secure, curved pieces of pipe are used along the line at different points, fixed in movable sockets, whicb allow room for all contraction or expansion of the pipes. Before the town is reached, two pipes are affixed to the main pipe from the well, a large and a small one, with two regulating valves, which are used to divide the pressure, so that one pipe may supply the iron works, grist mills, water works and other places where a large amount of gas is consumed. The smaller pipe furnishes the gas for private houses, stores, public buildings, etc., where but a small amount of gas is needed. The pressure on both pipes is always shown at the main office by the gasometers attached to them. The high pressure pipe bas a pressure of 80 pounds, and the low pressure $11 / 2$ pounds to the square inch. Small pipes connect with the main pipes, and are run into bouses, stores, and all places where the gas is consumed. In all, over 100,000 feet of pipe have been laid by this company, besides that put by private parties into offices and residences; but so far, no breakage or rupture has been found in the pipes at any place in the numerous lines.
Theiron workers at Kittanning say that in the puddling furnaces the fuel meets every want. Any degree of temperature needed can be obtained and kept at a fixed height. Atmospberic burners are used, by which the proportions of air and gas can be so regulated as to give the greatest or least amount of heat. The aperture through which the gas is conveyed into the burner is never more than one-eighth of an inch in diameter and the mixed proportions of air and gas enter an iron tube about two inches in diameter and perforated with small holes, through which the gas escapes and burns. This iron tube is placed in furnaces, heaters, stoves, and grates, where the effects of the best heat are produced with little trouble.
The company is now furnishing over 800 fires in the town regularly. The cost of using the gas is moderate. Eight months in the year the rate charged is $\$ 8$ per fire. Public buildings, manufactories, and hotels are given special rates. This is a great reduction on the use of coal. So far, the consumers are well satisfied, and the practicability of the new fuel seems entirely settled in Kittanning.

The Micrometer.

A "standard" micrometer has been made for the Ameri can Society of Microscopists by the United States Bureau of Weights and Measures. The scale is engraved on platiniridium, 20 per cent iridium. .The examination as to the correctness of this standard was carried on through seven months of last year by Prof. Wm. A. Rogers, of Harvard College Observatory, and it has now been accepted by the society. It is to be kept in approved safe deposit vaults, and not to pass out of the hands of custodian except with the permission of the Committee, President, and Secretary of the Society, but other micrometers will be compared with the standard, and the resull certified to, for a reasonable fee.
briquettes of cement were broken upon a small automati machine which was exhibited.

MILK COOLER

Two or more cans are placed side by side in a tank, and over each row is a trough-shaped cover, inverted and resting on the handles of the cans. The handles are located sufficiently below the upper ends of the cans for closing the cans by a water seal, when the tank is filled with water to about the height of the cans; and as the water rise under the covers the air therein is compressed, causing a pressure on the cream. The ends of each cover are provided with chambers, each having an outer convex wall and a inner straight wall. In botb walls of the chambers are pas sages, $n o$, which are arranged in a vertical line. The up per passage, n, communicates with the open air, and the passage, o, is below the water line of the tank
By this construction the ends of the cover are materially trengthened around the seal, so that the metal after constant use will not be liable to bend or twist, as is the case when a straight llange is employed. The inventor has found straight flanges uncertain, as they are liable to become bent or broken in use when not protected by a convex flange The confined air underthe cover is allowed to escape through

BRANDENBURG'S MILK COOLER.
the passages before the lower edge of the cover is raised above the water line, thereby permitting the cover to be more easily removed than if a single straight flange were employed. The covers are secured by bars, F, placed on them and under the brackets, G, attached to the inside of the tank, to prevent the covers being moved by the air pres sure under them. The tank is provided with an overflow pipe, J, which keeps the water at the proper level. Any vapor arising from the cans or water will condense on the covers and flow down the sides into the water of the tank. This invention has been patented by Mr. I. S. Brandenburg, of Peoria, Ill.

SLIDING WINDOW SHUTTER

The invention herewith illustrated relates to shutters and blinds for the windows of houses, railroad cars, steam boats, etc. Fig. 1 represents the outside and Fig. 2 the inside of a window furnislied with this device. The corners of the shutters are provided with corner castings, M, which serve to protect the corners and which carry friction rollers. Those on the lower corners are grooved so as to fit over a guide cleat on the lower ledge of the window, and those on the upper corners run in a groove in the top ledge. The shutters are thus held securely in place, and the lower ledge is free from any groove in which obstruction might accumulate. Slafts are journaled in the sides of the window frame, and are furnished with cranks at their inner ends by which they may be easily turned. The outer ends of the shafts carry pinions which engage rack bars secured horizoutally about the center of the shutters. The bars can be extended beyond the sides of the situtter, in order to increase the distance to which they may be operated. The inner ends of the bars are secured so as to be jointed together when the shutters are closed. The bearings of the inner ends of the shafts are surrounded by plates, K, having perforations in which a pin may be inserted, thereby preventing the crank from being turned.
By this simple mechanism the shutters may be securely locked in either an open or closed position. At the outer ends of the top and bottom ledges of the window are ornamental brackets, E , connecting the ends of the ledges with the ends of the window cap and sill. These brackets form braces, and their ends project so as t form stops which prevent the shutters from sliding off the guide ledges. Plates, D, are secured to the cap and sill outside the sides of the frame, so as to partly cover the shutters and protect the operating mechanism. To the sides of the frame a hinged narrow door, G, reaching to the edges of the plates and forming guards which prevent snow and the like from being blown in. These doors are moved simultaneously with the shutters by cords connecting their outer edges with the outer edges of the shutters. As the shutters are opened the ends of the rack bars push the doors open, and when they are closed the cords draw them shut. As will be seen from the foregoing, all hinges, catches, etc. are dispensed with. The device also permits of the use of iron shutters, which have found favor because of their dura bility and the protection they afford.
This invention bas been patented by Mr. C. T. Cochel, of Uniontown, Md.

Laportes hydraulic hay press

We have several times taken occasion to remark on the interest that attaches to the compressing of hay and straw as regards reduction in the expense of freight and storage. The constant increase in the production, and the distance from the centers of consumption, fully justify the devising of special apparatus for treating compressible materials, like straw, hay, cotton, alfa, etc., which, instead of being de-

leakages that may chance to occur through the packings of

 wheels and opening at the top by two leaves, while its twoextremities are provided with hinged doors that are fastened
by bolts, as are also the movable leaves at the top. Upon To operate this press without a motor requires the sereach side of the compressing case there is placed horizon. vices of six men, who can produce with it from 70 to 80 tally a cy linder, throughout the whole Iength of which there bales per day, or nearly one every eight minutes. It takes passes a long rod which carries a piston in the middle, and three minutes to compress the bale, and after this the two which terminates at cross bars fixed upon two parallel bars leaves of the compression case are opened and three of the of l-iron. These latter have guides connected with the bot- workmen insert boop irons. In order to facilitate this opertom of the cylinder, and support at each extremity two bars ation the extremities of each strap are pierced with holes, which enter the chest through longitudinal openings. These so that they can be brought into juxtaposition by means of a bars thrust the movable plate against the material to be com- suecial tool, after which the two ends are uuited by means of

COCHEL'S SLIDING WINDOW SHUTTER.

pressed, and are fixed upon the prolongation of the parallel bars at the other end of the apparatus. Each cylinder is served by a double-acting hydraulic pump, which is aranged so as to be maneuvered by means of a double lever or by a motor which actuates a simple lever. In both cases the bearing point of the lever beam is movable in such a way as to permit of the automatic shortening of the smaller lever arm in measure as the piston advances. It follows that the stress to be exerted in order to overcome the increasing resistance of the material submitted to pressure remains nearly the same during the whole time the bale is being comressed.
Each of the pumps is surmounted with a box that contains valves which bave plain seats that are made perfectly tight hy means of leather washers fitted into circular grooves. On
each side there are likewise leather packed cocks, which are suitable pieces, in dilute milk of lime, after twelve hours introduces them into a suitainle digester, and saturates with sulphurous acid, the pressure amounting to four or five atmospheres.
In two hours the material is so loosened up, that after washing with water and further treatment under pressure with 3 per cent chloride of calcium and half per cent aluminum sulphate dissolved in a little water, the stuff obtained without any further operation has the appearance of cotton, and can serve for the manufacture of fine qualities of paper.

Physical Trainiag in schools.

Excellence in the gymnasium at Amberst counts in the student's record as does his excellence in mathematics. President Seelye says that this required physical discipline as had the bappiest results. "By close statistics, carefully as had the bappiest results. "By close statistics, carefully
kept, for twenty years, it appears that the health of an Am-

LAPORTE'S HYDRAULIC HAY PRESS.

livered on the spot without profit, can thus be sent to a distance and bring a more remunerative price. Several presses that have been iuvented in recent years are already render ing great services to agriculture and the industries; yet tbere still remains a place for new apparatus, as is proved by the hydraulic press constructed by Mr. Laporte and shown in the annexed figure. This machine consists of a large case of wood and iron plate mounted upon two iron
actuated simultaneously by a single key, a turn of which,
by a few degrees, to the right or left causes the machine to by a few degrees, to the right or left causes the machine to act in the desired direction. Finally, a small reservoir which is connected with the corresponding pump and is arranged so as to be on a level with the valve box, communicates constantly with the suction pipe of the cylinder, and compensates, through the few liters of water that it contains, for the losses due to evaporation and to the slight
herst College student is likely to grow better with each year of his college course. The average health of the sophomore class is better than that of the freshman, and of the junior better than that of the sophomore, and of the senior best of all. This average is shown to come from an improvement in the physical condition of the individual student, and not from the dropping out of the course of those who might be too weak to complete it."
and propelled in this manner in varying depths. The proper length of chain for the depth was regulated by increasing or diminishing the distance between the front and rear pulleys. The depth varied from 1 to $61 / 2$ meters, and provision was made accordingly. The coefficient of friction of the chain on the bottom was found to vary with the nature of the bottom from 80 to 120 per cent of the weight of the chain in air. It was thus possible to calculate what the current should be in order that the chains should not slip on the bottom. Currents of 3 meters per second were successfully encountered and overcome, and the vessel could be properly manipulated in these rapids with a safety unknown to other methods of navigation.
The new plan of M. Dupuy de Lome is, in fact, highly interesting and ingenious, and may be useful in mounting rapid rivers in many other countries.

Proposed Patent and Copyright Legislation.

For the short time the present Congress has been in sesof, an unusually large number of bills affe
H. R. 311.-Introduced by Hon. W. H. Calkins, of Indiana. To reguate practice in patent suits.
Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, That in any suit hereafter brought, in any court having jurisdiction in patent cases, for an alleged or discovery, where it shall appear that the defendant in such suit pur chased the same in good faith for his own personal use from the manuacturer thereof, or from a person or firm engaged in the open sale or practical application thereof, and applied the same for and to his own use, and not for sale, and not in any manufacturing process, if the
plaintiff shall not recover the sum of twenty dollars or over the defendplaintiff shall not recover the sum of twenty dollars or over, the defend the time of such purchase or practical application, had actual knowledge or notice of the existence of such patent, or unless the defendant puts in issue the plaintiff's right to recover anything in the suit: Provided Thatnothing herein contained shall apply to articles manufactured outside of the United States.
SEc. 2. That in all suits hereafter brought as aforesaid against a defendant other than a manufacturer or seller of such patented article, de vice, process, invention, or discovery, the plaintiff shall, at the comsufficientsurety, to be conditioned that the plain' iff will pay cll attorneys' fees that may be adjudged against him: and if the defendant shall finally prevail in such suit, the court shall allow costs, and a reason able sum, not exceeding fifty dollars, for counsel fees, to the defendant, which shall be recoverable by suit, in the name of the clerk, upon said bond, or by fee bill on execution. A failure by the plaintiff to give such ond shall, on motion, beground for the dismissal of the suit.
H. R. 419.-Introduced by Hon. J. E. Lamb, of Indiana. To regulate practice in suits brought to recover damages for infringement of patents.
Be it enacted by the Senate and House of Representatives of the United Be it enacted by the Senate and House of Representatives of the United
States of America in Congress assembled, That hereafter in any suit States of America in Congress assembled, That hereafter in any suit
brought in any court having jurisdiction in patent cases for an alleged use brought in any court having jurisdiction in patent cases for an alleged use
or infringement of any patented article, device, process, invention, or or infringement of any patented article, device, process, invention, or
discovery, where it shall appear that the defendant in such suit purchased discovery, where it shall appear that the defendant in such suit purchased
the same in good faith for his own personal use from the manufacturer thereof, or from a person or flrm engaged in the open sale or practical application thereof, and applied the same for and to his own use, and not for sale, if the plaintiff shall recover a judgment for five dollars or less as damages, the court shall adjudge that he pay all costs of suit; and
if the plaintiff shall not recover the sum of twenty dollars or over, the if the plaintiff shall not recover the sum of twenty dolars or over, the
court shall adjudge him to pas all his own costs, unless it shall also apcourt shall adjudge him to pas all his own costs, unless it shal also api-
pear that the defendant at the time of such purchase or practical application had knowledge or actual notice of the existence of such patent Providsd, That nothing contain Sates.
faciured outside of the United Stater
H. R. 1956.-Introduced by Hon.T. J. Wood, of Indiana. To limit the H. R. 1956.-Introduced by Hon.T. J. Wood, of Indiana. To limit the of patent rights.
Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, That hereafter the United
States district and circuitcourts shall have no jurisdiction to hear or any case arising from the actual use of any no jurisdiction to hear or try ment by such use, by any person in or citizen of the United States or the Territories, wherein the amount in controv
hundred dollars against one person or citizen

hundred dollars against one person or citizen

SEc. 2. That purchasers of any patent right for actual use shall not be
liable to damages, royalty, or for the value of the same, or for infringing the same in any manner, who at the date of such purchase had no knowl edge of the claims of any third person, or that the inventor of the same has an interest therein adverse to the seller thereof.
H. R. 1081.-Introduced by Hon. George W. Ray, of New York. To provide for the protection of bona fide manufacturers, purchasers, venders, and users of articles, machines, machinery, and other things for
the exclusive use, manufacture, or sale of which a patent has been or hereafter may be granted.
Be it enacted by the Senate and House of Representatives of the United States of Americx in Congress assembled, That no person, corporation,
or joint stock association who shall in good faith purchase, use, manuor joint stock association who shall in good faith purchase, use, manu-
facture, or sell any article, machine, machinery, or other thing for the exclusiveuse, sale, or manufacture of which any patent has been or hereafter may be granted to ans person, persons, or corporation whatever shall be liable, in damages or otherwise, for an infringement of such patent until after written notice of the existence thereof shall have been personally strved on such person or persons or corporation, as the case may be, and such infringement shall be thereafter continued.
Sec. 2. That all laws or parts of laws inconsistent herewith

repealed.

Sec. 3. That nothing herein contained shall affect any pending suit o proceeding in any of the
any of the several States.
H. R. 3036.-Introduced by Hon. R. B. Vance, of North Carolina. To enable the courts of the United States, in the case of the improper grant patent void on application of the Attorney-General
Be it enacted by the Senate and House of Representatives of the Onited States nf America in Congress a sembled, That whenever it shall be made to appear to the satisfaction of the Attorney-General that there is probable cause for impeaching the validity of any unexpired patent, whether original, reissued, or extended, which may have been or shall hereafter be granted, on the ground that the same has been procured by fraud and
misrepresentation, it shall be hisduty to take due nroceedings, by a bill in equity in the United States circuit court for the district in which the said patentee resides, or in the case of his death or the assignment of his entire interest in said patent, then in the district in which his legal representatives or assigns reside, to have the said patent vacated and annulled; and the court, on notice to said adverse parties, and in pursuance of such proceedings, shall have the power to adjudge and declare said paten

SEc.2. That if the party at whose complaint the Attorney-General shall take the proceedings provided for in this act shall fail to establis
the invalidity of the patent, then the costs incurred by the the invalidity of the patent, then the costs incurred by the Attorney such party complainant: otherwise said costs shall be chargeable to and collected from the defendant.
Sec. 3. That from the judgment and decree of any court rendered in SEC. 3. That from premises appeal shall lie, at the instance of either party, to the Supreme Court of the United States, in the same manner and under the
same circumstances as is now provided by law in other judgments and same circumstances as is now provided by law in other judgments and
decrees of circuit courts in causes arising on leters patent relating to decrees of ci
inventions.
H. R. 1134.-Introduced by Hon. R. B. Vance, of North Carolina. To amend section forty-eight hu
Statutes, in relation to patents.

Statutes, in relation to patents. Be it enacted by the Senate and

Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, That section forty-eight hun-
dred and eighty-seven or the Revised Statutes shall be, and hereby is amended so as to read as follows:
"Sec. 4857. No person shall be debarred from receiving a patent for his invention or discovery, nor shall any patent hereafter grarted be declared invalid, by reason of its having been f.rst patented or caused to be patented in a roreign country, unless the same has been introduced into public use in the United States for more than two years prior to the application; butevery patent hereafter granted for an invention which in a foreign country, in a foreign country, shall expire seventeen years from the datent, or if there be more than one, seventeen years from the date of the earliest foreign patent, and in no case shall it remain in force more than seventeen years; but all applications hereafter made for patents for inventions previously patented in a foreign country, upon the invention of the same person, shall be made within two years from and after the date of such foreign patent, or if there be more than one, from the date of the earliest foreign patent. No patent granted for an invention which had, prior to the grant of such patent, been first patented in a foreign country. and which has not expired at the date of the passage of limited on ils face or in its grant as to expire at the same time with the foreign patent, or if there be more the one at the same time with th one having the shortest term; but this act shall in no wise renew, revive prolong, or extend any patent heretofore granted."
[This bill has been reported back to the House and its passage recomended by the Committee on Patents.]
H. R. 62.-Introduced by Hon. W. S. Rosecrans, of California. Giving Be it
Be it enacted by the Senate and House of Representatives of the United
States of America in Congress assembled That herefter States of America in Congress assembled, That hereafter any writer correspondent, or other contributor to the daily or periodical press wh right, and who shall subsequently take out a copyright on the a copy right, and who shall subsequently take out a copyright on the same, and
republish the same under said copyright, shall thereafter possess anexclu sive property in said articles, or series of articles, the same as though he had originally published the same under copyright protection: Provided That he shall cause to be published six times, in the journal or periodi cal in which saidarticles originally appeared. or in some other journa or periodical issued in the same city or county, a notice that he has ac quired such copyright protection, and at the time of furnishing shal notify the first pub
hereby conceded.

Brazilian Pebble Eye Glasses.

The transparent and colorless rock crystal used instead of glass in eye glasses and spectacles, and which comes princi pally from Brazil, is held in high repute where the bes glasses are wanted. It comes in rough looking lumps, bu each bas one section of the surface cleaned and polisbed so the purchaser can see what he buys. These lumps are cut up by fine rotary saws, running at a high speed, and most of such work is done in Scotland, where pebbles of this kind were first obtained and the machinery for manufac turing them contrived. A great deal of the finishing of the rough lenses, for oculists in all parts of the world, is don in Paris. They are ground down to the requisite dimen sions by steel disks, and then polished by means of sand diamond dust, and a substance called rouge; that is, the lenses for ordinary use. There are cases of defective sigh where, in fitting with glass spectacles, several layers of glass bave to be melted together and ground down again and again to produce the exact focus for the particular case Lenses of that kind are very expensi ve, but then they are actually invaluable to the wearer, who positively could not do without them.
Any peddler of an average intelligence can sell you a pair of spectacles which, upon the first instance, would suit you eyes well; but it takes a good knowledge of the eye and its defects to fit you with a pair of glasses that will really bene fit you, and, what is more, do you no harm. There is a good deal of harm done by the injudicious wearing o glasses. Then, of course, there are people who don't know what they want, or have no use for glasses, like that fellow in the old German storry who could not be suited by any op tician, because-he couldn't read at all.

Units for Measurements

The metrical unit for length is the meter; the ten-millionth part of the distance from the earth's equator to the pole. The unit of bulk is the liter; it is the cube of a decimeter ide.
The unit of weight is the gramme; the weight of a cubic entimeter of distilled water at 40° Fahrenheit.
The unit of force is the kilogrammeter, being the orce required to raise one kilogramme weight one meter high.

The uvit of electric resistance is the ohm; it is the resist ance which a current undergoes when passing through a column of mercury one meter long and one square millime er in section at the freezing point of water.
The unit of electromotive force is the volt; it is the amount of ectromotive force produced by one Daniell cell.
The unit of electrical intensity is the ampere; it is the cur ent produced by one volt through a resistance of one obm. The unit of quantity of current is the coulomb; it is the uantity of electricitr given by one ampere in one second. -Revien of Telegraph and Telephone.

Curxequmature

Plowing by Wind Power.

Rufus Porter, whom the early readers of The Scientific American will remember for his quaint writings and the ex traordinary results he always anticipated from his wonderful inventions, still lives, and at the age of 92 years he sends us in his own clear handwriting from New Haven, Conn. the following communication:

The Planet wind wheel has four square sails, one of which is always square before the wind, while two others are filled obliquely on an angle of forty-five degrees with the direction of the wind, the motion being horizontal; so that the action of the wind upon the two oblique sails is equal to that on the one before the wind. The average size of the sails is twenty feet square, so that if the force of wind is equal to one pound per square foot, its force upon the sails will be 800 lb . Such a breeze travels 15 miles an hour 22 or feet per second. A breeze that travels 26 miles an hour exerts a force of 4 pounds per square foot, which would be $3,200 \mathrm{lb}$. upon the wind wheel sails. If the sails move half as fast as the wind, the force of the wind upon the sails will be only one-fourth, or 1 lb . per foot, and the sails will move only 20 feet per second. The force of 800 b. moving 20 feet per second, or 1,200 feet per minute, works 30 horse power, equal to the common labor of 60 horses. This wind wheel may be erected upon the center of a triangular or narrow-shaped frame, 35 feet long by 30 feet wide, mounted upon three wheels, each being 5 feet in diameter; with rims 15 inches wide, the front being mounted in a circular horizontal ring or annular platform, with a tiller extending rearward, whereby the machine is steered. The other two wheels are mounted upon the two ends of a 30 -foot axle. The main central shaft of the wind wheel is connected to an equalizer, from which two shafts extend to the two driving wheels, applying equal force to each, whether running in a straight line or in curves. The center post is 25 feet high, and the sails receive the wind from all directions equally; but when required to stop, the sails are all pointed to the wind by a lever, so the wind has no power on them. This machine will travel with a gang of ten plows 4 miles an hour, thus plowing four acres an hour with the attendance of only one man. It will run against the wind, but not quite so fast as before the wind; and will scend hills wherever horses can work. It will harrow, sow reap and mow, thrash grain, shell and grind corn, carry loads, irrigate lands at the rate of 100 acres a day, or will travel 10 miles an hour in any direction, with 20 passengers. But all these things require a good breeze. The cost of the machines of medium size will be $\$ 250$, not incluđing plows, mowers, reapers, etc.

A larger machine will furnish 100 horse power. Small wind wheels, with sails only 4 feet square, may be made for $\$ 10$ each. They are useful for raising water, washing, etc.
' The medium size will work with a very ligbt breeze, in which they will do good service in various kinds of work. In cases in which a steady, uniform motion is required, they may be regulated by a small and cheap wooden brake-governor. The gang plows to be used are rotaries, which require less power than the common mould-board. One machine will answer for several farms."
Accompanying the above communication, we find a print ed circular without date, but bearing the signature of Mr Porter, which reads as follows:
'I have recently perfected three wonderful inventions, the tirst of which may be put forward to general use for fifty dollars, and in three months will produce a net income of a hundred dollars a day.
"The next will within six months produce an income of a thousand dollars a day. The third will cost two thousand dollars, and within two years will produce the immense income of twenty thousand dollars a day. These inventions have all been proved by successful operation, and have been examined and commended by many scientific men, whose certificates I now have, and no man can show a reason why they should not accomplish all that is represented; and any man who duly examines the explanation of the utility of the inventions, and the mode of managing the business, cannot fail to be convinced that a great income must accrue, and that immediately."

To the Editor of the Scientific American
Having occasionally brazed band saws for one of our large brush factories in the village, my attention was called the ther day, while visiting the factory, to a new method of joining broken saws-simply lengthening the lap a little, and soft soldering instead of brazing. The saw I examined had three mends in it--all done so; and I was told that in no case had the soldering given way. To Mr. Brooks is due all credit for the above discovery; and I send this to you for publication, if you think it will be a benefit to others, with Mr. Brooks' consent. He cautions, where soft soldier is used ot hanging the saw from nails by or where the joint is made.

Very respectfully
Lansinburger.
Lansingburg, N. Y
[Band saws are frequently joined by ordinary soldering A scarf joint is made, and the laps brightened by a file and moistened with a saturated solution of muriatic acid and zine. Then ordinary solder and powdered resin are applied with a soldering iron.]-Ed.

To the Editor of the Scientific American

In a late number of the American Journal of Railuoay $A p$ pliances, I notice a criticism of an answer you made to an nquiry concerning the tractive force of locomotives. The query was: "If there is any difference, which would start and draw the heavier load-a locomotive with seven foot drivers or one with three foot drivers, both to be of the same beft, and engines supposed to be strong enough to slip the drivers?" To this you answer, "Theoretically, no difference." To this the editor of the paper referred to says: "We think that it is hardly necessary for us to say that the first answer is wrong all the way through, as neither by theory nor in practice does the greater driving power belong to the engine having the least leverage in its power, etc." It seems to me that it is hardly necessary for the paper referred to to say anything on the subject, as what it does say shows plainly that it does not comprehend the question as asked. Your answer was right, as a few figures will show. Neglecting fractions to simplify the matter, I will suppose the engine having 36 inch drivers to have cyl inders 16×24 and using 100 pounds effective steam pressure per square inch. The ordinary formula for the tractive force where D is the diameter of the cylinder in inches, S the stroke in inches, P the effective steam pressure in pounds per square inch, and W the diameter of the drivers in inches, is: Traction $=\mathrm{D}^{2} \times \mathrm{S} \times \mathrm{P}$ \qquad
supposed, and we have $\frac{16^{2} \times 24^{\prime \prime} \times 100 \mathrm{lb}}{36^{\prime \prime}}$

$=17,066 \mathrm{lb}$. tractive

force. If it he assumed that to prevent the drivers slipping we require four times the tractive force in weight on them, we have $17,066 \times 4=68,264$ pounds, or a trifle over 34 tons, as the weight necessary to place on the drivers. The query now compares an engive having 7 foot drivers with the same weight on them and powerful enough to slip or nearly slip the drivers.
It is evident that the engine with 7 foot drivers must have proportionally larger cylinders to be powerful enough (as the query supposes) to accomplish this. Taking the area of a 16 inch cylinder as 201 square inches, and we have 36 is to 201 as 84 is to 469 , the area of cylinder necessary to slip the 7 foot drivers with the same weight on them. The diameter of a cylinder whose area is 469 square inches is a little over 244 inches, and applying the same formulæ as before for the tractive force, we have $\frac{24 \cdot 4^{2} \times 24 \times 100}{84}=17,059 \mathrm{lb}$. as the tractive force, or practically the same as the engine with 36 inch drivers, which proves your answer to be correct. It will at once be evident however, that while the tractive force of the two engines is the same, the horse power of the latter engine is much larger, and the steam generating power must be proportionately larger also, as, if we suppose each engine to be making 100 revolutions per minute, the 36 inch driver will cover $941 \cdot 66$ feet per misute. If the engine is exerting a force of 17,060 pounds, we have:

941.66×17.060

 33,000as the horse power, neglecting the friction of the engine The 7 foot driver engine making 100 revolutions per minut advances 2,200 feet per minute, when if as supposed the en gine is exerting the same force, we have:

$\frac{2,200 \times 17,060}{33,000}=1137 \% 3 \mathrm{H} . \mathrm{P}$.

If we assume each engine to be using 40 pounds of water per horse power per hour, we have 19,472 pounds for the 36 inch driver engine and 45,492 pounds for the 84 inch driver.
As to the second question, " Which would draw more-a ocomotive with six drivers or one with four drivers, both to have the same amount of weight on the drivers? " you answer, "The engine with six drivers," and the Am. Jour. of R. R. Appliances says, '"Tests show both ways." As the question puts no limits on the weight of the engine, the only correct answer under the circumstances is yours, as it is easy to suppose a weight of engine on four drivers which would destroy the rail, but which if distributed over six drivers would allow of a practical use of the engine. The friction of the six wheel engine on curves would naturally be supposed to be greater, but a test showed it to be less. The friction of an eight wheel or four driver engine pushed around a given curve at ten miles per hour was 1,963 pounds, while that of a mogul or six driver engine under the same circumstances was but 1,750 pounds.
While net connected with this subject, I want to make a few observations on Dr. Grimshaw's proposed engine to make 900 miles in 18 hours. The design of the engine is practically the same as the design patented quite recently by M. N. Forney, save the framing of the engine. Any man who has ever run a passenger engine will at once perceive the utter futility of accomplishing with any engine what the Doctor sets forth. If the road were perfectly level and straight and clear of all trains, it is a question to which even under these circumstances a practical man would say no. But as all roads have grades, curves, trains to meet and pass, coal to take as well as water, and as a stop must be made for coal and a slowing up to take water by the scoop up plan, together with the fact that owing to grades, curves, passing trains, etc., at least one-quarter of their time, a distance of over 30 miles in an hour cannot be accomplished.
This means that for every bour in which but 30 miles is made some other hour must show a distance of 70 miles; and most engineers and railroad men would be pleased to
see the stretch of track and theengine with its train in which 70 miles for several hours can be covered. Performance which to a theoretical and non-practical railroad man like the Doctor appear easy, is a horse of another color to the man bo finds it anthe can do to pound out a continuous speed of 35 miles per hour with the best of engines.

Gothim.

© Brandy Bread!

To the Editor of the Scientific American:
Your correspondent N. D., in your paper of to-day, January 12 , must brush up his chemistry or he will scarcely pre vent our getting "alcohol from bread." He says, " The dough should always be put into the oven before it passes through the first fermentation; the bread in that case will be good, having the sugar in it."
Perhaps so, but we trust N. D. will not invite us to par take if that is the way he bakes things. We showed in an article on " Raising Bread," October 20, that the agent in making the dough light, so that it could be palatable, spongy bread, was an elastic gas-carbonic acid-and that this gas was generated by the process of fermentation. The fermen tation caused the carbon, oxygen, and hydrogen which had previously been sugar to split up into two new substances, which had not been there before-alcohol and carbonic acid -so that the sugar had disappeared aud the new comers remained.
If N. D. puts his dough into the oven before the sugar has felt the fermentation, he will have a solid mass, almost like a brick; he may eat it if he chooses. But if he lets his dough "rise," his sugar will have gone and he will have alcobol, but he will have wonderfully good bread. If he objects to saving his alcohol, very well, he can let it go as it is in the habit of doing, but it is there all the same.
A.

Movement of the Magnetic Pole.

To the Editor of the Scientific American:
The note on the "Movement of the Magnetic Pole," by J. W. Van Sickle, published in your issue of January 5 1884, seems to me likely to produce erroneous impressions. In the first place, when he affirms that the magnetic pole was due north in 1657, he does not state from what place it was due north. It is always due north from places on its own meridian, and, therefore, it is necessary to know on what meridian it was due north at that time.
Again, your correspondent seems to imply that the magnetic needle always points toward the magnetic pole of the earth. Observations do not show this to be the case Neither did the last western movement of the needle begin in North America in 1657, but it commenced at Portland, Me., about the year 1765, where - up to that time the move ment had been to the east. The same westerly movement did not reach New York until very near 1800, and as late as 1870 on the Pacific coast the needle was still moving east ward. It has not yet reached its maximum western declina tion in New England, but the increase is much slower than it was thirty years ago. From the present indications we may guess that it will begin to turn eastward at Portland Me., between 1890 and 1900, which would give a period for the swing in one direction of about one hundred and thirty years. But this is only a guess, and it will doubtless be long time before "A. W.'s" question will be answered.
Allow me to ask who discovered the fact (?) that the mag etic pole has a movement around a circle? This should be pretty well established before we undertake to find ou its period.

Respectfully,
E. T. Quimby.

Hanover, N. H., January 10, 1884.

Large Wheels.

When 42 -inch wheels were first used in this country under passenger cars, there was a good deal of fruitless discussion about their utility as compared with that of smaller wheels. What discussion failed to make clear, however, has been de termined by use and the knowledge thereby obtained. Much can now be said in favor of large wheels, showing their superiority to small ones for passenger service, that could not have been said with the same confidence a few years ago. English practice could, of course, be referred to as being conclusive, so far as the style of "carriages" on English roads was concerned. But our cars are altogether different in size, weight, and construction. Probably no road in this country has given 42 -inch wheels a more thorough trial than the Boston \& Albany, and we are informed that with these wheels such a thing as hot journals is practically unknown on that road, none having been reported for a long time. This is attributed to the fact that the journals revolve slower, their surface speed with the 42 -inch wheels at forty miles an hour being no greater than that of journals with 33 -inch wheels at thirty-one miles an hour. This is a moderate speed if the journals are well packed, and they ought therefore to run cool. It is also asserted that passengers perceive a difference in the riding of cars having the larger or smaller wheels, and that they prefer those with the large ones. This is significant if not conclusive. But there is still another thing that many observing people bave noticed, and that is, that large-wheel trains appear to move at a comparatively moderate speed, when the distance covered shows a speed of forty and forty-five miles an hour. \rightarrow Nat. Car Builder.

tBRADFORD TEGENICAL SCHOOL

In 1871 a new Mechanics' Institute, built at a cost of $\$ 162,000$, was opened at Bradford, Eng., in place of one which had existed since 1839. It is in connection with this admirable institution that the new Technical School was lately opened by the Prince of Wales. In 1877 the council of the Mechanics' Institute considered the advisability of establishing a school for the purpose of giving technical instruction to those engaged in the various branches of the textile industry, of which Bradford is the center. By the co-operation of the Bradford Chamber of Commerce this scheme was carried into effect; gifts of machinery were not wanting, and in March, 1878, the Technical School was formally opened by the president, Mr. Henry Mitchell. The school became such a success that the accommodation afforded by the Mecharics' Institute was soon found to be insufficient, and the building of the magnificent establishment which is shortly to be opened was then discussed. Generous offers of aid poured in, and the result is a splendid erection, which has cost upward of $\$ 150 ; 000$, and which will provide technical education in every branch conuected with the trade of Bradford.
A staff of duly qualified masters will be constantly en-
him the credit of having invented the combing machine is in a great measure, due; aud, after the perfecting of that machine, he turned his attention to the utilization of "silk waste," which had previously been regarded as rubbish. With this object in view Mr. Lister spent many years of his fe and over $£ 300,000$ in money before be received a single penny in return. He triumphed in the end, and at his gigantic factory vast quantities of silk, plusht, and velvet are manufactured. The chimney is 83 yards in height, and aborbed 7,000 tons of material in construction. It is considered to be the sturdiest and handsomest in England, and it is a prominent feature for miles round.
Saltaire is a perfectly model town, situated on the banks of the Aire, about four miles from Bradford. It was founded by Sir Titus Salt, who discovered the use of the Alpaca wool, and erected one of the most celebrated factories in the world at Saltaire, which derives its name from its founder and the river upon which it is built. Sir Titus Salt built a handsome Congregational chapel, dwellings for bout 4,000 work people, a noble club and institute, schools, nfirmary, alms houses, etc., entirely at his own expense.
The foregoing particulars and the engraviug are from the Illustrated London Neone Our special object in presenting
with the preparation of articles of food and drink will thus be exemplified; and, so far as the perishable nature of the articles will admit, full illustrations will be given of the various descriptions of foods themselves. In the second group, dress, chiefly in is relation to health, will be displayed. Illustrations of the clothing of the principal peoples of the world may be expected; and a part of this exhibition, which it is anticipated will be held in the galleries of the Royal Albert Hall, will be devoted to the bistory of costume. In the third, fourth, and fifth groups will be comprised all that pertains to the healthful construction and fitting of the dwelling, the school, and the workshop, not only as respects the needful arrangements for sauitation, but also the fittings and furniture generally in their effect on the health of the inmates. The most improved methods of school construction will be shown, and the modes of combating and preventing the evils of unhealthy trades, occupations, and processes of manufacture will form portions of the exhibition.
The sixth group will comprise all that relates to primary, echnical, and art education, and will include designs and models for school buildings, apparatus and appliances for teaching, diagrams, text-books, etc. Special attention will

BRADFORD TECHNICAL SCHOOL.
gaged in teaching day and evening classes. Among other advantages, exhibitions from the Board and other elementary schools will be provided. The sum for the carrying out of this splendid project has been provided by donations from the merchants and manufacturers of the district, and by a grant from the Clothworkers' Company.
It would require a separate article to do anything like justice to the Technical School building alone. It has a frontage of 160 feet to Great Horton Road, and a depth of 240 feet along Carlton Place. It contains a beautifully proportioned public hall (adaptable to dramatic purposes, and capable of seating 800 persons), a museum, chemical and dyeing laboratories, a science lecture ball, a council chamber, a library aud reading room, a mechanics' workshop, weaving, spinning, and drawing sheds; and among others, art, painting, students', instructors', secretary's, chemical, " balauce," dy eing, cloak, ante, curator's, and class rooms. Everything is on the most lavish and complete scale, and there is no modern improvement which has not been intro duced.
Bradford possesses no less than four public parks, but the most fashionable of these is Lister or Manningham Park. It was purchased from Mr . S. C. Lister for a merely nominal sum, and a statue erected in honor of Mr. Lister now stands near the principal gate. The Hall was, until it became corporation property, the seat of the Listers, who are an ancient Yorkshire family. Mr. S. C. Lister, instead of leading a life of luxurious idleness, as he might have done, embarked in business pursuits at an early age, and has devoted most of his life to the invention of machinery. To
them to our readers is to call attention to the desirability of
establishing numbers of such institutions in this country. establishing numbers of such institutions in this country.

Health and Education.

It is proposed to hold in London during the year 1884, says Nature, an international exhibition, which shall also illustrate centain branches of bealth and education, and which will occupy the buildings at South Kensington erected for the Fisheries Exbibition. The object of the exhibition will be to illustrate, as vividly and in as practical a manner as possible, food, dress, the dwelling, the school, and the workshop, as affecting the conditions of healthful life, and also to bring into public notice many of the most recent appliances for elementary school teaching and instruction in applied science, art, and handicrafts. The influence of modern sanitary knowledge and intellectual progress upon the welfare of the people of all classes and all nations will thus be practically demonstrated, and an attempt will be made to display the most valuable and recent advances which have been attained in these important subjects.

The exbibition will be divided into two main sectionsI. Health; II. Education-and will be further subdivided into six principal groups. In the first group it is intended specially to illustrate the food resources of the world, and the best and most economical methods of utilizing them. For the sake of comparison, not only will specimens of from all countries be exhibited, but the various methods preparing, cooking, and serving food will be practically shown. The numerous processes of manufacture connected
be directed to technical and art education, to the results of industrial teaching, and to the introduction of manual and handicraft work into schools

Cremation.

The great difficulty about cremation, and the principal ob stacle to its general adoption, is so the London Lancet thinks, the danger of affording facilities for the commission of mur der by poison. Would it not be possible to organize a system of post-mortem examinations in every case of intended cre mation, so as to get rid of the difficulty? Beyond question it would be a good social policy, so far as health is concerned to burn bodies instead of burying them; but it will not be possible to adopt cremation as a general practice until society bas safeguards against the terrible danger to life which cremation undoubtedly creates. Such hideous crimes as those committed by Smethurst, Pritchard, and other notorious poisoners would never have been discovered if crematio had been in vogue

Hydraulic Mining to be Regulated.

The farmers of California have obtained from the United States Circuit Court a perpetual injunction against hydrau lic mining. Reason: the billion tons of mud washed off the bills by the miners fill up the river beds, and the river overflow the farms 150 and 200 miles distant from the mines. It means the suspension of all work by thousands of miners scattered over an area of territory as large as the State of New York, and who have built 12,000 miles of mining ditches.

THE DIAMOND PHEASANT

This beautiful bird was first introduced into Europe by Lady Amherst, and hence it was called Thaumalea Am herstia, but it is generally known by the name of diamond pheasant. It is thought by many to surpass the golden pheasant in beauty.
The crest is black upon the brow; the rest is red. The col lar about the neck consists of silver colored feathers edged with a darker color. The feathers of the upper part of the back and the upper wing coverts are of a bright golden green, and appear like scales on account of their dark bor der. The under part is golden yellow shading into a darker yellow.
The upper tail coverts have black bands and spots upon a pale red ground; the under side is pure white. The wings are brownish gray edged with lighter gray. The eye is golden yellow, the bill bright yellow, the foot dark yellow. The length of the bird is one hundred and twenty-five centimeters, the length of the wings twenty-two, and of the tail ninety centimeters.
The bome of the diamond pheasant is in Asia It is most frequently found in the provinces of Yunan and Kuyscho, and in eastern Thibet. It lives in the mountains about two or three thousand meters above the sea. Its motions are very graceful, and it is more agile and intelligent than other pheas ants. It can make its way through the thickest branches with astonishing ease. Its voice, which is seldom heard, is a peculiar hiss. These birds are very easily tamed, and snon become accustomed to their attendant, distinguishing him with unerring certainty from strangers.
It has been generally thought that as these birds come from the warm countries of Asia, a house must be provided for them which is exposed to the rays of the sun, and all moisture avoided, but this is a mistaken idea. The dried sand which is generally placed upon the floor of their hcuses is not suitable for them. The floor should be partly of turf, and they should have access to a place thickly planted with bushes Their food should be a mixture of ani mal and vegetable material.
They pair toward the end of April. The ben begins to lay about the first of May. She selects a well concealed place, and like other pheasants scrapes together a loose nest. She lays from eight to twelve small symmetrical eggs, which are rust color. The hen will seldom brood in a narrow inclosure, consequently the eggs are often placed under domestic hens. After twentythree days of brooding the beautiful little chickens are hatched. For the first few days they need great care, and must be kept perfectly warm and dry, but after three or four weeks they require but little attention.-From Brehm's Animal Life.

The Vaccination of Pigs in France. M. Pasteur, on the 26th of November, 1883, read before the Academy of Sciences a paper upon the vaccination of pigs with the diluted virus of a malady which has made great ravages among the flocks of that country and designated as the rouget du porc. M. Pasteur opened his essay by deploring the early death of Louis Thuillier, his associate in these investigations and one who esecuted his directions; and supplemented them with original studies.
In March, 1882, M. Thuillier began his examination of the disease in the department of Vienne, where it raged with great virulence. He soon discerned in the blood and humors of the dead pigs a new microbe which appeared to be the cause of the disease. Dr. Klein, of London, had previously indicated that a microbe was the source of the plague, but was completely mistaken in his identification of it. At the same time that M. Thuillier made this discovery, Professor Detmers of Chicago published his detection of the same parasite.
At once a proper medium for the culture of this bacterium was prepared, viz., veal soup sterilized. These culture propagations were multiplied, the successive infections of the new fluids being made with a drop from the preceding ones. The last infusion provided the matter for inoculation, which upon certain stocks of pigs reproduced the cbaracteristic traits of the disease, and demonstrated the identity of the microbe, isolated by Thuillier as its cause. Further investigations proved that the microbe of the disease in Vienne was the same as that which in Vaucluse, Charente, Dordogne, Gironde, and in the northern provinces had originated this pestilence. The vaccination of the herds followed as a preventive for the disease, the diluted virus being used as the contrarient injection. One difficulty soon ap peared in the very variable receptivity manifested by the numerous brands of pigs for the disease, but experiment did prove conclusively the possibility and efficacy of the remedy. The disease disappears upon the approach of winter and re appears in spring, and the subjects vaccinated in the autumn were kept until the following summer with flatteringresults
M. Maucuer, a herder whose animals weite put at the disposition of M. Pasteur, wrote to the latter one year after he vaccination had been extensively applied: "The happy effects of the vaccination become more and more evident. The plague is active at Bollene, Saint Restitut, Mondragon, and in the neighborhood of Orange, and notone vaccinated subject bas succumbed. At Saint-Blaise your subjects are the only survivors. At M. De la Gardette's no news, but a great mortality exists around him; it has never bsen equaled. The vaccinated pigs will soon be the only living ones. The success is complete.'
M. Pasteur insists that the rouget can be prevented by noculation with the weakened virus of the disease; that the immunity from the disease by this means extends over a year, and that therefore one vaccination is sufficient, as the time required for fattening the pigs for market is seldom longer; that the sensitivity of the various stocks of pigs to noculation and its consequences varies greatly and should be further examined.
He says the properties and physiological characters of the virus are highly modified by treatment, that its virulence can be weakened or heightened, and that these varying tates can be fixed by culture
A microbe is fatal when it can multiply in the subject's body, leading, in its reproduction, to disorders that terminate in death. If the microbe of a zymotic complaint has passed many times through the organisms of one species of nimal, it attains a fixed and maximum development for that animal. Thus the anthrax of sheep varies but slightly in different subjects from one year to another, for the same country, attaining thus as it were a definite state. But the virulence of a virus which has not reached its maximum
killed originally by the rouget. On the other hand, the mi gration, so to speak, of the microbe of rouget through the rabbits has an entirely different consequence. The virus is progressively weakened, and soon the blood of the sick rab bit inoculated upon the pigs does no longer lead to death, butonly to a curable sickness, after recovery from which they are invulnerable to the attacks of the plague.

Symbiosis.

Professor Hertwig, according to Nature, at the last meeting of German naturalists, read a paper on this subject. This term, symbiosis, first suggested by De Bary in connec tion with certain phenomena of the vegetable world, is here extended to the whole organic system. As distinguisher from ordinary parasitism, it is explained to mean the normal fellowship or association of dissimilar organisms which dwell together in a common abode for their mutual welfare. In the case of parasites the connection is altogether one sided; one of the two organisms attaching itself to the other and flourishing at its expense, as, for instance, the mistletoe on the apple tree.
But in this newly revealed phenomenon of symbiosis, which appears to pervade the whole biological world, both associates are mutually beneficial, and in some instances even indispensable to each other. They act, so to say, like two partners in a well regulated business concern, co-operat ing in the work of life, taking part in all its toils and troubles, and honorably sharing the common prufits. An illustration is drawn from the familiar hermit crab, one species of which, after taking possession of the first available empty shell, goes into partnership with a sea anemone (Adamsia palliata). This lonely creature, bright orang spotted with red, attaches itself to the roof of the common abode in such a position that its mouth and prehensile apparatus are always turned toward the head of its associate. It is thus enabled to join in all the expeditions of the restless hermit crab and conveniently share in the common plunder. In return for this service, the anemone protects his companion from bis many enemies by means of the numerous long threads which it shonts out at the least alarm, and which are provided with millions of capsules charged with a stinging acid like that of the common nettle. So close is the compact entered into by the two partners, that both have become indispensable to each other, as appears
from a series of experiments made at from a series of experiments made at the Neapolitan Aquarium. If the crab be removed from his house, and this be stopped up so as to prevent his reentering it, he will cast about for another shell, and never stop until his old associate is also transferred to their new abode.
A still more remarkable illustration is drawn from the imbauba, or candle nut tree of Sruth America, which strikes up an alliance with a species of small black ant to their mutual benefit. The whole subject of symbiosis, which naturalists are only beginning to study, is calculated to throw great light on the Darwinian theory of biological evolution. The various cases of fellowship between animals and plants of different orders, and even between members of the animal and vegetable kingdoms, show how, in the perpetual struggle for existence, the individual organism
activity can be essentially modified by its passage through series of individuals of the same race. Thus also the viru lence of a virus can be developed to its maximum by inocu lating young subjects and progressively treating older and older subjects.
But it further appears that a virus which bas acquired its fixed state for a race can be modified in its virulence by pas sage from one race to another. Thus the microbe of hydropbobia, which proved to be very malignant for rabbits, has appeared inoffensive for adult cavias, but rapidly destroys those a few hours or days old. And in pursuing the inoculation of young cavias the virus has strengthened, and finally reached a condition where it easily killed the most aged. But the most singular change ensued. The virus which had at first been so destructive to the rabbits, after this culture in the bodies of the cavias lost its poisoning power upon the systems of the former. In fact, it induced an easily curable affection in the rabbits, and then rendered them inert to the fffects of their own specific parasite.
These experiences led Pasteur and Thuillier to suspect that the virus of the rouget of pigs could be similarly modified, and the following results attended their inoculation of pigeons and rabbits with the porcine virus.
If the pectoral muscle of a pigeon is inoculated, the pigeon dies in six or eight days, showing the symptoms of poultry cholera; when its blood is inoculated upon a second subject and a number are successively treated with the poisoned blood of the previous subjects, the virus gains in virulence, reaches a fixed maximum of malignancy, and is then more
fatal to the pig than the most deadly products of a hog
avails itself of the smallest advantage to secure a place in the household of nature. It often thus acquires marvelous habits of life, which it is afterward unable to lay aside, and in consequence of which it becomes gradually modified in its bodily form and organization. Thus abyssus abyssum nooca, one change superinduces another, altered conditions require fresh combinations, and the organic world resolves itself into an everlasting ebb and flow of life, in which the individual counts for nothing, the species-itself transitory -for but little, and the sum of existence alone is considered in the self-adjusting scheme of the universe. Symbiosis thus leads at once to a broader and more searching study of various branches of human knowledge.
To prosecute the subject successfully, vegetable and animal organisms must be examined, normal and morbid conditions attended to, anatomical and physiological questions investigated. For this boundless theme belongs to a border land in which zoology, botany, anatomy, physiology, and patbology meet as on common ground.

The Electric Light on Board Men of War.

The result of the use of the electric light during the recent volutions of the German iron clad squadron have shown that, notwithstanding its employment, torpedo boats may approach vessels unperceived. In a recent number of the Marine-Verordnungs-Blatt, it is even stated that those who have seen the electric light used on vessels will come to the conclusion that it is disadvantageous rather that beneficial, supplying the torpedo boat with a safe aim.

Burning of a " Fireproof" Theater.
The new year opens with a number of serious fires. One of these, the account of which has a certain air of grotesque inconsistency, occurred in Cleveland, where an "'absolutely fireproof ". theater was completely destroyed in three-quarters of an hour, blazing with such a fury as to set fire to a "stone church" near by, which was also burned into a useless shell. The theater was a new one, baving been open only a little over two months, and is said to lave been constructed with all the safeguards now regarded as necessary to complete security. The stage was separated from the auditorium by a thick proscenium-wall of brick, extending six feet above the roof; and the proscenium-arch was closed by a fireproof curtain. Brick and asbestos were used in place of wood wherever possible, and all the stair cases in the building were of stove or iron. Even the dome over the auditorium was made of sheet-iron, and, in accordance with the most recent and approved practice, an immense skylight was placed in the roof of the stage, so that in case of fire the glass would break, setting in motion a current of air from the auditoriu into the stage, to carry smoke away from the audience.
In addition to all these precautions, which it must be remembered are not less valuable because they have once failed of the entire effect hoped for from them, stand-pipes were provided at various places in the theater and on the stage. The cause of the tire, according to the excellent account of the Boston Herald, seems to have been a leakage of gas from the meter or the pipes near it. A violent explosion took place when the janitor, carrying a lamp, opened the door of the meter room, and the flames poured out of the door and kindled some light wood-work near by. The engineer was standing close at hand, and immediately ran to the pumps and set them in motion, but in a few minutes the scenery and stage apparatus caught fire, driving every one out of the building. Although au alarm was promptly sounded, the utmost efforts of the whole city department were insufficient to control the progress of the conflagration, which raged until nothing was left of the building but the front and side walls, which, being of brick, may possibly be used again in rebuilding. The clureh, which was simply a combustible frame with a stone shell, suffered the usual fate of such structures under similar circumstances. This occurrence is the more interesting, as it is the first trial of the new principles of theater-building which have found currency since the terrible warnings given by the catastropbes at Brooklyn, Nice, and Vienna. It is very much to be hoped that we may have later an account of the fire written by the architect of the building, or by some other equally competent expert, which will serve to show the value, in time of actual trial, of the various precautions employed. Such an account would serve a most excellent purpose, not only in pointing out the way for further improvements in theater construction, but in showing the real efficacy of the devices, which at least deserve the credit of having probably saved the lives of the few persons who happened to be in the theater-Amer. Architect.

Our Little world.
Some physical results of the Java disturbance help us to understand how small the world is. Take a bowl of water, agitate the fluid in the center, and the undulations you excite propagate themselves in smooth-swelling concentric rings till they lap against the sides of the bowl. There they break, and slop up in mimic tidal waves. This is an exact illustration-nagna componere parvis-of the oscillations of the sea reported from both hemispheres this week. The tidal irregularities, as might be expected, were most violent on the northwestern seaboard of Australia, which lies right opposite the scene of the Java disturbances. On that coast the sea retreated and advanced a hundred yards. A day or two later oscillations appeared on the Atlantic seaboard of America. The particular undulation which, on the fifth day out, slopped up on the east coast of New Zealand must have come by way of Cape of Good Hope and Cape Horn, and had nearly completed the circuit of the globe. Australia lies as a breakwater between us and Java by the direct route. It gives one a new conception of the littleness of what Henry Ward Beecher calls " this fi'penny-ha'penny world," when a man can stand on the Ocean Beach at Dunedin and watch the ripples from a splash made in the Straits of Sun da.-Otago Times.

Gold in North Carolina.

At a recent meeting of the Academy of Natural Sciences, Professor H. Carvill Lew is exhibited some remarkable gold nuggets found in Montgomery Cornty, N. C., forty miles east of Charlotte and two miles from Yadkin River. Some of the nuggets were of great size. One of them weighed over four pounds, and contained nearly $\$ 1$, ro0 worth of gold. It was finer than any specimen in the collection at the U. S. Mint, and was probably one of the largest nuggets ever found in eastern America. Many of the specimens exhibited were of nearly pure gold. of a crystalline structure, and of a fine golden yellow color. It was stated that in the district of North Carolina whence these nuggets were taken gold is very abundant. The larger nuggets were found in the gulleys, where they had been washed out of the decomposed rock, and it had been stated that a shovelful of dirt dug out of the hillsides anywhere in the district would pan out traces of gold. Some years ago one man tonk out of a liole sixteen fect square $\$ 30,000$ worth of the precious metal. 'The quartzite containing the gold occurs in a white clay or decomposed schist.

The Christzan Intelligencer of this city, whose veracity has never to our knowledge been questioned, says, "TheScientific American is one of the first mechanical journals of the world. No paper printed anywhere," it continues, "presents a larger number of inventions or contrivances in the course of a year, describes them more clearly and lumioously, illustrates them more liberally and skillfully. It is noted for the beauty and lucidity of its illustrations. We seldom take up a number which does not contain an account of some invention or contrivance suited to the outdoor or indoor wants of the farmer or gardener, described in words and in a picture that eally illustrates. A long experience has carried this journal to a high pitch of perfection in such matters. Farmers generally acquire some mechanical skill, and find in such a publication innumerable valuable hints. This journal also presents constantly a variety of interesting scientific facts from every department of investigation and experiment. Such a journal also, it seems to us, gives dignity and worth to work, to mechanical pursuits, gives one broader views of their usefulness and a more exalted opinion of the grandeur of their achievements. A farmer who has a group of promising and perhaps restless boys around him would render to them, and to himself as well, a service of incalculable value by putting the Scientific American in their hands."

CAR SEAT.

The car seat is supported by spiral or other springs sur rounding the upper parts of the seat legs, which pass into cavities in the standards of the arm rests. The legs are bent so as to form an upwardly projecting vertical part which extends through apertures in the seat and into longitudinal openings in the standards of the arm rests. A short distance below the seat the vertical parts of the legs are each provided with a cup-shaped collar, upon which the spiral spring rests which surrounds the upper part of the leg and upon which the seat is supported. The vertical part of

ACKLEY'S CAR SEAT.
each leg is provided with a ball and socket joint (sbown enlarged in Fig. 3) about midway between the collar and seat. These joints are so arranged that the upper parts of the legs can swing in the direction of the long axis of the seat, so that if a weight rests on one end of the seat the springs at that end only will be depressed and the upper part of the leg will move outward correspondingly. Other than spiral springs may be used. The vibrations and jolts of the car will be taken up by the springs and will not be transmitted o the seat. The standards of the arm rests (shown in secion in Fig. 2) contain rubber sleeves, to prevent noise, and hrough which the upper ends of the legs pass.
This invention has been patented by Mr. William A. Ackley, of Hackettstown, New Jersey.

Gems rom the Himalaya Mountains.

Professor C. U. Shepard* has called attention to the discovery of a remarkable locality for sapphire and ruby in the Himalaya Mountains. The crystals occur, with other varieties of corundum, in a schistose or slaty rock, and are associated with chlorite. The gems, which are limpid and finely colored, are also finely crystallized. The locality was discovered accidentally, but is now guarded by government troops. Professor Shenard believes that the resem blances between the mode of occurrence of these Indian ems and those found in North and South Carolina are sufficiently important to encourage the expectation that valuable corundum gems may yet be found in the United States."
Professor Sbepard is apparently not aware that a much more full account of this discovery of gems in: India was published more than a year ago, by Prof essor F. R. Mallet, in a paper entitled " On Sapphires recently discovered in the uorthwest Himalaya." \dagger
It is there stated that the correct locality is Padam, east of the village of Machel, Zanskar district, territory of Kashmir. The gems were exposed by a landslide, and occur far up on the mountain, at the limit of perpetual snow. Some of the sapphires discovered were a foot in length.
*Amer. Jour. Nc., Nov., 1883.
\dagger Records Geolog. Surv. of India, vol. xv., part 2, p. 138.
physical and crystallographic description of the crystals is given. In the center of a hexagonal prism of sapphire a cavity was found, in which were two crystals of tourmaline. Frequently the specimens are coated with a thin white mineral resembling gibbsite.
The crystals are bluish white and translucent, with transparent fine blue portions irregularly mixed. These blue portions, of course, constitute the only valuable parts of the crystals, and are carefully cut out by the lapidaries. Amer. Naturalist.

Friction.

The ratio obtained by dividing the entire force of friction by the normal pressure is called the coefficient of friction, hence we may define the unit or coefficient of function 10 be the function due to a normal pressure of one pound :

Iron on oak

Cast iron on oak .0 .62
.049
Oak on oak, fibers parallel..
Cast iron on cast iron.
Wrought iron on wrought iron.
Brass on iron..
Brass on brass
Wrought iron on
Castiron on elm. .. .049
.. .048
. .0 .10

Soft limestone on the same ...
Hard limestone on the same.
Leatber belts on wooden pulleys
Leather belts on cast iron pulleys
Pivots or axes of wrought or cast iron, on brass or ca iron pillows :
First, when constantly supplied with cil
Second, when greased from time to rime
0.05
.0 .08

Third, without any application
0.15

Electric Lighting in New York.

The novelty of the new light has worn off, and the extent to which it is being introduced as a substitute for gas is little noted except in the reports of the companies. These, however, do not always give one a full idea of the growth of the business, as so many establishments where the electric light is used generate their own electricity by dynamos worked by power on the premises. The arc light seems to have the field to itself for streets and the lighting of large areas, as the incandescent light has for shops, saloons, offices, dwellings, etc. The Edison Company are now planning two large establishments to light dhe field in this city, from Twenty-fourth to Fifty-ninth Street and from Eighth to Madison Avenues, to be of a capacity of 7,000 and 9,000 horse power respectively. Touching the practical effect of a heavy rain in interfering with the perfect insulation of overhead wires, an observer thus describes the appearance of the arc light at the top of the tall mast in Madison Square during a heavy storm:
"The lights danced up and dowu, varying with the floods of rain apparently, occasionally sinking to a dull red, and then going out altogether and leaving the wind-swept square in total darkness. Then the lights would flash out gloriously, flooding the spaces with their dazzling brilliancy and defying the elements that raved through the air. And so, up and down, the rays of the electric lights rose and fell through the tempest, and they who were fortunate enough to see the show without being exposed to the wild storm will long remember the spectacle.'

The Wicroscope in Detecting Lard Adulterations.
The famous "lard corner" in Chicago last fall, and how the speculation came to an end and large quantities of lard were rejected as "good delivery" on account of alleged adulteration, excited a degree of interest in the public mind which has not yet subsided. If it were true, as was so strongly asserted, that an article as cheap as lard could be successfully adulterated on a large scale, people would hardly know where to stop in their suspicions of everything not strictly "home made." The principal distinguishable difference heretofore between beef tallow and lard is that the former contains rather more stearine, and this difference is so slight that there have been considerable adulterations of lard with beef fat which it has hitherto been almost impossible to determine. But on the trial of the lawsuits which grew out of this lard corner some strong and highly iuteresting evidence was presented as the result of nice examinations by the microscope.
In this way, by dissolving samples in ether in a test tube, which were crystallized on evaporation, and then examining them under an amplification of two hundred and ten diameters, it was found possible to detect an adulteration of lard with tallow as low as five per cent. The different forms of crystallization of lard and tallow were first discovered by Dr. P. B. Rose, of Chicago, about two years ago, but the successful application of the discovery to detect this adulteration was made by William T. Belfield, M.D., of the same city, one of the expert witnesses in the recent trial. The pure lard crystals are thin, rhomboidal plates, while those of pure tallow have curved forms somewhat like the italic letter f.
A bill introduced by Mr. Vance. of North Carolina, makes it the duty of the Attorney-General to attack the validity of patents. As though enough had not already heen proposed in the way of nullifying the rights of patentees, the Law Department of the Government is, by this bill, made an agent for invalidating the titles which the Interior Department, after eareful examination, grants to patentees.

On the Prevention of Pneumonia * Every winter inflammation of the lungs destroys the lives of many persons who might have escaped if the preventive measures here advocated had been effectively practiced at the proper time.
In order to render the value of the latter more apparent, it is necessary to notice very briefly the influence of breathing on the body and on the food required for its support
The capacity possessed by the living body to vitalize nutritive materials is perhaps its most wonderful physical endowment. Every step in this marvelous process requires the vivifying influence of oxygen. Without an abundant supply of this gas to the system through respiration, the food cannot be properly fitted to repair the wasting tissues; the body is, therefore, necessarily repaired by materials having a low degree of vitality. Again, as oxygen is the agent by which effete matters are reduced to those forms by which their complete removal from the system is facilitated, if it be not breathed in adequate amount the body becomes clogged by ts own waste.
As in chemical manipulations a definite quantity of an
alkali is required to saturate an acid of given volume and alkali is required to saturate an acid of given volume and strength, so in the vitalization of food a definite quantity of the vital gas, oxygen, is required to enable the system to fully complete the vitalization of a given amount of food. A man of average weight requires about two pounds of solid food per diem, and very vearly the same weight of oxygen is absorbed into the blood from the respired air; therefore, we shall not be far from the truth when we assume that an atom of food requires to be acted on in the living body by an
atom of oxygen in order that its vitalization may be ef atom of oxygen in order that its vitalization may be effected.
The most important anatomical change occurring during the progress of pneumonia is the solidification of a larger or smaller part of one or both lungs by the deposit in the
terminal bronchial tubes and the air cells of a substance by which the spongy lungs are rendered almost as solid and impenetrable to air as bone. The access of the respired air to the solidified part being totally prevented, life is inevitably destroyed if a sufficiently large part of the lungs be invaded. This deposit succeeds the first or congestive stage it occurs with great rapidity; an entire lobe of the lung may be rendered perfectly solid by the exudation from the blood of fully two pounds of solid matter in the short space of twelve hours or even less. The rapidity with which the lungs become solidified accounts for the promptly fatal results that often attend attacks of acute pneumonia. If recovery takes place, the foreign matter by which the lung tissue has been solidified is perfectly absorbed, and the recently diseased portion is found to be quite uninjured.
The only natural method by which the blood can be freed from the presence of waste matter is by its oxidation, the results being carbonic acid gas that escapes by the lungs, and certain materials that are eliminated chiefly by the kidneys. But when these impurities exist in the vital fluid in unusually large quantities, or if the respiratory capacity be inadequate, the natural internal crematory operations are a partial failure.
But nature cannot long tolerate the presence of such impurities in the vital fluid; if they canant be eliminated by natural means, they must be got rid of by means involving diseased action; therefore such material is frequently deposited in various parts of the body, the point of deposit being usually determined by some local disturbance or irritation. The liability of any person to attacks of acute pneumonia is determined chiefly by the presence or absence in his blood of the waste matter referred to and by the condition of the respiratory power. If the blood be free from any abnormal amount of such waste matter, because his respiratory capacity is up to the full requirements of the system, no cold, however severe, is competent to originate the disease. But
if the blood be charged with the matter, a very moderate if the blood be charged with the m
rrritation will determine an attack.
There can be no question but that high living and sedentary habits have a strong tendency to befoul the blood. The former renders effective respiration all the more necessary for the removal from the system of whatever nutritive matter has been taken beyond the needs of the physical necessities, while the latter inevitably reduces the respiratory mo tions to the lowest point consistent with physical comfort.
These conditions are the active predisposing causes of acute pneumonia
The disease is more fatal in the very young and in the aged. The mortality from acute pneumonia seems to bear a direct ratio to the respiratory capacity; in young subjects the breathing powers have not been fully developed, while in the aged the respiratory volume has heen diminished by the stiffening of the chest walls and of the lungs themselves by the senile changes incident to the decline of life. Therefore we assert that the most preventive measure that can be adopted against attacks of acute pneumonia is to keep the breathing up to the full requirements of the system-a precaution specially necessary to the ease loving, high living, middle aged gentlemen who are especially liable to its attacks. The effectiveness of other preventive hygienic measures depends largely on the care expended in this direction.
A few minutes spent each day in simple but effective fer weeks render the lungs much more permeable to air. The volume of each respiration may thus be readily increased by two or even three cubic inches of ai:; but if we assume that the gain is but one cubic inch, the aggregate increase

[^0]in the volume of air breathed in the course of twenty-four hours would amount to about as many cubic feet. An augmentation of respiratory volume to that extent would quickly clear the blood of effete matter and notably diminish, it not entirely abolish, the liability to attacks of acute pneumonia in any one who practices such effective preventive measures.

Inharmonious Doctors and Apothecaries.

According to a contribution of Dr. A. J. Howe, of Cincinnati, to one of our medical journal contemporaries, the doctors and druggists of that city have been having some differences. The past season has been "tooo healthy," and people have been " going to the drug stores for the treatment of minor ills, calling for castor oil, cathartic pills, quinine, cough lozenges, and even for salves to cure an eruption. This habit made physicians jealous of the practice druggists are doing, and they called the latter to give an account of their doings, each party choosing a committee to hold a conference in regard to the issue. The druggists claim the right to sell 'little things' over the counter, and denounce the impertinence of the doctors' interference.
'The most important thing in the whole matter is in re gard to the refilling of prescriptions. Instances were cited of a recipe having been renewed thirty, forty, and fifty times, yet the writer thereof never saw the patient but once that being at the time the prescription was written, and for which a fee of only one dollar was paid. Now, this is rather hard on the doctor, and a 'fat thing' for the apothecary, yet all things cannot be equable in this world. But if doctor be located near a good drug store, and he send bis office prescriptions there, the apothecary will, in turn, direct people inquiring for a good physician to go to the one who favors his business interests.

It has been decided in some of the higher courts that a patient who obtains a prescription from a doctor, and pays for it, secures ownership in the recipe, and can demand it of the druggist at the time it is filled or afterward. This means that the patient owns the prescription and can have
it refilled as often and at as many different places as he pleases.
"It is customary for druggists to keep the original prescription on file, and to give a copy, if called for, to the one baving it filled, but this is not in keeping with the letter of the law. He should, when the prescription is demanded, put a copy on file and deliver the original to the party bar ing it filled."

Diphtheria Cured by Blue Gum Steam.
Dr. Murray Gibbes reports thirty-seven cases of diphtheria claimed to have been cured by saturating the atmosphere of the room in which the patient was placed with the vapor of the eucalyptus globulus. The atmosphere must be constantly loaded with steam, and the vapor of the eucalyptus is obtained by pouring boiling water on the dried leaves. To assist nature in throwing off the membrane, Dr. Gibbes uses a solution of steel and glycerine, with which he brushes the throat when the membrane is lonse enough to come
away easily. Dr. Mosler, in. 1879 , spoke strongly of the value of eucalyptus inhalations in severe cases of diphtheria -London Medical Record.

Yellow Fever by Mosquitoes.

Dr. Carlos Finlay, of Havana, maintains that it may be communicated from one individual to another through the agency of mosquitoes. He has seen under the microscope spores and filaments of a particular nature on the sting of one of these insects that had just bitten a patient suffering from yellow fever, and thinks that the germs may undoubtedly be introduced into a healthy individual by the bite of a mosquito. He recalls the fact that these insects were remarkably numerous in Philadelphia at the time of the great yellow fever epidemic in 1797, and states also that the same conditions of temperature are necessary for the life of the mosquito as for the existence and spread of yellow fever.

How to Stop a Stye.

Dr. Louis Fitzpatrick writes to the Lancet that he bas never seen a single instance in which the stye continued to develop after the following treatment had been resorted to The lids should be held apart by the thumb and index fin ger of the left hand, or a lid retractor, if such be at hand while the tincture of iodine is painted over the inflamed papilla with a fine camel's hair pencil. The lids should not be allowed to come in contact until the part touched is dry
A few such applications in the twenty-four hours are suffi A few such applications in the twenty-four hours are suff cient.
"Feed a cold and starve a fever" is an old adage, and one which most people still believe in. Dr. C. E. Page method. He speaks of achieving great success by confining himself to two light meals, or even one meal a day, for the prevention and cure of colds, and has tried it himself in some most remarkable ways, such as "rising from bed on a cold,
rainy morning, and sitting naked for an hour, writing, and then put on shirt and trousers only, the shirt almost salurated with rain and the trousers quite damp, from hanging by the window-these and similar experiments I have tried repeatedly, but without catching cold; I become cold and become warm again, that is all." This may be fun for the likely 10 become popular. What an enthusiast can do to demonstrate a theory had an even more remarkable exempli fication in Dr. Tanner's fasting forty days

Cheap and Good Food.

T. R. Allinson, writing to the London Times, says Allow me to bring under the notice of your readers some experiments I have just concluded to solve the difficulty of feeding our poor in London and elsewhere. The cry is that food is so dear that the poor can scarcely live. This cry is true if they want to live on luxuries, but if they will live on wholesome, but plain and healthy fare, they can do so for very little. A little over a month ago I determined to give up all expensive articles of food and live almost as cheaply as possible. Having left off flesh foods for nearly two years, and lecturing frequently on the question of food, I knew what to select. Looking over my food accounts I found milk, butter, eggs, and cheese, with tea and coffee were fairly expensive articles, and none of them necessary, so I gave them up for a time to see results. On October 19 I began my experiment; my weight was then 9 stone 8 ounces. I continued this purely vegetarian diet for a month, when my weight was 9 stone 3 pounds 12 ounces, o a gain of $31 / 4$ pounds. My friends said I looked well; I felt well, and did my usual work the same as ever. I walked from 10 to 15 miles daily, seeing patients or taking exercise. Here is an account of my dietary, which cost me little more than sixpence a day, and I could easily live for less without luxuries: Breakfast consisted of a basin of porridge, made from a mixture of oatmeal and wheatmeal, which I found more palatable than either singly. This I usually ate with bread to insure thorough insalivation. I'hen came bread fried in refined cotton seed oil, or fried vegetable haggis For drink I had a cup of cocoa or fruit sirup, with warm water and sugar. The cocoa used was an ordinary one with plenty of starch in it, which makes a thick drink, and no milk is then required. Dinner consisted of a thick vege table soup and bread, potato pie, savory pie, vegetarian pie vegetable stew, stewed rice and tomatoes, etc. For a second course I had bread plum pudding, stewed rice and fruit baked sago, tapioca and apples, stewed prunes, tigs, raisins, and bread. Tea meal consisted of bread and jam, stewed fruit, or some green stuff, as watercress, celery, tomatoes, etc. I had only three meals a day, and frequently, when very busy, I had only two, and a cup of cocoa and a biscuit for supper. I always use the whole-meal bread, as it is laxative and contains a good deal of nit:ogen, which is thrown away with the bran. The cotton seed oil is a cheap and good cooking oil, and is impossible to detect. This diet I continued for a month, and now I only take the animal products when out, not having them at my table.
Now compare this diet with one of flesh or a mixed one. The latest analysis shows flesh to contain from 70 to 74 per cent of water, the dry residue being very rich in nitrogen, and it contains a little carbonaceous or fatty matter. Hence, to live on meat alone, as much as 8 pounds a day is necessary. Then there are to be considered the diseases of ani mals, which are communicable to man if that flesh be not thoroughly cooked all through; and as very few of our animals live a perfectly natural life, most of them are more or less diseased, especially the fat ones. The excess of nitrogen taken into the system in eating flesh meat has to be got rid of by the liver, kidneys, and lungs; hence, these got rid of by the liver, kidneys, and lungs; hence, these In fact, were it not for flesh food we doctors should have very little to do. Man living in towns cannot afford to eat much flesh, because he does not get sufficient exercise and oxygen to burn up the excess of nitrogen. If he does eat this flesh, and if he eat much, then he must suffer from many complaints, such as indigestion, bilious attacks, congested liver, hæmorrhoids, gastric catarrh, and other gastric troubles. If the habit be continued in, gall stones or urin ary calculi may follow, or rheumatism and gout. Then the kidneys become diseased, and more work is thrown on the heart, which becomes also diseased; the end is death by one of the lingering diseases which shows a diseased organ somewhere. Even epilepsy and many nervous diseases are aggravated by flesh. Cancer is on the increase, and, from some observations I have made, it may be indirectly traced to flesh. Consumption has only a remote connection with flesh, it being due chiefly to want of fresh air. Vegetable food is cheap, contains an abundant supply of nutriment at first cost, and our systems are so formed as to use it with least expenditure of vital force. We use no cruelty in obtaining our food, and can easily see if it be wholesome or in a rotten slate.
By means of our diet much disease is prevented, and even most chronic cases of present disease can be alleviated by it. If we want a cheap dietary we have the following foods to choose from: Wheat, oats, barley, maize, rice, sago, tapioca, semolina, hominy, peas, beans, lentils, etc., which are all concentrated foods and very rich in nutriment. Potatoes, parsnips, beets, carrots, turnips, onions, cabbage, sprouts, etc., give variety, bulk, and flavor; to these may be added the sweet herbs for making savory dishes. Apples, pears, currants, gooseberries, plums, strawberries, rasps, blackberries, and other fruits, with melons, peaches, grapes etc., are high priced but wholesome fruits. The dried fruits, as dates, figs, apple rings, currants, raisins, etc., are cheap and good. To these may be added tinned goods. Thus one can see the immense variety of tasty things we have, and these to suit all purses. We can add to these milk, butter, cheese, eggs, and honey, which are got with out killing animals. But if we take animal food, then fish is least injurious, then beef and mutton, while veal, pork. game, etc., are very indigestible, and ought to be avoided. Knoooledge.

ENGINEERING INVENTIONS

A friction coupling for shafts, toothed Wheels, and pulleys has been patented by Mr. Franz Braun, of Berlin, Germany. The invention provides a novel construction and arrangement of parts, whereby
shafts can be coupled and uncoupled very easily and rapidly, without causing stoppage of work or latera pressure on bearings.
A noiseless steam nozzle has been patented by Mr. Carleton W. Nason, of Montclair, N.J. It has a slotted tube surrounded by a perforated casing pacĩthe steam must go through this fiber in passinginto water, whereby all noises or water hammering is pre-
A railway signal has been patented by Mr William Hadden, of Brooklyn, N. Y. The invention makes a novel arrangement of the circuit in the "block" system by which the signals are operated on a closed
circuit, and worked with equal facility from either end of the section automatically, or from any part of the of the section automatically, or from any part of
line, by means of a switch of peculiar construction.
A car coupling bas been patented by Mr. ohn C. Bryan, of Holly Springs, Ark. It combines, in cornection with the drawhead. and a frame carrying
he coupling pin, an arrangement of levers and retaining spring, making a novel mechanism forcar coupling, automatic in its operation, and that may be actuated om the top or either side of the car
A railroad switch stand bas been patented by Mr. Charles H. Talmage, of Atcbison, Kas. It is an
improvement for what is known as the "three throw split switch." and there are gears connecting the two switch shafts with the shaft of an operating lever by a partly toothed wheel, so the two switches may be ope-
rated by the same hand lever, thus eimplifying the apparatus and lessening the cost.

mechanical inventions.

A machine for making wire or other solder has been patented by Messrs. Edmund L. Young and Lucius Dyer, of Millbridge, Me. In running or casting
wire solder, the molten solder, by this invention, is run into grooves on a revolving mould and cooler, and is picked up theref rom and afterward reeled or otherwi
delivered either as coiled wire, sticks, or as desired.

A machine for making coiled wire ferrules has been patented by Mr. Joseph Crowfoot, of Bridgeport, Conn. It has a mandrel revolved by suitable mechanism within a stationary band having an ${ }^{*}$ inclined upper edge to raise the wire as it is coiled and form a
space for the next coil, with a jacket for supplying solder, and novel arrangement and construction
the mandrel cool and do rapid and efficient

AGRICULTURAL INVENTIONS.

A cultivator has been patented by Mr . Frederick L. Hilsabeck, of Shelbyville, Ill. This in vention is designed to improve cultivators used for
working on both sides of a row of plants, and has a runner device on which the cultivator may ride to carry the

A cotton seed planter and fertilizer distributer has been patented by Mr. Ge Hu Port, of Seventh
District, Coweta County, Ga. It has a peculiar arrangement and construction of parts, so that the drive wheel rocks a feed wheel, and the bottom of the feed box is loose, so that a smalle
be arranged for as desired.
A straw stacker has been patented by Mr . Thomas Major, of Jackson Township, Clinton County
Ind. The object of the invention is to facilitate the Ind. The object of the invention is to facilitate the ad
justing, controlling, and moving of straw stackers, and justing, controling, and moving of straw stackers, and promote efficiency in their working, the straw being re
ceived from the thrasher or separator upon the lowe part of the carrier and discharged from the upper end upon the stack, the carrier being conveniently arranged for the increasing height of the stack, and the stacke
turning laterally through nearly the are of a turning laterally through nearly the are of a semicircl

MISCELLANEOUS INVENTIONS.

An improved swamp and grab hook has been patented by Mr. Albert M. Millard, of Wausau,
Wis. It is a special form of hook for rolling logs on to crotches in the forests, and for grabbing and pulling A game
A game register and trump indicator has been patented by Mr. George W. Hyatt, of New York
city. This invention provides a convenient meaus of keeping the score in games, and the points of each game, while at the same time indicating the trump of the game in urogress.
An improved harness has been patented by Mr. Green Thompson, of New Salem, Ind. The object is specially to improve harness for working hay car
riers and hoisting gear, and a rigid bar trace is provided which, with the other parts, wholly does away with the falling of the whiffletre
An improved apparatus for utilizing wave power has been patented by Mr. Thomas Mayes, of al-
bany, N. Y. It is strong and simple, consisting of a ing rod for imparting motion either directly or by ing rod fo innacted to mation

A receiving telephone bas been patented by Mr. Lyman W. Sutton, Jr., of Newton, N. J. The in veniinn covers a magneto electric telephone consisting at both ends, a magnet, and a helix, all in inductive re lation to each other.
A folding baby carriage has been patented by Mr. Harry A. Jackson, of Brooklyn. N. Y. It is of
special construction, whereby it may be folded com pactly when notin use, and has a canopy attachment or improved device for holding a sunshade in any de
sired position. ired position
An improved bilge water alarm has been patented by Mr. George W. Gilmore, of Webster, Pa
The invention consists principally of a float and attach-
ed weight and screw for moving a drop weight or other object, to give an alarm
rises above a certain level.
An improved fire escape has been patented by Messrs. Otis G. Moore and Morris H. Marcus, of Edin burgh, Pa. It provides for a chute offlexible ma-
terial extending from a window to the ground down terial extending from a window to the ground, down which persons slide in escaping from fire, and the chu
is made in sections to give it rather a zigzag shape.
An improved crutch has been patented b Mr. William H. D. Ludlow, of La Porte City, Iowa This invention provides for an extensible prod connect-
ed to the hand hold, so that, by a rotary adjustmen there, the prod may be projected as a safeguard agains A folding age when it is no longer required. A folding egg case has been patented by Mr little space when not in use, or when being returned to the shipper, as it can be compactly folded, but by the use of hinged side and end boards, and folding parti-
tions, a practical case for shipping eggs and other articles to market is readily set up.
A screw driving mechanism for baling presses and other uses has been patented by Mr. Patrick
Slattery, of Charleston, S. C. It is made with a box through which passes a screw with two nuts connected by two sets of gear wheels with an intermediate gea wheel,
lever.
A
composition of matter for mouldin fruits, fancy topped tables, birds, etc., has been patent
ed by Elmina Brady, of Portlandville, N. Y. It con sists of hard stone, common sand, slate stone, white water, and shells, common brick, charcoal, blue clay after a specific manner
A road cart has been patented by Mr. Hen ry Hortop, of Rutherford, Cal. It has springs abov and below the forward ends of the side bars, kept in place by staples attached to the thills, guide eyes on the
side bars and yokes, so the unpleasant motion of the side bars and yokes, so the unpleasant motion of the
cart is prevented, and the cart can be readily adjusted or a large or small horse.
A button fly clamp has been patented by Mr. Isidor Felber, of Nyack, N. Y. It facilitates th labor of scalloping shoe button laps or files, and avoid the necessity of making nail holes in the stock, ther
being a clamp and plate swiveled to an operating screw with pins for guiding the plate, cushions for protecting
An improved artificial stone has been pa tented by Mr. William Howell, of Philadelphia, Pa The stone is adapted to be used for building, pave ments, drain pipe, or plastering, and other uses, and is
composed of a special preparation and combinations of muriatic acid, flour of sulphur, molasses, iron scale and, and cement.
A machine for stretching and removing ence wires has been patented by Mr. John N. Killough,
of Aurora, Texas. It is a cheaply made and durable ing wires along the fence posts, straining them tant while being fastened, and also for removing or chang ng them in resetting the fence.
A machine for cutting out garments bas een patented by Mr. Solomon Rich, of Joplin, Mo. Tn knife belt, against which belt cutter the material is ad vanced as it is cut, under a pressing roller to keep the material free from wrinkles
A watch regulator has been patented by Messrs. Ernest J. Roux and Louis U. Fatio, of Geneva, Switzerland. It is an improved device for adjusting he hair spring regulator very finely and accurately, for is moved a distance so minute that it could not be similarly adjusted by hand
A saw back has been patented by Mr . o improvements in constructing The invention relates bucks to hold the wood flrmly; plates are provided with coarse saw-shaped teeth secured to the saw buck, in combination with a toothed lever pivoted thereto, pro vided with springs and a foot treadle.
A permutation lock has been patented by Messrs. William B. Atkinson and John H. Foster, of
Franklin, Ky. This invention relates to an improveFranklin, Ky. This invention relates to an improve-
ment on a part of a lock patented by Mr. Atkinson in May, 1883, and consists in special means for adjusting the tumbler to th
the ward wheels.
A dinner pail has been patented by Mr. William H. Carbangh, of Columbus, O. The invention covers a particular construction and a tight pot in o unobjectionable position, or can be removed for heating without leaving the pailu uncovered; there is also a pan hat may be used to hold or for heating food.
A fire escape and alarm has been patented by Mr. William S. French, of Jackson, Mich. A drum or roll is to be arranged in the cornice brackets for winding up a chain or similar ladder, the drum being held by a wheel and pawl, from which cords or wires one in case of fire, when an alarm will be sounded and
An improved trunk has been patented by Mr. August Kroesing, of Berlin, Germany, assignor tor
Mr. . Gustay Eschenhorn, 17 Neu Kolm, the same Mr. E. Gustav Eschenhorn, 17 Neu Kolm, the same
city. It is waterproof, and has buoyant wings to increase its buoyancy and stability, with eyes or rings for fastening ropes or holding signals, packing strips in the joints, and angle plates overlapping the cover and
A cut-out for telephones has been patented by Messrs. Austin Williams and Joseph M. Gannon, of trip with a series of metal strips connected with the he wires, the board so adjustable that its metal strips close the circnit between the line wires, or be-
tween those and the ground wires, so all lines may be cut out and grounded simultaneously.

A coal cleaner has been patented by Mr to separate slatefrom coal as the latter passes dow he chutes from the grading screens, for which purpose stationary grate bars are placed in an opening in the nected by cross bated with movable grate bars, con with a rock shaft driven from a rotary crank shaft.
An improvement in rubber clothing has been patented by Mr. George Platt, of Butte, Montana
Ter. The object is to provide a complete suit that can be easily put on and off, and fit neatly and keep out the wet. The boots and trousers are combined, the latter ets of flies, with properly arranged buckles and stre sets of flies, with properly arranged buckles
A process of making sirup and sugar from orghum cane has been patented by Mr. Andrew J. ing the cane to help eliminate are first roast then expressing the juice and filtering and boiling, thus getting a much purer sirup than by the usual method, one that will no
orghum taste.
A carriage spring has been patented by Mr. Benjamin P. Morrison, of Abingdon, Va. The spring
is very simple in construction, and can mostly be made is very simple in construction, and can mostly be made
in an ordinary blacksmith's shop, its design being such in an ordinary blacksmith's shop, its design being such
that the effect, of a load on either of the supporting bars will depress the body alike from end to end, or the bars
thet may be so connected that
A combined shovel and shield has been pa tented by Mr. John J. Holland, of New Orleans, La he blade is detachable for use as a shield, the handle is formed in hollow sections, adapting it for the recep-
ion of small implements, a sling pouch is also provided or carrying the dismembered sections, and the whole capable of quick and interchangeable adjustmeuts
An improved pipe coupling or joint has been patented by Mr. Robert M. Reilly, of Balti-
more, Md. It provides for horseshoe pieces, each with more, Md. It provides for horseshoe pieces, each with
lug and pins, inserted between collars opposite each other on the male portion of the pipe, and secured to female portion by bolts through a flange, the whole ion or pitch, without impairing the joints.

A single cable track railway has been patented by Mr. Joseph J. Clisham, of San Diego, Cal. It provides for a single wire, loosely hung between spool; cords from the ends of the axis connect with a cord attached to a balloon or kite, which the wind moves along, the bask
attached to the spool.
A press for moulding glass has been paented by Messrs. Adrien A. and Leon A. Appert, of aris, France. It is intended to use compressed air, or pressure as desired, acting rapidly or slowly as desired, giving regular pressure with shock, doing the work rapidly, and not calling for more than one
whatever the pressure and size of the piece.
A compressor for compressing bran and her substances into packa has been patented by Mr. Geury A. Chapman, of Strawberry Point, Iowa.
By this invention hran may be compressed.so its weight will be greater than that of an compressed so its weight will be greater than that of an equal cubic measure of
grain, but the strain in compression in no way comes grain, but the strain in compression in no way comes
on the sides or bottom of the sack, and the cover may made fast while the bran is under compression.
An improved calf weaner has been patent ed by Mr. Max J. Ahlgrim, of Rose Lawn, Ind. Th invention consists of a half muzzle, made of wire or
other light material, which is hung over the calf's nose on pivots fastened in a halter at the cheeks. There are arms connected with the muzzle which extend down overbalances the muzzle above. The weaner is auto
ond matic, for when the calf lowers its head to feed, the
muzzle will swing above its nose and so not interfere muzzle will swing above its nose and so not interfere
with its feeding, hut when the calf raises its head up to with its feeding, hut when the calf raises its head up to
suck its nose will move in the muzzle, which is also suck its nose will move in the muzzle, which is atig
armed with barbs, thereby interfering with its getting hold of the teat. It is attached and detacherd by simply unbuckling the halter.

NEW BOOKS AND PUBLICATIONS

The " Art Age," is the title of a handsomey gotten up and beautifully printed monthly publicatinn, issued by Arthur B. Turnure, 132 Nassau Street,
New York city. It is designed to place before the trade and people of educated tastes generally, something i advance of what has yet been done in the way of artis-
tic printing and hook binding. As a contemporary tic printing and hook hinding. As a contemporary
says of it, Art Age is designed to become the organ of new and advanced ideas of art, as applied in all forms
net f printing and bookmaking
Suggestions to China Painters. By Miss M. Louise McLau
Clark \& Co., Cincinnati.
The chapters on" "Colors," "Preparing gold and silver for the decoration of porcelain"" and "The
use of metallic paints" are especially worth attention as giving a good deal of information in but few words. The book is illustrated with simple and artistic designs for plaques, vases, cups, etc., drawn by the au-
thor, accompanied by instructions as to colors to be ased, treatment, etc

A "Retail Druggist's Diary and Want Book," published by Frederick Stearns \& Jompany,
manufacturing pharmacists, of ains a great deal of information in very convenien form for daily use in the drug store. It alas also, be sides diary pages, a pharmaceutical catalogue of over
14,000 items, and an extended list of non-secret medi14,000 it
cines.
A "Chemists' and Druggists' Diary," published by the Chemist and Druggist, of London, in that business, besides being a convenient diary for in that business,
use in the store.

8u*ness and zexsomal.

The Chargefor Inser ion under this head is one Dolla

Parchment--Drawing and tracing papers, used to adThase oran tracings and for dravingsto be eopied by
 St. Keuffel \& Esser. New York.
As there is an international agreement abont the tled by all nations that the tobacco of the Golden Belt of North Carolina is par excellence the tobacco for the seen at its best. That brand preserves this celebrated seen at its best. That brand preserves this celebrated
tobacco in its natural purity, all its flavors and fra-

Parties having original ideas in specialties and novelties, useful or ornamental, desiring to establish New
York agents or to have same manufactured and placed York agents or to have same manufactured and placed
successfully on the market, write or call upon H . J.

Best in the world. Patent chuck jaws, emery whee machinery, and automatic machines to grind straight plate, cottonseed and other long knives. Am.Twist Drill Co., Meredith, N. H. (Established 1865.)
Telescopes,
Quinn's device for stopping leaks in boiler tubes Nickel plating outits $\$ 10.00$ upward, full directions rd, Ottawa, Ill.
How to Keep Boilers Clean." Book sent free by Iron Planer, Lathe, Drill, and other machine tools of modern design. New Haven M Pumps-Hand \& Power, Boiler Pumps. The Goulds
mfg. Coo., Seneca Falls, N. Y., \& 15 Park Place, New York. Fox's Corrugated Boiler Furnace, illus. p. 354. Hart For Freight and Passenger Elevators send to L. S N. Y

Best Squaring Shears, Tinners', and Canners' Tool Lathes 14 in. swing, wilh and without back gears and , Birkenhead, Mansfleld, Mass
The Best.-The Dueber Watch Case
If an invention has not been patented in the United States for more than one year, it may still be patented in Canada. Cost for Canadian pattent, \$40. Various other
foreign patents mayalso be obtained. For instructions address Munn \& Co., Scientiric Ambrican Patent Agency, 261 Broad way, New York.
Guild \& Garrison's Steam Pump Works, Brooklyn N. Y. Steam Pumping Machinery of every descrip

Nickel Plating.-Sole manufacturers cast nickel an-
des, pure nickêl salts, polishing compositions. etc. Comodes, pure nickel salts, polishing compositions. etc. Com
plete outfit for polating, etc. Hanson \& Van Winkle Lists 29,30 \& 31 dend chines, ready for distribution. State just what machines
wanted. Forsaitb \& Co., Manchester, N. H., \& N. Y. city. Alcott's Turbine, Mt.Holly, N. J. "Abbe" Bolt Forging Machines and "Palmer" Power
Hammers a speecialty. Forsaith \& Co., Manchester.N.H.

Rail way and Machine Shop Equipment.
Send for Monthly Machinery List
'to the George Place Machinery Company,
121 Chambers and 103 Reade Streets, New York.
Wanted.-Patented articles or machinery to make Water puried for purpose from ho plies to those of largest cities, by the improved filter phes to those of largest
manufactured by the N
merce St.. Newark, N. J.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J Split Pulleys at low prices, and of same strength and ppearance as Whole Pulleys. Yocom \& Son's Shafting Works. Drinker Sl., Phladelphia.
Supplement Catalogue.-Persons in pursuit of infor mation on any special engineering. mechanical, or scien tifle subject, can have catalogue of contents of the Sci-
ENTIFIC Amirican SUPPLEM INNT sent to them free. The SUPPi,kMENT contains lengthy articies embracing al scole range of Machinery for Light Manufacturing, on hand and
built to order. F. E. Garvin \& Co., 139 Center St., N. Y. Fossil Meal Composition, the leading non-conducting Fossil Meal Composition, the leading non-conducting
covering for boilers, pipes, etc. See adv., p. 62. Straight Line Engine Co., Syracuse, N. Y. Best in Curtis Pressure Regulator and Steam Trap. See p. 14. Woodwork'g Mach'y. Rollstone Mach. Co. Adv., p. 14
. B. Rogers \& Co.. Norwich, Conn., Wood Working
chinery of every kind. See adv.., page 14. Lightning Screw Plates, Labor-saving. Tools, p. 12. Ajax Metal Company, Phila. Clamer's A jax Metals for SteamHammers, Improved Hydraulic Jacks, and Tube xpanders. R. Dudgeon, 24 Columbia St. New Emerson's 1884 Book of Saws. New matter 75,000. ree. Address Emerson. Smith \& Co., Beaver Ealls, Pa.
Hoisting Engines. Friction Clutch Pulleys, Cut-off Hoisting Engines. Friction Clutch Pulleys, Cut-off
couplings. D. Frisbie \& Co.. Philadelphia, Pa. Gould \& Eberhardt's Machinists' Tools. See adv.,p. 46. Railroad and Marufacturer's Supplies. Send for 1884
list and discounts, Greene, Tweed \& Co ist and discounts, Greene, Tweed \& Co.. New York. For Mill Macb'y \& Mill Furnishing. see illus. adv. p. 44. Barrel, Keg, Hogshead, Stave Mach'y. See ad., p. 46. Diamond Drills, J. Dickinson, 64 Nassau St., N. Y. Magic Lanterns and Stereopticons of all kinds and prices. Views illustrating every subject for public ex-
hibitions. Sunday schools, colleges, and home entertainment. 116 page illustrated catalogue free. McAllister
Manufacturing Optician, 49 Nassau St., New Fork

Walrus Leather, Emery, Nickel \& nodes, Nickel Salts,
and Polishers' Supplies. Greene, Tweed \& Co.,New York. Fine Taps and Dies in Cases for Jewelers, Dentists, Mineral Lands Prospected, Artesian Wells Bored, by For best prise Blat 1 For best low price Planer and Matcner, and latest
improved Sash, Door, and Blind Machinery, Send for improved Sash, Door, and Blind Machinery, Send
catalogue to Rowley \& Hermance, Williamsport, Pa. Steam Pumps. See adv. Sinith, Vaile \& Co., p. 46 Improved Skinner Portable Engines. Erie, Pa
Catalogues free.-Scientific Books, 100 pages; ElectriThe Porter-Allen High Speed Steam Engine. South-

HINIS 'TO CORRESPONDENTS
No attention will be paid to commumcations unless accomp
Names and addresses of correspondents will not iven to inquirers.
We renew our request that correspondents, in referring
to former answers or articles, will be kind enough to to former answers or articles, will be kind enough to
name the date of the paper and the page, or the number of the question
Correspondents wiose inquiries do not appear after a reasonable time should repeat them. If not then published, they may conc
Editor declines tinem.
Persons desiring special information which is purely of a personal character, and not of general interest should remit from $\$ 1$ to $\$ 5$, according to the subject,
as we cannol be expecterd to spend time and labor to abtain such information without remuneration.
Any nimbers of the Scientific American SuppligMENT referred to in these columns may be had at the
office. Price 10 cents each.
Correspondents sending samples of minerals, etc.,
for examination, should be careful to distinctly mark or label their specimens so as to avoid error in their indentification.
(1) G. E. asks: Can I cast a zinc plate 8×8 in., $\frac{3}{10} \mathrm{in}$. thick, in a plaster of Paris mould? How can
sputtering of the metal, when poured in the mould, be prevented, and how can I get a smooth casting? Could a small furnace, say 4 in . inside diameter, 8 in . high, be
made of fire brick, to produce sufficient heat for smeltmade of fire brick, to produce sufficient heat for smelt-
ing small quantities of brass, lead, copper, or even iron to be heated with small hard coal and a blast from bel lows? A. You may possibly make a zinc casting in a plaster mould smooth by oiling the mould with linseed oil A better way is to cast in monlding sand, such as brass
foundries use. You may melt a few ounces of brass or copper in a small crucible in a furnace of the size you mention.
(2) C. E. B. writes: 1. I want to know the best way to make a small steam engine, one rating from one-half to one horse power? A. The inverted vertical
engine is as good as any. For plans, dimensions, etc., engine is as good as any. For plans, dimensions, etc. .,
consult the works on steam engiveering. 2. Is the inconsult the works on steam engiveerıng. 2 . Is the incrank on a good and mechanical principle, and will it do nection? A. It cannot be used as sketched; chere must be a guide on the outer end of rod. The "yoke," as it is and unless the yoke and connections are very stiff, will and unless the yoke and connections are very stiff, will
have a tendency to spring when in operation. A connecting rod is preferable. 3. What is the cause of the when it is connected by a wire to the base of the key Is there any appliance which I can put on the instru ment to obtain any power? A. An intermittent con tact of the wire with the base. A small motor mightbe made to work on a similar principle, but the
ter ways of obtaining power from electricity.
(3) J. C., Jr., asks: 1. Where is the castor oil bean most extensively raised? A. The castor bean is largely grown in Illinois, Missouri, and California,
where it is made into oil. Large oil works in Jerwhere it is made into oil. Large oil works in Jer-
sey City, N. J., are purchasers of the beans from all sey City, N. J., are purchasers of the beans from all
parts. The bean is, as we understand, largely cultivated in Texas. If the large seed is used which i
best suited to Southern soil, a hundred bushels to th acre may be produced. 2. By what means is it gather-ed-hand or machinery? A. Hand picking is usual ed-hand or machinery? A. Hand picking is usual We do not know the yield of oil per bushel or acre. Does it take expensive machinery to extract the oil?
A. It requires a mill and a press. The price is suited to A. It requires a mill and a press. The price is suited to
the quantity of work to be done. Four hundred dollars the quantity of work to be done. Four hundred dollars
to eight hundred dollars would probably set up a small oil works.
(4) A. W. H.-Most of the so-called bear' grease is prepared as follows: Take of washed hog's
lard (dry) $11 / 4 \mathrm{lb}$. avoirdupois; melt it by the heat of a lard (dry) $11 / 4 \mathrm{lb}$. avoirdupois; melt it by the heat of a
water bath, add of balsam of Peru 2 drachms; flower of benzoin and palm oil (bright), of each, 1 drachm; stir vigorously for a few minutes to promote solution. Then remove the pan from the bath, and after repose for a short time, pouroff the clear portion from the sediment, and stir the liquid mass until it begins to cool. 2. For articte on imitation coral see Parkesine, Celluloid,
page 3617, Scientific American Supplement, No. 22r. page 3617, Scientific American Supplement, No. $2: 27$.
(5) J. F. A. - Your question is so indefinite that we cannot give you any satisfactory answer. The values of the different grades cannot be determined
from cost of the trees, but from the differences in quali tro of the different gums, these being quite arbirary
(6) G. A. H.-For removing printer's in from paper use a solntion of chlorinated soda, called by
some chemists Larabeges solution. Use as directed on label. (7) A. and E. ask for directions for tempering coiled springs the best way, so as to get the most
of coiled springs requires much judgment, based upon experience with the particular kind of spring that you wish to temper. A coiled spring does not give us the
faintest idea of its form, size, length, thickness, kind of steel, or whether it is a clock spring or car spring, all ment. As a general rule, springs that are slender and liable to lose shape in a common fire, should be heated in an oven or muffle, and hardened in water or oil.
The temper should be drawn in boiling linseed The temper should be drawn in boiling linseed oil Springs that have stiffness, like car springs, may be
heated in a covered forge fire to good advantage, an hardened in lard oil. The temper can be drawn by
(8) W
(8) W. C. J. asks: 1. What are the physical causes of yawning! A. Yawning is supposed to arise
from a reflex action of the nerves, caused by weariness, and is kindred to many other kinds of involuntary motions, that are probably derived from the nerve centers 2. What is the chemical reason that bicarbonate of soda elieves a burn? A. We presume that it is by neutral-
zing the acid products of decomposition arising from zing burn. 3. What is the distinction between a fruit
the and a vegetable? A. There is no absolute distinction between fruit and vegetable, fruit. being that part of the
vegetahle kingdom found growing upon stalks or trees vegetable kingdom fountaining the seeds and sometimes being the seed itself. Whereas all organic nature not animal i grown products for culinary use are called vegetables and some that are really fruit are also called vegetables. The terms overlap so much by customary nomenclature that distinctions become difflcult. 4. Can you instance
an artesian well where the water is perfectly soft? A. an artesian well where the water is perfectly soft? A
We know of no artesian wells that produce water a We know of no
soft as rain water
(9) G. R. P. asks: 1. Is it advantageous to shellac the plates of a Holtz electrical machine? A. Yes two carbons used in the Grenet potassium bichromate battery? A. The quantity of current is somewhat in creased by the additional carbon plate. 3. How may distinguish gutta-percha articles, as butions, from those made of horn, vulcanite, etc.? A. By the odor develop-
(10) H. M. D. writes: 1. Should I have return wire on a telephone line three hundred feet long? nection. 2. Can I have as many turns as I wish on the line? A. Yes. 3. Can I use two gravity batteries
(one at each end() towork two bells, and what size wire copper wire
(11) W. S. G. writes: I am desirous of be oming an electrician. What books would be the bes A. Begin with Ganot's "Physics," then study Gor don's ‘'Electricity and Magnetism," Prescott's "Eectr city and the Electric Telegraph,"" Electric Batteries," by Niaudet, "Electric Illumination," by Jarres Dredge As you continue your study, other works will sugges
(12) W. W. R. asks: Will you please ex plain the phenomenon of electrical currents as employ ed in telegraphic circuits-whether by the application of ground wires at the termini a direct current is formed
or that the circuit is completed by the attaching of round wires, which communicates the electraching of rated in the batteries to a general body of fluid which is supposed to permeate the earth? A. It has been de monstrated by the experiments of Wheatstone, Caseli, tricity, and that currents flowing to the earth are dissi
(13) R. W. R. asks: Will you please inform me how to make the induction coil, as described in Supplement, No. 160, vol. vii., Jan. 25, 1879, so that can regulate the current to give strong or weak shocks A. Make the bundle of iron wires forming the core of drawn from the coil.
(14) W. P. B. writes: Referring to SuppleIENT, No. 159, Jan. 18, 1879, in article on batteries, i, stated that in the porous cup of the "Marie Davy "
uicksilver battery, protosulphate of mercury should be used in the form of a paste. I wonld like to know What substance is used with the mercury to form the paste, and in what proportions, respectively? A. Water. 2. Is protosulphate of mercury the same as the sulphate of mercury sold by dealers in chemicals? No. . Will such a battery be suitable for silver plating in a small way! A. It can
or Daniell is better.
(15) J. A. B. asks: What would take the cale off polished cast iron, the scale being caused by ontinuous heat for several hors? A. Sse, by volume water, applied warm-either the acid or cast iron. Beter, by far, remove the scale by simple polishing or abrading substances.
(16) G. W. D. sends us the following remedy for stopping the singing in bass violin strings caus what and place some olive oil on a woolen cloth, rub it up and down the length of the string; the oil will
penetrate through the wire spaces and on to the gut, and will in a short time cause the gut to swell to its originalsize, and thus stop the singing.
(17) W. J. asks: Would you please inform me through your paper what would be the best desired thickness? I wish a constant battery, which would require no attention for a couple of months. A. Daniell's or the gravity batery would probably answe making nickel electrotypes of any desired thickness? A. We know of no method of making nickel electrotypes. Yon can make copper electrotypes and after ward nickel them
(18) A. W. H. writes: in your Scientific of a small electric light to work with a 3 cell bichromate battery. We would like to know if a 5 cell gravity battery would do, or if a gravity battery would do at all?
A. No. Jt would require a large number of gravity
cells to do the same work. 2. Can you send of the gas carbons and could they be sent by mail? A. parbon plates are not very expensive. The price desupplies can furnish them by mail. See our advertising
(19) F. W. D. asks for a good varnish to apply to designs printed in fine gold bronze on thin leather something which will protect the bronze withoat color ing the leather and will dry quickly? A. Pale shellac, oz.; borax, 1 oz.; water, 1 pint; digest at nearly the
boiling point, until dissolved, then strain. Equal to the more costly spirit varnish for many purposes; it is an xcellent vehicle
it is waterproof.

INDEX OF INVENTIONS

For which Letters Patent of the United

January 8, 1884

ND EACH BEARING THAT DATEE.

Abdominal supporter,

Accordion, E. Schreyer Acid, concentrating sulphuric,,
Alarm. See Bilge water alarm.
Aluminum, obtaining, F. J. Sey
nimal power, L. C. Strong
stronomical apparatron...
Axle journals, bearing for car, G. W. Stewart. Bag. See Mail bag
ton....
Bale band tightener, R. L. Willis
Baling presses,
P. Slattery.
Bandage, suspensory, L. P. Griffin
Banagege, suspensory,
Batrel hooping machine, Duff \& Allan...............
Battery. See secondary battery. Storage ba
Bier or coffn stool, J. N. Knox.....
pilke water alarm, G. W. Gilmore...................
\& lliard cue tip, Easthope \& Schneider...
E asting rock, method of and tool for, J. L
Knox.
Kind slat
 octs from celluloid, etc.. manufacture of, Pi man \& Alaire
Boot, W. Irvin.....
Boot, Wood \& Bond
Boot, Wood \& Bond....
Boot or shoe, G. C.
Boot or shoe stitching jack, J. F. Ames.
Boot strap, C. B. Lamb....................
Boots and shoes, manufacture of, E. L. Sprague. Bottle and stopper, J. Story.
Box. See File box. Paper box
Bracelet safety appliance, E..J.ones...
Brake. See (car brake. Wagon brak

Bricks, tiles, etc., manufacture of, A. Dimpfl.
Broom machine, Hoyt \& Storch.
Buckle, I. Hartmann
Buckle guard, harness, F. G. Harrison.
Buckie, trace, D. Schoenthale
$\begin{aligned} & \text { Bumbg and } \\ & \text { Levett... } \\ & \text { Buffing whe }\end{aligned}$
Buffing wheel, H. E. Fowler
Burial windlass, J. P. McDonald
Button hole stitching machine, D. W. G. Hum
phrey.....
Buttons, attaching, W. H. Wood....
Can. See Packing can.
Can. Slling mackhine, J.
Can opener, H. Bentham.....
Canning device, fruit, F. Deplanty
Car brake, S. Fairman.
rar brake, fluid pressure, R. J. Wilson
Car coupling, J. C. Bryan
ar coupling, C. Devlin.
ar coupling, P. Madsen
ar cumper, 1 . s. Stewart...........
Car, railway passenger. E. P. Osgood
ar, railway passenger, w. H. Paig
ar, railway passenger, W. H. Paige..
Car starter and brake, G. M. Hatna wa
ar wheel, G. W. Miltimore
Car wheel, H. G. Taylor
Car wheel, H. G. Taylor....
Carpet stretcher, N. A. Veline
Carriage spring B. . . Morrison
Carriage spring, B. P. Mo
Cart, road, J. W. Breed
Cartridgering, , xtractor, J. Murph
Case. See Egg case. Show case
Caster, furniture, G. D. Clark...
Check rower wirês, machine for forming, G.
Cigar eutter, Gratz \& Hagedorn.

liams............... ..
Clocks, device for removing mainsprings from,
D. Switzer.....................

Coal drilling nachine, J. M. \& J. W. D
Cock. stop and waste, H. Taylor
Cock. stop and waste, H. Tay lor et al..............
Compressor for compressing bran, etc., into pack
ages, G. A. Chapman...
Cooler. See Water cooler
Cooler for uniting oils in the manufacture of lard
etc..
etc. s. H. Cochran...............................
upling. See Car coupling. Pipe coupling. Ro
coupling. Shaft friction coupling. Thill coup
$\begin{gathered}\text { coupl } \\ \text { ling. } \\ \text { Crutch, } \\ \text { Cultivato }\end{gathered}$
C
Crutch, W. B. D. Ludlow
Cultivator, F. L. Hilsabe
Curtain fxtures, spring roller for, J. B. Finch....
Cutter. See Cigar cutter
Cutting out garments. machine for, s. Rich.
Dental engine hand piece, A. W. Br
Die shaping, Chamberlain \& Martin
Die shaping apparatus, Cbamberlain \& Martin

291,551

291.792
291,821

291,681
291,640
2109
-
291,645
291,560
291.791
291,592

291,605 291,711

291,703
291,606
291,546

291,533 21,516

$.291,198$
$.291,661$
... 291,726
. 291,637
291,564
291,582
.${ }^{2911,152}$
.291, 296
291,735
291.803
291744

291.803	L
291744	
291,58	L
291,808	L

291,682
291,881

Ditching machine, tile. Hoehn \& Hilburn
Drill. See Grain drill. Rock drill.
Earth, gravel, etce, apparatus for transporting
and dumping, . Fisk
and dumping, Q. A. Fisk
Elastic fabric, G. C. Moore..............
Electric circuit closer, C. J. Van Depoele
Electric condu
Electric circuit closer, C. J. Van Depoele...... ..
Electric conductor circuit, underground, E. T
Starr...........................
Starr.................
F. Bain.............ator, dynamo or magneto

Electric motors, current regulator for, C. J. 291,6

Electric safety cut out. C. J. Van Depoele........
Electric conductor, underground, Greives \&
Bleoo................
Bleoo.......................................
Electrical indicator and alarm. W. H. Baker.291.483,
Elevator. See Cotton elevator.
Elevator. See Cotton elevator. Hay elevator
Water elevato
Elevator, Beroud \& Wa

O. Brugger...................
EngiDe. See Steam engine.
Engine, S. N. Siver

Envelope machine, H. A. Mann J..61, 291,
Evaporator, A. Kayser........ 21,52
Exstractor. See Cartridge ring extractor.
F:xtractor. See Cartridge ring extractor.
Eyelet stitchhng machnne, C. J. A. Sjoberg
Fan, blast or exhaust, Capell \& Macbean
Faucet. self-closing, S. \& S. L. Barker..
Faucet. self-closing, S. \& S. L. Bark
Faucet socket, Kincaid \& Chandler.
Feed water heater.
Feed water heater, w. Rollar
Fente wires, machine

foot ...41,54
File box, E. w. Byrn................... 291,75
Fie, letter or bill, o. c. Mackenzie.......
Filter, J. Toland......................
Fire escape, Moore \& Marcus
Fire escape, D. C. Pierce............ Fire escape, portable, T. Clarke.....................
Fire escape protector and supporter, H. Fair

Flour packing machine, A. C. Hartzoke...........
Flue and pipe welder and fitter, Fleck \& Herring Folding table, N. H, Long
Fruit picker, G. A. Smith
Furnace. See Hydrocarbon furnace
Furnace mouth, T. O'Brien........
Furnaces, pig carrier for blast, F.W.Gordon.....
Gage. See Plow gage. Saw mill gage.
Gage. See Plow gage. Saw mill gage. Steam
gage.
Gas, apparatusfor manufscturing, J. L. Stewart
Gate, w.J. Hamilton.....
Gold and silver from their ores, by combined elee
trolytic and amalgamating processes, proces
of and apparatus for obtaining, M. Body......
Grain binder, E. M. Deane.
Grain breaker and grinding mill, J. M. Speer, Jr.. 291,034
Grain drill, H. P. Tenant. 291,809
Grinding machine J. B. H. Leonard........... 21.699
Grinding machine, J. H. Reed................. 291,357
Grinding machine, J. H. Reed......................... 291,357
Grinding mill roller, G. van Name............... 291,654
Guard. See Buckle guard.
Harrow, rotary, J. H. Hoo
Harrow, spring tooth, E. C. Comstock......
Harvester and husker, corn, J. w. Terman
Hat hanging attachment, W. H. Barry.
Hat ironing machine
Hat lining. C. Raymond, 2 d .
Hat lining and cover, J. H. Canning....................
Hatchway, self-opening and closing, D. Hum-
phreys................
Hay carrier,,$~ A . ~ M e y e r s . ~$
Hay elevator, P. Werum... ${ }_{291,82}^{291,81}$
Hay stacker, J. Coombs
Heater. See Feed water heater.
Heating apparatus, steam. . Itudor....................... 291,818
Heel burnishing and milling machine, P. J. Lap-
ham
Heel plate, E. Hoxie.. 291,599
Hides and skins, tawing, A. Schultz......21, 84,29188
Hobby horse, J. R Wharry
Hobby horse, J. R. Wharry............................ 291.657
Hoe, weeding, II. Gates............. 291504
Holder. See Knife holder. Lead and crayon
holder. Paper holder. Paper bag holder. Pen
holder. Sash holder. Tool holder.
holder. Sash holder. Tool holder.
Horse detacher, N. R. Shealy......................
House. See Sheep house.
Ice cream freezer, V. Clad.............................. 291.838
2ce making and refrigerating
\& Allen..71,7
Indicator. See Electrical indicator. Latitude
ndicator. See Electrical indicator. Latitude
indicator.
Inkstand, T. B. Knowles.
Insulating connection for electric light fixtures
291,604
C. H. Hinds.. 291,79
Insulating material.electrical,J. Greives.291,716, to 291,71

Interlocking apparatus, hydraulic and electric. 0
Gassett, (r).... $\ldots10,434$
Jack. see Boot or shoe stitching jack. Floor
10,435
Joiner's marking gage, E. Hester..................... 29

Lamp, electric, C. J. Van Depoele.71,65
29mp, electric arc, C. J. Van Depoele.....291,553,
Lamp, electric arc, C. J. Van Depoele.......291,553, 241,653
Lamp, self-extinguishing, Scott \& Manwaring.... 291,630
Lamps, safety cut out for series of electric, C. J.
Lard and oil tank, H. Rail.
Latch, W. Sallade..
Lathe, tínbular cutter L. S.
Lathe, , tubular cutter. L. S. Hay
7 Lead and crayon holder, W. L. Butterfeld.
,750 Leather splitting machine, F. S. Strong............ 291,83

${ }^{291,577}$	Lifter. See Transom lifter.
291,730	Lock. See Permutation lock

 Lubricator．See Locomn
engine lubricator．
Lumber binder，J．Sealey Lumber binder，J．Sealey
Mail bag，Evans $\&$ Jones． Mechanical movement，F．Kubec．
Medical compound，D．A．Green Medical compound，D．A．Green
Medical compound，N．A．Lum Metal working machine．compound，N．J．Rice． Mill．See Roller mill．Saw mill．Windmill． Miner＇s combination tool，J．Rya
Motor．See Electric motor． Motor，E．M．\＆C．M．Kimbal Nut lock．A．Searls． Nut lock，Sutch \＆McEliben Nut lock，L．C．Thatcher Packing can，J．T．Walker．．
Paddle wheel，feathering，C Pail，dinner，W．H．Carbaug
Paint，Buzolich \＆Smith． Paper bag holder，A．Bro Paper box，T．Marburg．．
Paper feeding device，J．Arkell Paper hold
De V os
\qquad
Pavement，combined wood and broken stone，W
Paving blocks, bricks, etc., machine for making
J. Gaunt et al.
Pen. fountain stylus, w. w. Stewart
${ }^{P}$ Pen holid sharpener, J. Hoff
Permutation lock, Atkinson \& Foster
Hale....
Piano damper attachment, G. W. Neill.........91,559,
Piano-forte-damper action,
Picker. See Fruit picker.
Picture., sliced, W. Strande
Pipe.
Pipe coupling, R. M. Reilly
Plane, bench, J. A. Traut.
Planter, corn, W. P. Marshall..
Planter, cotton seed, G. H. Port
Planter, seed, J. W. Dawson....
Plastering composition, H. Gr
Plow, A. Ball........
Plow, T. A.Lansch
Plow and cultivator, combined, H. Re
Plow gage and guide, W. H. Ammons
Poke, animal, J. E. Deupree
Pole, clothes, F. E. Shaw...
Power
Power. See Animal power. Wa
Printing machine, W. P. Kidder
Printing press
Printing pre
Printing pr
Puller. A. Sampee Staple pulle
Pulley, W. E. Rockwood....................
Pump, double acting force. A. Crawford.
Pump, double acting
Pumps, crank pin slide of direct acting steam, J
P. Griscom..........................
Railway signal, A. B. Snyder
Railway signal, electric. W. V
Railway signal, magneto electric, W. W. Gary
Railway signal system. W. Hadden.....
Railway, single cable tra
Railway switch, B. Rice.
Railway switch, B. Rice.....
Railway switch stand, C. H. Talmage.
Railway tie, H. R. Holbrook.
Railway tie, H. R. Holbrook.
Railway track, J. G. Krichbaum
Railway track and road bed, H. C. Lowrie
Railway, traction rope, E. S. Gardner.....
Railway, traction rope, E. S. Gardner
Rillway trains, device for stoping, J,
Reapers and mowers, cutting apparatus for,
Voodley...................................
Eefrigerating paraffine and other oils, method
and apparatus for, B.F. Shakespeare
and apparatus for, B. F. Shakespeare
Regulator. See Watch regulator.
Rein protector. S. J. Spurge
Rock drill, H. Borchardt
Rod coupling. .. B. Turrell......
Roller. See Grinding mill roller.
Roller mill, J. W. Jackson.......
Rod coupling. G. B, Turrell........
Roller. See Grindinn mill roller.
Roller mill, J. W. Jackson.......
Roller mill, J. W. Jackson.........................
Rnofing felt and mechanism for making the same,
A. Sackett.
A. Sackett.
Roofing felt, etc.. apparatus for making,J. Jowitt.
Rope clamp, H. . . Cole........................
Rope clamp, R. S. Cole.....
Roundabout, T. Oldroyd...
Rubber clothing. G. Platt
Sash balance, (. M. Jewett.
Sash holder, M. Bourke.....
Sash holder, ,H. Cutting.
Saw buck. T. Beardi.....
Saw buck. T. Beard.
Saw mill, band, H. F. Campbell.
saw mill gage, J. Walrath....
Saw mills, press roller mechanism for gang, H.
Saw mills, press roller mechanism
\& E. . Wickes................
Scissors and shears, S. R. Plumb
Scissors tor cutting felt on a bevel,
Scissors tor cutting felt on a be
Scraper, dirt, C. Endicott.......
Screw threading machine, sheet m
Screw, wheel or felly. C. Rotzien..
Screw, wheel or
Seat, M. Benedict.
Secondary battery
Sewing machine, J. H. Griffin.
Sewing machine. J. Keith
Sewing machine, J. H. Griffin
Sewing machine. J. Keith...
Sewing machine take up mechanism. G. F. Foss.
Sewing machines, autonatic tension for, Fitz
Shade bar, H.L. Juadd
Shaft friction coupling, F. Braun.
Sheet metal pans, me, L. Robbins
Shelving, adjustable. H J. Hoftma
Show case, Loewenstine \& Fox
Sifter, H. Clayton.
Sifter, cinder, H. W.
Sifter, cinder, H. W. B. Both.
Signal. See Railway signal.
Sirup and sugar from sorgh
J. Adamson.............
Sled, bob, P. \& II. Koepfer.
Sled, bob, P. \& II.Koepfer.

201,844

Sole and heol plate, S. Lev

Vehicle side spring.
Stake, vine and flower, F. Börner.
Stake, vine and fluwer, F. B
Staple puller,
Staples, mach
team boiler, A. De mioking, J. Ad
Steam engine, J. B. Smith.
Steam engine lubricator, w. H. Craig
Steam gage and alarm, A. Portillo...
Steam gage and alarm, A. Portillo....
steam nozzle, noiseless, C. w. Nason.
Still. P. N. Bardo.
Stone, artificial. W. . Howe.ll...
storage battery
storage battery, W. R. R. Knowles
Stove, hot blast, D. N. Jones............................
Stove pipes, covering for openings in, G. Rasgo

Strap rounding machine,
Straw stacker, Brown \& M
...... Sims..
$\cdots{ }^{-\ldots 21.683}$

291.68
291,789
299,150
291,75
291,
291,75
291,775
2

```
ell.
```

291.615
blotter. combined

Sun, utilizing the rays of the, W. Calver...
Supporter. See Abdominal suppor
Surgical splint, H. McNaughton
Syringe, J. H. Clarke.......
Table
Table, See Folding table.
Tag, E. W. Thompson
Tank. See lard and oil tank.
Tank. See lard and oil tank.
Telegraphs, escapement and unison mechanism
for printing. S. D. Field......................
Telegraphs, escapement and
for printing. S. D. Field...
Telephone, J. H. Cheever
Telephone, J. H. Cheever...............
Telephone cut out, William \& Gannon.
Telephone, receiving, L. W. Sutton,
Thill coupling, J. M. Fulton..
Thill coupling, S. B. Um.
Tie. See Railway tie.
Tile and brick machines, cutting table for, J. c
NeKenzie........
Tile machine, J. s. Smith....
Tobacco pipe, A. J. Wolff.
Tobacco pipe, A. J. Wolff....
Tool, combination, E. Walker
Tool, combination, E. Walker
Tool holder, J. F Parkes
Tool holder, J. F. Parkes....
Tools to handles, securing. D
Torpedo. C. Pilgrim
Toy whistle, H.C. Swan..
Transom lifter, F. A.Cor
Trunk, A. Kroesing.
ubes, apparatus for screw threading, H. B. Feld-
mann
Underground conduits, mod
for forming, H. Howson
Valve, J. M. Goldsmith....
Valve, steam, R. N. Pratt
Valve, steam, R. N. Pratt.
Vehicle side spring,W. Shinnick...
Vehicle side spring, W. Shinnic
Vehiclespring, G. L. Artz.
Vehiclespring, G. L. Artz.
Vehicle spring, c. W. Barenfang
Vehicle spring, S. 1 iunt..
Vehicle spring, I. A. Timmis.
vehicle, two wheeled, w. M. Hamilton.
Vehicle, two wheeled, W.
Velocipede, C. M. Schaffer
Ventilar
Ventilator, J, M. A yer..........................
Vessel or reservoir for liquilds or other materia
M. J. Walsh...
Wagon brake. S. W. Lee.
Wagon brake. S. W. Lee...
Wagon draft attachment. Buenng Klu
Wagon shoveling board, J. I. Plummer.
2an Wagon shoveling board, J. I. Plummer.
for, J. S. Heizer..................
Washing machine, C. Hoffman..
Watch regulator, Roux \& Fatio.
Water cooler, w. A. Hawthorn..
Watch regulator, Roux \& Fatio.
Water cooler, w. A. Hawthorn.
Water cooler, 'W. A. Hawthorn...
Water cooler, J. E. Welling.......
Water elevator, J. F. McCalmont
Water cooler, J. A. Hawlin.n.....
Water cooler, E. Welling......
Water elevator, J. F. McCalmont..
Water elevator, J. F. McCalmont...
Water meter, C. W. Van Alstine
W.
Wave power, T. Mayes....
weaner; calf. M. J. Ahlgri
Weanerw calf. M. J. Ahlgrini...........
Well drilling machine, W. E. Brown
Weaner: calf. M. J. Ahlgrim............................
Well drilling machine, W. E. Brown..........
Wheel. See Buffing wheel. Car wheel. Pad-
dle wheel.
whip socket, J. Weathers.
dle wheel.
Whip socket, J. Weathers.
Windmill. E. J. Schrock...
Window screen, G. W. Boynton.
Window screen, G. A. Thompson
Wire coiling machine. F.. W. Durke
Wire coiling machine. F. W. Durke
Wire coinng machine. . W. Durkee.................
Wire tretcher, W. G. Garth.
Wood fiber, machine, M. A.Penney...........
Wor making, P. H. Holmes..
Wood fiber,; machine for making,
Yoke, neck; M. V. Longsworth....
Yoke, neck, M DESIGNS
象
\%

191,628	
1,600	
1,693	C

Agricultural fork, J. H. Smith.
Agricultural fork, J.
Corset, J. Bowers.
DESIGNS.

, 621	Hardware, ornamentation of, J. J.
, 845	Oii cloth, ©. T. \& V. E. Meyer....
, 4	Sewing machine stand, I. N. Poe.

 TRADE MARKS
 Beer, A. Kreiss......
Bitters, W. C. Hurd
Bitters, W. C. Hurd.
Bitters, T. Ripke.
Bitters, T. Ripke...
Boots and shoes, men's heavy, Pingree \& Smith..
Boots and shoes, men's heavy, Pingree \& Smith...
Canned raspberries, strawberries, cierries, and
Canned raspberries, strawberries, cherries, and
other fruits; Knowles \& Anderson.............
cotton yarns and braids. Dollfus-Mieg \& Co.....
Cotton yarns and braids. Dollfus-Mieg \&
Dentifrice, F.s. Hanf....
Embroidery cotton. H. E. Erankenberg.........
Magnetic body wear, bedding, and medicai appli-
Magnetic body wear, bedding, and med
Magnetic body wear, bedding, and m
ances generally, A. P. Iighthill.
Magnetic body wear, bedding, and medic
ances generally, A. P. inghthill......
Meat and quinquinia, mixture of, J. Ferr

| ances generally, A. P. Lighthill.................... 10 |
| :---: | :---: |
| 102 | \left\lvert\, \(\begin{gathered}Meat and quinquinia, mixture of, J. Ferré........ 10

Meat, iron, and quinquinia, mixture of, J. Ferre,\end{gathered}\right.\)

$\&$ Sons
Remedy for piles, J. E. Butler..

Remedy for piles, J. .. B
Rubber, composition as
T.

T. D. Frary \& Son Co........................
T. D. Frary \& Son Co..........................
$\begin{gathered}\text { Shade roller,spring, Saginaw Manufacturing Com- } \\ \text { pany..................... }\end{gathered}$
Shade roll
pany...
Tea and c
pany...
Tea and coffee, prepared, New York Textile Fil-
ter Company...............................
whisky or its compounds, Cook \& Bernheimer....
. 291,827
Engravings may head adver tisements at the same rate
per line，by measurement．as the letter press．Adver－

admauramse．

64th ANNUAL STATEMENT， December 31，1883，
ATNA

Al othor clims AS FOLLOWS： .$\overline{89,192,643.80}$ ．．．．．．．．．．．

Real Estate.
Loans on Bond and Mo.
Loans on Collaterals..
Stocks and Bonds

Total． $89,192,643$

LOSSES PAID IN 65 YEARS，

L．J．HENDEE，Pres＇t．
J．GOODNOW，Sec＇y．
WM．B．CLARK，Asst．Sec＇y．
JAS．A．ALEXANDER，Agent， 2 Cortlandt St．，New York． cinamitul．

Preston，KeansClo． Bankers．

Receive Deposit Accounts．
Issue Circular Letters of
Credit available in al trsue Gncurar Letters of Credit
partsof the world，
Foreign Exchange bought and sold．
NVES＇TMENTS．
\qquad
 Wealiso deal in land warrants and
land scrio．
THE CENTURY

THE MIDWINTER

 （FEBRUARY） number of
ogel,
.
291,575
1,859

291,720
291,749

| 991，720 |
| :--- | :--- |
| W91，79 |

Regulator. See Watch regulator.
Rein protector. S. J. Spurgeon.
of
. 291,532

Sash balance, G. M. Jewett.
Saw buck. T. Beard...
scraper, dirt, C. Endicott.....
Screen. See Window screen.
Screen. See Window screen.
Screw, wheel or felly. C. Rotzien...
Seat, M. Benedict
Secondary battery Molera \& Cebrian

Sinning......................................
Sewing machine, button hole, Desnoyers \& Sin
Sinning．．．．．．．
Sewing machSewing machine take up mechanism．G．F．Foss．
Sewing machines，autonatic tension for，Fitz－gerald \＆Lyon．．．．．．Shade bar，H．L．Judd．．．．．．．．．．．．．．
Shaft friction coupling，F．BraunShaft friction coupling，F．Braun．
Sheep house，portable，L．RobbinsSheet metal pans，machine for wiring，C．F．Beaman，．．．．．．．．．．．．．．．．．．．．．．．．．．．．

shovel and shield, combined J. J. Holland...Show case shield，combined，J．
Show case, Loewen
Signal. See Railway signal.

管资荡

A printed copy of the specification and dra
A printed copy of the specification and drawing of
any patent in the foregoing list, also or any patent
issued since 1866. will be furnished from this office for 25
issued since 1866. will be furnished from this office for 2.5
cents. In ordering please state the number and date
of the patent desired, and remit to Munn \& Co, 261
Broadway, New York. We also furnish copies of patents
Broadway, New York. We also furnish copies of patents
granted prior to 1866 ; but at increased
granted prior to 1866 ; but at increased cost, as the
granted prior to 1866 ; but at increased cost, as the
speeifications, not being printed, must i, copied by
hand.
hand.
Canadian Patents may now be obtained by the
inventors for any of the inventions named in the fore-
Canadian Patents may now be obtained by the
inventors for any of the inventions named in the fore-
going list, at a cost of $\$ 40$
inventors for any of the inventions named in. the fore-
going list, at at cost of $\$ 40$ each. For full instructions
address Munn \& Co., 261 Broadway, New York. Other
foreign patents may also be obtained.
$\left\lvert\, \begin{aligned} & \text { going list, at a cost of } \$ 40 \text { each. For fut } \\ & \text { address Munn \& Co, 261 Broadway, Ne } \\ & \text { foreign patents may also be obtained. }\end{aligned}\right.$

2wizi Maill LAMTER LaHTRRIN

 lizm y Rmors

Agents Wanted in Every Count

Three Lofts 60×125 Each

CONSUMPTION.

RUPTURE

curd without an operation or the injury trusses inflict by Dr J.A. SHERMMANS method. Offce, 251 Broadway New York. His book. with Photographic likenesses

266th EDITION. PRICE ONLY \$1
 KNOW THYSELF. nim
A Great Medical Work on Manhood,

NEW YORK BELTING AND PACKING COMP'Y.

NEW YORK BELTING AND PACKING CO

Clark's' Noiseless Rubber Wheels

WATCHMAKERS.

ROOT'S NEW IRON BLOWEA,

 Has Fewer Parts than any other Blower.
P. H. \& F. M. ROOTS, Manufacturers,
 IVEW YORIK.
SEND FOR PRICED CATALOGUE.
 GAS ENGINES,
 POWER DETERMINED BY ACTUAL TEST THE CONTINENTAL GAS ENGINE CO

The Imperial Dictionary. Every scientific and professional man needs this
great work. The St. Fames's Gazette, of London, best defines its usefulness when it says: "It is as-
tonishing how many books of reference may be dispensed with by the student who has access to this
admirable compilation." It has been called "the most useful book in the English language." It is
an encylopredic lexicon-a dictionary of I3O,Ooo
words, but in its definitions going far beyond the province of a dictionary- - into histories, etymologies, etc. The Philadelphia North A mericicm calls
it ". propably the most comprehensive and exhaust-
ive fore the English-speaking public.". The placed be
only $\$ 20$ for the set of four handsome volumes

Cob륭ㄴㄴㅣ SHarting.

therin, a mer imishi, and is truer to gause, than any

THE DUPLEX INJECTOR.

The constan increasing demand for this Boiler

PATENTS.

MESSRS. MUNN \& CO.. in connection with the pubamine Improvements. and to act as Solicitors of Patents

In this line of business they have had thirty-ight he preparation of Patent Drawings, specificalions. and he prosecution of Applications for Patents in the mun \& Co. also attend to the preparation of Caveats. Copyrights for Books. Labels. Reisulus. Assiguments.
and Reports on Infringements of Patents. All bnsincss
Entrusted to them is done with special care and prompt. A pamphlet sent free of charge, on application, containing full informaiion about Patems and how to pro-
cure them; directions concerning Labels, Copyrights. cure them; Hirections concerinng Labels, Copyrights,
Designs. Patents. Appeals. Reissues, Infringenients, As signments, Rejected (ases,
tents, etc.
We also send. free of churrue. a Synopsis of Foreign Patent Laws. showing the cost and method of securing
patents in all the principai countries of the world. IUNN d Co., solicitors of Patent
261 Broadway, New York. BRANCH OFFICE-Corner of F and 7th Streets,
Washington, D. C.

Cdurxinemotis.

 Engravings may head advertisements at the same rate
per line, by measurement, as the letter press. Adver-

Pyrometers. For showiw heat oft

 BOOKS ON BUILDING, PAINTING,

F. Brown's Patent

FRICTION CLUTCH.

A. \& f. beown, 43 Park Place, New York. SHAFTSPULLESTHANGES

 Asnceratiad ant H. W. JOHNS MFG CO ., B7 Maiden Lano. Now orki

Hytrinturars Ha Rint sicilils icilime

 HARTFORD
STEAM BOILER Inspection \& Insurance COMPANY
W. B. FRANKLIN.V. Pres't. J. M. ALLEN, Pres't

FOSSIL MEAL COMPOSITION,

 FOSSIL MEAL CO., 48 Cedar St, New York.

ROOFING.

30 to $\mathbf{3 0 0}$ Horse Power.
Send for IIInstrated Cirealar and Beferenee Lis STATE THE HORSE POWER REQUIRED,
ASK OUR PRICES!

THE WESTINGHOUSE MACHINE CO.,

The" MONITOR." ${ }^{\text {Best }}$ Boile Fede

OR
Water
For converying
Fins,

Leffel Water Wheels,
With Important Improvements.
FINE NRN PAMPBLET FOR 1883

10 Liberty Springfield, Ohi

The Best in the World.
We make the Best Packing that can be made regaraless
of cost
Users of cost. Users will sustain us by calling for the "JEN-
KINS STANDARD PACKING." Our "Trade Mark" is stamped on every sheet. Non
genuine unless so stamped. Send for Price List " B." JENKINS BROS.,
71 John Street, N. Y. 79 Kilby Street, Boston

Best Boiler and Pipe Corerinum Made!

AMERICAN STEAM GAUGE CO., Original Steam Gauge Co. Bus. Estab. in 1851.
Incorporated in 1854.

Sole Manufacturers of the
IMPROVED THOMPSON
INDICATOR PLANIME'TER AND 36 Chardon St., E Burt pailicips, treas. Lishl, Prest: Moore, supt. EVAPORATING. FRUIT

Steel Castings

ERICSSON'S New Caloric Pumping Engine, Dwellings \& Country Seats Simplest! Cheapest!
nomical!
Absolutely
Eafe! Delamater Ir ou Works,
C. H. Delamater \& Co., $16 \begin{gathered}\text { Coritland } \\ \text { New Yorls, U. S. A. A. }\end{gathered}$

PHONOCRAPHY, OR PHONETIC SHORT-HAND. Catalogue of works by Benn Pittman, with alpha-
bet and illustration for beginers sent on anplication.
Address Phonographic Instutute, (incinnatio Ohio

- Print Your Own Gards

ODONE CN N
 ฐrientific Americam

The Most Popular Scientilic Paper in the World. Only 83.20 a Year, including postage. Weekly.

Tlis is widely circulated and splendidly illustrated
puper is published weekly, paper is published weekly. Every number contains six-
teen pages of useful information, and a large number of
original engravings ot new invention original engravings of new inventions and discoveries,
representing Engineering Works, Steam Machinery, New Inventions, Novelties in Mechanics, Manufactures, New Inventions, Novelties in Mechanics, Manufactures,
Chemistry. Electricity, Telegraphy. Photography, Archi-
tecture. Agriculture, Horticulture, Natural History, etc. All Glasses of Readers find in the scievrific AMERICAN a popular resume of the best scientiffic in-
formation of the day; and it is the aim of the publishers formation of the day; and it is the aim of the publishers
to present it in an attractive form, avoiding as much as possible abstruse terms. To every intelligent mind,
this journal a ffords a constant supply of instructive reading. It is promotive of knowledge and progress in
every community where it circulates.
TIEIC AMMHICAN will be sent for one year- 52 numberspostage prepaid, to any subscriber in the United States
or canada, on receipt of three dollare or Canada, on receipt of thee dollars and iwenty
cents by the publishers; six months, $\$ 1.60$; three cents by the publishers; six months, $\$ 1.60$; three
months, $\$ 1.00$. Clubs.-(One
CA \boldsymbol{l} will be supplied gratis forevery club of five subscribers
at $\$ 3.20$ each; additional copies at same proportionat rate. One copy of the Scientific Ambrican and one copy
of the Scientific American Supplem wivt will be sent for one year, postage prepatd, to any subscriber in the
United States or Canada, on receipt of seven dollars by United States or
the publishers.
The safest way to remit is by Postal Order, Draft, or Express. Money carefully placed inside of envelopes,
securely sealed, and correctly addressed, seldom goes astray, but is at the sender's risk. Address all letters and make all orders, drafts, etc., payable to

$$
261 \text { Broadway, New York. }
$$

To Foreign subscribers.-Under the facilities of
the Postal Union, the ScIENTIFIC Am Arican is now sent by post direct from New York, with regularity, to subBritish colonies; to France, Austria, Belgium, Germany,
Russia, and all other European States; Japan, Brazil, México, and all States of Central and South America.
Terms, when sent to foreign countries, Canada excepted, \$4, gold, for Scientific Amirican, one year; 99 , gold,
for both ScIENTIFIC Amirican and Supplement for one year. This includes postage, which we pay. Remit
by postal order or draft to order of

PRINTING INKS.

Tix

[^0]: * By Dr. David Wark in the Evening Post, January 8, 1884

