A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

THE MARENT GULCH TRESTLE.

The accompanying engraving represents the trestle on the Northern Pacific Railroad that crosses Marent Gulch, ten miles west of Missoula, Montana. The trestle is for a single track, is 226 feet high, and is supported upon eigh piers built upon the Howe truss principle, the spaces between the end piers and the summits of the bills being spanned by trestles.
It is built entirely of wood cut from forests in the immediate vicinity, and a good idea can be formed of the magnificent proportions of some of these trees and their special adaptability to the needs of the builders of the trestle by the fine specimen shown in the picture, standing nearly in the center of the gulcti, and whose top reached above the rails. The structure was designed to meet the requirements of travel only for the time being, the combustible nature of the material of which it is built prohibiting its permanent use. It was, therefore, so planned that at any future time it could be replaced by one of iron without in any way interfering with the traffic of the road.
No difficulty was experienced in obtaining a foundation for the piers, since one hill was composed of loose and solid rock, and the other of slate rock. The piers are placed 70
feet apart between centers, the distance between the parallel
sides, center to center, being 20 feet, and the centers of the tops of the corner posts being 10 feet apart between the cloping sides, which have a batter of 1 in 6 , thereby increasing the width of the foundation to about 80 feet, and insuring the stability of the structure. The piers consist principally of four corner posts, each of which is built up of two 10 x 12 inch timbers, placed in a plane parallel with the line of the track and bolted together.
The sloping sides are divided into panels 16 feet in height, the diagonals of which are 6×10 inch timbers, tied with iron rods $11 / 2$ inches in diameter.
The parallel sides are divided into panels of the same height, but the bracing is more complex. From the bottom of the pier to bottom of the tenth panel extends a center post composed of two 8×12 inch timbers bolted together and from each side of the bottom of this post to each corner of the same panel is a brace of the same size. Parallel with these braces and extending from the foundation to the bottom corners of the seventh panel are others of like dimensions. From the bottom corner of the pier to a point on the last men tioned braces just within the second panel, is a diagonal of two 8×10 inch timbers. The panels are formed of 8×12 inch pieces whose ends overlap and are bolted to the center.post.
up of diagonals of two 7×7 inch pieces, tied with rods $11 / 4$ nches in diameter, with the exception of the top and next to the top rods, which are $11 / 2$ and $13 / 8$ inches, respectively. Horizontally the bottom of the sixth panel is divided into wo panels bytwo sets of 8×10 inch timbers connecting the center posts, the diagonals being 8×8.
The tops of the piers are connected by truss 10 feet in beight aud the same in width, the diagonals of which are wood and the tie rods iron. Between the bottom chords and the tops of the piers are transverse beams extending beyond the sides of the piers. The ends of these beams are braced from the sides of the piers, and braces from the ends to the top chords stiffen the truss. The floor beams rest immediately upon the top chords, upon which rest the stringers and above them the ties to which the rails for the single rack are spiked. The ends of all the diagonals in the trestle abut against angle blocks. The piers for the iron or permanent trestle will occupy every alternate space between he piers of the present structure. The trestle was designed by C. C. Schneider, C.E., of 35 Wall Street, this city, who also designed the great cantilever bridge at Niagara Falls, which was recently described in this paper, to whose courtesy we are indebted for the loan of drawings from which we obtained the foregoing description.

THE MARENT GULCH TRESTLE ON THE NORTHERN PACIFIC RAILROAD

stientific gmexiran.

ESTCABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at
No. 261 BROADWAY, NEW YORK.

o. D. MUNN.

A. E. BEACH.

TERMS FOR THE SCLENTIFIC AMERICAN.

 One copy, one year postage included...One copy, six months postage included

8390
160 Clinbs.-One extra copy of The Scientific Am Erican will be supplied same proportionate rate. Postage prepaid.
Remit by postal order. Address

MUNN \& CO., 261 Broadway, corner of Warren street, New Yor

The Scientific American Supplement Is a distinct paper from the Scientific american. 'VHE SUPPLEMEN' with Scientiric American. Terms of subscription for SUPPLEMENT 85.00 a year, postage paid, to subscribers. Single copies, 10 cents. Sold by Combined Rntes.
Combined Rntes. - The Screntific American and Supplement
will be sent for one year postage tree. on will be sent for one year postage tree. on receipt of
papers to one address or different addresses as desired. The safest way to remit is by draft, postal order, or registered letter. ddress MUNN \& CO., 261 Broad way, corner of Warren street, New York. Scientife American Export Edition.
The Scientific American Export Edition is a large and splendid periarge quarto pages, profusely illustrated, embracing: (1.) Most of the plates and pages of the four preceding weekly issues of the Scientific American, with its splendid engravings and valuable information: (2.) Commercial, trade, and manufacturing announcements of leading houses Terms for Export Edition, 85.00 a year, sent prepaid to any part of the
world. Single copies 50 cents. Manu acturers and others who desire to secure foreign trade may have large, and handsomely displayed announcements published in this edition at a very moderate cost. The SCIENTIFIC AMEMICAN Export Edition has a large guaranteed circuCO., 261 Broadway, corner of Warren street, New York. Address MUNN \&

NEW YORK, SATURDAY, DECEMBER 29, 1883.

TABLE OF CONTENTS OF

THE SCIENTIFIC AMERICAN SUPPLEMENT

No. 417,
For the Week ending December 29, 1883.
Price 10 cents. For sale by all newsdealers.
. Engineering and mechanics.-Machine for Making Elec tric Light Carbons.-2 figures
The Earlest Gas Engine. .
The Earllest Gas Engine.
The Moviug of Large Ma
 a belfry at Cresentino in 1776. and of the winged bulls from Nineveh to Mosul in $1854 \ldots$.
Science and Engineering.-The
other. By W ALTEI R. BROWNE...
Other. By W ALTEI R. BROWNE....
Hydraule Plate Press.-With eng
Hydraulic Plate Press.-With engraving.
Fast Printing Press for Engravings.-Wit
French Cannon
Apparatus for Heating by Gas.-...........
Apparatus for Heating by Gas.- 5 figures.............
Improved Gas Burner for Singeing Machines.-1 figure
TECHNOLOGY.-China Grass, or Rhea.-Different
apparatus used in preparing the fiber for commerce.
ili. ArChitecture.-Woodlands, Stoke Pogis, Bucks.-With en-
ELECTRICITY, IIGHT', ETC.-Volta Electric Induction as De monstrated by Experiment.-Paper read by Willoughby Smith before the Society of Telegraph Engineersand Electricians.-Nu-
merous figures..... ..
On Telpherage.-The Transmision of vehicles by electricity to a
distance.-By Prof. FLEEMING JENKIN...................... distance--By Prof. Fleeming J
New Electric Battery Lights.:.
New Electric Battery Lights.:.
The Slemens Electric Railway at Zankeroda Mines. -3 figures.
NATURAL HISTORy.-A New Enemy of the Bee
Crystallization of Honey...
An Extensive Sheep Range
II. HORTICULTURE, ETC.-The Zelkowas.-With full description of the tree, manner of identification, etc., and several engravings showing the tree as a whole, and the leaves, frutt, and flowers in I. MEDICINE, HYGIENE, BTC.-The Disinfection of the Atmo-sphere.- Exxtract from a lecture'by Dr
Parkes Museum of Hyglene, London.
A New Method of Staining Bacillus Tuberculosis
Cure for Hemorrhoids.

PINK EYE.

Horse scarlet fever, or the so-called "pink eye," forms the subject of an interesting paper by Dr. John C. Peters in the New York Medical Journal, of December 15. The conclusion is that various diseases of animals, communicable to man and vice versa, had frequently prevailed in our great car stables and in stables along the river fronts, among such diseases being diphtheria, scarlatina, and true measles, or a hybrid of measles and scarlet fever. Inoculations with the blood, tears, and usual mucus have produced the disease, the so-called "pink eye" having thus been conveyed from a partly blooded horse to a cart horse, from that to Guinea pigs, and from them to a pony. Young horses take the disease more frequently than older animals, although the latter are not always exempt. On the seventh day improve ment generally commences, but the disorder seems most contagious at that time. The trouble is self-limited ordi narily, so that palliative treatment is all that is required.

LIGHT IRON CASTINGS.

Many years ago articles of cast iron of a light, fragile, and ornamenta! character, known as "Berlin [German] jewelry," were quite fashionable. It seemed, then, almost impossible that these should be simply castings of iron, and it is within a comparatively recent period that the possibility has been proved by the production of similar articles in this country. When of a ornamental design, as shoe buckles, belt buckles, shawl clasps, and hair pins, iron frequently has the market name of steel, and such "steel" ornaments are very common and in general use. But they are made of iron cast in sand moulds exactly as massive lathe beds, planer beds, and anvils for drop hammers, weighing several tons each, are cast.
The brilliant polish on the ornamental articles is produced by means of emery wheels, rag, rotten stone wheels, and rouge wheels, prefaced by the action of the tumbling barrel.
Of course, onlythe easiest flowing iron is fit for such fine work. This is charcoal produced iron, that trom the Salisbury mines in western Connecticut being admirably adapted to these purposes. There is an establishment in Connecticut that melts, for the purposes of minute castings, about ten tons of soft charcoal iron a day, casting scissor and shear blanks, clock bells, clock keys, drawer keys, door keys, piano tuning keys, rings, harness buckles, ornamental buckles, horsemen's spurs, and a hundred other articles, not one of which will weigh twelve ounces, and many of which weigh less than an ounce. Some of these articles require in their finished state more than one hundred to the pound in weight. So minute are these castings, mainly moulded from plate patterns, that the used sand of the moulds must be sifted to discover all the results of the day's casting.

TOOTHING A NICKING SAW.

The nicking or cutting-off saw in the machine shop is a necessary tool for many purposes, but, unlike knurling tools, it is not to be found in assortment in the supply stores. The usual method of producing a saw is to chisel it out of a piece of sheet cast steel of the required thickness, or to
forge it from a bar, drill the center for an arbor, file or turn the periphery, and after truing it, file the teeth.
\dot{A} better way to form the teeth is to make and keep on havd one hob of eight threads to the inch or of six threads to the inch-hobs made like those for producing thread chasers. But for forming the saws the hobs should be cut to a single angle tooth, a tooth having an acute angle on one side-the thread being a right handed thread-the other angle being right angled to the axis of the hob. A good idea of the section of the tooth is got from that of the ordinary milling tool or the circular saw for wood.
With such a hob suspended between the centers of a lathe, a steel disk can be cut or toothed by a very simple method. The drilled and turned saw blank is mounted horizontally on a bar set in the ordinary tool post, the bar having a stud on which the blank is secured by means of a nut and washer, but so that it may revolve freely in a horizontal plane. Being advanced to the rotating hob, the merest touch will show if an entire revolution of the blank will bring out the teeth, even without overreaching, and any error can be rectified by turning down the blank slightly. By means of ordinary lathe appliances a nicking saw can be cut with little trouble, ranging from three inches to one and a half inches diameter, much more rapidly and perfectly than can be done by hand filing. The slight "slash" of the screw-threaded hob will not affect the direct action of the saw, even if the hob should be of so coarse a grade as fou threads to the inch.

THE BOTTLERS' EXHIBITION.

The second annual convention and international exhibition of the United States Bottlers' Protective Association was held in the American Institute building, this city, from December 11 to 14 inclusive. The exhibition comprised bottlers' supplies, machinery, appliances, materials, bever ages, etc., the main building being filled with novel and in teresting articles. There were several exhibits of carbonated be verage apparatus, showing each step in the process from
the barrel of pure marble dust and the carboy of acid with its siphon attachment, by which any surplus in the measure could be run back into the carboy, to the charged fountain and filled bottle.
Bottles of every kind used in the trade were shown fitted
with stoppers adapted to every description of beverage stoppers made of different materials and by which all or only a little of the contents of a bottle could be taken out without destroying the "head." One bottle washer con sisted of a U-shaped spring, the arms of which were joined by a thick rubber band and which was secured to a spindle revolving at high speed. It was impossible to so quickly push a bottle on this device, that every portion of the inteior would not be rubbed by the band. By changing the band the device could be adapted to bottles of differentsizes and shapes. There were exhibited extracts, filters, siphons, bottling wire, corking machines, colorings, bottleware-in deed, every branch of the bottling trade was represented.
Instructive exhibits were made by the cork manufacturers. The best quality of cork comes from Spain, although the cork tree-a species of oak-grows in Portugal, Italy, Southern France, and Algiers. When the tree is about fifteen years old the first stripping, known as virgin cork, is taken off. This bark is thin, covered with irregular indentations, and is of no practical use. Ten years after this the tree may be again stripped, the bark having attained a thickness of from one to one and a half inches; and so on in periods of ten years, the quality said to improve with each operation. The bark is steamed or soaked in water, pressed, and slightly charred before fires, in order to close the pores and toughen it, and in this shape it is sent to the manufacturer. By circular knives the bark is cut into strips varying in width according to the length of the desired cork.
Thecorks are cut from the strip by a rapidly revolving cylindrical knife, the axis of the cork being parallel with the bark. The corks to be tapered are taken to a circular knife, revolving horizontally, against the edge of which they are held, one by one, by a machine which may be said to resemble a lathe. The cork is placed against a loosely journaled foot-piece, while against the other end is pressed a slowly revolving spindle. This device raises and presses the cork to the edge of the circular knife, the device being adjustable at any angle to obtain the desired taper.

NEED OF A MANUFACTURING REFORM

There is one department of mariufacturing prcduction that acks not so much good workmanship as proper material; that is, the department of manufacturing for domestic purposes. It would almost seem as though the producers think that anything is good enough for the bousehold, so long as it makes pretense
A most attractive and convenient form of cooking utensil is now made of tough iron enameled inside and out. In most respects it is much superior to utensils of tin or those of cast iron; the tea pots and coffee urns heing particularly useful. But the hinges break after a little use, the ornamental tops come off, showing that they were merely at ached for a temporary purpose, and even the handle drops off, being merely soft soldered on.
In lampsfor burning kerosene the vexation is fully as great, while the danger is more. The glass reservoirs for the il are barely stuck into sheaths of the flimsiest sheet brass at the tops of the standards by means of plaster of Paris that soon loses all its cohesiveness by the slightest overflow of oil; and yet in nine times out of ten the lamp is moved when ighted by lifting by the glass reservoir. The thin brass tops re always getting out of shape; they hardly sustain the weight of chimney and shade. The rag wheels, or the toothed wheels which serve to raise and lower the wick, may urn on thin wire axes or refuse to turn at all. Sometimes these appliances are so insufficient that the lighted wick drops through the tube down into the oil.
If price would secure good products these annoyances and dangers would not be so vexatious, but the ligher priced artistic and ornamental lamps are no better made, have no better material, are no more secure than the cheaper sorts.
This singling out of two common and necessary articles as evidences of lack of honest work and material is not in tended to be a marked rebuke to these particular departments; this "skrimpiness" and "Cheap John" makeshift method runs through almost all the products of manufactures for household use, and a long list might be made of articles of everyday use which become useless almost before their usefulness is established, because the makers use glue nstead of nails, nails instead of screws, soft solder instead of brazing. sheet tin instead of iron or steel, pewter instead of tin, and unskilled labor instead of honest work. There is oom for improvement.

The height and velocity of clouds have been determined in England by means of photography. Two cameras, placed about 600 feet a part, are provided with instantaneous shutters simultaneously released by electricity. The observer measures the angle of inclination of the cameras and the position of the cloud as photographed on the two plates, and from these data a trigonometric calculation gives the distance and height of a cloud with great accuracy.

Subscribe for the Scientific American and Scien ific American Supplement for $1884-\$ 7$ a year for both papers-and you will surely lave all the latest and best scientific, mechanical, and engineering news of the day, from every part of the globe. A new volume com mences next week on both papers. Subscribe now for one or both.

aspects of the planets for jandary.

JUPITER

is morning star until the 19th, and then evening star until the 7th of August. There is no question as to which star shall head the list during January, for Jupiter puts on his proudest aspect on the 19 th , when he reaches opposition. This event occurs at 10 o'clock in the evening, when the regal planet will be well toward the zenith, and can be seen in his best estate. Though Jupiter never shines with the bewitching brightness that distinguishes Venus in her period of greatest brilliancy, he enjoys a great advantage over his fair rival. Since he is an outer planet, he may be seen at opposition, opposite the sun, rising about sunset, and making his transit, or meridian passage, at midnight. Since Venus is an inner planet, she is never seen much more than 45° from the sun, either three hours after sunsent or three hours before sunrise. Jupiter seems to make the circuit of the sky. Venus seems to oscil late in straight lines east and west of the sun as if sle were fastened to him by an invisible chain. In reality, botb planets revolve around the sun the same as the earth. The different aspects they take ou are simply the way they look to terrestrial observers, the giant planet traveling outside of our domain, the fairest of the planets traveling within our boundaries.
We never look upon Jupiter when in opposition without rejoicing that when the vast nebulous mase that once filled and extended far beyond the limits of the solar system quickened into life, and threw off the concentric rings that formed the planets, the largest rings condensed into the planet Jupiter. Observers on the other planets are for this reason privileged to behold the magnificent spectacle of a planet second only to the great sun himself, a miniature solar system with its revolving moons, a telescopic wonder on which the eye rests with ever new delight.
The buge planet has not yet cooled down, his primeval fires still blaze, and he gives out light and beat to the satellites that surround him, and as readily yield to his sovereign power as their mighty lord bows to the sun's resistless sway. Observers on this planet, nearly 500 million miles away, can watch the process of world making on Jupiter's mighty mass. Exceeding the earth in volume 1,300 times, his coolmass. Exceeding the earth in
ing will be proportionally slow.
In the belts that diversify his disk, in the huge spots that from time to time stir his mass, in the agitation of the immense cloud atmosphere that conceals his fiery nucleus, we betold on a grand scale the progress of the cooling process which millions of years ago agitated the earth's lesser bulk before it developed to the perfection of its present condition as an abode for animate life. Just as surely will the prince of planets reach, latest of all the sun's family, the same perfection of development. When, millions of a ges hence, the time arrives, the earth, like the moon, will have passed into the period of inevitable decay, and, preceded by Mercury, Mars, and perbaps Venus, will be floating through space as a dead w̄orld. Viewed in this light, every changing belt, every new spot, every sudden rift is a revelation in Jovian language of the tremendous disturbances that will eventually bring order out of chaos, beauty out of desolation.
The red spot and the bright spot bave not actually disappeared, although as the planet sped on its course away from the earth no traces of them were seen later than May. As
the planet again approached us after conjunction, Mr. Denthe planet a arain approached us after conjunction, Mr. Den-
ning found on the morning of the 6 th of October that the ning found on the morning of the 6th of October that the
red spot was again visible, although very faint. At times the shape of the spot came out distinctly, notwithstanding its feebleness, while the indentation or hollow in the great south belt near the spot is a very conspicuous figure. Later, on the same morning, Mr. Denning saw the equatorial white spot as it crossed the central meridian of Jupiter. It was very bright and seemed to preserve the conspicuous appear-
ance it presented in 1880 . Observers will therefore bave an ance it presented in 1880. Observers will therefore bave an ment of the brilliant spectacle. The red spot, the white spot, the intensity of the coloring in the belts, all have a meaning. Fortunate is he who can decipher it!
High up in the north, at his nearest point to the earth, above the horizon the entire night, the brightest of the swarming stars that adorn the crown of night-such is Jupiter at opposition, and superbly will he shine during the crisp and clear moonless nights of January.
The right ascension of Jupiter on the 1st is 8 h .17 m .; his declination is $20^{\circ} 14^{\prime}$ north; and his diameter is $43^{\circ} 4^{\prime}$. Jupiter rises on the 1st about half past 6 o'clock in the evening; on the 31st he sets at 4 o'clock in the morning.

vends

is evening star. If Jupiter holds the first place, she unquestionably wins the second. She is now a beautiful object in the western sky for nearly two hours after sunsel. Traveling from superior conjunction to eastern elongation, she is constantly receding from the sun in her eastern course, and, at the same time, approaching the earth. Observers who watch her movements will note her progress, and easily discern her increase in size and brightness, and the longer time she is above the horizon, and will rejoice that during the entire winter she will be the peerless starry gem outshining all others in the western sky.
Venus is moving rapidly northward, advancing 13° in that direction during the month, and greatly changing her position in regard to the sun, being now $2^{\circ} 30^{\prime}$ north of the sunset point, and at the end of the month 10° north of the sunset point.
A charming aspect of Jupiter and Venusin their present
phase is that they are above the horizon together during the whole month, Jupiter rising in the east before Venus sinks below the horizon in the west, the one reigning in the eastern sky, the other holding her court in the western. Jupiter now rises fifteen minutes before Ven us sets. At the end of the month, Jupiter will rise before sunset, and Venus will not set till nearly 8 o'clock. They will therefore be visible for more than two hours, and, as one is apparently traveling east and the other west, they will seem to approach nearer each other.
The right ascension of Venus on the 1 st is 20 h .30 m . her declination is $20^{\circ} 40^{\prime}$ south; and her diameter is $11 \cdot 4^{\prime \prime}$.
Venus sets on the 1st about half past 60^{\prime} clock in the vening; on the 31st she sets at ten minutes before 8 o'clock.

saturn

is evening star, and secures the third place on the list in the order of beauty and brightness. He changes his position scarcely at all during the month, slightly retrograding. Thus his path is easy to follow. Though far exceeded in brilliancy by Jupiter, he is beautiful to behold, with his soft and serene light. Nearly half way to the zenith when the gathering shades of night reveal his presence in the sky, making his transit on the first at half past nine o'clock, and then sinking slowly in the west, followed by a retinue of the brightest stars that twinkle in the sky, and taking precedence of Jupiter and Mars on the celestial track, Saturn cannot fail to win an admiring tribute from every beholder during the starlit nights of January.
The right ascension of Saturn on the 1 st is 4 h .10 m .; bis declivation is $19^{\circ} \cdot 6^{\prime}$ north; and his diameter is $19^{\prime \prime}$.
Saturn sets on the 1st not far from half past 4 o'clock in the morning; on the 31 st he sets about half past 20^{\prime} 'clock.

mars

is morning star, wins the fourth rank in the order of interest, and completes the quartet of planets visible during winter nigbts that are easily recognized by unscientific observers. He is growing wondrously ruddy in hue, and increasing in size as he rapidly approaches that point in his course when our planet will lie directly between him and the sun. Therefore he is very near his brightest phase, while his northern declination is increasing, always a favorahle condition for observation. He is easily recognized as a brilliant red star southeast of Jupiter and northwest of Regulus in the bandle of the Sickle.
The right aseension of Mars on the 1 st is 9 h .40 m .; his declination is $17^{\circ} 54^{\prime}$ north;-and his diameter is $13.2^{\prime \prime}$.
Mars rises on the 1st a few minutes before 8 o'clock in the evening; on the 31st he rises about 5 o'clock.

mercury

is evening star*until the 20tb, and then morning star. On the 4th, at 11 o'clock in the morning, he reaches his greatest eastern elongation, being $19^{\circ} 16^{\prime}$ ealst of the sun. He is then visible to the naked eye in the west soon after sunset, but his southern declination is not favorable for visibility. Venus will help to point him out, as be is a little way west of her, and a degree farther south. On the 4th, Mercury sets an hour and a half after the sun, and a half hour before Venus.
With so bright a starry guide, and these directions to folWith so bright a starry guide, and these directions to fol-
low, any quick-eyed observer may hope to find the planet that loves to hide in the evening glow.
On the 20th, at 3 o'clork in the afternoon, Mercury has completed his course as evening star, coming into inferior conjunction with the sun and passing to his western side to commence his short circuit as morning star.
The right ascension of Mercury on the 1st is 20 h .3 m . his declination is $22^{\circ} 3^{\prime}$ south; and his diameter is $6 \cdot 2^{\prime \prime}$. Mercury sets on the 1st about 6 o'clock in the evening; on the 31st he rises about 6 o'clock in the morning.

uranus

is morning star. He is in the constellation Virgo, and is staionary nearly the whole month.
The right ascension of Uranus on the 1 st is 11 h .54 m . his declination is $1^{\circ} 26^{\prime}$ north; and his diameter is $3 \cdot 8^{\prime \prime}$.
Uranus rises on the 1st at 11 o'clock in the evening; on the 31st he rises at 9 o'clock.

neptune

is eveniug star. He still bolds his one claim to distinction, heading the procession of outer planets in the time of his appearance, making now his transit at half past 8 o'clock in the evening.
The right ascension of Neptune is $\mathbf{3 h . 6 m}$.; his declinaion is $15^{\circ} 36^{\prime}$ north; and his diameter is $2 \cdot 6^{\circ}$.
Neptune sets on the 1st about half past 3 o'clock in the morning; on the 31st he sets about a quarter after 1 o'clock.
the moon.
The January moon fulls on the 12 th at twenty-seven inutes after 10 o'clock in the morning, New York standard ime. On the 8th, at two minutes after one o'clock in the morning, the moon makes a close conjunction with Neptune, being 6^{\prime} north. She will occult the planet in some localities. On the 9 th, at fourteen minutes after 2 o'clock in the mornng , she is in conjunction with Saturn, being 1° south. She will occult Saturn in some localities between 25° and 71° south declination, the only time during the year. On the 13th she is in conjunction with Jupiter, on the 14th with
Mars, on the 17th with Uranus. On the 26th, two days Mars, on the 17th with Uranus. On the 26th, two days
before her change, she is at her nearest point to Mercury.

Her last conjunction is the most interesting, for on the 30th the two days' old moon hangs her silver crescent a few degrees north of the lovely evening star. Planet and crescent, though the approach is not near, form a picture on the celestial canvas of which the eye never grows weary.

Patents in England.*

On the first day of next month-January, 1884-the new patent bill of Great Britain goes into force, by which a great reduction is made in the cost of obtaining patents there and considerable of the red tape required under the old system is done away with.
The cost for a patent in England will hereafter be about the same as a United States patent, and Scotland, Ireland, Wales, and the Channel Islands will be included in the protection.
Persons desiring to obtain pateuts in England, bowever must not overlook the fact that if the article to be patented has been introduced into the country, or copies of the United States patent have been in such way open for general inspection that the public may be presumed to have knowledge of them, as in a reading room, library, etc.-before a patent has been applied for-a valid patent cannot be obtained.
The English law differs materially from ours in the matter of showing ownership in inventions. No examinations are made to determine this, and patents are granted jointly to the inventor with others, although there must be a declaration from the inventor that he is the true and first inventor. The doing away with examinations, to determine if the invention possess novelty, will prevent the vexatious delays so often attending the obtaining of a patent through our Patent Office.
The new law likewise provides that each application for a patent must be confined to one invention. The original declaration and provisional specification go to an examiner only to see that the invention is fairly described and correctly entitled. In case two applications fcr the same thing are pending in the office at one time, such cases will be decided upon by the head of the Patent Office, subject to appeal by the applicants to the law officers.
A large number of cases are being prepared to be filed in the Loudon Patent Office as soon as thenew law goes into effect. A much larger proportion of our patentees will, undoubtedly, seek protection for their inventions in Great Britain than have heretofore done so, for the cost now will be small compared with the expense of obtaining ą patent under the old law.

Coverings for Steam Pipes, etc.

A little more than a year ago several fires in New England cotton mills were attributed to pipe coverfngs, and it was thought the felted, fibrous substance thereof, with possibly a little grease, had caused spontaneous combustion. This theory was discarded on investigation, but it led to an examination of the qualities and efficiency of the different boiler and pipe coverings in the market, for which purpose Prof. John M. Ordway, of the Massachusetts Institute of Technology, was specially appointed. His conclusions are, that the best coverings are those mostly of light, fibrous, or porous substances; such as hair felt, slagwool, cbarcoal, rice chaff, and silica, or "fossil meal," while a paste or mortar plastered on is generally inferior. A moderate air space is recommended, the best ribs or props to hold the case off from the pipe surface being plaster rings cast in halves and clamped on the pipe by tying a string or wire around the two halves. Silicated charcoal and slagwool may be applied directly to the pipe, being inclosed with cloth, or a casing of sheet metal or straw board; while for the Southern States rice chaff, moistened with water-glass at 30° B., and sewed up in a cloth wrapper, is recommended.

The Eucalyptus.

Where there is surplus moisture to dispose of, as, for example, a cesspool to keep dry, a large eucalyptus, states the Pacific Rural Press, will accomplish not a little, and a group of them will dispose of a vast amount of house sewerage. But if you have water which you do not wish to exhaust, as in a good well, it would be wise to put the eucalyptus very far away. Daniel Sweet, of Bay Island Farm, Alameda County, recently found a curious root formation of the eucalyptus in the bottom of his well, about sixteen feet below the surface. The trees to which the roots belonged stand fifty feet from the well. Two shoots pierced through the brick wall of the well, and sending off millions of fibers, formed a dense mat that completely covered the bottom of the well. Most of these fibers are no larger than threads, and are so woven and intertwisted as to form a mat as impenetrable and strong as though regularly woven in a inom. The mat when first taken out of the well was water soaked and covered with mud, and nearly all a man could lift, but when dry it was nearly as soft to touch as wool, and weighed only a few
ounces. This is a good illustration of how the eucalyptus ounces. This is a good illustration of how the eucalyptus absorbs moisture, its roots going so far to find water, pushing themselves through a brick wall, and then developing enormously after the water is reached. Mr. Sweet thinks one of the causes of the drying up of wells is the insatiable thirst of these vegetable monsters.

* Note.-Persons desiring to know as to the cost of patents in Engfull information by calling at the offlce of this paper, or they will receive pamphlet by mail which will give the facts as to securing patents there, and in all other foreign countries.

miner's Candlestick.

The candlestick may be conveniently carried in the pocket when arranged as shown in Fig. 2 ; it may be secured to perpendicular surfaces, bung upon ledges, or placed upon flat or inclined places, the candle being held upright. The two sides of the handle-frame form a spring, and to the circular head of one side is secured a pin, which passes loosely through a hole in the other bead which is made with a \checkmark-shaped groove as shown. Upon the pin, between the heads, are placed the hook, $c b$, and the point, a, which turn upon the pin. Upon the rear end of the point is a sleeve, a, for holding the candle, the sleeve being made as a spring for holding candles of different sizes.
On the point at the pin are V-shaped projections which fit in the V-shaped grooves when the candlestick is folded and also when the point is turned out parallel with the frame.

PATENEAUDE'S MINER'S CANDLESTICK.
The projections, when turned in any position not in the plane of the frame, spread the sides of the frame, thereby causing it to grasp the point and hook with increased force for holding them at any angle desired. When turned out the point can be thrust into perpendicular surfaces as shown in Fig. 1. The hook, $c b$, which, when folded, lies upon the inner surface of the frame, is adapted for suspending the candlestick from ledges of rock or other projections. By turning the hook downward the candle may be made to stand in a vertical position when the device is placed upon an inclined surface. It will be readily seen that the candlestick can be arranged to suit almost any position.

This invention bas been recently patented by Mr. Cyrille Pateneaude, of Helena, Montana, and further information may be obtained by addressing D. P. Patenaude, of same place.

ELECTRIC ALARM FOR STEAM BOILERS, ETC.
The object of this invention is to provide an electric alarm

ELECTRIC ALARM FOR STEAM BOILERS.
apparatus more especially intended for use as a low water indicator for steam boilers; it is also applicable to ovens, furnaces, and other contrivances where the heat within must be regulated. The device consists of a mercury bulb inclosed in a sectional globe which forms a chamber around the mercury bulb, as shown in the engraving which represents the device in vertical section and attached to the side of a boiler. The chamber communicates with the interior of the boiler through the valve stem, to which the globe is attached. In the plate which closes the upper end of the tube of the thermometer-like device, is titted a thumb nut through which passes the insulated arm of a bent rod The insulating material on the arm is threaded to match the screw threads of the nut, so that by turning the nut the bent
rod may be raised or lowered to suit the temperature at which it is desired to have the alarm given
The other arm of the rod is of the same length as the first and reaches down in front of a graduated plate attached to the thermometer tube, thus serving as an indicator for setting the rod with reference to the degree marks on the plate In the upper right hand corner of the engraving is shown the battery and electric alarm, which are connected by wires to the bent rod and mercury tube. When the water in the boiler stands above the low water line, the water entering the chamber through the stem will prevent the entrance of steam, and the mercury in the bulb will bave the same tem perature as the water, causing it to stand in the tube some what below the lower end of the arm. When the water in the boiler falls below the low water line, steam will enter the chamber, and, being of a higher temperature than the water, will cause the mercury to rise in the tube until it comes in contact with the end of the arm, when the electric circuit is completed and the alarm sounded. In the spindle is fitted a screw plug for cutting off communication bet ween the chamber and boiler in case it should be desired to un screw the apparatus. The upper end of the mercury tube is enlarged above the end of the rod in order to prevent al danger of overflow of the mercury in case of excessive beat These alarms are being manufactured by Messrs. McKenna \& Carley, 12 Cortlandt St., N. Y. City.

Lines of Study in Electricity.

The Institution of Civil Engineers (London) recognize the importance of discussing the subject of electricity, and in its list of papers to be received are the following topics: Electro motors, their construction, efficiency, and power gearing for dynamo machine motors and otherhigh speed engines; the transmission and distribution of electricity over large areas for lighting and for motive power, includ ing electrical railways and hoists; electrical measuring instruments; submarine telegraph cables, their manufac ture, laying and repair, including deep-sea sounding methods and appliances; telpherage, or the automatic transportation by means of electricity, of goods and passengers.

Laboring and Managing.

Some old fashioned notions about the value of example have induced managers of mechanical establishments to become shop bands and 1.0 spend their time among their work men as one of themselves, sharing their employments. To a certain extent such a practice, occasionally, may have a beneficial effect on the workmen withoutinjury to the business. But there are cares and duties connected with the successful. prosecution of any business that äre not wholly those of the emplnyes. A business must be managed as certainly as the work must be done, and it requires an un usually versatile man who can be one of his own workmen and their own manager at the same time. If to these dual duties he adds that of the proper oversight of his financial and general out-shop business, he must be a rare man to make a success. It may be a matter of personal pride to be able to boast like Bounderby, Gradgrind's friend, but it may be a costly indulgence; for draughting, correspondence, the reception of customers, the overlooking of bills, and the supervision of books as much demand the care and eye of the master as the direct guidance of the workmen. This last can be delegated to a salaried foreman, or to a first class workman, with an addition to his pay for responsibility; but the others cannot be safely left to any but the proprietor himself.

MECHANICAL TELEPHONE.

The mechanical or acoustic telephone, herewith illustrated, will transmit and receive speech with great clearness and naturalness of tone. The mouth piece, a, has a central aperture for the passage of sound waves to the diapbragm, c, whose edges are secured within a rabbet of the mouth piece. The diaphragm is about 7 inches in diameter and is made of spruce wood, which possesses great sonorousness combined with strength sufficient to sustain the tension of the line wire. The mouth piece and diaphragm are held to the wall on a bed piece, b, by the tension of the line wire. The bed piece is recessed at both sides, $f g$, and centrally apertured for the passage of threads connecting the line wire to the diaphragm. The front recess, f, affords a space between the diaphragm and the center of the bed piece for free action of the diaphragm, promoting clearness of enunciation when the instrument is used as a receiver, and the rear recess, g, secures a small marginal support for the transmitter, thereby avoiding a large contact with the wall and preventing excessive vibration.
To avoid indistinct articulation and the ringing sounds common to acoustic telephones, the line wire is connected to the diaphragm by silk cords, which are twisted about the end of the wire to obtain a firm connection therewith, and which diverge into three or more strands that are secured to a metal ring, c, between which and the dianhragm a rubber or leather ring, d, is interposed. The line wire is made of strands twisted tegether and coated with varnish to bind them and prevent them rubbing upon one another. This construction of the line wire makes it strong and protects it from the weather, and, combined with the silk cord connections, aids largely in clear transmission over line wire f considerable length.
This invention has been patented by Mr. A. G. Miller of Leyden, New York.

The drawhead is provided with the usual longitudinal pening, and in each side with a short slot which is inclined from the bottom to the top, and from the front to the rear. A bolt passes through the drawhead and through the slots. The ends of a stirrup having an Λ-shaped top are mounted on the ends of the bolt. Coupled to the top of the stirrup is a rod passing through suitable guide eyes on the end of the car and extending to the roof. Two levers, pivoted on the end of the car, extend to the sides of the car and have their inner ends coupled to the top of the stirrup. Th drawbar has its ends beveled, and its top provided with a recess extending to near the ends, thus forming a head on the upper surface of the bar at each end.
When the drawbar is held in one drawhead and is inserted in the other, its beveled end will strike the bolt in the latter,

TAYLOR'S CAR COUPLING.

raising and keeping it raised until the head has passed, when the bolt drops and the cars are coupled. When the cars are to be uncoupled, the bolt is raised by means of the vertical rod or the levers extending to the sides of the car. The draw bar can then be withdrawn. Fig. 1 shows the device with the draw bar in position; Fig. 2 is a side view of the drawbar alone.
This invention has been patented by Mr. Benjamin Taylor, of Morrillton, Arkansas.

Sewers and Sewer Gases.

At a recent meeting of the Medical Society of the County f New York, Dr. Stephen Smith, as a member of the Committee on Hygiene, criticised the Department of Public Works for the little it had done in the way of ventilating the ewers, and the wrong principle on which they were opeating. "Practically," he said, "it is equivalent to having open sewers running through the streets of New York," to have the perforated covers to the manholes in the streets, as we now have them, for a means of ventilation. The Doctor

MILLER'S MECHANICAL TELEPHONE.
suggested that " the gases should be drawn out by the action of forces which are constant and altogether independent of tmospheric changes, and delivered into the external air at n altitude to render it impossible for them to penetrate any rom occupied by human beings at any time.'
Instead of this plan the suggestion has been advanced with onsiderable potency, that the city should provide pumping machinery at suitable stations on the North and East Rivers, wherefrom water could be furnished in abundance for flusbing the sewers periodically, as well as for use in large fires. It is not in the very distant future, we trust; when the sewage of all large cities will be utilized for agricultural purposes, in which way it can, in most places, be made to pay the most of the expense of removal. But we don't want to wait until that time for some radical improvement in the New Xork system.

Xerotine Siceative and Gas in Coal Bunkers.
The report of the committee appointed by the Lords of the Admitalty to inquire, in connection with the loss of Her Majesty's ship Doterel, into the subject of explosions of gas in coal bunkers, and as to the explosive power of xerotine siccative, has been published in the form of a Blue-book The committee report that the solvent which has been em ployed in the liquid driers known as xerotine siccative consists of the more volatile products of the distillation of petro leum, commonly known as petroleum spirit, or kerosene. This liquid product is composed of a mixture of light petroleum oils, the most volatile of which evaporate freely a temperatures varying between 50° and 80° (Fabrenheit) If, therefore, this liquid be exposed to air at ordinary tem peratures, inflammable vapor will escape readily and rapidly from its surface, and if it be thus exposed in a confined space, the air which the latter incloses will become im pregnated by the inflammable vapor with a rapidity proportionate to the prevailing temperature, and to an extent sufficient to produce in a more or less brief period a rapidly inflammable mixture or an explosive mixture, if the quantity of liquid which evaporates bears the necessary relation to the volume of oxygen contained in the inclosed atmospheric air. The explosive mixture produced is, in fact, quite analogous in its nature and bebavior to a mixture of coal gas or of fire-damp and air, and is capable of producing similarly violent and destructive explosions. The experiments which the committee made led them to the conclusion hat the explosion which resulted in the loss of the Dotere had been brought about hy the production of such a large body of flame as had ignited the powder in the magazive o the ship.

Egyptian Mechanical Methods.

Petrie, who is the author of a treatise on ancient me trology, has lately turned his attention to ancient Egyp tian processes. Though much labor has been bestowed on the literary remains of Egypt and the description of monuments, little attention has been given to finding out the tools and methods by which their results were reached. The first conclusion to which Mr. Petrie comes is that the stone cutting was performed by means of graving points far harder than the material to be cut. These points were bedded in a basis of bronze; and in boring, the cut ting action was not by grinding with a powder, as in a lapidary's wheel, but by graving with a fixed point, as in a planing machine. From discovering spiral grooves in diorite and granite, at least $\frac{1}{100}$ of an inch in depth, the author supposes that an instrument was used of sufficient hardness to penetrate the material that far at a single turn. In this, however, he was corrected by Mr. Evans. The simplest tool used was a straight bronze saw set with jewels: but there is proof of one circular saw which must have been $61 / 2$ inches in diameter. For hollowing the insides of stone objects,-the inventive genius of the fourth dynasty exactly anticipated modern devices by adopting tubular drills varying from $\frac{84}{100}$ of an inch in diameter and $\frac{2}{100}$ of an inch in thickness to 18 inches in diameter. Other drills, not tubu lar, were used for small holes, one measuring $1 \frac{2}{10}$ inches long and $\frac{8}{100}$ of an inch in diameter. But this is surpassed by the Uaupes of South America, who drill holes in rock crystal by the rotation of a pointed leaf shoot of plantain, worked with sand and water. The writer of this ote has seen in Porto Rico tone beads of the hardest mat erial, 2 inches long, bored longiudinally with an orifice $\frac{1}{16}$ of an inch in diameter. The Egyptians understood rotating both the tool and the work. For the finishing of vases, a hook tool must have been used; but the early Egyptians were familiar not only with lathes and jewel turning tools, but with mechanical tool rests, and sweeping regular arcs in cutting. In addition to the tools mentioned, are to be noticed those for dressing out drilled cores, stone hammering and smoothing, saws with curved blades, mallets, chisels, adzes, and bow drills. For mark ng and indicating the plane of the stone, red ocher paint was used in a variety of ways, well studied out by Mr. Petrie.

Rock excavation, both for saving Rock excavation, ion of vaults and chambers, was altogetber an affair of drilling. Granite bowlders were utilized in the pyramids, but the best stones were taken from quarries. The method of bandling these immense masses is not known. Mr. Petrie concludes with a sensible remark upon the oft alleged inhumanity of the pyramid and temple builders. To require a man every six years to serve upon the public works, during the season when he could do nothing else, would certainly not be a great hardship.-Science, from Journ. Anthrop. not be a gre
lnst., xiii., 88.

HE MAGNETIC STATION AT THE SAINT MAUR PARK

 OBSERVATORYMascart's Registering Magnetometer.-It is well known that terrestrial and magnetic force frequently undergoes irregular and sudden variations in its direction and intensity, so that observation, even repeated, of the direct reading apparatus is not all-sufficient in times of disturbance. For the con-

Fig. 3.-THROWING THE IMAGE ON THE SENSITIVE PAPER.
tinuous registering of magnetic phenomena, Mr. Mascart has called in the aid of photography, the extreme sensitiveness of gelatino-bromide of silver allowing such a result to be obtained in a manner that is at once sure and economical. The most widely used registering apparatus is the one nown by the name of the "Kew magnetometer," and this, up to recent years, has been almost exclusively em-

Fig. 2.-the magnetic register.

The Mascart registering magnetometer, set up at the Saint Maur Park Observatory, is placed in the easterly vault of the Magnetic Cottage. This vault is rectangular in shape, and is ventilated by three air vents of a structure such as is shown in Fig. 1. As the registering must necessarily be done in darkness, there is arranged vertically be fore each air vent, outside of the cottage and at about 8 centimeters from the wall, a shutter which, while it allows of the necessary ventilation, proves an obstacle to the entrance of the light. Besides this, black curtains hang freely in the interior, in front of each aperture, and render the darkness of the vault complete.
The general arrangement is shown in Fig. 1. The varia tion apparatus were constructed by Mr. Carpentier. They are the same as those that serve for direct observation and which we have already described, and are, like them, fixed on masonry pillars. We shall advert to the fact that these compasses are three in number: the declinometer, D , for declination; the bifilar, B , for the horizontal component; and the balance, C, for the vertical component. Each apparatus is provided with a fixed mirror and with a movable one which follows the deviations of the magnetized bar. In the de clinometer and bifilar the front aperture of the case contains a converging lens of a focal length of about 1.10 m . In the balance, this lensis replaced by a suitable curvature of the side of the prism that serves to right the images.
The registering apparatus (H, Fig. 1), properly so called, is represented in detail in Fig. 2. It was constructed by Mr. Duboscq. In order to allow its internal arrange ment to be seeu, a portion of the front of the clockwork case is removed in the cut. This case is divided lengthwise into two parts by a wooden partition. In the back part there is a clockwork movement, H , with pendulum and weights, and the front part forms a camera obscura for holding the photographic frame, E. This latter slides into a grooved holder, which, through the intermedium of a rack, C, and a ratchet wheel, R, actuated by the clock, is capable of descending its whole length during an interval of twenty-four hours.
The luminous source consists simply of a small gasogen lamp, G. When the combustible liquid is of good quality, and the wick is properly regulated, this lamp will burn with a sufficiently constant intensity for about thirty-six hours, and care being taken to fill it every day at a certain hour, regularily in the light is secured. The flame is situated in the center of a lantern, L, affixed to the side of the case, and provided on each of its three external sides with a metallic mounting carrying a field lens and a vertical slit, F^{1} whose width may be modified at will. These mountings may be moved vertically or borizontally for facilitating regulation.
The clock is fixed in such a position that its pendulum swings in a plane parallel with the magnetic meridian. One of the slits allows a luminous ray to reach the declinometer, the second allows one to pass to the bifilar, and the third to the balance.
The system as 2 whole is so arranged that the luminous images of the slits, after being reflected from the mirrors, are sent to the sensitized paper.

Fig. 3 will give au idea of the arrangement. The reflected rays that proceed from one of the side instruments, the declinometer, for example, fall upon a right angled prism, P^{1}, which sends them to a narrow window (in the front side of the photographic frame) that may be closed at will by a shutter, O, actuated by an external screw, V (Fig. 2). By a proper regulation of the slit, the two images, D and D^{1} Fig. 3), reflected by the fixed and movable mirrors, are made to form sharply upon the sensitized paper. The bifilar gives in the same way, through the prism, P^{2}, two images, B and B^{1}, of the corresponding slit. The prisms, \mathbf{P}^{1} and P^{2}, each covers a third of the width of the paper. The intermediate third remains free and receives the images, C an C^{2} directly trom the slit corresponding to the balance-these images having beforehand been refracted by the prism adapted to the apparatus. There are thus obtained on the paper six traces, three of which are datim lines of each of these elements, and the three others so many curves the three others so many curves
loyed in those few observatories in which the study of terrestrial magnetism is organized in a complete way.
Mr. Mascart, without sacrificing anything to accuracy, which is an absolute condition in so delicate observations, has devised a registering magnetometer in which the cost of the apparatus is considerably reduced, and which permits of a reduction of the magnetic vaults to the least dimensions, of the use of one source of light for thethree compasses, and of a registration of all the elements upon the same sheet of paper, thus facilitating a comparison of. the different results.
which gives their variations. the line from one curv to the angle that the two mirrors make with each other.
The hour is likewise registered upon the paper. The clockwork movement is so arranged that the paper holder shall descend exactly 1 centimeter per hour, so that the total length of the curves is 24 centimeters. The paper is held in the frame between two plates of glass, one of which (that against which the sensitized surface rests) is transparent, and carries 25 borizontal dashes, separated 1 centimeter apart. These present themselves by turns before the
window, intercept the light for a few instants, and produce on the lines the breaks that are noticed in Fig. 4. But the paper is not always replaced at the same mivute, and, on another hand, it is never certain that the holder will be raised to the same point. The window, being closed during the few instants necessary for the change of the paper and for the renewal of the lamp, it suffices to note exactly the hour at which it is opened after raising the holder, and to afterward inscribe such bour upon the sheet.
The hour may likewise be marked by a periodical disturbance of the magnetized bars. To do this there is adapted to the clock an electric contact, which closes a circuit for a few instants every hour, at the moment the minute hand is at twelve. This circuit contains a small pile, and the current passes into three bobbins without iron placed near each instrument. There result from this, hourly oscillations of each bar and a temporary disturbance in the corresponding curve.
Finally, there are likewise obtained on the paper the different inscriptions that mark the curves; as, Magnetism, Saint Maur Park, Horizontal Component, etc. These inscriptions are transparent on the blackened glass that forms the back of the holder. In order to produce them upon the sheet of paper, we begin by covering the sensitized side of the latter, and then expose the frame for a few seconds to the light of a candle. The sensitiveness of the paper is such that this short exposure suffices for a good photographic impression of the inscriptions through the sheet. The frame is taken from the holder every day at noon, and the paper is taken out and replaced by another. Then the frame is put back in place and raised by a cord to the upper part of the dark chamber, where it is held anew by the ratchetwheel.
The action of the light on the gelatino-bromide of silver paper appears only on developing the proof. The image is revealed by the well-known oxalate of iron process, and is afterward fixed by means of hyposulphite of soda. On afterward fixed by means of hyposulphite of soda. On
coming from the bath the proof exhibits itself as shown in Fig. 4, save that there is no date, this being added by hand after drying. This figure, moreover, is a reduction.
The images being revealed, there remains nothing do but translate the curves into numerical values. It is necessary, then, to proceed first to the gradua tion of the apparatus. For the declinometer, we revolve the case, and cousequently the fixed mirror by a known angle which is indicated by the lower graduated circle ; the datum line is thus moved and the distance of the two images of the mirrors before and after the rotation gives the angular value of the millimeter on the paper. In the same way, on turning the winch to an angle of only 90°, for example, we observe by the displacement of the movable image the influence due to the torsion of movable image the influence due to the torsion of
the suspending thread, although such influence is the suspend
very slight.
From these experiments are deduced the angular value that a distance apart of one millimeter represents upon the paper. The object of graduating the two other apparatus is to find out to what fraction of the vertical and of the horizontal component the ordinate of the curve corresponds.
For this purpose we place successively near the declinometer, the bifilar, and the balance, in a special position and at a uniform distance, for five or ten minutes, an auxiliary magnet supported by a comparing rule. The action of this magnet modifies the position of each of the three bars, and produces a sudden movement of the movable image. These separations, which leave their trace on the paper, permit of determining, by calculation, to what fraction of the components one millimeter on the paper corresponds. the components one millimeter on the paper corresponds.
The sensitiveness of the various apparatus is so regulated that the variations of the different elements shall be always comprised within the limits of the paper. It is by analogous experiments that we measure and verify from time to time the value of one division of the scales of the direct reading apparatus. The ordinates of the three curves give, then, the variations in the three elements, save the corrections of temperature relative to the two latter. Every day, moreover, the results of the registering apparatus are controlled by those that are given by the direct reading variation apparatus.
The Mascart registering magnetometer formed part of the scientific apparatus carried by the French Cape Horn expedition. It is operating at present at the Petit Port Meteorological Observatory, at Nantes, and other stations are taking measures to have it in use before long.
It is to be hoped that the economic features connected with this apparatus, that are well in harmony with the modest sum at the disposal of country observatories, will quickly make the use of it general. A comparison of the results obtained simultaneously at different stations will furnish science with documents, on the importance of which it were useless to dwell, and which up to the present time have been lacking for the study of that so little known portion of the physics of the globe called terrestrial magnetism. -Th. Moureux, in La Nature.

A Hartford, Conn.,correspondent, referring to the recent remarkable sunsets, says that they are very common in Norway, where, if very red, they are taken to indicate rain; but if of a lighter hue and clear, the weather thereafter is likely to be fine for many days.

Ropes vs. Leather Belte for Driving Machinery.
At the October meeting of the New England Cotton Manufacturers' Association reference was made to the adoption, by many English mill owners, of ropes for driving machinery instead of the gearing formerly so largely used, or the belting so universally employed in this country. These ropes are run in V-shaped channels in the pulleys; and for transmitting say 700 horse power, mention was made of twenty of them being run on a wheel 12 feet in diameter, conveying power to wheels 7 feet in diameter, the ropes being 2 inches in diameter after stretching. In favor of this system was urged, first, the very low cost of the rope as compared with good belting; second, its lightness, and the consequent saviug in power in running; and third, the convenience with which power could be added by putting on additional ropes to the full extent of the number of grooves on a pulley, with the security, also, of neverhaving to stop the machinery for a break down, as no more than one or two ropes would ever be likely to break at oue time
Notwithstanding these apparent advantages, we do not apprehend there is any danger of rope being substituted for leather belts in any of our factories. The English manu facturers never had a full idea of how well power could be conveyed by leather belting uutil we taught them.

Ten years ago their large belts were generally made so that there were ridges at the laps, and they could not have that thorough pulley contact necessary to the effective transmission of power; but our belt manufacturers, at the very commencement of the business, made their belts of an even thickness throughout, skiving down the ends, forming the laps to a perfect match. The English manufacturers were for years very incredulous as to the possibility of conveying high powers by belting, as was done in this country, and they used gearing in a much larger ratio than ever we did. But to go from gearing to rope traction seems, indeed, like stepping from one extreme to the other. The ropes used are not supposed to lie in the bottom of the grooves of the pulleys, but are held in and pinched by the crotch which the sides of the grooves form. This makes the transmission of the power a direct pull to force the rope into the groove, which it must as rapidly leave with the rotation of

Fig. 4.--SPECIMEN OF THE REGISTERED CURVES.
First be sure that you bave the pure linseed oil. There is much sold as such manufactured out of peanuts. The test is simple. Nut oil has a sharp, acid taste, smells just like sour peanuts, is darker and thicker than the other oil, has a clinging tendency when rubbed on the finger, dries with a gloss even in priming coats, and is very much given to gumming up when sanded. Pure linseed oil has a bright amber color, runs freely, sparkles when flowing from the can, tastes smooth and mild, and has the smell of a flaxseed poultice. When you are satisfied that you have the genuine oil, and wish to boil it thoroughly, first take, say about onebalf pound of red lead and the same quantity of sugar of lead, put into five gallons of the oil, and place over a slow fire so as to boil evenly. Do not let your fire get either too hot or too low; keep an even temperature, if possible; coke or charcoal is preferable to either hard or soft stone coal. Avoid a wood fire, as, after the oil gets to boiling heat, a sudden flame shooting up might ignite the entire lot. Let it boil seven hours full; the red lead and sugar of lead will then become dark brown. Stir all the time while boiling slowly, and only one way; do not change the direction of the stroke or you will burn the oil, just as you would tarch. After you have taken it from the fire, cover it up and let it stand to cool off, say over night. The sediment will settle; pour out the oil and strain; your oil is boiled, and a better article you could not have, as all the fatty substances are destroyed. This is the English method, used in all the carriage factories in the United Kingdom.-U. S. Carriage Monthly.

Geological Changes at Salt Lake.

Mr. G. K. Gilbert has recently, according to Science, given some rather disturbing. suggestions to the people of Salt Lake City (Salt Lake Weekly Tribune, concerning the probability of destructive earthquakes there. He describes the slow and still continuing growth of the ranges in the Great Basin by repeated dislocation along great fractures, the earth's crust on one side being elevated and tilted into mountain attitude by an upthrust that produces compression and distortion in the rocky mass, until the strain can no longer be borne, and something must give way. Suddenly and violently there is a slipping of one wall of the fissure on the other, far enough to relieve the strain, aud this is felt as an earthquake; then follows a long period of quiet, during which the strain is gradually reimposed.
Such a shock occurred in Owen's Valley, along the eastern base of the Sierra Nevada, in 1872, when a fault scarp five to twenty feat bigh and forty miles long was produced. A scarp thirty or forty feet high is known along the western foot of the Wahsatch high is known along the western foot of the Wahsatch
Range, south of Salt Lake, and other scarps of Range, south of Salt Lake, and other scarps of
similar origin have been found at the bases of many of the Basin ranges. The date of their formation is not known; but it must be comparatively recent, because they are still so little worn away. Wherever they are fresh, and consequently of modern uplift, there is probable safety from earthquakes for ages to come, because a long time is needed for the accumulation of another strain the pulley. The life of a rope thus used, therefore, can in no way compare with that of a good leather belt, which, when properly put up, and of sufficient size for the work required of it, will last almost a lifetime. American belt manufacturers have equipped many factories in England and Scotland and on the Continent of Europe, and we do not believe that any mill owner, either here or there, will ever go from the use of such belts to the employment of ropes for driving machinery.

Reflex Nervous Infuence.

It has oftentimes been cast up to physicians, by those who ought to know better, that the mysterious and ill-defined influence of "reflex action," is utilized as a shield to cover ignorance, and as a loophole to crawl through and escape when confronted with a morbid condition, the intimate nature and etiology of which they are unable to fathom.
That some men hitve availed themselves of this convenient and comprehensive term is undoubtedly true; but that such a thing as reflex action is a reality, and that it is a much more potent etiological factor of disease than is ordinarily believed, is also true.
By reflex action we mean that an impression made upon some nerve termination in one portion of the body is carried along this nerve to a center, and from there reflected, as it were, along some other nerve to a part of the body remote from the point of first impression, at which latter point its power to disorder healthy action is made manifest, while no morbid phenomena are observable at the point from which the irritation has really arisen.
This is a plain definition of "reflex action," devoid of all technical and superfluous words; and that diseased conditions frequently have such orjgin, no one of experience will deny. But the general practitioner, we fear, does not take this factor sufficiently into consideration in the formation of his opiuion of the cause of disease, and since, therefore, his remedies are directed rather to the effect than to the cause of the effect, he is met of tentimes with failure, when, did he but realize the actual influence of reflex action, and look to the proper point for his cause, and guide his therapeutics accordingly, he would have much better results.-Med. and
Surg. Reporter.
sufficient
Conversely, when they are old and worn down, the breaking strain may even now be almost reached, and an earthquake may be expected at any time. This is the case at Salt Lake; for, continuous as are the fault scarps along the base of the Wahsatch, they are absent near the city. From the Warm Springs to Emigration Cañon they bave not been found, and the rational explanation of their absence is that a very long time has elapsed since their last renewal. In this period the earth strain has been slowly increasing. Some day it will overcome the friction. lift the mountains a few feet and re-enact on a fearful scale the catastrophe of Owen's Valley.

A California Mirage

According to the San Francisco Call, visitors to the Cliff House on the afternoon of November 12 were repaid by a clear view of the North Farallon, which, from the Cliff House point of view, is absolutely below the horizon. The clearly defined heights, seen as though they were within a dozen miles of shore, were at first thought to be the saildraped masts of some ocean ship, and when they were identified as the cliffs of the North Farallon, there was great interest displayed by the residents and visitors at the Cliff House. In addition to the well worn marine glasses, a telescope was brought into use, and the unusual sight of islands known to be below the line of the horizon, but plainly pictured in the mist-producing mirage, was regarded with intense interest. The effect, just before the setting of the sun, was as though far out in the ocean some, jutting rocks had been utilized for the building of gracefully outlined castles, and when the light disappeared in the cloudless western horizon, and with it the beautiful mirage, the effect was as though the observers had been gazing on "castles in the air." So clear was the atmosphere that the South Farallon, with its light house tower clearly discernible, was seen as long as the already set sun left a golden streak of light in the west. The whole effect was beautiful in the extreme, and so rare that it held enchanted every one who chanced to be where it could be seen, until darkness came and hid all view of the ocean.

Painting Iron.

The value of red lead as a preservative for iron has been generally accepted. Wrought iron requires a bard and elastic paint, which will hold itself together even if the scale beneath gives way. The following experiments, made under the auspices of the Dutch State railroads, may be instructive. Iron plates were prepared for painting as follows: Sixteeu plates, pickled in acid (bydrochloric), then neutralized with lime (slaked), rinsed in hot water, and while warm rubbed with oil. The same number of plates were cleared of scale, so far as it could be removed by brushing and scraping. Four plates from each set were then painted alike-namely, four plates wifl coal tar and four plates with iron oxide Λ, another set with iron oxide B, and the remaining set with red lead. They were then exposed three years, and the results observed were as follows : The coal tar on the scrubbed plates was quite gone, that put on the pickled plates was inferior to the others. The iron oxide A on the scrubbed plates was inferior to the other two, while on the pickled plate it held well. The oxide B was found superior to that of A, but inferior to red lead, while the plates covered with red lead stood equally well on both prepared plates, and were superior to all others. From these results it is evident that pickling the iron removes all the black oxide, while scrubbing does not. It is also shown that the red lead unites with oil to form : hard, oxy-linseed oil acid soap, a harder soap than that given by any other combination. The red lead is shown by those experiments not to give way under the scaling; it is more adherent to the surface, more elastic and cohesive. On the Cincinnati Southern Railroad, experience extending over some years has shown that red lead has proved the most durable paint in the many miles of iron trestle and bridgework. It is found that the iron oxide is washed away by the rain and perishes in spots, although a valuable paint if frequently renewed. Red lead, on the other hand, is more expensive than iron oxide and is difficult to be obtained pure. It is adulterated with brickdust, colcothar, and other substances, and has lost its high repute.
Referring to white lead as a material for painting iron, one authority observes that "white lead should not, if possible, be used in priming iron, nor in any priming coat; moreover, it is a less desirable overcoat than iron oxide. The class of iron paints compounded of ores of natural iron rust, combined with clay or some other form of silica, are very useful, as they contain no water nor sulphuric acid. Magnetic oxide, or pure iron oxide, is an excellent protection for iron, says one writer; it is impossible to scrape it off. It is also of value in woodwork, and resists the action of salt water and sulphurous gases, so destructive to most pairts. There is uo doubt the great protective element in paint is the oil, and the conditions required for success are stated to be to prevent the drying part of the oil from becoming hard dry; the soft-keeping, non drying acids must be kept from flying away in such a quantity as to reduce the oil to a brittle mass. In other words, the elastic qualities of the oil must be protected from the action of the oxygen.

Vegetable Wool, or Silk cotton.
 by james collins.

Kapoc, or kapok, as it is more usually rendered, is a Malayan word, signifying cotton or a cotton-like substance, i. e., silk cotton; real silk being known as sutra. Kapas is also used in Malay for cotton or silk cotton, the same vernacular name obtaining in Bengalee and other dialects; but in this latter case the term is restricted to true cotton plants (Gossypium eps).
Kapok silk cotton is furnished by the Eriodendron anfractuosum, DC., the Bombax pentandrum of Linnæus. The plant bas been placed in various natural orders, some giving it a place in Bombaceæ, others in Sterculiaceæ or in Malvaceæ.
The tree is from 50 to 60 feet in height, the trunk being prickly at the base and the branches growing out borizontally. There are five to eight leaflets, lanceolate in shape, and either entire in their margins or serrated toward the apex. The capsule, or fruit, is five celled and five valved; the cells contain many seeds, covered with silky or cottony hairs, which form the kapok or vegetable silk. The gum furnished by the tree, when mixed with spices, is used in India in bowel complaints, and the seeds yield a dark colored oil. The tree is of rapid growth, aud is lofty and imposing in appearance. It is found in India, the Malayan Archipelago, and in Africa and other countries. In the East generally, kapok is used for stuffing pillows, etc., and for tinder; but it has been found that the smoothness of the fiber prevents cohesion, or "felting,' so necessary and important for spinning purposes. In Africa the tree is looked on with veneration, and is termed the "god tree," in some districts it being looked upon as a sacrilege to cut the tree down. Still the trunk is used for forming canoes, and although the wood is soft and liable to the attacks of insects, if soaked in limewater it becomes much more durable. The silk cotton, either alone or mixed with cotton, is largely utilized in Africa. The young leaves are used as food, and form not a bad substitute for "Ochro" (Hibiscus esculentus).
Another tree yielding silk cottou in India is the Cochlospermum gossy pium, DC., the Bombax gossipinum of Linnæus; a member of the tea order (Terustrœmiaceæ). It is a tree attaining a height of 50 feet, and the soft silky hairs surrounding the seeds are used for stuffing purposes. The tree
has large, conspicuous, yellow flowers, and is not uncom mon in Southern Iudia, Travancore, and Coromandel. The Calotropis gigantea, or Mudab tree (nat. ord. Asclepiadaceæ), also yields a like substance.
In America, both North and South, various so-called "milk-wceds," as Asclepias verticillata, and other plants, such as species of Bombax, etc., yield silk cottous, while the Asclepias syriaca obtained the attention of European agriculturists as early as 1785, and paper has been made from the cortical fibers of this plant. The young shoots of the plant, too, are said to equal asparagus in flavor.
These are only a few of the plants yielding silk, cotton which might be mentioned. Silk cottou has made its appearance in the markets from time to timie, and in 1851 the jurors of the Great Exhibition recommended this substance for stuffing purposes and in mixed fabrics, and notices respecting it have occasionally appeared in this Journal. For the lining of quilts, quilted petticoats, etc., silk cotton seems to answer admirably, but its want of cohesion, or non-felting qualities, renders it of no use for spinning purposes, except as a mixture to impart a silky gloss to the fabric so mixed. The price is 10 w , it is light in weight, elastic, and soft, and is said to resist the attacks of insects. Journal of the Society of Arts.

WINDOW SASH ADJUSTER.

The lowering and raising of the upper sash of a window is usually an awkward matter, and in large plate glass windows one of considera ble difficulty. Either a poleor a chair must be brought, or else the lower sash is lifted, and th upper one then drawn down or pushed up from the out side.
Th

The accompanying engraving shows a simple and per-

RUSSELL'S WINDOW SASH FASTENER.
manent attachment for adjusting the two sashes, which are balanced in the usual manner by weights in the box frame.
A- double side-pulley, S S, and a single one, S, are screwed to the face of the upper sash, and through these pulleys is reeved a cord, h, whose ends are attached to the top rail of the lower sash. A similar cord, g, is reeved through a dou ble and a single pulley screwed to the upper portion of the window frame, its ends being attached to the top rail of the upper sash as shown iu the figure. The pulling cords, M and N, carrying thimbles at their upper ends hang from the lonps of the cords, g and
By pulling down the cord, N , either the upper sash may be lowered or the bottom one raised, as desired. [On bolding the loover sash by pressure of the band or a clamp, the cord, N , draws down the upper sash; on holding the upper sash by its cord, M, the cord, N, will draw up the lower sash.]
The upper sash is raised and closed by pulling the cord, \mathbf{M}; the lower sash is drawn down and closed by the hand, or by a cord not shown in the engraving fastened at one end to its top rail.
This invention has been patented by Mr. S. H. Russell, No. 10 Cedar Street, New York city, from whom further information may be ubtained.

Coke for Foundry Purposes.

Coke is being successfully introduced for foundry pur poses in New England and elsewhere in preference to anthracite. The advantages claimed for coke over anthracite are: 1. A duty 30 per cent higher than anthracite. 2. A rate of smelting from 30 to 50 per cent higher than that of anthracite. 3. A less powerful blast is needed. 4. The castings are softer.

Affairs at the Patent Office.
 beial correspondence.]

Washington, D. C., December 17. As those applications for patents on which the final fees wre paid on the 13th inst. will not be issued uutil January 1,1884 , all the patents which will be issued in the year 1883 have now been determined upon, and the total issues for the year may be obtained. A calculation shows that during the year 1883 there have been issued 21,196 patents, 167 deissues, 1,020 designs, 902 trade marks, and 906 labels. The total number issued since July, 1836, when the record was first started, is 289,793 pitents, 10,418 re issues, 14,465 designs, 10,769 trade marks, and 3,743 labels.
These figures indicate in some degree the immense amount of labor performed by the Patent Office, and the record for the present year shows how rapidly the spirit of invention s increasing.
During the past week the speaking telephone interfereuce cases were heard before the Examiners-iu-Chief in Appeals from the decision of the Examiner of Interferences. The occasion was a notable one from the number of distinguished counsel who appeared for the different claim ants, among them Mr. Roscoe Conkling.
These interferences were declared in 1878, and they involve not only the art or method broadly of transmitting articulative speech by throwing electrical undulations corresponding to the sonorous vibrations of the spoken words upon a wire, but the various forms of application that had been suggested up to that time for carrying this method into practical operation. Seven parties now lay claim to the meril of this striking invention, viz. : Alexander Graham Bell. J. W. McDonnough, Thos. A. Edison, Elisha Gray, A. E. Dolbear, Francis Blake, and J. H. Irwin. A vast amount of testimony was submitted, and the Exami ner of Interferences, after a long delay, announced his opinion last June in a pamphlet of 350 printed pages.
This opinion is an epitome of the case. The first thirty pages are devoted to an examination of the state of the art as described in prior publications. An explanation and construction of the various issues involved occupies the next thirty-five pages, and in two hundred and seventy-one pages following the Examiner traces the history of the invention of each party as disclosed in the testimony. The conclusion is then drawn that Bell is entitled to judgment couclusion is then drawn that Bell is entitled to judgment
of priority for the fundamental invention of the telephone as a whole and for the greater part of the particular devices involved in the interference. Mr. McDonnough is, however, adjudged the first inventor of the telephone receiver, which is a constituent and necessary part of any speaking apparatus, and Mr. Edison is awarded a particular form of the water telephone, au instrument now out of use and of very little importance.

While the Examiner enters upon a minute investigation of the facts of the case, he declares that he is controlled to some extent by certain technical presumptions arising upon the face of the papers. These state that he is not en tirely clear that Bell had any knowledge, at the time his application was filed, of any practical apparatus for speaking purposes, but that he must assume, as in other cases, that the invention was made at least as early as that time. The Examiner's rulings upon these points, as well as bis findings of fact, were arraigned as errors upon the appeal. It was argued before the Board that the controversy should be determined upon its merits, and not upon strained constructions of the issue and technical presumptions at variance with the facts in the case. The hearing was concluded on December 15, and it will probably be some months be fore the Board will formulate its decision. Franklin.

Wire Fence Telegraphing.

An experimental work has been going on for a short time along the Milwaukee and St. Paul Railroad Branch and the Brandon Branch, about 30 miles in length, the object being to determine whether or not the barbed wire of he fence on either side of the road can be utilized for telegraphic purposes. The fence wire was placed in proper condition for a sufficient distance to make a satisfactory test, the wire being run under the surface at road crossings. Superintendent of.Telegraph Simpson, decides that the plan is not practicable. Telegraph work can be done over the feuce wire at this time, he says, but during the winter months, when huge snow. banks completely cover the fence, the line would be made useless. There are thousands of miles of wire fence along the Western lines, and it bas been contended that they should be utilized for this purpose.

A New Treatment for Neuralgia.
The latest agent introduced for the relief of neuralgia is a 1 per cent. solution of hyperosmic acid, administered by subcutaneous injection. It has been employed in Billroth's clinic in a few cases. One of the patients had been a martyr to sciatica for years, and had tried innumerable remedies, including the application of electricity no fewer than 200 times, while for a whole year he had adopted vegetarianism. Billroth injected the above remedy between the tuber ischii and trocbanter, and within a day or two the pain was greatly relieved, and eventually quite disappeared. It would be rash to conclude ton mush from these results, in the face of the intractability of neuralgiæ to medication, but if it really prove to be as efficacious as considered. hy perosmic acid will be a therapeutic agent of no mean value.
-Lancet.

Flour Mill Insurance

We published a few weeks ago a list of flour mills burned in the United States during October, in which the loss reported upon each mill was $\$ 10,000$ and upward. From this list we find that there were twelve mills burned, with a loss of $\$ 265,000$ in all, not speaking of the lesser cases, which foot up probably $\$ 15,000$, making in all a loss of about $\$ 280,000$. If we multiply this by twelve for the entire year, it would make a grand total of $\$ 3,420,000$; but October would not be the proper month to average from, for reasons which will be recognized by millers themselves. Not one of those fires originated from any cause other than might have occurred in any large business, and taking the number of mills in the country, and the large amount of capital invested, this loss is low compared with other businesses of like proportions.
These fires may be divided into two groups, namely, those which originate by reason of defects in arrangement and construction, and those caused by the manner in which the mills are worked. Out of the entire number burned during the year so far, not one was caused from what the insurance actuaries would call the explosive property of the flour, and none would point to the fact that flour mill risks are any greater than those of other factories where machinery is largely used. The question then that naturally rises is this: Are new process mills, or those in which improved machinery is used, less liable to dust explosions than the number still pursuing the even tenor of their way with the old method?
We incline to the opinion that the roller process, with all its concomitant machinery, notable among which stands the improved dust catcher, is not so liable to explosion from flour dust, for the following reasons: In July, 1879, a report was made to the Society for the Encouragement of Manufactories in Prussia, in which it was announced that the Industrial Association of Lower Austria had investigated the causes which would produce explosions in flour mills. In this report it was stated that in the course of their investigatiou attention wascalled to the well known phenomenon, the artificial lightning in the theaters produced by lycopodium, which contains considerable oily matter. A similar blaze, or explosion, could not be produced with ordinary meal, but with meal which had been previously heated
made is taken charge of bythe dust collector, and kept "out of harm's way." There is a great deal of difference in the fire risk on flour mills now, compared with a few years ago and a careful investigation will show, we believe, the possibility of materially reducing rates, except perhaps in case where these establishments are grouped together in consid able numbers.-Milling World.

FOG SIGNAL APPARATUS.

The fog signal apparatus shown in the annexed engraving consists of one pair of "Buckett" caloric engines working pumps for compressing the air, a reservoir for the

levers under the action of small pistons operated by diaphragms to the outer surface of which compressed air is admitted. When the high note is required only one brake is put on, but for the low note both brakes are on, thereby reducing the speed of the revolving cylinder. While the notes are being sounded the pressure of air in the reservoir diminishes; but as the air for operating the diaphragms comes from the same source, the force on the brakes decreases in the same ratio, and the friction on the disks being reduced, the cylinder continues to revolve at a uniform speed, and the pitch of the note is constant.
The end of the crank shaft of the engine is formed with a screw that engages with a worm wheel upon which is bolted a cam having long and short projections. The short projection opens a small valve, and the long one opens the same valve and also a second one. The first valve is connected by a copper tube with the starting valve box of the horn which, in turn, is connected by a pipe with the diaphragm of the first brake. When the cam opens the small valve, air from the reservoir passes to a diaphragm on top of the starting valve box, and the area being greater than that of the starting valve, the pressure at once opens the latter and a volume of compressed air is admitted to the horn, and at the same time a small quantity of air passes to the brake. The cylinder laving only the resistance of one brake to overcome, revolves at the speed requisite to produce the high note When the long projection of the cam strikes the second valve, air is admitted to the second braise, and the extria fric tion causes a reduction in the speed of the cylinder and the low note is produced. By adjusting these parts the notes and intervals of silence can be changed as desired.
The wrought iron generator of the engine is lined with fire brick, between the outer sides of which and the inner sides of the generator is an annular space. Air is forced into the generator by the lower small pump operated by the main piston, and this air is divided into two currents, one passing into

FOG SIGNAL APPARATUS
up to 30° C. the phenomenon would result precisely as with lycopodium.
It was probable that in the mills the meal was heated, and in consequence much more easily ignited. The report gives as a reason why explosions were so few in former times, that the millers used to wet the grain, whereas it was not the case in these times. If the chemical constituents of meal are considered, the question assumes an entirely different aspect. All cereals, with the exception of buckwheat, contain a certain quantity of oily matter; for example, of a thousand parts of flour 18.50 are oleaginous; of rye, 21.09 ; barley, 26.31 ; oats, 39.00 , and of corn as much as 48.37 . These figures are taken from the work of Moleschoot on "Chemistry of Food." The presence of this oleaginous ingredient accounts for the explosive property of flour and meal. The grain having been crushed between the burrs under heavy pressure and a great amount of friction, a great deal of heat must necessarily be engendered by the operation, and a large quantity of moisture containing this oil is set free, and a spark from a stone or the flame of a lamp is sufficient to ignite at once the oil distributed among the fine particles of dust and flour, and an explosion takes place. At present time, by the roller system, no oil is lost from overheating, very little dust is made, and that whichis
compressed air, automatic gearing for opening the valves at given times and sounding the signal, and Prof. F. H. Holmes' patent double nete "Siren" fog horn. The apparatus herewith illustrated is for light ship or signal station use when it can be placed near the engines, but when it is ocessary to separate them, othe
The siren produces its powerful sound, which in calm weather may be heard twenty miles, by mears of two slotted cylinders, one fixed and the other revolving within it. The slots, as they pass one another, stop, or cut off, the passage of compressed air or steam, and thus cause a series of vibrations and, consequently, a musical note, the pitch of which depends upon the speed of the revolving cylinder. In order to vary the note it is only uecessary to control this velocity.
The double note horn is formed with a casing within which is a fixed slotted cylinder and a revolving cylinder moving upon a spindle. The slots are formed in each cylinder at opposite inclined angles, so that the motive fluid impinging against number of inclined planes causes the nner cylinder to revolve with great rapidity. As this cyinder revolves it carries with it two disks, attached to the common spindle, and upon their peripheries are pressed
the annular space referred to, whence it deccends beath the fire bars and so through the fire; the other passing into the upper part of the generator, above the fire, where its oxygen entersinto instantaneous combustion with the carbonic oxide formed by the air which has passed through the fire. The intense heat causes expansion, and a valve allows a portion ${ }^{\circ}$ the gas to enter the cylinder and actuate the piston, giving motion to the engine, as shown in the engraving. The upper small pump supplies air to the reservoir for operating the siren. For the engraving and for the description from which the above notes were taken we are indebted to The Engineer, of London.

Greenport Harbor.

A correspondent writing from Greenport, N. Y., dissents from our statement, in the Scientific American of December 8, that there were no good harbors in Long Island Sound west of New London, and adds that the harbor of Green port is of sufficient depth to accommodate the Great Lastern. He also says an effort is being made to obtain a Congressional appropriation for building a breakwater here, which would render the harbor a spacious and convenient barbor of refuge for all vessels passing through Long Island Sound.

Riveted Joints.

The literature of the strength of riveted joints is already extensive; we have no intention of augmenting it. What we are about to say concerning them at present bears relation to workmanship, and not to proportions. No doubt workmansbip affects the strength of structures joined by means of rivets; but the fact is not taken too much note of by those who carry out experiments and tabulate results for the benefit of engineers. It is very commonly assumed that a riveted joint is a riveted joint, and that suffices. As a matter of fact, however, there are wide differences in the qualities of riveted joints, and more attention should be paid
and rag Fis. ish, which sime extremely slende Its color is pale brown with dark brown transverse bands This fish is found on all the eastern coasts of the Atlantic Ocean from Northern Europe to the promontory of the Cape of Good Hope, also in the Mediterranean and Black Seas Their favorite dwelling places are in the submarine meadow and sea marshes, where the long-leaved sea grass grows lux uriantly. Here they may be seen between these sea weeds often clinging together in a mass, and in various positions some with the head upward, others with the head directed downward, some in a horizontal position, and all slowly swimming forward.
The breast and caudal fins are very small, and the curious dorsal fin seems to be the only one that is of any use as an organ of motion. Their food consists of thin shelled crabs, worms, etc
The manner of propagation was discovered by Erdstrom. The male has a furrow beginning at the tail and running about two-thirds the length of the body; the side walls are a ittle curved. This furrow is closed by two valves, lying with the edges close to each other. In fall and winter these valves are thin, and fall together in the furrow, but in April, when the spawning season approaches, they enlarge and the sac is filled with mucus. In May the female lays her eggs in the furrow, in a row, the edges close, and the embryo fish remain in it until the end of July. ln case of danger the joung fish are taken into the furrow.
The flesh of this fish is hard and firm, and agreeable to the taste. In some places the fish are salted.
The sea horse (Hippocampus antiquorum) resembles greatly the animal from which it takes its name. Its length is from fifteen to eighteen centimeters. Its color is a pale ashen brown, which in certain lights changes into blue and greenish tints.
From the Mediterranean Sea, which is regarded as the true home of the sea horse, it extends in the Atlantic Ocean to the Bay of Biscay, and yet farther north to the shores of Great Britain. Like the needle fish it is only found where the bottom of the sea iscovered with a rich growth of plants, for between these plants it seeks and finds its food. Here it may be seen sitting upon the plants almost motionless. Lukis, who has observed their manner of life in captivity gives a good description of them. He writes: "Wben swimming they hold themselves in a perpendicular position. They wind their tail around the sea grass, and look carefully around in the water in search of food, rushing after it with great dexterity as soon as perceived. The sea horse, like the chameleon, has the power of moving either eye at will, independently of the other, and this in connection with its changing color makes it a very interesting object o the spectator. Their food consists mainly of very small crabs, invisible to the naked eye, which they pluck off from the leaves of the sea plants. This food can only be obtained for them in sufficient quantity if one lives by the sea, otherwise they die sonner or late from starvation. A good many of them die soon after being caught, and if a thunder shower rises they often all die with one clap."
Propagation takes place in the same way as with the needle insh. Gessner say 'Its flesh is poisonous, and induces dangerous illness." It is probable that the ancients had a practical knowledge of this. Gessner writes further that 'the flesh dried and pulverized, and taken as a medicine, is a wonderful help to those bitten b. a mad dog. A powder of this dried flesh will also al eviate side ache.
In the sea about New Holland there is found a species of fish resembling the sea horse, which we will call the rag fish. They are distinguished by an abundance of thorny points, and ribbon-like appendages, hanging down from all sides of the body, like rags from a garment. The dorsal fin is ex clusively upon the tail. The short thorns are strong and pointed, the ribbon-like continuation inflexible, the remaining appendages thin and flexible. The fins, with the exception of the dorsal fin, and the small pectoral fins appear to be stunted, and their place supplied by these appendages, by means of which it attaches itself to the sea plants. Its color when living is red, but when dried it is leather color.
Its habits are not known, but probably they are the same as the other sea horses.-From Brehm's Animal Life.

The Missouri River, which forms a new bed for itself somewhere with every freshet, is threatening to make Leavenworth an insular city.

THE NEEDLE FISH AND SEA HORSES.
sideration. Riveted work mav be classed under three head First, work such as suffices for bridges and girders, the joints of which need not be water or steam tight; second; a superior kind of riveting, such as that employed in iron ship building; and third, boiler riveting, which ought to be a good as possible.
Now as regards the first, there appears to be a general consensus of opinion that nothing can be better for it than the hydraulic riveter, but it does not appear that the machine can be used with sufficient facility in the actual erection of iron structures to enable band riveting to be wholly dispensed with.' No doubt many of our readers have used the hy draulic system, and can tell exactly what percentage of work
can be done under it, and what percentage must be done by hand; and to simplify matters, and so keep discussion as useful as possible, we would suggest that a ty pical bridge be had in mind-let us say a railway bridge, with one span of 180 feet, and two spans of 75 feet each, plain lattice girders, the larger 16 feet deep and the shorter 7 feet, the whole to be floored with flat iron plates, the rails to be carried on longitudinal timbers supported by cross girders.

What proportion of machine riveting is possible on such bridge, if put up in England, say, ten miles from a town? Concerning ship work there can be no doubt that the use of the machine system is rapidly extending, and there is now hardly a hole or corner in a ship's hull into which the machine will not find its way. Dispatch is the great object had in view in this class of work; but no one has yet sup plied much information concerning the places where hand riveting can be done as well and more quickly than machine riveting. It stems to be tolerably plain that such do exist, and that there are places where a couple or three men can begin and finish a seam of rivets in the time that would be occupied in fixing a machine in place. No doubt there will be differences of opinion on this pointthe advocates of machine riveting holding one thesis, and the supporters of the old system another. It is more than probable that the truth lies between the two. The results of practical experience can alone be relied on to settle the point.
When we come to deal with boilers we get on very delicate ground. It is not to be denied that many men who are very particular about the workmanship of their boilers will not have machine riveting at any price. They rely entirely on skilled labor, and no doubt a thoroughly well made locomotive boiler is the most beautiful and perfect specimen of hand riveted work that can be had. Such boilers as made in this country require no calking. The workmanship is exquisite, and one result is that the strength in the seams in locomotive boilers is often in excess of that laid down in text books, the 75 per cent for a double riveted seam rising to as much as 78 per cent, or a little more. It is urged that machine riveting cannot produce such results; it is far too in flexible; it takes no account of the heat of a rivet, or its quality, whereas an experienced man knows exactly what to do with a rivet, and feels his way, so to speak, along a seam in a way that the machine cannot do.
As bearing on this point, we may say that cold riveting has been extensively practiced in the United States. The high pressure boilers used on the muddy rivers consist of wrought iron tubes, seldom more than 3 feet in diameter, $3 / 8$ inch*thick, and about 30 feet long. These are arranged side by side, with a large furnace at one end, and in many case a flash flue running straight to the chimney. Such boilers will work with water far too dirty to be used in a tubular boiler. They carry pressures of about 150 pounds, and the seams are made up with cold rivets of a peculiar ysoft and ductile iron. It is said that these joints stand far better than any hot riveted joint that could be made, and we have no reason to doubt that this is true of the very thin plates used Going to the other end of the scale, we have the modern marine boiler, with plates $11 / 8$ inch thick and rivets $11 / 4$ inch. It is asserted by one party that such rivets cannot be closed by hand in a satisfactory fashion, and that the aid of machinery must be called in; but, on the other side, it is pointed out that boiler fronts have always to be put in by hand, and tbat this hand riveting is quite as good as the machine work, and it is also contended that machine riveting is so far from securing tightness that every rivet head bas to be calked inside the boiler, to make certain that it will not leak.
Many able engineers hold views entirely opposed to these, and assert that the best kind of hoiler work cannot be produced at all without the aid of ma chinery. The arguments they urge in avor of machine riveting, as a matter of workmanship, are that it compels the rivets to fill the holes, and effectively closes the plates on each other. The arguments against it are that split beads are apt to be produced, and that the rivets not only fill the holes, but now and then burst the plate; and that in most cases, unless unusual care and vigilance are employed, the iron will be severely strained, and a bad instead of a good boiler produced. On none of the points we have stated as open to discussion do we express any opinion; that diverse views are held by experienced practical men is, howver, indisputable, and we must beg our readers, no matter which side they take, to bear in mind that there is another ide, and that impartial men will like to hear both before arriving at a conclusion.-The Engineer.

engineering inventions.

A cable grip apparatus has been patented by Messrs. Henry Dods and Frank Hindes, of Virginia City. Nev. It has a compensating spring device to re-
lieve the shocks of gripping the cable, and prevent the slieve the shocks of gripping the cable, and prevent the
slipping of the grip on the cable; also a specially devised Eliping of the grip on the cable; alsoa a specially devised
frame, bed plate, and slide, enabling the clutch to be frame, bed plate, and slide, enabling
so worked as not to injure the cable.
A car coupling has been patented by Mr. Timothy C. O'Donovan, of Walker's Mills, Pa. It contened cross rod of a coupling link with a transverse groove, and an enlargement for receiving the cross rod
of the drawhead, which link can be swung so that its hook can catch on the cross rod of the opposite draw-
A mine railroad has been patented by Mr. John G. Thompson, of Caba, Ill. In an inclined
or sloping road for working cars in opposite directions at the same time by a rope doubled around a drum at the upper end of the road, the road being single track
with a turnout, the rope is so arranged within the single track, and branching into and along the turrouts, le track, and branching into and along the turrinuts,
hat the switches work automatically, and the cars cros the rope wi hout obstruction or delay.
An improved gauge cock has been patented by Mr. Michael J. Fitzgerald, of Fort Wingate, N. M. verse passaque, the plug has a weighted lever, and both verse passage,
of tit passage are so made as to be entirely shit oft
from the passages of the stocti in its closed position from the passages of the stock in its closed position;
the weighted lever can always be relled upon for keepthe weighted lever can always be relled upon for keep-
ing the cock closed except .when purposely opened to ing the cock closed except
test the water in the boiler.

mecha nical inventions.

An insertible saw tooth of improved form
as been patented by Mr. William B. Risdon, of Trenhas been patented by Mr. William B. Risdon, of Tren-
ton, N. J. The tooth is made with a toe, a perforation, ton, N. J. The tooth is made with a toe, a perforation,
and a slit at itis heel to odadat it to be secered in a saw
and plate with a sloulder and a recess at the rear end by a
rivet wholly within the tooth, thus putting no strain A bolt header has been patented by Mr. Benjamin Mckillen, of Verona Mills, Mich. It is a Benjamin McKilen, of Verona Mils, MiN. Mina
tool wits handed and pivoted die jaws, haviug rabbet
grooves in the lower side to be securedbetween and on the jaws of a vise. The tool affords great facility for making well defined angles to square shanks, and may
also serve as a holder for rods of different kinds of work for setting and truing the parts.
An improved mechanical movement has been patented by Mr. Fraucis W. Goodyear, of Spring-
field, Mass. It is intended to make reciprocating mo tion more readily convertible into rotary, and is applied in a simple manner to various hand and foot power ma-
chines. There is a ratchet action in which no springs chines. There is 9 ratchet action in which no spring
are used, and the whole movement is practicaiiy noise${ }_{\text {An }}$ less.
An improved piano pedal stool has been patented hy Mr. William Winter, of Albany, N. Y.
The invention consists in a stool provided with foot levers connected by connecting rods and ellbow levers piersted on a bar of the stool and adapted to operate
the pedal levers of a piano or like instrument. The stool is provided with devices for easy and rapid attachment to the instrument or pedal lyre. The angle levers are
provided with pads to prolect the pedal levers from beprovided with
ing injured.
ing in appareatus for dyeing with hydrocar bons hias been patented by Mr. Engen Rau, of Hart ford, Conn. It is a dry dyeing maccine with an appa-
ratue for saturating the previonsly dried fabric in a color dissolved in benzine and oil; it has a wringer for taking out surpluse color, and a drying chamber, from
whence the fabric is conveyed between endless blankets through a highly heated finishing chamber where it
is subjected to steam pressure, the whole in one coninnous operation, and with no waste of color
A gas valve for ice machines has been patented by Mr. Richard Thoens, of New Orleans, La. gas, being especially intended for use in connection
with ice machines in which ammonia yas is used. The with ice machines in which ammonia gas is used. The
valve stem is packed by rubber washers, teeween which is a metal washer, and these washers are clamped between melal rings with beveled surfaces, the rubber washers spreading to close tightly against the stem and
the inner surface of the valve body. An improvement in saw mills bas been patented by Mr. Walter P. Scoffeld, of Haw thorn, Fla. It consists in a contrivance of belt shifting devices, whereby a trip block on the log carriage will automati-
cally slift the belt from the loose to the tight pulley of cally shift the belt from the loose to the tight phine the log
the feed ssaft, to rotate the latter only when the setting apparatus is to be operated; the driving shaft Is supported steadily its whole length by pivoted bear-
ings, and there is a locking device for the connecting ings, and there is a locking device for the connecting
rods of the oppositely acting friction wheels of the setting apparatus to lock the wheels out of contact with

agRicultural inventions.

A cultivator has been patented by Mr. Cbarles D. Reed, of Polo, Il. According to this inven
tion, as the standards and plows are moved laterally bar keeps the couplings parailele, so that the eshovels will always e held at the desired angle with the line
of draught, thus al ways doing good work, however they may be moved laterally.
A corn planting attachment for plows has been patented by Mr. Philip Dougherty, of Fort Dodge,
Iowa. A jointed spout can be so adjusted to the depth of lie intended furrow and the width of the furrow slice that the seed may be dropped in the outer part of 'he previous furrow and will be covered by the furrow
slice. the seé being dropped as the plow is drawn forslice, the
ward.

A corn planter has been patented by Mr_{r}. IVilliam P. Lanham, of Star, Mo. The seed dropping sidides are operated by the revolution of the drive wheels,
and are so arranged and held in place that they will drop more or less seed as required. A pawl carrying wheel
has adjustable eslides and arms to engage with crank lever, whereby the water received upon the cover will arms of markers, and held up by springs, so that mark- flow into the channel py
ers are forced down to mark the soil by the revolution
of the drive wheels.
A cotton, corn, and tobacco fender for aising the leaves of plants while soil is being thrown raisund the stalks by the plow, has been patented by
Messrs, M. F. Duncan and R. E. Coyle, of May's Lick, Ky. The fender is constructed in combination with the plow beam, with its forward end pointed and curved si ightly inward and its rear end curved outward and upward, so that as the plow is dra
erraises the leaves of the plants.
Mr. Obadiah Wilson, of Plainville, N. Y has obtained a patent for an improved method of con-
veying tobacco from the field and depositing it in the veying tobacco from the field and depositing it in the
drying honse. The invention consists in a truck with drying wheelse. The provided with a removable rack upon which the plants are placed after they have been cut. They are then transferred to the drying house and the the necessity of rehandling the plants, saving time and labor, and lessening injury to the crop from handling.

miscellaneous inventions.

An improved suspender end has been paconted by Mr. Jacob Katzenberg, of Now York city. It eather and an interposed piece of cloth, the ends being thus made more durable and less liable to stretch out of shape, while the braid is kept out of contact with the An improved
An improved fire escape bas been patented by Mr. John Schmittknecht, of New York city. It provides for a shaft let into the wall of a building, or
placedagainst the same, tie shafl having ladder rounds, and being provided at its upper end with a skylight, so entrance.
A combined register and ventilator has Aeen patented by Mr. William H. Maxfield, of Mays-
ville, Ind. It consists in a special construction and combination of parts whereby the whole is made to present an ornamental appearance, great facility is afforded for removing and cleaning the interior, and it may
be readily operated from opposite ends of its air box. be readily operated from opposite ends of its air box.
An automatic vehicle brake bas been patented by Mr. Rictard R. Pace, of Lineville, Ala. The invention consists in levers pivoted on thills held to the font axle by shackles, the levers carrying brake shoes with the thills by extensible braces. The brake can he so locked as to be made inoperative when desired.
An improved window cornice, that is conMr. Michael Leuz, of New York city. The center piece has grooves and stop blocks, and there are sliding end pieces with end \mathbf{T}-bars and set screws, the combination
being such that the whole is strongiy made and readily being such that the whole
fitted to the place desired.
Letters patent have been granted to Mr' William A. Whitney, of Hudson, Mich., for an improvd wheel barrow in which the legs and braces are. by a combination of bolts and metal devices, connected
rigisly and closely to the handles, so that the wheel rigidly and closely to the handles, so that the wheel
barrow frame will be very strong, and can easily be A vegetable grinder and slicker bas been patented by Mr. Edward Schmitz, of Winsted, Conn. grating cylinder, which may be changed for a cutting sort of hopper, whereby the grinding, grating, or cuting of cabbages, potatoes, and other vegetables may be attle.
An improved hot blast stove for blast furnaces has been patented by Mr. Charles Alger, of
Hudson, N. Y. The invention consists in the peculiar construction of the air heating pipes, which can be made of wrought iron if desired, and are faced inside ond outside with firebriciss, those inside being made
A wasbing machine or improved washboard hasbeen patented by Mr. A. E. Kiel, of Montrose, Iowa. The hoard has three roll sets, each set
consisting of a ribbed, a smooth, and a corrugated roll, the rollers not to be in contact but as close as possible without touching, and the grooved rollers being of greater diameter than the plain ones, the wh
shorten the time and lessen the labor of washing.
An improved grain weigher and measure has been patented by Mr. James E. Kemble, of Vickscase, inside of which is another circular case, suitably pivoted and divided by partitions, one loaded side falls oo discharge a weighen load, while the light side rise which can be secured in any position to adjust the measure to weighing regularly any desired quantity.
A razor guard bas been patented by Mr . James P. Tryner, of Denver, Colo. It is formed of a
strip with a forked arm at each end, in the ends of the prongs of which rollers are journaled, one being slightof the blade; one of the prongs has a check plate, and on the upper surface of the strip is a spring for pressing the blade upward, the whole to prevent the razor from cutting the person using it.
An improved nueasure for measuring grain, vegetables, etc., has been patented by Mr. William A Carpenter, of Bankers, Mich. In a metal cylinder having its top and bottom edges turned over wire rings, a
wooden ring surrounds the upper part of the cylinder, wooden ring surrounds the upper part of the cylinder,
and a wooden bottom rests upon a bottom flange made by turning the edge of the cylinder over a wire, the strong and durable.
A combined vault cover and ventilator has been patented by Mr. T. W. Langill, of New York city. receiving channel plate at the lower end, the cover
resting upon the inner flange of the cinannel plate, and resting upon the inner flange of the channel plate, and
provided with a sliding rod, a connecting bar, and a

An improved bottling device has been paented by Mr. Alfred Rigny, of New York city. In a supe open at both ends, the upper part carries a and there is a valve at the lower end, ope-
sup rated by a rod through the tube. The tube is calcuempty for corking the bottle, and it can be readily moved f
liquid.
An improved fifth wheel for wagons has It is formed of two circular channel plates with in. erlapping flanges and corresponding central depression and wearing surface, in combination with a circuims. By this means the friction between the upper and the turning of the wagon is made much easier.
A bee hive of new and improved contruction has oeen patented by Mr. Edward Meyer, of
Hallettsville, Texas. The bees can, in this hive Hallettsville, Texas. The bees can, in this hive, be fed ank leeing attached; the honey can be removed withou permitting the bees to escape, and there is no danger of
being injured by the bees while removing the combs, being injured by the bees while removing the combs, while the arrangement is such
A rotary leader link for fisbing lines forms the subject of a patent which has been issued to Mr arl Ludwig Bollermann, of New York city. It is fo goes into the water, and is so arranged that, when the fisherman throws out his line, the snells with their hooks will not become tangled up with or wrappe matter how much the line may be twisted.
Mr. Morris H. Marcus, of Edenburg, Pa., has patented an improved sample dummy. The inven-
tion consists in a dummy for cloth or rolled goods, mare of wood or other suitable material, with its bod of the required shape of the roll of goods to be repre sented, and having reduced ends, on which are secured and mounted pieces of selvage till a bulk is obtaine equal to that of the body of the dummy. This is covered
of cloth which is specially adapted for window show.
A folding cot of improved construction Sor use in hotels and hospitals has been patented by Emily F. Vance, of Gallipolis, Onio. Two pairs of legs
are united at the upper ends by longitudinal rails, the legs being crossed and pivoted in the usual way. A quilted bottom or sheet is lined and vartly stuffed with cotton batting, and a pillow is provided at each end,
which can be,removed very easily and readily. The cot equires no mattress, and can be folded compactly. A cap for receiving the fulminate for fir by Mrposives in blasting rack, etce, has been patented tube is threaded internally and externally to withln fulminate is placed and the lower end closed by a cap A threaded cap with a conducting wire is screwed on the upper end, or a fuse is then inserted. 'The tube can be screwed in a giant candle of explosive mate
the flange fltting on the upper end of the candle. A feed governor for cotton gins has been pa tented by Mr. Henry P. Schaefer, of Schulenberg, Tex Most gin saws now sack or draw in the coton fastest a the central part of the saw shaft, drawing the cotton from this edges of the feed bor laver By this improvement a thinner layer of cotton is
the center, the suction of the central saws drawing in from the thicker edges such portion as will make the whole supply to
vent all choking.
A new process of and apparatus for distillation has been patented by Mr. James G. Ponte rect fire, steam jacket, or steam coil, and the ferment mash, beer, etc., are agitated during the distilling process in sach manner as to prevent lees or solid particle
from adhering to the side or bottom of the still an thus burning or scorching, this being accomplished by causing a stream of the liquid being distilled to be con stantly withdrawn and forcibly injected back into th aill whie in
A machine for wetting paper has been patented by Mr. John W. Morrison, of Omaha, Neb.
The quires are fed to feed rollers, from whence they are taken by fingers so adjusted that only the unde whole may be submerged, as desired, and that, or the whole may be submerged, as desired, and thence the
paper is conveyed out through other rolls to a receiving table, the whole being done as cast as the operator can feed the paper, and so each quire will receive just the same amount of wa
the machine is set
An improved washing machine has been patented by Mr. E. W. Bush, of Armstroug, Mo. The object of the invention is to produce such a combination vices to an ordinary wash tub. There is a false botom, below which the dirty water collects, and the false bottom being provided with radial ribs, the clothes to rccked to and fro over them in a horizontal plane by means of a suitable handle. The machine can
feadily adapted to or easily removed from any tub.
A tobacco moistening tray has been patented by Mr. Charles N. Swift, of New York city. A shallow naterial in such a way that a single supoly of water wif last considerable time, and the tray requires but little attention, so being well adapted to place in show cases, etc., where the cigar boxes may be arranged upon . The same inventor has also obtained a patent for a
mistening pad of some bibulous substance covered y a.perforated plate, and supported on a plate tolded perforated plate both the bibulous substance and the perforated plate.

The Charge for Insertion under this lead is one Dollar
 divertisements must be received at publication office
asearly as Thursalay norning to appenr in next issue. The tobacco of the club room ought to be of the enjos their pipes und cigarettes together, the air many enjoy their pipes and cirgarettes together, the air soon
beoomes heary and offensive unless they are very par-
ticularabouts their choice of brans. Gentimen of reticular about their choice of brands. Gentlemen of
fined tastes secure Blackwell's Durham Long Cut.
The Universal Calculator solves all problehs in arithmetic and trigonometry, instantly by a mechanical scientific press. Price $\$ 1.00$ by mail. W. H. Wythe, cean Grove, N. J.
Jenkins Standard Packing and Jenkins Patent Valves.
Price list free. Jenkins Bros., 71 John Street, New York. Thread C. Jenkins Bros., 71 John Street, New York. all kinds or sewing machines. Patent for sale. Adess, Gavino Gutierrez \& Co., 192 Front St., New York. Irido-Copper, manufactured by the American Iridium o., Pearl and Plum Sts, Cincinnati, Ohio, is superior to
ronze metal for journal bearings of accurate and high unning machinery, being hardand slightly porous, Pumps-Hand \& Power, Boiler Pumps. The Goulds Fox' Fox's Corrugated Boiler Furnace, illus. p. 354. HartOne 12 inch Weaton Dynamo Electric Machine in One 12 inch Weston Dynamo Electric Machine in
good order, for sale at one-half price. Address P. 0. ox 433, Hartford, Conn.

Corliss Steam Engines at a bargain.

One $12^{\prime \prime} \times 42^{\prime \prime}$; one $16^{\prime \prime} \times 36^{\prime \prime}$; All in flrst-class running order.

Steam Pipe and Boiler Coveriug Ros red \boldsymbol{R} Roofing, and general line of Asbestos materials. Phil Carey \& Co., 127 Central Avenue, Cincinnati, 0. For Freight and Passenger Elevators send to L. S. a \& Son, Rochester, N. Y.
Best Squaring Shears, Tinuers', and Canners' 'Tools
Ningara Stamping and Tool Company, By fralo, \mathbf{N}. \mathbf{Y}. Lathes 14 in . swing, with and without back rew. J. Birkenhead, Mansfield, Mass.
The Best.-The Dueber Watch Case.
If an invention has not been patented in the Unted States for more than one vear, it may still be patented in
anada. Cost for Canadian patent, $\$ 40$. Various other oreign patents may also be obtained. For instructions ddress Munn \& Co., Scievtipic American Patent Guild \& Garrison's Steam Pump Works, Brooklyn. N. Y. Steam Pumping Machinery of every descripion. Send for catalogue.
Nickel Plating.-Sole manufaclurers cast nickel andes, pure nickel salts, polishing compositions, etc. Com-
lete outfit for plating, etc. Hanson \& Van Winkle. Lists 29, $30 \& 31$, describing 4,000 new and 2 d -liand Ma hines, ready for distribution. State just what machines For Power \& Economy, Alcott's Turbine, Mt.Holly, N. J. "Abbe" Bolt Forging Machines and "Palmer" Power

Railway and Machine Shop Equipment.
Send for Monthly Machinery List
Railway and Machine Shop Equipment.
Send for Montuly Machinery List
Ito the George Place Machinery Company,
21 Chambers and 103 Reade Streets, New York
"How to Keep Boilers Clean." Book sent free by Wed Pat
Wanted.-Patented articles or machinery to make
nd introduce. Gaynor \& Fitzgerald, New Haven. Conn. Water purified for all purposes, from household supWies tothose of larkest citles, by the improved filters
anutactured by the Newark Filtering Co., 177 Com. nanu factured by the
nerce St.. Newark, N. J.
Improved Skinner Portable Engines. Erie, Pa.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. Split Pulleys at low prices, and of same strength and
ppeurance as Whole Pulleys. Yocom \& Son's Shafting Works. Drinker St., Philadelphia. Pa
Supplement Catalogue.-Persons in pursuit of information on any special engineering. mechanical, or scienhifle subject. can bave catalogue of contents of the SC1The Suppranma contains lengthy articles embracing the whole range of engineering, mechanies, and physiMachinery for Light Manufacturing, on hand and Fossil to order. E. E. Garvin \& Co., 139 Center St., N. Y. Fossil Meal Composition, the leading non-conducting
 Curtis Pressure Regulator and Steam Trap. See p.349. B. Rogers \& Co.. Norwich, Conn.. Wood Working uachinery of every kind. See adv., page 350 . LightningScrew Plates, Labor-saving Tools, p. 348. Woodwork'g Mach'y. Rollstone Mach. Co. Adv., p. 366. Steam Pumps. See adv. Smith, Vaile \& Co., p. 382. AjaxMetal Company, Phila. Clamer's Ajax Metals for Fire Fire Brick. Tile, and Clay Retorts, all shapes. Borgne Peck's Patent Drop Press. See adv. page 396. Drop Forgings. Billings \& Spencer Co. See adv., p. 398. Bradley's Road Cart, Syracuse, N. Y. See p. 398. Diamond Planers. J. Dickinson. 64 Nassau St. N. Y. Steam Hammers, Improved Hydraulic Jacks, and Tube Emer 18 , Emerson's 1884 Book of Saws. New matter. 75,000 Hoisting Engines. Friction Clutch Pulleys, Cut-off Gould \& Eberhardt's Machinists' Tools. See adv.,p. 396. - Barrel, Keg, Hogshead, Stave Mach'y. see ad., p. 308. For Mill Macb'y \& Mill Furnishiug. see illus. ady. p. 396 Renshaw's Ratchet for Square and Taper Shank Drills.
The Pratt \& Whitney Co., Hartford, Conn.

Magic Lanterns and Stereopticons of all kinds and prices. Vievs illustrating every subject for public ex-
hibitions, sunday schools, colleges, and home entertainment. 116 page illuistrated catalogue free. McAllister Manufacturing Optician, 49 Nassau St., New York. Mineral Lands Prospected, Artesian Wells Bored, by
Pa. Diamond Drill Co. Box 423 . Pottsville, Pa. See po. 338 . For best low price Planer and Matcner, and late improved Sash, Door, and Blind Machinery, Send to
catalogue to Rowley \& Hermance williamport, catalogue to Rowley \& Hermance, Williamsport, Pi.
Gatalogues free.-Scientific Books, 100 pages; Electri The Porter-Allen High Speed Steam Engine. South-
work Foundry\& Mach. Co.. 430 Washington Ave.,Phil.Pa. The "Rockwood" Instantaneous Photographic Dry Plates are the best for amateurs and scientists. Sen
for circular and instructions, No. 17 Union Square. muckakur

HIN'IS TO CORRESPONDENTS.
No altention will be paid 1.0 communications unless accomp
writer.
Names and addre
We renew our request that corren
Wo inguires. to former answers or articles, will be kind enough to name the date of the paper and thepage, or the numbe of the question.
Correspondents wiose inquiries do not appear after a reasonable time should repeat them. If not then published, they may conclude that, for good reasons, the Editor declines them.
Persons desiring special information which is purely
of a personal character, and not of general inferest of a personal character, and not of general interest,
should remit from $\$ 1$ to $\$ 5$, according to the subject, as we cannol be expecterl to spend time and labor to as we cannol be expecter to spend time and
Any numbers of the Scientific American Supplement referred to in these columns may be had at the office. Price 10 cents each.
Correspondents sending samples of minerals, etc
for examination, slould be careful to distinctly mark for examination, should be careful to distinctly mark o
label their specimens so as to avoid error in their indenti label their specimens $\mathbf{s} 3$ as to avoid error in their indenti
fication.
(1) W. M. asks: Is there any advantage in having a large number of notches in the quadrant for a locomotive reversing lever? Why would not nine or
even seven do as well as fifteen, and the quantity of steam regulated by the throttle lever instead of altering the traverse of the valve? A. Of course working
steam expansively, to the extent that the work required steam expansively, to the extent that the work required
will permit, is more economical than "throttling," and will permit, is more economical than "throttling," and
the greater number of notches are used to adapt the the greater number of notches are used
expansion more accurately to the work.
(2) W. M. L. asks whether there is any dif
erence in the effect on the health between the heat of a erence in the effect on the health between the heat of a there is no difference, if the temperature of the radiating surface is the same in both cases. But wrought iron heated by steam is better than cast iron at a red beat.
(3) W. W. writes: Am I likely to damage a steam boiler (8 horse) by painting it outside with coa tar? A. No; not injurious, but better heat it before use,
(4) O. H. R. asks how to keep an engine boiler when the engine is not running. A. If the boil er is laid off for a length of time, after cleaning thorough ly fill entirely full of fresh water and close all open-
ings; a little lime thrown into the water will be benefinngs; a little lime thrown into the water will be benefi-
cial. Outside remove all the masonry where it touches (5) J s writes: 1 I have a lot of sewin (J) J.S. writes: I. I have a lot of sewing machines to redecorate. I use a rubber stamp. Turpen-
tine and all oily substances rot rubber. Could you give tine and all oily substances rot rubber. Could you give machines? They have becn japanned and baked. A A good gold size japan should not act injuriously upon a well vulcanized stamp. 2. Would it require a high
temperature to do a good job of japanning? A. Yes. 3. temperature to do a good job of japanning? A. Yes. 3.
Arethere different grades of japan which should require different degrees of heat 9 Yes. The heat varies with the different grades and makes. 4. What kind of therA good thermometer of Fahrenheit's scale, from 32 de grees to 400 degrees, with metal back and well guarded to prevent breaking by the hear. 5. Could you send me
the address of an importer of French metal? A. We the address of an importer of French metal? A. We
are notfamiliar with the term French metal. What is it used for
(6) F. M. F. asks: 1. Of what is Professor Crookes' radiometer mades A. It consists of a fly or vane having four aluminum arms, to the extremities of
which are fixed thin disks of mica blackened upon one which are fixed thin disks of mica blackened upon one
side. This fly is poised upon a very fine needle point, side. This fly is poised upon a very fine needle point,
and inclosed in an exhausted glass bulb. 2. In what SUPPLEMENT are directions given for making a dynamo electric machine? A. In Supplement No. 161. 3 electric machiue? A. In SUPPLEMENT No. 161.3
About how much would it cost, how much power would Ab required to run it, and how many arc lights would it run? A. It would cost about $\$ 35$, would require $1 / 4$ horse power, and it might run one very small arc lamp.
(7) A. G. A. writes: 1. I bave made a small induction coil. Will you please tell me through your val-
uable paper how to make a magnet for the coil by which I can regulate the shock? A. Bind the bundle of wires together with fine iron wire, or inclose it in a thin sheet iron cylinder, and vary the strength of the
current by changing the depth to which the bundle is current by changing the depth to which the bundle is
inserted in the coil. 2 . Will a solid iron bar do in place of a bundle of iron wires? A. It will not be so efficient as the bund le of wires
(8) F. T. H. asks: 1. Would it be lawful to make and use a telephone exactly like the one describ-
ed in SUPFLEMENT, No. 1429
2. Would it be lawful to sell such a tolephones A. 1 and 2 . See adverisement
relating to telephones in another column of inis paper. 3. Will this telephone,work $1 / 2$ miles? A. Yes. 4. Has the resistance of the telephone bobbin anything to do
with the length of the lines A. Within certain limits it makes, practically no difference. 5. I understand that resistance of the line and battery. When two are used, should the resistance be divided? A. The circuit produced by the telephone is of great intensity, and capable of operating through great resistance. 6. How is it with three or more instrumentss A. Turee or more in-
truments may be used in the telephone circuit. struments may be used in the telephone circuit. 7.
Where can I get directions, working draughts, etc., for Where can I get directions, working draughts, etc., for
making a galvanometer? A: In Frick's "Physical Technics,", Ganot's "Physics," or any of the modern elementary works on electricity. You will also find nuch information on the subject in the ScIentifi AmERicase, in order to solder a metallic connector to it? A. Copper them. This you can readily do in any of the
orms of sulphate of copper battery. 9. Would vulcanite be as good as wood for the tube in the center of the induction coil described in Supplement, No. 160\% A. Probably better. 10. If this cail were excited by the dynamo described in SUPplement, No. 161, and con-
nected with a 5 -strand barb wire fence 600 feet long, would an unpleasant shock be given any one touching sulated, in 11. Suppose the tynamo described in SUPPLEMENT, No. 161, should be made twice as...high, and of double width and thickness, would the proportions be correct? A. Yes. 12. If double magnets were to be enlarged, and, if so, how much? A. If you desire to make a large machine, you would do well to examine he Weston, Edison, or siemens machine. Therarmain the Supplement referred to, and are necessarily omewhat larger. 13. What number wire should [wind he magnets and armature with for incandescent lighting, and how many lamps would it light? A. For a machine twice the size of that in Supplement, No. 161, wind the armature with No. 16 wire and the magnets
with No. 12. It would probably run two or three Ediwith No. 12. It would probably run two or three Edi-
son lamps. 14. Can I get any better design than this for on lamps. 14. Can I get any better design than this for
dynamo, one sufficient for 15 incandescent lights, and if so, please let me know where to procure it? A. See $31 / 2$ inch engine have, 60 pounds pressure, 200 revolutions per minute? A. Supply ports $\frac{3}{1} \mathbf{X}$ X $11 / 2$ inches; exhaust $5_{1}^{T} \times 11 / 2$ inches. 16. At what fraction of its stroke should the steam be cut off to secure the best. results? A. Two-thirds. 17. A gasometer rises
and falls irregularly, with a 40 foot stroke-how can its altitude be recorded in an office 6,000 feet
way? Is there anything in the marketfor this purpose? away? Is there anything in the market for this purpose?
A. गhere is no easy way of doing this. The distance is A. There is no easy way of doing this. The distance
o great that no mechanical device, unless very well ade, and strong, would be accurate. An electricalde ice something on the burglar alarm principle might be side of the gasometer.
(9) Perham writes: We have occasion to mark a great number of cotton flour sacks for shipment. Pencil and colored chalk obliterate to freely before teaching destination. Can you recommend somethin ${ }^{2}$ to use for this purpose, and where can it be obtained? A.
Try the following: Melt together six parts of tallow soap Try the following: Melt together six parts of tallow soap
and six parts of beeswax; when thoroughly melted and nd six parts of beeswax; when thoroughly melted and mixed add one part of lamp black or Prussian blue (10) S. T. writes: In Supplement, No. 40 page 6,495-the Electric Furnace-how is the electric arc pplied to the various crucibles to be effective? (11) P. W. asks: 1. I would like to know what is the best metal to use for insulating electric wire, and how applied? A. Metals are not insulators; gutta-percha, India rubber, and various gums are insulators. 2. What has the size of wire to do with the conductive power. and what metal is best? A. The resistance of a wire is inversely in proportion to its sectional area. Silver is the best conductor. Copper is next. 3. Is lead on-conductor or partial? Lead is a poor conductor. Does the almosphere absorb any of the electric cur ent passing over wies (in all kins of weather)? perfect insulator would prevent it, but such a thing is perfect insu
(12) C. R. asks for a good formula for porlain collodion for transparencies? A. The following from D Vol.
Pyroxylin........................ 1 gramme.
Ether 40 cu. cent.
Transparent alcohol.......... 40 .

Left to settle.
B. Magnesium chloride. 1 gramme.

To be filtered.
Silver nitrate, 20 grammes, dissolved in water, $0 \mathrm{c} . \mathrm{c}$. , to which
To be filtered.
D. Citric acid, powdered, 18 grammes, dissolved in
boiling water, 18 c . c., to which is added alcohol, 162
To be filtered.
Six hundred cubic centimeters of solution A are pourd into a bottle of yellow glass; $50 \mathrm{c} . \mathrm{c}$. of B are added and well shaken; next 60 c c . of C are poured in and
shaken for five minutes; finally 40 c. c. of solution D are added, and the whole is left eight to ten days, when will be fit for use.
(13) E. H. S. asks for a receipt for a varish for boots. There ie no waterproof varnish that \mathbf{I} know of that does not injure the leather

Beeswax	. 18 parts.	
Spermaceti	6	
Oil of turpentine.	66	"
Asphalt varnish		\cdots
Powdered borax.		.
Vine twig, black.	5	"
Prussian blue.	2	"
tro benzol		${ }^{\prime}$

Melt the wax, add powdered borax, and stir till a kind eti, add thormed. In another pan melt the sperma-
the color, previously rubbed smooth with a little of th wax. Perfume with nitro benzol. Ap
quantities, wipe with a cloth, and brush.
(14) J. W. H. asks: 1. How is nitrate of antimony made? A. According to Ad. Wurtz, the neuisal antimony nitrate is not known, but a basic nitrat is obtained by dissolving the antimony protoxide in
fuming nitric acid. 2: How is the potassium bichro mate solution prepared that is used in the two fluid cells, i. e., bichromate solution in the glass jar with the car-
bon and dilute sulphuric acid in the porous cup with he zinc̣? A. Potassium bichromate, 2 parts, dissolved water, 20 parts, to which is added sulphuric acid, part. 3. Pleasegive me the composition of the
used in medical batteries? A. Mercuric chloride.
(15) L. S. asks how to prevent steel springs from rusting. Whatever is applied mustnot crack in
bending. A. You do not mention the kind of spring. bending. A. You do not mention the kind or spring
Oiling might answer in some cases. A thin coat of fin japan baked on would prevent rust. The springs migh e coppered.
(16) S. S. asks for the most economical eethod for using a bydraulic pressure pump to produce method to produce the effect of a city water works is to
mether put a tank in the attic and use the pump for keeping up
the supply. If your building is low, so that an elevated tank is notavailable, you may have an air tight tank upon the same floor and use a force pump for putting water into the tank and an air pumpforkeeping up the pressnre. A pump
both air and water.
(17) F. X. A. asks for a good, cheap way to manufacture emery paper. A. In large manufactur paper into a machine, where the glue is rolled upon the paper, and the emery is distributed automatically. The old way is to brush the glue on by hand, then hold the
sheet over the emery boxand pour the emery over the sheet over the emery box and pour the emery over the paper with a shallow pan. The p
(18) O. G. asks whether the beet sugar in ustry is carried on to any extent in this country, or, is not, wherher any experiments have been made in this direction. A. There have been many trials to make beet The beets seem tolack the sweetness or sugar princi ple necessary to satisfy the requirements of the American market. Experiments have been made in Illinois, Wisconsin, and California, which proved unprofitable, also in Delaware and Maine. Address the
Commissioner of Agriculture, Washington, D. Commissioner of Agriculture, Washington, D. C.,
for reports upon the beet sugar interest in the United
(19) C. H. M. asks how large and where the
argest engine is in this country. A. We believe in the largest engine is in this country. A. We believe in the
sieamer Pilgrim-110 inches diameter of cylinder and steamer Pilgrim-110 inches diameter of cylinder and
14 feet stroke.
(20) H. A.-Use eight or ten cells of plung ing brchromate batery for running a mall incandes-
cent electric light. , Use tyenty or more cells for the arc light.
(21) G. A. L.-At the close of 1882 there were in the United States 15,551 passenger cars, 5,366 baggage, mail, and express care, 10,451 freight cars o
all classes.
(22) J. P. B. asks: What would best dissolve thin paint skins, so as to make them suitable
to apply to leaky roofs or around chimneys? A. Dis solve half a pound sal soda in 1 gallon rain.water,cove the paint skins with this solution, and then soak them
for a couple of days. in the mixture. Finally heat for a couple of days. in the mixture. Finally hea
them, adding oil to reduce the mixture to a proper con sistency for painting, and strain. Benzine may also b sed to dissolve the skins.
(23) W. L.T. writes: In Scientific Ameri ans. October 27. 1883, is an article in regard to catechu for dissolving boliter incrustation. I wish to know how much catechu to put in. a ten horse power traction en
gine; how to get it in the boiler, and how often would you advise one to use it. A. Dissolve in water and you advise one to use it. A. Dissolve in water an
send it through feed pump. The whole process is de scribed in article referr. d to. 2. Also what is good to keep a boiler from foaming? A. We cannot give you a remedy for foaming till we know the causes; foaming
has varions causes. 3. How do they tell the horse has various causes. 3. How do they tell the horse
power of an engine, say an 8 inch bore, 12 inch stroke power of an engine, say an 8 inch bore, 12 inch stroke,
200 revolutions per minute? A. Refer to rule in Scientific American Supplement, No. 253.
(24) H. C. A.-Use ordinary copal varnish. or picture varnish. See answer to query No. 7, Scien (25) J. V. R. asks: What
(25) J. V. R. asks: What proportion of gallic acid and sulphate of iron to a quart of water
would constitute a good writing fluid? A. The proportion of iron sulphate is generally about one-third that of the galls, and the solid
that of the water. Thus:

	Superior ink. Inferio
Tinct. of galls	..225......
Iron sulphate	75.............. 31
Gum.	25..... 31
Wate	

(26) R. S. writes: I am building an engine $3 x 3$ for a 20 foot steam launch. I intend using an upright tubular boiler, and want to use oil as fuel if possible. Please let me know what size boiler I require,
and also the amount of square feet of heating surface, to run my engine at 500 revolutions a minute. Is burn ing oil practical? And if so, how should lamp be ar ranged? A. We think you should have a boiler wit
not less than 50 to 60 feet fire surface for burning oil not less than 50 to 60 feet fire surface, for burning oil.
2. Burning oil has been practiced successfully in the 2. Burning. oil has been practiced successfully in the
"Oil Region ".and on locomotives. 3. The arrangements are varied, but generally the oil is sent into the
furnace by a current of steam through an injector, the furnace by a current of steam through an injector, the Steam must be first got up in the usual way
(27) A. D. B. asks: 1. What size boat will the 41/2 horse power engine made by James Leffel \&
Co. drive up a river? A. Boat 24 feet keel by 6 feet beam bv 3 feet 6 inches hold. 2. What would be the
size of a screw wheel for the same boats
about 34 inches or 36 inches diameter and 3 feet pitcli.
3. How many pounds would the boat carry 3. How many pounds would the boat carry, and at
what rate of speed? A. With engine making 250 revohations per minute, should make about $81 / 2$ or 9 miles er hour in still water,and carry $21 / 4$ to 3 tons according o model and weight of boat.
(28) H: D. asks how many Bunsen cells (two quarts each) will be'r
cent electric light. A. 40
(29) J. A. K.-First telephone was inted and made by Phillipp Reis, in 1860
(30) J. L. writes: Could you furnish me with a receipt for making a good sticking gum, similar
ot that used for envelopes of letters? A. Use the folwing:
Dextrine..
Acetic acid
Water,
Alcohol
Add the alcohol to the other ingredients when the dextrine is completely dissolved.

INDEX OF INVENTIONS

For which Letters Patent of the United States were Granted
December 11, 1883.
AND EACH BEARING THATC DATE.
-

Abrading machine, F. W. Coy.........
 289,986

Acid from native borate of lime, process and ap-
paratus for obtaining boraci, J. B. Hobson... 289,836 Advertising letter paper and envelope, F. P D'Opdorp...
Animal trap. F.
nimal trap. F. Glasson .
290,179
290.034
nimal trap, J. A. H. Marty............................ 290.082
 and straightening. J. L. Lewis. 290,077
Basin and water closet valve, H. Smith Basin and water closet valve, H. Smith 2£9.997
Battery. See Galvanic battery. Bed bottom, A. F. Miler ..240.067 2426 Bee hive, A. Fraley................................... 290,022
Bell, door, E. . B. Bloomfeld, Jr................ 289,804
Bell fastening, J. B Norton.
 Bench. See Work bench.
Billet and buckie fastener, C. A. Draper........... 289,816
Blank, form. etc., printed, J. o. Cole............ 289,892
Blank, form. etc., printed, J. o. Cole........... ... 288,
Blast furnaces, apparatus for charging, F. w.
Gordon. 2990,037
Blast furnaces, hot blast stove for, c. Alger...... 289992
Blind, window, J. B. Hartman................. 289832
Block or brick pressing machine, J. Bennor..... 289.882
Block or brick pressing machine. J. Bennor.... .. 289.882
Board. See Piano sounding board.
Boiler. See Sectional safety boiler. steam boiler.
Bolt. See Flour bolt.
solt header, B. McKillen
Book support. A. Bell..................
Boots and shoes. manufacture of, E. I. Buckiey.. 289,808
Bottle stopper, A. F. Parkhurst 2899928
20ttle stopper, G. S. 1rior.
290,
Bottle stopper, cap, and label combined, w. B.
Dean......................................8914
Box. See Paper box. Sanding box.
Box, H. A. \& A. A. Smith 290,130
Box naillng machine, J. H. Swift......................... 290,941
bran, etc., devie for packing, J. Fider......... 290,013
Brick and tile kiln, Souders \& Prutzman............ 289.938
Brick
Bre

Button, L. Goddu289.829, 2899830
Button, N. C. Newell 289,092
Butto
Button, fastener, P. H. Sweet, Jr.
Buttons, implement for attaching, J. H. Goodfel-
low.. 290,181
Cable grip apparatus, Dods \& Hindes............ 290,033
Cake beater, W. C. त्रinn. 290,033
Can. See Sheet metal can.
Can, G. W. Lane................................... 20.0.068

Car brake, w. Brumble.
Car brake, McCalip \& Nye.........
Car coupling, D. P. Cory...
Car coupling, M. J. Doughert
Car coupling, D. P. Kahl............
Car coupling. Merriew \& Poland
Car coupling. Merrihew \& Polan
Car coupling, т. C. O'Donovan..
Car coupling, Odell \& Cordell............
Car safety bridge, railway, A. B. Smith
Cars on curves, moving street, N. A. Fisher........
Carpets, name plate for marking, J. H. Vande
Carriage curtain fastener, w. E. Curtis..................................151
Carriage curtain topjoint, W. H. Thompson.................... 290,991
290,144
Carriages, canopy holder for children's, G. D.
Paul..103
Cartridge implement, E. R. Darling (r).......... 10,42
Cartridge implement, E. R. D\& Hansberry............. 10,421
Case. See Eyeglass and spectacle case.
Cash und parcel carrying system, M. Clark
Cash car, E. P. Osgood.
Chain, ornmental, C. H. Ware
Churn, H. T. Brantley.
Cigarette machine, o. w. Allison
locks, circuit breaker for electric. G. B. Webb.... 2899944 oal tubs, lock for self-dumping, G. L. Stuebner.. 289,940 Cock, hydrant, J. Snell.
Coffin ornament. J. B. Sargen
Coke oven. J. Butler.
Colter, rotary, F. J. Underwood.............................
ompressing pulv
O. E. Weber.
Cooler. See Canay cooler. La
Corset, M. B. B. letter, E. Cope.

Cotton, corn, and tobacco fender, Duncan \&
Coyle.................................

Cranberry gatherer, D. Lumb
Cranberry gatherer, D. Lum
Crane, hoisting, J. Le Duke.
Cream gage, A. P. Petrehn.
Cream gage, A. P. Petrehn..............
Cultivator, S. French.
Cultivator, H.
Hees
Cultivator. C.D. Reed.
Cultivator, hand, J. H. Thompson.......
Cut-off for conductors, W. F. B. Fisher Cut-ofr governor for steam engines, C. B. Richards
Cutlery, manufacture of pocket, J. Cutter. See Tobacce cutter.
Cutter head, H. D. Wilcox... Dam for irrigating ditches, W. H. Bigelow. Decorating ceilings and walls, F. E. Cheesman Dental plugger, B. F. Eshelman... Disinfectant, G. E. Rice.......
Ditching machine, J. L. Hous Door hanger, F. Birmingham r. C. Brinton

Draft retarder and flue scraper, combined, I. D
Drawing frame stopping mechanism, H. B. Estes Drill. See Grain drill.
Drive wheel, C. Darrow
Drive wheel, C. Darrow........
Dyeing, sithple, M. H. Marcus..........
Dydrocarbons, apparatus for, E. Rau.
Elastic fabrics, machine for crimping and prepar-
ing. M. Gardner........................
for, R. J. Sheehy............................
Electric machine, dynamo, J. Omsted..
Electric machine goverior, dynamo, W. P. Free-
Electric motor, F. Kuhmaier.
Electrical conductor or cable for lighting and other systems, W. A. Shaw...
Electro magnetic brake, Electro magnetic brake, L. Daf
Elevator bucket, J. A. Holmes........
Emery and polishing wheels. obtaining rotating centers of, J. D. Huntington.....
Engine. See Locomotive engine. Pumping en gine. Rotary ensine.
vaporating ligulds. N. Pigoon
Evaporating pan, w. B. Seward
Extension table, G. A. Faas.
Extractor. See Spike extractor.
Farm gate, S. Q. B. Denny
Faucet, G. Shone
Feed water heater, H. Fairbanks
Feed water heater, J. Park
Fence, wire, C. W. Bethea...............................
Fence wire, apparatus for making barbed, W.Wil
son. Jr....................
Fender. See Cotton, corn, and tobacco fender. P. De Puydt ...
Filter. J. S. Detrick

Filter, w. B. Harris
Filtering apparathss. N. A. A. B. Cheverallot.
Filtering apparatus, \mathbf{W}. M. Fischer
Filtering apparatus, W. M. Fischer.
Finger ring and other jewelry, L. . F. Hule
Fire arm lock. J. Randall.......
Fire arm, magazine. A. Burgess
Fire escape, J. M. Cunningham.
Fire escape, J. H. Downing.
Fire escape, Lewis \& San
Fire escape, w. C. Lutz.
Fire escape, J. B. Morris.
Fire escape ladder, R. M. Wivson.
Fire extinguishing apparatus and
Fireproof composition, C. C. Gilman (r).............19,
Fires in oil tanks, apparatus for extinguishing, G
\& F. H. Dunham..
Fishing hoat and manufacturing the same
Flour bolt, C. A. Smith.
Frame. See Saw frame
Fulling mill, R. Eickemeyer.
Furnace. See 1 ot air furnace.
Furnace, V. W. Blanchard
Furnace, U. Cummings
Furnace air heater, v. W. Blanchard
Gage. See Cream gage.
Galley type lock, S. D. Webb (r).
Galvanic battery, R. C. Anderson.
Gas and electric light fixture, combined, Vance \& Hinds..
Gas, apparatus ior producing, E. J. Jerzmanowski. Gate. See Farm gate.
Generator. See Steam generator
Glove fastener, E. J. Kraetzer.
Gluing machine, L. D. Norton
Gluten from the waste water of starch works, ap Governor, steam engine, Barnhurst \& Skinner...
Governor valve. W. E. Badger............ ...
Grain binder knotting hook, G. G. Hunt... Grain drill, M. F. Connett...............
Grain separator, shoe, A. H. Johns
Guard. See Razor guard.
Hair tonic. A. Miles.................
Hair waves, making, J. M. Baxter
Hair waves, making, J. M. B
Hanger. See Door hanger.
Harrow, J. Schindler.
Harvester, corn. J. Fry
Hasp hook, G. H. Sargent.
Hast stiffening machine, Hill \& Doody
Hatchway self-closing, C. C. Hartung
Heater. See Feed water heater. Water heater. Heel nailing machine, F. F. Raymond. 2d 289, 857,
ing ... 28
Hinge, gate. A. S. Thomas..............
Holder. See Bag holder. Horse tall holder.....................
and crayon holder.
Honey comb packing bottle or jar, S. M. Smith.. Mulins Hook. See Hasp hook.
Hoop bending machine, G. E. Smith.
Horse boot, J. O'Brien..................

Horse detacher, A. P. Larsson
Hose or tubing, E. L. Perry
Hose reel, A. Billings..............
Hospital crane, A. B. Morrison.
Hot air furnace, C. B. Boynton..
Hydrant, J. P. Farley..........
ydraulic motor, P. T. Grifft
Illuminating flulds, time mechanis
and extinguishing, G. P. Ganster
Insect catching device, L. P. De Luze. B. Hyde.
compounding the same, J.
Journals cool, device for keeping, T. S. Wilk in
Kiln. See Brick and tile kiln.
Ladder for gathering froit, portable, I. H. Titus.
Lamp chimney, glass, W. Pountney
Lamp, electric arc, W. P. Fre
amp, fountain, W. Dette.........
Lamp supporting device. A. French... Lamps, manufacture of incandescing, W. Holizer.

Hord cooler. o. G.
Lasting tool, L. Schrepel
Lathe, slide knife, J. Chase
Lead or crayon holder, M. Dittenhoe
Lead or crayon holder, B. G. Platt....
Leather disks, roll made from, Grunder \& Moyer.
Leather preserving composition, Barber \& Raker Lock. See Fire arm lock. Galley type lock. Hasp lock. Seal lock.
Lock and latch, H. H. Freeman......
Locomotive engine, electric, L. Daft.
Locomotives. device for increasing the tractio
of, J. Elder. of, J. Elder.
Loom for making French harness. A. Urbahn..................................
Loom for weaving carpets, W. II. Bairstow. Loom for weaving carpets, w.
Loom, ribbon, R. Kohlhaas.....
Loom warp stop motion, Tillon \& Clapp. Loom warp stop motion, Tillon \& Clapp. Looms, anchor shuttee box motion fo ubricàtor, M. S. Cabell Lumber jointing device, C. A. Williams.
Measure, w. A. Carpenter echanical movement, Beck \& Creter. Melons, packing and transporting
Metals. ornamenting. ㅍ. Bauer... Metals. ornamenting. ㅍ.
Mop and wringer, combined, W. Malick
Motor. See Electric motor. Hydraulic motor. Motor, C. De Mezerville .
Musical instrument pedal
Musical instrument pedal, H. Haas.
Nut lock, J. A. Fulwiler......
Oil from seeds, etc., apparatus
traction of, A. P. Massey..
Oils, etc., process of and app
paraffle. T. D. Fairfleld...
Ordnance by electricity, mechanis
Bouilly................................
Ore separating machines, ma
der for, E. B. Hastings...
der for, E. . . Hastings...
Ornaments, letters, figures, or characters upon a
kundation material, manufacture of, F. Kos
Pad. See Stair pad. Tobacco moistening pad
Truss pad.
Truss pad.
Paint. Sorg $\& ~$
Paint. Sorg \& Phillips.
Pan. See Evaporating
Paper and paper bags, stand for holding wrappin
$\stackrel{\text { Pap }}{ }$
Paper box, D. J. Ferry.
Paper cutting mathin
Paper catting mechanism, E. Donnell
Paper wheel, F. M. Mahan.
Pendulum, C. s. Lewis
Pendulum, compensation, A. T. Williams (r). Perforating machine, A. Partridge................ Plano pedal stool, 1 . . inter..... ...
Piano sounding board, R. A. Murray Pipe coupling, reducing, T. P. Ha
Plaiting device, E. L. Smith......
Planter check rower, corn, Flott
Planter, cort, W. P. Lanham..
Planter, corn, B. Nunamacker.
Plants, apparatus for salphuring, J. B. Plow, J. L. Gilbert.
Plow, F. C. Merrill.
Plow point, A. Ball ..
Plow, sulky, A. Ball.

Polishing tool, T. R. Almond.
Por. See Corfee and tea pot.
Precious and imitation precious stones, prepat
Ing, S. Grossiord...........
bell.................... Propeller for ships, etc., J. David, Pruning shears. A. De Caunes Pruning shears, A. De Caunes..
Pump, double acting, J. Singler.
Pumping engine, geared, H. F. Pump, double acting, J. Singler.........
Pumping engine, geared, H. F. Gaskill. Punching and countersinking machine,combined
w. E. Highfield
Quilting machine, A. Brenzinger.... Rack and truck, O. Wilson........
Radiator, steam, G. B. Boomer. Railway chair, A. E. Mersiowsky...
Rallway conductor, electric, L. Daf Railway conductor, electric, L. Daft..
Railway mine. J. G. Thompson.
 Railway signal, automatic, T. Arndt.
Railway tie, Bronson \& Armstrong. Range and stove, L. L. Culver
Range water back and boiler fitting, J. McGinley Range water back and boiler fitting, J. McGinley. 289, Razor guard, J. P. Tryner.
Reel. See Hose reel. Reel. See Hose reel.
Refining and oxidizing apparatus, portable, c Lévéque....................... Register and ventilator, combined, W. H. Max

\section*{| . 290,072 |
| :--- |
| $.289,873$ |}

Roasting and smelting furnace, B. O. Russell.....
Rolling wre rods and apparatus therefor, T. H Dodge..
Roling wire
Roter
Rotary engine, J. P. Fletcher.
Rotary engine, A. H. Gleason.....
Safe, burglar proof, w. H. Hollar.
Sanding box autematic.
Sanding box, autcmatic, W.
Sash, window, T. Lanston..
Saw, buck w, H. Grub,
Saw, buck, W. H. Grubb................................
Saw frame for circular saw mills, T. L. Carles
Saw mill dog, G. M. Pelton.
Saw mill feed mechanism, G. F. Lidy
Saw mill set works, E. W. Strange
Saws, adjusting edger, S. Erb....
Saws, adjusting edger, S. Erb........................
Saws, machine for sharpening gin, A. P. Gath
right............
Sawing machine, s. Hirscby
Scale, beer, P. Vaughan...
Scraper or excavator, wheeled, W. E. Jacobs.
Screen. See Window screen.
Seal lock, J. W. Burd, Jr...
Sectional safety boller, E. J. Moor
Sewing machine, J. F. Winchell...
Sewing machine needle attachment, J. F. Win
Sewing machine tucking attachment, w. F. Kien
toff.......... Shade fastening spring, W. Nack.
Shears. See Pruning shears.
Shingle sawing machine, H. Wright.
Shirt, Lang \& Ott.
Shirt band shaper, C. H. Kenyon
Shoe, J. C. Daggett
Shoe, J. C. Daggett
Shoe stand. M. K. Barnes
sitt-r eoal and ash, Ferguson \& Baker
Slag for paying, etc., molding and treating.
siu attachment, logging, J. Donalds.
Sled, bob, w. F. Richmond
Soap and extractive matter from cotton seed oil
etc., manufacture of, J. Longmore.
Spike extractor, J. Ebbert.
Spindle bolster, Buttrick \& Flanders.
Spring. See Bed spring. Shade fast
pring See Bed Shade fastening spring.
Stair pad, H. W. Mather.
Stamp, hand, C. A. Klinkner..............
Stand. See Show stand. Switch stand.
Stand. See Show stand. Switch sta
Steam boiler, G. H. Asire........ ...
Steam boiler, G. H. Asire.........
Steam boiler, V. W. Blanchard
Steam boiler
Steam boilers, etc., electric alarm for, Page \&
st
Steam engine, Barton \& Davis.
Steam generator
team generator, H. W. Ellicot
Stench trap, C. Halstead.
Stop motion or safety brake for machinery, D. . T
Winter.
Stopper. See Bottle stopper.
Stove, heating, P. D. Beckw
Stove, heating, S. Ingling.............
stove pipe thimble, H. E. Wieber.
Straw stacker, L. W. Hasselman....................
Straw stackers,clamp for securing turn tables for Straw stackers.ciamp
I w. Hasselman..
I. W. Hasselman................

Switch stand. safety, G. W.
Table leg, Smith \& Raynor..

Telegraph and telphone conductor, J. C. Cham-
bers Tie. See Railway tie
Timepiece hand, P. G. Russell
Tobacco cutter, T. F. Casad
Tobacco cutter, T. Casad..............
Tobacco cutting machine, J. Smead..
Tobacco moistening pad, C. N. Swift.
Tobacco moistening tray, C. N. Swift
Tool, convertibe, H. Por
Try, E. R. Ives........................
Trap. See Animal trap. Stench trap.
Tricycle, H. Sachs.
Truck, R. W. Fisk...
Truss pad, S. R. Nye
Valve and spigot wrench for barrels, G. F. Hild
enbrand...............
Valve, stop, F. H. Hambleton
Vegetable grinder and slicer, E. Schmitz.
Vehicle, C. M. Blydenburgh
Vehicle running gear, Phelps \& Hanson
Vehicle shifting rail, N. Lenno
Vehicle spring, P. G. Clancy...
Vehicle top, bow, S. H. Raymond
Vehicle, two wheeled, W. Shim
Velocipede, O. T. Gleason
Ventilator, D. Groesbeck...............
Wagon running gear, R. C. Blackwell.
Washing machine, B. S. Hart
Washing machine, S. Steelman
Water heater and feeder, J. Park
Water pipes from rust, protecting iron, F. Eaton
Water works. storage basin for, H. W. Wilso
Weigher and measure, grain, J. E. Kimble
Weigher and measure, grain, J. ©. Kimble.
Wheel. See Drive wheel. Paper wheel.
Wheel motor, helical flanged. L. Patterson
Wheel barrow. W. A. Whitney
Whip socket locking device, A.
Window screen, W. E. Brock.
Wire drawing machine, w. T. Brennan
Wris bench, C. A. Williams....
Wrench. See Ratchet wrench.
designs.
Breastpin, J. T. Quayle.
Carpet, E. A. Costain
Carpet, O. Heinigke
Carpet, \mathbf{W}. L. Jacobs.
Carpet, J. S. Meyer.
Carpet, H. A. Parker
Carpet, H. A. Parker.........
Coat, lady's.
Cong. . O. O'Hara.
Corset, J. Bowers...........
Costume, girl's, C. O'Hara
Costume, miss's, J. Q. Reed

290,075	Cuspidor, G. Vogt....
289,977	Finger ring setting, D. Goldsmith

289,977	Finger ring setting, D. Goldsmith
289,833	

Organ case, A. Wagner.
Skirt, lady's,
C.
Skirt, lady's, C. O'Hara

TRADE MARKS.

Abstract

 Pingree \& Smith......... 10,773 10,776 Cutlery and edge tools, Fones Brothers... 10.726 10,771 10,774

Medicated toilet compound, A. Simonson 10 Picks and other adz eye tools, Washoe Manufac- turing Company Pins, rings, chains, bracelets, brooches, drops, etc. 10,770 10,772 Stove polish, waterproof., B. F. Meyers. et at..................70.772 Whisky, H. Snyder, Jr......... 10,777 A printed copy of the specification and drawing of any patent in the foregoing list, also or any patent issued since 1866 , will be furnished from this office for 25 ents. In ordering please state the number and date of the patent desired, and remit to Munn \& Co., 261 broadway, New York. We also furnish copies of patents granted prior to 1866 ; but at increased cost, as the hand. Canadian Patents may now be obtained by the inventors for any of the inventions named in the fore- going list, at a cost of $\$ 40$ each. For full instructions ddress Munn \& Co., 261 Broadway, New York. Other foreign patents may also be obtained.

⿹ㅗㄱ ductutamuti.

THENEW
SomARTM
Gas Engine

5RPE PRODOVE
 ample and Circular Free by mail

U. S. MINERAL WOOL CO, 22 Courtlandt St, No Y

UINIVFRSAT

The allanto, or tree of heaven.

fitumatial.

Preston,KeansCo.

Bankers.

MISCELLANY.

 Figures preceded by a star (*) referto Hllustrated articles.

B

				Skit diseases , med.	
Fruit, stewed, for the gouty.					
	Tron, moliten, ra				
	Iron, protection from rust.	Mushroom culture, pront........ 38	P1	Sleds for summer use........... ${ }^{2 / 26}$	
Furnace, ore roas					
					U
Gas, natural, for					
					Uric acid, solu bility.........
Glucose in sugar, etc				Steam trap Champion..........332\%	
God semat					ntilition
Goid reactio		Hor whe			Vise, Anderesonis.
dew		tan			
Gr					
					ages in Fran
G					
Gun, Hastelil.trial					
				Steeppes, higulent wantea 223	
H					
				㖪	
		Paints and colors luminous..... 229		Sters	
headed pract					ater, micro. or
,					terproo
				manufacture....... 3.30	
					Water, to discoiniar
		\%			
				Suphur, phosphoreceeent.......... 389	
n, ord, how				Summer, common sense in........ ${ }^{\text {cid }}$	
			${ }^{98}$		
	Luminious				
Hoop ing barrelis by machinery...*111	Luray Cavern, discoverery of …: 120				
	ery incre	ut four.	Sal		
		fountain , hom e-made....... 280			
			Sandguarderailway, stapleton's..."259	7	
		${ }_{9}$			
	Mail			Tanning substances, rel. value:	and pow
1				Tar as	wind po
	$\left\lvert\, \begin{gathered} M a \\ M a \\ M a \end{gathered}\right.$				
				Teler	
	$\left\lvert\, \begin{gathered} M a \\ M a \\ M a \end{gathered}\right.$				ire
$\begin{aligned} & \text { ator, st, } \\ & \hline \text { toron } \end{aligned}$	M				
$\begin{aligned} & \text { milive } \\ & \text { ion } \\ & \text { onof } \end{aligned}$					
					Wood
Insecticicie, German...					
		Photo plates, eosine		Temperance and longevity	
Inventions and inventor					
					$\frac{\mathbf{X}}{\text { ¢ }}$
					Xerotine siccat., coal bunker.
					\boldsymbol{r}
					z

AMERICAL STEAM OAVEE CO.

1Original Steam Gange Co Bus. Sitab. in 1851.
IMPROVED THOMPSON INDICATOR PLANIMETERAND
PANTOGRAPH. pantograph. BOSTON, MASS.
 EARLY HISTORY OF THE NORTH

ELCTRKC LIGHIT TELEGRAPHONEPPLIES

TCE AND ICE HOUSES-HOW TO MAKE

Just Published.
HEALTH ${ }_{\text {THe }}^{\text {HOU }}$ HOUSEHOLD. By SUSANNA W. DodDs, M.D. A large 12mo vol. o
Unquestionably the best work ever written on the

FOWLER \& WELLS, Publishers,

$\$ 5$ to $\$ 20 \begin{gathered}\text { per day at home. Samples worth gifree. } \\ \text { Adress }\end{gathered}$
50 Clegant limp. Chromo Card, na. ine in new seript

CONSUMPTION.

OPIUM

 RUPTURE

266th EOTTION. PRICE ONLY \$1

KNOW THYSELF. n m
A Great Medical Work on Manhood,

NEW YORK BELTING AND PACKING COMP'Y \boldsymbol{B} OIIDVヒIOANITm EMERY WHEELS
 Fimery Wheel. NEW YORK BELTING AND PACKING CO.

Edson's inventions shown in these cors ares special

 ing alwarys ent with int mpackent.
For pamphets and prices address
ML. B. FDEOMN, 77 Liberty St., New York.

VALLEABLE

CE-BOAT WHIFF FULL WORKING

Ch
chDUC'S CONTINENTAL WORKS, BROOKLYN, N. For reduc MECHANICAL ATOMIZER OR PUL ERIZER

ICE-BOATS - THEIR CONSTRUUCTION

30 to $\mathbf{3 0 0}$ Horse Power. Send for Illastrated Circalar and Reference Li STATE THE HORSE POWER REQUIRED,

ASK OUR PRICES

THE WESTINGHOUSE MACHINE CO.

VELOCITX OF ICE BOATS. A COLLEC

WATCHMAKERS.

 GAS ENGINES,
 POWER DETERMINED BY ACTUAL TEST Call and see them or for circuars ana prioes address
THE CONTINENTAL GAS ENGINE CO.,
 CEE-HOU SE AND RYFRIGERATOR.

 WANTED.-A First-flass Meehaolenl Draughteman

 THE RUINED MONUMENTS OF YUCA

ROCK BREAKERS AND ORE CRUSFERS,

 IRON REVOLVERS, PERFECTLY BALANCED, H. \& F. M. ROOTS, Manufacturers, CONNERSVILLE, IND.

 SEND FOR PRICED CATALOGUE. $\overline{\text { SOLID AND LIQUID ILLUMINATING }}$ Agents-A Asstract of a paper by Leopold Field, F.C.S.,
treating of the chemica compostion of fatr bodies,

CASP. DIEDR. WATZHOLZ, HOHENLIMBURG, GERMANY, Hardened Steel Strips for Corset Clasps, Hoopskirts, Feathers, and Brushes.

PERFECT

NEWSPAPER FIIE

 MUNN \& CO.

CE-HOUSE AND COLD ROOM - BY R

THE DUPLEX INJECTOR.

The constantly increasing demand for this Boilor use. Send for illustrated circular and price list.
Manufactured by AMES JENKS, Detroit, Micl.

VOLNEY W. MASON \& CO., FRICTION PULLEFS, CLUTCHES, and ELEVATORS:
PROVIDENCE, R. I.

Makers of Fine ilachinery, Correct Leading serews, Instruments of Precision; Astronomical Clocks,
Mathematical and SSientife Apparatus, etc.
HA RTNOR (

LIGHTNNG SEWER!

 PATENTS. MESSRS. MUNN \& $C O$.. in connection with the pub
 mine improvements, and th act as Solicips of Patenis.
In this line of business they have nad thirty-eight ears experience, and now have mer caled facilities fo the prosecution of Applicatics for Patents in the United States, Canada, and Feeign Countries. Messrs Munn \& C'o. also attend 10 .1e preparation of Caveats, Copyrights for Books. L ${ }^{r}$ els, Reissues, Assignments, nd Reports on Infringe, ntrusted to them is de terms.
A pamphlet sent ec charge, on application, containing full inforvion about Patents and how to proare them; dire Appeals, Reissues, Infr ngements, As ignments, $\mathbf{R}^{\text {jcted }}$ Cases, Hints on the Sale of Pa ents, etc.
We alg
We algo, nd, free of charge, a Synopsis of Foreign Patent $\mathrm{L}^{3,}$, showing the cost and method of securing in ${ }^{\text {N }}$ \& CO., Solicitors of Patid. 61 Broadway, New York. ninglon, D. C.

WITHERBY, RUGGA \& RICHA RDSON. Manufacturers

The " 6 MONITOR."" $\begin{gathered}\text { Best Boiler Feede } \\ \text { in the world }\end{gathered}$ A NEW LIFTINGAND NON-
 Best Boiler Feeder
In the world.
Gratest
Ratobe

Water ${ }^{\text {on }}$ Elevators, For Conyeying
Water and
Pattinund
and

H.W.JOHIS

 ASBEATOS SHESTOE SHEATHINGAT
 ing Feldt
H. W, JOHNS M'F'G CO., 87 Mriden Lane, New York,
sole Manut eturers of H . W. Johns' Genuine

 Powntrs for Sersorsteam Pumps
Van
Duzen's
Patent
Steam Pamp
 Has no materor flyaide sumicent.

New Illustrated (36 page) Catalogue,
giving full description of these ma-
chines. sent for 3 cent stamp. THE POPE MP FיG CO.

Steel Castings

Cold Ropited shatinge

The fact that this shafting has 75 per cent, greate
strength, a finer finish, and is truer to gauge, tham an

F○R 188壬
The Most Popular Scientific Paper in the World EST.ABLISHED 1846.

Circulation Larger than all Papers of its Class Combined.
Only $\$ 3.20$ a year, including postage to United States and Canada $\$ 4$ a year, including postage to all countries in the Postal Union.

This widely circulated and splendidly illus- trated paper is publisisied weekly. Every number

 a large number of original engravings of new inVentiousand discoveries, represeuting EngineeringWorks, Steam Machinery, New Inventions, NovelWorks, Steam Machinery, New Inventions, Novel-
tics in Mechanics, Manutactures, Chemistry, Electricity, Telegraphy, PLotography; Architecture,
Agriculture, Horticulture, Naturai History, etc. All Classes of Readers find in the ScrEnTIFIC AMERITAN a popular ressume of the best
scientific information of the day; and it is the aim of the publishers to preesent it in an attryctive
form, avoiding as much as possible abstruse ${ }^{\text {tins. }}$ To every intelligent mind this journal afords.
constant supply of instructive reading. motive of knowledge and p
munity where it circulates. One Copy of the SCIENTIFTC AMERICAN SUPPLEMENT postage prepaid, to any subscriber in the Une United by the publishers.
The safest way to remit is by Postal Order, inside of envelopes, securely sealed. and correctly addressed seldom goes astray, but is at the send-

Eientific Ameriean Eupplememto

This is a distinct paper from The Scirn-
MTFIC AMERICAN, butitis uniform in size with it,
every number containing 16 octavo pages. THE every number containing 16 octavo pages. THE
SCIENTIFIC AMERICAN SUPPLEMENT embraces a
very wide range of contents covering the very wide range of contents, covering the most
recent and valuable contributions in Science,
Mechanics, Architecture, and Engineering from Mechanics, Architecture, and Engineering from
every partof the world. Every number contains
several illustrations, consisting in ant engineering works, in progress or completed,
both at home and abrod, architectural views of
ond and plans of new public buildings, handsome
dwelling-houses, cheap cottages, household furni-
Translations from French. German, and tions of Grand Engineering Works; also of Naval and Mechanical construction of magnitude, projected, progressing, and
in all countries abroad.
The most important papers read at Scien-
tific Conventions by the best and most profound tific Conventions by the best and most profound OAN SUPPLEMENT. This paper when preserved OAN SUPPLEMENT. This paper when preserved
and bound, forms a most useful encyclopædia of
information, and presents a complete history of
the proercess of the times in the Sciences, Arts, and
Mechanical Engineering. This paper oontains no
advertisements.
Price- $\$ 5$ a y
THE SCIENTIIII A An advance; or one copy of and one copy of THE SCIENTIFIO AMERICAN SUP PLEMENT both mailed for no year for $\$ 7$, pay-
ment in advance to the publishers. Remit by mail
and address

Publishers Scientific.American,
261 Broadway, New
since establishing their obtained for their clients in 1846 , more than one hundred thousand patents.
No other Patent Agency has better facilities for No other Patent Agency has better facilities for
obtaining patents, trade marks, copyrights, etc., quickly fnd cheaply. ability given free of charge
Patents obtained in the United States, Canada, Pamp ather ci intries on the best terms. Patents Pamphlets of information on obtaining Patents
n this country and abroad sent free on applica-
tion.

HAR'TFORD
STEAM BOILER
Inspection \& Insurance COMPANY.
W. b. Franillin.V. Pres't. J.m. Alden, Pres't. J. B. PICRCLE, Sec'y.

FOSSIL MEAL COMPOSITION; The Leading Non-Conducting Covering With \% to $\$$ inch thickness it radiates less heat than Wetghs Very light is very durable, freproof, and is
easilyapled. sold ln a dry state by the pound.
 FOSSIL MEAL CO., 48 Cedar St., New York.

 NEW HAVEN MANUFACTURINGCO.
 Lathes, Planers, Drills, Shapers, ete.
ill
SSTRATED CATALOGUE ON APPLICATION.

FRICTION CLUTCH Pulleysand Cut-off Couplings. Print Your Own Cards Lavele

SPEAKING TELEPHONES.

Wh: AnIERICAN bELL TPLLEPIIONE COMIPANY, W. H. Fonbes, W, R. Drivile, THivo. N.VAIL,

PRINTINE INKSK,

