A WEEKLI JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

Vol. $\underset{\text { [NLW }}{\text { KLIX. }}$-NRIES.] 25.$]$

THE NEW UNITED STATES CRUISERS
Of the four cruisers now being built for the government, one, the Atlanta, was described and illustrated in the Scientific American of November 17, 1883; the Boston is identical in every respect to the Atlanta. In regard to size these two vessels are between the Dolphin and Chicago, which are described and illustrated in the present issue.

U. S. DISPATCH BOAT DOLPHIN.

The governing condition in the design of the Dolphin has been high speed capable of being maintained for several days. -It is intended for a dispatch boat for furnishing rapid communication from the seat of government to any point on the coast, or to act as fleet dispatct boat if a United States squadron should need its services. In designing it all attempt at protection was abandoned, and machinery of the most durable and efficient type adopted.
The principal features of the Dolphin, represented in the engraving upon this page, are:

Length between perpendiculars.	240 feet.
Length, extreme.	256.5
Breadth, moulded	3185
Breadth, extreme	32
Depth from top of floors to top of main deck beams	18.25
Depth from base line to top of main deck beams...	20.07
Top of main deck at side above load water line...	628
Mean draught.	14.25
Displacement at mean draught.	1,485 tons.
Indicated horse power..	2,300
Speed..	15 knots.
Capacity of coal bunkers.	310 tons.

It will have a flush open spar deck, with no poop cabin or forecastle. Near the cabin gangway will be a small central deck house, and, with the exception of another around the boiler and engine hatches, the deck will be uninterrupt-

NEW YORK, DECEMBER 22, 1883.

ed fore and aft. The armament will consist of one 6 -inch B. L. R. mounted upon a shifting pivot forward of the fire bridge, and four 47 mm . Hotchkiss revolving cannons, mounted at the end of each bridge in fixed armored towers. It will have a three masted schooner rig with small and light spars and no head gear. The plan shows that the structural arrangements will be similar to those of merchant vessels, except that care has been taken to divide the hull into six water-tight compartments by transverse bulkheads extending to the upper deck. Greater longitudinal strength than usual has been provided for. The bow will be strong and slightly ram-shaped. It will have a steam steering engine, will be lighted by electricity, and will have electric perfect as it is pead lights.
perfect as cylinder compound vertical direct acting engine of 2,300 indicated horse power will actuate the single screw. There will be one high pressure cylinder 42 inches in diameter and one low pressure 78 inches in diameter, the stroke being 48 inches. The cylinders are to be placed immediately over the crank shaft, each being supported by two wrought iron columns secured to the bed plate of the engine, and by two cast iron brackets attached to the condenser and also forming the cross head guides. The valves and levers for forming the cross head guides. The valves and levers for
working and regulating the engines will be operated from the starboard side of a gallery running around the engines on a level with the berth deck. An upper gallery will be on a level with the spar deck. The propeller will have four adjustable blades 14 feet 3 inches in diameter with a mean pitch of 21 feet 4 inches.
Cylindrical boilers will be used with a pressure of 100 pounds per square inch above the atmosphere. The grate surface will aggregate 270 square feet, and the heating surface 6,600 square feet. They will have internal cylindrical furnaces and horizontal fire tubes returning above the fu_{r} -
naces. There will be two single end boilers having a length of 9 feet 6 inches and a diameter of 11 feet, and each fur nished with two furnaces. There will also be two double end boilers with a length of 18 feet 3 inches, and a diameter of 11 feet, each baving four furnaces. The longitudinal axes of the boilers will be placed in a fore and aft direction, the single end boilers aft facing the double end, the fire room between them being 9 feet 6 inches. At the other end of the double end boilers will be a fire space 9 feet long. The fire room hatches and other openings can be closed air tight.
The contract price for the bull, machinery, and fittings of the Dolphin, exclusive of the masts, spars, rigging, sails, boats, etc., was $\$ 315,000$.

U. S. TWIN SCREW STEAM CRUISER CHIC th between perpendiculars.	CAGO.
Length on water line.	325 ft .
Length over all.	$334 \mathrm{ft}$.4 in .
Depth, garbeard strake to under side of spar deck..	34 ft .9 in .
Height of gun deck port sill from load water line...	10 ft .
Height of spar deck port sill from load water line..	18 ft .6 in.
Breadth, extreme	48 ft . $21 / \mathrm{i} \mathrm{in}$.
Draught of water at load line, mean	19 ft .
Displacement	4,500 tons.
Area of plain sail	14,880 sq. ft.
Complement of men	300
Battery, four 8 -inch long breech loaders in half turrets, eight 6 -inch and two 5 -inch on gan deck.	
Indicated horse power.	5,000
Sea speed.	14 knots.
Capacity of coal bunkers.	940 tons.

This vessel, represented in the engraving on page 390, wil be built throughout of mild steel, with no wood sheathing. It will be divided into tén water-tight compartments by nine transverse bulkheads extending to the gun deck. The boilers and machinery are to be in the four amidship comboilers and machinery are to be in the four
(Continued on page 391.)

Srinutifir simmiram.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 261 BROADWAY, NEW YORK.

o. D. MUNN.
 A. E. BEACH

TELIMS FOR THE SCIENTIFIC AMERICAN. One copy, one year postage included..
One copy, six months postage included
ne copy, 186 gratis for every club of tive subscribers at $\$ 3.20$ each \cdot additional copies at same provortionate rate. Postage prepaid.

Remit by postal order. Address

MUNN \& CO., 261 Broadway, corner of Warren street, N

The Scientific American Supplemen
is a distinct paper from the Scientific American. 'Vhe supplement is issued weekly. Every number contains 16 octavo pages, uniform in size
with Scientific American. T'erms of subscription for Supplement, with Scientific american. Terms of subscription for Supplement,
85.00 a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all news dealers throughout the country
Combined Rates. - The Scientific american and Supplement will be sent for one year postage tree. on receipt ot
papers to one address or different addresses as desired. papers to one aad ress or
The safest way to remit is by draft, postal order. or registered letter.

Scientife American Export Edition.

The Scien'ific Ambrican Export Edition is a large and splendid periodical, issued once a month. Each number cantains about one hundred
large quarto pages, profusely ulustrated, embracing arge quarto pages, profusely illustrated, embracing: (1.) Most of the plates and pages of the four preceding weekly issues of the SCliciTIFic
AMERICAN, with its splendid engravings and valuable information : (\%.) ommercial, trade and man acturing announcements of leading Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the vorld. Single copies 50 cents. Manufacturers and others who desire o secure foreign trade may have large, and handsomely displayed :an-
nouncements published in this edition at a very moderate cost. The SCIENTIFIC AM wincan Fxport Edition has a large e cost ation in all commercial places throughout the world. Address MUNN \& CO., 261 Broadway, corner of Warren street, New York.

NEW YORK, SATURDAY, DECEMBER 22, 1883.

TABLE OF CONTENTS OF

THE SCIENTIFIC AMERICAN SUPPLEMENT

No. 416,

For the Week ending December 22, 1883. Price 10 cents. For sale by all newsdealers.

CHEMISTRY.-The Liquefaction of Oxygen and the Solidification ENGINEERING AND MECHANICS:-Firing of the Multicharge nin.-Construchon of the gun -Theory of the inenion.city attalned.-Shot used.-Loading the gun ble of first series of trials at Sandy Hook Improved Vertical Tubular Steam B Tmpraved Vertical Tubular Steam
The Sioux City and Pacifc Railroad B................... The Sioux Cit
'Ihe United State....... American Dredge Loatsat Pan
Lime Cartridges for Blasting.
Feldmann's Ap
quor. -1 figure...
quor.- 1 figure.
The Sand Blas
iif. electrictive , Will loon.-Will full description and several engravings showing the ascension or the balloon, october 8, 1883, one of batteries used, and
various views of the balloon as a whole, and of parts of the same..
Exploration of Caves by Electricity.-With engraving. On Secondary Batteries and the Electrical Storage of Energy.Two lectures delivered before the Society of Arts, London, by Prof. Oliver Lodge...
The Most Sensitive Galvanoscope. By Prof. Ernest von Flisiscae.-2 figures.

4 Stroke of Lightning. - 1 engraving

IV. METEOROLOGY.-The Swiss Meteorological Observatory on Mt. Santis.-The object of this and other stations on the Alps.- -2 en-
gravings. V. NATURAL HISTORY.-The Island of Krakatoa, in the Straits of Sunda.-Engraving
Earth Movements in Java.-By Ricrard Proctor.-A history of the different volcanic eruptions.-Theory as to the cause of
VI. MEDICINE, H YGIENE, ETC.-Some Observations of Albumin-ria.- Study of Bright
Premature Baldness.

IRRIGATION IN CALIFORNIA.

In 1871 the crops in the valley of the San Joaquin River California, from a long drouth and severe north winds, were threatened with entire destruction. Some of the farmers then hurriedly cut a few ditches from the King River, and the flooding they thus obtained made the wheat yield from 30 to 55 bushels per acre, and land which bad previously been hard to sell at $\$ 2.50$ per acre rose in value to $\$ 25$ and $\$ 30$. From that time to this the system of regularly man aged irrigation has steadily grown in all that valley section, lying about 200 miles southeast of San Francisco. There are now six companies organized for this purpose, with an estimated capacity to furnish water for the irrigation of about 650 square miles, although past experience tends to show that, after the system of irrigation has been once established the water supplied will go further and probably make cultivable a much larger area. The farmers buy their wate rights from the companies at the price of $\$ 10$ an acre, for which they can take as much water as the area of ground requires, and draw at any time and as often as they choose. They bave to make their own laterals, which are usually ditches four feet wide by one deep, and can be made cheaply by plow and scoop. Since this system of irrigation has been adopted, many thousands of acres of land, theretofore almost barren, have been turned into some of the most productive farms on the Pacific coast, and are espe cially valuable for the raising of grapes and other fruit.

imitations or costly leather.

The custom of carrying lunch reticules, money purses, and traveling bags of leather has made an increased demand for the leather from rare animals, or for leather of attractive ap pearance. As the natural supply of alligator and the grea python or boa skins is not sufficient to keep up with the de mand, these skins-or the leathers from them-are imitated very largely by using the leather of commoner and cheaper skins. Even seal leather, goat leather, and kid leather, or morocco, are imitated. The surface of alligator leather consists of almost exact rectangles or squares, separated by deep furrows, the squares gradually diminishing in size as the recede from the center of the skin. The boa leather is in diamond shaped patches, forming a fine network, and is very elegant, the division lines being very fine. Sealskin leather is a fine diapered or arabesque pattern of irregular division raised and cepressed. Goat leather is crossed in regular line at acute angles, forming minute elongated diamonds.
As some of these leathers are too costly to be furnished at low prices, the million who desire the best, but cannot always as durable as the genuine, serving in part the purposes of the costly leathers. These imitations are made by the aid of photography. A genuine seal, alligator, boa, or other costly skin is photographed, then printed on sensitive gelatine, the parts not acted upon by light dissolved ont in water, and a cast or an electrotype plate then made in copper or type metal, as practiced in the reproduction of engravings, and then the metal plate and the smooth leather of some domestic animal are passed between rollers under pressure, and the figure on the plate is permanently fixed on the leather by great pressure. Any of these leathers may be stained, col ored, or dyed to any tint desired; but plain black or the color left by the tannin is generally preferred.

THE CHINCH-BUG IN NEW YORK.

Dr. Lintner, Entomologist of the State of New York has recently issued a bulletin stating that the much dreaded chinch-bug, which has caused so much destruction to the crops in the West, is present in alarming numbers in some parts of New York. We are pleased to note the commend able enterprise of Dr. Lintner in warning the Eastern farm ers of their danger. The pest has been discovered in St. Lawrence County, and the State Entomologist desires every farmer in that part of the State to examine his meadows fo patches of dead grass, which look as if winter killed. If such places are found and the bugs discovered, it is recom mended to scatter straw over these dying patches, and afterward burn it. This work must be done with great care, and a favoring wind is important. The burned area the more effectually bury the chinch-bugs, the plowed land may be harrowed. If the meadow will not permit of being plowed, the next best thing is to apply gas-lime at the rate of two hundred bushels per acre. The gas-lime may be applied at any time during the coming winter, but, of course, the plowing must be done before the ground freezes and prevents the sod being turned.
A more widespread attack of the chinch-bug may be looked for next June, when it will be time to use other means of destroying this enemy to our grass and grain crops.
Professor Riley, the Government Entomologist, in the last issue of Science, states that he thinks that Dr. Lintner is wrong in his opiuion that the chinch-bug was brought in a freight car from the West. Fitche's record of having found this bug in northern New York leads to the belief that it has long been in the East, and the present outbreak is due to an increase in numbers from some favoring condition instead of an invasion. However this may be, the importance of taking all precautionary measures re mains the same. A bug which will destroy millions of dol lars' worth of crops in a single State, as it has done in Illi nois and elsewhere, is one not to be desired.

ADULTERATIONS OF FOODS-GLUCOSE IN SUGAR and In sirups.

The fact is so well known as to be admitted by all, that considerable part of the articles which we consume for food and for drink are open to the belief that "things are not what they seem." Meat and fish cannot very well be imitated, and we probably buy real beef, and veal, and chickens, and codfish, and halibut, though they certainly may be all of them so wonderful!y fitted up for the purposes of sale as to impose on the purchaser_-Ady.-But butter, and sugar, and coffee, and tea and vinegar, and spices of every sort, we purchase in a state of purity in only ex ceptional cases. Wherever au imitation can be made that costs less money than the article which is the original, we may be sure that on an average our chance is good for getting the counterfeit.
We are apt to think that if we select a grade of high price in any special line, we are sure of getting what we profess oo get, and perbaps it is a good plan to lay that flattering uhction to our souls, for we feel better after it; but the simple fact is, that in general the higher the cost the better he adulteration pays, and as human nature is open to influences, the larger money brings us a more elegant style of mitation only.
Inasmuch, then, as the admixtures are so very common, it becomes for us a question of almost vital interest to know whether they are injurious to health, or whether they are harmless. If we barely lose our money, because we do not get what we think we do, that is bad enough ; but if, on the other hand, we are at the same time poisoning or at least injuring ourselves and our families, the case assumes a very different aspect.
Our attention has been recently called to one form of dulteration which is so exceedingly common that we cannot go a single day free from it. We allude to the presence of glucose in sugars and in sirups, and we take up the subject in the hope that we may dispel some grouudless fears. That the glucose is there is as sure as the sun rises daily. There may be some sugars and sirups that are pure and bonest, but there are many which are not. We are not speaking at random in this, we are only testifying to what we know by experiment. We have purchased sample lots, here and there, in New York and in other places, taking care to get them only from dealers where we were.likely to get our articles of as good quality as could be found. Chemical rial showed in almost every instance the presence of glucose.
An apothecary submitted to our examination a sample of ugar from a lot he had just purchased for his pharmaceuti pure it which dian been reconmendued to him as absolutely pure; it showed over five per cent of glucose! We have seen barrels opened, found the maker's guarantee of perfect pur ity lying under the barrel-bead, taken samples from directly beneath the printed falsehood, and found them rich in gluW.

We do not, therefore, dispute the presence of the admixture, hut it is a perfectly harmless substance and need never cause alarm to any one. This is what we meant by saying that we hoped we might allay groundless fears. We may eat and drink glucose all our lives, our children may take it down ad $l l b$. in their candy, as they are doing every day, we may have our delicious maple sirup on our buckwheat cakes, and they will not hurt us any more than the cakes are bound to any way; we may revel in glucose, and live and die happy.
Let us look at it chemically. There are, as natural products, two forms of sugar everywhere diffused; they are known as cane sugar, and grape sugar. Taken as a rule, it may be said that cane sugar exists mostly in the sap or juices of plants, and grape sugar in the fruits, though there are many interchanging exceptions. They are composed of carbon, oxygen and bydrogen, the proportions being in cane sugar $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$, and in grape sugar $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{6}$. They are both harmless and nutritious to the human system; they are both sweet, the sweetness of grape to cane being about as one to two. Chemically, cane sugar is a saccharose, and grape sugar is a glucose, the latter retaining this as a market name.
What we buy as sugar professes always to be cane sugar, made hitherto almost exclusively from the sugar cane. If now our grape sugar or glucose had been a natural product, ay from fruits, there would probably never have arisen the rejudice against it which now exists. But it is not so; it isaltogether a factitious article, and few people are sufficient y familiar with chemical principles to realize at once its real nature. All the glucose and grape sugar in the market is made by the action of sulphuric acid (oil of vitriol) on some vegetable material. In this country starch is used chiefly, as being the cheapest and most convenient, but linen rags are equally serviceable and produce an equally pure and excellent sugar.
That is one of the wonders of chemical combination-as much a wonder to the most thorough chemist as to any one else. He sees the work grow under his fingers, and what is done he does notknow; he knows nothing but the result. He boils starch with sulphuric acid and water. The mixture instead of being very sour is sweet to a certain extent, that is to say, sugar is there, but the acid is also there, for the acid has changed the starch to sugar and yet has itself not been affected in the least. He throws in powdered chalk, which unites with the acid and settling to the bottom leaves a beautiful, clear, sweet solution of grape sugar.
The acid is gone, the starch is gone. and pure, harmless
sugar remains. No one need fear it because oil of vitriol by magical catalysis compelled the starch from being $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{10}$ to become $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{6}$; that is, to lose four atoms of water (which is $\mathrm{H}_{2} \mathrm{O}$) from iis composition and become glucose.
No, no! It is tiue, when we start to buy sugar we natu rally would be glad to get what we had in mind; but if adulterations were no worse than this, we well might think little of them.

"FISH CULTURE FOR PROFIT."

In our paper of September 1 we printed a communication headed "Fisll Ponds for Farms," and we wish to add to it here some items which we hope may make it of more direct and immediate value, as bringing it within the range of more speedy returns for the money and labor invested. We have selected the title above given, because any one can turn to the Bulletin of the United States Fish Commission, for 1881, page 382, and see that we are not talking at random. "Fish Culture for Profit" is discussed there by authority
We have long lad the belief that the worthless swamp lands, found along so many of the brooks and streams, throughout the country, might be made, by means of an outlay which would be almost nominal, to pay a more certain and a greater return annually, than any parts of the same farms devoted to corn, grain, or hay, counting acre for acre, so that Mr. Hiester's article in the Bulletin interested us greatly, and our correspondent of September 1 gives us occasion for calling the subject up here.
The fish to which so much attention has been given of late years for pond growth we must set aside, every one of them. Trout have had the greatest name of all, but in the waters which we propose to utilize they will never thrive, in fact can scarcely be made to live at all. They must bave either a running stream or a pond which is fed with clear cold water. They bring, it is true, a fine price, but they are very delicate, subject to many vicissitudes, and they re-
quire constant care, and much attention to their supply of quire constant care, and much attention to their supply of food.
Black bass, yellow perch, and pickerel bave all been used for stocking ponds, and with more or less of success, but they are all such voracious brutes that they speedily clear the water of every living thing that can swim, including even their own young, and the consequence is that only a very limited supply can be secured from a given amount of space. Their remarkably healthy appetites ruin them for profit.
German carp have been now extensively introduced, and their value is beyond question very great. We have nothing to say against them, and they will doubtless retain a strong hold on popular favor, for they deserve it. But we have
that which is decidedly to be preferred, when we are looking for profit. The carp grow to a fine size, and it is a grand sight to watch them cruising about on a warm summer's day, in a pond-great fellows, six, eight, ten pounds and more, close to the surface, dorsal fin perbaps out of water. No, we bave no charge against the carp. and we are almost ashamed and afraid to bring up our little protege in comparison. But then it is the dollars for which we are luoking, and we propose to show how a swamp meadow can turn out more money to the acre from bull heads than the same space will readily pay in any other manner, wet or dry.
The fish to which we refer is the Amiurus nebulosus, and is called bull head, horned pout, and, in some parts of New England, minister. It is a catfish. There are mauy American species of catifish, but this is the only one common in the regions of New York and New England; and it is a fact worthy of note that though we have nine or ten species of Aminrus, the only type of the genus which is found beyond the limits of North America is more closely allied to the nebulosus than any one in our own waters; it is the \boldsymbol{A}. cantonensis, a native of China.
The horned pout is never a large fish, one weighing a pound being much over the average, and in raising them for the market they will afford the greatest profit when not exceeding half a pound. The advantages which they afford over the other fish mentioned, for remunerative cultivation, are that they are perfectly hardy, not liable to disease, thrive to the hot ondonntoce in sling gich and warm waters. need no
care or feeding, live on aquatic plants and insects, and can thus secure abundant food from a small space, multiply rapidly, and are ready for market at the age of a year, which-is much oorlior than any-other fish.
The demand for them, a small pan fish without bones, is almost unlimited and the price good. Mr. Hiester quotes them as selling by the ton at ten cents a pound. His estimate is that ten feet square of pond area will yield annually over ten pounds of fish. On these data, an acre will return $\$ 420$ dollars at the least. This seems too great for belief, and yet he assures us that it is done; a half or even a quarter of it would satisfy most land owners, especially as the land needed and taken for this purpose is that part of the farm which for other uses is without value.
The preparation of the pond involves very small expense, for it is best that the water should be shallow, not over four or five feet deep. In most cases a spot can be selected where a dam of but a few rods in length across one of our swamp streams will be sufficient to overflow from one to two acres to the depth required. The only expense beyond building the dam is to so far smooth the bottom that a net can be dragged over it. The removal of bushes and rocks, and perbaps a little work with plow and scraper, will do this, and the pond is ready for stocking. It is easy to procure the
catish in most localities, and nothing further is required. That acre of swamp land was before this worth practically nothing; it might perbaps yield a nominal amount of pasturage. It is best to leave it two years, so as to allow the fish to increase and grow. After that time they can be taken out at convenience. A net should be used which allows the small ones to pass through. None under five inches (preferably six) should be caught, and it is wise always to retain in the pond a good proportion of full grown always to retain in the pond a good proportion of full grown
fish, for the sake of more rapid increase in numbers. The fish can readily be taken at such times as to scarcely interfere at all with the labor of the farm. They can be sent to market as they are caught, or they can be skinned and packed in
demands.
Every other acre of the farmer's land which yields him a crop involves the expense of fertilizersand labor, for weeks and months. This acre of pond surface on worthlesss swamp land costs not a dollar of expense annually beyond that of drawing the net and preparing the fish for market, and on the faith of the Bulletin's estimates it will yield $\$ 400$ and upward. What part of his fertile land will pay as well?

dipterous larve in the human body.

Several papers on this interesting subject have recently been published by American and European authors, partly from the entomological standpoint. De Franz Loew, in a paper on myiasis and its originators (in Dr. Wittelshoefer's Wiener Mediz. Woclenschr., vol. xxxiii, pp. 972-975, 1883) corroborates by further testimony his views expressed in a former article, viz., that the disease known as myiasis is caused not by larvæ of Estridæ, as has been and is still so frequently assumed, but solely by species belonging to the "flesh flies" (Sarcophagidæ and Muscidæ). In fact, so far as reliable observations and determinations have been
made there are but two species concerned, viz., Sarcophila wohlfarti Portsch (= magnifica Schin.) in Europe, and Compsomyia macellaria Fabr. in America. The latter species is distributed throughout North and South America, and has au extensive synonymy, as not only the Calliphora anthropophaga, Couil, C. infesta Philippi, and Lucilia hominivorax Coquerel, but no less than 23 other "species" have proved
to be synonymous. On the synonymy and on the geographical distribution of C. macellaria two papers were published some time since by E. L. Arribalzaga (in Anu. Soc. Cientif. Argentina, vol. vii., p 253, 1879; and vol. x., p 248, 1880), but M. F...Bigot, the well known French dipterist, hesitates to accept the synonymy (Ann. Soc. Ent., France, 1883, may also be caused by other species of Lucilia anō Pyrellia. Attacks on man by Estridæ are of very rare occurrence. There are but three well authenticated cases known caused by hypoderma, two in Europe and one in this country,*
while a few others have been caused by dermatobia, all in while a few ot hers have been caused by dermatobia, all in
the tropics Quite recently Dr. Laboulbène (Ann. Soc. Ent France, 1883, Bull., p. cxxvi.) observed a case in France caused by Dermatobia noxialis, but this was imported from Brazil by the person infested with the larva. Estrid larvæ in man are always found singly in various parts of the body under the skin, which may otherwise be in a healthy condi-
tion. Moreover, Estridæ, which, like gastrophilus and cestrus, infest internal organs, are never known to attack man. The occurrence of œstrid larvæ under the human skin must be looked upon as accidental, and the celebrated "CEstrus hominus" as a myth. The removal of the larva is neither difficult nor attended by any serious consequences. \dagger The larvæ of flesh flies, on the other hand, always occur in large numbers, and only in diseased or injured places
in the skin or mucous membrane. The parent fly is attracted to such places, and especially to sores. Thus persons suffering with ozæna are liable to be affected with myiasis; and as the flies oviposit during the daytime, the disease has, with few exceptions, been observed in persons who have slept outdoors during the day in summer.

IMPOVERISHMENT OF LAND.

M. Deherain, in lis interesting discourses upon the exhaustion of the soil by cultivation, makes some statements that are striking and suggestive.
In speaking of the evaporation of water from the leaves of plants, he says that in onic mour, exposed to the suix, a leaf of barley exhales a weight of water equal to its own and calculating upon these figures, a hectare ($2 \cdot 5$ English acres) of maize will lose, under the same circumstances, 25 cubic meters of water. Hales, an English observer, has said that a hectare ($2 \cdot 5$ English acres) of cabbages loses each day 20 cubic meters of water, and Lawes and Gilbert, in their studies on this subject, proved that a plant which bas formed one kilogramme of substance within itself has carried in circulation through its tissues 250 to 300 kilogrammes of water.
Humus or decayed vegetable matter is the body which is most efficacious in retrining and keeping in a pure state the terrestrial waters. It can absorb an amount of water greater than its own weight, holds it more tenaciously than clay and infinitely better than sand. Analyses show that humus abounds in the prairies, or unused lands, and tha it diminishes greatly in cultivated districts. M. Boussin-

+ See Dr. J. L. Le Conte's remarks in his edition of Say's writinge
ool. ii., pp. 37 -38.
gault found in a pasturage of Argentan, in a kilogramme of soil, 40 grammes of carbon belonging to organic matters and only 28 and 24 in the same quantity of cultivated land M. Truchot found $10,12,14,18$ grammes of carbon in the districts of Limagne and Auvergne, which were highly cultivated, while he reports $110,120,148$ grammes in the prairie lands of the high mountains which were roamed over by cattle, but never received fertilizers. The reasons for this difference are not difficult to determine. In the unused fields the earth is not broken up or exposed to the oxidizing and destructive action of the air, and the decaying roots, sprays, and scapes of the grass or herbsconstantly ncrease or maintain unchanged its percentage of humus.
M. Deherain has demonstrated the cause of this loss. He divided his experimental land into parcels, and devoted many of them to a continuous cultivation. Some from 1875 to 1879 have borne potatoes, others corn, otherseach year beets. In 1878 the land planted with maize, in one kilogramme contaived 16, 15, 13 grammes of carbon; at the end of 1879, 18 months later, the same weight of soil gave $14 \cdot 4,10 \cdot 4,13 \cdot 1$, $12 \cdot 3$, and at the end of 1881 the amount bad heen reduced to $8 \cdot 0,7 \cdot 6,6 \cdot 1$ grammes of carbon per kilogramme of soil.
In 1879 he examined the land planted with beets and corn, having yielded three harvests of beets and one of corn, and found the quantity of organic substances oscillating around 13 grammes per kilogramine. He then sowed this ground with sainfoin, which remained undisturbed for three years and yielded excellent crops. At the end of the experimen he found the amount of carbon per kilogramme of soil had scarcely changed, being in fact $11 \cdot 4,13 \cdot 0,13 \cdot 3,12 \cdot 8,12 \cdot 1$, or a mean of $12 \cdot 5$, contrasting to great advantage with the re duced amounts in the harrowed and turned up grounds.
Apart from the reduction of organic matter in soils upon being turued up, the oxidation which removes the organic matter M. Deherain attributes to chemical clange, by con tact with air and to fermentation, but also largely to the activity of living organisms, plants and animals; for he observes, " The soil is not simply a mass, porous and inert, of clay, sand, and humus, but rather a center of organic activity."
Although MM. Schlosing and Muntz have shown that the formation of carbonic anhydride goes on in a sterilized soil, it is yet probable that microscopic germs and other living occupants of the carth are the principal agents in its production ordinarily.
These inferior beings play an important role, and MM. Lawes, Gilbert, and Warrington have shown that the mushrooms, which at some seasons appear in such numbers, decompose and assimilate large quantities of the organic fields are due to a luxuriant growth of grass following the disappearance of the mushrooms, which first formed them. These chemists found that outside of these circles the ground contained $3 \cdot 30$ per cent of combined carbon, while within, and after the occupancy of the space by these parasites, the samples yielded $2 \cdot 78$ ner cent. This diffe1 hectare ($2 \cdot 5$ English acres) of land!

The Locomotive whistle.

We bave given a number of statements from observers who certify to hearing tie whistle for distances of over 15 miles. Here are others: Mr. J. J. Stranaban states that the whistle and the noise of the train on the trestle at Erie were formerly heard at Boeuff, Pa., a distance of 19 miles, ir line.-W. J. McC., of San Pablo, Cal., writes that on calm, clear days, especially in the fall, they hear the rumble of the cars on a trestle located 18 miles distaut.-J. H. S. says he has frequently heard the railway shop whistle at Grand Island, while living at Orville, a distance of 28 miles, and has seen moving trains with the unaided eye 12 miles. -Mr. C. V. Swarthout, Cape Vincent, N. Y., frequently hears the railway whistle at Kingston, Ont., 18 to 20 miles, also the rumbling of the trains; also musketry firing at Fort Henry, same place, while the sound of the cannon fired there sometimes is so strong as to shake his house.

Aniline Dye Adulterated with Sugar.

In a paper read at the November meeting of the Dublin Scientific Social Club, Mr. H. C. Draper said that a sample of magenta dye, purchased from an English firm, was found o contain crystalline matter insoluble in alcohol. The writer, on examination of the bulk of the dye, found that, mixed with the cbaracteristic crystals of rosaniline cilloride, was a large number of small cubes of a darker color. These, on further examination, proved to be crystals of sugar "faced" with roseine, and many of them so slightly coated that the dye was easily removed by rubbing them with the fingers. As the sugar crystals could be readily distinguished by inspection, they were picked out by band from a weighed quantity of 10 grammes, and it was found that they amounted to no less than 95 per cent of the whole. A fresh quantity of 10 grammes of the dye exhausted with absolute alcohol left a sugar residue equal to 59.5 per cent. It would be interesting to know to what extent this somewhat ingenious form of adulteration is carried.
C. Thouvenot, as did previously Tommasi, obtains an electro-magnet by passing steam of the pressure of two atmospheres through a copper tube of 1.5 millimeters in diameter coiled round an iron core.-Weidemann's Beiblätter.

THE "HERCULES" BONE MILL

Messrs. Nicholson, of Trent Iron Works, Newark-on Trent, designed and are manufacturing the "Hercules" mill, of which we give a perspective view from Iron. There are two classes of these mills made, viz., one ín which only one pair of rollers is used, and another in which two pairs are employed.
The mills fitted with one pair of rollers will reduce raw bones to three-quarter inch, five-eighths inch, and one-hal inch pieces, and making comparatively very little dust. The more conplete mills, with two pairs of rollers and concaves, will grind to any degree of fine ness from one-balf inch pieces down to bone dust or by shutting off the lower pairs of rollers by the use of a single slide, can be made to produce similar sam ple to the mills with a single pair of rollers. 'The rollers are composed of case hardened disks of tough annealed crucible cast steel, bolted together; the additional precaution has been taken of securely interlocking them-a most important provision. Should, therefore, one of the disks on either side of it , and are not liable to fall out and be passed between the roll ers, with the certainty of causing serious damage to them or the gearing. They are further protected from breakage caused by sudden strain, or by the introduction of hard foreign substances, by automatic safety appliances, consist ing of compressible boxed springs, which offer uniform resistance up to their ultimate compression. The concaves are similarly protected by a weighted lever, by means of which the pressure can be regulated and a coarser or finer sample of bone dust produced; or the concaves can be hrown altogether out of use.
"An additional safeguard is provided in the shape of a friction clutch on the main driving shaft. This is found of great service. Occasionally hard substances of large size are accidentally passed into the rollers, which it is impossible for them to avoid even when the safety springs are compressed to their full extent. The resistance then of the obstacle overcomes the resistance of the clutch, and the rollers remain idle and consequently uninjured, enabling the attendant to remove the source of danger at his leisure. All the rollers run at different velocities, so that a tearing as well as a crusting action is obtained, and they are rendered to a great extent self-cleaning. The lower pair of rollers deliver into and work against corresponding toothed adjustaof one or both rollers, and by their action the bones are further reduced to a fair sample of bone dust at a siñgle operation. These adjustable concaves also kecp the fine rollers free from fatty or glutinous matter exuded from the crushed bones
"For the upper rollers a series of efficient separate cleaners are provided. We had an opportunity of examining these mills at the late Royal Show at York, and can affirm that their construction throughout is of the most substantial cbaracter, and calculated to withstand without risk of breakage the sudden and severe strains so frequently fatal to ordinary bone mills, while the testimony of users places their effciency at about double that of mills requiring the same driving power, but not possessing the same detail improvements. The spindles are of steel, as also is the main driving pinion. The side frames are each cast in one piece, and are securely braced together. On the driving shaft is fitted a pulley, up to 36 inches diameter, and a separate and heavy fly wheel. The bearings are of the best gun metal, with careful arrangements for lubrication. A strong fioor bracket with pedestal is provided to carry the outer end of the driving slaft, as seen in our engraving."

Gas engines from $1 / 4$ horse power to 80 horse power are now made. Medium sized gas engines, say 16 horse power, will run on a consumption of fuel equal to $1 \frac{1}{b}$ pounds of coal per horse power per hour, which is about one-half the fuel required for the most economical steam engines of the largest size.

SOCKET FOR HARROW TEETH.

The harrow tooth is constructed with a right angled arm at its upper end, as shown in Fig. 4. The metal socket that carries the tooth is arranged on the under side of the bar, and has at one end a bolt hole, and is made with opposite side Hanges on its upper surface to clip the bar on either side, and thereby assist in holding the socket to its place. Formed within the upper surface of the socket is a channel, which extends from the side of the socket to an aperture passing down through the socket, as indicated in Figs. 3 and

CARSTENSEN'S SOCKET FOR HARROW TEETH.

If we add a third maguetic needle to an astatic galvano meter, so that it is below the frame and parallel to the two others, and so that its poles may be opposite to those of the needle above it, we obtain a galvanometer the sensibility of which is nearly trebled, and which preserves a directive force. We may also reverse the arrangement, making the rame movable, into which the current arrives by the suspension wirss, and leaving the needles fixed.
The above considerations have led the author to devise a aperiodic galvanometer, which has been exhibited at the Vienna Electrical Exhibition. A more perfect model has since been coustructed by the firm of Breguet.
In this instrument the six poles are retained, but the poles are formed by three horse shoe magnets with legs very near togettre. These three fixed magnets are placed borizontally oue below another, at a distance of 0.005 meter The frame incloses the two poles of the middle magnet, with play sufficient to permit it to oscilate freely, and obtain a deviation of 20° on each side. The light wire of this small frame is per pendicular to the axis of the magnets, and the current arrives by means of the suspension wire, as in the siphon recorder of Sir W. Thomson and other analogous frames.
If we place this galvanometer in communica tion with the two ends of a telephone from which the vibrating plate las been removed, theu, in order to make the frame deviate, it. is sufficient to let fall upon the pole of the magnet of the telephone a small fragment of iron filing, weighing a few milligrammes. This example ill show its seusitiveness.
It is completely aperiodic, i. e., if the two ex tremities of the galvanometer are connected by a wire of little resistance, the frame, having de5, the latter figure being a vertical section through Fig. 2. |viated from its position, stops at zero without passing it. The channel occupies an oblique position to the sides of the If we examine the position of the lines of force with socket and length of the bar, and is of such size as to freely receive the arm of the tooth.
The aperture through which the slank of the tooth passes is of gradually increasing oblong shape, having one vertical side and one sloping side shown in Fig. 5. This construc tion enables the tooth to adjust itself either to a perpendicu lar or backwardly inclined position relatively to the beam. In Fig. 1 the draught is toward the right, and the shank of the tooth rests against the inclined side of the aperture; in the tooth rests against the inclined side of the aperture;

THE "HERCULES" BONE MILL

the socket has been reversed the tooth bears against the ver tical side. The teeth are fitted in sockets which can be readily applied to either iron or wooden frames.
This invention has been patented by Messrs. P. C. and I A. Carstensen, of Walnut, Iowa.

A Correspondent of the Engineer, London, commend the water-tight coal bunkers of the new United States steamship Chicago, and thinks that if the Austral had bee so provided she would not bave gone down so readily.
eference to the four sides of the frame, we see that electro magnetic induction is produced on the four sides of the rame, and in the same direction.-M. G. Le Goarant de Tromelin, in Comptes Rendus.

The Present Nail Product.

The Bulletin of the Iron and Steel Association prints a ist of the nail works, and states that seventy-four now completed have 5,008 machines, and will add 391 more hefore built which will have least 200 more nail machines in operation by January 1. By that time bere will be 6,599 nail machines ready to work, with a capacity of 12,376 , 000 kegs of cut nails and spikes yearly. The mills and machines now completed have a capacity of about $1,000,000$ kegs less; about $3,264,000$ in Pennsylvania, 2,200,000 in Ohio, $1,668,000$ in West Virginia, 875,000 in Massachusetts, and 690,000 in New Jersey.
Apropos of the same subject, the Philadelphia Press remarks: "The building boom has been for at least nine months past the chief support of the iron market; but there re many minor signs that it is near its end. The pause in the rise of rents
May was the first indication that building in New York city was overdone, and it has heen followed by others which point to a serious check in real estate values there in the next six months. Nails, which since their tremendous jump in 1879-80 have been in steady demand, now slow overproduction. The capacity of the nail works in the country, finished or unfinished, is $12,376,000 \mathrm{kegs}$, or twice the output in 1882, and this increase is launched on a failing market. In addition, various forms of iron used in building show a decided decrease in demand. Unless there is a sudden increase in railroad building, the falling off in house building must have a serious effect on the labor market before spring."
T. G. Merrill, a mining engineer, says that this year's product of the Montana gold mines will reach $\$ 15,000,000$.

WAGON JACK.

The wagon jack herewith illustrated has been recently patented by Mr. Andrew J. Burke, of Elm Grove, Illinois The lever, a, is pivoted to standards, secured to a base, and provided with apertures for the pintle to permit adjusting the lever higher or lower. That end of the lever which supports the axle is slightly hollowed out. A lever, c, is pivoted on the lever, a, at the end near the standards, and is pressed upward by a spiral spring, d, surrounding a pin projecting upward from the free end of the lever, a, and passing through a hole in the end of the lever, c, the head of the pin being above this lever. Guide pins on the lever a, pass through boles in the other lever. Two levers, g, pivoted to the sides of the standards are united at the free ends by a cross pin, e, above the lever, c. The apertures in the standards permit pivoting the levers, g, at any desired height. A spring, h, has one end mounted on the pintle of the levers, g, as shown by the dotted lines, f; the other end

burke's wagon jack.

bears against the bottom edge of the lever, a. Between its ends the spring passes over a bolt, f, uniting the levers, g. To use the jack the hollowed end of the lever, a, is placed under the axle and the other end pressed downward. After the cross pin, e, has passed the pin, d, the free end of the lever, c, is pressed toward the lever, a. The spring, h, presses the levers, g, downward. The lever, c, is pressed by its spring against the cross pin, e, and is held against the pin, d, the head of which prevents the lever, c, from pressing the cross pin above the upper end of the pin, d. The levers, g, thus hold one end of the lever, a, lowered, the other end and the axle on it being raised.

IMPROVED RUELLE FURNACE FOR REVIVIFYING BONE BLACK.

The revivification of bone black, after it bas been used, is a very important operation in every sugar manufactory. Among the numerous systems of furnaces that have been proposed for performing it, very few have given the results that were expected of them. The Ruelle furnace, represented in the annexed cut, is not a novelty, and, if we now advert to this well known apparatus, it is because it has been the object of some relatively recent improvements, which it has seemed to us would be of interest to make known.
As well known, this furnace consists of a certain number of vertical retorts, designed for baking the black, and the upper extrem ity of which debouches into a hopper, into which the black to be revivified is thrown, while their lower extremity debouches into conling tubes. The whole is inclosed within a cylindrical casing of fire bricks covered with plate iron. The first improvement added to the apparatus is the automatic method of emptying the tubes. Wit this object in view, the apparatus is so constructed that it may be revolved around a central axis by means of an end less screw and gear wheels. Each cooling tube is provided at its lower part with a distributing box of cast iron, and between this and the tube there is arranged a sheet iron valve, provided with a steel spring, which opens or shuts in passing into a bifurcation, and permits the black to enter the box. The distributing box is provided with a counterpoised door that is opened and closed by the same method as the valve just mentioned, so that on the second revolu tion of the furnace the black that is contained in the box falls over an inclined plane into a bag, or into a car.

FURNACE FOR REVIVIFYING BONE BLACK.
one pump dredge, an average of 30,000 cubic yards, measured in the cut at a maximum cost of 10 cents per cubic yard; and in one particular month of 23 days' work, 60,000 cubic yards were deposited on shore at a distance of 1,600 to 2,000 feet from the dredge, at a cost of 5 cents per cubic yard The complete distribution of the material at the place of deposit has been very satisfactory, the result being a cluster of cones whose slopes are very flat; not more than $11 / 2$ pe cent, and frequently so slight as to appear almost level

IMPROVED AIR COMPRESSOR.

To successfully use atomized liquids in the treatment of diseases of the upper air passages, it is necessary that the current be continuous. The well known double bulb atom

IMPROVED AIR COMPRESSOR.
izing hand ball, made of rubber, bas the great disadvantage
inued effort is very tiresome. The accompanying engraving represents an apparatus. which is easily warked, compact in form, and light in weight. The pump cylinder is $21 / 2$ inches in diameter by 3 inches stroke, is mounted on an arched stand, and contains a piston furnished with a valve opening upward. The piston is connected to the foot pedal by a forked connecting rod, and is moved by a slight and easy motion of the foot. The upper end of the pump cylineasy motion of the foot. The upper end of the pump cylin-
der is closed, with the exception of an aperture, which der is closed, with the exception of an aperture, which
is covered by a valve opening upward into a cylindrical air reservoir secured to the upper end of the pump. A flexible rubber bose is attached to a stop cock near the top of the reservoir. Immediately on top is a spring gauge indicating the air pressure from one to twenty pounds. By a little exertion on the part of the operator, the pressure can be kept at any point, and, when filled to ten or twelve pounds, there is air enough to give a spray, with a good atomizer, for ten minutes, or long enough to make application to three or four patients in succession without pumping.

The same plan furnishes a simple and efficient device for maintaining a continuous supply of air for blow pipe use. As"mucno meoxygen of the air is taken up by the lungs, exhaled air is deficient in heating qualities. This defect is overcome by the use of the compressor, which not only saves a great amount of hard work, but delivers a stronger and steadier blast than is possible to maintain
posit. The total quantity moved by one dredge in eight months was 250,000 cubic yards. The best work in one month was somewhat over 60,000 cubic yards in 230 engine hours ; the average distance of transportation being 1,100 eet. The greatest distance transported was during October, when 45,000 yards were deposited in 190 engine bours, through 1,600 to 2.000 feet of 20 inch pipe. The average daily expense account was stated as approximately $\$ 102.00$, hut this did not include the cost of the nine or ten men on shore, employed to secure a proper disposition of the material, particularly as the fill approaches completion. Nor did it include the cost of retaining embankments where required. The result of the work was stated to be, with this
ith the mouth. With ordinary care it will last for years, the only attention required being a drop of oil occasionally on the leather packing ring.
The apparatus is manufactured by Mr. J. Elliott Shaw, 154 South Fourth Street, Pbiladelphia, Pa.

A Liniment for Rheumatism

The Therapeutic Review says: Methyl salicylate (oil of wintergreen) mixed with an equal quantity of olive oil or linimentum saponis, applied externally to inflamed joints affected by acute rheumatism, affords instant relief, and, baving a pleasant odor, its use is very agreeable."

sir William Siemens.

We much regret to have to announce the sudden death of Sir William Siemens, which occurred on the evening of Monday, the 19th of November, in consequence of an injury to the heart, brought about by a fall a fortnight previously. Walking home from a scientific meeting on the afternoon of Monday, the 5th, he tripped and fell while crossing Hamilton Place. Though for a day or two no apparent harm resulted, it was soon found that the heart had beenit was hoped slightly-injured, or, at all events, that the shock, acting on a previously existing morbid condition, had shock, acting on a previously existing morbid condition, had
had injurious effects. Still there seemed no reason to fear had injurious effects. Still there seemed no reason to fear
that rest would not repair the mischief, till on Monday, quite suddenly, the end came.
By his death English science has suffered a severe loss, and a loss which will not readily be made good. At a time when the tendency of science is more and more to specialize itself, and scientific men are often compelled to study one particular branch of a subject alone, it is very rare to find a mind like that of Sir William Siemens, who devoted himself to many distinct branches of science, and yet excelled in them all. Not on!y bas he done much for the advancement of pure science, but it maj be said. without contradiction that he has, beyond all his contemporaries, promoted the practical application of scientific discoveries to industrial purposes. He was an ardent scientific discoverer, a large and successful manufacturer in at least two distinct branches of industry, an engineer of high rank in the profession, and besides this he was a shrewd and clear-headed.man of business.
Charles William Siemens was born at Leuthe, in Hanover, on the 4th of April, 1823. He was educated at the
Gymnasium at Lübeck, afterward at the Polytechnic School at Magdeburg, and finally at the University of Göttingen Here he studied under Wohler and Himly. In 1842 he be came a pupil in the engine works of Count Stolberg, and here he laid the foundation of his engineering knowledgeknowledge he afterwards turned to such good practical ac count. The fact that he was one of a family of inventors makes it rather difficult to say what was the precise personal share he had in the many inventions for which the world is indebted to the four gifted brothers-Werner, Wil liam, Carl, and Frederick. They all worked so harmoni ously together-the idea suggested by one being taken up and elaborated by another-that it is hardly possible to attribute to each his own proper credit for their joint labor. The task, too, is rendered all the harder by the fact that each brother was always ready to attribute a successful invention to any of the family rather than to himself. It may, nowever. ive skid that in electrical discovery the two while the regenerative furnace is due not only to William, but also to Frederick. It was to introduce to the English public a joint invention of his o.wn and his brother Werner in electrogilaing that William Siemens first came to England. This was in 1843. Speaking two years ago to the Birmingham and Midland Institute, Dr. Siemens, as he was then, gave an interesting and somewhat touching account of the difficulties which not unnaturally beset the young foreign inventor, so ignorant of the language of the country that his first visit was to an "undertaker," under the impression that he was a suitable person to take up and bring out his invention. Thanks to the kindly discrimination of Mr. Elkington, who was able to perceive that certain processes described in some of his own patents could only be carried into effect by the improvements of the Siemenses, he was able to dispose of his in vention so far successfully that he was induced in the following year to come back again on a similar errand. This time it was his "cbronometric governor," an apparatus which, though not very successful commercially, introduced bim into the engineer ing world, and was really the cause of bis settling in this tountry. The chief use of this apparatus, intended originally for steam engines, has been found i_{11} its application to regulate the movement of the great transit instrument at Greenwich.
His studies in the dynamical theory of heat led him to pay special attention to methods of recovering the heat generally allowed to run to waste in various engineering and manufacturing processes. The first application of these researches was in the regenerative steam eugine which be set
up in 1847 in the factory of Mr. Hicks, at Bolton. In this superbeated steam was employed, but its use was attended with certain difficulties which have prevented the commercial introduction of the invention. The Society of Arts may have the credit of being the first public body in England which recognized the value of the principle by awarding Mr. Siemens a gold medal in the year 1850 for his regenerative condenser. The direction in which he was then working. was stated in a paper be read before the Institution of Civil Engineers in 1853 on the conversion of heat into mecbanical effect. This paper gained him the Telford Premium and medal of the Institution. In 1857 Siemens, in connection with his younger brother and then pupil, Frederick, turned his attention to regenerative furnaces for metallurgical purposes. The regenerative gas furnace, as it is certainly the greatest invention due to the Siemenses, so is the one in which William Siemens is believed to have had the largest share. The first successful application of these furnaces was in 1861. The principle of the regenerative furnace is tolerably well known; it may suffice to say here that its main feature consists in an arrangement by which the waste heat of the products of combustion is
utilized by being imparted to the air and to the gaseous fuel by which combustion is supported. This is effected by causing the products to pass through chambers in which the heat is taken up by masses of brickwork, and afterward passing the incoming currents of air and gas among the heated brickwork. The earlier applications of this principle to steel and glass making have been followed by its exension to many other industrial purposes in which great heat is required, the powers of the furnace being on! y imited in practice by the nature of the materials of which can be constructed.
The application of the furnace to the making of iron and steel naturally led the attention of its inventor to other improvements in the same manufacture. In 1862 he endeavored to reduce to practice the result of Reaumur's experiments in making steel by fusing malleable iron with cast steel. After some years' experimenting the Siem ens process of steel making was perfected, and a little later still the Sie-mens-Martin process. In the latter, scrap iron is melted in bath of pig iron on the hearth of the furnace; in the former, ore is reduced. The production of steel in this country under Sir William Siemens' processes was over 340,000 tons in 1881.
But if the inventions of this regenerative furnace and of imroved processes for steel making are those which are most likely to keep alive in future years the memory of their inventor, it is just now with the electric light that the name of Siemens is most closely associated in the popular mind. The recise date at which he may be said to have commenced his work in this direction can hardly be given. It was in 1867 that his classical paper on the conversion of dynamical into electrical force without the aid of ${ }_{i}$ permanent magnetism was
read before the Royal Society. Strangely enough, the discovery of the same principle was enunciated at the same meet-

DR. C. W. SIEMENS. F.R.s.
ing of the Society by Sir Charles Wheatstone, while there is yet a third claimant in the person of Mr. Cromwell Varley, who had previously applied for a patent in which the idea was embodied. It, therefore, can never be quite certain who was the first discoverer of the principle on which modern dy namo machines are constructed. As regards the Siemens discovery, the originator of the idea was Dr. Werner Siemens, who, on being shown an electriat notor constructed without permanent maynets, immediately saw that a generaor without nermanent magnets was equally possible. The details, however, of the construction of the Siemens machine, and the various improvements by which it has been brought to its present form or rather forms (for there are, f course, several varieties) are due alike to the younger and he elder brother. And the same may be said of the various nventions connected with telegraphy and the electric light which emauated from the great firm of Siemens Brothers. Some of these were entirely worked outhy one, some by the ther brother, more were the joint production of botb, but no attempt was made to separate them or to discriminate.
How great were the inventive resources of Sir William is vell shown by the saying common in his workshops, that as soon as any particular problem had been given up by everybody as a bad job, it had only to be taken to Dr. Siemens for him to suggest half a dozen ways of solving it, two of which would be complicated and impracticable, two diffcult, and two perfectly satisfactory.
As regards telegraphy, the most important work executed by the firm was the laying of the Direct United States Cable in 1874, for which work that remarkable vessel the Faraday was built after the designs of Sir William Siemens. A good instance at once of the versatility of Sir William's good
and of his engineering skill is given by the arrangement of the screw propellers in this ship. Their shafts (the Faraday is a twin screw) are set at a slight angle, diverging not out ward, as has often been proposed, but inward, toward each other. The effect of this is that the thrust of each propeller, when used singly for steering purposes, acts at a much morc effective angle, and the result is that the vessel can turn in her own length, when the engines are worked in opposite directions. The Faraday is most completely fitted up with every possible appliance for cable laying, grappling, and re covering lost cables, but the above small detail is only referred to here as illustrating the way in which Sir 'W. Siemens dealt with a purely engineering question, which might have been considered quite beside the ordinary direc tion of his work. To record fitly what he and his firm have done for the advancement, not only of electric lighting, but of the various practical uses of electricity, would involve the enumeration of an infinity of technical details, each comparatively unimportant, but each fitting into its own place and serving to produce a complete whole. To enter fully ifto the amount of electric lighting work effected by them would invite comparisons which at the present moment are above all things to be avoided. It may, however, be said that if a careful examination were made of the working installations of the electric light, it would be found that a very consider:ble portion of the real work done had been done by the firm of Siemens Brothers. At the Paris Exhibition they were facile principes; at Munich, at Vienna, at the Crystal Palace, they were alike couspicuous.
The process of "anastatic printing," a process only superseded by receut advances in photographic processes, was due to William and Werner Siemens. It was described by Faraday in 1845. Faraday, too, it may be noted, had for the subject of his last lecture at the Royal Institution the advantages of the Siemensfurnace. Improvements in calico printing, the in vention of a double cylinder air pump and of a water meter, are also among the earlier work of William Siemens. Among more recent inventions may be noted his bathometer, for measuring the depth of the sea without a sounding line, his electrical furnace, his electrical thermometer and pyrometer, his rotatory furnace for the production of iron and steel by the direct process, his deep sea electrical thermometer, and his regenerative gas burner Sir William Siemens was elected a Fellow of the Royal Society in 1862, and in 1869-70 he served as one of the Council. He became a member of the Institution of Civil Engineers in 1854, and has been on its Council for some years. He was the first president of the Society of Telegraph Engineers, and served a second time in that capacity He has been President of the Institution of Mechanical En gineers, of the Iron and Steel Institute, and of the British Association. He was Cbairman of Council of the Society of Arts.
The honors he has received for his inventions and discoveries are very numerous. This brief record may serve to show how valuable was the life that has just passed away, how great the loss of what a few more years of strenuous work might have yielded. Those who knew him may mourn the kindly heart, the generous, noble nature, so tol erant of imperfect knowledge, so impatient only at charlatan ism and dishonesty; the nation at large has lost a faith ful servant, chief among those who live only to better the life of their fellow men by subduing the forces of nature to their use. Looking back along the line of England's scientific wortbies, pbere are few who have served the people better than this, her adopted son, few, if any, whose life's record will show so long a list of useful labors.-Lon don Times.

Dr. John L. Le Conte.
The death of Dr. John L. LeConte at his home in Philadelphia on Thursday, November 22, at the age of fiftyeight, removes one who has long been the leader, facile princeps, of American entomologists. With his death the younger men are completely separated from the former generation of workers in this field; and they will lose a friend aud teacher to whom they constantly looked. Dr. been an active investigator for nearly forty years. His death occurred during the session of the National Academy, of which he was a member, but was not known in New Haven until its close.

One More Number.

The next issue will close another volume of this paper and with it several thousand subscriptions will expire. It being an inflexible rule of the publishers to stop sending their publications when the time is up for which subscriptions are prepaid, present subscribers to the Scientific American or Scientific American Supplement will oblige us by remitting for a renewal without delay.
By heeding this request to renew immediately, it will save the removal of several thousands of names from our subscription books, and insure a continuance of the papers without interruption.
And we would suggest to employers if it would not be to heir advantage to present to their superintendent or other employe one year's subscription to the Scientific Amerrcan or Scientific American Supplement, or both papers, a recognition for meritorious services.
It seems to us that a small investment thus made would be likely to be a good one, for both the donor and recipient.

6 What is the Natural Age of a Cat?

To the Editor of the Scientific American

I had a cat that died last June whose age was a month or more over twenty-five years. This is the same cat that was mentioned in a great many papers last winter, and was called twenty-three years old, whereas, according to correct reckoning, she was twenty-five years, instead. She had one kitten two years old at the time of ber death. About the time she had the last kitten she renewed her teeth. She never shed her bair for the last two or three years, which became very coarse and stiff. She died with lung disease. She always lived at the barn and outdoors.
C. V. Swartwout.

St. Lawrence, N. Y., November 5, 1883.

The Brandy Bread Co.

To the Eatitor of the Scientific American:
In your paper of Sept. 1, 1883, in the article upon " Fermentation in Bread," you finish by asking, " Will not some American repeat this experiment?" that is, make alcohol from the fumes from oven while baking bread.
About 1836 the writer saw a very large bakehouse erected somewhere in Tipton, Staffordsbire, called the Brandy Bread Company. I can just recollect that the doors were made steam tight, and that the bread was insipid, or tasteless, and that some thousands of pounds sterling were lost, and the company went bankrupt.
I sbould be sorry if this account should prevent the trial you suggest, for in forty-three years immense strides have been made in chemistry.

Тно. Воотн.
Oct. 20, 1883.

The Sunset Colors.

To the Editor of the Scientific American:
I see in your paper of the 8th inst. you seem to attribute our recent fiery sunsets to the supposed presence of a stratum of meteoric dust. Would it not be more reasonable to consider it volcanic dust thrown up by the late terrific outburst in Java?

The forces there in operation-unparalleled I believe in all human bistory-were evidently adequate to such an effect, and the fact thatimmense quantities of something were thrown into the air is attested by the greenness of the sun as seen in India. Besides, the time since the Java earthquake has been just about what we might suppose sufficient for the dust to diffuse itself to this distance
Sixty-one tons of impalpable dust thrown into the air would allow about one ounce to each tract of ten miles square over all the eartb's surface. This, I think, would be quite sufficient, when viewed at an oblique angle with the stratum containing it, and nearly in the direction of the sun, to be plaínly visible. Having thus an adequate and probable cause, there seems to be no need of ascribing the phenomenon to any mysterious extramundane cause, of which we can know counparatively nothing, but of which we may imagine everything.
S. S.

December 10.

Storing Wind Power for Small Motors.

To the Editor of the Scientific American:
Your correspondent A, on page 353, proposes to drive a boat 14 feet long for 5 consecutive hours with air compressed to 200 atmospheres, in a 2 inch pipe placed along the gunwale of the boat, the owner, at his choice, using a screw or paddles to drive the boat.
I have a very light boat built of $3 / 8$ inch pine, somewhat longer than A^{7} s theoretical one, but I fancy just as easily propelled, driven by a 3×3 inch cylinder, screw 18 inches in diameter. The time occupied in driving this boat two miles averages 18 minutes, carrying 100 pounds to the square inch on the boiler, the wheel turning an average of 400 revolutions per minute, making in all 7,200 revolutions to complete the two miles.. Comparing A's air engine with mine, I think his theory will not be borne out in practice. I suppose his theoretical pipe or receiver runs under both gunwales. This would make it 28 feet. My steam engine may not be as economical in its consumption of steam as it might be, as it cuts off only at $3 / 4$ stroke. A's air engine will doubtless be arranged to work more expansively, say his cylinder is to be 2 inches in diameter, 3 inches stroke, cutting off at $\frac{2}{8}$, then expanding into another cylinder 4 inches in diameter, same stroke. Throttle down his air supply until it passes into the first cylinder at 100 pounds, and prohably, if his engine is well made, he may obtain as good results as I do with my 3×3 cutting off at $3 / 4$. If he used the same wheel that I do (my foundrymen tell me it is the best obtaiuable, his engine must necessarily make the same number of revolutions to run the same distance. Four inches, therefore, of the supply in his air pipe would be exhausted at every revolution of the engine if the pipe were charged at 100 pounds; but as it is supposed to contain 3,000 pounds, the 4 inches, if the pressure were constant, would accomplish 30 revolutions. The receiver being 28 feet long the sum would stand thus: $\frac{\text { sise }}{4} \times 30=2,520$ revolutions bis wheel would make on his receiver's becoming exhausted, if, as before said, the pressure was constant, which unfortunately it is not.

In my opinion, therefore, his theoretical little boat would prove a failure. It would only run for a few minutes, and would need a second "placing to the windmill" before she ran a mile.

Alia tentanda via est.

Plan of Fast Steamers.

To the Editor of the Scientific American:
The official assertion of Mr. Fawcett, Postmaster General of England, "that after the expiration of the present contract for carrying the mail across the Atlantic to the United States shall have expired, he shall cause to be paid to the fastest mail steamer for carrying the letters three shilliugs per pound, and for the newspapers only three pence per pound." Now, as the tastest steamers only shall have the contract, the question arises, Who will own the fastest steamers-the English or the Americans? And who will adopt on scientific principles the plau of building the fastest boats?

The present transatlantic steamers can with propriety be called floating palaces, but they are all built on "the one \log section," they are as deep as they are wide, and built without any regard to the metacenter of a floating body. (Fig. 1.) In floating bodies the stability depends on the form of that body, and this form is the most improper or the most unstable, as it would require but a little force to set it rotating, unless ballast as a principle were applied to obviate this rotating tendency in this "one log form;" and the more ballast to carry out the principle of stability the deeper the boat sinks into the water, bence greater the resistance the boat has to overcome. These boats are all built with a " nice, clean run" fore and aft; this too is detrimental to their forward motion in a heavy sea, as far as their "forerun" is con cerned. The bow of a boat should be wedge-shaped, and the knuckle on a line from the "fore foot" to as far back on the plank shears as the length of the wedge-shaped bows ex. tends back, with a long "run" aft, so that when the boat sets on a sea it will have a tendency to slide forward at each such downward motion. You may imagine a slate sinking in water to illustrate this principle. And in place of the "one log section" we would adopt the " two log plan," as illustrated in Fig. 2. This obviously is a stable floating body, and to enhance its stability we would suggest that the keel be a boiler iron tube filled with molten me
tal, care to be taken that the

ketl tube is not too large,
to be furnished with a
"screw" in place of the
" fan". in use; and the single surface measurement to be fully equal to the resistance offered by the water at the bows of the boat, so that a screw ten feet long (say) baving the required surface would move the boat (say, all things considered) nine feet at each revolution with a motive power to drive the screw three hundred revolutions a minute, which would move the boat seven hundred and twenty-five miles in twenty-four hours.
Now as to the construction of the screw, which should be made of four separate flanges, each flange to pass once around the screw shaft in its length of ten feet, and of such diameter as to measure on their single surface the same as the resistance offered to the bow of the boat, or the screw may have more hold of the water than the resist ance offered by the water at the bow of the boat; the more the difference the greater the speed. One flange to pass around the screw shaft several times to have the required measurement would be a violation of the principle. Since the Daphne disaster the Clyde ship builders have turned their attention to the subject of stability tests in the Clyde shipyards. The Glasgow and Londonderry Steamboat Co., who are owners of the Daphne, have ordered a steamer to replace the Iris, that has been recently lost on the Irish coast. They stippulate that the stability in every respect should be perfect, and the builder must satisfy himself with designs to atlain that.end.
Being myself an American by adoption, I would prefer that the fastest boat in the world should sail from New York or some other American port for this coast. Tube compartments would be the safest in transatlantic steamers, and the machinery could be tube inclosed.
Should these suggestions be of any value, be pleased to use them to the best possible advantage.

Yours respectfully,
Wiliiam Griffithe.
Ala Nursery, Piollheli, North Wales,
Great Britain, Oct. 30, 1883.

Enterprise in Dakota

To the Editor of the Scientific American:
My attention was attracted by a short article in your issue of December 1, describing the rapid growth of the town of Woonsocket, Dakota.

It so happened that I was at the aforesaid town twice a few weeks since, and can vouch for the truth of the story of its wonderful growth. The first time I passed through, the place was just ten days' old, and contained sixty-five
buildings in proce'ss of erection, only two of which had progressed far enougb to be painted. Five days later I was there again ; there were then a number of other buildings under way (the exact number I do not know), and about a dozen or fifteen of the older ones were not only painted, but occupied. The depot was finished and in use, and the town contained the usual number of saloons, eight or ten stores, contained the usual number" of saloons, eight or ten stores,
one or two law offices, several of the inevitable "land and one or two law offices, several of the inevitable " land and
loan" offices, two hotels (unfinished), and, if I mistake not, a newspaper. Nearly every one of the buildings mentioned above was a bona fide store or dwelling; for in the "booming" places the out-buildings are left until the last thing.
At the time referred to Woonsocket was, and presumably is now, an ideal " booming town." Mechanics were getting fabulous prices and were in great demand. Whole trains of freight cars, loaded with building material, stood upon the tracks, waiting to be used. Building lots which sold originally for oue hundred dollars had brought three hundred a little later on, and were now selling for six hundred. Large numbers of lithographic "plats" of the town had been struck off, and were being forced upon every stranger who happened to set foot in the place. The envious inhabitants of the neighboring towns have changed the name Woonsocket inta " Boom-struck-it," which certainly correctly expresses the state of affairs.

Charles T. Beardsley, Jr.
Birmingham, Conn., December 4.
J. A. asks (1) how "opodeldoc" is made. A. Take of shavings of Castile soap 4 ounces, of gum camphor 2 ounces, of oil of rosemary $1 / 2$ fluid ounce, of water 6 fluid ounces, and of alcohol 1 quart. Digest the soap in the water until it is dissolved ; dissolve the camphor and oil in he alcohol ; then mix the two solutions, and filter. (2) What is a good recipe for rheumatism? A. The following has been highly recommended: Take of gum guaiac 2 ounces, of nitrate of potassa 1 ounce, of sulphuret of antimony 2 drachms, of gum camphor 2 drachms, of gum opium 1 drachm, of saffron 20 grains, and of gin 1 pint. Mix. Dose, one teaspoonful three times a day in a little sweetened water. In a complaint like rheumatism it is better to consult a good physician than to rely upon published recipes, which, although they may have proved efficacious with some persons, may not be adapted to the cases of others.

Wire Fences in Georgia.

A lawful wire fence in Georgia is described by legislative enactment as composed of not less than six horizontal strands of barbed wire tightly stretched from oost to post. hree and a half inches from the ground; the second wire not more than uine and a half nor less than eight and a half nches from the ground; the third wire uot more than fifteen and a balf nor less than fourteen and a half inches from the ground; the fourth wire not more than twentytwo and a balf nor less than twenty-one and a half inches from the ground; the fifth wire not more than thirtytwo nor less than thirty-one inches from the ground; he sixth wire not over fifty-iive nor less than fitty-three inches from the ground. Posts to be wot over ten feet part, and every alternate post to be securely set in the ground. Provided, a plank not less than ten inches wide hall be used instead of two strands of wire at bottom of fence. It is also required that a railing shall be placed equal distance between the two top wires, which shall answer he same purpose as a wire, and to extend from post to post n like manner.

AmIa Scot, or am I Not?

If I should bring a wagon o'er
From Scotland to Columbia's shore,
And by successive wear and tear
The wagon soon should need repair:
Thus, when the tires are worn through,
Columbia's iron doth renew;
Likewise the fellies, hubs, and spokes
Should be replaced by Western caks;
In course of time down goes the bed,
But here's one like $i t$ in its stead.
So bit by bit, in seven years,
All things are cirangeat in bed and gears,
And still it seems as though it ought To be the one from Scotland broug.ht; But when I think the matter o'er,
It ne'er was on a foreign shore,
And all that came across the sea
Is only its identity.
I came, a Scotchman, understand,
By choice, to live in this free land,
Wherein I've dwelt, from day to day,
'Till sixteen years have passed away.
If physiology be true,
My body has been changing ton;
And though at first it did seem strange,
Yet Science doth coufirm the change;
And since I have the truth been taught,
I wonder if I'm now a Scot?
Since all that came across the sea
Is only my identity.
William Taylor.
Aurora, Ind.

THE NEW UNITED. STATES CRUISERS.
(Continued from first page.)
partments having a length of 136 feet. This space will have a double bottom $31 / 2$ feet deep, divided into fourteen watertightcells.' A steel deck $11 / 2$ inches thick will cover the machinery.
These compartments will be divided on each side by vertical longitudinal bulkbeads, and the space between them and the sides of the boat will be filled with coal. From the water line to 8 feet above it this coal armor will be 9 feet thick, and aft will have a thickness of 5 feet from the water line to 14 feet below it. When the doors are shut, the coal bunkers and the pockets in the boiler rooms form thirty-four water-tight compartments. The deck covering the machinery compartments will afford protection by preventing the access of shot and water to the main compartments, but it is not expected to resist a 6 -inch shot even at incliuations of from six to eight degrees; entering shot would in all likelihond explode in the coal without doing injury to the machinery.
The magazine rooms will be in the bold amidships, before and abaft the m shinery space. The deck above them will be covered by a protecting plating three-quarters of an inch thick. All hatches through it are to have water-tight covers, and coffer dams reaching to the berth deck will surround the magazine hatches. Other divisions in the hold by bulkheads of steel and the shaft alley bulkheads, together with those already noted, divide the vessel iato eighty-five water-tight compartments.
A system of drainage bas been adopted by which the combined power of the steam and circulating pumps, having a capacity of 2,500 tons per hour, can be concentrated on any, main compartment. In addition to this there will be six continuous acting hand pumps on the berth deck, having independent suctions to each main compartment, and each compartment of the double bottom; they deliver either directly overboard or into the fire main, which will extend about three-fourths of the length of the vessel amidships on the berth deck, with stand pipes to gun and spar decks.
The outside plating of the vessel will be nine-sixteentlus of an inch thick, will weigh twenty-three pounds per square foot, and there will be a double plate at the water line from the stem to within 70 feet of the stern. The stem and stern posts are to be of hammered steel. The water-tight inner bottom will be plating 10 and 121/2. pounds per foot. The berth deck will have a protective plating over the engine and boilers for 136 feet. The bow of the vessel will be strengthened sel will be

the great iguanodon at the brussels museum.

The rudder and steering The rudder and steering
gear will be below water line. A fighting hand wheel and
steam steering engine will be placed on the water-tight flat, steam steering engine will be placed on the water-tight flat,
to which communication can be had by tel bridges. In the spar deck and a steam steering wheel in the pilot house.
The vessel will be bark rigged, with an area of plain sail of 14,880 square feet. The coal bunker capacity will be 940 tons, while 300 tons additional can be stored away on the berth deck. This will enable the Chicago to steam 3,000 miles at 15 knots, or 6,000 miles at 10 or 11 knots per hour. The vessel will be ventilated by an exhaust system.
There will be twin screws operated by two pairs of two cylinder compound overbead beam eugines, each of which will be placed in a separate water-tight compartment 22 feet long, and inclosed by a deck for protection. The high and low pressure cylinders will be situated side by side, are vertical, 8 feet apart, and 2 feet 1 inch and 3 feet 5 inches respectively from the midship line. The diameters of the cylinders will be 45 and 78 inches, and the stroke 52 inches. Each cylinder will be steam jacketed, and fitted with two double ported main slide valves, actuated by eccentrics through arms and rock sbafts, each furnished with a steam cylinder and piston to balance the weight of the valves. The cut-off valves will be adjustable between the limits of oneeighth and five-eighths of the stroke. The exhaust steam
from the high pressure cylinder will pass directly to the low pressure steam chests; suitable pipes will exbaust the steam into the condenser and atmosphere. The condensers will be furnished with tinned brass tubes having a cooling surface of 5,000 square feet each. Beside each condenser will be placed an independent, double-acting, combined air and circulating pump. Worked from the crosshead of each pump piston will be two double-acting feed pumps 5 inches in diameter.
There will be fourteen horizontal return tubular boilers, constructed of steel, and capable of carrying a pressure of 100 pounds. They will be placed in t wo separate watertight compartments. The fire rooms will run fore and aft, and will be 10 feet wide. Each boiler will be 9 feet in external diameter and 9 feet 10 inches in length on the bottom, aud will be set inclining from front to back, over a single furnace. Each furnace will have about $57 \frac{1}{8}$ square feet of grate surface, or an aggregate of 802 square feet in all the boilers. The shells will be five-eighths of an inch thick, and the heads three-quarters and five-eighths. The tubes will be lap-welded iron. In each smoke pipe, concentric with it, there will be a steam drum 9 feet in diameter and 9 feet long, with a shell seven-eighths of an inch thick;
this will have eight 18 -inch and four 15 inch lap-welded

THE BERNISSART IGUANODONS

The animal whose skeleton is represented in our engrav ing is, at a first glance, surprising by reason of its colossal size and its resemblance to the giant kangaroo. Like the latter, it has an enormous tail, very long hind legs, and very short fore ones. It seems as if it ought to be placed neal that marsupial; but paleontologists, rightly setting aside all vulgar ideas, make it out a reptile. A reptile! A biped like man and like birds, capable of seizing his aggressor between his arms! It must be avowed that reptiles have changed much during the long route that they have traversed since geological times up to our own.
Surely, had any one in former times had any idea in regard to paleontology, and had any one suspected the existence of these forms so carefully preserved in the terrestrial crust, and so different from those of to-day, naturalists would have perhaps been embarrassed, but they most certainly would not have given the name of crawling animals to the interesting class in which are arrangod, among others, the Iguanodon, a walking animal, the Pterodactyl, provided with wings, and the Ichthyosaurus, a swimmer which could only live in the bosom of the sea. And, what is worthy of remark, in secondary times, when these surprising beings were in their glory, reptiles seemed to outline, in a vayue and colossal way, the principal types of those vertebrates which were destined to reign over the world, each in his time-the fish, the bird, and the mammal.
Two years ago, I my self saw iguanodons in the course of preparation at the Brussels Museum. The bones of two individuals of these sufficed to fill a very large hall. One of them measured 10 meters in length, and the other 14. They had been found in 1878 at Bernissart, a locality situated between Mons and Tournai, very famous for its coal mines. It must not be thought, however, that these reptiles belonged to the coal epoch, for their remains lie buried in the
(Wealden), known by miners as "dead lands," and which must be traversed to a depth of 300 to 400 meters before coal is reached.
Mr. Fages saw the first bones, Mr. Van Beneden determined the species, and Mr. Depauw, superintendent of the museum workshops, took upun himself the difficult task of working this rich vein of fossils. For this purpose be adopted the life of a miner and pursued his labors for three years at a depth varying from 322 to 356 meters. He was fortunate enough to exhume twenty-two iguanodons, fifteen of which are now mounted. He attained this result by inventing ingenious processes of solidifying the bones, which, being im-
flues passing through it. The fire rooms will be air-tight, and each will be provided with two large blowers.
pregnated with pyrites, would

The battery of theora-winch high he flush reech loaders, wiecting half turrets, the center the trunnions being $201 / 4$ feet above water. The turrets wil be unarmored and the men will be protected only by shields on the guns. Six 6 -inch B. L. R., weighing 4 tons each, will be mounted broadside on the gun deck, which will also be arranged for two additional 6-inch guns if found desirable. One 6 -inch will be mounted in a recessed gun deck port on each bow. Two 5 -inch guns will be placed in recessed ports abaft the captain's cabin. The 8 -inch projectile weighs 250 pounds; the 6 -inch 100 pounds, and the 5 -inch 60 pounds In addition there will be four 47 mm . and two 37 mm . Hotchkiss revolving cannons, mounted in fixed bullet proof towers.
The contract price for the bull and fittings of the Chicago, exclusive of the masts, spars, rigging, sails, etc., is $\$ 889,000$.

Experts in chemistry have estimated that the cost of London's winter smoke and fog is $\$ 25,000,000$ annually ; that is to say, constituents of coal to this value escape uncon away upon contact with the air
very profound study of the Iguanodon Bernissartensis, a ew details in regard to the structure of the gigantic reptile. It belongs to the sub-class of Dinosaurians and to the order Ornithopeda. The individual described by the learned Belian is 9.5 m . from the end of the nose to the extremity of he tail, and, when standing upright upon its hind legs, ises 4.36 m . above the level of the earth. Its head is relatively small, and much compressed in the direction of the bilateral diameter. The nostrils are spacious, and apparently partitioned in their anterior region. The orbits are of medium size, and are elongated in the direction of the vertical. The temporal fossa is limited above and beneath by a bony arc-an arrangement that is no longer met with except in a single lizard of our own time (Hatteria). As in our present reptiles, the teeth, ninety-two in number, replaced one another indefinitely; that is to say, as soon as one was worn out another succeeded it.
The neck is moderately long, and contains ten vertebre, each of which, excepting the first, bears a pair of small ribs. It must have been very flexible. The trunk consists of 24 vertebræ strongly united by ossified ligaments. The vertebræ, 1 to 17, each bears a pair of strong ribs. The six last
vertebræ-of the trunk are soldered so as to form the sacrum, to which is attached the pelvis.
The tail is a little longer than the rest of the body; it is 5 meters in length and contains 51 vertebræ. It is compressed laterally, and reminds us of that of the crocodile. The scapular bones are four in number-two scapulæ and two coracoides.
The fore legs are shorter than the hind ones, and are massive and powerful. Each of them terminates in a five-fingered hand. The first finger, or thumb, is transformed into an enormous spur, which, when covered with horn, must have proved a terrible weapon.
The pelvis contains six bones, to wit: two ilias, two pubes and post-pubes, and two ischia. These latter are remarkable for their elongated form, and, like the other parts of the pelvis, remind us of those of birds. The hind limbs, which, as we have said, are larger and longer than the fore ones, terminate in four fingers.
Several scientists, Mr. Dollo among them, think they have observed traces of webbed fcet in the impressions left by the iguanodon in the Wealden formation. Everything, in fact, leads to the belief that these dinosaurs were aquatic in their babits. They must have lived in the midst of swamps and upon the margins of rivers whose waters served them as a place of refuge.
It was Cuvier who, in 1822, determined the first bony remains of the iguanodon. Gedeon Mantell, the author of the discovery, and the one who gave his name to the species, which is smaller than and very different from I. Bernissartensis, submitted the teeth to the examination of the illustrious naturalist, and the latter unhesitatingly assigned them to a great herbivorous animal; and be was uot deceived, for the diet of the iguanodon was exclusively a vegetable one.
These animals of geological times divided their food with the borny beak in which their jaws ended, and triturated it in the back of the mouth by means of numerous teeth. They thus fattened themselves, and became a prey, notwithstanding their size, to certain great carnivora-for example, to such other dinosaurs (Megalosaurus) as were provided with sharp teeth and claws.-S. Meunier, in La Nature.

The Electric Light as a Fish Hook.

The United States fish steamer Albatross is fitted with electric lights, and during a recent cruise the experiment was tried of lowering one of them into the sea. Engineer G. W. Baird gives in Science the following description of the trial :
Fishermen in nearly all parts of the world use a light in thoir boats, when fishigg night, to atract fishes into their board ship at night, if a light be advantageously placed to attract them.
Until incandescent lamps were invented, there were no convenient means of sustaining a light beneath the surface of the water, and there is consequently opened up to us an unexplored field in fishing.
Just what service our submarine lamps will be, we are as yet unable to say ; but, with the small lamp which we use from one to ten feet below the surface, amphipods in great numbers, silver-sides, young bluefish, young lobster, squid, and flying-fish have been induced into the nets, and dolphins have approached it ; but whether the dolphins were attracted by the light, or were pursuing the squid, Professor Benedict, the naturalist of the ship, was unable to say Squid are especially susceptible to the influence of light. I am informed by the very eminent authority of Professor Verrill, of Yale College; that a heavy sea, breaking upon a lee shore when the full moon is casting its rays across the land into the sea, will throw hundreds of squid upon the beach in a single night ; an evidence of their moving in the direction of the light until caught in the spray and hurled upon the shore.
To succeed in producing the light at considerable depths has been by no means easy.
The Edison Company first prepared a lantern of two thicknesses of glass, hemispherical in form, with its flat side tightly joined to a bronze disk, on which were placed three sixteen-candle power B lamps in multiple arc. At a moderate depth it burned beautifully; but at about a hundred and fifty feet the packing leaked, and, the sea water entering, shrrt-nirnnited, and the lamp was extinguished by the
destruction of the cut-out plug. A similar lamp was then destruction of the cut-out plug. A similar lamp was then tried with improved packing; but its glass walls were crushed by the pressure of the water, and it was extinguished.
The next essay was with a single Edison lamp, its glass vessel being cylindrical in form, with hemispherical end, to give it strength ; its thin platinum wires extending through one end without any external attachment. To these delicate wires I succeeded in soldering the copper wires of the cable, but broke (or cut) off one of the platinum wires at the point where it enters the glass, while putting on the insulation. When it is remembered that a hundred fathoms depth of water brings. a pressure of over two hundred and fifty pounds per square inch on the lamp, it will be understood that great care was required in every procedure.

Our next attempt was with a single Edison lamp exactly the same as the last. I succeeded in soldering and insulating the joints perfectly; but the pressure of the water upon the insulation cut the delicate platinum wire on the glass before it had reached a hundred feet in depth.
The Edison Company then produced a lamp in which the platinum wires were soldered to copper wires in a glass
cavity, and filled in with resin, so that copper wires, about No. 30 in size, projected from the lamp for our attachment. I coiled the copper wires spirally, and soldered their ends to the ends of the heavy wires of the cable, separating them by a small block of pine wood; this gave some freedom of motion without danger of cutting or breakiug the wires. A paper mould was placed round the joint, and filled with with insulation tape and served tightly with twine. This was agaiu covered with gulloot, then tape, and finally with was agaiu covered with gulloot, then tape, and finally with cooled, its entire surface was seared over with a hot iron, to make sure of filling any cracks or holes it might contain. The lamp was then lowered into the sea, about seven hundred and tifty feet of cable being paid out, without any iudication of failure. To ascertain if the lamp was lighted at all times, we substituted a lamp for the cut-out plug in the deep sea circuit. This brought both lamps in the same circuit, which caused them to glow at about a cherry red instead of a white light; and had any accident happened to break the lamp in the water, or to cause a leak, our upper lamp would have immediately sprung into incandescent whiteness.

FOOT POWER.

This invention is for an improved device for turning the drive wheel of a lathe or any other machine operated by foot power, and is especially adapted to run a watchmaker's or jeweler's lathe. In Fig. 1, which is a perspective view of the device, c is a stirrup lever connected with the crank, b, of the driving wheel. At the lower end of the lever is the stirrup and at its upper end is a slot, e, adapted to receive the bolt, d, on which the lever has a vertical motion. Λ hanger, g, attached to the underside of the bench, has a slot in which the bolt, d, may be adjusted. The drive wheel is of the ordinary construction and may be adapted for either

DAVIS' FJOT POWER.

a flat or round belt. It is supported on its axle in bearings in the hanger, a, which may be bolted to the underside of the bench or to the floor. The stirrup lever has a vertical swinging motion similar to the motion of the foot in walking, thus overcoming the jar to the body experienced in the use of the ordiuary forms of treadles. At whatever point the drive wheel may stop it can be readily started by either pressing upon, lifting, pushing, or. pulling on the stirrup with the foot. When there is work of drilling or turning requiring more than ordinary power, the bolt, d, may be shifted so as to obtain the necessary increase. Fig. 2 is a front elevation of the device. In the modifiet Iorm, Fig. 3, the beam has a weight on one end for the purpose of counterbalancing the weight of the stirrup rod: In Fig. 1, the rim of the wheel is loaded in casting, opposite the crank pin, for the same purpose, causing the wheel to be evenly balanced and free from jar and to have the regular motion essential to fine work.
This invention has been recently patented by Mr. George Davis, of $1207 \cdot$ Main St., Richmond, Virginia.

Machine Shell Guns.

The Journal of the Royal United Service Institution con tains the paper on machine guns, by Captain Lord Cbarles W. D. Beresford, R. N., which was read before the Institute on the 15th of June last. His chief purpose seems to be to show the necessity of providing shell machine gums for the British navy, which thus far is not provided with a single one, its equipment in hand, or contracted for, consisting of 565 Nordenfelt machine guns of 1 inch caliber throwing a solid steel bullet, 142 Gatlings and 350 Gardiner machine guns, 45 inch rifle caliber, throwing lead bullets. In all classes of vessels the French are better gunned, as not only have they the enormous advantage of breech loaders, but their guns are vastly superior to the English in penetration and rapidity of fire per weight of gun: while to add to
the advantages named, the French have mounted in their fleet between 600 and 700 Hotchkiss machine guns, throwing 1 pound shell at the rate of fifteen to twenty a minute. Most of these guns were mounted in position in their fleet before the English bad any sort of machine gun whatever, and some were bought as far back as 1875, or three years before the English had any. "It is needless," says Captain Beresford, "to point out the superiority that a machine gun throwing shells would have over the machine gun which only throws bullets, excepting in the case of resisting torpedo-boat attack, when the bullet gun is better. The proportion of machine guns between the two fleets, in another two years, may be about two to one in favor of the French, it the present relative rate of progress is kept up, as they determined two years ago to double the complement of Hotchkiss shell guns to each of their ships. All the French small craft have two or more machine shell guns, whereas the English small craft last year had no machine guns of any description whatever. The French small craft are, however, so vastly superior to ours in fighting capabilities that there could be no doubt as to which would win an action, if two ships of similar tonnage were engaged."
The rain of machine gun shells, as be further shows, will do more to demoralize a ship's company than a few heavy shot or shell striking, passing through, or shrieking over a ship. The French, also, go upon the principle of exposing their machine guns, with a view to getting an all-round and continuous fire; whereas the English prefer protecting the men and guns, and consequently the guns will only bear on a certain small arc. The French give it as their opinion, founded upon actual practice, that the proportion of hits between a barbette and a broadside ship, coming into range, passing at 60 yards, and going on out of range, is three to one in favor of the barbette. Captain Beresford advocates a 2 pound shell gun, and gives it as his opinion that the gun should be a single-barreled gun, so as to be light and easily moved and shifted as wanted ; it should have, as far as is possible, an all-round fire, with, perhaps, an umbrellashaped screen over the men, to keep bullets and shell splinters clear of them, and from under which they can see the enemy from any point of the compass. Men that are bidden won't fight ; they must see what is going on to work well, and more particularly with these guns, if they are to be thoroughly effective. Lastly, it is imperative that the man who sights the gun should be able to fire it, as the eye and band must work together. The 2 pound shell gun is the best sized machine shell gun, as it does not recoil even when on its landing carriage, and it has better penetration than the $21 / 2$ pr., and equally good penetration with the 4 pr. tried at Portsmouth, with oner initial velocity, both of which guns are considerably beavier. It penetrated at the Portsmouth trials $21 / 2$ inch iron at 300 yards, and can therefore be relied upon to penetrate unarmored vessels, gun ports, etc., at any angle or range for which it is likely to be required.
The French have given orders to rapidly increase the complement of Hotchkiss shell guns they possess, as they find they are not suitable against torpedo boat attack unless used in large numbers, although they are at the same time trying heavier shell guns of other patterns.
Captain Beresford describes the new Gatling system of feeding as perfect, while be thinks the revolving system and its weight objectionable. He states that the Gatlings have been very serviceable to the British navy. At Alex andria they "came in very usefully for the landing, clearing the town of riot, and restoring order. It was openly stated by Arabi's officers and men that nothing would induce them to face machines that 'pumped lead,' which referred to the Gatling, with which Captain Fisher held the lines with 370 men during four anxious days and nights. Such was the terror inspired by these guns when used for clearing the streets, that although there was an army of over 9,000 men within a short distance, they would not face the small party of 370 men , who beld the lines with the Gatling guns."

Combination Tag and Envelope.

This consists of an envelope made of stout paper, open the closed end when folded down. The bill is inclosed in the envelope, the address is written upon the face or under side of the flap, and the tag tied to the package by a cord passing through two eyelets-one in the free end of the flap) and one in the closed end of the envelope. Although this combination tag and envelope has been in use but a short time, it has given satisfaction to shippers, and proved o be economical.
It was patented in the United States and Canada by Mr. Joseph T. Dunham, and is now being manufactured by Jos.
city.
" Human •labor," says Dr. Zellner, of Ashville, Ala., " is the most costly factor that enters into the production of cotton, and every consistent means should be adopted to dispense with it." Aud then the doctor, who has the reputation of baving raised some of the finest samples ever grown in the South, describes how, by planting at proper distances, in checks five by three feet apart, one-half of the after labor of cultivating may be saved. About the same amount of plow work is said to be necessary, but not more than one-fourth as much work with the hoe as is required by cotton in drills.

ENGINEERING INVENTIONS

An improvement in car platforms has been patented by Messrs. Wm. F. Brown and Charles L. Haight, of Poughkeepie, N. Y. A hook secured to
the bootom of the platform projects upward and ou the the botom of the platiorm projects upward and on the
topof the next platform. There are other special devices,
but the idea is that cars in collision will be prevented but the idea is that cars in collision will be prevented
A car coupling has been patented by Mr. John Cochran, Jr., of Millwood, Mo. It consists of
a rocks shaft crossing the end of the car from side to a rock shaft crossing the end of the car from side io
side, from whence the counpling pin is suspended by an arm; a link lifter is also suspended from the shaft, so thal by cranks at the sides of the car, or a rod and
chain extending to the top, the pin and link can be handled without going between the cars,
An improvement in operating valves of Geam engines has been patented by Mr. Chares A. regularity of pumping, and by it the pump cylinder is completely filled after each stroke. When used with tivo large pumps, this valve system will stop the pump
automatically as soon as the reservoir is emptied of automatically as soon as the reservoir is emptied of
water, whereas other pumps move off rapidy as soon as water, whereas other pum
they begin to take on air.
A safety switch guard has been patented by Mr. Henry Harmer, of Southampton, Ontario, Canada The switch operating mechanism is contained within a to adjuss the switch, but which he cannot leave until, after connecting a switch with a siding, he has reconnected it with the main line; and this invention
An improved boiler feeder has been pateuted by Mr. John H. Phillips, of New York city. It is a pump connected witb a vessel for receiving water, the the slide valve, so the pump will be started as soon as the water in the receiver reaches a certain height. The eeder may be placed at 2 distance from the boiler, and above or helow the water line, and will return all con-
An improved steam boriler has been patentd by Mr. Willey J. P. Kingsley, of Rome, N. Y. The tubes which enter the fire box conduct the heat pro-
ducts to the top of the boiler as usual, but there are re ducts to the top of the boiler as usaal, but there are re
turn tubes between the inner ones and the ooiler shell, which extend down through a water leg, and tinence lead between the shell and the inclosing wall to the moke stack, thus greatly increasing the run of he
heat along the boiler, and more than doubling the heatgh surface
A car coupling has been patented by Messrs. Joseph K. Nyce and Irwin C. Hunsicker, of Skippack,
Pa. It provides for a drawhead with longituacinal slots in the sides and bottom, in which side slots a cross bar sildes, which bas a bottom guide projection
into the botiom slot. The ends of the cross piece are into the botiom slot. The ends of the cross piece are
adapted to etrile against the lower ends or pail. shaped frames pivoted on the drawhead and throw shaped frames pivoted on
them over hooks on the o
matically coupling them.
An improved automatic car coupling has been patented by Mr. Adoniram J. Chapel, of arkan-
sas City, Kas. Upon one side of the forward end of each drawhead is formed a projection, the forward end of which is beveled to cause it to enter a recess formed
in the other side of each drawhead. The recess is rectangular, and so also is the coupling pin and the hole In which it slides, the upper part thereof being in such
position that one-half will be over the recess and the other half in the solid body of the drawhead. The de-
A patent for an improved steam boiler has been iesued to Mr. Albert C. Blatchley, as administraorfor Mr.Albert P. Rlatciley,deceased, of Deposit, N.Y a special construction of the deflecting plates for effective water circulation, and in the means of securing the
in
same in nected by longitudinally arranged steam pipes or tubes, There is also o special consrruction of the side casings
to allow of convenient access for cleaning the tubes.

mechanical inventions.

An improved treadle power has been patented by Mr. Arthur W. Bush, of Boulder, Cal. A double connecting rod are so arringed that the dead centers of the crank are avoided, and the stroke of the treade may be varied at.the will of the operator.
A coal and rock drilling machine bas been patented by Mr. Thomas Aitken, of Pittston, Pa. The invention consists in an improved means for securing
the bar or post which carries the swivel and drill rod and such construction saves the necessity of a set screw, which is liable to be lost or mislaid.
An improved screw machine has been patented by Mr. Georg Heyne, of Offenbach-on-the-Main, Germany. The invention covers various combinations of der pieces from which the articles are to be made. I makes an apparently complicated piece of niechanism but works simply and almost automatically.
A tire tightener has been patented by Mr. Harvey B. May, of Oregon City, Ore. The wheel rim is stretched by a screw jack device between the hub
and the rim, and there are attachments to hold the and the rim, and there are attachments to hold the
spokes in the hub, preventing them from being drawn spokes in the hub, preventing them from being drawn
out of their sockets when the rim is stretched, and so they may be thereafter as firmly fixed as ever.
An improvement in water wheels has been patented by Mr. Lorerzo B. Swartwout, of Three Rivers, Mich. The buckets are not cylindrical, but partition walls are concaved, or inclined in the reverse direction of that in which the wheel is to rotate. Eac
bucket is beveled at the outer end, so the beveled part of the bucket walls are at right angles to the fired wings in the throat in the curb of the wheel.

A machine for curling hat brims bas been patented by Mr. John Wilsoin, of Newark, N. J. This machine presents a new combination of parts in an ap-
paratus for turning over the edges or curling the brims of hard felt hats betore shaping them. By its use the sides or crown of the bat or its lining are not exposed t any injurious effects of the escaping steam, and there device, the brim of the hat being held downto its place on the steam by a hollow weight, cover, or shield.
An improved machine for shelling green of New York city. The pess or by Mr. Giuseppe Paci placed in a hopper, and the machine is operated by turaing a crank handle, when the top, or cover, of the machine, to the underside of which is affixed a ring or
disk, pressed down by spiral springs, is turned in one disk, pressed down by spiral springs, is turned in one
direction, and a suitabie screen is revolved in an oppodirection, and a suitable screen is revolved in an oppo-
site direction. There are special devices for conveying the peas or beans into hoppers or receivers according to and a current pods being discharged from the fir particles.
A cartridge loading machine has been patented by Mr. Frederick A. Winter, of Thomson, Ga An intermittingly rotating disk has cells for holding the cartridge shells combined with a novel feeding de-
vice for shifting it around as the cartridges are charged; vice for shifting it around as the cartridges are charged;
also a device for pressing in the wads and bullets, with attachments for crimping when paper cartridges are one for holding the pow or appg and unping, and one for holding the powder and shot
tion with the cartridge holding disk.

AGRICÖLTURAL INVENTIONS.

An improved check row corn planter has been patented by Mr. Walter W. Church, of Carthage,
Mo. The check marker shaft is made to revolve continuously; it has arms with crotched ends sufficiently long and deep in the crotch to enable the shaft to be turned a quarter revolution by one arm, so that con-
tinuous rotation will be had with four arms, one arm being engaged while another is disengaged. By this contrivance also the motion for the dropper slide may be had from the check marker shaft.
A combined harrow and cultivator has been patented by Mr. Lewis A. John, of Dunlap, Kas. The atrong, durable, and ea the soil around corn, cotton, and other standing crops. The plows may be swung freely, by the handles, to
either side, or closer together or farther apart, as ine either side, or closer together or farther apart, as ite
crop may require, or be lowered or raised vertically for different conditions of crop or soil, enabling the workman toheap up about the plants just the right quantity of earth
row.
A g

A grain header has been patented by Mr: contrivance the sectionsare timet to in intur euthomy for running on a drum, with guides to take up the slack,
means for operating, and an extension carrier for demeans for operating, and an extension carrier
livering the graic from the elevator to a wagon alongside of the header. The continuous movement of the sickle in one direction is calculated to make
ter and easier than the reciprocating sickles.
An improvement in șeam plows, to increase An improvement in steam plows, to increase
the traction and facilitate the steering, has been pathe traction and facilitate the steering, has been pa
tented by Mr. Francis Pidgeon, of Saugerties, N. Y The plow framecan be propelled forward or backward There are sets of plows at each end of the frame, and
the plows at the forward end are lifted from the ground the plows at the forward end are lifted from the ground as the plow advances; the wheels on either side are ope-
rated independently of the wheels on the other side by separate pistons and cylinders. Bars on the sides worked by a cbain around an upright shaft, allow ore side or the other of the frame to be readily ad
vanced to facilitate turning.

MISCELLANEOUS INVENTIONS.

A fire escape has been patented by Mr. William Wightman, of Denver, Col., which prescribes the construction of vertical chambers within the build
ing walls, each chamber connecting with a separate story and at the bottom with the outside of the build-
An improved wrench has been patented by
Mr. James Davidson, of Central City, Colo. It is socket wrench provided with expansion jaws, and a
loose sleeve to contract the jaws upon the nut or article, so as not to wear the angles of a nut or cock when pplied, the clamps being made to gripe tightly
A music holder has been patented by Mr. William R. Hoffman, of Oregon, Mo. It consists
in a combination, with opening and closing musicholda a combination, with opening and closing music holdto a clamping and pivoted section or clamp, of an atgreat facility is afforded for putting in and taking out the music.
An improved twine holder and lifter has been patented by Mr. A. B. 'Tomlin. of Fort Collins,
Colo. In combination with a twine holder is a pivoted ring with one part weighted, and a rod or wire projecting from the part opposite the weighted part, this rod
or wire being provided with a loov or eye for lifting or or wire being provided with a loop or eye for lifting or
raising the free end of the twine, so it will be out of the raising the free end of the twine, so it will be out
way when not in use, but can be easily reached
way when not in use, but can be easily reached.
A tobacco cutter, or pocket tobacco rece acle and cutter, has been patented by Mr. Joseph W Cooel, of Rockland, Me. It is for cutting plug tobacco box of size adapted to hold an ordinary plug, and then by turning a cap, one set of cutters shaves off the tobacco while other cutters working in a cross direction divide it up fnely, and it drops in the cap provided therefor. A glass butter jar, box, and cover has been atented by Mr. William W. Weston, of Honesdale, Pa. jar having a wooden or glass cover on which a diagonal crosspiece rests, through the ends of which screw-
threaded rods pass, which are secared in the bottom of
the box, thus holding the cover firmly on and the jar in
place in the box. An imper.
An improvement in fireproof floors and ceilings has been patented by Mr. Andrew J. Campbell, of New York city. A joggle arch is used in which are three pieces, the floor beams, struts, and joggle
pieces, the struts preferably hollow to save weight, and all of fireproof material. The floor is inexpensive, as centering are not necessary in their erection.
An improved inside window shutter or blind has been patented by Mr. William Teuteberg, of Omaha, Neb. This invention relates to inside window shutters or blinds adapted to be raised and lowered by means of cords. It is a simple and cheap arrangement whereby slats, as provided, may be raised or lowered
to any desired position, or the angle of the slats be o any desired positio
An improvement in watch bows has been patented by Mr. Rome B. Richmond, of Macon, Ill. It above or below the bow aperture on each side a hoo ed with a bow having a semicircular or eccentric transerse ridge a short distance from each end. No screw is required to hold the bow
tion is simple and durable
An improved rag joining knife has been patented by Mr. James A. Fulwiler, of Lexington, F1l notch passing toward the point of the knife from the blunt back, for engaging the rags and drawing one through the other in forming the loop or joint, the
slot being so arranged in relation to the shary point slot being so arranged in relation to the sharp point
and edge as to join the rags firmly and smoothly, with and edge as to
but short ends.
A combined copy holder and book rest has een patented by Mr. Gustave Weinschenk, of Cam bridge, Mass. The device includes a clamp with prope it.will hold books or manuscripts open for perusal; it is o arranged as to accommodate a greater or less thickness of a book or manuscript, and has a line bar, or
marker, making it especially desirable for holding the marker, making it especially desirable for holding the
compositor's copy in type setting.
An improved flood fence has been patented by Mr. Henry D. Merrill, of Springfield, Ill. It is con-
tructed with mud sills staked to the bottom of the tructed with mud sills staked to the bottom of the
tream, and connected at their down stream ends by stream, and connected at their down stream ends by
pairs of posts, with upwardly inclined down stream ends of break bars, the fence to turn down into a horiontal position to allow ice, logs, a and other rubbish to soon as the water subsides
An improved bag holder, for keeping a bag open while it is being filled, has been patented by Mr. Daniel F. Smith, of Republic, O. By a suitable ar-
rangement of standards in connection with a platform, levers, and cross bars, the bag is supported and held
oyon gy an clougated elliptical spring band or hoop.
when the bag is filled the free ends thereof are ourawn together and the bag will be released.
Mr. Washington I. Lee, of Peekskill, N. Y., has patented an improved baking pan, for baking bread,
meats, etc., in a more perfect manner. The pan is of meats, etc., in a more perfect manner. The pan is of ends a sheet iron strip or thin cast iron plate is riveted o support the pan so that the bottom will not come in pan will not be burned. A specially contrived and sup ported hinged cover is also provided for
A yellow coloring matter which dyes a very bright yellow, has been patented by Mr. Ivan Levinstein, of Manchester, Eng. It is made by the action
of nitric acid upon the mono and disulpho acids of ni-troso-alpha-naphthol, or upon a mixture of the same, wherehy, according to a specific process, a yellow precipulverized by pressing between the fingers, is odorless, and has distinguishing acid properties.
An improved butter tub has been patented by Mr. Henry F. Coombs, of Charlottetown, Prince Ed ward Island, Can. The staves are thicker at one end than the other, and narrower at the thin end than at the thick on one face; and wider at the thin end than at the
thick on the other face, the tub is smaller at the top thick on the other face, the tub is smaller at the top than at the bottom outside, and larger at the top than
at the bottom inside, so the tub cannot. lose its hoops by their dropping off at the bottom, and
A cutter and holder for fruits and flowers has been patented by Mr. Peter McDonald, of Yonkers N. Y. T'o the upper end of a pole of desired length is Axed a concaved sharp edged blade; to the shank of

are orojecting plates or lugs, with rubber blocks ex

 blades are brought together to cut the stems of fruit orflowers, the rubber blocks will grasp and hold the same until lowered.
An improved water heater has been patented by Mr. John B. Webster, of Los Angeles, Cal. It is ntended to be principally an oil burner, and around taining the utmost heat. The reservoir is suitably connected with. hut removed from the burner. The whole apparatus is constructed of sheet metal, with tight joints, and is intended to furnish a portable heater
which can be readily used for heating water out of which can be readily used
doors or wherever wanted.

An improvement in transplanting imple ments, designed to facilitate the handling and resettin of plants, has been patented by Mr. Frederick Visscher, of Mount Sterling. Ky. A half conical bowl or vesse levers, is designed to hold the plants; at the bottom in a downwardly tapering root receptacle, forming a pintle The plant, placed in the bowl, with its roots thas surrounded, the implement can readily be forced into the The depth desired, and then the parts of the bow and piulle be reald
of the handles.

A transplanting implement has been patented by Mr. Frederick Visscher, of Mount Sterling, Ky. This invention is desigued to facilitate packing and where the plants that have been transplanted, handes are so pivoted as to form levers, at the lower ends of which are semicircular frames holding teeth; Chese, when opened, are to be forced into the ground
around the plant, and as the handles are drawn toaround the plant, and as the handles are drawn to-
gether they pack the earth around the roots of the plant.
An improved cupelling furnace has been phented hy Mr. Beruhard Roesing, of Friedrichshutte, Upper Silesia, Germany. Instead of the ordinary
porous material of which these are made for drawing off the inferior metals, he inventor substitutes a firm metallic cupel, to which motion can be readily communicated as desired, without interrupting the process
of cupellation, and the products of oxidation-litharge, of cupellation, and the products of oxidation-litharge,
etc.-may be withdrawn, absorption in any degree not tec.-may be withdrawn, absorption in any degree nol
being inteuded. The cupei is covered with a lining of being inteuded. The cupei is covered with a ining of
refractory material, to avoid overheating of the cupel refractory material, to avoid overheating
or too great cooling off of the molten lead.

NEW BOOKS AND PUBLICATIONS

ow to Make Candy, N. P. Fletcher \& Co., Hartford, Conn

A manual of plain directions for the ma

A Prosperous Periodical.

The special illustrated edition of Building for tending well directed effort in the of the result atAlthough this journal has only reached No. 2, vol ine, it has passed the experimental stage and now stands on a firm basis. It is devoted to architecture, as its title. implies, and in its editorial and general columns treaps
pertinent subjects in an instructive manner, aiding its pertinent subjects in an instructive manner, aiding its
explanations by at ractive illustrations. It is pubexplanations by at ractive illustrations. It is pub-
lished by William T. Comstock, 6. Astor Piace, this explan
lished
city.

Explosive Materials. A series of lectures
before the College de France, at Paris,
by M. P. E. Berthelot. "Science Series," D. Van Nostrand \& Co., New York. This little book, the work of translating which from
the French has been done by Marcus Benjamin, Ph.B the French has been done by Marcus Benjamin, Ph.B.,
F.C.S., notes the constitution, explains the action, and F.C.S., notes the constitution, explains the action, and
marks the differences between the leading kinds of exmarks the differences between the leading kinds of ex-
plosives, more particnlarly those which have come into prominence during the past twenty years for industrial purposes. The lecturer comes to his suhject as an accomplished chemist, but the language is free from technicalities, and the explanations cannot fail to be readily understood by any one of ordinary intelligence.
In regard to dynamite, gun cotton, nitroglycerine, the results of many experiments are detailed, developing facts concerning their operation which are not
readily susceptible of demonstration in the ordinary uses of these explosives. In addition to the above the uses of these explosives. In addition to the above the
book contains a short historical sketch of gunpowder, translated from the German of Karl Braum, and a valuable bibliography, or list of works relating to the constitution and preparation of explosive substances.
Mechanics of
chinery. $\begin{aligned} & \text { Engineering and of Ma- } \\ & \text { By }\end{aligned}$ Chinery. ny Dr.
Revised and enlarged by Gustav Herr-
mann. Translated by J. F. Klein, D.E: mann. Translated by J. F. Klein, D.E:
Illustrated. Vol. III. John Wiley \&
Sons. Price $\$ 5.00$. Sons. Price $\$ 5.00$.
This book is part 1, section 1, of volume fii., and treats The remaining two parts will treat of the Mechanics of Machinery for lifting and transporting solid and fluid materials and for changing the form and size of materials. The introduction is a thorough and practical
discussion of kinematics. 'The first clapter considers discussion of kinematics. 'The first chapter considers
journals, slafting, couplings and bearings, giving the jouruals, shafting, couplings and bearings, giving the
various forms, relative dimensions, etc., and discussing friction and lubricants and lubricators. The second chapter is on gearing, every form of which is treated, while the remaining chapter considers rods and their guides. It is impossible, in a notice of this kind, to convey any idea of the scope of this work; it would be
difficult to find a problem proverly coming within its province that is not fully explained. The book has been a recognized authority for years,and is specially de-
signed as a text book for technical schools and colleges and for the use of engineers.
Graphic and Analytic Statics in Theory and Comparison. By Robert Hudson
Graham, C.E. Crosby, Lockwood \&

The book aims to place the theory and relations of graphic and analytic statics in a clear light and to
show their practical application to the treatment of tress in common torms of iron and wooden frameorks. The in Part step by step, by the sole aid of geometry, no serious aps being consciously left in the demonstrations. art II. deals with the dual treatment of roof and pecial feature of this part is the treatment of a given roof or bridge hy two methods which mutually check each other. The roof or bridge is taken truss by truss, and the reciprocal diagrams given in separate form, of
the independent trusses. The same framework is independent trasses. The same framework is
then treated as a whole. One arricle explains the graphic and analytical methods of sections in applicaand aualytic treatment of Part III. shows the graphic stress: resultants and centors of stress; centers of gravity; moments of all kinds and straight bea ms and grders of various forms both in a state of equilibrium
and under loads. At the end of each chapter there is a and under loads. At the end of each chapter there is a set of practical problems. The last chapter is devoted to wind prossure, giving the general theory, veloc
and pressure, and action on roofs and braced piers.

HINIS TO CORRESPONDENTS.
No attention will be paid t.0 communcations unless accompa
Names and addre
Wen to inquirers.
We renew our requesthatcorrespondents, in referring o former answers or articles, will be kind enough to name the date of the paper and the page, or the number of the question.
Correspondents whose inquiries do not appear after a reasonable time should repeat them. If not then published, they may concl
Editor declines them.
Editor declines them.
Persons desiring special information which is purely of a personal character, and not of general interest,
should remit from $\$ 1$ to $\$ 5$, according to the subject, should remil from $\$ 1$ to $\$ 5$, according to the subject,
as we camnol be expected to spend time and labor to obtain such information without remuneration
Any numbers of the Scientific American Supple ment referred to in these columns may be had at the office. Price 10 cents each.
Corresiondents sending samples of minerals, etc. or examination, should be careful to distinctly mark o label their specimens so as to avoid error in their indenti
flation. (1) G. H. W. asks: Will you kindly an swerthe following questions through your Notes and Queries column? 1. Will the dynamo described in
SUPPLEMENT, No. 161, work two of Edison's smallest SUPPLEmENT, No. 161, work two of Edison's smallest strong battery: A. Yes. 2. What kind of cast iron
should the armature of the dynamo be made of? Will ordinary cast iron do? A. Soft gray iron. 3. Will No 19 copper wire be too small to make the connections with the lampsp If too small, what size
used? A. No. 14 or 16 would be better.
(2) J. G. R. writes: I have a set of yellow clarinets that I wish to stain black. Can you tell m of anything that will do it? A. Mix up a stain of iron sulphate (or copperas) and logwood, to which add pow-
dered nutgall; dry, rub well, polish with a shellac varnish ground with bone black.
(3) S. H. H. writes: I have seen in the Scientific American articles about compressed lime for blasting. Can you inform me where it is to be had?
A. Use ordinary lime; press it tightly into the opening, A. Use ordinary lime; press it tightly into the opening,
and then moisten it. Its expansion will cause the and th
(4) F. J. P. asks whether there is any fluid
 supharic acid will probably accomplish your purpose.
(5) L. L. asks the best way to prepare ein Scientific american Supplement No. 133, are given the directions for preparing severa varieties of cement which we think you will find as
good if not better than diamond cement for the purgood if not better than diamond cement for the pur
pose mentioned. Diamond cement as described by Dr pose mentioned. Diamond cement as described by Dr
Ure consists of isinglass, 1 ounce; distilled water, ounces; boil to 3 ounces, and add rectified spirit, $11 /$ ounces; boil for a minute or two, strain, and add whil and then tincture of mastic 5 drachms
(6) C. W. writes: The river at this place is a mountain stream having a fall of from 14 to 20 feet
per mile, but is free from cataracts; it is about 100 feet
wide and of sufficient depth for a lightdraught steamer such as is described on page 132 of your Reference Book. What I wish to know is this: 1. Can a steamer
of this description navigate such a stream when not drawing more than 12 inches of water? A. You do not give the velocity of steamer, but we think from the
grade, or fall, it must be too great to work a steamboat against it successfully. 2. Which woild be the best forsuch a boat-astern wheel or a propeller? A. Stern
wheel boat the only one that would succeed. 3. What would be the weight of such an engine and boiler as you describe? A. The boatmust have large power; the weight would and power.
(7) J. C. W. asks: 1. Cannot water be ele vated with less power by chain elevators than by pumps? A. We don't think your chain buckets will re
quire less power than a pump. 2. Can chain elevator be made sufficient to carry buckets 4 feet long contain ing a cabic feet to the hncket. the buckets being as close
to each other as they can work, and deposit in a box on a perpendicular, or will they have to be on an in cline? The box will be so arranged that the bucket can go over them and will be 40 feet high. About 65
buckets will be deposited per minute. Will this not be cheaper than a pump, and easier to be driven? If so,
how much power will it take to run same? A. If the buckets and box are properly shaped the bucket will deliver with some waste, but there should be an additional box between the two lines of buckets
to catch the water that may spill or waste from the buckets when going over the top shaft. It will requir 12 to 13 horse powe
(8) W. S. U. asks (1) where a tightener should be placed on a belt-near the small or drive pul-
ley? A. Near the small pulley, as it will give more surface for belt to act upon, and the large pulley has
already much the most surface already much the most surface. 2. Mill men differ
about the same. Therefore I wish to about the same. Therefore I wish to get your opinion;
at the same time will you be so kind as to give as simple a rule as possible for finding the horse power of steam engines? A. For rule for ascertaining horse po.
Scientifio American Supplement, No. 253 .
(9) E. T. H. writes: You give a recipe for marking ink (I have lost the reference) of shellac
ounces, and Venetian red. Could you give me amodification which would make it suitable for marking tried your liquid stove polish, and find it first rate, but very hard to polish. Is it likely that the sugar is in excess? A. 1. By adding glycerine to a suitable consisttency, you will obtain an ink which will probably an
swer your purpose. 2. As you give no proportions, you question cannot be satisfactorily answered. The pro amounts are:
Black lead pu

1 pound.
Turpentine
Water....
1 gill.
(10) W. J. P. asks: Will a balance wheel run as easily close to the floor under a machine as abo
(11) C. R. S. asks: What is the best method or way to "lay up" a tubular boiler-horizontal-when
not in use, say six months at a times A. Fill entirely not in use, say six months at a time? A. Fill entirel
with fresh water, adding a little lime,and close uptight. Clean outside, remove all masonry which touches the so there will be no draught through it
(12) C. E. L. writes: 1. Watson says in his work on the modern practice of American machinists and engineers, that the steamboat John Faron on the
North River had boilers made to use the fuel inside the water space of boiler. How did they have it fired so as to be able to burn the fuel? A. The farnaces were made tight and strong, air forced into fire under a pressure, a little more than the pressure of steam in the boiler; all the gases, etc., of combustion thus forced hrough a valve into the boiler, fired through valves. Would you use an ordinary steam engine for compressed air, or would you have to have one made
to run by air? A. Steam engine. 3. How large a Could it not be made of cast iron? A. Should be wrought iron. Could not determine size withoùt knowing the length of time through which it is to work 4 horse power.
(13) O. J. L. asks: Can the ordinary water white 150° fire test coal oil be changed in color to an in-
digo blue or any other shade of blue without lowering the fire test? If it can be done, by what method is it accomplished? A. The fire test will not De affected by
the adding of suitable dye, such as an aniline color, of the adding of suitable dye, such as an aniline color, of
the desired shade to the oil. Of course, one must be elected that is soluble in petroleum.
(14) J. A. T. writes: 1. How can I make liquid for stripping silver from old plated ware? A Use nitric acid to dissolve the silver. 2. How can
ecover the silver from the stripping liquid? A. Th itric acid solution containing the silver is treated with a salt solution; the metal is then thrown down as the
chloride in the form of a white powder. Thisis col-
silver will be obtained in its metallic form. s. How c
I make an induction coil for an electric machine? Consult article on "Induction Coils" in Scientifie amprican Supplement, No. 160. 4. Will the strippin
iquid for silver answer the same purpose for gole late? A. Use aqua regia or nitrohydrochloric acid dissolve
(15) D. H. asks: What is the best thing t heats A. We know of nothing that will prevent the gar coloring when heated. The best way in which to a avoid the coloring is by boiling it as quickly as
possible in a vacuum at a temperature of 125° Fah. If in an open pan, boil with steam. A certain
(16) O. S. D asks: 1. Will a boiler 42 nches in diameter and 60 inches high ran two cylinders
$\times 10$ to the capacity of 14 horse power, 1202 inch flues 7×10 to the capacity of 14 horse power, 1202 .inch flues
3 feet long? A. If your boiler has a good draught, it hoenld furnish 14 horse power without trouble. 2 eet in diameter? They have movable lugs thes face hrough the face or rim of wheel, 3 inches wide and nches deep. Will the resistance be as much as four 6 inch plows plowing 5 inches deep? A. The traction will in a measure depend upon the weight carried by the wheels, but for working an ordinary soil we think your wheels have not more than half the force they should have, and the lugs should also be increased in proportion. We cannot tell what power four 16 inch
(17) G. W. D. writes: I am using a No. 9 Sturlevant fan blower. Can it be run too fast, so that will not blow as hard as it would if ran at a slower speed? What size engine should I use to get the best
results from this fan, for glass manufacturing purposes? A. Your No. 9 Sturtevant blower at a speed of ir perminute minute will deliver 4,320 cabic 6 horse power. At 1,250 turns per minute it will dever 5,340 cubic feet of air at a pressure of 4 ounces,
requiring 11 horse power. At 1,416 turns, 6,180 cubi requiring 11 horse power. At 1,416 turns, 6,180 cubic
feet, requiring 17 horse power, and so on. There is no eet, requiring 17 horse power, and so on. There is no
speed that you can give the blower that it will not do is proportional duty. If it ceases to blow or delive at the tugere.
(18) J. C. H.-It is rather a difficult undertaking to choose a trade for a person that is a perfect
stranger to us in his capabilities, habits, and previous employment. If you have a fancy for any particular calling, we shonld say that that is the trade you ought follow. The employment of a machinist is proba-
bly as lucrative and steady as any trade that we know of, and is a leader to many other callings that may take you on to success. Of course you will probably
have to begin at the bottom and do a great deal of drudgery, but if you are a wide awake man and have your eyes open to the things that are being made around you, and make the interest of your employer your own, the ohances are entirely in your favor for quick advanceent. Strike in at the nearest machine shop, a smal
one if possible; take any wages that you can get, do
(19) D. D. L. asks: What will best remove moke from the sheets of mica commonly used in heat-
ing stoves, and leave the surface clear? A. We doub ng stoves, and leave the surface clear? A. We doub
whether mica can be cleaned after it has been exposed to the smoke of a stove, other than by washing with warm soap suds and wiping. The pyroligneous acid of the smoke makes new compounds with the surface layers of the mica. The mica being composed of silica, alumina, maguesia, and potash, will not resist heat or ring matter without making the mica opaqueor other ise destroying its texture.
(20) M. M. B. (62) November 10 concerning treatment of seal skins.-M. C. H. writes us
that a large business is now done in Brooklyn, N. Y. that a large business is now done in Brooklyn, N. Y. in curing, dyeing, and improving seal skins,
(21) J. A. C. writes: Suppose we have two cylinders of the same size. In one cylinder there are two pistons working together, at the center, and the
cylinder with one piston working from end to end; which engine would have the most power-the one with the single piston or the one with the double piston? Or would they both have the same power? Steam pres
sure the same on both cylinders. A. The one with single piston would have more power, as there would be less loss from radiation, clearances, and friction.
(22) F. 'I'. J. writes: I have a small engine cylinder 2 inches by 4 inches that I work at about 50 pounds boiler pressure; boiler has about 20 or 25 feet
heating surface, perhaps more. I want to do away with team on account of the fire. Can I pump air into the boiler (to insure steady running of engine) by hand, and work engine at same pressure, and obtain same power as by the use of steam? A. No, your power would be We think a small turbine, taking water from your water works, would be the most convenient and economical er for you.
(23) G. B. F. asks: What is the cause of knocking in an engine? Is_{8} it not a defect or faut
that should be remedied at the earliest notice? A. that should be remedied at the earliest notice? A
There are many causes-bad set of valves, loose journals or piston, water in cylinder, no clearance, etc. The cause should be ascertained and remedied, otherwise it may lead to an accident.
(24) R. J. H. asks for a recipe for remov ing printer's ink from nicely finished book paper;
wishes to remove some figures from a catalogue. Printer's ink is soluble in ether, oil of turpentine, benzine. Washing with warm caustic lycs is also re-
commended. Bleaching agents are also stated to ac commended. Bleaching agents are also stated to ac
complish this object, but we do not put much faith i

y of these agents.

(25) A. M. V. asks (1) for a receipt for ensitive ink. I would like one (if possible) which is
ieveloped in some other manner than by beal, and
fime, until redeveloped. A. On page 2498 of Scientific Ambrican SUPplement, No. 157, will be found a num A receipt for an ink, to be used with a rubber stamp, which will not wasb out of clothes. A. Crystallized aniline black, half an ounce, in pure alcohol, 15 ounces,
and adding concentrated glycerine, 11 ounces, to the solution. Thisliquid is poured upon the cushion and (26) W. C. D. asks what is the safest lamp Glass flies or bursts, and metals corrode. In other
words, how can we use oil to illuminate our homes and words, how can we use oil to illuminate our homes and
be safe? A, The best fire test refined kerosene oil in a student lamp is one of the safest lamps that we know of. Our better class of ordinary kerosene lamps with
fair care are considered safe. If you reject all oil that fair care are considered safe. If you reject all oil that
does not stand 150° fire test, you will be very safe with (27) A E. D a
(27) A. E. D. asks whether the wood called The body of violins is usually made of straing A. The body of violins is usually made of straight
grained deal. 2. Is there any solution which will make white cows' horns become clear,the horns to be used for making powder horus? A. Boil the horns in a dilute solution of caustic alkali.
(28) E. A. W. asks how to mix quicksilver mercury) so as to make a thin solution of it to rub on prepared by putting one part of silver in a small sauce pan or ladle which is perfectly clean, and then adding eight parts of quicksilver and gently heating until the silver is dissolved. Agitate the mixture for a minute with a smooth iron stirrer and pour it out on a clea
plate or stone slab. When cold it is ready for use. A plate or stone slab. When cold it is ready for use. A
(29) J. H. writes: 1. My wife is accustomed make her own soap for family use, from old fat, lye get really hard. It is always soft and pulpy. Please to soft soap hard is as follows: Put into a kettle four pailfuls of soft soap, and stir in it, by degrees, about one quart of common sall. Boil until all the water is separated from the curd, remove the fire from the
kettle, and draw off the water with a siphon (a yard kettle, and draw off the water with a siphon (a yard
or so of India-rubber tnbingwill answer); then pour the or so of India-rubber tnbingwill answer); then pour the soap into a wooden form in which muslin has been
placed. When the soap is firm turn it out to dry, cut
pater placed. When the soap is firm turn it out to dry, cut
into bars with a brass wire, and let it harden. A little powdered resin will assist the soap to harden and give
yellow color. If the soft soap is very thin more salt must be used. 2. What is good to clean tableware that has been nickel plated, and the plate is worn off and looks quite brassy? A. We should think that it would
(30) J M describes a
(30) J. M. describes a machine and process and asks: 1. If I can use other cheaper salt than sulphate of copper that gives the same good results. (Lead amalgam does not work well with some kinds of res.) If there is any other, please tell me how to pre pare it and how to use it. A. There is no salt that
can be used that is cheaper than the copper sulphate.

How can I retake the flour mercury and make it usefugain, or how can I avoid the mercury taking this flour mercury be redistilled, and that the metal be covered with a layer of clean iron filings or turnings to the extent of one-sixth its weight. Then carefully heated and the mercury collected in water, treated with a little hydrochloric acid, and
dried at a gentle heat.
(31) C. J. W. asks: 1. Have antimony and bismuth a metallic ring like brass? A. Antimony and
bismuth have more or less of a ring, but on account of bismuth have more or less of a ring, but on account of
their brittleness they are seldom made into forms where the ring would be noticed. 2. How do their weights compare with that of gold? A. The specific gravity of gold is 19.36 , of antimony, $6 \cdot 71$, of bismuth 9.82 . 3 .
How does quicksilver weigh with gold. Is it much lighter? A. The specific gravity of mercury is 13.59 . . Where can I get a book on photo engraving? A. See Scientiftc American Supplements 82, 213, 143,
146, and 227 for Photographic Engraving Processes, and 146, and 222 for Photogra
Minerals, etc.-Specimens have been received from the following correspondents, and examined, with the results stated:
W. R. S.-The samples do not contain copper or ickel except in possibly small amounts, and in order to definitely prove the presence of either; they would have o be analyzed, the expense of which would be $\$ 5$ ach. From our examination we believe the specimens
to be ofe of the varieties of pyrozene or epidote. The atter is frequently found in connection with the coper at Lake Superior.-G. B. F.-The specimen be a ermined by analysis. The latter would cost $\$ 15.00$.J. C. R.-It is impossible to form a definite opinion of he value of the clay unless a chemical analysis be made, which would probably cost $\$ 15.00$ to $\$ 2500$.-C. J. V.The specimen is nickeliferous iron pyrites. Its value epends upon the amount of nickel that it contains; and the extraction of the latter is an expenslve operation, he value of the ora is know as turba, or turfa, and is a clay impregnated with bitumen. It has been described in Dr. Hartt's book on Brazil.-P. J. F.-Sample No. 1 is a slate, such as is generally found in coal measures, but does not necessarily imply the presence of any great amount of coal. No. 2 is a black mica in a sili-
cious rock.-C. N. N.-These five samples are simply a cious rock.-C. N. N.-These five samples are simply a
series of clays whose color depends upon the metallic series of clays whose color depends upon the metallic
oxides with which they are colored. The yellow and red sides with which they are colored. The yellow and red is pyrite (iron sulphide), and may carry gold. To determine the latter, an assay costing $\$ 500$ would be neces-sary.-W. R. A.-The sample is pyrite (iron sulphide), and may carry gold. To determine the latter an assay costing $\$ 5.00$ would be necessary
Erratum.-J. H. W. In answer to Query
8) December 1, 1883, gallon should read cubic foot.

dasmess and ertsunal.

The Charye for Insertion under this headis one Dolar a line for each insertion; about eight wor ds to a line.
Advertisements must be received at publication offce asearly as T'hursday norning to appear in next issue.
Jenkins Standard Packing and Jenkins Patent Valves. Thread Cutter.--Something new and useful adapted o all kinds of sewing machines. Patent for sale. Ad-
ress, Gavino Gutierrez \& Co., 192 Front St., New York. For Sale,-A valuable patent entire Address w. For Sale.-A valuable, patent entire.
Henry Philbrick, Box 343, Laconia, N. H.
For Sale-Patent on Portable Exercising Bars. Adress, Geo. Worthington, South and German Streets, Irido-Copper, manufactured by the American Iridium Co., Pearl and Plum Sts., Cincinnati, Ohio, is superior to
ronze metal for journal bearings of accurate and high ronze metal for journal bearings of accurate and high
unning machinery, being hard and slightly porous. Pumps-Hand \& Power, Boiler Pumps. The Goulds Fox's Corrugated Boiler Furnace, illustrated on page Fox's Corrugat Le Doux \& Maecker, sole agents, 134 Pearl Street, New York.
One 12 inch Weston Dynamo Electric Machine in ood order, for sale at one-half price. Address P. O. Box 433, artford, Conn.

Corliss Steam Engines at a bargain.

One $12^{\prime \prime} \times 42^{\prime \prime}$; one $16^{\prime \prime} \times 36^{\prime \prime}$; All in frst-class running order.

Henry I. Snell, 135 North 3 d St., Philadelphia, Pa. Useful information and tables on Steam and Water
or Engineers and others contained in Blake's new illus rated catalogue of steam pumps and pumping engines, just published. Copies sent free. Address Geo. F. lake Mfg. Co., 95 and 97 Liberty St., New York.
Steam Pipe and Boiler Covering, Roofing Paints, Prepared Roofing, and general line of Asbestos materials.
Phil Carey \& Co., 127 Central Avenue, Cincinnati, O. For Freight and Passenger Elevators send to l. S.
Best Squaring Shears, Tinuers', and Canners' Tools Lathes 14 in . swing, with and without back gears and

The Best. The Dueber Wath Case

If an invention has not been patented in the United anada. more than one year, it may still be patented in foreign patents may also be obtained. For instructions ddress Munn \& Co., Scientific American Patent gency, 261 Broadway, New York.
Guild \& Garrison's Steam Pump Works, Brooklyn, . Y. Steam Pumping Machinery of every descrip-
ion. Send for catalogue. Nick
Nickel Plating.- Sole manufacturers cast nickel an plete outfit for plating, etc. Hanson \& Van Winkle lete outat for plating, etc. Hanson \& Van Winkle,
Vewark, N. J., and 92 and 94 Liberty St., New York.
Lists $29,30 \& 31$, describing 4,000 new and $2 d$ dhand Ma chines, ready for distribution. State just what machines
wanted. Forsaith \& Co., Manchester, N. H., \&N. Y. city.

			Plar
"Abbe" Bolt Forging Machines and " Palmer" Power		54	Plow fender, J. J. McCarter. \qquad 289,432 289.376
Hammers a specialty. Forsaith \& Co., Manchester.N.H.	Burg		
Railway and Machine Stop Equipment.			
he George Place Machinery ts, Ne	${ }^{\text {B }}$		Presser foot derice, lifting and rotating, G. M. ${ }^{\text {aseger }}$
Keep Boilers Clean." Book sent free	Bu		
$\text { riss, } 84 \text { John St., Nev }$	Butter jar, box, and cover, glass, w. w. weston. 289.595		
anted.-Patented articles or machiner			
introduce. Gaynor \& Fitzgerald, New Haven. Conn	Butt		
ater purified for all purposes, from household sup-		Gauge. See Metal sheet gauge. Micrometer	
plies to those of largest cities, by the improved filters manufactured by the Newark Filtering Co., 177 Com-	Cable ways. grip or clutch to be used on endless, Gilday \& Heckman.		
merce St.. Newark, N. J.			
Improved Skinner Portable Engines. Erie, Pa.			
Ferracute Mach. Co., Bridgeton, N.J.			
Pulleys at low prices, and of same strength and			8
		Gl	
Supplement Catalogue,--Persons in pursuit of infor- mation on any special ens ineering meehanical or scien-		8	
			Ra
Fic Aminica			
The StPr			
the whole range of engineering, mechanics, and		Hand rake. L. A. Schaeffer. ${ }^{289567}$	
cal science. Address Munn \& Co. Publishers, New York.		Handie. see Tool hande. Umbrella and parasol	
			Rall
to order. E. E. Garvin \& Co., r39 Center St., N. Y.	Car coupling link, railway, A. Hackett....... 29,5350	Harrow and cultivator, combined, L. A. John..... 289.959	R
ssil Meal Composition, the leading non-conducting			Rake. See Hand rake.
raight Line Engine Co., Syracuse, N. Y. Best in			Recilining chair lock, T. H Ring. See Finker ring.
materials, workmanship, governing; no packing.			
tis Pressure Regulator and Steam Trap. See p. 349.			Rol
C. B. Rogers \& Co., Norwich, Conn., Wood Working			Roll
chinery of every kind. See adv., page 30.		Hog cholera remed	Rolling m
LightningScrew Plates, Labor-saving Tools, p. 348.			Ruler, parallel, C. A. Shields.......................... 289,457
Woodwork'g Mach'y. Rolstone Mach.Co. Adv., p. 366.		der	Sad
erican Fruil Drier. Free Pamphlet. See ad., p. 382.		Hoop. See Toy hoop.	
Brass \& Copper in sheets,wire \& blanks. See ad.p. 381.		Horse checking	
		Horseshoe, D. Crane...289,504	
delphia	Casting car wheels, W. Wilmington.... 29,741		т. Bie
Castings over all others. Cireular and price list free.			Saw tooth, Saw tooth,
St., N. Y	Chain cap, rolier, , A. A. Church 299,618		Saw tooth. Insertible, W. B. R. Risdon..... 289,715
Improved Hydralic Jacks. Punches, and Tube	Cheek	Hub attaching device, T. A. Crabtree............. 289,627	Scale, spring
nders. R. Dudkeon, 24 Columbia St., Ne			soow, dum
ction Clutch Pulleys. D. Frisbie \& Co., Prila. Pa		Ice pick, J. A. Wiedersheim.......................... 289,738	
Tight and Slack Barrel Machinery a specialty. John			Screw
wood \& Co., Rochester, N. Y. See illus. adr. p. 350.			Seal lock, J. F. Ing
	Clasp		
for			Seed drill an
ibitions. Lanterns for colleges, sunday			
amusement. 116 page illustrated catalorue		N. Rousseau.......... 289,49	rating solid and
		Iron from charcoal, et	Sewing machine attach
	Collar. F. Beiermeister, Jr........... 289,604	D. мac	tons, G. M
Steam Pumps. See adv. Smith, Vaile \& Co., p. 382.	c		
INDEX OF INVENTIONS		10	
		Lamp burner, Schwintzer \& Graff................ 299.571	
Lh Letters Patent of the United			Sole
		Lam	Spe
December 4, 1883.	Coupling. See Car coupling. Faucet coupling.	20,	
	Crate. See Sreveruit crate.		sta
and each bearing that date.			zanat
list about copies of these patents.]		Lock. See Door lock. Fire arm lock.	Stand. See F
		Recining chair lock.	Steam bo
Air engine heater, J. A. Woodbury et al.289,484, 29,485			Steam pipe
Alarm. See Burglar alarm.			Steam trap and boiler feeder, R. W. W. Clark......... ${ }_{28989888}^{2988}$
or for coating metals, J.	Dish washing machine., C. A. Ararris Distillation, process of and apara	Lo	$\xrightarrow{\text { stock rese }}$ Se
Amalgamation, obtaining precious metals from ores by, E. N. Riotte................................ 289,781			stor
nunciator, electric, F. Happersberger......... 289.411	Ditching		
unnciator, electric, A. C. Palmer... 23			
	Door che	. B	Structures, apparatus for erecting and supporting
	Door lock, v. M. Moore........................... 289,3	Mattress stumfng, manufacture of, F. تagedorn.. 289,499	
根, vehicle, G. A. Mott................. 289.689	Dra, , teld D. D. Hill 299,6	Maul stick, Q. F. Parker...................... ${ }^{299700}$	Surgical
holder, D.F. Smith		Measure of length, graduated, s. Darling.......... 289,512	
ng pan, w.1. Lee..			Smit
Barrels, process of and app double stave. M. C. Dann			
Basin, wasb, J. Bennor................. 289,996	Dr		Table. See
See			
Searing plate, J. . . A. Armstrong.................... 88.9 .957	${ }_{\text {Egg tester, }}^{\text {Electric circuits, circum }}$		$\underset{\text { Tanning, }}{\text { Tapping, }}$
er cooling device, Sauser \& Haller.... 289	Elect	Mining machine, H. Wilverth.. 289,72	
th fastener, H. Heaton 289.44		Mining machine, eoal. B. F. Asper.................. 2897475	$\xrightarrow{\text { Telephon }}$
			Theodol
		Motor. See Electric motor. Gas motor. Water	
Il journal. De Garis \& Paine.................... 28,514	ing engine.		
t. See Bride bit.	Eraporating apparat	Music cabinet, D. Schuyler.................289,569, 289,500	Thill coupling, J. Haviland.......................
	Excavating machine, S. F. Welch 289,73 Explosive compound, S. R. Divine, 289,756, 289,757,		
Block, ete.. out of asphay			Thrashing machine straw carrier, E. A. Palmer.. Thrashing machine straw stacker, D. D. \& P. J.
manuacture of, A. ADietz...................... 289,397 Bloter, Binkley $\&$ Wrigtt.............. 28.008			
Boiler. See steam boiler. Bolt threadiny die, M. D. Luehrs	Explosive compn Extractor. See	Oils, decolorizing and deodorizing heavy mineral, H. Ujhely.	Thrashing machine straw stacking attachment, C. D. \& P. J. Sprague. \qquad
Bot threading die, M. D. Luehrs.................. $29,9.974$		Orepulverizer and concentrator, dry, A. Wingard. 28,791	Tile and constructions made therefrom, illumi-
Book cover, G. W. Hacl	Faucet. Bar \& Nelson.......................... 289,378		ng_{8}
or rest, A. R. Byrkit	29703	87	${ }_{\text {Tobac }}$
	Faucet for beer barrels, N. W. P. Payne.............. 29,703		Toilet in
			Too
Boot and shoe nailing machine, G. A. Perkins.... 28,443		Paper box, M. L. Wilcox................ 289,790	Toy
ort and shoe sole, Green \& Duncklee............ 289,	Feather renovator, A. G. Bierbach................ 299,378	Paper holding device, s. Wheeler........ 289,735	Too hoop. m
or shoe, L. F. F. . or			Toy kniting
ot or shoe uppers for lasting, mechanism for preparing, O. G. Critchett.	Fence, flood, H. D. Merrill		Trace
oring bar. LL R. Faught........................ 28.5922		Paper wetting machine, J. W. M. Morrison....... ... ${ }^{2}$.	Tra
Ne emptying device, A. E. Rich	Fender. See Plow fender. Fith wheel T.		Tra
triling device, A. Rigny...........		Pencil clasp, s. Wales................................ 299,476	
x board, C. A. Brown, et al.	Firearm. C C E. Eutebrouk.............. 289,	Pencil holder, A. T. Cwerdinskld... 299392	
J. C. Harri	Ek, E. I. Lake		
Car brake. Vehicle brake.			
Car brake. V ehice brake.		Planer, metal, H. Bilkram.............................. 289.607	
a. White.................. 28,480	Fire escape, C. w. Tllett......................... 299780		

Umbrella and parasol hande. J. T. Smith S. Seymour

ault cover and ventilator. combined, T. W. L........................ gill:
ehicle brake, automatic, R. R: Pace ehicle spring, R. Mulhollan Vehicle, wheeled, T. F. Krajewski. Vent for casks, J. Poznanski..... Ventilator, M. A. W. Louis. Wagon, dumping, K. Kennedy Washing machine Washing machine, E. W. Bush
W ashing machine, w. Holben Washing machine, E. K. Lecron Watch, G. Thommen
Watch winding indicator, R. Heunsch Watches, anti-magnetic shield for, C. к. Gles Water closet and trap, J. Benno
Wheel. See Fifth wheel.
Window sash ventilator. E.
Window screen, J. N. Gibney
Tindow shade and screen. E. Green. ire barbing machines, center for, W. T. Bur
rows Wire fabrics, machine for making, W. J. Davisson
Woven fabric and loom for weaving the same, A Wrench. Se
Wrench. See Machine wrench.

DESIGNS.
Bag or satchel, hand, A. L. Silberman
Calendar card, H. Toaspern, Jr.......
Fire place back,"Jackson \& Hankinson

TRADE MARKS.
Bricks, Hedges \& Smith...........................
Butter. manufactured or artiflcial, C. A. Watson.
Canned goods, G. W. Baker Cigars, E. Marx

Hard ware, saddlery, North \& Judd Manufacturing Rnives, forks, and spoons, L. F. Dunn liniment, oill, J. H. Hess andine forer
\& Son
Kemedy for epilepsy, H. Fr Schwee
Remedy for private diseases, F. Stearns \& Co Sheet metal, Republic Iron Works.
Soap, toilet and laundry, olds \& Co
Stoves, ranges, furnaces, and heaters. cooking, Rathbone..
Tobacco and cigars, manufactured, T. C. Williams
Tubing, metal, E. C. Converse.
Wheat, whole winter, D. Brainard..
 ents. In ordering please state the number and dat Broadway, New York. We also furnish copies of co.. 26 granted prior to 1866 ; but at increased cost. as the hand.
Canadian Patents may now be obtained by the ventors for any of the inventions named in the forse
voing list, at a cost of $\$ 40$ each. For full instruction address Munn $\&$ Co., 261 Broadway, New York. Other address Munn $\&$ Co.. 261 Broadway,
foreign patents may also be obtained.

Gatretisamont.
 Engravings may head adver tisements at the same rate
per line, by measurement. as the better press. Adver

©Van Duzen’ Pat. Loone Pulley Oile

CASP. DIEDR. WALZZHOLZ,
Hardened Steet Strips for Corset Clasps, Hoopskirts, Featheris, añ Brushès.
 SHEPARD'S CELEBRATED Screw Cutting Foot Lathe

THE ELECTRICAL WORLD

Edited by experts. Noted for explaining electrical principles, new inventions, etc., in simple and easy arti les, handsomely and copiously illustrated All the news and progress in Telegraphy, Telephony, and Electric Lighting. First and fullest descrip
tions, with cuts, of new electrical inventions. tions, with cuts, of new electrical inventions the world. Indispensable to all interested in elec trical matters. Same size as Scientific American 16 pages; weekly; subscription one year, \$2..00. Your subscription is soliciten. Sample copies neqilod free

WATCHMAKERS. Before buying, see the Whitcomb Lathe and tio Wer
tow Co. Waithamp hy the AMERCAN WATCH

Rider's New and Improved COMPRESSION
Fotain Pumping Fingind New and Improved Designs.
INTERCH A NGEABLE PLAN DELAMATER IRON WORKS, o. 16 CORTLANDT ST., NEW YORK, N. Y
 ,
 UNTVEIRSAT Till
 10 Barclay St., N. Y. City.
CET THE BEST AND CHEAPEST.
PERIN BAND SAW BLADES,

RECEIPTS,
SECOND SERIES.

E. \& F. N. SPON, 35 MURRAY ST., NEW YORR. PROPER HORSE-SHOEING.- A PAPER

wavted.-A First-Class Meechanical Dragehtsman

EXPLOSIVE COMPOTNDS-EETR $\widehat{C A}$

THE ABICRICAN BELL THLLPHONE COMPANY, THE ABIERICAN BELL, 'TVLEPIIONE COMIPANY
W. Fories, W. R. DRIVEI, THEO. N. VAIL,
President. \quad Treasurer. \quad Gen. Manager. Alexander Grabam Bells patent of March 7, 1876,
owned by this company, covers every form of apparatus, owned by this company, or Carbon Teleophores. in whith
including Microphones or
the voice of the speaker causes electric undulations the voice of the speaker causes eleectric undulations
corresponding to the words spoken and which articula
tions produe similar articulate sounds at the reciver
The the

 TIIE HOLLAND LUBRIOATOR, VISIBLE, DROP,

0

$\widehat{\text { RECENT EXPERIENTS AFFECTING }}$

SWEEPSTAKES, WITH THE ELLIS

finantial.
 Linconsafiedenasitio. ma sume wantivest

32 TO 38 EAST 42d St.
OPPOSITE GRAND CENTRAL DEPOT) builiding fireproof thiroughout. at from $\$ 10$ to $\$ 300$ per jear, The Best of facilities for Grneral Storage.
TrUNK Stoliage a specialty. BUILDING APPROVED BY FIRE COMMISSIONERS AND INSPECTOR OF BUILDINGS.
MALLEABLE IRON CASTINGS. - A
 39.. Price 10cents. To be had at this office and from

MALIERELI

FOSSIL MEAL COMPOSITION, The Leading Non-Conducting Covering for bollers, pipes, etc.

 FOSSIL MEAL CO., 48 Cedar St., New York.

Telegraph and Electrical SUPPRLIES

SOLTTHWARK FOUNDRY \& MACHIVE CONPANY, Engineers \& Machinists,
Blowing Engines and Hydraulic Machinery. Porter-Allen Antomatic Cint-uff Steam Engine.

METAL WORKING

MACHINERY LATEST IMPROVEMENTS. GOULD \& EBERRHARDT,

RARENTVG
 PROOF

U. S. MINERAL WOOL $\mathrm{CO}_{n} 2$ Courtlandt St, N, \mathbf{Y}

ROOFING.

 THE BIGGEST THING OUT Tlisetrate Book

PATENTS.

MESSRS. MUNN \& CO.. in connection with the pubcation of the Silentific Amirican, continue to examine Improve
for Inventors.
In this line of business they have had thirty-eight years' experience, and now have unequaled facilities for he preparation of Patent Drawings, Specifications, and the prosecution of Applications for Patents in the United States, Canada, and Foreign Countries. Messrs. Copyn \& Co. also attend to the preparation of Caveats, nd Reports on Infringements of Patents. All businces intrusted to them is done with special care and promptness, on very reasonable terms.
A pamphlet sent free of charge, on application, containing full information about Patents and how to procare them; directions concerning Labels, Copyrights
Designs. Patents, Appeals. Reissues, Infringements, As signments, Rejected Cases, Hints on the Sale of Ia tents, etc.
We also send. free of charge, a Synopsis of Foreign Patent Laws, showing the cost and method of securing
patents in all the principal countries of the world. MUNN \& CO., Solicitors of Patents,

BRANCH OFFICE.-Corner of F and 7th Streets,

BLACKSMITHS $\begin{gathered}\text { and Wargon Makers should } \\ \text { send for specimen copy of the } \\ \text { and }\end{gathered}$

POPULAR SCIENCE MONTHLY,

"BLAKE'S CHALLENGE" ROCK BREAKER.
 4

BLAKE CRUSHER CO., Sole Makers, New Haven, Conn.
 RUBBER BACK SQUARE PACKING. BEST IN THE WORI.D.
Rods and valye stems of Sted
For Packing the Piston Rods and Valye stems of Steam Engines and Pumps.
Brepresents that thar
A, the elastic back rt of the packing which. When in use, is in contact with the Piston Rod. A, the elastic back, wh
creates but litile friction.
This Packing is made ngths of about 20 feet, and of all sizes from $1 / 4$ to 2 inches square.
NEW YORK BELTING \& PACKING CO.,
John H. Cheever, Treas. Nos. 13 \& 15 Park Row, opp. Astor House, New York.

NEW HAVEN MANUFACTURINC CO
 Lathes, Planers, Drits, Shapers, etc.
LLUSTRATED CATALOGUE ON APPLICATION
 M'F'G OPTICIANS OPERA, FIELD MARINE GLASSES, TRLESCOPRS, MICROSCOPES baroubters,THERIOMPTRR Magic Lanterns, "Anoxido," etc. tist of useful holipas GIETS gratic.

Clark's Noiseless Rubher Wheels.
Absolutely prevent spintering and wearing
 ouses. Stores. etc. Catalogue free
GEO. P. CLARK, Windsor Locks, Ct. ABSOLTELY MTH SO I'S
THE BEST.
LGHTNTH SENER!

GITHERET, RUGG \& RICHARRBON, Manufacturer:

ROOTS NEW IRON BLOWER.
 ON REVOLXERS, PERFECTLY BALANCED Has Fewer Parts than any other Blower. P. H. \& F. M. ROOTS, Manufacturers, P OONNERBVILLE, IND.

 FOR PVICED CATA
$\$ 72$ A WEEKK, 812 a da a a thome easilim ande. Costly
GOLD WATCH FREE!
The Publishersof the Cavitol City Home Guest, the
well
make thw
mill

 clese that the ladies will appreciate, and papare containink
the names of winners. Pubs. Home Guest, Hartord, Ct. PHONOCRAPHY OR PHONETC SHORT-HADD bet and illustrations for beginners sent on anplication.
Address Honoopraphic Instutute, (incinnati, ohio. INFORNATION WANTED in relation to discovery

29 wavis.
OPIUM HABIT

I CURE FITS!

DEAFNESS CURED!

CONSUMPTION.

OPIUM

RUPTURE

 266th EDITION. PRICE ONLI \$1

KMOW THYSELF.
A Great Medical Work on Manhood

 One of Which is invaluable. So found by the author. Whose
experience for 2 years is such as
erobably never betor

OTTO GAS ENGINE.

F. Brow's Patent
FRICTION

CLUTCH.

A. \& F. BROWN, 43 Park Place, New York. Sjuitispolivisumb
 LITILE WONDERS.

Tools for Emery Wheels.

 64 Nassau' Street, New York. ELIIOTT'S PAT, WATCH OILER

The " MONITOR." Rest Boiler Feeder A NEW LIFTINGAND NON

 EJECTORS Water Blerators,

 ASBESTOS
-m ASBESTOS ASHESTOSTHIATSTING, PACKING, ASBESTOS BUIIIDING FELIT.
H. W. JOHNS M'F'G CO., 87 Maiden Lane, New York,

HARRIS - CORLISS ENGINE,
With Harris' Pat. Improvements, from 10 to 1,000 H. P
Send for copy Engineor's and steam User's Manual. By d, W. Hill, M,E. Pricos

EETACLES Tokespose, Rucosocopes Pho-

W. BAKFR \& CO 1, Dorchester, Mass.
Double Screw, Parallel, Leg Vises.

 are fis far more economi. strengthening, easily digested, and well as for persons in health. Sold by Grocers everywhero.

BOOKSON BUILDING, PAINTING

 FOR 1EEA.
The Most Popular Scientific Paper in the World ESTABLISHED 1846.

Circulation Larger than all Papers of its Class Combined.
Only $\$ 3.20$ a year, including postage to United States and Canada $\$ 4$ a year, including postage to all countries in the Postal Union.

This widely circulated and splenditly illus-
trated paper is published weekly.
 a large number of originu1 engraving of new in-
ventiousand discoveries, represeuting Engineering Works, Steam Machinerry, New In Vontions, Novel-
tics in Mechanics, Manutactures, Chemistry, Electricits, Telegraphy, Photography Architecture,
Agriculture, Horticulture, Naturai History, etc.
All Classes of Readers find in the Scrizn-
 of the publishers to present it il an an atractive
form, avolding as muochas possible abbstruse terms. To every inteligent mind this journal affords a
constant supply of instructive reading. It is pro-
motive of knowledge and progress in every com-
munity
where One copy of the Scientific Ambrican and one (see prospectus below will be sent for one year
postage prepuid
an sostage prepaid, , any subseriber in the United
states or Cninga, on receipt of seven dollars
bthe puhishers.
The safest way t remit is by Postal Order Draft, or indid of envelopes, securely seuled; and correctly
 er's risk. Adaress alll letters and make all orders, MUNN \& CO 261

Eientilic American Eupplemento

This is a distinct paper from The ScienFIFIC AMERICAN, but it is uniform in size with it,
ever nunber containing 16 octavo pages. THE SCIENTIFIC AMERICAN SUPPLEMENT embraces a
Very wide range of contents, covering the most
recen and valuale contribution recent and valuable contributions in Science,
Mechanics, Architecture, and Engineering from Mechanics, Architecture, and Engineering from
every partof the world. Fvery number contains several illustrations, consisting in part of import-
ant engineering works, in progress or both at home and abroad, architectural fiews of
and plans of new public buildings handsome and plans of new public buildings, handsome
dwelling-houses, cheap cottages, household furni-
Translations from French, German, and other foreign journals, accompanied with illustra-
tions of Grand Engineering Works; also of Naval and echanical construction of magnitude, projected, progressing, and.
The most important papers read at Scien-
tific Conventions by the best and most profound GAnkers, will be found in TEESCIENTIYIC AMERI-
nformation, and presents a complete history of the procress of the times in the Solences, Arts, and
Mechanical Engineering. This paper contains no
adver isements.
Price- $\$ 5$ a year, in adrance. or Price- \$5 a year, in advance; or one copy of THE SCIENTIFIC AMERICAN (see prospectus above) PLEMENT both mailed for one year for tr pay-
ment in advance to the publishers. Remit by mail nd address MTUNN \& CO

Publishers Scientific American,
261 Broadway, New York. Monv \& Co. have obtained for their clients, one hundred thousand patents. obtaining patent Agency has better facilities for
quickly
gnd chade marks, copyrights, etc., quickly and cheaply.
Inventions examined and advice as t patent Patents on ro rined in the United States, Canada,
and all other countries on the best terms. and all other countries on the best terms. Patents in this country and abroad sent free on applica-
tion.

IASST OA工工.

A $\$ 4$ Periodical for $\$ 1 . \overline{50}$.
1 Number for Nothing. A DICTIONARY WITHOUT COST.
Two Elegant Engravings Free.

American Agriculturist

 ${ }^{\text {ERAd }}$ diress Publishers Orange Judd Co. D. W. Judd,
751 Broadway, New Yorte.

 MORRELI Office of the late MORRELL STORAGE WAREHOUSES, Lincoln Safe Deposit Co.'s

JOHN H. MORRELL.
 HARTFORD

STEAM BOILER
Inspection \& Insurance COMPANY.
W. B. Franilin,v. Pres't. J. M. alleen, Pres't. J. B. PIERCD, Sec'y.
STEMWINDING Fermutation Lock,

Wine fope

 Address JOHN A. ROEBLINGUS SONS, ManufacturWhells and Noope or for convering power long distances.KEMP'S MANURE SPREADER,

PRINTING INKS.

