THE NEW YORK, WEST SHORE, AND BUFFALO RAILWAY TERMINUS.

In the Scientific American of October 6 was published a ground plan showing the terminal facilities of the New York, West Shore, and Buffalo aud the New York, Ontario, and Western Railways, with statistics showing the immense dockage, warehouse, ferrybouse, and cattle yard room that would be provided. The plan and figures represent five and three-quarter miles as the length of the dock room, on a water front of 6,790 feet, 275 acres being devoted to the terminæ and 175 acres as sites for building lots.
In the picture as here given our artist has shown the scene of the terminus as it now appears, looking down thereon from Weehawken Heights at the back, and across the river to New York. The view shows that, although a great deal yet remains to be done, the following has thus far been accomplished: The round house, milk depot, main depot and ferry buildings are completed, as are the sheds on piers 2 and 3. The pier for elevator \mathbf{A}-lbe first on the south-is being rapidly pushed toward completion. The main crib bulkhead is finished with the exception of a few hundred feet. This bulkhead is the dividing line between the land and water, and on the water side of it are now being driven the piles upon which willrest the contemplated structures. The coal transfer piers will be at such a height that coal can be
dumped direct from the cars into the hold of a vessel moored alongside. These piers will rest upon pile foundations, and will consist of wooden trestles of ample strength to support the great load. In order to approach these piers at an easy grade it became necessary to excavate a roadbed along the

side of the hill, parallel with the river and at a point back of

 the tracks, over which it passes on bridges.There are two lines of ferries, one running to Forty-second Street and the other to Harrison Street, this city.
From the point of view taken by our artist, the rugged beauty of the site, in its present aspect, is faithfully portrayed; it is a locality which will always be memorable from its association with the Hamilton-Burr duel and its importance in old New York history.

Ancient English Canoe.

An interesting relic of the past has just been unearthed in the parish of Pulborough, Sussex, in the shape of a canoe, which was partly embedded under the River Arun, and partly in land on the south side of that river. The boat is, says Nature, of solid oak, and hewn from a single massive trunk. That it was made before the knowledge of metal is evident, as there is not a trace of building or planking. It must bave been hollowed by means of the stone ax and of fire. Further evidence in favor of the antiquity of this boat appears to be afforded by the various accumulations which had formed over that portion of it which was embedded in the earth. These strata, to the depth of nine feet, have been ascertained to be loam, yellow clay, a thin layer of leaves, followed by a stratum of blue mud, beneath which lay the boat embedded in drift sand. The prow portion of the boat lay in the river, and this is by far the most dilapidated. The stern is comparatively intact. The present dimensions of the boat are fifteen feet by four feet, but originally it was probably eighteen feet long.

Coal Gas-Water Gas-Electric Light.

The illuminating folks have grown very quarrelsome; and at present there is a triangular fight going on with the water gas, the coal gas, and electric light advocates as mutual antagonists. It is amusing to read in the gas journals the horrible tales of accidents and of destruction to health, eyesight, and complexion resulting from the use of either the rival gas or the electrical system of lighting. The prices, too, seem to bother them very nuch. The complaint made against Edison by the gas makers is, first, that his light costs too much, and, second, that he charges too little for it. But if this complaint is true they ouglt to possess their souls in patience, for he cannot be expected to stand it-very long. The coal gas representatives having been beaten by water gas in cost, attack it as extremely dangerous, and the cause of most of the accidents by suffocation. This is "important if true," but it must be confessed that the water gas advocates have just as pretty tables of figures the other way, and between them all these lighting companies manage to leave us as much in the dark as ever. There is room for all of them, however, if they will be content with moderate profits. It is the charging of too bigh prices that attracts rivals into the field.-Philadelphia Ledger.

A Recent official report says that the mercury in South Australia often rises in snmmer to 115° in the shade, and this has been exceeded on several occasions. In January, 1862 , it reached 116°, and in January, 1882, it was $180^{\circ}-$ only 32° below boiling-in the sun. New Yorkers will after this fell quite cool in what they call hot weather.

PRESENT CONDITION OF TERMINUS OF N. Y., W. S.; \& B. R. R.-VIEW FROM WEEHAWKEN HEIGHTS.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at
No. 261 BROADWAY, NEW YORK.
O. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

One copy, one year postage included..
Clubs.-One extra copy of 'The SCIENTIFIC AM ERICAN will be supplied gratis for every cuub of tive subscribers at
same proportionate rate. Postage prepaid.

me proportionate rate. Postage prepai
 Remit by postal order. Address

The Scientific American Suppiemen

is a distinct paperfrom the SCIENTIFIC AMERICAN. 'THE SUPPLEMENT
is issued weekly. Every number contains 16 octavo pages, uniform in size with Scientific American. Terms of subscription for SUPPLEMENT $\$ 5.00$ a year, postage paid, to subscribers. Single copies, 10 cents. Sold by Combineal Rates. - The ScIENTIFIC
Combined Rates. - The Scientific American and SUpplembint
will be sent for one year postage free. on
receipt of seven dolars. Both papers to one address or different addresses as desired.
The safest way to remit is by draft, postal order, or re The safest way to remit is by draft, postal order, or registered letter.
Address MUNN \& CO., 261 Broadway, corner of Warren street, New Yof

Scientific American Export Edition.

The Scirn'tific A merican Export Edition is a large and splendid peri-
odical, issued once a month. Each number contains about one hundred large quarto pages, profusely illustrated, embracing: (1.) M ost of the plates and pages of the four preceding weekly issues of the Scıw.iIFIC
AMERICAN, with its splendid engravings and valuable information: (2. AMERICAN, with its splendid engravings and valuable information: T'erms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the world. Single copies 50 cents. Manu facturers and others who desire to secure foreign trade may have large. and handsomely displayed anuncements published in th is edition at a very moderate cost. lation in all commercial places throughout the world. Address MUNN \& CO., 261 Broadway, corner of Warren street, New York.

NEW YORK, SATURDAY, DECEMBER 8, 1883.

TABLE OF CONTENTS OF
the scientific american supplement
No. 414,
For the Week ending December 8, 1883.
Price 10 cents. For sale by all newsdealers

The practice of roughing out and then dressing by grind ing, scraping, and paring to exactness must give way that of accurate measurements and accurate tools to work to those measurements. It is evidently of little value to produce by expensive processes accurate gauges for screws interiors, exteriors (for diameters), and scales for linea measurements, if there arc not sufficiently accurate tools to work up to these gauges. Hand skill, unaided by mechanical exactness in machine tools, is not always sufficient to hegin a job ab novo with exactness, or to carry it to com pletion without variation from the standard. In many instances an error multiplies itself and makes an insignifi cant divergence a serious fault. This may be particularly the case when the leading screw of a screw cutting lathe is faulty, and a longer screw than that of the lathe is to be cut by sections. If there is an error in the working portion of the leading screw it will reproduce itself, sometimes with aggravated quantity, until the end of the produced screw is reached, ruining the screw for exact work

There has been recently started, in Hartford, Conn., a new company formed for the purpose of producing exact leading screws for lathes, racks, and pinions for longitudi nal and lateral movements, and the closest gauged rules, or bars, for measurements to be applied to fine mechanical work, with or without the aid of the microscope.
These results are obtained by simple mechanical contriv ances, which are patented. So close is the guided action of the device that a leading screw of a screw-cutting lathe 36 inches long was detected as lacking in one-twentieth of an inch in the three feet of thread, and quite important varia tions were ncticed in that length. In fact, the leading screw of a screw cutting lathe made by one of the well known manufacturers of machine tools was so faulty in a distance of six feet that differently threaded screws could be cut by it at different portions of its length. More than this, it was discovered that a variation of one fifteen-thousandth of an inch was discovered-and rectified-which extended through only four inches in length of the screw. The result of the tests proved that in six feet of a leading serew there we three grades, only one of which was the pitch desired.
These variations in the leading screws of lathes are not uncommon, in fact there are many worse ones. No amount of judicious grinding will rectify an initial wrong in the cutting of the thread; it may reduce its irregularities, but it is impossible to move a thread bodily on its core, and whatever is ground off on one side leaves so much opportunity of backlash on the other.
It is evident that any device that can produce absolutely true threads running over inches and feet is an advance in the direction of exactness in machines and consequently in the perfection of their productions.

Remarkable Colors in the Sky

Sbortly after sunset, on November 27, 28, and 29, the western sky presented a most peculiar and striking appear ance, the red light being intensely bright, almost dazzling, and reaching nearly to the zeuith. The phenomenon was visible over a large part of the Northeastern States.
One supposition is that the color resulted from vaporous strata in the higher regions of the atmosphere. Another is that it was due to reflections from meteoric dust. The New York Sun gives the following:

A remarkable observation was made by Prof. Brooks, an industrious astronomer of western New York, on the evening of Nov. 28. While searching with his telescope for comets, he saw what he describes as a shower of telescopic meteors " near the sun." This, of course, means that they were near the apparent place of the sun in the sky, and not literally near to that body, for the sun had already set at the time, and if what Prof. Brooks saw was really a meteor swarm, the meteors must have been in the upper regions of our atmosphere. Supposed flights of meteors seen through telescopes have occasionally turned out to be flocks of birds, but an observer as careful and experienced as Prof. Brooks seems' to be would not be likely to make such a mistake as that.

Assuming, then, that he really did see an extraordinary swarm of meteors, and remembering that meteors large enough to be visible without telescopes, and some of great size and brilliancy, have recently been unusually numerous, the suggestion that the red light seen in the sky for several evenings past long after sunset may be caused by reflection from clouds of meteoric dust in the upper portion of the atmosphere is not unnatural. There are several reasons for thinking that the stravge light is the result of some such cause as the presence of meteoric dust rather than of differences of density in the atmosphere leading to extraordinary refraction.
In the first place, the phenomenon has not only been visible over an immense extent of territory, but it has lasted several days, and has been seen in the east before sunrise as well as in the west after sunset, so that any abnormal refraction in the atmosphere would bave to be of almost incredible persistence in order to account for the observed appearances. Besides, during this time there have been considerable $\mathrm{a}!\mathrm{mospheric}$ changes, especially in respect to temperature. These remarkable sunset displays have also accompanied by a notably bazy appearance of the sky
It is well known that the earth is daily and nightly pelted with millions of meteors, the vast majority of which are almost instantly consumed by the intense heat developed as they dash into our atmosphere. The products of the com-
bustion of these meteors filter slowly down through the air, and have been fouvd in the shape of metallic dust on the snow fields in the Arctic regions, on mountain peaks in Europe, and in other similar localities, being recognizable by their peculiar chemical composition. It is also known that the solar system abounds with swarms of meteors revolving around the sun, and that the earth crosses the paths of a number of these, occasionally encountering the swarms themselves.
The vast majority of these meteors are very small, those that are seen weighing on an average probably only a few grains; and since the telescope reveals millions which escape the naked eye, it is reasonable to conclude that millions more are too small to be seen even with telescopes-mere meteoric dust. There are historic instances of supposed falls of meteoric dust, the most remarkable, perbaps, being that of 1783, when Europe, part of Asia, and part of North America were covered for months with a dry fog or haze, which excited the greatest alarm. Prof. Brooks' suggestion that the earth has encountered a cloud of meteoric dust is not, therefore, without foundation in probability.
If the recent blazing sunsets have really resulted from such a cause, they are likely to continue, in a modified form, for some time, gradually disappearing as the dust sinks lower in the atmosphere. But, although so many reasons can be advanced which give probability to the theory that meteoric dust is concerned in the production of these strange sunset effects, yet it cannot be considered as proved, and some better explanation may be offered. Whatever the true explanation may turn out to be, however, everybody seems to gree in the opinion that the red glare in the west during the last three or four evenings has been one of the mos ingular spectacles beheld in the sky for many years.

Electric Railway.

A trial of the Daft Electro Motor for propelling railway cars took place at Saratoga, N. Y., on 24th November last. In the Siemens Berlin electric roads, the current to operate hrough the motor is sent through wires overhead, it having been found inconvenient to so insulate the track as to use the rails therefor, and also that, unless properly covered and insulated, the rails would be highly dangerous to other ravel. Mr. Daft, by a subdivision of his dynamo, claims to obtain a current of such low tension that all danger from contact is avoided, but the insulation was by no means Loroughly effected by his sending the current through a hird rail in the center, of which the fastening spikes were removed from the rail by a strip of vulcanized rubber. Then; although one could touch the rails without feeling any unpleasant shock, it was very evident that many were emporarily "excited" in crossing the tracks on the occasion referred to, while no less than four borses fell on the track from the effect of the current, and had to be helped off.

The actual performance consisted in the hauling by a two-ton motor of a five-ton car, with probably five tons more in weight of passengers, a distance of a mile and an eighth. This was up a grade of 70 feet to a mile, with on sharp curve, and was effected in eleven minutes. On the return the motor was thrown from the track, and several who were on it had narrow escapes, but the accident was due to a make-shift rope coupling, and did not involve Mr Daft's principle at all. The dynamos at the factory for लenerating the current were 500 feet from the track, and were operated by a 30 horse power engine. The motor itself seemed entirely too small and light for the work expected from it, the dynamos thereof and connections occupying a box only about four by six feet. The current for these is taken up from the central track by a contact wheel, which transmits it to a receiving dynamo, and thence by connec tion with a steel belt through the axles to the outside rails causes the revolutions. The apparatus is easily operated, and evidently was entirely under control. Mr. Daft was warmly congratulated on the degree of success obtained, and the most of the numerous party present were confident that the trial was a proof of the practical success of the system.

A Stone Bridge over the Mississippi.

The first stone bridge across the Mississippi River has just been completed at a point a little below the Falls of St. Anthony. It is a massive stone structure, stretching to the east across the river, curving at first slightly to the left in a graceful sweep, and then running at right angles to the tream directly to the east side landing, the whole course being 2,100 feet. The upper surface of the bridge presents to the view a smooth stone roadway, carrying two tracks on four lines of stecl rails and walled in on either side by heavy blocks of stone, high enough and strong enough to prevent a train from leaving the bridge, even should it be thrown from the rail. The viaduct crosses the river with twenty-three arches and sixteen spans of 80 feet each. The material is granite and magnesian limestone. The width is 28 feet over all, and the height from the springing point of the arches to the top is 50 feet 6 inches. One caisson required six months' work before stone laying could begin. Two hundred men have been employed on the bridge, and three lives have been lost in its construction. The cost was $\$ 990,000$. The bridge was built for passenger traffic, and is to be used by the Manitoba, the Northern Pacific, the Omaba, and the St. Louis lines, and possibly by the Milwaukee. The possibility of running at full speed over it will result in reducing the time bet ween Minneapolis and St. Paul from thirty to twenty minutes.

STORING WIND POWER FOR SMALL MOTORS.
Recently (November 3), in attempting to show a practicable method of utilizing a part of the wind power by storage, we based our calculations on such an amount of power for daily use as might drive the machinery of a shop or a mill or factory of moderate size, that is, a twenty horse engine. or factory of moderate size, that is, a twenty horse engine.
There are multitudes of purposes for which a very much There are multitudes of purposes for which a very much
less amount of power is needed, and attention has been turned of late to small motors and with a good degree of success.
But as long as these must have their energy dependent on steam they fail to be as fully useful as is desired, for under every condition a steam boiler with its heating arrangement is a necessary adjunct. Now, here is exactly where wind power comes in to give us what we want, and this is what we have had in mind, the point we wished to reach in treating of the storing of wind power. The large engines are perhaps beyond us as yet, the small ones are not, and we propose to give a few illustrations here of what seem to us entirely practicable.
Our direct agent for transmission will, of course, be compressed air, as before, for we have nothing else as convenient, and as our basis we lay down one or two statements of bulk from which to make our estimates. We assume compression to 3,000 pounds, say 200 atmospheres. This, in receivers of moderate size, is perfectly practicable and per fectly safe. We bave under observation at this moment one designed for a street car motor, in which a pressure of 1,500 pounds has been reposing quietly for the last cighteen months. At the pressure stated 1.5 cubic feet will yield one horse power one hour. We will reckon one horse power as equal to that of six men.
As our first illustration we take a common rowboat of 14 feet. A 2 inch pipe, placed along the gunwale of the boat, will contain sufficient air to give the power of one man for five consecutive hours. Made of 16th inch iron, the entire pipe will weigh 35 pounds; of 12th inch, it will weigh 47 pounds; while its buoyant effect, in case of accident to the boat, will be 93 pounds. At the boat house, or wherever is convenient, a small wind wheel is built, for only a small one is needed; a very few dollars will do the work. The boat is brought to her place, counection is made from the air pump to the pipc lining or encircling her gunwale, and she is left. The $v i n d m i l l$ turns whenever the wind blows, and at every revolution air is forced into the pipe. Such a boat is used only at intervals, and the amount of actual rowing service is commonly but small. When she is out all day she is rowed out and rowed in, lying at anchor the greater part of the time. When she is needed again, say the next day, her reservoir is fully charged, she is detached by a single turn from the windmill connection, and away she goes. The mode of using the compressed air may be at the choice of the owner-screw, paddles, whatever is preferred.
Once more let us look at the same agency for light vehicles, buggies, phaetons, road wagons, etc. A drive of five hours is a long one, and, in fact, five hours' use within twen-ty-fours is more than the average. The power that is employed, though we use a horse for it, is commonly not half a "horse power." A reservoir containing eight cubic feet will run the vehicle, year in and year out. Such a box is a very small matter to suspend below the wagon, and it need not weigh over 190 pounds, counting thus for resistance as une additional passenger. No complicated machinery is required; the air chest is connected directly with a crank on the hind axle for the driving wheels, and the forward wheels are used in directing the course. This is applicable to vehicles of every form, and may be made as ornamental as the carriage.
This has referred to light work only; but there is really no reason why it should not be applied to wagons of heavier draught. A reservoir, to give the full power of two horses for a day of ten hours, need not weigh over 800 pounds.
These slatements are not made at random; there is nothing visionary in them; they involve nothing except what is entirely practical and practicable. The first cost of such an arrangement will de less than the cost of horse and harness; the cost of maintaining the horse is saved.
One more item may be mentioned-the sewing machine. The power here required is so small that a box six inches cubic would answer every purpose for driving power. A motive agent would be constantly at command. The pressure of a lever with the foot would start the machine or stop it as readily as the treadle does now.
These are but a few illustrations; they might be multiplied indefinitely. Surely, we have here an indication of the advisabilty of storing the wind power.

Cheap Winter Quarters.

In anticipation of winter the Italians employed in building a Maine railroad have made a little village. Two forked sticks were driven into the ground and a pole laid across, against which other poles were leaned on either side, thus making an A-tent. On these rods were laid, beginning at the bottom and going to the top. Between the roof of poles and the turf a layer of boughs. was placed. The ends were
constructed in the same manner. A hole answers the double constructed in the same manner. A hole answers the double
purpose of door and window. A singularly constructed furnace and chimney warms the hut, dries the macaroni, conks their food, and carries off a part of the smoke. Some of the structures are of good size, while others are not much larger than a dog kennel, which they much resemble.

[bPEOLLL Correspondenole.]

Washington, D. C., Nov. 26.
The new Commissioner of Patents is begiuning to get into the harness and to gather up all the details of the various divisions of the office. "If I could attend solely to the judicial portion of my duties, which are in consonance with my lastes and previous study," he said the other day, "I should find the position a very pleasant one. But as I am responsible for the conduct of the entire office, I must make myself thoroughly familiar with the minor details in order to properly perform the executive functions which devolve upon me."
' You find the various heads of division efficient, don't ou?"

Yes, so far as I know, they are fully competent for the positions they fill. Of course, I have not yet had time to thoroughly understand each one and take his mental gauge, but I think they are all good men."
In reference to the issuing of patents, a falling off is apparent during the present quarter. This is considered rather singular, as there has been a steady increase from quarter to quarter of from 12 to 15 per cent during the past three years. The falling off from the past quarter is about 6 per cent.
Perbaps few have an idea of the number of patents that go through all the stages of examination and then, when they reach the point of issue, are held up for non-payment of the final fee. There are at least 100,000 of such applications now in the division of issues, and probably that is largely under the actual amount. That sum represents 5,000 distiuctive patents, and at least 200 are returned to the files as forfeited each month, and the total number of forfeited, rejected, and abandoned applications is upward of 60,000 .
Yet applications are being received in great numbers daily, for the inventive genius of the country is still on the alert, and over 2,000 applications for patents were filed in he month of October.
The class of inventions receiving the greatest number of applications, and the one which seems to be receiving the special attention of the inventive genius, is that of electricity -its application and appliances.
This class is subdivided in the Patent Office into 70 subclasses, and prior to July 1, 1881, there were issued in class 36 -electricity- $3 ; 890$ patents. Froin July, 1881, to July, 1882, 1,001 patents were granted in this class, and from July, 1882, to July, 1883, 1,326 patents were granted. The in crease in the number of patents shows that the increase in the applications of electricity müst also be very great.
For convenience of reference an index has been published, arranged alphabetically, numerically, and by sub-classes of inventions. This index consists of two volumes, the first containing a list of all patents to July, 1882, and an appe dix from July, 1882, to July, 1883.
The exchange of publications with foreign countries, under the international patent system, and the depositing in the different capitols and district courts of such copies, under the seal of the Patent Office, is a means of great service to inventors in cases of litigation.
In the Patent Office inventions are classified into 170 classes and 3,344 sub-classes, and as an item of interest, and to show the great labor in an examination for a patent, a few lines of inventions representing different industries, with the number of patents in each, have been looked up. There are 466 patents for potato diggers, 581 for wheel plows, 218 for cotton planters, 3,151 for fences, 751 for fire escapes, 667 for jewelry, 82 for aerial navigation, 925 for wind wheels, 571 for velocipedes, 2,667 for car couplings, 3,524 for harness, 5,098 for packing and storing vessels, 80 for billiard tables, 330 air and gas engines, 569 gridirons, 414 burglar alarms, 161 apple parers, 1,242 spinning wheels, and 5,047 sewing machines.

The work of the various divisions of the Patent Office is not in so adranced a condition as it was a year ago, when Commissioner Marble reported that with the exception of one or two divisions the work was practically up to date. The large increase in the number of applications for the first three-quarters of the year is probably the cause of the delay in bringing the work up. The largest number of cases on hand is in the division of textiles, which show us a record of 451, while the smallest number is in the division of packing and metal working, which bas only 47.

Frankins.

Matches.

At Jonkoping, Sweden, is the oldent and largest match factory in the world. It.was established 100 years ago, and there are now to be seen specimens of the matches used at the beginning of the present century, consisting of big fagots of wood furnished with a handle and a tip to dip in a bath of sulphur. The wood from which the present kind of matches is made isotaken from the adjacent forests, which are divided into fifty sections. Every year one section is cut and then replanted with young trees. The trees are hewn into planks in the forest and cut into slivers in the factorr. The boxes are made of the outside of the trees. The factories are on the banks of lakes which are connected with one another by wide canals.
Millions of matches are turned out each day. Some idea of where they all go to may be obtained from the statement that there are at least $280,000,000$ of matches burned each day in the United States, or an average of five matches
for each person.

The Advantages of Light Draught for Vessels.
Some years ago, standing on a point in the Bay of Fundy, we saw an Indian paddle a birch canoe up against a fierce rush of the tide, which no six men could have stemmed with an ordinary row boat, but the Indian shot up with case, because him birch went over the water and scarcely at all through it. The fact was suggestive.

When we speak of light draught we refer to vessels whose breadth of beam shall equal nearly three-fourths of their length, with this breadth carried well forward and aft. To the buoyancy resulting from such a form we called attention in our paper of Aug. 18, and that buoyancy will surely promote safety in rough weather. The power of a heavy sea to strain, twist, or crusb a sbip depends absolutely on the power which that sea exerts upon her by reason of resistance power which that sea exerts upon her by reason of resistance
which it meets when it strikes ber. The deeper she is buried which it meets when it strikes her. The deeper she is buried
in the water the more this resistance is increased. The fury of the rushing surface movement is driven violently against her hull, which is held by the relatively less fiercely impelled water of which her deep draught takes hold. This lower stratum, though itself tossed by the storm, is less moved than that above, and it is to just that extent a solid body against which she is forced, and resultantly the less her draught the less there is of resistance and the less of strain.
Another item is the increased stability of the craft consequent on the increased breadth of beam. In passenger carrging vessels this is a matter of no s'nall moment, becanse of the great gain in personal comfort to those who suffer from sea sickness, as is the casc $\tau_{i} i$ th the great majority of persons. But, indepenclently of this, a saving of motion is also a saving of wear aud tear upon the vessel's motion is also a saving of wear aud tear upon the vessel's
frame; and if she is a sailing craft, increased stability gives in addition increased power of carrying sail with safety, and less liability to suffer from violence of wind or sudden changes.
The question of speed is for future consideration. But all these points, which pertain to the vessel berself, are of very small consequence compared to the advantages to be very small consequence compared to the advantages to be
derived from her shallow draught by reason of the facilities for navigation which will be caused by it. Harbors in almost endless numbers will become available for active commercial service, which are now relegated to dependence on small and poor coasters, and imperfectly served at that. As all the world knows, the characteristic of all our Eastern coast, south of Cape Cod, is shallow water ; scarcely a port can be found to which our largest vessels can have free access at all times of the tide, and into by far the greater majority large ships cannot enter at all. Even New York, with its immense and overshadowing commerce, is sadly deficient, and as our ships are now built, the addition of a few feet of permanently clear depth of water at Sandy Hook would count by millions of dollars in added wealth. to the city.
In the whole extent of Long Island Sound, west of New London, not a single harbor exists which can float our seagoing craft. The growth of New Haven within the last twenty years in business importance, admirably extended as it has been, would have been at least twice as great had ber har bor been competent to allow her capitalists to enter the field of foreign commerce.
Sweep on soutbward from Sandy Hook and you find the same state of things existing down the Atlantic, in through the Gulf, along Central America, and even on the Spanish main. And throughout all this extent, besides the obstruction of commerce, what multitudes of vessels are driven on shore, and wrecked because no barbors are under their lee into which they may ran. The harbors are there in abundance, but the depth of water is too small.
If now we can devise any means by which ships of such size as the exigencies of modern commerce demand can be so constructed as to draw a relatively small amount of water and yet be just as thorough craft as now, as ready to keepthe open sea, the world over, a ship of 3,000 tons, for instance, to draw but six or seven feet, we shall have opened new ${ }^{\circ}$ nd wide range for commerce and for navigation.

C. O. Sandford.

Colonel C. O. Sandford, one of the oldest civil engineers in the South, died at Petersburg, Va., Nov. 29, at the age of seventy-three years. He was born iu New York State in 1811, but had lived in Virginia for many years. Under his direction that portion of the Norfolk and Western Railroad running from Petersburg to Lynchburg was built. He also supervised the building of the Augusta (Ga.) Canal, and the railroad running from Chatham, Va., now a part of the Raleigh and Augusta Air Line. In 1856 Colonel Studford was elected Superintendent of the Petersburg and Weldon Railroad, and in 1863 he was elected president of the company, which office he afterward resigned.

A Donble Parachute Flying Machine.

A Wisconsin correspondent, believing that steam must ventually be used for flying machines, suggests that a sufficient lifting hold upon the air to carry a small engine and boiler might be obtained with two parachutes. He would place them one above the other, with valves similar to those in a bird's wing to retard downward motion, while the lifting and propelling power would be obtained from the upper parachute; the lower parachute, from which would be worked a long rudder, also to form a check valve to the upper one, the tilting of the latter to furnish the propelling power.

The Oroya Railroad.
This road was originally intended to connect the Peruvian seacoast with the headwaters of the Amazon and establish communication with the rich silver mines of Cerro de Pasca, but only $861 / 2$ miles have been completed, and the ob: ject is still some bundred miles from attainment. The work already accomplished is by far the most difficult, and during the four and a half years it took to build it many thousands of people lost their lives. The difficulties may be imagined when it is known that forty tunnels occur in as many miles, and the highest elevation is Chicla, about 12,220 feet above sea level. The longest tunnel is 500 feet, and in one place the road zigzags up the mountain for two miles to reach an elevation of 700 feet. In somc' places the traveler can see three lines of road, one above the other. The bridges, in some cases spanning almost fathomless abysses and in others skirting precipices towering to great heights, are built mostly of iron, one of them being 575 feet long and 252 feet high at its center. The road is well built, butin some places is unprotected from land slides. On the up trip the speed averages about three and a half minutes to the mile, but on coming dow n the rate is very rapid, and steam is only used on the brakes.

Deaf-Mutes Increasing.

In a paper read before the National Academy of Sciences, at New Haven, November 13, Prof. A. Graham Bell Eontends that something striking and abnormal is going on among deaf-mutes, something that is tending to create a new variety of the human race. He quoted reports of various asylums and institutions for deaf-mutes, showing that in 82 cases out of 100 deaf-mutes were married to deaf-mutes. These reports did not give the information whether the marriage in each case was between persons congenitally deaf, or between those who had become deaf by disease, or between one of each kind. He believed that those who, being congenitally deaf, married congenitally deaf persons were likely to have deaf-mute children. The professor presented diagrams showing that the probabilities were that those who wefe congenitally deaf bad in almost every instance relatives who were deaf-mutes also. The total number of deaf-mutes in the United States were 34,000 , or one out of every 1,500 .

CORRUGATED BOILER FURNACES

Since the use of steam at high pressure has been put into practice, the economy derived thereby bas been so manifest that it is a clearly marked out departure for the future in all uses of steam. This and the fact that most boiler explosions are caused by the collapse of furnaces have led to the introduction of the corrugated furnace, the manufacture of which, though attempted previously, was never carried into practice owing to the mechanical đifficulties and want of the right material. These obstacles were overcome by Mr. Samson Fox, of Leeds, who, using a high class of Siemens stcel which in every instance is tested by Government inspectors, and must have a tensile strength of about 23 tous per square inch with an elongation of 30 per cent in ten inches, besides a chemical test of the material in the smelting furnace just before it is tapped as to the right proportion of carbon, has brought the manufacture to such a success that the corrugated furnace is universally adopted by all leading engineers. At the Leeds Forge 1,300 men are kept fully busy. The plain plate is welded into a cylindrical form and while hot putinto the corrugating mill. The resulting corrugated cylinder has the following qualities and advantages:
They are made of a single plate of steel, welded along the bottom, and no joint is in contact with the flame. They give 50 per cent more evaporative power, their elasticity enabling them to throw off all scale. Variations of temperature do not have ahurtful influence upon them, and as they contract and expand like an accordion they do not work against the boiler heads. In order to comply with the rules of the Board of Trade in England, they require only one-half the thickness of plate of plain furnaces for equal working pressure. In tests of two furnaces of the same length, diameter, and thickness, the plain collapsed at a pressure of 225 pounds while the corrugated stood 1,020 pounds per square inch. During the past five years some 700 steamers have been fitted with these furnaces, among them being the City of Rome, Alaska, Oregon, Servia, Elbe, Fulda, etc.
These furnaces are now being introduced in this country by Messrs. Hartmann, Le Doux \& Maecker, of 134 Pearl Street, this city, who are the sole agents and assignees of the United States patents. In the engravings Fig. 1 represents the corrugated furnace and Fig. 2 an ordinary marine boiler fitted with the furnaces.

Shanghai is already Cbina's chief commercial emporium, and is destined, it is thought, to become eventually its greatest city.

FOX'S CORRUGATED BOILER FURNACES.

Transforming cheap leathers to imitate the more expen sive grades, by giving them the outward appearance of superior quality, has become an industry of some importance. This is accomplished by a process that is simple, economical, and effective, consisting of two principal operations.
The leather which it is desired to imitate is thoroughly cleaned and carefully coated with graphite, the work being similar to that necessary in preparing a smaller article for electroplating. It is then placed in a copper bath, the tauk of which is large enough to easily receive a skin of any size. A dynamo-electric machine, geuerating a powerful current, furnishes the electricity. The copper is deposited upon the coated surface of the bide to a thickness of from one sixteenth to one-eighth of an inch. The plate thus formed reproduces, but reversed, every mark and minute vein of the leather, so that a print taken from it is an exact copy of the original in every detail.
A hide of cheap leather is laid upon the bed of a machine much resembling the ordinary iron planer. Extending across the bed is a large iron roll journaled at either end in boxes which slide between two vertical standards. Strong screw bolts regulate the distance between the bed and the bottom of the roll. The copper plate is laid upon the leather, and two or three thicknesses of felt cloth placed on the copper. By the aid of long levers the bolts are screwed down until the iron roll bears upon the copper and leather with a pressure of many tons. The bed being moved forward until all the plate has passed under the roll, the hide is removed and is found to have been raised, in looks, to grain leather of the finest grade, or to alligator, as the case may be. The copper plate, being extremely hard, will print many hides. In some instances the plates are engraved, but as this method is more expensive and the reproduction not so faultless, it is but seldom resorted to.

Temperance and Longevity

Mr. H. B. Robinson, at the British Association, has been urging, from the experience of life assurance offices, the value of abstinence from strong drinks as a means of prolonging human life and reducing the premiums for life inlonging human life
surance. He said
" There were several mutual life assurance societies which kept quite separate the statistics of the lives of the general section and of those persons who abstained from strong drinks. At present many difficulties presented themselves in the inquiry, which would no doubt be eliminated in cuture sears , wo mold the United Kingdom Temperance and General Provident Institution, showing that in seventeen years the claims in he temperance section were only a little over 70 per cent of the expectancy, while in the general section they were but slightly below the expectancy. The experience of the Whittington Life Assurance Company was not yet enough to form any exact opinion upon, but the company said that 'teetotalism seems to be favorable to longevity.? The Sceptre Life Association stated that during the eighteen years of their history ended in 1882 they had 116 deaths in their temperance section against 270 expected deaths, and in 1883 the same disproportion prevailed, as they had had 51 deaths, and only seven of them were the lives of abstainers, whereas to be equal with non-abstainers there should have been 19. In the Emperor. Life Assurance office lives in the temperance branch were assured at a less rate than moderate drinkers. In some accidental offices the assumed superior lives of abstainers was recognized by a charge of 20 per cent less to teetotalers than to moderate drinkers.'
Such statements are not new, but they are very interesting. They will bave to be based on a longer and larger experience before any very positive conclusions can be drawn from them; but,taken in connection with the higher premiums exacted of publicans, and their early deaths, they show temperance to great ad vantage. As one of the speakers in the discussion observed, it is difficult to know how the offices guarantee the abstinence of those whom they insure. There is a considerable temptation to fraud in offering a premium of 20 per cent less to teetotalers. We do not in any way wish to imply doubt as to the advantages of the strictest temperance. We re constantly expressing our conviction that many people who regard themselves as moderate drinkers are unconsciously laying the foundation of disease. But we want strict facts on both sides, believing that there is a great amount of drinking due to ignorance, and that there are numbers of persons to be reached by intelligent and moderate statements who cannot be converted by sensational ones.-Lancet.

Chewing gum is now made from wax obtained from petroleum. Two hundred pounds of wax, thirty pounds of sugar, and some flavoring will make about ten thousand penny cakes.

Dangerous Pottery

Having had occasion to examine some common pieces of pottery which were suspected of having led to accidents of lead poisoning, I have been able to demonstrate that a great number of these objects are, despite assertions to the contrary, glazed with lead salt, and that their glazing contains a quantity of lead which is a menace to health, since I was ferment or sour in one of these vessels, the large amount of $0 \cdot 22$ gramme of sulphate of lead.
$0 \cdot 22$ gramme of sulphate of lead.
It is also well known that M. Constantin has discovered a process more economical and entirely harmless, for glazing by means of the borosilicate of lime, aud that chemist, who has been honored by the Academy, has generously given his discovery to the public.
The glazing of fine earthenware, both French and English, has been greatly belped by the addition of boric acid and borate of lime, which permits a large reduction in the amoun of carbonate of lead used, which formerly was considerable These latter vessels give to fermented milk or sou but a small percentage of lead; but, it heing granted that this metal is the most dangerous of the common metals, it is beyond doubt that if these vessels are incapable of producing as acute poisoning as those glazed with lead salt, they never theless can by constant use cause accidents which are so much the more alarming, as the elimination of this poison requires a long time, during which time also small doses can accumulate to dangerous proportions.
In my experiments I noticed that the vessels in which I had at first permitted the milk or soup to ferment brought this fermentation on much more rapidly when I repeated the experiment, even after they had been carefully cleaned. I then thought that perbaps the cracks and chinks which always occur in the glazing of earthenware which has been used for some time had something to do with it. I thought that these small crevices, in spite of repeated washing, retained a certain number of the germs, which started the fer mentation of the new liquids I inclosed in the vessels.
It seems to result from my experiments that the cracks can screen the germs, and from analogy it is quite possible that such vessels, being used for the sick suffering the attacks of contagious diseases, can spread the disease of the patients whose food they contain. The report of M . De Mussy on the epidemics of 1880 mentions the fact that 23 men contracted typhoid fever at the hospital where they had been received for quite different complaints. 1 should not be surprised that the disease was conveyed by just such vessels, etc., under the conditions I bave indicated above. It seems prudent therefore in hospitals not to use the earthen ware, at least for patients with contagious diseases upon them. Glass and porcelain are the only entirely safe materials to use in the sick room. Metal itself presents unevenness, where the germs may settle and remain attached, although washed and cleaned with boiling water.-E. Peyrusson iñ Cosmos Les Mondes.

DOOR SECURER.

A strip of steel is provided at one end with a sharp edged prong, and on the opposite side of the other end is a series of flat strips, shown in Fig. 2, fastened by a pintle, which terminates in a ring. on the side of the plate from which the prong projects. To the ring is fastened a chain or cord, at whose free end is a bolt of such size as to pass through the slots in the strips. The bolt is retained in place by a spring.

leaming's door securer.

By means of the strips the device can be made to fill the space between the free edge of the door and the jamb. The prong is placed against the jamb and the door is closed, thereby forcing the prong into the wood; passing the bolt through the slots secures the door.
This invention has been patented by Mr. Christopher Leaming, and has been assigned to Mr. W. H. Carlson, of Newhall, California, who is the present owner.

French Shoe Dressing.

Vinegar, 2 pints; soft water, 1 pint; glue (fine), 4 ounces; logwood chips, 8 ounces; powdered indigo, 2 drachms; bichromate potass., 4 drachms; gum tragacanth, 4 drachms; glycerine, 4 ounces. Boil, strain, and bottle.

EMERY WHEEL.

The accompanying engraving represents an improved The accompanying engraving represents an improved
emery wheel. for grinding twist drills and other tools, Fig. 1 being a plan view with part of the wheel shown in section, Fig. 2 a sectional elevation of the tool rest, and Fig. 3 showing the way the wheel is used. Two staudards support the two ends of a shaft upon which revolve two -pulleys, kept irplace by collars and set screws, and having the inner ends of their hubs squared to fit into apertures in the centers of two emery wheels. The inner sides of the emery wheels are close together, and the faces are inclined inward at such an angle as will give the required inclination to the edge of the tool. The pulleys are driven in contrary directious. On the forward part of the bed plate is a standard to which is

hinged a lug formed upon the lower side of the tool rest. Upon the upper side of the rest are formed grooves for receiving the tools to be ground, the central groove being intended for tools requiring a conical face, and the others being for tools having an inclined face. The tool to be ground is placed upon the rest, which is then turned upon the hinge to bring the forward part of the tool into proper position against the beveled faces of the emery wheels.
This invention hạs recently been patented by Mr. Francis Lamders, of Stroudsburg, Pa.

How a Union Soldier Made a Fiddle.
It was at the "Brandy Station," Va., in the winter of 1863-64, says the Westfield (Mass.) Times, that George M. Colt, Company C, Second Vermont Volunteers, proposed to make the cheer-giving instrument; and with a hatchet, jack knife, file, and a piece of a junk bottle as his only tools, be cut a piece of maple from a stump that grew on the bank of the Rappahannock River, and set to work. The back and sides of the fiddle are made of one piece-a "regular dug out." The top is of hemlock taken from a box which brought some " goodies " from their friends in "Varmount." The bow is of maple. The keys were made from the horns of some Confederate cattle that fell into our hands and were devoured by our carnivorous soldiery, so that the poor brutes contributed to our mental as yell as physical welfare. The hairs were pulled from the tail of the Colonel's horse, who was fond of music and never raised a foot in resistance. It is said he even signified his willingness to furnish enough of his hoofs for glue, but that was found elsewhere, and the instrument was completed, and in the hands of a modern "Paganini," who rose for the occasion, gave forth its soul-stirring strains. It conjured up "stag dances," serenaded headquarters, and was .admired and cherished by the officers and men of the "Green Mountain Boys." The rest must be left to imagination, as far as its army record is concerned. Suffice it to say, it was "honorably discharged," and has been the hero of several occasions since the war, receiving the first premium at the Vermont State Fair. Rude as is its origin, its tone is remarkably sweet and expressive, especially in the rendering of "Old John Brown" and other airs that were offsprings of the war, which seem to revive in it the memory of the exthe war, which seem to revive in it the memory of the ex-
citing scenes of its early existence. Its maker and owner still lives, though he received wounds after the production of his instrument that have nearly disabled him for active duty.

The Deepest Well in the World.

The McGuigan gas well, the light from which can be plainly seen from the top of Wheeling Hill, is the pioneer gas well of this vicinity. It led to all of the others now making such a turmoil in this valley. It was sunk for oil, not gas, and the great gaseous reservoir was tapped unawares. Just three miles nearer us the Buchanan well. was sunk, and is now the deepest well in the world, having reached 4,300 feet, and is still going down. When a depth of about 3,000 feet was reached the tools broke and were left there, and for
hold of it, and is now vigorously drilling for the greasy fluid. The rope broke in March, and the cable, between 4,000 and 5,000 feet in length, and weighing several tons, parted seven bundred feet from the top, and all efforts to catch hold of it and draw it out with the great iron shaft, or drill, at the lower end failed.
The workmen were then discharged and the public supposed the well abandoned. Superintendent Crocker had no thought of quitting the work. Additional tools were procured, and at a recent date work was resumed. The well, which was dry, was filled with waser to assist in floating the cable, a proper instrument was inserted, and the rope was caught and lifted out. It was supposed that after getting the rope taut a "sucker rod" would have to be sent down. to loosen it from the drill at the bottom, as that was fast and could not be lifted with the weakened rope. Fortunately the rope cut itself off where it was attached to the shaft; and thus saved a great deal of trouble. The next thing to do was to remove the water from the well, and pumping was resorted to, when nearly a barrel of very fine crude oil was obtained. The well is cased to the depth of 1,200 or 1,400 feet, and is dry. When the water is removed, which will be done in a day or two, a "spear" will be sent down after the drill, and no difficulty is anticipated in bringing it to the surface. When this is accomplished, the work of deepening the well will be recommenced. Mr. Crocker states that the machinery he has on the ground will enable him to go 500 feet deerer, and by increasing its power he could go to the depth of 7,000 feet, but he hopes to reach oil in paying quantities at a small additional depth. - Wheeling (\boldsymbol{W}. Va.) Register.

Milk and Infectious Diseases.
The sanitary inspector who investigated an outbreak of typhoid fever in a populous London district traced the epidemic to a dairy farm where the vessels used for milk were washed with water from a well that had been contaminated by the drainage from a cesspool. In the houses of those who worked on the farm there had been cases of the fever, and the theory was that the milk had been infected with disease germs. Wooden pails are used in England for milking, and naturally furnish a better lodgment for germs than the tin pails used in this country.
It is reported that a similar outbreak has occurred at Port Jervis, N. Y., and the milk from a certain farm is supposed to be the spreading cause, since 56 out of the 75 persons attacked were supplied with it. How it became infected is being studied by chemists and sanitarians.
Proper sanitary precautions at all times and extreme vigilance during the prevalence of disease on the farm would banish such outbreaks. Too much care cannot be exercised in the disposal of the excreta from persons suffering from typhoid fever. Under favorable conditions the germs are washed by water, which will carry them along with it; if allowed to dry, they permeate the aiw in both cases endangering health. Burying deep in the earth is not a sure way, since they will not lose their power in years. Burning seems the most reliable method of destroying them.

HAND RAIL FOR STAIRWAYS.

The engraving represents a hand rail consisting of blocks or caps, provided at each bend of the rail, and against which the ends of the rail sections abut, thus doing away with

SIMONSON'S HAND RAIL FOR STAIRWAYS.
posts and curved rails. In open stairways composed of several successive sections the sections of the stair rail are arranged in such a manner that they run out at the same height, the risers of the stairway being arranged accordingly. Between the abutting ends of the rail sections are placed blocks, to which the engs of the rails are secured, the blocks being more or less ornamental. These blocks are supported entirely by the rails which they unite. No part of the hand rail need be twisted, its section is not changed, less material is required, no posts are needed, and the cost of the stairway is much reduced. The engraving shows the construction very clęarly.
This invention has been patented by Mr. Theodore Simonson, whose address is Chicago, Ill.

Brooks as Sewers.

When a natural watercourse traverses a town, and its banks become built upon, the easiest way of getting rid of filth and bouse wastes is to throw them into the stream. Every man's instinctive impulse is to get rid of what annoys him, and not to mind how his neighbor will be affected. After a while, when the watercourse has become sufficiently uasty, the people come to a realizing sense of what they have brought upon themselves, and then they try to devise a remedy. In this they begin usually at the wrong end. They look on the stream as creating the nuisance, and don't consider that it.is their abuse of the stream that is the source of the trouble. So they go to work and cover the stream up and call it a sewer. What is the result? Simply that the stench of the foul matter in the old channel is bottled up somewhat, to be vented through every manhole, every inlet, and every house drain, and probably do more real injury than when the rotting filth was exposed to the air and the sun, and diffused its aroma through the whole atmosphere.
The channel of a small natural stream through a town or village ought never to be converted into a sewer for house wastes. This will strike a good many people as an odd doctrine, but still it is sound doctrine. The functions of a natural stream and of a sewer are so diverse that one canno be made to do duty for the other.
A natural watercourse serves for the drainage of the land all along its course. Its banks cannot be made water tight without olstructing the natural progress of the water in the soil and backing it up and retaining it where it ought not to be retained. A sewer, on the other hand, is intended to carry off foul matters which must be gotten rid of as quickly as possible, and the channel for conveying them must be ab solutely impervious, so that nothing can soak through it to the soil. As the level of the water in the soil rises and falls with the season and the amount of rain, an open jointed or pervious channel would sometimes admit water from the soil and sometimes permit fluids flowing in the channe above the level of the ground water to flow out, and thus pollute the soil and the air in the soil.
Again, a natural stream draining a considerable territory is subject to great variations in its volume. A channel to carry its extreme discharge in floods must be many times larger than can ever be necessary for the carriage of the greatest amount of sewage that can be brought to it. A large channel is not suited to the rapid removal of a smal flow of filthy fluids, and, moreover, costs a great deal more than a sewer of the proper size. Even if the large channel for a fluctuating stream is buritt through a village, the sew age from the houses should not be turned into it, unless the minimum volume of the natural flow in the driest seasons is large enough to keep the channel thoroughly scoured. There are a good many small towns which have for years gotten along without sewers and have arched over natural watercourses running through the heart of the town, but are now impelled by the "sanitary revival" to construct sewers for removing household wastes. The first impulse is to utilize the covered streams to save the expense of constructing a few hundred feet of sewer. They should be very careful how they proceed. It is hetter to spend a little more money and be safe than to economize in first cost and spend ten times the saving in doctor's fees and undertaker's bills.-The Sanitary Engineer.

The Heating Power of Gas.

During the famous electric light scare which occurred some five years ago, holders of gas shares comforted them selves with the reflection that if at an early period electricity was to oust gas from its time-honored place as an illuminant yet a new field was opening in the demand for gaseous fuel for leating, cooking, and power purposes, and that this would probably find employment for all their vested capita
What the practical heating value of gas was, few people could tell, and even to-day little is known except that fo domestic purposes gas is much more expensive than coal. The report issued by the judges at the late Gas Exhibition at Stockport endeavors to supply some information upon this point, and marks an early stage in the scientific investigation of the fuel value of gas for domestic purposes.
In testing cooking apparatus it has hitherto been usual to try them with actual viands, but at Stockport the judge substituted vessels of water for these, noting the rise of tem perature in Centigrade degrees in a given interval, and from this they calculated the units of heat imparted to the supposititious joint in that time. The average result of seve
"gas cookers for workingmen's houses" gave $53 \cdot 1$ units of heat for each cubic foot of gas, the rate of consumption being about 12 feet per hour. In more elaborate stoves the efficiency fell to 43 units per cubic foot. As a means of comparison a boiling apparatus was shown by Messrs. S Leoni \& Co., in which the consumed gases came away nearly cold, and in this each cubic foot of gas gave 262.5 units of heat to the water, and this may be assumed to be the maximum result it is possible to attain. The ordinary stoves for boiling kettles utilized 144 units of heat per foot, thu demonstrating the economical advantage of boiling ove haking.
There were four gas engines entered for competition; two by Messrs. Crossley Brothers, and two of the Bisschop type A six horse power Otto engive, when developing 10.6 indicated horse power, consumed a cubic foot of gas in 0.283 minute, or 212 feet an hour, and the urits of work (1 pound of water raised $1^{\circ} \mathrm{C}$.) done by each cubic foot of gas in the
cylinder were 70.17. A half horse power engine gave 1.8 in dicated horse power and 1.074 brake horse power, the corre sponding units of work being $59 \cdot 35$ and $37 \cdot 48$. The Bisschop eugines developed 0.27 and 0.52 brake horse power respec tively, corresponding to $13 \cdot 20$ and $13 \cdot 96$ units per cubic foot of gas.
The apparatus for warming rooms by radiant heat were not so easy to test, and the judges bad to use an arbitro standard. This they fixed as the number of units of hea transmitted through a blackened surface 1 foot square, sit uated 18 inches from the source of beat. It is evident that the results thus obtained are not comparable with those quoted above, and it would need measurements to be made of coal fires in order to give them any exact value. The modern gas fires are mostly semicircular blocks of fireclay with tufts of asbestos fixed in them, and covered with iron gratings. The average of the results gave 6.9 units of heat absorbed by the testing apparatus per cubic foot of gas, while the consumption was about 13 feet per hour. Metal fires consisting of coils or cones of iron wire gave very poor results, while the asbestos fires formerly in vogue never be came hot enough to radiate much. The medal in this sec tion was awarded to Messrs. John Wright \& Co., Birming ham. Stoves which acted by convection, delivering thei products of combustion out of doors, produced very unsat isfactory effects, the average being 24 units of heat pe cubic foot. For heating purposes what appears tobe wanted is a gas stove which will give a comparatively small mass o intensely heated matter, so that the heat radiated from it may be large
Thus, assuming that the best practical effect which can be obtained from a cubic foot of gas equals 262.5 units of heat, then the best.gas cooking apparatus in the market utilize about 20 per cent of this, the boiling apparatus 55 per cent, the six horse power Otto engine 26.7 per cent, the half horse power Otto engine 22.6 per cent, the Bisschop engines about 5 per cent, the convection heating apparatus less than one per cent, while the efficiency of the radiating apparalus can not be exactly determined, but may be assumed to be over 15 per cent. As the greater part of the coal burnt in our houses is employed for heating purposes only, it is evident that there is here a great tield for inventors; and if they can produce a vividly glowing surface having a very much higher temperature than that of the stoves already in use, here is a prospect of gas fires being maintained at a reason able cost. If the present consumption of fuel could be balved only, the great advantages of absence of dustand smoke, and the saving of labor in carrying coal and asbes, ould in

Sheltered and Unsheltered Pigs.

Experiments made by Prof. E. M. Shelton, of the Kansas State Agricultural College, show that it pays to protect pigs. Ten animals as nearly alike as possible were kept, during the last two winters, in separate pens, five in the basement of a barn and five in the yard without covering save straw
or beds. They were fed with Indian corn twice a day, each ess being carefully weighed. The result was as follows:

Pigs in the barn, 1 lb. of pork cost $4 \frac{\text { ion }}{\text { io }} \mathrm{lb}$. of corn.
Or expressed in other words, each bushel of corn:

Fed in the barn, made 11 ${ }^{\frac{3}{0} \mathrm{~s}} \mathrm{lb}$. of pork.

This shows that of every bushel of corn fed to the unheltered pigs, an amount capable of making $1 \cdot 6$ pounds of pork was used in keeping the pigs warm.
According to these figures, if the sheltered pig gained 100 pounds in weight during the season, it was by the expenditure of 4.9 pounds of corn for each pound of pork, or 490 pounds of corn for the whole increase. The unsbeltered pig required 570 pounds of corn for 100 pounds of pork. This shows a saving of 80 pounds of corn, about $11 / 2$ bushels, in favor of each sheltered pig; but if the pigs are as bealthy in one case as in the other, and the gain is only in he saving of corn, it will hardly amount to the interest on the cost of the shelter and the wear and tear.

A Preminm to American Millers.

Canada has a tariff on American flour of 50 cents a barel, but on wheat the duty is 15 cents a bushel, or about 72 cents on enough wheat with which to make a barrel of flour. In ordinary years this would not attract attention, but, now hat they have a very short wheat crop there, the Dominion Millers' Association claims that this is a distinction in favor of American millers. The Association want the duty equal zed by the Canadian government, and claim that they will be compelled to shut down their mills and import flcur from the United States unless such action is taken. Well, we exported wheat flour to the value of $\$ 33,855,090$ the firs eight months of this year, against $\$ 25,598,235$ for the like period last year, and shall probably have enough to supply our Canadian friends.

Carbolic Acid

From the results of a series of experiments, W. Meyke ar rives at the following conclusions: 1. Pure carbolic acid should`be colorless, have the proper boiling point, and be entirely volatilized by heat. 2. The congealing point is of secondary importance. 3. Carbolic acid is colored red when kept in glass vessels containing lead. 4. The best vessels for keeping carbolic acid are made of tinned sheet iron. - Phar. Zeit. Russl

Peroxide of Lead as an Insulator.

 by m. c. WIDEMANN.Having had occasion for a year to apply, for the decoraon of articles of jewelry, the procedures pointed out by Nobili and Becquerel for obtaining coloration by means of baths of alkaline plumbates and ferrates, I observed that the articles thus colored became absolutely proof against all galvanic action; that is, their surfaces when once coated with peroxide of lead or of iron were insulated, and no longe onducted the electric current. A wire of copper, brass, o even iron, may thus be coated with an insulating layer like stratum of resin or gutta-percha.
This principle, I believe, admits of easy utilization in pre aring wires and cables for use in telephony and telegraphy The method of obtaining this insulating stratum is, from an ndustrial point of view, very practicable, and the cost tri fling. The bardness of this coating, which resists all atmo spheric action, is a guarantee of its durability. The insulaion is absolute.
The nethod of preparation is very simple. A bath of plumbate of potash is prepared by dissolving 10 parts of itharge in 1,000 parts of water, to which bave been added 200 parts of caustic potash, and boiled for about half an bour. It is allowed to setcle, decanted, and is then ready for use The wire to be coated with peroxide of lead is attached to the positive pole, and a small platinum anode to the negative. Finely divided metallic lead is precipitated upon the nega tive pole, and the wire is coated with peroxide of lead, which passes successively through all the colors of the spec trum. The insulation is complete when it takes a brownish black color.

The wire thus covered is perfectly insensible to electric action. Articles perfectly cleaned may be attached to it, and connected with the negative pole of a gilding, silvering, or nickeling bath without the current, however powerful, pro ducing any action upon the objects to be coated. Such a wire, if placed in a circuit, and brought in contact with an other wire in connection with a galvanometer, leaves the latter entirely unaffected.-Comptes Rendus.

The Tallest Trees in the World.

It is usually considered that this epithet belongs, par eat cellence, to the famous "Big Trees" in California, variously known by the names of Wellingtonia or Sequoia. These are however, far surpassed in height, and probably also in the total amount of timber in a single tree, by the real giants of the vegetable kingdom, the noble gum trees of the genus Eucalyptus, which grow in the Victorian State Forest, on the slopes of the mountains dividing Gipps Land from the rest of the colony of Victoria, and also in the mountain ranges north of Cape Otway, the first land which is usually 'made" by any vessel bound from England for Melbourne direct. As will presently be shown, there are only four of the Californian treees known to be above 300 feet bigh, the tallest being 325 feet, and only about sixty have been measured that exceed 200 feet in height.
In the large tracts near the sources of the Watts River, however (a northern branch of Yarra-yarra, at the mouth of which Melbourne is built), all the trees average from 250 to 300 feet in height, mostly straight as an arrow, and with very few branches. Many fallen trees measure 350 feet in length, and one huge specimen was discovered lately which was found, by actual measurement with a tape, to be 435 feet long from its roots to where the trunk had been broken off by the fall; and at that point it was 3 feet in diameter, so that the entire tree could not bave been less than 500 feet in total height. It was 18 feet in diameter at 5 feet from the ground, and was a Eucalyptus of either of the species E. oblique or E. amygdalina. It should be noted that these gigantic trees do not, like their California prototypes grow in small and isolated groves, towering above smalle specimens of the same or of closely allied kinds, but that both in the Dandenong and Otway ranges, nearly every tree in the forest, over a large area, is on this enormous scale. World of Wonders.

Plating Metals with Aluminum.

In a certain sense, says Winkler, it is possible to plate other metals with aluminum, but, unfortuuately, the product is useless, because aluminum is unable to endure the necessary heating nearly to fusion of the two metals and subsequent robling out. Very slight contaminations seriously affect the quality of aluminum in tenacity, ductility, and strength. A moderate quantity of iron renders the metal quite brittle, a small per cent of copper makes it as brittle as glass. But in plating any metal there must of course be a layer between the two metals which consists of this alloy with all its bad qualities and want of tenacity, which is crushed to a powder under the rolls. The result is that the aluminum cracks off from the other metal. But even if it were possible to put a thin film of aluminum upon any metal by rolling, it seems questionable whether anything would be accomplished thereby. For although aluminum, when in a compact mass, offers a great resistance to oxidation and sulphur, it is not so in a thin state. In powder or thin foil it oxidizes easily, and the amalgam becomes heated in the air, and separates into mercury and aluminum if rubbed between the fingers.
lf we suppose, for example, that copper is plated with aluminum and rolled out in sheets, the layer of the latter would soon be made very thin, and it is probable that a metal, otherwise so permanent, would lose its durability when so thin. - Industrie-bbatter

Cunxerymaimer.

The Ariberg Tunnel.

To the Editor of the Scientific American:
In the Scientific American of June 2, I find an article headed "The Arlberg Tunnel," which gives a short description of the installations on both sides of the mountain. You give as a source the Revue Generale des Chemins de Fer. Allow me to state that the statements given by that paper are not quite correct, for all the plans on the west side of the not quite correct, for all the plans on the west side of the
tunnel were made by Sulzer Brothers, of Winterthur, and tunnel were made by Sulzer Brothers, of Winterthur, and
the perforators used on that side were of the Brandt system the perforators used on that side were of the Brandt system
(pateuted in the Uuited States also), actuated by bydraulic pressure and being of the turning (boring) and not of the percussion type. The system was in.use at the Pfaffensprung tunnel of the St. Gothard line.

Herman Zollikoffer.
Winterthur, Switzerland, Sept. 13, 1883.

Changing the Track of Tornadoes.

To the Editor of the Scientific American:
For the above purpose I propose the following: Take one keg or barrel of common riffe or cannon powder to the limit of your city or town where it is approached by a tornado. Fix to it an artillery priming tube, haviug a string to it about 100 yards long. Take your position at the end of the string, holding it taut. Wait till the tornado seems to be precisely over the powder, then fire the powder by pulling the string, and if the charge is large enough, that gyrating, whirling tornado will be effectually blasted out of existence at least, made barmless till blown beyond your town, where perbaps it will reform itself.

John F. Schultz.

New York City, 1883.

White Fillings.

A dentist wishes.to know the formula for the white cement used for filling decayed teeth, which contains neither mercury nor silver in its composition.
There are several white fillings in use by dental surgeons which contain neither mercury nor silver. They are made by mixing oxide of zinc with impalpable glass powder in small proportion, and just before using, when the cavity of the tooth is prepared, a small quantity of deliquesced chloride of zinc is placed on a glass slab, and enough powder added to make a thick paste, mixed rapidly. It "sets" very quickly, and forms a good temporary stopping. It is slightly irritating to the " nerve" of a tooth, and should not be inserted directly in a cavity in which caries has far advanced without placing a little solution of gutta-percba in chloroform over the region of the pulp. But a less irritating filling, according to the London Lancet, is made by mixing filling, according to the London Lancet, is made by mix-
ing the same powder of oxide of zinc with pyrophosphoric acid; this is a more permanent white stopping.

Varnishes made with Boråx.

It is well known that shellac dissolves in borax solution, and this solution is often utilized for various purposes, both as varnish and cement. The following are the proportions employed: Ten parts of borax, thirty parts of coarsely pulverized shellac, and two hundred of water. It is dissolved by warming on a steam bath for a few hours. When cold it may be filtered. To make it more pliable add a few drops of glycerine. It may be given various colors by introducing soluble pigments: for black it is recommended to use soluble nigrosine; red varnishes are obtained hy adding eosine or fuchsine; for blue, either methyline blue, alkali blue, or marine blue; for green, use malachite green or brilliant green; and for violet, methyl violet.
The black borax varnish colored with logwood, etc., is used for polishing ladies' boots and shoes, being cheaper than alcoholic varnishes.
Borax varnish can be employed for dry-plate photographic negatives, as it may be flowed on while wet.

Can Chemists Help the Planters in Improving the

 Sugar Manufacture?We are in receipt of an earnest appeal from a West India cane planter and sugar manufacturer for the help of American chemists in improving on the present methods of making sugar from the cane. He asks: "Cannot the chemist, with the aid of non-injurious chemicals, assist us to improve on present methods for the clarification of raw and cold cane juice, and so that it can be doue without the uid of fire heat?" He suggesis that the subject is of sufficient importance to our $\rho \mathbf{y}$ n Southern planters to make it an object for them to call for a general consultation of our chemists in regard to the matter.

A VERY complete catalogue of American machinery and tools has recently been issued by Messrs. Charles Churchill \& Co., of 21 Cross Street, Finsbuyy, London, whose aim is to place on the English market the best standards of American implements. It is impossible to begin to enumerate the various specialties in regard to which the catalogue undertakes to enlighten British man.ufacturers, but the fact that an elaborate volume of this kind is required by foreigners, who, less than a generation ago, scouted the idea of American producers competing with them, affords the best possible indication of the lead which our mechanics and artisans are now taking in the world's industries.

The most beautiful colored sheet glass is made by the French and Belgian manufacturers, such as sheets composed of two layers or coats of glass, white and colored, and in some instances sheets made of white glass and covered over with as many as four different layers of colored glass, put on very thin and equal in thickness on the whole of the surface. For the coloration of this glass, as for all colored glass in general, the oxides of the different metals are used. For blues the oxide of cobalt, or zaffer. For the different slades of blue, different proportions of cobalt. For a very light shade of blue for spectacles, a mixture of cobalt and red oxide of iron. London smoke is obtained by a mixture of the oxides of copper, iron, and manganese. A
black is produced by increasing the proportions of these three oxides. Purple glass has for coloring element oxide of manganese. A glass so colored and made with soda gives a purple shade, edging on the red, while a potash glass will give a bluish purple. This color is made of a deeper blue by the addition of cobalt. The brown purple is made with a mixture of oxide of manganese and oxide of iron. The purple of the ancients can be perfectly imitated with a mixture of oxide of manganese and red oxide of iron.
Yellow.-A mixture of oxides of iron and manganese is used. To get this color with more facility charcoal in the shape of wood sawdust is substituted. By increasing the quantity of sawdust an orange color is produced; with still larger proportions it may turn to brown and sometimes even red or black. All books state that antimony gives a yellow coloration to glass, but it would seem that this is erroneous, for pure antimony does not color glass at all. The sulphur contained in the antimony is supposed to be the coloring agent. Glass is also tinted yellow by applying to its surface a mixture of ocher and sulphate of silver, and baking it in an oven.
Green.-For grass green a mixture of black oxide of copper and oxide of iron is used. The same color may be obtained by replacing a part of these oxides \%y one-third of their weight of bichromate of potash. By using these substances and adding an oxide of cobalt a blue green is obtained. Yellow oxide of uranium added to the oxides of iron and copper gives a yellow green.
Red or Ruby.-This color is always used as a coating upon white glass, and is obtained with the brown oxide of copper, the oxides of lead and tin, scales of iron, and borax introduced into the batch and melted. The glass when melted is dipped out with a spoon and broken or ground; brown oxide of copper, oxide of lead, oxide of tin, and borax ar again added and melted anew. The color of this glass is not developed until it has been repeatedly heated; in cool ing it becomes perceptible. This glass requires particular
care in its preparation and blowing, and but little of it is made successfully in this country.
Opal.-This glass is produced by adding calcined bones to the metal or batch; it is much used for gas and lamp globes, clock dials, etc. Pure cryolite has also been used for the manufacture of opal glass, and a factory was started a few years ago in Philadelphia to make this glass, under the name of hot cast porcelain. The name was unfortunate as the glass was not cast, but was pressed and blown. This misnomer, with other reasons-the principal one, perhaps, there being no economy in the use of cryolite-carried the establishment under. Our manufacturers, however, still
continue to use it with good effect, but principally in the making of hollow ware. The Philadelphia factory used the following ingredients:

The dirty, discolored oxide answers very well for this pur pose. Fluorspar has also been employed for making opal glass.-Glassware Reporter.

Care of the Teeth.-Duty of Dentists.

There is, perhaps, as much oversight or neglect by the average dentist, in the matter of the cleansing teeth, in the
ordinary cases that come to his care, as in any other particular ordinary cases that come to his care, as in any other particular
in practice. How often is it that teeth that have been recently filled will exhibit upon their surfaces more or less of foreign matter, usually salivary calculus? This is sometimes removed from the exposed surfaces, while it is permitted to remain in considerable quantities beneath the margin of the gums.
When the care of a set of teeth and the mouth is committed to the dentist, the first step, so far as treatment and manipulation is concerned, is to render all the teeth thoroughly clean, removing every particle of foreign matter, and polishing the surfaces as perfectly as possible; giving particular attention to all rough and abraded piaces. The gums should be rendered healthy and freed from all irritants. In proper and systemafic treatment this should wrecede be necessary that all go on together, but the rule will be necessary that all go on together, but the rule
should be that thorough cleansing precede the operation of filling.

Cleaning the teeth and making the mouth healthy is as important as, and, indeed, more so in some respects than, the operation of filling decayed teeth.
A writer in the Dental Register says: If the profession could feel the full importance of this, better success would attend the operation of filling.
ition of the mouth in respect to health and purity, and. simply fills teeth, irrespective of
these conditions, does both himself and patient great these conditions, does both himself and patient great
injustice. - Such operations, however well performed, are far less efficient than they would be, if the mouth were kept clean and free from disease. Nor is it enough that the mouth be made bealthy and pure, but it must be kept so, if the work of the dentist is to be of permanent service. And in order that this good condition of the mouth be maintained the patient should bave a clear understanding of its importance, and of the means by which it is accomplished, and be made to feel that it is mainly dependent upon himself. It is the duty of the dentist, not only to fully impress this fact upon the mind of his patient, but also to give him all needed information as to the means to be used.
In order that the mouth be kept in proper condition, it should be examined thoroughly, once in from four to twelve months; with some as often as every four months; with thers once in twelve months will suffice. The dentist who has the best interest of his patients at heart, and a just appreciation of his own reputation, cannot afford to dismiss bem indefinitely, or until the patient finds something breaking down, or is admonished by the pain of some active disease.
It is very often that quite faulty fillings in mouths, kept healthy and clean, seem entirely to arrest decay of the reeth in which they are; while in mouths that are neglected, mpure and diseased, the most perfect fillings utterly fail to ave the teeth for any considerable time.
Were dentists as careful in this matter as they ought to be, there would be far less of failure in operating upon the natural teeth than is at present realized; and the appreciation of the service of the dentist would be much greater, and his reputation of a higher order than at present, a result to be greatly desired.

Progress of Sorghum Sugar Manufacture。

The Champaign Sugar Works, Cbampaign, Ill., were the first large sorghum sugar works ever started in the United States. They have ground the cane this season raised on about 1,000 acres of land, and the result is a perfect success in the way of making a first class quality of sugar that poarizes 97 degrees, and much sweeter than sugar made from cane or beet roots. For years experiments have been made to find out some way to change sorghum sirup into sugar. The attempt was unsuccessful up to last year, when the State of Illinois offered a bounty to any one who would succeed in granulating the sirup into sugar. Experiments made at the State University of Illinois, in Champaign, by Professors Weber and Scovell, succeeded in accomplishing the result. A ready sale is found for all the sugar and sirup made, and the success here will cause a large number of sugar works to be erected all over tie West, for sorghum cane will grow where corn can be raised, and where farmers can make $\$ 15$ an acre in raising corn they can realize $\$ 30$ an acre in raising sorghum cane to sell to these factories.
The result of this discovery is likely to make as great a change in this country as the making of beet sugar has in Europe, where to-day two-thirds of all the sugar in the world is made. Out of a total production of three million tons, France, Belgium, and Germany produce two million tons. The Ubampaign Sugar Works have introduced all the modern improvements. The machinery, boiler, and vacuum pans were made by the Atlantic Works in Brooklyn, N. Y. They use both the Weston and Hepworth centrifugals. The sugar cane trash called "bagasse" is carried on conductors directly from the grinding mill and dropped into the furaaces in its green, wet state. The boilers are set with the Jarvis patent furnace, and hot air is discbarged directly over the fires, igniting the gases generated by the burning fuel. The intense heat made by joining the gases with hot air is said to cause the green crushed cane or bagasse to burn very well, on something the same principle as tanners burn their wet bark from the leaches.
The Jarvis furnace is now in successful operation in the islands of Cuba and Santo Domingo, Guatemala, and the Sandwich Islands. In the West Indies the bagasse has to be dried on the "batey." before using. With free labor this is a costly job; aud as the slaves are being gradually emancipated, every possible means will have to be used to burn the bagasse without drying. In the United States, at New Orleans and the West much of this material has heretofare been thrown away, and coal or wood used for fuel, because, although the wet bagasse could be burned, but few of the sugar manufacturers would use the improved furnaces necessary.

A Steamer Struck by Lightning.

Some months ago, when entering the Bay, the Pacific Steam Navigation Company's steamship Colombia was struck by lightning. The vessel was not injured, as the conductor on the foremast conveyed the flash into the sea, but the forward part of the vessel was so powerfully magnetized by the current that alterations have to be effected. When running on certain courses the compasses are untrustworthy, and the movement of the wheel is sufficient to deflect them. Capt Bass, who is now in command of the Colombia, believes the steering chains and the wheels they travel on have been magnetized by the electric current, and when the vesse reaches Callao they will be changed. The magnets on board were all demagnetized and reduced to the condition of ordinary iron. The circumstance is rare, if not entirely new, and will attract the attention of seamen.-Panama new, and will a
Star and Herald.

movecns bell for the transmission of signals

 ON RAILROADS.At the Munich Exhibition of Electricity the exhibit of the General Direction of the Railroads of the Kingdom of Bavaria consisted of three stations-two terminal and one in-termediate-containing various telegraphic apparatus, Siemevs' bells with optical signal, a semaphore with maneuvering device, and a bell, likewise of the Siemens type, utilized for sending, from a point situated between two neighboring stations, telegraphic despatches in Morse characters, or demands for aid. The stations corresponded with each other by means of two Morse apparatus-one of them of the usual style and the other of the Frischen model. The first of these operated by continuous currents, and was provided with a Witwer call bell, so arranged that thestation with which it was desired to correspond might be called without bringing in any of the bells placed in the general circuit.
To effect this the bell of each station is, in its norma state, outside of the circuit, and can only enter it when the needle indica tor, actuated by a clock work movement, is in the definite position that corresponds with an order number. When it becomes necessary to call an intermediate station, the indicators of all the stations of a line are set in motion simultaneously by the sta tion that desires to call; and, as soon as the needle bas reached the order num ber corresponding with the station that is to an wer, a simple maneuve of the Morse manipulator actuates the bell. The principle of thisoapparatus is based upon the graduated resistante of electro magnets in which a contiruous current is circulat ing.
The second Morse apparatus is chiefly utilized for exchanging commumioa tions with the large bells installed on the open way In ordiuary times this apparatus is out of the line that connects two stations, and is interposed moment arily by means of a commutator set in motion by a pedal arranged under the table that supports the apparatus.
The call bells, which are placed upon the tele graphic tables of each of fice, are provided with a small disk, which, by mating its appearance outside of the box, indicates the point whence the call emanated.
As these bells are alone interposed in the circuit, the agent must, in order to answer the call from a neighboring office, bring he Morse apparatus into the general circuit by means of a pedal commu tator.
The large bells installed along the open way are likewise interposed in the general line. In order to transmit ${ }^{\bullet}$ signals or telegrams from any station to terminus, it suffices to produce interruptions, by means of a manipulator,
in the permanent current circulating in the line. These same bells may be actuated from the stations by a powerful magnetic inductor, and are consequently so regulated that they cannot operate under the action of the continuous current of the line. These apparatus consist of a clock work movement that actuates two hammers, which strike five double blows upon two concentric gongs of different tones. The number of series gives exactly the nature of the signals and the direction in which the train is moving. A series of five double strokes indicates that the train is running in one direction, and 1 wo series of strokes that it is running in the opposite direction.
The magnetic inductor that serves for actuating the bells is provided, for each direction, with a sorit of Morse key which permits of directing the current n one direction or the other. To control the signals transmitted by the large bells, there is interposed in the circuit, in one part or
another of a station, a registering apparatus consisting of a clockwork movement, which, at every ungearing, acts upon a band of paper and a stylus. As each series of strokes is inscribed upon the paper through an aperture, it is easy to verify the order and signification of the signals. Finally, at each station there are arranged, for the public as well as for the agents of the road, small bells that repeat the signals ransmitted by the large ones.
We have seen above that the bells installed along the open way permitted of transmitting signals or telegrams to the neighboring stations. To effect this the bell carries in the center, and in front of the mechanism, a Morse manipulator, which is placed in the circuit of the permanent current that is traversing the apparatus. When, on the contrary, it is a question of sending signals that have been agreed upon, copper disks are used, these being arranged under the mechanism, and carrying upon their periphery,
in Morse characters, such phrases as "Way obstructed,"

SIEMENS' ELECTRICAL GONG FOR RAILWAYS.

Finally, in addition to the apparatus just mentioned, the avarian railroads employ a type of semaphore which can e maneuvered only by order of the stations; such order being given the guard by a bell actuated by an inductor. The maneuvering of the semaphore arm is controlled by a signal which appears at the station in a small box provided with a circular aperture.-La Lumière Electrique.

The Canal from St. Petersburg to Cronstadt

The means of communication between St. Peteisburg and Cronstadt are a matter of extreme importance to Russian commerce, since all goods from the interior of the empire intended for exportation are brought to the capital during the fine season, by rail and canal, transshipped into special barges, conveyed by the present narrow canal to Cronstadt and there reshipped for sea transport. The converse is the case with imported goods for the north of Russia, and much expense and delay is the result. Communication is at pres ent carried on, says Engi neering, by means of a narrow and sinuous canal, which crosses the vast delta of the Neva Its depth is variable, the minimum being 9 feet 6 inches, and it is of course injuriously affected by the floods to which the basin of the Neva is so liable when the river is fuil, and a strong westerly or north westerly wind blows back its waters. It was there fore decided to construct another and larger canal in a new line, instead of attempting to enlarge the old one; aud in the year 1876 the works were com menced, and are now about iwo-thirds com plete. The canal start from the mouth of the Neva, where it will open into a large basin, and proceeds southward for nearly two miles. In this part of its course it wil have a navigable widıh of 207 feet, and will b carefully embanked Taking a wide curve, it will then join the cana which goes direct to Cron stadt; and from the same point a branch will pro ceed to meet the Neva above St. Petersburg. It will have a uniform denth of 22 feet. The soil is easy to work, consisting almost entirely of clay, sand, and gravel, and a total quantity of 47,737 , 000 cubic yards of ballas has been extracted, being about two thirds of the whole. The remainder will be excavated by the end of next year. This material has been used in constructing the exteusive embankments required The foundations of the embankments were laid with a double row of tim ber pontoons filled with gravel; their internal faces were then covered with planking, and plastered with clay. The space thus formed and lined was filled with liquid mud by Burt and Freeman's mud pumping apparatus, and
"Relief engine," etc. Upon fixing one of these disks upon the prolonged axle of the principal wheel of the mechanism, and the bell being set in motion, the disk makes a complete revolution, and, during this, its teeth raise a spring which interrupts or sets up the circuit alternately. As the signal is repeated several times, the first interruption of the cur rent ungears the bell at the neighboring station, and the employe, being thus notified, interposes his Morse receiver in the circuit by means of the pedal commutator that we have just mentioned. As soon as he has received the signal upon the band, be sends, by means of the inductor, four series of bell-strokes, which indicate to the guard that his request is understood.

T, ben the service requires a longer telegraphic correspond nce along the open way, a portable Morse apparatus is used, this being inclosed in a special box at the stations and connected by two wires with the general line.
the contained water was
allowed to escape by openings provided for the purpose. The sloping sides of the dike are protected only by unmortared masonry, resting ou a bed of ballast. No provision has been made against saud. The dredgers employed were all Eng ish, except two small ones made at St. Petersburg, and one in Belgium; they number altogether ten, and are capable of excavating a total of 188,354 cubic yards in ten hours' work Eighty-six barges and lighters are also in use, capable of transporting 153,038 cubic yards; twelve tugs, of a total force of 600 horse power; one steamboat and two steam launches, for purposes of inspection; two floating dredgers one Gabert excavator, and seven locomotives with a centrifugal Neut and Dumont exbausting pump. Any deficiencies in this plant are supplied by hiring.

Ground has been broken at Crystal Park, Col., for a rail road to the top of Pike's Peak, 14,200 feet above sea level.

USEFU.C FURNITURE BY SHERATON
These designs, executed entirely from the drawings of Sheraton, besides illustrating some exceedingly useful pieces of everyday furniture, exhibit a practical type of work which has a special character of its own; and not only so, but each example seems to answer its purpose full without any endeavor after display or peculiar fancy. The corner cabinet washstand here drawn, although elegant in its outlines, is simply a useful cabinet, well adapted to a office or study, and without protruding its precise purpose, which in such a case is a distinct advantage, admirably fulfills its intentions. The water supply is drawn from a lead lined cistern, and after use is received by a movable vessel contained in the lower chamber. Its top is adapted for the display of a vase or sculptured bust.
The combination steps and reference desk for a library were executed to the order of Mr. Campbell, Upholsterer to the Privce of Wales, and were first made for King George III., who is said to have used and highly approved of them. The whole thing is made to fold at once into the table to which it is attached. The size of the table is 3 feet 10 inches long by 2 feet 9 inches high, and 2 feet 1 inch in width. When the steps are out they rise 33 inches above the top of the table frame, and the total height of the last step is 5 feet 5 inches from the ground. The hand-rail is 3 eet 1 inch above the last step, and the desk, or book rest, is constructed of iron, made to stand so firmly that a book may be referred to or a passage copied without obliging the user to descend into the room.
scratching the table top, their feet are shod with felt shoes or wads. The length of the table is 3 feet 6 inches by 22 inches wide. It is 30 inches high, and the steps, in total height, measure 5 feet. At the time these pieces of furniture were made (1793) they were protected under a patent.
Another piece of library furniture is the writing cabinet and secretary, so contrived to be used either sitting down or in a standing posture. The secretary drawer is adjusted for the first position, and is provided with a series of useful pigeon holes and drawers. Being intended for the use of an architect, the lower body of the piece is fitted with deep drawers for drawing papers and plans together, with teesquares and straight edges. The table top is specially conrived for drawing purposes, while the semicircular ends extending beyond the rising desk afford suitable space for drawing instruments and color boxes; two drawers occur below these shelves, and give ready accommodation for materials not in use; below these - at either end are more drawers with four cuphoards, all being triangular on plan, but nevertheless very useful for upright articles. Beyond the paper drawers on the reverse side are a series of bookshelves completing a combination of utility seldom found n one piece of furniture. The piece is made in two parts, the joint being at the secretary slide level.
Below this cabinet we figure an elegant table, said to be "found highly useful to such as draw." It was designed by Sheraton for hiṣ own fancy use, but perhaps is more suitable for drawing-room purposes than for

The Chinch Bug in New York State.

Prof. J. A. Lintner, State Entomologist of New York, has been interviewed at length in the Albany Argus, of. Oct. 10, on the subject of chinch bug injuries in northern New York. It appears that its destructive work was first discovered in June, 1882, by Mr. H. C. King, of Hammond, St. Lawrence County, and that the destruction has increased the present year, though confined to grasses. In this interview, in a communication to Science, of Oct. 19, and in a circular issued from the office of the State Entomologist, Oct. 18, Mr. Lintrer draws attention to the rarity of the chinch bug in the State of New York heretofore, and to its persistent injury in St. Lawrence County, notwithstanding the past wet season, and finds in these facts reason for the greatest alarm on the supposition that this manifestation is due to an invasion and that the insect shows exceptional power of withstanding constant rains, which are well known to prove disastrous to it in the Mississippi Valley. We have not been able to read over these accounts without feeling that an undue a mount of alarm is felt. Since the chinch bug was known to occur in New York in the time of Harris and Fitch, and is found further north both on the Atlantic seaboard and in the Northwest, we see no reason for considering that St. Lawrence County has been invaded from other parts, but should rather attribute the recent injury to undue increase of a species always there, albeit not generally noticed, and heretofore unrecorded. This increase may, in fact, be due to the excessively dry weather that characteriz-

USEFUL AND UNIQUE FURNITURE BY SHERATON.

To fold up the steps the following method has to be the hard everyday work of a designer. A diagram section adopted : Unlock the book bracket, which is fixed by a catch at the end of the handrail, turn the flap over to the inside, and the whole comes forward and lies level upon the uppef steps. The longer standard may then be lifted out of its socket, and, having a joint at its upper end, turns up level with the liandrail. The short standard is then, by relieving a spring, pressed down below the edge of the table top, and the handrail with the long standard having been folded together as described, they both rest on an iron socket fastened to the front edge of the upper steps, as shown. The supporting. frame, or horse, is then folded by the side of the upper steps, when they and the whole contrivance fall down within the table frame. The lower set of steps can now be turned up to a horizontal position, and being hinged to a slider which runs in a groove, slips in as a drawer, and is inclosed by the flap, which turns up and appears as the front of a drawer. When the steps are not in use, the table is furnished with a desk for writing purposes.
A similar, but more simple, arrangement of steps is shown in combination with a Pembroke table. Here the upper flight turns down upon the under one; both flights then rise up and slide into the drawer space, being inclosed, as before, with a fall down drawer fronted flap. The post and handstandards are binged, and so fold up by the side of the top steps, while, in order to prevent the legs of the horse from
the hard everyday work of a designer. A diagram section
shows how the upper portion is regulated and adjusted by a double horse, and besides this contrivance, for model drawing or when studies are made from nature, a flap bracket is provided with much ingenuity on the upper edge of the drawing desk, so that any object, such as a vase or flower-pot, may stand level. The sliders at either end afford accommodation for drawing instruments, candle or lamp, etc. The long draw is deep and broad enough for Whatman's sheets of drawing paper, and the side drawers, forming the "knee-hole," are fitted up for colors.
The bidet dressing table at once bespeaks its several useful purposes, with its sunk water-bottles, sliding up lookingglass, folding flaps, and useful cupboard; while the same remark equally applies to the night table basin stand, also illustrated. Both are practical pieces of funiture inteuded for emergencies as well as for daily use, and, without any claim of beauty, perform their purposes in a modest and unaffected manner, which is more than can often be said of recent specimens of their kind. The Gouty stool, if not sc much needed nowadays as in the port wine drinking times of George III., is certainly not a disused or unnecessary article. The upper part is furnished with a stuffed squab, covered with horsehair, and its level or inclination can be adjusted to almost any angle to suit the wants of the patient, while the whole thing stands well, square and firm.-Building Nevos, London.
not having yet produced an injurious effect upon it. In this view of the matter, which seems to be the most reasonable, the outlook is rather encouraging than alarming, and we fully expect to see this view corroborated by subsequent events, i. e., the pest will sink back to its state of harmlessness next year and probably perish in immense numbers during the coming winter. We would not, however, by any means have the farmers relent from the measures recommended by Mr. Lintner in the circular already alluded to, though he can scarcely expect them to carry out his advice without some obligatory law or some compensation rom the State.-C. V. Riley.

How to Examine Water for Urea.

Into a tube 60 to 80 centimeters in length and 15 milli meters in width, and closed at one end, M. Balland pours few c. c. of a solution of sodium hypobromite. He fills it up completely with the water to be examined, applies the thumb to the surface so as not to admit any air, inverts the tube, and places it in a large glass containing mercury. If urea is present, small bubbles of nitrogen gradually rise in the tube, and collect at the upper (closed) end.

THE largest locomotive ever built is now being made in Sacramento by the Central Pacific Railroad. The engine and tender will weigh 105 tons, and will be 65 feet 5 inches long.

History of the Alphabet.
How many of the millions that daily use the alphabet everstop to think of its origin and long history? In the true spirit of a student, Isaac Taylor, a well known English writer on philosophical and philological subjects, has recently written aud published, in London, two stout volumes under the title: "The Alphabet, an Account of the Origin and Development of Letters." It is only by help of recent discoveries of early inscriptions and the progress in the art of reading lost languages and deciphering bitherto the art of reading lost languages and deciphering hitherto
unknown symbols, that such a well posted history has unknown symbols, that such a well posted history has
become possible. By careful study of the learned essays and scientific investigations of the latest philologists, Taylor bas set forth in language within easy comprehension the origin of the alphabet, showing that our own "Roman" letters may be followed back to their.very beginning, some twenty or more centuries ago, as he asserts. We have no better letters, according to this account, than those of the better letters, according to this account, than those of the
Italian printers of the fifteenth century. These were imiItalian printers of the fifteentl century. These were imi-
tated from the beautiful manuscripts of the tenth and eleventh centuries, the lettering of these being derived from the Roman of the Augustan age. The Roman letters, in turn, are traced to those employed at Rome in the third century B. C., and these do not differ greatly from forms used in the earliest existing specimens of Latin writing, dating from the fifth century B. C. This primitive alphabet of Rome was derived from a local form of the Greek alphabet, in use about the sixth century B. C., and that was a variety of the earliest Greek alphabet belonging to the eighth, or even the ninth century B. C. The Greeks got their letters from the Pbænicians, and theirs are clearly traceable in the most ancient kuown form of the Semitic.
The most ancient of books, a papyrus found at Thebes, and now preserved in the French National Library, supplies the earliest forms of the letters used in the Semitic alphabet, the eariest forms of the letters used in the Semitic alphabet,
The Stone Tables of the Law could have. peen possible to the Jews only because of their possession of an alphabet, and thus the Bible and modern philological science unite in ascribing a common origin to the alphabet 0 which is in daily use throughout the world. The nineteenth century B. C. is beld by Taylor to be the approximate date of the origin of alphabetic writing, and from that time it grew by slow degrees, while from Egypt, the home of the Jews dur. slow degrees, while from Egypt, the home of the Jews dur-
ing their long captivity, the knowledge of. the alphabet was ing their long captivity, the knowledge of the alphabet
The Aryans are thought to have been the first to bring the primitive alphabet to perfection, and each letter and. each sound may be traced, by Taylor's-careful analysis, through all the changes that have marked the growth, progress, and, in some instances, the decay of different letters of various alphabets. It is an interesting fact that the oldest known "A A B C" in existence is a child's alphabet, oldest known "A B C" in existence is a child's alphabet,
scratcled on a little iṇk bottle of black ware, found in one scratclued on a little ink bottlee of black ware, found in one
of the oldest Greek settlements in Italy, attributed to the firth century B. C. The earliest letters and many later ones are known only by inscriptions, and it is the rapid increase, by recent discoveries, of these precious fragments that has inspired more diligent research and quickened the zeal of learned students in mastering the elements of knowledge of their origin and history throughout the world. As late as 1876 there were found in Cyprus some bronze plates in1876 there were found in Cyprus some bronze plates in-
scribed with Pbonician characters, dating back to the tenth, even the eleventh, century B. C. Each epoch bas its. fragments, and the industry of English explorers, the perseverance of German students, and the genius of French scholars have all contributed to group them in their chronological order. Coins, engraved gems, inscribed statues, and, last of all, the Siloam inscription, found in 1880 at Jerusalem, on the wall of an old tunnel, bave supplied new material for the history. From the common mother of many alphabets, the Phenician, are descended the Greek and other European systems on the one side, including that which we use and have the greatest interest in ; and on the other, the alphabets of Asia, from which have sprung those of the East, Syriac, Arabic, and Hebrew.-Phil. Ledger.

Canals at Halifax and Minneapolis.

At a recent meeting in this city of the American Society of Civil Engineers, a paper by S. H. Keating, C.E., upon the "Shubenacadie Canal" was read.
This caual is located between the city of Halifax, Nova Scotia, and the Basin of Mines, an arm of the Bay of Fundy. It was commeuced in 1826, and the intention was to build it so as to accommodate vessels drawing 8 feet of water, with the idea that at comparatively small additional expense it could be used by vessels drawing 11 feet. It was to have 15 locks, 87 feet in length and $221 / 2$ feet in width, with a lockage ascending from Halifax of 95 feet 10 inches, and descending to the Bay of Fundy of 95 feet 4 inches. The total length is about 54 miles, the greater portion of which was to be in the Shubenacadie River and in a chain of lakes exisiting along the line of the canal.
Mr. Thomas Telford, the celebrated engineer, made a very favorable report upon the proposed canal and its prospects. Up to the close of $1831, £ 72,000 \mathrm{had}$ been expended upon the work, which was, however, in an entirely uncompleted state; some of the locks near Halifax had not been commenced, and large and expensive work remained to be done upon the line of the canal. All the available capital being exhausted, the works were abandoned, and fell into ruin, never having been completed on the original plan. In 1856 never having been completed on the original plan. In 1856
a report was made by Mr. W. H. Talcott, C.E., upon a a report was made by Mr. W. H. Talcott, C.E., upon a
scheme for completing the works upon a very much smaller
scale than at first proposed, substituting for certain of the locks an inclined plane near Halifax, with a lift of 55 feet, and a similar plane with a lift of 33 feet at another point, the. plants to be worked by hydraulic machinery. This report was adopted, and the work was completed in 1862, at a cost of $\$ 200,000$. - The diminished canal has, however,
proved a failure as a commercial enterprise, and since 1870 proved a failure as a commercial enterprise, and since 187
no trade of any account has been carried on through it.
There was also presented a description by Cbarles C Suith, C.E., of a hydraulic canal built at Minneapolis, Suith, C.E., of a hydraulic canal built at Minneapolis,
Minn., during the severely cold winter of 1881 . This canal is under Main Street, Minneapolis, its entrance being at right angles to the street. It is covered with a semicircular rubble stone arch of $171 / 2$ feet span, and where the line turns the angle of 90° the abutments of the arch were built of curved lines of the radius of $311 / 4$ and $483 / 4$ feet. The arch was built of rubble masonry of stone varying from 4 to 6 inches thick, and from 18 to 36 inches long; the joints at the soffit being slightly hammered off to approximately form beds conforming to the radial lines of the arch. The mortar was made of one part Louisville cement to two parts sand, and was mixed in hot water without salt. During its construction the weather was extremely cold, the frost having penetrated the ground to the depth of six feet. An examination of this work having been made quite recently, it was found to be perfectly sound and free from any indication of settlement or rupture two years after its construction.
A discussion followed by the members present, more particularly in reference to the best methods of laying masonry in very cold weather, the experience of a number of members being favorable to the use of a strong solution of salt in the water with which the mortar was made.

PAPER WEIGHT, CALENDAR, and PEN RACK.

A combination paper weight, calendar, pen rack, and pin cusbion has recently been patented by Mr. Josias R. King of 231 Fort Street, St. Paul, Minn. The box is provided with a front board inclined upward and backward, on which a calendar sheet or table is laid, divided into squares con-

COMBINED PAPER WEIGHT, CALENDAR, AND PEN RACK.
taining numerals, as shown in the illustration, and covered with a pane of glass. Directly above the table, at its upper end, the sheet is furnished with a longitudinal slot, through which a roller, B, can be seen on whose surface the first syllables or initials of the seven days of the week are produced in seven longitudinal rows, the syllables being shifted one space for each following row. By turning the roll any day can be brought above the numeral 1. At the upper end of the incline is a second inclined board, extending to the top of the box, and also furnished with a slot and glass. Behind the slot is a larger roll, A, on whose surface the names of the months are arranged in twelve rows. Both these rolls are journaled in the sides of the box, and have knobs by which they may be turned. A cushion is fastened
in a box extending aeross the top of the main box. At the front ends of the box are upwardly projecting arms for supporting pens and pencils. Fig. 1 is a sectional view, and Fig. 2 a perspective view.

The London Inventors' Record says: It is not generally known that it once cost as much to take out a patent for in ventions as to take out a patent of nobility. In 1623 , when the Statute of Monopolies was passed, some advocate of protection for the rights of inventors was unfortunate enough to use the word "patent" in connection therewith, and as the only patent then known was one of nobility, some official wiseacre was struck at once with the brilliant idea of affix ing the same charge to the one as to the other. There have been important differences, however, between the two classes holding letters patent, one of which could not secure them without conferring a boon on his fellowmen, while the otber could obtain them by merely possessing a courtly tongue, a good leg, or a bandsome person; yet, mirabile dictu, the latter ranks high in the estimation of his fellowmen, while it is often the fate of the former to remain unknown, even after his invention has benefited the entire
human race.

Measuring the Intensity of Very Powerfal Lights.
If any strong light, like the electric light, for example, is to be compared with a normal candie, the distance to which the former must be removed is inconveniently great. Dr. H. Hammerl has devised a very ingenious method of reducing the iutensity of any light by purely mechanical means, cutting off one-balf, three-fourths, or even nineteen-twentieths of the light, so that what remains is easily measured. It conists in placing in the path of the rays that fall upon the screen a revolving metallic disk from which are cut sectors that allow a portion of the light to pass through, but cut off and absorb the remainder. If the sum of the angles of all the sectors taken together equal 180 degrees, one-Lalf of the light will be intercepted while the other half passes through. Experiments show that three sectors will suffice to give a uniform illumination with a moderate speed of revolution. The size of these sectors will, of course, depend upon the amount of light to be cut off. When it is desired to reduce the light to one-third, each sector must have an angle of 40°. If each sector have an angle of 12°, the light will be reduced one-teuth, and so on.
When two disks are employed each having three sectors of 60° each, they can be so arranged on the axis as to give any desired result.
If a single disk is employed, the openings should not be true sectors having a definite angle at the center, but cut so that the angle decreases from the center toward the circumference in a definite ratio. This may be so chosen that the weakening shall regularly increase from center to circumference just as the distance from the center increases. When this form of disk is employed, the usual greased spot on the screen must be elongated instead of round, and as long as this opening. One end of this spot will be dark, the other light, and it must be noticed where this change occurs, and the amount of weakening read by a scale on the disk itself. -Zeitsch. f. Instrumentenkunde.

Decomposition of Feldspar by Fumus.

A Russian named Meschtschersky has been experimenting upon the decomposition of common feldspar by humus both in the laboratory and in the garden. Finely ground orthoclase was sealed up in a glass tube with humus and water and heated for 9 or 12 hours daily to $115^{\circ} \mathrm{C}$. ($239^{\circ} \mathrm{F}$.), for one or twe months; he then filtered the contents of the tube and examined both residue and filtrate. Afother experiment was conducted under ordinary conditions, the orthoclase and humus being placed in a tiv box with double bottom and buried in a garden for six months.
In both cases the orthoclase was decomposed. The com position of the feldspar employed was as follows: Silica, 62.02 ; alumina and oxide of iron, 23.93 ; lime, 0.25 ; potash, $7 \cdot 21$; soda, 439 .
The humus was obtained by the action of sulphuric acid upon racemic acid. When washed and dried at $120^{\circ} \mathrm{C}$. it consisted of 57.17 per cent carbon, 4.59 hydrogen, 37.96 oxygen, and 0.28 ash.
He draws the following conclusions from his experiments: 1. Orthoclase is decomposed by humus in the presence of water, giving up its constituents to the humus and taking up water. The separation of silica, alumina, and soda are the easiest, that of potash the bardest. Hence there is an essential difference between this decomposition of orthoclase and weathering. 2. The humus is partially decomposed into carbonic acid and water, and partially converted into soluble and insoluble mineral compounds of humus. 3. The decomposition is directly.proportional to the time and tem peratume.-Berichte.

The Folly of Anti-Vaccinators.

How any intelligent man can deliberately oppose vaccinaion in the face of the abundant testimony of its efficacy is truly a hard problem to solve. One of its most violent opponents in England, says the Medical and Surgical Reporter, was a certain William Scott, of Rotherbithe. Recently small pox broke out in his family, and carried off his wife and three children. Regret for what might have been prevented so preyed on this man's mind that he committed suicide.
When we realize what great publicity bas been given to the facts concerning vaccination, we can hardly help but lay the deaths of this man's wife and children at his door. Of course, no doubt, he was conscientious in his opposition to vaccination; but still, facts do not admit of argument, and it is almost impossible to conceive of any intelligent man finding sufficient evidence to warrant him in opposing this beneficent discovery. This sad occurrence should be given all possible publicity, as a warning to other anti-vaccination agitators.

The Magnetic Pole.

Professor Thompson, in a lecture at Glasgow, stated that he magnetic pole is now near Boothia Felix, more than 1,000 miles west of the geographical pole. In 1657 the magnetic pole was due north, it having been eastward before that. Then it began to move westward until 1816, when the maximum was reached. This is now being steadily diminished, and in 1976 it will again point true north. Professor Th8mpson says that the changes which have been observed, not only in the direction but in the strength of the earth's magnetism, show that the same causes which originally magnetized the earth are still at work.
star-Fish Destroying the Connecticut Oyster Beds. The cultivation of oysters in beds in Long Island Sound, off the Connecticut shore, has been rapidly developing into a very considerable industry within a few years past. The water over these beds varies from 25 to 60 feet in depth, and the bottom is of gravel, free from mud. But an enemy of the oyster, the star fish, has recently appeared in large numbers, and is said to be completely destroying the oysters in some localities. The fish is covered with a tough, leathery skin beset with prickles, and has the form of a star, with five rays or fingers radiating from a central disk, the size averaging six inches in diameter across the fingers, though some measure as much as twelve inches. In the middle of the under surface of the disk is situated the mouth, opening into a digestive system which sends prolongations into each ray. The prickly skin is supported by a series of plates beautifully jointed together, and the plates have perforations through which tubular feet can be protruded to effect locomotion. The star-fish can propel itself over rough surfaces and into all nooks and crevices, and is found generally near rocks, upon which they fasten. If one of its arms become broken in any way, as by getting it entangled in a crevice of a rock, or having it bitten off by a voracious fish determined upon making havoc of this particular star, the deficiency is soon remedied, as another arm grows which replaces the missing member. Some species of the star fish possess the power of demoralizing or breaking itself in pieces, and thus multiplying its kind, as each piece retains its vitality and grows into a perfect specimen of the tribe again. The star-fish generally travels in "schools;' when he is bungry he gets outside of his dinner by, as it were, turning himself inside out. He turns his stomach out of his mouth and envelops the morsel to be engulfed, ejecting a fluid between the shells which kills the oyster.
One oyster breeder has been at work with a small steamer dredging for these enemies of the oyster, and some idea may be formed of their ravages when it is known that in one day recently he capturéd over 300 bushels of them during seven hours' dredging. One bushel is estimated to contain more than 1,000 star-fish. The fish so caught are spread on the land as a fertilizer.

Making Black Leather.

It is not every sort of leather that will take the black color equally well, says Gerberzeitung, the oak tanned taking the color best, pine and birch bark leather taking it the worst. If the leather does not take the color well, it should receive some previous preparation. A. solution of the carrbonate of soda is generally used for this purpose; although the use of caustic soda or ammonia is less injurious to the leather. The leather is then washed off with clean water and the ground color laid on thinly with a brush and rubbed in until it is all taken up.

A good preparation for this purpose is obtained by boiling Campeachy wood for half an hour in twice its weight of water, adding a sixth part of fustic to give a more intense black, pouring off the decoction, and boiling the wood in clean water for two hours. Some potash may be added to the second decoction to aid in the extraction. The dye is poured off clear or filtered and preserved in a closed vessel. The black color is prepared by treating old iron with a decoction of barley, sour beer, or sweet tan liquor. It is left for a few days, the dirt removed from the surface, and the clear liquid drawn off. This black color must not be applied, until the \quad - \quad und color is completely absorbed, or the leather will bc sooty. After the black dye bas been rubbed in with a brush, it will have a finer appearance if another light coat of Campeachy solution is applied, and then rinsed with water until it runs off clear.

The Teluanteper Chip Railway.

The survey for the Eads shir railway is now completed, and has been handed in io the company's office in New York, by Mr. Van Brocklin: the resident engineer. Together with a large corps of assistants, Mr. Van Brocrlin was employed from March 20 to August 1% in making a minutc and nccurate transit and level survey of the proposed routc, and the results arc most satisfactory to the projectors. The total longtis of the line from Minatitlan to Salina Criz is 153 miles. For the first 60 miles it would pass over $:$ well timbered and Certile alluvial plain. The next 20 miles would be a gradual ascent up a wide valley to the foot of the hills which form the backbone of the isthmus. Here therc would b c some difficulties to be encountered, bus. notiline; at all exceptional. The hilly portion would be about s^{2} miles, efter which the line would run over a ievel plain. The maximum gradient will be only 1 in 100 , and this will only be found within ε distance of 12 miles. The health of the surveying party was excellent during the whole time of their work. The estimates of construction are now being prepared, and will shortly be ready.

An International Society of Electricians has lately been organized under the patronage of the French department of Posts and Telegraphs. The society now has 900 members, among the organizers having been Sir William ひilemens, V. H. Preece, Dr. O. Frolich, Latimer Clark, F. Bolton, Sir for applications for admission from United States members was jostponed to January 15, and should be addressed: was jnstponed to January 15, and should be addressed:
President of International Society of Electricians, No. 99 Rue de Grenelle, Paris, France.

Liquid for Determining the Specific Gravity of Minerals.
Nearly all natural minerals are heavier than water, and therefore sink in it. But when they are placed in a heavy liquid which does not dissolve them, some sink and others float. If two minerals of unlike gravity occur in the same rock, they can be separated by pulverizing the rock and putting them in a liquid intermediate in weight between both. A new liquid for this purpose bas been devised by C. Rohrback, having a density of 3.57 . It is an iodide of barium and mercury, and is prepared as follows: 100 parts of iodide of barium and about 130 parts of red iodide of mercury are mixed with about 20 c . c. of distilled water, shaken, and heated on an oil bath to 150° or $200^{\circ} \mathrm{C}$. until dissolved, and then coucentrated until it will float a crystal of topaz. After stauding several days the clear liquid is decanted and filtered. It has a yellow color, boils at $145^{\circ} \mathrm{C}$., and refracts light strongly. It can be used for separating axinite, kyanite in part, epidote, heavy mica, some garnets, and nearly all hornblendes; . also jade, olivine, orthite, nearly all members of pyroxene group, saussurite, titanite, topaz, heavy tourmaline, vesuvianite, and basaltic rocks. In diluting it to obtain any special density, it is mixed with a dilute solution of the same, so as to avoid precipitation. After the separation the powdered minerals are washed with a few drops of iodide of potassium.-Wiedermann's Annalen.

The Life-Saving Service.

The report of the General Superintendent of the Service for the last fiscal year shows that there were 149 stations on the Atlantic, 37 on the Lakes, 7 on the Pacific, and 1 at the Falls of the Ohio, a total of 194. During the year there were 300 disasters to vessels, on board which were 3,792 persons, of whom 3,777 were saved and only 15 lost. There were 651 shipwrecked persons succored at the stations, 1879 days' relief being afforded. The estimated value of the vessels was $\$ 5,100,925$, and of the cargoes, $\$ 2,075,615$. Of this amount $\$ 5,611,800$ was saved and $\$ 1,564,740$ lost. Sixtyeight vesse!s were totally lost. There were 116 disasters to smaller vessels, on which were 244 persons, all of whom were saved but 4. The property here involved was $\$ 66,180, \$ 6,280$ of which was lost. The assistance rendered during the year in savifig vessels and cargoes has been much larger than in any previous year, 337 vessels having been worked off when stranded, repaired when damaged, piloted out of dangerous places, or similarly assisted by the station crews. There were, besides, 125 ins tances (39 more than in the preceding year) where vessels running into danger of stranding were warued off by the night signals of the pafrols, most of them thus being saved from partial or total destruc. tion.

New Steam Bronze.

On adding a solution of potassium bichromate to one of manganese chloride no precipitate is obtained, but if the neutral chromate is used there is an immediate bronze precipitate. Setting out with these facts, M. Blanche has made up a color with a mixture of potassium bichromate, manganese chloride, and sodium acetate. By the action of heat the sodium acetate is decomposed, the acid chromate neutralized, and the precipitate mentioned above is formed upon the cloth. The color employed was:

 Boil, let cool, and add:
 Crystalline manganese chloride...................... 210

The color, when printed and steamed, gave a very intens bronze, scarcely affected by washing and soaping. The cloth was not affected. The same mixture, leaving out the starch, may be used for steeping cloth, and thus produces a bronze, which may be discharged by tin crystals and an acid. M. Blanche also inquires whether the bronze is man ganese peroxide or a sub-chromate.

Storage Battery Light.

A Pullman dining car of the 5:40 express to Leeds has been lit bry six Swan incándescent lamps, supplied with electricity from one primary battery of twelve cells, the di mensions of the battery being: Length, 4 feet; breadth 8 inches; and depth, 8 inches. The battery is of zinc and carbon, with new depolarizing arrangement, the details of which have not been made public. The lamps diffused a bright, warm, and perfectly steady light, which was at no moment affected by the oscillation of the carriage, and which made it not only possible, but perfectly easy, to read a newspaper or book printed in small type. The result of railway companies, including the Great Eastern, the SouthEastern, and the London and Southwestern, have shown a desire to adopt it. The light can be turned on or off at pleasure, and it can, therefore, be used in the day when a train is passing through a tunnel. The inventors of the battery express a belief that they will be able to supply privato dwellings with electric light for less than the estimats lately put forward by the Edison Company and the Golcher Company. The battery which was used on Thursday week weighed under 150 lb ., and one capable of supplyine sighteen lights for eighteen continuous hours would weigh about 3 cwt. The inventors of the system are Mr G. C. V. Holmes and Mr. F. E. Burke.

Surviving a Severed Throat.

In 1877 Louis C. Londenski was crossing the mountains in Roumania when his party was attacked by robbers. All had their throats cut, but Londenski had only his windpipe severed, his jugular vein being unharmed. As he showed signs of life he was hanged, yet the rope did not strangle him, as he still breathed through the aperture. After a time he was discovered and cut down, when he was removed to Vienna, when Professor Schraeder effected what is almost a cure. From Vienna he traveled about the world, exhibiting imself at different medical colleges.
He is at present in Buffalo, N. Y., and Dr. S. H. Warren, fter a careful examination, describes his wound as follows " An incision was made across the throat from the inner side of both jugular veins, which extends to the carotid artery, severring the tracheæ, or bronchial tubes. Through the orifice can be seen the vocal cords, larynx, and diverging tubes. Londenski, at his pleasure, can show the action of the glottis respiration-something never before beheld by surgeons in living subject."
The Tribune, in describing the case, states that be breathes through a tube three-eighths of an inch in diameter, which curves downward. He lives mainly on liquid food, being unable to digest gross food. He smokes considerably, having been advised to do so by Professor Schraeder, exhaling the smoke through the hole in his neck, which is just below the Adam's apple, and in which is a tube that he closes when he wants to speak. The glottis, through disuse, has almost closed up.

Purchase of the Great Mexican Volcano

It is said that the recent excursion to Popocal epetl had for its object the looking over the ground for the mammoth $\dot{\text { works projected to facilitate the mining of the sulphur from }}$ the crater. It is proposed, says the Mexican Financier, to drive a tunnel into the crater of the volcano and to build from the mouth of the tunnel a railway to connect with the Interoceanic Railway at Amecameca. The parties who are in negotiation for the property with the owner of the volcano, General Gaspar Sanchez Ochoa, are said to be a rich American house. The representative of the !ousc visited the volcano with the French engineer, Mr. Charles Roay. A contract is said to have been made for the exportation of 50,000 tons of sulphur a year at least. It is also proposed to estabish a factory of sulphuric acid for weo here in Mexico, selling it at $\$ 3$ a quintal of 65° strength. These products of Popocatepetl will add largely to the business of the Interoceanic Railway. The railway up the side of the highest mountain in North America will probably be largely patronized by tourists, who would go there by the thousands annually were facilities offered to make the trip.

Lighting Hell Gate.

The foundations of the electric light tower at Hallett's Point, Hell Gate, have been finished some five weeks. They are five in number, built of concrete on the solid rock, and in height are about four feet albove the level of tide water mark. They are arranged-four of them-in the shape of a parallelogram, with another support in thc center. Those supporting the corners of the tower are eight feet square and about forty feet apart on one side, and sixty feet on the other. The center support is five feet squarc. The structure will jut out from the shore, one corner of it being at the extreme angle or corner made by the sharp trend of the land. The ironwork of the tower has been built in Ohio, and is now on its way here. The tower will be similar in construction to that on Coney Island, and the light will be in inteusity equal to the power of 5,000 candles. The whole structure will be 250 feet high, cost $\$ 20,000$, and be completed this autumn.

How the Mint is Guarded.

' It would not be healthy for a burglar to attempt any of his tricks about the mint," said Colonel A. Loudon Snowdon, the other day, to a reporter on the Philadelphia Record. "About a year ago I caused all the muskets to be changed for repeating rifles and seven-shot carbines that are darlings. Our outside watchmen, who parrol the streets about the place, are well supplied with firearms. In fact, they are walking arsenals. We can readily arm every person in the building who can bandle a pistol or gun. There is no trouble apprehended that I know of, and I cannot divine why the Secretary of the Treasury has ordered Gatling guns and carbines for the mints. I have not requested any, because we are sufficiently armed. At this time there are being turned out over a million of standard dollars each month, and we frequently have $\$ 15,000,000$ in silver in the vaults. But it would take a little army with cannon to get at it."

A California Canal for Irrigation.

In the Scientific American of Oct. 27 we copied from the Los Angeles Herald some interesting particulars about a great irrigating enterprise being inaugurated in Fresno Co., Cal. The dimensions of the canal and the engineering work required have called out considerable notice, but we would suggest that our California contemporary probably printed the area of land to be irrigated with one too many ciphers. This area was stated at $30,000,000$ acres, or substantially the area of New York State, an obviously pretty large territory to irrigate with even a dozen canals, were it desirable to have the job done.

engineering inventions.

An improved reversing and expansion valve eear has recently been pateoted by Mr. Carl W. Finger, of Wilkesbarre, Pa. The object of the invention is to
avoid the use of eccentrics and link motions, and econavoid the uee of eccentrics and link motions, and econ-
omize fuel in working locomotive and stationary steam omize fuel
Letters patent have been issued to Mr. John D. Fisk, of Hartford, Conn.., for a revolving guard to be attached to the cow catcher of a locomotive to
throw stones, ties, or other obstructions from the track A rotating shaft is mounted at the bottom of the cow A rotating shaft is mounted at the bottom of the con provided with blades which project about catcher, and is provided with blades which project about
two inches below the bottom rails of the cow catcher. and thus are able to reach and remove obstacles which the cow catcher might not be able to throw out of the
way. Letters patent have been granted to Messrs.
James H. Flood and Henry F. Knoder, of Cardington, James H. Flood and Henry F. Knoder, of Cardington
O., for an improved car coupling. The invention con O., for an improved car coupling. The invention con-
sists of a clasprod for raising the coupling pin from the sists of a clasprod for raising the coupling pin from the
top or sides of the car for uncoupling the cars, which od is provided with a set screw for limiting the upwar novement too high or entirely out of the drawhead This invention may be applied to drawheads at presen in use, whereby the ordinary link and pin coupling may be made automatic in its action.

MECHANICAL INVENTIONS.

A feed mechanism for cotton seed mills, patented by Mr. Chas. J. Hooper, of Edinburg, Miss., combines a hopper having a flat bottom with two dia metrically opposite openings, a centrally revolving shaft, seed into said openings.
A knitting machine has been patented by Mr. Stephen Wood word, of Franklin, N. H. The im wroveming any desired number of ribbing needles, so that changes may be made from ribbed to plain work without changing the operating cams or employing other
devices for throwing. a portion of the needles out of perative position.
Mr. Jean J. A. Larroque, of Paris, France, has obtained a patent for an improved tricycle. In thi machine the pedal movement is improved so as to a void
dead center, the seats are so arranged as to be able to be moved either horizontally or vertically, according to he wishes the weight to be placed, and further mechanism is provided for rendering the wheels one piece with the axle during the movement in a straight line, and for automatically disconnecting one of the wheels in going around a curve.
An improved clay erusher bas been patent ed by Mr. William W. Wallace, of Frankfort, Ind. This invention consists of a rotary clod breaker placed i the hopper over a pair of crushing rollers, to break the hard clods and cause the clay to feed into the rolls. A weighted.relief gate is arranged to be forced open fo the escape of stones or clods too hard to be broken by
the breaker; and this gate is also arranged to shift as the breaker; and this gate is also arranged to shift as
the ends of the clod breakers wear short to maintain the same relations with the clod breakers, whatever their length may be. The same inventor has farther oblain ed a patent for an improved brick and tile machine. I employed for pressing the clay through the dies fo forming it into bricks, tiles, and other objects. With
this machine stiffer clay can be worked than with the this machine stiffer clay can be worked than with the
ordinary press. It also consists of an arrangement of with the mixer that the operation may be continuon with the mixer that the operation may be contin.
with

agricultural inventions

An improved form of stock barn has been patented by Mr. Benjamin Walton, of Fairburg, III. The walls are double, floors reached by inclined planes, so ways, while the offal may be removed quickly from an height without soiling the outer walls, the double walls having passages communicating with the
and discharging outwardly at the ground.
What constitutes a dishegno
What constitutes a combination of harrow, roller, and cultivator has been patented by Mr. William H. White, of Cincinnati, \mathbf{O}. The rollers may easily be
detached or the roller arms elevated, or the cultivato detached or the roller arms elevated, or the cultivato
be thrown out of play, so as to use only the harrow, o the device may be easily arranged to use all three to gether.

miscellaneous inventions.

An improved chest protector has been pa tented by Mr. William H. Purcell, of Elizabeth City, N.
C. This chest protector consists of some flexible fabric C. This chest protector consists of some flexible fabric,
woolen, and felt put together in layers, and united at woolen, and felt put together in layers, and united at
the edges to form an air space within to temper the the edges to form an air space
A combined presser foot and gauge for sewing machines has been patented by Mr. Emilus A
Wellman, of Searsport, Me. Its object is to Wellman, of Searsport, Me. Jts object is to enable
the operator to stitch as closely to the edge of the material us may he desired, and with greater facility than terial as may be desired, and
with the ordinary presser foot.
An improved oil stove has been patented by Mr. Martin W. Walker, of Siirig Sing, N. Y., by which the burner and oil tank are so protected from
the heat that the wick tube may be extended nearer the oil, and by expanding the flame above the cone a narrower wick tube may be used.
A bicycle riding platform has been patent ed by Mr. James B. Elliott, of London, England. It consists in a platform to revolve in a horizontal plane,
so that by operating the bicycle thereon the rider will make no headway, thus producing some very novel and An
An improved folding ladder bas been pa
tented by Mr. John K. Landes, of Caledonia, \mathbf{O}. Be
sides being contrived to fold into a very small space, it
can be erected to the desired length very rapidly, and can be erected to the desired length very rapidly, and
can be adjusted to various shapes and forms to make can be adjust
Mr. P. H. Cherry, of Parsons, Kas., has patented an improved cup for mixing lemonade and other mixed drinks. The cup is provided on its upper
im with a rubber packing ring, and when the tumbler is pressed against the ring a close connection is formed, which prevents the liquid from leaking out during
Mr. Daniel B. Hiser, of Wooster, O., bas obtained a patent for an improved burial casket. The
invention consists in a metallic casket constructed with nvention consists in a metallic casket constructed with
side pieces and end pieces united by screws passed ide pieces and end pieces united by screws passed
through the top and bottom rims or flanges, so that none of the screws or bolts will appear on the sides or

An improve
Ales, and other wad kiln, for burning bricks, McCue, of St . Louis, Mo. The kiln furnace has in its qrch hollow spaces and air inlets to direct the air upon the fire bed, with perforated air pipes along the in-
side of the walls, to insure more perfect combustion side of the walls, to insure more perf
and prevent the formation of clinkers.
An improved metbod of sealing fruit and other cans has been patented by Mr. John Waterous, of
Brooklyp, N. Y. By this invention the cement coated Brooklyp, N. Y. By this invention the cement coated cord or strip is applied to the can before the cap or
cover is put on, and in such manner that the sealing material will be covered and protected by the cap or ver.
An improved fire escape has been patented by Mr. James Reidy, of Pittsfield, Mass. It is a simact by its friction on a hanging rope or chain, and als designed to be useful for riggers or others in elevated positions, or while at work on the exterior faces of
An improved form of rowlock has been paented by Mr. John Snowman, of Weld, Me. The invention covers a collar or sleeve to receive the oar, and
having an eye for connection to the thole pin, and a crew or its equivalent to pass into a socket or aperure of the oar, for locking it against rotation in the leeve, or releasing it to rotate axially and
An improvement in pipe clamps has bee patented by Mr. Henry M. Dixon, of New York city. ecured to the base adjustably by bolts: the standards have jaws upon their upper ends and ratchet teeth upon their outer sides, and to them are secured curved arms carrying swiveled
can be firmly held.
An improvement in sewing machine motors has been patented by Mr. John M. Cayce, of Nashville, Tenn. This invention relates to the application of springs for running sewing and other light machines;
but such use is made in different forms from those but such use is made in different forms from those
heretofore, so that, by improved construction and arangement of parts, this source of power will be made more effective.
An invent
An invention relating to an improved head for brooms and brushes has been patented by Mr. David
B. Turney, of Nebo, Ark. It has special devices for B. Turney, of Nebo, Ark. It has special devices for
engaging the tufts to prevent them from being accidentally withdrawn from the strips. It is inte nded that, by this construction, a new broom may be made in a few minutes by simply taking the head apart, An invention of improved form of elevated tank, designed to facilitate filling street sprinkling
wagons, has been patented by Mr. Nathaniel T. Whit
and wagons, has been patented by Mr. Nathaniel T. Whit-
ing, of San Francisco, Cal. The tank may be made of ing, of San Francisco, Cal. The tank may be made of wood or iron, but must have strength sufficient to resist provided with an automaticaily closing vent pipe provided with an automatic
which acts when the tank fills.
An improvement in whiffletree clips has been patented by Mr. Richard E. Harper, of Butler, Mo. near the end of the double tree, and a brace or plate cast in one piece with the former passes once around the double tree, so as to flrmly hold the clip and give
greater strength than is attained in the ordinary congreater str
struction.
A cream puff filler has been patented by Mr. James H. Mount, of Jamesburg, N. J. The filler is constructed with a hopper to receive the cream, a cylintubular cunder for forcing the cream into the puff, and a tubular cutter for cutting the puff and conducting the
cream in. A gauge is so sonnected therewith as to be cream in. A gauge is so donnected therewith as to be
readily set to cause the required quantity of cream to
A metallic insulating covering for telegraphic wires has been patented by Mr. Edward Clark,
of Cornwall, N. Y. The wires are coated with copper hen with a compound of copper and Babbitt metal, and he latter covered with lead. The wires are then covered with lead or other moisture excluding material and incased in a metallic tube to adapt them to be laid
An improved fire wheel for bicycle perLormances has been patented by Mr. James B. Elliott, London, Eng In a wheel adapted to support a bicycle, grooves for receiving fireworks are provided for in
the edges or sides of the felly, so that the fireworks may be ignited when the wheel is being revolved by
he wheel of the bicycle placed on it, thus producing oveland handsome effects.
An adjustable eaves trough bracket bas been patented by Mr. Franklin P. Campbell, of Bloom-
eld, N. J. The bracket has a trough holding arm with toothed segment on its inner end, and this is connected with a slotted shank by a pivoting rivet through the teeth of said center of the segment, and a locking rivet etween the segment, so that the shank and arm can be
A combination tool has been invented by Mr. Ingersoll T. Torrey, of Breton, Ontario, Canada. It is a cleveriy devised shears, for the use more espe-
cially of railroad men and mechanics, for cutting wires
and tin clips used in sealing packages, and combines in one tool shears, tack hammer, claw for pulling tacks, and
a screw driver. Mr. Torrey has obtained patents the above in the United States and Canada.
An improved knob lock has been patented by Mr. Le Grand Terry, of Horseheads, N. Y. In combination with a door knob shaft is a key sliding in
groove therein, which can be moved by a sleeve with a diagonal slot, into which a stud on the knob shaft passes, so that by turning the sleeve the sliding key can be pass
lock.
An electric clock has been patented by Mr . Jean Paul Arnold Schlaefii, of Soleure, Switzer ard. The invention relates to an improved secondary electric clock to be actuated by a weight raised peri odically by a current at frequent intervals from a central station. The clock has pendulum or balance wheel to regulate its rate of going, but is dependent
solely upon the current transmitted, the minute hand ing moved at minute intervals over minute spaces.
An improvement in conduits for electric wires has been patented by Mr. Bernhard A. Dryer, of New York city. The conduit is designed to be place
in the street with its vertical side against the curbstone the cover forming the gutter, or it can be placed under the outer part of the sidewalk, its vertical side forming the curbstone, and the cover the outer part of the sidewalk, the whole being designed to fully protect the wires and give easy access thereto.
An improved stenographic machine has heen patented by Mr. John Galloway, of New Yor city. It is adapted for rapid writing by those who can see, but is more especially intended for the use of the blind. The alphabet consists of different combinations of eight dots, these being impressed on paper by smal impression rods or keys, forming the characters in relief on the back of the paper, so that the matter written
may be read by the sense of touch as well as by sight.
An improved form of gate bas been patent ed by Mr. William Mason, of Puyallup, Washington Territory. It is automatic, and combines with the gate and the rear post a swinging bar, and cam levers, so ed, and it is intended to be so arranged in practice that the gate can be opened and closed by a person sitting in carriage, and the horses and carriage be out of the way of the swing of the gate.
A gutter, curbstone, and sidewalk conduit for electric wires forms the subject of a patent which fas been issued to Mr. Edward Clark, of Cornspace for electric wires, such as telegraph, telephone,
fre alarm, and electric light wires, without interfering with lamp posts, hydrants, sewer well holes, and side walk vaults, and without going into the middle of the
treet. An implement for handling coils of wire, or an improved coiled wire lifter, has been patented by Mr. Ant bony McGuiggan, of Delavan, Minn. This in-
vention is more particularly designed to facilitate the handling of coils of barbed wire, so that the hands need not be brought in direct contact therewith. Two bars are each shaped into a handle at one end and a hook at of pivoting being such as to make an efficient lifter fo ire in bundles or coils.
A permutation lock has been patented by Mr. Robert Schuelze, of San Antomio, Tex. It has thre ight-toothed wheels having unequal length, and en gaging with each other and the bolt, plate, and catch,
and a knob and knob spindle connected with one of the toothed wheels, whereby the plate and catch can be the toothed wheels, whereby the plate and catch can be
operated to rel ease the bolt, and the bolt drawn back by operating the knob, the whole formiug a lock inexgesive in manufac
get of order.
Mary E.. Higgins, of Cadillac, Mich., is the patentee of an improved underwaist for children, comown its back and front to vary its size, and having combined with it hose or leggings supporters. The same inventor has obtained a patent for another form of
underwaist. In combination with the underwaist or corset is a pendent flap piece, to connect with and corset is a pendent flap piece, to connect with and
support the hose, so that the tension of the hose sup. ports is not allowed to cramp, bind, or ointerfere with kirls.
A rotating stand for effectively displaying by Mr Christian and other goods has been patented stand is rotated by a motor connected with a spindle and gearing into a gear wheel attached to the lower disk of the tubular shaft, so that both sides of the wings hing. ed to the disks will be displayed. As the stand is ro tated the outer edges of the hinged wings come in contact with a spring attached to a stationary support, and
crank arms attached to the upper pivots of the wing come in contact with a stationary cam suspended above the stand, so that the wings will be held and then turned quickly to allow the samples upon the opposit sides of the said wings to be distinctly seen.
An automatic resistance cut-out for tele phones has recently been patented by Messrs. Charle
D. Wright and Charles A. Fisher, of Petersburg, II The object of the invention is to provide an improved attachment for telephone instruments, so that all the
telephones on the line between the two instruments telephones on the line between the two instrument
may be cut out automatically, and whereby the circui will be materially shortened and the resistance decreascorrespondingly. The same inventors have obtaintion consists in a telephone cut-out constructed with clockwork mechanism which is released by means of an electro magnet as soon as the current passes through the instrument, whereby a lever resting on a notched
wheel of the clockwork mechanism is brought in contact with a spring connected with one of the binding posts, so that the current will be short circuited, and will pass through the instrument without passing phone can be cut oat.

The Chargefor Insertion under this head is one Dollar a line for each insertion; about eight words to a line. Advertisements must be received at publication office
asearly as Tluursaay morning to appear in next issue.

Corliss Steam Engines at a bargain

One $12^{\prime \prime} \times 42^{\prime \prime}$; one $16^{\prime \prime} \times 36^{\prime \prime}$;
All in frrst-class running order.
Hepry I. Snell, 135 North 3d St., Philadelphia, Pa
One 6 B. P. Baxter Engine, second-hand, $\$ 300$; one 1 inch swing screw cutting lathe, second-hand, \$125; on, Hartford, Conn.
Noteman Rotary Engine. See adv. on back page.
Wanted.-Bids on large flat porous cups. Address,
with sample, the Electro Dynamic Co, of Philadelphia. Small compound engines and propeller wheels a pecialty. W. J. Sanderson, Syracuse, N. Y.
Auction Sale of Machinery.-In order to reduce our
tock we will sell at auction at 10 o'clock a m 883, our stock of new auction at 10 o'clock A.M., Dec. 12, ranch warerooms, 207 and 209 Centre St., New York city. oools consist of a first-class assortment, nearly every st. viz: utting, power cross-feed as follows, back-geared, screw

 A/, two shaping machines, one 48"' radial drill, Betts
Machine Co. make; No. 30 , 60 b. "Palmer"" power hamMachine Co. make; No. $3,60 \mathrm{jb}$. "Palmer" power ham-
mer ; one spinning lathe, three watchmakers' lathes. our milling machines, one $40 \mathrm{H} . \mathrm{P}$. vertical engine. five mall engines, four hydraulic jacks, twenty-four vises,
son
en lathe chucks four n lathe chucks, four bench lathes, five steam pumps, and many other items. Machinery can be examined at
any time prior to sale. Send for catalogues. S. c.
Forsaith \& Co., Machinists and General Machine Deal-
\qquad
Drawing Instruments, Drawng Paper, and Drawing Materials. The largest stock in the United States. Send or catalogue. Queen a Co., Philadelphia.
Useful information and tables on Steam and Water or Engineers and others contained in Blake's new illus-
 ust published. Copies sent free. Address
Blake Mfg. Co., 95 and 97 Liberty st., New York.
For Sale.-Engine lathe, 151/2 ft. bed, 28 in . swing; with blocks to swing 43 in.; back-geared, screw cutting;
with usual fittings. Price, F. o. B. St. Louis, Mo., 8500 . .C. Forsaith \& Co., Manchester, N. H_{3}
Pumps-Hand \& Power, Boiler Pumps. The Goulds die. Co., Seneca Falls, N. Y., and 15 Park Place, N. Y. Dies, Patterns, etc., Chas. A. Bailey, Middletown, Ct.
Steam Pipe and Boiler Covering, Roofng Paints, Preared Rooflng, and general line of Asbestos materials. For Sale.-Five patents entire. Nos. 235.844, 244,414, For Sale.-Five patents entire. Nos. 235.844, 244,414,
24 251, 247,286. 238.555. Paper Pulp Engine. Pay as 24 25i, 247,286, 238.545. Paper Pulp Eng
peciality. J. R. Abbe, Manchester, N. H.
For Freight and Passenger Elevators send to l. S.
Brush Electric Arc Lights and Storage Batteries. Twenty thousand Arc Lights already sold. Our largest
machine gives 80 Arc Lights with 45 horse power. Our machine gives 80 Arc Lights with 45 horse power. Our Storage Battery is the only pract
Brush Electric Co., Cleveland, 0.
Best Squaring Shears, Tinners', and Canners' Tools Lathes 14 in . swing, with and without back gears and Lathes 14 in. swing, with and without
crew. J. Birkenhead, Mansfield, Mass.
The Best.-The Dueber Watch Case.
If an invention has not been patented in the United States for more than one year, it may still be patented in
Canada. Cost for Canadian patent, \&40. Various other oreign patents may also be obtained. For instructions ddress Munn \& Co., Scientific American Patent gency, 261 Broadway, New York.
Gưild \& Garrison's Steam Pump Works, Brooklyn, . Y. Steam Pumping Machinery of every descripNickel Plating.-Sole manufacturers cast nickel anodes, pure nickel salts. polishing compositions. etc. Comlete outftt for plating, etc. Hanson \& Van Winkle,
ewark, N. J., and 92 and 94 Liberty St., New York. Philosophical and Chemical Apparatus and Materials. end for catalogue. Queen \& Co., Philadelphia.
Lists $29,30 \& 31$, describing 4,000 new and 2 d -hand Machines, ready for distribution. State just what machines
wanted. Forsaith \& Co., Manchester, N. H., \& N. Y. city. wanted. Forsaitb \& Co., Manchester, N. H., \& N. Y. city. "Abbe" Bolt Forging Machines and "Palmer" Power

Railway and Machine Shop Equipment.
Send for Monthly Machinery List Send for Monthly Machinery List
the George.Place Machinery Company,
21 Chambers and 103 Reade Streets, New York.
"How to Keep Boilers Clean." Book sent free by Jame F. Hotophss, 4 Johi St., New York.
Wanted.-Patented articles or machinery to make Water purified for all purposes, from household supplies to those of largest cittes, by the improved filters
manufactured by the Newark Filtering Co., 177 Comerce St.. Newark, N. J.
Improved Skinner Portable Engines. Erie, Pa. Latest Improved Diamond Drills. Send for circular
O M. C. Bullock Mfg. Co., 80 to 88 Market St., Chicago, IIl. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N.J. Split Pulleys at low prices, and of same strength and penranceas Whole Pulleys. Yocom a son's Shafting orks, Drinker St., Philadelphia. Pa.
Supplement Catalogue.-Persons in pursuit of inforific subject. can have catalogue of contents of the scien subject. can have catalogue of contents of the Sci-
entific ambican Supplement sent to them free.

Machinery for Light Manufacturing, on hand and
built to order. f. E. Garvin \& Co., 139 Center St., N. Y. bullt to order. F. E. Garvin \& Co., 139 Center St., N. Y.
Fossil Meal Composition, the leading non-conducting Fossil Meal Composition, the leading non-con
covering for boilers, pipes, eta. See adv., p. 364. Steam Pumps. See adv. Smu.h, Vaile \& Co., p. 301 Catalogues free.-Scientific Books, 100 pages; Electri-
cal Books, 14 pages. E. \& F. N. Spon, 35 Murray St., N. Y. cal Books, 14 pages. E. \& F. N. Spon, 35 Murray St., N. Y.
Straight Line Engine Co., Syracuse, N. Y. Best in rning; no packing Drop Forgings. Billings \& Spencer Co. See adv., p. 333 For Mill Mach'y \& Mill Furnishing, see illus. adv. p. 332 Mineral Lands Prospected, Artesian Wells Bored, by
Pa. Diamond Drill Co. Box 423 . Pottsville. Pa. See p. 344 . Sets of Test Lenses and instruments for ocalists Send for catalogue. Queen \& Co., Philadelphia.
American Fruit Drier. Free Pamphlet. See ad., p. 348 Brass \& Copper in sheets,wire \& blanks. See ad.p. 348 The Chester Steel Castings Co., office 407 Library St.,
Philadelphia, Pa.. can prove by 20,000 Crank Shafts and Philadelphia, Pa... can prove by 20,000 Crank Shafts and
15,000 Gear Wheels. now in use, the superiority of their Diamond Drills, J. Dickinson, 64 Nassau St., N. Y. Curtis Pressure Regulator and Steam Trap. See p. 349 The Improved Hydraulic Jacks. Punches, a ad Tube
Expanders. R. Dudgeon. 24 Columbia St., New York. Expanders. R. Dudgeon. 24 Colum Dia St., New York.
Hoisting Engines. D. Frisbie \& Co., Philadelphia, Pa. Tight and Slack Barrel Machinery a specialty. Joh Greenwood \& Co., Rochester, N. Y. See illus. adv. p. 348 . Special Students in Techuical Chemistry, Aualysis,
and Assaying. Apply to Prof. Leeds, laboratory of the and Assaying. Apply to Prof. Leeds, laboratory of the
Stevens Institute of Technology, Hoboken, N. J. Pays well on small investment.-Stereopticons, Magic exhibitions. Lanterns for colleges, Sunday-schools, and exhibitions. Lanterns for colleges, Sunday-schools, and
home amusement. 116 page illustrated catalogue free.
Mc. 1 llister. Manufacturing Optician, 99 Nassau St., N. . McAllister, Manufacturing Optician, 49 Nassau St., N. Y.
Cutters for Teeth of Gear Wheels formed entirely by machinery. The Pratt \& whitney Co. Hartford, Conn. .. B. Rogers \& Co.. Norwich, Conn., Wood Workin The " Rockwood " Instantine adv., page 350 . The "Rockwood "Instantaneous Photographic Dry
Plates are the best for amateurs and scientists. Plates are the best for amateurs and scientists. Sen
for circular and instructions, No. 17 Union Square. Lightning Screw Plates, Labor-saving Tools, p. 348.

NEW BOOKS AND PUBLICATIONS

Electricity and Electrical Engineering.
By Lieutenant Bradley A. Fiske, U.S.N. By Lieutenant Bradley A. Fisk
D. Van Nostrand, New York.
This book does not aim to be very pretentious, but treats the subject in a rather elementary way. The author starts out with the intention of making the volume
" a bridge between works written on the theory of elec"a bridge between works written on the theory of elec-
tricity and those written on its practical applications," and with this view has brought together and set forth in plain languagemany important facts concerning electricity for lighting and for power, as w
tions in the telegraph and tele phone.
a Mandal of Chemistry. Physical ant
Inorganic. By Henry Watts, B.A.
H.R.S. P. Blakiston, Son \& Co., Pbila delphia.
As an "introduction to larger and more comprehensive systematic works," and to help in "preparing the student for the perusal of original memoirs," the 600 closely printed and well indexed pages of this volume form a valua ble contribution to the literature of wha
may be called elementary chemistry. The field of may be called elementary chemistry. The field of
chemical knowledge is now so wide, and its develop-
ment has of late been so rapid, especially in connection ment has of late been so rapid, especially in connection
with the recent developments in electrical science, that such hand books as these are perhaps of more, use to
the reader or investigator of average attainments than would be the more elaborate treatises of eminent spe cialists. The writer is the editor of the Journal of the
Chemical Society, and the author of a "Dictionary of Chemical Society, and the author of a "Dictionary of
Chemistry," but great pains have evidently been taken Chemistry," but great pains have evidently been taken
throughout the book to find the most simple language in which to set forth ideas and facts in what is now probably
sciences.

HIN'IS 'IO CORRESPONDENTS.
No attention will be paid to commumications unless accompanied with the full name and address of the writer.
given to inquirers.
We rénew our request that correspondents, in referrin to former answers or articles, will be kind enough to name the date of :he paper and the page, or the number of the question.
Correspondents wiose inquiries do not appear after a reasonable time should repeat them. If not then pub lished, they may conclude that, for good reasons, the
Editor declines them. Editor declines them.
Persons desiring special information which is purely should remit from $\$ 1$ to $\$ 5$, according to the subject as we cannol. be expected to spend time and lahor obtain such information without remuneration. Any numbers of the Scientific American Supplisment referred to in these col
office. Price 10 cents each.
Correspondents sending samples of minerals, etc for examination, should be careful to distinctly mark o
label their specimens so as to avoid error in their indenti label thei
(1) F. A. B. asks how to etch upon steel (such as is done upon knife blades). A. For etchin
upon knife blades: Cover the blade with a thin coat o apon knife blades: Cover the blade with a
asphalt and beeswax, about equal parts melted together Warm the blade and damp the whole surface with a
ditle cloth pad slightly saturated with the wax in the dittle cloth pad slightly saturated with the wax in th
vame manner you would ink type. Then scratch th
design with a metallic point through the wax and dip
in a weak acid, one of nitric to ten of water. Wash in in a weak acid, one of nitric to ten of water. Wash th
warm soda water, warm, and clean off the wax with tur pentine and alcohol. Or paint the design with asphal varnish
ground.
(2) W. R. H. writes: In a discussion, R. said that a round chimney offered less resistance to the wind, and therefore was less liable to be blown down,
than a square one. W. is of opinion that a heavy wind or ana square one. W. is of opinion that a heavy
or
the effect on either. Please decide. For chimneys of the same flue area, the square chimney contains the most material, and its form is more favorable for bonding the brick work. Its square lines
of resistance are stiffer than the round chimney. Its of resistance are stiffer than the round chimney. Its exposure in one direction is less than the round form, while its greatest exposure is about 20 per cent greater.
The difference in weight of material is about 18 per The difference in weight of material is about 18 per
cent greater in the square form. Altogether, we should ay that the square form would be the safest.
(3) D. C. E. E.-Very small taps and drills can be hardened by heating with a Bunsen burner, the emper being drawn with the burner. If you have no eas, a large oil or kerosene lamp will do. If the piece small furngee such as tinsmiths use, with a hand bellows to blow with, or a small pipe from a blower nozzle, will be all that is required to dogood work. Put little hard soap upon taps before heating; it prolects
them from oxidation.
(4) R. B. writes: I am running a Corliss ongine 16 inch cylinder, 42 inches stroke, and it runs 81 can change the wheels on the upright and engine saft, and run it 70 revolutions and carry 75 pounds pressure. What will be the difference in the fuel con-
sumed? A. It will be most economical to run it at the sumed? A. It will be most economical to run it at the
fast speed if your cut-off is allowed to cutshort enough fast speed if your cut-off is allowed to cut short enough tions we could not recommend the change. Carry 75
or 80 pounds in boiler and throttle down till your cutff has control of the speed of the engine
(5) J. H. asks how to figure the horse power of a high pressure engine from cards made by the indicator. A. The indicator card will give you the on; this multiplied into the area of the piston gives the verage constant force actiug on the piston, which multiplied by the velocity of travel of the piston in feet per minute, results in foot pounds work of the engine, which divided by 33.000 gives horse power.
(6) A. G. M. asks: If an opening was made irectly through the earth and a weight was let fall into it, would the momentum carry it beyond the cen-
er, or owy to it? A. Theoretically the ball would be carried beyond the center, and would oscillate forever nder the action of gravity.
(7) J. J. G. asks how to gild the edges of cards which are not beveled. A. Coat .the edges with size and dust the powder as in the ordinary process. (8) B. F. C. writes: I am about to bave
 ourse, and dry very quickly? A. A map varnish will answer. 2. Is map varnish the right thing? If so, will
vouplease give me recipe for making it? A. Pulverize ou please give me recipe for making it? A. Pulverize
one ounce sandarac, a quarter of an ounce mastic, quarter of an ounce elemi, dissolving them in half quarter of an ounce elemi, dissolving them tit a soluion of 4 ounces shellac and 3 ounces oil of lavender in rinter's in ronning during varnishing? A. Not if the printer's ink is first allowed to dry. 4. What kind
brush is the bests A. Use a flowing (hair) brush. rush is the best? A. Use a flowng (hair) brush.
(9) L. B. B. asks for a good imitation herry stainfor pine, something that will not requir silled labor. A. Th
suitable cherry stain:

Rain water

3 qts.
Boil in a copper kettle until the annatto is dissolved,
 ready to bottle for use.
(10) W. H.-Toy balloons are made by he rubber companies and sold to retailers, who intimes gas from the house burners. 'The balloons are men varnished with a thin glue to kep the gas in, as t will pass through the rubber by its osmose properties.
(11) W. C. E. asks for receipt for dressing and tempering mill picks and also for tempering loco-
motive springs. A. Mucb depends upon the style of motive springs. A. Mucb depends apon picks that you require to temper. Sectional or asily handled in the fire but still require great care not to burn or overheat the corners either in hammering or hardening. A slow charcoal fire is the best. Do not ammer to a thin edge. It is an old adage to hay
hick and grind thin for cutlery, which is equally good or mill picks. The principal point is good mild steel. Harden at as low heat as possible, and not draw the
temper. If you have thick, solid picks to harden, you will require extra caution in leaving the edges thick and heating the whole pick evenly, so as not to burn locomotive springs must decide the manner in which they are tempered. They should not be overheated in any part. Hence it is necessary to bave a large slow fire. Harden in good lard oil. The burning off for
temper should be also done over a large slow fire to nsure evennes
(12) C. W. B. writes: I desire to inquire conerning the kinds of telescopes in which the correctcompare with the glasses where the correction is made in the object glass? Will the lenses called cosmorama
enses do for object glasses for that style of glass or lenses do for object glasses for that style of glass or
telescope? A. The dialytic telescope has not comared well with those in which the correction is made
aeld, and as a general principle persons bailding this
class of telescopes do so for reasons of economy and are liable-to select inferior glass, whereas it require glass just as free from defects and strix as any othe
form. There have been but very few of these telescope (and those with sulphuret of carbon correctors) that (and those with sulphure
have claimed real merit.
(13) E. G. writes: In the telephone de scribed in Subriament No. 142, are the plates, C which clamp the maguets together, of iron or wood? A The plates which clamp the magnets together in the
telephone referred to should be of wood, brass, rubber or some other non-magnetic material. 2. How-far wil this telephone work? A. This telephone works well i carefully made.
(14) J. J. F. writes: I made the induction coil described in the Scientific American Supplement and it has proved a success. Now I wish to make one
as follows: Length of core, 14 inches; diameter, $11 / 8$ as follows: Length of core, 44 inches; diameter, $1 / 2$
inch; over this I propose to wind two layers of No. 14 copper wire (American gauge),the whole well insulated inch thick. The secondary wire will be No. 38 , silk covered, copper wire, which I will wind in disks one inch thick to slide over the primary, like washers over a bolt, connecting their outer terminals with the inner
of the next and so on, there being 14 disks or sections of the next and so on, there being 14 disks or section
in all-the whole being 7 inches diameter. Could increase the diameter with advantage? How are the proportions? How many jars 6×8 Bunsen do I need for a spark 17 or 18 inches long, using a large condense
A. The diameter is large enough; nothing would b gained by making it larger. The proportions are ver good. It is probable that 4 layers of No. 12 for your
primary would be better than two layers of No. 14. You primary would be better than two layers of No. 14. Yo inches. Better use four or six cells of plunging bi hromate battery.
(i5) E. P. W. asks: 1. Is the removal of the hair from a hide at any time or place called tanning A. No. It is called the depilatory process. 2. Ha in forty-eight hours? A. Thin leather may have been :anned in forty-eight hours by some of the new or hot processes; they are of doubtful utility, and not prac-
ticed by the makers of good leather . 3. What is the ticed by the makers of good leather. 3. What is the
usual time occupied in tanning sole or harness leather? usual time occupied in tanning sole or harness leather?
A. It requires from 20 to 30 days. The best English is said to take from 4 to 6 months.
(16) A. F. T. asks: How is horsehair raightened for uses of brushes? A. In the New Yor market horsehair that is naturally curly is not used for brushes. Hair that has been curled or bent by packing with strings in small hundles, steaming or boiling th bundles, then rolling in a cloth press, and drying in an oven, care being used to keep the bundles straight Naturally curly hair may be straightened for the time but will curl by use, and is declared unft for brushes
thatmay require to be wet, as the wetting will in a thatmay require to be wet, as the we
hort time bring back the natural curl.
(17) A. R. R. writes: Suppose a copper rod measures just 100 feet in cold weather; how muchlonger would in sun in summer time? What would be the ex pansion of the copper plate on a vessel say 300 fee long when unloaded, and the broadside exposed to the hot sun? What is the age, as near as you can tell, of the oldest bronze statues that have been exposed to the weather, or how long will a good bronze statue last?
A. 100 feet of copper wire at 320 will expand to ico 14928 feet at 212°, or nearly 32° win expand 1.0.14928 feet at 212°, or nearly sos of a foot. The tem rise to about 100° and in still air possibly to 110° or 115°; say 106° for an average will give a total expansion o $\frac{3}{2} \frac{5}{00}$ of a foot, or $\frac{3}{10}$ of an inch. There are bronze statues in Europe 2.000 years old in good preservation. Many that have been buried in the earth for from 1,500
2,00 years are in fair conalion.
(18) H. A. F.-The method for crystallizing tin plate is given as answer to query 5^{7}
Screntific American for J anuary 13,1883 .
Minerals, etc.-Specimens have been re ceived from the following correspondents, and examined, with the results stated:
G. Bros.-The samples are apparently nothing but quartz containing mica, and show no evidences of gold.
If however you have reasons for suspecting the presence of gold it will be best to have the ore assayed For this purpose a large amount of mineral will be
necessary, and the expense $\$ 5.00$.

INDEX OF INVENTIONS
For which Letters Patent of the United
States were Granted
November 20, 1883.
AND EACH BEARING THAT DA'TE. [See note at end of list about copies of these patents.]

 Bor. See Axle box. Boot and shoe box.
Brace. See Bit brace.
Brake. See Traction engine brake. Wagon
Brake. See Traction engine brake. Wagon
brake.
Bran from wheat, process of removing, A. Schwarzwaelder
Brick and tile machine, W. W. Wallace. Brick machine, G. Martin
Broom, D. B. Turney
Broo

Culipers, \mathbf{O}. D. Warfield..... 2888961
Calipers, mlcrometer, L. L. Remacle 288,736
Can body blanks, machine for cutting, G. T. Pil-
lings...288839
288,719
ar brake, automatle, J.D. Meenan 288,719
Car coupling, M. R. Allen..................... 288,754
Car coupling,
Car coupling, F. B. Cunningham
ar coupling, Flood \& Knoder..
Car coupling, Hartman \& W
Car coupling, C. C. Haskin.
Car coupling, A. Jobnston...
Car, dumping. Beckert \& Lua
Car, freight, A. Goodrich.....
Car, sleeping, L. Creighton
ar spring support, W. Don..........
Car starter and brake, W.
Car, stock, S. P. Tallman.
Car stock, M. H. Walker
Car, stock, M. H. Walk
Car wbeel, E. J. Kelly
ar wbeel, E. J. Kelly
tyre.........
Carburetor, C. F. Copeland.
Carburetor, J. H. Saunderson
Carburetor. J. H. Saunderson...
Carding machine feeding mechanism, T. E. Ain
ley... 288,
Carpet cleaner, w. P. Milier........... 288,
Carriages, umbrella for children's, c. . . Foster... 288,
arrier. See Hay carrier. Trace carrier.
Cart, road, A. Hitt................................
Cartridge shells, implement for capping and un.
capping, H. F. Mann
Caster for trucks, etc., C. E. Hasenpflug..
ement pipe, mould for manufacturing
Stow..... 288,633
Stowell (r)...... .
hair, C. W. Reeves.
Chamber pot or commode, H. Loth...
Chamber pot or commode, H. Loth................... . 288.837 284
Chest protector. W. H. Purcell 288, 28857
Chuck, self-oiling drill, A. Süderstrüm....................................288,758
lamp. See Bed-slat clamp.
Clasp. See Stocking clasp.
Clay crusher, w. W. Wallace.
leaner. See Carpet cleaner.
Clocks, actuating device for secondary electric
locks, device for synchronizing, R. W. Willison.
Clothes rack, N. H. Lon
Clutch, A. C. Miller.
Cock, locking stop, N
Cock, locking stop, Norris \& Moo
Coke oven, G. Seibel...........
Coke oven door, W. H. Beck with
Collar or cufor, W. H. Beck w
Cllar or cuff of celluloid, A. A. Sanborn...... 288, 28761
281ter, roling. H. M. Skinner.
ol
Olter, roling, H. M. Skinner........................... $288 .{ }^{285652}$
Condenser tube follower, W. E. Todd........
288.891
Confection grinding apparatus, J. B. Rivera........ 2888,860
Cooler. See Milk cooler.
House..................................... ${ }^{288,637}$
coupling. See Car coupling. Shaft coupling. Coupling. See Car coupling. Shaft coupling.
Wagon-reach coupling.
Cream puff fller. .I. H. Mount......................... 288.843
Creaming machine, centrifugal, H. Petersen...... 288,732
Creaming machine, centrifugal, H. Petersen.....
Crusher. See Clay crusher.
Crushing

Curd stirring machine. H. H. Ferro
Digger. See Potato digger.
Ditching machines, etc., cutter chain for, H. H.

Drinl. ${ }^{\circ}$ See Ratchet drill.
Eryves trough hanger, D. Gottschalk 2888,7828
Edus
Electric conductors, underground conduit for, J........... 288,
E. Giles............................... 288,

Electric machnte, dynamo, T. J. McTighe
Electric machine regulator, dynamo, J. s. Bee-
man et al
lectric ma
288,963
lectric machines, commutator for dynamo,
McTighe \& McConnell.....................
Electrical wires underground, tousing and insu
lation of, c. . Gilman \ldots.
levator. See Water elevator.
Elevator safety appliance, J. Hodges 288,806
Hottinger.......... 288,810
Engine. See Gas engine. Steam engine.
Envelope machine, \mathbf{W}
Faucet, L. Brandeis
aucet, B. Duerstock.
Faucet. bottling. A. Rigny....................................
Feited and textile fabrics, producing compound
elted and textile fabric
offermann \& Jegler.
Offermann \& Jegler.................
Felting machine, A. B. Waring.....
Fence machine, wire, Ash \& Fisk.

TRADE MARKS.
Boots, long legged and ankle. G. L. Kensley
Canned oysters, L. W. Counselman \& Co....
Caps and cartridges, primers. shells, and wads, pis-
tol and gun, Union Metallic Cartridge Com-

pany Coffee, s

Hoes, Iowa Farming Tool Com
Isinglass, A merican, A. Loos
Insulated electric con
Copper Company.

Nets and reticulated fabrics, hair, A. G. Jennting

$\xrightarrow{\text { Popcorn, su }}$

Silks, black and colored, Shaen \& Fithian Teas, Friser, Faries \& Varnum.......................
Tobaceo and cigars, chewing, Leland, smith ©
Tobacco, snuff. and cigarettes, smoking and chew ing, H. Wilkens \& Co.......
A printed copy of the specification and derwing of any patent in the foregoing list, also of any patent
issued since 1866 , will be furnished from this office for 25
 granted prior to 1866 ; but at increased oost: as the
specifcatlom, not being printed, must be copied by hand.
Canadian Patents may now be obtained by the
nventors for any of the inventions named in the fore going list, at a cost of $\$ 10$ each. For full instructions address Munn \& Co., 261 Broadway,
foreign patents may also be obtained.

Inside Page, enchin insertion $-\boldsymbol{- 9 5}$ cents a line
Back Paye, each insertion $-\mathbf{- 8 1 . 0 0 ~ a ~ l i n e . ~}$
Engravings may head adver tisements at the same rat
per line, by measirement. as the letter press. Adver
Engr ine by measirement as the letter press. Adver
pisements must be received at publiction office as early
as Thursday morning to appear in next issue.
KEMP'S MANURE SPPEADER,

To Light Manufacturers, A Business!

U. S. MINERAL WOOL CO, 22 Courtlandt St., N. \boldsymbol{Y}

FOSSIL MEAL COMPOSITION,
The Leading Non-Conducting rovering

FOSSIL MEAL C0., 48 Cedar St, New York.

SPEAKING TELEPHONES.

Merwintand
 PATENTS.

lication of the scientific Amirican, continue to exlication of the scientific Amirican, continue to exfor Inventors. In this line of business they have had thirty-ight
years' experience, and now have unequaled facilities for the preparation of Patent Drawings, Specifications, and the prosecution of . Applications for Patents in the
United States, Canada, and Foreign Countries. Messrs. Munn \& (co. also attend to the preparation of Caveats,
Copyrights for Books. Labels, Reissues, Assignments, and Reports on Infringements of Patents. All business intrusted to them is done with special care and prompt-
ness, on very reasonable terms.
A pamphlet sent free of charge, on application, containing full information about Patents and how to proDesigne, Patents, Appeals, Reissues, Infringements, Assignments
tents, etc.
We aiso send. free of charge, a Synopsis of Foreign
Patent Laws, showing the Patent Laws, showing the cost and method of securing
patents in all the principal countries of the worid. MUNN \& CO., Solicitors of Patents,
BRANCH OFFICE.-Corner of F and 7th Streets,

Edwards'Worts on theStaamEngine Modern American Marine Engines, Boilers, and
Screv Propelerson Ther Despr and Construction.
Showing the Present Practice

 ings, including examples of the most modern engines

 HENRY CAREY BAIRD \& CO., 810 Walnut Street, Philadelphia, Pa. Neatest, Best, and sells for 10 Cents.
My agents are making
$\$ 5$
to
$\$ 20$
per day

$\$ 5$ to $\$ 20 \begin{gathered}\text { per day a t home. Samples worth } 85 \text { free. } \\ \text { Address STINson }\end{gathered}$ INDIAN Relles, Agate Goods, Curf-
osities, Specimens. Send stamp for
Catalogue to H .
No. Tammen \& Windsor blk., Denver, Colo. Co.
 THE BIGGEST THING OUT IIlustrated bool

DEAFNESS CURED!

 I CURE FITS!

RUPTURE

 266th EDITION. PRICE ONLY \$1
 KNOW THYSELF. A Great Medical Work on Manhood,
 miseries resulting from indiscretions or ex cessese. A book
 filt thelot of any physician. 300 pages, bound in beauary, and professina
 tive sample, 6 cents. Send now. Gold medal awarced
thauthor by the Natonal Medical Asspciation, to the
oftcers of which he refers. ofilicers or which he refers. by the young for instruction
and hook should be read
and the afticted for relie. It will beneft all.-LonThere is no member of society to whom this book will Adress than Peaboany Medical Institute, or Dr. W. H Perker, No.t on on all diseases requiring skill and exper1

BLAKE'S CHALLENGE" ROCK BREAKER. Fing For Mncadam Road making, Ballasting of Raillotids. Crushing Ores, use of Iron Furnaces
 etc. Rapidiy superseding our older stytes of
nc, and simpticility Adopted by importan
First Class Medals of Superiority awarded b

ROOFINC.

SHEPARD'S CELEBRATED
Screw Cutting Foot Lathe. Foot and Power Lathes, Drill Presses
Scrolls, saw Attachments,Chucks, Mandrels, Twist Drills, Dogs. Calipipers. ete.
Send for catalogue of outfit for ama-
teurs or artisans
 NEW HAVEN MANUFACTURINGCO. MACHINE TOOLS Lathes, Planers, Drills, Shapers, etc.
LUSTRATED CATALOGUE ON APPLICATION.

WHO NEEDS MONEY?

W. A. WILSON, Chicago, Ill.

 LGEHTNNLG SENER!

गTHE IJJX MENAL Comporiy, PHILA
METALS ESPECIALLY ADAPTED METALS ESPECIALLY ADAPTED

ros foboz
Jonsi i. cunven Trae.

METAL WORKING
MACHINERY LATEST IMPROVEMENTS. GOULD \& EBERRHARDT,

ICE MACHINES 10 lb. per Hour to
50 Tons per Day Binary Alsorovion Ssysem. simpoventicalize
Delamater Iron Hoiks, 16 Cortiandt St.,
NEW YORK, U. S.
ORMAN'S PRINTING PRESSES BEAT THE WORLD. Send Stamps for Catalogue and state size of
Press wanted. Address J. F. W. DORMAN, 21 MALLEABLE ${ }^{\text {Nod }}$
Tolegraph and Electrical Telegraph SPLIES

\square \therefore RUBBER BACK SOUARE PACKING.

ROOTS NEW [RON BLOWER:

IRON REVOLVERS, PERFECTLY BALANCEL, P. H. \& F. M. ROOTS, Manufacturers, S. S. TOWNSEND, Gen. Agt,22 Cortland St., 9Dey St.,
COOKE\& CO., Selling Agts., 22 Corthand Street, =END FOR PRICED YAREALOGUE.

GOSSAMER GARMENTS FREE,

 Bonton Supply Co., Dover St., Boston, Mass.
 $\$ 72$ A WEEK, 812 a day at home easily made. Costly
Outtit free. Address True
Co Co., Augusta, Me.

,

$\stackrel{+}{\circ}$

NEW APER FILE

The Bradey ${ }^{2}$ OAD GARM
BRADLEY \& CO. SYRAACUSENE, NY
 Pyrometers. For shoming heat ofl

HW.JOHIS

 msbegros
asbusyos rope packinging

man bubing tele
H. W. JOHNN M'F'G CO., 87 Maiden Lane, New York,
Sole Manufacturers of H.W. Johns' Genuine

W. BAKER \& CO ${ }_{11}$ Dorchester, Mass.

WOOD, TABER \& MORSE, Eaton, Madison Co., N. Y.,
Portable and Agricultural Steam Engines
 Practically Portable Steam Engines,

 capatity or topera ror fuguther
Standard Portable and Agrionlturad Evgines ir the world Degeriptive Ciroours sent on spplication.
Mention

TOOPm,
Asbestos Lined Remorable Covering,

Colliau Patent Cupola.

 COLIIAU FURNACE CO.,
BOOKS ON BUILDING, PAINTING,
 ROLLSTONE VARIETY LATHE.

Double Screw, Parallel, Leg Vises.

 FOR 1884.
The Most Popular Scientific Paper in the World. ESTABLISHED 1846.
Circulation Larger than all Papers of its Class Combined.
Only $\$ 3.20$ a year, including postage to United States and Canada. $\$ 4$ a year, including postage to all countries in the Postal Union.

$$
\begin{aligned}
& \text { This widely circulated and splendidly illus- }
\end{aligned}
$$

$\begin{aligned} & \text { Vanto namber oo orisinal engravings of new in- } \\ & \text { ventiousand discoveries, represelting Engineering } \\ & \text { Works, Steam Machinery, New Invantions, Novel- }\end{aligned}$
$\begin{aligned} & \text { tics in Mechanics, Manutactures, Chemistry, Elec } \\ & \text { ticity, Telegraphy, Photography, Architecture } \\ & \text { Agriculture, Horticulture }\end{aligned}$
Agriculture, Horticulture, Naturai Aistory, etc.
$\begin{aligned} & \text { scientinic information of the day; and it is the aim } \\ & \text { of tho publishers to present it in an attractive }\end{aligned}$

Eetontiaic Amoniean ©upplomento

This is a distinct paper from The SCIENYIFIO AMEEICAN, but it is uniform in size with it
every number containing 16 octavo pages. THE
SCIENTIFIC AMERICAN SUPPLEMENT embraces a vecent and valuable contributions in the mos Mechanics, Architecture, and Engineering from
Mvery part of the world. Fivery number contains every part of the world. Fivery number contains
several illustrations, consisting in part of tuport-
ant eng neering works, in progress or completed seve eng neering works, in progresa or completed
ant
both at home and abrod, nrenhitetural views of
and and plans of new public buildings, handsome
dwelling-houses, cheap cottages, household furni-
ture, etc.
Translations from French, German, and
other foreign journals, accompanied with illustrations of Grand Engineering Works; also of Naval and Mechanical construction of magnitude, pro jected, progressing, and
in all countries abroad.
The most important papers read at Scien
tif Conventions by the best and most profound hinkers, will be found in Tgi SoIENTIFTO AMERI
N SUPTFMFNT. This paper when preserven -bound, forms a most useful encyclopædia of
information, and presents a complete history of the propress of the times in the Sciences, Arts, and
Mechanical Engineering. This paper contalns no Price- $\$ 5$ a year, in advance; or one cops of THE SCIENTIPIC AMERICAN (see prospectus above LEMENT both mailed for no year for tor pay-
ment in advance to the pulishers. Remit by mail and address MUNN \& CO.

MUNN \& CO.,
Publishers Scientificamerican,
261 Broadway, New York. MunN \& Co. have obtained for their clients,
since establishing their Agency in 1846, more than one hundred thousand patents. obtaining patents, trade marks, copyrights, etc., Inventions examined and advice as to patent-
ability given free of charge Patents obtraned in the United Statcos, Canada,
nd all other countries on the best terms. Pamphlets of informos on the best obterming. Patents
Phis country and abroad sent free on applica

F. Brown's Patent FRICTION CLUTCH.

A. \& F. BROWN, 43 Park Place, New York.

HARTFORD

STEAM BOILER
Inspection \& Insurance COMPANY
IV. B. PRANKLIN.V. Pres't. J. M. ALLCN, Pres't J. B. PIERCE. Sec'y

THE HOLLAND LUBRIOATOR, VISIBLE DROP,

 Simple, Substantial, Safe, Economical.
Half horse power will pump 500 , pallons of water 100 feet POWER DETERMINED BY ACTUA1, TEST. THE CONTINENTAL GAS ENGINE CO.
 SOUTHWARK FOUNḊRY \& MACHI VE COMPANY, Engineers \& Machinists Blowing Englimes and Hydranlic Porter-Allen Automatic Cut-0ff Steam Engine.

WESTON DYNAMOELECTRIG MACHINE

${ }^{\text {for }}$ ELECTROPLATING AND ELECTROTYPING,
 Are also manufacturers of Pure Nickel Anodes
 Gold Plating; also, Bronze and Brass Solutions. Com-
plete outfite for plating. Estimates and catalogues fur-

HANSON VANWINKLE \& Co.

SOLE AGENTS NEWARK, V.J.
New York Oilce, 92 and 94 Litierty st.

 LOOSEPULLEYOLLER

WATCHMAKERS.

PRINTING INKS

