
a WeEkLi Journal of Practical information. art. Science. mechanics. Chemistry and manufactures.

₹̌ientific gmxrican.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. pUBLISHED WEEKLY AT
No. 261 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TREMS FOR THE SCLENTIFIC AMERICAN.

One cony, one year postare included... $83 \mathbf{1 6 0}$
One copy, six months postage included
Clubs.-One extra copy of The Scientifio Am erican will be supplied gratis for every clut of five subscribers at $\$ 3.20$ each \cdot additional copies at same proportionate rate. Postage prepaid
Remit wy postal order. Address
and by postal order. Address
The Scientific American Supplement
is a distinct paper from the SCIENTIFIC American. 'THE SUPPLEMENT is issued weekly. Every number contains 16 octavo pages, uniform in size with Scientific american. "Werms of subseription fïn sepplement, 85.00 a year, postage yaiu, to subscribers.
all news dealers throughout the councry

Commined liates. -The Scientific American and SUpplement will be sent for one - year postage free. on receipt of and seven dolars. Both papers to one address or different addresses as desired. The sutest way to remit is by draft, postal order, or reeistered letter.
Address MUNN \& CO., 261 Broad way, corner of Warren street, New Yo

Scientife american Export Edition.
The Sciunpipic American Export Edition is a large and splendid peri-
odical, issued once a month. Each number contains about one hundred real quarto pages profusels ilustrated embracing about one hundred large quarto pages, profusely illustrated. embracing: (1.) Most of the plates and pages of the four preceding weekly issues of the Scık.viricic
AmErican. with its splendid engravings and valuable information: (2.) Commercial, trade. and manufacturing announcements of leading h T'erms for Export Edition, $\$ 5.00$ a year, sent prepaid to any nart of the world. Single copies 50 cents. Marufacturers and others who desire to secure foreign trade may have large. and handsomely displayed announcements published in this edition at a very moderate cost lation in all commercial places throughout the world. Address MUNN \& Co.. 231 Broadway, corner of Warren street, New York.

NEW YORK, SATURDAY, AUGUST 18, 1883.

TABLE OF CONTEN'S'S OF

THE SCIENTIFIC AMERICAN SUPPLEMENT

NO. 398
For the Week ending August 18, 1883. Price 10 cents. For sale by all newsdealers

1. CBEMISTRT, MICROSCOPR, AND METALLDRGY. Micro-

v. Astronow Y.-Siemens Theory of Solar Energy.

 VHi. M1SCRLLANEOUS-On the Function of the Sound-post. and

the sugar canes.

In a recent number attention was drawn to the fact that apparently a great, in reality a very radical, change in the sugar production of the United States was coming, and tha too without long delay. It is laboratory work which has rendered this practicable. As in so many instances, me chanical skill has availed itself of minute scientific results and the grains or granules of the chemist's test tubes and balances have become the predecessors and originators of the barrels of sugar from the boiling house and the refinery In order that we may see clearly how this has been done, and to what immense results it is about to lead, we need to look to the two kinds of sugar cane with which we have to deal. Hitherto we have had practically but one, that known botanically as Saccharum officinarum, and in common language universally as "sugar cane." Now every evidence shows that we are to have another whose importance wil exceed that of the former in the same ratio as does the ex tent of territory available for its cultivation. This is botanically Sorghum vulgare, known every where by its generic title as "sorghum."
The saccharum is a semi-tropical plant, and no part of the United States is fairly within the range of its perfect development. Even the Gulf States are along the northern limit of its range for any available purposes, so much so indeed that in no case, or in next to none, is it able to ripen its seed, and thus show that it has reached its full maturity. As a result of this, the region which can be made profitable for its growth and for the production of sugar is necessarily very much restricted. Mississippi, Alabama, and Georgia have given but little attention to cane growing. Florida and Texas reach far enough south to be in the best position of all, but industrially they have as yet accomplished little Louisiana has been the "sugar State," and the cultivation of sugar cane has been bounded by the Red River. And the immense results dependent on this industry are best appreciated from the fact that even under these adverse circumstances our annual yield of sugar has come nearly up to $200,000,000$ pounds.
If now, leaving the consideration of the saccharum we turn to sorghum the conditions are entirely changed The plant needs no such long continued heat. It is per fectly well known that the cultivation of sorghum can be carried on to full satisfaction in almost every State of the Union. New England will probably never do much in that way, except in its southern and southwestern limits, bu neither Minnesota nor Dakota will be beyond the range, for they produce the plant now abundantly. The trouble how ever has been that the yield of sugar from the sorghum has been totally capricious and uncertain. That the sugar was present in the cane was sure, for the juice if boiled properly yielded invariably a very sweet sirup; but while occasionally this sirup would crystallize beautifully, in other instances, and in truth almost always, not a grain of sugar would make its appearauce
A crop of sorghum therefore had no definite value. It was not possible to tell while it was in the field what might result from its working. Very naturally then it did not rank high in public favor. It had its merits, for sirup and for forage,
and in the Northwestern States and in the Northwestern States especially it has never ceased
to be grown to a large extent. But now comes in the laboratory work to which reference has been made. It is no too much to say that now we know the causes of the ca pricious features shown by the sorghum juice, and that kuowing the evil we can avoid it. It is not too much to say that a crop of sorghum in the field can be as safely cal culated on to yield its full quota of sugar of fist quality as can a crop of saccharum, and still further that acre fo acre its best varieties will yield fully as much sugar as is ob taiued from the ribbon cane in Louisiana. The chemica points which establish this belief we will consider at anothe time, speaking now only of the results.
The future sugar of the United States therefore viewed in this light will be for us nationally a new item. We have imported annually at least $1,700,000,000$ pounds, or more than nine-tenths of our consumption. That we can pro duce $2,000,000,000$, or whatever more may be needed, is certain. Why should we not become exporters instead of im porters? We should interfere with no crop now cultivated, as we propose presently to show. And all this can be ac complished were it desirable (which it certainly is not) to encroach no further on the vast extent of domain not yet brought under human use. The corn bands from Ohio to Nebraska and from Kentucky to Minnesota can do it all, and yet feed the hungry as they do now

aLUCOSE IN SORGHUM

In searching for the reasons of the former failure to crystallize sugar from sorghum sirup. we find ourselves brought directly down to the chemical distinctions between glucose and sucrose, known in more common language as grape sugar and cane sugar. And with the difference in their compo sition we must meet also the different relations they sustain to the laws and the force of crystallization. We have long been familiar with the fact that cane sugar crystallizes readily, but that grape sugar in its ordinary states will not crystallize at all. We have also known that sorghum sirup was in chief part a solution of glucose in water, and that beoause of the presence of this uncrystallizable sugar w failed to obtain any crystals, though we were well aware
that sucrose was also present. This may be fairly stated as about the extent of our practical knowledge, three years ago. The fact remained that no one could tell what a given
lot of sorghum sirup would do ; perhaps it would crystallize perbaps it would not.
In the special report No. 33 of the Department of Agrl culture we have the "analytical and other work don on sorghum and cornstalks, by the chemical division of th department, July to December 1880." Dr.Collier, chemist a the department, establishes here certain points, from which we may make our own inferences. One of the chief ob jects he had in view was to ascertain the actual and the relative quantities of sucrose and of glucose contained in the juice of the sorghum during the successive stages of its growth. This was done carefully and continuously and with extreme accuracy. The laws of increase and of diminution were ascertained as fully as the work of a single season would allow, and in the report he was able to repre sent these results in a series of "graphical plates" which show at a glance the proportions of sucrose and of glucose at the dates given. One of these may serve for all very cor rectly, for though no two agreed fully, as might have been expected, yet all agreed in the main features, and they prove this succession of events.
Commencing in the late days of July, we see that the glucose exceeds the sucrose in quantity, but this condi tion ceases by about the first of August. From this time the sucrose increases rapidly though not uniformly, partial retrogressions occurring, of brief duration. When the seeds begin to harden, say about the middle of September, the increase is checked until the seed is nearly ripe; then it goes on, and at the full maturity of the seed it has reached its maximum, which it maintains with only at the most a small waste. This maximum is equal, as a schedule shows, to the average sucrose of sugar cane, and in some varieties goes de cidedly above it.
While these changes have taken place in the amount of sucrose, precisely the opposite has been going on with the glucose. It has as steadily grown less and less, and at the time of maturity it has fallen to very nearly the average of the glucose of sugar cane, and in some varieties is even below it.
We have then this condition: when the sorghum cane is fully mature, its sucrose has reached its maximum and its glucose its minimum, and each of these is in about the quanity and the proportions in which it exists in average suga cane. We may therefore infer that it will yield a return of sugar of equal weight and value to that of sugar cane, and will do it as surely and as readily. If this were alsolutely true, we should have the key of the situation in our hands, but our sugar is not yet certain, though fortunately we are able to make it so. Sorghum juice is not sugar cane juice. It is unstable inits chemical character. Its sucrose, though so largely in the ascendency, bas a strangely perverse tend ency to take to itself another equivalent of HO_{2} and thus become at once glucose. Unless this tendency is arrested every grain of available sugar may have disappeared, and probably will, within twenty-four hours from the com mencement of the change, that is, from the time of the cutting of the sorghum. The transformation can be prevented by the use of lime, but practically this is best done by boil ing.
Here then is the mystery laid bare; the key is now fairly in our hands. Perfect maturity of the cane, and prompt hoiling of the juice; these are the twoessential points. With them success is sure; without them we may expect failure we shall bave a glucose sirup and nothing else. Nor are these assertions made at random. Dr. Collier proved in the laboratory, it is true, the points which we have here seen, and it is scarcely possible to award to him too great credit for Lis skill and the truly practical results at which he arrived. But we can now go beyond him, to that which his researches have secured in actual field work. Sugar from sorghum cane has begun now to be a reality, and not as it was before, a chance shot only. The return is a matter of business cer tainty: as much so as that from sugar cane. We canno here detail the crop reports of 1882 , but they fully justify all he statements we have made
It is easy to understand now the capricious cbaracter ac quired by sorghum in previous years. It was merely a thing of chance, so to speak. Every now and then maturity and promptness would combine, and as a matter of course beautiful sugar showed itself; if either of these two were wanting, beautifui sirup was the only reward.

INCREASED SPEED BETWEEN NEW YORS AND LIVERPOOL

After many sleepy years of slow boat employment the Cunard Company now begins to show hopeful signs of wakefulness to enterprise and appreciation of the public wants. During the past year it has put into service two new and splendid steamers, the Servia and Aurania, which are almost equal in speed to some of the fast boats long used on ival lines. The company has now made a contract with Messrs. John Elder \& Company, of Glasgow, for the building of two additional steamers of a character and power far in excess of anything that has hitherto been devised for the Atlantic mail and passenger service.
They are to be vessels of 8,000 tons burden, and are to have engines of 13,000 horse power indicated, their dimensions being 500 feet long by 57 feet in breadth of beam, by 40 feet in depth of hold; and what is perbaps the most striking fact of all is, that they are to be guaranteed to steam at the rate of nineteen knots per hour, thus crossing the Atlantic, between Liverpool and New York, in less than six days These two ships are to cost about three millions of dollars.

NEW FORMS FOR BOATS

Two boats have been recently chronicled in the papers which make in each case a decided departure from the old type, and we may say the stereotype, which has to a certain extent ruled all ship building from the day of Noah down. For much as models vary, they all seem to be planned on one principle-the boat must take deep hold of the water; and especially is this held to be true in the rough service of the open sea. In any one, for instance, of our splendid ocean steamers, her breadth of beam does not much exceed one-tenth of her length, and of course therefore her draught is so great that Sandy Hook scarce gives water enough to float her without watching for the tide.
Now, is this necessary? Are we bound to go on in the same way, or is it one of the nursery legends which have come down to us by inheritance, and with which, when we learn to go it alone, we can dispense? The two plans of boats to which reference has been made turn our attention toward this matter. The first one was evidently intended only as a pleasure boat, and to be of small size, but it was original in its design. It was to have the general proportions of a catfish, that is, the bullhead of Connecticut, or minister and bull pout of Massachusetts, the Amiurus nebulosus. This brings the bow broad and flat, the breadth carried very well forward, and gently rounded up only, while aft it tapers to a narrow waist and wedge like stern, with nothing there to make her drag water in the least. The greatest breadth, away out, quite near the bow, will be about one-fifth the length of keel.
What this peculiar build will do remains to be seen. It is certanly unlike any ordinary model, and it is much to be hoped that its results, whether satisfactory or not, may be made public. The trials which fail are of perhaps the most interest and advantage to every one except the originator. In the other case there was not absolutely anything new. It was a small steamer constructed for a sugar estate on the Magdalena River, and to secure a sufficiently light draught her beam was about one-fourth of her length, with full bearings carried well fore and aft, yet without a really flat bottom, fine lines being her general characteristic. With a length of 54 feet her extreme draught is to be only two feet.

This for river navigation is nothing special. We all know the swarms of Mississippi boats built to "run anywhere that the ground is a little damp." But the peculiarity of this new craft is that she is to be run out to the Magdalena on her own merits, by her own power. And there is where the difficulty seems to come in, and so much so that the captain is guaranteed a special extra payment if he makes the trip successfully. It is apparently taken for granted that the long surges of the Atlantic. and perhaps in particuthe of the Caribbean, will pitch her about and drive her lar of the Caribbean, will pitch her about and drive her
before them at such a rate that she can never give a good account of berself.
Because forsooth she does not go down into them, but floats lightly over them, they will knock her here and there like a bubble. Well, let them knock. What harm will it do? If she bas strength to stand the run of the sea, why should she not be lifted easily above it, instead of having every timber wrenched and strained in the effort to come up through it?

No one can stand well forward and watch an ordinary steamship as she is plunging into a heavy head sea, and see her come rushing down a long swell through the trough, without being conscious of the terrible strain which comes upon her, as she buries herself in the next sea before she begins to rise. Her sharp bow cuts into it like a knife, and away down, down, she goes before her displacement is able to overbalance her weight and her downward plunge, and then eventually she lifts and goes over.
If now instead of this knife edge she had had the breadth forward which would have rendered impossible any such depth of submersion, whose amount of displacement would bave sent her over the coming sea when instead of plunging thirty feet down into it she had hardly buried herself a fathom, what laws of hydrodynamics will show that in this latter case a decidedly important part of the strain upon her timbers would not have been avoided? We are perfectly well aware that we shall at once be told that all this question of bluff bows and sharp bows has been settled years ago, that every one knows sharpness and speed are
but convertible terms, and that for sea going craft the deep but convertible terms, and that for sea going craft the deep
keel or its equivalent is indispensable. Very good! Perhaps all this may be so, and then again perbaps it may not. We are entitled to our own free judgment, and some time by and by we may give the reasons for what we believe as to it.

faith remedies.

It is unnecessary to resort to some collection of anecdotes relating to old-time superstitions to show how great an influence faith or fancy may have on the human mind, and ast through the mind on the body. The faith cures which are a portion of our current news are supplemented by practices by sensible people which are considered by them to be of such an occult or doubtful nature as to be
concealed, usually, for fear of ridicule. It is not uncommon concealed, usually, for fear of ridicule. It is not uncommon now for persons to wear around the neck a suspended miniature sachet of silk containing gum camphor as a defense against fevers, measles, and small pox. A string of red
coral beads, or in lieu thereof a bit of scarlet yarn about coral beads, or in lieu thereof a bit of scarlet yarn about
the neck, is even now considered a necessary protection of the neck, is even now considered a necessary protection of
the infant from various ills. Some persons who are periodically afflicted with rheumatism carry either a small potato
or a horse chestnut as a charm against the attack of the or a horse chestnut as a charm against the attack of the
dreaded foe. This sort of nousense is not confined to the vulgar or ignorant, for in at least two instances one was a doctor of divinity and the other a man of liberal education and cosmopolitan experience.
The cure of warts has always been associated, more or less, with the occult or unknowable. A pleasant mannered young woman who made no pretensions to unusual skill and medical knowledge, was for years the resort of all the wartafflicted in the town and vicinity. Speaking from youthful memory, what she did was to take the number of the warts given her by the patient or an accompanying friend, and that was the sum and substance of the prescription. There are plenty of her patients, however, who will swear that their visit to the quiet little dressmaker was followed by the rapid disappearance of their warts. There are reasonable warts by stealing, unobserved, a bit of fresh meat, rubbing warts by stealing, unobserved, a bit of fresh meat, rubbing
it on the warts, and burying it in the ground. In cases of threatened tetanus, caused by a foot wound, the drinking of water in which vinegar-rusted nails have been stirred was formerly adjudged to be a specific, and there are persons who will readily give testimony to this effect. In this case it is not impossible that the iron tonic may have been advantageous.
It may be difficult to draw the line between the effect of medicaments on the human system under certain known laws and the mental influence of belief and desire on the physical body. Whether mental emotion or intelligent faith does really affect the animal portion of the human structure or not, it is a curious fact that education and culture do not eliminate a belief in faith cures or remedies.

solar machinery.

No reference is made here to the machinery by which the sun is run, but to the machinery to be run in the future by the sun. Yes, we are speculating again as to those wasted powers of nature which we have had under consideration several times of late. The idea of allowing any force which we can use without expense to escape our grasp is exceedingly unpleasant, and yet we are doing it constantly. We bave glanced cursorily at one: it will do no harm to call up another. May be some good may come of it.
The use of wind power is an indirect application of solar beat to the moving of machinery; why should we not use that heat directly instead of mediately? We have learned to harness the lightning to our car; we have just as good a right to yoke in the sun's rays, and not merely take pictures with them, but send our spindles flying and our cars rolling forward by their power. There is nothing new in this. The thought has often been suggested and the attempt made, and it is partly to take note of what has been already done, and partly to look a little away ahead, that we bring up the subject now.

The direct rays of the sun in one of our hot, or even common, summer days strike with so much energy, and in fact cause us so much suffering by their intensity, that no oue would think of questioning the assertion that were they concentrated, say only four or five fold, on a proper receptacle, its contained water would boil with violence, and steam for mechanical uses be generated abundantly. But those days
are relatively, in our latitude, of small number, and on any are relatively, in our latitude, of small number, and on any
one of even this number clouds are liable to intercept the brightness and the burning heat.
Still, there are regions in which the heat is always great, and where clouds are rare, and it is in those that the greatest benefits are easily available, and it is to those that attention has hitherto been chiefly turned. But alas ! those are not the regions in which power is mostly needed. They are not
where the cotton mill is playing with its looms and spindles, or where the planer and the lathe ask for hundreds of horse power bebind them to give them life and activity. On the
dreary wastes of Nevada, Arizona, etc., you may feel the fiery heat of the sun scorch your face before his disk has risen half its diameter above the edge of the desert, and then that heat increase hour after hour with fearful force. And still further, you may watch week after week, and month after month, and never see a cloud sucb as the pro-
phet saw, " like a man's hand." Solar engines might indeed seem easy of construction there, but-cui bono? Jackass rabbits and horned frogs are all the life that is visible to you as you sit and rock to and fro in your scorching saddle the whole day through.
And that is too much the condition of most of those sunfavored lands. But there are exceptions. Ever since the French have have had possession of Algeria, they have been favorably situated for working out the very problem we have before us. Nor have they been idle. For years experimental work has been going on, and some very interesting and to a certain extent satisfactory results have been attained. The same thing has been done in British India, though they have less of cloudless sky than in the African regions, and apparently not as good progress has yet been made.
The prevalent idea in all trials thus far has been to utilize the direct rays of the sun by concentration through the agency of reflectors. This perhaps will persistently remain the most available means, as it certainly bas the great advantage of cheapness of apparatus. Were it not, however, for the great expense of the instruments, convex lenses would demonstrably accomplish very much more work within a
given space than has ever yet been achieved with reflectors. Will not some inventive soul sef himself to this task of
wind
devising some way of constructing lenses of great size at a moderate cost? We shall see a use for them as we go on ater to look at the possibilities of solar energy, even for our cool and cloudy regions. No absolute degree of perfeciion in their form is requisite; nothing like achromatic conditions; only the power of concentration to a moderate focus, though of course the sharper and more definite the better. It is even probable that polygonal surfaces, without curves of any sort, may be made available, and if so, great diameters may be easily reached. This is a thing well worth nvestigation practically, as we will see.
The results in Algeria have led to a practical trial being made, not under the scorching sun of Africa, but further north even than we are, in the Garden of the Tuileries, Paris. It was on the 6th day of August of last year. The apparatus of M. Pifre, of Algeria, was adapted for use in the French capital. A reflector in the form of a hollow cone, three and one-half meters in diameter, was used to con centrate the solar rays on a vessel for the generation of steam. This steam drove a small printing press, and though the day was not hot, and clouds frequently obscured the sun, the press ran steadily from one o'clock till half past five, and printed on an average five hundred copies of the Soleil Journal, a paper specially prepared for the occasion. The cross section of the reflector of course comprised a litthe over a hundred square feet, and the power secured from this under these circumstances is indicated by the work tated above.
This is not by any means an insignificant showing. It is true no great results will be manifested from it for some time to come, but the future possibilities are there, and by and by they will be worked out.

Fermentation of Baker's Dough.

It has hitherto been supposed that the fermentation of bread dough set up by sour leaven, or beer yeast, was a real alcoholic fermentation. We learn from a paper in Comptes Rendus, that G. Chicandard has investigated the subject microscopically. He found that the Saccharomyces cerevisice put into the dough very soon disappeared and numerous microbes, which he took for bacteria, made their appearance. These bacteria multiplied with great rapidity on the yeast in dough, and they can be cultivated in water containing yeast. Hence he concludes that the beer yeast favored the growth of these microbes. An analysis of the gases evolved during fermentation proved the presence of 70 per cent of carbonic acid, while the rest consisted of hydrogen and nitrogen. The composition of these gases is similar 20 those formed by the putrefaction of albumen.
From this it would appear that the fermentation of bread does not consist in liquefying the starch by alcoholic fermentation, but in the conversion of one portion of tre In soluble albumen of the gluten first into soluble albumen and then into peptone. Starch is first decomposed by heat in the process of baking, forming soluble starch and some dextrine. The cause of the fermentation is, however, a bacterium.

Nitrogenous Ferments in Human Milk.

Bechamp has publisbed a paper in Comptes Rendus on milk, in which be says that cow's milk contains two distinct albuminous substances besides caseine. One of these remains insoluble in alcohol after it has been precipitated by alcohol, and is an enzymotic substance which possesses the power of iquefying starch without first converting it into sugar. Dumas and Cahour have already proved that the enzymotic constituent of woman's milk possesses much greater power than that of cow's milk, nearly equally to diastase.
Becbamp isolated the enzyme by the following process: normal slightly alkaline woman's milk was carefully acidified with acetic acid, aad then at least three times its volume of 95 per cent alcohol was added. The very bulky precipitate was collected on a filter, washed with weaker alcohol to remove the milk sugar, then with ether to remove the fatty portions, and then taken up with distilled water. After a few hours it is filtered. The solution thus prepared possesses to a high degree the property of liquefyingstarch and converting it into sugar. Twenty or thirty cubic centimeters of milk are sufficient to prove this assertion.

Another Valuable Life Ended.

Many persons who have had dealings with Messrs. Ellwagner, the extensive florists and rose growers at Rochester will regret to learn of the death from typhoid fever of Mr . Henry R. Ellwanger, after a four weeks' struggle with the disease. Although but thirty-three years of age, Mr. Ellwanger had become the acknowledged anthority on the subject of roses in the United States. He was the author of a work entitled "The Rose," published last year, which established his reputation, and the Century for July contained an illustrated urticle entitled "Old and New Roses," which has attracted wide attention. This was the young man's last work.

Adamascobite.

Adamascobite is the local name of a mineral which is said to be found in only one place in the world, and that is he State of Missouri. The stone is very peculiar in its structure and properties. Its cutting power is diamondlike, cutting away steel very rapidly, and still retaining an like, cutting $\AA w a y$ steel
exceedingly fine edge.

IMPROVED FIRE-HOSE NOZZLE.

The engraving shows a novel and ingeniously contrived spreading or spraying nozzle for fire-bose, which is capable of throwing either a solid stream of water, or of breaking it up and spreading it so that it will cover a great surface and produce a sudden lowering of the temperature by the evapo ration of water spread over the heated surface, and thus extinguish the fire without deluging the building with water. It is a notable fact that in many cases of fire the water used to extinguish the flames works far greater injury than the fire itself. It is to avoid this trouble that the nozzle shown fire itself. It is to avoid this troub.
in the engraving has been devised.
The double pointed levers shown in the larger cut are capable of being thrown into the stream of water by simply turning a movable collar. By this means the strean may be instantaneously changed from a more or less solid one to a spray which spreads out and covers a large area. This spray serves as a great protection to the pipe holder, and will enable him to approach very near the fire and producc effects able him to approach very near the fire and producc effects
which would be entirely impossible with the common nozzle
Any one familiar with the principle upon which flre is extinguished by water will see that water applied with a noz zle of this kind would be far more efficient than a solid stream.
For steamboats and factories this nozzle, used in connection with an efficient force pump, would prove a valuable protection against fire. We are informed that the nozzle has been thoroughly tried by experienced firemen, and has proved itself to be very efficient.
Further information may be obtained by addressing the inventor, Mr. Charles Oyston, Little Falls, N. Y.

Automatic Printing of Light Signals.

by m. martin de brettes.
Every printing apparatus, in order to act, requires the mechanical work of a force which is manifested to the purpose, that is to say, when and how the sender of the dispatches wishes.
This small force is required for the magnetization of an electro-magnet, and the mechanical work serves for the attraction of the keeper, the movement of which determines the action of the apparatus.
In order to solve the problem of printing telephotic dispatches at the receiving station, the light projected must have the power of producing there, during its continuance, which depends on the will of the sender, the magnetization of an electro-magnet, forming part of a local battery, or an augmentation sufficient for it to overcome the opposing spring of its keeper.
The illuminated part of the circuit of the battery must consequently be composed of a body endowed with the property-of becoming suddenly conductive under the influence of light, and of ceasing to be so when the light is withdrawn. There exists, as is known, a body which possesses this property in a very high degree, namely, selenium.
The electric light produced at the receiving station in a Mangin's projector is sent there as a bundle of parallel rays, and received upon a converging lens, at the focus of which is fixed the selenium element forming part of the circuit of the local battery, which contains the coil of the electro-magnet moving the receiver.
The impression of the jets of light in black marks, long and short. according to the Morse alphabet, is made with the Morse apparatus. The jets of light are transmitted by the movement of a simple lever which displaces a screen. The printing of the dispatches in ordinary type is effected by means of a Breguet frame receiver, the needle of which is replaced by a type wheel, and to which is added a printing mechanism, which acts by means of a special battery, and only when it is wished to print some given letter.
The distance between two stations depends on the transparency of the air, on the latitude, and, all other things being equal, on the quantity of light received per unit of surface when the luminous rays are parallel. The law of the decrease of the intensity of light in this case is not known; but it depends solely on atmospheric absorption, for in a vacuum the intensity would remain constant. We cannot determine a priori the distance of the two stations for a given electrical focus; recourse must be had to experience.
The fine experiment of M. Fizeau for determining the speed of light shows that the distance of two stations might be considerable with the modern powerful electric lights which exceed 2,000 carcels.
We know, in fact, that in these experiments the light of a lamp gave after a course of 17 kilometers a brilliant focus of very appreciable intensity.-Comptes Rendus.

In New York city there are 486 miles of water pipe, 391 of sewer pipe, 824 of gas pipe, $141 / 2$ of steam pipe, and 15 of underground electric wire.

River Obstructions, New York.

The great explosion at Hell Gate, in September, 1876, under the supervision of General Newton, did much to improve the channel from Long Island Sound to New York city. But there is another obstruction to be removed be-

fore the passage can be made wholly safe-Flood Rock, in the East River, off Ninety-third Street. General Newton thinks that the sum of $\$ 500,000$ will be required on this work for the: next year

IMPROVED SLEIGH

The sleigh. shown in our engraving is made after a design patented by Mr. Geo. Edward Watson, of Bismark City, Montana. The novelty consists in the peculiar form of the Montana. The novelty consists in the peculiar form of the
runners and.in the ornamentation of the runners and body.

From advance sheets of the "Mineral Resources of the United States," a report by Albert Williams, Jr., Chief of the Division of Mining Statistics, U. S. Geological Survey, a number of interesting facts are taken relating to the amounts and values of the mineral substances procured by labor in the United States during the year 1882, and estimates of the amounts during the first half of 1883.
In value coal heads the list, which comprises antbracite, bituminous, brown coal, and lignite, and it amounts to $\$ 146,632,581$, of which nearly one-half is that of Pennsylvania anthracite. Pig iron ranks next, its value being $\$ 106,336,429$, to which may be added the value of chrome iron ore, at Baltimore as a market, $\$ 100,000$. Of silver, ranking next to coal, there was mined in $1882, \$ 46,800,000$, and of gold $\$ 32,500,000$. The other metallic ores produced were copper, lead, zinc, quicksilver, nickel, antimony, platinum, and tin. Of platinum the total value was $\$ 1,000$, and of tin the quantity was so small that no valuation is made of it. The total value of the metallic products of the country for 1882 was $\$ 219,756,004$.
In the non-metallic products the one ranking next after gold in value is crude petroleum, $\$ 23,704,698$; then lime, $\$ 21,700,000$; building stone, $\$ 21,000,000$; salt, next in value to building stone, is only $\$ 4,320,140$. The total value of non-metallic substances, including clays, bubrstones, grindstones, lithographic stone, and other substances entering into manufactures, is $\$ 453,912,406$.
Judging by the estimates made for the first six months of 1883, the value of iron produced is somewhat less than that of an equal period of 1882 , the total local or "spot" value of iron and steel in the first stage of manufacture for 1882 being $\$ 171,336,429$, while the estimates for the first half of 1883 are only $\$ 71,000,000$, equal to $\$ 142,000,000$ for the year. But this comparison of market values will be modified by the fact that the price of iron bas been less in 1883 than in 1882, a difference of something over three dollars a ton.
Gold and silver were produced in increased amounts in 1882, the additional value over the product of 1881 being $\$ 1,600,000$. For the first six months of the current year the production of petroleum has been $11,291,663$ barrels, against $30,053,500$ barrels in the previous twelve months. In copper there has been an increase, the estimate for the first six months of 1883 being $58,000,000$ pounds, against $91,646,232$ pounds in 1882.
A slight increase in the amount of lead mined is estimated for the present year, and also in zinc; but as these estimates are based on increases in former years, and not on actual statistics, they may be taken with some allowance.

Steel for Heavy Shafts.

An engineer at a meeting of the Society of Engineers at Aix-la-Chapelle gave some facts in regard to the qualities of mild steel for heavy forged work that tend to modify the growing confidence in that material as compared with iron. He said that a Bessemer steel shaft of a high speed engine belonging to a rolling mill broke suddenly while the engine was moving slowly. The shaft was replaced by one of iron. In an engine works on the Rhine a steel shaft of $153 / 4$ inches In an engine works on the Rhine a steel shaft of $153 / 4$ inches
diameter broke, and inside was found a hole large as a man's ist containing two steel balls that during the two years of the shaft's rotation had been worn quite smooth. Another engineer said that in casting steel ingots it is more frequent to have a porous casting in mild steel than in hard steel. If steel ingots have incomplete, hol
low, or porous spots, these do not become welded together by further heating and working, but, after being rolled thin, they retain their porosity, as unwelded spots are retained in wrought iron. As these porous places are generally in the center of the ingot, the ound bars, the piston rods, and axles made of it have also usually an internal weakness, which it is difficult to set right in the working, and which may cause breakages in the future. In the course of the discussion it was shown that steel that hardened on the surface on sudden cooling ought not to be deemed mild steel, and was treacherous in its character. No material capable of considerable hardening should be called iron, and, if narrowly examined, it will be seen that a great deal of the ingot iron specified as "incapable of considerable hardening," is nevertheless capable of very considerable harden-
The forward ends of the runners are in the form of a goose ing under certain circumstances, such as a sudden cooling neck. There is in each runner a heart-shaped opening and an oval opening, and these openings, as well as the outer margins, are ornamented with color scallops, which contrast with the color of the main portion of the sleigh.
The goose neck at the front of the sleigh is designed to be. adjustable, and is to be terminated in a swan's head or in any other ornamental figure that the fancy of the manufacturer may dictate.
The back seat is adjustable, and is fastened by means of hooks on the inside.
Further information in regard to this invention may be Further information in regard to this inve
obtained by addressing the inventor as above.

WATSON'S IMPROVED SLEIGH.

 ing under certain circumstances, such as a sudden cooling sufficient to slrink the surface, produce tension, small cracks, and finally breakages.AN ingenious mechanic of Jamestown, N. Y., has constructed a perfect locomotive, said to be the smallest in the world. The engine is only $81 / 2$ inches long. The pumps throw a drop of water per stroke. As many as 585 screws were required to put the parts together. The engine itself weighs a pound and a half, and the tender two pounds and a half ounce. The mechanic was at work upon the locomotive at intervals for eight years.

IMPROVEMENT IN TEA KETTLES

The engraving shows a tea kettle embodying novel features which render it very convenient, and obviate the necessity of lifting the kettle whenever it is desired to pour water from it. The kettle has a faucet spout which is closed entirely when in a vertical position, is entirely open when in a horizontal position, as shown in the engraving; and when placed in an inclined position, it is open like the spout of an ordinary tea kettle, but the elevation of the spout prevent the water from flowing out.
Clips are provided for holding the spout in the vertical or inclined position. Fig. 2 of the engraving is a vertical sec tion of the spout, showing the faucet connection closed; Fig. 3 shows the body of the faucet, and Fig. 4 shows the spout with the faucet plug attached.

SCHOENING'S IMPROVED TEA RETTLE.

In addition to these improvements in the spout, the tea kettle has side covers at the top, each provided with a knob of non-conducting material. This arrangement of covers prevents the steam from escaping in such a way as to burn the hand when grasping the bail. The bail when in a horizontal position rests on one or the other of the cover knobs, and is thus prevented from becoming heated. The spout is provided with a knob of non conducting material, by means of which it is raised or lowered.
This improvement is the invention of $\mathbf{M r}$ Charles J . Schoening, of 557 W. Cbicago Street, Chicago. Ill.

Effects of the Electric Light on the Air in Theaters as Compared with Gas.
Prof. M. Von Pettenkofer has been making some experiments with regard to the temperature and quality of the air in buildings lighted with electricity and gas respectively. The investigations were made in the Royal Residence Theater in Munich. The increase of temperature was ten times as great in the upper gallery when gas was used to light an empty house as when it was illuminated by electrioity. In the former case the temperature rose $161 /{ }^{\circ}$ Fahr.; in the latter only 16°. In the lower part of the bouse there was naturally less dif ference. With a full house the difference was 10.8° Fahr ($6^{\circ} \mathrm{C}$.); the temperature of the gallery being 84° Fabr with gas and 73° Fahr. with electricity. The temperature was not as high in the third balcony with the electric light as in the first with gas lights
The amount of carbonic acid was also determined. With an empty house, where all the carionic acid came from the lamps, there was the same difference as in temperature. At the begiuning there were 4 parts in 10,000 of air in the auditorium. With gas light this had increased in half an hour to 5 parts in parquette, 11 in first balcony, and 20 in the third. With electricity it was 4 at the start, and in half an hour 5 in parquette, 5 in first balcony, and 6 in third balcony. If, as Edison claims, electricity produces no carbonic acid, this slight increase must have come from the lookers-on and laborers on the stage.
In a full house we might have expected the same difference, but this was not the case. With five or six hundred people in the theater the maximum amount of carbonic acid was 23 parts in 10,000 with gas light, and 18 in 10,000 with electric light.
There are many causes for this apparent contradiction. The changes of scenes and scenery cause uncontrollable changes of air on the stage and in the theater; it also depends on the frequent opening of the box doors, etc. The large amount of carbonic acid present in an occupied the:1ter, even with electric lighting, must be attributed to insufficient ventilation.-Correspondence of Chem. Zeitung.

THe whistle of a locomotive is heard 3,300 yards, the noise of a train 2,800 yards, the report of a musket and the bark of a dog 1,800 yards, the roll of a drum 1,600 yards, the croak of a frog 900 yards, and a cricket's chirp 830 yards.

LONG'S CHAIR SEATING NEEDLE.
side of the seat frame. The needle is then turned throug one-quarter of a revolution, so as to vaise other strands, and another woof strand is passed through, and so on until the woof extends to or nearly to the needle, which is then re moved, and the remaining space is afterward filled out by hand in the ordinary manner. In this way a uniform diago nal plaiting will be formed, each strand of woof passing over two strands of warp and under two strands alter nately.
A different needle is required for each different width of warp strands, the raised portions and the notches in each case being the width of two strands, except at each end of the needle, where they run out to the width of one strand. This invention has been patenved by Mr. Charles R. Long of Louisville Ky.

HEADLESS SHELL EXTRACTOR.

This is an implement for extracting broken cartridge shells from the chambers of breech loading small arms. The head of the ordinary metallic cartridge shell frequently bursts or is blown off, and the headless shell is very difficult to extract from the chamber of the gun, and in the attempt to extract it with ordinary tools the gun barrel and connected parts are frequently injured. By means of this tool such broken shells may be readily extracted without injury to the gun.
The invention consists of an extracting screw provided with a ratchet, a handle carrying a spring pawl and pivoted on the shank of the screw, and arranged to turn the screw. The end of the handle is a screw driver.
The inventor furnishes the following directions for ope rating the extractor:

PRATT'S SHELL EXTRACTOR.

Kneel on the left knee; throw the piece over the right leg and open the chamber. Insert the end of the tap, at the breech into the broken shell, pressing it firmly with the left thumb, workiag the handle with the right hand from right to left until the tap has a firm hold of the shell, and then rising, withdraw the shell from the breech. Lock the ratchet wheel of the extractor by means of the latch, and holding the shell with the left hand, turn the extractor to the left, which will lonsen the shell from the extractor
In case the shell should be so firmly fixed in the breech as not to yield to a strong pull, insert the head of the ramrod through the muzzle, and push it. against the shell, which will dislodge both shell and extractor.
Thisinvention has been patented by Mr. William Prath, Regiment Armorer, 7th U. S. Infantry, Fort Laramie, W yo ming Ter., to whom all communications should be addressed.

Autographic Reproductions of Fossils.

Mr. Fayol recently exhibited at the reunion of engineers of Saint Etienne, a number of autographic reproductions of

fossils, and explained the process of obtaining

 hem:(1) By means of an inking roller, printing ink is spread over the object to be copied. (2) Upon the inked object there is laid a sheet of ordinary white paper slightly moistened, and this is then pressed down with the hand or with a small pad. Such is the simple and expeditious process by which were obtained the autographic reproductions of leaves, insects, niedals, lace, and fossils represented in the plates shown at the reunion.
These plates were lithographs tbat had been made in the following way: For the ordinary white paper that is used when merely an im pression is desired, there was substituted what is called autographic paper. This latter permits the impression to be transferred to stone by a process opposite that which served to take an impression of the fossil. On sending to the printer the impression on auto graphic paper, which any one can take, the printing costs ten francs per one hundred double plates, or five centimes per single one. As for equipment, all that is necessary is an inking roller, printing ink, and autographic paper, all of which may be procured of the printer. The total expense cannot exceed six francs. Most of the coal fossii's could not be inked directly without injuring them, and to preserve them they are previously covered with a layer of silicate of potassa. The sirupy silicate of potassa (water glass) found at drug stores is diluted with water, and he fossil is then soaked in it. The imperceptible layer of silicate preserves and even brings out with greater sharpness the slightest shades and the most delicate lines. After dry ing, the inking may be done without trouble; and, after the mpression has been taken, all traces of the ink may be removed with spirits of turpentine.

A man breathes about eighteen times a minute, and uses 3,000 cubic feet of air per hour.

HARTFORD STEAM BOILER INSPECTION AND INSURANCE COMPANY
In the fall of 1857 a club composed of young men interested in science and mechanics was organized in Hartford and was known as the Polytechnic Club. Among its members were E. K. Root, E. M. Reed, Horace Lord, Charles B. Richards, Charles F. Howard, J. M. Allen, Francis A. Pratt, Joseph L. Blanchard, Amos Whitney, and J. A. Ayres. The object of the club was to discuss the scientific and mechanical questions that were interesting the public from time to time. Tyndall's "Heat as a Mode of Motion" was just out, and the Richards indicator was beginning to attract attention; the Giffard injector had recently been brought to this count:y, and was interesting scientific men by its paradoxical performances. The question of running steam cars up steep grades, and the use of the screw propeller in place of side wheels for propelling steam vessels, were warmly discussed by mechanical and civil engineers. These and other similar matters furnished topics for the discussions of the above named Polytechnic Club, ibut this club did not confine itself to the discussion of matters that were before the public and commented upon by the few scientific and mechanical journals of the day. It sought suggestions and topics from its own members, and among these contributions was that of "Guaranteed Steam Boiler Inspections.'

It was argued that a sound and substantial corporation, that carefully inspected steam boilers and guaranteed the owners against loss or damage arising from explosions, would be a valuable help to manufacturers and beneficial to the public generally. 'This was the inception of the idea of boiler inspection and insurance in this country, if not in the world. The exciting days preceding our civil war speedily followed, and shortly the war broke upon us. The Polytechnic Club disbanded, and nothing more was heard of steam boiler inspection and insurance until the war was over and business had settled down into its former peaceful channels.
In the early part of the year 1865 the question of organizing a steam boiler inspection and insurance company was discussed by prominent manufacturers and others in Connecticut and Massachusetts. Among these were Richard W. H. Jarvis, President of Colt's Patent Firearms Manufactory; Charles M. Beach, of Beach \& Co., of Hartford, Conn.; George Crompton, oit the Crompton Loom Works, of Worcester, Mass. ; and H. H. Hayden, Esq. It resulted in securing a charter for such a corporation from the State of Connecticut at the May session of its General Assembly in 1866, the name of said corporation to be
THE HARTFORD STEAM BOILER INSPECTION AND INSUR ance company,
its object being to inspect steam boilers and insure the owners against loss or damage arising from boiler explosions. The company was organized in November by th. election of E. C. Roberts, President, and H. H. Hayden, Secretary. Mr. Roberts retired from office the following July, and in October, 1867, J. M. Allen was elected President, and H. H. Hayden was re-elected Secretary.
The company's early operations were small; the idea was new, and struck many people as ridiculous. The company had all the discouragements incident to the introduction of a new business and the development of a new idea; but by honest and intelligent work it gradually gained the confidence of the steam using public, and to-day has not less than 18,000 boilers under its care, and employs 42 trained inspectors, who are constantly engaged examining this large number of boilers. But this is not all; the company furnishes plans and specifications for boilers, boiler settings, and chimneys (for its patrons). Many of the large manufactur ing establishments of the country have had their boiler houses, boilers, settings, piping, and chimneys laid out and arranged and insured by this company, with most satisfactory results. It has confined itself to the one business of the proper construction, setting, care, and management of steam boilers and their surroundings, studying the quality and character of material best adapted for their construction; also the inspection of boilers already in use, with a view to greater economy and safety.
In the opinion of the officers and directors of the company this business should not be mixed up with a number of other kinds of insurance, but its efforts should be directed solely to the study and development of the best results in the use of steam power.
The company is not interested in any patent boiler or boiler appliance, nor in any boiler "purger;" it approves all attachments, however, that have been sufficiently proved by use to be advantageous. In connection with its office are an experimental room, a draughting room, and a chemical laboratory. In the latter, scale from boilers is analyzed also water that has proved detrimental to the boilers in which it is used, with a view to recommending the proper treatment to overcome the difficulty. In short, the company aims to give its patrons the best advice possible for the safety of their boilers and economy in their use. The offices and several departments are illustrated on the first page of this paper.
The company has extended its operations until it reaches in its results from Maine to California, and gives a sense of security to owners and users of steam boilers impossible by any other means; for the company not only insures against financial loss from boiler explosions, but by a series of periodical inspections discovers defects and suggests proper management to prevent disaster. The company, through its
inspectors and examiners, has contributed very materially to the accumulation of facts regarding the life of steam boilers and the causes of their wear and injury. A large fund of valuable information exists in the records of the company, and its examiners are selected in consequence of their practical knowledge as steam engineers. The "Inspecting Room,' shown in the engraving, is a museum of steam boiler curiosities, defective tubes, improper riveting, unsafe plates, etc., teaching more in an hour's study to the engineer and boiler maker than could be obtained by months of study of text-books.
It should be borne in mind that the company by its guarantee has a direct pecuniary interest in every boiler under its care, hence the company is as much interested in preventing accidents as the owner of the boiler. The confidence which the manufacturers of the country have in this company is, no doubt, due largely to the fact that its advice is disinterested so far as the manufacture or sale of boilers or boiler appliances is concerned. It should be stated that Secretary Hayden retired from office, January, 1869, and Theodore H. Babcock was elected to fill the vacancy. In February, 1873, Mr. Babcock retired from the secretaryship to assume the duties of manager of the New York department, which office he fills at the present time. Mr. J. B. Pierce, formerly Secretary of the Nurth American Fire Insurance Company, was elected Secretary in February, 1873. The present officers of the company are: J. M. Allen, President; General William B. Franklin, Vice-President; J. B. Pierce, Secre tary; F. B. Allen, Supervising General Agent. Branch offices of the company are established at the principal manu facturing centers of the country.

Cutting and Setting Precious Stones.
 by a. wagner.

Crystalline gems, like diamond and topaz, are generally cut in such a manner as to have flat, smooth faces. Precious stones that decompose the light and thus produce a play of colors, are polished in such a manner as to heighten this effect as much as possible, which is accomplished by making a large number of small facets. The brilliant is an example.
Precious stones that do not crystallize, and are distinguisbed by play of colors, like the opal, or peculiar effects of light, like the cat's eye, are usually polished round or oval like a loaf of bread or a half of an egg.
Gems are set in two different ways, distinguished as a free setting (ajour) and band setting (en cassette). In the former the stone is exposed on all sides and only held by little clasps. All its properties, its fire, its play of colors, show to the best advantage here. Hence very valuable gems are never set in any other way. Flat stones that are set iu rings are sometimes fastened on the edge so as to leave only the top and bottom surfaces exposed.

In the band setting the stone forms the lid of a gold box, and if the gem is transparent the upper surface is generally made flat and smooth, while the under side forms a low pyramid.
In those stones which receive a band or box setting, and are less. valuable, the beauty of the stone is increased by lining the box with colored tin foil, the color of the foll cor respouding to that of the stone. Thus, for example, a piece of dark yellow foil is placed under very pale topaz, a deep purple foil under a pale amethyst, and so on, so that the light reflected from beneath through the stone will have a deep yellow or violet color, giving the stone a much finer appearance than if it were set free.
When setting common stones in cheap goods, they do not take the trouble to line the box with tin foil, but merely give it a coat of some colored varnish. This method is not one to be recommended, for a stone that has the foil beneath it looks much handsomer
In order to make a cheap article with genuine stones the following ingenious device is resorted to: Thin slips of some gem, as emerald, for example, are backed up with a glass of exactly the same color, and the glass likewise polished. By setting one of these double stones with the real stone outward and the glass beneath, the surface will, of course, exhibit all the properties of the gem, such as bardness, etc. These half genuine stones are known as "underlaid gems," or in French as "pierres fines doublée." When these underlaid gems are skillfully set, it is difficult even for the expert to distinguish them from perfectly genuine stones. But still it is easy to distinguish them by holding the stone before the eye in such a manner that the light reflected from the top enters the eye at an oblique angle; the surface where the stone and glass meet can be distinctly recognized by the
difference in the refractive power of the two media, having the appearance of a crack or flaw in the stone. The public are frequently deceived by dealers who represent these underlaid stones as being perfectly genuine.-Neueste Erfindungen.

Eighty Years of Usefulness.

There is something encouraging to young mechanics in the fact that a distinguished member of the craft has just completed eighty years of useful life and is still busy. In effort he is a very young man, for he hopes beyond his accomplishments, and believes beyond his possibilities. This old-young man is John Ericsson, the designer of the first monitor-for so he will be remembered in this country and others. And yet he will be considered historically as an inventor of the locomotive, of a caloric engine, of a screw for the driving of vessels, and possibly as the orginator of a destroyer" that may add greatly to our national defenses.

Possibly his solar engine may also add to his fame; but he will be held in remembrance, by those who share his friendship, as a good man and pleasant friend.
John Ericsson was born in Sweden in 1803, his father being a mining proprietor. He was educated as a civil engineer and subsequently practiced his profession in England. There in 1829 he entered a locomotive in competition with hat of George Stephenson.
In 1833 he first brought to public notice his caloric engine. In 1837 he constructed the first practicable propeller vessel, the Francis B. Ogden, and the disfavor with which this was received by the British Admiralty resulted in Captain Erics son's departure for America in 1839. His record in America began with his first essay in war ship building, the Princeton, which was the first steamship ever built with macninery protected from shot by being placed below the water line. The story of the Monitor, which revolutionized naval architecture, is too well known to need more than a reference. For the last few years Ericsson's time has been chiefly devoted to the perfection of submarine attack, and his torpedo boat, the Destroyer, is the result of his labors in that direction.

An Excellent Ferrotype Developer.
Messrs. Spiller and Crook, after long experience, give the following as a good developer for ferrotype plates:

Water	1 ounc
Sulphate iron.	14 grains.
Saltpeter.	10 gr
Acetic acid No. 8	. 30 minim
Nitric acid	.. 2 minims.
some have added-	
Sulphate of potash.	. 10 grains.
A potassium collo	

The tones which this developer gives are of a metallic luser, resembling the daguerreotype.

Instantaneous Photographs.

The introduction within the past two years of the im proved gelatine process, by which the time of taking photographs with dry plates has been reduced a thousand times, renders it an easy matter now to obtain with certainty ex cellent pictures of moving objects, and opens up a vast field of experiment for the scientific student. We lately received some excellent specimens of instantaneous work by Mr. G. G. Rock wood, of Union Square, New York, illustrating the principal proceedings at the opening of the great Brooklyn Bridge. Pictures of frigates covered with flying flags, sailors manning the yard arms, and cannons firing from the same ships are among the pictures, and convey to the mind an idea of the extreme brevity of the time in which the impression must bave been made on the sensitive plate. We are informed that the camera was located upon a steam tug, but the plate exposures were so brief that the vibration due to the machinery of the tug did not affect the distinctness of the pictures.
Mr. Rockwood has also produced a variety of beautiful photos illustrating the recent yacht races in the harbor. The several boats engaged in the race are shown in many various positions, going at racing speed, all photographed in stantaneously; we have here marine pictures very artistic in finish, that show the form and motion of the waves, the spray, the bending of masts and sails to the wind, and all the circumstances of

Tar as Fuel.
M. Le Treust gives some data relating to the use of tar as fuel in the Vaugirard Gas Works; the model followed being that of the tar furnaces of the gas works at Breme, designed by M. Servier. M. Le Treust mentions the disadvantages usually accompanying the use of tar as fuel, including the rapid destruction of the retorts, the extreme care necessary to maintain a regular flow of tar, and the liability to smoke. All these inconveniences are claimed to have been overcome by the arrangements perfected by M. Le Treust, which consist of a special form of injector, working in a furnace to which the air supply is regulated to a constant quantity. To insure fluidity, the tar used is taken directly from the hy draulic main. In order to utilize the great radiant power of the burning tar, the retorts of the setting of six are left as bare of brickwork is possible, being supported only on three narrow arches in their length, the middle of the setting being left void. Finally, the front wall is kept cool by the passage through it of the air required to support combustion. Eight settings of six retorts, working for a period of 434 days, carbonized $19,259,200$ kilos. of coal, and consumed $2,345,750$ kilos. of tar; being 675 kilos. of fuel per bench per day, or $12 \cdot 17$ kilos. of tar per 100 kilos. of coal carbonized. From these figures M. Le Treust concludes that tar firing is as good as coke, since the production of gas is as large, the retorts last as long, and the consumption fuel is only 12 per cent of the weight of coal carbonized.

The Lancet believes the naked electric light is fatal to the eyes. It is too hard; the " waves of motion are too short, and the outstroke joins the instroke at too acute an angle." To fremove this defect a small convex reflector is placed below the light in the protecting globe, and one of larger size above it to secure a double reflection with ultimate divergence downward and outward, causing the rays to fall upon objects within the area of illumination.

The Alloys of Gold.
Gold is capable of combination with many of the baser metals; and while its appearance can hardly be said to be improved by the process, its value for various practical purposes is enhanced by the mixture of other metals.
Arsenic, on account of its volatility, can be combined witb gold only in small proportions. If the mixture is attempted to be made by projecting metallic arsenic on gold in fusion in an open crucible, the arsenic, according to the quantity used, will be entirely or in great part dissipated, and the gold in consequence will remain entirely unaltered or rendered more or less brittle. If a small crucible containing gold be inserted into a larger one containing arsenic, and an inverted crucible be luted on by way of a cover, and the apparatus be heated strongly in a wind furnace, the arsenic will be raised in vapor, and the gold, being fused in this arsenicated atmosphere, will combine with a small portion of it. The alloy hence resulting is of a gray color, a coarse, granular fracture, and very brittle. A heat equal to that of melting gold is by no means necessary to effect this combination, for if a plate of gold is merely brought to a full red heat in an atmosphere loaded with arsenic, this latter will unite superficially with the gold, and the alloy hence resulting being very fusible, will trickle in drops from the plate, till the whole of it is thus arsenicated. This alloy is scarcely decomposable by mere heat, and at a high temperature the arsenic that is driven off carries a considerable proportion of gold along with it.
If antimony is mixed by fusion with either flne or standard gold in the proportion of even one quarter of a grain to the ounce ($\frac{1}{820}$ of the whole mass) the resulting compound is brittle, has a close granular fracture, with hardly any metallic luster. and its bulk will be found to be remarkably greater than would be deduced from the mean specific gravity of its ingredients.
Zinc forms with gold an alloy of a brass yellow color; in other respects its action on gold is very analogous to that of arsenic, when projected in quantity on melted gold, it is entirely volatilized; in the state of vapor it combines with gold and renders it brittle. Fine brass added to gold in the proportion of $\frac{1}{24}$ forms a pale yellow brittle alloy with a coarse granular fracture. The specific gravity of gold and zinc is somewhat greater than the calculated mean, where it forms $\frac{1}{12}$ of the mass. According to Hellot, an alloy of three parts of zinc and one of gold is somewhat malleable; and equal parts of the two metals form a compound which, though brittle, is susceptible of a very high polish, and is but little lable to tarnish.
Cobalt mixed with standard gold, in the proportion of four grains to an ounce, renders the color somewhat paler, and induces a slight degree of brittleness, but does not materiully alter the specific gravity. When mixed with fle gold in the proportion of 38 grains to the ounce, the result is a pale ycllow alloy, very brittle and with an earthy fracture.
Nickel alloyed with gold in the proportion of 38 grains in the ounce, produces an alloy of the color of fine brass, with a coarse grawed earthy of racture, and very brittle: its specific gravity is less than the mean. If the nickel is reduced to eight grains in the ounce of standard gold, the alloy is only slightly brittle; and with four grains of nickel, the mixture continues perfectly ductile.
Gold may be alloyed with manganese by calcining the black oxide of this metal repeatedly with oil in a covered crucible, and then exposing it to a very high heat in contact with gold. The color of the alloy thus produced is a reddish gray; it is capable of receiving a brilliant luster like steel; it is excessively hard, and is so far possessed of ductility as to be in some measure flattened by the hammer before it breaks. The proportion of manganese thus combined is from $\frac{1}{8}$ to $\frac{1}{8}$ of the alloy. The gold in this mixture defends the manganese not only from being oxidated by the air, but also protects it from the action of all those acids in which gold itself is insoluble. By long exposure to a high heat with access of air, the manganese rises to the surface of the gold, when it becomes oxidated, lleaving this latter metal behind quite pure. These two metals may in like manner be separated by cupellation with lead, or by solution in nitric acid, if the alloy has previously been quartered with silver.
If gold is mixed with bismuth in the proportion of 38 grains to the ounce, the result is an alloy of a pale greenish yellow, excessively brittle, and exhibiting a fine grained earthy fracture; its specific gravity is somewhat greater than the mean. If staudard gold is alloyed with even one-quarter of a grain of bismuth in the ounce, the mixture, although in color and texture reasonably standard gold, is yet perfectly brittle. So grest is the liability of gold to be affected by bismuth, that if it comes in contact even with the fumes of this metal, and that not in close vessels, its ductility is entirely destroyed.
If lead is melted with gold in the proportion of 38 grains in the ounce, the alloy, though externally resembling pale fine gold, is as brittle as glass; is of a pale brown color internally; is wholly destitute of metallic luster, and has a fine grained porcelainous appearance; its specific gravity is a little less than the mean. When the proportion of lead is reduced to one-quarter of a grain in the ounce, the alloy is still perfectly brittle; and the fumes of this metal are nearly as prejudicial to the ductility of the gold as those of bismuth.

Tin, when mixed with gold in the proportion of 38 grains
with a somewhat earthy fracture; it may be bent without breaking, but is very little ductile; its specific gravity is considerably greater than the mean of the ingredients. An alloy composed of 19 grains of tin, 19 grains of copper, and
the remainder of the ounce gold, has a coarse grained earthy fracture, and is considerably more brittle than if no copper had been made use of.
Iron, either in the state of bar iron, cast iron, or steel, may be combined with gold to the amount of 38 grains, and prohably much more, in the ounce, without in the least degree impairing its ductility. The color of the alloy is pale yellowish gray, approaching to dull white; it is considerably harder than staudard gold, and its specific gravity is somewhat less than the mean of its constituent ingredients.
Platina and gold, when the proportion of the former
amounts to 38 grains in the ounce, compose an alloy of yellowish white color, like tarnished silver, perfect ductility, but much harder and considerably more elastic than standard gold. If to the foregoing alloy the standard pro portion of copper is added, the compound becumes of a pale dull yellow, and its ductility is somewhat diminished.

When gold is rendered standard by copper. that is, whe the proportion of this last amounts to 38 grains in the ounce, the resulting alloy is of a deep yellow color inclining to red, is harder than pure gold, but perfectly ductile. Its specific gravity is less than that of the mean of its ingredients in a remarkable degree. Equal parts of copper and gold also form a perfectiy ductile alloy. It is not, however. every kind of reputedly pure copper which can safely be used for alloying gold: even the Swedish dollar copper occasionally renders the gola with which it is mixed as brittle as glass this appears to be owing to the lead and antimony which most copper contains, and which, though not in sufficient quantity to affect in any material degree the ductility of the copper itself, are fully adequate to destroy the ductility of the gold with which they are mixed; since no more than $\frac{1}{1920}$ of either of these materials is enough for this purpose as we have already mentioned.
Silver may be alloyed with gold in all proportions, and occasions hardly any perceptible alteration of the ductility hardness, or mean specific gravity, the color of the mass becomes paler, exactly as the quantity of silver is in creased.
The purple oxide of gold is employed as a material for coloring glass and porcelain. The old chemists vaunted greatly the medical effects of gold, but it has long siuce disappeared from every American and European pharmaco pœis.-Glassware Reporter.

Incubation of Diseased Eggs.

Some observations in a tield of experimental investigation hitherto but little, if at all, the subject of special research. were contributed by M. Barthélemy before a recent meeting of the Academie des Sciences. The conclusions at which M. Barthelemy arrives are remarkable, and may turn out to be of much value in throwing light on kindred questions. In a farmyard which had been during the past year the site of an epidemic of fowl cholera, a fowl presented this year affection, and after a protracted illness died. Fourteen eggs were laid by this bird during its illness, and these were were laid by this bird during its ilness, and these were
subjected to incubation side by side with some eggs obtaiued from a normal fowl. Closely watched, the two kinds of eggs presented no recognizable difference so long as the circulation lasted in the yelk of the egg. Notable differences were. however, detected when the respiratory function was trans ferred to the allantois; this would be at about the ninth day of incubation. The addled eggs-if that term may be usedeased to develop; not one was hatched. Examination of he eggs, opened with the usual precautions, showed that beneath the shell, and at the surface of the allantois, an extravasation of black blood existed, which was characterized by the presence of an odor quite similar to that tion the umbilical artery continued to pulsate slowly, a fact which goes to show the tenacity of life of these embryos. The embryo proper was seen, so to speak, swamped in the bottom of the amniotic sac, which was swollen with a large quantity of fluid, while all trace of albumen had disappeared. The blood of the diseased egg was full of bacteria, and the amniotic fluid contained monads of very minute size. M. Barthélemy contends strongly for the notion that the ovum contained the germs of the microbes with which the parent's blood teemed, and that these germs only developed when, by the formation of the allantoid circulation, an aerial respiration imparted to the circulating blood the ecessary amount of oxygen; it is of further interest to remark that just at this time the embryo begins to assume the special features of a bird. Two out of three fowls
succumbed after inoculation with the debris of the diseased succumbed after inoculation with the debris of the diseased still rife on the farm, and that other fowls were affected.Lancet.

Pentelian and Parian Marbles.

Although Pentelian marble and all monuments made of it bave at first a beautiful white and brilliant appearance, yet after a while, sometimes within a few months, sometimes not for years, they exhibit reddish-brown spots and stains, covered with a reddish-brown film of oxide of iron. The color comes from sulphide of iron (pyrites) that frequently color comes from sulphide of iron (pyrites) that frequently
occurs in fine streaks in this marble and is oxidized in course
of time by the action of air and water, and can then be recognized, very disagreeably, by their dark color. The spores of cryptogamous plants, such as fresh and salt water algæ, germinate in these red streaks. The new Academy at A thens was built of such Pentelian marble, and while hundreds of the blocks used still remain perfectly white and will probably remain so a long time, others already show yellow, brown, and even black spots.
Ou the other hand, Parian marble, from which the old sculptors Praxiteles and Phidias chiseled their statues, has the property of remaining always white, because it contains no iron. Both kinds of marble have this excellent quality, namely, that they do not weather, lose their luster, and look like the shells of boiled eggs, as is the case with Carrara marble.
The name of marble, from its Greek derivation, signifies stone that glistens on the broken or fractured surfaces. To impart to new marble the appearance of old, which is necessary in repairing injured antiques, it may be painted ver with a very dilute solution of chloride of iron, where upon the new pieces acquire a fine yellowish-red color, similar to that produced by the influence of air and water for centuries upon the old marble.-Austro-Hungarian Journal.

A Locomotive in a Procession

At Austin, Nevada, on July 4, the public procession conained a locomotive and two flat cars which moved in a stately way through the main street, the cars being deco rated and fitted for the display of emblematic devices and carrying young women representing the States, and symbolizing virtues, sciences, arts, and trades. The grade of the railroad which passes up through the main street of the town from the station of the Nevada Central is $121 / 2$ feet to the 100 , and being on the natural route of the procession, the loco motive and cars were utilized to most excellent and peculiarly effective advantage.
A correspondent says that all went smooth and easy enough going down the steep grade, the brakes being in very competent and responsible bands, but many mechanically appreciative individuals were curious to see how it would be in coming up-whether the speed could be regulated to he pace of the procession marching before and behind. But that gallant little motor, weighing 33,000 pounds, just worked its way up the steepest plain road in the country, slowly, carefully, with the precision of clockwork, and reguated exactly to the gait of the procession. There was no difficulty whatever about it.

Rapid Railway Building.

The Montreal Gazette says: The rapidity of construction on the main line of the Canadian Pacific railway in the first week in July is without parallel in this or any other country. On Saturday the rails were laid upon six miles of road, and in the week no less than 25.86 miles, exclusive of sid ings, were completed, an average of about $41 / 2$ miles per day, the highest ever obtained, The record is as follows:

The track is now completed for a distance of 728 miles est of Winnipeg, of which 161 miles have been constructed his season as follows: April 18 to 30, 17.58 miles; May 51.97 miles; June, 65.69 miles; July 1 to 7, 2586 miles.

Prof. Marsh on the Fossil Footprints in Nevada.
Prof. O. C. Marsh, after a close examination of photographs and casts of the footprints which were found during the past summer near Carson, Nev., and which have been supposed to be those of human beings, says, in the current number of the American Journal of Science:
"'The size of these footprints, and especially the width between the right and left series, are strong evidence that hey were not made by men, as bas been so generally supposed.

A more probable explanation is that the impressions are the tracks of a large sloth, either Mylodon or Morotherium, remains of which has been found in essentially the same horizon. In support of this view, it may be said that the footprints are almost exactly what these animals would make if the hind feet covered the impressions of those in front. In size, in stride, and in width between the right and left series of impressions, the footprints agree closely with what we should expect Mylodon or Morotherium to with whe."

Preserving and Waterproofing Fabries.

Piron describes in the Moniteur Industrielle a new process for rendering paper or cloth waterproof and at the same time protecting it from change. He employs an alcoholic solution of the agreeable oil used to perfume Russia leather, and which is obtained by distilling white birch bark. The oil dissolves readily in alcohol, but is no longer soluble after it has once dried and became oxidized to a resin.
The thin film of resin formed by impregnating the fabric does not detract from its pliability in the least, and its aromatic odor protects it from insects. It protects quite well sea water, acids, and moderate changes of temperature.

Improved adding machine.

The engraving represents an improved adding machine recently patented by Mr. Philip Neary, of McLean, N. Y. It consists of two revolving disks numbered on the edge, and in mechanism for operating the disks so that the numbers may be mechanically added. Through the center of the case extends a shaft, and on the face of the case, in a circle drawn from the sbaft center, are inscribed a series of figures, from 0 to 99 , inclusive, consecutively, as shown, and rigidly secured to the front end of the shaft is a band or pointer, which is kept in its initial position at 0 against a stop by a coiled spring.

NEARY'S ADDING MACHINE.

Two circular disks mounted loosely on the shaft are peripherally numbered. The disk which registers units and tens, is provided with a flange on the inside of which are cut ratchet teeth, which register with and correspond in number to the numbers on the periphery of the disks. Into these ratclet teeth a spring pawl which is secured to the arm catches. When the pointer is turned to the right, the disk remains stationary; but when the pointer is turned to the left, the pawl engages with one of the ratchet teeth and revolves the disk with the shaft. The second disk is loosely mounted upon the shaft at a suitable distance from the first disk, and, like it, is peripherally numbered. Projecting from its onner face are a hundred tappet pins, which register with the numbers inscribed upon the periphery.
The first disk is provided with a spring tappet rod which projects from its outer face, and is so situated as to be normally out of coutact with the tappet pins on the second disk.
Ths tappet rod moves the se cond disk one number each time it is brought into operation The normal position of the ma The normal positon of the ma-
chine is when the pointer is at chine is when the pointer is at
0 and the ciphers on the disks 0 and the ciphers on the disks
register with the apertures in register with the apertures in
the case. In adding a number of figures-as, for example, 20, 17. and 13-the pointer will be turned from 0 on the dial to the left until it reaches 20 , and then released, and the spring, E allowed to carry back to 0 , then to the left again to 17 , and so on for the next number; and owing to the pawl and ratchet teeth previously described; the disk, F , will be revolved from point to point, and the sum " 50 " will point, and the sum units and
appear througb the und appear througb the unils and
tens aperture. When the sum tens aperture. When the sum
of the figures added equals or exceeds 100 , the second disk will be also moved one point, or as many times as there are hun-
dreds in the sum, and the amount will be read through both apertures, as will be very readily understood.
Further information in regard to this invention may be obtained by addressiug the inventor as above.

Phototypes on Copper.

Copper is much better adapted to this process than zinc. It is covered with a thin film of asphalt, and when dry well washed with water, then covered with a thin film of bichromated albumen. After drying and exposing under a negative it is washed in water, colored with aniline until only the lines of the drawing remain; it is next washed with the lines of the drawing remain; it is next washed with
pure water, dried, and the soluble asphalt dissolved with pure water, dried, and the soluble as
benzine. After drying it is etched.

gas heated laundry iron.

DELAFIELD'S UNIPOLAR DYNAMO-ELECTRIC MACHINE.

The capture of the bony fish, or menhaden, which form erly was confined to seining "along shore" by resident farmers for manuring purposes, has become an industry that involves the employment of considerable capital and the use of expensive machinery. The object of this fishery-or rather sea reaping-is primarily the production of oil, and secondarily the manufacture of an agricultural fertilizer. The fish are distilled for their oil, which is used by curriers for "filling " hides, and the solid remainder is sold as a fertilizer, for which it is well adapted. A letter in the New Haven Palladium says:

The life of a bony fish catcher is a hard one at best. In pleasant weather it is wearisome, and in unpleasant weather it is simply detestable. The fish have been pursued so closely in Long Island Souud that comparatively few large bunches of them can be surrounded with seines there now. Hence, the steamers have to sail miles to find them. For instance, the steamers are now being taken in the largest quantities off
menaden are menbaden are now being taken in the largest quantities off
Barnegat, on the New Jersey coast: and consequently the Milford men have to leave bere in the middle of the night and pass up the Sound, through Hell Gate, down the Nar rows, and along the beach for hours before striking them Perhaps they do not get a scale till noon. The seining, which is the bardest kind of work, is kept up till dark, and then, if the vessel is loaded, she is headed at once for Milford, reaches bere late at night, is discharged, and before morning is well on her way toward the fishing grounds again. Good fishing allows no rest to the hands. They work early and late, are soaked through with water, and sleep nights in a hot and not very sweet smelling forecastle. The men earn all the money they get. Perhaps the only redeeming feature of their life is their fare. Bony fishermen are very good livers. Good cooks are employed, and the store bill of one of the steamers would run an ordinary shore hotel in fine style.

new dynamo electric machine.

The engraving represents a dynamo electric machine whose armature has neither wire nor bars, and in which no commutator is required, as the current flowing from the machine is all in one direction. This machine is remarkable for its simplicity and its economy in the use of power. It delivers a current of very low electromotive foree, suitable for plating and for inc:andesceut electric lighting. When used for the latter purpose, a small high tension machine may be employed to advantage to supply a current to the field magnets.
The machine consists of a field magnet baving hollow cylindrical polar extremities. B, in esch of which a tubular armature, C , revolves, the bearing of the armature being at the ends of the cylindric:al poles of the field magnet. An auxiliary field magnet composed of the side bars and cylin drical pole extensions, G, extending through the armature axially completes the arrangement, and acting together with the outer magnet produces a strong magnetic field surrounding the armature on all sides. The current is conducted away from the ends of the armature by wires connecting
ends of the armature. The springs are applied to insure constant connection.
In operating the machine the cu:rent from one armature may be used to excite the field magnets, or the current from both armatures may be taken through the wire of the field magnets, or as stated above, the field magnets may be excited by a small-high tension dynamo, and the eutire cur rent of the armatures may be applied to outside work.
The current from this machine is uniform and continuous, and always in the same direction, so that there are no re versals or interruptions and consequently no sparks.
This novel dynamo has been patented by Mr. A. Floyd Delafield, of Noroton, Conn.
made at the top of the tin, the sand ran out. The lowering, which was very easy and gradual, could be arrested at any point by allowing the sand to accumulate in front of the holes. One side could also be lowered quicker than the other by simply driving another hole into the box and increasing the flow of sand. The maximum weight supported by one of the kerosene oil tins used was, by calculation, $7 \cdot 7$ tons. No bulging or crushing was perceptible before the sand was run out.-Professional Papers on Indian Engineering.

The Forsyth scale works have received an order for a fortyton extension track scale for the Jacobs \& Hazelton Coal Co., and a similar order from the Clark \& Price Coal Co.

THE APTERYX, OR RIWI.

The apteryx, or kiwi, is a native of New Zealand, and is a very strange, weird bird. It has scarcely a trace of wings, and is on that account called apteryx, or wingless. It has very little similariiy to other short winged birds. Its body is compact, its neck short but thick, the wings so stunted that they are scarcely visible, except in the skeleton. The plumage consists of long, lancet-shaped feathers, which are covered part of their length with shiny silken down. The quill portion of the feathers is very shorl. The general color of the apteryx is chestnut brown. The bird has no tail. The beak is long and curved; the nostrils, very small and narrow, are set on each side of the tip. The legs are very strong and sbort:
Not many years ago the apteryx was thought to be a fabulous bird, and its veritable existence was denied by scientific men. The first one brought to Europe was called the Apteryx australis; it was killed in the forests of New Zealand, on the southwestern coast. A secoud one from the same locality was carried to the British Museum.
Almost all the specimens found in collections now come from the North Island, and belong to another species (Apteryx mantelli). This bird is called kiwi by the natives. Bartlett says that this species is distinguished from the others by being somewhat smaller; it has also longer legs and shorter claws, and there are long bristly hairs on the head. The color of the plumage is darker and more reddisl.
The kiwi lives in the uninhabited forest regions of the North Island, but is wholly extinct in the inbabited regions, and is not very easily captured. Dieffenbach, who resided in New Zealand eighteen months, only obtained one skin, although he offered large rewards to the natives.
The bird is found now most frequently in Little Barrier Island, a small uninhabited island covered with dense forests, situated in Hauraki Gulf, near Auckland, and in the forests of the mountain chain between Cape Pallisir and the East Cape, on the southeastern side of the North Island. This island consists of mountains about seven hundred meters high, is only accessible in a quiet sea, and the existence of these wingless birds there proves that it was once connected with the other part of the island. Two of these birds, male and female, were captured alive near the source of the Rocky aad Slate Rivers, on a dangerous height a thousand meters above the sea. The natives carried them to Hochstetter, who paid five pounds sterling for them.
In the year 1861 Skeet found the kiwi very abundant upon the grassy mountain ridges on the eastern side of the Owen River. With the help of two dogs he caught every night from fifteen to twenty of these birds. He and his people subsisted upon their flesh.

These birds are nocturnal, and during the day hide in holes in the earth or under the roots of large trees, and only come forth at night to obtain their food. They live upon iusects, larvæ, worms, and the seeds of various plants. The natives hunt them only at night, and often bewilder them so with the glare of their torches that they can be caught by the hand or knocked down with sticks. They are remarkably fleet of foot, which makes up for the absence of wings. When running they take long strides, hold their bodyin an inclined position with the neck stretched out. They move cautiously, and as noiselessly as a rat. If disturbed during the day they yawn frequently, and wrench their wide open jaws out of shape in the most singular manner. If provoked they raise their body to an erect position, lift up the foot to the breast, and strike with it, their only but not insignificant weapon of defense. It has been said that they attract worms to theosurface by striking on the ground with their powerfup feet.
While in search of food they make a constant snufiling sound through the nostrils. It is doubtful whether they are guided by the sense of feeling or of smell. It is certain that the sense of feeling is strongly developed, for they touch every object with the point of their bill, whether they are eating or examining the ground. When they are confined in a room or cage, the snuffling sound is only perceptible during the night when they are in search of food or eating, and is not heard when they softly touch the walls of the cage. Buller has observed these imprisoned birds searching the ground in the immediate vicinity of a lost worm, without finding the morsel again, and bas noticed that they are
never able to take a piece of meat from the ground or from a vessel of water until they have touched it with the point of their bill
It is very amusing to see the free birds searching for worms. They thrust their long bill in the soft ground, sinking it almost to the roots, and draw it forth immediately with a worm in the point of the bill. They never draw the worm from the ground suddenly, but are very careful not to mangle it. When they have laid the worm on the ground, they throw it into their jaws with a sudden motion, and then swalluw it. They consume insects and berries is the same way, and take up small stones.
In the London Zoological Gardens the cage of this bird is in a dark stall; some straw is piled up in one corner. The Kiwi conceals itself behind this straw during the day. If the izeeper takes it out from its hiding place it looks puzzled for a time, but when it is placed on the ground it turns its back and runs back to the straw in the most absurd style. After the sun goes down it runs about in a lively manner, and thrusts its long bill into every corner.
The female in the London gardens has laid several eggs.

THE APTERYX, OR KIWI.

Lime Cartridges for Mining Coal.
According to the American Manufacturer (Pittsburg, Pa.), some experiments have been made with cartridges of con deused lime in mining coal at the Eureka mine at Houtzdale. The tests were successful in shattering the coal, but better results would have been reached if the coal had not been too soft. It appears that the lime clarges must he com pressed by hydraulic or similar means under a pressure of forty tons on a cylinder of two and a half inches, nearly doubling the density of the lime. Thus treated, and secured in a hole drilled in the coal, water is pumped to the cartridge, reaching its entire length, and the expansion effects an enlargement of five times the original bulk of the cartridge, necessarily shattering the surrounding walls of coal to that extent without an explosion.

Removing a Bluf by Hydraulic Power.

The Sioux City Journal, describing a test of hydraulic machinery to be used in washing away the threatening bluffs which hang over the track of the Milwaukee road two miles west of that place, says: From the Worthington pump, which is considered the more power ful of the two on the boat, an 8 -inch pipe extends up the bank to a heigh f about 60 feet, where it reaches the road bed of the track. It then runs under the track nearly to the base of the bluff and terminates in a movable ron nozzle with a 2 -inch end. From the point where the nozzle is directed toward the bluff begins a sluiceway constructed of boards and about 2 feet deep. This sluiceway leads under the rack, downward in a diagonal cours to the river.
The pipe through which the water rushes to the nozzle is well secured The sluiceway is constructed on tim bers, and is strongly braced. As the nozzle points toward the bluff, withou the water rushing fromits mouth and the sluiceway is dry, there is nothing particularly curious or interesting in the machinery's appearance; but when the big boiler at the water below begins to puff, the powerful pump commence action, and the glittering stream shoots from the mouth of the nozzle with lightning speed, and, hardly spraying strikes the bluff with terrific force, boring deep into the earth and causing the dust to rise in clouds, some appre ciation of the force of the water can be gained. Then too, the practical re sult of the aqueous battering ram's power is seen in the mass of mud which rushes through the sluice.
Hundreds of tons of earth made soluble melt away in an hour and are swiftly carried off through the apparently small board runway to the river below. When all was ready the signal was given, and the water began to rusb through the pipe and pound away at the bark. In five minutes immense quantities of the dirt were melting and rushing through the sluice. The cut ting was done in a scientific manner First, the water was sent against the bluff sixty feet up, and holes bored to weaken its dry solidity. Then the bor ng began underneath, and the founda tion of a mass of earth sixty feet high and ten feet thick by about fifty feet in width was dug away. All at once the big chunk gave way, and with vast louds of dust and much noise fel downward and toward the track. The plucky pipe man and his assistants were the least disturbed by the slide nd advance of the earth, but they had

The bird weighs a little more than four pounds, and the eggs, which are remarkably large, weigh between fourteen and fifteen ounces.
"The skin of these birds is very tough, yet flexible, and the chiefs in New Zealtad set great value upon it for the manufacture of their state mantles, permitting no inferio person to wear them, and being extremely unwilling to part with them even for a valuable consideration."-From Brehm s Animal Life.

Peanut Flour.

The value of the peanut crop of this country for the cur rent year is estimated by the Savannah Telegram a $\$ 3,000,000$. That paper says that "the Virginians are be ginning to turn the peanut into flour, and say it makes peculiarly palatable 'biscuit.' In Georgia there is a custom, now growing old, of grinding or pounding the shelled peanuts and turning them into pastry, which has some re semblance, both in looks and taste, to that made of cocoanut, but the peanut pastry is more oily and richer, and, we think, but the peanut pastry is more oily
healthier and better every way."
cause for alarm, as for an instant it looked as if a large portion of the bluff would be affected by that detached, and would break loose to sweep every thing before it to the river.
During the hour, while the crowd of visitors remained, a much larger quantity of earth was washed away than was expected when the work commenced, and the officials generally seemed to be satisfied that at last an effectiv way of conquering the dangerous bluff had been found. It being understood that General Superintendent J. T. Clark was the proposer of the hydraulic method of cutting away the bluff, and that principally through his efforts it has bee brought to a practical test, he was briefly interviewed. He expressed himself much pleased with the result of the ex periment as far as it had gone. He added that it was only an experiment, but that it looked to him as being much more effective than blasting or shoveling, while the ultimate expense would not be half so great.

The Ohio Powder Company is making 250 kegs of powder per day, and ruuning the machinery day and night to keep up with its orders.

The Phenomena of Metalliferous Deposits.

by prof. Joseph le conte.
The following is an abstract of a paper read before the American Academy of Sciences at its late meeting in Washington, which in the author's absence was read by Prof. T. Sterry Hunt:
The paper said that the phenomena of metalliferous deposit by solfatusic action at Sulphur Bank and Steamboat Springs bave tended strongly to confirm what he had previously believed to be the most probable theory of vein formation, and at the same time to give it more clearuess and definiteness. The structure, the mode of occurrence, and the contents of metalliferous veins leave no longer any room for doubt that they have been formed by deposit from solutions. If any doubt had lingered on this subject, it was thoroughly dissipated by the phenomena of deposit still in progress at Sulphur Bank and at Steamboat Springs. Among the metallic ores cinnabar has long been considered a possible exception to this mode of deposit. The extreme volatility of this sulphide, the extreme irregularity of its veins, and its frequent occurrence in the vicinity of comparatively recent volcanic action have suggested that it may bave been deposited in irregular fissures, cracks, cavities, etc., by condensation of its vapors sublimed by volcanic heat beneath. But the phenomena of Sulphur Bank and Ste:lmboat Springs ought to settle the question forever. Cinnabar as well as otber metallic sulphides are now being deposited there, along with silica, from solution. Admitting, then, as established the view that metalliferous veins have been deposited from solutions, the most difficult questions still remain: What are the conditions under which deposit takes place? and, What, in addition to simple water, have been the solvents?
In answering the first question it must be remembered that the chemistry of nature is far more subtle and refived than that of the laboratory; that substances which are regarded as practically insoluble in the latter cannot be so regardedin the furmer. The infinite patience of nature and the infinite slowness of her operations must be taken into account. In the perpetual circulation of subterranean waters infinitesimal deposits, continued and accumulated tbrough almost infinite time, produce large results. Thus mineral veins may be composed of substances of extremest insolubility, and yet be deposited from solutions. In fact, such extreme insolubility, or at least very feeble solubility, would seem to be a condition of mineral vein formation, for otherwise the minerals would be in most cases brought to the surface instead of being deposited below.
Again, it must be borne in mind that solubility, even the feeblest, is notably increased by heat, especially super-heat, and by preassure. The latter is generally regarded ouly as a necessary condition of super-heat and not as itself an active agent. But in fact pressure acts directly as an active agent
in increasing the solubility of nearly all substances. Mr. Sorby has not only proved this by actual experiment on a great variety of substances, but has shown that it is a necessary consequence and beautiful illustration of the law of correlation and conservation of natural forces, and that we have in this as in the case of fusibility an example of the equivalency of mechanism and molecular forces. For, as in the matter of fusibility in all cases in which expansion takes place in fusion, pressure by resisting expansion raises the fusing point, while only in those exceptional cases like ice, in which contraction takes place in fusion, pressure by arresting contraction lowers the fusing point. So also in the matter of solubility, in all cases in which contraction takes place in solution, namely, in which the volume of the solution is less than the combined volumes of constituents, pressure by arresting contraction increases solubility, while only in very exceptional cases as, for example, sal ammoniac, in which expansion takes place in solution, pressure by resisting expansıon dimiuishes solubility. These latter cases are so extremely rare that we may assume as a law the increased solvent power of water in proportion to pressure. It is even possible by experiment thus to determine the mechanical equivalent of the chemical force of solution of any given substance; and, in fact, this has been so determined for several substances by Mr. Sorby
There can be no doubt, then, that the solvent power of water may be increased without limit by corresponding in crease of beat and pressure. It is quite certain, therefore, that water deep in the interior of the earth, especially in volcanic regions, and therefore under heavy pressure and superheat, would have its solvent power greatly increased, not only by the super-heat, but also by the pressure. It is believed that few substances could resist entirely its solvent power. Such waters, coming up slowly toward the surface through fissures, large and small, would have their solvent power diminished both by cooling and by relief of pressure, and must of necessity deposit in their courses and form mineral veins. But the solvent power of subterranean waters is itill further very greatly increased for most vein matters by the pressure of alkali in the form of alkaline carbonates or nlkaline sulphides, or both. This is especially true of the commonest of vein stuffs, viz., quartz and lime carbonate, and the commonest forms of metallic ore, viz., metallic:eulphides. The solutility of silica in alkaline carbonated waters is well known, and with excess of carbonic acid in the waters all the earthy and metallic carbonates are also soluble. The solubility of many and probably of all metallic sulphides in alkaline sulphides, especially with excess of hydrogen sulplide under pressure and super-beat, can no longer be plide under pressure and super-heat, can no longer be
doubted; for iron sulphide and mercuric sulphide are now
being deposited from such waters, both at Sulphur Bank and at Steamboat Springs.
Mr. Christy and others have proved the solubility of mercuric sulphide under pressure and super-heat by actual ex-
periment; and these are among the most insoluble of metallic periment; and these are among the most insoluble of metallic sulphides. It is certain, then, that metallic sulphides are soluble to a limited extent in alkaline sulphides, forming doubtless double sulphides. It is certain, also, that the soldoubtless double sulphides. It is certain, also, that the sol-
ubility is increased by super-heat and pressure. It is therefore also certain that hot waters containing alkaline carbonates and alkaline sulphides, circulating at great depth and therefore under heavy pressure, would take up silica, earthy and metallic carbonates, and metallic sulphides, and that coming up slowly toward the surface they would deposit these substances in their courses, partly by cooling and partly by relief of pressure, and thus form metalliferous veins. Cooling and relief of pressure are the most useful causes of deposit, but not the only ones. Organic matters are of almost universal occurrence in subterranean waters, and their agency in reducing metallic oxides and metallic salts is well known. Organic matter is a uuiversal reducing agent.
The acids of organic decomposition may prove a reducing agent. Such in brief is an outline of a true theory of the genesis of metalliferous veius-a theory appareutly confirmed by the study of causes now in operation at Sulphur Bank and Steamboat Springs, and probably many other places in California and Nevada.

Sea Bathing.

At the present time, says the Britush Medical Journal, it may be useful to recall the chief general indications and contra-indications which respectively sanclion and forbid bathing in the sea. "Shall I bathe?" This is a question which thousands of health seekers will be asking of their doctors during the nest few weeks. While the stimulus of a fresher air, of change of scene, and of new occupations, together with rest from accustomed work, are the elements from which the weakly, the worn, the worried reap physical and mental restoration in a sojourn on the sea coast, it is unquestionable that bathing in the open sea is, in itself, a powerful restorative agency, which many persons may employ with very great advantage.
The universal experience of our race, through unnumbered ages, has shown the value of sea bathing in both prevent. ive and curative medicine. A good rule, laid down by an experienced physician, is this: In all cases showing impaired functional powers, without any manifestation of in flammatory symptoms, in short, in those cases in which the exbibitiou of atteratives and tonics is indicated, seit bath ing may, with proper prec autions, be resorted to: it is con-tra-indicated in persons of plethoric habit of body, in cerebral congestion, in organic disease of the heart, in aneurism, and in all persons who have the inability safely to encounter a comparatively severe shock; while it is also to be forbidden at certain periods in which the female constitution is not prepared for the application of powerful remedies. Because it tends, in certain conditions of impaired health, to cause determination of blood to the viscera. Bathing in the open sea is generally unsuitable for persons disposed to congestive disorders of the lungs, kidneys, liver, and brain. Albuminuria, advanced anæmia, and a lability to hæmoptysis are also conditions which are usually accepted as contraindicating sea bathing.
. It is hurtful to bathe babies in the sea; children under two years of age are too young to bear with advantage the comparatively severe shock of a cold sea bath. In old age, when the bodily powers are unequal to a vigorous reaction, sea bathing may do much harm, especially in the subjects of extreme arterial degeneration. In :suitable cases, and under proper precautions as to time of bathing and duration of exposure, a daily bath in the open sea is a valuable re storative. In individuals who are fairly robust, it is a stimu lant, alterative, and tonic, promuting appetite, tissue change, and excretions, and bracing up the nervous, vascular, and muscular systems. Sea bathing is especially useful as a powerful and unsurpassed tonic in delayed convalescence from acute diseases, in many chronic affections, and in per sons whose strength has become enfeebled by injurious ex cesses, by mental strain, or by unhealthy occupations.

The Aeration of Yeast.

Some interesting experiments on fermentation have been made by D. Cochin, and his results are given in a recent number of the Comptes Rendus of the French Academy of Sciences. Other in vestigators have proved that the mem-
brane surrounding yeast cells is penetrated by glucose solution, and fermentation does not commence until some time after this endosmose has taken place, and this has been fully confirmed by Cochin. His experiments on aeration of yeast are most interesting, and the conclusions founded on them are in some respects striking. He found that if yeast be suspended in water and aerated by repeatedly decanting the liquid from one vessel to another, the aerated
yeast, when added to a solution of glucose, exerts simply a diluting effect equal to that which would be produced by the same volume of water; if, however, the yeast be dein heating the liquid to $20^{\circ} \mathrm{C}$ for periods vayer of oil, and hours to several days, the effect produced on a solution of glucose is differeut. After eight days' heating the yeast is
still permeable to the sugar solution, but fermentation scarcely commences; the yeast has been asphyxiated. After two hours' heating, the absorption of sugar begins, but it is only after twenty-four hours' heativg that the phenomena are most distinctly observed; at the end of this period, when the yeast, thus deprived of air, is added to a solution of glucose, the latter is absorbed by the yeast cells to such anc extent before fermentation commences that th mount in solution is diminished oue-balf.
If a quantity of the liquid is boiled, mixed with an equal volume of alcohol, and filtered, almost the whole of the sugar is found in the filtrate, only a small proportion having been converted into alcohol, thus proving that very slight fermentation takes place under these conditions. From hese experiments it is evident that the transformation of sugar takes place in the interior of the cells, and that deprivation of air brings the cells into the condition most favorable for absorbing the sugar. Cochin also observed that aerated yeast and yeast deprived of air, also show great difference in their fermentative power. The former pro duces an amount of alcohol much below the normal amount, and decomposes part of the sugar without convertiug it into alcohol. The practical lesson to be learnt from these investigations is, that a wort prior to pitching, and the pitching yeast itself, ouglt always to be deprived of air as much as possible, but as soon as the sugar has had time to penetrate he membranes of the yeast cells by endosmose, a thorough aeration of the wort ought to be effected, so as to set up and maintain an active fermentation.

The Power of Water.

The properties of water are only partially understood by those who have never seen it under high pressure. The Virginia City Water Company get their supply from Marlette Lake on the Tahoe side of the mountain. They get it through by a long tunnel, and are then on the crest of a high mountain opposite Mount Davidson, with WashoeV alley between. To cross this valley by a flume would be almost impossible, so the water is carried down the mountain side to the bottom, and crosses ander the V. \& T. Railroad track, on the divide between Washoe and Eagle valleys, then up again to the required height in iron pipes. The depression created in the line of carriage is 1,720 feet, and the pressure on the pipes is 800 pounds to the square inch. One pipe is 11 inches in diameter, and is quarterinch iron lap welded, and 18 feet long, with screw joints. There is little trouble from it, but the other, which is twelve inches in diameter, and is riveted pipe, makes more or less trouble all the time. The pipe is laid with the seam down, and whenever a crack is made by the frost and warping it, exflom any other cause, the stream pours forth with tremendous force, If the joint is broken open, of course the whole stream is loose and goes tearing down the mountain, but usually the escape is very small. The break last week was less than five-eighths of an inch in diameter, and yet the water in the flume was lowered an inch and a half by it, and the pressure went down fifteen or twenty pounds. Captain Overton says that fifty inches of water went through it. It has been probably a year in cutting out, and was made by a little stream hardly visible oo the naked eye, that escaped through a joint and struck the pipe two or three feet off, eating away the iron until the pressure inside broke it through. When such a break oc curs the noise can be heard for half a mile, and the earth shakes for hundreds of feet around. A break the size of a knitting needle will cut a bole in the pipe in half an hour. Such breaks are repaired by putting a band around the pipe, pouring in melted lead, and tamping it in. Such a stream bores through rock like a sand blast. The flying water is as hard as iron, and feels rough like a file to the touch. It is impossible to turn it with the hand, as it tears the flesh off the bones, and if the fingers are stuck into the stream, with the poiut up, the nails are instantly turned back, and sometimes torn loose from the flesh.-Reno Gazette.

Sewer Gas and Typhoid Fever.

Dr. George Hamilton, in the Medical Record, takes issue with those who assume the conveyance of germs of typhoid and scarlet fevers, diphtheria, and dysentery by contaminated drinking water, and who do not believe that sewer gas can spread the infection or originate the diseases. Referring to the epidemics that sometimes occur suddenly in cities fed with drinking water from some common source, he says that their sudden appearance and as sudden disappearance cannot be attributed to the character of the water exeept on the supposition that the water changes suddenly from purity to impurity, and vice versa, a supposition in compatible with the delivery supply of water from reser voirs. Walled-up cesspools, he says, are common in the city and not usually found in the country, and the exhalations from unventilated and uncared for vaults have muct to do with the prevalence of typhoid diseases.

An Ald to Russian Literature.

From Nicolas Schischkoff, a member of the Imperial Russian Technological Society, St. Petersburg, Russia, we have received a copy of a monthly publication in the Russian language that attempts to give its readers "a guide through the mazes of contemporary technical literature," by copious extracts from technical publications from all parts of the world, and by an alphabetical reference index. Such a monthly is well calculated to be of use to Russians who desire an acquaintance with the sciences as practically applied sire an acquaintance with the scien
by the western nations of Europe.

Effect of Condiments, such as Salt and Pepper. The following contribution to the Bulletin of the French Hygienic Society by Dr. G. Husson has been deemed worthy of translation, from its practical bearing on our daily life:
When we cast a retrospective glance at the culinary ar among all people, extending back to the most remote antiquity, we are surprised at the importance that seasoning and condiments have never ceased to have.
This peculiarity possesses sufficient interest to induce us, at another time, to study into the origin, causes, and effects of their use. At present we will merely examine into their influence on digestion, and will report on salt and vinegar alone.
Condiments, in fact, are not only intended to make the food more agreeable, to excite the appetite, to flatter the palate, and to create enjoyment, but they also have an effect on the phenomenon of digestion. Science has recognized the fact, and man has always instinctively felt this influence of condiments upon the digestive functions; but then he frequently only thinks about satisfying his taste. It is the necessity of his being that he obeys. The care bestowed on the preparation of food has existed everywhere and at all times, originated in these impulses, and they are next to medicine and chemistry in calling attention to the necessity of giving attention to the preparation and seasoning of food, even of the simplest kind. Still we would not insist on this subject if it were not for combating an unfortunately very common custom.
It too frequently happens that because a dish is modest the preparation is neglected, and people think to supply what is lacking by heavy doses of salt and pepper. Here two serious errors are committed, for it is with our food as with our dwellings: the more simple they are, the more care they should receive.
The use of salt and of acids in excess may prove injurious, as we shall attempt to prove by certain experiments that we have made. These experiments were made on pieces of meat deprived of fat and gristle, either dressed with all sorts of condiments, with wine, with vinegar, with oil, or simple disbes with some salt but no liquid.
After the pieces of meat had bees macerated or in contact with the condiments for four days, four grammes were taken from each sample and put in a phial with one gramme of liquid pepsine and 40 grammes of water containing $0 \cdot 1$ per cent of hydrochloric acid.
For comparison two other phials were takeu, and in one was placed 4 grammes of meat that had not been subjected to any culinary preparation, with a gramme of pepsine and 40 grammes of acidulated water as before. In the other phial were placed the same substances and in the same quantities, except that the acid was 1 to 40 . They were all put in a water báth atd kept at a temperature of $40^{\circ} \mathrm{C}$. (104° Fahr.).

The results were as follows:

The meat in wine was very rapidly digested, and that in vinegar followed next. The meat in oil and that au charbon fell in the third line; they required nearly as long a time for digestion as the meat that had had no culinary preparation; salt meat and raw meat that had been in the stronger acid were very difficult of digestion.
With papaine, a substitute for pepsine, the results were still neater, but were in harmony with the preceding.
These experiments also showed me at the same time how little reliance can be put on commercial pepsine.
Other experiments lead to certain remarkable conclustons regarding salt and acetic acid, as follows:
If four grammes of hashed meat be placed in a phial with four grammes of water, one of liquid pepsine or papaine, and four drops of hydrochloric acid, and the following quantity of salt added, namely, $0.05,0 \cdot 1,0.25,0.5,1,2 \cdot 5$, and 5 grammes, it will be found that salt in small doses slightly facilitates the action of peptic ferment; but when it reaches 0.5 gramme it retards digestion; and in proportion to the quantity present.
When glacial acetic acid was used instead of salt, in quantities of $4,2,1,0.5,0.25$, and 0.10 gramme, the meat dissolved more rapidly the greater the quantity of acid there was. With papaine and four grammes of acetic acid the transformation was almost instantaneous. But although an excess of acetic acid dissolves the meat more rapidly, it is necessary to add that besides the peptones, there is also a substance formed from gelatine which is precipitated by sulphate of magnesia, and the quantity is directly proportional to the amount of acid.
If we take one gramme of monohydrated acetic acid and one of meat, and filter it after digesting and neutralizing, a precipitate will be produced with sulphate of magnesia, but it is scarcely perceptible. So that we may accept from 1 to $11 / 2$ per cent of acid, or from 10 to 15 per cent of vinegar, as the proportions favorable to good and rapid digestion.
From the preceding facts we may draw the following practical conclusions:
A. Certain condiments seem to have no other use beyond exciting the secretion of the various juices necessary for digestion.
From one point of view salt, in small quantities, may be placed in this class, if when it enters the system it is not transformed into hydrochloric acid, one of the constituents of the gastric juice. The amount of salt employed in cooking ought not to exceed 1 or 2 per cent or 1 ounce to 6 or 12 lb . of meat. If more than that is employed, it will do one of two things: 1. It will modify the structure of a portion of
the muscular fiber of the meatsalted, so as to make it resist
more strougly the action of gastric juice; 2. In the stomach itself it retards and checks peptic fermentation.
Hence, salted and smoked meats are more indigestible than other meat.
Salt in excess is also an irritant.
B. Non-poisonous organic acids aid digestion. Hence the use of vinegar as a condiment is based on good reasons, but with the condition that the quantity must not be so great as to irritate the stomach itself.
C. Although the mineral acids, hydrochloric in particular, in the proportion of 1 to 250 , are essential for digestion, in large quantity they have the opposite effect, and may even arrest it.

This inconvenience and the danger of setting up au inflammation in the mucous membranes show the necessity of employing vinegar entirely free from hydrochloric or sulphuric acid.
Such is the resume of my observations relative to this part of the question.
G. Husson.

Device for Discharging Water from Vessels.
Last week a successful practical triar was made in this harbor of Keating's improved device for discharging water from ships without pumping. The invention consists of a valved tube which passes through the huli of the vessel, git or about midships. The tube is arranged to be pushed down outside of the hull when in use, and withdrawn even with
hull when not in use. The tube carries a valve, by opening which communication between the inside of the hull and the water outside may be established. The extremity of the tube, looking toward the stern of the vessel, has an orifice, but the front portion of the tube is solid. When the tube is pushed down through the ship's bottom, the forward motion of the vessel will produce a suction'in the tube, and if the valve is opened the water in the hull. will be drawn out.
The inventor expects that sailing and steam vessels may be kept dry and prevented from sinking by simply adjusting the tube and valve as above indicated. On the recent trial here the valve was applied to an old scow sixty feet long,, towed by a tug. The valve was opened and water was allowed to flow in and fill the scow until it was
almost ready to sink; the tug was then started, and under a almost ready to sink; the tug was then started, and under a
speed of three miles an hour the scow was in ten minutes relieved of its water in the manner described. A similar trial was lately made at Buffalo, N. Y., with equal success. The invention has realized in practice all that the inventor claims, as far as it has been tried. How it will work on deep draught vessels, where the water pressure against the bottom of the hull is increased, has yet to be shown. The Keating. Company, No. 86 Duane Street, New York, is now ready to furnish and attach this novel appliance to vessels of all descriptions.

Steaming and Bending Wood.

In an address recently delivered by Mr. H. G. Shepard, of New Haven, Conn., relative to the use of wood in carriage making, he said that after a piece of wood is bent its characteristics undergo a considerable change. The wood is heavier, and its fibers have become interlaced; it will sustain more pressure and strain than straight wood in the same directions, either across or with the grain. He said: A piece of timber that has been steamed, whether it is bent was before, and for some uses it will do as well, and yet there is a quality that the steaming process and the kiln drying process affect very much the same; they both cook the gum in the timber and make it brittle and stiff. There is a grade or class of hickory that is benefited by being steamed or kiln dried for use as spokes or whiffletrees. There is a kind of hickory that never becoines stiff by a natural process of drying, and one of the desirable qualities of a spoke, rim, or whiffletree, is stiffness as well as strength: you take that hickory-and it is the very best we have-and steam it, and it is better fitted for these purposes than it was before. It is difficult to tear apart a piece of bent wood; the fibers are interwoven, one with the other. We
do not perceive the change on the outside, but when we come to split the stick open we find that its character is entirely changed.

A Singular Tombstone.
Doctor Prime, the venerable editor of the New York Observer, usually spends the summer months traveling in his native State, and about New England, and wherever he stops he is a welcome visitor. His weekly letters in the $O b$ server are widely read, and are enjoyed by everybody.
In his travels, Irenæus comes across some quaint people, and many queer things which he keenly appreciates, and he gives an account of them in his interesting letters.
Among his last discoveries, Dr. Prime has found an odd monument in northern New York, which had been erected to the memory of a most excellent woman. A good man had lived happily with a devoted wife until they were well on in years, when she died. He bethought him of some fitting
memorial to place over her grave, and the happy thought struck him that the square stove, by which they had been comfortable through many long winters, would be just what she would like to have if she had a voice in the matter. He had the stove taken to the churchyard and placed over
the remains of his companion, who sleeps quietly under: the remain
neath it.

Brooklyn Bridge Traetion Cable.
Splicing the endless cable that is to be used in propelling cars over the New York and Brooklyn Suspension Bridge was a work requiring unusual skill, as it was an unusual task. The rope is a compound of a hemp core or center and an envelope of steel wire. It is 11,600 feet long, or about two miles. Its weight is $3 \cdot 1$ pounds per foot, which gives it 35,900 pounds for a total weight. The diameter is $11 / 2$ inches, and it has a breaking strength of 50 uet tons. The inches, and it has a breaking strength of 50 uet tons. The
splice is 160 feet long. It would be useless to our readers to attempt a description of the method of splicing, which, however, is similar to that of hemp or Manila rope splicing so far as that is applicable to this composition cable. The skill particularly required in this work is the union of the steel wire envelope. And this work is so exactly completed that to designate the splice from the other portions of the cable it has been painted white. It is probably the longest rope splice ever made.

Rights of the Bull in England.

A recent decision by Lord Coleridge, C.J., in the Queen's Bench Division, as quoted by the New Jersey Law Journal, sounds singular here, where statutes and municipal regulations so generally prohibit estrays, and hold their owners liable. Unfenced highways are increasing under the protection of these laws, and in some New England cities and villages there are long stretches of front yards and lawns without any defensive protection from the traveled street or roadway. The judge in this case ruled that the owner of an ox, which had entered the plaintiff's open shop door while being driven through the street, could not be held liable for damage done. He said: "We find it established as an exception upon the general law of trespass, that where cattle trespass upon unfenced land immediately adjoining a highway, the owner of the land must bear the loss (quoting authorities). I could not, therefore, if I would, question the law laid down by such eminent authorities, but I quite concur in their views, and I see no distinction but I quite concur in their views, and I see no distinction
for this purpose between a field in the country and a street in a market town. The accident to the plaintiff was one of the necessary and inevitable risks which arise from driving cattle in the streets in or out of town."

The Curl Fungus on Peach Trees:

The New York Agricultural Experiment Station gives his, among other items, in its bulletin of July 28:
Dr. B. D. Halsted, of New York city, who is especially skilled in that branch of science which includes the injurious fungi, has forwarded us a letter from which we quote:

- May I add tor the information on the peach curl given in be bulletin for Juve 16? This injurious deformity of the peach leaves has been ascribed to plant lice and other insects, but is now known to be caused by a minute fungus known to science as Taphrina deformans. This minute parasitic plant makes its appearance in early spring, and causes the foliage, as stated in your bulletin, to twist and curl out of natural shape. The fungus is not distantly related to or causing the black knot of the plum and cherry trees, and the same remedy is the only one used, as far as I know. Remove all the affected parts so soon as they appear, and burn them. It is best to cut off the young twigs bearing the 'curled' leaves, and this can be done quite rapidly. Be sure and burn all parts removed, to prevent the ripening of spores in the infested leaves."

Maple Last Blocks.

The Bangor, Me., Mining and Industrial Journal has the following: Last blocks are an important article of manufacture in the towns of eastern and northern Maine. Blanchard, Lagrange, Alton, and Katahdin Iron Works will each ship about 25 car loads this season over the Bangor and Piscataquis Railroad. Large numbers are also cut on the line of the Eastern \& North American division of the Maine Central, and also in the towns to the eastward of Bangor. The blocks are cut from rock maple, and the work of getting them out gives quite remunerative employment to the farmers and their sons during the long winter months. A million and a half of these blocks, valued at about $\$ 36,000$, were shipped from Bangor last year, principally to western Maine, New Hampshire, and Massachusetts shoe towns This, however, by no means inciudes all the last block busivess of this section, as large quantities are shipped each season by way of Calais.

Products of the Slow Combustion of Ether.

Whem the vapors of ether mixed with air pass over a strip of glowing platinum, it continues to glow and the slow oxidation produces a mixture of formic .nd acetic acids with aldehyde, acetal, and methyl aldehyde. Legler has investigated this product (Ann. Chem.), and succeeded in isolating nother new substance. From the slow oxidation of 150 or of 200 c . c. ether he obtained 25 or 30 c . c . (1 ounce) of a clear liquid with a sour smell resembling aldehyde. Upon cooling this in a desiccator the new substance crystallized out rhombic prisms.
It contains $\mathbf{2 6 . 4 4}$ per cent of carbon to $\mathbf{6 . 4 2}$ of hydroçon which points to the empirical formula $\mathrm{C}_{11} \mathrm{H}_{33} \mathrm{O}_{21}$. it is a peculiar fact worthy of note, that when treated with ammonia and then acidified it exhibits the same reaction exactly as peroxide of hydrogen. Legler is engaged in investigating the constitution of this new substance.

ENGINEERING INVENTIONS.

Mr. O. H. Robinson, of Manistee, Mich., is the patentee of an improved rotary engine, in whicb he
employs a wheel or case having internal steamways ec centric to its shaft, and provides the shafts with a radially moving valve which see
Mr. A. O. Willson, of Madison, Ga., has recently patented a traction or road engine, which pro-
vides for the application of increased power on ascending grades, and provision is also made for the conveni nt and ready turning of the engine in either direction, or to either wheel, be despired. This engine is construct ed very cheaply, and possesses useful features notfound Mr. William Wilmington, of Toledo, O., has obtained a patent for a method of casting car wheels,
which is an improvement upon a patent granted tosame inventor March 6, 1883. This method of casting car wheels consists of nearly or quite filling the mould of the wheels with suitable chill hardening cast iron, then
placing in the receiving basin of the mould finely powplacing in the receiving basin of the mould finely pow-
dered ferro manganese or its equivalent, and allowing the same to be melted by the molten iron remaining in the basin, and then agitating the iron remaining in
basin and keeping the inlet holes open by churning.

mechanical inventions.

A patent has recently been issued to Messrs. F. F. and H. F. Hartwich, of Onaga, Kas., for an im-
proved boring machine. The invention consists of an proved boring machine. The invention consists of an
improved feeding mechanism, and a system of changeimproved feeding mechanism, and a system of change-
gearing for driving the same, whereby the feed gear gearing for driving the same, whereby the fed geax
can be reversed to withdraw the auger to bring the chips from the hole, while the toor co.
An improved dredging machine has been patented by Messrs. Larence A. Johnson and 'Nels E. more spurred cylindersf or breaking and losesing th bed of shallow rivers or streams, and with a propeller screw for agitating the water, and causing the loosened
sand, mud, etc., to be carried off by the current. The machine is very simple in its construction, and not likely o get ont of order by use.
A very simple portable hay press to be worked by hand power has been patented by Mr. Geo.
W . Freeman, of Gadsden, Ala. The follower in this machine consists in a plunger with long projecting arms to the extremities of which are attached ropes which pass over a roller that is rotated by a hand lever. A
pawl and rachet wheel is attached to the roller for pawk and ratchet wheel is attached to the roller for
taking up the slack, and holding the follower up to its Among the recent improvements in fire escapes is to be found the extension ladder patented by
Mr. Joseph Spangler, of Rock Island, Il. The invention consists in contrivances for raising and lowering, and for locking and unlocking the ladder. A seat is ar-
ranged on the upper end of the top section to enable the ranged on the upper end of the top section to enable the
ladder to be used as an elevator to facilitate the rescne of persons unable to descend by the ladder. The ladder is also adapted for the use of painters, builders, and
An improved rotary shingle planing ma chine has recently been patented by Mr. Samuel M.
King, of Lancaster, Pa. The invention consists in the combination of two rotary catter heads journaled in reciprocating frames which are loosely connected to-
gether, and reciprocate in planes inclined towari each gether, and reciprocate in planes inclined toward each
other. A table upon which the shingle is placed is tapering sides of a shingle are planed in one operation A box nailing machine for making cigar Avery, of Pheuvix, N. Y. This invention possesses considerable novelty, and by its use would seom to be a great labor saving machine. niere is provided an
inclined slide, down which the nails are passed, the imperfect ones falling through the opening in the slide into a receiver below, while the perfect nails pass down until
they fall into position to be driven into the box. This feeding and driving operation is accomplished by a sliding driver operated by a treadle, which not only in-
serts the nail in the box with accuracy and precision but drives it home. As many slides as desired may be
 An improvement in cotton gins bas been patented by Mr. David \mathbf{S} Rogan, of Burnet, Texas. This invention provides means whereby the breast and
guard can be readily and quickly moved and held out guard can be readily and quickly moved and held out
of their normal position for the purpose of clearing or of their normal position for the purpose of clearing or
freing the cotton roll from the saws, and preventing injury to the operator by. the saws. The gin breast is thereby causing cams provided for the purpose to swing the breast out. At the same time the shiel when the saws are to be gummed, the breast can be
raised and turned back, and the shield, being attached raised and ttruned back, and the ehield, being attached
to it is also carried out of the way, so that the saw to it, is also carried
are fully acceessible.

agricultural inventions.

Mr. S. O. Mason, of Snow Hill, N. C., has recently patented a cultivator which consis to of im-
provements on the patent issued to him and Messes Pate and Dail in January, 1882. The main objects of these improvements are to give greater strength to the cultivator, prevent splititing of tie cross beam, prevent turning of the shanks of the shovels, and rendering the A combined grain drill and fertilizer distributer has recently been patented by Mr. D. F. Hull,
of Hageretown, Md. It consists, frrst, of an adjussblele of Hageretown, Md. It consists, frrst, of an adjustbble
keeper of peculiar construction, adapted to conform keeper of peculiar construction, adapted to conform
with the concave surface of each seed opening, and proordinary gum rollers of the drill to prevent the lateral
discharge of the grain in passing the rollers. It is s contrived that the flow of the fertijizer
turning the machine or whenever desired.
A patent has recently been issued to Mr . David Woodward, of Clinton, Mich., for a plow jointer. The invention consists of an improved contrivance for adjustment of the jointer, and also for facilitating the discharge of the sward, manure, or rubbish into the furrow to be properly covered, and to cause it to escape from the supporting.arm of the jointer and prevent clog.
ging, as is common with jointers as ordinarily attached. Mr. J. A. Bonitz, the well known publisher of the Messenger, at Goldsborough, N.C., has obtained patent by assignment from Mr. L. B. Stith, of the same place, for a cotton stalk chopper, which may also be used on tobacco and corn fields. This machine consists
in a series of revolving cuttersarranged on radial arms, which operate horizontally with the ground. A conical roller is journaled to the frame in front of the revolving cutters, to direct the stalks to the knives as the machine
is propelled over the ground. The machine is strong is propelled over the ground. The machine is strong and simple in its construction, and it is believed that it ecome known. Mr. Bonitz has commenced the manu cture of the machine at Goldsborough

MISCELLANEOUS INVENTIONS
Mr. Abbott Arnold, of Houston, Texas, has secured by letters patent a new bale tie, which has the
dvantages over many others in cheapness, simplicity, advantages over many others in cheapness, simplicity,
and strength.
Mr. Edward A. Smith, of St. Albans, Vt., bas obtained a patent for an improved smoking tube, the invention consisting of a screw th
holding the cartridge within the tube.
A safety stirrup for riding saddles bas been patented by Mr. Philip Ganzhorn, of Washington, Ill. itlting plate for insuring.the ready.escape of the foot of the rider in case he should be thrown from the horse.
Mr. Ivison H. Huddleston, of New Berne, C., has patented a composition for greasing plug wax mixed together in certain proportions, with or without flavoring, as may be desired. One-half interest
in this patent has been assigned to Mr. L. V. Morrel, in this patent has been assigned to Mr. L. V. Morrel,
of Greenville, N. C.
Mr. Arthur W. Bush, of Boulder, Colo., is the patentee of a combination watchmaker's tool for
holding second hands while reaming out the socket to holding second hands while reaming out the socket to
fit the watch, also for adjusting the pin jewel in the
Mrs. Jane Amelia Ray, Brooklyn, N. Y., has ceived stay plate, which is intended to protect the ribs corset stay plate, which is intended to protect the ribs
or bones pocketed in the fabric of corsets against reakage,
Mr. William Clemson, of Middletown, N. Y., has patented a buck saw frame, having two braces reaching from the center of the crosspiece of
the saw frame diagonally up to the upper ends of the ide pieces of the frame, whereby the frame is braced
in a simple and very efficient manner.
Messrs. J. H. McConnell and M. W. Chandler, of Pultney, N. Y., have patented a pail or basket
handle. A short distance above the upper edges of he basket shoulders are provided, under which the of holding it on the basket at the middle.
Mr. Andrew C. Emmick, of Columbus, O., or axle fraxle skeins. The interior of the hollow plugs are
welded on the inside of axle skeins, and by running a lag screw from the point of the skein to the axle, all ai nd moisture are excluded.
A simple and convenient lamp kettle has Aeen recently patented by Mr. William Pountney, of
Port Jervis, N. Y. It is so constructed as to rest on he top of a sectional lamp chimney, and does not interfere with the light when in use. A spoutis provided which will hold and cook an egg a
water is heating within the kettle.
A quilting frame for suspending a quilt so hat a sewing machine can be brought in use in the quilting operation, has recently been patented by
Robt. B. Bledso, M.D., of Alvarado, Tex. The apparatus is simple in construction and effective in use, enavery little fatigue to the operator.
Mr. H. C. Leonard, of Covington, Ky., has patented a machine intended for use for spinning and are of rope or cords, or other manufactures produced by twisting or spinning. The machine may twist as any strands as are required,
A simple and effective faucet for drawing iquids has recently been patented by Mr. Frank
McCabe, of Providence, R. I. liti specially designed for beer faucet, but may be applied to any cask or barrel, and is so constructed as to avoid leakage around the valve when the fancet is open. It is also provided with plunger for forcing in the bung,
Mr. La Fayette Hartson, of Wyoming, Ia., has patented an improved harness buckle and loop.
The object of the invention more especially is the securing of the end of the strap to the buckle, without the necessity of stitching the buckle loop to the main strap. This is accomplished by riveting the strap between two
metal plates, thus securing a stronger connection than le by sewing.
Mr. John P. Wilkinson, of Abbeville, Miss. is the patentee of an improved guard for the key holes thicknesb to the space between the plates of the lock means of a thumb bit projecting through the bottom of
Mr. Daniel T. Cbambers, of Washington,
glove fastenings. This consists in a flap which passes
around the wrist. An inner strap is also provided around the wrist. An inner strap is also provided
which passes through a loop on the other side and holds the glove close to the hand, leaving the palm entirely tent granted to same inventor in February, 1883.
Mr. W. E. Liddle, of Salem, N. Y., is the patentee of an improved mode of attaching ornamental hook or spring. The ear wire is inserted through th ear in the usual way, but instead of ending in a loop the wire is bent npward, forming a supporting leverag behind the ear, which obviates every dat
Mr. Ernst Caywood, of Vining, Kan., the patentee of a floor clamp which consists in a clamp one another as to engace with the joist and perv slipping. This clamp may be readily removed and ad justed for receiving a new floor board. The boards are pressed into place with but little effort on the part
the carpenter, by the nse of one of these clamps. Mr. Lebbeus Simkins, of Marshfield, Ore gon, is the patentee of an apparatus intended to pre-
vent boiler explosions. The inventor provides a broad foal attached to a gas pipe, the latter of which has per forations near the float for carrying off the gases which thus rendering boilers safe with a very simple contriv ance.
An
An improvement in churns in which the ordinary dash is dispensed with is the subject or a pa tent granted to Mr. W. W. Kitchen, of West Union, Ia butter are released by the impact of the cream in being dashed from one side of the receptacle to the other, by
the oscillating movement imparted by the weighted pen-
Mr. James Schofield, of New York city,
 for some improvemts the are intended to render the machine more durable and effective in its results. The noise is also very much diminished in the
one when in use.
Messrs. J. C. Jay, Isaac Jay, and B. L. Chambers, or Arapahoe, Neb., have patented an improved cultivator, which consists of a contrivance
whereby the wheels of the cultivator may be guided so as to enable the plowman to so control the machine that he can protect the corn from injury by the wheels
of the cultivator, whenthe horses fail to properly guide
An ingeniously arranged desk for the convenience and use of dranghtsmen, engravers, type set monnted in such a way that it may be raised by rotat ing a hand wheel which actuates a pinion gearing with a rack apon one of the supports of the deak. In this way the desk may be raised to any height desired and locked in any position. The inventor of this improve
Mr. Robert B. Bledsoe, of Alvarado, Tex. is the patentee of an improved quilting frame, which
instead of being supported on legs is suspended from instead of being supported on legs is suspended from
the ceiling, so that when not in use it may be drawn up close to the top of a room out of the way. By a simple arrangement of pulleys the material to be quilted i
easily turned, so that only one-half need be exposed a a time, and when that portion is quilted the frame turned, bringing the other half before the operator.
An improvement in fire escapes has recent city. Teen patented by Mr. Henry Redden, of New York doorway of a building, and extend upward to the roof. A car is provided to be run up and down in grooves in
these posts. The mechanism for operating the car is at these posts. The mechanism for operating the car is a
the base of the posts. When the eecape is not in use the base of the posts. When the escape is not in use,
the plaform of the car rests upon the ground in front the platform of the car rests upon the gro
of the door, and serves as a stepping stone.
An improvement in horizontal steam boilers designed to make the most economical use of fuel, and cently been patented by Mr. Geo. Kingsley, of Leaven worth, Kas. The boiler is also so constructed as to be readily cleaned of scale, and the inventor claims that in damage than the extinguishment of the fire would be
Mr. A. C. Osborn, of Clarksburg, W. Va., has recently patented an improved mechanism for ope
rating and adjusting the set works of saw mill head blocks. It consists, first, in a device for regulating the operated to move the log; and, second, in a rack and pinion device for turning the.pawl of the hand lever in to posi
tion.
An

An adjustable attachment for drawers, which can be used for reading, writing, etc., has re
ently been patented by Mr. T'. L. Jowett, of Boston, Mass. A leaf is hinged to the inner surface of the
drawer front of a burean, table, or other furniture, so it can be swung into the drawer, or raised to rest on the edge of the top plate of ihe table, making a convenient rest for holding a book while reading, and answering
for a writing desk.
Mr. W. S. Ditterline, of Mauch Chunk,
Pa., has secured a patent on a tremolo attachment for Pa., has secured a patent on a tremolo attachment for
cornets, whereby the tone produced is vibratory. The echo tube of the cornet, or a mute tube to be applied to the bell of the instrument, said tube having a valve or
disk connected thereto by a spring or lever, and arranged to vibrate by the pulsations of the wind escaping om the tube.
An improved radiator has recently been pahiual which consists in a base chamber having the usual supply and discharge pipe and a series of paral lel upright tubes connected with the base. For productubes, This radiator ay be tubes. This radiator may be used for either steam or
hot water, and secures a larger extent or heating surface
for its size than many other radiators. The inventor is
Mr. Thomas McAvity, Jr., of St. John, New Brunswick, Canada.
A ditch and road scraper has recently been patented by Messrs. J. H. and T. J. Gill, and J. W. Hedges, of Richwood, 0 . It consists of a sheet metal scoop pivoted near the rear and about the top of the
sides between a pair of beams, from which pivots a pair of curved braces extend forward along and through
the beams to the side of the scoop, to which they are he beams to the side of the scoop, to which they are
connected. Spring latches are provided for holding the connected. Spring latches are provided for holding the
coop in position. By means of trip levers the scoop is scoop in position. By means of
infastened at will for dumping.
Mr. Joseph Reid, of W yandotte, Kan., has received a patent for a refrigerating apparatus intended
to effect morecomplete utilization of the cooling power of air, or ammonia, or any other substance which, having been compressed, will absorb heat while it is expanding, particularly in that class of apparatus wherein the gas or ammonia is expanded in pipes. This the inventor accomplishes by an arrangement of a series of
cooling pans placed one above another, between and ooling pans placed one above another, between and and which the cooling substance is circulated.
An improved washing machine bas been patented by Mr. G. F. Knight, of Carroll, o. The botTwo cylindrical ploziors, wo cylindrical plungers, one of which is convex and brought together and separated from one another by means of a lever. By moving the lever up and down the clothes between the compressors or plungers will be irculate through them. With this machine the labor
it

Mr. Max Lesser, of Athens, Ga., has ob ained a patent for an improved boot cleaning apparatus. The box of the scraper is provided with brushes on its bottom and sides for removing the remaining mud and
dust, after the scraper has performed its office of removdust, after the scraper has performed its oflec of remov-
ing the beavier mud from the shoes. A metal strip with a forked end is likewise provided for removing overshoes from the feet of the wearer. The combined arrangement of the parts, and the handy purposes to which they are put, render the new boot cleaner quite an important article in the household.
A new weather strip for doors has been paented by Mr. John Shoemaker, of Garner, Ia. This imently to the door, and of another strip which is hinged o the first mentioned strip. The latter is provided with spring which retains it in an elevated position when rame, and when the door is closed the movable strip is brought to bear against the blocz, and turn the strip own on its hinges, pressing the rubber section against he door sill, which prevents any draught of air or dust rom entering the room.
An improved apparatus for fitting felly Antions to their places within the tire, before inserting Eau Claie, Ween patented by Mr. Charles H. Smith, losed tire. while The inventor inserts within the arranges them so that when bearing one against the ther, they will leave a vacant felly section space. By applying pressure to the exposed ends of the separate
felly sections to force them apart, then entering a final elly section in the vacant space and allowing the tire to ool after being driven home, the process is comleted.
A measuring instrument for the use of sists in a graduated belt to be passed around the body of the person, which belt is provided with sliding plates extend over the stoulder. Other graduated sliding plates with their free ends turned upward are placed in front and indicate the height of the shoulder and size
of the arm. After all the adjustments have been made the arm. After all the adjustments have been made on the instrument, the pattern is traced from the machine on paper by means of a tracing wheel, for the use of the cutter. Thervard, Ill.
An improvement in two wheeled village or road carts has been patented by Mr. Lot Green, of
Rushville, Ind. The object of the invention is to re lisheville, Ind. The object of the invention is to rejerking motion caused by the motion of the horse. In irectly irectly upon the axle, but upon springs which are sus-
ended from the side bars of the vehicle, these latter eing supported upon the axle by means of bracket rons. In this way the body of the cart is soloosely connected with the running gear that it is relieved of An improvement in ore and stone crushers as recently been patented by Mr. Daniel Brennan, Jr., of Orange, N. J. The inventor provides a movable jaw
the lower part of which is adjustable independently of the lower part of which is adjustable independently of the movement of the upper portion, and has a simple
contrivance for regulating the movement. The movable jaw is hinged to the ridged jaw at its upper portion by a U-shaped bolt, which enables the movable jaw to ereadily taken from the main jaw and reversed end or end, or side for side, so that as the jaw becomes worn it may be reversed, thus rendering the entire machine more enduring. The inventor is a practical road maker, and his experience in crushing stones for macadamizing purposes has led to this improved machine,
which it is believed is destined to supersede many of the stone crushing machines in use.
A very conveniently contrived gate for use A stock farms has recently been patented. The in ing of gates, and also to prevent cattle and horses from passing, while free exit to sheep, calves, passing, while free exit to sheep, calves, etc., is per-
mitted. This gate consists of two sections, one of which, the main gate, is constructed so as to prevent the passage even of small stock, while the other section is the stock gate, and allows the passage of small ani-
mals. The main gate is actuated by a cord over a romals. The main gate is actuated by a cord over a rotating drum, and the stock gate is connected with the
end of the main gate, and may be opened and closed end of the main gate, and may be opened and closed
simultaneously, and by the same mechanism as the simultaneously, and by the same mechanism as the
main gate. The inveutor is Mr. A. J. Sweeney, of

The Charge. For Insertion under this head is one Dollar a line for each insertion: about eight words to a line Advertisements must be received at publication offce Gold, Silver, Nickel, And Brass Plater wants position 23 eaars' experience. Address Plater, Oakville, Conn. Best popular Science Works, 15 cents. Cat.
J. Fitzgerald, 20 Iafayette Place, New York.
Second-hand Weston Dynamo-electric Machine for
sale cheap. Address Chas. Perrigo Graining and imitating woods, finely, rapidy, and
easily. Stamp for catalogue. Curtis Pressure Regulator and Steam Trap. See p.78. For Pat. Safety Elevators, Hoisting Engines, Friction
Clutch Pulless, Cut-ort Coupling. see Fribie's ad. p. 28. For Mill Mach'y \& Mill Furnishiug, see illus. adv. p.76. Mineral Lands Prospected, Artesian Wells Bored, by Lightning Screw Plates, Labor-saving Tools, p. 78. Hollar's Safe and Lock Co., York, Pa., manufacturers of improved Fire and Burglar-proof Safes. Bank and
Safe Deposit Vaults and Locks. See adv. p. 61. $25^{\prime \prime}$ Lathes of the best design. Calvin Carr's Cornic
Machinery. G. A. Oht $\&$ Co.., East Newark. N. J.
The Ide Automatic Engine, A. L. Ide, Springfield, Iu. Brush Electric Arc Lights and Storage Batteries. Twenty thousand Arc Lights already sold. Our largest
machine gives 65 Arc Lights with 35 horse power. Our Storake Battery is the only practical one in the marke Brush Electric Co., Cleveland, o.
Best Squaring Shears, Tinuers', and Canners' Tools Lathes 14 in. swing, with and without back gears and Lathes 14 in. swing, with and without
screw J. Brrkenhead, Mansfeld, Mass.
The Best.-The Dueber Watch Case.
If an invention has not been patented in the Unted States for more than one ear. it may still be patented in
Canada. Cost for Canadan patent, \&t0. Various other
foreinentents forieng patents may also be obtained. For instructions
 Guild \& Garrison’s Steam Pump Works, Brooklyn, N. T. Steam Pumping Machinery of every deserip

Nickel Plating,-Sole. manufacturers cast nickel an
odes. pure nickel salts. polishing compositions. etce. Com

Lists $20.30 \& 31$, describing 4,000 new and 2 d-hand Maohines. ready for disstribution, State Just what machinnes
wanted. Forsaith $\&$ Coo, Manchester. N. H., \&N. Y. city. For Power \& Economy, Alcott's Turhine, Mt.Holly, N. J. "Abbe" Bolt Forging Machines and " "Palmer" Power
Hammers a specialty. Forsaith $\&$ Co., Manchester,N.H.

Railway and Machine Shop Equipment.
Send for Monthly Machinery List
Send for Monthly Machinery List
to the George Place Machinery Company,
121 Chambers and 103 Reade Streets, New York.
"How to Keep Boilers Clean." Book sent free by
Wanted-Patentei articles or machinery
Wanted.-Patented articles or machinery to make
and introduce. Gaynor \& Fitzzerald. New Haven. Conn Water purifed for all purposes, from household supplies to those of larkest citles, by the improved filters
manufactured by the Newark Filtering Co., 17 Commerce St.. Newark, N. J.
Latest Improved Diamond Drills. Send for circular
to Al. C. Bullock Mfg. Co.,80 to 88 Market St., Chicago,III. Ice Making Machines and Machines for Cooling Breerries. etce. Pictet Artifcial lee Co. (Limited),
Greenwich Street. P. O. Box 3038 New York ity.
Presses \& Dies. Ferracute Mach. Co., Bridgeton. N.J. Machinery for Light Manufacturing, on hand and Split Pulleys at low prices, and of same strength ani Works. DrInker St.. Philadelphia. Pa.
Supplement Catalogue.-Persons in pursuit of infor mation on any special engineering. Mechanical, or scien-
ific subject.
 The sVppr,r,wnvx contains lengthy articles embracing the whole range of engineering, mechanics, and physi-
cal science. Address Munn $\&$ Co. Publishers, New $\begin{aligned} & \text { Yorks }\end{aligned}$ Improved Skinner Portable Engines. Erie, Pa.
C. B. Rogers \& Co.. Norwich, Conn.. Wood Working Am Twist Drill Co Meredith, N H mot
Am. Twist Drill Co,.Meredith, N. N., make Pat. Chuck American Fruil Drier. Free Pamphlet. See ad... p. 94 . Brass \& Copper in sheets, wire \& blanks. See ad.p. 92. The Chester Steel Castings Co., office 40 Library St. Philaadelphia Pa.. can prove by 20,000 crank shafts an 15,000 Gear Wheels. now in use. the superiority of their
Castings over all others. Circular and price list free. Machine Diamonds, J. Dickinson, 64 Nassau St., N.Y The Improved Hydraulic Jacks, Punches, and Tube
Expanders. R. Dudgeon. 24 Columbia St.. New York. Gear Wheels for Models (list free); Experimental
Work, etc. D. Gilbert \& Son, 212 Chester St., Phila... Pa. Tight and Slack Barrel Machinery a specialty. John Our goods speak for themselves, and a trial will con-
vince the most skeptical of their superiority over all others. Lehigh Valley Emery Wheel Co, Leeilghton, Pa Upright Self-feeding Hand Drilling Machine. Excel-
lent construction Pratt \& Whitney Coo., Hartford, Conn. 20,000 Duc Spherical Elevator Buckets, ,izes $33 / 2$ to 17 inches, constantly on hand. Telegraphic orders inled
T. F. Rowland, sole manufacturer, Brooklyn, N. $\mathbf{~}$. First Class Engine Lathes, 20 inch swing, 8 foot bed, Woodwork'g Mach'y. Rollstone Mach. Co. Adv., p. 92. Steam Pumps. See adv. Smith, Vaile \& Coo., p. 93. Straight Line Engine Co., Syracuse, N. Y. See p. 92.

NEW BOOKS AND PUBLICATIONS.

The Stratis in Framed Structures. By A. Jay Du Bois, C.E., Ph.D., Professor of Dynamic Engineering in the Sheffield Wiley \& Sons, New York, 1883.
This work is intended as a practical guide to the civil engineer as well as a text book to the stucient. It structures, whether of wood or iron; applies these cal culations by examples to existing specimens of work; shows simple and combination construction of bridge nd roof girders; treats on the continuous girder, pivot or swing bridge, and braced arch; considers the susappendix for the advanced student and the engineer. appendix for the advanced student and the engineer.
illustrated by plates and accompanied by mathemati al calculations. A specimen contract for a railway bridge, with specifications, will be fcind of use
The Iroquois Book of Rites. Edited by Horatio Hale, M.A, author of the States Exploring Expedition." D. G. Brinton, Philadelphia.
The object of this volume. which is "No. 2 of Brinon's Aboriginal American Literature," is to show that the Indian races on this continent have a history: or at least that in the confederacy of the five nations--
afterward the six nations-existed the materials for an afterward the six nations-existed the materials for an
unbroken history; almost if not quite connecting the unbroken history; almost if not quite connecting the
present Indians with the mound builders. The compresent Indians with the mound builders. The com-
piler of these Indian fragments of an unwritten history endeavors to show that what otherwise would haveedegenerated into corrupted tradition, became. by the sages of the Huron-Iroquois people, reliable and credi ble history, the oral records being repeated in public on tated occasions, each special and separateevent being symbolized by a string. of wampum of particular arrangement of colors, which was exhibited at the timeor
the recitation, thus forming a system of mnemonics subject to public criticism. These nations also allowed equal legal rights of women, according them an mud far more freedom in domestic life than isgiven to the women of some European countries in our day. These six nations had a federal system quite similar in important particulars to our own, and like the union of the States capable of indefinite expansion. In fact, the book is full of interesting facts about a peope whose posterity and representatives have received
scant justice at our hands either as individuals or as urvivors of a social and political system worthy the at-
1881-1882. By
Die Kriegsschiffbauten,
J. F, Von Kronenfels. A. Hartleben, J. F. Von Kronenfels. A. Hartleben,
Wien, Pesth, Leipzig,
A83. This work is a continuation of a former work by the author on the "Floating Craft of the Naval Powers;" and in this continuation he describes the men of war. torpedo boats, etc., built by the several powers during
the years 1881 and 1882 . The naval powers are arrauged alp years 1881 and 1882 . The naval powers are arranged ing to the greater or less number of vessels built during these two years. England. Italy, and Russia take the lead, as they have increased their navies more than
any of the other nations. The author has also devoted any of the other nations. The author has also devoted considerable space to the navy of the United States,
giving a description of the partly completedvessels,and the construction and armament of the new steel cruisers, work is provided with eighty-two wood cuts.

HINIS TO CORRESPONDENTS.
No attention will be paid to communications unless
accompanied with the full name and address of the writer.

Names and addr iven to inquirers.
 ven to inquirers.

We renew our request that correspondents, in referring former answers or articles, will be kind enough of the question.
Correspondents whose inquiries do not appear after a reasonable time should repeat them. If not then published, they may conclude that, for good reasons, the Editor declines them
a personing special should remit from $\$ 1$ to $\$ 5$, according to the subject as we cannol be expected to spend time and an such informuneration. Any numbers of the Scientific American Sopple office. Price 10 cents each.
Correspondents sending samples of minerals, etc. Por examination, should be careful to distinctly mark or label their specimens so as to avoid error in their identi fication.
(1) F. E. B. asks for a receipt for a stone color whitewash for an asphalt pavement, the color of tick if made into a wash? A. A thin coat of Portland cement is, probably, the best thing. It must be applied of such consistency that it will not flake.
(2) G. L. M. asks: 1. Are the binding posts the electrical machine described in SUPPLEMENT 161 insulated? A. Yes, they are insulated by the wooden
base of the machine. 2. How are the wires connected with the postss A. Clamped by means of screws enter-
ing the posts from the bottom. 3. Is the sof iron used ing the posts from the bottom. 3. Is the soft iron used
for electro magnets common cast iron? A. Soft gray cast iron
(3) W. M. M. asks: 1. What weight will two air tight boxes carry; the bozes being $6 \times 10,12$ feet
long? A. $45 ; 000 \mathrm{lb}$., including their 0 wn weight. 2. Also, the weight required to sink them onefoot in water? A. $7,500 \mathrm{lb}$.
(4) A. M. J. asks: Will you give a simple ethod for bleaching straw? A. The cheapest method rloaghing straw consists in exposing the material in
chamber to the fumes of burning sulphur. nore expensive way is to dip the straw in caustic soda, and then treat with Javelle water or calcium chloride.
(5) H. E. W. writes: I have about 25 gal ens of copper solution, spoiled by putting it in a pitch Can you tell me through the columns or your paper way to extract the pitch or in any way utilize the solution, and will you please,tell how to prevent nickel salt from crystallizing on the anodes and from settling a the bottom of he vati A . The copper can be recovere by precipitating it with iron, or by throwing it down by
the battery. The nickel salts should not sette to the bottom, nor should they crystallize on the anodes. It is probable that your current is too strong. Consul article on nickel plating. Scientific American Suppie MENT, No. 310.
(6) J. F. writes: I have a lot of candle ick on hand of which the preparation has evaporated in course of time, and now it does not consume while receipt for preparing bleached wick for beeswax can des? A. There are various solutions used. Among others, 1 lb . of boracic acid dissolved In 75 pints of water in this the wicks are soaked for about three hours. See
article of "The Manufacture of Candles," ScIENTIFIC merican of December 17, 1881
(7) L. P. S. asks: 1. In running two bal ance wheels, one weighing one ton and the other two tons, butso arranged that each would bave the same
amount of friction in the boxes and in the air, and both of same speed and diameter. which would require most power? A. Having the same friction, not in pro portion to weight, but total amount, and the same ai In doubling the speed of a balance wheel, how much is gained in momentum? A. To double the velocity of your fly wheel increases its "regulating power" or mo
mentum four times: the regulating power is as the mentum four times; the regulating power is as the
(8) C. R.-Zinc has the greatest degree of expansion of any of the metals. A bar9 inches long will expand to 9.026 when heated from 32° to 212°
and in proportion for intermediate amounts of change temperature. It melts at 740° Fahr
(9) J. E. M. asks if it is injurious to lumber to keep it in a dry house at 90° after it is dried. A a short time, but will make it brittle and hard to wor
(10) A. W. W. writes: I have a boiler I desire to test: please inform me if the test by water carry it toinsure 100 pounas steam. A. We do not re commend the testing of boilers by the expansion of water at temperatures up to 212°. If there is the leas leak. you have no means of supplying the loss. If you geat the water hot enough to supply leakage by the generation of steam, you will run all the risk that will
occur in raising steam to the required test. The best way is to test with a pump to a pressure 50 per cent (11) ban the working pressure.
(11) A. K. writes: We have a round dis charge pipe 60 feet long, of 40 inches diameter. A head fall at discharging end. What kind of a wheel would be most convenient and powerful, and what equivalent in horse power could be obtained! A. If you have no fall at the discharging end, you can only use a current
or fiutter wheel. With such a wheel you will not be able to obtain more than 3 to 4 horse power
(12) D. A. O. writes: Cistern builders here wall them up with brick, Jaid in cement, but they invariably crack and leak. I have heard of cisterns being
made by cementing on the earth, using no brick except at top, which gave good results; please give me a method for building the cement cistern. A. Brick cement puddle snd rammed, so that the pressure does not gradually bulge the walls out. Build cement cisterns with a puddle of sharp coarse sand and cement rammed between the crib and the earth wall. A cis reliable. In the brick cisterns the brick wall may be only 4 inches thick, and only act as a crib, which must be thoroughly backed. The face plastering
helps, but is not alone reliable for tightness.
(13) C. R. I. asks how to remove the tarnish from German silver drawing instrum
(14) E. H. D. asks for a wash or size that can be applied to whitewashed walls to make wall so that ir will readily scrape off I the whtewas so that it will readily scrape off. I have used nearly
all of the sizes common to paper hangers; but my work is almost entirely on ceilings, and generally they have about an eighth of an inch of whitewash on them, whic is very hard and sometimes impossible to get off. A (15) F. H. asks: What will destroy cockoaches in pantry, commodes, or in any place where care that anything dangerous to the persons occupying house should be taken? A. It is said that powdered the cockroches will destroy them
(16) J. H. G. writes: I have an electry medical battery. It has a current so strong that a man I use this battery plating? How can I make a gold or silver solution? A. Your battery disconnected from the coil might an tion as being so strong that a man cannot bear it, is no adapted to plating. For instructions in plating, see Supplement No. 310.
(17) C. E. A. asks: What can be put on
perforated cardboard, so as to render the same impervious to inks I wish to use the cardboard as a stencil vious to inks I wish to use the cardboard as a st
to make very small round dots. A. Try paraffin.

Minerais, etc.-Specimens have been reived from the following correspondents, and xamined, with the results stated
J. H. P.-The specimen is pyrite (iron sulphide). It may carry gold.-A.S.S. B.- - No. 1 is an alloy, probably is quartz carrying the pyrite; it probabyly carries gold. 3 is quartz carrying the pyrite; it probab)y carries gold.
No. 4 is the rock in which the pyrite occurs; itis of slaty

INDEX OF INVENTIONS

For which Letters Patent of the United July 31, 1883
AND EACR BEARING THATT DATEE.

Abrasive disk holder, L. D. Shepard

gue remedy,
Amalgamator. H. Moon...
Amalgamator, H. M. Th
Animal trap, C. H. Lutz
Atomizer, W. Kennish...
Axle box, car, W. S. G. Ba
xle skein. A. C. Emmick............................ 282
Bag. See Main brag.
Balingoons. P. J. Kelley.......... .. 282,009
Ballina or aerial machine, A. Debayeux......... 282,060
Balloon or aerial machine, A. Debayeux.......... $2: 1$
arber's chair register, F. G. Lane.................. 282,332
Battery. See secondary battery. Secondary electric battery.
Beehive, J. T. Denny
Beehive, J. T. Denny................................ 282,284
Bell, pneumatic door, F . P. Garsed............ 282,186
Bell pull, electric. F. J. Wall
Bell pull, electric. F. J. Wall............. 282,246
Benl. sleigh. G. W. McClintock......................28,54
Belt fastener, H. Blake.............. 282,58
Billiard tables, chalk replacing !device for, F. R.
Williams.... 282,476
Blasting, self-setting tamp for. H. H. E. Dennett.....................282,761
Bower. Injector, P. H Grimm..................
greaves..
Bolt, B. J. Hardin
Bolt and nut package, S. T. Riker .
Bolt heading machine, M. G. Wiider.................
Clark, 282
Boot and shoe holding jack, G. . Dalb..... ...
oot strap, metallic, J. . Thomson
Boot and shoe holding Jack, G. S. Dalby.............
Boot strap, metallic, J. . Thomson
Boots and shoes, tap sole for rubber, G. Watkin.
son..........
Boring brace, A. H. Adanns
Box in imitation of a cigar, o. Bushnell................. 282,251
Box. Self-adjusting, M. Pacholder
Brace. See Boring brace.
Bracelet, J. Hackenberg.................................... 282,310
Brater
Brake. See Car brake.
Brake, E. E. Glover 282,452
friction for hoisting machinery, etc., external
ran, etc., packing, H. Bower....... 288, 282,049
ran, process of and apparatus for packing, H.
Bower....................................... 282,046
Buckle. harness, R. Porter
Buckle. tug. R. K. Burt
Burial case, M. Goff. 282,137
2828,366
282,267
Burial case, M. Goff....
Burner. See Gas burner. Illuminating burner........... 282,072 Bushing for sheaves of puney blocks, J. Cochran. 282,056
Button attaching instrument, P. H. Sweet, Jr... 282,130 Buttonhole linings, machine for making.
Harris...
Harris.................................
Candelabrum. F.A. Kittell...
Candle mould gauge, G. P. Vicken......................... ${ }_{282,133}^{282,458}$
ane mill, A. J. Manny.
Car brake, J. H. Pitard....
Car coupling, A. A. Stetson
Car, railway. W. Hubbard.
Car unloading apparatus, Simar \& Dale.........................282,324
Carriage, J. S. G. F. Hörcher....
Carrlage coupling, R. G. Wood
Carriage curtain strap fastening, F. A. Neider..
arriage curtain window, F. A. Neider....
Carrier. See Cash carrier. Sheaf carrier
arrier. See Cash carrier. Sheaf carrier.
arrying system, z. s. Holbrook....
arrying system, z. S. Holbrook....................
Case. See Buriul c.se. Lock case. Sheave case

Cush carrier. automat
caster, H. McDonald

Tatum.

Celling. W. S. Cogswell.
Clluloia, etc.. process of and apparatus for
moulding hollow articles from, J. R. Furman. 282.451
enter board for boats, E. L. Sibley.... 282.386
Chain, w. H. Dickey 282,11
Chatr. See Folding chair. Reclining chair.
hair. cot. and bed, combined, S. M. Stand.
Check book, office, C. E. Sprague.
Chimney cap, R. J. Smit
hurn, D. T. Bruck...
Churn, W. W. Kitche
Lurn, J. N. Renfro.......
Curn, w. F. Southard ...
Curn, D. B. Wooster....
urn motor, G. B
qurn motor, G. B. \& G. H. Smith.
Ggar cutter, G. W. Burns:...
damp device. C. E. Worlin

282,078 282,151

 \begin{tabular}{l}2,151

2.434

\hline
\end{tabular}

282,292
282,276
2822,077
282,370
282,377
282,475
282,255
2822278
282,240
282,423
282,251

349
282,045 ${ }^{2,056}$
\qquad
asp. See Shoe clasp.
leaner. See Slate and blackboard cleaner.
Cock shearing machine, D. C. Sumner.....282,401, 282,402

Collar, norse, B. K. Emerson....
Compass. surveyor's, T. F. Randolph
Convertible chair, E. H. Bolgiano...
Cooling and ventilating buildings. a
C. A. Van Cort....

Corn drill, J. D. Arras.............
Cornet tremolo attachment, w. s. Ditterline
Cornet tremolo attachment, w. S. Ditterline...
Cornice and curtain pole, combined window,
M: Hough..

Coupling. See Car coupling. Carriage coupling.
Pipe coupling. Thill coulpling. Cracker screen. C. H. Nichols.......
Crucible. metal, M. \& S. H. Darragh
Crutches, heels, etc., rubber holder for, G. B
Thurzo

Culinary vessel, H. B. Asbury et al... Culinary vessel, J. A. Stabel
Cultivator, s. O. Mason....
Currycomb, G. C. W. Magruder Curtain loop. R. C. Pope.
Cuspidor. C. Gordon.
Cuspion r. C. Gordon.........
Cut-offralvegear, L. Skinne cutter. Pipe cutter.
Dam and lock, J. Du Bois
Dental disk holder, I」 D. Shepard
Dental or surgical engine, w. G. A. Bonwill.
Denture, artificial, c. m. Richmond
Desk attachment for drawers, adjustable, T.
 Dispatch tube, electro magnetic, C. A. Cheever.. the, Stevens \& Du Barry ..
Distillation of coal, W. J. Cooper...................
DIstilling and carbonizing wood, etc., furnace for
Door raill and rail support, barn, I . Terry. Dress and skirt protector, G. Bak
Drill. See Corn drill. Grain drill. Drill grinding machine, T. R. Pickering. Drills, device for grinding and clearing, D
Meehan..................................... Drinking vessel, J. Vernon. Eccentric, C. Johnson...
Edger, gang, T . J. Neacy
Ejector, inspirator, and injector, convertible, F
W. Kremer
Electric light brackets, joint for, C. H. Hinds.........
Electric light joint, C. H. Hinds
son
Electric machine, dynamo, E. R. Knowles.......
Electric machines, automatic regulator for dyna-
lectric machines, automatic regulator for dyna
mo, F. S. Giel...................................
Electricity, apparatus for lighting cars by, G. D.
Burton..
End gate, wagon. H. H. Perkins
Engine. See Dental or surgical engine. Rotary
engine. Steam motor engine. Traction engine.
Envelope moistener, C. s. Watson...
Face plate for lathes, etc.., F. C. Bear
Fanning mill, D. Carpenter............
Feed citter, A. G. Christman.
Fence, barbed. J. Gosss..
Fence post, s . Beckwith
Fence post, s. Beckwith........................
Ferro-phosphorus, production of, J. Reese. File holder, E. T. Pearson . File. letter and invoic
Filter, E. K. Baynes.
Firearm. K. Eaynes........ Firearm, breech-loading, Whitmor
Firearm. magazine, Kacer \& Kriz.
Fire escape, C. W. Mills.
Fire escapape, \mathbf{G}. H. Thompor
Fire escape, S. D. Woodbury
Yire escape ladder, J. S. Harrison
Fire escape ladder flexible,
Fishing reel, T. H. Chubb........... ...
Flier for roving machines. E. w. Kelley
Flux for welding metal, w. Mutter
Folding chair. A. Collingnon
Frutt jar. J. Giberds........
Fruit jar. G. F. Hoeffer
Fruit picker, W. S. Castor.
Fruit receptacle. J. Owen..
Furnace. See Metal melting furnace.
Furnace for the manufacture of iron and ste....
Furnace for the manufacture of iron and steel
and for otter purposes, J. Henderson..........
E. Baker.....................

Gas, apparatus for administering nitrous oxide, J
Gas, apparatus for zenerating and carbureting
hydrogen, w. Collings..........................
Gas, apparatus for manufacturing.... A.
Gas, apparatus for producing illuminating or heatGas, apparatus for produ
ing. J. L. Stewart....
Gas burner, A. B.
Gas burner, electic lightinting, A.... L. Bogart.
Gas Gas burners, cut-off for Argand, Boone \& Whit
field..$~$ Gas producer, C. W. Siemens Gas regulator, L. Baumeister.................. B Gas works, hydraulic main for, G. A. McI.................................... Gate, See End gate. Sluice or flood gate.
Gate, J. Robinson.... Gate, J. Thompson....
Generator. See Steam generator.
Glue compound, C. M. A tkinson.
Glue compound, C. M. A tkinso
Grain binder. C. W. Levalley.
Grain binder band securing mechanism, J. .i....................
Davis... .. Grain elevator, W. Watson.....
Grain separator, P. Van Gelder
Grate F. M. Lawrence...
Grate bar, W. H. Heeson
Grinding and polishing machine, w. B. Fenn.
Grindlog machine, A. Campbe
Grinding machine. J. Rentz
Grinding machine. J. Rentz....
Grinding mill. C. A. Fredericks
Grindstone hanger P. Bradfor
Grindstone hanger, P. Bradford...
Hame. A. Vaggoner...
Hame tip, T. Brabson.
Hammer, C. J. Grellner
Hanger. See Carriage body hanger. Grindstone
$\underset{ }{\text { harrow, sulky. J. S. Cleveland }}$
Harrow tooth, J. T. Clarkson
Harvester R. W. Benedict
 Hat, oap, etc.,...............
Hat or or oap, A. C. Couch
Hateh eover, J. McIntyre
Header, thrasher, and separator, combined, w.
H. Parrish
Hinge, blind, Shepard \& Adams, Jr

Hoo, wheel, D. C. Lee
Holder
cigarette holder. Dental disk holder. File holder. Napkin holder. Picture holder. File Pillow sham holder.

Hose fastener.
Hotbed and other frames for plants, J. A. Tracht. 285,242
Hub boring machine, H. A. Moyer (r)....
Hotbe boring machinie. H. A. Moyer (r)..............
Hub creeper, A.Geiger.........................
Ice machine and refrigerating apparatus, an
Ioe mania, B. \& R. McManus.
Iluminating apparatus, J. \& R. Pintsch 2828,111
Illuminating burnar, C. Clamond.............. 282,053

Iron and steel directly from the ore, apparatns
for manufacturing, H. C. Bull
282,266 Jack. See Boot and shoe holdink jack. Shoe holding jack.
Knitting machine, needle, G. H. Adams. amp globe electric, G. D. Burton
Lamp, incandescent electric, I. Adams, Jr.. Lamp, incandescent electric, E. R. Knowles....... amps, device for lighting petroleum or gas, P . Richter... Lantern, J. Fanning................................... 282.291
Lift.and hoist, J. S. Stevens et al................1282.236 Lightning rod. T. H. Dodge. 282,449
Lint. manufacture of surgical, w. T. Browne.... 282,264 Lock. See Nut lock. Seal lock.
Lock case, H. L. Spiegel (r)......
 Locomotive deflecting plate, H. Millholland...... land
Lubricator,
Magneto electric signaling apparatus, T. A. Ad.
 Wolf........................$~$

Measure, automatic grain, w. R. Dunkel............
Measuring electric currents, apparatus for, De
Measuring electric currents, apparatus for, De
Ferranti \& Thompson....................
Mechanicalmovement. C. Hammelmann........ 282.076
Metal melting furnace. G. M. Bryant................ 282,265

Metal surfa Rossiter

mill. Windmill.

Mining machine. C. W. Colvin
Motor. See Churn motor.
Moving earth and excavated material, mechanMuf, M. Smith
Music leaf tur
Muscearturner, c. Onslow...
Napkin holder, , S. S. Dikeman......
Necktie fastener. E. T. M Boenk.
Nut lock. W. J. McTighe.
Nut lock, J. Parr.......
Nut lock, J. H. Sheehan
Oro pulverizing machine, \mathbf{H}. E. Parson Ozone apparatus, H. D. Hall..
Paper bag machine, Coates \& Bissicks $. ~ 2828,166$
Paper calendering machine, A. S. Alden Paper for bank notes, checks, etc.. manufacture
of yellow flbered, E. Musil 282,
aper machines, method of and apparatus for ex-
hausting the air and extracting the water

 Picture frame holder, A. J. Weave
P'ipe. See Stand pipes.
Pipe coupling. T. P. Hardy
Pipe coupling, T. P. Hardy
Pipe cutting machine, J. L. Truax
Pipe or nut wrench, D. P. Foster
Pipe wrench, E. H. Robbins
Pipe wrench, F. A. Sinwonds
Planter, corn, G. F. Edson
Plow, sulky, B. F. McCray.
Post. See Fence post.
Potato digging machine, J. T. Warren.
Potato digging machne, J. T. Warren.............
Ribon.....................
Press. See Baling press.
Printing press
Printing press air cushioning mechanism, w.
Scott.........................
Privy vaults and drains, device for preventing
the escape of effluvia from,
Pulley, A. Walton................
Pulley, wood rim, W. W. Carey
Pulley, wood rim, W. W. Carey.
Pump regulator, J. H. Blessing
Pumping mechanism for supplying railway tanks,
Railing, iron, J.C. E
Railway chair and tie, L. Haas
Railway electric signal apparatus, C. A scott.......
Railway electric signaling apparatus, C. A. Sco
Railway, elevated wire, Knapp \& Adams......
Railway, elevated wire, Knapp \& Adams
Railway rail jont, Bloomfield \& Boone..
Rake. See Hay rake.
Rakes, making metallic, C. A. Lindgren............ 282,336
Range and stove, cooking, P. Brake............... 882.246
Ratchet wrench, B. . Lancaster............... 822462

 Regulator. See Gas regulator. Pump regulator.
Ritile barrel and extractor therefor, auxiliary, P. Ritle barrel a
R. Howe
rrel and extrac................
OWe Forest.
129

282,404
282,104

Telegraphs, dynamo electric machine forprintink.
$\underset{\text { Telegraphy dramo in. D. Fi.......................... }}{\text { S. }}$
\qquad

$$
\begin{aligned}
& \text { Therapeutic capparatus, electr } \\
& \text { Thermometer, J. G. Smith... }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Thermometer, J. G. Smith. } \\
& \text { Thill coupling, F. B. Herzo }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Thll coup ling, , F. B. Herzog } \\
& \text { Thill coupling G. H. Hutton. } \\
& \text { Thupling, D. A. Johnson. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Thill coupling, D. A. Jnn } \\
& \text { Tile fastening, A. Chase. } \\
& \text { Tongs, I. A. Murchison . }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Tongs, I. A. Murchison } . . . \\
& \text { Tongs and wrench, combined pipe, E. F. Barnes. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Tongs, lifting. M. C. Ward........... } \\
& \text { Tonke support, wagon, F. Trip, Sr. } \\
& \text { Ton. J. H. Sunderman }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Tongue support, wagou } \\
& \text { Top, J. H. Sunderman } \\
& \text { Toy plane, metal, S. } .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Traction engine, I. S. Freeman. } \\
& \text { Traction engine, N. Jackson.... }
\end{aligned}
$$

\qquad


```
Tricycle, Overman \& Hadley ..
Trufa, hand, N. J. Waterman.
```

Tube. See Dispatch tube
Turn buckles, manufacture of, E. W. Merrill Type writer aligner, C.J. Baker
Type writing and printing machine, M. H. De ment............12
Umbrella stick and cane, J. T. Smith........ Vaive seat for steam engines, I. H. Congdon.....
Valve, slide, B. Carley...........................

ity of illuminating, E. J. Frost
Vehicle seat bar, A. C. Evans......
Vehicle, two-wheeled. C. W. Sal.....
Ventilator. See Mllstone ventiator
Vise, hand, Amborn. Jr., \& Chaplin.:
Wagon brake lever. J. G Aram.
Wagon brake lever. J. G. Aram........
Wagon gear, platform, M. Halfpenny
Walls of buildings, composition for waterprooflng
and preserving
Warp threads, machine for drawing in, L. P
Sherman.............................
Watering device. stock. W.
Weather strip, D. . . Cady......
Weather strip. T. B. Mefordy

eather strip for door sills, J. G. O'Keily........... 282,10
Weighing machine. automatic, C . Reuther... 282,22
Wheels on their shafts, mounting, H. C. Hopkins.
Whiffletree and holdback attachment, G. H
Windlass, C. J. Hall.
Windmill, C.F. W. Schramm
Window shade, W. J. Cox.
Wire coating for drawing, A. B. Clem
Wire, loom for weaving, C. F. Wickwire.
Wood, machine for bundling kindling, M. J. Shaw. 2
Wrench. See lipe wrench. Pipe or nut wrench. Ratchet wrench.
Yeast. device for cutting, Kasehagen \& Wietheger.
Yoke attachment, neck, F. Svoboda.
DESIGNS.
Advertising column, R. D. Bra
Advertising post, G. Fuchs.
Alpha bet, S. H. Holland.
Carpet. F. Bend..
Carpet, A. L. Halliday.
Crockery, article of, F. A. Benedik
Fingerring, H. C. Haskell.
Hanger, F. Brown.
Lamp shade stand, banner, D. W. Wilkins.
Match safe, M. Ehrenreich
Paper weight, J. A. Prindle
Pen, writing, G. F. King
Pillow block. F. Brown.
Quilting, L. Shultz.
igh, W. C. Leach

TRADE MARKS.
Cigars, J. W. Perez.................................... 10.477
Dentrifices, Suez (The Firm of)......................... $10,173,10,444$ Liniment to be used externally for the destruction
of all kinds of parasites on stock and poultry
same, T. L. Miller............... 10,476
sixtures. anti-rheumatic. Remedy for consumption, E. T. Hazeltine........... 10,471 Tobacco, smoking and chewing. C. W. Allen.......... 10,470
10,475
A printed copy of the speciflication and drawing of any patent in the foregoing list, also of any patent cents. In ordering please state the number ind date
of the patent desired, and remit to Nunn \& co., 261 of the patent desired, and remit to Munn \& Co., 261
Broadway, New York. We also furnish copies of patents granted prior to 1866; but at increased cost, as the Canadian Patents may now be obtained by the nventors for any of the inventions named in the fore-
coing list, at a cost of $\$ 40$ each. For full instructions going list, at a cost of $\$ 40$ each. For full instructions
address Munn \& CO., 2611 Broadway, New York. Other
form foreign patents may also be obtained.
Saveturamonts.
 Engravings mayy hear adver tisements at the same rate
per line, by measurement. ab the letter press. Advert
tisements must te receive at pubication ofice as early
as Thursday morning to appear in next issue.

Siluer Finish.	
Exclusive 4 gents and Imoiters for the United States, of the	
PERIN BAND SAW BLADES, Warranted superior to all others in meality, fin:	

NEW BOOKS.

 "componion ieilize, How to Use it and P. Bigimes.

G. A. GRAY, Jr. \& CO., Iron and Brass Working MACHINERY,
 42 EAST 8th STREET, CINCINNATI, OHIO.

APPLES IN STORE. $-\Lambda$ PAPER BY J. S.

CORNELL UNIVERSITY MECHANICAL ENGINEERING ELECTRICAL ENGINEERING， CIVIL ENGINEERING，
AND ARCHITECTURE ENTRANCE EXAMINATIONS BEGIN AT A．M．JUNE 18 and SEPT．18，18S3 For the UNIVERSTY REGISTER，Containing full state－
ments regardigg requirements for admission，ourses
study，egegrees．honors，expenses， Tte．，and for special information，apply to DROP NORGINGS

 LYON \＆HEALY，State and Monroe Streets，CHICAGO，
Will send prepaid to any addrest their
 HE attention of MAN MNO
about changing
their location，and of those who are seeking a
 POUGHKEEPSIE OFFERS
ful supply of good and wholesome
\qquad A complete system of sewers．
Convenenent access tritheqreat market of America．
Cheap freithts by rail and water． Cheap living，which insures labor at reat
wages．
An atractive and heathy place of residence． Aseful Manufactures．，john I．PLATr Adion o

TO MANUFACTURERSS－TO Lease－

 ZMUSICAL WONDER HEADQUARTERS．

Habit ersily cured with Chlornoe of gold
LESLE E．KEELEY，M．D．SURGEO LESLIE E．KEELEY，M．D．，SUREEON，C．\＆A．Ro Ro

RUPTURE

 MANHOOD！

KNOW THYSELF ，In ESM
A Book for Every Man！
Youns，Middle－Aged，and Old．

POCKET KNIFE． Y $\mathrm{F}=$ 2 MAHER \＆GROSH， 40 Monroe street
TOLEDO，oHIO．
TRANSMITTING GEAR：IMPROVED．－

 THE RIDER HOT AIR COMPRESSION Pumping Engine， Fir city and country residences where
is required to raise a supply of water Simple，Economical，Fiffective． No skill required to run it．We can
efer to our customers of eight yeurs＇ CAlIIMEYER \＆SA Y ER，
19 Dey St．，New York．

WATCHMAKERS．

ROOFINC．
2anamean

 PERFECT
NEWSPAPER FILE

 Adaress MUNN \＆CO．，

the native tribes of the hud

＂BLAKE＇S CHALLENGE＂ROCK BREAKER．
 7解解 blake crusher co．．Sole Makers，New Haven，Conn．

SIBLEY \＆WARE， South Bend，Indiana SPECIALTIES：
192 INCH DRILL PBESSES， AND GEAR CUTTING．位ES REASONABLE
 STEMWINDING Per．nutator Took

 ATOMS，MOLECULES，AND ETHER

PATENT QUICK SHAPERS Can be Claanged while in IIotion． E．Goolit se bererhardt， NEwART，Ry，J．
 ERICSSON＇S New Caloric Pumping Engine Dwellings \＆Conntry Seats

 Feed－water heater and puri
 With two figure Contained in ScieNTIFIC AMEHICAM
SUPPLEMENT．No．363．Price 10 cents．To be had a
this oflce and from all newsdealers．
UINITERESAT．

$$
10 \text { Barclay St., N. Y. City. }
$$

COST AND EXTENT OF POWER TO
 NEW HAVEN MANUFACTURINGCO．

MACFHIITFTHOOLS ULUSTRATED Planers，Drils，siaperc，etc．

RUBBER BACK SQUAREPACKING．
For Packing the Piston BEST IN THE WORI，D．

of the packing which．When in in und is in contact with the Piston Rod． hich keeps the part B against the rod with sufficient pressure to be st
 A，the elastic thatc，part of the packing which．When in use．is in in contact with the Piston Rod． reates the part B against the rod with sufficient pressure to be ste

NEW
YORK BELTING \＆PACKING CO．
 IRON REVOLVERS，PERFECTLY BALANCEL， P．H．\＆F．M．ROOTS，Manufacturers， CONNERBVILLE，IND．
 SEND IVIW YORK．

 Maxprywidivitian
FOSSIL MEAL COMPOSITION，

The Leading Non－Conducting Covering BOILERS，PIPES，ETC．
\qquad
 fossil meal coo．， 48 Cedrar st，New York． WANTED－FOTENAN FORMALIE：

NEW TELEPHONE

 HORSES．－THE FOLLOWING VALU－

Nessk．vunv eco in connection with the pub－ cation of the Smientific American，continue to ex－ or Inventors．

In this line of business they have had thirty－ight years＇experience，and now have unequaled facilities for he preparation of Patent Drawings，Specifications，and United States，Canada，and Foreign Countries．Messrs． Munn \＆Co．also attend to the preparation of Caveats， and Reports on Infringements of Patents．All business intrusted to them is done with special care and prompt－ ness，on very reasonable terms．
A pamphlet sent free of charge，on application，con－
taining full information about Patents and how to pro are them；directions concerning Labels， Designs．Patents A Apeals，Reissues，Infring，Copyrights， gnments，Rejected Cases，Hints on the Sale of Pa － ents，elc．
We also
Patent Laws，showing the cost and Synopsis of Foreign patents in all the principal countries of the world． MUNN \＆CO．，Solicitors of Patents，

glvertitpments.
Inside Page, each insertion - - 75 cents a line. Back Pare, each insertion -. $\mathbf{- 8 1 . 0 0}$ a line. Engravings may head advertisements at the same rate
per line, by measurement, as the letter press. Adver-

RUBBER BELTING, PACKING, HOSE. Steam Packing, phes
Piston Packing, allues Piston Packing, Leading Hose, Steam Hose, Suction Hose,
Pump Valves, Ball Valves,

 Car Springs,
Wagon Springs, Grain Dringer Rolls, rain Drill Tubes,
Corrugated Rub-

Horizontal Steam Engines,

BORLAND'S PATENT INJECTOR CO., Limited,

 COLUMBIA BICYCLES AND TRICYCLES.
 THHE POPE M'F'GG. CO.,
597 Washington St., Boston, Mass.

HY.J.JHIS assergics

ASBESTOS ROPE PACKING,
ASBES'IPS WICK PACKING,
ASIBESTOS FLAT PACKING,
 ASBES'TOS BUILDING FELT.
H. W. JOHNS M'F'G CO., 87 Maiden Lane, New York,
sole Manufacturers of H.W. Johns' Genuine
 Descriptive price lists and samples free.

BARREL, KEG, HOCSHEAD,

LITTLE WONDER

and Shaped Diamond Carbon Points, Indispensable for
Truing Poreelain, Hardened Steel, Chilled Iron, and
Paper Calender Rolls. Practical Mechanics and Paper
 tool car do. After turning the Rolls, when inspected by
a marcosoope, there is no perceptible wear. They are
no wexten

Pyrometers, For shomith hat ob

TUBE CLEANER

SOUTHWARK FOUNDRY \& MACHIVE COMPANY, Engineers \& Machinists, Porter-Allen Antomatie sier fat-owf Steam Engine.
 Our 10-Horso Spark-Arresting Threshing

 S $\$$ ©0 Screw Cutting Foot Lathe. Foot and Power Lathes. Drill Preses

BOOKWALTER ENGINE. Compact. Substantial. Econom-
leal, and easily managed; guar-
anteed to work well. anteed to work well and give
full power calamed. Engine and
Boiler complete. includig Gov.
Ornor, Pump, etc., at the low
Out

For Fumily Sexing Mathos, Dental Jemelers

5um

 The most successful hubricatorfor Gose Pulleysin use.
VAN DUZENS PATENT LOOSEPULNE YATENR.

SPEAKING TELEPHONES.
tim american beli telepione confany

$+\frac{5}{\square}$

 THE NEW OTTO SILE.NT GAS ENGINE.

WITMERBY, RUGG \& RICHA RDSON Manufacturer of Patent Wood Working Machinery of everr descrip
tion. Factilies unsurpased Sho formerry ocupled
by R. Ball \& Co., Worcester, Mass. Send for Catalogue.

WIRE ROPE

Address JOHN A. RODBLING'S SONS, Manufactur
ers, Trenton, N. . R117 Liberty Street, New Yorkt
Wheens and Rope for conveying power long distances.

F. Brown's Patent

FRICTION
CLUTCH.

Sifilispulif

 HARTFORDSTEAM BOILER
Inspection \& Insurance COMPANY.
W. B. PraNkLIN,V. Pres't. J. IM. ALLEN, Pres't. J. b. Pierie. Sec'y.

WM. A. HARRIS.
PROVIDENCE, R. II (PARR STREET), HA BiTMIN-CORLLSS EEGGINE

 Rentuw

Šientific American

FOR 1883.

The Most Popular Scientific Paper in the World.
Only 83.20 a Year, including postage. Weelcly.
This widely circulated and splendidly illustrated paper is published weekly. Every number contains sixriginal engravings of new inventions and discoveries, epresenting Engineering Works, Steam Machinery. New Inventions, Novelties in Mechanics, Manufactures, Cheristry, Electricity, Telegraphy. Photography, ArchiAll Classes of Readers find in the scientifio American a popular resume of the best scientific information of the day; and it is the aim of the publishers
to present it in an attractive form, avoiding as much as or present it in an attractive form, avoiding as much as this journal affords a constant supply of instructive reading. It is promotive of knowledge and progress in every community where it circulates.
Terms of Subscription.-One copy of the ScIen-
tific American will be sent for one year- 52 numberspostage prepaid. to any subscriber in the United States or Canada, on receipt of tirree dollars and twenty cents by the publishers; six months, 81.60 ; three months, $\$ 1.00$.
Clubs.- One extra copy of the Scientific Ampriat $\$ 3.20$ each: additional copies at same proportionate
One. copy of the Scientific American and one copy of the Scientific American SUPPLEMENT will be sent
for one year, postage prepaid, to any subscriber in the for one year, postage prepaid, to any subscriber in the
United States or Canada. on receipt of seven dollars by

The safest way to remit is by Postal Order, Draft, or
Express. Money carefully placed inside of envelopes, Express. Money carefully placed inside of envelopes,
securely sealed, and correctly addressed. seldom goes astray, but is at the sender's risk. Address all letters all orders, drafts, etc., payable to
MrUINIV \& CO.
261 Broadway, New York. To Foreign Subscribers.-Under the facilities of
the Postal Union, the Scientific Amprican is now sent by post direct from New York, with regularity, to sub. scribers in Great Britain. India. Australiz. and all other British colonies ; to France, Austria, Belgium, Germany, Russia, and all other European States; Japan, Brazil,
Mexico, and all States of Central and South America. Terms, when sent to foreign countries, Canada excepted, \$4, gold, for Scientific American, one year; ${ }^{\text {89, gold. }}$ for both SCIENTIFIC AMARICAN and SUPPLEMENT for
one year. This includes postage, which we pay. one year. This includes postage, which we pay. Remit
by postal order ordraft to order of
PRINTINE INKSS:

