(20)

a WEEKLY JOURNAL OF PRACTICAL INFORMATION. ART. SCIENCE. MECHANICS, CHEMISTRY AND MANUFACTURES.

(xuws.inso. 5.]	NEW YORK, AUGUST	込

THE MANUFACTURE OF ELECTRICAL CONDUCTORS.

Covering. -From an electrical point of view, a conductor and its covering must in general present diametrically oppoand its coverig must in general present diamo site qualities. The former cannot be too good a conductor and the latter can never be too
good an insulator, since its pur pose is to prevent a passage of the current when two conductors or two parts of the same conductor come accidentally in contact. Such covering will vary in thickness, and will be more or less resistant, according as it will or will not have to undergo the inclemencies of the weather or mechanical shocks, or ac cording as it is to be wound once for all upon the bobbins of an apparatus under cover.
We may distinguish the wires as follows:

1. Orerlaid wires, or those simply covered with a layer of silk or cotton wound around them like a bandage.
2. Braid-covered wires, in which the covering, forming a true tube of braided silk or cot ton, constitutes a much firmer envelope than does the preceding. and one which is capable of re

Fig. 1.-ELECTRIC CABLE MACHINE.
 and medical apparatus are types of this kind of conductor. port all the tractive stresses to which the cable is submitted. bins at the upper part, descends vertically, bends at right 3. Cables, whose covering is always multiple and more or We sball omit reference to the manufacture of submarine angles to run over pulleys placed bebind the frame, and less complex, but which always comprises at least a primary. cables, and confine ourselves to that of wound and braid-
covered wires, and
Overlaid Wires. Overlaid Wires.-The winding of naked conductors is ffected by means of machines called whipping wheels. The number of bobbins in each machine varies with the size of the wire to be covered. Thanks to the kindness of Mme. Bonis, who has kindly shown us in detail the interesting process of manufacturing electrical conductors, we are enabled to place before our readers a representa tion of one of the twenty-four bobbin whipping machines of the most recent style, and furnished with all the latest improvements that long practice alone could suggest. This machine (Fig. 3) consists in reality of twenty-four distinct appara tus, which are mounted upon a single frame and actuated by one and the same gearing. One person, a woman, suffices in general to start and attend to these twenty-four bobbins. Each of the latter is capable of covering about 400 meters per day, and
the product of the entire frame the product of the entire frame
is therefore nearly 10,000 meters (Continued on page 66.)

Stientifir gmmerican.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at
No. 261 BROADWAY, NEW YORK.

o. D. MUNN.

A. E. BEACH.

THEMS FOR THE SCIENTIPIC AMERICAN. One cony, one year postage included...
One copy, six months postage included
ne opy, ix extra copy of tre Scienti...................... 1680 gratis for every club of five subscribers at $\$ 3.20$ each - additional copies at same proportionate rate. Postage prepaid.
Remit uy postal order. Address

Remit by postal order. Address
MUNN \& CO., 261 Broadway, corner of Warren street, New York
The Scientife American Supplement
is a distinct paper from the Scievitific American. THE SUPPLEMENTM is issued weekly. Every number contains 16 octavo pages, uniform in size
with ScIENTIFIC AMERICAN. Terms of subscription for SUPPLEM ENT, 85.00 a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all news dealers throughout the country
will be sent for one year postage free. on American and SUPplement papers so one address or different addreesses as desired.
The satest way to remit is by draft, postal order, or repistered letter.
Address MUNN \& Co., 261 Broadway. corner of Warren street, New York.

Scientife American Export Edition.

The Scirntipic American Export Edition is a large and splendid perilarical, issued once a month. Each number contains about one hundred large quarto pages, profusely illustrated. embracing: (1.) Most of the
plates and pages of the four preceding weekly issues of the Scurvic plates and pages of the four preceding weekly issues of the Scientific
American, with its splendid engravings and valuable information: (2.) Commercial, trade, and manufacturing announcements of leading houses. Terms for Export Edition, 85.00 a year, sent prepaid to any part of the world. Single copies 50 cents. Manufacturers and others who desire to secure foreign trade may have large, and handsomely dis
nouncements published in this edition at a very moderate cost.
The Scientific Ammicican Export Edition has a large guaranteed circuIation in all commercial places throughout the world. Address MUNN \& CO., 281 Broadway, corner of Warren street, New York

NEW YORK, SATURDAY, AUGUST 4, 1883.

Contents.	
(Illustrated articles are marked with an asterisk.)	
A brave life gone out.............. ${ }^{64}$ \Lighting the Suez Canal........... ${ }^{40}$	
Agricutural the, to produce a cabbage $\ldots .$.	
Balioon crosses the Channel....... 68	
Can opener* ${ }_{\text {Canine }}$ inteligence..................: ${ }^{73}$	
Centrifugal strain in cylinders.... 69	
Chinch bugs and kerosene........	
Cleanliness of sinks	
Common sense in summer......... 69	
Cotton on conductors,	
Cotton seed oil manufactory...... 66 . 68 Sense of direction in animais..... 7	
Elect. on vegetation, infuence of. 71	
Engilish parcels post............... 72	
Fern, new North A merican....... 71	
Flowering plants of the world... 71	
How to ratse blg cropg. H . ${ }^{\text {How }}$ Ho.... 65	

TABLE OF CONTENTS OF
the scientific american stpplement NO. 396,
For the Week ending August 4, 1883.
Price 10 cents. For sale by all newsdealers

an

 United Stamn commercially only as an alloy.- Wroukht and cast nickel ore in

III. TECHNOLOGY.- \mathbf{V} inegar Makick Ma
IV. ARCHITECTURE.-Old House. Hereford
V. GEOLOGY AND MINERALOGY - See Salt. By WM. JAGO............................

VII. HoRTICULTURE.-Transplanting Trees in Japan

IX. MISCELLA NEOUS--Uictionary of Carriage Terms....

工. BIOGRAPHY-R

A BRAVE LIFE GONE OUT.

Captain Matthew Webb, the famous English swimmer, was drowned in the Niagara Rapids, July 25, in an attempt to float "the angriest bit of water in the world," as he styled it. His attempt was not made wholly for notoriety, for no extensive advertising was done, and no means taken to se cure a large number of spectators. It was not made for money. Probably less than 200 persons saw this brave man go to his death. But he bad great confidence in his powers of endurance, for he bad swum the Euglish Channel from Dever to Calais, a swim of nearly twenty-two hours; he saved a sailor by jumping overboard in the mid-Atlantic in a storm, and was the recipient of a gold medal from the Royal Humane Society, and of other testimonials, for bis skill and bravery. He came to this country in 1879, and besides giving exhibitions of his own skill, gave lessons in swimming. He was only 45 years old when the remorseless waters drew him out of mortal sight.
Some time before the fatal attempl he stated that he felt himself strong ϵ nough and skilled enough to swim the Nia gara Rapids and get through alive, in defiance of the stories told by the inhabitants of the adjacent localities as to the danger of these turbbulent waters. He even described in detail his plan of avoiding the Scyila and Cbarybdis of rocks, and the dress be would wear. He had calculated on the methods he would adopt in buoying himself, the use of " breast strokes" and "overhand strokes," all his plans being well thought out beforeband, and his failure should be attributed to bis lack of knowledge of the awful hell of waters into which he ventured, which outvie even Poe' borrible description of the "Descent into the Mael ström. "
Only three persons can boast of having shot the rapids, and they did it in a steam vessel, the Maid of the Mist, in 1861, under circumstances of such extreme peril as may best be understood by the fact that she came out of the ordeal with loss of smokestack and with such other injuries as made her appear like a wreck when she landed on the other shore, miles below her starting point. And this success was made by a boat built to withstand the surges below the falls, and specially lightened for the shoot, with a one hundred horse power engine to propel her. If she barely came out of the test, battered and abused by the terrible waters, it is no wonder that a brave man lost his life with only his own unaided physical stamina and mental courage to back him.

COMPLETION OF THE GREAT LYMAN-HASKELL GUN The twenty-five ton gun, twenty-five feet long, which has been in process of manufacture during the year past by the Reading, Pa., Iron Company, is at last completed, and is a splendid piece of workmanship. This re mark
tion:
Hanging from the under after part of the gun are four large protuberances arranged in a line, each something like a cow's bag. These protuberances contain pockets for holding powder, and they communicate with the bore of the gun. The latter is charged at the breech with eighteen pounds of powder, against which the projectile rests in the ordinary manner; each of the pockets is intended to contain twenty-eight pounds of powder.
The firing of the breech charge starts the projectile, which is successively accelerated, on passing the several pockets, by the firing of the powder charges contained in ${ }^{69}$ them, which are set off by the flame within the cannon. In this way five successive charges are made to act against the projectile, which leaves the gun with a tremendous velocity It is expected that this cannon will revolutionize the art of gunnery; it is believed that it will carry its ball twelve or fifteen miles, and go through iron plates two feet in thick ness. The new gun is now on its way to Sandy Hook, N.Y. where it is soon to be tested before a board of army and navy officers, under a special Congressional appropriation. A full, illustrated account of this novel invention was published in the Scientific American of January 28, 1882.

THE TELEPHONE INTERFERENCE CASE DECIDED

The Examiner of Interferences at the Patent Office, Mr. J. B. Clurch, has lately rendered a decision in the long contested telenhone case, in which the parties interested were Bell, Gray, Edison, McDonougl, Dolbear, Boelker, Blake, Irwin, and Richmond. We understand that this decision disposes of some eleven cases in all, in which the above parties were represented. These cases have been pending before the Patent Office since 1878, and were argued before the Examiner about a year and balf ago.

It has been necessary for the Examiner to go over a vast amount of testimony, and it is understood that he has performed the duty with greatest care; his decision is stated to cover nearly seven hundred pages of manuscript.

Priority of invention is awarded to Bell for the art by which oral conversation or sounds of any description can be telegraphically transmitted; also for the improvement in the art of transmitting vocal sounds or spoken words telegraphically; also for the acoustic telegraph, including sound producers as well as reproducers on armature plate, the electro-magnet for the same, and a closed circuit passing from the helix of such electro-magnet to the source of undulatory electric energy; also for the telephonic uransmitters and the combination in one circuit of two or more disks or diaphragms; also for the combination for rendering audibie acoustic vibrations: also for the combination in an acoustic telegraph of an electro-magnet and a polarized armature,
and the combination in an acoustic telegraph of an armature plate polarized by induction, a resonant tube, and an electromagnet and circuit connections.
Priority of invention is awarded to Edison, although he did not claim it, for the transmitter, consisting of the combination in an electric circuit of a diaphragm and a liquid or equivalent substance of high resistance, whereby the vibrations of the diaphragm cause variations in the resistance of the electric current; also for the combination in a telegraph instrument operated by sound of two or more eiectrodes placed in an electrolytic liquid, and operating to increase and decrease the resistance of the electric circuit by the movement derived from the diaphragm; also for a pring forming or carrying one electrode, and constantly pressing against the other electrode and the diaphragm to maintain the required initial pressure between the electrodes and yield to the movements of the diaphragm.
Priority of invention for " a telephone receiver, consisting f the combination in an electric circuit of a magnet and a diaphragm supported and arranged in close proximity thereto, whereby sounds thrown upon the line may be reproduced accurately as to pitch and quality," is awarded to McDonough.

OLD BUILDING MATERIAL.

An cxtensive trade in second band building material has been carried on uninterruptedly in this city for fifty years, nd is largely supported by builders and joiners. The stone and brick of an old building is used in the construction of a new one, the lime-whitened bricks making the inside of the outer walls and the partitions, and the stone going into the foundations. But it is not generally known that the inside woodwork is used again, frequently without radical altera tion. Many builders prefer this old timber because it is thoroughly seasoned, having been defended from the weather and been sulijected to the influences of a measurably even temperature for years. The richer woods which are ad mired for their color acquire mellower tones by age and become more valuable as the years pass. Everybody knows that furniture of mahogany and rosewood that has outlived several generations is much handsomer than that made from new wood. But it has an added value as mere material An article made from the old wood will retain its integrity in all its joints; its shrinking days are over. For the same reason the timbering, wainscoting. and flooring of old build ngs has an added value, although its selling price is less than hat of new material.

THE RELATIONS OF PATENT EXPERTS TO THE COURTS.

When a case involving scientific principles comes up in the courts the custom is for each side to call to their assist ance scientific experts. These are men who, ou account of education and profession, are admitted to possess a pecu iarly full knowledge of the scientific points involved in the issue.
They occupy an anomalous position. They are sum moned mominally as amici curiue, or friends of the court, to assist in its deliberations, and give it information in the special knowledge required to dispose of the questions that come before it. This assumes that they are quite disinterested and indifferent to the ultimate issure. Yet each side engages its own expert, and each of these experts takes as favorable a view as possible of his own side and runs down the other as much as possible. Although their compensa tion does not depend on the final decision that is reached if they were to act as judges and not give their own side the benefit of all doubts, their occupation would soon be gone. The fact that they are in some sense advocates is recognized by the court. .The fact that they are retained by one or the other side to testify in its favor is admitted.
Because it is always possible in this special class of suit to engage experts to testify on either side, a certain degree of distrust for their opinions is oftcn expressed. The great truth is overlooked, that in not one case out of a bundred are the principles so clear that something is not to be said on both sides. Yet the complaint is continually made that the expert is too much the advocate.
Among lawyers who practice in patent suits differen views of this subject obtain. Some say that they do not believe in experts. They would prefer to conduct their suits without them. The general custom is all that makes them retain them. These lawsers will often be found to be among the best of their class. They will bave so good a knowledge of the principles of science, as to quickly grasp the mechanical points of a case. They could act as experts themselves, but custom requires that they should have some witness, one obliged to tell the whole truth, as a supporter of their views. Such a supporter has been found to have great weight with the court, and to be of much influence in con trolling its decision.
Some lawyers propose another system. They say that the expert should be engaged to present the views of the counse to the court. They should not be witnesses. Their state ments should be an exposition in understandable and correct form of the views of the counsel. This statement should be given as a one-sided view, and should not profess to be disinterested. Finally, it should not be given under oath This certainly is meetıng the difficulty, and justifies the ex pert in the most advanced position of advocate which he may be inclined to assume. Were his position recognized as this one be would still remain to a certain extent an amicus curze, while the fact of his being an advocate would be recognized as proper and right. At present this is practically
his position. except that his testimony is given under oath. This places a great restraint on his direct testimony, and enables the opposing counsel to test the validity of his views by cross-examination.
There is yet another way of disposing of the difficulties of the case. It is to have experts called by the court directly, and paid by it to assist it in its deliberations. At present experts are to all intents and purposes assisting counsel. This would make them assisting judges. The idea of thus using them is quite a popular one. Many of our best lawyers advocate it. The expert would occupy a wholly disinterested position, and the decisions he reached would have every chance of being equitable and just. In this suggestion there is much that is attractive, and in a more advanced state of society it would seem worthy of being carried out.
But the same necessity which calls for advocates and lawyers to argue separately each his own side of a case calls also for experts on the separate parts of complainant and de-femetant-- Ftren two people come to an issue they do not go before a court and accept its unaided judgment as infallible. Each side engages its own counsel. These are officers of the court, yet are not prohibited by that fact from taking one side or the other of a case. Their duty is to do so, and be as one-sided as possible, and to carry every possible point in their client's favor. No matter how able the judge may be. his time is too important to be devoted to looking up aulhorities and to studying each from the books. He sits in judgment upon the views presented him by counsel. If hey are properly put forward, he in many cases can decide the case without leaving bis seat. Thus business is expedited, and the main expenses of a suit are borne by the interested parties and not by the government.
Were the court to call an expert for its guidance in special suits, and were the parties in the suit to have none, the position would be analogous to that of a court sitting in direct judginent or arbitration, with no lawyers to advocate the causes of those appearing before it. There would be no summary of the scientific questions presented. This work would fall upon the court and its expert. Business would be delayed, and a very considerable expense be placed upon the court. It would not be much better to dispense with experts than to dispense with counsel.
At present the scientific views are well presented. The experts give them in detail. They are formulated after discussion with their counsel. The counsels in their briefs and arguments summarize them, and present to the court their most salient and applieable points. The expert has been debarred by his position of witness from arguing the case. Any tendency he may exhibit in his testimony toward such a course is met by objection from the opposing counsel.
cially qualified witness. The counsel completes the work the expert has begun. He can give the fullest license to his reasoning powers in proving his case. The argument is the supplement of the expert's testimony, and has therefore to follow it very closely. A departure from any of the views brought forward by the expert will be made to tell forcibly against the same side.
Thus it will be seen that the lawyer and expert must work hand in hand. One cannot go ahead without the other, the witness being the most restricted on account of his position. While his testimony must bear the stamp of independence, it will necessarily be partial. As this partiality is known and recognized as an attribute of expert testimony, it gives the professors of it a known standing. They are considered with justness as specially educated witnesses retained for the purpose of presenting the views of one side to the court. They should not be considered as sailing under the false colors of a pretended disinterestedness.

THE CATERPILLAR AND ITS ENEMY

The ordinary caterpillar is covered with bright yellow hair, has a deep brown stripe down the back, has four tussocks, or tufts, of hair in a row back of its head, and has two small red warts on the two segments next the last. From the extremity projects a single pencil of hairs, and from the head radiate two pencils having the appearance of borns. The eggs from which the caterpillar, or grub, is hatched are small, white, and hard.
When the grub emerges it commences to feed, bending all its energies toward gorging itself. It grows rapidly, shedding its skin several times, and when full sized, or full fed, as it is termed, is ready to spin its cocoon and enter the pupa or chrysalis state. The hairs of the body are woven in the cocoon in addition to the thread spun. The female case is longer and thicker than that of the male. From the cocoon emerges the moth known as the Orgyia leucostigma. The females are wingless, having only rudimentary wings, and do not travel any distance. The males are smoke colored with spotted wings. The female lays about 230 eggs, covering them with gluten and a silk which she spins, so that the nest has the appearance of a little tuft of white cotton. She sometimes draws leaves around the nest so as to completely close it, excluding the rain and deceiving the eyes of the birds.
The ichneumon fly is a parasite, its prey being the caterpillar above described. The female deposits its eggs on the back of the pupa in the cocoon of the caterpillar. When the egg is hatched the grub works its way down into the pura; on which it feeds. When full fed it spins its cocoon in which it completes its transformation, coming forth as a fly. The fly is slim bodied, about one-half an inch long, and of a
black color. In some species the antennæ and legs are red,
but in the one under consideration the antennæ are black with the exception of the center, which is white.
There is no way by which the worm-pest can be got rid of, and although this fly aids in the work of destruction, his numbers are too small to make his efforts appreciable. Undoubtedly the best way yet devised is to brush off and destroy the nests of the moth. Generally they are easily seen, and when it is remembered that each one contains more than two hundred eggs, it is easy to conjecture what an inroad one man could make in the ranks of the caterpillar.

SKETCHING FOR MECHANICS.

While the value of a knowledge of mechanical draughting to a mechanic is indisputable, there is a sort of free hand drawing, or sketching, that is also useful. The faculty for its practice may be innate, and in that case but slight instruction is necessary to enable its possessor to illustrate his thought far better than he could impart it verbally. But. even those whose natural tendency does not impel them to sketching as explanation can get enough facility by practice to make themselves understood readily.
Probably nothing is more difficult to explain and exhibit by words alone than mechanical construction and mechanical movement. It is not only difficult for the narrator, but also for the listener. The memory must bold all the points of the information in contact ready to make a completed idea at the climax. But an appeal to the eye, however crudely made, presents the entire image at one view without any laborious action of the mind. And it is a noticeable fact that those mechanics who are of an inventive, improving, and originaling turn of mind are most apt with pencil and paper, or chalk and slab. To them the mechanical idea has received a form in their own mind, and by a partial representation they seek to impart their knowledge to others.
The practice of sketching as illustrative of verbal statement is an excellent one for mechanics generally to acquire. If one has not the natural impulse in this direction, a few lessons in free hand drawing will not be amiss. Some of the best of James Watt's improvements derive their historical and mechanical value from his rough sketches, which told much more plainly than his equally crude English the operations and conclusions of his constructive mind. In the annual meetings of mechanical engineers there is seldom a paper read that is not illustrated by the author, at the time of reading, by the blackboard and chaik, or else it had been made visible by prepared cartoons. or possibly lithographed charts. Shop work also demands the ready hand at sketching. There are many jobs which do not require are greatly expedited if the foreman has a facility with pencil, crayon, or chalk.

PICKER FIRES

A writer in the Textile Record for July asserts that a fire cannot be started in a picker house by sparks of fire from the picker igniting the cotton; "no spark from a picker ever fired a mill or ever can be made to set fire to anything.' As the writer well says, "these are tolerably broad asser tions." Nevertheless, he offers as evidence in favor of their truth the result of experiments which he made, such as producing a shower of sparks from a brick held against the beater, into which was thrust successively shoddy, cotton fiber saturated with benzine, and even lucifer matches. The open hand held against the stream of sparks felt no pain.
The sparks from an emery wheel do not burn the band, nor ignite the workman's apron or overalls, but each particle is a minute coal of fire, and under favoring circumstances will ignite in flammable and explosive materials. Sparks from a flint and old file will ignite tinder, cbarred rags, and punk. But to do so the sparks must be protected from the wind Possibly the experiments made by the correspondent were made with the beater box uncovered, and the lint and other materials and the shower of sparks were exposed to the blast from the revolving beater. It is probable that particles of grit, nails, bits of wire, and similar materials do run the gauntlet of the picker beaters frequently without inciting a blaze, as the condition of the waste proves; but there may come a time when, all the conditions being favorable, the destructive spark will do the work.
The writer attributes fires to the spontaneous combustion of oily waste which is put into the picker house. If such a reprehensible practice is followed, or allowed by a mil superintendent, he is certainly an unfit man for his place. It is not always possible to ascertain the cause of a fire that starts in the picker room, but that mills are burned by fires started there is unquestionable. Mill owners show their belief in the danger from this source in erecting detached fire proof buildings for picker houses, and it is loubtful if a single mill owner could be found so confident in this correspondent's belief as to allow experiments be made in bis picker louse by passing through the rolls to the beater nails, wire, or grit with the cotton. At all events, no degree of the vigilant caution now practiced to prevent these foreign substances from reaching the picker should be howed because co

An artesian well sunk by the Pierce Well Excavator Company for the Manhattan Elevated Railway Company, a 228th Street corner 2 d Avenue, in this city, has a depth of 250 feet, and yields 200 gallons of rater per minute.

How to Raise Big Grops.
It has often been asserted by advanced agriculturists that if wheat, either spring or winter, is sown in drills, far enough apart to admit of using a horse hoe between the rows, both to keep down weeds and loosen and aerate the soii, the yield might be increased to a marvelous extent more than it now is in this country.
In proof of this, a recent observing and intelligent traveler n Belgium gives the mode of culture there and the yield, which sometimes, with very favorable weather for barvest reaches as high as 160 bushels per acre. This is one of the most fertile, prosperous, and most populous countries in the world, supporting $481 \cdot 71$ persons to the square mile, against 18.92 in the United States and 216.62 in Germany. Winter wheat is a staple crop there on their high priced small farms of only an acre or two. The land is highly manuied in Autumn, well harrowed several times, and got into the best possible condition. The grain is sown in the fall in seed beds, very thickly on the higbest and best location, where it is not likely to be winter-killed, or injured by any casualty, such as overflowing or drowning out, or smothering under the snow.
In the spring the main fields are again dressed up and marked out in drills the proper distance. When the wheat has grown sufficiently to be moved, it is thinned out by being taken up, separated from the thick stools, and planted in the drills with a tool called a dibble, which makes a hole the proper depth, into which the wheat roots are inserted, pressing the earth tight against them with the foot. Tbis work is usually intrusted to half grown boys and girls, a man sorting out the wheat plants in order that those of the same size may be placed together, that the field may grow ven and regular.
When the plants have commenced growing, the soil is thoroughly and constantly stirred, either by means of hand or horse power. Every weed and all foreign plants are destroyed, and nothing but what is wanted, the article itself, is allowed to grow. There are very seldom any extensive failures of crops thus carefully and scientifically grown. The yield is a quantity never imagined or heard of in this country, and the crop always and surely pays the cultivator.
It is asserted that such pains would not pay to apply to crops in this country. But do we not go to the opposite ex treme? Has it ever been tried here? It certainly would pay satisfactorily if applied to choice varicties in small quantities, about to be used for seed. It is certainly better to till one acre and get a crop now raised on four acres, than o try the four and only raise half a crop, which is now so often the case here-Milling World.

The Water Jet.

The Annales des Travaux Publics describes the method used in sinking the piles for the foundation of the Palais de Justice at Brunswick (Prussia).
A framework with hoisting fall somewhat similar to the ordinary pile driver was used in placing the pile in position ready for sinking; two tubes, each 2 inches in diameter, with the lower ends bent inward toward the point of the piles, were attached to the piles by iron staples; at the upper end each pipe was connected by a short section of rubber hose to other pipes connected with the city water main, which water supply was in this case under a pressure of four atmospheres. The piles usually sunk by their own weight into the hole formed by the water jet, as soon as the valve was opened, making connection between the tubes on the pile and the water main. To hasten the rate of settlement, a vertical iron bar 3 feet long was set into a hole bored in the head of the pile, and upon this were placed iron weights of 200 pounds each, as the resistance might require. Piles 12 inches in diameter were sunk in this way to a depth of fifteen feet in 10 minutes' time. The least time required for a depth of 15 fcet was 2 minutes, the longest time for the same depth was 30 minutes. As long as the water jet was in operation at the foot of the pile it was possible to give the pile rotary motion, and thus facilitate the descent; but as soon as the jet was stopped the pile became mmovable. As a proof of their stability a dead weight of 50 tons was applied to snme of them, and it was found that their resistance was entirely independent of the time conumed in sinking them.
To sink 20 piles by this method required the use of about 2,000 gallons of water; 7 or 8 laborers were employed, and one gang put down from 6 to 14 piles per day.

Copper for Roofing.

In speaking of the cost of building materials an architect ecently suggested the use of copper instead of galvanized ron or "terne" sheets for ronfing purposes. He said that copper costs only about double the price of tin, or iron, for he same area of roof, that it is practically indestructible by ime, and that even if the building it covers is pulled down the roofing material possesses an absolute value. The price of copper has seriously declined within the past ycar, and if the supply continues to augment much more, the metal will soon be as cheap as tin.

Cottonwood lumber seems to be coming into large use, and for dry goods cases, starch boxes, and similar purposes it is said to be well adapted. One establishment in Ohio, it is aid, works into boxes as many as two million feet of lumber annually. For building purposes it is not well adapted, as it is apt to swell and shrink with the condition of the atmosphere,

THE MANUFACTURE OF ELECTRICAL CONDUCTORS. (Continued from first page.)

then passes into the axis of other bobbins that are filled with silk and have a rapid rotary motion. The silk which these bobbins carry then winds around the wire, which is moving forward with a regular motion under the action of the pulless around which it runs. These pulleys are shown toward the center of the frame. After leaving them the wire winds around bobbins in the upper part of the frame. By properly proportioning the speed at which the wire is carried along, and that of the bobbins' rotation, one can vary at will the thickness of the insulating layer, which is formed here of a continuous band of silk or cotton making a certain number of turns to each centimeter of wire covered. All transmissions of motion are made by the aid of small cords; and a series of conical pulleys that correspond to each bobbin permits of regulating the speed with which the wire moves forward, this varying between 30 and 60 meters per hour.
The bobbins upon which the wire is wound likewise present special arrangements that are very interesting. As may be conceived, the length of wire that they are capable of taking up at one revolution depends upon the quantity that they already carry, since the diameter increases as the bobbin fills. If the latter possessed a regular motion, it would wind badly at the beginning and would infallibly break the wire at the end. All this is prevented by carrying it along by friction. To this end the diameter of the pulleys is calculated so that the speed shall be a little greater than that that corresponds to the empty bobbin, that is to say, to the least advance per revolution. The transmitting cords, after passing over the pulley of the bobbin, support a small roller furnished with a hook from which are suspended weights for regulating their tension. These weights are shown at the bottom of Fig. 3. When the tension of the covered wire exceeds a certain amount, the cord slips on the pulley of the bobbin and fails to carry it along. There results from this a motion which is partly a sliding one, and an excessively regular winding of the wire, since the tension is constant and is regulated by the weight suspended from the friction roller.
It now becomes a question of distributing the wire throughout the length of the bobbin. To this end, the bobbins are mounted upon a frame which is movable horizontally. A series of gearings and a cam (represented to the right in Fig. 3) give this frame a slow and regular backward and forward motion. The travel of the frame is equal to the internal length of the bobbin between its two flanges, and the winding of the wire is thus effected very uniformly. The travel is changed, according to the diameter of the wire; by modifying the train of gearings. It may be seen, in fact, that the relative speeds of the different parts of the machine depend upon the diameter of the wire and the nature of its covering, although the principle is the same for all. The 24-bobbin machine is designed especially for wires of small diameter that are always covered with silk. For wires of medium and large diameter the machine is provided with a less number of bobbins of larger size. In Fig. 3 may be seen what appear to be cylinders of different sizes, divided off by black lines. These are composed of bobbins, each carrying a like quantity of silk. Before beginning operations, there is thus stored up in a tube which is traversed by the wire the number of bobbins full of silk that are necessary for the entire work. When one of these bobbins is empty, it is taken off and replaced by a full one from the stock in reserve. When the wire is to be covered twice, it is, with its single corering, passed into a second machine, and the winding is effected in a different direction, and so as to obtain a crossing of the threads in order to give greater firmness. For medium wires we have seen in Madame Bonis's establishment machines that performed the two opposite windings at a single operation. Braid-covered Wires. - The machine for covering the wire with braid is termed, in the language of the workshop, a guage of the workshop, a
" waitzer." Fig. 2 represents " waltzer." Fig. 2 represents
one of these apparatus in the act of covering an electric light conductor. The motion of the wire is here the opposite of that which it has in the overlaying machine. The uncovered wire enters through the lower part, while the covered is stored up in the upper part. The braiding constitutes a true fabric of more or less compactness. The number of threads that compose it, varies between 12 and 48 . The " waltzer" shown in the cut is arranged for 48 bobbins. These latter, which are arranged vertically, are grouped in twos, and are carried along by 24 disks that revolve alternately in one direction and the other through gearings, and that are arranged upon circumference whose center is occupied by the wire
The wire to be covered passes through the center of this
circumference, and all the threads, in rejoining the point where the braiding is performed, form a sort of conical surface which is well shown in the figure. The bobbins containing the thread of each braid are mounted upon vertical spindles. Owing to a mechanical combination which is as simple as it is ingenious, these spindles change disks at every balf revolution and traverse the entire surface of the 24

Fig. 2.-THE WALTZER, A MACHINE FOR COVERING ELECTRICAL CONDUCTORS.
disks, describing in doing so a regular curve formed of small semicircles that are alternately external and internal to the large circumference formed by the 24 disks. Half these bobbins effect this movement from right to left and the other half in an opposite direction. The result of these combined motions generally is that each of the threads taken isolatedly, during one entire revolution, successively

Fig. 3.-MACHINE FOR WHIPPING SILK OR COTTON AROUND CONDUCTORS.

1) is capable, according to requirements and to the arrangement of its parts, of producing several successive or simultaneous effects, and, consequently, of furnishing a number of types of cables. There are three phases in the operation that it performs: (1) the uniting of several wires into a single strand which is afterward to be covered with India rubber or gutta percha, according to the application to be made of it; (2) the covering of the conductor with a fabric to protect the insulating material; and (3) the covering of the whole with a band of protecting material, by an operation analogous to that performed by the overlaying machine.
These two latter operations are always identical in prin ciple, the conductor being carried along with a uniform motion, while the covering is given a rapid rotary motion around it.
When the cable is not provided with the intermediate covering, the bobbins are removed from the disk, and the con ductor then receives only the external bandage. Sometimes the machine is used merely for twisting wires into a single strand, the wrappings being dispensed with.-La Nature.

A Cotton Seed Oll Manufactory.

Cotton seed, which only a few years ago was considered valueless by the planter, has become a very important product, its oil being now used for a great variety of purposes, and immense establishments have been erected in different parts of the country for its manufacture.
The Columbus (Ga.) Sun closes a long description of a new oil mill in its city with the following description of how oil is made: The seed are first put into a hopper, where they are fed to the cup elevator by a screw conveyer. They pass through a sand screen which takes out the sand, and are then passed over a shaker and fan to take out all heavy substances which may be found in the seed. From here it is taken to the linters, where it passes through three 1 (6 -saw gins and is freed from all lint. From thence they are all carried by a belt conveyer to another elevator, and emptied into the huller, where they are chopped, hull and all. After passing through the huller they are again elevated to the third story, where they pass through another screen. Here the hull and meat separate, the meat going back to the second story, where it passes between large rollers, and they are well compressed. They are now ready for cooking, and are conveyed to the second floor into six heaters. After a certain length of time the plugs are drawn from the heaters and the contents are emptied into a bin. They are then taken out and put into small sacks, and placed between mats and again pressed. The oil is then emptied by means of a large pipe into the ground tank. By means of a pump it is forced into two large settling tanksin a separate apartment, and after two or three days it is drawn off into barrels aud is now ready for shipment. After being cooked, put into sacks and pressed, the oil cake remains and can be used to advantage after being ground into meal. From it a splendid fertilizer can be made; besides, it is fine for stock feed.

Bathing and Cramps.

A sad instance of fatal cramp from bathing lately occurred Durbam, says the London Lancet. A fine young fellow, a trooper in the 3d Dragoon Guards, then on the march from Edinburgh to Manchester, took advantage of the night's balt to have a dip in the Wear near that city. Being strong and a good swimmer, he took an oar, at which he worked for some time in the sultry evening till he came to deep water, and in a suitable place took his plunge. That be was immediately seized with cramp is evident from the state ments of his companions, who, alarmed at his cries, Lastened to render assistance, but he had sunk before they reached him, and he neverrose again. When the body was recovered a cun siderable time afterward, it bore every evidence of the cause of the disaster. It was described as being "twisted"-that is contorted; while the vessels of the Lead, especially in their gorged condition, pointed to congestion, in fact, to stagnation of the circulation! That this young soldier lost his life hy bathing when in an overheated condition is quite clear. It would be well if soldiers and civilians would remember the lesson conveyed in the classical case of Alexander, quoted by Dr. Jones from Quintus Cur Dr. Jones from Quintus Cur tius, viz.: "It was in the mid while at the same time remaining parallel with all those that \mid dle of one of the hottest days of a burning summer that are running in the same direction with it, and passing alterately above and below two successively crossed threads. The "waltzer," then, realizes automatically what is done by hand in ordinary braiding, and is identical in principle with the apparatus made use of by trimming makers in the manufacture of watch cords, etc. The mean production of one of these apparatus is 100 meters per day.
Electric Light Cables.-The Euglish cable machine (Fig.
dle of one of the hottest days of a burning summer tha
Alexander arrived on the banks of the Cydnus. The freshness and clearness of the pater invited the king, covered with sweat and dust, to tige a bath. He stripped himself of his clothes, and, his body all in a sweat. he descended into the river. Hardly had he entered when his limbs be came suddenly stiff, the body pale, and vital heat seemed by degrees to abandon him. His officers received bim almost expiring in their arms, and carried him senseless to his tent.
the telescope at the trocadero observatory.
We represent herewith one of Mr. Lenn Jaubert's telescopes arranged and constructed especially for the popular observatory of the Trocadero, and which has now been in daily use for nearly three years.
It is a short focus instrument, having only balf the focal length of those formerly constructed by Mr. Leon Foucault. Its optical part consists of:

1. A silvered glass reflector, 16 centimeters in diameter, placed in the bottom of the tube. 2. A total reflection prism designed for sending the luminous fascicles, as in all Newtonian telescopes, to the lateral par of the instrument.
2. An ocular formed of several glasses arranged like the different lenses of a compound microscope, and giving an upright image.
It is through this ocular that the observer looks at the image given by the reflector.
The different pieces that go to make up the me Etbantent part produce, as a whole, a very beautiful effect. The instrument appears to be very light while in reality it is very solid. The base rests upon a wooden frame mounted upon three rollers. The instrument is accurately leveled by means of three leveling screws. The base supports an open work frame which carries a horizoutal axle tha may be called the axis of latitude. This serves for fixing, by means of a set screw, the horary axis on the latitude of the place where the observations ar made. The horary axis is connected with the circle and horary wheels. The disk of the circle is likewise provided with a frame that carries the axis of declination, this latter being formed by the two trunnions belonging to the ring that surrounds the telescope tube. One of these trunnious carries a graduated circle accompanied by a vernier and called the circle of declination, and the other, a toothed wheel which is actuated by an endess screw.
The endless screw that actuates the horary wheel and the one that actuates the declination wheel are each mounted upon a hinged frame, which permit of engaging them instantly with the corresponding wheel, or of separating them in such a way that the instrument may revolve freely around the horary axis and that of declination.
In both its optical and mechanical parts this telescope presents some very interesting details.
Mr. Jaubert bas placed in the opening of the instrument a cap which carries a circular glass whose surfaces are perfectly parallel and optically finished
of the reflector from dust and atmospheric moisture. When it is desired to make an observation of the sun, this cap is replaced by a second one which cärries a glass that is silvered upon one of its surfaces. The solar rays traverse the pellicle of silver reach the parabolic reflector in small quantity, return in a condensed fascicle toward the prism, and, on reaching the eye of the observer, have but slight intensity. The rays thus weakened scarcely ever distort either the reflector, the prism, or the lenses of the eye piece. The mass of air inclosed within the telescope is also less superbeated at the focus, and remains calm. Not only are the images better, but the reflector, prism, and eye piece are no longer liable to breakage, and the observer runs no risk of being blinded.

The reflector is mounted in a tube whose form meri wotice. The external and lateral part of this tube, as well as the internal part of the telescope tube into which it is introduced, are both formed of two circular zones of the same diameter, one convex and the other concave. This simple arrangement has the advantage of permitting of the easy introduction of the reflector into the instrument, and of centering it instantly by tightening one or the other of the three bolts that connect the lugs of the tube with those of the breech piece. In order to remove it, it is only necessary to right the body of the instrument and take out the bolts, when the reflector tube will drop out of itself.
The telescope is provided with a revolving eye piece which carries four lenses, one of which is used as a finder, while the others give different magnifications. Mr. Jaubert has also devised for his telescopes, as well as for bis microscopes, different styles of binocular eye pieces. He bas also applied to the opening of his telescopes a special optical combination designed to bring within the field of the instrument stars that are very remote from one another, so as to compare the intensity or color of their light, or to compare the diameter of the sun and the moon, or the diameter of Venus, Jupiter, and Saturn when these different celestial bodies are no farther than 100, 120, or 130 degrees apart. The popular observatory makes use of telescopes of from 20 to 30 centimeters diameter, and these are employed by the amateurs who are attending the course of lectures on astronomy at the institution.-La Nature.

The export of ostrich feathers from the Cape last year was unprecedentedly large. The prices obtained were enormous.

Zinc Blende at Niagara Falls.
Prof. Osborn, of Miami University, Oxford, has discoiv ered the beautiful amber colored mineral known to minera logists as zinc blende or sulphide, in small quantities in the rocks at Niagara Falls. It may be found both above and below the inclined plane, but in the rocks which have re cently been broken off, and sometimes in pieces several inches in length, especially in one immense block which has become detached from the American side, and lies near the become detached from the American side, and lies near the
water about 150 yards from the American Falls, in which

the telescope at the trocadero observatory.

They will also find extensive use among thrashers for bal ancing separator cylinders in the field, thus saving a trip to he macline shop.
Furthèr information may be obtained by addressing Messrs. Hetherington and Lukenheimer, St. Cloud, Minn.

English Torpedo Experiments.

An interesting series of torpedo experiments, carried out onjointly between the 28th Company of Royal Engineer ne Miners, under the command of Capt. Bucknill, R.E., and Capt. Markham and the officers of the Vernon Torpedo School, lately took place in Port chester Lake, Portsmouth.
The experiments illustrated the operations of torpedo attack and defense, and were also intended to determine certain debatable points with respect to formulæ, the resistance of various breadths of water cushions, the lateral effects of different charges of gun cotton, etc. For these purposes War Office tubular dynamometers and crusher gauges were extensively used, the reading of which will form the subject of subsequent consideration.
The first experiment was the most exciting and important of the series. It was for the purpose of practically ascertaining the effect of a ground mine, consisting of 250 lb . of gun cotton, upon a steam launch, moored broadside on at a distance of 50 feet horizontally from it, the submersion of the charge being 30 feet. The launch, which was moored fore and aft, was in complete steaming trim, the pressure in the boilers being regulated at 40 lb . 10 the square incl. The mine was fired from the Nettle at the slack of high water. The detonation was loud and startling, but the practical results were disappointing. The whole energy of the explosion seemed to be in a vertical direction, the upward rush throwing up a splendid dome of water, and the downward blow producing a considerable up heaval of mud.
The lateral extension of the force was comparatively insignificant, for not only were the machinery and boiler of the launch uninjured, but it was scarcely shaken. In future experiments the attack will be made at gradually reduced distances, until the target is disabled. The use of hand charges of gun cotton was next exhibited. While a boat steamed rapidly through the water, a grenade containing 9 oz. of gun cotton was thrown into a cask and fired by means of an instantaneous fuse and a pistol. The cask was shattered into a thousand fragments, the result showing the fatal efficacy of the weapon when directed against open boats. A run was next made with a Whitehead torpedo discharged from an impulse tube above water. The projectile went straight to the target, after passing which it got its nozzle into shallow water and stuck. Various charges of gun cotton lashed to floating ne piece nearly five inches long was found. The specimens spars were afterward simultaneously fired at a uniform analyzed by Prof. Osborn all gave about 60 per cent zinc with traces of iron, but are only interesting as beautiful specimens of the mineral.

parallels for balancing pulleys, etc.

We give an engraving of improved parallels for bal ancing pulleys, thrasher cylinders, and other rotating parts of machinery. Usually the parallets are blocked up by wedges of wood, pieces of pasteboard, or anything else at hand, the level is applied, and the parallels are leveled

improved parallels for balancing pulleys, etc.
approximately after the expenditure of much valuable time. The improvement shown in the cut has been patented by Mr. W. Hetherington, and is designed to facilitate the operation of leveling the parallels. Each bar is provided with a level and with a leveling screw at. each end, so that the adjustment may be very quickly and accurately made.
These parallels are very desirahle for machine shops, planing mills, etc., for balancing pulleys, saw arbors, planer
heads, spindles, and all kinds of high speed machinery.
men were struggling in the water the animal finding, however, that it was not his master to whom he was rendering this assistance, he relinquished bis grasp and went to the aid of Davies, his master, supporting him until he was rescued by a passing steamer, the other man being drowned.

There are fifty-six shops for the sale of horse-flesh as food n Paris.

Brass and Its Uses

It is an interesting fact that all the principal metals, with their amalgamations and alloys, have certain distinct and exclusive uses to which they are adapted, and for ${ }^{2}$ which no other metal can be substituted with as good results. The fact that for many uses one metal may be substituted for another to advantage does not change the other fact that there are certain adaptations and a certain fitness of things which give exclusive value to certain metals for certain uses. Thus, no matter how golden the age in which we live, the use of gold for fireplace fenders would be out of place, and not alone on account of its costliness. So the use of brass for personal ornament is equally unfitting.

Brass is mentioned in the earliest writings, although in many instances the word bronze would more correctly rep resent the character of the metal spoken of. Among the aucients, those who could not ornament with pure, solid gold seized that which looked the most like it, and answered, practically, the same purposes. Brass as an alloy will bear a variety of metals. Corinthian brass of the ancients combined, in its make, a proportion of gold and silver, as well as copper, tin, and other metals. Metallurgy is no so well understood that copper, zinc, tin, magnesia, sal ammonia, crude tartar, and other chemicals, in the hands of practical artisans, may be so combined that a metal can be made which will not only look like gold, but take a finer finish and remain longer bright, whether in use or in a state of rest, than the purest gold of California! For this bigher grade of brass there is an increasing demand for many purposes. First-class banking houses become resplendent when finished up with choice rolled, perforated, polished, and otherwise ornamented brass, according to the position it is to occupy in forming divisions of the departments. Such brass shields may be so finely finished that for months, with a very little daily care, they will remain as bright and beautiful as a newly coined double eagle. For these good reasons perforated plate brass is in demand for not only bauk work, but in first-class offices of all kinds.
Then, however comfortable our best automatic furnaces, or soft and diffusive the warmth of our extra plated and ornamented base heaters, gentlemen who are finishing up fine dwellings for their own use, in which they expect to spend the greatest proportion of their remaining days, like to retain the good old style of both their European and American ancestors, who sat before an open log fire or an open grate of coals! These, in every double parlor, under ample mantels, require not only grates of the most improved kind, but a variety of furniture, the ornamentation of which draws largely on the brass founder and his most skillful and ingenious workers. These very beautiful brass-decorated open grates have proved to be extremely attractive to young children, and genius of a high order has been in demand to concentrate its best powers to furnish such a "fender" as shall prove a guard, not only for the uncertain steps of childhood, but for the influence which a strong current of air has over the apron and pinafore; for these articles also need a barrier to the attractive draught of a glowing fire of coals. These brass fenders admit of very great elaboration. While very beautiful as shields, they must neither hide the glowing coals nor obstruct their light or warmth. For these adjuncts of the open grate no metal has yet been discovered so good as brass, for while it reflects mnch warmth, it is not injuriously affected, either in texture or polish, by an ordinary grate fire of coals. It is, therefore, an admirable metal for all stove and grate furniture or ornaments. Fenders, fireirons, etc., in polished brass, with coal vases, fire-brasses, and dogs en suite, are in demand on both sides of the sea. A staple trade is done in polished all-brass fenders and curbs, composed of reeded rails and spindles, alternating with repousse or cast panels. A brass embossed Japanese fender in panels with bright steel bottom gives a pleasing effect. Pretty designs in Berlin black, relieved by buffing, supply cheaper goods. An effective fire-dog is a T-shaped tubular rest, with reeded base and knobs, and connecting scrolls in the Renaissance style. Another popular design is scrolls in the Renaissance style. Another popular design is
of tubular brass with cast supports in the Renaissance style, of tubular brass with cast supports in
relieved by portions in gilding metal.
Among late and most beautiful tea and coffee urns may be seen those of brass. Mousted on a base or stand of the same metal, they are suspended on trunnions-similar to the latest style of ice pitchers-or hinged to their base they tip easily, and pour their contents with scarcely a perceptible effort on the part of the waiter. These goods are both exceedingly attractive and useful.
There is, also, a richness and beauty about a fine harness all of whose hardware is brass, that cannot be gained by any other combination. The pure polished black and yellow give the finest " jet and gold" that can readily be obtained.
The tendency in carriage, railway coach, and, indeed, in house furniture generally, is in the same direction. Butts, binges, door knobs for passenger cars, have for some time been of bronze, as have been the hand-bag racks in the finest passenger car coaches, but fine brass wire or perforated rolls are now preferred on account of superior brightness and beauty. And for draw knobs brass "half shell" handles are-by all who use draws-greatly preferred, both for beanty and convenience.
These are but a few of the tendencies of the times which indicate a wiser and more extensive use of fine brass than heretofore. Time and space would fail to give merely a synopsis of its uses in the arts; its necessity to the machinist, especially machinery of the finest kinds, clocks, watches, chronometers, and philosophical instruments of all kinds
its adaptableness for lamps, chandeliers, gas-fittings, meters, and all kinds of scales. In proportion, therefore, as a people advance toward the highest kind of knowledge-that of best adapting means to ends-will there be an increasing demand for brass in machinery, in scientific instruments, and in all efforts to give permanent ornamentation which shall be excelled only by pure gold.-Amer. Artisan.

Origin and Development of Steam Navigation.
Rear Admiral George Heury Preble, of the retired list of the United States Navy, and one of its oldest officers, has
written an interesting volume entitled "A Clronological written an interesting volume entitled "A Clironological
History of the Origin and Development of Steam NaviHistory of the Origin and Development of Steam Navigatiou."
The work begins with the first practical use of steam as a motive power for vessels by Blasco de Garray, at Barcelona, Spain, June 17, 1543, and shows the advancement of steam navigation to the present time. The proposition of De Garray in 1543 appeared ridiculous, but he was so convinced of its ultimate success that he influenced the Emperor Cbarles V. to appoint a commission to witness his experiments. They were, in a degree, successful, and De Garray was promoted to the rank of an officer and rewarded with a considerable sum from the treasury.
In 1630 Cbarles I. of England granted a patent to David Ramseye, "to make boats, shipes, and barges to go against strong wind and tide." While Denis Papin, a French engineer, is claimed to have been the inventor of the steam engine in 1690, Jonathan Huls, who in 1736 obtained a patent for propelling a boat by steam, which, however, was never put to practical experiment, was no doubt the first English man who proposed to apply that power to naval purposes. James Watt, who did more to make navigation by steam a practical success than any inventor who preceded him, obtaived his first patent for a steam engine in 1769. The general idea of propelling vessels by a submerged helix or screw is ancient, and its modern application to vessels propelled by steam power, Admiral Preble shows, is not due to any one man.

A vessel built by Capt. Ericsson was probably the first practical screw propeller the world ever saw. The successful application of steam to the purposes of ocean navigation has brought with it an era of rapid improvement in naval architecture and all other matters relating to nautical affairs.
In the year 1810 arrangements were made with Robert Fult on to construct a steam ferry boat, and on July 2, 1812, one named the Jersey began running between Paulus Hook, Jersey City, and New York. The event was celebrated with a grand banquet given by Jerseymen to the New York Common Council. The boat was supposed to make half hourly trips, but frequently an hour was consumed in making the passage. Near the close of 1814 Fulton exhibited to the President of the United States the drawing of a proposed war steamer or floating battery. The project was favorably received, and on June 20, 1814, the keel of Demologos or Fulton the First was laid at Brown's shipyard in New York. She was launched on October 29, 1814. After the war she was used as a receiving ship at the Brooklyn Navy Yard until June 4, 1829, when she was accidentally or purposely blown up.

Coming down to the construction of the American steamship Savannah, the first ocean vessel propelled by steam, and which made the passage from New York to Liverpool in twenty-six days in 1819, the author declares that Mr. Woodcroft was grossly in error when he pronounced her, in his work on "Steam Navigation," a myth. She was built at Corlaers Hook, New York, and was of 318 tons burden The frst steamboats to ascend the Missouri, Admiral Preble says, were three little Government boats, in 1819, one of which carried the figurebead of a serpent at her prow, and through the reptile's mouth the steam was discharged.
When the savages saw this they fled in alarm, fancying the spirit of evil was coming bodily to devour them. In the same year the first steam vessel, the Robert Fulton, was put on the route between New York, Charleston, Havana, and New Orleans. She was afterward sold to the Brazilian Government, and was running as late as 1838 . On July 12, 1822, the Rhode Island and New York Steamboat Company
was formed, and this was the beginning of the Long Island was formed,
Sound traffic
The first iron clad battery was conceived by Robert L. Stevens, of Hoboken, in 1832. It was to be an iron armed ship, 250 feet in length. The keel was laid at the foot of Fourth Street, Hoboken, in 1843. At odd periods new improvements were designed, and upon his death Mr. E. A.
Stevens left $\$ 1,000,000$ to complete the vessel, directing that it should then be given to the State of New Jersey. The million was expended, suits were brought by the heirs, and at last, in 1880 , the unfinished war vessel was sold as old material to W. E. Laimbeer for $\$ 55,000$. Admiral Preble accords to John Ericsson the credit of inventing the first practical screw steamer in 1836, and the famous Monitor. Capt.
Ericsson also had the honor of designing the Princetown, the first screw war vessel ever constructed, although Fulton the Second was the pioneer steam war vessel of our present naval organization, and the second war vessel built by the United States.
Experience having shown that a sea steamer of 1,800 tons, making the quickest passages to and from England and Australia, with a full cargo and complement of passengers, lost by the voyage from $£ 1,000$ to $£ 10,000$, did not deter the Eastern Steam Navigation Company, with a capital of
$£ 1,200,000$, from building the Great Eastern, a vessel quite vershadowing Noab's Ark. The Great Eastern was 680 feet in length, 83 feet beam, 58 feet depth of hold, and 28,093 tons measurement. Noah's Ark was 547 feet in length, 91 feet beam, 54 feet depth of hold, and 21,762 tons measurement. The Great Eastern was eleven days making the trip to New York.-Elevated Railway Journal.

The Salmon Disease.

An interesting lecture was recently delivered by Professor Huxley at the Fisheries Exhibition Congress, upon the dis ease which makes such ravages among fresh water fish, particularly the salmon, and sometimes in the form of an epidemic. This disease, which is marked by the appearance of whitish patches on the skin of the fish, is attended with great mortality. In the last five years from 2,000 to 4.000 diseased fish bave been taken out of the Tweed, and a like number from the Eden every year. Last year as many as 600 diseased salmon were taken out of a small river like the Leme. On the east coast a few cases have appeared in the Leme. On the east coast a few cases have appeared isease is
Coquet, but none in the Wear. On the Tyne the diseal almost unknown among clean salmon, but it is common with kelts and dace. It may be said that there has becn practically no epidemic outbreak in the eastern rivers south of the Tweed. The eccentric course of the epidemic, how ever, is shown in the fact that on the west coast the state of affairs is totally different, it having made its appearanc more and more to the south, until last season it broke out in the Usk and Wye.
The disease is due to the fungus Saprolegnia ferax, which abounds in Irish waters, living on decaying organic matter, but baving also the property of attacking living organic matter, so that the wonder is that salmon are not always diseased. Professor Huxley pointed out that it was desirable to ascertain the nature of the influences whereby the widespread sporadic disease sudcienly assumes an epidemic character. On this point we have very little light at present for although there is considerable reason for thinking tha deficient oxygenation, whether produced by overcrowding or otherwise, may favor the production of the disease, and though it is probable that some kinds of pollutions may favor it, yet the disease sometimes becomes epidemic under conditions in which these two predisposing causes are excluded. The productiveness of a salmon river is not necessarily interfered with by even a severe epidemic, and therefore Professor Huxley's opinion was that on the whole it were better not to attempt to extirpate the diseased fish.

A Balloon Crosses the Channel.

A correspondent of the London Times says that two aeronauts, one a Belgian, pamed Morum, and the other a Frencha man, named Da Costa, without intending it, had succeeded in accomplishing what several balloonists have recently at tempted in vain, viz., crossing the Channel. It appears that the aeronauts ascended at Courtrai, in Belgium, on Tuesday evening, with the intention of proceeding in an easterly direction and descending somewhere near Liege or Cologne. When over Louvain, however, they encountered an easterly current which took them over Ostend, and, to their alarm, they were carried out to sea. It appeared as if they would cross the Channel successfully, but suddenly from some unaccountable reason they began to descend. The aeronauts endeavored for some time in vain to check the descent of the balloon, so their position became an exceedingly perilous one. But by throwing overboard large quantities of ballast they again managed to ascend, and hefore long passed over Dover, when the balloon began to descend again, and next morning alighted in a field near Bromley. The aeronauts were treated with great hospitality, and, having allowed the gas to escape from their balloon, sent it on to London.

Photographic Positives Produced Directly on Paper Cros. Vergerand has utilized the properties of bichromates to produce positives directly on paper. He first sat urates a suitable kind of paper with a solution of 2 parts of bichromate of ammonia aud 15 of glucose in 100 parts of water, dries it, and exposes it under any positive (either a glass transparency, a drawing, tracing, or other flat object). As soon as the exposed parts turn gray it is immersed in a bath consisting of one part of nitrate of silver and 10 of acetic acid in 100 parts of water. The picture makes its appearance at once and is of a blood red color (bichromate of silver).
Wherever the light acts upon it the glucose reduces the bichromate, but in those places which have been protected by the drawing, etc., the bichromate will be unclanged and hence capable of forming chromate of silver, which is insoluble in water. If dried by the fire the picture will remain red, but if exposed to the sunlight it becomes dark brown. Sulphureted lyydrogen or a bath of potash and copper turns it black.-Comptes Rendus.

Decrease of Immigration.

The report of the Cbief of the Bureau of Immigration to July 1, 1883, shows that while for the fiscal year ending June 30,1882 , the number of immigrants into the country, by seaconst and Canada, was 770,422 , for the year ending June 30,1883 , the number was only 592.324 . And for June, 1882, 84,786 immigrants landed; while for June, 1883, only
75,034 came into the country. $1882,84,786$ immigrants landed;
75,034 came into the country.

Centrifugal Strain in Revolving Cylinders. by s. whippie.
By the law governing central forces, all parts of a cylin. der revolving about its axis exert a centrifugal energy as (proportional to) the weight and square of velocity directly and inversely as the radius of orbit.
Let R represent the radius, and L the length in feet of a revolving cylinder, and r the radius and v the velocity of revolution, and w the weight of a part at any distance from the axis within the periphery.
And let the cylinder be regarded as constituted of an indefinite number of very thin concentric circular bauds or laminæ of uniform density and thickness. Then, the centrifugal tendency ($c f$) of each band will be as

$\frac{v^{2} w}{r}$,

or simpl; as r^{2}, since v and w are obviously each as the radivise Whepee it appears that the $c f$ of the respective bands increases outwardly from the axis as the squares of respective radii; that is, in the same proportion as the sections of a pyramid parallel with the base increase from apex to base. And as the bulk of a pyramid equals the base into $\frac{1}{3}$ the altitude, so the aggregate $c f$ of all the bands constituting the cylinder equals the cf of the outside band into $\frac{1}{3}$ the number of bands, or, obviously, equals what would result from a mass of the material represented by the area of the outer band multiplied by $\frac{1}{3} R$; or, a mass equal to $\frac{2}{3}$ the bulk of the cylinder, concentrated in the outer band.
Now, every mathematician or dynamical expert may be presumed to know that the force by which each half of a revolving cylinder.tends to pull itself directly from the opposite half has the same ratio to the radial $c f$ of material in the half cylinder that the diameter has to the semi-circumference; and as such radial force has been shown to be equal to that of a mass represented by the area of the half outer band into $\frac{1}{8} R$, the force tending to separate the halves, is equal to the radial $c f$ of a mass represented by the diametrical section into $\frac{1}{3} R$; that is, equal to $2 R L \times \frac{1}{3} R=$ $\frac{2}{8} L R^{2}$, revolving in an orbit whose radius equals R.
Now the weight of this mass $\left(\frac{2}{3} L R^{2}\right)$ equals ${ }_{2}^{2} L R^{2} G \times 62.5 \mathrm{lb}$. (G denoting specific gravity of material, and 62.5 lb . the weight of a cubic foot of the unit material for specific gravity), and substituting this expression for W in the familiar symbol for centrifugal force,

$V^{2} W$ $g R$

(in which $V=$ vel. in feet per second, $W=$ weight of revolv$\frac{\text { ing body, } R=\text { rad. of orbit, and } g=\text { vel. due to the action of }}{\text { gravity during one secoind), we oorain the amount of strain }}$ upon an area of section equal to that made by a plane bisecting the cylinder and coinciding with the axis; that is, $=? R L_{\text {. }}$
Hence the equation:

$V^{2} \times \frac{9}{8} L R^{2} G \times 62 \cdot 5$

$g R$
strain upon an area equal to the bisecting section $2 R L$.
Then, dividing by this section, we obtain
$V^{2} \times \frac{3}{8} L R^{2} G \times 625$
$2 g R^{2} L$
strain per square foot.
Whence, canceling $2 R^{2} L$, transferring below the line the denominator 3 (of the $\frac{2}{8}$), substituting value of g ($32 \frac{1}{8}$ feet), and dividing by $62 \cdot 5$, we have:

$$
\overline{3 \times 32 \frac{1}{6} \times 62 \cdot 5}=\frac{1.544}{}=
$$

strain per square foot; which divided by 144 gives: $V^{2} G$
$222 \cdot 336$
strain per square inch, $=S . \quad$ Whence

$$
V=\sqrt{\frac{222 \cdot 336 S}{G}}=
$$

peripheral velocity required to produce a given strain equal S per square inch.
In the case of a grindstone or emery wheel with a hole in the center, the strain given by the formula is increased in the ratio of the reduction of section available for cohesion.

Cost of Live Beef and Dressed Beef.

The increase in the traffic in dressed beef between Chicago and the East has alarmed those dealers who are interested in the transportation of beef on the hoof, as, if the dressed beef business grows unchecked, the expensive rolling stock and yard equipment of the Chicago live beef shippers will become valueless. The Chicago Railway Review says:
' Every effort has been made therefore to crush out the dressed meat trade, and this it is boped can be accomplished through an increase of rates on such business. It already pays a much larger rate than does live stock, the charge for the latter being 40 cents per hundred pounds, and for dressed meats 64 cents per hundred pounds."
An investigation has been made into the relative cost of the two conditions of beef while in transit. From the report of this investigation it appears that the cost of live beef shipment per 100 pounds in addition to transportation is $173 / 4$ cents. The cost of dressed beef shipment per 100 pounds is 24 cents, exclusive of transportation charges. The summary of the report is contained in the following:
"The present rate for transporting live stock to New York is 40 cents per 100 pounds. The estimated cost in addition to transportation charges is $17 \frac{8}{4}$ cents; the total cost per 100 pounds, including railroad charges, is $57 \frac{8}{4}$ cents. It requires 175 pounds of live steer to make in Chicago 100 pounds of dressed beef; hence the cost of the dressed beef per 100 pounds, when obtained from live stock in the East, is $\$ 1.01$. The extra cost of shipping dressed beef has been estimated at 24 cents. The railroad transportation charge should therefore be 77 cents in order to make the total cost of transporting 100 pounds of dressed beef from Chicago to New York the same as the cost of transportation of 100 pounds of dressed beef when the steer is slaughtered in New York and the rate of railroad transportation is 40 cents per 100 pounds."
The animus of the movement for "crushing out" the dressed beef business is sufficiently shown by the quotation from the Railway Reviero given above, and the immediate olpject is "to make the cost of transportation on 100 pounds of dressed beef the same, whether the steer is slaughtered in Chicago or in the East."
It thus appears that consumers of beef in New York city and the East generally (largely the poor working people) are taxed on its original price to add to the profits of the railway companies and the dealers in live weight beef in Chicago.
But there are other considerations besides that of pennywise economy in the two methods of transportation. A writer in the Railway Review alludes to a not uncommon sight in the following words:
"The present fashion of transporting live stock is barbarous in the extreme, and if the cruelties perpetrated upon dumb heasts which are to be used as food were known, public sentiment would suppress the whole business in short order: The writer recently saw a live stock train upon one of the trunk lines which made him heart-sick. The cattle were crowded into a car as closely together as they could stand; it was a hot day; all the animals were gasping for breath; some, exhausted, had fallen and were lying upon the filthy floor under their fellows. Whenever the train started it jerked them back, and when it stopped it threw them forward. In this way they were to becarried a thousand miles, and when they arrived, bruised, sick, and fevered, at their journey's end, the survivors were to be butchered to furnish meat for human beings."
On the contrary, the dressed beef sent from Cbicago is from animals slaughtered after a rest in commodious stock yards; the meat is cooled in refrigerating rooms, and it is then hung in quarters in a refrigerator car, the ice of which is renewed when necessary in transitu. Taste, as well as is renewed when necessary in transilu. Taste, as well

Standards for Freight Car Building.

The apparent benefit of some standards in the building of freight cars is so obvious that it is no wonder that railroad men have directed their attention largely to it within a few years.

The National Car Builder says that it is clear that nothing in the construction of freight cars can be fixed and unvarying so long as there is no absolute limit to the maximum weight of loads they are to carry. As the freight traffic of the roads is now managed, the maximum car load is the basis which necessarily regulates the construction. It is no car loads have been increased 15 tons, and this increase is likely to be doubled in the next ten years. If a limit could be fixed for the load, whether 30 , or 40 , or even 50 tons, there would be a basis upon which to work, although it might necessitate radical changes in the present structure of cars from wheels to roof. But unfortunately there is no restriction upon overloading, and things must take their course. The most important members of the structure are the wheels. Instead of uniformity in their manufacture, the diversities and irregularities are almost endless. There is trouble with the form of flange, width of tread and width of wheel, they are not round nor balanced, there is no standard gauge, the hub bore is not concentric with the circumference, there is
nouniform point on the treads for measuring, and the utility of coning the treads is involved in great uncertainty. If the wheels are imperfect, the rest of the structure will share the imperfection. Those who are inclined to be sanguine that the millennium of standards and interchangeableness is about to dawn, should bear in mind that so long as every road is free to adopt and use what it pleases, it will be impossible to enforce the use of standards that put a veto on all subsequent improvements, and stop the process of development by saying, "Thus far and no farther."
It would seem, however, from some facts apparent at the recent railway exposition at Chicago, that the limit of load had been reached, or at least the limit of the relation of the load to the weight of the ear; and to an outsider it would seem that some agreement of at least these important particulars might be reached by railroad men. The Chicago Grocer says that "ten years ago the maximum capacity of a freight car on most roads was 20,000 pounds, with a weight equal to or exceeding this amount. For every ton of paying freight hauled there was another ton of dead weight. Latterly the railroad companies have been increasing the carrying capacity of the car without materially adding to its weight. Thus the 40,000 pound car weighs on an average about 23,000 pounds, giving nearly two tons of paying
general use on all the roads, the smaller cars being replaced by them as they wear out. But among the freight cars on exhibition, we noticed some of still greater carrying capacity. Thus a 50,000 pound car weighed only 24,900 pounds; a 60,000 pound coal car weighed but 22,750 pounds, and a 70,000 pound freight car weighed 32,300 pounds. This latter was a three truck car, there being a truck under the center as well as at each end. Some of these cars are doing regular service on the Missouri Pacific road, enabling the company, as we were informed by the person in charge, to do 30 per cent more business than with the cars of ordinary capacity.'

Tests of Coals.

In making a series of experiments to determine the relative value of different coals as fuel for the army, Quarter-master-General Meigs tested thirty-one specimens, with the result of ascertaining that two submitted specimens of semibituminous coal showed a higher evaporative power than the submitted specimens of antbracite or bituminous coals. The following table gives the best results obtained by Gen. Meigs from coals of the different classes, showing the pounds of water evaporated, at 212°, per pound of coal.

Semi-bituminous coal, from Somerset County,"،"، 985	
Anthracite from Schuylkill County, Pa 9937	
"	Luzerne " " 928
" ."	Dauphin "، "9.07
* "	New Mexico..... 904
Bituminous from Pittsburg, Pa........................... ... 8:\%8	
" "	New Mexico.................. 8860
" "	Glasgow, Scotland. 7661
" "	Newcastle-on-'Tyne, Eng..........7 752
" "	Weber coal, Utah....................... .. 473
" "	Lignite, Dakota...............403

These tests must not be considered as generally determinate in regard to the highest value of different kinds of coal; for other well known authorities have accorded to anthracite the evaporative power of 9.50 pounds of water to one pound of coal, and for bituminous coal 8.75 pounds of water to one of coal. The tests made by General Meigs are only valuable as showing the comparative usefulness of the particular specimens subjected to his experiments.

Common Sense in Summer.

The employment of the natural common sense possessed by intelligent adult humanity would do much to mitigate the discomforts of our torrid summers. Natural appetite, if not corrupted or perverted, is an excellent guide to eating and drinking. The following of Procrustean rules as to the quality aud quantity of food is pernicious. An un varying amount of food, as three hearty meals each day, which might be healthful for winter or the cool weather of autumn, is not appropriate for the intense heats of summer. No set of rules can be laid down for anybody's guidance, still less is it competent to make rules for everybody's guidance; but a few simple suggestions made by a physician recently may not be amiss.
He said: "Keep cool in temper; enter into no argument or contention on politics, ethics, or religion; restrain anger; or contention on politics, ethics, or religion; restrain anger;
attempt no athletic feats of rowing, walking, or ball playattempt no athletic feats of rowing, walking, or ball play-
ng; look on the pleasant side of your circumstances; be ing; look on the pleasant side of your circumstances; be
kindly affectioned, as St. Paul recommended; do not sit out doors long after sundown-the less of this the better; never work before breakfast; eschew meats as much as possible and chew food thoroughly; drink but little ice water or hot tea and coffee-warm tea is not injurious. Lemonade in moderate quantities is not hurtful. Alcoholic stimulants should be taboocd entirely unless a physician's prescription compel their use. Do not allow your dress to be a burden in material or amount, nor have it so light and thin that he body, from perspiration, becomes chilled."

How to Remove a Tight Ring.

A novel method of effecting the removal of a ring which has become constricted around a swollen finger, or in any other similar situation, consists simply in enveloping the afflicted member, atter the manner of a circular bandage, in a length of flat India rubber braid, such as ladies make use of to keep their hats on the top of their heads. This should be accurately applied-beginning, not close to the ring, but at the tip of the finger, and leaving no intervals between the successive turns, so as to exert its elastic force gradually and gently upon the tissues under neath. When the binding is completed, the hand should be held aloft in a vertical position, and in a few minutes the swelling will be perceptibly diminished. The braid is then taken off and immediately reapplied in the same manner, when, after another five minutes, the finger, if again rapidly uncovered, will be small enough for the ring to be removed with ease.-Langon, Gaz. des Hop.

Cleanliness of Sinks.

One of the most prolific causes of defilement and offensive odors in kitchen sinks and their outlets is the presence of decaying grease. This comes from the emptyings of kettles in which meat has been cooked, in the dish water, and in the soap. The grease lodges in every crevice and catches at every obstruction. A remedy may be found in the use of the common alkalies instead of soap, aqua ammonia in washing clothes, and borax in washing lawns and laces, and washing soda in cleaning dishes. These alkalies prevent a solid soap from forming in the sink and its pipes and neutralize soap from forming in the sink
all effects of decomposing fat.

Waterproof and Fireproof Fabrics.

The Textile Record, which ought to be good authority on such subjects, says that the tungstate of soda is about the most serviceable substance for making fabrics fireproof. For use it is dissolved in five times its weight of lukewarm water. The solution is then mixed with a very small portion of phosphate of soda. and it is then ready to be used for saturating tissues. After being well steeped the goods are wrung out and dried at a gentle heat, and may then be ironed, etc., as usual. They will be found capable of resisting the action of the heat for a long time, and if ignited they merely smoulder without bursting into flame. For making fabrics waterproof, the following process, the editor of the same journal says, is highly recommended, but he has never observed its practical results: A composition is prepared with nitrate of potassium (saltpeter), 200 pounds; resin, 270 pounds; gum, 30 pounds; slaked lime, about 100 pounds.

A milk of lime is first prepared, then the saltpeter is dissolved in water, and heated in a boiler, then so much lime is added that it does not become pasty, when the two other substances which have been fused on a slow fire are added. This composition can be left to cool, and being unalterable can be kept for use. To render tissue waterproof 100 pounds of this mixture are dissolved with one gallon of
increasing cost of labor. In according the prize to Mr. Serrell, the President of the Society, M. Rougier, one of the most eminent of French barristers, paid a high compliment to the genius and perseverance of the countryman of Benjamin Franklin. He said that France, in her appreciation of genius, knew no country or nationality. She resembled in this respect the great Republic of Washington, and she was ever happy to render to genius her merit, for science and art were universal.

IMPROVED REVERSING RAIL MILL ENGINES.

The engravings on this and another page illustrate by two perspective views a large pair of horizontal compound reversing rail mill engines, made by Messrs. Tannett, Walker \& Co., of Leeds, for the works of MM. De Wendel et Cie, Hayange, Jorraine, and Joeuf, France.
The engines in question have two high pressure cylinders, each 34 inches in diameter, and two low pressure cylinders, each 60 inches in diameter, all having 5 feet stroke. The cylinders are steam jacketed, and provided with piston valves and link motions, the latter being worked by a hydraulic cylinder for reversing. The crank shaft, which is of the marine type, is made in two pieces bolted together, and weighs about 13 tons. The pins are 18 inches in diameter and 15 inches long, and there are four bearings, each 18
a siding in order to permit the express to pass. He accord ingly put up all the signals against the light engine, but to his extreme astonishment the engine came straight into the junction at full speed, swept round the corner, dashing past all the danger signals, and disappeared from view down the line toward Chester. A moment's reflection convinced the sig nalman that both driver and stoker must be asleep. He ac cordingly wired to the Colwyn Bay Station signalman, "En gine coming; driver asleep; put fog signals on line." The man at Colwyn Bay was equally prompt, for, running ou of his box, he had hardly time to lay a number when the engine came thundering along and an explosion followed which effectually awoke the men. The engine was stopped and run back into a siding, when it was discovered that the fire had gone out, the water had disappeared from the boiler, and that the men had been asleep some time. Inquiry has resulted in their immediate discharge. They had been fifteen hours on duty.-London Times.

Waterproof and Other Speciai Paints and Varnishes.
The Neueste Erfindungen says that the waterproof preparation of G. Gehring, in Landshut, is prepared by melting to gether 60 parts of paraffine, 15 parts of wax, and 33 parts of palmitate of alumina made by precipitating a solution of palm oil soap with alum. The stone, metal, or wood that

IMPROVED REVERSING RAIL MILL ENGINES.
boiling water, while on the other hand 10 pounds of alum are dissolved in 10 gallons of water. The fabric is tirst passed into the first solution, and then into the second, and finally dried between cylinders."

Honors to an American Engineer.

The Academie des Sciences, Belles-Lettres et Arts de Lyons, France, at its annual meeting on July 10, awarded the gold medal (founded by Prince Lebrun for the encouragement of useful inventions) to Mr. Ed. W. Serrelp, Jr., of New York, for an automatic reel for silk. In a letter from Mr. Peixotto, published in the Scientific American, issue of June 10,1882 , on the silk industry of France, al lusion is made to Mr. Serrell's invention. The writer at that time said he had great hopes that Mr. Serrell's automatic reel would prove successful, and that the in vention was creating a great deal of interest among the silk growers and silk manufacturers in the south of France.
This discovery, according to experts, says the Continental Gazette, Paris, is destined to work the same revolution in the silk world as was wrought ninety years ago by the invention of the cotton gin. Cotton before then went to waste on the fields, and by the proletarian labor of Europe, and particularly of the Orient, the reeling of silk from the cocoon, is until now an impossibility in the United States, and is rapidly becoming so in Europe, owing to the increased and
inches in diameter and 22 incheslong. The connecting rods
are 13 feet 6 inches centers. The engines are constructed to work at a pressure of 90 pounds to 100 pounds per square inch, and deliver their exhaust steam to a surface condenser, fitted with brass tubes three-fourths of an inch in internal diameter. This condenser also serves to condense the steam of the accessory engines, always to be found in a rail making plant, and is provided with an independent pair of hori zontal engines, with cylinders 16 inches in diameter by 30 inches stroke, which work two double acting circulating pumps. We are indebted to Engineering for the illustra tions and particulars.

Engineer and Fireman Both Asleep.

The occurrence on the. Holyhead line of the driver and stoker of a train falling asleep while on duty and the ex traordinary escape of the Irish mail last week was even more serious than reported. It would appear from inquiries made on Monday at Llandudno Junction by our correspond ent that the signalman there, by extraordinary presence of mind, saved the Irish mail passengers on Tuesday nigh from what might have proved a terrible fate. The signalmanat the junction received a message from the signalman at Conway, the next station toward Holyhead, that a light engine was coming. The junction signalman, knowing that the Irish mail was due, decided to run the engine into
is to be waterproofed is warmed to 140° or $200^{\circ} \mathrm{Fah}$., and then coated with the melted mixture. For fabrics be em ploys a mixture of 60 parts of paraffine, 20 parts of palmi ate of aluminum, and 10 to 15 parts of yellow wax dis solved in linseed varnish, to which is added from 6 to 15 parts of oil of turpentine.
A. Riegelmann, in Hanau, has patented a rust protector which consists of ordinary oil paint mixed with 10 per cent of burned magnesia, baryta, or strontia, as well as mineral oil. This neutralizes the free acid of the paint, and the alkaline reaction protects the iron from rust.
To prevent iron from rusting in the ground it is painted over with a mixture of 100 parts of resin, 25 parts of guttapercha, 50 parts of paraffine, and 20 parts of magnesia, besides mineral oil. A temporary paint for the movable parts of machinery contains 20 or 30 per cent of magnesia or burnt dolomite, with some vaseline added to prevent dry-

The Suez Canal Company intend adopting the Pintsch ystem for lighting the entrance to the canal; and with this iew have ordered eight 9 -foot spherical gas buoys, each to burn for two months, three fixed lights to burn two months, and three large holders for storing gas and filling the buoys, ogether with a small gas works to be erected at Port Sain It is proposed to extend the system to other parts of the canai.

THE TURBOT, GOLDBUTT, AND SOLE

The scientific name of the flat fishes, as they are popularly called, is Pleuronectida, signifying "side swimmers." The upper side of these fishes is always dark, and the under side white; this guards them against the attacks of their enemies, the dark flat surface looking like the sand on which they love to creep. When swimming, they undulate through the water in a very graceful manner. "If the eyes were placed as is.customary in fishes, one of them would be useless as long as the fish was lying on its side. By a modification of the bones of the head both of the eyes are brought to that the bones of the head both of the eyes are brought to that to command a wide view around."
The turbot (Pleuronectes maximus) is the most bighly valued of the flat fishes for the delicacy of its flesh. Its color on the left side is brown of various shades, lighter on the fins, and the whole of this side is spotted with round bony tubercles; the other side is white. The length of this fisb is more than a meter; the weight, about thirty-five kilogrammes. Rondelet asserts that he has seen a turbot three meters long, two broad, and almost a meter thick. It is found in the German Ocean and the Baltic Sea, also in the Mediterranean. It is caught in the greatest abundance in the German Ocean.

Under the name Platessa may be found the species of fish with four cornered or egg-shaped bodies. The eyes and the color, as a rule, are upon the right side, but reversed specimens are quite common.
The goldbutt belongs to this family. Its length sel-
come accustomed to the vessels in which they are kept, learn to know those who care for them and their feeding time, and will often take their food from the hand. The turbot feeds upon mollusks and crustaceans, besides fish. From Brehm's Animal Life

NATURAL HISTORY NOTES

The Flowoering Plants of the World.-"The Genera Plantarum" of Bentham and Hooker, just completed, gives a rough approximation of the number of plants that compose the present phanerogamic flora of the world, according to the authors' own ideas, and according to the idcas of the writers. From this it appears that the polypetalæ com prise 30,966 species ; the gamopetalæ, 34,567 ; the monochlamy deæ, 11,778; the gymnospermeæ, 415; and the monocotyle dones, 17,894. Total number of flowering plants, 95,620 species.
This "number is, of course, but a very rough estimate," says the Gardeners' Chronicle, "but the above is the number computed by taking the lowest number given under each order by the authors as being what they consider the probable number of species contained in it according to their view, though probably this number is not always intended as an accurate census even of their own views; and, if the estimate of other authors were taken into the count the total number would be considerably augmented." Some of the largest orders are: compositæ, with 9,820 species; legu-
of Southeastern Ar•izona, is said by Mr. Davenport to be, as a species, "one of the most distinct and satisfactory that bas been discovered for a long time, and is wholly unlike any known to our flora or heretofore described."
A Large Shad Tree.-In the same jourual G. P. Davis, M.D., mentions the discovery by him, in the town of Glastonbury, Conn., of a shad tree (Amelanchier canadensis) which had the size, proportions, and general aspect of an uncommonly fine old sugar maple. Its girth was found to be 8 feet 8 inches at 3 teet 6 inches from the ground, and the spread of its branches to 48 feet in diameter. The ree was in full bloom on the 19 l h of May.
The Art which Produces a Cabbage.-At a November meeting of the Philadelphia Academy of Natural Sciences, Mr. Thomas Meehan exhibited a specimen of a cabbage which had, before blossoming, grown to the unusual height of three feet, the spiral coil of the stem, which was to the left. having been thus drawn out without any corresponding in crease in the number of leaf scars.
The cabbage, in its natural condition, is an insignificant plant without any such head of leaves as makes it of commercial value when cultivated. The desired effect is produced by sowing the seeds of the wild cabbage at a period of the year so late as not to allow the formation of flowers, in which case the vegetative vigor of the plant is expended in the production of the mass of leaves, which become bet er developed and denser as the process of cultivation con tinues.

Sense of Direction in Animaly.-The remarkable faculty

THE TURBOT, GOLDBUTT, AND SOLE.
dom exceeds sixty ceutimeters, its weight ouly exceptionally seven kilogrammes. It is variously colored, but generally the upper side is brown marbled with gray and marked with round yellow spots. The other side is yellowish-white. It is found almost every where in the Atlantic Ocean, the Mediterranean and Baltic Seas, and in great numbers in the German Ocean.

The sole (Solea vulgaris) is about sixty centimeters long, and weighs about four kilogrammes. Upon the upper side and upon the pectoral fins it is black, and on the other side brownish. It is found all along the coast of Western Europe, and is also abundant in the German Ocean.
Nearly all of the flat fishes are found in shallow, sandy places near the coast; but they sometimes retire into the deep water. The flesh of all the flat fishes is palatable, and that of many of them is of superior excellence. They form a very important article of food. On most of the sea coast they are only eaten when freshly caught, but in the North they are cut in strips and salted and dried in the air, as the codfish, or smoked. The goldbutt and turbot are specially valued. Great numbers of these fish are sent to the London market by the people of Holland.

The capture of the flat fish is carried on in various ways, according to the locality and their abundance. Sometimes the fishermen at the ebb of the tide wade into the muddy sand, hold the fish down with their feet, and then pick them up. In some places on the coast a great many may be caught in this way, but they are taken chiefly with a dragnet.

Many of the flat fisb may be acclimated to live in fresh water. They may be kept in narrow quarters, and soon be-
,000; rubiaceæ, with 4,104; gramineæ, with 3,200 ; euphor baceæ, with 3,000 ; labiateæ, with 2,600 ; and liliaceæ, with 2,100. Then, in point of number of species, come sixteen other orders containing from 1,000 to 1,902 . There are ten orders that contain less than five species, and one of these, batideæ, contains but a single genus represented by a single species. It seems that, of the flowering plants of the world, about one out of every ten species known belongs to the order compositæ. To this latter belongs the largest genus, that of Senecio, with 900 species.
"Among the curiosities in gengraphical distribution it is interesting to note the number of genera (about forty) that are common to tropical America and tropical Africa, and are found nowhere else, some of them genera of several species, in which case the bulk of them is confined to Ame rica, and only one or two occur in Africa, sometimes as dis tinct species, sometimes identical with the American species.

It seems "probable that the African species of these genera (Copaifera, Drepanocarpus, Sparganophorus, Telanthera, Mohlana, Symmeria, and Calathea) have been brought there by the agency of oceanic currents, winds, etc., from the American continent in hygone ages, rather than that the American species should have been derived from the African, as the numbers preponderate on the American side in all cases where the genus contains several species." A Neo North American Fern.-Mr. Geo. E. Davenpor communicates to the Bulletin of the Torrey Botanical Club for June, a description, accompanied with a plate, of a ver beautiful new fern--a species of Cheilanthes, which in bonor of its discoverer he has named Ch. pringlei. This plant which was detected by Mr. C. G. Pringle on the mountains
which cats, dogs, pigeons, and other animals possess, of re turning in a straight line to a point of departure, has awak ened much curiosity on the part of naturalists. Some refer it to instinct, some to intelligence similar to that of man, some to an internal mechanism which makes the animals simply automata; but none of these attempted explanations does any thing toward solving the mystery. Wallace supposes that when an animal is carried to a great distance in a basket its fight makes it very attentive to the different odors which it encounters upon the way, and that the return of these odors, in inverse order, furnishes the needful guide.
Toussenel supposes that birds recognize the north as the cold quarter, the south as the warm, the east (in France) as the dry, and the west as the moist. Recently, Viguier has published, in the Revue Philosophique, an original memoir upon the sense of orientation and its organs, in which he attributes the faculty to a perception of magnetic currents.
Influence of Electricity on Vegetation.-Mr. Macagno (fide Les Mondes) has experimented near Palermo upon the influ. ence of atmospheric electricity on the growth of grape vines. Sixteen plants were submitted to the action of an electric current, by means of a copper wire inserted by a platinum point in the extremity of a fruit bearing branch, while an other wire connected the branch at its origin with the soil. The experiment lasted from April to September. The wood of the branches which were experimented upnn was found to contain less potash and other mineral matters than the rest of the vine, but the leaves had an excess of potash in the form of bitartrate. The grapes collected from thif electrized branches furnished more mast, contained mor glucose, and were less acid.

Direct Process for Magnetic Iron Sand.
The production of wrought iron and steel from ore direct, without the intervention of the blast furnace, is a subject constantly occupying the attention of many metallurgists. In the blast furnace two operations are accomplished. First, the removal of the solid impurities in the ore used, by fluxes and in the form of slag. Secondly, the reduction of the oxide of iron it contains, by deoxidation, to the state of metallic iron. This combined operation with the common ores is very efficiently done in the blast furnace, but the resulting pig iron is somewhat impure, containing always a greater or less percentage both of carbon and silicon. For the production of wrought iron these substances have afterward to be removed by the ope:ation known as puddling, which consists of remelting the pig iron with fresh portions of oxide of iron to oxidize and thus remove the carbon and silicon it contains. If, however, an ore of high percentage is taken, composed chiefly of oxide of iron, the production of metallic iron then consists almost entirely in the second process rffected in the blast furnace; that is to say, the reduction of oxide of iron by deoxidatiou to metallic iron. This can be accomplished at a comparatively low temperature-about $800^{\circ} \mathrm{Fah}$.-and a higher temperature is only necessary afterward to melt and agglomerate the particles of metallic iron thus formed.
The method of reduction usually proposed in all direct processes is by the admixture of solid carbon, in the form of coal or charcoal, with the iron ore, both being brought into a fine state of division by grinding, in order to cause an intimate mixture of the particles, and thus facilitate the chemical action which takes place. Numerous processes and forms of apparatus have been proposed to effect this object, but the practical difficulties have been tbreefold. First, the difficulty of bringing the heat to bear on a powder, which, difficulty of bringing the beat to bear on a powder, which,
owing, to the interstices between the particles, is always an exceedingly bad conductor of heat; secondly, the prevention of the particles of iron once formed being again reoxidized; and thirdly, the difficulty of getting rid of the solid impurities in the ore, which, when melted, form a highly acid slag, containing a very large percentage of iron.
One of the earliest attempts at the production of pureirou direct was by what is knuwn as Blair's process, modifications of which bave formed the basis of many subsequent attempts in the same direction. This process consisted of heating together a mixture of iron ore and charcoal, both finely powdered, in close retorts of peculiar construction. In this way the iron was reduced to a metallic state in the form of spongy iron, which was afterward agglomerated in a melting furnace. The process, bowever, was abandoned, owing chiefly to the difficulty of the proper regulation of the heat, which was either not sufficient to penetrate to the interior of the retort, or so great as to cause a partial melting of the :nixture near the sides, which was afterward removed with difficulty. It was found also that unless the iron ore used was nearly pure, besides being free from phosphorus and sulphur, the loss of iron in the slag in melting was very great, and the quality of the iron itself was defective, being generally what is known as red short.
It nccurred to Dr. Siemens that the chief difficulties in the direct process would be overcome by the use of a rotary furnace, which would accomplish the double object of thoroughly exposing the mixture of iron ore with coal or charcoal to the necessary heat by constantly urning it over, and also afterward agglomerate the particles of metallic iron formed in the furnace, by rolling them together while in a pasty, half melted state. In this way balls of metallic iron would be formed, exactly the same way as the operation is done by hand in an ordinary puddling furnace. After many experiments this turnace, which has been previously noticed in our pages, has been brought to work practically on a large scale. The third difficulty, however, was still experienced; the necessity of having, if possible, a pure oxide of iron, which by reason of its containing no solid impurities would form no slag. Attention has lately been turned to the magnetic iron sand deposits which exist in some places on the sea coast in large quantities, especially in Canadia on the banks of the St. Lawrence, though generally on the portions of the river, so mixed with ordinary sand as to be with difficulty separated from it. Lower down the river, however, the deposits are more extensive and purer. At Moisic, near the bay of Seven Islands, according to the Geological Report of Canada, there is a continuous broad belt of iron sand on the surface of the beach, some three miles long, and several feet deep, containbeach, some three miles long, and several feet deep, contain-
ing equal to 55 per cent of metallic iron, with at the same ing equal to 55 per cent of metallic iron, with
time a total absence of phosphorus and sulphur.
The separation of these magnetic sands from all their impurities has been recently accomplished by a very ingenious invention of Mr . Edison. This machine is simply a hopper, fixed at an elevation, and so arranged as to allow the magnetic sand it contains, previously dried to prevent any cohesion of the particles, to fall from a long narrow opening at the bottom of it in a thin continuous stream. Electromagnets are placed at right angles to this stream, and so arranged as to simply deflect the grains of magnetic iron when falling, without allowing them to come in contact with the magnets. The magnetic iron thus falls into a receptacle at one side, while the impurities, consisting of sand, titaniferous iron, etc., fall in a direct line, and are thus separated. So complete is the arrangement that a single separator, requiring only a 3 -horse power engine to elevate to the hopper and drive the dynamo necessary to
supply the magnetic current, will pass through 70 tons a day
of sand, giving a product, when fairly pure magnetic sand is operated upon, containing only about 2 per cent of impurity. If passed tbrough a second time, an almost pure magnetic oxide is the result-that is to say, an articie containing 72 parts of metallic iron, combined with 28 parts of oxygen. Sume of this separated magnetic iron ore, containing about 2 per cent. of impurity, bas recently been worked in the Siemens rotary furnace, at the works of the Landore Siemens Steel Company, with the following results:
After a few trial charges, to ascertain the best mixture and most suitable temperature for working this material in the rotator, it appeared that a charge of 25 cwt . of magnetic iron sand, mixed with 6 cwt . of small coal, or charcoal, gave the best results. The whole time required for the operation, from first charging the furuace to withdrawal of the rough, puddled balls, was on an average 3 hours 45 minutes. The yield, in the case of the small coal charges, was about 18 cwt . of rough balls; in the case of charcoal charges somewhat less, or about 16 cwt . The difference in weight may probably to some extent be accounted for by the impurities in the coal, and less perfect decomposition, as compared with the charges made with charcoal. The finished charges usually came out in the form of six or seven balls, some of them weighing over 3 cwt . 'They were mostly at once thrown, while red-lot, into the Siemens-Martin steel furnaces, and used for making mild steel, for which purpose they were found to be very suitable, and gave excellent results. One of the balls, however, from a charge made with coal, was roughly hammered into an billet, which on analysis gave: Metallic iron, 96.95 ; slag, 3.04 ; phosphorus, 0.002 ; sulphur, $0 \cdot 03$; carbouaceous matter, $0 \cdot 17$; manganese, trace. Probably the small quantity of phosphorus and sulphur contained in this sample was combined with the slag, and would be got rid of by reworking the billet in the usual manner. One of the billets from a charge made with charcoal was afterward reheated, and simply rolled into a finished bar, without piling and reheating again, as usually done. The bar thus obtained was of very fine quality of tons per square inch, with 23 per cent of elongation.
From these statistics it would appear that when working upon pure magnetic iron sand, each of Dr. Siemens' rotary furnaces would produce six charges daily, with a produce of five tons per day of rough puddled bars, or say about thirty tons per week of shingled blooms. The fuel used in the gas generator for beating the furnace comes to as nearly as possible one ton of coal per ton of puddled balls made; and the wages, when working the rotators in pairs, with proper mechanical elevators for charging, would be about six shillings per ton of rougb puddled balls 'produced. It seems probable, from these experiments, that the manufacture of
fine qualities of iron and steel will before long be carried out one qualities of iron and steel wil before long be carried out netic iron sand will considerably assist in its economical production. The reduction of magnetic oxide of iron to metallic iron is accomplished more easily, and at a lower temperature, than sesquioxide of iron. Owing also to the fact of the magnetic oxide containing less oxygen than the sesquioxide, it requires less coal or charcoal in the process of reduction to metallic iron.-The Engineer.

The Ventilation of Public Buildings.

The failuie of systems of ventilation and heating in public buildings is deplorable, not simply because of the injury done to the occupants of such buildings, but because of the influence such failures have in retarding the general adoption of better ventilation and heating for private buildings. If a free use of money with supposed scientific building cannot secure satisfactory ventilation, the argument is raised that a moderate outlay of money superintended by a house carpenter cannot hope to secure this desirable feature. There are valid reasons why buildings constructed at public expense should bave the most approved ventilation and heating. That many of them do not, it is not necessary to say.

A common fault in the " system of ventilation" adopted in public buildings is the attempt to make one shaft, in which there is nothing to induce an upward current, re-
move the foul air from several rooms on different floors. The plan does not secure the most satisfactory removal of foul air from any room, and is fraught with danger because of the liability of the current's being reversed by the opening of a door or window in one of the rooms tapped by the shaft. The result is that the foul air from a series of rooms, instead of being carried out of and entirely away from the building, is carried into one room, the occupants of which may suffer unconsciously. This fault has been observed in
a building in which the foul air ducts from a large number of offices and water closets opened into a common shaft tapping five floors. The result is, when the wind is in a certain direction, the foul air from a large number of offices and water closets is forced down the shaft into one room, or, possibly, all the rooms on one floor, from which it has no escape when the doors and windows are closed. The same result follows in buildings where the garret is used for a foul air chamber, into which all the foul air ducts empty, and from which exit is supposed to be provided by one or two large shafts through the roof. In a certain insane asylum, where the garret is used as a foul air chamber, in an examination of the working of the system, by allowing the bandkerchief to float over openings of the ducts in the garret floor the handkerchief was drawn down into one
reversal of the current, it was found that the patient in the room which the duct was supposed to ventilate had in the night broken the window of the room. The wind, blowing from the opposite quarter, immediately reversed the current, and the accumulated foul air from the garret above had for everal hours been turned from its proper channel ints the room of the patient
The difficulties alluded to may be overcome by having a foul air shaft for each room, and having that shaft continue unbroken through and above the roof. In dormitories and asylums, where there are large numbers of rooms, and large numbers of shafts necessary, this may be done without sacrificing architectural beauty, by collecting a number of shafts together into a large, heated chamber, and provide their exits, still unbroken, through the roof, in such places as it may be desirable to maintain the harmony of the design.
A system of ventilation to be most successful needs to be most simple. Each room should have a complete system in so that it could not upon the conditions in any other room, other parts of the building.-The Sanitary News.

Increased Speed of Machinerv in Factories.

The speed of cotton machinery in Lowell is said to have been increased 30 per cent within twelve or fifteen years. If the city contained no more spindles in 1883 than in 1873, therefore the production of the mills would still be largely enhanced. In considering the condition of our various manufacturing interests, this matter of higber speed and increased capacity of machinery is, says the Commercial Bulletin, often lost sight of, but is certainly worthy of attention in seasons of over-production, like the past six months. There are about $12,000,000$ cotton spindles in the United States to-day against $7,000,000$ in 1870 , but if the speed and capacity per spindle has increased even 25 per cent, the actual productive capacity of the mills has been more than doubled.
And not only has the cotton manufacturing capacity of the United States been more than doubled since 1870, but a glance at the amount of cotton actually consumed by our mills shows an almost equal increase. In the three years 1869, 1870, and 1871 there were consumed in the United States $3,219,000$ bales of cotton, or an average of $1,073,000$ bales per annum. For the ten months from September 1 , 1882, to July 1, 1883, there have been taken for consumption by the spinners of this country $1,988,417$ bales of cotton. Very moderate purchases during the next two months will bring the total up to $2,146,000$ bales, or just twice as much cotton as was used in the United States, in 1870.
In the woolen manufacturing interest vers similar conditions are found to exist. A desire to diminish the cost of production has led to an increase in the speed of machinery, and an enhancement of the capacity of the mills in other directions. The loom which formerly run 50 or 60 picks per minute now runs 95 perhaps; and where 40 -incb cards were used, many mills now bave cards 60 inches in width and of proportionately increased diameters. And yet, in speaking of the number of sets of woolen machinery in the United States, we are accustomed to compare the figures of 1883 with those of 1873 or 1863 , without paying attention to any increase which has occurred in the size of the cards or capacity of the machinery during this period.
The effect of lessening cost of production by means of increased speed and machinery of enhanced capacity is not unwholesome. It is in the interest of the consumers, and is therefore eminently altruistic in its tendency. We have merely referred to it as an incident which statisticians frequently lose sight of in calculating the capacities of our quently lose sight
mills aud factories.

The English Parcels Post.

On August 1 a new parcels post service will be begun, and there can be no doubt that the convenience to the public will be very great. At least the tradespeople throughout England seem quite jubilant over the new regulation. Parcels not exceeding 7 lb . in weight, 6 ft . in girth, and 3 ft .6 in in length, may, after that date, be sent by post, at very rea sonable rates; and these are liberal dimensions. Nothing is excluded that a respectable person would wish to send, the prohibition only including a few articles damaging to the pbysical or moral health of the officials and recipients Grouse may be posted from Scotland on the 12th, and no doubt soon after the establisbment of the parcels post, says a con temporary, many grouse will come southward.
Live animals and birds are very properly excluded; but a man may post a small leg of mutton or a few bottles of wine, if carefully packed up. An officer will be on duty at the counter of the post office, whose functions it will be to weigh parcels, inform the sender what stamps are required; and the rates " shall be paid by means of postage stamps affixed to such articles, and sball be verified by such officer." Parcels may be addressed to post offices " to be called for," but there will be a charge of a penny a day while they are n the custody of the office.

A Man-eating Mollusk.

A minute pulmonate, Cionella aricula, was not long since reported as occurring in myriads in the cavities of cancellate bones in a prehistoric British cemetery at Chichester. It has now been found of unusual size, by Director Eisher, in has now been found of unusual size, by Director Eisher, in
human skulls from comparatively recent interments at human sk
Bernberg.

RECENT INVENTIONS.

Can Opener.
The engraving shows an improved can opener which wil cut on a straight or curved line. It is formed of two levers pivoted to each other, one being provided with a blade at its lower end, and the other baving a plate pivoted to its lower end, and provided with a flange adapted to rest upon the top of the can, the plate thus serving as a guide and traveling fulcrum for the cutting blade. This useful invention has been patented by Mr. John McWilliams, of New
 Lebanon, N. Y.

Watch Movement Box.

This is a box for packing watch movements for the mar*et. It renders plitting them up in paper urvecesssary, and they are more securely held or kept from being shaken or injured. Ordinarily, in packing American watch move ments for the market, they are put in a tin box and done up in paper, and then the whole put into another tin box provided with a cover. This invention consists in an inner and outer box and peculiar devices connected therewith, including a retaining ring, logether with a spring forcing the watch movement against the ring, and locking devices, whereby a secure and steady packing of the movement is obtained. This ring, instead of being slipped to its place, as shown, may be hinged to one side of the outer box and fasten on the opposite side thereof, so as to open and close. If it be found that the ring mars the dial, a paper washer may be inter posed between them. Such retaining ring may be used in connection with a permanently attached spring, instead of a removable one, for holding the watch movement up against it. Fig. 1 is an outside view, and Fig. 2 is a sectional view. This invention has been patented by Mr. Albert D. Bing ham, of Nashua, N. H.

New Fruit Drier.

This is a metallic box having wire gauze top and bottom, and containing racks upon which to place the fruit. There is a hot air chamber below the wire gauze bottom, adapted to rest on or be suspended over the top of a cook stove by cords from the ceiling, which are attached to drums on the
be quickly raised up and suspended above the stove, when the latter is wanted for cooking purposes, without wholly suspending the drying process. With this kind of a drier the ordinary cook stove may be utilized for the heater without material interference with the cooking operations, and on the other band the cooking operations will not materially interfere with the drier. A sheet metal slide is sometimes inserted under the trays to protect the fruit from the steam that may rise at times. It may also be placed over the trays to prevent the escape of hot air when desired. This invention has been patented by Mr. William F. Hale, of Jamestown, N. Y. (P. O. Box 1,914).

Dental Drill Hand Piece.

The engraving gives an external and a sectional view of an improved hand piece for dental drills, recently patented by Mr. Robert M. Ross, of 29 Columbia Street, Utica, N. Y. The improvement is designed to facilitate the insertion in the hand piece of tools having points of different sizes. In fact, the invention consists in the application to the hand piece of a simple and effective universal chuck adapted to the different shanks. The spindle proper is bored axially at the end, and mortised transversely to receive two tapered blocks which are grooved along their inner edges to receive the tool shank. Over the spindle is placed a sleeve with its lower end flared to receive the clamping block, and its upper end threaded internally, and fitted to the threaded portion of the spindle. The spindle is provided with a milled head by which it may be held while the sleeve is screwed down to clamp the blocks against the shank of the tool. The milled head of the spindle and that of the sleeve are accessible through slots formed on opposite sides of the handle, which may be closed by a rotating shell or cover. Besides this improved device for clamping the tool, the hand piece is constructed so that it may be very readily taken apart for cleaning. It has an improved swivel attachment at the top which connects with the flexible power connection. Further information in regard to this improvement may be obtained by addressing the inventor as above.

New Station Indicator.

This is a new device for showing successively the names of stations on a railroad, steamboat, or stage line, and calling the attention of the passengers to the apparatus by sounding an alarm. The invention consists in a station indicator having clockwork mechanism for operating rollers to which a band is attached, the band carrying the that when the cos that when the clock-
work mechanism is work mechanism is re leased the band will be wound from one roller to the other, and will be moved across a slot in the front of the station indicator box, and at the sam time an alarm bell will
be sounded to call th
 be sounded to call the attention of the passengers to the station indicator. The rollers ar provided with clutching devices whereby the loose cog wheel (with which each roller is provided) of either roller can be engaged with a cogwheel operated by the clockwork mechanism, whereby the b:and can be wound in one direction or the other, according to the direction of the train. This invention has been patented by Mr. John W. Watts, of Clarkesville, Mo.

Improved Sun Dial.

This iuvention consists of a semicircular portion of a ring corresponding to that portion of the globe upon which the shadow of a ball located at the earth's center would travel, supposing the earth to be transparent, arranged in connec tion with a ball and an adjusting device, and having longitudinal lines of declination and transverse lines for hour marks, making a simple and efficient sun dial or solar compass. The principle of the invention is as follows: Suppos ing the earth to be a transparent globe, with a ball placed in the center, then the shadow of the ball would travel around the globe once in twenty-four hours; and if the sun's declination was south, say, 10°, the shadow of the ball would travel 10° north of the equator. If we then take that portion of a globe lying $23^{\circ} 28^{\prime}$ on each side of the equator, the extent of the sun's
 declination, with a ball in the center, and the upper half cut away, it would form a semicircular ring, on which, if suspended parallel to the equator, the sladow of the ball would travel as on the earth. If we make the ring flat, it will be the tangent ρ f a globe of the ring's diameter, as shown in Figure, and if tangent lives of suspended in the center, the shadow of the ball will travel along the line of declination all day if the ring is suspended parallel to the equator-that is, with an angle from the vertical equal to the latitude of the place. It is intended that cards with the sun's declination and equation of time should go with the instrument. This invention

Improved Trace Eye Guard.

The design of this invention is to strengthen the trace a the eye, where they receive the full strain of the trace, so that the trace will not tear out or break away in moving the load. The trace is made as usual with two or more layers of leather stitched together, and with an eye for the entrance of the whiffletree end irons. The trace eye guard is formed with flanges which are clinched on the sides of the trace, and a prong projects from the guard into the

material of the trace, as shown in Fig. 2. The guard when applied is U-shaped, and is calculated to receive all of the wear and pressure of the whiffletree end irons. This inven tion has been patented by Mr. D. Kaltenbacher, of Shelbyville, Ky .

Novel Bicycle.

This bicycle has the cranks of the front driving wheel connected with hand levers pivoted in hangers on the vehi cle frame, the hand levers being provided at their lower ends with arms carrying foot rests, whereby the levers can be operated by hand and foot. Elbow levers are pivoted on the same pivots with the hand levers, and can be connected with the same or with the fork of the steering wheel, so that, if desired. the elbow levers can be used for steering the vehicle by means of the feet, if the bieycle is to be propelled by means of the hands only. When the bicycle is to be propelled by means of the hands aud feet, it is steered by means of a back rest attached to the upper swiveled end of the fork in which the steering wheel is journaled. This improvement has been patented by Mr. Jean B. Girard, of St. Aime, Quebec, Canada.

Improved Tread Power.

In this tread-mill power, the endless traveler consists of cast iron chain links jointed together and carrying lags which are connected to the links by a tenon on each end fitting in a corresponding mortise in the link. Carrying rollers are fitted to run in boxes attached to the frame, so that the chain links run along on them from one to another, and in order that the rollers may be of larger than ordinary size and placed furtieer apart, the chain links have abutting shoulders above the pivot joints, which hold the lags up level for the horse to walk on. Each lag has a rib or cleat nailed on the upper surface just back of the front edge. The rollers that sustain the weight of the horse may be larger, stronger, and easier running than where the rollers are at tached to the chains. For a brake to regulate the speed of the machine, a couple of centrifugallevers are pivoted to a couple of the arms of the flywheel, and having a brake-shoe
 on the sbort arm to act on a friction rim attached to the frame, the long arms of the levers being connected to the rocker bar by rods, and to the rocker one of the levers is connected by a coiled spring and adjusting screw, which tend to keep the brakes off the rim when the speed is not too high; but when excess of speed throws out the centrifugal levers the shoes will be pressed on the rim till the speed slows to the proper limit. The machine is provided with a simple stop device and is improved in other details. Mr. Lorin D. Carpenter, of Brush Creek, Ia., is the patentee of this invention.

Improvement in Gates.

This gate is designed mainly for farm use; wood and metal or wire are combined in a novel manner in its construction. It may be cheaply made by unskilled labor, and combines lightness with durability. The gate is composed of two wooden uprights, one at the hinge end and the other at the free end, two horizon-
tal rails and an oblique brace
connecting the two as shown. An iron brace connects the upper end of the wooden brace with the upper end of the inner upright, and is provided with an eye which receives the pintle of the upper hinge. Wires are stretched
between the uprights, forming a complete panel. This gate is very light and at the same time simple and strong. Mr. Carey McMillen, of New Guilford, O., is the patentee of this invention.

Blinder for Bridles.

The main leather part or body of the blinder is stitched or secured by rivets to the cheek pieces of the bridle in the ordinary way. At the upper, lower, and outer edges of the blinder are secured metallic binding, the edges of which are pressed down upon the material of the blinder, so as to grasp the edges of the blinder and finish it at the edges. The upper strip of binding has the slot formed in it near the outer edge of the blinder for the
purpose of receiving the plate of the metal loop into which the blinder stay of the bridle is to be attached. This plate, after being forced down through the slot and between the two pieces of leather that compose the body of the blinders, is held there, preferably by the rivet which has the ornamental heads, as shown The edges of the blinder may be finished with much less labor than by the old method of stitching, and the blinder is made much stronger, especially at the point where the loop for the blinder stay is attached, and is made more ornamental. Fig. 1 is a side view and Fig. 2 a sectional view of the blinder. This invention has been patented by Mr . Dominick Kaltenbacher, of Shelbyville, Ky.

Prof. S. A. Forbes bas experimented with emulsion of kerosene upon the chinch bugs, says the American Naturalist, with good results. He finds that soap suds (one pound of soap to ten gallons water) mixed with an equal quantity of oil make a good emulsion. These fluids accomplish their work as well when poured on with a sprinkler as when applied forcibly in a spray, and kill the adult bugs as easily as the young.

The Railzoay Gazette says that the tunnel contractors of the Pittsburg Junction Railway near that city are making bricks from the borings form the tunnel, to use them in roofing the completed tunnel. "Two wheels weighing several tons each work and pulverize slate, rock, and earth, and everything the tunnel produces. A stream of water is kept playing on the mass, and as it is pulverized it is forced through a fine sieve and carried to a chamber, where the manufactured clay goes through the regular process, pro ducing a hard, tough brick."

ENGINEERING INVENTIONS

An improved car coupling has been patented by Mr. Abel W. Robinson, of Anna, III. A on its upperedge to support the counling pin and kept in place by guide rods and pushed forward by springs place by guide rode and pusbed forward by springs,
and the swinging apron hinged to the recessed forward and
end of the drawhead and resting against the guide rods.
The coupling pin is held erect, when withdrawn from end or the drawhead and resting againet hne giae rods.
The coupling pis is held erect, when withrawn from
the coupling link, by a bent plate attached to the top of the coupling lin
the drawhead.
A snow plow for removing snow banks from railroad tracks and designed to be attached to the
front end of the locomotive has recently been pateuted. This plow is mounted on wheels and is provided with transverse and vertical cutters, which are driven into
the side of the drift by the engine, and thus cut the bottom and sides of the bank of snow, atter which a large hoe-shaped implement which is connected to the frame of the truck and operates similarly to a trip hammer is let fall and serers the block of sinow, so that when the
locomotive is backed the snow is losened and will be locomotive is hacked the snow is loosened and will be
thrown to the side of the track when the locomotive is thrown to the side of the track when the locomotive is
again driven forward. Mr. Fieding Snedigar, of Elka-
der, Iowa, is the der, Iowa, is the patentee,

mechanical inventions.

Mr. John Schofield, of South River, N. J., has recently patented a signal car intended to run back
from the rear end of a from the rear end of a train to signal another train
which may be following, and thus prevent accident. The signal car is also provided with a device for drawing it back to the r
signaling mission.
Mr. Horace Woodman, of Saco, Me., is the patentee of an ingenious machine for stripping the
top flats of carding machines. By the new machine the top flattof of carding machines. By the new machine the
useof cams in the machinery for stripping the flats of use of cams in the machinery for stripping the flats of
carding machines is entirely done away with, and it is carding machines is entirely done away with, and it is
believed to possess several other advantages over the
ordinary methods of treating fibrous substances before ordinary methods of trea
weaving them into cloth.
weaving them into cloth.
Messrs. J. A. Lesourd and James Lotan, of Portland. Oregon, have recently patented an endless
chain carrier and distributer, etc., mainly designed for conveying and distributing coal; but it is equally appli-
cable for conveying and distributing other materials. cable for conveying and distributing other materials.
It consists in an endesess chain carrier and distributing It consists in an endess chain carrier and distributing
devices connected, whereby a continuous floor surface devices connected, whereby a continuous door surface
and easier running action are obtained for the carrier.
An improved straightway valve has re cently been patented bi Mr. Bartholomew J. Kelly, of
Trov, N. Y. TTis invention relares to strailhtway valves for controling the passage of water, steam, vand
other gases or tliuds in which opposite gates or valve other gases or finias in which opposite gates or valve
disks are nsed, which are capable of being raised or
lowered and of being forced apart against their seats. lowered and of being forced apart against their seats.
By this construction of independent gates the wear is distributed all around the surfaces of contact of the
A machine which is designed to improve the quality of felted hat bodies and lessen the cost of
manufacture has been patented by Mr. C. G. W. Purdy,
 that there is comparatively little loss. Several rollers are mounted upon a vibratory carriage, and a roll of hat bodies is placed in one of the compartments of the car-
riage, each one of which is provided with a roller, and the felt is then rolled back and forth upon the slotted platform by the vibrating movement of the carriage.
Mr. Erastus Hibbard, of South Barre, N. Y., has recently patented a machine for finishing
staves, so that when the barrel or tub is set up and staves, so that when the barrel or tab is set up and
trussed it is reacly to receive the bead without the
俍 ase of the usual hand tools for leveling, chamfering,
and crozing. Further, the object is to give uniform and crozing. Further, the object is to give uniform
depth of croze in barrels having staves of varying depth of croze in barreis having staves of varying
thickness, instead of making the croze too deep in thin thickness, instead of making tone croze too deep in thin
staves and too shallow in thick ones, as is generally the case in hand work. A revolving mandrel carries the staves. The parte are made adjustable and sell--adjusting, according to the thickness of stave.
A very simple machine for cleaning and separating wheat, corn, oats, etc., has recently been
patented by Mr. D. P. Motley. of Rexburg. . a. The wheat passes from a hopper into a sieve which is
shaken laterally, and which is provided with thin strips shaken laterally, and whic is provided with
which rise and fall between the wires of the screen and
serve to seaparate the wheat from other matter, the dust serve to separate the wheat from oh er mater, the dust below, while the worthless material is carried above the grain to the outlet, where it is discharged. The perfect
grain in the mean time has fallen on to a secondary sieve where it is further cleansed by a blast from the tan blower. The seed is then passed into a scouring
fan chamber and a polishing device, which fluishes the separating and cleaning process
A novel steam road vehicle has been patented by Mr. George A. Long, of Northfield, Mass.
This invention consists in a tricycle or similar vehicle, which steam is employed as the propulsive power, the large wheels being used as the drivers and the two the arge wheels beeng ased as
smanl wheels. The power is ap-
pi leddirectly to the pueriphery of the driving wheels, by pl ' ieddirectly to the periphery of the driving wheels, by
means of differential friction wheels, which work interchangeabiy on the periphery, and by this arrangement
the inventor claims that a great amount of work may che inventor claims that a areat amount of work may
be accomplished with a minimum of power. The fuel usedfor generating the steam is preferably gasoline, but other substances may be used. The vehicle is pro-
vided with seats, and the invention seems to provide a very compo
traveling.
An amalgamating apparatus to be used in either wet or dry placer diggings has been patented
by Messrs. William Hawking and Henry R. Hawkine, by Messre. William Hawking and Henry R. Hawkins,
of Oregon, Mo. The amalgamator is provided prefera bly with two flumes which are arranged within the
frame of the machine, and are oscillaied by a crank frame of the machine, and are oscillated by a crankz
and rack and pinion movement. The flumes are fur-
nished with a series of tronghs, supplied with the mercury for gathering the gold. These pans are furnished nercury from anges with projectione, which prevent the ciprocalory motiong of the flumes. A blower is provided, which, in case the machine is to be used as a dry amal-
gamator, blows all quicksand and other light matter kamator, blows all quicksand and other light matter
out of the mercury pans, and keeps them clear and unout of the mercury pans, and keeps them clear and un-
obstructed; and in the wet amalgamator the blast of air serves to agitate the wulp amalgamator the blast of air
saway all light refuse matte
in the pans.

agricultural inventions.

Mr. Rufus R. Tugwell, of Brownsville, Tenn., has recently patented an improvement in hand Dower cottion presses which is both simple in consiruc-
ione easily operated by one or two persons, and withal cheaply made. The principal parts of the machine are
of wood, and the press may be constructed by a of wood, and the press may be constructed by a car-
penter or by one even quite unpracticed in the use of

Judging from the drawings and description in a patent recently issued to Messrs. G. J. Con-
tancin, J. M. Scott, and J. Stumpff, of Blue Mound, Inl., for a corn stalk cutter, we should imagine that they have a machine which will prove valuable to all
corn growers, and specilll in the West, where such im. corn growers, and specially in the West, where such im.
mense fields are planted. This machine cuts the stalks while standing in in the fede. Thiso machine cuts the the stalks that it will not interfere with the subsequent cultivation of the
nond, and is so arranged as to cut two rows of stalks at a time.
An improved cotton chopper and scraper has recently been patented by Mr. William R. Russell, of Big valey, Tex. The plows are so arranged that
te eround will be scraped upon each side of the row of plants. A stock is provided for enabling the rider
ot raise the plows from work when not reguired, and to raise the plows from work when not required, and
holding them above the groand in turning corners, etc. holding them above the groand in turning corners, etc.
The choppers are mounted upon a longitudinal shaft, which is rotated by the hind axyle of the machine. The
machine is very simple in its constraction and operamachin
tion.
A cotton chopper has recently been patentA which embraces some improvements over those here-
tofore in use. The machine consists in a chopping wheel which has two or more wide radial slots, so that when the machine is passed over the piants the latter
will he left standing at certain equidistant intervel while the plants between will be crushed by the roller Side rollers are likewise provided for crushing the straggling stalks, and plows are arranged at the rear of
thege to throw ap the soil around the standing cotton these to throw ap the soil around the standing cotton
plants. The inventor is Mr. Richard R. Pace, of Lineville, Ala.
A light, cheap, and simple steam plow, in which rotating screw-shaped pulverizing blades are
used, has recently been patented by Mr. G. W. Ross, of Bluffiale, Ill. The front and rear pulverizers are
ored , driven from a shaft which carries the driving whells of
the machine at a greater velocity than is due to their the machine at a greater velocity thanis due to their as not to interfere with the use of the engive for thrashing or general purposes, when not required for
plowing. By setting the points of the blades of the plowing. By seting the points of the blades of the
pulverizers at a slightly acute angle of rotation, they will be kept sharp by friction with the ground.
An improved harrow has recently been patented by Mr. John C. McDorman, of Giibert's Mills, tented by Mr. Join C. McDorman, on che tho triangn-
o. This invention consists in connecting two lar harrows with a central draught beam, and the spe-
cial advantage of this arrangement is that when a cial advantage of this arrangement is that when a
stump, stone, or other obstacle is encountered, the side stump, stone, or other obstacle is encountered, the siae
of the harrow nearest the obstruction may readily be raised for avoiding the same, and further, when the harrow is to be transferred from one pace to another,
the central beam may be raised and retained in its the central beam may be raised and retained in its
raised position by passing a beam through the bars of rised positio ey passing a beam through the bars of
the sto side sectios, so that the harrow may be dragged like a sld
wilu the ground.

miscellaneous inventions.

Mr. Henry E. Finuey, of Las Vegas, New Mexico, has recently obtained a patent on a catheter
which is claimed to possess several important advan-

Mr. W. S. Foster, of Richford, Vt., has recently patented an improvement in a double pull for gong bells, for use in situations where the connections extend in opposite directions or at right angles to each
other, so that the same bell may be rung from separate

A baggage check has recently been patent
ed by Mr. J. A. Thompson, of Monticello, N. Y.,
which is made in two parts hinged together at one end, while the strap passes through in the ordinary way. By reversing the sides at the end of a journey,
check is ready to be used for the return trip.
A burial casket has recently been patente which is constructed in sections,so that it may be readily
taken to pieces for transportation or for packing awa in small compass. Messrs. G. W. Comee and Samuel s. Comee, of Waseca, Minn., are the inventors of the knock down " burial case.
Mr. Walter T. Armstrong, of Andes, N. Y., has obtained a patent for a machine for tinners' use for
potching or cutting sheet metal in the manufacture of tin or orpper vessels, cans, etc., in which the sheet has
to be notched or forming the corners of the article tin be coptch
properly.

An improved rake for use on lawns has been patented by Mr. James r. Benton, of Oswego
N. \mathbf{Y}. The rake proper is carried by a frame which ie mounted on rollers, so that it gathers up leaves and other refuse without injury to the sod. The box is mad
Mr. Jacob Rhoads, of Watsontown, Pa.,

The lip is of the shape of the lip on theordinary measuring vessel, and it is attached to the can or botte by an made to stretch over the top of an open vessel, for preventing the spilling of liquids in pouring.
Letters patent have recently been granted Por an improvement in the shitting rails for wagons. This
device is constructed in such a way that it may be tached to seats of different size, furnishing said seat with a comfortable back, and with devices to which
may be attached a standing top when desired. The pamay be attached a standing top when desired. The pa
tentee is Mr. Andrew F . Shuler, of Arcanum, \mathbf{o}.
An improvement in die and die block for forge hammers has recenily been patented by Mr. J.
B. Baker, of Westville, \mathbf{O}., which consists of a locking B. Baker, of Westrille, o., which consistst of a locking
device for holding the stock in the die while being device for holding the stock in the die while being
forged, and a shifting contrivance of the die block for moving the stock under the hammer, and for widening or plating out the stock.
An oil burner for lamps where the oil is supplied from a reservoir and intended to secure eafety
has recently been patented by Mr. J. J. Miller, of Chicago, Ill. By tuis invenid a condous and uniform supply of oil to the burner is secured, the same being
heated to a suitable degree for combustion by the burner through deflectors.
An improved nut lock has recently been patented for securing fish plates to railroad rails. The manner of locking the nut securely so ss to pin the from becoming loose by the jarring of the rail. The inventors are Messrs.
Greenhalgh, of Blackstone, Mass.
Mr. Samuel E. Nutting, of Iron Ridge, Wir., is the patentee of an improved seal lock which is So constructed that the locking bolt may secure the door
of the car. A thin metal strip or wire paseses throug slots in the hasp and through the locking bolt, and the hollow cslinder holding them all securely in place. The
ordinary seal with the name of the station or other deordinary seal with the name of the station or other d
Mr. Alonzo Chappel, of Brooklyn, N. Y. has patented an instrument which he has named a
"linearscope," which is used for obtaining the correct outline of objects and forms within the space of an intended piccure, thereby avoiding the nncertainty of strument will be tand of great corvenience for artist and amateur draughtsmen.
A very simple and practical glue heater has been patented by Mr. W. C. Weatherly, of Grand
Rapids, Mich. The invention consists of a elue heate Rapids, Mich. To invention consists of a alie heater
or pot adapted to be used with a heating chamber and made adjustable apon it, so that the temperature of the ept may be reaguated, with great accuracy, by ining chamber.
Mr. Watson F. Hammond, of Mashpee, Mass., has obtained a patent for an improved machine
or screening cranberries. This machine consists of a hopper into which the berries are to be placed, suitable valves for regulating the discharge from the hopper, a screen for separating the perfect from the imper-
fect cranberries, and a delivery poout for discharging them into boses or barrels preparatory to shipping them

A practical device for turning wrist pins has recently been patented by Mr. Franciis M. Hazle-
ton, of Red Bluff, Cal. The invention consists in bearing blocks or boxes fitted with cutuers, which blocks then revolved, and thus, by the internal cutters, will wrue the journal in the exact position in which it has to ran, the journal being revolved in the cutter box the A simple device for gauging weather or clap boards has been patented by Mr. J. C. McEwen, dicchloosa, Fla. The device may be readily set for readily adjustable for boards of different widtbs. This mplement may be provided with hooks upon which
may be hung the various tools nsed by the workmen, may be hung the various tools nsed by the workmen
which will thereby be always readily at hand conveni ent for nee.
A simple device for ascertaining and verifying the inclination of ditches, etc., has been recently pairit level is monted upon a stock which is supported by stakes driven in the ground. The angle is obtained by sighting with the stock, and the degreeof inclination sidicated by the spirit level. When this has been as certained, the stock may be laic on the bottom of the ditch, to gange the inclination of the later.
Mr. H. C. Richards, of Cincinnati, Ohio, has patented an improved stringing bar for pianos and tallic fastenings at both ends of the strings as well as connects them by certain devices which allow them to be tuned with greater facility than in the ordinary
way, and doing away with all wooden support, and ie way, and doing away with all wooden support, and ie
consequently much less affected by atmospheric consequen
changes.
An improved leveling instrument which combines the elements of simplicity and accuracy, and which at he same eime is quite inexpensive, hides been
patented by Mr. Jefferson A. Mc Curry, of Whitesville,
 cheap instrument useful for "laying out" terraces, ditches, etc., but at the same time it is capable of per-

Mr. Foree Bain, of Minneapolis. Minn., has ecently patented an improved dynamo electric $\mathrm{ma}-$ rmature cores, the object being to prevent residua nagnetism and to obtain the maximum of saturation of he armature and its quick discharge. In this invention virreus surface coat, and having outwardly extending between them.

To protect the sole of shoes from wear, Mr. S. M. Sireet, of Dalton, Ga., has patented the fol the inventor places screws at short iutervals, leaving the heads of the screws projecting from the surtace of the leather; across the sole of the shoe he passes a wir back and forth around the heads of the screws, forming When completed a web of wire across the entire bottom of the shoe, protecting the leather and rendering the
A patent has recently been issued to Mr. W. H. Woifrath, of New York city, for an improvement on assh fastener granted to the eame inventor on March 8 , 1882. The present invention consists of an ingenions arthe sash lift, the eash becomes automatically unlocked connecting rod between the window lift and fastene as the pressure on the sash lift is removed, the window ocked again.
Some improvements in the process of milling glour by feeding the grain between rollers has re
cently beend devised. Mr. Oscar W. Tresselt, of Fort Wayne, Ind., is the patentee of certain improvements in the arrangement and adjustment of the rollers, wherebygrain may be ground to any degree of flineness
desired. Provision is alon desired. Provision is also made for allowing the rollers separate and allow stones, or any substance too
hard to be crushed, to pass between the rollers withou njury to the latter.
An apparatus for sampling ore, concentrates, tailingg, placer gravel, or other minerals for ascertaining their value has been patented by Mr. George
S. Andru, of Columbia, Colo. A series of chutes arearS. Andrus, of Columbia, Colo. A series of chates arear-
ranged within a case bencath the pulverizer, and so arranged within a case bencath the pulverizer. and so ar-
anged one above the other that half of the material will pass to the inside of the case and thence to the hopper, and the remainder drops into the second row
of distributers, and so on, until the lower chutes are reacied.
Mr. J. Edwin Giles, of Hazleton, Pa., has obtained a patent for an improved dynamo electric ma-
chine. In machines as heretofore constructed a large ncrease or decrease in the strength of the current is necessary before there is any action of the regulating mechanism, while by this improvement the mechanism acts automatically and maintains the current at its normal strengtb. The inventor locales the commutator
entirely or partly within the core, thus economizing entirely or partly within the core, thus economizing
space, and permitting a core of greater length and hence of greater strength being nsed.
Mi. Oliver Pelkey, of Arnot, Pa., is the patentee of an improved brake for sleds. The fore part of the sled is provided with a horizontal tongue-
roller furnished with pivots which slide in horizontal slots, so that when the sled is on an incline and slides slots, so that when the sled is on an incline and slides
ahead of its own gravity it overruns the pivots on the tongue-roller, and the brakes are thereby automatically set; the metal nose on the lever extending from the brake impinges in the ice. The action is very simple,
and the brake is as applicable to a pair of tandem bob add the brase is as a
The ordinary charcoal furnaces used by plumbers are among the most dangerous articles used
bout houses. They have been the cause of a great many disastrous flres. To obviate the dangers attendant pon the usual plumber's furnace, Mr. Leopold Bowsky, which greater security against fire is insured, while its which greater security against ire is insured, while its
construction warrants a quicker heat and better combustion. The inventor claims that his furnace may be set upon the finest rug or carpets while in use without oing them injury.
A boiler hoe intended to scrape a large surace of a boiler lat once is the subject of letters pa-
ent recently issued to Mr. James Preston, of New York city. The hoe consists of two wings pivoted to a block attached to a rod, whereby the wings can be passed oread ont wher with the hand hole while folded and by drawing the blocks toward each other and locking hem in position by a nut, thus forming an effective Among the recent improvements in dumpg scows is the patent of Messrs. John Smith and John P. Rhodes, of Rockville Center, N. Y. The body of he scow is made in two halves which are hinged togetherat the upper edges, the receptacle for the garbage
having inclined sides, so that when the two sections are nnlocked the weight of the load will press the two sides pen and discharge it into the water. A locking device also provided for holding the sections apart while the load is being discharged, and when this is accomplished the buoyancy of the sections will bring them

Mr. Mason L. Cope, of Denton, Texas, is the patentee of an improved gate so constructed that it may be opened without the necessity of the driver descending from the carriage. The gate is mounted at
the middle on a vertical post pivoted at top and bottom in suitable bearings, which enables the gate to swing open and shut on its vertical axis. One of the bars of the gate is made to serve for the latch by being fitted to rise and fall, and being connected with persons riding in carriages for opening and closing the gaie withont the necessity of dismounting.
A cheap paint for roofs and like purposes consists of Venetian red mixed with petroleum tar,
cod oil, lime water, resin oil. pulverized copper, ground alum, glue, and Chinia clay. These ingredients form a mixture which it is claimed will last well and resist the action of heat, and protect buildings from burning embers. Mr. A. G. Peuchen, of Toronto, Canada, is the patentee. The same inventor has also obtained a patent,
of same date, on another paint composition consisting of of same date, on another paint composition consisting of oiled linseed oil mixed with silicate of soda, naphtha mized with alum, a potash solution, raw linseed oil and resin, and cod a hard finish, easy to work, and not liable to crack or

The Charge for Insertion under this head is one Dollar a line for each insertion : about eiglt words to a line Advertisements must be received at publication offce
Hollar's Safe and Lock Co., York, Pa., manufacturers of improved Fire and Burglar-proof Safes, Bank and
SafeDeposit Vaults and Locks. See adv. . 61: $22^{\prime \prime}$ Lathes of the best design. Calvin Carr's
For Sale.-Engine Lathes. One $16^{\prime \prime} \times 6^{\prime}$ Blaisdell, new; also one each, $8^{\prime}, 10^{\prime}$, and $14^{\prime} \times 21^{\prime \prime}$, Steptoe make new; Also one each, $8^{\prime}, 11^{\prime}$, and $14^{\prime} \times 21^{\prime \prime}$, Steptoe make,
new. Each lathe complete. Jno. Steptoe \& Co., 214 W . St., Cincinnati,
Drop Forgings. Billings \& Spencer Co. See adv., p. 45. Wanted.-A good draughtsman and pattern-maker for oodern engines. Adolph Leitelt, Grand Rapids, Mich Equatorial Silvered Glass Telescopes, $5 \not \chi^{\prime \prime}$ aperture
 ture, ${ }^{\text {®2775. }} \mathbf{~ E y}$
Unfailing water power, buildings, and planing mill
plant. Best point for manufacturing and shipping. Very plant. Best point for manufacturin
cheap. J. F. Palmer, Auburn, N. Y
The Ide Automatic Engine, A. L. Ide, Springfield, Ill Steam Pumps. See adv. Smith, Vaile \& Co., p. 30. Contracts taken to manuf. small goods in sheet o cast brass, steel. or iron. Estimates given on receept of
model. H. C. Goodrich, 66 to 72 Ogden Place, Chicago.
Brush Electric Arc Lights Strac Batteries. Twenty thousand Arc Lights already sold. Our largest machine gives 65 Arc Lights with 35 horse power. Our
Storage Battery is the only practical one in the market. Brush Electric Co., Cleveland, O
Engines, 10 to 50 horse power, complete, with govern ight hundred in use. For circular address Heald $\&$ Morris (Drawer 127), Baldwinsville, N. ₹.
Best Squaring Shears, Tinuers', and Canners' Tools Lathes 14 in . swing, with and without back gears and Th. J. Birkenhead, Mansfield, Mas
The Best.--The Dueber Watch Case
If an invention has not been patented in the Unted States for more than one year, it may still be patented in Canada. Cost for Canadian patent, ${ }^{840 \text {. Various other }}$
foreign patents mayalso be obtained. For instructions address Munn \& Co., Scientipic ambrican Patent Agency, 261 Broadway, New York.
Farley's Directories of the Metal Workers, Hardware
Trade, and Mines of the United States. Price $\$ 3.00$ ach. Farleg, Paul \& Bat 530 arten Street, Phila. Guild \& Garrison's Steam Pump Works, Brooklyn, N. Y. Steam Pumping
tion. Send for catalogue.

Nickel Plating.-Sole manufaciurers cast nickel anlete outft tor plating etc. Hanson \& Van Winkle Newark, N. J., and 92 and 94 Liberty St., New York.
 wanted. Forsaith\& Co., Manchester, N. H., \& N. Y. city "Abbe" Bolt Forging Machines and "Palmer" Power

Railway and Machine Shop Equipment

Send for Monthly Machinery List
o the George Place Machinery Cosp
121 Chambers and 103 Reade Streets, New York.
"How to Keep Boilers Clean." Book sent free by w York.
and introduce. Gaynor \& Fitzgerald, New Haven. Conn. Water purifed for all purposes, from household sup-
lies to those of largest cities, by the improved filters piles to those of largest cities, by the improved filters erce St.. Newark, N. J.
Latest Improved Diamond Drills. Send for circular to M. C. Bullock Mifg. Co., 80 to 88 Market St., Chicago, IJ . Ice Making Machines and Machines for Cooling
Breweries, etc. Pictet Artilicial lice co. (Limaited), 142 Greenwich Street. P. O. Box 3033, New York city.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. Machinery for Light Manufacturing, on hand and Split Pulleys at low prices, and of same strength ani appearance as Whole Pulleys. Focom \& Son's Shafting Supplement Catalogue.--Persons in pursuit of information on nny special engineering. mechanical, or scien-
tific subject, can have catalogue of contents of the Sctontific amicican supplicment sent to them free. The SUPi cal science. Address Munn \& Co . Publishers, New York The Sweetland Chuck. See illus. adv., p. 46.
Improved Skinner Portable Engines. Erie, Pa Catalogues free-Scientific Books, 100 pages; ElectriAm Twist Drill Co Meredith N H make Pat Nhuck Am. Twist Drill Co., Meredith, N. H., make Pat. Chuck American Fruit Drier. Free Pamphlet. See ad.. p. 62. Brass \& Copper in sheets, wire \& blanks. See ad.p. 60. The Chester Steel Castings Co., office 407 Library St., Philadelphia, Pa.. can prove by 20,000 Crank Shafts and castings over all others. Circular and price list free. Diamond Tools. J. Dickinson. 64 Nassau St., N. Y. The Improved Hydraulic Jacks. Punches, and Tub Gear Wheeis for Models (list free); Experimenta Work, etc. D. Gilbert \& Son, 122 Chester St., Phila.. Pa. Tight and Slack Barrel Machinery a specialty. John
reenwood \& Co., Rochester, N. Y. See illus. adv. p. 61. Our goods rank first for quality, safety, and durabili-
ty. I'ease compare them with any other make, and is not found better and cheaper, quality considered, we will bear the expenses of the trial. Lehigh Valley
Emery Wheel Co., Lehiguton. Pa. Cuiters for Teeth of Gear Whee
machinery. The Pratt \& Whitney Co. Hartford. Conn.
C. B. Rogers \& Co.., Norwich, Conn.. Wood Working 20,000 Duc Spherical Elevator Buckets, sizes 31/2 to 17 F. Rowland, sole manufacturer, Brooklyn, N. Y. Straight Line Engine Co., Syracuse, N. Y. See p. 61 First Class Engine Lathes, 20 inch swing, 8 foot bed,
ow ready. F.C.\& A.E. Rowland, New Haven, Conn.

NEW BOORS AND PUBLICATIONS

Psyche, a Journal of Entomology. Published by the Cambridge Entomological
This periodical is in the tenth year of its publicaton. The editor and his associates are entomologist standing, four of them being appointed by State United States Department of Agriculture. The object the periodical is to give valuble informarion useful agriculturists on the habits and lives of insects in urious to vegetation. The indices to each number form a synopsis of entomological literature for the period and scope they cover.
Das Elektrische Licht (Electric Light)
By Dr. Mlfred von Urbanitzky. Wien Pest, Leipzig, 1883. 218 pages.
In this work the author gives a description of the va rious kinds of electric lamps, the theory of the incan descent lamp, the theory of the arc lamp, the tempera are, and the strength of the light. He then describes various means of subdividing the current, the loss of
the current caused by the subdivision, etc. Then follow the lamps and carbons. He divides the incan descent lamps into two classes, those having imperfe conductibility, such as the lamps of Edison, Maxim Swan, etc., and into incandescent lamps with imper fect contact, for instance, such lamps as the Reynier, Werdermann, Hauck, etc. He describes the different systems of arc lamps, the varions kinds of carbons, the method of manufacturing the carbons, and finally describes the lamps having inclined carbons. This nical Library

HIN'S 'IO CORRESPONDENTS.
No attention will be paid to communcations unles accompanied with the full name and address of th Names and addre
We renew our request that correspondents, in referrin to former answers or articles, will be kind enough to of the question.
Correspondents whose inquiries do not appear after

ished, they may conc

Persons desiring special information which is purely hould remit from $\$ 1$ to $\$ 5$, according to the subject as we cannol be expected to spend time and labor to obtain such information without remuneration. Any numbers of the Scientific Ambrican Sopplem-
ment referred to in these columns may be had at the office. Price in cents each.
por examination, shald minerals, etc. label their specimens 80 as to avoid error in their identi fication.
(1) J. H. P. asks for the French formula of making a hektograph, which for several reasons, we
understand, is superior to any other in use. A. The composition is:
Good ordina

Good ordinary glue 100 parts.
Glycerine..... $\ldots . .$.
Barine ertplage finely powdered. 500 ". (Or the same amount of kaolin.)
(2) E. S. R. writes: I have about 4 dwt . of (2) E. S. R. ase to precipitate it so I can prepare it for electroplat-
ing A. Evaporate to crystallization and dissolve th resulting chloride of gold in water. It may then be ased for plating. Iron sulphate will precipitate the
(3) L. T. S., of Launceston, Tasmania, pro poses freezing out yellow fever and similar diseases by frigerator hy means of ice. This would not be practicable except in a building specially constructed for th
(4) A. writes: 1. I have tro cisterns; the water is full of little mites or lice; sometimes they are almost invisible, then they get larger till they show very plain; but what finally becomes of them or where they
comefrom I do not know. What are they,and what will destroy or keep them out? A. The larvæof mosquitoes, fies, and other insects infest cisterns that are open to the air or dirty. Cleanliness and closing the top with a stone or earth will generally keep the water free from ous? I have supposed that if insulated it neither at racts nor repels, and if not insulated it must transmit a portion of the charge, according to capacity; if the round sufficient, the entire charge A Lightning ods are dangerous to persons near them in thunder storms. They are liable to be overcharged. 3. You always say "solder" all connections. Now, isn't there some mistake: Is not solder a poorer conductor than ron, and would not the simple contact of the two ends be better than to ill between with solderf Or if the conductor is flat, say $1 / 2 \times 1 / 2$ inches, would it not make A. Solder, because it is very sure the ends together connection. Riveting with copper rivets is also good but shonld be well done with two or three rivets.

COMMUNICATIONS RECEIVED.

On Repairing Old Pictures. By W. D. A.
On the Eclipse Expedition. By A. F. G. On Centrifugal Strain in Revolving Cylinders. By s. W.

INDEX OF INVENTIONS
For which Letters Patent of the United
July 17, 1883,
AND EACH BEARING THAT DATE. [See note at end of list about copies of these patents.]

Amalgamating apparatus, Huntington \& Koch.
Animal shears, H. c. Chiles.
Animal trap, J. H. Cook.
Antiseptic, C. M. Pielstick
Armept, C. M. Butler...
Arm rost, w. .
Automatic register, Trot
Axle lubricator, car, M Ma McEMVain

Axle, vehicle, A. E. Bag. See Hand bag.

Smith..........
Baling and packing aw
Bull. See Base ball.

Bar. See Chain bar.

 Barrel, knockdown fruvit. C. E. E. Bartram.
Barrel or bin, tilting. A. M. Herman.
Barrel or bin, tilting. A.
Base ball, S. D. Castle
Bath tab, folding or cabinet, Fickett \& Reid.
Beehive, J. H. French.
Bicycle. J. B. Girard
Bit. See Router bit
Bits, extension shank for, \mathbf{C}. Scoch....... 281,48
Boat. See Life-boat.
Biiler. See Steam motor boiler.
Bolt. See Piow bolt.
Book back, F. Bowman
Boot and shoe lasting machine.........................
Boot or shoe lasting jack or holder, Z. T. French.
oots or shoes, machine for cutting pegs from
N. S. Wakefleld.....................................
Botte stopping device. G. s. Norris...........
Bottles, lamps, etc., apparatus for filling, c. C.
ox. See Paper box. Toy money boz

Bracelet, w. Holden.
Bracelet, A. Keller.
Bracelet, A. Keller....................................
Bran, etc., metnod of and device for preparing
and packing, W. A. Morrison
Brane bind, I. W. Hall.............
Buffing machine, G. w. Emerson.
Burner
Burner. See Vapor burner
Burial casket catch, W. C. Langenau
Button, E. Wuertel
Button or stud, C. II. Niggeman
Button or stud, T. A. Searle
Buttom, metamic eye for, H. C. Luther
Can, I. Richardson
Can, I. Richardson.................
Can and jacket, carrying, C. Kivitts.
Caroe, J. S. S. Stephe, R. Bristol.....
Car coupling, c. C. Eber......
Car coupling, I. N. Hopt..
Car coupling, A. C. Long
Car door fastener. S. L. Denney..............
Car. sleeping, J. A. Selicher............
Carbureting apparatus, C. A. Paquelin (r).
Carriage top props, locking the nuts of
Carriage top props, locking the nuts of, G.
Crandal..
Carriages, canopy holder for children's, A.
Snell...........
Snell
Castridge reloading tool, T. L. Logan
Cee Lock case. Telescopic case. Writing
Caster for roller skates and furniture, \mathbf{O}. E. Wait 281,324
Caster. spring. Roberts \& Stevens.................... 281,299
Casting car wheels, W. Wimington 281,42
Celting. Arepront. P. J. L. De Rache......... 281.467
Cetling. Areqroof. P. J. L. De Rache............
Celluloid, etc., process of and apparatus for lin-
Chain bar, F. E. Sturdy.
hair. See Corn husking chair. Oscillating chai
Chair, J. T. C. Cove..
handelier extension fixture R A Wooding
Chart holder, D. Yarian......................
Chenile fringe, J. Loeb ...
Chopper. Sep, Rosensta
Chopper. See Cotton stalk chopper.
Cigarette machine. H. F. Casgrain.
Circuit closer, C. Bartlett...........
Circuit closer, C. Bartlett.
Cleaner. See Fruit cleaner.
Clocks, second-hand attachment for, F

Clod crusher, O. A. Satrang.......
Clothes line hook, J. B. Garfild..
Clothes wringer and mangle. C.
Clutch, friction, H. C. Crowell
Coat spring, M. C. Stone....
Coftee boiler lip, G. W. Knapp
Coffee boiler lip, G. W.
Coffee pot, T. Keys.
Corn and bunion shield, J. J. Georges
corn from the cob, machine for cutting green,
D. Warfeld.....................

Cornice and cornice pole, combined, J. w. W. Camp
bell................
Corset fabric. J. G. Kienzle.
Cotton conveyor, A. D. Thomas
Counter rail or armerest bracket, E. F. Seidel.
Coupling. See Car coupling. Shaft coupli
Thill coupling.
Cow tail holder. I. C. Mayo............
Crusher. See Clod crusher.
Cultivator, S. L. Allen.....
Cultivator, cotton, H. B. Fr
Cut-otrvalve gear, Hallock \& Spauldin
281,259
281,12
281,12

Cut-off valve gear, Spaulding \& Hallock....281,313, 281,315
Sel
Seat cutter. Stulk cutter. Welt cutter.
Dash frames, die for making. G. M. Peters......

Desk, M. J. Hafgar....
Desk, vertically adjustable, H. W. Grobl...
Dlal, sun, N. Larsen. Dlal, sun, N. Larsen..
Dish washing machine, e................
Disinfectant, Kingzett \& Zingler.
Disinfectant, Kingzett \& Zingler.
Door check, Hazen \& Van Gorder
Door check, G. G. \& R. Mat
Door hanger, E. Mack.....
Door hanger, H. T. Moody...........
Door hanger, parlor, s. Shremer, Jr
Door, sliding. A. P. Beard
Draught equalizer, J. W. Helme....
Drill. See Grain drill. Seed dril.
Easel, E. IVerner................
Ekgs, preserving, F. J. Praddex
281.553
281,639

Ekgs, preserving, F. J. Praddex 281,591
Electric light circuits, safety catch
Electric lights, ... 281.576
Electric machine, dynamo, . Thomson 21, 281,46
Electric machine, dynamo or manneto. T. A. Edi-
Electric machine, dynamo or magneto. T. A. Edi-
son..363
Electric machine regulator, dynamo, T. A. Edi-
son.. 281,349,363
Electric \&witch, D. P. Heap.
Electrical generator, T. A. Edison............... 281,351
Electricar. See Grain elevator.
Elevator. Ser
Elevator safety device, C. C. Palmer.............. 281,550
281,231
Embroidering machine, J. Becker.................... 281,231
Engine. See Pumping engine.
ngraving machine, R. Friebe
Engraving machine, J. Hope.............................. 281,48409
Engraving machine, pantograph, J. Hope........ 281.510
Evaporating pan, N. Sanders,\ldots.
Excavating machine, hydraulic, \mathbf{R}. Stone......... 2815
281,15

Fan and custer supporter, combined table, J. ${ }^{281,501}$
Hugo.
Rose.... 281.301
Fare register and recorder. R. . . Rose

Felt articles. mousd for making, s. G. Alexander. 2181,329
Ferrute for canes, etc., C. Degenhart.......... 21.245
Ferrule for canes, etc., C. Degenhart
Fertilizer distributer, W. ©. Stick....
Fertilizer distributer, W. ©. St
Fifth wheel, w. C. Shipherd ..
Fifth wheel, W. C. Shipherd...
File handle, J. F. French
File, paper, C. A. Davis.
Filter, W. M. Blackiner.
Filtering apparatus for
D. T. Gray...................

Fire escape, S. H. Bing
Fire escape, E. Gerot.
Fire escape, w. Nack.
Fire escape, w. Nack..
Fire escape, H. Redden
Fire escape, H. Redden..........
Fire escape ladder, w. T. Covert
Flues, tool

Folding machine, L. C. Crowell 281,619
Folding table, V. A. Menuez281,281, 281,282
Frame. See Quilting frame.
Fruit cleaner, J. F. Hudson.......................... 281,512
Fruit pitter, N. B. Hicks..............................
Fruit stoner, I. F. Betts.......... 281,234
Fruit stoner, I. F. Betts.....
Furnace. See Hot
Furnace. See Hot air furnace.
Galvanic battery, Gilbert \& Starr
Game, target and ring, A. Evans.....
Gas lighter, electric, C. H. Crockett
Gas lighter, electric, C. H. Crockett

Gate. A. J. Sweeney...................
Generator. See Electrical generator.
Geodometer, S. Dewell.....
Glass shade. W. H. Brunt..
eware mould, W. II. Brunt
Gleaner and binder, M. G. Hubbard. $\begin{array}{r}281,1610 \\ 281,367 \\ \hline\end{array}$
Glove, etc., fastener, E. J. Kraetzer.... 281.376
Glove lacing, A. .. Mather................. 281,541
Grain binders, feeding and packing mechanism
for, J. R. Severance.............................
Grain binding machine. G. Esterly.....................
Grain drill and corn planter. combined, J. L. Reed
Grain
Grain, drying. F. Schumacher.......
Grain elevator, N. G. Smpands....
Grain separator, N. G. M.
Grate, G. B. Mershon....
Guard. See Miter wheel guard. Mosquito guard.
Saw guard.
Saw guard.
Gun, magazine,

Hand bag or satchel, T. A. Freeman...........................1,48
Handle. See File handle. Saw handle. Tool
hana.
Hanger. See Door hanger. Shafting hanger.
Harvester, G. G. Hunt

Hat curling machine, e. Tweedy....
Hat manufaeturer's lap machine, G. w. Alexan281,321
281,226

Hatcinways, automatic door for elevator, M. F | 281,682 |
| :--- |
| 281,552 |

Hay knife, G. H. Perkins.......................
A. \& C. I. Williams...........................

Hides, tawing, C. P. Smallididge, Sr....... 281,411
Hinge, spring, w. H. Willams.............
Hinge, table, J. C. Vetter.... 281.3
Hoes. manufacture of, Bowater \& York......... 281,441
Hoisting and conveying machine, A. E. Brown... 281,44
Hoisting apparatus, H. B. Larzelere........... 281,528
Hoisting apparatus, h. B. Ler. Cow tail holder. Pen
Holder. See Chart holder.
and pencil holder. Pocketbook holder. Sash
holder.
Honk. See Clothes line hook.
Hop house drying floor, O. M. Knox................ 281,273
Hot air furnace, H. J. Peistring 281,551

Indicator. See Railway time indicator. Station
indicator.
Injector, \mathbf{W}. T. Messinger.
.................. 281.3889

RUTGERS COLLEGE
 SLOAN PRIZES FOR BEST (CLASSICAL ($\$ 100 \mathrm{CASH}$); 2 d , $\mathbf{\$ 3 5 0}$ ($\mathbf{\$ 5 0} \mathbf{C A S H}$). Additional Endowments. New Library Fund. Sevenieen Protessors, No 'Iutorsi Classical course

SCIENTIFIC DEPARTMENT The New Jersey State College to Promote Agriculture and the Mechanic Arts,
 gineoring and surk with constant fielid-practice in En Chemistry, with full apparatus for each studern.
wellequipped Astronomit Observatory, for students
use use. Full course in Draughting. CREASED FACLLITIES FOR THE STUDY
OF FRENCH AND GERMAN, WITH A VIEW 'IO PIIACTICAL، USE.

 MERRILL. EDWARDS GATES, Ph.D., LL.D., President.

「O LOASASE-Water Front, Mile diate anas hair in extent docked and ready for inme

 BIBB'S

$\$ 72$ AFFFK, \&il a day at home easily made Costly MALLEABLE ${ }^{\text {ANO F FNE GRAY IRONALSO STEL }}$

OPIUM

RUPTURE

MANHOOD

A Book for Every Man!
Young, Middle-Aged, and Old. The untola miseries that result from fndiseretion in

THE GREATEST OPEN CIRCUIT BATTERY IN THE WORLD.

BFRGGMANIN de OO.
Electrical Works, 292 to 298 Avenue B cor. 17 th St. New York

ERICSSON'S New Caloric Pumping Engine,
Dwellings \& Conntry Seats
 Delamater Iron Works
C. H. Delamater $\&$ Co

UNTVERSAT

 10 Barclay St., N. Y. City.

Claris's Noiseless Rubber Wheels.
Absolutely prevent spintering and wearring
of tloors caused by

BLAKE'S CHALLENGE" ROCK BREAKER.

F For Mncadam Road making, Ballasting of Railyonds For Mncnlan Rond making, Bal asting of Railroads. Crushing Ores, use of Irou Furnaces,
 BLAKE CRUSHER CO., Sole Makers, New IIaven, Conn.

IRON REVOLVERS, PERFECTLY BALANCED, P. H. \& F. M. ROOTS, Manufacturers, S. S. TOWNSEND, Gen. Agt,,22Cortlandst., QDey St.,
 =END FOR PRICED CATALOGUE.

CORNELL UNIVERSITY.
MECHANICAL ENGINEERINC, ELECTRICAL ENGINEERING, CIVIL ENGINEERINC, AND ARCHITECTURE. ENTRANCE EXAMINATIONS BEGIN AT 9 For the UNVVERSITY REGIST ER, containing full statemenss regarang requirements for admission. courses of
tudy degres. honors, expenes. free scholarships,
tetc., and for special information, apply to The President of Cornell University, Ithaca, n.y.

SPEAKING TELEPHONES. THE ABLEIRICAN BBLLL TELEPIIOVE COMPANY,
W. H. Foibes, W. R. DRIVER, THEO N. VAIL, Alexander Grabam Bell's patent of March 7 , 1876 , Alexander Grabam , iell's patent of March 7, 1876,
owned by this company, coversevery form of appara us,
including Microphones or Carbon Telephones, in which ncluding Microphones or Carbon Telephones, in which
the voice of tho speaker cause electrie und ations
corresponding to the words spoken, and which articu

 This company also owns and controls all, the other
 can be procured directly or through the aunorized
agents ot the com
All telephones otanind except from this company its authorized licensees. are infringements. and the
makers.
Inflerss and users
will be proceeded against. Information furnished upon applicat
Address all communications to the AMERICANBELL TELLPHONE COMIPANY,

charetispmerts.
Inside Page, each insertion - - - $\mathbf{8} 5$ cents a line
Back Paze, each insertion - $\mathbf{\$ 1 . 0 0}$ a line. Engravings may head advertisements at the same rate
per line, by measurement as she litter per line, by measurement, as the letter press. Adver
tisements must be received at publication office as early tisements must be recived at publication office
as Thursday morning to appear in next issue.

++
 BORLAND'S PATPNT INJECTOR COD, Limited, COLUMBIA BICYCLES AND TRICYCLES.
 s97 Washington St., Boston, Mas.
Seventh Annual Exhibition Pitishing Expustion Icrieity, September 6 to October 13, 1883.
 J. C. PATTERSON, Secretary 1. O. Box 895, Pittsbura, Pa. FOR A
OMBINED
 Punch and Shears
 ambertville Iron Works, The "MONITOR." Best Rolier Feade a new hiftingand non-

 not Break n nder
Sudden Changesof
Steam Pressure.
Also Patent EJECTORS
Water Blevators
 So droanimi

 P.O. Box 2875. 212 Broad way, New York.

 THE NEW OTIO SILENTT GAS ENGINE.

Pyrometers. For Ehoming bat

RUBBER BELTING, PACKING, HOSE. Steam Packing, iston Packing, Leading Hose, Steam Hose,
Suction Hose, Baili Vaives,
 GUTTA PERCHA \& RUBBER M'F'G CO., 23 Park Place, New York

The \boldsymbol{S}^{2} Seibert Cylinder Oil Cup Co.,

To Electro-Platers.

BARREL, KEG HoASIEAD,
Sare Machinery
orer so variete E. \& B. HOLMES,

The Technological, Juthustrial, nud sanith

> These fran can be fastened
 parking bux patets for sale

every tserk of machinery How to Use Loose Pulleys.
 WATCHMAKERS.

BOOKWALTER ENGINE.
Compact. Substantial. Econom-
ical. ical, and easily managed; guar-
anteed to work well and give
funl power claimed. Engine and
foll
 ${ }^{\text {Pritio }}$
 or 110 Liberty Springfeida, Ohio
NEW HAVEN MANUFACTURINGCO.
MANGFACTURERS of iron Workina
Lathes, Planers, Drills, Shapers, etc.
ILLUSTRATED CATALOGUE ON APPLICATION. WILEY \& RUSSELL MANUF'G CO.,

GREENFIELD, MASS.
 THMM

Curtis Pressure Regulator,
 CURTIS STEAM TRAP

Double Screw, Parallel, Leg Vises. vadeand WARRANTED, stroner than any other Vive

Working Models

 movilus or Ave preciprions oriva

F. Brown's Patent FRICTION CLUTCH. Sena for Hustrated catat A. \& F . beown, 43 Park Place, New York.

SHAFTS PULLEYSHANGERS

HARTFORD

STEAM BOILER

Inspection \& Insurance COMPANY.
W. B. FRANKLIN.V. Pres't. J. M. AldLCN. Pres't. J. B. PIERCLI. Sec'y
 SOLTHWARK FOINDRY \& MACHIE COMPANY, Engineers \& Machinists, Porter-Mllen Antomatice cut-0if Steam Englne.

§cientific Amrexicam FOR 1883.
The Most Popular Scientific Ifaper in the World.
Only \$3.20 a Year, including posta
This widely circulated and splendidly illustrated aper is published weekly. Every number contains sixeen pages of useful information, and a large number of riginal engravings of new inventions and discoveries. New Inventions, Novelties in Mechanics, Manufactures. Chemistry, Electricity, Telegraphy. Photography, ArchiAll Classes of Readers find in the Hertory, etc. All Classes of Readers find in the Sciev'rific ormation of the day; and it is the alm of the publishers possible abstruse terms. To every inteligunt miua. his journal affords a constant supply of instructive
 Terms of subsere it circulates.
IFIC AMERICAN will be sent for one enear of the Scienpostage prepaid, to any subscriber in the United States Cants cents by the publishers; six months, $\$ 1.60$; three months, $\$ 1.00$.
Clubs.
CAN will be supplied copy of the Scientific Ampriat \$3.20 each; additional copies at same proportionate

One copy of the SCIENTIFIC AMerican and one copy of the ScIENTIFIC American Surplement will be sent
for one year, postage prepaid, to any subscriber in the for one year, postage prepaid, to any subscriber in the
United States or canada. on receipt of seven dollars by the publishers.
The safest way to remit is by Postal Order, Draft, or
Express. Money carefully placed inside of envelopes, securess. Money carefully placed inside of end correctly addressed, seldom goes, astray, but is at the sender's risk. Address all letters MITINT \& $C O$

261 Broadway, New York. To Foreign Subscribers.-Under the facilities of by post direct from New Tork, with regularity, to subBritish in Great Britain. India, Australia, and all other Russia, and as ; France, Austria, Belgium, Germany, Mexico, and all States of Central and South America. \$4, gold, for Scientific Amirican, one year ; \$9, gold. for both SCIENTIFIC AMERICAN and SUPPLEMENT for one year. This includes postage, which we pay. Remit. MUNN \& CO
PRINTING INKE.
THE "Scientific American" is prined with CHAS

