A WEEKLY JOURNAL OF PRACTICAL INFORMATION. ART. SCIENCE. MECHANICS, CHEMISTRY AND MANUFACTURES.

PROCESS AND APPARATUS FOR THE MANUFACTURE OF GRAPE SUGAR.

Probably the most important feature of the process by which the conversion of amylaceous and ligneous substances into grape sugar is effected is the employment, in a gaseou or nascent condition, of a reagent having for its basis either chloric or hypochloric acid. This is obtained by combining an alkaline chlorate or perchlorate with an organic or inorganic acid. For this purpose chlorate or perchlorate of potash and oxalic acid have the preference.
potash and oxalic acid bave the preference.
The chief feature of the apparatus shown in our engraving is the arrangement by which the gaseous oxygenating agent is the arrangement by which the gaseous oxygenating agent
employed may be forced from one converting vessel into another, so as to avoid waste.
Twin converters, constructed of wood or metal, are hermetically closed. From the upper conical extremity of each converter, a tapered tube extends horizontally to the adjacent converter, passes down through the top of the latwith a stop cock. The lower portions of these tubes are each converter, and is prolonged into a tank below. Between forced in by a pump. perforated to allow free escape of the oxygenating gases coupled, so that the lower portion may be easily detached ment of the bodies to be converted into glucose are as folthat are forced through them from one converter into the from the upper when required. The shafts are provided lows: The cornmeal or other substance to be converted is

LANDRY \& LAUGA'S APPARATUS FOR THE MANUFACTURE OF GRAPE SUGAR.
introduced into the first vessel through the opeving. At the same time a quantily of weak glucose liquor obtained in the final washing of the solid residuum in the filter press is in ducted through o pipe at the top of the converter. Water is also admitted from the tank. The proportions of the glucose liquor and water may be equal, and the aggregate quantity required is about ten or twelve gallons for each bushel of grain. The agitator is then set in motion for the purpose of thoroughly commingling the contents of the converter. Steam is also simultaneously let into the imperforate pipes, for the purpose of raising the temperature of the mass to 190° Fabr., and when this has been done steam is shut off, all openings are closed, the gas cocks opened, and the commingled gases and atmospheric air passing from the receiver to the pump are forced into the converter through the perforated pipe or worm.
The agitator being kept in motion, these gases readily permeate the mass and come in contact with every particle, so that a very perfect conversion is effected. When the usual tests and reagents-iodine, alcohol, cupric liquors, and the saccharometer-indicate the desired conversion has taken place, the admission of gases is cut off by turning a cock, and a cock on the other side of the converter is then opened to allow discharge of steam from the perforated pipe into the now transformed mass. The action of the steam liberates the gases that are not assimilated, and rapidly forces them out of this converter into the other converter, wherein a charge of meal, weak glucose liquor, and water has been admitted, mixed, and heated to the proper degree (190° Falir.), while the conversion has been thus going on in the first converter. Thus the gases, which are still chemically active after the conversion of the first charge, are utilized in the treatment of the next, thereby a voiding loss and effecting a considerable economy in the converting process. After the first clarge has been converted, the auxiliary gas generators are therefore only required to furnish such additional quantity of gas as is necessary to supply the deficit resulting from the loss of gas which inevitably attends the operation on each charge. While conversion is going on in the second vessel, the first oue is being discharged and recharged, and at the proper time the free gases in the second converter are forced back into the first converter, where they effect such further conversion as they are capable of, and thus the operation of alternate charging and forcing of gase from one converter into the other is continued. The converted mass is discharged into tanks and cooled by water passed through the coil pipe while being agitated by the revolving stirrer.
This invention was recently patented by Messrs. A. C. Landry and C. Lauga, of New Orleans, La.

A New Mode of Burial.

At the recent general assembly of cement manufacturers at Berlin, Dr. Fruhling described a vew application of cement. He explained that it would be easy to transform corpses into stone mummies by the use of Portland cement, that substance when hardened not in any way indicating the organic changes going on within it. He further illustrated toe subject by describing various industrial uses of lime as a preventive of decomposition. The cement in hardening takes an accurate cast of the features which it incloses, thus allowin of their exact reproduction after the lapse of cen turies. It is suggested to use coffins of rectangular shape, it being further considered by Dr. Fruhling that under round sepulture is needless, as the coffins soon becom practically masses of stoue, and can therefore be built into pyramids.

Crippling the Patent office

In accordance with legislation by the last Congress, the force of the Patent Office was reduced, July 1, by the discharge of twenty-five clerks. Commissioner Marble ays that this reduction will necessarily cripple the efficiency of his office to a considerable extent, and it will pro bably compel inventors to suffer additional delay in many cases.
The Patent Office contributes a large sum yearly to the national treasury, and is therefore much more than self sustaining. Justice to the inventors of the country would seem to demand that their business should not be injured nd their progress delayed by the mistaken economy of r ducing the already inadequate force of the Patent Office.

A Single Coal of Fire.

Property to the value of nearly a quarter of a million oilars was destroyed, one life lost, and twelve person njured by a fire at a wharf in Brooklyn, N. Y., July 19 caused by a coal of fire being blown from the furnace door of the boiler of a hoisting engine, while the fire was being raked. A cargo of jute was being discharged, and the live coal blown among loose particles of the fiber scattered on th wharf set the material and the adjoining property on fire so quickly that the laborers bad to flee for their lives, number on the vessels alongside the wharf jumping int the water, one of them being drowned.

Large Dynamos and Slow Speed.

Mr. J. E. H. Gordon, the eminent English electrician, has been a strong adrocate of small dynamos driven at high speed. Now, after a costly series of experiments, he finds that a large machine driven at a comparatively slow rate gives incomparably the best result and does not endanger life by flying to pieces.

Srimutific egmerian.

HSTABLISHED 1845

MUNN \& CO., Editors and Proprietors. published weekly at
No. 261 BROADWAY, NEW YORK.
o. D. MUNN. A. E. BEACH.
ne copy, one year postage included
Clubs.-One extra cosy of The Scientific American will be supplied gratis for every club of five subscribers at $\$ 3.20$ each - additional copies at Remit jy postal order. Address
it py postal order Adre

The Scientific American Supplemen

is a distinct paper from the ScIentific american. 'The SUPFLEMEN'I is issued weekly. Every number contains 16 octavo pages, uniform in size
 all news dealers throughout the country
Combined liates. - The Scientific ambrican and supplement will be sent for one year postage tree. on receipt of seven dollars. Both The sutest way to remit is by draft, postal order
The sufest way to remit is by draft, postal order. or registered letter.
Address MUNN \& CO., 261 Broadway, corner of Warren street, New Yo
Scientife American Export Edition.
The Sciuntific a merican Export Edition is a large and splendid peri-
odical, issued once a month. Each number contains about one hundred large quarto pages, profusely illustrated, embracing. (1.) Most of the plates and pages of the four preceding weekly issues of the Sciw.ctific Americas, with its splendid engravings and valuable information: (2.) commercial, trade, and manufacturing announcements of leading houses.
Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the world. Single copies 50 cents. Manufacturers and others who desire secure foreign trade may have large, and handsomely dis,
ouncements published in this edition at a very moderate cost.
The SCIExTific Ammulucan Export Edition has a large guarant teed circuation in all commercial places throughout the world.
CO., 261 Broadway, corner of Warren street, New York.

NEW YORK, SATURDAY, JULY 28, 1883

TABLE OF CONTEN'S'S OF

the scientific american supplement No. 395,

For the Week ending July 28, 1883.
Price 10 cents For sale by all newsdealers

an

 NGINEERING AND MECHANICS. flgress. Old and New Atantic Siteamers....... A tandard Track and Rail Comparative raltit

II. $\underset{\mathrm{SVM}}{\mathrm{TE}}$

I. SYME
CED
CIII
figure
 V. ELECTRCITY, LIGIT, ETC -The Zipernowsky system
 ASTRONOMY.-Time Observations.-OII and new methods of
measuring time.-By W. W. ALEXANDER
 I. FHEOLO
V.NATURAL HISTORY.-Home of the Sea Otter.- Extermination Canoes ", Skize. - Market
Hunting the seter and
The oritin sea

III. HORTICULTURE. The Paraguay Tea.

x .
sufficient to bring business under the telegraphic system to an end; recruits and volunteers rapidly poured in, and served at least as makeshifts.
The average pay for commercial operators in the United States is $\$ 54.43$ per month; average for commercial operators in Canada is $\$ 37.49$ per month; average of railroad operators in the United States is $\$ 39.50$; average for railroad perators in Canada is $\$ 29.12$
The demand for an increase of wages to the amount of 15 per cent, if conceded, with the equal payment of male and female operatives, the reduction of the hours of labor, and extra payment for Sunday work, has been estimated to compel an extra cost to the Western Union Telegraph Co. of at least $\$ 1,500,000$, and to amount virtually to an increase of compensation to the operatives of about 40 per cent.
It is alleged on behalf of the Western Union Telegraph Company that these demands are excessive; and they will not accede thereto.
It would be difficult to find a more able, intelligent, and industrious body of people in the world than these telegraphers. The quietude with which they have conducted their strike, and the unanimity of their ideas in respect to their demands, afford ground for the inference that they know what they are about. The public will rejoice to see their wages increased and their hours of labor reduced, even if the prices for sending telegraph messages are slightly increased.

THE EXAMINATION OF BRIDGES

The examination of bridges, relative to their safety, is a matter of vital importance to those passing over them, and is a duty that can only be reliably performed by one having long experience in bridge construction and a thorougb knowledge of the mathematical questions involved. The mere running over of a locomotive, or an excessive load, is no guarantee of permanent safety. It is better to know how long a structure will carry an oft repeated light load in long a structure will carry an oft repeated light load in
safety than how great a single load it will stand. The two safety to bear, for practical purposes, but little relation to seem to bear, for practical purposes, but little relation to
one another. one another.
One of the first points to be settled by the engineer is the plan of the bridge: if not in accordance with good practice of to day, if so proportioned that some members are subjected to strains leaving too small a factor of safety, if not of sufficient strength to carry loads in excess of those for which it was designed, caused by increased traffic, then the structure is condemned without further consideration, or else changes obviating these difficulties are recommended. To ascertain this the parts are measured and the strains calculated, and if found to be safely within the limit of the culated, and if found to be safely within the limit of the
strength of the iren, all is well so far. The operation also requires the examination of the effects produced by different loads, moving and at rest, and wind pressure.
The care and skill with which the parts were put together, the state of the rivets, bolts, and pins, and the deterioration
of the iron due to atmospheric influences, come up for debate, and where the strength has been materially lessened, new parts are advised to be inserted. The ties, rails, and guard rails, although not entering into the problem of the safety of the bridge in a direct manner, are, nevertheless, responsible for the care of the trains, and are reported upon.
The piers supporting the bridge, and their foundations, present a more difficult task. If the piers are of iron or masonry, the work is comparatively easy. Undue settlement is readily discernible. In the case of pile foundations, the avages of worms, being below low water line, are hid from view, and the weight the piles will bear cannot always be accurately found. The removal of one pile or more, and the condition of the remainder reasoned from its condition, is safe within certain limits.
If the exact strength of any member be in doubt, or approach too near the limit of its strength, decision is invariably cast in favor of the traveler, and the member is unhesitatingly condemned. That it will probably stand the strain is of no moment and is not thought of; but that it might possibly give way decides the question of its banishment.

heating and hardening of steel.

To understand how to properly harden and temper steel tools and other articles is fully as necessary to the machinist now, when most small tools are kept in stock by dealers, as it was twenty years ago, when each shop made its own tools. Lathe and planer cutters, cold chisels, milling cutters, and several other tools and appliances are liable to breakage, and must be redressed at the anvil, refinished, and rehardened and tempered. But many of these tools are ruined in the attempt, and this destruction usually comes in he hardening.
Some mechanics attach much importance to a hardening pickle, but probably failure comes as often by injury in heating the article as by hardening and tempering. An evenly distributed heat of the proper temperature is absolutely requisite to success, and this it is not always possible to assure by heating in an open fire. One portion of the article is liable to be overheated, while another portion is under heated; judging of the amount of heat by color is not always to be trusted; a dark corner or a cloudy day changes the conditions from a light shop and a sunny day sufficient y to make a great and telling difference in the amount of heat judged by sight.
A perfectly reliable method of heating for hardening is by means of the lead bath. It is an easy matter to keep in the shop a crucible or iron pot of lead to be used as occa sion demands. The article to be heated for hardening will not suffer when in the lead bath, even if not closely watched, as is necessary at the open tire; the melted lead cannot pass to a degree of beat injurious to the steel. But one condition must be strictly observed-the lead must be pure and clean; it is best to buy the mercantile pig for this purpose. A manufacturer of pipe threading and pipe cutting tools in a New England city. desiring to abandon his old time open fire method for the lead bath, melted a lot of old lead pipe partially corroded, and mixed with it a quantity of type metal. His hardening was a failure until he used pure lead.
In order to harden well it is necessary to heat the article through and through. If the piece is of unusual thickness, as a tap or reamer of three inches or more in diameter, it is better to drill a hole through it from end to end, so that the heating can be even and the hardening be equal. A tap of our inches diameter broke squarely across in the hardening. It was of solid steel. The drilling of an inch hole from end to end was practiced, and a large number of the same size taps were hardened without a failure. The surfaces of the fracture of the broken tap showed plainly the evidences of unequal heating and uneven cooling.

ASPECTS OF THE PLANETS FOR AUGUST.
 \section*{neptune}

is morning star, taking the precedence of four other planets playing the same role, for the planetary interest during August centers on the morning sky. Five members of the solar brotberhond make their appearance at the beginning of the month in the following order: Neptune, Saturn, Mars, Jupiter, and Venus. This order of precedence they retain througbout the month. Neptune, if be were near enough, would be seen above the horizon about half past 11 o'clock in the evening. Saturn peers above the eastern hills half an bour after midnight. Mars follows in about twenty minutes. Jupiter rises not far from a quarter after 3 o'clock, and Venus follows half an hour later. Thus at 4 o'clock the planetary quartet may all be seen making their shining way among the stars.
Neptune diversifies his course with an event. On the 14th, at 1 o'clock in the morning, be is in quadrature on the western side of the sun, that is, he has reached the half way house between conjunction and opposition, being 90° from either point. He then rises about midnight, is on the meridian at $6 o^{\circ}$ clock in the morning and sets about noonday. The same is true of all the outer planets, their appa rent movements being regulated by the same law. Observers who keep the run of their conjunctions, quadratures, and oppositions will find it easy to follow their paths.
The right ascension of Neptune is 3 h .16 m ., his declina tion is $16^{\circ} 18^{\prime}$ north, and his diameter is $2.5^{\prime \prime}$
Neptune rises on the 1st about half past 11 o'clock in the evening; on the 31st, the rises about half past 90^{\prime} clock.

saturn

is morning star. Though second in the order of rising, he takes the lead in the order of interest during the month, being a beautiful object in the morning sky after miduight, while every successive rising adds to the brilliancy of his appear
Saturn is in conjunction with Alpha Tauri on the 13th ${ }^{\mathrm{t}} 6$ o'clock in the morning. This star is better known as Aldebaran, a brilliant red star of the first magnitude. The conjunction is not a close one, Saturn being, when nearest, $3^{\circ} 40^{\prime}$ north of the star. Planet and star will however be ear enough to make a fine exhibition on the celestial can vas as they gradually approach each other, the pale gold of Saturn being in charming contrast with the ruddy hue of Aldebaran. Heavenly bodies are in conjunction when they are in the same right ascension, a term nearly corresponding with terrestrial longitude. At the same time they may be many degrees north or south of each other.
The right ascension of Saturn is 4 h .25 m ., his declina tion is $19^{\circ} 49^{\prime}$ north, and his diameter is $164^{\prime \prime}$.
Saturn rises on the 1st at half past 12 o'clock in the mornng; on the 31st, he rises about half past 10 o'clock in the evening.
MARS
is morning star, and adds to the interest of the month by an incident in his slow and monotonous course. On the 29th, at 5 o'clock in the afternoon, he is in conjunction with Mu Geminorum, a star of the third magnitude in the constellation of the Twins. Mu is very near the ecliptic, or sun's path in the beavens, and near the point the sun touches on the longest day of the year. The conjunction will not be visible, Mars passing at that time $1^{\circ} 4^{\prime}$ north of the star. But planet and star will be near enough on the morning of the 30th to make it worth while to watch their approach. An opera glass or a small telescope will assist he observation.
The right ascension of Mars is 4 h .55 m ., bis declination $22^{\circ} 25^{\prime}$, and his diameter is $5^{\circ} 6^{\prime}$
Mars rises on the 1st about ten minutes before 1 o'clock in the morning; on the 31st, he rises soon after midnight. JUPITER
is moruing star, and before the month closes will outshine every other star in the firmament. He holds his court in the northeast, in the constellation Gemini, a few degrees south of Castor and Pollux; but no observer of the early morning sky will fail to detect him at a glance. He will soon be near enough for telescopic observation. His return to our vicinity will be a boon to astronomers, who bope to ind out something about the intense activity that now agitates his surface.
The right ascension of Jupiter is 7 h .23 m ., his declina tion is $22^{\circ} 11^{\prime}$ north, and his diameter is $30 \cdot 6^{\prime \prime}$
Jupiter rises on the 1st about a quarter after 3 o'clock in the morning; on the 31st, he rises at ten minutes before 2 o'clock.
s morning star, and the last on the list to appear above the horizon. She is traveling south at a rapid pace, being nearly ten degrees farther south at the close of the month than at the beginning. Venus is now near Jupiter, but is rapidly retreating from his ueighborhood, approaching the sun so closely that at the end of the month she rises less than half an hour before the great orb in whose beams she will soon be hidden from sight. She has fallen from her high estate, but only for a time. Her peerless beauty will not long remain under a cloud.
The right ascension of Venus is 7 h .49 m ., her declina tion is $21^{\circ} 36^{\prime}$ north, and her diameter is $10.4^{\prime \prime}$
Venus rises on the 1st about ten minutes before 4 o'clock in the morning; on the 31st, she rises at 5 o'clock.

MERCURY
is evening star during the month, presenting but one feature of interest. He is in conjunction with Uranus on the 24th at 10 o'clock in the morning, being at that time fifty minutes south. As both planets are invisible, the event will have to be observed in the mind's eye. To those familiar with the movements of the planets, the pictures visible to the eye of ancy are not always less enjoyable than those visible to the natural eye. They also possess this advantage: Neither clouds nor the great sun himself can obscure them. Mercury makes almost a plunge toward the south during August his declination changing from 19° north at the beginning nearly 2° south at the close.
The right ascension of Mercury is 8 h .58 m ., his declina ion is 19° north, and his diameter is $5^{\prime \prime}$
Mercury sets on the 1st at half past 7 o'clock in the evening; on
o'clock.
URaNUS
is meeting with Mercury.
on is $4^{\circ} 11^{\prime}$ north, and his dianus is 11 h .28 m ., his declina
Uranus north, and his diameter is $3 \cdot 5^{\prime \prime}$.
the 31st, 9 o'clock in the evening; on
The August moon fulls on the 18 th at a quarter before 8 o'clock in the morning, Washington meantime. The waning moon is in conjunction with Jupiter and Venus on the 1st, and with Jupiter fcr the second time on the 29th. She at her nearest point to Mercury on the 3d, and to Uranu on the 6th. On the 24th, she is very near Neptune. On
the 25th, she is in close conjunction with Saturn at half past one o'clock in the afternoon, passing $1^{\circ} 3^{\prime}$ south. In some portions of the globe between 32° and 70° south declination, where the conditions are right for observation, the moon occults Saturn for the fifth time since the year comher conjunction with Mars on the 27 th.

STORING THE POWER OF THE WIND.

As suggested previously, no method seems within the range of our present knowledge which can enable us to store the energy exerted by wind currents during the very large proportion of time when we have no need of it, and thus make its whole average force available during working bours. This, which is one of the most important desiderata in mechanics, and which is sure eventually to be secured, debars us from the benefits of the full wind power sweeping around us. But it is perhaps worth our while to consider a plan by which a portion of that power can be utilized, and, of course, just so much steam power with its attendant expense saved.
The wind of this and the adjacent regions has, as the records show, an average velocity of $7 \cdot 7$ miles per hour, being 676 feet per minute. At this rate of motion its pressure per square foot is $\frac{52}{100}$ of a pound, and if we could store the power we might safely calculate on that amount. But for our present purpose this is of small avail. A wind wheel of such size as formerly assumed, 12 feet by 8 , gives at that pressure an effect of nominally half a borse power, and whatever it gives during working hours we are prepared o turn to account; at other times it must be of no avail.
The manufacturer or other consumer builds as many of bese wheels as he deems best; the more of them the better within certain limits. On the assumption of his needing twenty horse power as before, five of them in the fresb breeze of a summer afternoon will meet the demand, while, with a strong storm-wind, a single wheel will drive his full machinery without assistance. Each wheel sends by its own air-pump its stream of air to a common reservoir. This reservoir is not, on this plan, built to contain stores of energy for future use; it is barely as an equalizer of an unsteady power. It enables the consumer to carry on his work with perfect uniformity of motion, no matter how gusty or qually the wind may be.
He chooses to run his engine, for instance, at forty pounds; setting his safety valve at sixty or eighty, or whatever he may above, he draws a regular forty without change or interruption. The only requisite is that the reservoir pressure shall be maintained sufficiently high. If his wind wheels are doing that amount of work he needs nothing further, and he can easily so construct them that the number of days in which they will need no help will be greatly in the majority in the course of a year.
But days of partial or of total calm will of course occur, and here is where the auxiliary force is required. The steam engine which he would have in use, had he no wind wheels to take its place, is called at once into play, and he macbinery runs on, as on other days. The engine drives an air-pump, or pumps, of suitable dimensions, compressing air into the reservoir, that is, it does precisely what the air pumps of the wind wheels failed to do at that moment. This, of course, can be done when there is no wind whatever, and will not unfrequently need to be done when the wheels are moving feebly, and are consequently unable to keep the pressure up to the requisite number of pounds. The two sources of energy are in no way associated; they barely supply compressed air to a common jeservoir, for a common purpose; they can work alone or together.
With a sufficiently liberal construction of wind wheels it is not too much to assert that the engine fire would not be lighted on more than one in three of the working days of the year, and the days when it would be needed with its full power would scarcely be one in six. Experience would soon settle all the points required, and though the introduction of the new mode of working would be watched at the first. and very naturally, with distrust, a very short time would remove it, and the two go smoothly on together.
Can any one show any reasons why this theoretical plan cannot become a practical one? It utilizes only a portion of the wind power, it is true, but is it not worth while to save what we can? If a man can save the expense of running his steam engine for two-thirds to three-fourths of the time, at barely the cost of erecting his wind engines, which will run without subsequent expense, it surely does appear that a very decided gain has been made.

Nickel Crucibles.

M. Mèrmet recommends nickel crucibles instead of silver ones for use in chemical manipulations. Nickel is slightly attacked by melted potash, and so is silver itself. Nickel crucibles cost at first mueh less than those made of silver, and they have the great advantage of melting at a higher temperature. It often lappens that inexperienced chemists melt their silver crucibles in heating them over a gas lamp; but such an accident is not to be feared in working with crucibles made of nickel.

A correspondent says that files may be readily cleàned of grease by holding them for a moment in a steam fet from a blow off cock.

Kefir.

While during the last few years koumiss has been introduced into Western Europe, and even into America, a new drink prepared from cow's milk by a process of fermenta tion imperfectly understood is coming into use in Russia. This drink is kefir, and it has for long formed the chief article of diet among the mountaineers in the neighborhood of Mount Elbruz and Kasbek, in the Caucasus. It forms a thick white fluid, with a faintly acid flavor, said to resemble certain light wines. The mountaineers themselves call it
"ghippo." The inhabitants of the plains near the Caucasus, and the Russian settlers, who term it kefir, kifir, or khiafar, make use of it, not for the table, but as a popular remedy for anæmia, struma, gastric catarrh, and chronic bronchitis.
According to the Moscow Medical Gazette, where contribution on the subject has recently appeared, Dr. Kern being the author, the preparation of kefir is very simple. The mountaineers make it by filling a bag made of goatskin with milk; then a tenacious mass, of the size of walnut, of a material which 1hey term "kefir seed" an the precise origin of which is unknown, is added to the milk. In a few hours the process of fermentation sets in actively. When prepared in wooden or glass vessels, the kefir tastes better. After a lapse of twenty-four hours a weak kefir is produced ; when the process is allowed to continue for three days, the kefir becomes very strong. The source of the ferment is scrupulously concealed by the Cau casian mountaineers, who, with the humor of the Englisb cook who once sold a secret for making " fundied cheese," the "secret" being that the cheese must be fundied after toasting and before the addition of pepper, cannot be per suaded to enlighten strangers to any greater extent than in supplying a small sample of the ferment, in the form of dry, dark-brown, earth-like masses, but steadfastly refusing to ay whence they are obtained. One of these fragments dropped into milk begins rapidly to effervesce, turns milk white, aud assumes the form of a mulberry, then fermenta tion proceeds at once. If a piece, thus transformed, be dropped into another bowl of milk, it :apidly increases in size, and also causes fermentation. Dr. Kern has carefully examined specimens of this "kefir seed," which consists chiefly of masses of zooglea, holding together collections of bacterium which he calls Dispora caucasica. The yeast fungus, Saccharomyces cerevisice, is always found associate with this new germ. "Kefir seed" retains its vitality afte remaining for months in its dry condition. Dr. Kern has a great belief in the future of kefir, which has all the virtues of koumiss, and possesses one great advantage over the latter fluid in that it is just as good when prepared from cow's as from mare's milk.-British Medical Journal.

Wood Finish.

The patented preparations known as wood fillers are pre pared in different colors for the purpose of preparing the surface of wood previous to the varnishing. They fill up the pores of the wood, rendering the surface hard and mooth. For polishing mahogany, walnut, etc., the fcl lowing is recommended : Dissolve beeswax by heat in spirits of turpentine until the mixture becomes viscid ; then apply by a clean cloth, and rub thoroughly with a flannel or cloth. A common mode of polishing mahogany is by rub bing it first with linseed oil, and then holding trimmings or havings of the same material against the work in the lathe Glass paper followed by rubbing also gives a good luster. There are various means of ning or darkening woods for decorative nnisg or darkening woods for decoraive feet. Log on, he, brown soft soap, dye il, suiphate of iron, nitrate of silver expose to the sun's rays, carbonate of soda, bichro-
mate and permanganate of potash, and other mate and permanganate of potash, and other
alkaline preparations are used for darkening the wood; the last three are specially recom mended. The solution is applied by dissolv ing one ounce of the alkali in two gills of boiling water, diluted to the required tone The surface is saturated with a sponge or flannel, and immediately dried with soft rags The carbonate is used for dark woods. Oi tinged with rose madder may be applied to hard woods like birch, and a red oil is prepared from soaked alkanet ront in linseed oil. The grain of yellow pine can be brought out by two or three coats of Japan much diluted with turpentine, and afterward oiled and rubbed. To give mahogany the appearance of age, lime water used before oiling is a good plan. In staining wood, the best and most transparent effect is obtained by re peated light coats of the same. For oak stain a strong solution of oxalic acid is employed; for mahogany, dilute nitrous acid. A primary coat or a coat of wood fillers is advantageous. For mahogany stains the following are given : 2 oz . of dragon's blood dissolved in one quart of rectified spirits of wine, well shaken or raw sienna in beer, with burnt sienna to give the re-
quired tone; for darker stains boil half a pound of mad der and 2 oz of logwood chips in one gallon of water and brush the decoction while hot over the wood. When dry, paint with a solution of 2 oz . of potash in on quart of water. A solution of permanganate of potash forms a rapid and excellent brown stain.-Amateur Me chanics (London).

SIMPLE CAN OPENER

The engraving shows a very simple form of can opene adapted to all forms and sizes of cans, and capable of cut ting out the entire end of the can. The opener is a plain, simple knife, with a lip to rest on the edge of the can, using the can as a fulcrum, as shown in the engraving. It wi be noticed that the tool has neither joints nor adjustable parts, and is therefore not a thing to get out of order. Fig. 1 is a side vie
This useful invention has been patented by Mr. Augustu

LEAVITT'S CAN OPENER.
. Leavitt, and is manufactured by the New England Spe ialty Company, of North Easton, Mass., of which Mr. Lea itt is manager.

STEAM OVEN FOR CLOTH PLATES.

The illustrations given herewith represent a steam oven or use in heating iron plates used by cloth finishers in hy draulic presses. With this apparatus the plates are put inside, and after the door has been fastened steam-tight steam is turned in and heats the plates to its own temper: ure. The great advantage of steam heating in this way is that perfect uniformity in the temperature of the plates can be relied on.
The door is balanced and suspended on chains, and opens the oven by lifting vertically in guides. This provides a clear front before the oven, which is not obtained with hinges. The oven, for purposes of strength, is cast from he same mixtures of metal as locomotive cylinders are usually made. To make the joint the faces of the door and ven are planed-a groove being made in the former, to ontain an India rubber ring, and a tongue in the latter The fastening of the door is made very expeditiously by means of the screw through the middle of a forged crossbar, one end of which is hinged to the right hand side of the oven, the other free end entering an eye before screwing up.

STEAM OVEN FOR CLOTH PLATES.

The most noteworthy feature, perhaps, is, says the Textile Manufacturer, the adoption of a wagon system of conveying he plates into or out of the oven from or to the presses. This is accomplished as represented in Fig. 2. The rails on he floor run in front of the range of presses, also in fron of the range of ovens, and close to all of them.
The wagon that runs on this line carries on rails across it top a smaller carriage, that is usually locked or scotched in position. Upon this upper carriage the plates are piled when coming from the presses. They are then taken to an empty oven, and bridge pieces are laid between the oven and
the lower wagon, so as to form rails for the top carriage to be run into the oven with the plates upon it. After heating
the carriage the plates are withdrawn similarly. The separate handling of the plate with tongs at the oven is thus avoided, and the whole operation greatly expedited. The longer the plates remain in, up to a certain limit, the more uniformly they become heated, and the better is the finish obtained. It is, therefore, certainly better to utilize the time in heating that in the old plan is occupied in handling the plates.

Cholera.

In view of a possible, but we may still hope not very probable, invasion of cholera, it may be worth while to ask ourselves, seriously and urgently, in what coudition will that formidable epidemic disease find us as regards the facilities provided for its rapid extension? In the history of previous epidemics there can be no doubt we may trace the record of progressive limitation and repression by sanitary improvements. The time has now arrived when, with all our light and knowledge, we ought to have no great dread of cholera. It is, in a very special sense, a perfectly controllable infection; we do not say that it is so controllable as an affection. It remains to be seen whether medicine, as a healing art, has discovered any new remedy, or learnt to apply any known and tried, but not perbaps thoroughly understood, principle of therapy in relief of the malady. What, however, we do assert is that medicine, as a preventive art, in its dealings with the germs of disease, ought to be able to grapple instantly and successfully with cholera. We know that it is propagated solely through excreta, and that water is the great carrier of the infective germs. Obviously, if the excreta of a cholera patient are allowed to dry in contact with the air, they may float away in the atmosphere, and the air will then become infected; but in a primary sense it is the water to which we must look.
In any case, it has been demonstrated that, provided al the excreta from a cholera patient are instantly destroyednot merely disinfected-the disease will not spread. The malady can no more develop de novo than a plant can grow without seed. It is no use waiting until the disease has effected a lodgment in our midst. If choleraic dejecta have passed into the sewers before the nature of the disease has been recognized, as is most likely to happen, the seed has been already sown broadcast, and the production of a crop of cases in some locality-it may be seemingly far from the frst case, but in connection with it-will be inevitable. Th only effectual safeguard against the epidemic we desire to avoid is to begin at once to destroy all diarrhœa stools, est too late they may be found to have been choleraic! As matter of precaution we ought ąlways to destroy the tools of fever and diarrhœa. It is wanton recklessness to allow them to pass into the sewers. This is how disease is spread and perpetuated, when it should be stamped out Whatever disinfectant we employ should be used at once, nd of streugth sufficient to accomplish the object in view. These are hints which should be reduced to practice withou delay.-Lancet.

Small Wastage on a Large Amount of Work.

The annual settlement of accounts of the Philadelphia Mint for the last fiscal year closed July 6. Representative of the Treasury Department have for more than a week bee weighing up enormous amounts of gold and silver on hand and arrived at the actual Joss in the operations of the instiution for the period named. The result of the examination discloses the fact that the wastage of gold and silver in the operations of last year were the smallest on the amount of bullion operated upon in the history of the Mint. The total amount of gold bullion operated upon during the past year was $2,210,944_{100}^{82}$ ounces, equal to 76 tons. The total amount of silver operated upon was $45,591,338 \frac{3}{100}$ ounces, equal to 1,563 tons. The gold coinage for the year consisted of $415,486 \frac{56}{100}$ ounces, equal to 14 tons, the value being $\$ 7,729,982.50$. The number of gold pieces struck and issued was 941,680 . The total silver coinage issued weighed 10,551 , $908 \frac{88}{100}$ ounces, equal to 362 tons, value $\$ 12$, $325,470.15$. The number of pieces of silver coined was $18,798,076$. The total minor coins issued weighed $7,315,135 \frac{30}{100}$ ounces, equal to 251 tons, value $\$ 1,428,307.16$. The numbe of minor coins was $60,951,526$.
The legal wastage allowed by law on the gold operated on during the year was $\$ 32$, 018.33. The actual wastage was $\$ 20.77$, showing the wastage on gold to be $\$ 31,997.56$ less than the legal allowance. The legal wastage on the silver allowed by law was $57,293_{1} \frac{5}{50}$ ounces, qual to $\$ 57,293.05$, at $\$ 1$ an ounce. The actual wastage on ilver worked was, $809 \cdot 23$ ounces, equal to $\$ 809.23$, o $\$ 56,483.82$ less than the legal allowance. In other words the actual wastage at the Mint upon the operations on the precious metals was $\$ 830.12$, while the legal allowance was $\$ 89,311.38$.

Indicative of the enormous prices paid for rare spe cimens of orchids, at a recent auction sale at Stevens (London) a single fine specimen of the Cattleya trianæ alba from Brentham Park collection sold for seventy guineas, or from Brentham
more than $\$ 400$.

Colored Films on Mretals.

According to the prevailing fashion, the small metallic articles used for ladies' ornaments, such as buttons, buckles, clasps, etc., have different colored films produced on them by various methods. (Some of these are known as "oxidized silver.")
Rainbow colors are produced on brass buttons by stringing them on a copper wire by the eyes, and dipping them in a bath of plumbate of soda freshly prepared by boiling litharge in caustic soda and pouring it into a porcelain dish. A linen bag of finely pulverized litharge or hydratea oxide of lead is suspended in the solution, so as to keep up the original strength of the solution. While the buttons are in this solution, they are touched one after the otber with a platinum wire connected with the positive pole of a battery until the desired color appears. The galvanic current employed must not be too strong. The colors are more brilliant if they are heated after they have been rinsed and dried.
Colored films are more conveniently produced upon bright brass by different chemicals, by painting with them or by immersion. For example
Golden yelloos.-By dipping in a perfectly neutral solution of acetate of copper.
Dull grayish green.-Repeatedly painting with very dilute solution of chloride of copper.
Purple.-Heating them hot and rubbing over with a tuf: of cotton saturated with chloride of antimony.
Golden red.--A paste made of four parts of prepared chalk and one of mosaic gold.
In covering an article with any colored bronze in powder, it is first rubbed with a very little linseed oil, and the bronze dusted evenly over it from a dust bag. It is afterward heated in an iron pan to about 480° Fahr.
In recent times small articles are also roughened by dipping in strong nitric acid, and, after washing and drying, they are coated with a rapidly drying alcohol varnish that has been colored yellow with picric acid, red with fuchsine, purple with methyl violet, or dark blue with an aniline blue. This gives the desired color with a beau tiful metallic luster. These latter colors are not very durable, and are used for inferior goods.-N. Erfind.

GEAR CUTTING ATTACHMENT FOR LATHES.

Every machinist knows the value of a good gear cutter. It is really a necessity in every well regulated shop, but the expense involved in the purchase of a reg ular gear cutting engine deters many from investing in such a machine.
Our engraving shows a very perfect sub stitute for a complete gear cutter; in fact, when it is applied to a lathe-which is readily and quickly done-the lathe and the attachment together form as complete a gear cutter as can be desired. The gea cutting attachment is mounted in place of the top slide of the tool rest, or upon a base plate of its own fitted to the bed of the lathe. In the present case it is shown as mounted in place of the top slide. The ndex wheel is mounted upon a tubula tandard, which is made conical at it tandard, which is made conical at it lower end, and is provided with a lock
nut or threaded ring provided with boles, which receive a wrench for turning the ring and tightening the index wheel. To the hollow standard is fitted a socket which carries the mandrel upon which the wheel to be cut is mounted.
The socket has at its upper end a yoke carrying two vertical pins, which work smoothly in boles in the index wheel, so that the socket can be raised and lowered without turning when the index wheel is made fast by the lock nut. A screw jour aled in the bottom of the standard works in a thread in the bottom of the wheel holding socket, and takes its motion through beveled wheels from the shaft upon which the crank wheel is placed. By turning the wheel, the screw is re volved, and the wheel to be cut is raised or lowered to feed it across the cutter.
Two vertical plates connected by a slot ted segmental plate on the top of the in dex wheel are capable of being set the proper distance apart to divide any of the circles of boles into any required numbers. They serve the same purpose as the sector arms on the ordinary index plate. The stop pin is movable up and down the slotted standard so as to enter the holes of any row.
When it is desired to cut bevel gears the base plate is mounted on a pivot so that the mandrel and the wheel to be cut can be inclined at any angle. The same arrangement admits of cutting worms.
This complete and useful tool has been patented by Messrs. Brooks \& Scully, of the Enterprise Machine Works, corner of Fort and Beaubien Streets, Detroit, Mich.

A SAWFISH $151 / 2$ feet long was taken recently near Hali-

 ax, Fla.

NEW GEAR CUTTING ATTACHMENT FOR LATHES.

Renovating old Ofl Paintings.

In cleansing old paintings that have become dingy with soot and coal dust, substances are frequently employed that injure the painting by acting on the lighter and more delicate tints and shades.
Von Bibra has discovered a method which, according to Wieck's Gewerbe Zeitung, is both safe and rapid.
The painting is first removed from the frame, and the dust and smoke brushed off with a pencil or feather. After this it is wasbed with a sponge dipped in well water. It is next covered with a thick layer of soap ; shaving soap is the best for the purpose, because it remains moist and does not dry on. After the soap has been on eight or ten minutes it is all washed off with a strong brush or pencil, adding a little water if necessary. The soap that still adheres is rinsed off sufficiently with water, and the picture left to dry.
When completely dry it is further cleansed with nitrobenzol. This chemical preparation is also known as nitrobenzine, artificial oil of bitter almonds, essence of mirbane, and is a yellowish, oily (very poisonous) liquid, with a powerful smell of bitter almonds. It is formed when coal-tar benzol is mixed with fuming or concentratednnitric acid under suitable precautions. The nitro-benzol is poured into a dish or soup plate, and a clean linen rag dipped in it, and passed over the painting. This quickly removes all the adherent dirt. This linen rag must be frequently exchanged for a clean one. When the rag remains clean after going over it repeatedly, the cleansing is finished.
If the colors look dull after going over it the last time and letting it dry, it is given a thin coat of the finest olive oil, and after a while must be varnished with a good, quickly drying varnish
It is claimed that the dirtiest oil paintings, when cleansed as above described, acquire their original colors and freshness.

Patents in the United States.

There is no country more favor:able for the inventor than the United States. By wisely-framed pitent laws, which are vastly preferable to bounties, inventive genius is stimulated to action, and the cost of obtaining patents is so light as to debar few from the privilege. In this respect the United States presents a marked contrast to England, whose patent fees are much higher than our own. In England the cost of patent protection for fourteen years amounts to about $\$ 875$, whereas America protects her patentees for seventeen years for the sum of $\$ 35$. An English trade journal not long ago asserted that England was getting somewhat behindhand in her struggle for manufacturing supremacy, owing to the excessive cost of obtaining patents in that country, and pointed to the United States as an example worthy of imitation in this respect. Perhaps the American has a keener insight into the requirements of the age and a greater versatility of resources than his English brother, but these traits have surely been developed through patent legislation.
It is unnecessary to touch on that phase of communism which opposes the granting of patents, or at least wishes to restrict the time of such to insignificant periods which will not recompense the inventor. Of course it is but a simple act, of justice to secure to the inventor the result of his brain labor, as well as to the workman in other fields of industry the result of his hand toil. One apparently simple, yet important, tool used in shoe manufacture required seven years to perfect. The inventor should certainly receive remuneration for bis time and application. Patenting may be considered a kind of technical education, and though inventors may produce thousinds of worthless articles, yet there is sufficient gold out of the dross to make our patent system worthy of all encouragement.-Manufacturers' Gazette.

Swelled Rifle Barrels.

A board of officers, with Capt. Greer as president, has tested a lot of rifles at the Springfield armory to determine the cause of the bulging of the barrel, which occasionally occurs in practice. They find it due to the fact that the muzzle has been stopped by sand, caused by resting the muzzle in wet sand, or in dry sand after the gun has become foul from firing. This airiests the passage of the ball, so that the pressure is increased at the point of A link and pin can also be used in the ordinary way, and \mid swelling. It is curious that sand produced this result where with the same facility as at present. The coupling can also wooden plugs, driven in tightly and swelled by steam, failed be arranged to uncouple from the sides or top of a car if so to do so. desired. This invention has been patented by Mr. Thomas H. Ambrose, of Port Hope, Ontario, Canada.

In Krupp's great gun manufactory, at Essen, compressed carbonic acid is used for the manufacture of what ice and
seltzer water may be required by the workmen.

A New lighting appliance has been invented by M. de Khodinsky. He directs a jet of coal gas and of oxygen on a specially prepared prismatic pencil of magnesia. The coal gas and the oxygen arrive at the point of combustion by gas and the oxygen arrive at the point of
two separate pipes inclosed in the same tube.

the sturgeon fishery

Having recently enjoyed facilities for informing myself as to the methods and results of the principal sturgeon fisheries hus gathered may be of general interest.
It seems that, in the montl of May, when sturgeor most abound, the market is usually supplied with other and ciooicer varieties of fisl. Hence, until recently, this really valuable food fish has been neglected and its commercial importance underestimated. This difficulty has been met and overcome by the enterprise of New York packers. The process consists in placing the sturgeon, as soon as caught and dressed, in a large freezer, where, by a patented method, they are frozen solid as they lie in boxes. This process is so perfected in the works at Salem, N. J., that 125 sturgeon, averaging 85 pounds each when dressed, can be frozen every seven hours. The fish are afterward taken out of the boxes and stored in large rooms, through the center of each of which a freezing anparatus extends that is charged anew every day. By this means the fish can be kept for months until they come into demand.
The sturgeon range from Georgia, in winter, to St. John, N. B., in summer, and are followed up throughout the season by men expert in their capture. Large gill nets are used in this business, each about 200 fathoms long, and with meshes a foot in size. The Delaware River is the principal field of operation. Sturgeon enter this stream about the 22d of May, and in such immense numbers that nets about a quarter length have to be used, larger ones being at that time unmanageable. Mr. Blackson, an experienced fisherman, tells me that he has seen them so abundant that his net would sink with their weight as soon as it was thrown out. The average catch per net is from twenty-five to thirty fish apiece, at each cast. This lasts about two weeks. The sturgeon move steadily up stream toward the head of the river, and then suddenly disappear about the 10th of June, after which they must be sought elsewhere. How they get out of the river withont being caught is a mystery. All that the fislermen know about it is, that one day they are busy catching fisb, and the next all their nets are empty
The boats used in this business are all constructed on the same general plan; about 24 feet keel, 7 or 8 feet beam, capable of carrying about thirty sturgeon apiece. A boat load of big ones looks, oddly enough, like a load of small logs! The flesh of the sturgeon, as is well known, is rather coarse and oily; and, as much depends on its right preparation for the table, we took some pains to inquire how it is cooked by the wives of the fishermen themselves, who ought to know as well as anybody, seeing that it constitutes a staple article of their diet. From several methods recommended, we give the two that seem the most promising:
The first method is to cut the flesh into slices and parboil them to get rid of the superflueus oil, and then fry them in a thin batter.
The second method is to cut up the meat into squares two inches thick, which are to be thoroughly boiled, and then pickled for two days in spiced vinegar, after which they are ready for eating, and are considered excellent by the fishermen
The usual way of preparing sturgeon for market, however, is by smoking. Strips an inch or two thick are put through a pickling process, then hung on hooks over a slow fire of corn cobs or sawdust of hard wood. After thus smoking for a single night they are ready to be shipped to any part of the country.
The preparation of caviare is an important part of the business. While this is not yet in as general use in this country as in Russia and other parts of Europe, where it is so highly esteemed that no repast is served without it, it is coming into favor, especially in the Western aüd Southern States. There are two sorts of caviare, the soft and the hard; the latter being worth about twice as much as the former The value of the best hird caviare, in the South, early in the spring, is said to be from fifteen to twenty cents a pound.
In order to make the best article it is necessary to strip the roe from the sturgeon as soon as possible after the fish has been caught. Before being dried, it is rubbed through a coarse sieve to break the eggs apart, and to free them from membranous tissue. Next the roe is thoroubgly salted; after which it stands a certain length of time. Then it is emptied into fine sieres, where it remains till it is so dry as to roll like shot. The finished caviare is packed in casks previously lined with napkin linen, each layer being salted with fille table sait. Each keg holds about 150 pounds. Witb proper care, the caviare may be kept for a year or longer. For the trade it is often canned like fruit, in which condi ion it will stand transportation to warm countries, and will keep an indefinite length of time. It may be eaten as put up without further preparation; though it is thought to be improved in flavor bs the addition of a little vinegar or lemon juice. Pressed caviare is a favorite with Russian soldiers, who are said to take a liberal supply in their knapsacks whenever they are going on a long march. Improve ments might be made, no doubt, in the preparation of Ame rizan caviare, and the subject is worthy of receiving the especial attention of packers.

Right-handedness" extends very far along the animal series. Parrots hold their food by preference in the right foot. and, though we cannot speak positively, wasps, beetles, and spiders seem to use the right anterior foot mos commonly.

Red, white, Blue, Green, and Violet Prints.
At a recent meeting in this city of the Association of imes Hotographers, as reported in The Phoographic Heckel a large number of blue prints were exhibited by Mr. Take 1 oz he gave his merhod of maki Take and an of wast pred in 7 to plying the iron solution first, and when dry, coat with the prussiate solution, and the paper is ready for exposure. To judge of its proper time requires experience. Fix and wash in plain water only. Red prints are made by coating paper with a solution of 15 grs . nitrate of uranium to 1 oz . water, with which the paper is coated. Print till the image is fairly visible, and apply a solution of red prussiate of potash, which renders the print of a brownish red color This has been done very successfully.
Mr. Ehrmann: The addition of liquid ammonia to the citrate of iron and ammonia solution, when employed for the making of blue prints, varies the tone of blue to such an extent that even a perfect violet has been attained. Red prints, as mentioned before, can also be modified to a variety of colors. He thought weaker solutions may possibly give better results as to color. He employed a one per cent. solution of the uranium nitrate and a two per cent. solution of the red prussiate. An after treatment with sesquichloride of iron renders the print green. By varying the strength of the solutions employed, different shades of color may be obtained. His experiments on gelatine positives, the results of which were laid before them some time ago, had convinced him that in a similar way all gradations of color from canary yellow to emerald green, and positive blue again, can be as readily obtained on a surface of paper as on gelatine.
Mr. Powers gave as his mode of making blue prints:
Solution No. 1.

This paper is very sensitive to light. Expose and develop with

Solution No. 2.

The tone is blue, but may be changed to red and gradaions of other colors with ferricyanide of potassium 30 grains to 1 ounce of water, and perchloride of iron as demanded. Fix with acetate of lead
Mr. Murphystated that he makes a very fine red on plain silvered paper by using 1 grain of chloride of sodium to 1 ounce water, into which the paper is immersed and very speedily removed. Sensitize with neutral nitrate of silver, 10 grains to the ounce. Fix in hypo. 1 to 32 , made strongly alkaline with ammonia. Prints of that kind are frequently made for certain engraver's purposes, for which the silver deposit is finally bleached by bichloride of mercury.
Mr. Grenier: Dioxide of manganese and hydrochloric id remove tie yellow tone of ten remaining after the use of mercury.
Mr. Murphy: This bleaching may be effected to greater perfection with perchloride of iron.

The Flow of Water in Pipes.

Mr. Hamilton Smith, Jr., has prepared for the transactions of the American Society of Civil Engineers a very valuable record of experiments undertaken with the object of redetermining the laws governing the flow of water through pipes. The experiments were 88 in number, and conducted under widely differing conditions as to dimensions of pipes, bulk of water, and every other factor that has been recognized as affecting the result.
It is well known that American engineers have exception al experience in the conveyance of water in pipes under ex traordinary pressures, particularly in connection with Cali ornian hydraulic mining operations. Of the experiment referred to 71 were made by Mr. Smith personally, with pipes ranging from 4 feet to $1 / 2$ inch diameters, and with velocities varying from 20 feet to $\frac{1}{6}$ foot per second.
The materials of which the pipes were made were wrought sheet and cast iron, glass, and wood; and their interior sur faces varied from the almost perfect smoothness of glass to the roughness of old iron much incrusted by the continued action of soft water. It appears from Mr. Smith's incidental observations that the common Californian practice, for water with heads of about 200 feet, is to use pipes made of common No. 14 sheet iron, single riveted, pitched inside and out, and simply put together, stove-pipe fashion, with slightly conical joints.
Details are given of the discharge of a pipe belonging to the Spring Valley Mining Company, laid in 1870, and said to remain in perfect condition. This pipe is made of double riveted sheet iron, three-eightbs of an inch thick at the point of greatest pressure, where the actual head is no less than 887 feet. The maximum tensile strain on the iron is 17.549 pounds per square inch.
Round stones weighing about 25 lb . passed through the puted velocity of the water is $10 \cdot 78$ feet per second. It may
be remarked, however, that the value of m, the variable coefficient depending upon the character of the interior of a pipe, is very low with small, rough pipes, while it increases with the velocity for smooth pipes, and also increases with the diameter. The importance of this question to the hydraulic engineer is manifest from the fact that the experiments show a variation in the value of m from 33 to 67 .

An Inexhaustible Fish Supply.

In the opening lecture before the Fisheries Conferences, in London, Professor Huxley presented facts substantiating his statement that in fishing districts an acre of sea was more profuse in food production than an acre of land. He said that he had no doubt that there were some fisheries which were inexhaustible. Instancing the salmon rivers, he said it was quite clear that those who would protect the fish must address themselves to man, who was reachable by force of law, and that it not only might be possible, but it was actually practicable to so regulate the action of man with regard to a salmon river that no such process of extirpation should take place. But if we turned to the great sea fisheries, such as cod and herring fisberies, the case was entirely altered. He believed that the cod, herring, pilchaid, mackerel, and similar fisheries were inexhanstible, and were entirely beyond the control of man, either to diminish the number of fish or to increase them by cultivation. But there were sea fisheries capable of being cultivated and controlled, in part at least, by man.

Seaweed for Boilers.

A new material for coating boilers, etc., for preventing radiation of heat, is described by Mr. Edward Stanford, F.C.S., as made of charcoal cemented by the new substance "algin," which he has succeeded in separating from the commoner sorts of seaweed. Cbarcoal has long been known as one of the best of solid non-conductors of heat. It would have been employed for this purpose before now but for the difficulty of agglutinating it. Mr. Stanford's " carbon cement" consists of 97 per cent. of charcoal and 3 per cent. of algin, which is quite sufficient to make it cohere. As the charcoal itself is made from seaweed, it is a somewhat remarkable fact the whole covering is thus made from the one material.
The solution of algin is also described; on the authority of Mr. Spiller, as the best thing yet discovered for arresting or preventing incrustation in steam boilers. Mr. Stanford describes most of the troublesome incrustations as orgauic compounds combined with alkalies. The algin solution is said to be highly efficacious in precipitating the lime in such a fine state of division that it can be easily blown out. It follows, therefore, that seaweed, in one form or another, is proposed as an excellent internal and external application for steam boilers.

Yellow Fever.

Dr. Dominigos Freire, appointed by the Brazilian Government to investigate the nature and cause of yellow fever outbreaks, has reported some of his researches. He has found in the soil of cemeteries where yellow fever subjects have been interred myriads of microbes identical with those seen in the vomit, blood, and urine of patients suffering from the fever, as well as vibriones in rapid motion. Dr. Freire believes that, after passing through the porosities of the earth, these germs disperse themselves in the atmophere, while others are carried by storm rains to the towns, and there provoke epidemics of the disease. He pronoses that the bodies of all persons who die of yellow fever be cremated.

Blinkers.

The question bas often been asked, "Why do borses wear blinkers?" We cannot answer the question. It seems to us that they are useless, ugly, and, to some extent, injurious to the eyesight. The most beautiful feature of the horse is its eje. If it were not "hid from our gaze," it would serve to denote sickness, pain, or pleasure. Many a time would a driver spare the whip on seeing the animal's imploring eye. The argument in favor of blinkers is, we believe, that horses are afraid of passing carriages. This objection, if valid, is of little weight, as such timidity would soon be overcome. We trust, now the cruel bearing rein has been cast aside, that blinkers will also be abandoned-a course which would, we feel assured, be attended with advantage to both man and horse.-Lancet.

The Illuminations at Moscow.

The following are details by which the illuminations at The Tower of Ivan the Great and its side galleries were lit up by 3,500 small Edision lamps, worked by 18 portable engines, which moved a number of dynamo-electric machines of every existing system. The portable engines and machines were kept at the other bank of the Moskwa. The sheds communicated with the tower by 70 overhead wires. On the ramparts of the Kremlin toward the river eight large and ten smaller electric suns threw their light over the river. The rest of the illuminations consisted in 200000 lamps and 30,000 colored glass globes, 50,000 lanterns of Venetian glass. 600,000 tapers, and 10,800 pounds of fireworks.

Currequmatutr.

Photographing the vocal Organs.

To the Editor of the Scientific American:
Inotice in your last issue an article on "Photographing the Larynx," in which you give the credit of having successfully photographed the vocal organs to certain scientists in England. A year ago last May, Dr. T. R. French, of Brooklyn, presented to the American Laryngological Society, at Boston, several views of the larynx, taken in Brooklyn a few days previous to the meeting and taken with ordinary su:light. On (or about) May 23 last, he read a paper on the subject before the same society at their meeting in New York. and presented numerous pictures of the vocal organs York. and presented numerous pictures of the vocal organs
in bealth while producing sounds, as well as several views of diseased states of the larynx, tumors, etc., all of which of diseased states of the larynx, tumors, etc., all of which
were taken with a small apparatus held in the band, a mere attacliment to the usual laryngoscopic mirror.
Besides this he' presented several pictures of the post nasal passages, the photographing of which has never been at tempted before. The medical journals of about that date gave a full report of the matter. I call your attention to these facts, with the thought that perhaps you might wish to accord to American experimentalists the credit that is due them.

Geo. B. Brainerd.
23 Lafayette Avenue, Brooklyn, N. Y.

The Remarkable Shark
 To the Editor of the Scientific American:

The communication of Mr. W. Morey on the capture of "A Remarkable Shark" (Rhinodon typicus) off Ceylon is of interest, and is the first notice of its discovery there that has corme to my knowledge.
The occurrence of the species in the Singhalese waters is not, however, very wonderful, for the sharks have so wide a distribution, and are such great rovers, that they may turn up on the most distant coasts.
It has, indeed, been remarked by Dr. Günther, an English ichthyologist, that the rhinodon "does not appear to be rare in the western parts of the Indian Ocean, and possibly also occurs in the Pacific." It grows to a larger size even than Mr. Morey supposed, and, according to Günther, "is known to exceed a length of 50 feet, but is stated to attain that of 70 feet." Mr. Morey is mistaken in supposing that it is "destitute of teeth;" it has, in fact, extremely small but numerous teeth of a subconic form, and in many rows. The rhinoton in the smallness of the teeth agrees with the great basking shark (Cetorrinus, or Selache, max$i m u s$), but is distinguished by many characters from that animal, and has been set apart as the type of a peculiar family called Rhinodontidæ.
It may interest your readers to learn that the Rhinodon has a representative in American waters. The species re ferred to is a very large sbark that has been found in the Gulf of California, and indicated under the name Micristodus punctatus. The name implies that it has exceedingly small teeth and is spotted. The teeth are peculiar in form, and have a heel like base projectıng forward and points directed backward.
The list of sharks given by Mr. Morey as inhabitants Ceylon is not correct.

Theo. Guld.
Smithsonian Inst., Washington, D. C., July 13, 1883.

Alloys.

A mass formed by the mixture of any two or more metal ic bodies, in which the different constituent parts canno be distinguished from each other by their external charac ters, is an alloy. In this definition no distinction is made between mere intimate mechanical mixtures and prope chemical compounds, because we are hardly possessed of sufficiently accurate experiments to ascertain which belong to the former and which to the latter class. The mixed metals into which mercury enters are called amalgams, and they possess many curious and peculiar properties; in their gen eral characters, however, they resemble the other metallic compounds, and therefore the observations in this article are equally applicable to each
Almost every metal that is met with in commerce contains a small variable proportion of some other metal, and there fore, strictly speaking, they are all alloys. Thus, lead contains silver; tin, arsenic; copper, iron; but after the usual processes of refining are gone through, the quantity which each metal holds of any other metal is so small that its properties are not perceptibly altered by such admixture A metallic mass, therefore, is scarcely considered as an alloy except the characters of the prevalent metal are obviously modified; in the same manner as the oil of vitriol of the stores acts the part and bears the name of sulphuric acid, notwithstanding a minute portion of potash with which it is combined.
Alloys are prepared either by melting the ingredients separately and pouring them together when they are liquid, or by fusing them all down together in the same crucible. When the metals employed are of different degrees of fusibility, and especially when the one that is the easiest fusible is also very inflammable, the first method is had recourse to as when copper and tin are to be combined; but the latter is
practiced in those onses where the materials are either
the temperature required for melting the least fusible is not enough to volatilize that which is the most so. In order to prevent oxidation, the crucible ought to be lined with char coal, and a quantity of decrepitated salt should be strewed over the top of the ingredients, which, melting at a very low heat, will float on the surface of the metal, and thus exclude contact with the air. By taking these precautions a lower and longer continued heat may be advantageously substituted for a shorter and more violent one, the ingredients will be mingled more perfectly, and the loss and consequent inaccuracy when experimenting on the most inflammable metals will in a great measure be avoided. As soon as the mass is liquefied, it will be of advantage to stir it repeatedly, to prevent the ingredients from separating according to their respective specific gravities, before they have had an opportunity of combining together; for this purpose a charred stick, or rod of baked clay, is to be preferred to one of iron, as this last would in many cases be acted upon by the melted metal, and spoil the process. The alloy should also be poured alternately from one red hot crucible into another, and back again, to insure intimate mixture of the ingredients. These are by no means useless precautions, for where one of the metals is of considerably greater density than the other, it requires particular care to make the quality of the alloy equal throughout the whole of the mass. Schlutter relates that twenty pounds weight of silver, containing about a fifty-sixth part of gold, was melted in a crucible, and poured into cold water to be granulated. Samples from the top, middle, and bottom of the mass were then assayed, and were found all to differ in their proportions of gold. In like manner, Mr. Hatchett observed that gold made standard, with the usual precautions, by silver, opper, lead, antimony, etc., and then cast into vertical bars, was by no means distributed equally, but that the top of each bar (being composed of the portion of alloy which occupied the bottom of the crucible) was both purer and of greater specific gravity than the lower end of the bar.
It is a matter of considerable importance to ascertain whether alloys are mere mixtures or proper chemical compounds. In most instances there seems to be little or no doubt of the latter being the case, and perhaps all the supposed examples of the contrary may be looked upon as inslances of the supersaturation of one of the ingredient by the other.
The evidence of chemical affinity between metallic substances is of the same kind as in other cases, consisting either in an entire change of properties, or in such modifications of them as are obviously not intermediate between those of the constituent parts.
The remarkable difference between the fusibility of some alloys and that of their constituent ingredients may be considered as a sign of real affinity. As far as experiments have been instituted on this subject, it appears that the point of liquefaction in almost all alloys is lowerthan would have been inferred from the mean fusibility of their elements. Thus, a mixture of gold and iron will melt at nearly the same temperature that is required for the fusion of gold alone. In some cases the fusibility of the alloy is even greater than that of its most fusible ingredients; thus an alloy of tin, lead, and bismuth will become fluid in boil ing water; a heat not sufficient for the melting even of bis muth, the most fusible of the three.
Some metals appear capable of uniting with each other in any proportions, as gold and copper, lead and tin, lead and silver, etc.; others are said to combine only to saturation, s silver and iron, lead and iron, etc.; of this, howeve there seems to be some doubt; while a few have been reck oned absolutely incapable of combination; thus, quick silver is supposed not to unite either with iron, cobalt, or nickel. Something, however, in these three instances is to be attributed to the hardness of the metals, and to their equiring for their fusion, or even softening, a heat much reater, that will entirely volatilize quicksilver, so that the circumstances most favorable to combination cannotin thes ases be brought about. This much, however, is certain that if iron be previously combined with tin or zinc, the misture will dissolve in mercury without difficulty, forming in the first instance a magnetic, and in the latter an unmag netic triple alloy.
The durability of alloys is in most cases much less than might be supposed from that of their compounds; so gene rally indeed does this happen, that Macquer and Geller are inclined to deny to those metallic mixtures that ar ductile the name of alloys. This, however, is clearly carry ing the matter to an excess. Some very ductile material are rendered perfectly brittle by the addition of a very minute proportion of even another ductile metal, as is strikingly the case with the alloy of lead and gold, half a grain of the former rendering an ounce of the latter ex tremely spongy and brittle. In many of the brittle alloys, however, a variation in the proportion of the ingredient will so greatly modify this quality, without materially affecting the others, as to render it probable that brittleness is rather a proof of supersaturation than of chemical union Iron, when combined with about a fifth of tin, forms a white alloy, whose fusibility, specific gravity, etc., clearly demonstrate a chemical union, yet the compound is very soft and ductile: but when the proportion of tin is rendered equal with that of iron; the mass is perfectly brittle. So in ike manner copper with one-sixteenth of tin forms a mal leable alloy, but if the tin is increased to one-third of the whole, the alloy is brittle. Even brass, which, when made
than copper itself, becomes brittle when zinc forms one third of the mass.
In a few cases the color of an alloy may be considered as indicative of chemical union, being by no means interme diate between that of its elements. Of this kind is the golden color of the alloy of copper and zinc. and the silver hue of arsenicated copper; but the general similarity of color between the white metals and their alloys confines the application of this external character to a very fow in-stances.-Glassware Reporter.

A New Kind of Gunpowder

Himly, in his efforts to discover a new kind of gunpowder hat should possess more power than the ordinary powder without the dangerous properties of the vitro-compounds like dynamite and that class, found that the best results were obtained with a mixture of saltpeter, chlorate of potash, and a solid hydrocarbon.
The new powder is made by mixing finely pulverized saltpeter, cblorate of potash, and coal tar pitch with enough benzol (from coal tar) to make a plastic paste or dough. This is formed into flat cakes by pressing it into moulds, and the benzol allowed to evaporate. The cakes are then granulated like any other gunpowder. Like ordinary powder, the grains are irregtlar and can be made of any de sired size. Its specific gravity is 0.9 , or a little more, agreeing with common gunpowder.
It is quite hard, and does not smut off even when damp. It will bear a heat greater than that of melting tin without change. It will not ignite by a single spark of short duration. If ignited in an open vessel, it burns rapidly with a white light. In a closed space it burns violen ly, and leaves behind a slight residue, producing but little smoke. A gun is not injured in the least by the products of its combustion.
The advantages of this powder over those previously in use are essentially the following

1. Ease and rapidity of manufacture
2. There is no danger in making it.
3. Its freedom from any hygroscopic qualities; 100 grammes of it exposed to damp weather for four days in an open window showed no gain of weight with a delicate balance.
4. It is two and a half times more powerful than common powder.
5. The slight residue, leaving scarcely anything.
6. The fact that it gives off so little smoke as to be scarce ly noticed, and what is formed is totally innocuous as con trasted with that from nitro-explosives.-Repert. Analyt. Chemie.

Improved Photo Developer.

Where the photographer intends to travel, and develop nthe route, it is very desirable to reduce his chemical outfit to the smallest bulk and to the fewest liquids possible. Mr. G. Cramer, the dry plate manufacturer, gives the following formula for a developer, which be considers gives the best of results, and at the same time has the advantage of extreme portability:

Stock Solution

The sulphuric acid and aqua ammonia should be meas ured very exactly. Instead of three ounces of crystals, 1 w, ounces of granular sulphite of soda may be substituted to produce the same effect. Dilute a sufficient quantity ior one day's use as follows: for ordinary purposes, one part in eleven; for very short exposures, one part in three to six; for over-exposed plates, or in all cases where great intensity and contrast are desirable, one part in twenty. This developer may be used repeatedly if it is always returned immediately to the pouring bottle, which should be provided with a tight fitting rubber stopper. As long as the solution remains transparent, it is good; but when it looks muddy its use should be discontinued.-Philad. Phot.

The Effects of Thin Atmosphere

Virginia City, Nevada, is a little more than 7,000 feet above sea level, yet even at that comparatively moderate altitude as compared with some other inhabited elevations the housewife finds some difficulty in cooking by boiling, the water boiling at too low a temperature to thoroughly cook meat and vegetables. The Virginia City Enterprise says that there is complaint every year that the peas brought from California are as hard as buckshot. The trouble is that the water does not become sufficiently hot to cook them. Here, when either meat or vegetables are being cooked by boiling, the vessel used should bave a close fitting lid, in order that the steam may be confined. There is, of course, no trouble about roasting meats or anything else, fire being as hot here as in any other part of the world. While strangers complain much of the thinness of our atmosphere, old settlers are not much distressed, and children born and reared here seem not to suffer inconvenience in auy way. They race up and down the sides of the mountains full speed without Anding any dittoulty in breathing,

A Peculiar Worm Disease

At a recent meeting of the Chicago Amateur Photographic Society, Prof. Bellfield showed a series of photo-micrographs, ove of which, he said, represented a peculiarly interesting animalcule. It was a species of worm found in the blood-a new disease, and, so far as known, confined to the tropics, so that, as skillful medical practitioners are not very plentiful in those regions, the opportunities for studying it have been very limited. The particular case from which this photo-micrograph was made was an English soldier who had been some time in India. At the age of 25 he was sent home with his regiment, and quartered in London. Soon after arrival there he showed such peculiar symptoms that he was sent to hospital, where the speaker was then practicing. The picture before you represents a drop of blood obtained by pricking his finger. You will see it contains a great number of minute worms. The most remarkable part of the whole matter is, that these worms are preseut, or at least visible, only at night, from 5 or 6 P.M. to 8 or $9 \mathrm{~A} . \mathrm{M}$. They gradually increased in number from 6 P.M. to midnight, and then diminished to 8 A.M., by which time they had completely disappeared. The maximum number (about midnight) would be from 100 to 125 in a drop of blood such as could conveniently be included under the cover glass. It was very diffi cult to count them on account of their continual squirming, but by different persons counting, so as to check one another, we were sure there were over 100 We had this pationt und abservation for about our months, and made a chart show ng the variations in number of hese parasites from hour to hour and from day to day. We also made a calculation of the total number probably contained n his blood at the maximum and estimated it at about fort millions. Now, the question is when they disappear what b comes of them ? No satisfactor answer has yet been given to that question. One theory is that they are dissolved in the blood, and as they are of a very low grade or organism, ther would seem to be some founda tion for that theory, but it is open to the almost insuperabl bstacle that no mother worm however industrious, could ibly produce forty millio day, and keep it up for three months or more. He might menion here that the parent worm bas only been found in two cases. It inbabits the same body in which the larvæ are found, is nearly three inches long, and bout the size of a hair. Th disease is of such recent origin nd as previously mentione onfined to tropical hat opportunities for been very limited. It was firs noticed in India in 1869. Th ikeness of this parasite to th richina has been generally no iced-each has a distinct sheath, and each is capable o violent motion. It is, howeve smaller than the latter, and i found only in the blood, former inhabits th muscles. It has been ascertaine hat the larvæ of these blood worms are sucked up by mos quitoes, develop in the body of the latter, and after the mosquito's death presumably arrive at maturity in the water, and are imbibed by human or other animals in drinking the water.

Useful Kind of Solder

A soft alloy which attaches itself so firmly to the surface of metals, glass, and porcelain that it can be employed to solder articles that will not bear a very high temperature can be made as follows
Copper dust obtained by precipitation from a solution of the sulphate by means of zinc is put in a cast iron or porceain lined mortar and mixed with strong sulphuric acid, pecific gravity $1 \cdot 85$. From 20 to 30 or 36 parts of the copper are taken, according to the hardness desired. To the cake formed of acid and copper there is added, under constant stirring, 70 parts of enercury. When well mixed, the amalgam is carefully rinsed with warm water to remove all the acid, and then set aside to cool. In ten or twelve hours it is hard enough to scratch tin. If it is to be used now, it must be heated so hot that when worked over and brayed in an iron mortar it becomes as soft as wax. In this ductile form it can be spread out on any surface, to which it adheres when it gets cold and hard.-Amateur Mechanics.

IMPROVEMENT IN THE MANUFACTURE OF ILLUMINAT

 ING GAS.Coal gas is commonly made by placing from two to four hundred pounds of bituminous, or, as it is better known, gas coal into an iron or fire clay retort heated externally. The air being excluded from the retort, the coal is coked, the gas, tar, and other products of the coal being conducted away through suitable purifying vessels, and the coke re maining in the retort being removed at regular periods ranging from three to six hours, when the retort is again freshly charged with coal. The work of discharging and recharging the retorts is done mostly by hand labor, and from the fact that the temperature of the retort house when this work is done often reaches 116° to 120°, it may be in ferred that this work is extremely trying to men, even afte being long used to it. To make water gas, anthracite coal contained in a suitable apparatus is heated by external fire, but more frequently brought to incandescence by direct combustion. The supply of air is then shut off, and the vessel being closed by a valve, steam is admitted. Th steam passing through the heated coal is decomposed prin cipally into hydrogen and carbonic oxide. In a further tage this otherwise non-luminous gas is enriched by hydro-
piece, A, the joint is effected by the water lute, L, P and H being supported independently by beams, B , and suitable pillars. G is a water gas generator or the coke chamber, provided with doors, DD, and a blast pipe at X, and steam connections. C are hot air chambers or flues for the passage of the gases of combustion. S is the superheater or fixer for the gas. \mathbf{Z} is the pipe through which the good gas passes to the purifying apparatus
The process of gas making by this system is as follows: The hopper being filled with coal, the air tight cover closed, and the retort brought to a dull red heat, say about 980°, near which it is to be kept throughout the process, the retort is caused to be slowly revolved by means of a cog wheel keyed upon the lower end of the same, which is engaged by a pinion upon a shaft, not shown in the cut, which mparts motion to the whole. As the retort slowly turns over the fire on the grate, F , the coal will drop from the upper chamber into the next below, and so on, until the coal deprived of the richest and largest part of the gas, drops into the coke chamber. As the upper chamber of the retort is emptied, the measuring drum, \mathbf{M}, delivers a fresh charge of coal from the hopper into the retort. At the temperaof coal from the hopper into the retort. At the tempera-
ture mentioned, the resulis of a ton of coal would be about
6,000 cubic feet of rich gas, and a large amount of tar and

NEW APPARATUS FOR THE MANUFACTURE OF ILLUMINATING GAS. other vapors. These vapors in the ordinary processes are, almost immediately after leaving the retort, condensed in the hy. draulic main, where they must pass through a lute composed of tar and water in escaping from the retort. But in this process the tar still in the shape of vapor-to which condition it cannot be brought again by ordinary means after being once condensed-is brought into the superheater, S, a retort heated externally and filled with loose brick laid in a checker form as shown, and then the tar vapors are for the most part converted into rich gas. And in this way alone it is believed that the product of gas per ton of coal would exceed any results previously worked by the old processes. The gas, too, will be exceedingly rich.
The coize while still in a red hot state, is treated with a current of superheated steam, and until quenched will decompose the steam, and thus not only considerably swell the volume of gas made, but this volume being non-luminous, it will in a simple and economical manner reduce or dilute the otherwise too rich gas made in the first operation. The quenched coke may then be removed. But if it is not desired to save the coke, the process for making water gas in addition to coal gas, and in combination with the sameaided with a little oil-can be fully carried out, and all the coal placed in the retort be thus converted into gas, excepting naturally that part of the coal-the slag or clinker-which must be removed the usual woy through the lower door of the generator, G.
It has been found in practuce that iron retorts, when not heated above the temperature herein stated, have, after fifteen hrough the purifying apparatus, the gas is disposed of the months' use, been practically as good as new. Fire clay
same as gas made from coal only.
In the accompanying engraving we illustrate in section a system for the manufacture of illuminating gas, devised by Mr. Frederic Egner, Engineer to the People's Gas Light and Coke Co., of Chicago, Ill., which seems to have novel and interesting features. By the use of this, the manufacture of coal and water gas may beunited; canuel or ordinary gas coal being the principal material used, and this with the least amount of manual labor, the work being done for the most part by machinery, the action of the gases themselves, and the gravity of the material.
H is a hopper for coal, closed air tight at the top by the removable door, \mathbf{O}. Several of this kind of doors 1 are placed in desirable positions about the apparatus. V are valves to be used as occasion may require. \mathbf{R} is a cast iron retort, cylindrical in form, divided internally into a number of compartments by annular lips or flanges and longitudinal ribs or partition pieces. The retort rests at both ends on half pillow blocks, and is closed at the ends and still further supported by one stationary and one movable mouthpiece. The movable mouthpiece, A, at the upper end rests on the inclined slide, P, thus allowing expansion of the retort. Between the hopper, H , and movable mouth-
retorts have been substituted for iron, because by enabling the coal to be subjected to a greater heat a larger yield per ton was obtained. But here we convert the gaseous products of the coal into fixed gas aud condensable vapors in the iron retort without injury to the latter, and then send these products into a fire clay retort heated to any required degree, and then complete the operation. By comparing this with older processes, it must be admitted that the system is worth a fair trial at least.
Further particulars may be obtained by applying to the inventor, Frederic Egner, care of People's Gas Light and Coke Company, 39 and 41 So. Halsted St., Chicago, Dr H. Winnacker (Naturforscher) has made a particu-
study of the vegetation of sewers and of drainage chanar study of the vegetation of sewers and of drainage chan nels. He finds that the algæ which are harmless flourish best in channels which are constantly traversed by clean water. On the other hand, the Schizomycetes (including Micrococcus. Bacillus, Spirillum, and Bacterium) which are wet and dry. A green deposit is a favorable sign.

Photographs and other pictures may be colored from the back as follows:
Take a smooth piece of glass rather larger than the print to be colored, and, after having cleaned it thoroughly, dust it over with powdered French chalk; rub it well into the glass, and then wipe it off with a piece of clean linen.
Next coat the plate with plain collodion, and allow to set, but not dry, otherwise the film will probably leave the glass. When the collodion is set, it in turn receives a coating of gelatine solution-one part by weight of gelatine to eight parts of water. This is then placed on a level surface, care having been taken that the gelatine solution has flowed well to the edges of the plate. It must then be left to d:y. The print should also receive a coating of gelatine similar to that on the plate. This is best done with a soft brush or a piece of clean sponge, by which means there will be no danger from air bubbles. The picture must then be dried. Next wet the film on the glass plate by passing a wet sponge over the surface; ani: "t the same time wet the print by immersing it in cold water for a few seconds. Now lay the print face downward on the glass plate, bringing them in contact by means of a squeegee or roller, taking care, while doing so, not to disturb their position, as it may wrinkle the film beneath. It must then be allowed to dry. Next rub the paper away from the back of the print with fine glass paper, working gently in a circular direction, the object being to get it as thin as possible. Care, however, must be taken not to rub away all the paper.
The next operation is to render the print transparent. There are several substances for rendering the print transparent, but I have found ordinary paraffine wax melted at low temperature answer as well as any hing. Place the print in this, keeping it in a molten condition, and when trans parent the picture should be removed. I the temperature be raised too high, it is liable to turn the print yellow
When cold wipe off all excess, and then proceed with the painting. This only requires a little ordinary care. It is best to begin with the eyes and lips, and all small places which require different colors to he main color. When these are dry, the color of the flesh and dress may be laid on with a large brush. When the paint is thoroughly dry, a sharp knife is passed ound its margin. The print is then aised from the glass, which it leaves reely, and a delicately painted photoraph is the result. It may then be graph in ard in the ordinary This prace paints; but if the operator wish to employ water colors he must use some medium, such as shellac dissolved in borax, fo mixing the colors. $-E$. E. Cadett, in $B r$ Jour. of Photography.

Nitrogen Selenide.

Verneuil has recently sent to the Bulletin Soc. Chimie a report of his experiments on the preparation of the selenide of nitro gen which was discovered by the late Pro fessor Wobler in 1859. The Gottingen pro fessor prepared it by saturating selenium perchloride with ammonia gas; but Ver neuil finds that the method more recently proposed by Fordos and Gelis for the pre paration of nitrogen sulphite yields bette results, and he takes 10 grammes of the perchloride and mixes it into a paste with a few drops of carbon disulphide, and the paste is then suspended in a liter of car bon disulphide, in which it is almost in soluble. Into this liquid a current of dry ammonia gas is passed. Flocks of ammonium chloride are precipitated, and the liquid passes from a rose tint to a dark cochineal red color. Finally, the red color disappears and brown flocks are thrown down. The current of gas is con tinued until the flocks become of a clear orange tint. The liquid is filtered, and the flocks washed with carbon disul phide and dried. On removing the ammonium chloride with water, washing again with carbon disulphide, and dry ing, the nitrogen selenide is obtained pure in amount equal to 80 per cent of the theoretical yield. It forms an amor phous powder, insoluble in all solvents, having the form ula $\mathrm{Se}_{2} \mathrm{~N}_{2}$. When dry it detonates instantly by a shock being as easily exploded as mercury fulminate, less easily than nitrogen iodide. Potassium hydrate and hydrogen chloride decompose it, producing selenite of potassium and ammonia.

[^0]
THE ARGUS PHEASANT

In the year 1780, the first skin of a magnificent bird, called the Argus pheasant, was sent to Europe. It excited universal admiration. A little later, in 1785, Marsden gave the following account of its manner of living :
' The famous Argus pheasant, or ' kuau,' is a bird of unusual beauty, perhaps the most beautiful of all birds. It is a very difficult matter, after it has been captured, to keep it alive for any length of time. It hates the light. When it is in a dark place it appears quite lively, and its voice may perhaps be heard. Its tones are more pitiful but not quite so shrill and clear as the peacock. In bright sunlight it sits motionless. Its flesh tastes exactly like the flesh of other pheasants."
Raffles says: "This bird, which plays an important part in Malayan poetry, lives in the deepest wilds of Sumatra, and is commonly found by pairs. Solomon Müller asserts that he heard the strong voice of this bird for the first time, when near Southern Borneo, sixty meters over the sea. The young, as with the peacock, obtain their beautiful plumage after repeated moulting.
The natives catch these birds in snares, because it is not only remarkably shy and cunning, but it conceals itself in the thick undergrowth of the forests, so as to escape even the
now the Argus pheasant may be found in several zoological gardens. It is really incorrect to call this bird a pheasant, for, as Rosenberg asserts, in gait, behavior, and disposition it is a peacock; possesses its loud voice, and even its expression of countenance
When sitting it holds itself in an almost horizontal position, carries itself in a lazy manner. It walks with long strides, and nods its head with eve:y step. Its head is drawn in between its shoulders, and is only thrown forward in walking; it runs dexterously along the branches; springs without help from its wings over long distances; is not a good flier.
The Argus pheasant (Argus giganteus) differs from all known birds in the extraordinary development of the secondary feathers of the wings. "While walking or sitting on a bough this is not so noticeable, but when the bird spreads its wings they come out in all their beauty. When the bird chooses, it can raise the tail so that it stands in the air between the wings, and is partially spread."
The bill is elongated and slightly curved at the point; the foot is long, but bas no spurs. The eye is naked; the head and back of the neck are covered with short feathers. The short crown feathers are a velvety black. The bair-like feathers of the back part of the head are yellow striped with black. The feathers on the neck are a warm chestnut brown, striped with light yellow. The middle of the back is a yellowish gray ground, marked with round dark brown spots. The longest tail feathers are black, with white spots sur:ounded with a black ring
The secoudaries of the wings are wonderful examples of plumage; they have a beautiful dark reddish brown ground color, with bright reddish gray stripes, and are covered with rows of spots, surrounded by a dark ring. Wood says that in one feather in his possession there were seventeen large "eyes" on the outer web, each being surrounded by a ring of jelty black, then with a dash of chocolate within the ring, then olive with a tinge of purple, lastly a spot of pure white near the tjp, fading imperceptibly into the olive on one side and the chocolate on the other; between these spots are some leopard-like mottlings. The inner web, is pale fawn, covered with black spots surrounded with buff, and the tip of the whole feather is deep brown, spotted profusely with white.
The ring around the eye is reddish brown, the bill ivory white, the eye bright ash-blue, the foot bright carmine
The total length of the bird is more than five feet, the plumage is so developed.
The ben is much smaller and plainer in form and the marking of the plumage. - From Brehm's Animal Life

A Diffusion Engine.

A curiosity in physics was exbibited by Mr. Woodward, lately, at the Physical Society, London, in the shape of what is veritably a diffusion engine, that is to say, a machine in which work is done by the diffusion of gases. The action of the engine is based on an experiment of the late Professor Grabam, the well known chemist. This experiment consists in taking a red clay porous cylinder containing air, and covering it with an inverted bell jar full of bydrogen. . The bydrogen diffuses into the cylinder more quickly than the air diffuses out, as is shown by means of a glass tube projecting from the bottom of the cylinder into a vessel of colored water. When the gaseous pressure inside the cylsharp eyes of the natives. An old Malay, whom Wallace inder is increased by the influx of hydrogen, the mixed challenged to shoot one of these birds, whose voice was continually heard in the forests of Malacca, asserted that during twenty years of his life as a hunter he had never killed one of these pheasants, or even seen one in the open forests. From Padang, on the western coast of Sumatra, Rosenberg writes: " The natives often bring me living birds, receiving from one and a half to two guldens in payment for each one. They are also numerous in the mountain forests of this island. In the midst of the deepest wilds the traveler or hunter sometimes comes upon a bare place, cleared carefully of branches and leaves, from which paths run into the forest in all directions. Here, sometimes at midday, the Argus pheasant may be found resting, playing, or fighting; they may be seen like hens lying on the ground, which is warmed through by the sun's says, and 'bath ing' themselves in the sand. The hunters place their snares in these paths. The hen lays from seven to ten white eggs, a little smaller than goose eggs. The nest is concealed in the tbickest undergrowth. In freedom the bird subsists on insects, snails, worms, leaf buds, an seeds of various kinds. The flesh is very palatable.' Until recent times, Marsden's opinion that these birds could not endure captivity was thought to be true. 'But gases descend this tube and bubble out of the water. On removing the bell jar, the action ceases and a reaction, due to fall of pressure, causes the water to rise in the tube. By suspending the gaseous cylinder of porous clay from i balance beam, and directing a jet of hydrogen gas against its side, the beam begins to oscillate and keeps plainly oscillating for a length of time; the action being sustained, as Professor W. G. Adams, F.R.S., pointed out, by the alternations of gaseous pressure in the cylinder.

Copper and Lead in Food.

A. Gautier shows that copper is little calculated to produce mortal results. The solubility of most of its salts, their marked color, nauseating taste, and emetic action give at once warning. The salts of lead, on the contrary, have no pronounced taste, or are even sweetish. They are in general colorless. If introduced into the system, there is no alarming effect until the nervous centers, the liver, and the blond have become interpenetrated with the poison. All fonds sold in tins, especially if of a fatty nature, public water supplies, wines, beers, effervescing drinks, the glaze of earthenware, enamels, and especially culinary utensils lined with tin, may introduce lead into the system.

Recent Progress in the Manufacture of Soap and Candles.

There have been no recent improvements in the manufac ure of stearine candles beyond perfecting the saponification with sulphuric acid, and obtaining good results on a large scale without distilling. The candles are no better than they were, except that they are harder, and there is a certain disadvantage in this, for unless they are carefully lighted the stearic acid will run off in places, forming points and dents that surround and injure the light. The artificial butter and oleomargarine manufacture has withdrawn the more easily fusible compounds from the market, leaving the solid stearine for candle making. This has necessarily raised the melting point of the pure stearic acid, hence the candles unavoidably run off, because a part of the small flame formed by the burning wick is unable to draw up the melted stearic acid. It is therefore necessary to hold the candle horizontally while lighting it, and turn it slowly around until the stearic acid is partially melted, to avoid the evil just mentioned.
Many candle manufacturers add paraffine to prevent this, as it renders the candle more fusible, but if there are many candles burning in one room they produce a disagreeable odor, that is particularly unpleasant when they are extin guished.
Saponification with sulphuric acid was discovered by the French chemist Fremy, a short time after the discovery of tearic acid, and was made use of in the distillation of the fatty acids. As much as 37 per cent of concentrated sulphuric acid was employed to separate the fatty acids in the fat, and of course as a result enormous quantities of the fatty acids were destroyed and converted into tar; 100 lb of tallow would yield 83 or 84 lb . of fatty acids, while the same quantity of palm oil produced 80 to 81 lb . Sulphuric acid saponification combined with distillation is now n use in most countries.
The most important step taken in advance by soap makers is that they are beginning in various places to utilize the glycerine which has always been permitted to run off with the waste lyes. The separation of the glycerine from soap boilers' lyes will always involve considerable difficulty, for the various salts in the lye will give rise to unpleasant complications in purifying the glycerine. For this reason it is more profitable to separate the glycerine from the fats and oils before using them for soap.
There have also been very great improvements in trying out tallow and suet, and it may be said that this operation has now reached the highest degree of perfection. The in telligent soap boiler can try out the tallow that comes to hi shop in such a manuer that the neighborhood does not suffer the slightly inconvenience; no unpleasant odors are produced, for they can be melted at 130° to 140° Fahr. For bis we are indebted to a newly invented chopping device as that alone makes it possible to melt out the raw tallow a low temperature. The French chopping machines are very good, but those made by Von Lohr are still better, for they grind up the tallow to a kind of magma, so that all the fat comes out at 130° or 140°. Any residue left is melted by steam in closed vessels, or it can be converted into soap by boiling with lye.
In the stearine candle factories the slightest residues can be melted with the otherwise useless dilute sulphuric acid. This new method of trying tallow, as already mentioned, is the acme of perfection. The melted tallow is very nice and asteless, so that it can be used for food after being rendere odorless, as well as tasteless, by proper treatment.
The machines made now require a four-horse power en gine to run them; it would be very desirable to make such machines as could be used in small establishments that are Neueste Erfindungen.

Freight Train Speed.

In experiments made with a heavy freight trainon a Western road several years ago by Mr. P. H. Dudley with his dynograph car, it was found that a speed of 18 miles an hou required less power and was more economical of fuel than a slower rate of speed, say 10 or 12 miles an hour. This was the result for the entire trip, including all the elements of resistance, frictional, atmospheric, grades, curves, etc. The track was in good condition and was laid with steel rails. The reduction in the amount of fuel consumed was very marked, owing to the fact that the engine developed its power at the higher speed much more economically than at a slower rate. It was also evident that journal and flange friction, within the limits of freight train speed, decreased with the speed, and that with proper curve elevation the resistance of such trains decreases in most cases as the speed increases. It was found, however, that when trains were run at a rate much above 18 miles an hour, the atmospheric or wind resistance increased faster than the other elements of resistance decreased. These results, it is to be presumed, were realized upon tracks with moderate grades and curves. Upon long and heavy grades, in connection with sharp and frequent curves, the conditions would, of course, be ver reatly changed.
Without going into an analysis of the various mechanical auses which combine to impede the movement of trainsan exceedingly difficult thing to do with any degree of pre-cision-the fact seems to have been established by Mr. Dudley that an average speed of 18 miles an hour for beavy freight trains, upon roads as straight and lovel as the wow

York Central and its immediate Western connections, is more economical as respects consumption of fuel and tax
upon motive power than a slower speed. But whether this limit can be exceeded with like rseed. But whether ther seems to be a point at which the atmospheric resistance is increased to such an extent as to neutralize the decrease of frictional resistance due to increased speed. If this point could be definitely ascertained as respects freight trains, would go far toward settling the question as to whether hese trains can be run to advantage at a speed of 25 or eve 30 miles an hour. The old theory that train resistance in creases as the square of the speed has been a good deal shattered by recent experiments with the dynograph. In regard to passenger trains, Mr. Dudley found, if our memory is not at fault, that the draught of a certain train at starting was 12,000 pounds, while at a speed of fifty miles an hour t was only 3,000 pounds. And yet, if reliance is to be placed on some other authorities, the atmospheric resistance to passenger trains moving at high speeds increases in a ratio much greater than the square of the velocity, however it may be with journal and flange friction, curves, and grades That the maximum speed of passenger trains has not in creased within the past thirty years, notwithstanding the efforts that have been made in the way of fast running, is
an evidence that with them the practical limit has been an evidence that with them the practical limit has bee reached, under existing conditions at all events
It is highly desirable, however, that freight trains should move faster, so that a larger annual tonnage can be transported in a given number of cars. That they ought to move aster, with improved locomotives, steel rails, and bette ballasted tracks, seems obvious. That their speed will be ncreased in the future about in proportion as grades are re duced and curves straightened on all our roads, there can b no doubt; but whether the average rate of speed will be 18 or a much greater number of miles per hour, cannot at pre sent be determined.-Car-Builder.

Balloon for Service under the sea.

According to the London Daily Neros, the International Exhibition of Nice is reserving some wonders for the for eigners who may propose to pass a portion of the winter f 1883-84 upon the borders of the Mediterranean. One of these wonders is a balloon which its inventor, M Toselli, calls "the observatory under the sea." It is made of steel and bronze, to enable it to resist the pressure which the water produces at a depth of 120 meters. This " observatory under the sea" has a height of 8 meter's and is divided into three compartments. The upper apart ment is reserved for the commander, to enable him to direct and to watch the working of the observatory, and o give to the passengers the explanations necessary as to he depth of the descent, and what they will see in the depths of the sea. The second apartment, in the center of the machine, is comfortably furnished for passenger o the number of eight, who are placed so that they can ee a long distance from the machine
They have under their feet a glass which enables them o examine at their ease the bottom of the sea, with its fishes, its plants, and its rocks. The obscurity being almost complete at 70 meters of depth, the observatory will be provided wiih a powerful electric sun, which sheds ight to a great distance in lighting these depths. The passengers have at their disposal a telephone, which al lows them to converse with their friends who have stopped on the steamboat which transports the voyagers to suc places as are known as the most curious in the neighbor hood. They have also handy a telegraph machine. Be neath the passengers an apartment is reserved for the ma chine, which is constructed on natural principles, that is io say, as the vessie of a fish, becoming heavier or lighter a command, so as to enable the machine to sink or rise at the wish of the operator.

Improved Mode of Charging the Holtz Electrical

 MachineTo secure the efficient working of a Holtz induction ma chine, Mr. Karl Antolik recommends keeping the revolvin disk as close as possible between the fixed disk and the me tal points of the collecting combs, and particularly that the fixed disk should be kept warmer by at least 10 deg . Cent grade than the surrounding air. The machine should however, not be placed in front of a fire, or otherwis heated direct, as then cracks begin to form in the shellac but it ought to be effected by dark rays only.
For this purpose Mr. Antolik constructed a special lamp, consisting of a flat circular copper vessel, 7 inches in diame ter, with its outer surface rough, and covered with lamp black. The hot air supplied by a Bunsen burner enters at the back of the vessel, which, in a vertical position, is brough o within a foot of one of the paper armatures. When this armature has become warm, the lamp is removed to the other armature, and may, during the experiment, be brough near them alternately, unless two lamps are employed.
The revolving disk should not be varnished, as the wel known metallic and conducting rings which form on the disk opposite the points of the combs are difficult to remove These rings will, of course, settle on unvarnished glass a well, but may then easily be rubbed off with a little tallow Mr. Antolik says that with this preparation it is only neces ary gently to rub one of the warm armatures with a piece of felt to start the maobine even in an unfavorable atmo shere, and it will then continue to work without any dia Whologe matye of polarity,

Beer, Wine, and Liquor.

In a recent publication-" The Brewer, Distiller, and Wine Manufacturer"-Prof. Gardner gives some interesting facts regarding artificial drinks. Although he writes frome an English point of view, it is not unlikely that his statements will have an adaptation otherwheres. Of beer, he says that until recently malt, hops, and water were the ouly ingredients that entered into the composition of beer, but sugar and raw grain are also now used largely in place of malt, aud occasionally other bitter flavoring materials are substituted for hops. The present proper definition of beer may be as follows: "A saccharine fluid flavored with hops, or other aromatic bitters, which has been rendered alcoholic by fermentation." Aloes is now largely used to take the place of hops. It may leave the beer a lighter and more amber-like color, but it is a very inferior substitute for hops. Its presence is readily detected by the taste.
The water used in the brewing of beer is known to have a marked influence on its quality. Any organic con mination in the water spoils the product. Hard water is preferred to soft water; the sulphates and salts of calcium and magnesium in the water tending to self-fining of the beer. The ales of Burton, England, get much of their celebrity from the water used in their brewing, which comes from wells sunk in the beds of red sandstone and gypsum that abound in the neighborlsood, and not from the river Trent, as popularly supposed.
Wines derive their distinctive peculiarities less from the riginal stock of the grape and from method of manufacture than from the climate and soil where the vines are grown. Wines so opposite in character as those of Bur. gundy, the Cape, and Spain are all made from the same stock of Burgundian grapes. To prevent viscidity or ropiness in wines while fermenting, grape stalks are added to the must, or tannic acid, oak bark, gall nuts, wood shavings, gypsum, or alum. When wine becomes bitter, isinglass, carbonate of lime, or slaked lime is added. To prevent acetous fermentation the wine must be fortified by alcohol. The best whisky is made from malt. Inferior qualities are made from raw grain spirit prepared from barley, oats, rye, or rice, and the peculiar flavor admired by habitual users comes from the artificial addition of fusel oil, which is a narcotic poison
The best brandy is distilled from white wines, but it loses strength with age, and with its strength goes its peculiar aroma. A sugar sirup with essence of cayenne and burnt sugar are used sometimes to "improve" weak brandy. Malt brandy is a spirit made from malt, potatoes, beets, r carrots.
Gin is ordinary grain spirit flavored with oil of juniper, juniper berries, oil of turpentine, creosote, lemons, cardamoms, garlic, horseradish, caustic potash, or sulphate of zinc.

Absinthe is an extract of wormwood mixed with sulphuic acid and colored with spinach.

Health Alphabet.

The Ladies' Sanitary Association, of London, gives the following simple rules for keeping health, which we find copied in the Sanitarian:

> A-s soon as you are up shake blanket and sheet; B-etter be without shoes than sit with wet feet; C--hildren, if healthy, are active, not still; D-amp heds and damp clothes will both make you ill; E-at slowly and always chew your food well; F-reshen the air in the house where you dwell; G-arments must never be made too tight; H-omes should be healthy, airy, and light; I-f you wish to be well, as you do I've no doubt, J-ust open the windows before you go out; K-eep the rooms always tidy and clean; L-et dusis on the furniture never be seen; M-uch illness is caused by the want of pure air, N-ow, to open the windows be ever your care; O-ld rags and old rubbish should never be kept; P-eopele should see that their floors are well swept; Q-uick movements in children are healthy and right; R-emember the young cannot thrive without light; S-ee that the cistern is clean to the brim; T-ake care that your dress is all tidy and trim; U--se yournose to find if there be a bad drand; V-ery sad are the fevers that come in its train; W--alk as much as you can without feeling fatigue; X-erxes could walk full many a league. Y-our health is your wealth, which your wisdom must keep; Z-eal will help a good cause, and the good you wiil reap.

Gigantic Fossil Remains.

Workmen in a gravel pit near Syracuse, N. Y., un earthed on July 17 a tusk and tooth of what is believed to have been a mammoth. The relics were discovered at a depth of about thirteen feet from the surface. They were examined by Professor Brown, of Syracuse University, and Professor John F. Boynton, of Syracuse, both well-known cientists, and pronounced a great discovery. By calculaion from the parts alyeady discovered, Professor Brown regards it as the largest mammoth ever exhumed in this country. The tooth is twelve inches in length and weighs about twenty-five pounds. The surface of the tooth is divided into wedge-shaped transverse ridges, the summit of each of which constitute smaller cones. The enamel of the specimen is polished and perfectly preserved. The portion of tusk found is about five feet long and weighs 150 pounds. The entire tusk was probably ten or eleven feet long, and the animal when living is supposed to have stood at least fourteen feet bigh.

RECENT INVENTIONS.

mproved Grease Trap.

The object of this invention is to prevent greasy subtances from passing into waste pipes from sinks and basins, so as to prevent obstructions of the waste pipe, and also to save such greasy and fatty matters, which otherwise would be wasted. The body of the trap is made in the form of a box, having an inlet at one end and an outlet at the other. The box is divided at one side by a vertical partition, forming a small compartment which is closed at the top, and communicates with the main part of the box by a slit or space at the bottom of the partition. The main part of the box is provided with a
 emovable cover, having an under rim which elluper edge of the tox This groove of the box water, so as to form an air water, so as to form an air of the cover. and in addition thereto rubber packng is placed in the bottom of the groove, so that the rim can be forced down tightly by means of wedges, inserted through staples at the sides of the box. The cover of the smaller compartment is provided with a screw plug, which gives access for cleaning, and a bole is provided for allowing the inlet of air for the purpose of ventilating the trap, and also to prevent siphoning. In the larger compartment of the trap is a pan placed in any desired manner at a level with the exit pipe. This pan or plate extends from side to side of the box in either direction, but is made narrower than the box at its other sides, so as to give space for the water to pass at the sides of the pan. In operation the water passing in the inlet pipe first falls upon the pan, leaves therein matter of the same or nearly the same specific gravity, and then escapes at the sides of the pan, leaving the grease on the surface of the water. This invention has been patented by Mr. Silas Wilcox, of Portland, Oregon.

Improvement in Railway Cars.
The object of this invention is to provide a means for escape from a railway car other than the usual end doors. In the event of a collision between trains, the telescoping of the cars and the abutting timbers at the ends of the cars usually obstruct the exit by the end doors; and in the case of fire the occupants frequently perish for want of some other ready means of egress. Thisim. provement consists in combining with one or more side doors peculiar means for holding them normally closed and fastened, and for facilitating escape by the doors if the cars should be stand ing on a bridge or on a declivity The door is hinged at the bottom and arranged to drop out wardly, the door acting as a gang plank. This invention presents the advantage of great simplicity, so that any person without previous instruction can operate it, and still the fastening is sucb as to provide ample security against accidental opening, and also prevents all looseness and chattering. Fig. 1 is an end view of the car with the door open, and Fig. 2 is a sectional view of the door. This invention has been patented by Mr. Joseph Parkinson, of Danville, Va.

New Saw Tooth Swage

This improvement consists of swaging dies contrived to swage the points of saw teeth from the inside outward, to widen and sharpen them. By this method the material of the saw plate will not be wasted as fast as otherwise. The teeth have better pitch, and the tendency of the device is to gauge the points of the teeth of a circular saw to a true circle. The die is moved by a system of levers toward the anvil, acting on the inner surface of the tooth, forcing it outward toward the periphery of the saw. The die is provided with a T-bead and is held in a suitable recess in the roll, as shown in Fig. 2. This invention has been patented by Mr. Nathan L. Gano. of King's Ferry, Fla.

Novel Picture Exhibitor.
We give an engraving of an improved picture exhibitor, recently patented by Mr. Morris Schleissner, of 314 Canal Street,New York city. In this de vice the picture holding cards are arranged in a rotatable case provided with shifting partitions for supporting the upper tiers of cards, and to cause the transferrence of the cards from one tier to the other. This is effected by simply turning the exbibitor over endwise, the pictures automatically shifting their position so as to show a different pair at each half revolution of the exhibitor. This simple device not only affords a very ready mrans of showing the pictures, but it protects them from handling and from dust and ditt,

Bar and Pipe Cutter

The engraving shows a simple and effective tool for cutting metal bars or pipes, the cutter being made so that, as it is revolved around the bar or pipe on whicb it is placed, it will feed the cutting tool forward automatically, so that it will take the required chip at each revolution. The jaws are clamped loosely on the pipe, the latter being held fast in a vise. The cutting tool is moved forward by a screw provided at its outer end with a worm wheel which is engaged by a worm carried by the handle, so that when the handle is grasped and not allowed to turn in the hand, the cutting tool is moved for-
ward continuously as the cutter is turned. This invention has been patented by Mr. Charles W. Lane. Furtber in formation may be obtained by addressing Mr. F. P. Lane, 255 Hennepin Avenue, Minneapolis, Minn.

Improved Sleigh.

This invention relates to an improved beam and knee connection with the runner for securing greater flexibility on uneven roads. The knees and beam are framed together in the uṣual manner, but instead of framing the knees into the runner, they are arranged to rest upon the surface of he runner at the end, making the end a little convex, as shown; and to secure the beam to the runner metal knee bolts and stay barsare employed, the bolts and the bars being rigidly attached together, the bolts also being attached to the plate bolted to the runner, and the stay bars bolted to the runner at opposite ends of the plate. The grooves being lined with metal. These linings are fitted snugly to the bolts along the middle, but they are slack at the ends and along therefrom toward the middle, sufficiently to allow the beams and the runuers to rock the one upon the other, thus providing for the flexibility of the joints by a substantial arrangement not liable to wear out or break. This invention has been patented by Mr. Clemens Mette, of Hancock, Mich.

Transparent Blower for Fireplace.

This blower is made of glass or some transparent material placed in a suitable frame. The blower rests against the rear surface of the side posts of the mantel, and is held across the upper part of the fireplace opening, while its lower edge is sustained in hook clips fastened to the wall or the uprights of the mantel, and its upper edge in a stud or clip, fastened in the fireplace wall. By these means the blower is always beld to the fireplace loosely, so that it can readily contract and expand without danger of fracture. Fig. 1 is a ront view of the fireplace. Fig. 2 is a sectional view, With a blower of this kind the fire is visible, and the room
will always be lighted by the fire, whether the blower is in use or not. This invention has been patented by Mr. John W. Edmonds, of 894 Sixth Avenue, New York city.

Burglar Alarm and Door Securer.
This is a simple and convenient device for fastening doors securely, and for giving an alarm should an attempt be made to open the doors. This combined door stop and burglar alarm consists of a bar recessed at its upper end to receive the shank of a door knob, and provided with a groove to receive a sliding bar having a push rod connected with its lower end, to disen-
gage a hook connected by an elbow lever with a spring and a bell hammer, and allow the spring to swing the hammer against the bell and sound an alarm, whenever the door is effective apparatus has been patented by Messrs. H. M. Moore and C. E. Moore, of 56 East 110th Street, New York city.

New Cotton Planter
In this cotton seed planter the arrangement of parts of the machine is such as to partieularly adapt of to the plan
ing of unrubbed seed, and to plant the seed at varying distances apart, as desired, the parts being so disposed with relation to each other as to secure positive movements of the feed wheel and agitator. This machine, by reason of its effectiveness in planting unrubbed seed, makes a large
 saving in use over the planting of seed by machines which first require the seed to be hand rubbed, and the connections for driving the f fed wheel and agitator are of a character to secure their positive action without slip, insuring uniformly distanced planting of the seed without waste. This planter is provided with a feed wheel haring radial pins, and with an agitator consisting of whip sticks projecting downward from a shaft at the top of the hopper, and vibrated by a crank on the drive wheel and a slotted arm. Mr. Thomas N. Seay, of Eastover, S. C, is the patentee of this planter.

Portable Head Rest.

The engraving shows an improved portable head rest, recently patented by Mr. George Popplewell, of Bristol. Pa. It is designed principally for use on the chairs of railway cars, and is adjustable to different heights to suit different users. It may be folded and packed in a small compass, so that it may be readily carried by the traveler. It consists of two U-shaped pieces to fit over the back of the car seat, each piece being provided with a threaded rod for holding the pad against which the head rests, and each piece bas a pivoted bar having a slot in its free end, to engage a screw projectiog from the other. The pad is supported by two small rectangular frames, which slip over the threaded rods, and inclose the nuts by which the head rest is adjusted. Fig. 1 shows the head rest in use. Fig. 2 shows it detached from the car seat.

Improved Spirit Level.

This invèntion comprises an index and spirit level carrier capable of circular adjustment within a suitable holder and concentrically to a graduated dial connected with the holder. and a device for locking or setting the rotating index and spirit level carrier in any desired position relatively to the dial. Duplicate instruments of this description may be applied, one to either leg or arm of an adjustable bevel, for indicating angular surfaces; or the iustrument may be combined with a square, rule, or compass, or be used as a mere level, grade, and plumb. Fig. 1 is a face view of the level, and Fig. 2 is a sectional view showing the lock. This invention has been patented by Mr. Samuel H. Lemun, of 172 East 62d Street, New York city.

Railway Weather Signals.

Along the line of the Cleveland, Akron \& Columbus road in Ohio, the passenger trains are peaceful messengers, telling the farmers the condition of the temperature and of the coming storms.
The system is as follows: Signals of two colors, with three figures in each color, are attached to the sides of the baggagecars; the colors are red and blue; the figures are the sun, moon, and the star; the red colored signals tell of the temperature, while the blue colored ones tell of the state of the weather. In red the sun indicates higher temperature, moon lower, and the star stationary temperature. In blue, the sun indicates general rain or snow, moon clear or fair weather, and the star local rain or snow. For this special service predictions are received daily from the U . S . Weather Bureau at Washington. By "higher" or "lower" temperature is meant that the temperature at any hour of the day may be expected to be higher or lower than was at the same hour the previous day; and by "stationary " temperature, that it will not vary more than three or four degrees from the record of the day before. "Local" ains are such that are likely to occur at one or more points along the line, but will not probably be "general." Trains going out in the morning are notified by the meteorological department what kind of a signal to display, and if necessary, they can be changed on the road in accordance with telegraphic instructions. This signal service is established by the joint efforts of the Ohio Meteorological Bureau and the officers of the road. From Mr. T. C. Mendenhall, the director, we learn the system is a success.-Railroad Herald.

Baron Roternschild's carriage at Vienua is lighted by electric light. The apparatus is beneath the coachman's seat, and the light, which will burn one hundred hours, within ordinary carriage damps.

engineering inventions

An invention has recently been made which provides an escape door to be located at the side of rairoad passenger cars, to be used in case of accident
when the doors at the ends of the car have been closed by the telescoping of the car, or by the abnormal abut-
ment of the timbers from any cause. This door is hinged at the bottom, and the fastening appliances are so smple that any one without previous instruction can Parkinson, of Danville

A very simple car coupling has been patented by Mr. O. P. Mossgrove, of Steubenville, O. The drars, between which is pivoted a tumbling lever having an arm at right angles to it, which arm projects up-
wardly. The drawhead is further provided with a conwardly. The drawhead is further provided with a con-
necting clevis which, when the cars are to be coupled, necting clevis which, when the cars are to be coupled,
is inclined against the projecting arm of the tumbler is inclined against the projecting arm of the tumbler
lever, so as to be thrown forward over the hooks of the other drawhead when the cars come together.

mechanical inventions.

A very simple machine for splitting shingle is the subject of a patent granted to Mr. J. R. M. Craw-
ford, of Booneville, Miss. The invention is designed ford, of Booneville, Miss. The invention is designed
to facilitate the manufacture of shingles, and the ma to faciilitate the manufacture of shingles, and the ma
cline may also be used for making staves and laths, and notwil bstanding the several uses to which it may be Mr. James Menzies, of Fernandin
Mr. James Menzies, of Fernandina, Fla., has recenty patented some inprovements in sea, Pochs
which are so much in use now on railroads, by express companies, and others. The present invention is in-
tended to be applied to padlocks now in sse, to effectually guard against the insertion of the key into the key hole after the guard is applied without leaving evidence
of the fact.
$\underset{\text { ment for the use of farmers and }}{\text { A }}$ sime leveling instrument for the use of farmers and others--zot intended
for professional survevors--has been patented by Mr. Ernst A. Bostrom, of Newnac, Ga. A gravity plumb point resting on a pointed staff which is adapted to be forced into the ground when the observation is to be
An improved lock to be opened by a sheet metal key, by its inserion in a projecting key barrel,
has been patented by Mr. James Roche, of Terryville, Conn. This lock has the advantage over some others of its class in tasing up every little space in the door,
of being capa ble of countless variations and chayges, for suiting other kinds of keys without changing any

Mr. Gilman Jaquith, of Maysville, Ky., has patented an improved spinning ring which is simple,
cheap, and automatically effects its own lubrication without the necessity of frequently doing this by hand. The upper flange of the spinning ring is provided with
an oil reservoir with inlel orifices for introducing the an oil reservoir with inlet orifices for introducing the
oil, and the oil is distributed througl the natural pores of the thin metal.
A new bolting reel has been patented by Mr. J. M. Van Slyke, of Ottawa, Kas. This reel consists which the grain is deposited. As the wire in this chamber is rather coarse, only the larger kernels will
be retained there, he fincr material passing through into a section which is cylindrical in shape, and rotates
concentrically within an outer cylinder which is covered with bolt cloth. This separ
An improved saw tooth swage has recently been patented by Mr. Nathan L. Gano, of Fernandina,
Fla. This invention consists of dies contrived to swage the points of saw teeth from the inside out ward, to
widen and sharpen them. By swaging the teeth outwiden and sharpen them. By swaging the teeth out-
ward, their length is increased, thus the saw will last ward, their lengih is increased, thus the saw will last
longer besides giving a good clearance to the back of the teeth. The inventor claims to be able to gange the points of the teeth of a circhar saw to a true circle by
his swage.
Mr. Rasmus F. Rasmussen, of New Albuquerque, New Mexico, has obtained a patent for an
improved horse power. 'The machine is made in secmproved horse power. The machine is made in sec-
tions, and is so constructed that it can readily be separated into small light parts which may be handled by one
person and can readily be set up again by one man. By person and can readily be set up again by one man. By
this "knock down " system of construction, a large machine can be transported long distances over rough
roads and put together again without the aid of a killed workman
An improved machine for winding secondary wires about the main or central wires of piano
strings, which machine greatly facilitates the process and recommends itself on account of its simplicity,
has been patented by Mr. Francis Ramacciotti, of New York city. The machine consists in a spinning lathe
provided with a rotary spindle baving graduated perprovided with a rotary spindle baving graduated perforations with a longitudinal sliding center and a ten-
sion spring, all of which serves to rotate the central sion spring, all of which serves to rotate the central
wire and carry it forward with the object of winding the wire and carry it forward former
Some improvements have recently been made in macs, and a patent has been obtained for the othere by Mr. . . C. Williams, of Scotland Neck, N. C.
The fabric to be measured is passed through the maThe fabric to be measured is passed through the ma-
chine and is brought thereby in contact with a drum, which is of an accurately measured circumference, and is rotated by the action of the fabric. A dial which in-
dicates exactly each revolution of the drum is connect-
ed wilh the latter, whereby the number of yards of the fabric passed through the machine is automatically re-

One of the most novel among the recent patents which have been granted for fire escapes is the
invention of Mr. M. s. Washburn, of Billings, N. Y. This device is designed to serve under ordinary circum-
slances as a piece of furniture in the room, and is in slances as a piece of furniture in the room, and is in
the form of an easy chair. It is, however, connected with the ceiling by a rope which passes over a drum
underneath the seat of the chair, so that in case of fire
the chair imay be thrown out of the window and held
by an automatic brake. The person desiring to descend by an automatic brake. The person desiring to descend
places himself in the chair outside the window, when he begins to descend. The speed is regulated by a fric
he the thair outsid the winow, when he begins to descend. The speed
tion brake attached to the chair.

agricultural inventions.

Mr. George Simpson, of Bryan, Texas, has obtained a patent for an impruved plow, the peculiarity of the invention consisting in giving the share and eadily in sticky soil. The form of mould board renAn imp quite light of draught.
An improvement in that class of gang plows in which a number are hauled by a single power, has
been patented by Mr. William Kimmel, of Mitton, Ind he machine is so constructed that each plow wil will plow the furrow to the same depti. Means are em ployed for supporting the plows off from the ground while being transferred from one lot to arother
A very handy and efficient garden imple
ment for cutting and removing briers, rank weeds, ment for cutting and removing briers, rank weeds, and wild shrubbery has recently been patented by Messrs.
Frank P'Pool and E. S. P'Pool, of Edwards, Miss. This invention consists in a handle which may be provided in turn with a knife for cutting down the briers, and
with a hook or fork for facilitating the handling of the briers and the bringing of them to a clearing after they have been cut.

An improved attachment for plows and cultivators for thoroughly upturning the ground, and at the same time leaving it level behind the machine, has been patented by Mr. Jonathan Harman, of Solomon
City, Kas. This machine is designed more especially for plowing corn fields, and plows which are arranged in soil around or away from the pontsed to throw the or shallower in the ground as may be required. The plows are firmly pivoted to the lower ends of the plow of such strength as will resist the etrain under ordinary circumstances, but which will break should any immov-
able obstruction be encountered, thus avoiding the able obstruction be
breaking of the plow.

MISCELLANEOUS INVENTIONS.

Mr. George Smart, of St. Louis, Mo., has recently obtained a patent on an improved ventilator
for rooms, which may be set up or removed without much trouble, and it is claimed to fulfill all the require Mr. John McAnespey, of Philadelphia, Pa., is the patentee of dles of the wash tubconvenient to the person washing Mr. Peter M. Carpenter, of Buffalo Gap Texas, has patented a composition of broom weed, sulphur, and water to be mixed together in certain propor
tions, and applied to sheep and other auimals for the tions, and applied to sheep
prevention and cure of scab.
Mr. Nelson Edwards, of Jericho, Vt., has patented a frictional connection for the barsand slats of indow blinds. This improvement provides for keep gree, the means employed for accomplishing it being both simple and efficient.
An improved measure for grain spouts has been patented by Mr. Walter 'T. Bell, of New Rochelle, N. Y. A grain measure is attached to grain spouts in
barns and stables, whereby the feed coming from a bin above may be measured and the exact quantity regis-
Mr. James H. Russ, of Providence, R I., is the patentee of a combined weight and pult for win dow shades which is ornamental in appearance and very
convenient in its application and operation. This invention belongs to that class of small patented wares

An adjustable double telephone receiver is the subject of letters patent recently issued to Mr. D. G. Barnard, of Winslow, N. J. This receiver is made phragm cups fitting closely to both ears, enabling a per son to hear the sounds transmitted much more distinct-
ly than when a single receiver is used.
Messrs. Robert S. McCall and Joseph W. McCall, of Kansas City, Mo., are the patentees of an
improved bicycle, which is so constructed that the ter of gravity is very low, and the vehicle not apt to tilt. By the improvements in the new bicycle, it is mounted easiy, and the rider is not liable to be thrown over the
frontwheel when the same
A simple, cheap, and convenient ticke holder and press has recently been patented by Mr.
John Loudon, of Big Rapids, Mich. It is a simple screw press in which railway or other tickets are placed and held while being counted, or they can be filed away in with a cord, as is now the general practice.
An improved rib for cotton gins has recently been patenied, the object of which is to make the wearing plate used upon cotton gin ribs adjustable,
and this is accomplished by slotting the rib, forming lug upon the wearing plate, and employing a screw for securing the plate upon the rib. Mr. Wiley Merritt, of
Covington, Ga., is the patentee.
An easy back for carriage seats has recently been patented by Mr. F. W. Pendergast, of Rochester,
Vt. This back is movable and is pivoted at its lower firmly supported and held in position by spring arms which give the back of the rider a firm yet partially

Mr. S. D. Muse. of Monticello, Miss., is way gite which is operated from the carriage, without obliging the person driving to alight. The opening and closing of gates after this plan is accompilshed with
accuracy and reliability, and will be appreciated by any accuracy and reliabiilty, and will be appreciated by any

An improvement in springs for side bar Vehicles has recently been patented by Mr. Jacob Han-
ser, of Oxford O connected to spring bars; levers are also pivoted to the said bars, which also connect with the side bars of
the vehicle. By this arrangement of the vehicle. By this arrangement of springs, levers, a
bars, the vehicle is rendered very easy to the ridet.
A patent thill for gigs and other two whee
Onicles has been patented by Mr. Anders Rasmussen, of
Oshosh, Wis. The thill is made in two parts combined with an adjustable device, for keeping the vehicle leve
regard less of the height of the horse. The invention is regardless of the height of the horse. The invention is
specially adapted for the two wheel village carts whic specially adapted for the two wheel village
are in such general use at the present time.

An improved device for slicing potatoe and other vegetables has been patented by Mr. Ferdi-
nand Espel, of San Francisco, Cal. A knife is pivoted nand Espel, of San Francisco, Cal. A knife is pivoted
in the usual manner to a frame, so as to slice the vege table with a downward slanting cut, having a cushion ed cutting plate to relieve the cutter from the strain which would result from a rigid cutting plate. A gaug
is provided for regulating the thickness of the slice. A patent on an endless cable carrier for transferring buckets of water from wells, reservoirs etc., to remote places has been granted to Mr. Carrel
W. Crismon and the estate of Mr. A. F. Whitaker, de ceased, of Vienna, Mo. While the invention is speciall described for carrying water from wells to houses and
stables, it is equally useful for transferring solid stables, it is equally useful
terials, dirt, ore, coal, etc.
A very simple device for securing firmly the spokes of wheels has recently been patented by Mr. Pa
trick Moran, of Grafton, W. Va. The hub is so constructed that in case the spokes of the wheel have shrunken, or become shorter from any cause, they rattling by turning certain screws located within the hub of the vehicle.
A feather duster, in which the feathers are applied to coiled steel wire springs instead of directly to the handles of the duster, has recently been patent-
ed. The steel springs are connected with the handle, ed. The steel springs are connected with the handle
thus rendering the duster exceedingly flexible and enathus rendering the duster exceedingly flexible and ena
bling very short feathers to be used in their manufac ture. Messrs. Henry Tay lor an
Brooklyn, N. Y., are the patentees.

An improvement in sounding boards for pianos has been patented by Mr. Justus Diehl, of New
York city. The invention consists in forming a York city. The invention consists in forming a sound
chest with a single opening extending across the main sound board from side to side, and in providing the sound boards with a number of sound posts which ar
so arranged as to vibrate in perfect unison with eact other.
Lett
Letters patent have been granted to Mr. Samuel T. Richardson, of Baltimore, Md., for an im
proved hoisting gin, which is adapted for raising heav proved hoisting gin, which is adapted for raising heavy
weights. Three pieces of timber are joined together at weights. Three pieces of timber are joined together at
the top. from which is slung the tackie to which the the top. from which is slung the tackie to we raised is attached; and althongh this apparatus is simple and easily transferable from place Mr. Thomas U. Mekeel, of Cold Spring, N. Y., has obtained a patent for an improved hand saw, whereby the blade may be set at any desired angle to
the handle. A self-adjusting square and bevel attachment are provided, and these are set at any degree of angle to the saw blade desired, and a semiquadran
scale is affixed to the blade, which facilitates the adjust scale is affixed to the blade, which facilitates the adjust-
ment of the angle pieces to the exact degree required.
An improved vehicle spring has been patented by Mr. William D. Bartlett, of Amesbury, Mass
The invention consists in the mode of hanging carriage bodies by connecting cross rods attached to the carriag body with side bars attached to the suspending springs
by links, whereby great freedom of movement will be by links, whereby great freedom of movement will be
given to the body of the carriage. The forward and rear given to the body of the carriage. The forward and rear
paris of the carriage body are connected with the axle straps, so as to limit its movement upon the springs. Mr. David Lowers, of Spring Valley, N. Y.,
has patented.a stone cutter's mallet with an attached has patented.a stone cu!ter's mallet with an attached
bellows or air blowing device, so constructed and arranged that by the act of using the mallet upon a chise in the ordinary manner a jet of air by each stroke of
the tool will be directed toward the point of the chisel, so as to blow away the dust, thereby protecting the eyes of the wo
stone of dust.
A novel and useful percentage calculato has been patented by Messrs. Sylvester J. Tucker and
Edmund F. Kelly, of Richmond, Va. The iuvention consists of a graduated base having several series of and quadrantal orders, respectively, and in such relation to each other that an arm pivoted to the base shall
indicate the percentage a given number bears to a indicate the pe
greater number

An improved insect trap for catching and destroying ants aud similar insects has recently been
patented by Mr. James F. Bunnell, of Cisco, Tex. The invention consists in a trough quadrangular in form
and V-shaped in cross section This is forced into the mound of the ants' home, and is so placed that the insects cannot escape from the hill without passing into the troughs, from which they are unable to extricate

Messrs. P. H. Stein, of Austin, Tex., and James Tams, of Trenton, N. J., are the patentees of an
improved fruit squeezer. This device consists in a pair of ordinary wooden pressing jaws hinged together at one end and provided with handles at the other.
Each of these jaws is provided with a depression into Each of these jaws is provided with a depression into
which are firmly screwed fluted porcelain plates which serve to keep the fruit from slipping while being pressed, and which may always be kept clean on account of Mr. Zachariah Hendrickson, of Syracuse, nd., has obtained a patent for a velocipede, which unlike the general run of velocipedes and bicycles is designed to he steered by the feet and operated by the hands. This machine is provided with three wheels, the front
wheel heing the driving wheel, while the two rear wheels
are pivoted with the frame and connected with the foot
rests in such a way as to be readily torned, for guiding An improved candle ndle can be more readily remould, in which the the case with the ordinary mould, has been patented Mr. Joseph Brelivet, of Enosburg Falls, Vt. Th ecesses for receiving the pools for holding the wicks, and eyes or loops fo guiding the wicks directly through the middle of the andle apertures in the blocks.
An ingenious contrivance for holding balls of twine used by merchants in tying up packages ha been patented by Mr. Reuben Melvin, of Cincinnati, 0 he ball of the is placed in a clop on the short en When the twine is bing used the long arm of portion the weight of the ball of twine on the short arm raise the long arm, carrying the free end of the twine up and
Mr. T. A. Dennis, of Newark, N. J., has recently patented a fastener for boxes, trunks, etc. A atch with a hasp provided with ridges having notche the lower ends constitutes the principal novelty of the lower end with a pivoted catch having a tongue and wo inwardly projecting prongs, which pass into the notches in the ridges and hold the hasp in the casing. A spring attached to the casing acts on the catch and presses it against the hasp, thus securely fastening the
Mr. Joseph W. White, of Brighton, Iowa, is An upright support for a lever, rests in a socket which mbraces the neck of the bottle and rests on its shoul it. After the insertion of the corkscrew into the cor號 to the short end of the lever, when th operator presses down the long arm of the lever, an
the cork is extracted with ease. A cutting blade is formed on the end of the long arm, for severing the Mr. David Berry, of Gualala, Cal., has ob ained a patent for a one wheeled trotting sulky whic adapted for use especiany in countries where th is ordinarily impassable to wagods or over land whic rhicle are so constructed and braced that it is next to mpossible for the vehicle to overturn. The seat is mounted upon a long spring attached to the rear part of he frame of the vehicle, and the weight of the drive mes directly over the wheel.
An improved draught equalizer is the sub ject of a patent recently granted to Mr. Earl H. Cooper, of Winters, Cal. This equalizer is adapted for use where he single horse tree, and to the other end of the tree it is designed that esigned especially for use with harvesking machfies, nd it is claimed that by its use the draught of the thre horses is exactly equal irrespective of the fact that it is desirable
tongue.
Letters patent have been granted to Messrs. W. C. McDonnell and Asel L. Anderson, of Montello Wis., for certain improvements in millstone picks. In of two plates clat tox ther by acrew for holing blade, which can be adjusted in different positions, it is necessary to have at hand a screw driver or wrench
for unscrewing the plates in the head. The inventio for unscrewing the plates in the head. The invention now patented consists in fixing permanently in the head of the pick a wrench or screw driver, so as to hav Mr. Delbert K. Woodward, of Lordstown, ., has patented within a few weeks two improvement
in artists' easels. One invention consists among othe ovel arrents in adjustable extension othe supporting a picture while being copied, so that the artist may arrange the distance and position of the pic ture to meet his requirements without leaving his seat The other invention consists of a series of corrugated easel, for holding the artist's brushes and pencils con venient to his work.
Mr. John J. Callow, of Cleveland, O., has dded another improvement to his previously patented process of wood graining by the use of stercil plates The last patent is dated rial, such as sheet brass or in. These parts are made in separate pieces, cut out with shears; and what is cut away from one pattern may serve as a pattern in an
other plate. Thus every part of the material may b used. The several parts are then joined firmly togethe by wires and by suitable braces, the whole forming Mr. Eugene F. Chapman, of Wilson, Neb. the patentee of a wagon stake which is an improve went upon a patent granted to same inventor in Octo to 1881 . The presen wagon stake is so constructed novable, and may be set up on the stake and bolted thereto, so that the carrying capacity of the wagon ma be largely increased when desired. A coiled spring may be used in the chamber of the stake in place of the extension bar for supporting the wagon on spring Devices are likewise provided for supporting temporar
covering boards over the wagon box to protect the covering boards over the wago
contents from the sun and rain.
An improved wagon brake which is auto atic in its action, dependent upon the steepness of the hill and weight of the load, has been patented by Mr the front axle is provided with rollers upon which rests the body of the wagon, so that it may slide backwar and forward, while the bolster of the rear axle is firml atrached to the box of the wagon. The brake is connected by suitable connections with the front axle, and when the wagon is going down hill and the horses are
bearing upon the pole, the front axle will be slid back bearing upon the pole, the front axle will be slid back
in its bearings, and the brakes brought to act upon the hind wheels with a pressure prop
clivity and the weight of the load.

July 28, 1883. .
צrientific Americau.

The Chargefor Insertion under this tead is one Dollar a line for eachl insertion: about eightt wordst to a line Advertisements muss te received at purtication office
as eavly as 7 Thurssay morning to appear in inext issue.

The Ide Automatic Engine, A. L. Ide, Springfield, Il Steam Pumps. See adv. Suith, Vaile \& Co., p. 30. Contracts taken to manuf. small goods in sheet o cast brass, steel, or iron. Estimates given on receipt of odel. H. C. Goodrich, 66 to 72 Ogden Place, Chicago.
Brush Electric Arc Lights and Storage Batteries. Twenty thousand Arc Lights already sold. Our largest
machine gives 65 Arc Lights with 35 horse power. Our machine gives 65 Arc Lights with 35 horse power. Ou
Storage Battery is the only practical one in the market Brush Electric Co., Cleveland, 0
Engines, 10 to 50 horse power, complete, with governght hundred in use. For circula Morris (Drawer 127), Baldwinsville, N. ष.
Best Squaring Shears, Tinners', and Canners' Tools
t Niagara Stamping and Tool Company, Buffalo, N. Y. Lathes 14 in. swing, with and without back gears and The Best.-The Dueber Watch Cose
If an invention has not been patented in the United States for more than one year, it may still be patented in
Canada. Cost for Canadian patent, \$40. Various other Canada. Cost for Canadian patent, \$40. Various other
foreign patents may also be obtained. For instructions address Munn \& Co., Scientific American Patent Agency, 261 Broadway, New York.
Farley's Directories of the Metal Workers, Hardware
Trade, and Mines of the United States. Price $\$ 3.00$ 'Trade, and Mines of the United States. Price $\$ 3.00$
each. Farley, Paul \& Baker, 530 Market Street, Phila. Guild \& Garrison's Steam Pump Works, Brooklyn, N. Y. Steam Pumping Machinery of every descrip tion. Send for catalogue
Nickel Plating.-Sole manufacturers cast nickel anodes, pure nickel salts. polishing compositions. etc. Complete outfit for plating, etc. Hanson \& Van Winkle
Newark, N. J., and 92 and 94 Liberty St., New York.
Lists $29,30 \& 31$, describing 4,000 new and 2 d -hand Mawanted. Forsaith \& Co., Manchester, N. H., \& N. Y. city For Power \& Economy, Alcott's Turbine, Mt.Holly, N. J. "Abbe" Bolt Forging Machines and "Palmer" Powe

Railway and Machine Shop Equipment
Send for Monthly Machinery List
to the George Place Machinery Company,
21 Chambers and 103 Reade Streets, New Yor
$25^{\prime \prime}$ Lathes of the best design. G. A. Ohl \& Co., East Newark, N.J.
"How to Keep Boilers Clean." Books sent free by hiss, 84 John St., New York.
Wanted.-Pa tented articles or machinery to make
and introduce. Gaynor \& Fitzgerald, New Haven. Conn. Water purified for all purger household sapplies to those of largest citles. by the improved filters manufactured by the Newark Filtering Co., 177 Com-
merce St.. Newark, N. J. Latest Improved Diamond Drills. Send for circular C. Bink Mig. Co., 80 tos8Ma Ice Making Machines and Machines for Cooling
Breweries, etc. Pictet Artificial lce Co. (Limited), 142 Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. Machinery for Light Manufacturing, on hand and
built to order. F. E. Garvin \& Co., 139 Center St., N. Y. Split Pulleys at low prices, and of same strength ani apperrance as Whole Pulleys. Yocom \& Son's Shafting Supplement Catalogue.-Persons in pursuit of inforiffc subject, can have catalogue of contents of the ScrENTIFIC AMIMICAN SUPPLIMLINT sent to them free. The SUPPriciasiv contains lengthy articies embracing Che whole range of engineering, mechanics, and physi-
cal science. Address Munn \& Co . Publishers, New York Curtis Pressure Regulator and Steam Trap. See p.12. For Pat. Safety Elevators. Hoisting Engines, Friction For Mill Mach'y \& Mill Furnishing see illus adv, p12 or Minal 1 Mol Mineral Lands Prospected, Artesian Wells Bored, by
Pa. Diamond Drill Co. Box 423. Pottsville. Pa. see p. 14. Lightning Screw Plates, Labor-saving Tools, p. 14. Fire Brick. Tile, and Clay Retorts, all shapes. Borgn Drop Forgings of Iron or Steel See adv, pais Drop Forgings. Billings \& Spencer Co. See padve 46. Drop Forgings. Billings \& Spencer Co. See adv., p. 45 Diamond Saws. J. Dickinson, 64 Nassau St., N. Y. Steam Hammers.Improved Hydraulic Jacks. and Tub 50,000 Emerson's Hand Book of Saws. New Edition. Eagle Anvils, 10 cents per pound. Fully warranted. Fould \& Eberhardt's Machinists' Tools. See adv.,p. 45. Barrel, Keg, Hogshead, Stave Mach'y. See ad., p. 46. The Lehigh Valley Emery Wheel Co., Lehighton, Pa., sell a new Stove Plate Grinder, with transverse motion,
and an Automatic Planer Knife Grinder, with a cup
wheel. Cuts and descriptions sent upon application. wheel. Cuts and descriptions sent upon application. Drop Hammers, Power Shears, Punching Presses, Di
Sinkers. The Pratt \& Whitney Co.. Hartford, Conn. Catechism of the Locomotive. 625 pages, 250 engrav-
ings. Most accurate, complete. and easily understood book on the Locomotive. Price $\$ 2.50$. Send for catalogue frailroad books. The Railroad Gazette, 73 B'way, N. Y. For best low price Planer and Matcher. and latest
mproved Sash, Door, and Blini Machinery, Send for improved Sash, Door, and Blini Machinery, Send for The Porter-Alen High Speed Steam Engine. SouthThe Sweetland Chuck. See illus. adv., p. 46. Improved Skinner Portable Engines. Erie, Pa al Books, 14 pages. E. \& F. N. Spon, 35 Murray St., N. Y.

NEW BOOKS AND PUBLICATIONS

Manual of Marine Engineering. By
A. E. Seaton. Charles Griffin \& Co. London; D. Van Nostrand, New York
This is a volume of 440 pages illustrated with numer oustables and with engravings reduced from working drawings. 'The design is to supply a manual showing
how to apply theoretical principles to the designing and how to apply theoretical principles to the designing and construction of marine engines and their machinery, as the book is composed with consideratiou for inexperi enced mechanics, it is very thorough and comprehen sive, and appears to he particularly valuable to the dranghtsman and constructive engineer, although the mechanical engine

HINTS 'TO CORRESPONDENTS.

No attention will be paid to communications unless accomp.
writer.
Name
Names and addresses of correspondents will not be
oo inquirers.
We renew our request that correspondents, in referring name the date of the paper and the page, or the number of the question.
Correspondents whose inquiries do not appear after a reasonable time should repeat them. If not then pub-
lished, they may conclude that, for good reasons, the lished, they may conc
Editor declines them.
Persons desiring special information which is purel of a personal character, and not of general interest, should remit from $\$ 1$ to $\$ 5$, according to the subject, btain such information without remuneration
Any numbers of the Scientific Ambrican Supple MENT referred to in these columns may be had at Corren cents eac
or examination, should be careful to distinctly tabel their specimens so as to avoid error in their identi fication.
(1) T. H. asks: Can a person make for his own personal use an article that is protected by patent right without infringing on the inventor's right? A.
The general rule is that no one may make, use, or sell a patented article without the consent of the patentee. But the rule has exceeptions: 1. Any person may make a patented article for experiment, that is, to ascerim, patent. 2. Any person may make a patented article or the purpose of determining whether the statements in the patent are true. 3. Any one may make a pat-
ented article to be used in connection with new im.
(2) H. and M. ask for a formula for the preparation of a good polishing liquid to apply to name all scratches with emery paper or cloth, and then rub, (3) C. H. W writes: 1 I noticed in your (3) C. H. W. will preserve birds' eggs. Howam I to make a solution ones from turning black? A. Corrosive sublimate is soluble in, 6 parts cold water, in 3 parts hot water, in alcohol, and in ether. Coat the eggs with the solution by using a camel's hair brush. 2. Will alcohol freeze
when diuted one-half? A. The water will freeze, leavwhen dinuted one-ha.
ing the alcohol fluid.
(4) A. X. L. De C.-Parisian copying ink A strong solution of logwood extract is treated with ne per cent of alum and then with as mach lime water, so that a permanent precipitate is formed. Some drop ble bluish black color is attained, and hydrochloric acid is added drop by drop until a red solution is oblained. A little gum with half of one per cent of glycerine is added. To remove the ink from the chromo raph, cold water and a sponge will suffice.
(5) W. A. G.-To polish agates for specimens: Grind the surface upon a true grindstone until you get a fair, smooth surface. Then rub them on
sole leatner strap nailed to a board; wet the leathe a sole leater strap nailed to a board; wet the leather
with water and apply crocus or rogue. The polishing nust be done wet to give a fine gloss.
(6) J. D. G. asks: How much coal ought a ood boiler to require per hour per horse power? How steam at 100 pounds pressure? How many square inches of grate surface for one horse power boiler? How many
pounds of water required for each horse power? Will pounds of water required for each horse power? Will
glass pressing against a wire rope wear the rope out as quick as brass would pressing against the rope? A A with the consumption of 6 pounds of anthracite coal; 1 pound of coal should evaporate from 9 to $101 / 2$ pounds of water at 100 pounds pressure when doing light work. If water foams in boiler, it will be carried over in a vesicular state or as wet steam, and indicates a larger percentage than is due to the power produced. In large grate surfaces is allowed per horse power. In boilers under 10 horse power, 1 foot to the horse power. It equires about 62 pounds water to the horse power per
(7) H. B. writes: I am going to work a marble quarry in Canada; will yon please state where ing,in operation. A. Marble quarrying is carried on ex tensively in Vermont, near Ratland. Probably the
finest appliances for sawing and dressing are to b
found in the large marble works of New York and vi found in
cinity.
(8) R. S. writes: A mill dam is 1,000 feet rom mill and 50 feet above it; we want to know whic will give the most power with the same amount of wate -to run it on an incline straight to mill, or to run is m in iron pipe and full evel to the mill; you will then have the benefit of the holefall. If run in a pipe, youlose the head require
(9) A. D. asks: 1. Can you tell me how to bleach celluloid articles (restore their whiteness afte they become yellow from exposure)? A. Sapolio can
be used for this purpose, The manufacturers of cellube used for this purpose, The manufacturers of cellu loid furnish a preparation called celluline for this pur pose. 2. What is the best sign writer's black, and how
mixed to dry glossy and not oil the paper? A. This sign writer's black and not oil the paper? A. Thi desirable quality from large paint houses in this city 3. What is the best oil for belting, and how applied? A Castor oil is the best for this purpose, but any oil i of doubtful utility. 4. What happens to belts (on ligh work) that are not oiled? A. Nothing except usual wear. 5. What oil injures leather most? A. Kerosene
is the most injurious oil to use. 6. How can bright iron be protected from rust? A. See Scurnctan brigh CAN SUPPLEMENT, page 6270, No. 393.
(10) R. S. G. asks: What diameters are re quired for two rubber cylinders, say 10 or 12 feet long inflated with air, in order to sustain a weight of thre these cylinders under a light framework as aft or catamaran to fish in lakes in the north wilderness should they prove more portable than a canvas canoe A. To immerse them about half their diameter, should

Minerals, etc.-Specimens have been re eived from the following correspondents, and xamined, with the results stated
H. M. M.-No. 1 is pyrite (iron sulphide) in quartz No. 2 is quartz. Gold is generally found in pyrite or in
quartz.-J. W. TU. - No. 1 is a slate containing pyrite quartz.-J. W. (.-No. 1 is a slate containing pyrite
(iron sulphide). No. 2 is a compact sandstone containing pyrite. No. 3 is a close grained sandstone showing specks of iron sulphide. Nos 4 and 5 are dif-
ferent varieties of the same mineral as No. 3 , with pyrite running through them. They are all of no appar ent value except the building purposes.

communications received.

On Guided Balloons. By 1'F.S.T.
The Doctrine of Numbers. By G.B.

INDEX OF INVENTIONS

For which Letters Patent of the United States were Granted

July 10, 1883,
AND EACH BEARING THAT DATYC.
[See note at end of list about copies of these patents.]

Aerial na Souza

Souza............... 280,914
mospheric, J. F. Benarating
Air compressor, W. A. Babcock
Album, A. J. Megee........ Angle iron, W. Lorey.
Annunciator, oral. J. Ireland...
Axle bearing, car, I. P. Wendell
Axle box lid, car, w. J. Ball.....
Axle lubricator, A. D. Howe
Axles, self-adjusting bearing for
Bagasse furnace, E. Williams.
Bagasse furnace,
Banjo. A. Lopes.
Battery. See Galvanic battery.
Bedstead. wardrobe, F. Schmidt
Beer chip cutting and reaming machine, B. Rice
Bell. gong, W. s. Foster.
Bell. gong, W. S. Foster.
Belt fastener. H. C Hart
Belt shifter, G. H. Motley
Berth, self-leveling ship's, w. Wells
Blackboard, \mathbf{O}. M. Mitchel
Board. See Blackboard.
Board. See Blackb
Boat knee, D. True
Boat knee, D. True
Boiler hoe, J. Pre
Boilers, making, w. .L. Brownell
Book binding, A , J. Meg.....
Book binding, A. J. Megee.....................
Boot tand shoe edge trimmer, H. F. Rooney
Boot and shoe edge trimmer, H. F. Roo
Boot or shoe fastener, B. T. M. Hunley.
Boot or shoe sole, A. A. Brooks.
Bottle stopper, C. H. Bennett...
Bottle stopper. S. S. Newton...............
Bottle stopper fastener, B. D. Marks.
Brake. See Car brake. Vehicle brake
Brake lock, C. C. Clay.....
Bread cutter, N. Chap.
Bread cutter. N. Chapman............................
Brick, tile, ete., kiln and furnace forburning.
bertson \& Endaly....
Bricks, etc., manufacture of, B. L
Bride blinder. D. Kaltenbacher....
Broom support, J. Groble....
Buckle, harness, W. C.
Buckle, harness, W. C. Agnew.....
Bung for beer barrels, A. C. James
Bung for casks, barrels, etc., w. W. Jackson.
Burial casket, G. W. \& S. S. Comee
Burner. See Oil
Button, M. Bray...
Button, sleeve, E. S. Mason.......
Cake frying device, J. M. Andre
Camera stand. J. H. Altheide
Can. See Milk can. Oil can.
Can. See Milk can. Oil can.
Cane and camp chair combined, S. N. McGaughe
Car brake, Lederer \& Mark
Car, cinder, J. L. Boyer.
Car coupling
Car, cinder, J. L. Boyer.
Car coupling, G. Maulick
Car coupling
Car coupling, P. F. Panabake
Car soupling, T. Sparks....
Car soupling, T. Sparks........
Car door, A. w. Zimmerman.
281.222

281,029
280,837
281
281

Martius (r)....................................... applying, H. W. Vaughan
Cooking utensil. J. Eyer, Jr
Coop, poultry, H. J. Haight.
Corn sheller, hand. J. G. Warren..................
Cornstalk cutter, Contancin, scott, Cotton chopper, R. R. Pace..........................
Cotton chopper and scraper, W. R. Russell.....
Cotton condenser, F. M. Sewell................
Cotton gin and linter
Cotton gin end linter saws, machine for filing. w.
H. Blanchard.....................................
Cotton press, R. R. Tugwell.,
Cotton scraper. W. H. Mercer
Coupling. See Thill couplin
Croquet set, E. D. F. Farley......................
Crucibles, protecting plumbago, w. Tatham.
Crusher. See Clod crusher.
Cultivator, W. B. Patterson.
280,821
280,91
2091
281,179
280.829
28089
281.159
 281,126
2812121
281,833
rnstalk cutter. Sew
Cutter bars. elastic cushion for,E. J. Blood.280,901, 280,
Dental drill hand piece, R. M. Ross............. 281,
Disger. See Post hole digger.
Distion of hydrocarbon oils, process of and
apparatus for the fractional, H. Frasch........
Ditching machine, G. Meader
Dividers, C. Johnsen.........
Dividers, C. Johnsen..
Doll, L. B. J. Wishard.
Door, Benson \& Fogle.
Door hanger, w. Grace

Drier. See Fruit drier. Tobacco drier.
Drill. See Hand drill. Manure drill. Rock drill.
Drilling machine, J. Rieppel....
Drum, heating, H. G. Williams
Dust pan, J. F. Wynkoop....
Ear ringwire, W. E. Liddle.
Ececntric bearing, D. H. Lord
Ejector. L. B. Fulton.......
Ejector. L. B. Fulton.....................................
Electric carbon, H . Frasch..................
Electric circuit breaker, automatic, L. J. Phelps..
Electric conductor, H. D. Rogers................... 28,28
Electric light tower, B. . Orton...........
Electric machine, dynamo. J. E. Giles
Electric machines, armature for dynamo, W. P.
Freeman.......................................
Electric underground cable, F. A. Smith.......... 280,869
Electric wires and adjusting the wires in the
same, ventilating conduit for, w. Hendley.... 281,22
same, vires, conduit for underground, J. Du
Electric wi..
Shane....
Elevator. See Grain elevator. Hav elevator.
Elevator bucket. H . $\mathrm{w} . \mathrm{Caldw}$.
Elevator bucke. H. . Caldwell.
Endless chain carrier and distributer for coal, e
Lesouard \& Lotan.
Engine. See Rotary
Engine. See Rotary engine. Traction engine......
Exercising apparatus, electrical, W. T. McGinnis.
Fabric, A. Aronson..
Fan, mechanical, Denechaud \& Reynolds..
Fanning mill, c. S. Beebe....280,897,
Fats, refining. J. Hobbs...........
Feed water heater, T. R. Butm
Fence, barbed, o. o. Phillips...
Fence, iron, H. L. Jones.
Fence, portable, J. H. Cox....
Fence post iron, R. J. Carson
Fence post iron, R. J. Carson........................
Fertilizer distributer. J. P. Johnston...............29
280,932
Hertilizers. apparatus for desiccating animal mat-
ter for, H. Breer..........................
Fibrous and other substances. machine for obtai
ing and treating, S. P. Smith
File, bill, A. Henderson
Filter, J. W. Callard.

Fire escape, G. W. Looney, Sr
Fire escape, HI. Rensch......
Fire escape Ripcinski \& Tisch
Fire escape, Ripczinski \& Tisch,
Fire escape, E. Solomons... ..
C. E. Buell.....................................

Fire kindleq, w... Babb (r)....
Fishing apparatus, L. Kessler
Forge, portable. J. P. Holt...
Fruit drier, W. W. Hale...
Fruit drier, A. W. Walker
Fruit drier. solar. W. P. Kirkland
Fuling mill, R. H. H. Hunt

Furnace. See Bagasse furnace. Metaliurgical
furnace. Plumber's charcoal furnace.
Furnace and the art of working the same, J. Hen-

Mechanics and Professional Men, and Every Other Class, Constantly need Insurance in

The Travelers' Life and Accident Insurance Company,
 OF HARTFORD. CONIN.

Nearly 100,000 Men Have Realized Its Benefits. in Sums from 71 Cents to $\$ 13,000$, AMOUNTTING IN ALI TO OVER $\$ 8,500,000$.
It Indemnifies the Merchant for his Profits, the Mechanic for his Wages,
LOST FROM ACCIDENTAL INJURY. HAS \$6,977,000 SOLID ASSETS; \$1,716,000 CASH SURPLUS. General Accident Policies Cost but $\$ 5$ to $\$ 10$ a Year for all Ordinary Occupations.

JAMES G. BATTERSON, Pres. RODNEY DENNIS, Secy.

THE GRETESTT OPEN CIRCUIT BATTEEYY IN THE WORLD.

 BRRGGMAININ do OO., Electrical Works, 292 to 298 Avenue B cor. 17th St. New York.

HENDERSON'S SPECIAL REFRACTORY COMPOUNDS. SUBSTITTUTHESE FOR FIREM BRXCKI.

ROCK BREAKERS AND ORE CRUSIERS.
 COPELAND EL FACUND, AYeuts, New Yorkit
ICE MAKING MACHINES,
And Machines for Cooling Breweries, Pork Packing Establishments, Cold Storage Warehouses, Hospitals, etc. send for illlustrated and descriptive circulars.
PICTET ARTIFICIAL ICE CO. (Limited)
142 Greenwich St., New York City, N. Y

8 Cy C)

$\underset{\text { For reducing }}{\text { D }}$

ROOTS NEW IRON BLOWER

POSITIVE BIASM, IRON REVOLVERS, PERFECTLY BALANCED, PoH. \& F. M. ROOTS, Manufacturers, CONNERSVILLE, IND S. S. TO WNSEND, Gen. Agt.,22 Cortland St., ${ }^{2}$ Dey St. JAS. BEGGS \& Soli, Seling Agts. 9 Dey Street, SEND FOR PRICED CATAIOGUE.
 NEW HAVEN MANUFACTURINGCO
 Lathes, Planers, Drills, Shapers, etc.
illustrated catalogue on application. SENDTOLONDON,BERPY\&ORTON
THE BEST BAND SAW BLADE

 PHOTOGRAPHY. - THE EVERY DAY

WITHERBY, RUGG \& RICHARDSON Manufacturers
 P I A N OGRAPH-METRONOME. - DE-

Steel Castings

 and 15,000 Gear Wheel of this steel now running prove
its superity over other Steel astings Send for
circular and price

Martisemputs.
 Engravings' may head advertisements at the same rate
per line, by measurement, as the letter press.
Adver

COLUMBIA BICYCLES AND TRICYCLES.

Seventh Annual Exibibition Pittsoludig Exposition Sucipty OPEN FROM
September 6 to October 13, 1883.

J. C. Patterson, Secretary, The "'MONITOR B95, Pittsbura, Pa. The "MONITOR."

EJECTORS
Water Elevators,

 Gear Whels\& Gear Cutting of all kinds, Gear book free.
Geo. B. Grant, A Alden St., Boston. Also Water Motors.

honovins ASBESTOS ROPE PACKING, ASBESTOE WICK PACKING. ASBESTOS SHEATHINGS, PACKING, ASBESTOS GASKEIS, ASBESIOS BUILDING FELT. H. W. JOHNS M'F'G CO., 87 Maiden Lane, New York, Sole Manufacturers of H.W. Johns' Genuine AND BOIHER COVERINGS, FIREPROOF COATINGS, Descriptive price lists and samples free.

ROOFINTG

ROOFINC.

ERICSSON'S New Caloric Pumping Engine, Dwellings © © Country Seats
 Delamater Iron Works,
C. H. Delamater $\&$ Co.,
Prop

 Rooring

 $\begin{array}{r}\text { leaky roots of all kinds. } \begin{array}{r}\text { Address } \\ 74 \text { Cortlandt St., New } \\ \text { ART, York. }\end{array} \\ \hline\end{array}$

\qquad
ONE THOUSAND TONS METALLIC SHINGLES

ANGLO-AMERICAN ROOFING CO.

MITdel Engines.

PROVIDENGE. R. HARRRS.
 HARIRIN-CORLINS ENGINE With Harris' paiented impro.

NEW YORK BELTING AND PACKING COMP'Y.

 Emery Wheel.
Jo\#n H. CHEvER, Treas. $\begin{gathered}\text { NEW YORK BELTING AND PACKING CO } \\ \text { Nos. } 13 \text { \& } 15 \text { Park Row, opp. Astor House, New }\end{gathered}$
PAYNE'S AUTOMATIC ENGINES.

EVAPORATING, FRUIT

 AMERICAN IANIF'G CO., Waynesboro, Pa.

SPEAKING TELEPHONES.

NATIONAL STEEL
TUBE CLEANER.
 Asbestos Materinals, Fiver, Millboard,
Mackius, and Cement. Adress CHALMERS SRENCE COMPANY,
419 and 4218 Sth Street, New York
THE DUPLEX INJECTOR.

TITITTEGRESAT

THE RIDER HOT AIR COMPRESSION Pumping Engine,

 CAMMMEYER \& SA YER,
19 Dey St., New York.

VOLNEI W. MASON \& CO.
FRICTION PULLEYS, CLUTCHES, and ELEVATORS, PROVIDENCE, R. I.

HAK'IFORD
ST.EAM BOILER
Inspection \& Insurance
COMPANY
W. b. FRanklin.V. Pres't. J. M. AuLen. Pres't J. B. PIERCES Sec'y.

Establd EACLE ANVILS. 1843 Solid CAST STEEL Face and Ho,
ranted. Retail Price, 10 cts. per lb.

F. Brown's Patent FRICTION CLUTCH. Send for llinstrated Catat
togue and Discount
to
Park
Park

SHAFTS PULLEYSTANGERS

FRICTION CLUTCH Pulleys and Cut-off Couplings.

Srientific American

The Most Popular Scientific Paper in the Worid. Only \$3.20 a Year, including post
This widely circulated and splendidly illustrated
paper is published weekly. Every number contains six teen pages of useful information, and a large number of original engravings of new inventions and discoveries. representing Engineering Works, Steam Machinery Chemistry, Electricity, Telegraphy, Photography, Archi tecture, Agriculture, Horticulture, Natural History, etc All Classes of Readers find in the scientrific AMERICAN a popular resume of the best scientific in
formation of the day; and it is the aim of the publisher possible abstruse terms. To every intelligent mind this journal affords a constant supply. of instructive
reading. It is promotive of knowledge and progress in reading. It is promotive of knowledge and progress in
every community where it circulates. every community where it circulates. TIFIC AM ERICAN will be sent for one year- 52 numberspostage prepaid, to any subscriber in the United States or Canada, on receipt of three dollars and iwenty
cents by the publishers; six months, $\$ 1.60$; three months, 81.00 .
Clubs.-One extra copy of the Scientific Amirris CAN will be supplied gratis for every club of five subscriberr
at $\$ 3.20$ each; adalional coples a same proportict and one cop
rate.
One copy of the Scientific Anerican and of the SCIEMTIFIC AMERICAN SUUPLEMIENT Will be sent
for one year, postage prepaid, to any subscriber in the for one year, postage prepaid, to any subscriber in the
United States or Canada, on receipt of seven dollars by United States
the publishers.
The safest way to remit is by Postal Order, Draft, on
Express. Money carefully placed inside of envelopes, securely sealed, and correctly addressed, seldom goes
astray, but is at the sender's risk. Address all letters

MUINAN \& CO

261 Broadway, New York. To Foreign Subscribers.-Under the facilities of
the Postal Union, the ScIENTIFIC AmERICAN is now sent by post direct from New York, with regularity, to subscribers in Great Britain, India, Australia, and all other
British colonies; to France, Austria, Belgium, Germany Russia, and all other European States; Japan, Brazil, Terms, when sent to foreign countries, Canada excepted, \$4, gold, for Scientific Amlerican, one year; $\$ 9$, gold,
for both Scientific Ambrican and SUPPLEment for one year. This includes postage, which we pay. Remit
by postalorder or draft to order of
PRINTING INKS.

[^0]: Laying Turf in Summer
 Mr. Henderson says: "I find that turf can be successfully laid down, if necessary, in dry and hot summer weather by simply covering it when finished, before it gets too dry, with about a quarter of an inch of light soil put through a half incb sieve. The grass begins to grow through the soil in a very "ew days."

