
a Weekly journal of practical information. art. science. mechanics. Chemistry and manteactures.
Vol. XLEX.-No. 3.
NEW YORK, JULY 21, 1883.

DESIGN FOR BASCULE BRIDGE OVER RIVER THAMES BELOW LONDON BRIDGE. [See page 36.]

Suntifir Gmexicau.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
NO. 261 BROADWAY, NEW YORK.

o. D. MUNN.
A. e. beach.

TERMS FOR THE SCIENTIFIC AMERICAN.

One cony, one year postaze included....
One copy, six months postaze included
5320
$\mathbf{1} 60$
$\underset{\text { Clubs.-One extra copy of The Scientific Am arican will be supplied }}{\text { Cratis for every ciut of tive subscribers at }}$ same proportionate rate. Postage prepaid.
same proportionate rate. Postage
Remit by postal order. Address
MUNN \& CO., 261 Broadway, corner of Warren street, New York
The Scientific American Supplement
is a distinct paper from the SCIENTIFIC AMERICAN. 'THE SUPPLEMENT
is issuad weekly. Every number contains 16 octavo pages, uniform in size with Scientiric American. Terms of subscription for Supplement, W5.00 a year, postage paid, to subscribers. Sungcription copies, 10 cents. Sold by
all news dealers throughout the counrry. all news dealers throughout the country
Combined Llates. -The Scientific american and Supplement
will be sent for one year postage tree. on receipt of seven dollars. Both will be sent for one year postage tree. on receipt of s
papers to one address or different addresses as desired.
The sutest way to remit is by draft, postal order. or registered letter.
Address MUNN \& CO., 261 Broadway, corner of Warren street, New York
Scientific American Export Edition.
The Scinvipicic a merican Export Edition is a large and splendid periodical, issued once a month. Each number contains about one hundred
large quarto pages, profusely illustrated, embracing:
(1.) Most of the plates and pages of the four preceding weekly issues of the Scuw'rific AMERICAN, with its splendid engravigns and valuable information: (.2.)
Commercial, trade, and manufacturing announcements of leading houses. Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the world. Single copies 50 cents. Manufacturers and others who desire to secure foreign trade may have large, and hardsomely displayed announcements published in this edition at a very moderate cost.
The SCI FNTIFIC AM MuICAN Export Edition has a large guarante ation in all commercial places throughout the world. Address MUNN Co., 261 Broadway, corner of Warren street, New York.

NEW YORK, SATURDAY, JULY 21, 1883.

TABLE OF CONTENTS OF
 THE SCIENTIFIC AMERICAN SUPPLEMENT NO. 394,

For the Week ending July 21, 1883.

CHEMISTRY AND METALLURGY.-On the Action of Chlorine

V. ARCHITECTURE-A House Costing $\$ 2,500 .-2$ engravings and 628

VU ASTRONOMY.-Sir William Siemens on Solar Physics.-Tem- \quad perature of the sum..
vuL. ¥EOLOGY.-Origin and
IX. HORTICULTURE.-Gassia and Cinnamon.-Difference between
them..

POISONED BY HANDLING HIDES

In New York city, a short time ago, a man died from poison, communicated while handling some buffalo hides sen from India. His companion worker employed on the same job was taken sick, and after a severe illness finally recov ered. Both the men became warm, perspired freely, and repeatedly wiped the sweat from their faces with the bare hand, each of the men having a pimple on the face.
Whether the death of the one and the illness of the other was caused by the virus from the hide of a diseased animal, or by the absorption of arsenic used in the preservation of the hides, is not positively known. Probably, however, the cause was disease communicated from an infected animal through its hide, as the Calcutta packers use, frequently, an arsenical preparation on the hides to kill a small brown worm that otherwise might destroy the hides, and instance of poisoning in handling these hides are not uncommon.
Some years ago an importer of hides in New York died from the effects of a bite or sting of a fly which inhabited the loft where the hides were stored.

SPONTANEOUS COMBUSTION.

With all the facts to show the possibility of the spontaneous ignition of certain substances under certain circumstances, there is a perpetually renewed demand for more information. So it is well enough to cite instances of fires caused hy spontaneous combustion, even although it may be that "line upon line, precept upon precept" should be the rule.
A pile of cloth-cotton-left in a heap just as it came from the loom, and probably more or less saturated with oil, blazed up and fired a building in which there never was a fire or light before. This fire was probably caused by the piling of cotton cloth in heaps, the fibers of the cotton being saturated with orl-in this instance sperm oil, the ouly lubricating oil then in use.
A stone warehouse filled with cotton and woolen waste took fire on a summer afternoon, and resulted in the destruction of several buildings. In this case the waste, filled with oil, was packed closely in bins, or compressed into bags for convenience of stowing. Evidently compression, or weight, was an element in this case of spontaneous combustion.
A large establishment for the manufacture of machinery was burned by being fired from a heap of iron turnings thrown out from a convenient window, the greasy cotton cleaning waste being intermixed. It is hardly uecessary, however, to have the element of greasy cotton waste in order to produce, or to communicate, fire from a heap of iron turnings, chippings, and filings. The mass of disintegrated iron and its contained oil are enough to incite beat and combustion. And careful observers can sometimes see, in the dark, the blue luminous shivers of flame over a heap of iron drillings, chips, shavings, and filings, adjacent to machine shops
One of the finest blocks of buildings in an eastern city was destroyed, just before being ready for occupancy, by a fire started in an unused closet in which painters had thrown their overalls, these garments being presumably loaded with linseed oil and turpentine.
To these instances may be added some which were recently cited in Chambers's Journal. One of them dates back to 1780, when a Russian naval vessel took fire, and no cause except that of spontaneous combustion could be found or surmised. The fire was traced to a package of matting containing lampblack made from the smoke of fir and hemp oil varnish. A. carefully observed experiment demonstrated the fact that a closely bound parcel of this mixture of lampblack and oil took fire within seventeen hours.
Wool-combings, packed in a warehouse in bins and trodden down hard by the workmen, set fire to the building. The wool was saturated with oil, or was, at least, oily, and the compression was probably one of the elements to spontaneous ignition.
Oily hemp and flax, in bales and heaps, took fire spontane ously in Plymouth dockyard and caused great destruction of property. In 1861 or 1862 there was a great fire in the Liverpool dock warebouses, caused, as far as could be ascertained, by the spontaneous ignition of wet cotton in bales
The naval ships Imogene and Talavera were burned in Devonport dockyard by the spontaneous combustion of oakum and tow that had been used as waste for wiping greasy tools and machinery, and thrown into a bin.
Experiments prove that cotton waste wet in boiled linseed oil, placed under a temperature of $170^{\circ} \mathrm{F}$., took fire in one hour and a quarter. Raw linseed oil on cotton required four or five hours under similar preliminaries; olive oil, six hours; rape oil, ten hours; and castor oil, two days. As to animal oils, lard oil with the cotton produced ignition in four hours; seal oil, in one hour and twenty minutes; and sperm oilprobably adulterated with petroleum-did not fire in two days. It is generally conceded that the mineral oils, of whatever specific gravity or constituent characteristics, are not liable to aid in spontaneous combustion.
But there are other causes of spontaneous combustion not usually considered, and yet established as facts by ex periments and observation. Grain, either in the kernel or the straw, if packed into bins or piled into stacks while damp or only partially cured, will sometimes generate heat nough to cause combustion. Some of the supposed incen diary fires, by which barns have been burned, have been traced to this cause of spontaneous ignition; and in som other instances only that supposition was left as a reaso
for the fire. One case can be quoted as characteristic.
is taken from the Annales d'Hygiène: A quantity of oats stored in a barn had been consumed by fire, and the proprie tor suspected the act to be one of incendiarism. Several ex perts were consulted; and on inquiring into all the circumstances, tiney unanimously concluded that the fire was the result of spontaneous combustion, caused by the fermenta tion of the grain stored in a damp state. Several things pointed unmistakably to this conclusion, such as the fact that the oats were proved to have been stored damp; that laborers had noticed the heat of the oats several days previous to the fire; that some of the sheaves that had been removed the day previous to the fire to be thrashed were charred and discolored; and above all, that the center of a large pile of sheaves was burnt and blackened, while the outside of the sheaves retained their natural color.

SCIENCE IN COLORING.

A London journal of high standing bas inaugurated the criticism of paintings as viewed from a scientific standpoint -noting aspects which do not accord with the teachings of science and cannot, therefore, be in harmony with nature. It is impossible to make strict rules for the guidance of the artist in all cases, but he can be given rules, a wide deviation from which will produce discord, aud the following of which will produce the grandest harmony. His own study and taste must guide him the rest of the way. It is also difficult to predict from what calling in life will come the best criticism. A rainbow painted with the order of the colors reversed will destroy the effect of the picture to the scientist; the milkmaid and the cow, with the maid on the wrong side of the cow, places that artist low in the estimation of the gazing farmer. The first violates nature, the second violates custom. That there is no excuse for such flagrant mistakes will be readily granted, but it is, perhaps, open to question as to which is the more to be censured Each class (these two instances may be considered as types) shows lack of attentive study, or it may be that the first was so intent on the effect his rainbow would produce that be overlooked the correct coloring, while the outline of the maid and the cow so engrossed the second that he forgot that the position of the maid endangered the milk.
Scientific observation can be of great service to the artist, not so much in the arrangement of the subject as in the proper use of colors. In landscapes-in fact, in all attempts to portray outdoor scenes-it will enable him to name the colors which will not violate natural laws; he will properly rrange them, and he will do this by infallible laws. In the reatment of sky give him the conditions, and the scientific artist will name the colors so as to yield the most pleasing effect, for the simple reason that he knows those particular colors could be produced in the great laboratory, and he also knows that a promiscuous grouping would create dissatisfaction even to the uneducated eye.

THE LATHE

The oldest machine tool known is the most valuable. It ontains the germs of all others, whether rotary or reciprocating, and can be made to take the place and do the work of any one of them at a time, and all of them as desired. Its origin is lost in the mist of prehistoric times. It is as old as the loom, and was used by the oldest nations. As constructed in these times, it has reached great perfection, and is made in various special forms ; there are boring and chucking lathes, turning lathes, screw cutting lathes, drilling lathes, and polishing lathes. But a screw cutting athe with rack or friction feed, and the other ordinary appliances of a complete lathe, comprehends in its capabilities almost all the offices of the other special tools used in the machine shop.
Take a single instance of its capabilities, the production of a screw tap. The lathe will cut a piece from the steel bar; it will drill its centers and countersink them; turn the tap, whether straight or taper; cut the thread on it; score the tap, either by a cutter in the tool post while the tap is suspended on the centers of the spindles, or by means of a rotary cutter or milling tool on the spindle centers while the tap is held on temporary centers on the tool carriage. Even the top end of the tap can be squared, by similar means, or the reception of the tap wrench.
Now, all 1 his work represents the cutting-off machine, he drilling lathe, the turning lathe, the screw cutting lathe, the planer, or the milling machine. And unlike many com bination tools, the lathe can be made to do all this work well. With a cheap attachment the lathe can be made to cut gears, making the teeth with practical accuracy, and the lathe itself can be used to produce the index plate that insures this accuracy. A job of planing-or surfacingwhere the work will swing in the lathe, can frequently be better and quicker done on the lathe chuck than on the planer platen. The rapidity is much greater because the surface to be worked is continually under the action of the tool, instead of having more than one-third of the time wasted in the running back of the platen for the return chip.
In short, all the other machine tools, either of a rotary or reciprocating character, are simply modifications of the lathe; and with the lathe and its convenient appliances and necessary tools, the mechanic can by the exercise of his taste and skill perform almost any ordinary job in the working of metals possible on machine tools. The pos session of a screw-cutting slide-rest foot lathe and a common bench vise, with their accompanying hand tools, is an excellent ou!fit for the amateur

storing the power of the wind.

 Treating recently of the possibility of utilizing the wind power which now so constantly goes to waste everywhere about us, mention was made of two means for accomplishing the object-electrical storage batteries and reservoirs for compressed air. It is worth while to state that the article was written with the full conviction, and for the purpose of bringing presently to fair understanding the fact that neither of these will do the work, and to urge inventors and active minds to work out the problem by which something better may become a vailable.What storage batteries may eventually be brought to do, is entirely uncertain. The whole subject of the actual management of electricity, so that it shall be an agent for mechanical uses, safe, trustworthy, and cheap, is yet so little understood that though we have great bopes for the future, our use of it at the present is subject to much difficulty.
As to storage hatteries, in any of the various forms in whel they trave been-macters
ferent inventors, it is but fair to remember that the accounts which bave been published bave been chiefly those put forth by interested parties, those who bad pecuniary interests involved; and without imputing any intentional deception, it is easy to understand that such statements may go further than practical working will warrant.
The batteries are in truth of small real value. No man would dare to depend on them as a means of carrying on work whose success required a steady and even power. In the first place, they are very wasteful, for the claims made of the great percentage of power recovered from them are certainly not borne out, when they are subjected to fair in vestigation by those who have no object in proving their great excellence It is not too much to say, in general terms, that very nearly half the power transmitted to them is not recovered.
Then, again, trials seem to indicate that their life is short. The constant chemical action disintegrates the plates so rapidly that very frequent renewal is necessary. This, it is true, may not be very expensive, but it is very troublesome. And it is evident that until, or unless, they can be greatly changed and improved they will not do what we need in this case.
The other mode suggested was the use of reservoirs. The only difficulty here is the expense of the plant; expense involving also bulk. To illustrate the matter we will assume the case of a manufacturer employing for his daily work a twenty horse power engine. This he uses ten hours daily for six days, and it would be disastrous to his business to have this power fail him for even an hour. The wind power is so far unsteady that unless he could retain in his reservolr the means of mandore at least, it would not be prudent for bim to depend upon it; he might find his works lying idle for lack of power. That amount of advanced storage would, it is rue, seldom be necessary. For a large part of the year he would not need ten, or five, or perbaps even two hours in advance; still he must be safe, and in order to be so he must meet the extreme want. A reservoir to contain a store of air compressed to such an extent as would be practicable to run his engine twenty hours must measure at least 30,000 cubic feet. Five cylinders of sixteen feet diameter and an equal length would approximately make it.
With these reservoirs bis factory could go on in the future without expense for power; there would be the interest on the original outlay, and the cost of wear and tear; nothing more. The plant and the bulk are, as indicated, the difficulty. In some cases it may not stand in the way, but generally and especially for heavy power they amount to a real prohibition. We need something better, and we return to the original question: Who will devise the means of storing wind power?
It surely ought not to be given up as a matter beyond our reach. The means of running machinery to an extent prac tically unlimited are immediately ready to our hand when this one thing can be obtained.

The Medicaments of Brutes.

In a communication to the Biological Society of London, recently sent by M. Delaunay, on the medical practice of animals, the doctor gave some interesting facts, from which he argued that the human reason ought to be trusted as much asanimitinctin instances where medical seience seems to be at fault; and he insists that the desire of sick persons for certain foods and drinks may be a natural in stinct rather than a morbid fancy.
But he does not state bow the one may not be mistaken for the other. In bis list of examples of medical instinct in the lower animals, M. Delaunay says that animals bathe for cleanliness and health, that they get rid of their parasites by using dust, mud, clay. etc. Those suffering from fever restrict their diet, keep quiet, seek darkness and airy places, drink water, and sometimes plunge into it.
When a dng bas lost his appetite, it eats that species of grass known as dog's grass (dogtooth), which acts as emetic and purgative. Cats also eat grass. Sbeep and cows, when
ill, seek out certain herbs. An animal suffering from chronic ill, seek ont certain herbs. An animal suffering from chronic
rheumatism always keeps, as far as possible, in the sun. If a chimp:nzee be wounded, it stops the bleeding by placing its hand on the wound, or dressing it with leaves and grass. When an animal has a wounded leg or arm banging on, it completes the amputation by means of its teeth. A dog, on being stung in the muzzle by a viper, was observed to
plunge its head repeatedly for several days into running water. This animal eventually recovered.
A sporting dog was run over by a carriage; during three weeks in winter it remained lying in a brook, where its feed hurt its right eye; it remained lying under a counter, avoid ing light and beat, although it babitually kept close to the fire. It adopted a general treatment, rest and abstinence from food.
The local treatment consisted in licking the upper surface of the paw, which it applied to the wounded eye, again licking the paw when it became dry.
The doctor thinks that veterinary medicine, and perhaps buman medicine, can gather from these facts useful indications, precisely because they are prompted by instinct.

Total....................1,844,102 $\$ 627,708,634$ 182,935
total number of hands employed in all the industri
in the census year (1880) was $2,738,859$; the aggregate of wages paid was $\$ 947,953,795$, and total number of establishments is given at 253,852 . The statistics of iron and stee manufactures include blast furnaces, bloomeries, forges, rolling mills, steel works, forge products, machinery, and finished and ornamental iron work of all kinds; of lumber, sawed, planed, turned, carved, sash, doors, and blinds; brick and tile include drain pipe and terra cotta statistics, and printing and publishing incorporates lithographing. The following table exhibits the leading industries in order of annual value of products:

Industries.	Value annual products.	Value mate- rials	Total capital.
capital.			

Total............. $\$ 384,527,288$ \$2,035,561,974 $\$ 1,821,973,976$
The total value of products of all industries reported by the census was $\$ 5,369,579,191$; the value of materials used was $\$ 3,396,823,549$; and the total capital was $\$ 2,790,272,605$ It will, therefore, be observed that the totals of the indus tries in the second table are approximately two-thirds of the grand totals named. A general inspection of both tables confirms what we have hitherto stated, that there is about $\$ 1000$ of capital invested in manufacturing and mechanical industries to every employe. Thus it appears that for every person employed in those industries, the interest on $\$ 1,000$ production
It will be noticed that, while the aggregate capital of all industries is $\$ 2,790,272,605$, the total number of employes is $2,738,895$. In the fifteen lines of industry mentioned above, there are $1,844,102$ employes accounted for, and the total capital engaged by the industries given is $\$ 1,821,973$,976. Another striking coincidence is that the average
amount of capital employed by the 182,935 establishments epresented in the above fifteen lines of industry is jus about $\$ 10,000$ each.

Improvements in Photographic Emulsions.
The processes by which Dr. H. W. Vogel, of Berlin, car ies out his improvements in the preparation of emulsion are said to entirely avoid the disadvantages of the ordinary aqueous bromide of silver gelatine emulsions. The proces has been fully protected by letters patent in this country and elsewhere. The essential feature of Dr. Vogel's inven tion is the use of gelatine combined with pyroxyline into a bomogeneous fluid, which, it is stated; was unknown until e discovered a suitable solvent, which he finds among the inferior members of the fatty acids, e, g., formic, acetic, propionic acid, etc., their derivatives, and mixtures of the same. Dr. Vogel gives the following four methods, which 1. I has found successful:

1. I first produce a gelatine emulsion according to the customary process, which is then dried by means of cold or warm air, or other means for extracting the water. This ry bromide of silver gelatipe (which can also contain iodide of silver and chloride of silver) I then dissolve warm in one
of the ahove mentioned acids, using three to ten times as much or even more acid. The quantity of acid to be used depends on the solvency of the gelatine, and must be tried for each kind. This acidulous emulsion is now used alone after baving been diluted with alcohol to the required consistency, or can be mixed with pyroxyline. The pyroxyline is dissolved in acetic acid, a like acid, or a mixture of such acid with alcohol. The most appropriate quantity of pyroxyline is about one per cent of the quantity of acidulous emulsion employed.
2. Pyroxyline is dissolved in one of the fatty acids-for instance, formic acid or acetic acid, or a mixture of such acids per se, or with alcohol or other solvent which will dissolve both gelatine and pyroxyline. For easily soluble pyroxyline, alcohol or methylated spirit, or a mixture of the same, can be used as solvent. The proportions can be varied in many different ways, so that the following formula serves simply as an example:

mixed with about
The collodion produced by this process is mixed with about The gelatine emulsion collodion produced can be slightly warmed and applied like ordinary collodion to glass plates, warmed and applied lesed ordind and exposed to the either in a moist or dry
paper paper, etc.
condition

condition

3. A collodion emulsion is prepared according to the cus. tomary formula and precipitated as usual by water; or the emulsion is allowed to dry up, then washed, and the dry matter dissolved in one of the above mentioned acids or mixtures of the same with alcohol. Gelatine, either alone or after being dissolved in one of the solvents mentioned above, is cow added to the collodion preparation. The proportions can be varied in the like degree as in the preparation of the ordinary collodion emulsion. The following is, for instance, one of the various proportions of the mixture : 7 grammes of the precipitated pyroxyline containing bromide of silver are dissolved in 150 grammes alcohol and 90 grammes acetic acid, then 2 grammes gelatine are dissolved in 20 grammes acetic acid and added to the same.
4. Dissolve gelatine and pyroxyline in one of the abovementioned solvents, or dissolve them separately, and then mix the solutions. Finely powdered bromide of silver prepared in the customary manner, or any one of the silver haloid salts, or a mixture of the same, is now added to the gelatine collodion solution; or the silver haloid salts are produced in the gelatine collodion solution through douile decomposition. These proportions can also be varied in different ways.

Storage Gas Battery

An adaptation of Sir W. Grove's gas battery as an accumulator has been devised by Mr. F. J. Smith, who describes it in the Philosophical Magazine for March. To enable the battery to discharge for a considerable time, the gases are put under high pressure. One made in this way has been in use for the past eighteen months. It consists of a strong lead vessel well lined with rubber varnish to prevent any dissolution of the lead.
The plates are platinized platinum cylinders with wires and terminals running through the case in insulating sheaths. A manometer is attached to register the pressure; and a 10 per cent mixture of sulphuric acid and water is used to charge the bell. With this arrangement Mr. Smith easily obtains a pressure of seven atmospheres, and the platinum cylinders, one of which has twice the capacity of the other, can hold a proportionately larger quantity of gas than they would do at the ordinary pressure.
A second form has been constructed for the author by Messrs. Becker \& Co. In this a U-shaped glass tube is employed, the manometer being attached to the bend, and sheets of platinum being fused into each leg. This form, although well suited for lecture purposes, only bears a smail pressure. A curious observation is that the electro-motive force of the accumulator varies with the pressure of the gas. In addition to constructing this battery Mr. Smith Las cbarged small Faure or lead secondary batteries under pressure, and found that the time of discharge is longer when thus charged. Mr. Smith is at present engaged in studying this obscure phenomenon; and for the benefit of others en gaged in similar inquiries he states that oxygen liberated by electrolytic action acts almost instantly on India-rubber tub ing or varnish, and causes it to split and crack.

Condensed Skim Milk as a New Food.
According to the Cherriker Zeitung, M. Muller has evaporat ed skimmed milk in a vacuum, so as to obtain a permanen product, which can be preserved for many months in a dry atmosphere, and which has valuable alimentary properties. He thinks that it may be of great use in pastry, and in va rious kinds of baking, and the best sugar of milk can be made from it. The skimmed milk which is collected in dairies and cheese factories is usually given to animals or wasted in sewage; it contains, however, large quantities of salts and particles of butter and caseine, which can be utilized by Muller's method - Rev. Scientif.

According to Weidemann's Beiblatter, a shark belonging to the genus Scymnus is pbosphorescent on its whole unde surface, with the exception of a black stripe on the neck The upper surface is non-luminous.

IMPROVED FRUIT EVAPORATOR.

The annexed engraving represents a very sinple and efficient fruit evaporator, recently patented by Mr. William H. Reed, of Cliffdale, III.
This apparatus consists of a reel adapted to receive in its double arms a series of fruit crates, the reel being supported on a shaft in a heating chamber, and rotated so as to bring the crates successively over the heater and to create a current of air which rapidly carries off the moisture from the fruit. The heating chamber is fitted with a ventilator at the top and air inlets at the sides, about the shaft. The bottom of the furnace at the sides is filled in with fire resisting clay to carry the heat of the furnace directly up to the reel without great loss by radiation. There are air supply openings wi
dampers at the lower part of the heating chamber for dampers at the lower part of the heating chamber for supplying the amount of air required.
The chamber may be heated in various ways, either by a furnace, as shown in the engraving, or by means of a stove or by steam. The crates which fit into the adial arms are provided with wire gauze sides, so that he air has access to all sides of the fruit as it is carried round by the reel.
The capacity of this machine may be increased by extending the shaft and adding sections to the reel In this case the sections are geared so that any one may be stopped or revolved without interfering with the others.
This evaporator is very rapid in its operation, and produces uniform evaporation without shifting the crates, and without special attention. The reel is re volved by suitable power or by band
Further information in regard to this invention ma be obtained by addressing the inventor as above.

To Detect Alcohol in oils.

To detect alcohol in oils, take a slim glass tube eight or ten inches in length, closed at one end, and as large as your finger. Put in an ounce or two of oil, paste a piece of paper on the outside of the glass, so that its lower edge will be even with the top of the oil, then add t wo or three times as much soft water, and shake we for a few moments. When it has settled, in an lour or so, the water will have absorbed thealcohol from the oil, whic will show proportionately below the line first fixed.

herrington's system of transportation and

 DELIVERYA ready means of transporting articles for short distance is shown in the engraving. The device is more particuarly desirned for receiving and delivering parcels of goods groceries, provisions, milk, etc., but it may be used to great advantage in manufactories and in many other places. Th apparatus is so simple as to scarcely need description, consist ing of a carrier, a wire or cable upon which the carrier runs and a device at each end of the wire or cable for raising and owering it to secure the elevation necessary to cause the ca rier to run along the wire or cable. At each end of the cable there is a catch which retains the carrier at the end until the opposite end of the wire lowered, when the wire beoming taut diseugages the tch and releases the carrier The article to be transported or delivered is suspended from the carrier and is moved along the wire by its own gravity.
In the present case the article being delivered is milk. The can is suspended from hook on the carrier, and when the street end of the wire is raised by means of the cord running over the pulley on the post, the car rier moves forward toward the house end, where it is arrested by a rubber buffer and is retained by the spring catch before referred to.
Fig. 2 shows the arrangement of the pulley carrier catch, and buffer.
If the person at the house desires to operate the carrier, the method is the same a that already described.
This device is very simple, easily constructed, and ap plicable to a great number of uses. It is capable of saving great deal of labor and

Mr. G. H. Herrington, of Wichita, Kas., is the patente of this invention

To prevent mould on the top of glasses of jelly lay a lump of paraffine on the top of the hot jelly, letting it melt and spread over it. No brandy paper and no othe covering is necessary. If preferred, the paraffine can be melted and poured over after the jelly is cold.

HERRINGTON'S SYSTEM OF TRANSPORTATION AND DELIVERY.

Poisonous Efrects of Petroleum Smoke
A curious instance of poisoning from the smoke of petro leum is reported in the Neue Freie Presse of Vienna. A workingman's wife brought to a local hospital a child eighteen months old who had been seized early in the morn ing with violent convulsions, and had subsequently become unconscious. She also stated that her husband, on awaken ing had been taken with cramps, and had an uneasy sensa tion in his upper and lower extremities, accompanied by headache, from which she was also suffering. The singular color of the child and the results of careful examination led to the conclusion that there had been acute poisoning from smoke gases. It was then discovered that in the small and ill-ventilated bedroom occupied by the parties in question a petroleum lamp was used as a night lamp, the flam being reduced as much as possible. The wick had however, beeu left projecting without the protectio of a glass cylinder. In this way the flame of course emitted smoke. The father (bimself a delicate man was also found to exhibit symptoms of poisoning. B the exertions of the medical men in charge of the cases, both the father and the child bave progressed so far toward recovery that their restoration to health is confidently expected.-Lancet.

Frogs.

A Louisville (Ky.) scientist, according to the Electrio World, sings the praises of the frog, and incidentally refers to the part the humble batrachian has played in the development of electrical science: "Even in th benighted age in which Gaivani lived it had been dis covered that frogs' legs were good to eat. He had a pair of them hanging on a copper hook, and occasion ally the wind would blow them against an iron rail ing, and they would jerk convulsively whenever con tact was establisbed. Galvani noticed it, and set his wits to find out the cause. Everybody knows the his tory, although it is a long one, and everybody know hat from that simple occurrence, and through the de unct frog's instrumentality, we have the telegrap monopoly the telephone with the wires crossed half the one the mitter, the electric light, which doesn't burn on cloudy nights, and many other blessings of life. The world owes nights, and many other blessings of life. The world owes
all those things to the simple fact that a frog's hind legs are all those thin
good to eat."

Tobacco Insecticide

The Repertoire de Pharmacie quotes, upon the authority of Dr. Nessler, a recipe for an insecticide which is said to have a greatreputation among German horticulcurists. I consists of soft soap, 4 parts; extract of tobacco, 6 parts mylic alcohol 5 parts; methylic alcohol, 20 parts; water t make 1,000 parts. The extract of tobacco is made by boil ing together equal parts of roll tobacco and water for half ing together equal parts of roll tobacco and water for half
an hour, adding water to make up for what is evaporated. The soft soap is first dis solved in the water with the aid of a gentle beat, and the other ingredients are the added. The mixture require to be well stirred before it is used, and is applied by means of a brush or a garden syringe fitted with a smal rose.

An American Example in Australia.
Frearson's Weekly, Ade laide, South Australia, give several illustations of rail way viaducts, including the Kinzua viaduct on the Erie road, and in describing tloose on the Nairne line, Australia says:
Many of our readers may not be aware that the via ducts on our Nairne line are modeled after the celebrated Kinzua viaduct. It is on the New York, Lake Erie, and Western Railroad, and is situ ated in the middle of McKean County, Pa., four miles from Alton, the present terminu of the Bradford branch of th Erie road, and crosses the Kinzua Creek at an elevatio f 2100 feet above sea leve It was Mr. O. W. Ba les, New York, who two years ag rlobules, and is separated out in the cream; the other por- proposed to cross the valley by an immense viaduct. He wa ion remains in the skim milk. The milk globules swell up at that time chief engineer of the Bradford branch of the if shaken with ether. The digestibility of any milk is in- Erie, and was ably aided hy his energetic assistant, Mr versely as the quantity of caseine which remains in the skim Charles Pudsley. The length of this structure is 2,051 fee milk. Hence Dr Biedent's sugrestion that only cream milk. Hence, Dr. Bierliest nouridment of young children brought up by hand is perfectly justified. The caseine of buman milk, as well as of cow's milk, has always an acid reaction. In human milk there is only a small quantity of butter in a free state. $-H$. Struve.

IT is asserted that the largest ivory factory in the world is at Centrebrook, Conn., where sometimes $\$ 125,000$ wort of ivory is bleaching

Additional W ater Supply for New York City. The governor having approved of the new water supply bill, the additional works will be proceeded with as fast as possible. At present the city is supplied from Croton River and Lake, distant 40 miles from the city, by a masonry aqueduct 7 feet in diameter and about forty miles long. The daily delivery is $100,000,000$ of gallons, equal to about 75 gallons for each inhabitant. The waste is enormous. The new water commission will be asked to adopt the Quaker Dam plan, which is to build four and one-half miles below the present Croton Lake a massive dam to span the valley, rising to the height of some 200 feet.
This dam will be constructed of masonry on bed rock, near Quaker Bridge, and raise the water level in Croton Valley to 200 feet above tide, with a storage capacity of about $32,000,000,000$ gallons. This will receive the entire drainage of 361 square miles of watershed, and the estimated cost is $\$ 4,000,000$. The reservoir will practically be a deep lake with an area or 3,005 acres. Adtuedto the other sources of supply the storage capacity of the reservoirs would be about $46,000,000,000$ gallons, and these would give very nearly $200,000,000$ gallons per day for 230 days, independent of the natural flow of the Croton.
The line of the new aqueduct will measure $261 / 2$ miles to High Bridge. As far as practicable this will be built in tunnel, securing strength and avoiding expensive land damages. It will be circular, of brick, and the question is whether it shall be 12 or 15 feet in diameter. The latter will add 15 per cent to the cost, and yet increase the capacity nine-sixteenths.
The valleys will be crossed by masonry conduits, while siphons may be introduced for the Harlem River and Manhattan Valley. The water'will be delivered into the reservoir at Central Park at an altitude of about 119 feet above tide water, leaving the Quaker Bridge reservoir at an elevation of 142 feet, thus allowing 58 feet of storage water to be drawn from, provided the new Croton Lake was filled to its utmost capacity.
The preliminary estimates are $\$ 4,000,000$ for the storage reservoir, and $\$ 10,000,000$ to $\$ 12,000,000$ for the aqueduct. But these figures only include the delivery of water at High Bridge, and do not take into account the land damages or other injuries occasioned by the passage of an aqueduct with an internal diameter of 15 feet, nor the expenses occasioned by legal delays, etc.

The Electric Wonders of the Age.

Hon. S. S. Cox, in the annual address delivered before the Indiana Asbury University, at Greencastle, on the 19th " The
" The electric monograph transmits messages in the original handwriting. The hektograph multiplies your epistles; the telephone enables people to make contracts through an orifice; but as there is no witness, photography comes in and records the shadow of the sound by curves in vowels and consonants!
" Electricity is an element elusive and subtle, yet it is stored in a box and imprisoned in a metal to be used a pleasure for portraiture, sound, light, or power. I have seen an organ in Berlin played by electricity, but this is simple compared with other experiments. Is it not a marvel that we can telegraph from a moving railroad car or the speed ing steamship? A California photographer obtains six photographs in one leap of a clown in six different positions He catches a horse on the galop, a rabbit on a run, and bird on the wing. By means of a wire a circular saw or a locomotive may be-nay, has been-run miles distant from its source of force. Electricity is born of the sun. It may be converted back to its source, so that when one talks by tele phone he may see his distant colloquist. It is shrewdly be ieved that nerve power depends for increased strength on light. It will not be strange if the polyscope illuminates the animal organism, rendering the body transparent. The vast current of liquid force which we call electricity is condensed in boxes like desiccated meats, or spread over continents to convey intelligence. Man can never overdraw from this vast, bankruptless depository of nature.

Products from Telegraph Batterie

Of the $12,350 l$. spent during the year 1881-82 upon the $12 \pi, 166$ galvanic cells in use, 2,727l., or about. 22 per cent, were recovered by the sale of the battery residues, consist ng of copper, zinc, and lead salts. It has been customary to sell these products by auction twice a year. The Government does not guarantee any fixed percentage of metal in these salts, but the amount varies very slightly. The normal cell of the German telegraph offices is a modified Daniell cell of a simple and cheap kind. The zinc electrode is formed of a ring, hanging down from the edge of a glass vessel to half its depth. On the bottom lies a rectangular plate of lead, to which a vertical stout iron wire, incased in sheet lead, is soldered, making the other electrode.
The glass is filled with sulphate of zinc solution, and a few crystals of sulphate of copper are from time to time dropped into the liquid. Of these materials the zinc ring is of course most subject to deterioration. Thus we find that the above mentioned 127,166 cells required nearly 80,000 new zinc rings, against 7,300 lead sheets and 910 lead plates. The sulphate of copper forms the largest item in the annual expenditure, amounting to $8,000 l$. During the four years which the table comprises, from 1878 to 1882 , the number of cells bad increased by nearly 20,000 .

NEW CIGARETTE MACHINE.

The engraving below represents a new cigarette machine, nvented by Dr. E. Casgrain, of Quebec, Canada, and patented by him in the United States, Canada, England, France, Spain and Cuba, and Germany. It consists of 2 cylinders joined by a band, journaled in frames hinged to each other, one of which is provided with a crank handle, and

SIMPLE CIGARETTE MACHINE.

bacco and paper are placed on the band, the machine is closed, a turn of the crank handle enrolls the tobacco, and the cigarette is made.
The machine works perfectly and easily and is very well designed and arranged. An inexperienced hand may make over 100 cigarettes an hour with it. It is a great improvement in inventions of the kind, working very rapidly, and t is withal cheap and practical.
M. M. Gaynor \& Fitzgerald, of New Haven, Conn., are sole manufacturers for the proprietor.

A NEW CRUTCH

Doctor James R. Taylor, of New York city, while reading paper before the American Medical Association, at its re cent meeting at Cleveland, on "Fractures of the Long

TAYLOR'S IMPROVED CRUTCH.
Bones," exhibited a novel device of his own invention, for use in combination with the ordinary crutches used by convalescents from fractures of the leg, or other cause of lameness of the lower extremities.
The invention consists of a neat little saddle, which is well shown in the accompanying engraving, and it is so arranged that it can be worn without inconvenience inside of the clothing. Attached to it are a pair of small adjustable uspenders, the free ends of which terminate in steel hooks or fitting upon the tops of the crutches
When the suspenders are adjusted to fit the patient, the hooks reach up to about two inches below the axillæ, the ends alone coming out under the arms and outside of the clothing.

These ends are the only parts of the device which are isible.
The saddle is well padded to fit the perineum, and is of such form that the patient rests upon it without discomfort when sitling on a chair. Its temporary removal is also nicely provided for, and when the wearer places the crutches in the suspender hooks for the purpose of walking, the weight of his body is carried entirely upon the saddle, without the crutches reaching up to the axillæ, so that no discomfort is experienced even in taking long walks.
The apparatus was recei ved very favorably, and cordially The apparatus was received very favorably, and cordially
applauded by the large body of surgeons present at the above meeting.
This apparatus has been thoroughly tested by Doctor Taylor on quite a number of his own patients, both male and female, with great satisfaction to both the patient and the doctor.

The Air of Houses.

There is much confusion in the minds of some people, says the Building News (Loudon), with respect to the dryness or dampness of houses. An airtight room is more or less damp, though people are generally apt to think it otherwise if there is no draught, and all the air is carefully shut out. As a general rule, we invariably find the most draughty house is the driest, as it will be generally found to be the healthiest, if not the most comfortable, in cold weather. But the air of a room, as that for an invalid, may become too dry; it may be overheated by a stove, which would become injurious to the patient. In certain cases vaporizers are now employed to give the air of the sick chamber its healthful employed to give the ail
proportion of moisture.
Mr. G. J. Symons, in a paper on meteorology, has remarked that the subject of the hygrometry of the sick room was unknown two generations ago. If, in addition to temperature, the quantity of moisture in a sick room were indicated by the hygrometer, a great deal more might be done for the invalid's comfort. It is just as easy to regulate the hygrometric condition of the sick room as its temperature, and, in many respiratory complaints, the former is even of greater importance than the latter. The hotter the air is the more water can it contain, and this condition does not appear to be apprehended by those who dwell in such rooms, or provide the means of heating and ventilating them.
Prof. Tyndall found that the moisture in the air of an ordinary room absorbs 50 to 70 times as much of the radiant heat as the air does. Moisture is the regulator and conservator of the heat, and in due quantity acts like a blanket, by protecting us from a too sudden cooling or heating. The question is one, we think, worthy more attention by the sanitary builder than has been given to it. Complaints are loud against certain hot air furnaces, as they overbeat the air and render it unfit for breathing; they tend to scorch and dry the air, and to this extent they are unhealthy.

Hydrophobia.

For some time M. Pasteur, the French investigator, has been experimenting with a view of discovering whether the fatal infection of rabies can be disarmed of its power by inoculation. It is said that he now possesses four dogs which are proof against the infection, whatever may be the method of inoculation used or the virulence of the matter, while other dogs inoculated with the same virus in variably perish. The experimenter raises the question whether these four animals owe their impunity to spontaneous recovery from a mild attack, which may have escaped observation, or whether they are naturally refractory to the disease. One of the three dogs which be inoculated in 1881 survived, and though twice inoculated in 1882, he did not become and though twice inoculated in importance of finding a remedy for all forms of hydrophobia is magnified by two facts brought to forms of hydrophobia is magnified by two facts brought to
light by the researches of M. Bert. One of these is that light by the researches of M . Bert. One of these is that
even if the saliva of a mad dog does not communicate rabies even if the saliva of a mad dog does not communicate rabies
it may prove fatal by producing serious local injuries-in other words, the secretions of rabid animals have poisonous properties over and above the special rabic virus. The second fact is that it does not follow because a dog which has bitten any person does not die, that the animal is free from rabies. These conclusions will add to the terrors of the disease. But there is some consolation in learning from M. Bert that the mere salivas of solation in logs do not always communicate the deadly virus, and apparently never communicate it unless they contain the mucus from the respiratory organs, which seems to be the fatal portion of the saliva.

Origin of Yellow Fever.

A report has been received at the State Department, at Washington, containing the results of observations and ex periments made by Dr. Freize, a Brazilian physician, who believes that he has discovered the cause of yellow fever in a microscopic parasite found in the blond of yellow feves patients. Experiments made by injecting this infected blooc into the veins of rabbits and guinea pigs proved its viru lence by producing death, the blood of the inoculated animal showing the same characteristics as that from the original yellow fever victim. The doctor's experiments seem to prove, also, that these parasitic germs of death sur vive in the soil where the subject of the fever is buried, and from thence may again contaminate living organisms, which would appear to favor cremation rather than burial in the case of yellow fever victims.

PROPOSED NEW RRIDGE, LONDON

It is recorded that when James I. threatened to punish the citizens of London by the removal of himself and his court to some other city, the Lord Mayor calmly informed the King of the hope of the citizens that His Majesty would leave them the Thames. So long as the river remained, the people of London believed that they might endure the loss of even the Solomon of the West. Since that time much has been done by means of railways and improved roads to facilitate the intercourse of nations and to promote commerce; but the Thames is still what it was in the days of King James, the link by which London is united with the rest of the world. If, as Sir John Herschel says, "London is the center of the terrene globe," that position is due to the possession of a navigable channel. What other city can show such a proof of international trade as may be witnessed every day in the year between London Bridge and Blackwall?
The supremacy of London in commerce is in a great measure attributed to the navigability of the river, and in dealing with the Thames this fact should never be overlooked. While every one admits the advantage of unimpeded com-
 of the river, it should also be remembered that an advantage
of the kind would be dearly purchased if to secure it impediments were raised to interrupt the traffic on the water The local requirements of Whitechapel and Bermondsey should never be allowed to override the general interest of the city (which is also the interest of England), and although it would be well for carts from Shoreditch to reach the Old Kent Road expeditiously, the gain in time would hardly compensate for the loss that is ineritable if commercial arrangements which have taken centuries to mature should be disturbed or destroyed.
When, for example, it is proposed to erect a bridge with a massive pier in the very middle of the waterway, or a bridge of a height that will prevent many of the vessels that trade with London from passing under it, or a bridge on so ingenious a principle that there is risk of the intricate machinery becoming disarranged in the opening or closing, it is evident that in every one of those cases there is a certainty of interference with the traffic of the Thames, and the trade of the port will in consequence be sacrificed to local interests. On the other hand, a fixed bridge at a high eleva tion above the river would involve local inconvenience, for it must be costly, and unless the approaches are carried for a great distance inward, the gradients will be steep and in volve a loss of tractive power.
If the foregoing assumptions are correct, it is evident tha the question of constructing a bridge over the Thames below London Bridge is one in which compromise is demanded if there is to be a satisfactory solution. Something must be abated by all parties, by the representatives of land traffic as well as by the riverside proprietors. It is physically impos sible to have a bridge with easy gradients for land t:affic and which will be also clear above the highest masts, or one on a low level which shall still be equally convenient for ships and wagons; and the most prudent course will be to construct a bridge on a principle that will give a minimum f inconvenience, while allowing of easy gradients and a ca pacious waterway. In the opinion of the special committe of the London Corporation, who were appointed to investigate this question, the design which is illustrated by us this week complied with those conditions. The committee reported that the design commended itself to them "as one providing a bridge which would interfere but very slightly with the river traffic, and would bring about, that relief to the commerce and trade of this city contemplated by th references to your committee."
It will be seen from the illustrations that the City Archi tect has adopted the bascule principle for his bridge, as be ing simple in arrangement, economical, and convenient besides admitting of that architectural effect in the towers which is necessary for a structure placed in so important a position. In the upper view the bridge is open, and in the ower one closed.
The proposed bridge, having in its center the same height f waterway as London Bridge, viz., 29 feet, would consist of two side spans of 190 feet each, and a center span or opening of 30 feet. The roadway of side spans would be carried by two wrought iron lattice girders, of ordinary type, or by shallow lattice girders carried by suspension chains from the towers, with girders spaced 35 feet apart, and cross girders between carrying buckled plates on whic the railway would be bedded.
The center span of 300 feet would be bridged by two hinged platforms, forming the "bascule." The longitudinal and cross girders and buckled plates of the platforms are all proposed to be steel, to reduce the weight as much as posible. Each platform would be suspended by eight pitched chains, passing over polygonal barrels fixed in the semicir cular arches between the towers, and from thence to the hoisting machinery in the towers, where they would ter
minate in a plain chain or iron rod carrying the balance minate in
The boisting machinery could be worked by steam power, or by hydraulic apparatus, supplied by tanks fixed in the roof of the towers.
The arches between the towers carrying the polygonal chain barrels would be formed of four wrought-iron braced semicircular arched ribs, connected transversely by four wrought-iron lattice frames. The rise of each arch in center
would be 130 feet above Thames high-water mark, or of 100 feet headway for a width of at least 150 feet.

The principal advantages of the design proposed are: First. Lowness of level and, consequently, easy gradients the land traffic.
Second. Economy of construction in the approaches on both banks of the river, the lowness of the level allowing of direct access, and necessitating very slight alterations of the djoining streets and properties.
Third. Occupation of less river space than a swing bridge, which, when swung open, requires a clear space equal to the half span of the bridge.
Fourth. Less interference woith the tide-way or navigation of the river, the:e being only two towers or piers, instead of hree or four, as in the swing bridge schemes.
Fifth. Beauty of form. The chief features of the bridge being capable of architectural treatment, it might be rendered the most picturesque bridge on the river.
Sixth. Facility and rapidity of working by the special arrangements of machinery proposed. For instance, a slip igualed at a quarter of a mile distant, and sailing or steaming at the rate of, say, six or seven miles an hour, could pass through the bridge and the land traffic be resumed in Trree minutes; or if half a dozen vessels were within half a mile of the bridge, all could pass in five and a half minutes. It has been estimated that the cost of the bascule bridge, ncluding approaches, machinery, maintenance, etc., would not exceed 750,0001 ., which is about one-half the sum that would be necessary for the construction of a high level bridge allowing of equal facilities for the river traffic. - The Architect.

Importance of Roads.

We are not aware that any estimate has ever been mad of the actual cost of the public roads of the United States, or that the expense of providing them has ever been attempted by any bureau of statistics, but we make the rough estimate that they have cost at least seven hundred million dollars-probably much more-while unknown millions are annually expended in attempting to keep them in repair. If the money were only well applied, it would be an expenditure of great profit and economy, as everything which the farmer does off his own laud is greatly affected by their condition. All his many loads of surplus farm products are drawn over them, and it makes some differ ence to him and to his horses whether those loads are con veyed easily over hard, smooth surfaces, or dragged through mud and against stones with severe labor to the team, fatigue to the driver, and wear and breakage to the wagon Every week he and his family, more or less, go to the illage for numberless errands, or to church on the Sabbath, and the good or bad condition of the roads seems to affec every fiber, pleasantly or unpleasantly, of their feeling o nervous sensations. On an average, there is at least twenty
miles of traveling each week for the members of a single miles of traveling each week for the members of a single
family. It would make a difference of five dollars a week, family. It would make a difference of five dollars a week, everything counted, whether this teaming and traveling is sloughs, ruts, and unbridged streams, or against stones Five dollars a week amounts to $\$ 250$ a year, a snug little sum to tax the farmer with; and when this sum is multi plied by at least five million owners or drivers of horses, carriages, wagons, heavy teams, etc., the aggregate cost would be something over a billion dollars! Does any on say this is too large an estimate? Then proceed in detai and show in what particulars; but do not blindly and igno rantly say it is wrong without careful examination. Suppose, however, we admit that it is double the reality, is not the six hundred millions every year, expended directly or in directly by our people, worthy of more attention on the part of patriots, statesmen, politicians, office seekers, public pirited men, writers for newspapers, agricultural journa ts, and in fact of every one who passes over a road?
So long as our public highways in most parts of the coun ry are made and repaired with so little interest and so little thought, we must suffer an enormous loss. We would like to ask how many of our readers, who drive or ride over the common roads, never see a loose stone, or a fixed stone, to
trike, jolt and batter every passing wheel, or who do not see hundreds of them which might be removed with the expendture of a small portion of the road tax? How many never saw sods and muck scraped into the road bed, to form highway or "turnpike," which would be excellent for orn and potatoes, but which when worked into a mass of mud, or cut into ruts a foot deep, constitute a strange ob ject to be called a " road?" How many never saw along the roadsides, thrifty patches of thistles, burdocks, mulleins,
John's wort, nettles,etc., etc., ready to seed all the neighbors' John's wort, nettles,etc., etc., ready to seed all the neighbors'
ields? Until we can find such happy persons in the majority fields? Until we can find such happy persons in the majority, although we would not lessen the praiseworthy attention which is now freely accorded to enterprises and interests of almost infinitely less importance, but good in their small way.-Country Gentleman.

A Polish for Fine Carved Work.

Half-pint linseed oil, half pint of old ale, the white of an $\mathrm{gg}, 1 \mathrm{oz}$. spirits of wine, 1 oz . spirits of salts; well shake before using. A little to be applied to the face of a soft linen pad, and lightly rubbed for a minute or two over the article be restored, which must afterward be polished off with an old silk handkerchief. This will keep any length of time if
well corked. This polish is useful for delicate cabinet well corked. This polish is useful for delicate cabine
work; it is also recommended for papier mache work.

The Forest, Forge, and Farm tells how the gun maker utilizes shadows in his business as follows:
The straightening of a gun bartet is a very delicate and difficult mechanical operation, in which no machinery has as yet successfully competed with the human hand and eye. In addition to long experience, a natural adaptation to the work is necessary in order to attain any considerable degree of proficiency. The business is understood by comparatively few; indeed, many who attempt to learn it can make oo progress whatever
A plate of ground glass, size about 12×15 inches, and set in dark frame, hangs against a window, some twenty feet from the workman. Horizontally across this glass is a bar of dark colored wood, three-eighths of an inch in width. Upon a convenient rest the operator lays a gun barrel, looking through it at the bar, which casts two fine lines or "shades" in the barrel. These join at the farther end, and gradually diverge, a break occurring in them wherever there is a "crook" in the barrel; the workman thus being enabled o detect the slightest deviation. In order to straighten the barrel it is put on a straightening block and the mechanic strikes it a blow with a steel hammer (these hammers vary in weight from three and a half to four pounds), the force of which is graduated according to kind of crook, size of barrel, and quality of steel. This alternate sighting and hammering is mavy times repeated, the barrel being turned slowly around while sighting, in order to locate any inequality which may exist at any point.
An inexperienced man may soon learn to tell if the barrel is straight, but it requires much practice to strike in exactly the right spot and with the proper force. The blow must be made in the exact place where the crook occurs, and if too hard, is worse than no blow at all. The barrel is thus treated six or seven times, and is rebored after each successive straightening.
Toward the last, finer crooks, known as "kinks," appear. These are shown by waves, instead of breaks, in the lines, and require light taps rather than blows. The nearer the barrel approaches perfection, the more skill is required to manipulate these kinks into unbroken lines. This is but one of manyinteresting operationsthrough which a gun passes during the process of manufacture, in any of which its shooting qualities may be seriously impaired. A blow too ligbt, or too heavy, too many, or too few; a discrepancy of one thousandth of an inch in the boring or rifling may transpose into a very poor gun one that would otherwise have been beyond criticism.
Formerly the process of straightening was effected in an entirely different manner, which, compared with the present mode, is both crude and unsatisfactory. One end of a silk or seaweed thread was attached to a bow a few inches longer than the barrel to be operated upon, the other end to a small lead weight known as a " sinker." This being dropped through the barrel, the bow was sprung, the thread drawn taut, and fastened thereon. The workman then looked through the barrel, observing where the light shone under the thread, thus detecting any imperfections. A barrel straightened in this manner, however, shows nume rous defects when subjected to the modern method. In the old way the workman, standing near a window, examines and straightens the half nearest him; in the new he is away from the light and operates upon the other half, looking through either end as occasion requires.
The process described never fails to attract the attention of visitors at an armory, and is always looked upon as an interesting novelty. In view of the fact that the accuracy of a bullet's flight is dependent upon the perfection of less than one yard of barrel, it is wonderful that such good shoot. ing can be done at more than one thousand times that distance.

A New Mechanical Constant.
At a recent meeting of the Physical Society, Prof. Perry pointed out the inconvenience of the ordinary constant, the " moment of inertia," employed in calculating the kinetic energy of rotating bodies. According to Rankine and others, he energy stored up in a rotating body, say a flywheel, is= $1 / 2 \mathrm{I} \omega^{2}$, where I is the moment of inertia and ω is the angu ar velocity. But in general machine practice the number f revolutions per minute is what is known, and ω has to be found from it by calculation.
Prof. Perry therefore proposes to introduce a more con venient constaut known as the " M " at present for want of a better name. The \mathbf{M} of a flywheel ur other rotating body is the amount of kinetic energy possessed by the whecl when making one revolution per minute. Therefore to find the kinetic energy of the wheel at any other speed, say N revo lutions per minute, multiply the \mathbf{M} by the square of the number of revolutions per minute, N^{2}. Similarly, to find \mathbf{M} from the number of foot pounds of energy in the wheel divide the latter quantity by N^{2}.

The French Observations of the Solar Eclipse

A telegram from San Francisco says that the French as ronomers who were sent to the Caroline Islands to observe the solar eclipse of May 6 bave arrived at that place, and report finding a red star, which, it is believed, will prove a ew discovery. The eclipse lasted five minutes and twentythree seconds. They noticed several new features in the corona, chiefly white prominences, supposed to be vapor o
white clouds. white clouds.

Corverumafme.

Discoloration of Brick Walls.

To the Editor of the Scientific American:
In your issue of the 7th inst. there is an article entitled 'Discoloration of Brick Walls," stating that the substance is magnesic sulphate. Previous to this I had seen similar statements in the Popular Science Monthly.
Having an opportunity to examine a building exceedingly disfigured, I have arrived at a different conclusion.
The Memorial Church in this place, erected by George Peabody in memory of his mother, is a massive brick structure built of solid walls, $i . e$., without air space. After standing a few years, the structure became quite unsightly because of a white deposit covering almost its entire surface. Various were the conjectures as to the nature of this powder; the various "sidewalk committees" voting "nem. con." to be saltpeter from the clay; but alas! they were not able to he kiln, like the Bible heroes
A man skilled in cleaningg buildings was therefore summoned from Boston, and at the expense of many hundreds moyed from Boston, and at the expense of many hundreds
of dollars he dressed the entire surface with dilute acid of dollars he dressed the entire
hydrochloric, with lasting results.
As there was a great amount of the substance in all the recesses of the brick work and on the scaffolds of the tower I attempted a solution of the mystery, with the following results:
The salt dissolved readily in distilled water, making a nearly clear solution, with a slight sediment of carbonate of lime. The solution gave a mixed color to the flame of a lamp. I decided it to be both potassa and soda. Placed on a sheet of mica and exposed to the blow pipe flame it on a sheet of mica and exposed to the blow pipe flame it
merely gave out its water of crystallization; as steam there merely gave out its water of crystallizati
was no characteristic odor, as of arsenic.
A weak solution of tartaric acid gave an effervescent reaction, and pure tartaric acid caused the evolution of a large amount of CO_{2}, as proved by conducting it into lime water.
There was no precipitate in tube atter this.
From these rude experiments, conducted by a country doctor with apparatus necessarily limited to the requirements of urinary analysis, I came to the conclusion that in this case the powder is an impure carbonate of potash and soda. I forward you some by mail, and if you deem it of any importance I should like your opinion in some future number of your issue, which al ways is a welcome visitor to my house.
Georgetown, Mass., July 6, 1883.
DECISIONS RELATING TO PATENTS
SUPREME COURT OF THE UNITED STATES.
Manning et al., Appellant, v. The Cape Ann Isinglass and Glue Company et al.
Appeal from the Circuit Court of the United States for the District of Massachusetts.
Letters patent No. 134,690, for an improvement in the manufacture of isinglass from fish sounds, issued to the assignees, of the inventor, James Manning, January 7, 18i3, declared invalid by reason of a public use of the invention for more than two years before the patent was applied for.
Where an inventor allowed to two persons the unrestricted use of his invention without injunction of secrecy or other condition, such use Held to constitute a public use.
Where through a series of years a machine and process were used without material change in either, such use Held not to have been experimental.
It is the policy of the patent laws to forbid the issue of a patent for an invention which las been in public use before the application therefor. The statute of 1836 (5 Stats. 117, sec. 6) did not allow the issue of a patent when the invention had been in public use or on sale for any period, however short, with the consent or allowance of the inventor; and the statute of 1870 (Rev. Stats. sec. 4,886) does notallow the issue when the invention had been in public use for more than two years prior to the application, either with or with out the consent or allowance of the inventor.

U. s. CIRCUIT COURT.-SOUTHERN DISTRICT OF NEW york.

Zevn et al. v. Kaldenberg.

A patent for a hand mirror in which an elastic cushion or packing is interposed between the glass and the back of the frame to press the glass against the beveled rim of the frame infringed by one in which the packing, although it per forms an additional office by being located outside the peri phery, extends beneath the edge of the glass sufficiently to press_the glass against the upper rim.
by the commissioner of patents.
Hall v. Johnson.-Improvement in Nippers.
Where two persons independently make the same invention, the inquiry in an interference proceeding is who made the invention first; but where two persons claim to have first originated the ideas embodied in a particular machine, the question is which of said persons shall be considered entitled to the invention.
He who first produces a device is entitled to be considered the inventor thereof, unless it be shown that another person was first to conceive of the invention and was using due diligence in completing it, or was the first to suggest to the one who first produced the device all of its parts, so that in
producing it he was simply carrying out the suggestions of another.
Mere suggestions, even if they point toward a result, are not sufficient to entitle one making them to be considered the inventor. In order that he may claim the benefit of what another does, the suggestion must leave nothing for the mechanic to do but to work out what has been suggested.
Combinations may be made up of parts entirely new or entirely old, or part new and part old; but if the parts when brought together so coact as to produce a new and beneficial result, the party so bringing them together has made an invention, and is entitled, if he makes claim thereto, to a patent therefor. If new elements are added to an imperfect combination, and if by the addition of such new elements the combination is made perfect and operative, the person who adds such elements is entitled to claim the new combination. The addition to an old form of nippers of a prong and noich connection between the hand levers and a projection or lip over the spring is a patentable improvement, and in gested this improvement the questronts which of the parties gested this improvement the questrowts which of the parties
added to the old instrument these devices, which rendered it added to the old instrument these devices, which rendered it
complete and operative. The officer of
pement a company in whose works a certain im the originator or invened and perfected cannot be considered ployer may claim the benefit of improvements made by an employe, the employe must be specially employed to assist in employe, the employe must be specially employed to a
carrying out an invention conceived by the employer.
carrying out an invention conceived by the employer.
Whether such company has not an implied license from the inventor to use the invention, from the fact that such inventor did not assert his right thereto while in its employ is a question for the courts and not for the commissioner.

by the commissioner of patents.

Gill v. Scott.-Printing Press.

He who uses reasonable diligence and first reduces an invention to practice, embodying it in practical form, must be regarded as the first inventor, and entitled to a patent as against one who, although prior in time in making it, by negligence allows it to remain unknown.
Where inventors withhold their inventions and confer no henefits upon the public there is no reason why protection should be afforded them if other and more diligent inventors produce the same thing and do confer such benefits.
The rule is well established that an applicant cannot have a patent for that which has been patented to another unless he shall make out such a case as would defeat that patent.

London's New Gas Main.

While the citizens of New York have during the past two years been subjected to the greatest inconvenience and dis comfort, both summer and winter, by the laying of steam and other pipes through their streets, and the most hearty grumbling has been indulged in, aud the most opprobrious epithets have been bestowed, not only upon the corporations which have been the efficient cause of all the trouble, but upon the city government for permitting such atrocious limerties to be taken with their streets, it is a matter of some consolation to be reminded that London has for the past few months been subjected to similar annoyance. The largest gas main in the world is now being laid hrough the very heart of that city. The diameter of the main is 6 feet, and the entire length of the main with its branches is already 23 miles. Each section of pipe is 12 feet long. The pipe is laid at a depth of from ten to fifteen feet below the surface of the ground. The analogy, however, between the work done in the two cities ceases with the discomfort caused to the citizens of each, for in London, in spite of the depth at which the main must be aid, and the immense size of the pipe, from 12 to 120 yards of main is laid per day, and three squads of 100 men each are employed in the work. When the work reached Trafalyar Square, in order that traffic at that important point might not be impeded a tunnel 40 feet long was driven under the square and the main was laid at a depth of 25 feet. The necessity of laying the main at such a depth at this point was due to the fact that a large number of sewers, mains, and telegraph and electric pipes were met with, and this proved to be the only effective and satisfactory method of avoiding them.

Starch from Sugar.

Every one knows nowadays that we can make sugar (one kind at least) out of starch, but as yet we are no more ab'e to reverse the operation than we are to combine carbonic acid with water or alcohol to make sugar.
Bohm's experiments go to show that in the plant both operations take place, viz., making sugar from carbonic acid and the conversion of this sugar into starch, the chlorophyl granules being the agent that aids in this change under sun light.

Sea Weeds and Land weeds.

London papers say that " the seccretary to the Royal Botanic Society recently tried the novel experiment of planting sea weeds in ordinary earth. It would naturally be sup posed that these 'flowers of the ocean' would not flourish away from their native element; but this is not the case, most of the specimens planted having grown admirably in
soil which is constantly kept in a moist condition." The result is both curious and suggestive, and worthy of trial this side of the oceau.

How to Protect Fruit from Insects.
Fruit and forest trees, shcubbery, vines, and flowers have been more infested with bugs and worms this year in this part of the country than for a long time, and gardeuers are put to their wits' end to know how to get rid of their nemy.
The advice given below is selected from the writings of experienced horticulturists, and Forest, Forge, and Farm recommends the trial.of some of the remedies.
" Oils of all kinds are deadly to most insects. Kerosene can only be used by diluting with water. To mix oils with water, first combine them with milk, then dilute, as desired, with water. Sour beer and molasses attract moths, spread on boards placed in the orchards or on trunks of trees. Paris green is very effectual when it can be well applied; one pound mixed with twenty-five pounds of flour or plaster is sufficiently strong. Of London purple use only one part by weight to fifty parts of flour or plaster. The common ground beetles, the lace winged flies, and the well known 'lady bugs,' are old friends of the horticulturist, and should be protected. As regards the noxious insects, the coddling moth ranks, for destructiveness, nearly at the top of the list. Paper or cloth bands are used, applied every ten days through spring and early summer, and in connection with the use of a proper wash. The apple tree borers, of which there are severalkinds, are enemies of the apple, the quince, and some other trees. When observed, cut the larvæ out with a knife and place a sheet of tarred roofing felt about the collar of the trees to prevent further ravages. Dustings of lime are effectual with the cherry and pear slugs, abundant in moist regions, such as about Puget Sound. The plum curculio, which is not here yet, but is perhaps on the way, is an enemy that at present cannot be conquered. There is no remedy known except the jarring process. to commence as soon as the fruit sets, and jar the tree three times a week for a month. This shakes off the curculio bitten fruit, and it should be gathered up and destroyed. The steel blue beetle known as the grape flea beetle nips the vine in the bud; the larvæ feed on the leaves in the summer. The beetles are jarred off the vines in the early morning, over an inverted umbrella, or lime is used; for the larvæ, alum water. One ounce of alum to a gallon of warm water destroys the strawberry worm; so does whitc hellebore. Hand picking is about the only remedy for the gonseberry fruit worm. The currant borer is troublesome. Cut out and burn all infected branches. Do the same with the raspberry twig girdler."

The Stars as Seen in Fgypt.

At a recent meeting of the Royal Astronomical Society, Professor C. Pritchard gave an account of his recent expedition to Cairo, and of the work on which he has for the last two years been engaged, viz., the measurement of the magnitude of the stars visible to the naked eye from the pole to the equator, including at present all those brighter than the fifth magnitude. This work is now complete. He found that, at Oxford, Laplace's law of alteration of a star's light as measured in magnitude-according to the secant of the star's zenith distance-did not hold grod for zenith distances exceeding 65°, and that for stars at lower altitudes the alterations in apparent magnitude were conflicting and not satisfactory. For the purpose of accurately investigating the effect of atmospheric extinction of light under better circumstances, he chose the climate of Upper Egypt, where the atmosphere is uniform and stable, as the proper locality for repeating the Oxford observations, and rendering the research complete. A duplicate set of instruments was at Oxford in charge of the senior assistant, who observed the same stars with Professor Pritchard at Cairo The results of both sets of observations are embodied in the formulæ :
Atmospheric absorption
At Cairo $=0.187 \times$ Sec. Z.D. in magnitude.
At Oxford $=0.253 \times$ Sec. Z.D. in magnitude.
Thus the whole effect of the atmosphere at Cairo is to diminish the brightness of stars seen in the zenith by about two-tenths of a magnitude, and at Oxford by about onefouth of a magnitude. At an altitude of about 30°, the stars at Cairo will be brighter than in England by about one-fifth of a magnitude, and consequently many more faint stars are just visible at Cairo than can be seen at Oxford.

American Association for Advancement of Science. The thirty-second meeting of the American Associa tion for the Advancement of Science will be held at Min neapolis, Minn., beginning August 15th, and closing Aug. 21 next. Professor C. A. Young, of Princeton, will preside. Information regarding transportation may be obtained by addressing Thomas Lowry, Esq., Minneapolis, Minn. All matters relating to membership, the presentation of papers, and business to come before the meeting will be attended to by F. W. Putnam, permanent secretary, who may be addressed at Salem, Masis., up to August 8, and afterward, up to the close of the meeting, August 21, at the Nicollet House, Minneapolis, Minn.

The Florida Ship Canal Company has, it is stated, been organized at Washington, with $£ 5,200,000$ subscribed capi tal, to construct a canal across Florida, deep enough for the largest ships, between the St. John's and Suwanee livers. Work is to be commenced in September next.

IMPROVEMENT IN POCKET KNIVES

The greatest defect of the ordinary pocket knife lies in the means provided for opening the blades. This is particuarly noticeable in knives with strong back springs. Broken finger nails and sore fingers, with an occasional cut, bear witness to the desirability of an easier way of opening the blades. Our engraving shows an improvement designed to obviate this difficulty, and to facilitate opening the blade by substituting the pressure of the ball of the thumb for that

of the thumb nail, while permitting of the same natural and ntuitive motion to which knife users are accustomed.
The invention consists of a pivoted blade lifter arranged to shut within the handle, and provided on the inner side with a stud or spur capable of engaging the notch in the blade, and on the outer side with a knob or thumb piece to receive the pressure of the thumb. These lifters may be ap plied in two ways, as shown in the engraving, one being short, and having its pivot at one side of the blade pivot; the other being longer and placed on the same pivot with the blade and swinging on the same center. Either of thes ifters may be made to serve the purpose of a button hook for glove or shoe, or as a nail cleaner, or they may be fitted for any other useful purpose in addition to that of opening he blade.
This blade lifter or opener applied to a knife, as described, will be found exceedingly useful where the blade is a stiff one, especially by ladies, many of whom are unable to lift the blades of a good knife with their thumb or finger nails. The motion of operating this lifter is such a natural and easy one that the lifter may be used in the dark as well as n the light.
The lifter may be provided with a back spring or not, as may be deemed advisable. It may be applied to knives at a trifling expense, and will rove a great convenience to knife users.
This useful invention has been patented by Mr. George W. Du Bois, of Wilmington Del.

A Superior Whitewash.

For a useful lime wash for weod and stone The Journal of the Society of Chemical In dustry gives the following method of preparation:Twen ty liters quicklime are slaked n a suitable vessel with as much hot water as will stand at a level of 15 cms . above the lime. The milk of lime is di uted, and first 1 gramme of sulphate of zinc and then 0.5 ramme of common sult are dded. The latter causes the lime wash to harden withou racking. A beautiful cream color can be imparted to the mass by putting into it 0.5 gramme of yellow ocher, or a pearly tint by the addition of some lamp black. A fawn color is produced by twe grammes of umber and 0.5 ramme of lamp black A an black A tone color can be obtained, from 2 grammes of umber usual, with a brush

Hourly Tides in a River

According to the Lockport ($N . Y_{\text {. }}$) Journal, the water in the Niagara River at that place presented the phenomenon on the afternoon of July 2, of hourly tides, the water rising and falling several feet once an hour. The cause does not appear to have been discovered.

DEVICE FOR FITTING STOVE PIPES.

The annexed engraving shows a simple and effective device for contracting or expanding the ends of stove pipe to make the ends of the adjoining lengths fit into each other The tool consists of a hollow cone of cast iron, which is in serted into or placed upon the end of the stove pipe length and crowded downward to expand or contract the end of the pipe, as the case may require.

AN AERIAL TURBINE WHEEL

Frg. 1.

device for fitting stove pipes.

This cool is made large enough at one end and small enough at the other end to adapt it to the usual range of izes. A wooden plug is provided which may be inserted in either end of the cone whenever it is necessary to drive the cone into or upon the end of the pipe. This will be ne cessary only in case of very heavy pipe, as the mere crowd ing down of the cone by the hands alone serves to expand or contract the ends of pipe of ordinary thickness.
The inner and outer surfaces of the cone being parallel the edges will be flared and contracted at a corresponding angle, so that the end of the one pipe may be inserted into the other without the trouble usually attending the fitting of stove pipes. Fig. 1 shows the hollow cone employed in expanding the end of the pipe; Fig. 2 shows the manner in which the pipe is contracted. The wooden plug which is inserted whenever it is necessary to drive the cone is shown is both-figures
Further information in regard to this invention may be obtained by addressing N. C. Pettit, Waldo, Fla

Cooking by Gas

Let me put on record the result of some experiments made with gas ovens, which will be of interest to all. It is gener ally acknowledged, without question, that an oven line with slag-wool is the best because it is supposed "to save 40 per cent of gas," and do other wonders. Now, the average cost of gas for oven work in a private house will not exceed, at the most, about 15 or 20 cubic feet per day. A saving of 40 per cent on this, even if it existed in practice, would not be particularly important to any one except the very poorest. I took a common cast-iron oven, 16 inches square and 20 inches deep, weighing 1 cwt. 2 qrs. $15 \mathrm{lb} .$, and inserted an ordinary Bunsen ring of good construction in the bottom. With free ventilation and a gas consumption at the rate of 14 cubic feet per hour, I obtained the following temperatures in the center of the oven

With a consumption of less than 2 cubic feet of gas, I got up a common heavy cast-iron oven-freely open to the air. and not jacketed in any way -to a first rate heat for pa try, and in perfect working the two molecules. After having given up in part their condition. It is evident that such an oven, of good capaimpulsive force, they leave the wheel at the rear without city, can be heated to a good temperature for roasting meat, being sensibly changed in their direction.
Further experiment proved, says our contemporary, that the apparatus with 2 meters of diameter, operating in a wind of 7 meters, and actuating a lift pump, develops a power of 10 kilogrammes. The results of other experiments have been tabulated and appear in the Revue Industrielle, but lack of space does not admit of our producing them.
every day for a week, for a cost of one halfpenny or less per week. These experiments were made with an oven in practical working condition, with three strong shelves, one being between the burner and the thermometer. The result can, I think, easily be accounted for by the fact tbat iron does not take up heat at all readily or quickly, and makes a ood retainer of heat. The outside of the oven is a long time before it becomes even arm to the hand.

The Effect of Tobacco on Children.

Dr. G. Decaisne has submitted to the Society of Public Medicine the results of some interesting observations concerning the effects due to the use of tobacco among boys. Thirty eight youths were placed in his charge, whose ages varied from nine to fifteeu, and who were in the habit of smoking, though the abuse of tobacco varied in each case. The effects of course also varied, but were very emphatic with twenty-seven out of the thirty-seven boys. With twenty-two patients, there was a distinct disturbance of the circulation, bruit at the carotids, palpitation of the heart, deticiencies of digestion, sluggishness of the intellect, and a craving, more or less pronounced, for alcoholic stimulants. In thirteen instances there was an intermittent pulse. A nalysis of the blood showed in eight cases a notable falling off in the normal number of red corpuscles. Twelve boys suffered frequently from bleeding of the nose. Ten complained of agitated sleep and constant nightmare. Four boys had ulcorotod-months, and ono of the ohildren hecame the victim of pulmonary phthisis, a fact which Dr. Decaisne
attributed to the great deterioration of the blood produced attributed to the great deterioration of the blood produced by prolonged and excessive use of tobacco. As these childreu were all more or less lymphatic, it was not possible to establish a comparison according to temperament; but of course the younger the child the more marked were the symptoms, and the better-fed children were those that suffered least. Eight of the children in question were aged from nine to twelve years. Eleven had smoked for six months, eight for one year, and sixteen for more than two years. Out of eleven byys who were induced to cease smoking, six were completely restored to normal health after six months, while the others continued to suffer slightly for a year. Treatment with iron and quinine gave no satisfactory result, and it seems tolerably evident that the most effective if not the only cure, is to at once forswear the habit, which to children in any case is undoubtedly pernicious. - Lancet.

centrifugal Force

Professors Ayrton and Perry exhibited at a recent meeting of the Physical So ciety an ingenious lecture apparatus for demonstrating the laws of centifrugal force. As was properly pointed out by Professor Ayrton, the ordinary lecture ap paratus of this kind do not really demon
show the effect; and a new and more sci entific class of apparatus is demanded by the extension of scientific teaching. Pro fessor Perry and he had been engaged in designing new apparatus to meet the wants of their City Guilds students, and the apparatus shown was one of the in struments in question. It consists of rotating vertical axis carrying an aneroid chamber filled with mercury, which also ises in a graduated capillary tube pro jecting from its middle. A metal arm projects at right angles from the aneroi or diaphragm side of this chamber, and carries a sliding weight which can be bifted to different distances on the gradu ated arm. On rotating the axis the cen trifugal force of the projecting arm pulls n the elastic diaphragm of the mercur chamber, and the mercury within it hav ing more room sinks in the capillary tube by a corresponding number of degrees The apparatus is capable of demonstra ting the law of centrifugal force with ac curacy, according to experiments which have been made; and, as Professor Guthrie emarked, it could be used for indicating the speed of wheels and shafts. We may add that there is already a mercury comnter in existence, in which a closed mercury chamber is rotated, and the parabolic concavity given to the mercury by the centrifuga force.is.employed to measure the speed

Proposed $\$ 50,000$ Prize for a Gas Engine At the recent meeting of the Gas Institute, Sheffield, Eng Mr. Thomas Warrington read a paper relating to sugges tions for increasing the consumption of gas, in which he said
"A good source of profit is the consumption for gas en-
ines; but the use of these is at present limited by their exSo long as a steam engine can be fixed or half, or less than a half, the first cost of a gas engine, th latter is too heavily handicapped; and I offer it as a crude suggestion, that the gas companies should jointly copy the system of the Society of Arts, and offer a prize well worth having for a gas engive, satisfactory in all points, which should cost no more to fit up than a steam engive. A prize of $£ 10,000$ would be exceedingly well expended on this, and would be a trifle to each subscriber to the fund. It would certainly make a move in gas engines, and stir up the mak ors in an astonishing way; and a subscription of about £ from each gas works would cover the total cost.

1.-MULBERRY SILK WORM AND MOTH. 2.-SOUTH AMERICAN SILK SPINNER. 3.-CHINESE SILK SPINNER. 4.-AILANTUS SILK SPINNER
not increase, and were scarcely valued except by the village youths who ate the sweet fruit. In later times the subject was again agitated, and in Prussia was regarded very favorably. Mulberry bedges were planted, as they furnished the leaves more speedily and conveniently than the trees. Then came the news from the silk producing countries of southern Europe of the appearance of disease among the silk worms, and at the present day, in proportion to the demand for silk, there is comparatively no silk produced.
The Chinese oak silk producing moth has yellowish brown wings, with a fine white line passing through them, bordered on the inside by a slender brown line, with crosslines of brown. On each wing there is a round dark spot broken by a white marking. Three days after pairing, the females lay their large brown eggs in heaps upon the sides of their dwelling place. Eight or ten days later the black caterpillars emerge from the eggs. After the second changing of the skin the worm becomes a yellowish green. In about fifty-two days they begin to spin.
The growing caterpillar is distinguished from the very similar Japanese silk spinner by a brown, dark spotted bead, which gives it the name of the "brown headed oak cater pillar." It eats night and day with only a short intermission. This butterfly has in its native country, as with us, two broods in a year. After a report made by Abbe Paul Perny of the province of Kuy Tscheu, to the Parisian Company, the second brood with the pupas were kept through the winter in rooms, and the temperature was carefully regulated day and night. The females were placed in willow baskets, where they laid their eggs. After the caterpillars came out of the eggs, oak branches were put in the baskets. As soon as they could crawl, they were transferred to an nak forest which consisted only of an undergrowth; the ground was kept clean, so that the down falling worms could be easily picked up. For this purpose, and in order to frighten away the birds, a watchman was provided for each colony.
In forty or forty-five days after the caterpillars emerge from the eggs the cocoon harvest commences. The best ones are sought out for further breeding. The rest are placed upon bamboo hurdles and a fire built beneath them, to put the pupa to death. They are then placed in a vessel of boiling water for from eight to ten minutes. Thev two handfuls of buckwheat ashes are put in a bowl of water, and the mixture added to the boiling water in which the cocoons are placed.
The Chinese dry the stalks of the buckwheat in the sun, after the grain is harvested, and set fire to the heap. The ashes are supposed to have the same effect as potash. The cocoons are then moved around with a spatula until the threads are loosened and wound around the spatula. Then five or eight threads, according to the strength desired, are placed in the opening of a reeling machine, and the cocoon is wound off. The second brood is treated in the same way as the first. The Chinese reap a rich profit from these silk spinners. The silk is firmer and cheaper than that of the mulberry spinners.
The ailantus silk worm feeds upon the leaves of the ailantus tree. Rearing this moth is easy, as the caterpillars re. main upon the tree and spin their cocoons in the branches. The color of the caterpillar is greenish yellow marked with black. The ground color of the moth is a velvety reddish brown, the bands white; the edge of the crescent-shaped spot is yellowish. The worm is hardy and not subject to many diseases to which the silk
berry tree. The cocoon is egg shaped, and the loose silken threads surrounding it are either white or yellow.
In all probability the silk worm came originally from China, the native country of the mulberry tree. In the reign of the emperor Justinian two Persian monks smug gled into Constantinople some mulberry plants and eggs of the silk worm, which they had stolen and concealed in thei hollow walking sticks. The culture of silk worms has been carried on in Europe since 520 A.D. It was introduced into Greece in the twelfth century, and from Greece was carried through Arabia and into Spain.
In the middle of the twelfth century, through the war which Roger II. carried on with the Byzantine Emmanuel silk culture was introduced into Sicily and extended to Florence, Milan, and the rest of Italy. In the reign of Henry IV., it was introduced in France, and from there extended farther north. In 1670 the first company for the culture of the silk worm was formed in Germany. Frederick the Great himself introduced this branch of industry in his kingdom, and in the second half of the sixteenth century silk culture had found an entrance every where in Germany. The war for freedom gave a blow to this new industry, for the times were not suited to the culture of the worms or the plucking of mulberry leaves. The trees became old, did
worm is liable, and seems to be free from the fungoid para site which often destroys so many silk worms. The silk is mal Life.

Coal Gas and Water Gas

In response to a resolution of inquiry from the Board of Aldermen of Brooklyo, N. Y., as to the relative qualities inimical to health of coal gas and water gas, a report has been made containing analyses and statements by Professor Ira Remsen, of the Johns Hopkins University, who says that coal gas contains $7 \cdot 9$ of carbonic oxide in 100, and water gas $28 \cdot 25$ parts to the 100 . Carbonic oxide is a deathly gas, and either of these illuminatíng gases, if inbaled in sufficient quantities, would produce death, but long before enough of either to produce bad effects could accumulate in a room, it would necessarily be detected by its odor. In case the ccupants of the room were asleep, it was possible a fatal effect might be reached a few minutes earlier in the case of water gas than in that of coal gas.

A sIX•POUND pickerel, caught near Shelby, Iowa, had at ached to it a complete set of fishing tackle, except the pole.

Chemical Appliances for Extinguishing Fires.
It hardly seems to be an open question concerning the value of apparatus intended to extinguish fire through water impregnated by gases antagonistic to combustion. In the earlier days of chemistry, it was discovered that carbonic acid would extinguish flame, and in one form or another the principle was applied in Europe.
When William A. Graham filed at Washington his caveat for a fire extinguisher, the patent officials were unable to determine whether this was a new invention, and a special act of Congress was passed authorizing the issue of the patent, dated July 9, 1878, entitling his administrator to manufacture, use, and sell apparatus for extinguishing fires by the use of carbonic acid gas. Under this patent seven licenses were granted, yet all but one of these licenses were allowed to lapse. This has occasioned a tedious lawsuit, which ended in a very positive decision, May 9, 1883, by Judge R. W. Hughes, presiding over the United States Circuit Court in the Western District of Virginia, sustaining in every point the claim of the patentee, and giving the sole right to Charles T. Holloway to manufacture or to sell apparatus for extinguisiong tires by the use of carbonte acla gas.
This long legal fight and clear decision have brought chemical extinguishersinto greater prominence, though they should be familiar objects to every observant man. It
would seem as though Brooklyn, as a great oil refining center, would patronize largely the manufacturers of chemical apparatus, yet the Spectator Year Book reports it as having no extinguishers in its fire department. Brooklyn has nincteen steam fire engines, and last year $\$ 11,000$ were raised by taxation to add new apparatus. Over five months ago the Fire Commissioner asked the Aldermen for authority to use a portion of the money already in the treasury to buy two chemical engines. The request was referred to the Sewerage and Drainage Committee! and has laid there five months. A testimony to the value of chemical apparatus was signed by officers of New York insurance companies representing assets to the amount of forty-five million dollars. Meantime the committee has not drained a dollarinto their pockets, and the bill remains under duress. This condition of affairs seems remarkable, and at the present time not even a common extinguisher belongs to the fire department of Brooklyn.
Buffalo, with less than one-quarter of the population of Brooklyn, has five chemical engines; Albany reports twenty five chemical extinguishers as bel ging to the fire department, and Chicago possesses five chemical engines and eighteen chemical extinguishers, besides those carried by Ben Bullwinkle's fire patrol. Boston has seven chemical engines and thirty-eight chemical extinguishers, and the enterprising town of Weymouth, Mass., owns a chemical en rine and seventy-five chemical extinguishers. Detroit ha two chemical engines and six extinguishers in the depart ment, while Cleveland only reports ten extinguishers. Phila delphia is not credited with any chemical appliances, but lately it has roused from slumber and sent a liberal orde for these adjuncts to steam fire engines. New York city has nine chemical engines and 108 extinguishers in the department, and at every fire there is a race between the fire laddies and the patrol boys to see who shall be the first to get into a building with an extinguisher, which is frequently used with good effect. New Orleans bas five chemical en gines, and the Pennsylvania Railroad owns eleven chemical engines and numerous extinguishers. The Baltimore fire department used chemical extinguishers 684 times in 1881 and 813 times in 1882 , putting out a large proportion of all fires without using water from the fire plugs or engines. Outside of that city, in the hazardous manufacturing district of "the Bell," one efficient department has been organized with chemical apparatus only, having nine engines and many portable extinguisbers. Its efficiency was well tested at the explosion of two stills in a coal oil refinery, January 7, 1882, when two chemical engines checked the fire, to the surprise of all spectators. Water will not extinguish burning coal oil; besides, every gallon in a chemical tank is as effective in checking an ordinary fire as forty gallons of water.-Insurance World.

The Antiquity of Man.

An interesting discovery, of much importance for geo ogical and archæological science, has recently been made in a coal mine at Bully-Grenay, in the French department of Pas de-Calais. A new gallery was being pierced, when a cavern was broken into, which discovered the fossil remains of five human beings in a fair state of preservation-a man, two women, and two children composed the group. The man measured about seven feet, the women six feet, and the children four feet and rather less than this. In addition, some fragments of arms and utensils of petrified wood and of stone, with numerous remains of mammals and fish, were brought to light. A second subterranean chamber in closed the remains of eleven human bodies of large size several animals, and a large number of various oljects, with some precious stones. The walls of the cave exhibited drawings representing men fighting with gigantic animals. Owing to the presence of carbonic anhydride a third and larger chamber, which appeared to be empty, was not suarched. Five of the petrifitd human remains will b exhibited at the mayoralty of Lens. The remainder of the bodies which have been brought to the surface are to be conveyed to Lille, there to await a thorough examination by
the experts of the Faculte des Sciences. Information has
been telegraphed to the representatives of the Academic des Sciences of Paris and to those of the British Museum. If
the discovery be a real one, no doubt can be entertained of the discovery be a real one, no doubt can be entertained of
the value of the find, which would on the face of it seem to show that prehistoric man is anything but a myth.-Lancet

The Geology of Philadelphia.

In a lecture before the Franklin Institute, Prof. H. Car ill Lewis gave the following:
Recapitulating the various surface formations here distinguished occurring at Philadelphia we have, beginning with the most recent:

Formation.	Geological Age
Recent alluvium.	Modern.
Trenton gravel.	Post-glacial.
Pbiladelphia brick clay.	Glacial.
Red gravel.	Glacial.
Yellow gravel.	Pre-glacial.
Bryn Mawr gravel.	Tertiary.

In these six deposits is written the ancient history of the Delaware Valley. If we read the record aright, they tell us that, long ago, before man was created, when strange mamals roamed abroad, a nd when all southern New Jersey lay deep beneath the Atlantic, the waves of the ocean broke upon the hills of Bryn Mawr, Chestnut Hill, and Media. At the same time, an inlet from the sea extended over a great part of the Montgomery County limestone valley, depositing clays holding extensive beds of iron ore. This region, then 450 feet lower than now, was afterward slowly upheaved, and as the waters retreated, the yellow gravel was probably formed. Afterward, and perhaps in consequence of this ise, the climate grew colder, and glaciers crept down from Greenland and Labrador, forming a huge mer-de-glace thousands of feet in thickness, which advanced to within 60 miles of Philadelphia. Again the land descended 175 feet lower than it now is, and again the waters covered the city Thts time it was fresh water of icy coldness, bearing great cebergs, which stranded on the shores formed by the hill at Wayne Junction, Belmont, George's Hill, Hestonville, Haddington, and Swarthmore. At this time the rive Delaware was 10 miles or more in width, nearly 200 fee deep, and, as a roaring flood, deposited the red gravel and left in it the records of its waves. As the flood became more quiet, though still filled with mud derived from the base of the glacier, the brick clays were laid down, the floating ice floes mean
After many thousands of years, the "Great Ice Age" at ength came to a close, the land rose to about its present level or somewhat higher, the waters retreated, and finally, as udden elevations of temperatures thawed the glaciers stil remaining in the head waters of the Delaware, there came those last great floods which deposited the " Trenton gravel." The Delaware, then so wide as to submerge most of Tren on, all of Bristol, and the river front of Philadelphia nearly up to the State house, was again filled with floating icebergs. The walrus played in its waters, while the reindeer and the mastodon roamed on its banks. Man also then first appeared. With habits most probably like those of the Esquimaux, living in most primitive ways, he hunted the Esquimaux, living in most primitive ways, he hunted
and fished on the banks of the swollen Delaware, and occaand fished on the banks of the swollen Delaware, and occa-
sionally dropped into the water his rude stone implements, ong afterward to be found to tell the story of their makers
Finally, the land began the sinking which is now in pro gress, the climate grew warmer, the Red Indian was introduced, and the modern era began.
This, in brief, is the tale told by our clays and gravels. Surely the long despised cobble stones of our ill-paved streets become more worthy of our respect when we know heir story. Still more interesting do they become when we learn that they can tell us of the early history of our own race.

The Metallization of Wood.

Les Mondes describes the following process invented by Mr. Rubennick for metallizing wood:
The wood is first immersed for three or four days, according to its permeability, in a caustic alkaline lye (calcareou soda) at a temperature of from 75° to 90°. From thence it passes immediately into a bath of hydrosulphite of calcium, to which is added after twenty-four or thirty-six hours a con centrated solution of sulphur in caustic potash. The duration of this bath is about 48 hours, and its temperature is rom 35° to 50°. Finally the wood is immersed for thirty r fifty hours in a hot solution (35° to 50°) of acetate of lead The process, as may be seen, is a long one, but the result are surprising. The wood thus prepared, after having un dergone a proper drying at a moderate temperature, acquires under a burnisher of hard wood a polished surface, and assumes a very brilliant metallic luster. This luster is still further increased if the surface of the wood be first rubbed with a piece of lead, tin, or zinc, and be afterward polished with a glass or porcelain burnisher. The wood thus assumes the appearance of a true metallic mirror, and is very solid and resistant

Etching Liquid for Steel
Mix 1 oz . sulphate of copper, one half oz. of alum, and one-half a teasponnful of salt reduced to powder with 1 gill of vinegar and 20 drops of nitric acid. This liquid may be used for either eating deeply into the metal or for imparting beautiful frosted appearance to the surface, according to pretime it is allowed to act. Cover the parts you wish to protect from its influence with beeswax, tallow, or some
similar substance.

At the annual convention of the Master Car Builders' Association, held in Chicago in June last, a committee re. ported on refrigerator cars after an examination of the productions of thirteen different builders, the cars costing from $\$ 600$ to $\$ 1,200$ each. The committee said:
' There are now before the public three kinds of refrigerator cars. The first is a car built on the supposition that all that is needed is a cool temperature. These cars are built on the principle of an ice lined box, with the ends, sides, and roof fitted with ice boxes, no arrangement having been made for the circulation of air or absorption of moisture. The second kind of car is that which provides a cool temperature, and also a circulation of air. The third kind is that which provides a cold temperature, and a constant circulation of air that is pure and dry. Your committee are of the opinion that the last named car meets the want of carrying perishable lading. To make a refrigerator car what it ought to be, it is our opinion that there should be a circulation of dry, pure air; the ice boxes should be exposed on all sides to the car, thus getting the cold radiation from them and allowing the air to circulate freely around them; he drainage should be perfect, so that the water would not slop over and spoil the freight; the cooling properties of the water should be utilized before escaping from the car. We think that the car should be built longer than the ordinary box car, so that after taking up space for the ice chambers, etc., there would still be room for a full car load of freight. We would also say that the insulation should be as nearly perfect as possible."

New Photo-Electric Apparatus.

A new photo-electric apparatus, by M. Londe, is intended to make proofs in regular and mathematical order for medical investigations. A doctor desiring to study the different phases of an epileptic attack takes a dozen portraits of the patient, each portrait baving the same lapse of time. This is obtained by means of an ordinary metronome, such as is used by students in music to measure time correctly. A steel bar is placed at the axis of the pendulum, to which is attached two needles which dip into a mercury bath at every oscillation, thus allowing the current to pass slowly or rapidly according to the wish of the manipulator. The current turns a disk in the camera, which contains nine lenses, and each lens is uncovered and exposed in a regular manner.

A Town almost Destroyed by a Waterspout.
After a heavy rain and thunderstorm lasting nearly all night a suburb of London, Ontario, was, on the morning of July 11, almost wholly destroyed by a sudden flood caused by the bursting of a waterspout, or by a "cloud burst," several miles up the valley of the Thames. The heavy storm had passed away and all was still, when the roar of the water was heard by those who remained awake at about two o'clock in the morning. Alarms were made and most of the people escaped; but the water rose so rapidly that the overflow of more than twelve feet above the spring floods swept away or undermined two hundred dwellings and other buildings and destroyed about fifty persons. The damage to property is estimated at $\$ 500,000$.

New Process for the Extraction of Fish Oil
The fish is sprinkled with 5 per cent of its own weight of ferric chloride or sulphate solution (45° B.), and can then be kept three or four days without undergoing alteration. It is then crushed, made into a paste, and pressed, when a large quantity of water and oil is forced out. The cake from the press dries readily, becomes friable, and is easily pulverized. A further quantity of fatty matter may be obtained from it, either by pressing between heated metal plates, or by extraction with benzine or carbon bisulphide. The residue forms an excellent fertilizer.-Pharm. J. Trans.

Paper Mills in the World.

It appears from statistics that there are in the world n n less than 3,985 paper mills, producing yearly 959,000 tons of paper made from all kinds of substances, including rags, straw, and alfa. About one-half the quantity is printed upon and of these 476,000 tons, about 300,000 tons are used by newspapers. The various governments consume in official business 100,000 tons; schools, 90,000 tons; commerce, 120,000 tons; industry, 90,000 tons; and private correspond. hands, including women and children.

The proportion of doctors to population is given as fol ows by the Siglo-medico:

France.	$2 \cdot 91$ per 10,000.	
Germany	$3 \cdot 21$	
Austria.	$3 \cdot 41$	"
England..	6	"
Hingary.	$6 \cdot 10$	*
Italy.	$6 \cdot 10$	
Switzerland.	706	${ }^{\prime}$
United States.	.16\%24	.

M. Herve Mangon, having observed that Mesembryan hemum crystallinum takes up from the soil an extraordi nary quantity of alkaline salts, proposes to employ it for re moving the excess of such salts from land on the sea coast and in salty deserts, so as to make it gradually fit for ordi nary vegetation.

mproved Car Truck.

In passing around a curve pivoted trucks always change position relatively to the longitudinal center of the car, and as the outer wheels crowd against the outer rail, their tendency is to cross it or "jump" the track. This is especially the case in curves having a short radius. By means of the slotted side bars shown in the engraving this is prevented, as they limit the movement of the trucks on their pivots, or, in other words, allow them to assume only such angles to the ongitudinal center of the car as is compatible with safety. This angle is approximately indicated when
 the cross beams or bol the cross beams or bol-
sters of the truck are sters of the truck are
at right angles to radii at right angles to radii
of $t h e$ curve, and of the curve, and
should the wheels on should the wheels on
one side of the trucks meet a surmountable bars tend to prevent the trucks being turned crosswise of the track. As a further means for keeping the trucks in proper position on the rails, a V-shaped frame and link are employed. The bars composing the V -frame are rigidly attached to the swinging bolster near its ends, and the link is pivoted to the apex of the angle formed by these bars and to frame or piece of lumber or iron which extends across the base frame of the car. When the trucks turn in running curves, the V-frame and link will serve to hold them within be limits of safety. This invention has been patented by Mr . Horace Resley, of Cumberland, Md.

Improved Hammer Handle.

The hammer shown in the engraving is provided with a spring bandle of peculiar construction, which not only enables better and truer work to be done, but saves muscle and nerve, while admitting of more rapid work. The spring handle, as will be seen by reference to the cut, consists of a flat steel spring riveted in the hammer head and supported by two wooden keys, which extend a short distance down the spring. The handle proper is formed by riveting to the spring two wooden half handles with an interposed strip of leatber.

Spring Hammer Handle

The chief advantages of this handle are that it enables the user to deliver more powerful blows, while rendering the labor lighter and pleasanter. It is very strong and not liable to break, and there is no danger of the head coming off. The hammer provided with this handle is adapted to the use of all mechanics, for heavy as well as for light and medium work. The handle is applicable to all forms of hammers and can be used on all tools with which blows are struck.
Any further information in regard to this invention may be obtained by addressing Messrs. Paul Forchheimer \& Co. 38 Park Place, New York city.

Improved Calipers.
The calipers shown in the engraving are for ascertaining the circumference, area, and weight of bars, rods, balls, etc. They are formed with two curved pieces, which are pivoted to each other, and are provided at their free ends with shanks, the inner edges of which are in radial lines drawn from the center of the pivot uniting the two curved pieces. If the diameter of a rod or bar is taken between the base ends of the shanks, the points of the shanks will show the circumference, or fractions thereof, of the said rod or bar: These calipers can also be used to ascertain the weight of bars, rods, tubes. On the free ends of the pieces, A (Fig. 1), shanks, B, are formed, the inner edges of the shanks being on radial lines from the center of the pivot by which the two pieces are pivoted to each other. Notches. a, are formed in the inner edges of the shanks, B, at this base, and notches, b, are formed in the inner edges of the shanks at the upper ends. The outer prongs formed by the notches, b, indicate the circumference of bars, etc., the diameter of which is taken between the shanks at the lower prongs, e. The shanks are provided with a scale used as a gauge for rods bars, etc., to measure the diameter, and for the purpose of ascertaining the area in square inches of a cross section of rectangular bars. The cali pers shown in Fig 2 have short, tapering shanks, each of which has a V-shaped notch, n, in its inner edge, near the base, which notch has its sides at an angle of sixty degrees, so that the notch can be used as a gauge for grinding the edges on tools, for threading screv's, etc. The ends of the shanks of the calipers shown in Fig. 2 are flattened and pointed, and are provided with a transverse mark, o, which shows and are provided with a transverse mark, o, which shows
three-eighths circumference of a bar or rod held between the
bases of the shanks. At the ends of the shanks one-half circumference is shown, and at the lower corners, l, formed by the notcbes, n, one-third the circumference is shown. This invention has been patented by Mr. Andrew Nimmo, of Bristol, R. I.

New Floor Plank Clamp.

The engraving shows an improved device for pressing floor planks together before nailing them to the beams. The device consists of a frame containing a sliding rack plate, the end of which can be pressed against the edge of the end plank by means of a pivoted lever having a pivoted pawl engaging with the rack. The frame is provided with two laterally swinging arms having prongs which can be driven into the beam for holding the frame in place,
and theframe is also provided with a pawl lever fur auto matically locking the sliding rack plate in place on the frame. This useful invention has been patented by Mr Grafton H. Duvall. For further infor mation address B. Thomas, 117 Market St., Pbiladelphia, Pa

A Novel Experiment in Silk Weaving

That hand loom weaving is doomed is a fact too well known to require any further remarks. There is less of it left in England than abroad, though many people would be surprised to hear of the number of hand looms still going in this country, and we fear we should run the risk of being put down as, we will say, inventors, if we stated how many hand looms are still working on cotton ginghams within radius of say five miles from our offices. But the greates number of hand looms in Great Britain is rumning on som pecial classes of woolen goods, on carpets, and on silk though all these are extensively made on power looms.
The perfection to which power looms bave now been brought have made it not only possible but profitable to produce almost any kind of textile fabric on them, and their introduction abroad, though now not so rapid as some years ago, is making steady progress.
A branch of the trade which has long resisted the introduction of the power loom is the silk industry, partly, says the Textile Manufacturer, because the more costly material could afford to pay higher wages, and partly because the better classes of silks required such care in weaving that a power loom could only run at a slower speed, and thus, constdering its expense, lose much of its ad vantage to the manu facturer. Plain silks have for years been woven on power looms in this country and abroad, but goods which required several shuttle boxes, a shaft machine, or a jacquard, could still bold their own on the hand loom. But even this stronghold is being assailed, and nowhere more vigorously than in its citadel, the town of Lyons, whose very existence is almost bound up with the silk trade.
Power looms have for some time been at work in several establishments of Lyons, but their extension has met with a difficulty which is produced by the very existence of a grea number of hand loom weavers. Through the great ramitications of the silk industry at Lyons a considerable number of small masters have sprung up who employ two or more hand looms each in their own dwellings, and work for factors or merchants. These small masters are not the men to go into a mill to work before a loom, and their property, consisting of a certain number of hand looms, is also an item to be considered in any change in the trade. The extension of power loom weaving in the ordinary way means working in mills and the employment of women, and is thus antagonistic to a domestic industry carried on by a arge number of small masters whose very existence depend upon the retention of existing arrangements inherited from the past.
Under these circumstances a number of the most promi nent silk manufacturers of Lyons have tried to combine he two modes of working, and, as it would appear, with every likelihood of success. Their idea is to retain the hand looms for the present, to supplant them gradually by oner looms, but to continue the existence of the smal domestic establishments, for which purpose they intend to supply the small masters with power in their own dwel ings derived from small gas engines.
To test the matter in a practical way, rooms have been aken in a central situation, with two gas engines, one of balf-horse and one of one-horse power. The latter drives six power looms, two with jacquard and four with shafts, while the former gives motive power to four con verted hand ooms, one with jacquard and three with shafts, and also to pirn winding machine. This trial has now been carried n for more than a year, and we see in a report of the manager that it has been crowned with every success. The power looms have done what could be expected of them, running from 90 to 180 picks per minute, and producing per day an average of 19 yards of satin, or 19,000 yards per year of 250 working days for four looms, the wages paid baing about 3d. per yard. The converted band looms turned out only about eight yards of satin, but they could be attended to by girls instead of men. To favor the experi ment, the gas company made a reduction in the price of the gas, charging only about 2 d . per cubic meter, upon which basis the one-horse engine, working 296 days, cost 2 s . per day
for gas. It is not our intention to reproduce here all the items of calculation of the report in question, which, moreover, is not sufficiently complete for our readers to examine satisfactorily to themselves, but we may mention that the interest of the manufacturing community of Lyons has been sufficiently awakened when we state that during the year this trial cstablishment has been visited during four hours per day, set aside for that purpose, by 200 manufacturers and over 3,000 operative weavers. It would thus appear that it may be of advantage to supply the small masters with gas engines, and thus gradually to introduce power looms, which meets with so much less difficulty in a town like Lyons, where people live in flats, and where, of course, the houses are larger and strouger and more adapted to the introduction of power than most of the cottages would be with us. The matter is, however, of sufficient importance to be called a complete revolution in the silk rade, and one more significant than many other revolutions which have been originated in the French capital of the silk industry.

Progress of Cotton seed oll Mannacture.

Among other interesting statements by Professor Goode, United States Commissioner to the International Fisheries Exhibition, was one that the "sardine" manufacture of Maine was of a yearly value of $\$ 825,000$, the.sardines being young berrings packed in cotton seed oil. At the Cotton Seed Crushers' Convention held in Chicago, June 26, 27, and 28 , the president stated thatothere were 85 cotton seed mills in operation in this country, crushing, the last season, 554,600 tons of seed, and there were exported an average of nearly 13,000 barrels of oil yearly, each barrel having a capacity of forty-five gallons. On account of the complaints of olive oil makers in Spain, the Spauish goverument had imposed a duty that renders the shipment of cotton seed oil to that country unprofitable. In this country cotton seed oil is largely used for cooking purposes, taking the place of lard. It is known as "olive butter," although no attempt at concealing its actual character is made. At the convention a physician and chemist of Chicago exhibited specimens of cotton seed oil which had been deprived of its natural gluten and paraffine, and was equal $t o$ the best lubricating oil, having been tested on sewing machines and on watches. The commercial, domestic, and manufacturing value of cotton seed is rapidly increasing. In 1876 there were only twentyfour crushing mills running in this country; now there are eighty-five, and next season there are to be one hundred and ten, even if the number of those now projected should not be increased.

Manufacture of Bate Sugar in Bengal

The supply of coarse brown sugar or molasses in Bengal is mainly derived, not from the cane, but from the date tree, and the date plantations have, during the last fifty or sixty years, enormously increased over several well known dis tricts-Jessore, Burdwan, Baraset, and Nuddea.
The trees are planted in rows or clumps, and are not, grown for fruit, as in Arabia or Beluchistan; but the tree becomes profitable after seven years' growth, and may con tinue to yield a return for thirty or forty. In the month of October the ryots are seen ascending their date trees, and making incisions on alternate sides, in alternate years, on he lowest branch of the feathery tuft at the top. An earthen pot is placed under each incision, and when the cold nights begin, the liquid flows slowly into the pot beneath, whence it is removed in the morning. The colder and stiller the weather the greater the flow of juice. Rainy weather, such as now and then interrupts the enjoyable climate of the cold season, stops the flow of juice for a time, but the process goes on, with few intervals, between November and March. The juice is boiled down and clarified by means of a coarse weed that grows in almost every tank, and the whole cultivation is . highly remunerative. The spaces between the trees in a date plantation are turned to account otherwise, for early rice and for the second crop of mustard. Many substantial ryots own 40) to 500 , and even 1,000 of these trees, and the traffic in goor or treacle adds life and animation to the interior of Bengal.

Blood at $\$ 31.25$ per Ounce

Edward Banks, a colored man, has begun suit in the Sixth District Court, this city, before Justice Kelly, against Dr Henry J. Garrigues and Charles J. V. Okerberg, for $\$ \mathbf{8} 5$ as the value of eight ounces of blood taken from Banks and injected into the veins of Mr. Okerberg. It appears that on February 7 last this gentleman went to bed in a small, close room, blowing out the gas. In the morning be was found insensible. Dr. Garrigues and Dr. Frederick E. Valentine treated him, and at the suggestion of the forme he operation of transfusion was performed. The patient recovered, and now Banks, who furnished the material for the operation, claims what he considers a fair compensa ion.

The Earth more Rigid than Steel.

Professor Sir W. Thomson in his new treatise on natural philosophy is led, by a consideration of the necessary order f cooling and consolidation of the earth, to infer that the interior of our world is not, as commonly supposed, all liquid, with a thin solid crust of from 30 to 100 miles thick. but that it is on the whole more rigid than a continuous solid globe of glass of the same diameter, and probably more rigid than such a globe of steel.

ENGINEERING INVENTIONS

Messrs. A. Cameron, of Kalamazoo, and C E. Russel, of Grand Rapids, Mich., have recently patented an improved car step, which can be lowered
quickly to afford easy passage from the ground to the quickly to afford easy passage from the ground to the
cars. The step can be readily raised or lowered by a cars. The step can be readily raised or
person on the platform or from the ground
A novel car coupler which works automatically is the subject of a patent recently granted to Mr_{r} W. H. Lucan, of Hermon, Ill. The construction of this coupler is such that when the link enters the drawhead link, coupling the cars together without any other at tention being required from the brakeman.
An improvement in rotary engines has been ecently patented by Mr. Moses Fay, of Townville, Pa of other rotary motors, but by the arrangement o pockets on the steam wheel, and extending the full
width of the spokes which support the wheel, the inventor claims less loss of power by friction than is cus omary in other rotary engines,
A car coupling possessin
A car coupling possessing more than ordiof Maynard, 0 . The coupling pin is operated by a chai connected to a drum which is made fast to a shaft, th
latter being operated by a crank. A spring rod fits int a notch in the drum, which supports the pin upright When the bumper from the approaching car strikes th bumper of the car carrying the coupling pin, the spring rod is tripped and the pin drops in
any attention from the attendant.
Among the recent improvements in ca couplings is the patent of Mr. Joseph F. Pryor, o
Houghton, Mich. His invention relates to that clas Houghton, Mich. His invention relates to that class of ployed. When the cars are brought together the draw-
bar enters the drawhead, and there is firmly retained by two pivoted hook jaws, which are forced together by suitable springs. The conical head of the drawbar i brought in contact in coupling with the head of a buffer
which relieves the strain on the drawbar in coupling but at the same time serves to force the head back in its position when coupled.
A revolving railroad car signal, designed more especially to be located on the roof of a caboos may be following on the same track, has been patented by Messrs. L. W. Schoonover and J. Afllerbach, of Yerth
Amboy, N. J. This signal is provided with sides of many colored glass and is revolved by connection with the axle of the truck of the car, so that not only the
situation and direction of the train may be determined, but the rate of speed will be indicated by the revolutions of the signal,
lowing train.

MECHANICAL INVENTIONS.

Mr. H. W. Rose, of Westerly, R. I., is the patentee of an automatic feeding apparatus, by which animals are fed at stated intervals by the setting of a
clockwork mechanism, the time being regulated at the will of the attendant.
An improved drilling machine has been pa tented by Mr. James C. Smith, of the Dalles, Oregon This invention consists of an improved hand power
drilling machine contrived for nse as a bench or ratchet drill, and arranged for shifting the drill for boring in any position that may be desired.
An improved bottle filling machine has been patented by Mr. William Pearson, of Carson City Nev. This machine is adapted especially for bottling
soda and other gaseous liquids, and is so constructed soda and other gaseous liquids, and is so constructed
that one or more bottles may be bottled at the same A useful device economizing time and labor. useful devied for holding a door open in B. McCurdy, of Lancaster,Texas. A sliding spring bolt is held in the upper edge of the door, with a curved notch-
ed frame projecting from the door frame. The bolt passes into the notches of the semicircular frame and holds the door in the desired position.
Letters patent have been granted to $\mathbf{M r}$ William F. Burditt, of St. John, New Brunswick, fo an improved trip mechanism for harvester rakes. The the operator can cause every second, third, fourth, fifth, or sixth rake to sweep off
of the grain may require
A very efficient screw jack has been patent ed by Mr. Joseph Heritage, of Warren, Mass. The in
vention consists in providing the screw of the lifting vention consists in providing the screw of the lifting
jack with a ratchet, having its teeth similarly arranged on both sides, so that the pivoled arm for rotating the sections, whereby thed furning either raised or low ered at the will of the operator.
An improved bran or flour packer has been patented by Mr. Henry G. Hall, of Fayetteville, N. C
The invention consists of plungers for forcing the bra or other rround material into the barrel, bag, or pack-
age. Means are provided for effecting the escape of age. Means are provided for effecting the escape o
the air from between the particles of the substance be the air from between the particles of the substance be-
ing packed, to enable it to pack more closely than is possible by the common methods of packing.
An improved fire escape has been patented by Mr. Pascial P. Ripley, of West Randolph, Vt. The
fire escape is constructed with a carriage carrying a rotary shaft laving wound around it straps attached to the wall of the building, and provided with a crank, a piston, and air cylinder for retarding the descent of the
carriage. The carriage is provided with a windlass for
raising the carriage again after tts descent.
In making cider it is important that the seeds of the apple should be separated from the pomace be fore the pomace undergoes the pressing operation. Mr.
Joseph Dix Camp, of Eas Randolph, Vt, has recently from the apple pomace, and cleansing at the same time the pomace of all impurities by permitting water to flow over it, and stirring the mass as the water flows.

Mr. Gustav F. Sievern, of Pittsburg, Pa., has recently obtained a patent on a new mode of propulsion by land or water, by an arrangement of pulleys or by meshing into cogs in the periphery of the pulley the best plan for transmitting power.
Mr. William W. Lemmon, of Portersville, Ind., has obtained a patent for an improvement in sewe
traps, in which mercury is employed as a seal to preven raps, in which mercury is employed as a seal to preve
the gases from escaping. The trap is provided with hese being raised at the center, so that should the me cury be washed over the lower dams it will flow down at the sides, back into the trap.
A fire escape consists of a rope supported ached a eliding block having a friction core and brake In case of fire alarm the inmate of the building places strap around his body, under his arms, and around ove his shoulders, hitches it to the friction block, swing himself out of the window, and commences to descend,
regulating the speed by the brake block. Mr. William Newland, of Brooklyn, N. Y., is the patentee
Mr. O. M. Allaben, of Margaretville, N. Y., has recently patented a ditching machine. To the middle wo bars carrying a roller provided with a pin to pivot the handle of the shovel. The shovel is made with a hinged door at its rear end, fastened by a bolt and catch, with
cord for drawing it up, the bolt to release the dooran a cord for drawing it up, the bolt to release the door and
discharge the soil. The shovel is supported against th discharge the soil. The shovel is supported against the
resistance of the soil by adjustable brace rods secured resistance of the soil by adjustable brace rods secured
by a plate and wedges.
A patent has beqn granted to Mr. Joseph E ynnan, of Paterson, N. J., for improved bobbin spindle
and support, the object of which is to neutralize vibra and support, the object of which is to neutralize vibra-
tion of the spindles in spinning machinery, arising from Hon of the spindles in spinning machinery, arising from
irregularities in the weight and size of the bobbins, and of the spindle. The invention consists further in spindle supported upon a spring wire and arranged to rock on a center at its mid-length, and having its sup ports provided with oil passages.
An apparatus for supplying water to farm stock, in which the supply will be regulated automati-
cally, so that waste is prevented, and so that the supply of water will not be cut off in freezing weather, ha been patented by Mr. A. G. Lyell, of Hunnewell, Mo
The water passes from the reservoir into a box which The water passes from the reservoir into a box which
provided with an inlet pipe, and with a valve, whic when depressed stops the flow into the box. The wate passes from thence into the drinking trough, which i provid
flow.

A machine for making auger blanks by rolling in place of producing them by hammering has
been patented by Mr. Charles O. Tinser, of Ashtabula, been patented by Mr. Charles O. Tinser, of Ashta bula,
O. The main dies, which are secured to rolls are provid ed with secondary dies which are removable from the
main dies, so that others may be inserted. By this ar main dies, so that others may be inserted. By this ar
rangement, together with peculiar clutch mechanism fo operating the rolls and bringing the dies to the work
the machine is capable of fashioning rough blanks into finished ones ready for the final process of conversio

A seemingly practical machine for dredg ing oysters, clams, and other shell fish has been patent ed by Mr. Ed win Paterson, of Port Washington, N. Y
The dredge is provided with grappling shafts supplie The dredge is provided with grappling shafts supplied
with arms or teeth, and with suitable mechanism for with arms or teeth, and with suitable mechanism for
operating the same, and further with a series of brushes irons. When the orsters have once been gathered in the dredge, a derrick on the attending vessel raises the oysters on the deck of the vessel, from whence they ar
transferred into small boats moored at the side of the
An electrical pilot car to be run in ad ed by Messrs. S. H. Knapp and A. E. Adams, of Dan bury, Conn. The object is to signal to thc engineer on signal being given by means of a gong operated by an electric motor or battery on the pilot car. The pilo
car coming in contact with any obstacle on the track car coming in contact with any obstacle on the track
breaks the circuit of electricity, which warns the
engineer by ringing the gong and gives him time to engineer by ringing the gong and gives him time t Mr. Edgar H. Taylor, of Asb Valley, Kas. has obtained a patent for an improved stock gate for
railroads. The gate is placed between upright guides which are located on each side of the track, the mech anism being so arranged that the gate will be lowered
by the depression of the rail when the locomotive passes upon it, and will be raised again by weights when the engine passes off from the movable rail after passing
the gate. It will be observed from this that the action is entirely automat ic, and that the escape of stock and cattle from field to field by way of the track is thu
prevented.

Mr. J. E. Fellers, of Burlington, Ind., has patented an improved grain tally, which consists of a
small case adapted to hook on the end of the grain small case adapted to hook on the end of the grain
spout of a thrashing machine, or other spout througb which grain is to run, the case having a passag
through it that is divided into two branches, and con tains a gate or valve for turning the grain into either branch at will. To the gate a recording device is con-
nected, so that when a measure is filled under one nected, so that when a measure is filled under one
branch and the operator shifts the valve to turn the grain into an empty measure under the other branch,
Mr . Tbomas Watson, of Paisley, County of
Renfrew, Scotland, is the inventor of an improved spinRenfrew, Scotland, is the inventor of an improved spin-
ning machine, the object of which is to provide means ning machine, the object of which is to provide means
whereby a spindle used for spinning yarn or thread whereby a spindle used for spinning yarn or thread
may be given a limited degree of elasticity, in order that any tendency to eccentricity from oscillation unde ventor has further patented a combined bolster and
step for spindles, this step being so formed with radial
edges that it may serve as a scraper to clean from the
lower end of the spindle the sediment of oil and the particles of grit which other wise become embedded in the spindle or step, and cause so much friction and
wear. Both of the aboveinventions have been assigned to Messrs. James and Peter Coats,
An improved floor clamp for pressing to gether the boards when laying a floor has been paThis implement consists of two parallel bars provided with points and pivoted at one end to a crossbar, and connected at the other with a screw by means of which
the parallel bar is clamped to the floor beams. A beam passes between these two bars, and is connected with
them firmly, and the lever for pressing the boards to ether is attached to this beam. Anumense amount ower may be given to the lever by applying weight provided with a epring is attached to the beam on the pposite side from the lever, for holding the leve
Mr. Fred. G. Riley, of London, England has obtained a patent for an improved corking machine in which the whole operation of filling and corking th
botte is performed automatically. All the motions ne cessary for working the different parts are obtained from a rotary disk, which is mounted upon a horizon-
tal shaft, and is driven by either hand or other power When a sirup pump is used, as is the case with aerated liquids, a device is provided for warning the attendant when the delivery valve is not working properly. Thi quids closed by means of corks, and for bottles fo aerated liquids closed with either corks or self-closing

An improved steam and water heat rariat ing apparatus, which is designed for heating a room
more rapidly than is possible with the ordinary radia or, has been patented by Mr. Ludwig Crusius, of aiserslautern, Bavaria, Germany. The new radiato bas a partition which divides the radiator into two com water. These compartments have a common inlet cock and separate outlet cocks, whereby if all the cocks are open the apparatus will operate as an ordinary steam radiator; but if the cock of the water compart-
ment is closed the water of condensation accumulates, ment is closed the water of condensation accumulates,
and is heated by the steam in the adjoining compart ment. The steam in one compartment heats the room ery rapidly, and the heated water in the other com temperature.

agricultural inventions.

Mr. Charles C. Coleman, of Honolulu, Hawaiian Islands, is the patentee of an improved cane rawn over the ground to be cultivated, the furrow wil be formed, the seed plant deposited in the furrow, and

Mr. James Y. Payton, of Ipava, Ark., is he patentee of an improved narrow. The X-beams constitute the toothed part of the harrow, to which a hat the harrow may be drawn either way, with a open angle to the front, in order that the wear of the teeth may be alike, and so that the open angle at the
front of the harrow will gather in the clods to the cenfront of the harrow will gather in the clods to the cen-
er, and the rear side will spread them out again, making a d
effect.
An improved trip gear for harvester rakes has been patented by Mr. Walter A. Osborn, of Owosso, vice to be set for permitting any desired number of rakes to pass over and sweep off the gavel, while the rest are allowed to pass over the gavel without doing
any work, by which device the due measure of grain vill be accumulated upon the gavel. The machine is trip gear to allow the gavel to be carried any distanc before being discharged.
An improved grain thrasher and separator Mas been patented recently by Mr. William L. Muller of Muscoda, Wis. 'The grain is first passed under th heavier than those commonly in use, after which it is carried on to the separator, where it is brought unde the action of the rotating beater, the straw being carried falls through on to an inclined apron, where it is subjected to a blast from the fan blower, by means of lies. The machine is mounted on wheels, so that it may e transferred from place to place.
Mr. Robt. Griswold, of Woodey, Kas., has secently received two patents for important improve ments in agricultural machinery. An elevator for un
oading and stacking loose hay or grain is the subject o ne patent, and as it is a marvel of simplicity and cheapness, it will recommend itself strongly to farmers
in need of such an implement. The second patent is in need of such an implement. The second patent is
for a hay and grain rack with separable sides pro vided with a lining netting secured detachably to the removed and the netting connected with an elevating mechanism, to enable the entire load to be taken off in
a body. The rack can be mounted on the running gea of an ordinary farm wagon.

miscellaneous inventions.

Mr. John H. Burrage, of Concord, N. C. is the patentee of a beehive which is an improvemen
upon a patent granted to Mr. L. J. Diehl, in December 1873. It is claimed that by this invention improved ac commodation will be afforded to the bees, and that the brood chamber and comb frame are of a more conveni-
ent form than those of ordinary construction.

Mr. Geo. W. Bowers, of Somerville, Mass., has obtained a patent for a very simple necktie fastener
which is not only inexpensive to manufacture, but is calculated to attach scarfs and neckties to the collar

Mr. Silvio E. Massari, of Columbus, O., has patented a very simple vegetable slicer. Near one
nd, a screw enters the vegetable to be sliced, which nd, a screw enters the vegetable to be sliced, which
auses the knife, as it is revolved, to follow up the cut a spiral and continuous manner.
Messrs. Amos T. Fox and Daniel T. Fox, of Mt. Pleasant, Pa., are the patentees of a device for
turning music leaves. This consists in a wire frame ivoted to the music board and having cords connected wilh it, by means of which the fliers which hold the turned by working a foot treadle.
Messrs. R. Neumann \& Co., of New York city, by assignment from Mr. Robert Flocke, have re The invention relates to that class of satchel locks that The invention relates to that class of satchel locks that holding the rings upou the upper side of the lock plate. Mr. Cæsar Simis, of Brooklyn, N. Y., has patented a novel hat or cap lining, the object of which is to provide such a lining that a mirror or comb can be rdinarily be seen when the hat or cap is removed from he head.
A clothes pounder operating on pneumatic principles bas recently been patented by Mr. Gordon C. haped metal air chamber which collects and forces the ir down into the waterand through the clothes, cleans rem ir motisfactory manner
Mr. Albert R. Hancock, of Lincoln, Neb. has recently patented an improvement in metal lathing, which can be applied to either wood or metal joints,
and is especially suitable for fire proof build ings. The athing plates are slitted and bent back to form proje tions for holding the mortar in a manner, it is claimed, superior to metal laths now in use
An improved rasp, designed for coarser and patented by Mr. Samuel T. Harrison, of San Francisco Cal. The ridges of the rasp areformed by being punch ed out from the back, and should they become worn or
ulled by wear, they may be punched out again. Th sp by war, they may be punched out aga.

An improved scaffolding for use of painters builders, etc., has been patented by Mr. Wm. A. Gil lett, of Union City, Pa. This scaffolding may be at tached to a ladder or other support, and its height reguseful appliance for all persons having to work on th atside walls of buildings
Mr. William B. Lyon, of Pontiac, M11., ha btained a patent for an implement for cutting the two
main ligaments on the upper side of the snout of a hog main ligaments on the upper side of the snout of a hog
to prevent the hog from rooting in the ground. This operation inflicts no permanent injury upon the bog and is quite effectual in its object. This invention is an improvement upon a p
inventor in October, 1881.
An improved sand band designed to be ap plied to thimble skein axles has been patented by
Messrs. Delos M. White and Jonathan Hitchcock, of Messrs. Delos M. White and Jonathan Hitchcock, of
St. Paul, Minn. This band or collar is made in tw qual parts, and is so formed that four chambers will b rovided into which the dust will collect and be re journal and its bearing, where it would cause frictio and wear.
An improved end gate for a wagon ha een patented by Mr. Don Juan Arnold, of Brownville,
Neb. This invention consists of an improved contriv nce for securing the end gate, so that it may be readi y let down to be used for a scoop board for shoveling out the contents of the box, this contrivance being so constructed that the end gate may be readily taken off
and put on, and securely fastened when applied to th and put on, and
rest of the boz.
An improvement in the method of manu facture of finger rings and other articles of jewelry has
been patented by Mr. Henrich Heiurich, of New York city. This invention facilitates the ornamentation o nger rings by inserting separate side pieces havin the ring, and grooves on the outer side for inserting ornamented strips, which are made separate from the hank of the ring.
Mr. John A. Moore, of Cambridgeport, Mass., is the patentee of a simple contrivance for hold ing the mustache from the mouth during meal time The appliance consists of a small comb, to one side of
which is attached a spring hook. The lower portion of which is attached a spring hook. The lower portion of
the mustache rests upon the comb, and the spring the mustache rests upon the comb, and the spring
hook engages with the upper portion, so that the mouth is tree to receive food without its coming in contact with the mustache.
Mr. Frank R. Siltz, of Leon, Iowa, has ob ained a patent on a ventilator for windows or door onsisting of a wind wheel confined in a case, one side
of which is covered with wire netting, and the othe with a hinged cap which is flung open by a spring whe desired. Sliding plates on the cap allow the actmissio of more or less air, and the wire netting prevents the

Messís. Gasper Renick and James A. Cur tis, of Greencastle, Ind., have patented some improve-
ments relating to two wheeled vehicles. The invention ments relating to two wheeled veticles. The invention relates principally to the construction of the elliptic
side springs for supporting the body, these being con side springs for supporting the body, these being con-
nected at the middle to the axle, and having an extension of the upper member beyond the front end of the lower member, these members being connected by iower member, these members being connecte allowing longitudinal motion of each with relation to the other, whereby the backward and forward
swing of the body of the wagon from the action of the horse on the shafts will be avoided.

Batucss and extonal.
The Oharge for Insertion under this tead is is One Dollar a line for each insertion: about eight words to a line.

To Railway Companies and Others, requiring data concerning Water, Steam, Air, or Oil, in Pipes, or other
reservoirs, when under pressure, also Recorvs or reservoirs, when under pressure, Edson's speed and Pressure recording Gauge
and Alarm apparatus. a Railway and Steamship Appliance for securing greater safety to human life.
The SPEED APPRATUS connected underneath the "time and pressure recording and alarm gauge." is spe cially adapted for factories. mills, etc., where the mainon Railways and Steamboats where Economy, Safety
Time, and Speed should receive special supervision, and Time, and Speed should receive special supervision, and where every possible protection is demanded by the en-
tire community against the resu:ts of ignorance, carelesstire community against the resuits of ignorance, careless-
ness, and recklessness, such a sleepless watchman as this ness, anaus device is, is practically indispensable.. It is
ingenion
obvious that charts automatically traeed, which contain obvious that charts automatically traced, which contain tion of machinery, and whereon the degrees of steam pressure carried are also written, and which deffe the
ciock time occupied for any given performance, offer a combination of evidence at once impartial and exceptionally complete and incontrovertible, and must in all
future time be of great practical value to inspectors and owners of boilers, travelers, and the public in ceneral. The "Records" may be secured against tampering by a band and lock when desired. The apparatus, pa-
tented in America and England, is the invention of Mr. tented in America and England, is the invention of Mr.
M. B. Edson, 77 Liberty Street, New York, whois the sole manufacturer, and to whom applications for information or pamphlets must be made.
For Sale.-The rights for foreign patents in a first rate
proftable new invention. Patent allowed here. Thoproftable. new invention. Patent allowed here. Thomas Hill, 48 Railroal Avene, Jor
You can buy a good Patent for Hop Growers, reasona-
ble. Address Jacob Engle, Jr., Sharon Center, N. Y. For Sale.-One-half or whole interest in Candian pasix years in the U.S. Reason for selling, no time to desix years in the U. . . Reason for seling, no time to defor examination. Address,
Taggart, Grand Rapids, Mich.
Wonders in Electricity, 168 pp ., $\$ 2$. Latest and best
book. All electrical books. College Electrical Eng., N. Y. Best Popular Science Works, 15 cents each. Catalogue Wanted.-Boat builders or capitalists to apply and M. Marquis, Bellefontaine, 0 .

Am. Twist Drill Co.,Meredith, N. H., make Pat. Chuck Jaws,Emery Wheels,Grinders,automatic Knife Grinders.
American Fruit Drier. Free Pamphlet. See ad.. p. 30. American Fruit Drier. Free Pamphlet. See ad.., p. 30.
Brass \& Copper in sheets,wire \& blanks. See ad.p. 30 . The Chester Steel Castings Co., office 407 Library St., Philadelphia, Pa.. can prove by 20,000 Crank Shafts and
15,000 Gear Wheels. now in use, the superiority of their Castings over all others. Circular and price list free.
The Improved Hydraulic Jacks. Punches, and Tube Gear Wheeis for Models (list free); Experimental Tight and Slack Barrel Machinery a specialty. John CottonBelting, Rubber Belting, Leather Belting, Linen Hose, Rubber Hose. Greene. Tweed \& Co.. New York.
Our goods speak for themselves, and a trial will conOur goods speak for themselves, and a trial will con-
vince the most skeptical of their superiority over all vince the most skeptical of their superiority over all
others. Lehigh Valley Emery Wheel Co.. Lehighton, Pa. Fine Taps and Dies in Cases for Jewelers, Dentists, 20,000 Duc Spherical Elevator Buckets, sizes $31 / 2$ to 17 inches, constantly on hand. Telegraphic orders fil
T. F. Rowland, sole manufacturer, Brooklyn, N. Y. First Class Engine Lathes, 20 inch swing, 8 foot be Steam Pumps. See adv. Smith, Vaile \& Co., p. 30 Straight Line Engine Co., Syracuse, N. Y. See p. 29. Contracts taken to manuf. small goods in sheet or cast brass, steel, or iron. Estimates given on receipt of
model. H. C. Goodrich, 66 to 72 Ogden Place, Chicago. Brush Electric Are Lights and Storage Batteries. Twenty thousand Arc Lights already sold. Our largest machlne gives. 65 Arc Lights with 35 horse power. Our
Storage Battery is the only practical one in the market. Storage Battery is the only prac
Brush Electric Co., Cleveland, 0
Engines, 10 to 50 horse power, complete, with govern-
or $\$ 250$ to $\$ 550$. Satisfaction guaranteed. More than or. $\$ 200$ to $\$ 550$. Satisfaction guaranteed. More than
eight bundred in use. For circular address Heald $\& ~$
Morris Drawer 127) Morris (Drawer 12n, Balawnsvile, N. s.
Best Squaring Shears, Tinuers', and Canners' Tools
at Ningara Stamping and Tool Company, Buffalo, N. Y. Lathes 14 in . swing, with and without back gears and screw. J. Birkenhead, Mansfield, Mass.
Five foot planers, with modern improvements. Geo. The Best.-The Dueber Watch Case.
If an invention has not been patented in the United States for more than one year, it may still be patented in
Canada. Cost for Canadian pitent, $\$ 40$. Various other foreign patents may also be obtained. For instructions address Munn \& Co., Scientific American Patent
Agency, 261 Broadway, New York. Agency, 261 Broadway, New York.
Farley's Directories of the Metal Workers, Hardware
Trade, and Mines of the United States Trade, and Mines of the United States. Price $\$ 3.00$
each. Farley, Paul \& Baker, 530 Market Street, Phila. Guild $\&$ Garrison's Steam Pump Works, Brooklyn,
N. Y. Steam Pumping Machinery of N. Y. Steam Pumping Machinery of every descrip-
tion. Send for catalogue. Nickel Plating.-Sole manufaci urers cast nickel an-
odes, purenickel salts. polishing compositions. etc. Complete outfit for plating, etc. Hanson \& Van Winkle. Lists $29,30 \& 31$, describing 4,000 new and $2 d$-thand Ma chines, ready for distribution. State just what machines
wanted. Forsaitb \& Co., Manchester, N. H., \& N. Y. city. For Power \& Economy, Alcott's Turbine, Mt.Holly, N. J.
"Abbe" Bolt Forging Machines and "Palmer" Power "Abbe" Bott Forging Machines and "Palmer" Power
Hammers a specialty. Forsaith \& Co., Manchester,N.H.

Railway and Machine Shop Equipment.
Send for Monthly Machinery List Send for Monthly Machinery List to the George Place Machinery Company,
121 Chambers and 103 Reade Streets, New York. $25^{\prime \prime}$ Lathes of the best design. G. A. Ohl \& Co. East Newark, N. .)
"How to Keep Boilers Clean." Book sent free by Wanted.-Patentedi articles or machinery to make nd introduce. Gaynor \& Fitzgerald, New Haven. Conn Water purified for all purposes, from household supplies to those of anest cities, by the improved filters manufactured by the
merce St.. Newark, N. J.
Latest Improved Diamond Drills. Send for circular Ice C. Bullock Mfg. Co., 80 to 88 Market St., Chicago, 12 Ice Making Machines and Machines for Cooling
Breweries, etc. P'ictet Artiticial lee Co. (Limited), 142 Presses \& Dies. Ferracute Mach. Co., Bridgeton. N. J. Machinery for Light Manufacturing, on hand an built to order. ङ. E. Garvin \& Co., 139 Center St., N. Y Split Pulleys at low prices, and of same strength ani Wopeartanceas wnoternters. Drinker St., Philadelphia. Pa
Supplement Catalogne.-Persons in pursuit of infortific subject, can have catalogue of contents of the ScIentific ambrican supplimicit sent to them free The SUPPI, wasev contains lengthy articles embracing he whole range of engineering, mechanics, and physi-
cal science. Address Munn \& Co . Publishers, New York B. Rogers \& Co.. Norwich, Conn. Wood Working C. B. Rogers \& Co... Norwich, Conn.. Wood
achinery of every kind. See adv., page 397. Curtis Pressure Regulator and Steam Trap. See p.12. For Pat. Safety Elevators. Hoisting Engines. Friction For Mill Mach'y \& Mill Furnishing. see illus. adv. p.12. Mineral Lands Prospected, Artesian Wells Bored, by LightningScrew Plates, Labor-saving Tools, p. 14. Soapstone Packing, Empire Gum Core, and all kinds of Engine Packing. Greene. Tweed \& Co., New York.

NEW BOOKS AND PUBLICATIONS.

val Battles, Ancient and Modern.
By Edward Shippen. J. C. McCurdy By Edward Shippen. J
This is a large octavo of more than 700 pages and containing a large number of illustrations. In a pre face the compiler says that the collection is intended to
present, in a popular form, an account of many of the present, in a popular form, an account of many of the
important naval battles of all times, as well as some combats of squadrons and single ships. In most instances an endeavor has been made to give the causes and the results of these encounters, and no statement
has been knowingly made for which authority cannot be found.

HIN'IS TO CORRESPONDENTS

No attention will be paid to communications unless writer.
Names and addresses of correspondents will not be We renew our request that correspondents, in referring to former answers or articles, will be kind enough to name the date of the paper and the page, or the number
of the question. of the question.
Correspondent
easospable time should repeat them. If not then after a reasonable time stiould repeat them. If not then pubEditor declines them.
Persons desiring special information which is purely
of a personal character, and not of general interest, of a personal character, and not of general interest, shourd remit from $\$ 1$ to $\$ 5$, according to the subject, as we cannol be expecterd to spend time and la
obtain such information without remuneration. Any numbers of the Scirwntric Auneration mENT referred to in these columns may be had at office. Price 10 cents each.
Correspondents sending samples of minerals, etc.,
for examination, should be careful to distinctly mark o label their specimens so as to avoid error in their identi-
(1) J. R. M. Writes: Y am about to make ome experiments in screw propulsion, and would like information on the following: 1. All other things being
equal, which has shown the best results, a two, three or four bladed screw? A. The choice must depend upon size of propeller, velocity at which it is run, and the fineness of model of the vessel. 2. Is there any rule
governing the proportion of the pich to the diameter? governing the proportion of the picch to the diameter?
A. No. 3. Who is the inventor of the screw most in se? A. There have been many inventors and improvers. Smith, Ericsson, Griffiths, Stevens, etc. 4 What is the best way of making a screw for a model
boat, say a screw of 3 inch diameter? A. You may cast tor, say a screw of 3 inch diameter? A. You
it shaped up of sheet copper or brass.
(2) H. M. P. asks: 1. Will increasing the minute to 175 , by enlarging separator pulley, increase power of engine, and will it save fuel? Engine 7×12, rated 10 horse. A. It will increase the power of the engine carrying the same steam, but will burn more fue 2. Is there any black paint for a boiler that will not in jure the iron? A. Black va
(3) A. S. To make one gallon of the paint for a blackboard, take 10 oz. of pulverized and sifted pumice stone, 6 oz . powdered rotton stone (or infuso-
rial silica), $3 / 4 \mathrm{lb}$. of good lampblack, and alcohol enough to form with these a thick paste, which must be well
rubbed and ground together. Then dissolve 14 oz . of
sheliac in the remainder of the gallon of alcohol by
digestion and agitation, and finally mix this varnish and the paste together. It is applis to the bord with a brush care being taken to keep the paint well stirred so thal the pumice stone will not settle. 'Two coats are usually necessary. The first should be allowed to dry
thoroughly before the second is put on. The second thoroughly before the second is put on. 'The second
coat should be applied so as not to disturb or rub off any portion of the first. One galion of this paint will blackboard. Whe the pant to be put on pastered walls, the wall should be previously coated with glue size-glue, 1 lb.: water, 1 galion; lampblack, q.s. to color; pat on hot.
(4) A. J. T. asks how to reproduce faded photographs? A. The following method is simple and in most cases quite effective: Put the card in warm water
until the paper print may be removed from the card until the paper print may be removed from the card
backing without injury. Hang up the paper in a warm backing without injury. Hang up the paper in a warm
place until perfectly dry, and tilen immerse it in a quanplace until perfectly dry, and then immerse it in a quan-
tity of melted white wax. As soon as it has become tity of melted white wax. As soon as it has become
thoroughly impregnated with the wax it is pressed under a hot iron to remove excess of the latter and rubbed with a tuft of cotton. This operation deepens the con previously invisible, the yellowish whites being render ed more transparent, whilo the halr tones and staadows retain their brown opaque character. The picture thu prepared may then be used in preparing a negative (5) E. P. asks how to produce various ronze tints (or bronzes) on iron, zinc, copper, and bronze tints (or bronzes) on iron, zinc, copper, an
brase? A. Dissolve 4 oz. hyposulphite of soda in 11/ brass: A. Dissove 4 oz. hyposulphite of soda in 11/2
pints water, and add a solution of 1 oz . lead acetate in 11/2 pints of water. The metals to be colored are placed in this liquid, which is then gradually neated to the boil ing point. This treatment produces on clean iron a or braselbe color, zinc becomes bronze, and coppe or brans becomes successively red, scarlet, deep blue,
light blue, bluish white, and finally white with a tinge of red. This cip has little effect on lead or tin. By replacing the acetate of lead in the solution by sulphate of copper, brass becomes firstof a rosy tint, then green and finally an iridescent brown color. Zinc does not color in this liquid; it reduces and precipitates the copper as a dark brown sponge, but if boiled in a dip con taining both the lead and copper salts, it becomes covproved hy coating with a thin wax lacquer. Sometimes these liquids are thickened with gum tragacanth and applied to the plates with a brush to form designs, etc.,
and the plates are then heated to 212° Fah. and rinsed and the plates are then heated to 212° Fah., and rinsed
or plunged into one of the hot baths, by which a variety or plunged into one
(6) A. Y. F. writes: Please inform me how to make a good enamel for carriage tops. A. Use:
Asphaltum........ 150 parts.

Boiled oil.

Turpentine
Benzin
Melt the
.3
33
20
20
(7) A. W. H.-Otto of roses is made by distillation. The process is described very thoroughly ment, No. 58, also on page 390, of Scientific American Supplement, No. 275.
(8) C. P. writes: I have a tin roof, and would like to know if it would be best to paint it. If so,
what kind of paint shall I use with red oxide of iron, or Prince's metallic paint and boiled linseed oil. No turpentine. It is a strong, dura-
(9) J. H. M. asks: Will you please tell me hrough the Scientific Americar what paper lagging is put on to iron pulleys with? A. Roughen the surface (10) J. G. asks how to salt into a solid mass. A. Melt it, and pour it in suitable forms when in a molten condition. Salt melts at a red heat and is best heated in a covered vessel; and as it volatilizes at a higher temperature, there will proba-
(11) G. J. E. asks: How can I cement glass with metal? A. Mix 2 ounce linseed oil varnish, thick solution of glue ounce Venice turpentine; boil them together, stirring them until they mix as thoroughly as possible. The three days. This cement will firmly attach any metallic substance to glass or porcelain.

INDEX OF INVENTIONS

For which Letters Patent of the United
July 3, 1883,
AND EACH BEARING THATC DATE
[See note at end of list about copies of these patents.]

Acid, apparatus for concentrating sulphuric, w. west...

West.. 280,425
Animal trap, G. B. Wood...............
Automatic lubricator, W. S. Germeye
Axle bearing, vehicle, A. E. Wallace
Axle bearing, vehicle, A. E. Wallac
Axle cutter. carriage, T. Sherry....
Axag. lubricator, car, Mail bag
Bale tie. cotton, T. H. Dodge.
Bale tie fastening. .E. S. Lero
Balling press, P. K. Dederick...
Bar and pipe cutter. C. W. La
Bath. See Vapor bath.
Bed pan, F. Dickinson
Bed, spring. W. Price.
Bedstead, Winter
Bedstead, Winterbottom \& Murray
Beehive, C. H. Bernheim..............
Beer cooler, swimming, J. Schathaus
Bell, call. A. H.Jones.
Bell, call. A. H. Jones.
Bell, gong, G. B. Owen
Bell, gong, G. B. Ow
Biccele. .J Beale...
Bicycle, E. G. Latta
Bit stock, F. Grant

Board. See Dass bard. Pian
Telenhonessiten board.
Boiler, G. C. Morgan
Bolt. See Flour bolt.
280,392
Bolt. See Mour bolt.
Bolting reel, J. Man Slyke....................... 280,69:
Book backs, machine for moulding, D. J. \& J. E. Kane.......... 280.388
Boot, T. H. H. Buckingham
Boring tool, J. Wade.....

Box fastener, F. Kley................... 230.749 Brake. See Sled brake

280,771
Bran or flour packer, A. L. Stephens................
Bran, process of and apparatus for packing.
Hunters
Brad or cheese cutter, A. Jelinek
Briars, implement for cutting, F. \& E. S. P' Pool... ${ }^{280,667}$
Buggy seat. shifting rail, Parker \& Deveny....... ${ }_{2}^{280,666}$
Burglar alarm and door securer. combined, H.
$\&$ C. E. Moore.....................................
ing apparatus, electric, w. F. Chester.... Burglar alarm. electric, O. A. H elman.... ..
Bush for bung holes, metallic, C. H. Brady.. Bushing for faucets, C. H. Brady
Bustle. C. A. Allen.
Button, W. Huger.
Button, W. S. Rogers
Button fastener
Button setting instrument, F. A. Smith, J
Calculator percent
Calculator. percentage, Tucker \& Kelly.
Calipers, micrometer, M. M. Barne
Can filing machine, L. H. Smith.
Can filling machine, I. H. Sy
Can opener, J. McWilliams
Can opener, J. Mc Cinliam
Candle mould, J. Brelivet
Cane mill, J. F. Wood....
Cane mill, J. F. Wood.........
Car brake. E. W. Lippincott.
Car coupling, w. H. Cater
Car coupling, w. H. Castle.
Car coupling, I. E. Hawl
Car coupling, H. E. Eawk....
Car coupling, G. W. Knapp..
Car coupling,
Car coupling, O. P. Mossgrove
Car coupling, A. W. Robinso
Car coupling, A. W. Robinso
Car door. Wagner \& Seath...
Car door. Wagner \& Seath
Car drain, B. F. Teal.
Car draw bar, railway, S. P. Tall.......
Car dumper, T. B. Wire.....
Car dumping, J.. . Gartside
Car. duming, L. Hetfleld
Car for railway trains, signal, J. Schofeld
Car roof, A. P. Le Gro
Car starter, H. Clark.
Car starter, Hewett \& Mille
Car ventilator, J. M. J. A
Car wheel, W. J. Willits.
car wheel, W. J. Willits............................... 280,722
Cars, lumber door for railway box, G. B. Nichols. 280,399
Carbureter, metrical, W. M. Jackson............ 880,74
Card table and counter comb友
Carding engines, neechanism for stripping the top
flats of, H . Woodman
Carpet sweeper, G. W. Zeigler
Carriage, child's, J. A. Crandall
Carriage, chirtan, fastening, J. Log.
Carriage curtain fastening, J. Logan.
Car riving detector, F. S. Twombly.
Carriat
Carriage seat. F. W. Pendergast...................... 280
Case. See Watch
Cen
Case. See Watch case.
Casting vises, metal mould for, W. E. Snediker... 28
Celluloid, etc
Celluloid, etc., press or mould for coating articles
with.J. W. Hyatt...........................
Chain drive. W. D. Ewart..........................
Chair. See Convertible chair. Reclining chair
Chair. See Convertible chair. Reclining chair.
Chair support, adjustable, w. Farmer............ 280,593
Chandelier suspension hook, W. E. Hammond.... 286611
Check, baggage, W. W. Wilcox.............................. 280.427
Cider and wine press, S. M. Brown............
Clasp. see shoe clasp.
Clock systen, electric, C. E. Buell....
Clocks, gravity escapement for, J. H. Gerry...
280,463
Clod crusher, E. S. Reed........................ 280,513
Color tints, apparatus for indicating and classify-
ing, J. Pittiot..60,488
280,
Combination lock, H. Lemmon. 280,711
Convertible chair, E. H. Bolgiano................. 280,711
Cooking utensil lifter, J. B. Fitzpatrick..........296
Cooking vessel steam, J. Ebbert. 280,591
Cooking vessel steam, J. Ebbert........ 280,591
Cooler. See Beer cooler. Milk cooler.
Corkscrew, J. W. White.
Corset, M.
Corse
Corset, M. F. Linquist
Cotton gin rib, W. Merritt.............
Cotton picker, hand. E. V. D. Miller
280,565
280,638
280,488
280,651
Coupling. See Car coupling. Harrow coupling.
Raiwa rail coupling.
Cranberry screen, IV.F. Hammond. 280,372
Crusher. See Clod crusher.
Crusher. See Clod crusher.
Cultivator. onion. J.P. Turner.. 280,416
Cultivator, wheel, J. S. Andrews................ 280,436
Cup. See Feed cup.
Cups. bottles, etc., removable lip for, J. Rhoads... 280,515
Cutter. See Axle cutter. Bar and pipe cutter.
Breaa or cheese cutter. Stalk cutter.

Delivery and transportation, system of, G. H.
Herrington............................. 280,620
Detector. See Carriage driving detector.
Ditching machine, E. H. Lancaster............. 280,631
Dividers or compasses, W. H. Mitchell.............. 280,390
Door hanger, W. F. Berry.................. 280,342
Door

Drawing apparatus, W. S. Worden...................... 28,
Drier. See Lumber drier.
Lumpp.............. 280,490
Drill. See Rock drill.
Duster, feather, Taylor \& Fll fers 280,531
Dyeing skeins of yarn. machine for, W. McAllister 280.644
Ear ring fastener. W. R. Dutemple.... 280726
Earthen ware vessel, J. Pech .
Eaves trough, J. P. Gould......
Ejector and injector, L. B Eu
Ejector and injector, L. B. Fult
Electric cable, w. H. Sawy
Electric cable, cal or conductor, L. A. F. Herrmann..........
Electric cables, machine for making, E. E. \& E.
Electric cables, machine for making, E. E. \& E.

Electric machine, dynamo, F. Baln....
Electric machine, dynamo. R. E. Ball
Electrical distribution, system of, T. A. Edison.... 280,7397
Elevator. See Hay elevator.
Elevator. Reynolds \& Tewksbu
Elevator safety attachment. F. W. Voerde......... 280,670
280,419
tion engine.
Ensilage in sil
Ensilage in silos, method of and device for pre-
serving, S. M. Colcord... 280.352
Evaborator, w.H. Reed.........

Seal ı̄ck, J. Menzies.............................. 280,649	TRADE MARKS.
Seat. See Carriage seat.	Eva
eding machine, McSherry \& Myers	Baking powder and yeast, A. S. Bush
wing machine, C. Chabot...... 280,	Canned or preserved oysters and fish, Till
wing machine, M. P. Smith............ 280,	
wing machine, T'. D. 'Tully........................ 880,773	Carpets and rugs.body Brussels and Wilton, Scho-
Sewing machine garge, R. S. Norton 280,73	field, Mason \& Co.... 10.400
Sewing machine spool holder and	Chains, ornamental, Davidson Bros..... 10,884
R. Nichols...................................... 280,504	Cutting and drilling tools, Morse Twist Drill and
wing machine. vertical feed, E. D. Fellows280,731, 280,i33	Flour, T. G. Bush \& Co \qquad
shade pull, C. F.Pease............................... 280,	Flour, wheat, E. G. O. St
aft	Garters, M inor \& Haley.
Shing le machine, J. R. M. Crawford............... 280,354	Nets, A. G. Jennings \& Son
Ships, etc., device for increasing the speed of, M.	Oil, petroleum or kerosene,
C. McDonald	Petroleum, refined, Meissner. A ckermann \& Co... 10,30
rt. A. Borchardt.. 280,712	Preserved fruits, jellies.
Shoe clasp. J. L. Thomson...280,533, 280,3140,	
Silk tester, MacKay \& Armstrong.................. 28,	
Skate, roller, L. J. Baker........................... 28	Stones or brilliants, artificial, E. E. E. Kipling..10,385, 10,3
Sled brake, O. Pelkey............................... 280,508	
Sleigh, C. Mette,	
Snow plow, F. Snedigar........ 280,528	
Sole channeling machine, C. Chabot.. 280,576	
ole, in, J. Jenkins.................................. 280,637	Yarns, cotton and half
Sower attachment, sood, w. T. Armstrong........ 288,437	
Speaking tube mouth piece, M. Heldelmeier....... 280.374	A printed copy of the specification and drawing of
Spinning frame kink catcher, F. Broadbent... ... 280.567	
崖	issued since 1866. will be furnished from this office tor 25
speot turning and boring machine, J. W. Murray. 280,75	
Spring.	of the patent desired, and remit to Munn \& Co., 261
Springs, machine for coiling and tempering	
8	
are, sliding hook, P. Delany $\ldots \ldots280,588$	
Stalk cutter, L. S. \& M. J. B. Early................. 280,590	
Steam boiler covering. E. A. Hayes............... 280,470	her
Steam engine, W. T. Baker......................... 280,710	
eam engin	
Steam generator. C. Gorton.................280,605, 280,606	
Stencil plate for graining, J. J. Callow............. 280.446	
ing protector, C. A. Schleier	
Store service apparatus, H. H. Hayden........... 280.469	
	Engravings may head advertisements at the same rate
strap.	
raw stacker, L. W. Hasserman (r)	tisements wust be received at publication office as early
Sulky, D. Berry 280,561	
ble legs, device for securing, A. S.Robinson.. 280,401	
apping steam, gas, and water fittings, machine for, L. D. Castle.................. 280.575	
legraph	
legraph lines, automatic roll call for, W. P. Harris	Silver Finish.
Telegraphy, duplex and quadruplex, A. Muirhead 280,753	
Telepehone call bell, H. Clay.............. 280,451	
Telephone central office switchboard, T. J. Perrin. 280.662	
Telephone switch board, H. Clay............ 280,351	
phone switch board, T. J. Perrin.............. 280,6	
Telephone systems, automatic indicator switch for, G. L. Anders....... 280,707	
Telephone transmitter, H. Clay....................... 280,580	
lephonic communication, apparatus and system for, A. Dunand.	form
Theatrical appliance, F. Seymour..t.............. 280,5	
obacoo jars, porous cover for, C. B. Hull.......... 280.47	W READY.
Towel holder, G. S. Gifford.... 280,464	
action engine, W. N. Rumely.................... 280.59	
Traction engine, w. Wilkinson	
Trap. See Animal trap. Grease trap. Hydrau- lic trap, Mouse trap.	
ree box, B. Lensing 280,637	
Trimmer. See wick trimmer.	
Trough. See Eaves trough.	
Truck, car, J. McLachlan.... 280	
Truck, safety car, S. Brown........................ 280,44	
ub.	
Turning wrist pins, device for, F. M. Hazleton.... 280,471	
\| Type making and arranging machinery, F. Wicks. 280.699	, N. SPON, 35
mbrella or parasol. R. P. Knapp................. 280,48	
Valve, balanced, w. S. Canaday............ 280,34	
Valvegear, steum engine, C. Schinke............. ${ }^{280}$	
Valve, stop, Swank \& Thornley.......... 280,413	
por bath, J. M. Chadwi	
Vapor bath, medicated, L. Schulze. 280,67	
ehicte, G. J. Dickson............................. 280,361	
hicle shifting rail,	
hicle spring. J. HJ	
W. J. Moran............. 280,391	
Vehicle, two wheeled, H. C. Sears................. 280,524	y, Jr. ©Co., - - Cincinmati.

bRAEMTM
 PROOH
 Sample and Circular Free by mail. MINERAL WOOL $\mathrm{CO}_{11} 22$ Courtlandt St, N. Y.
 PATENTS.

MESSRS. MUNN \& CO., in connection with the pub
lication of the Scientific Amirican, continue to ex amine Improvements, and to act as Solicitors of Patents for Inventors. years experience business they have had thirty-eight the preparation of Patent Drawings, Specifications, and the prosecution of Applications for Patents in the
United States, Canada, and Foreign Countries. Messrs. Munn \& Co. also attend to the preparation of Caveats,
Copyrights for Books, Labels, Reissues, Assignments, and Reports on Infringements of Patents. All business intrusted to them is done with special care and prompt-
ness, on very reasonable terms. ness, on very reasonable terms.
A pamphlet sent free of char A pamphlet sent free of charge, on application, con-
taining fuil information about Patents and how to procure them; directions concerning Labels, Copyrights, Designs. Patents, Appeals. Reissues, Infringements, Assignments, Rejected Cases, Hints on the
tents, etc. We also send. free of charge a Synopsis of Foreign
Patent Laws, showing the cost and method of securing MUNN \& CO., Solicitors of Patents, BRANCH OFFICE - Corner of F and 7 th WRAShinglon, D. C.

בُّ

 (ty

 25 Imported design Cromo Cards for 188, name on $\$ 5$ to $\$ 20 \begin{gathered}\text { perdayat home. Samples. } \\ \text { Addrest } \\ \text { dreth syiree. }\end{gathered}$ $\$ 72$ WFEK, 812 a day at home easily made. Costly.

HORSES. - THE FOLLOWING VALU

 OPIUM

PTUTMETB

 MANHOOD!
 KNOW THYSELFum
Young, Middle-A ged, andl Old.

 THE GREATEST OPEN CIRCUIT BATTERY IN THE WORLD.

 BREGMMAININ de CO., Electrical Works, 292 to 298 Avenue B, cor. 17th St., New York. Than

ERICSSON'S New Caloric Pumping Engine Dwellings \& Country Seat

 ROOFING.

 STEELL NAME STAMPS, 15 conis per leiter,
postpaid. ${ }^{\text {STEEL }}$ STAMP WORE, New Haven, Ct.
 PaCKING buX patents for salf.

 ${ }_{50}^{5 t o}$ © 20 H. P. Return Flue Boiler, large Fire Box, no

4shepard's celibbrated Screw Cutting Foot Lathe.

To Electro-Platers
THE VICTOR MYNAMO PLATINGAACHINES

"BLAKE'S CHALLENCE" ROCK BREAKER.
 4 (4ent encryand sim
Firsi Class M

BLAKE CRUSHER CO., Sole Makers, New Haven, Conn.

ROOTS NEW IRON BLOWER.

REVOLVERS, PERFECTLY BALANCEU, P. H. \& F. M. ROOTS, Manufacturers, 8.s. TOWN
 SEND FOREW YORKI.

TH Manufacturers of Horse Shoes

	The Rotary Measuring Instrument, In Nickel Silver Case. will measure sormas ar watred line. Can be
THE RIDER HOT AIR COMPRESSION Pumping Engine, For city and country residences whereit is required to raise a supply of water Simple, Fenomical, Iffiective. No skill required to run it. We canrefer to our customers of eight years tanding. Send for catalogue. 19 Dey St., New York.	

CORNELL UAIVERSITY.
MECHANICAL ENGINEERING, ELECTRICAL ENGINEERING,

CIVIL ENGINEERING,
AND ARCHITECTURE. ENTRANCE EXAMINATIONS BEGIN AT 9
 study, degrees. honors, expenses, frees en ecoursesips
etc., and for special information, apply to

UINTVIERSAT.

 ERGOT'S STEAM KITCHEN--FOR USE

ON THE INFECTIVENESS OF TU-

THE PREPARATION OF SIRUPS.-A

HA AifRIN ACORLINS ENGINE

NOOLUMDIA DICYELES AND TRICYCLES,

The " MONITOR." A NEW IIFPINGAND NON
IIFTING INJECTOR.

 EJECTORS
Water Elipyators.

 NEW HAVEN MANUFACTURINGCO.
 Lathes, Planers, Drifls, Stapers, ete.
uLUSTRATED CATALOGUE ON APPLICATION.

H.W.JOHIS' asbesfos

 ASBLSTOS ROPE PACKING,ASBESTOS WICK PACKING,
ASBESTOS TLAT PACKING ASBESTOS SHEATHHNGS,
ASBESTOS GASKETS, ASBESTOS BUILIDING FELT. H. W. JOHNS M'F'G CO. 87 Maiden Lane, New York,
Sole Manufacturers of
 Descriptive price lists and samples free.
 WATCHMAKERS.

Horizontal Steam Engines, For best Automatic Cat-off
Plain Slide Valve of Su-
perior Design perior Design,
Complete in Every
ADDESS
LAMBERTVILLE IRON WORKS.

DIAMOND BITS,

For Prospecting Mines, Tunneling, eto.

Best Builer and Pipe Corerinu Made! DROP RORGINGS:

 Double Screw, Parallel, Leg Vises Made and WARRANTED, stronger than any other Vise
by EAgile ANVILW

The Brayton Petroleum Engine Co. 50 Federal St.,
Boston, mass.

SAFETY: ECONOMY: CONVENIENC
Expense Ceases when Engine is stopped.

 SoLTHWARK FOLNDRY \& MACHINE COMPANY Engineers \& Machinists, Blowing Eng ines and Hydaranic Machinery.
Porter-Allen Automaticers Cut the
(t) $0 \begin{gathered}\text { An engme that works without } \\ 0 .\end{gathered}$ THE NEW OTTVO SILENT' GAS ENGINE.

Gask, 1 OSE Caskets and Rings,
Car Springs, Car Springs, Wagon Springs,
Wringer Rolls, Grain Drill Tubes, Corrugated Rub-
ber Matting
 GUTTA Paker Fabric Cotion-Lined Fire Hose. Linen Hose, Plain and Rubber-Lined.

MREROPE

 HARTFORD

STEAM BOILER

Inspection \& Insurance
CQMPANY
W. B. FRaNKLIN,V. Pres't. J. M. ALLIEN, Pres't.
J. B. PIERLE. Sec'y.

WITHERBY, RUGG \& RICHARDSON Manufacturers
of Patent Wood Working Machtnery of every descrip

A. \& F. BROWN, 43 Park Place, New York

Buirs ountimid

MICROSCOPES opera Slases, Spectacies,
 (a)

Śrientific Amprican

 FOR 1883.The Most Popular Scientific Paper in the World. Only 83.20 a Year, including postage. Weelsty. 52 Numbers a Year.
This widely circulated and splendidily illustrated paper is published weekly. Every number contains sixteen pages of useful information, and a large number of original engravings of new inventions and discoveries
representing Engineering Works, Steam Machinery New Inventions, Novelties in Mechanies, Manufactures, Chemistry, Electricity, Telegraphy. Photography, Archi-
tecture, Agriculture, Horticulture, Natural History, etc. tecture, Agriculture, Horticulture, Natural History, etc. American a popular resume of the best scientiffc information of the day; and it is the alm of the publishers to present it in an attractive form, avoiding as much as possible abstruse terms. To every intelligent mind,
this journal affords a constant supply of instructive reading. It is promotive of knowledge and progress in every community where it circulates. Terms of Subscription--One copy of the scien-
TIFIC AMERICAN will be sent for one year-52 numberspostane prepaid, to any subscriber in the United States
or Canada, on receipt of three dollars and iwenty cents by the publishers; six months, \$1.60; three months, 81.00.
Clubs. - One
Clubs.- One extra copy of the SCIENTIFIC Ampri-
can will be supplied gratisfor every club of flve subscribers cAN will be supplied gratis for every club of five subscribers
at $\$ 3.20$ each; additional copies at same proportionate
rate. One copy of the Scientific American and one copy of the Scientific American strplemant will be sent Ior one year, postage prepaia, to any subseriber in the
United States or Canada, on receipt of seven dollars by the publishers.
The safest way to remit is by Postal Order, Draft, or
Express. Money carefully placed inside of envelopes Express. Money carefully placed inside of envelopes
securely sealed, and correctly addressed, seldom goe securely sealed, and correctly addressed, seldom goos
astray, but is at the sender's risk. Address all letters and make all orders, drafts, etc., payable to

MIUMNX \& C..,
261 Broadway, New York. To Foreign Subscribers.-Under the facilities of
the Postal Union, the Scientific American is now sent by post direct from New York, with regularity, to senb-
seribers in Great Britain. India, Australia, and all other scribers in Great Britain. India, Australia, and all other
British colonies; to France, Austria, Belgium, Germany, Russia, ánd all other European States; Japan, Brazil, Mexico, and all States of Central and South America. erms, when sent to foreign countries, Canada excepted, for both Scientific American and Supplement for one year. This includes postage, which we pay. Remit MTNTINT THE "Scientific Ammerican", is printed with CHAA
ENEU JOHNSON CO.S NK. Tenth and Lom
bard Sts. Phila., and 47 Rose St., opp. Duane St., N.

