

VoI. XLVIII.-NO. 25.] NEW YORK, JUNE 23, 1883.
 The greatest progress that has been made in recent yeärs in the art of printing is in the invention of the high speed press provided with continuous paper.
Firee Freuch constructors, Messrs. Marinoni, Alauzet, and Derriey, have brought this kind of apparatus to such a degree of perfection that the majority of foreign journals having a large circulation buy their presses in France. We reproduce in Fig. 1 a perspective view of the Marinoni

Fig. 2.-DIAGRAM OF .THE PARTS. by it upon the receiving table, 0 .
receiving table), the two small rollers, $a a^{\prime}$, advance brem the rack, N, and the sheets, instead of continuing to roder into the accumulator, fall on the rack and are deposited
The rack having fallen twenty times, and deposited five sheets each time, or one hundred in all, the table moves in such a way as to prevent the sheets subsequently deposited from getting mixed with them. When the rack has fall

The distributing roll come in contact with the inking rollers, I, once during each revolution of the printing cylinders, and are mounted on racking levers provided with regulating screws that permit of easily regulating the amount of ink taken up The supports of the inking rollers are movable and can be made to approach or re cede from the distributing rollers, so as to still further vary the amount of ink taken up by them.
The distributing rollers supply the ink to a roller, \mathbf{E} of large diameter, which, hav ing a backward and forward motion, begins to distribute the ink and to transmit it to a second roller, F, of the same diameter. This latter then spreads it over a metal
press, and in Fig 2 a diagram showing the parts of the lic cylinder, G, whichwis of the same diameter as the print same. In order to give a complete description of it we ing cylinders, and against which revolve three distributing cannot do better than to reproduce the very interesting study that has been made of it by Mr. Monet, a civil engineer.
T'he roller, J (Fig. 2), is placed in the machine in the state in which it is received from the paper manufacto 5 . The paper unwinds, runs over the rollers, e and e^{\prime}, which serve only for tautening it, and then passes between the two cylinders, A and B The cylinder, A, carres the linders, A and B. The cy
B carries the blanket, and B carries the blanket, and
the paper thus receives the paper thus receives
its first impression. It afterward passes between the cylinders, A^{\prime} and B^{\prime}, and receives an impression on the other side, the cylinder, A^{\prime}, carrying the form, and B^{\prime} the blank et. Being now printed on both sides, it passes between the cylinders, $\mathrm{K} \mathrm{K}^{\prime}$, which cut it off and allow the sheet to slide between the cords of the rollers. These latter lead the sheets over the rollers $g h$ on which one over the other, when the rollers, $a a^{\prime}$, are in the position shown by un broken lines in the cut.
The part of the machine that holds the rollers, $g h$, and the different cords that wind over them is the accumulator, and it is in this part of the press that the sheets accumulate, one over the other, to any number desired.
The size of the rollers, $g h$, and their distance apart are so regulated that when the sheet reaches the accumulator, it falls exactly on those that have preceded it. When the proper nụmber of sheets is in the accumulator (4 or 5 being the number most employed for afterward facilitating the separation into packets on the

Fig. 1.-MARINONI'S ROTARY PRINTING PRESS,

srientific Ameriram.

HSTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at
No. 261 BROADWAY, NEW YORK.

o. D. MUNN.

A. E. Beach.

TELIS FOR THHE SCIENTIFIC AMERICAN.

 One copy, one year poxtige included.One copy, six months postage include 8320
160
Ulubs.-One extra copy of iThe Scientific American will be supplied gratis for every club of five subscribers at $\$ 3.20$ each : additional copies a ame proportionate rate. Postage prepaid
mit by postal order. Address
The Scientific American Supplement is a distinct paper from the Scientific american. 'LHE SUPPLEMEN'T with Scientific American. Terms of subscription for Supplement 85.00 a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all news dealers throughout the country
Combined Rates. - The Scientific American and Supplemirnt will be sent for one year postage tree. on receipt of
papers to one address or different addresses as desired. The safest way to remit is by draft, postal order, or registered lette Scientific American Export Edition. The SCluNTIFIC Ammrican Export Edition is a large and splendid peri-
Odical, issued once a month. Each number contains about one hundred large quarto pages, profusely illustrated, embracing: (1.) Most of the plates and pages of the four preceding weekly issues of the SCIENTIFIC
AM uRICAN, with its splendid engravings and valuable information: Commercial, trade, and manufacturing anno valuabe information: (2. Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the
world. Single copies 50 cents. Manufacturers and others who desire world. Single copies 50 cents. Manufacturers and others who desire to secure foreign trade may have large. and handsomely display ed an
nouncements published in this edition at a very moderate cost nouncements published in this edition at a very moderate cost. lation in all commercial places throughout the world. Address MUNN co., 261 Broadway, corner of Warren street, New York.

NEW YORK, SATURDAY, JUNE 23, 1883.
(Illustrated articles are marked with an asterisk.)

TABLE OF CONTENTS OF
THE SCIENTIFIC AMERICAN SUPPLEMENT NO. 390,
For the Week ending June 23, 1883 .
Price 10 cents. For sale by all newsdealers.
I. ELECTRICITY and MaGNETISM.-McEvoy's Torpedo Sysage tem. -3 figures

- The Cause of
The Cause of Evident Magnetism in Iron, Steel, and Other Magmagnetism -Causes of molecular polarity.-Experimental evi-dences.-Rotation of inherent polarized molecule
Luminosity of Magnets.--By J. T. SPR Luminosity of Magnets.--By J. T. Sprag Ue..
Simulation of Electric Phenomena by Liqui ents. -4 figures:..........................
The Insulite Sealed Battery. -3 figures.
Improved Electric Underground System. -14 figures Resistance of Glass.
II. TECHNOLOGY.-English Progress in Iron Making. Farcot's Ventilating Air Compressor.-Several figures
Improvement in the Manufacture of Elastic

figures...
 Woodbury Reliefs

Photography applied to Meteorology at Kew Observatory.. Glycerine; its Manufacture and Uses in the Arts.-By Dr. A.
Bergmaus.-Properties.-Effect of heat and cold.--Action o metals. - Use in dyeing. - Manufacture and purification.- Re overy from speyes.-Use in medicine and cosmetics. MEDICINE AND HYGIENE.-Changes in the under the Influence of Medicines.- By Dr. STUMPF
Cereal Foods from What we Eat and What we Cereal Foods from What we Eat and What we Drink.-By D Ar e Boracic Acid and the Borates Poisonouns..............................
Life-History of the Liver-Fluke.-Several slgure

Life-History of the Liver-Fluke.-Several figure

IV. NATURAL HIS'COR Y.-Northern Limits of the Principal
Trees of Canada, East of the Rocky Mountains.- Map... Trees of Canada, East of the Rocky M
Pitcher Plants.-By Joseph F. JaMEs.
V. Astronomy. - True Time taken at Kansas City by Regular Stel lar Observations.-By W. W. Alexander.
Extirpation of Field Mice
Extirpation of Field Mice
Potash for Barren Fruit Trees.
Collection of Shoes at the Museum of Cluny, Paris.
Scientific Shows. -2 illustrations...
Children should study Natural History.

THE NATIONAL EXPOSITION OF RAILWAY APPLIANCES AT CHICAGO.

The managers of the Railway Exposition have succeeded in making an exhibition interesting to the general public, in a field which at first glance would seem to attract only specialists. The most attractive popular features are the old locomotives and the electric railway, yet the exposition as a whole is striking, surprisingly so, even to the mere sight seer, while attracting the deeper interest of railroad men As one goes through the vast building and its extensive annex, groups of railway employes are seen gathered here and there around novelties in brakes, couplings, and other appliances, and the comments heard of these practical men are certainly pertinent though sometimes brusque. No one knows better than a brakeman the fact, which statistics prove that the safety of the men connected with the movement
of Whan is the weak spot in the system. Everything that ingenuity and care can provide is used to protect the pas sengers; and looking at the various appliances for safety a they are brought together here every possible contingency seems provided for; yet where the employe is solely concerned, especially in the coupling of cars, it is notorious that the companies are sadly indifferent. Possibly there are practical objections to most of the coupling devices intended to insure safety, but certainly the many excellent features shown in the exposition can be drawn upon to produce a perfect device.
The old locomotives, which naturally are the center of attraction, have been so frequently described, I need not dwell on them. As the visitor steps from the shed contain ing these pioneers, across to the array of modern locomotives, an epoch is bridged from experimental years to the present times which have brought forth these triumphs of the present century. The modern locomotive represents the finest achievement of our civilization in the application of means to attain a result. I confess I cannot pass one of these great engines, wherever met, without a desire to re move my hat, because to me they seem to have taken to themselves some of the brain and brawn spent in their production, and because I know somewhat of the time, the labor, the genius, and the lives that have been given to perfect them. Study the history of any part of a locomotive and you shall learn a story of wearied brains and long ex perimenting before success. True, that one being produced, they can readily be duplicated in any number; that is also true of the sculptor's work, yet who begrudges him his meed of praise on that account? To the men from Stephenson down, who by their genius and skill have made locomotion what it is, is due the homage of history
The exhibition of locomotives embraces all varieties of steam motors from the first class passenger to the drilling engine. The principal works of the country are well represented by their masterpieces. The Baltimore and Ohio Railroad sends from its own shops a magnificent specime as a contrast to its pioneer locomotive, also on exbibition.
In the car department twenty or more street cars are shown for both horse and cable roads. The handsomest is one made for the North Cbicago line by the John Stephenson Company, of New York. In cars for steam rochs there is one of every type, including all the Pullman palaces, pas
senger coaches, and freight and stock cars. This array of senger coaches, and freight and stock cars. This array the country strongly hints of the large amount of capital and labor required for their production and operation. In the lines of car wheels, trucks, switches, and railway sup-
plies the display is large, the latter class, which embraces an endless variety of articles, showing a high grade of workmanship, and being one of the most striking portions of the exposition. In the various classes of machinery for railway shops, and for the construction and repair of roads, there is a fine display, and as a novelty which has been perfected in the West a track laying machine is noticeable. It consist mainly of a platform car, having a forward extending fram and endless apron, by which the rails and ties are carried from the car and deposited on the track.
The railway companies centering in Chicago bave contri buted to the exhibition both cars and locomotives, and som have sent products of the country through which they pass. The Illinois Central from its southern lines has sent fine trees and palms, while the Pennsylvania roads furnish native ores, typical of the diversified interests of the whole country, held together by bands of railroad iron.
Among the many notable exhibits are the following:
Several novelties in freight car doors, and in that conne tion let me say there is a fine chance for inventors to improve on the common form.
The Keystone Bridge Company exhibit forged eye bars and a turntable truss of the largest size.
The Allen Paper Car Wheel Company make a fine exhibit of wheels and trucks, as do also in their own specialties the Westinghouse Air Brake Company; the Union Switch and Signal Company, of Pittsburg; the Keystone Car Spring Company; the Ashcroft Manufacturing Company in steam gauges; and the Jersey City Iron Company. The Janney coupling for freight and passenger cars is also deserving of T
The Roebling Wire Company, in connection with their display of wire rope, exbibit sections of the cables of the Niagara, the Covington, and the Brooklyn suspension bridge. Of course these are not actual sections of the cables in place but similar, and the superior greatness of the ropes that fasten New York and Brooklyn together can be realized by the comparison with the other two cables.

Taken as a whole, the exposition is worthy of its appella tion "National," as it fairly exhibits the state of the art in railroading in the United States, and I doubt whether per fection has been so closely sought and nearly attained in any other country. There is little or nghing of catchpenny and claptrap devices. The whole affair appears earnest and means business.

rainfall on the isthmus of panama.

According to the observations of Mr. John Stiven, director of a gas company in Panama, the quantities of rain that have fallen at the Isthmus of Panama during the las four years have been as follows: $2 \cdot 152$ meters in $1879 ; 1.683$ meters in 1880; 1.792 meters in 1881; and 1.158 meters in 1882. The rainy season in this region lasts six months, from Myy to November, excepting an interruption of a few week ofteold in June and at the beginning of July. Tris abundance of rain in the summer is explained by the movement of the stratum of rising air which accompanies the curve of maximum temperature in its annual oscillating progress from one side to the other of the thermal equator, and back again, which in its turn depends upon the movement of the sun to each side of the geographical equator. As the sun passes the zenith twice a year, on the 13th of April and the 29th of August, the ascending strata of air cover the isthmus from the beginning of May to the end of June, and from the end of July to the first of December. This forms the rainy season, the rest of the year the dry.
During the latter the ascending strata of air are all to the south of the isthmus. To the north of these strata is the trade wind of the northern hemisphere, which generally blows from the northeast over the isthmus. To the south of it is the trade wind of the southern bemisphere. In the zone covered by this ascending current the wind is fluctuat ing; when it is over the isthmus, then occurs the period of calms or of very variable winds , that are found as frequently upon the main land as on the sea.
It is understood that while the rising air strata are over the isthmus, then the rainy season occurs, since the trade winds, that are low winds scouring the surface of the ocean, gather up in these strata great quantities of aqueous vapors which on rising enter the lofty and colder regions of the atmosphere, are condensed, and produce that vault of per petual cloud which arches over the earth, forming an obscure circle which the French sailors call Pot-au-Noir and the English and American the Cloud-ring, from which jssue during the rainy season those great deluges that inundate the intertropical regions. Moreover, near to the isthmus passes the equatorial current that after passing Florida is called the Gulf Stream, and the waters of this current are relatively heated, and consequently the air which crosses them becomes charged with a great amount of aqueous vapor; on reaching the isthmus with the slight velocity that the wind has in the rising strata during the rainy season, it is forced to rise, since it becomes part of the former; it also encounters the slopes of the Cordillera, along which it rises and in ascending dilates, producing refrigeration, which forms another cause that contributes to the abundance of the rainfall, at least over the Atlantic slope, since in the case of the Pacific coast the general current of the ocean i the reverse of that which obtains on the east shores, as it proceeds from the north, whence its waters are less hot and part with lesoisture to the winds that sweep their surface.
Another interesting fact is that the excess of rain on one lope over that on the other is most marked in the second period of the rainy season. This is attributed to the fact that during the first part of the rainy season-May and June -the prevailing winds are southerly, while during the second period of the same they are northerly and are more freighted with moisture; also it is at that time that the contrast be tween the rainfalls of the Pacific and Atlantic coasts is the most striking.

Ancient Lake in Callifornia.
At a recent meeting of the Engineers' Club of Philadel phia, Mr. T. M. Cleemann showed a map and profile of the Southern Pacific Railroad in California, showing where it crosses the dried up bed of a lake, being below the surface of the Pacific Ocean for 58 miles, and attaining a depth be low said surface of 266 feet. At this point it skirts a deposit of salt from six to twenty-four inches in thickness. He also showed a number of photographs of the Tehachapi Pass on the same railroad near San Fernando. In order to attain the summit with a sufficiently reduced grade, the line was "developed," advantage being taken of a conical hill to wind about it in the form of a helix, crossing itself, and continuing on its way with several meanderings. The Saint Gothard Railroadhas several such helices, but they are cut in the solid rock.

Long Steel Plates.

Some long steel plates have been rolled by the Otis Iron and Steel Company, of Cleveland, Ohio. The plates were 50 feet 6 inches in length when sheared, 51 inches wide in he center, and three-eighths of an inch thick, and the inots from which they were rolled weighed 4,400 pounds each. They were made for Messrs. Morgan, Williams \& Co., of Alliance, Obio, and they will be used in the contruction of a large traveling crane, which the above firm are building for the Dickson Manufacturing Company, of Scranton, Pa.

MOLECULAR VIBRATIONS.

No scientific doctrine is more generally believed than that of the conservation of force. The great students of nature almost universally accept it. So many old and credited theories have been overturned that advanced thinkers are prepared to see this one share such a fate. This is a possibility only; the theory is considered eminently a proved and true one.
Briefly stated, it amounts to this: In the universe there
is no natural power known to us that can create or destroy is no natural power known to us that can create or destroy
force. All that man can do is to transform it and change the form of its manifestations. Whenever force becomes manifest to us, we can trace it back to anterior forms. It never appears spontaneously generated, and from no origin. Heat, one form of force, can be changed into useful effort. It is assumed to represent an intense vibration of the molecules. The minute heat vibrations of the molecules, which create impulses infinite in number, and, considering the size of the molecules, of almost infinite force, can be lengthened, and made to coalesce into a single prolonged effort. A cubic inch of water may be heated, by the combustion of carbon, until the repulsive force among its vibrating molecules has developed, and the paths of vibration have been increased to twelve times their former length. Thus steam is produced. The steam may be admitted into a cylinder, under a close-fitting piston, which it will raise until the space under the piston is of one cubic foot volume. If the steam is allowed to condense the piston will return. The minute vibrations of the molecules, too small to be measured, or fully conceived of, have been joined together so as to produce a single wave of a foot front, it may be, and of a foot altitude. The first phase of an oscillation is represented in the rise of the piston; its descent represents the second. The motion of the piston only renders the expansion of the water into steam visible in its effects. The true transformation of power was anterior to all this. The proximate origin of the force was the combustion of the fuel.
The chemical affinity of carbon for oxygen was called upon. These two elements were made to unite. They rushed to gether with very great yet measured velocity. As molecule of carbon came against molecule of oxygen it was split up into atoms, and immediately combined with the oxygen. Under the effects of the atomic concussion the newly-formed molecule of carbon dioxide started into vibration. The vibration was one of that character which affects our nerves with the sensation called heat. The myriad of vibrations was imparted to the cubic inch of water, and a measure of their amount arrived at. It came to some two thousand foot pounds.

This, it must be remembered, is theory, and unproved except by analogy. The resemblance between the phenomena of sound and heat is very great. Both can be reflected and refracted; both can start from a center and be radiated through space, in accordance with identical laws. Sound is unquestionably due to vibrations. They can be seen by the unassisted eye. Such are the vibrations of a long string or turning fork. From the analogies between the phenomena of sound and heat, the conclusion is drawn that heat is also due to vibrations.
We reach thus a true conception of the theory. Heat vibrations are invisible. They have been invented by scientists to explain existing phenomena. The proof of their existence is an analogical oue only; and aqalogy has so often failed that the whole theory is provisional. The probability of the existence of the vibrations is founded on their capability to explain known facts. As soon as a discordance is shown they must be abandoned by the theorizer. As soon as such discordance between their existence and the phenomena of nature is shown, the proof and probability of their existence vanishes.
The weakness of any attempt to seek among molecular vibrations for a new source of force is thus very evident. vibrations for a new source of force is thus very evident.
They serve only to illustrate the possibility of the mutual transformation of different kinds of force. They are not absolutely ${ }^{\text {knn }}$ nown to exist, and may at any time be discredited and a new theory be adopted. To take such an unproved and unknown quantity as a reservoir of new and bitherto undiscovered power is going beyond the bounds of analogy or probability.
S. T.

Electricity as a Motive Power.

Professor George Forbes recently delivered a lecture on the above subject in London. Speaking of the frequency with which water power is brought into the question of obtaining energy in the form of electricity, he refers to the idea of utilizing the water power to charge accumulators, which are to be placed upon cars and wagons and used to drive them over tramways. At first sight that seems very feasible, he says; but, as he believes' that compressed air tramcars are a success, he pertinently asks, in effect, why the water power has never been used to compress air. Sir W. Thomson's question at the York meeting of the British Association was whether 40 acres or 100 horse power is the more valuable, the 40 acres representing the area of the reservoir that would be required to give that power with a fall of six feet seven inches (two meters). He was alluding to the construction of reservoirs around the coast to utilize the tides; but electricians mean the utilization of waterfalls, running streams, and the rise and fall of the water in river gorges, and there is obviously no difficulty whatever in causing water wheels and turbines to drive dynamo
machines. The question is rather. How is the current to be
conveyed to the places where it can be utilized? In Deprez's latest experiments he obtained a return of $471 / 2$ per cent, and 4.4 horse power of work was actually given off by the motor. Professor Forbes calculates that turbine and dynamos to transmit 6 horse-power through a resistance of 12 ohms will cost in their places $£ 200$. Neglecting the cost of the conductor, he points out that such an amount of power from a steam engine, with coals at 20 s. per ton, will cost $£ 60$ per annum. (He takes 300 days of twenty-four hours and allows 3 lb . of coal per horse power.) The interes and depreciation on the boiler and engine would be about $£ 30$ per annum, making altogether $£ 90$ as the runuing ex penses, without reckoning wages, which may be considered as equal in the two cases. Electrically transmitted, the interest on plant, at 15 per cent, would be $£ 30$ per annum, leaving $£ 60$ from which to deduct the cost of the conductor or rather the interest and depreciation, and therefor for large margin in favor of current as compated to steam.

Cork.*

Cork is yielded by the cork oak, Quercus libece which chiefly flourishes on the shores of the Mediterranean. There are, in Spain and Algeria, large forests of this tree, whichis also cultivated in the departments of Lot-et-Garonne and Var, in the south of France, and in Corsica.
The cork oak arrives at its full growth in about one hundred years, when, in hot climates, it attains a height of dred years, when, in hot climates, it attains a height of
sixty or seventy feet, with a diameter of six to eight feet. The bark consists of two distinct portions, the inner formed of a fibrous tissue, and the outer tuberous, and of a porous and elastic consistency, which constitutes the cork proper. The first cork naturally produced by the tree is called the male, and has scarcely any value; but if this be removed, a second layer is formed, finer, more elastic, and less irregular, which is known as the female cork; and this it is which is generally used. The stripping of the cork takes place in summer, when the circulation of the sap facilitates the separation of the outer from the inner layer of bark. The removal of the first growth is effected when the tree is twenty to twenty five years old. Several annular incisions, and one vertical incision, are made with a hatchet, care being taken to cut the cork only, without touching the inner bark; the layer of cork is then easily detached. Λ young oak yields about 10 lb of cork at the first stripping, while it is capable, ultimately, of yielding over 300 lb . The first cork has a thick and hard exterior, which diminishes with each successive growth. Formerly, after the first stripping the tree was left to itself, without any protection. Being very tender, it was liable to be killed by exposure to variations of temperature, while numerous insects, attacking the tender surface of the tree, reduced the value of the future cork. Besides, a thick and irregular crust formed, which it was necessary to remove, thus causing a loss of thirty per cent of cork.
A better plan is to employ the method of M. CapgrandMothes, which consists in covering the tree, during several months after stripping, with the cork which has beeu removed. A few vertical incisions are made in the inner bark, to prevent irregular furrows being formed. The pieces of bark are then restored, being fastened by iron wire; and the joints are made good underneath with strips of cellulose cardboard. After three months, in the autumn the pieces of bark have become quite dry, and are taken off The effect of this practice is to induce the formation of a protecting layer, tuberous, homogeneous, and elastic, under which the growth of the cork goes on without danger of injury.
The detached pieces of cork, flattened by being piled u, with the outside uppermost, are freed from their external surface by boiling and paring. The boiling of the cork, which lasts about half an hour, is effected in large cubical boilers fired with refuse cork, and closed by a cover which presses upon the picces. The paring is done by hand, or by means of horizontal rollers provided with iron blades; but this last-named operation may be dispensed with when the practice of covering the tree with the detached pieces of practice of cove
bark is adopted.
The principal use of the outer bark is to make bottle corks. They are more frequently cut by hand, though sometimes by a machine, a horizontal knife giving a rotary motion to the piece of cork, and thus cutting into a cylindrical form. Cork is also used for making life buoys, swimming belts, floats, non-conducting linings, etc. It is moreover used advantageously in the form of powder, for packing fragile objects, as a substitute for lycopodium powder, and for the manufacture of linoleum and corkleather. Cork is, however, on account of its elasticity, re duced to powder with great difficulty. To effect this, mills with grinders in the shape of rasps, mill-stones revolving in a pan, and artificial stones revolving at great speed are employed.
Linoleum consists of cork powder consolidated with dried linseed oil. The mixture, in the proportion of about three parts of oil to one of cork powder, is passed under heavy rollers, and then stuck on to cloth by means of drying oil. It is allowed to dry for about three months, when the pro duct is ready to receive various designs, and may be readily washed. Linoleum is adulterated by adding sawdust to the cork powder. Cork leather, which is waterproof and very elastic, is cork powder consolidated with India-rubber.

* From a paper by M. Henri Mamy, Ingenieur des Arts e e Manufae-
tures, in the columns of the Moniteur Indistriel. - Jour Soc.

Cork refuse is used for making partitions that do not conduct heat or sound; it also yields a light and porous charcoal. M. Combe d'Alma has proposed to distill them, so as to obtain a very rich gas, free from sulphureted hydrogen. Old battle corks are sometimes collected, boiled and washed in acidulated water for again serving to cork bottles.

A Chance for Inventors.

In the heavy thunder storms which occurred in various parts of the country last week the lightning manifested its well known affinity for petroleum. Three large oil tanks were struck. One of them was nearelean, in this State, another at Muncy Station, Pa., and the third in the yard of he Standard Oil Company at Communipaw, N. J. This ast one had very little oil in it, and was not consumed, but the others, with their contents, were burning at the latest unts.
The attractive influence exerted by petroleum, or its vapor, which renders these great oil tanks so liable to destruction by thunderbolts, does not seem to be very well understood. If it was, we should hardly be without any fficient means of guarding such structures against lightning. The subject is well worthy of attention and study on the part of men of science. At present the safeguards are so inadequate that an oil tank is not only very likely to be destroyed by any thunder storm, but to act also as a firebrand to every building any where near it.
The inventor who devises a method which shall afford to il tanks ahsolute protection against lightning, ought to be able to make a million of dollars by the invention.-N. Y. Sun.

An article in Science takes exception to the small tricks of thoughtless newspaper paragraphists in using strictly scientific terms as a means of ridiculing study and investigation in pure science; and cites an instance in which a newspaper of deservedly high character characterized by the heading, "A Thrilling Government Report," a bulletin from the United States Geological Survey on "Hypersthene Andesite, and on Triclinic Pyroxene in Augitic Rocks.'
Progress in true knowledge requires attention to particulars and to details; and such attention is to be fixed and such details defined ouly by the use of the most exact lan-guage-language allowing of no deviation from its literal meaning and of no room for differing readings. So the language of science is an exact language, and although it may sound odd to one who puts all his thoughts into the changing vernacular, it conveys a distinet meaning, and the same meaning, to every one of the large and increasing army of men and women who are gradually exploring and expanding the stores of Nature as applicable to human weal. The use of the stable. and unchanging terms of the pre served and petrified languages of Greece and Rome is entirely applicable to the unvarying facts of Nature, and it affords no legitimate opportunity for cheap and ignorant wit.

A Chinese war Ship.

On the 10th ult. the Cbinese Ambassador at Berlin invited a select and distinguished company to Stettin to wit ness the trial trip of the Ting Quen, or Everlasting Peace, fine ironclad corvette, built for his government by the Vulcan Shipbuilding Company there. The vessel was launched some time ago, and has now received her proper equipment of guns, etc. The Times Berlin correspondent says the trip was most successful, the corvette, with engines of 6,000 indicated horse power, achieving a speed of $141 / 2$ knots an hour. This ship is of peculiar construction, with r rather shallow draught, having been specially constructed or coast defense. She will soon proceed to the East-all the sooner, perhaps, that a French fleet threatens to make its appearance in Chinese waters. A sumptuous repast was served on board to the guests of Li Fong Pao-among whom was the British Consul General in Berlin.

New York and Liverpool Large Steamers.

The City of Rome, having had additional boilers put in nd other improvements made, is now probably one of the fastest of Atlantic steamers, as on her trial recently she reached a maximum speed of 18.7 knots , or $211 / 2$ miles an hour. The engines developed 12,000 horse power, as against 8,000 , which was all that could be obtained from them previously. The City of Rome is over 8,400 tons measurement.
The new Cunard liner Aurania, which enjoys the repuation of being the broadest vessel afloat in connection with the Atlantic trade, also attained a maximum speed of 18% knots. The Aurania is 470 feet long, 5% feet broad, and $381 / 2$ feet depth of hold. She measures 7,500 tons, and has engines capable of indicating 10,000 horse power.

Difrusion Engine.

At a recent meeting of the London Physical Society, Mr. Woodward described an experiment illustrating motion produced by diffusion. A porous reseryoir of clay containing air was suspended from one end of a weighted balance beam. A glass tube projected from it below and dipped into a vessel of water. A jet of hydrogen gas was allowed to play on the outside of the reservoir, and the balance beam began to oscillate. This is an adaptation of Grabam' well-known experiment, and is, in fact, a diffusion engine.

The Italians dry and pulverize the pulp of the tomato. Large districts are devoted to the culture of the fruit for this purpose, the plant being usually raised between rows of vines in vineyards for the salse of economy of land. The ripe fruit is macerated in water, and when reduced to a thin pulp is strained to take out the seeds, cores, etc., and then spreadin the sun to dry. It is afterward ground and put up for market. There seems to be no reason why evaporating ovens, so much in use for drying less succulent fruit, as apples, might not be utilized in this country for preparing tomatoes by drying.
Of course powdered tomato might not supersede the canned fresh fruit. Its chief use would be for soups, sauces, and other auxiliary uses in cooking. But there are many consumers of the fresh tomato who refuse the tinned canned tomato from fear of the action of the acid of the fruit on the leaded tin of the can, the resultant being in their estimation a virulent lead poison. Tomatoes put up in glassquite high priced-have therefore been welcomed by lovers of the fruit-or vegetable. Possibly there is room here for an addition to our list of dried or evaporated food articles.

A Lack of System.

It is the general impression that system and uniformity were becoming the rule in practical mechanics, the reduplication of parts and machine-produced articles not being confined to a few departments, but being gradually extended so as to promise eventually to embrace most of our industries. In railroading, especially, it has been the common belief that uniformity was gradually taking the place of independent diversity, an indication being the growing adoption of the ordinary gauge for width between rails.
But from a circular issued by the secretary of the Master Car Builders' Association it appears that the very opposite of uniformity is the rule among car builders for railroad companies. The master car builder of the Boston and Albany Railroad says he has forty different kinds of brake heads and shoes, eleven of journal boxes, thirty-seven journal bearings, ten cast iron and five or six wrought iron draw bars, eight or ten different draw bar side castings, and a multitude of various other different parts of a car. The master car builder of the Baltimore and Obio road reports sixty-five different kinds of journal bearings, and in eleven other articles in common use varieties numbering from twenty-five to six. And similar reports have been sent from other railroad authorities.

It is a singular exhibit. It would seem almost that human perversity and not mere chance, or individual convenience,

"de witt clinton."

Copy of original drawing of the "De Witt Clinton," the third locomotive engine built for actual service on a railroad in the United States. Made for John B. Jervis for railroad between Albany and Schenectady, A.D. 1831, by the West Point

LOCOMOTIVE TENDER

Built by the West Point Foundry Association.
had produced this wide diversity. It was generally known that human lives-brakemen's lives-were sacrificed to the lack of uniformity in the height of couplings, but it is appalling to learn that "the most careful estimates show that from 1,200 to 1,500 railroad employes are killed in this country annually, and from 5,000 to 10,000 more or less seriously injured; and a very considerable proportion of this sacrifice of life and limb is preventable by improved and uniform methods of constructing cars."

THE CHICAGO RAILWAY EXPOSITION.

Among the interesting things to be seen at the Chicago Exposition of Railway Appliances, lately opened, are the original drawings of several early locomotives, diagrams of which we give herewith. The drawings were presented by the West Point Foundry Association to the American Society of Civil Engiueers. Our diagrams are from larger cuts given in the Railroad Gazette.

"THE WEST POINT."

Copy of original drawing of "The West Point," the second locomotiv engine built for actual service on a railroad in the United States. Made for the South Carolina Railroad, A. D. 1830, by the West Point Foundry Association.

The inscription in each of the engravings is copied from the original drawings, and gives the date when the engines were built.
The "Best Friend" was shipped to Charleston, and ar rived there in October, 1830, and, according to Brown's "History of the Locomotive," " continued to do the neces sary work of the road, hauling materials, workmen, ballast lumber, etc., used in the construction." On June 7, 1831, its boiler exploded, being, it is said, the first locomotive boiler explosion on record.
The " West Point" was the second locomotive built for actual service. It was ordered from the West Point Foundry, and constructed from plans sent by Horatio Allen Esq., then Cbief Engineer of the South Carolina Railroad It arrived in Charleston in February, 1831.
The locomotive "De Witt Clinton" was ordered by John B. Jervis, Chief Engineer of the Mohawk and Hudson Rail road, and was the third locomotive built in America for actual service upon a railroad. It was built at the Wes Point Foundry, and taken to Albany in the latter part of June, 1831, and was put upon the road and run by David Matthew. The first experimental trip was made on July 5, 1831.
A variety of illustrations of these engines have been published, which differ materially from each other. The engravings herewith have the merit of being authentic, as they have been made direct from tracings of the original drawings.

The Bower-Barff Process for Preserving Iron and

 Steel Surfaces.At a recent meeting of the Society of Engineers, London a paper was read by Mr. George Bower, on "'The Bower Barff Process of Preserving and Ornamenting Iron and Steel Surfaces."
The subject of the paper was of necessity interesting to all those who bad to use iron and steel for constructive purposes, but although the author's and the Barff process of coating these metals with magnetic oxide had been before the world for several years, yet it was astonishing how few there were who really understood what these processes were.
There were two methods of producing the film of magnetic oxide, one of them, the Barff, by means of subjecting the articles at a red heat, inside an iron muffle, to the action of a superheated steam; the other, the Bower, by subjecting articles, at a similar heat, inside a brick chamber, to the action of products of combustion and of superbeated air.
The Bower-Barff Company having acquired both patents, a furnace had now been devised which embraced the good points of both systems.
Iron at a sufficiently elevated temperature decomposes water; the oxygen eutering into combination with the iron, in certain definite proportions, forms magnetic oxide, which is impervious to rust. This is especially applicable for wrought iron.
The Bower process was more especially adapted for cast iron, and it proceeds on the principle of first forming sesquioxide and then reducing it to magnetic by hydrocarbon
gases or carbonic oxide. The Barff process produces magnetic oxide at one operation, but it is costly and takes a long ime, while the Bower is obtained in two operations, and a very cheap and effective coating is produced in less than half the time of the other.
A model of a Bower-Barff furnace and drawings were exbibited as well as specimens of various articles which had been treated, consisting of stoves, ornamental castings, kitchen utensils, etc., which were most interesting.

NOVEL MODE OF DEPOSITING METALS ON IRON
The author showed a very curious property of magnetic oxide. He applied a brush formed of wires of different metals, first of all, to a casting which was not coated, and on which no effect was produced; then to a similar one which had been coated, when it was immediately covered at all parts touched by the brush with a beautiful shining coat of the metal of which the brush was formed. The author attributes this to the fact that magnetic oxide not being metallic, and to some extent gritty and porous, it had rubbed off by attrition some of the metal from the wires; and he expected that this would supersede the existing methods of bronzing and of depositing metals for the commoner kinds of Birmingham goods.
The author concluded a very interesting paper by saying that iron and steel were the kings of British industry, and he trusted it would be acknowledged at some time or other that the Bower-Barff process had contributed in some degree to maintain them in their supremacy.

Carbonic Acid and Bisulphide of Carbon.
At a recent meeting of the Royal Society, a paper was read " On a Hitherto Unobserved Resemblance between Carbonic Acid and Bisulphide of Carbon," by Dr. John Tyn dall, F.R.S. He said: "When, by means of an electric current, a metal is volatilized and subjected to spectrum analysis, the 'reversal'of the bright band of the incandes cent vapor is commonly observed. This is known to be due to the absorption of the rays emitted by the hot vapor in the partially cooled envelope of its own substance which surrounds it. The effect is the same in kind as the absorption by cold carbonic acid of the heat emitted by a carbonic oxide flame. For most sources of radiation caronic acid is one of the most transparent of gases; for the radiation from the hot carbonic acid produced in the carbonic oxide flame, it is the most opaque of all. Again, for all ordinary sources of radiant heat, bisulphide of carbon, both in the liquid and vaporous form, is one of the most diathermanous bodies known. The analogy between the two substances extends to the vibrating periods of their

"THE best friend."

Copy of original drawing of "The Best Friend," the first locomotive en gine built for actual service on a railroad in the United States. ade for the South Carolina Railroad, A. D. 1830, by the

West Point Foundry Association.
atoms, and the bisulphide, like the carbonic acid, abandons its usually transparent character, and plays the part of an opaque body, when presented to the radiation from the carbonic oxide flame. Of the radiation from hydrogen, a thin ayer of bisulphide transmits 90 per cent, absorbing only 10 . For the radiation from carbonic acid, the same layer of bisulphide transmits only 25 per cent, 75 per cent being absorbed. For this source of rays, indeed, the bisulphide ranscends, as an absorbent, many substances which, for all other sources, far transcend it."

Why there are no Water-rats in Ireland.
In an interesting article on the vole or water-rat, by Mr. Grant Allen, in the English Country Gentleman, the writer discusses the question why certain animals, such as snakes, vipers, water-rats, etc., are not found in Ireland. For the real solution of the problem, he says, we must go back to tine time when England, Ireland, and the Continent were united by a broad belt of land across the beds of the English Channel, St. George's Channel, and the North Sea. lt is now an ascertained fact that in the very latest geological period, known as the glacial epoch, the whole surface of the British Islands (except an insignificant strip of the south coast) was covered from end to end with a deep coating of glaciers, like that which now envelops all polar lands, and while this condition of things prevailed there were, of course, no animals of any sort in all Britain, or, at any rate, none but a few Arctic types. After the ice melted, how ever, the existing British fauna, such as it is, began to occupy the land, and the fact that it did so is one proof, though by no means the only proof, that a communication with the Continent then existed across the bed of the North Sea. Now, the animals only pushed their way very slowly into the newly cleared region as the ice melted away, and the consequence is that only some forty kinds of mammals out of the whole European fauna had penetrated as far as England before the gradual submergence of the. lowland belt separated it from the Continent by forming the inclosing arms of the sea.
But Ireland lies even further west than England, and there is reason to believe that St. George's Channel had all been flooded some time before the waves of the Atlantic broke down the last link between Dover and Calais. Accordingly, Ireland never got her fair share of land animals at all, for though the wolf and fox and the Irish hare and many other quickly migrating creatures had time to cross the intervening belt before the submergence, several smaller or slower creatures, including the vipers, did not get over the ground fast enough, and were thus shut out forever from the Isle of Saints. Among them were the whole race of voles, and that is the reason why Ireland to this day has no water-rats.

Catching Float Gold in Streams.

We often hear mining men tell of the large quantities of float gold which pass down the streams of this State where mining is carried on, or which receive the waters of other streams where men are mining. No one seems to have thought it possible to catch any of this float gold after it passed out of the sluices into the streams themselves. Yet in other countries the people avail themselves of the opportunity afforded on streams where mining is done to catch the float gold-for it really does exist. It has been found, for instance, at Charleston, New Zealand, that the gold does not all settle in the tail races, but that, in the union of the water of several tail races, a small percentage, well worth saving, floats away
The gold is arrested by a method termed "fly-catching," which consists of a series of blanket-tables placed across stream, like wiers, so that the waters shall flow over each table in succession. The tables are washed in turn, and the gold is streamed from the sand and caught up by quicksilver. Many of these caught up by quicksilver. Many of these
"claims" yield from $\$ 20$ to $\$ 45$ per week, "claims" yield from $\$ 20$ to $\$ 45$ per week,
with little labor. In the Charleston district referred to, fly catching has become quite an industry in itself, and no doubt there are quite a number of places in this State where similar stations could be maintained with profit.

The tables are constructed entirely of timber. Piles two or three feet in length are driven firmly into the bed of the creek, and on these are nailed lengths of stout quartering, covered over with one-inch boards laid close together, so as to form a smooth table. Pieces of lighter quartering are then placed over the boards from top to bottom, forming divisions about four feet in width. Blanketing or cloth-ordinary grain sacks opened out are frequently used-is next spread smoothly along these divisions and securely fastened down by small strips of wood. The tables vary in length from seven to twelve feet, and are placed in the creek at intervals of from sixty to a hundred feet, extending quite across the stream. The proprietors of these rights aresaid to realize during rainy weather very good returns, ranging from $\$ 10$ to $\$ 30$ a week, according to the nature of the workings on the banks above and the number of tables set in the creek. The tables are liable to damage by flood. The tables are made in compartments, and when the blankets are lifted out of one compartment, spare cloths are kept to replace those lifted. The men wash out the cloths once or twice a day, in a box by the side of the creek. The fine tailings pass over several sets of tables in their course down the creek.-Mining and Scientific Press.

AN $\$ 800$ silver brick from the Pioneer Reduction Works was exhibited at Nevada City last week.

NEW FUEL ECONOMIZER.

It is a matter well understood among steam users and engineers that from 50 per cent to 75 per cent of the steam generating powers of coal are lost by the passing off of the gases and smoke in an unburnt condition, caused by lack of oxygen sufficient to produce combustion. By the use of one part steam to fifteen of hot air commingled and injected rapidly into the furnace by vacuum, the otherwise waste gases are ignited and economy effected.

Fig. 2.-VACUUM CHAMBER WITH TWO STEAM JETS FOR INJECTING HEATED AIR AND STEAM INTO THE FURNACE.

When anthracite coal is burned, this attachment will, by the injection of hot air over the surface of the firebed, ignite the gases, utilize more completely the fuel employed, and, it is stated, show an actual saving of from 15 to 35 per cent. I bituminous coal is used, the economy will average about the same, with the additional advantage of burning all the smoke. The air is drawn through a heater in the ashpit, and projected into the combustion chamber by small jets of steam, as shown in Fig. 2
The apparatus can be attached to any furnace in a few hours, without structural changes. It requires no fitting to or alteration of the boiler. It will invariably effect an econo my in any grade or price fuel, varying according to condition of boiler, furnace. smoke stack, and fuel used. It will

Fig. 1.-ORVIS COMBUSTION ATTACHMENT.

This invention is the result of protracted study on the part of the inventor, Mr. Orel D. Orvis, who is also a capialist, and the president of the company. Six companies have been organized to work the patent in different parts of this country. The New Jersey company has already declared a dividend of five per cent. Further particulars may be obtained by addressing Orel D. Orvis, President of the New York Combustion Attachment Company, 261 Broadway, New York city.

How to Make Printing Plates from Photos.-

Λ sheet of unsized paper-white blotting paper, in factwas laid on a slab of plate glass, and dabbed over with a thin starch paste, a soft sponge being used for the purpose, and care taken to only apply so much starch paste as would fairly sink into the texture of the paper.
The sheet was next dried, after which it was sensitized by being floated (starched side downward) for five minutes on a five per cent solution of potassium bichromate, and it was hung up to dry in a moderately warm room. When dry, it was exposed under an ordinary negative for about two-thirds of the time which would have been required to obtain a silver print, after which the print-now of a light brown color-was soaked in water until all traces of unaltered bichromate were removed. The wet print was now partially dried by means of blotting-paper, and then ex posed to the air until dry, after which it was laid between sneets of ordinary white paper, and well ironed with an ordinary flat iron, heated to about 150° Centigrade; the object of this proceeding being to harden the altered starch, and to enable it to hold the fattyink firmly.
The sheet was next moistened, laid on a sheet of damp blotting-paper, and inked by a velvet roller charged with rather thin lithographic transfer ink. This ink adhered to the exposed portions, which refused to take up water, as a kind of granular deposit, leaving the thorough damp portions of the paper clear and white. The stippled ink picture thus obtained was then laid on a cleaned zinc plate, and etched into relief.-Photographic News.

${ }^{6}$ Compound Oxygen."

Compound oxygen is a trade name given to various compounds of secret composition and of boasted medicinal qualities. Several varieties have been analyzed by Prof. Prescott, of the University of Michigan, and his results are pubblished in the Physician and Surgeon of Ann Arbor.

1. Compound Oxygen. Keep Dark.-A colorless aqueous solution of nitrate of ammonium and nitrate of lead, the two salts being in nearly equal proportions, and together forming about three per cent of the solution.
2. Oxyaen Aque. For Digestion. Keep Cool.-One of the grades of "compound oxygev." A colorless, odorless, and tasteless liquid-found to be water, of a commendable degree of purity, quite free from sophistications. Probably this is the original compound oxygen.
3. Compound Oxygen. Dr. Green's, 1880. -An aqueous solution of nitrate of ammonium, with a very little nitrate of lead.
4. Compound Oxyaen. A White Crystalline Solid.-Obtained for analysis about five years ago, and then found to be nitrate of ammonium alone. "Contains all the vitalizing elements of the atmosphere, but combined in a different way."
5. Compound Oxygen.-Sent out from Boston. A colored, fragrant liquid, consisting of alcohol, chloroform, and balsam of tolu.
6. Compound Oxygen. Dr. O'Leary's.Contains alcohol, chloroform, bitter almond oil, balsam of tolu, and red coloring matter.
The first two samples, Compound Oxygen and Oxygen Aquæ, were sent to Prof. Prescott for analysis by the editor of Good Health, who remarks as follows:
" It should be recollected that this solution is to be used by inhalation, a teaspoonful being added to a small quantity of warm water, through which air is drawn by means of a glass tube. Neither of the substances contained in the solution are volatile at the temperature at which the solution is used, so that it is impossible for any medicinal property whatever to be imparted by this boasted remedy, except what comes from the warm water, which is itself very healing when used in this way, as we have demonstrated in hundreds of cases. Prof. Prescott also tested the
improve the draught and save the expense of high chimney tacks.
Practical experiments and exhaustive tests during a period of over two years both in this country and Europe, on vari-
ous kinds of furnaces and fuels, have shown gratifying results in every instance.
This invention supplies ${ }^{\text {© }}$ the furnace by means of two vacuum boxes and four pipes opening into the fire chamber above the burning fuel. Through these pipes are introduced steam and heated air, that mingle with the heated gases arising from the firebed, and supply the requisite oxygen and hydrogen for consuming the gases and promoting perfect combustion.
vapor given off from the pure solution when it was boiled but found nothing more tban the vapor of water.
" The Compound Oxygen is usually accompanied by what he manufacturers are pleased to call Oxygen Aquæ, which they recommend their patients to take as an aid to digestion. The analysis of this showed it to contain nothing bút water. The most careful tests revealed nothing else."

Specific Heat of Gases.

The author has verified the identity of the specific heats of hydrogen, nitrogen, oxygen and carbon monoxide gases at temperatures up to $2,700^{\circ} .-M$. Vieille, in Comptes Ren-
dus. dus.

The Third Andon Furniture Exhibition cultural Hall, f Arts says the main building was largely dev of the Society we chiefly understand by furniture, that is, upholstery; and a considerable variety of objects and styles of decoration were exhibited. . In the sides and in the galleries a very liberal interpretation of the term furniture was taken, but as in the Building Exhibition the main feature was structural, so in this exhibition the objects were chiefly connected with the contents of the structure. This classification did not, however, entirely hold good, for greenhouses and horticultural buildings generally had a special division set apart for them. A considerable number of wood working machines were shown in action, and numerous specimens of new processes of wood carving, by which lengths of mouldings can be pro duced at a small expense, were exhibited. In the King Ed ward's Hall, which was devoted to domestic appliances, were exhibited a large number of useful objects. Here were sbown specimens of pottery made from iron slag, and decorated in green, blue, and brown colors; and basins, trays, waiters, etc., made from pulp by the Patent Pulp Manufac turing Company, which are said to be practically unbreak able. The galleries were devoted to pianos, of which there were a large number; to carpets, chairs, stoves, and also to some of the lighter objects for exhibition. Messrs. H. R. Willis \& Company, of Kidderminster, showed a three-quar ter Brussels power loom, by Messrs. John Crossley \& Company, at work. The loom is constructed to weave Brussels velvet (or cut pile) carpet, and is provided with the necessary changes to weave ordinary loop Brussels by a special con struction of the Jacquard, and it can be arranged to weave either five or six frame carpet.
Messrs. Cardinal \& Harford showed a small loom for the making of Turkey carpets, brought from Koula, in Asia Minor. This is very roughly constructed of such materials as came to hand, the appliances being of a very rude character. It was intended to show this loom at work, but owing to the impossiblity of prevailing upon a Moslem family to leave Turkey, the idea had to be abandoned. The Institut de Sculpture sur Bois, at Brienz, sent over to the exbibition some native workpeople, who were to be seen at work in the west gallery, surrounded by specimens of the wood carving for which Switzerland is so famous. In the Oriental Bazaar, arranged by Messrs. Holme \& Company, the various articles were set out in stalls, each of which was devoted to the town from which the articles are obtained or shipped; thus, under Tokio, was shown porcelain and , pottery from Tokio, Ota, Satsuma, Kaga, etc.; under Canton, furniture, gongs, etc.; under Benares, chased silver work; under Karachi, Scinde pottery; under Bombay, carved sandal wnod, and inlaid box work and furniture; under Constantinople, Syrian, Turkish, Bulgarian, and Persian embroideries; under Tunis, lanterns, slippers, etc., and so on, making eighteen Eastern towns in slipp.
all.
Of

Of other more general exhibits, mention may be made of various specimens of stained glass, and of the new imitation called " glacier," shown by Messrs. Perry \& Company. This material is supplied in pieces of different sizes, and is affixed to the glass simply by wetting the glass uniformly and then applying the design. It is stated that it will not crack or leave the glass under the action of heat or moisture. A large collection of morocco leathers of special dyes were shown, as well as the new Caiman and Zeddo grains. The material called "veloplastic," which is made to imitate leather, silks, damasks, etc., is used for upholstery purposes, dressing bags, fancy leather goods, and even for bookbinding. The Yale Lock Manufacturing Company exbibited a large supply of their special locks and keys, among which was their time lock, which, isolated from an external communication, can be set to be opened at any predetermined hour.

Printing and printing processes were also represented in the exhibition. Messrs. Wyman exhibited the "Cyclostyle," a copying apparatus, the advantages of which are stated to be that (1) copies are in a permanent jet black color; (2) any number of copies, from 10 to 2,000 , can be obtained from one original writing; (3) no washing, no damping, no melting, and no press required; (4) the original may be left for any length of time, and further copies taken from it when wanted; (5) the last copy is as good as the first.

The World's Inventors.*

Usually when a man has invented something novel and useful, and has obtained a patent therefor, he is possessed of a feeling of pride that raises him in his own estimation, and frequently in the estimation of some others, rather above the average of mortals. He imagines, or at least hopes, that his invention will prove to be a lever with which the world will be elevated to a higher sphere of usefulness and happiness, while at the same time and incident thereto he fondly dreams that he has entered on the high road to fortune and renown, and that he is to become a millionaire. He looks upon the letters patent that display the great American eagle in all of his gorgeousness, and that bear the signature of those high in authority, as a most precious document, that is either carefully laid away among his archives to be handed down to posterity, to show how great a man and how inventive a genius he was, or ornately framed and displayed in such manner that all may behold and admire. There is nothing wrong in any of this, but rather much that is commendable. Notable inventions
have marked the march of civilization in all ages of the world, and the epochs of history are marked by great discoveries none the less important. In fact, discoverers and inventors should be classed together. Among the great discoverers of the world in physical geography the discovery of America by Columbus in 1492; of Florida by Ponce de Leon, 1512; and of the Mississippi River by De Soto, in 1541; and in the arts and sciences, of the circulation of the blood by Harvey, in 1619; of making pictures by the aid of light by Daguerre, in 1838; and of electricity by Franklin, 1752, were of the utmost importance to mankind, the beneficial effects of which are apparent every day. On the other hand, the world would not have arrived at the high zenith to which it has attained had it not been for the inventive geniuses who bestowed their wonderful gifts upon it. What would railroading be to-day without such an appliance for stopping the motion of trains as the air brake patented by Westinghouse in 1859, or steel rails, the cheap production of which was invented by Bessemer in 1856? The invention of breech-loading firearms, by Thornton and Hall, in 1811, revolutionized the methods of modern warfare, even as the invention of gunpowder by Schwartz, in 1320 , compelled the abandonment of cross-bows, spears, and slings, and substituted the matchlock and blunderbuss. The second century of the Christian era (A. D. 130) witnessed the invention of the mariner's compass, without which Columbus would never have been able to find his way across the wide, wild western ocean, and without which, without any essential difference from that used by the ancient navigators, extended traffic on the ocean would be simply impossible. We all appreciate the value of Whitney's invention of the cotton gin, in 1794; of the grain binder by Gordon, in 1872; of the grain harvester, by Haines, in 1849; of the knitting machine by Jeee, in 1589; of the common match by Walker, in 1829; of the mowing machine by Scott, in 1815; of the machine for making pins by Wright, in 1824; of the lumber planing machine by Bentham, in 1791; of printing by Gutenberg, in 1444 ; of the type-revolving printing press by Hoe, in 1847; of the safety lamp by Davy, in 1815; of the screw propeller by Stevens, in 1804; of the sewing machine by Howe, in 1847; of the first successful steamboat by Fulton, in 1808; of the first successful steam engine by Watt, in 1744; and of practical telegraphy by Morse, in 1837.
The world appreciates all these inventions and thousands of others of greater or less usefulness, and from which the inventors in many instances have obtained both fame and great pecuniary reward. And the field is a wide one yet, open and free to all, with as large possibilities for the future as the past has shown.
But there are thousands of inventors, who have never realized as much on their inventions as their letters patent cost them, and never will; not always because of lack of intrinsic merit, but that their merits were not properly made known to the public. A man who may have a patent for a thing, no matterhow valuable it may be, and does not direct public attention to it-does not "push' it-resembles the man spoken of in the Bible, who wrapped his talent in a napkin and hid it in the earth. It occurs to us that the talents all men possess to greater or less degree, particularly as regards their capacity for business-their adaptability for transacting the affairs of life-are very much like the inventions of men. One man may possess sufficient talent to make him a successful merchant, or manufacturer, or mechanic, or artisan, and by "pushing" it he attains to eminence in his profession, while another with equal talent, who does not "push" it, lags behind in the race of life, and when the end comes is like the man who hid his talent in the earth. It is folly for any man to say he can never find employment, if he is possessed of average intelligence, sufficient education, good character, and an abundance of "push." With these qualifications entrance can be gained into almost any office, store, or workshop in
the land, but the "pushing" must be done, even as the the land, but the "pushing" must be done, even as the
owner of a valuable patent must "push" it before he can hope to realize any profit therefrom.

Protoplasm.

Dr. Dolley, of Rochester, has lately translated an interesting article from the German of Dr. T. W. Engelmann, of Utrecht, entitled "The Physiology of Protoplasmic Motion." The introductory portions repeat the familiar descriptions of the physical and chemical properties of protoplasm, and its peculiar and mysterious motion. From succeeding sections we gather the following instructive particulars, all of which has not the recommendation of newness, but seems to bear the warrant of established facts:
Temperature.-For all contractile protoplasm there is a higher and lower temperature at which the spontaneous movements cease; the minimum lies mostly in the neighborhood of 0° Cent., and the maximum about 40° Cent. There is a certain high temperature at which motion reaches its maximum. This iscalled the optimum temperature, and lies usually several degrees below the maximum. The maximum temperature produces heat rigidity, or heat tetanus, at which point protoplasm contracts, becomes motionless, and remains contracted as though held by strong artificial stimulants. On cooling, motion is again resumed. But too long warming produces death-coagulation.
There is also for all protoplasm a maximum and mini um capacity for the inhibition of water. The minimum may aver

At a maximum, movement ceases. This is called wet tetanus. There is also dry tetanus, at which point, owing to the absorption of water below the amount which insures movement, all motion stops. Protoplasm which has been completely dried in the air at ordinary temperatures may revive even after years upon remoistening.
It has been kept in sea water, so reduced through evaporation as to contain 10 per cent of salt.
It survives but a short time the absence of oxygen. High atmospheric pressure arrests the motion of protoplasm, and diminished pressure above a certain limit hastens it, or permits it to remain unchanged. Hydrogen acts fatally and causes death. The spontaneous movement of protoplasm is interfered with and prevented unless the fluid remain neutral, a slight excess of alkali and especially of acid producing stag nation. In dilute caustic alkalies protoplasm swells very muci゙, and finally dissolves and flattens. In dilute acids death begins with turbidity and shrinking. The vapors of ether and chloroform, even when very greatly diluted by common air, produce coagulation, though if quickly removed pure air will again restore motion.
Veratrine acts quickly and its effects closely resemble those produced upon the " contractile substance of muscle." Quinine appears also to exercise striking toxic qualities in its effects upon protoplasm.
Irritants, such as changes of temperature, electrical and mechanical shocks, and even sudden illumination, affect the protoplasmic mass; their effects varying with various circumstances, as strength and character of irritation, unequal application of the excitant to different parts, and the nature of the protoplasm chosen. "Usually the result of artificial irritation expresses itself in that the protoplasmic parts directly reached by the irritant, transiently and without marked change of volume, draw themselves together, exhibiting the smallest possible surface, in a manner similar to an irritated muscle and strive to assume a spherical form." The theory offered by the author of the peculiar and hitherto unexplained motion of protoplasm, is that the mass is made up of molecular units which he terms inotagmen, which have in themselves powers of contraction and mobility, whereby the whole body of which they are parts is set in motion, upon the more or less rhythmical or axial motion of these monads, which bear to the whole substance of protoplasm some such relation as is borne by the constituent molecules of a crystalline body to the body itself.
L. P. G.

Selecting a Horse.

The Turf, Field, and Farm, than which there is no better authority on the subject, says that " in buying a borse, first look at his head and eyes for signs of intelligence, temper, courage, and honesty. Unless a horse has brains, you cannot teach him to do anything well. If bad qualities predominate in a horse, education only serves to enlarge and ntensify them. The head is the indicator of disposition. A square muzzle, with large nostrils, evidences an ample breathing apparatus and lung power. Next, see that he is well under the jowl, with jaw-bones broad and wide apart under the throttle. Breadth and fullness between the ears and eyes are always desirable. The eyes should be full and hazel in color, ears small and thin and thrown well forward. The horse that turns his ears back every now and then is not to be trusted. He is either a biter or a kicker, and is sure to be vicious in other respects, and, being naturally vicious, can never be trained to do anything well, and so a horse with a rounding nose, tapering forehead, and a broad, full face below the eyes is always treacherous and not to be depended on. Avoid the long-legged, stilted animalalways choosing one with a short, straight back and rump, withers high and shoulders sloping, well set back, and with good depth of chest, fore legs short, hind legs straight, with low down hock, short pastern joints, and a round, mulish shaped foot."

Manufacture of Rubber Shoes.

The Shoe and Leather Reporter saysthat there are sixteen ubber boot and shoe factories in the country, nine of which turn out from 1,000 to 5,000 pairs daily and seven f them from 8,000 to 20,000 pairs, aggregating about 90,000 pairs a day, or $27,000,000$ pairs a year. A great deal of at tention is now bestowed on the style and finish of rubber shoes. Some of the specialties made by leading manufacturers are as bandsome as any that are made of cloth or eather. The sales have been largely increased by these mprovements. On the other hand the rubber shoe people aim to put into their stock the utmost amount of dirt that is possible; for the more dirt the less the cost to them.

Clerks and Mechanics.

An exchange says that recently there applied three hundred candidates in answer to a call for six clerks, and one hundred and thirty-seven proved to possess the necessary qualifications, and adds that "there is no such rush when capable mechanics are wanted "There is no parallel in the wo cases. A large proportion of young men just from their schools are capable of performing the work of clerks at least with the added experience of a few months, per haps weeks, in mastering the details of the particular position. But the "capable mechanic" is the result of several years' apprentice service in addition to his school attainments.

decisions relating to patents.

by the supreme court of the united states,

 Gage ot al. v. Herring et al.Appeal from the Circuit Court of the United States for the Northern District of New York. Reissued Patent 4,712. Original patent 19,984.
If a patent containing a single claim for a combination of several elements is, wituin four months before its expiration, reissued and extended with the same description as before, but with two clairus, the one a repetition of the original claim, and the other ior a combination of some of the elements only, the reissue is invalid as to the new claim and valid as to the other
A patent for a combination of several elements is not infringed by using less than all the elements of the combination.

In a patent for an improvement in cooling and drying meal during its passage from the millstones to the bolts, the claim was for the arrangement and combination of a fan producing a suction blast, the meal chest, a spout forming a communication between the fan and the meal chest, a dust room above to catch the lighter part of the meal thrown upward by the current of air, a rotating spirally-flanged shaft in the meal chest conveying the meal to the elevator, a similar sbaft in the dust room conveying the meal dust to the elevator, and the elevator taking the meal to the bolts. Within four months before the expiration of the patent it was reissued and extended with two claims, the one a repetition of the original claim, and the other for the combination of the fan, the communicating spout, the meal chest with the conveying shaft in it, and the elevator, but omitting the dust room with its conveying shaft. Held that the reissue was valid for the old claim only, and wa not infringed by the use of the fan, spout, meal chest with its conveying shaft, elevator, and dust room, without any conveying shaft in the dust room or other mechanism performing the same function.

Solders, Soldering, and Brazing.

A practical mechanic furnishes the American Artisan an article on soldering and brazing, which contains useful information for the young metal worker, and if the facts given are not new to some of the older and more experienced tin and copper smiths, they may find it convenient to have their memory quickened.
In uniting tin, copper, brass, etc., with any of the soft solders, a copper soldering iron is generally used. In many cases, however, better work may be done without the soldering iron, by filing or turning the joints so that they fit closely, moistening them with soldering fluid, placing a piece of smooth tinfoil between them, tying them together with binding wire, and heating the whole in a lamp or fire until the tinfoil melts. We have often joined pieces of brass in this way, says the writer, so that the joints were quite invisible. Indeed, with soft solder, and especially with bismuth solder No. 19 or 21 , almost all work may be done over a lamp without the use of a soldering iron or fire.
Advantage may be taken of the different degrees of fusibility of the solders in the table to make several joints in the same piece of work. Thus, if the first joint has been made with fine tinner's solder, there would be no danger of melting it in making a joint near it with bismuth solder No. 16, and the melting point of both is far enough removed from No. 19 to be in no danger of fusion during the use of that solder. Soft solders do not make malleable joints. To join brass, copper, or iron, so as to have the joint very strong and malleable, hard solder must be used. For this purpose No. 12 will be found excellent; though for iron, copper, or very infusible brass, nothing is better than silver coin, rolled out thin, which may be done by any silver smith or dentist. This makes decidedly the toughest of all joints, and, as a little silver goes a long way, it is not very expensive.

In preparing solders, whether bard or soft, great care is requisite to avoid two faults-first, a want of uniformity in the melted mass; and, second, a change in the proportions by the loss of volatile or oxidizable ingredients. To obtain hard solders of uniform composition, they are generally granulated by pouring them into water through a wet broom. Sometimes they are cast in solid masses, and reduced to powder by filing. Nos. 10, 11, 12, 13, 14, and 15 are generally rolled into thin plates, and sometimes the soft solders, especially No. 21, are rolled into sheets, and cut into narrow strips, which are very convenient for small work that is to be heated by lamp. Of course, where copper, silver, and similar metals are to be mixed with tin, zinc, etc., it is necessary to melt the more infusible metal first. When copper and zinc are heated together, half the zinc passes off in fumes. In preparing soft solders, the material should be melted under tallow, to prevent waste by oxidation; and in melting bard solders the same object is accomplished by covering them with a thick layer of powdered charcoa
Hard solders, Nos. 6, 7, 8, and 9, are usually reduced to powder either by granulation or filing, and then spread along the joints after being mixed with borax which has been fused and powdered. It is not necessary that the grains of solder should be placed between the pieces to be joined, as with the aid of the borax they will sweat into the joint as soon as fusion takes place. The same is true of soft solder applied with soldering fluid. One of the essential requisites of success, however, is that the surfaces be clean, bright, and
free from all rust. The best solder for platinum is fine gold. The joint is not only very infusible, but is not easily acted upon by common agents. For German silver joints, No. 14 is excellent.
For most hard solders, borax ts the best flux. It dissolves any oxides which may exist on the surface of metal, and protects the latter from the further action of the air, so that the solder is thus enabled to come into actual contact with the surfaces tbat are to be joined. For soft solders the best flux is a soldering fluid which may be made by saturating equal parts of water and hydrochloric acid (spirit of salt) with zinc. The addition of a little sal ammoniac is said to improve it. It is not impossible that fluxes of even greater efficiency might be discovered by a little well directed effort; but for the present these answer every purpose. In using ordinary tinner's solder resin is the best and cheapest flux, and possesses this important advantage over chloride of zinc -it does not induce subsequent corrosion of the article to which it is applied. When chiorides have been applied to anything that is liable to rust, it is necessary to see that they are thoroughly washed off and the article carefully dried. The following table gives recipes the writer has tried, and which he says will be found exceedingly reliable. Some are taken from the Mechanical Manipulation of Holz apfel, whose name is a sufficient guarantee for their excel lence:

	各
	皆
	붤

Steam Fire Engine Test.

A new third size Silsby fire steamer was successfully tested lately at New Haven, Conv., in the presence of a large number of city officials and prominent members of the fire departments from various cities.
The fire was lighted, says the Fireman's Journal, at 2:55 'clock, and in two and one-quarter minutes the gauge indicated ten pounds of steam, fifteen pounds in three minutes, twenty in three and one-balf, and thirty pounds in four and one-half minutes. A minute later, a stream was playing on the Green. In order to make the test thorough, the steamer was made to pump its water from the cistern at the corner of Court Street, which held at the start 20,000 gallons. The official record was as follows:

Test.	No. of lines.	$\begin{aligned} & \text { Feet each } \\ & \text { line. } \end{aligned}$	Nozzle inches.	Horizontal.	Vertical.
${ }_{2} 1 \ldots \ldots$.	1	200	114	278	195
	1	350 150	114		210
4..................	2	100	1	$\ddot{40}$	170
	$\stackrel{2}{2}$	100	11.	260	160
${ }_{6}^{6+\ldots}$.	${ }_{2}^{2}$	100 100	$13 / 4$	250 195	150 140
	$\stackrel{2}{1}$	1,500	$1 / 8$	165	140
98.................	2	${ }^{1} 50$	$11 / 4$	319	215

* Pipe on top of City Hall tower at elevation of 160 feet. \dagger Two line of 100 feet each, siamesed into one. \ddagger Two lines of 100 feet each, siamesed into four lines of
The steamer for over two hours worked with the greatest vigor, pouring out immense streams of water wherever the pipes were directed. She carried 120 pounds of steam, and in no instance, no matter how severe the test, did she fail to respond. The new steamer is by far the most powerful and handsome one in the city, and is a great addition to the New Haven Fire Department. One bigtest was forcing the water o the top of the City Hall tower, 160 feet high, and throwing a stream out upon the Green, a distance of 274 feet. The throwing of a stream a distance of 260 feet through a one and a half inch nozzle, and 250 feet through a one and three quarter inch nozzle, excited the admiration of old firemen, as did the supplementary test suggested by Mr. Denne, in order to fully illustrate the great power of the steamer in throwing a stream a long distance through 100 feet of hose, siamesed with a one and one-quarter inch nozzle. The stream was carried the remarkable distance of 319 feet.

Professor Huxley on Oysters.
Professor Huxley lately lectured at the Royal Institution upon "Oysters." He stated that the shells of the oyster are held together by an India-rubber like ligament conrolled by a muscle. By this ligament the oyster can hold his shells tightly together. When the animal is killed without the destruction of the ligament, the latter expands and acts like a spring, keeping the shells open, except when pressed. It is absolutely necessary to the life of the oyster that the shells sbould open to some extent, consequently any great pressure on the shells is injurious to the animal. He did not wish to set his hearers against eating an animal which plays about the palate like gustatory summer lightning, still the oyster possessed elaborate apparatus, such as a foot, mouth, and even liver, the latter of which he rusted was not liable to get out of order. In short, the animal was of much greater complexity than the best repeater watch, and it has a highly developed nervous system. Its mouth has no jaws, and it lives by food carried to it by oceanic currents. It lays an enormous multitude of eggs, which lie like cream upon what is called its beard. The eggs of the English but not of the American oyster are incubated by the parent. In about a fortnight, more or lessfor much depends upon the temperature-the young larvæ, each about one one-hundred-and-fifteenth inch in diameter, are set free from the egg. The young one has a bivalve shell, as regular and symmetrical on both sides as that of the cockle, and a great disk protrudes from the back of the neck. Oue oyster may contain a million eggs, which is enough to break the heart of Malthus. The young one floats about for several days, during which it may be carried by currents perhaps seventy or eighty miles, when it falls to the bottom and turns over on its left side; one of its valves then becomes fastened to the support below, and grows thicker as time passes on; the upper valve becomes flat. The age attained by the oyster is said to be twenty or twenty-five years, but this is not quite certain. It requires at least three per cent of saline matter in the water in order to live.
Enormous numbers of oysters perish. Excessive variations in temperature kill off multitudes, and the oyster, in its early stage, is eaten by everything which has a mouth. Some are killed in the struggle for existence, for only a limited number can live in an oyster bed, the amount of food being limited in its supply over a given area. In its later life it becomes the prey of star fish, ground fish, and parasites which work through its shell. When its shell is very thick it is attacked by various tunnelers, more especially the dog whelk. The dog whelk has a curious thing like a eenter-bit in his mouth; he settles on the oyster, and bores a round hole in his shell; it is a beautiful bit of engineering; he takes his time over it, for he has nothing else to do, and does not finish under several hours. Then the master of the oyster bed comes along and plucks up the whelk, which looks at bim with a molluscous, innocent, friend-of-humanity-kind of a smile, and says: "Why can't you let me go on making my tunnel? I only want to enter into international relations." The owner of the oyster bed, howver, puthis heel upon him. This dog whelk parable was loudly applauded by five or six of the listeners. The rest of the auditory laughed.

- Next, said the lecturer, man comes in as a destroying agent. The scarcity and high price of oysters of late years are due to several causes. One of them is the increase of facilities, by means of new railways, for the transport of fish, not alone into the interior of the British Islands, but all over Europe. In England small towns which once had none now have fish shops. Another cause is that for many years the spatting has been bad; the meteorological conditions of the last twenty years have been bad for the oyster. There is no doubt that these two unavoidable influences have been at work, with the natural result of a rise in price with increased demand, without increased supply: Another alleged cause is over-dredging, thereby leaving too few to continue the brood. Professor Huxley said that it was useless to have a close time for oysters during a few months, if the fishermen might dredge as many as they pleased the rest of the year. And the general tendency of his closing argument, drawn from French statistics, was that over-dredging did not seem to have to do with the matter, the causes affecting the multiplication of the oyster being of too vast a nature to be much affected by such operations of man.

Slugs in Gardens.

Many gardeners have trouble with garden slugs. Baiting the slugs with bran is probably the surest way of catching hem. The easiest way to proceed, according to James Vick, is to take some pieces of slate, or flat stones, or flat pieces of tin, and lay them about in the garden among the plants, distributing them very liberally; just at sundown o out and place a teaspoonful of bran on each piece of late or tin, and the slugs will soon become aware of it, and begin to gather and feed on it. In about two hours, when it is dark, go out again with a lantern and a pail containing salt and water, and pick up each piece on which the slugs were found feeding, and throw slugs and bran into the brine, where they instantly die. It is well, also, to go around again in the morning, and many slugs will be found hiding under the pieces of slate, and can be destroyed in the brine. By following up this method persistently for a few weeks the garden may be effectually rid of the nuisance.

IMPROVED NUT ARBOR.

The useful tool shown in the engraving consists of a rod with centers in the ends to fit in the lathe centers, and a sleeve surrounding the rod the greater portion of its length, the rod and sleeve each having part of the screw threads upon which the nuts to be faced are screwed. The threads of one part may be shifted with respect to the threads of the other part after the nut is screwed on, so that one will check against the other, and thus hold the nuts to be faced by the threads alone. This will insure the facing of nuts true to the screw threads, and will avoid the imperfect work that results from the sides of the nuts being screwed against a shoulder of the mandrel when not true to begin with. This invention has been patented by Mr. Patrick Duffy, of New Bedford, Mass.

Have Fishes Intelligence?

Dr. C. C. Abbott discusses in Science Mr. Romaine's opinion in regard to the intelligence of fish, where, in his "Animal Intelligence," he writes: "Neither in its instincts nor in general intelligence can any fish be nor in general intelligence can
compared with an ant or a bee."
compared with an and or thinks the words "any fish" open to discussion, and believes that "some fish" would be less open to criticism. Dr: Abbott cites the case of pickerel in a shallow stream, threatened by a net. One fish was caught. Then the others halted. Some sprang over the cork line, others made their way between the brail and the net, while others burt ween the brail and the net, while others bur-
rowed in the sand at the bottom and so worked their way under and out of the neck. The same authority cites the evidences of intelligence in the sunfish, the Eupotomes aureus. These fish pair, and the same fish live together for years. The same thing as to pairing and caring for their young happens with the black bass. But the last case cited by Dr. Abbott is at the least very remarkable as showing affection in fish, and consequently highly developed intelligence.
Having removed a brood of catfish (Amirius catus) from their mother, the young progeny were put in a glass globe. "'The parent fish at once recognized that her young were not in the creek, although they were swimming in water.

At last its curiosity overcame its discretion, and it left the creek, and as best it could made its way tothe base of the globe containing her young, a distance of about two feet." The young fish being liberated, "they immediately clustered about their parent, and followed her into deep water." Capt John H. Mortimer is authority for the fact of the concerted action of certain predatory sea fish, who maneuver as would a pack of hounds to secure their prey.

Spearing for Timber.

A new industry has recently been developed in Irelanda sort of timber prospecting never dreamed of by our American pine hunters. It is a well known geological fact, says the North western Lumberman, that immense tracts what are now bog lands in Ireland were once covered with forests of oak and pine, and that in cutting peat, immense trees of and that in cutting peat, immense trees of these varieties are found embedded in the
earth at depths of ten, twenty, and thirty feet, in many cases whole groves being found standing just as they grew. To find out the location of these miniature subterranean forests is now the speculative work in which some industrious Irishmen are engaged. The timber, when brough to the surface, is found to be perfectly sound, and the oak, which is as black as ebony, is used extensively for ornaments of jewelry and fancy cabinet work, and sells at high prices. A recent visitor to the wild moor and mountain region of Donegal thus describes the way in which the seekers after buried forests operate Two men, armed with steel rods about thirty feet long, traverse the bog, and by running their rods into the ground are able to ascertain where the trees are to be found. They work by what may be termed natural mathematics, and quickly determine the length of their prize, its approxi mate diameter, whether it is pine or oak and is or is not a clumper-one of a company or clump. They fix on twenty or thirty feet square, and cross it with their searchers, say north and south, and then east and west, search it across each way, a stab to each foot or so, and in the course of a few minutes they know whether that area contains what they are looking for. The square lying next and next., and all near each other, are so searched, and the discoveries, if any, marked for future action. The unproductive are also marked, to avoid future loss of labor.

THE white perch of the Ohio are noted for the musical sounds they make. The sound is much like that produced by a silk thread placed in a window where the wind blows across it.
ing therewith, is a receptacle which contains a removable basket made of wire gauze or netting, aud supported on ledges in the receptacle; the bottom of the wire gauze vessel is inclined to the lower edge of the opening. There are beneath the basket steam heated pipes. While the above described apparatus may be used for obtaining solutions of salts and other crystalline substances and for dissolving salts and other crystalline substances and for dissolving.
gummy or resinous substances-as, for instance, in the manufacture of varnish and for thoroughly mixing liquidsit has been more especially designed for obtaining saccharine solutions.
The crude sugar, which always contains more or less in soluble foreign matter-such as sand, mud, and chips of cane-is placed with a supply of water in the vessel, and the stirrer is revolved from the bottom upward toward the wire gauze basket.
All parts of the mass are maintained at the same temperature and density by the steam heated stirrer, which revolves as close as pos sible to the bottom of the vessel without coming into actual contact therewith. There must necessarily be a persistent current of the contents of the vessel in the direction of rota tion, and this, together with the movement of the crossbars or hoods of the stirrer so near to the bottom of the vessel, prevents the accumulation of sediment therein.
As the stirrer is rotated the particles of insoluble foreign matter are carried upward, and have a tendency to pass the side receptacle, where they are caught by the basket, accompanied with more or less of the solution, which is drained off from the basket, and returns to the main vessel through the opening below. More or less undissolved sugar will also find its way into the basket; hence the maximum length, 3 feet 6 inches; maximum length and steam pipes below, the heat imparted at this point, together girth combined, 6 feet. Examples: A parcel measuring 3 feet 6 inches in its longest dimensions may measure as much as 2 feet 6 inches in girth, i. e., around its thickest part; or a shorter parcel may be thicker, e. g., if measuring no more than 3 feet in length it may measure as much as 3 feet in girth, $\imath . e$., around its thickest part.

NEW APPARATUS FOR STIRRING, MIXING, AND

 MELTING.The stirrer in this apparatus is composed principally of steam heated tubes arranged to thoroughly mix the materials while maintaining them at a uniform temperature. A tubular shaft, concentric with the base of the vessel, extends through the vessel, and is provided with a pulley by which it is driven. A series of tubes radiate from the tubular shaft, there being in the present instance six rows of these tubes and ten tubes in each row; but the number of sets of tubes and ten tubes in each row; but the number of sets of
tubes and the number of tubes in each set may be varied to

NEWHALL'S APPARATUS FOR STIRRING, MIXING, AND MELTING SUGAR, ETC.
suit requirements. The tubes of each row are closed at their outer ends, and a hollow bar or hood extends across the ends of each row of tubes, the several hoods being connected together by rods which render the stirrer rigid.
A stationary pipe communicating at one end with any neighboring steam generator, and at the opposite end with a suitable discharge pipe, passes through stuffing boxes at the ends of the tubular shaft. A portion of this pipe, which extends in to the tubular shaft, is open at the top, so as to form a trough. At one end of the vessel, and communicat-
with the " wash"'rr eddy of sirup caused at intervals to pass through the opening as the stirrer revolves, tends to dissolve the sugar trapped in the basket.
When a thorough solution, free, or nearly so, from foreign matter has been obtained, the rotation of the stirrer is dis continued, the contents of the vessel drawn off, and the basket is emptied and cleaned. As the stirrer revolves, whatever water of condensation may be in the tubes will be discharged into the trough and pass off with the waste steam. This apparatus is capable of doing its work at almost any rate of speed, depending on the pressure and temperature of the steam and upon the speed of the stirrer. If desired, fluids may be used in the pipes for either heating or cooling.
The contents of the vessel can be held at the temperature of melting, by keeping steam on and stopping the stirrer. The upper portion alone is subjected to the extra beating; as the lower pipes soon fill with water, cooling occurs mostly from the surface, and in this apparatus it is not necessary to overheat the lower section in order to maintain the temperature of the upper.
The movement of the heating surface prevents the damage often caused in other melters by the mass of undissolved material lying upon the heating pipes previous to solution. It is well known that melting with "live steam" injected through perforated pipes, etc., leads to a dilution of the solution which is not always desired. Besides, one cannot well melt with very weak steam, as pressure is required to force against the pressure of the semifluid mass. This is considerable in deep vessels, which are the quickest melters with open steam.
Steam coil melters cumber up the lower portions of the melter, and are very unhandy to keep clean. They are expensive, rather ineffective, and often injurious to the substance treated. In this new melter and stirrer all these difficulties are avoided, and the work is perfectly and economically done. Further information in regard to this invention may be obtained by addressing the inventor, Mr. George M. Newhall, 225 Church Street, Pbiladelphia, Pa.

Singular Effect of Corrosive

 Sublimate.A singular effect of corrosive sublimate, first observed by Salkowski, has recently been confirmed by Prevost and Trutiger, of Geneva (Lancet, April 14, p. 640). They have found that it causes the lime to be removed from the bones to the extent of 2 to 4 or sometimes 8 to 10 per cent, and to be deposited in the cortical substance of the kidneys, so that the kidneys appear almost as if petrified, while the bones, at least in the case of rabbits, become so altered that the epiphyses of the long bones are at length movable on the sbaft. This decalcification takes place to the greatest extent when the doses of the poison are such as to cause death in three or four days.

Ir is asserted that British capital to the extent of thirty millions went into Wyoming and Texas last year.

A NEW CONSTANT CURRENT PILE.

Dr. E. Obach, while experimenting with his movable bobbin galvanometer, had need of a battery that should furnish an intense and constant current of long duration, and was therefore led to devise and construct the pile which is shown in the accompanying cut.

This apparatus is nothing else than a Bunsen battery, employing zinc, water acidulated with sulphuric acid, carbon, and nitric acid, and so arranged as to secure a continuous renewal of the liquids. The internal resistance of each element is, on an average, 0.07 ohm , and the electromotive force is 2.09 volts. It is able, then, to furnish nearly 30 amperes in a short circuit.
G G is a jar, 20 centimeters in height and 12.5 in diameter, placed in an inverted position over a proper support, and the bottom of which has been removed and replaced by a wooden cap covered with paraffine. The porous red earthenware vessel, P , which is held in place by a cork ring, is 235 centimeters in height and 6 in internal diameter. The choice of the porous vessel is very important, and the proper working of the element depends much upon the quality of it.
Those employed by Dr. Obach became entirely saturated one minute after having been filled with water, this giving the measure of their porosity.
The porous vessel is closed with a cork saturated with paraffine and traversed by a carbon, K. This latter, which is retort chrbon, is 22.5 centimeters long by 3.5 in diameter, and contains in its center an aperture 15 millimeters in diameter and 18 in length. In its upper part there is a series of small radiating holes; and a glass tube, M, whose upper extremity is funnel-shaped, reaches its summit and traverses the porous vessel as well as the cap of the jar. The bottom of the porous vessel is paraffined, as is also its upper edge and the head of the carbon. Upon the bottom of the jar there rests a gutta-percha ring which forms a channel, $x y$, that is filled with mercury, and into this dips the lower part of a zinc cylinder 16 centimeters in length, 6 in diameter, and weighing 2 kilogrammes. Through the cork at the lower part of the jar there pass two tubes, R and r, and through the wooden cover the two funnel tubes, t and t^{\prime}. The former of these, t, terminates in the upper part of the zinc, while the latter runs to the bottom of the porous vessel.
The liquids circulate as follows: The fresh nitric acid reaches the bottom of the porous vessel through the funnel tube, t^{\prime}, while the spent acid flows off through the radiating holes in the carbon into the central tube, M, and into a receptacle placed at the lower part. The water containing sulphuric acid enters, on the contrary, at the upper part, at t, and, being rendered denser through the formation of sulphate of zinc, flows through the siphon tube, R, into the tube, T. The level of the liquids is not very different (as may be seen in the figure), but that of the sulphuric acid water is a little the higher of the two in the external vessel. S S' in a section of a glass tube bent into a circle and arranged at the upper part of the liquid, where it is warmest. This tube is traversed by a current of cold water in order to keep the liquid at a constant temperature. The tube, r, serves to empty the pile, and is always kept corked while the latter is in operation.
All the communications are established by mercurial con

OBACH'S CONSTANT PILE.

tacts. The zinc cylinder is connected with a strip of copper contained in a glass tube that traverses the cover, and which dips into the mercury in the gutta-percha trough. The square end of the carbon is hollowed out at Q , and the cavity is filled with mercury which serves to establish communications with the external circuit.-La Nature.

Fatal Shock from Supposed Snake Bite.
That imagination may prove fatal receives fresh proof from the case reported in the Med. Press, April 25, 1883, by Dr. C. R. Francis. The patient, awakened from his sleep by something creeping over bis naked legs, immediately jumped to the conclusion that it was a cobra, went into a state of collapse, and died, though it was discovered, even
before death, that the supposed cobra was a barmless lizard.
garden destroyers.-THE OAR LEAF ROLLER MOTH
The caterpillars of this pretty little moth are very destructive to the leaves of oak trees, particularly in the south of England, and they occasionally occur in such extraordinary numbers that they entirely divest the trees of their foliage. When this is the case, the trees suffer very much; in some seasons not only are a few trees here and there attacked, but acres and indeed miles of woodland are covered with swarms of this pest.
This insect is by no means very abundant every year, but, as is the case with many insects, for several years they may be positively scarce, and then for some reason, whether the absence of their natural enemies, or particularly favorable weather at a critical period of their existence, or some other

circumstance is uncertain, they make their appearance in very great numbers for one or more seasons, and then sud-
denly disappear asmysteriously as they came.
The birds, as usual, help immensely in destroying these caterpillars. The ichneumons and other parasitical flies attack them with great vigor, and on one occasion it was found that more than half the caterpillars were infested by some parasites.
The year before last I received a box full of caterpillars that were found feeding on the oak leaves and stripping the trees; they were in such a state of decomposition when they reached me that it was impossible to say what they all were, but no doubt there were some of these oak leaf roller caterpillars among them; in the box were also a number of hairworms (a species of Mermis, one of the Gordi), some of which were seeven inches in length, and as thick as a piece of twine. As far as I could judge, nearly every one of the caterpillars must have been infested with one of these worms, which had no doubt left their victims at their death.
The moths appear toward the end of June, and lay their eggs on the twigs or buds; the caterpillars are batched in the following spring when the young leaves are just appearing. They almost at once begin to roll up the leaves into a kind of tube, which forms a protection for them against the weather and their various enemies. This would seem an almost impossible task when we consider the minute size of the caterpillars and the comparative stiffness of the leaves, and that each caterpillar works alone on a separate leaf. Many, if not all, caterpillars are provided with the means of spiuning a silken thread, as silkworms do, being furnished with two internal tubes containing a thick gummy fluid (liquid silk, in fact); these two tubes are joined together, and terminate in one very fine one, which projects slightly from the head just below the mouth. When the insect wishes to form a thread, it touches the object to which it is to be attached with the end of this tube and ejects a drop of the fluid; then, drawing back its head or letting itself fall; a fine stream of this sticky fluid is drawn out, which immediately hardens into a strong thread. When the young caterpillar wishes to roll up a leaf, it attaches a thread to the under side of the edge of the leaf, and fastens the other end to the leaf a little way from the edge. The thread in some way becomes tighter, causing the leaf to curl slightly. Some say the caterpillars tighten the thread by pressing it down and a fresh and tight thread which holds the leaf in a bent position. I am of opinion that the threads contract as they dr'y, and my own observations bear out my views. It is quite possible that both theories may be correct; the result is, however, the same. Subsequent threads attached in the same manner cause the leaf to curl more and more; others are then attached to the outside of this roll, which eventually presents the appearance of those shown in the figure. Within this shelter the caterpillar lives in comparative safety, feeding on the internal coils of the roll. If disturbed by the entrance of any enemy at one end of its dwelling, it very quickly makes its exit at the other, let-
ing itself fall, but.still attached to the leaf by a thread, by which, when it considers all danger is over, it climbs up and regains its old quarters. When a branch infested by hese caterpillars is shaken, large numbers may almost immediately be seen dangling at the end of their lines some feet in length. The caterpillars attain their full size about three weeks after they are hatched; they then become chrysalides within the curled-up leaves; in the course of about a month the moths appear, and after pairing lay their eggs as before mentioned.
The caterpillars are about five-eighths of an inch in length when full grown, and are of a dull green color with brownish spots; they are provided with a pair of legs on the first three, the sixth, seventh, eighth, ninth, and last six joints of the body. The chrysalis is of a very dark brown color. -G. S. S., in The Garden.

Hardwoods for House Finishing.

At the West, as well as in our Eastern cities and towns, the consumption of hardwoods for interior finish in buildings is a most important factor in the trade in such lumber. The woods in use by Chicago building con tractors, says the Northwestern Lumberman, are mainly embodied in the following list: Birch, butternut, calico and white ash, sycamore, white and red oak, cherry, beech, walnut, whitewood, white maple, yellow pine, mahogany, Manila, prima vera, and coffee wood. Sycamore, white oak, and beech are the principal woods that are used quarter-sawed. On account of the growing scarcity of cherry, and the high prices charged for good lumber, other woods are sought after that will answer as a substitute, affording a similarly rich grain. Cherry is imitated with gum, and quarter-sawed beech is named as the lumber likely to take its place to some extent. Calico ash is obtained principally in Indiana and Michigan. White maple is a designation applied to the sap of the ordinary maple, which is sought after for finishing purposes. Mahogany has latterly been used to quite an extent in fancy buildings. Very often from six to a dozen different kinds of lumber are used in finishing an aristocratic residence, the plan being to have every room finished in a different wood. Walnut is less used for finishing, because of its high price, and the developing tendency to employ light shades in wood, to produce a cheerful and refreshing effect, rather than one of somber elegance. Calico ash costs about $\$ 35$; quartersawed sycamore, $\$ 50$; quarter-sawed white oak, $\$ 60$; quarter-sawed beech, $\$ 50$; white maple, $\$ 35$; Manila, $\$ 150$; and mahogany from 10 to 20 cents a foot.

improved railway rail chair.

The rail chair shown in the engraving consists essentially of an iron bed plate, upon which the rail is securely clamped, an India-rubber block between the bed plate and tie, and a rong inclosing box bolted to the tie.
The advantage of this combination will be apparent to very engineer. The bed plate receives and retains the rail, and is itself securely held by clamps secured by bolts passng through the tie.
The rubber block upon which the plate rests takes up the vibrations, so that no pounding or shock is communicated the structure beneath. The iron box containing the rubber block prevents the rubber from spreading out under com:

WODISKA'S RAILWAY RAIL CHAIR.

tinued use, and holds all of the parts securely in position. This construction will effect a great saving of rails and ties. It will also be of immense benefit to rolling stock. It will prevent the destruction of bridges and elevated railway structures by taking up the jar and vibration produced in the track by the rolling stock, and, finally, it certainly commends itself to public favor, as it will in a great measure, f not entirely, stop the noise and jarring of elevated railways now so much complained of, and will prevent in a great measure the abrasion that produces metallic dust, which is the cause of so much iron rust on the line of the levated railways.
This invention might be applied with advantage to the New York and Brooklyn bridge, as it would protect the structure against the bad effects of jarring by the cars.

Incombustible Paints.

Waterglass is being extensively used in the production o a paint which in addition to its durability is also a protec tion against fire, and as a floor paint it is especially recom mended.
The surface of the floor having been well cleaned, any revices or cracks between the boards are next luted with a thick mixture of waterglass and pulverized chalk or gypsum then, by means of a stiff brush, a coating of waterglass, of sirup like consistency, is spread over the floor, and to this succeeds a second coating of the same, mixed with the desired color-the latter a mineral color, as the alkalies of the waterglass commonly decompose vegetable colors. This coating having become dry, other layers of the waterglas are given until the floor acquires a fine lustrous appearance In order to insure a polished brightness, the surface is ground off a little, oiled, and thoroughly dried. A number of patents have been granted for incombustible paints in this country, and among the foreigners who have experimented with different ingredients for accomplishing this end, MM. Vilde and Schambeck propose the following mixture for ren dering wood work incombustible:

Pulverized glass.	
Pulverized porcelain	20
Pulverized stone.	
Calcined lime.	
Silicate of soda	

The solid elements must be reduced to as fine a state a possible and sifted, and then mixed intimately with the soluble glass, thus forming a glutinous mass which may be em ployed as it is for painting, or may be mixed with various colors.
The addition of the lime gives a certain unctuosity to the mass for painting, while the combining of this lime with a portion of the silicic acid of the soluble glass promotes the intimate mixture of the other substances.
Although the mixture given above is recommended as being the best, the proportions of the various elements may be clanged according to circumstances, except that of the soluble glass, which must remain constant. Some of the substances may also be replaced by others; but it is advisable to retain the lime. Instead of silicate of soda, the soluble glass of potash may be employed, but the former is cheaper.
The paint is laid on with a brush, in the crdinary manner and as evenly as possible, on the surface to be protected. The first coat sets immediately, and the second may be applied from six to twelve hours afterward-two coats being sufficient. This composition may also be employed with advantage for protecting iron bridges, sleepers, etc., from oxidation.

Chinese Poisons.
The commonest poisons are said to be opium, arsenic, and certain noxious essences derived from herbs. But besides these, other things are taken by suicides and given by murderers to cause death. In some of the Southern provinces there exists a particular kind of silk worm, known as the Golden silk worm, which is reared by miscreants to serve either purpose as occasion may require. Quicksilver, which is also used with fatal effect, is either swallowed, or, like the "juice of cursed hebenon" which sent Hamlet's father to his account, is poured into the ear. The torture necessarily censequent on this last method of using it must be so excessive that it may safely be assumed that it finds favor only with murderers. Swallowing gold, on the other hand, seems to be the favorite way of seeking death with wealthy suicides It bas been held by some writers that the expression "sowallowing gold" is but a metaphorical phrase meaning "swallowing poison," just as when a notable culprit is ordered to strangle himself he is said to have had "a silken cord" sent to him. But the "Coroner's Manual" puts it beyond question that gold is actually swallowed, and it prescribes the remedies which should be adopted to effect a cure. Gold not being a poison, death is the result either of suffocation or laceration of the intestines. When suffocation is imminent, draughts of strained rice water, we are told, should be given to wash the gold downward, and when this object has been attained, the flesh of partridges, among other things, should be eaten by the patient to 'soften the gold" and thus prevent its doing injury. Silver is also taken in the same way. But though wealthy Chinamen thus find a pleasure in seeking extinction by means of the precious metals, they have never gone the length of pounding diamonds to get rid of either themselves or their enemies, after the manner of Indian potentates. $\stackrel{\text { or }}{\stackrel{\rightharpoonup}{N} \text { their }}$

Vulcanized Fiber.

The Ironmonger (London) speaks in the highest terms of a new vulcanized fiber for lubricating purposes, which it describes as follows:

The fiber is made in two qualities-hard and flexible. The hard, which may be turned in the lathe, takes a very good thread, and may be highly polished, is supplied in three colors, black, red, and white, in imitation respectively of ebonite, vulcanite, and ivory. It is used extensively for journal-bearings and bushes in light cotton-mills; for railway track bolt washers, the London and Brighton Railway, among other companies, using them for this purpose; and for pneumatic carriers, the General Post Office authorities employing them as such in place of Office authorities employing them as such in place of
leather and gutta-percha. For use in connection with
electrical apparatus it is of great value, and a number of electric light companies are using it exclusively for the insulation parts of lamps and for certain parts of dynamo machines, as it will stand great heat, and is in other respects a better insulator and cheaper than either of the other substances usually employed. Another of the many uses to which the hard quality is put is that of ferruling the condenser tubes in marine engines. Such tubes are generally joined with wood ferrules, which, after being in use a little time, are liable, owing to expansion and subsequent contraction, to fall off. The vulcanized fiber ferrule obviates this drawback. It expands like the wood, but does not go back again; consequently it retains a firm hold on the ends of the tubes. The fact that grease does not affect the fiber is a great advantage. The soft fiber is an excellent substitute for leather, rubber, gutta-percha, etc. Its ability to withstand the action of hot and cold water, acids, and grease renders it of particular value to brassfounders, plumbers, engineers, etc., and it is in extensive demand for making into clacks for sewer and other pumps, plumbers' and carriage builders' washers, etc. As illustrating its wearing and imperishable qualities, it may be mentioned that an axle box washer removed from au omnibus after nine months' use was found little the worse for wear, and without a crack on its surface.

Natural Gas Fuels.

Years ago, in their eagerness to tap.from the earth its idden treasures of oil, drillers generally expressed disgust when nothing but gas rewarded their efforts. Later, some enterprising men began to turn their attention to this great source of caloric, and, one by one, a number of iron and glass manufactories in Pennsylvania carried the gas into heir mills. The Engineering and Mining Journal says they have not made much bluster over what they were doing, and have quietly pocketed the increased profits which their saving of fuel, due to the use of gas, has given them. Of late, however, the subject is attracting considerable attention in a quiet way, and recent developments indicate that the territory which may possibly be able to draw upon the new source of fuel supply is much greater than is generally believed. Gas wells have been opened and are utilized as far west as Detroit, and as far south as West Virginia, and Pittsburg is now getting excited over the extension of the business of the Murraysville well in Westmoreland County. Pipes have been laid down to a number of glass and iron works in the eastern part of the great Smoky City, and a rapid extension of the field of the gaseous fuel is looked forward to. The belief is expressed by men whose opinion is worthy of much consideration, that the number of localities capable of being supplied with gaseous fuel in the States of New York, Pennsylvania, Ohio, West Virginia, and Michigan is much larger than the majority have any conception of, and the permanency of the flow of some of the older wells gives rise to the hope that it is a reliable fuel supply. Its cheapness and cleanliness are, of course, matters which are beyond all doubt. There are indications that during the present year a considerable number of companies will form to sink wells, and a "boom" is looked forward to that may bring forth the usual crop of unsound enterprises.

Water Level for Shafting.

Mr. A. C. Reuss, M.E., writes to the Scientific Ameri can from Allahabad, India, describing his application of the water level to the lining of shafting as preferable to the ordinary method by the use of the spirit level. He says: "For leveling long lines of shafting I use a rubber tube of three-quarters of an inch diameter, and fix on each end of it a water stand glass of the same diameter, or nearly so. The tubing should be long enough to reach from one bearing of the shaft to the second one beyond, and lie on the ground or floor, without kinks or short turns. The tube and glasses should be filled with water sufficient in quantity to reach about half up the height of the glasses, so that the level in both the glasses is visible.
" With this device a line of shafting of from 800 to 1,000 feet may be leveled in an hour, or the bearings for the shaft can be leveled ready for the shaft. Let one man hold one end of the tube-the water glass-to bearing No 1, and another hold the other glass to bearing No. 3. The man at No. 1 holding his water level at the bottom of the bearing No. 3 levels to it. Then level from No. 1 to No. 2, and from No. 3 to No. 2. This being done, proceed from No. 3 to No. 5, and from No. 2 to No. 4 and so on."

Patent Medicines in Japan.

In respect to the sale of patent medicines, The Pharma eutical Gazette (London) thinks that we might advantageously take a lesson from the Japanese. We learn from the first report of the Central Sanitary Bureau of Japan, just issued, that they have established a public laboratory for the analysis of chemicals and patent medicines. The proprietors of patent medicines are bound to present a sample, with the names and proportion of the ingredients, directions for its use, and explanations of its supposed efficacy. During the year there were no fewer than 11,904 applicants for license to prepare and sell 148,091 patent and of 58,638 medines. Permission for the preparation and sale of 58,638 different kinds was granted, 8,592 were prohi-
bited, 9,918 were ordered to be discountenanced, and
those which were authorized to be sold were of no efficacy, and but few were really remedial agents. But the sale of these was not prohibited, as they were not dangerous to the health of the people.

Cement for Leather.

When pieces of leather are to be cemented together, which are not subjected to traction or need not sustain heavy weights, New Remedies says that common glue will probably be the best binding substance; for thin leather, ordinary flour paste may also be used.
If the leather is subjected to a moderate strain, the folowing method may be used: Soak equal parts of glue and of isinglass for ten hours with enough water to cover them, then add about one-fourth part of tannin, and boil until the mixture becomes sticky. The surfaces of the leather must first be roughened with some coarsetool; they are then well rubbed with the above mixture, while warm, and firmly pressed together. After a few hours they will be found united.
Or glue (8 parts) may be soaked with water until soft, the excess poured off, and the vessel then placed on a water bath until the glue melts. One part of glacial acetic acid is then added, and the mixture transferred to small vials This liquid glue will also stick leather together very firmly
An Austrian firm manufactures a glue which is said to be made from the entrails (skins?) of cattle, which goes by the name of dermatin, and is reported to be used in England as well as on the Continent. This is said to glue leather together so effectually that the mended place will be as good as new, while it leaves it perfectly flexible.

American Manufactures in New Zealand.

A "New Zealand subscriber" sends a letter on the importance of the British colonies in the South Pacific as a market for American manufactures. The proprietor of a large iron works in England has been making a tour through these possessions with a view of ascertaining, from personal observation, the requirements of customers. Our corre spondent advises similar visits by American manufacturers to correct erroneous impressions and get exact information as to the needs of the people. He mentions one lack in woodcutting tools sent to Auckland, and that is their want of adaptedness to the timber, as the New Zealand pines are as hard as American hard woods, and the saws and edge tools sent from America are not strong enough for their work. He says, however, that such American mechanical tools and agricultural implements as find favor are imitated by English manufacturers, who make infeitor articles and undersell the American products.

Drilling Glass.

For drilling holes in glass, a common steel drill, well made and well tempered, the Glassware Review claims to be the best tool. The steel should be forged at a low tempera ture, so as to be sure not to burn it, and then tempered as hard as possible in a bath of salt water that has been well boiled: Such a drill will go through glass very rapidly if kept well moistened with turpentine in which some camphor has been dissolved. Dilute sulphuric acids is equally good, if not better. It is stated that at Berlin glass castings for pump barrels, etc., are drilled, planed, and bored like iron ones, and in the same lathes and machines, by aid of sulphuric acid. A little practice with these different plans will enable the operator to cut and work glass as easily as brass or iron.

Trichinz.

J. E. Morris, M.D., in the Clinical Brief, says in regard trichinæ in swine that it is a well established fact that the real source of infection in swine lies entirely in the rat. A committee of Vienna physicians found in Moravia thirtyseven per cent of rats examined trichinous; in Vienna and ts environs ten per cent; and in Lower Austria about four per cent. The well-known voracity of the hog, and its special fondness for meat, cause it to feed upon the flesh and excrements of other animals infested with these parasites, and especially rats and mice. To prevent trichinous swine it is highly important to cut off all the sources of disease in the diet of these animals.

Phosphorescence in Animals.

According to Radziszewsky, the luminous animals like Pelagia noctiluca, Beroe ovatus, etc., owe this fact toa pecuiar fat that they contain. These little animals do not give light when at rest, but when stimulated give a quick flash of monochromatic light resembling lightning. The autho separated some of this fat and found it was a thick, pale yellow, neutral liquid, easily saponified by alkali. It gave a flash of light when shaken with caustic potash. The animals themselves bave an alkaline reaction.

Orange Peel Fuel.

A gentleman in Manchester claims to have succeeded in applying orange peel to a very useful purpose. Orange peel dried in or on an oven until all the moisture has been ex pelled becomes readily inflammable, and serves admirably for lighting fires or for resuscitating them when they have nearly gone out. Thoroughly dried orange peel will keep for a long time, aud might be collected when the fruit is in season and stored for winter use. Buyers of Florida orange groves should remember the above.

RECENT INVENTIONS.

Newspaper
The object of this invention is to provide a wrapper for newspapers and other like matter, which can be secured over the paper very quickly and easily without the use of adhesive material. The wrap per has on the inner surface a wire provided with loops at the projecting ends. This wire is held on the wrapper by a strip of paper secured on the inner surface of the wrapper and over the wire. When the wrapper is folded over the paper, the projecting ends of the wires are twisted together; or one projecting end
of the wire is passed through the loop of the other end. The engraving shows the manner of applying the wrapper, and represents the package when secured. This invention has reen patented by Georgia Fay, 2107 East Grace Street, Richmond, Va.

New Bottle Stopper

This invention, although applicable to bottles for containing different substances, is more especially designed for such bottles as are used in chemical laboratories, including bottles used for containing various reagents and acid or corrosive liquids. These bottles are usually fitted with two different kinds of stoppers, known respectively as the "flat headed" stopper and the "hood" stopper. Both have their special advantages and both their peculiar defects. The invention shown in the engraving combines all the advantages of these two forms of stoppers without the defects of either. It consists in a bottle stopper having its plug or body part provided with a hood or shield arranged to cover the mouth and outer end of the neck of the bottle, and having a pendent flange arranged to fit outside of the rim or collar of the neck of the bottle, and this, again, surmounted by a flat sided head or finger piece. This useful mounted by a fat sided head or finger piece. Then patented by F. Jewett, of Oberlin, 0 .

What Paint best Protects Iron?

Mr. Louis Matern writes as follows to the Carriage Monthly: While perusing the supplement of the Scientific AmeriCAN, I noticed in vol. xV., No. 379, an article on painting the New York and Brooklyn suspension bridge, wherein it is stated that the trustees of the bridge company had agreed upon the foliowing mixture, as being the best protective paint for iron, namely: 70 pounds of first quality white oxide of zinc, 30 pounds of best white lead, 6 gallons of raw Calcutta linseed oil. The above named mixture has but one advantage-its color-but all the following disadvantages:

1. It needs driers to harden the paint, thereby losing its durability-as all driers, so far as known, to some extent deteriorate the oil, through destroying its binding quality.
2. It, through excess of zinc white when dry, becomes brittle: Not giving way to expansion or contraction, it cracks, making channels for water to corrode the iron, which in turn undermines the paint, causing it to peel off.
3. All American white lead is made by the wet process, and holds a good deal of sugar of lead, which at once charges the iron with rust when exposed to damp, rendering it entirely unfit for the purpose wanted. Even the strictly pure Dutch process made white lead in some measure attacks the iron when exposed to damp, as all old carriage painters are well a ware. This sugar of lead also destroys the adhesiveness of oil.
4. The mixture will not harden through where it is spread thickly, but forms a shriveled mass.
These four disadvantages of the mixture I consider the worst of all conditions. Auy mineral paint would answer the purpose much better.

RED LEAD the best.

I maintain that the paint that most effectually protects iron is red lead. Not in color is it as well suited; but that is only a° secondary consideration, and easily overcome by painting it over with any color desired. Red lead contains the following advantages for the preservation of the iron, which is the main object to be gained:

1. It dries easily with raw linseed oil. without an oil detroying drier. All known driers decompose oil.
2. After drying, it remains elastic, giving way both to the extension and contraction of the iron, without causing the paint to crack.
3. It imparts no oxygen to iron, even when constantly exposed to damp-a fact to which all farm wagon makers can testify.
4. It hardens, where it has been spread thickly, without shriveling, forming the toughest and most perfect, insoluble combination of all paints. As proof of this assertion, it is used by calico printers for red figure prints, holding out against soap and water; by gas pipe fitters, as the best paint to resist ammonia and tar: by the English iron ship builders, for painting the hulls of iron ships-namely, two coats of red lead and two of ziuc white; by wagon and plow makers, for painting wagon gears and plows; by knowing carpen-
ters, for painting wood that comes in contact with damp brick in walls, as it preserves wood from rot, insects, etc. For those among us who are uninstructed how to mis pure red lead for paint, it should be made known that pure red lead powder, after being slightly pressed down with the finger, shows no lead crystals. When they are visible, it is merely partly converted, and not first quality. It should be ground in pure old linseed oil, and if possible used up the same day, to prevent it combining with the oil before it is applied, losing in quality. No drier is necessary, as in the course of a few days the oil forms a perfect, hard combina tion with the lead. American linseed oil is as good as any imported, where the manufacturer has given it age, and not subjected it to heat, as is the custom, "by steaming it in a cistern to qualify it quickly for the market. It deteriorates in quality when heated above $160^{\circ} \mathrm{Fah}$.
This red lead paint spreads very easily over a surface, and the best of finish can be made with it, even by a novice in painting.

Success of the American Eclipse Expedition.
Professor E. S. Holden, of the Washington Observatory of Madison, Wisconsin, with his party of observers, who were sent out by the United States Government to the Caroline Islands to make observations on the total eclipse of the sun of May 6, has arrived at San Francisco in good health. Professor Holden reports that the weather on the day of the eclipse was favorable, and that a number of excellent photographs were taken showing good views of the corona. Some fine observations of the spectra were made. The supposed planet Vulcan was not, however, discovered.
The Caroline islands are a group in the South Pacific, and lie near the equator, between 140° and 150° west longitude, and are distant about 2,500 miles southwesterly from San Francisco.
The party went from New York city to Lima last March, thence in the United States sloop of war Hartford to the Caroline Islands.
The full reports will be looked for with interest, as the duration of the eclipse was comparatively long, and the opportunities for observation good.

Aeronautical Exhibition, Paris.

An exhibition of everything that relates to ballooning was held in the Trocadero Palace, Paris, from 5th to 15th of June, to celebrate the centenary of the invention of balloons. It comprised-

1. Raw materials used in the construction of balloons, such as silk, cotton, rope, nets, cane, etc.
2. Gas balloons, captive or steening, montgolfiers, and separate parts used in the construction or working of balloons.
3. Parachutes, kites, and mechanical birds.
4. Books, MSS., plans. photos, drawings. and models reating to aeronautics.
5. Instruments for use in meteorology, such as barome ters, thermometers, hygrometers, registering appliances, and photographic apparatus.
6. Apparatus for making pure nydrogen. carbureted by drogen, and carbúreted air
7. Light motors, gas and petroleum engines.
8. Electrical apparatus, susceptible of being utilized in aeronautics, such as motors, telegraphs, telephones, and electric lamps.
9. Appliances for aerial correspondence, by optical telegraphy, or by carrier pigeons.
No charge was made for space; but exbibitors had to rrange their exhibits at their own expense.
The number of inventors in France who are now turning their attention to this science is considerable, including M. Tissandier, with his elongated balloon and electrical motor; M. Brisson, with his navigable aerial vessel; M. Tissot, with his aerostatic bird; M. Cayrol, with his winged bal loon; and M. Pompeien, with his elongated balloon.

The Christian Era.

The much debated question as to the correctness of the hitherto accepted reckoning of the years which have elapsed since the birth of Jesus has again been mooted by Professor Sattler, of Munich, in the columns of a German contem porary. Professor Sattler (according to the Jewish Chronicle) claims the distinction of having solved the problem, and of having demonstrated the fact that the current year is pro bably 1888 instead of 1883 . He bases his proofs mainly on three coins which were struck in the reign of Herod Antipas, son of Herod the Great, and which date, consequently, from the first half of the first century of the current era Madden admits the genuineness of these coins, and other numismatic writers do the same. The evidence they offer coincides with the narrative of the Gospels and with astronomical calculations. The following are the results at which Professor Sattler has arrived: Jesus was born on the 25th of December, 749 years after the founding of Rome, and commenced his public career on the 17th of November 780 years after the founding of Rome. He was then 30 years 10 months and 22 days old. The date on which he commenced his career fell in the 15th year of the Emperor Tiberius, and in the 46th year after the building of Herod's Temple. This is in accordance with St. Luke iii. 1 and St. John ii. 20. According to Josephus ("Antiquities," xv., 11, 1), the construction of Herod's Temple was commenced in the 18th year of that monarch, or in the year 734 after the founding of Rome, in the month of October. If we
add the 46 years which elapsed after the building of the Temple we arrive at the end of the year 780, the year during which Jesus entered on his career. If, moreover, we subtract from 680 (779 years 10 months and 17 days) 30 years 10 months and 25 days, there remain 748 years 11 months and 25 days, which gives us the date of his birththe 25th of December of the 749th year after the founding of Rome. Jesus died on the 7th of April, 783 of the Roman era, that is to say, on the Friday before Passover; for it has been ascertained by exact calculation that Passover fell that year on the 7th of April, 783; and as the latter year was a Jewish leap year, and consisted, accordingly, of 13 months, his public career lasted two years and seven months. Between the 17th of November, 780, and the 9th of April 783, three Passovers were celebrated, viz., 781, 782, and 783. Those years correspond with the $27 \mathrm{th}, 28 \mathrm{th}$, 29 th, and 30th of the Christian era as at present calculated. Remember ing, however, that the year of the birth of Jesus corresponds with the year 749 of the Roman era, and taking this year as the starting point of the Christian reckoning, the years of Jesus' career must be the 31st, 32d, 33d, and 34th of the new era. It thus results, according to Professor Sattler, that the Christian reckoning is at fault by five years, and that we are now in 1888, and not in 1883.-English Mechanic.

Eradicating Lawn Weeds.

During the last thirty years I bave tried every mode of radicating these suggested by every published correspondence, and, taking the result and cost of time into consideraion, I have come to the conclusion that the best method of proceeding is, after the first cutting in the spring, to put as much salt on each weed through the palm of the hand as will distinctly cover it. In two or three days, depending on the weather, they will turn brown. Those weeds that have es caped can be distinctly seen and the operation repeated. The weeds thus treated die, and in about three weeks the grass will have grown, and there will not be a vestige of disturbance left. Two years ago I converted a rough pasture into a tennis ground for six courts. Naturally, the turf was a mass of rough weeds. It took three days to salt them, and the result was curiously successful.
I had one lawn with more daisies than grass, and on Sept. 2, 1881, I took up the turf, scratched the ground, relaid the turf upside down, scratched this also, well seeded it, sprin kled it with soil, and in one month it was green and hardly distinguishable from the other parts of the lawn, Similar trials had been made in each month from March, and as late as August 12, but the earth cracked.-Berkshire in The Garden (London).
M. Pradines has recently published a test for wines, D which wines may be examined for their purity. He pro poses with this test to answer three questions. First, is the wine natural, secondly is it diluted, and lastly, has no product of the grape been used in its preparation? The reagent used consists of pure ammonia saturated with rectified ether, which is then filtered aud kept in well stoppered flasks protected from the light. To make the test, pour some water in a test tube, add with a pipette or burette about fifty drops of the wine to be tested, shake the mixture, allow five or six drops of the reagent (Diano-Pradines) to run into the mixture, and shake again. If the wine is good in quality, a beautiful green coloration appears along the ine of contact between the reagent and the mixture. If the mixture takes a pale green coloration the wine has been diluted with water, and the amount of dilution is approxi mately measured by the varying paleness of the tint pro duced. If this pale green coloration becomes rapidly clouded and obscured, the wine has been diluted with water and colored with some coloring agent. If the mixture gives no color or takes a grayish red tint, amaranthine or brick color with no trace of green, the wine is compounded. In this last case the colorations vary infinitely, modified by the coloring matters used in the wine's fabrication.

Kerosene as an Insecticide.

From reports made by C. V. Riley, entomologist of the Department of Agriculture, it appears that kerosene oil is valuable agent for the destruction of insects inimical to corn, maize, cotton, and oranges, and by implication should equally affect other forms of insect life destructive to vege tation. Emulsions made with milk do not appear to be necessary, judging from the results of these experiments. For chiuch bugs a mixture of one pound of coarse resi soap dissolved in ten gallons of water, to which is added about a pint of kerosene, was effectual applied in the form of a spray from a pump or by means of a watering can with rose nozzle. For rust mite and for the scale insect on orange trees, and for the cotton worm, a mixture of five pounds of common yellow (resin) soap, dissolved in one gallon of water, and one gallon of kerosene similarly applied, cleaned the plants and prevented further depredations for a consid erable time.
Bricks impregnated at a high temperature with asphalt are being successfully used in Berlin for street pavement By'driving out the air and water the bricks will take up 15 or 20 per cent of bitumen, and the porous, brittle material becomes durable and elastic under pressure. The bricks are then put endways on beton bed and with hot tar. The pavement bas been laid down in a part of a thoroughfar where neither granite nor compressed asphalt had hitherto withstood the wear.

ENGINEERING INVENTIONS Mr. Thomas Keely, of Memphis, Tenn., has obtained a patent for an improved privy sink which
is so constructed that it may be readily cleaned, is so constructed that it may be readily cleaned,
smothers the odors generally arising from privies, and smothers the odors generally yrising from privies, and
as a sanitary improvement possesses many qualities
which recommend it as a sefeguard against disense A new link guide for car coupling has been patented by Mr. Frank Sweetland, of Edwardsburg, Mich. The link is guided into the drawhead without endangering the operator by the eery simple appliance
adopted by the inventor, and which is an improvement enaged by the inventor, and which is an improvement
adopted
and on a patent granted to Mr.Sweetland on August 15, 1882.
Mr. James Robson, of Birmingham, Eng., has obtained a a patent for an improved gas engine. It consists in a cylinder furnished with a main piston and
provided with a charging valve and igniting orifice, of a provided with a charging valve and igniting orifice, of a
charging piston in the rear of the main piston, and of charging piston in the rear of the main piston, and of
means for operating the charging piston. For use in means for operating the charging piston. For use in changes
An improved car brake in which the momentum of the car is made use of to brake the same burg, Mo. This brake is so connected with a pinion wheel located upon the brake lever that the brake will only act upon the wheels of the car when the pinion is
set in motion. Upon the axle of the car is attached a set in motion. Upon the axle of the car is attached a
cog wheel with which the pinion wheel meshes when cog wheel with which the pinion wheel meshes when
the brake bar is set. The momentum of the car rotates he pinion and sets the brake.
A railroad switch of simple construction, which can be operated with much ease by the attendant,
has been recently patented by Mr. Jacab Elmer of has been recently patented by Mr. Jacob Elmer, of
Bilozi, Miss. The movable rails are confined to a metal plate, one edge of theouter portion of which is provided plate, one edge of theouter portion of which is aroth, with which a corresponding pinion wheel on the vertical shaft meshes. On the upper end of the shaft
a wheel is affixed for the convenience of the switch tender, and which he turns to change the position of the movable rails whe
the main track.
A new gas motor of improved construction, and believed to embody several important advantages over other engines of this class, has been patented by
Mr. Herbert Sumner, of Manchester, England. In this engine the combustible gas and vapor and the air are engine, and are there intermingled. They then pass hrough a valve operated by a cam motion, and are there compressed in the usual manner. After the gases
have been ignited and have performed their office on the piston, they are emitted by an exhaust valve placed be sides the inlet valve on the back cylinder. In this en gine the ignition of the charge is ren
and prompt than in those.now in use.
It is very desirable to have a traction or road engine geared so that it can operate with great
power and Jittle speed, or can be run at a higher speed power and Jittle speed, or can be run at a higher speed
when comparatively little power is required. For exwhen comparatively litte power is required. For exloaded, and when returning from its destination it may for power, and in the latter it may be geared for speed to economize time. Again, some parts of the road may
be heavy and the rest good, and in such case an adaptabe heavy and the rest good, and in such case an adapta-
tion may be made of the gearing to suit these circumtion may be made of the gearing to suit these circum
stances. Messers. I. G. Rider, W. H. Snyder, and A. O Frick, of Waynesborough, Pa., have recently patented the combination, with the two driving wheels, of a compensating gear which derives motion from the driving machinery and transmits it independently to each
of the two wheels, so that either or both of the wheels of the two wheels, so that either or both of the wheels
may be driven. a locking mechanism for holding rigid one of the wheels of the compensating gears which
transmit motion to one of the traction wheels, and an transmit motion, to one of the traction wheels, and an
adjustment by which that traction wheel may be re adjustment by which that traction wheel may be re-
leased and allowed to run freely or independently of its leased and allowed to run freely or independently of its
driving mechanism, so that the value of a compensating driving mechanism, so that the value of a compensating
gear is preserved for turning corners, and whereby at taining two speeds for the traction engine is possible
with very little addition to the ordinary mechanism. with very little addition to the ordinary mechanism.

MECHANICAL INVENTIONS.

An ingenious machine for folding the edges of fabrics in making shirts, collare, cuffs, etc., has been
patented by Mr. J. L. McMillan, of Cambridge, N. Y. This machine is simple in its construction and should prove a boon to the large shirt
ments throughout the country.
A novel method of shaping and mortising balusters and other railings has been patented by Mr.
W. J. Tait, of Jersey City, N. J. By this improvement W. J. Tait, of Jersey City, N. J. By this improvement
the cost of making and fitting balusters will be greatly reduced and the balusters will be more securely held
place than by the methods heretofore employed. Mr. J. J. Souder, of Washington, D. C., is the patentee of an improved grain scourer and poiisher
which is designed to scour the cuticle off, and to polish the surface of each kernel, and to take away all dust and dirt from the grain, leaving it thoroughly cleaned Mr. Aaron T. Clark
Mr. Aaron T. Clark, of Dannemora, N. Y. is the patentee of a new hat sizing machine which is
claimed to possess considerable merit over other machines for the same purpose. The inventor employs
flexible rollers, which of themselves are not new for similar purposes, but he has added other appliances to the flexible roller, whereby he produces a proximation to hand work.
An improved ring spinning frame has been patented by Mr. Michael E . Sullivan, of New Bed-
ford, Mass. The object of the invention is to spin from the top of the spindle, so that the yarn will receive its twist in the bite of the rollers at the instant when the sliver is delivered, and thus avoid the use of guide
wires, which hinder the twist from entering the bite of wires, which
A very simple pneumatic clothes washer has been patented by Messrs. N. B. Elliott and J. T.
Lloyd, of Holden, Mo. This machine is so constructed
that the air within the washer is compressed, and thus the clothes are cleaned by forcing the water are not likely. to be torn, and the wear upon them is no nearly so great as when scrubbed in the ordinary way.
A micrometer gauge of improved construction has been patented by Mr. George W. Church, of Roseville, N. J. The object of this invention is to pro-
vide a micrometer gauge in which the measuring bar may be forced against the object to be measured, al ways with a certain uniform pressure, thereby insuring accuracy of m
force applied.
Mr. Charles H. Parsons, of Shauck's, O is the patentee of an improved elliptic spring. This in-
vention consists of an improved construction of the end joints of elliptic springs. In this improvement the gether, and the upper one rests on the coil of the lowe one, so as to relieve the joint bolt of wear, and so tha the welding of flanges on one of the plates to support
the pivot bolt is avoided, and the injury thereby caused the pivot bolt is avoided, and the injury thereby caused
to the metal prevented. Mr. J. E. Dowson, of Westminster, London, England, has received a United States patent for
an apparatus for the manufacture of gas. This inven an apparatus for the manufacture of gas. This inven-
tion relates to the manufacture and treatment of non luminous heating gas made by passing steam and air or steam only, through incandescent carbonaceous fuel.
The improvements chiefly refer to apparatus for making such gas; but the inventor claims that some them may be also useful for other purposes.
Messrs. Geo. E. Bauder and A. M. Pease of Sanborn, Dak. Ter., are the patentees of an improved harness pad block, which consists in recesses forme movable pressing plates for filling the pads. An archer bar of semicircular shape with hooks at either end to attach to the rim of the pad forming block is provided.
A hand screw extends through this bar, and is operated for compressing the leather similar to an ordinary let
ter copying press.
A rope clamp designed to facilitate splicing hempen or wire ropes without cutting or otherwise in-
juring the same, has been patented by Mr. Charles Litjuring the same, has been patented by Mr. Charles Lit-
tlefield, of Vinalhaven, Me. The invention consists of two clamp plates connected by links and pins, one of
the pins passing through and working in an inclined slot formed upon the back of one of the jaws or plates, whereby the device may be applied to ropes of any kind
or size and may be readily attached to or detached there-

An improved station indicator has been patented by Mr. Charles O. Ball, of Lowell, Mass. The casing of the indicator is provided with an opening at
the front covered by a glass plate, through which the names of the stations are displayed. The names are indicated upon a band which has its end secured in rollers, one located at the top of the casing, and the the car the rollers. will be rotated and the name of the station brought to view.
An improved feeder for cotton gins is the Natchez, Miss. This invention consists in so locating the feeding apron in relation with the mouth of the feed box that convenient access may be had to the gin for the suitable cleaning of the box and the
grate. The danger of fire from neglect of this is thus lessened. Access to the feed box is attained by raising the feeding apron at one end out of the way, and slotted
legs and nuts are provided for securing it in any posiion desired
Some
Some improvements have recently been made in the manufacture of starch, of which Mr.Louis P. Best, of Davenporl, Iowa, is the patentee. The inven
tion consists in steeping, grinding, or disintegrating the grain, passing it over separators while subjected to
sprays of starch water, regrinding the courser particles and passing the reground mass over separators while subjected to sprays of fresh water, whereby a more
perfect extraction of the starch is produced and the perfect extraction of the starch is produced and the
refuse from the operation is prepared as an article of commerce.
An improved thread guide for spooling machines is the subject of a patent granted to Messrs.
Robert Atherton and James Newhy, of Paterson, N. J. The invention consists in a recessed block mounted to slide on the transverse bar of the machine, and adapted
to receive a thread guide. The block is provided with to receive a thread guide. The block is provided with
spring rods for holding the guide in the recess in the block. The free ends of these spring rods rest in grooved tracks on the transverse bar, and are thus
adapted to slide with the block for adjustment of the osition of the thread guide
An improved machine for making telegraph insulator pins has been patented by Mr. John B. Smith, of Sunapee, N. H. The mand mandrels which seize and rotate the revolving mandrels which seize and rotate the blank,
while a pair of movable cutter holders are alternately brought into range of engagement with the blank. and a hammer knocks the finished pin loose and out ot the way for the next blank. Mr. Smith has also
obtained a patent for a machine for making brackets obtained a patent for a machine for making brackets
for telegraph insulators. This machine is provided with a device for feeding and holding the blank while it is being turned, and also two independently rotating
mandrels having a reciprocating motion, and bearing mandrels having a reciprocating motion, and bearing
funnel-shaped cutter heads which advance, so as to

Mr. Joseph Mr. Joseph W. Wilson, of W yandotte, which is claimed to be more effective in its operation than those in common use. The invention consists in arranging a system of chutes and valves between the bolt and suction chamber in such a way that the current of air from the blower may be directed upon any
portion of the machine. The bolt or sieve is mounted upon the rollers of the reciprocating frame, to which power is applied from the shaft. In this way the middlings are moved from the head to the tail end of the
sieve or bolt, on a perfect plane entirely free from
chines, whereby the middlings will be more perfectly cleaned from impurities than is possible by the rocking
motion. The bolt is made higher in the middle than at the sides, for the more even distribution of the middlings over the sieve

AGRICULTURAL INVENTIONS

Mr. E. R. Ham, of New Market, Ga., has patented an improvement which relates to wheeled cultivators, in which a number of plowbeams are secured
to the axle and arranged side by side, with flexible connections to adapt them for various movements inde-

of each other.

An improved separator and cleaner for thrashing machines has been patented by Mr. W. C.
Buchanan, of Belleville, Ill. On the front end of a vibrating pan is attached an imperforate sheet meta section on which the straw, chaff, and grain are received from the thrasher and passed along the pan, which is
caused to swing backward and forward on hangers. caused to swing backward and forward on hangers
This metal plate is provided with long fingers which are
and This metal plate is provided with long fingers which are
raised from the pan, so as to enable the wind from a blast to act upon the material and carry off the chaff and short straws. The invention provides further imgrain expeditious and satisfactory

MISCELLANEOUS INVENTIONS.

Mr. W. J. Morrison, of Nashville, Tenn., is the patentee of a novel process for manufacturing whereby the inventor produces an article which he An improved dynamo electric machine hich has a uniform magnetic field, and thus does no require a commutator, the entire construction of the machine being thereby simplified, has be
Mr Floyd Delafield, Noroton, Conn.
Mr. William R. Flynn, of Bordentown, .J., is the patentee of an improved sewing machine cover which is so constructed that a backboard, which
is located at the top of the box, and so as to slide in rooves, may be drawn out and the box forthwith con-
A compound consisting of the following in gredients mixed in certain proportions, has been found
very effective for tempering steel : saltpeter, yellow prussiate of potash, sal ammoniac, carbonate of iron, imolia purpurescens, common salt, and wate
Mr. Thomas A. Gause, of Moss Point, Miss.,.is the patentee of an improved umbralla holder A forked clamp is secured to the seat, dashboard, or loor, so as to be turned in any direction to give the um n from the sun's ray
A patent has been secured for a dental and Argical instrument by Mr. J. H. Doyle, of Hillsboro O., which is used for depressing or elevating the lips or
tongue in dental operations, and for the use of surgeons in the examination and treating of diseases of the th and throat
Mr. Robert Nicol, Jr., of Oshkosh, Wis., has palented a safety pocket provided with a series of watches, money, toilet articles, etc., and so securing it to the garment that none of the articles can be abstract ed from the pocket without attracting the attention of
Mr. William H. Payne, of Western, N. Y., has patented a compound for removing rust spots or
stains from fabrics or clothing, but more particularly rom uncolored or light colored fabrics, by the use o oxalic acid, spirits of turpentine, and water, of such pro
portions, as to best accomplish the object.
Messrs. N. H. Darton and D. D. William son, of New York city, have patented a process for
bleaching, defecating, and preserving sugar, sirups, molasses, cane, and beet root juices, etc., by treat ing the same with a solution of the tersulphite of alum
ina, and afterward decomposing said tersulphite by the use of carbonic acid gas.
An improved ice machine can is the subject of a patent granted to Mr. Henry F. Fordham, of Greenconstructed with a raised and apertured bottom, by which arrangement it is claimed that the ice will form more rapidly, and that larger blocks can be solidified more thoroughly than the ordinary mode of freezing
Mr. Frank Myers, of Aurora, Neb., has pa tented an improved end gate for box wagons. Two sections meet together at the center of the box and
are hinged at their centers on the insides to a middle section. The latter has a staple projecting through notches in the other sections, and a key to hold them ogether, making a simple and efficient end board tha
Mr. Phineas Topham, of Newark, N. J., is the patentee of an improved violin bridge in which it is claimed that the sound procuced is much sweeter the ordinary construction. This bridge is hollowed ou removable cavity formed in it, which is provided with size of the cavity, whereby the bridge may be readily converted into an open or closed sounding drum.
An improved stove top and cover, designed by Mr. W. H. Noyes, of Newburyport, Mass, The to of the stove is so constructed that it may be slid back ward and forward, so that any particular boiler hole may be brought directly over or at any desired distance tion may be readily controlled. The coosing operaressel on the stove cover may be changed, thus obviat ing the necessity of lifting it.

A tire heating furnace is the subject of a patent granted to Mr. Warner Lewis, of Stone Bluffs,
Ind. This invention consists of an annular furnace
with a dome having draught regulating deflectors for will be heated more evenly, rapidly, and economically than with a common open fire.
A combined wire and picket fence of improved construction bas been patented by Messrs. M.
Harrison Brown and Charles F. Hyde, of Ottawa, Kan. This invention consists in a fence which is composed of fixed posts, and horizontal and diagonal wires, and
interwoven pickets carried by the longitudinal wires, interwoven pickets carried by the longitudinal wires,
and it provides a fence which is quite durable and very and it provides a fence which is quite durable and very
strong, considering the small amount of material emstrong, considering the sm
ployed in its construction

A device for uniting or coupling the ends telegraph wire fence or other wires has been patentd by Mr. Charles Collins, of Chicago, Ill. The invention
consists in a strip of metal having apertures in the ends and alternating notches in the side edges through which the wires to be coupled pass, the wire being held in this invention is the ease and rapidity with which the wires can be coupled and uncoupled.
An improved wire netting, so constructed as to prevent persons or animals pressing against or
climbing over the same, has been patented by Mr. William H. Johnson, of Manchester, England. This improvement consists in furnishing the netting with wires or bands having barbs at or near the middle of its
meshes, the barbs being formed by severing or notching extra wires or bands which have been incorporated with ne netting for that purpose
An improved picker stick holder for looms is the subject of a patent granted to Mr. William J.
Dunn, of Lewiston, Me. The invention consists of a Dunn, of Lewiston, Me. The invention consists of a
picker stick holder composed of a hollow casting adapted to receive the picker stick, and having screws to hold and adjust the stick, whereby the stick may be shifted as it becomes worn, and a foot piece pivoted to
said casting and adjusted in position by set screws assing through
An improved rub iron for vehicles, consisting of a metal casting provided with a pivoted metallic oller and adapted to be attached to the side of the wagon under the box, has been patented by Messrs. C. C. Keen and F. G. Ken, of Norl Mchreg, lowa. A applied to the box and will fully protect the vehicle applied to the box and will fully protect the vehicle
box, while at the same time it does not wear the tire of the wheel like the ordinary rubber.
Mr. Henry H. Schneider, of Port Clinton, O., is the patentee of a rocking attachment for chairs. Rocking levers are pivoted to the rockers and leg levers
to the legs, and these with the rocking levers, whereby if the person sitting on the chair presses down the foot board attached to he leg lever and then releases it alternately the chair used as a rocker it may be readily converted into a stationary easy chair.
An improved ice freezing apparatus is the cently granted to Mr. John Bowes, of Halifax, Nova scotia, Canada. The invention consists of an appara tus for freezing water by natural cold, the water being fed into shallow pans for that purpose. Steam pipes are provided for thawing the frozen blocks free from
the bottom and sides of the pans, after which the pans are tilted un sides of the pans, after which the plocks of ice and he ice house by gravity
Mr. William Hadden, of Brooklyn, N. Y., has patented an improvement in the class of railway
signals employing electricity as a motive agent and using novable banners for giving signals. The improvement attached to pendulous arms operated by electro magnets. The design of the invention is to reduce the motion of the armatures of the electro magnets, so as to
admit of having them in the stronger portion of the magnetic field.
A practical ferrule for pipe joints to be used where pipe sections of soft metal are to be connected
with iron pipes has been patented by Mr. John F. Sullivan, of Brooklyn, N. Y. This is accomplished by spinning the end of the ferrule, so as to form a smooth-
ly rounded ring. The particles of metal in this form ly rounded ring. The particles of metal in this form
brace each other. The construction of the end is fortified by inclosing a previously formed ring of wire of a size just sufficient to fill the ring of metal, which is so spun as to inclose the wire. Thus equipped, the metal of the tube is further re-enforced and braced by the ring, which is thus reliably engaged with it.
An ingenious refrigerator, the object of hich is to cool water, beer, and other articles with a by Mr. Thomas Keely, of Memphis, Tenn. The invention consists of a refrigerator provided with an in-
clined platform for receiving the ice, so that the ice will slide down as rapidly as it melts and rest against water tank which is attached to the inner surface of drawn from the tank will always be cool ion further consists of two slides, one provided with a partition and the other with a compartment for receiving the dishes and other vessels containing the articles to be cooled.
A curbstone sidewalk underground congranted to Mr. Edward Clark, of Jersey City, N. J. An open-topped iron box is provided, rectangular in
form, and with the outer side made sufficiently strong form, and with the outer side made sufficiently strong and heavy to adapt it to serve as a curb The upper
edges of the sides of the box are rabbeted, or have houlders formed upon them to receive and support the aid cover can me turned back to the interior of the box. If desired, the sections of e cover cau be hinged at their inner edges for convience in opening and closing any desired part of the
box. In case the sidewalk stones are too thick to be readily cut away, the boz is placed beneath the said stones, and doors are formed in the outer side of
the box to give access to the interior. The telephone the box to give access to the interior. The telephone
or telegraph wires are thoroughly insulated, and are
mounted upon suitable supports within the box.

The Charge for Insertion under this head is One Dollar a line for each insertior : about eigllt words to a line. Advertisements must be received at publication office
asearly as Tluarsday morning to appeal in next issue.

Our goods speak for themselves, and a trial will convince the most skeptical of their superiority over al
others. Lehigh Valley Emery Wheel Co. Lehighton, Wanted.-Cheapest way of cutting cord wood from large trees. J. s. Porcher, Eutawville, S. C.
Wanted.-Water closet castings to make. We do good work. Sample casting sent if desired. Lehi
Stove and Manufacturing Company, Lehighton, Pa.
For Pat. Safety Eleyators, Hoisting Engines, Friction
Clutch Pulleys, Cut-off Coupling, see Frisbie's ad. p. 364. For Mill Mach'y \& Mill Furnishing, see illus. adv. p. 364 . Mineral Lands Prospected, Artesian Wells Borod, by
Pa. Diamond Drill Co. Box 423 . Pottsville, Pa. See p. 366. Contracts taken to manuf. small goods in sheet or cast brass, steel, or iron. Estimates given on receipt of Brush Electric Arc Lights and Storage Batteries. wenty trousand Arc Lights already sold. Our largest machine gives 65 Arc Lights with 35 horse power. Our Brush Electric Co., Cleveland, O.
Curtis Pressure Regulator and Steam Trap. See p. 349 . Lightning Screw Plates, Labor-saving Tools, p. 248. Engines, 10 to 50 horse power, complete, with governght hundred in use. For circular address Heald \& Morris (Drawer 127), Baldwinsville, N. Y.
Best Squaring Shears, 'Tinners', and Canners' Tools
at Niagara Stamping and Tool Company, Buffalo, N. Y. Lewis' Co hines made of brass throughout. See Adv. page 317 . Saw Mills, Hauck \& Comstock, Mechanicsburg, Pa. Stenographers, type-writers, clerks, and copyists may ian Association, 7 East 15 th Street, New York.
Lathes 14 in . swing, with and without back gears and
Five foot planers, with modern improvements. Geo. . Lincoln \& Co., Phœnix Iron Works, Hartford, Conn.
The Best.-'The Dueber Watch Case
If an invention has not been patented in the United States for more than one year, it may still be patented in Canada. Cost for Canadian patent, $\$ 40$. Various other
foreign patents may also be obtained. For instructions address Munn \& Co., Scientific American Patent Agency, 261 Broad way, New York.
Farley's Directories of the Metal Workers, Hardware
Trade, and Mines of the United States. Price $\$ 3.00$ Trade, and Mines of the United States. Price $\$ 3.00$
each. Farley, Paul \& Baker, 530 Market Street, Phila. Improved Skinner Portable Engines. Erie, Pa.
Guild \& Garrison's Steam Pump Works, Brooklyn,
N. Y. Steam Pumping Machinery of every descripN. Y. Steam Pumping Machinery of every descripon.
Nickel Plating.-Sole manufacturers cast nickel an-
odes purenickel salts, polishing compositions, etc. Comodes, pure nickel salts, polishing compositions, etc. Com-
plete outfit for plating, etc. Hanson \& Fan Whakle. plete outfit for plating, etc. Hanson d- Van Wink
Newark, N. J., and 92 and 94 Liberty St., New York.
Lists $29,30 \$ 31$, describing 4,000 new and 2 d -hand Machines, ready for distribution. State just what machines
wanted. Forsaitb \& Co., Manchester, N. H., \& N. Y. city. "Abbe" Bolt Forging Machines and "Palmer" Power

Railway and Machine Shop Equipment.
Send for Monthly Machinery List
to the George Place Machinery Company,
121 Chambers and 103 Reade Streets, New York
25' Lathes of the best design. G. A. Ohl \& \mathbf{C} ast Newark, N. J.
"How to Keep Boilers Clean." Book sent free by mes Hotchkiss, BJJohn St.,
Wanted.-Patented articles or machinery to make
and introduce. Gaynor \& Fitzgerald, New Haven Conn and introduce. Gaynor \& Fitzgerala, New Haven. Conn.
Water purified for all purposes, from household supWater purified for all purposes, from household sup-
plies to those of largest cittes, by the improved filters plies to those of largest
manufactured by the
merce St.. Newark, N. J.
Latest Improved Dia to M. C. Bullock Mfg. Co., 80 to 88 Market St., Chicago, III. For Power \& Economy, Alcott's Turbine, Mt.Holly, N. J. Ice Making Machines and Machines for Cooling Breweries, etc. Pictet Artificial Ice Co. (Limited),
Preenwich Street. P. O. Box 3083 , New York city. reenwich Street. P. O. Box 3083, New York city.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N.
Machinery for Light Manufacturing, on hand and built to order. E. E. Garvin \&., Am. Twist Drill Co.,Meredith, N. H., make Pat. Jhuck Jaws,Emery Wheels,Grinders,automatic Knife Grinders.
American Fruit Drier. Free Pamphlet. See ad.. p. 381. Drop Forgings. Billings \& Spencer Co. See adv., p. 382. Brass \& Copper in sheets, wire \& blanks. See ad.p. 380. The Chester Steel Castings Co., office 407 Library St.,
Philadelphia, Pa.. can prove by 20,000 Crank Shafts and Philadelphia, Pa.., can prove by 20,000 Crank Shafts and 15,000 Gear Wheels. now in use, the superiority of their
Castings over all others. Circular and price list free
Millstone Dressing Diamonds. Simple, effective, and The Improved Hydraulic Jacks, Punches, and Tube
expanders. R. Dudgeon, 24 Columbia St., New York. Tight and Slack Barrel Machinery a specialty. John Gear Wheels for Models (list free); Experimental Work, etc. D. Gilbert \& Son, 212 Chester St Phila Pa See New American File Co.'s Advertisement, p. 372. Renshaw's Ratchet for Square and Taper Shank Drills.

Woodwork'g Mach'y. Rollstone Mach. Co. Adv., p. 382. 20,000 Duc Spherical Elevator Buckets, sizes $31 / 2$ to 17
inches, constantly on hand. Telegraphic orders filled
T. F. Rowland, sole manufacturer, Brooklyn, N. Y.
First Class Engine Lathes, 20 inch swing, 8 foot b
Steady. F.C.\& A.E. Rowland, New Ha 8 , Co
Straight Line Engine Co., Syracuse, N. Y. See p. 380

Split Pulleys at low prices, and of same strength and
appearance as Whole Pulleys. Yocom \& Son's Shafting Works. Drinker St., Philadelphia.Pa
Supplement Catalogue.-Persons in pursuit of infor mation on any special engineering. mechanical, or scien
tific subject. can have catalogue of contents of the ScIENTIFIC AMERICAN SUPPLEMENT sent to them free The SUPPILEMENT contains lengthy articles embracing
ihe whole range of engineering, mechanics, and physical science. Address Munn \& Co . Publishers, New Yort

NEW BOOKS AND PUBLICATIONS

The Brewer, Distiller, and Wine Manu

 FACTURER. Giving full directions fo the manufacture of beers, spirits, wines liquors, cordials, etc. IllustratedEdited by John Gardner, F.C.S. P Blakiston, Son \& Co., 1012 Walnu
Street, Philadelphia.
This volume appears to be directly practical, not only giving instruction in the various processes of brew
ing distilling, and fining, but describing adulteration and showing the method of their detection, usually by processes which may be wrought by any intelligent per son. It may be a surprise to the general reader to as certain, from this volume, from how many materials
spirituous liquors are obtained by distillation. All the spirituous liquors are obtained by distillation. All the
cereals are used, potatoes, Jerusalem artichokes, beets cereals are used, potatoes, Jerusalem artichokes, beets,
carrots, cherries, milk (" koumiss " is fermented milk distilled). palm tree sap, molasses, sugar, and cider These are ex
and brandy.
Twenty Years with the Indicator. By Thomas Pray, Jr., C.E., M.E. Bositon pany.
The author introduces the indicator to the practical mechanic and engineer, to the manufacturer, to the user of steam power, and makes them acquanted, its uses and instructs in its reading and handling The volume, of 150 pages octavo, contains forty
practical "lessons" in the use of the indicator, embracing diagrams taken from all classes of engine under all possible (or probable) circumstances, ;defailed instructions in the use of the indicator, and full illustrated descriptions of the instruments in use
It is a very thorough work, and appears to be amply sufficient for the guidance of the practical engineer and the information of the intelligent engine builder, or the manufacturer. The letter press is excellent and the working of the cuts admirable.
Berley's British, American, and Conti Cumming, 219 East 18th Street, New York.
This is a handsome octavo of nearly 700 pages, containing a record of all the industries relating to elec tricity and magnetism as applied to the arts; a list of
all persons and firms connected, in the trade or professionally, with the science of electricity, and information, in reading or in tabulated form, that makes the
volume of value to all who are interested in electrical progress. The book contains, also, much information of a more general character, but germane to electricit of a more general cha

hinis to correspundents.
No attention will be paid to communications unless accompanied with the full name and address of the
writer. Names and addre
given to inquirers.
We renew our request that correspondents, in referring o former answers or articles, will be kind enough to ame the date of
Correspondents whose inquiries do not appear after a reasonable time should repeat them. If not then pub ished, they may conclude that, for good reasons, th Editor declines them.
Persons desiring special information which is purel should remit from $\$ 1$ to $\$ 5$, according to the subject as we cannot be expected to spend time and labor to obtain such information without remuneration.
Any numbers of the Scientific American Supple IENT referred to in these columns may be had at the Correspondents
Correspondents sending samples of minerals, etc. label their specimens so as to avoid error in their identi label thei
fication.
(1) E. C. asks: Can you tell me what is used to give the white coating to rubber hand stamps? A
The white coating in new rubber bands is due to th sulphur contained in the preparation, which comes out on the external surface and remains there till wor
(2) N. P. I. writes. 1. I am making a steam yacht 25 feet keel, 30 feet over all, and ε feet beam. What size cylinder had I best put in? A.
About 5 inches djameter of cylinder and 6 inchesstroke. 2. Will you also please state the size of wheel and I want all the speed I can get. A. Wheel 30 inches I wantall the speed 1 can get. A. Wheel
diameter and 3 feet 9 inches pitch. Boiler to have 200 feet heating surface.
(3) L. J. W. asks: 1. What composition will prevent axle grease from penetrating the wooden boxes which hold it? A. Paraffine. 2. By what
means can the tin on the tomato can be removed there from? A. No satisfactory means has yet been devised for thispurpose.
(4) F. C. asks how to clean the pipes used wiih a beer pump (tin lined), a sort of a coating forms
inside and comes off in flakes, bave tried comron soda
but it makes a taste in the beer afterward, and that is whati wish to a void. A. The best plan is to use a soby letting water run through the pump. All taste will e removed if the pump is thoroughly cleaned by allowg sufficient water to run through it.
(5) S. F. asks: Will you please inform me what manner the chloride of silver is fastened to he silver wire or strap in the chlonde of silver battery? . It is fused in a porcelain or platinum crucible and (a) H.
(6) H. M. G. writes: I am using an ice box or refrigerator (the ice is not in the interior) which
has acquired an offensive odor, that repeated washing oes not enturely remove; what must I use to render it weet? A. Clean thoroughly with dilute sulphuric acid, then carefully wash away all traces of the acid with
(7) C. V. N. asks what coating there is, which can be applied to the insides of wooden or iron tanks to render them acidproof. A. Coat them with a mixture of 1 part pitch, 1 part resin, and 1 part plas-
(8) M. F. B. asks: What is the best maerial to use in painting a large wrought iron tank, to preserve from rust? (Tank is used for water supply.) A paint made with boiled linseed oil and red oxide called iron paint. No turpentine.
(9) S. W. B. writes: You copy an exdange as saying that builders of machinery frequently dall machine tools it is well to narrow belts. In mos small machine tools it is well to have a weak place in certain to give way before occasioning serious accident the attendant, to the work, or the expensive parts of he machine. The belt is usually made the weak point. Some carelessness is inevitable about machinery, and an mportant method for reducing the accident resulting rom such carelessness is to make some inexpensive art proportionally weaker than the rest. This will be he belt nearest the working parts of a machine tool, a gainst in ore crushing, or the toggle joint in the Blake crusher.
(10) M. J. asks for a good receipt for weldtwo pieces of cast steel together. A. 10 parts borax, part sal ammoniac;ppulverize together
(11) F. C. \& Co. write: We have considrable trouble from the quantity of?smoke and soot Being in the laundry business, it gives much annosack. by soiling work. If you can suggest a remedy other han using harder coal, we shall be indebted to you . You can prevent soot with soft coal only by making he combustion perfect. Construct the furnace so as to feed the fresh coal under the fire or at the front by pushing it in upon the front part of the fire, so that the
smoke will pass over the red hot coal. There are moke will pass over the red hot coal.
everal patented smoke burning furnaces.
(12) C. M. writes: Suppose that at the bottom of a well $41 / 4$ inches in diameter, and 1,500 feet deep, there is pond of salt water 50 feet deep, and full trength. Now, if a tube $23 / 4$ inches outside diameter, and $21 / 2$ inches inside diameter is put into the well water can enter it, and then the well outside of this tube is filled with fresh water to the top, how high will the salt water rise in the tube? What I want ascertain is whether it would be practicable to orce the salt water out by the use of a steam siphon? A. Your arrangement would work, provided you were
sure that the pond of salt water had no outlets that sure that the pond of salt water had no outlets that
would carry off the water under the great pressure would carry off the water under the great pressure
which the filling of the pipe would produce. The prowhich the filing of the pipe would produce. The pro-
bability is that the crevices in the earth that supplies e water to the salt bed would also empty it, und earth. (13) B. X. S. writes: I have a lot of glass castings seven-sixreenths of an inch thick, and they iameter; with what and how could I make the holes ive-eighths of an inch in diameter. A pulley that I have I wish to run under water; the pulley oarries a \checkmark-shaped belt. One end the belt is out of water; what kind of belt should I use to give the least resistance and that will not pump up water? What shall I use to at on the pulley so that the belt will not slip? Would a de of rubber cement do A. Provide a vericul sish make in the glass pieces. Drive the spindle with band and hold the glass upon the end, and feed emery and water into the hole. It will soon cut through. For running under water use a rubber belt or band. Probably you cannot prevent the pumping of water by he belt: it depends somewhat upon the speed. Yo can cover the pulley
with rubber cement.

INDEX OF INVENTIONS
For which Letters Patent of the United June 5, 1883,

ND EACH BEARING THATC DATE

[See note at end of list about copies of these patents.]
Agriarm. See Burglar alarm. Water alarm.
A malgamating ores, apparatus for, E. Bollinger..
mmonia and its sals, manufacture of, Rickman
\& Thompson.............
Animal trap, A. w. Paull.
en sulphuret of,
Parsons
utomatic driving gate, F. willard.
.......
xle box, cur, Garland \& Kenyon..
Axle page, w. Buckeridge....
Axle Jubricator, railway car, C
c.i............
 278,755
278,782 278,686
278,856 278,873
279,013 279,013
278880
278,019 278,709
278,732 278,732
278934
279,981
279,111 Bridle attachment, J. T. Massey Buckle for harness, etc., M.
Burial casket, A. Freschl..

Burglar alarm and door bell,
 Button, N. C. Newel bell, L. E. William

Brtton fastener, s. L. Pratt.
Button or stud, J. Moore
Button setting instrument, s. L. Pra
Button, sleeve, R. E. Brunacci....
Calcimine compound, B. L. James
Calipers, micrometer, G. F. Stillman
Camera. See Photographic camera.
Can opener, combination, H. Hartman..
Cant hook, H., C. A.. \& J. H. Peavey (r).
Car brake, G. F. Renouf.
Car brake, W. B. Turner.
Car brake, w. B. Turner...............................
Car brake, automatic, ,... Turner......278,834,
Car coupling, J. s. Bayley.
Car coupling, J. S. Bayle.
Car coupling, A. W. Case.
Car coupling, w. Emmett .
Car coupling, w. B. Nichols.
Car coupling, c. Van Deusen
Car coupling, C. Weik, Jr....
Car door and attachment, grain, C. C. Duffy
Car starter, E. Utz.....
Car wheel, J. R. Morgan.
Car wheel,
Card support. . Y. Hages.....
Card support, w. Hage........
Carriage curtain fastenerg s. c. Mecke.
Carriage curtain fastener, S. C. Meckel............. 278.989
Carriage top standard, G. M. Bechtel............ 278,676
Carriages, equalizer for spring, o. F. Lowe...... 278984
Carriage top standard, G. M
Carriages, equalizer for spri
Carrer. See Cash carrier.
Carrier. See Cash carrier.
Cartridge packing case, Livermore \& Russell....
Cartridges, tubular

278,980

Case. See Cartridge packing case. Ticket case
Cash carrier, A. W. Bodell............ 278,76
Cash transmitter, pneumatic, H. Gazaille............ 279,090
Casting, divided, Jocom. Jr............... 279009
Cementing composition, W. W. Campbell 278,681
Center board, folding, W. Childs................... 278,776
Chair. See Child's chair. Surgical and invalid
Chair seating needle, C. R. Long......... 278,982
Charcoal, manufacture of, H. M. Pierce....... 278,731
Child's chair, L. Schmetzer.
Churn, E. N. McKimm.
Cigars, making, 1. Brach....................
Circuit opener, automatic, D. Rousseau.
Clasp. See Album and book clasp.
Cleaner. See Flue cleaner.
Cleaner. See Yue cleaner.
Cloak, circular, C. W. Morr
Clock bell, H. Camp........
Clock bell, A. C. Sanford...
Clock movement, electric, J. Happersberger........................
Clock pendulums, device for adjusting. M.
Davis
Clothes wringer, H. C. Hopkins.
Collar, F. Beiermeister, Jr.......
Collar fastener, horse, F. Johnso
Collar for female wear ${ }^{2}$. Jonnson 278,970
Colter hub, plow, C. R. Hartman.................... 278,949
278
Confectionery and pill coating and rounding ma-
chine, T. Daniels.....
Comb. Sse Curry comb.
Comb. Sse Curry comb.
Composing stick, W. H. Gol
composing stick, W. H. Golding.................... 278,700
Roberts..................................
Corset, J. C. Tallman.................................... 2789,0. 289
Counting and registering the revolutions of a ro-
tating shaft, instrument for, G. D. Kittoe..... 279,095
Coupling. See Car coupling. Pipe coupling. Thill
coupling.
Crane, traveling, T. W. Capen........... ...278,774, 278,775
Cravat supporter,, S. Smiley
Cravat supporter, F. Smiley..031 278,939
Culinary utensil, L. Haas...................
Cultivator and cotton and corn planter, combined, ${ }_{278,810}$
D. J. McCall....
Cup. See Oil cup.

Curry comb, Bunce \& Sammis....................... 278866
Curtain pole, cornice, E. D. Mersereau............... 28,72
Curtain roller, c. C. Clawson........................
Cutter. See Bark cutter. Feed cutter. Vegetable
cutter.
Dental engine, D. H. Gilmer....................... 278,93
Dental vulcanizer, T. J. Carrick 279079
Dental vulcanizer, T. J. Carrick
Deodorizing organic substances, process of and
apparatus for, w. S. Hatheway................... 278,955
Desk, cash, J. Fanning......................... 288921
Die or swage, M. L. Ritchie.... 289,02
Die or swage, M. L. Ritchie.
Digger. See Post hole dig.
Digger. See Post hole digger.
Distillation, sublimation. or roasting of solid ma-

Door hanger, Eberhart \& Stevens Door lock, J. Mathiesen.	
Door securer, A. Boucher 2788862,	
Door spring, G. W. Downes.	
Draft regulator, H. W. Norwood.......	
Draft regulator for locomotive and other furnaces, H. W. Norwood.	
Drier. See Fruit drier. Sand drier Drill. See Grain drill.	
Drilling machine, hand, G. W.	
Dynamometer, A. H. Emery...	

Electric apparatus, commutator for, W. H. . Chap-- $278,911,278$

DESIGNS.

Burial casket, T. M. Taylor
Coffin plate, E. H. \& J. H. Eldridge
Curb, well, M. R. Daykin.
Engine frame, D. Whitlock.
Lamps, weight for extension, L. F. Griswold
Toy money box, W. S. Reed.
TRADE MARKS.
Articles and preparations for treating and improv
thg the finger nails, feet, and complexion, ce
tain, , E. Eray..........................
Boots and shoes, burnishing ink or blacking fo W. R. Albertson....... 10,332 to
Boot or shoe shanks and sole edges, burnishing ink or blacking for, W. R. Albertson.
Chocolate, Menier Cosmetic, o. c. Benjamin \& Son

CORNELL UNIVERSITY. MECHANICAL ENGINEERING, LECTRICAL ENCINERING, we. ENTRANCE EXAMINATIONS BEGIN AT 9
A.M. JUNE 18 and SEPT. 18, 1883 .
 The President of Cornell University, Ithaca, N.Y.

PATENTS.

MESSRS. MUNN \& CO., in connection with the pubication of the Scientific American, continue to exfor Inventors.
In this line of business they have had thirty-eight ears' experience, and now have unequaled facilities for he preparation of Patent Drawings, Specifications, and
he prosecution of Applications for Patents in the United States, Canada, and Foreign Countries. Messrs. Munn \& Co. also attend to the preparation of Caveats, Copyrights for Books, Labels, Reissues, Assignments,
and Reports on Infringements of Patents. All business and Reports on Infringements of Patents. All business
intrusted to them is done with special care and prompt. ntrusted to them is done with
A pamphlet sent free of charge, on application, conaning full information about Patents and how to proDesigns, Patents, Appeals, Reissues, Infringements, Assignments, Rejected Cases, Hints on the Saie of Paents, etc.
We also send, free of charge. a Synopsis of Foreign Patent Laws, showing the cost and method of securing patents in all the principal countries of the worid.
MUNN \& Co., Solicitors of Patents, BRANCH OFFICE - Corner of F and 7th Streets,

WATCHMAKERS.

RUPTURE

MANHOOD!

A Book for Every Man!
Young, Mididle-Aged, and Old.

 RUBBER BAGK SDIAREPACKING. BEST IN THE WORLD.
 This Packing is made in lengths of about 20 feet, and of all sizes from 14 to 2 inches square. NEW YORK BELTING \& PACKING CO.,

COTTONSEED CRUSHERS, OIL PRESS MAT FACTORY,
M. T. \& J. A. MURPHY, Proprietors,

No. 1300 Tchoupitoulas Street; New Orleans, La., Manufacturers of the best of every deserintion of OLIL PRESSS MATS, Wha of all grades. PRESS CLOTH.

The Brayton Petrolenm Engine Co

SAFETY: ECONOMY:-CONVENIENC

> While the cheapest motor in the world for continy runing, the cost of fuel becomes a mere trife when power is required at intervals only.
J. R. SMITH.
G. Sid
S. WORMER
\&

"BLAKE'S CHALLENGE" ROCK BREAKER.

 BLAKE CRUSHER CO., Sole Makers, New Haven, Conn.
 Sitise Co Handsome Illustrated Catalogue and Rural Register freetoall Merchants, send us your business cards for
trade list.

DROP RORGINGSN OF Rig

SPECIAL NOTICE.
A POCKET MANUAL FOR ENGINEERS,
Mec hanical Engined by JOHN W. HILL,

Of which first d,000 copies will be furnished, postage pre-
paii, at one dollar (\$1) each s subsequent copies fur
nished (postage prepaid) at one dollar and a nished (postage prepaid) at one dollar and a half (\$1.50)
each.
A pocket manual of useful information for mechanical
engineers, steam users, and mechanics, containing 224

NEW HAVEN MANUFACTURING CO.
MAGHINE TOOLS
Lathes, Planers, Drills, Shapers, etc.

mutifletrici Mom

 LOOSEPULLEYOTENTR.

SPEAKING TELEPHONES. THE AHERICAN BELL TLLEPHONE COMPANY W. Fresident.
Alexas,
T.eeasurer.
THen. N. Manager, Alexander Graanam Bell's patent of March 7, 1876 ,
owned by this company, overs every form of apparatus
including Microphones or Carbon Telephones, in whith
the ving iot tho
 The Commissionerof Patents sand the U. s. Ciriruect Court
have decided this to be the true meanig of his clam
the validity of the patent has been sustained in the Cir
cit
 telephonic inventions of Bell, Edison, Bertiner, G
Blake Pielps, Watson, and others.
 All telephones obtained ex ept from this company, or
its authorized licensees, are infringenents, and the
makers, sellers. and users will be proceeded against. Information furnished upon application.
Address all communicationsto the
AIIERICAN BELI TELEMONE COMPANY,

THE ORIGIN AND RELATIONS OF THE Carbon Minerals.-An extremety valuable and interest-
ing paper by Dr. S . Newberry, explaining the modeof
origin of the carbon minerals, their relations to eaeh
Sy

For Family, Sewing Machines, Dental, Jewelers,
Watchmakers' Lathes, Fans, te. Motor, with auto-
matic battery

ROOT'S NEW IRON BLOWER.

 P. H. \& F. M. ROOTS, Manufacturers,
 =END FOR PRHICED CATALOGUE.

ERICSSON'S New Caloric Pumping Engine, Dwellings \& Country Seats Simplest! Cheapest! Eco
nomical!, Abolutely Safei Delamater Iron Works,
C. H. Delamater \& Co.,
Proprietors,

GRAY'S GRINDSTONE DRESSER. Hidantixe foic

s. Botion:

James River. Impravement- - Submarine U. s . Exa ma

MCROCREMTCAL REACTIONS: - AT A

 Engineers \& Machinists,

9. Print Yorrom

SNDTOLONDON.BERRPYORTON THEBESH BAN FOR BANB SADE

The " MONITOR." $\begin{gathered}\text { Best Roiier Feeder } \\ \text { in the wrid. }\end{gathered}$ A NEWTING INJECTOR.

Water Flevators, For Conveyins
Pater and
Paternate Snd for catague. $92 \& 94$ Liberty St., New York

HWWJOHIS

 ASEESTIS ASBESTOS SHEAMMNGS,

ASBESTOS BUILDING
Made of strictly pure Asbestos
H. W. JOHNS M'F'G CO., 87 Maiden Lane, New York,
Sole Manufacturers of H.w. Johns' Genuin
 Descriptive price lists and samples free

or, VISIBLE DROP

LITTLE WONDERS

THNKINS PATFNT WATVFES

 Double Screw, Parallel, Leg Vises. Me G G BARREL KEG HOGSHEAD,
 Ntave
over 50
manuf
E. \& B
Buf

B ${ }^{\text {OGARDUS PATFNT UNIVELITAL ECOEN }}$

Horizontal Steam Engines,

Plain Slide Valve of Superior Design, in Every
ADDESS
LAMBERTVILLE IRON WORKS,
RUBBER BELTING, PACKING, HOSE.
 Caskets and R
Car Springs, Wagon Springs,
win Grain Driliter Rolls, Corrugated Rub ber Matting ber Matting. PATENT RED STRIP RUBBER BELTING.
 Asbestos Lined Removable Covering,

 COLUMBIA BICYCLE.

KORTING UNIYERSAL

INJECTOR

gion
Operated by one handale.
WIL LIFTHOT WATER
NO ADJSTMENT FOR VARYING STEA CODTHONE, PRSSURE.
LFT WAFER 25 FEET. SEND FOR DESCRPTTME CIRCU
OFFICES AND WAREROOMS:

HARTFORD
STEAM BOILER
Inspection \& Insurance COMPANY
W. b. Franilinv.V. Pres't. J. M. ALLEN, Pres't. J. B. PIERCE. Sec'y.

FRICTION

CLUTCH.
A. \& F. BROWN, 43 Park Place, New York.

0 (1)

Scimtific Smaxiaw

 FOR 1883.The Most Popular Scientific Paper in the World. Only \$3.20 a Year, including postage. Weekly.

This widely circulated and splendidylyillustrated teen pages of useful information, and a large number of riginal engravings of new inventions and discoveries representing Engineering Works, Steam Machinery, New Inventions, Novelties in Mechanics, Manufactures,
Chemistry, Electricity, Telegraphy, Photography, ArchiChemistry, Electricity, Telegraphy, Photography, ArchiAll Classes of Readers find in the ScIev'IIFIC ormation of the day; and it is the aim of the publishers to present it in an attractive form, avoiding as much as
possible abstruse terms. To every intelligent mind, possible abstruse terms. To every intelligent mind,
this journal affords a constant supply of instructive reading. It is promotive of knowledge and progress in Terms of sury where it circulates.
TIFIC AMERICAN will be sent for one year-52 numberspostage prepaid, to any subscriber in the United States or Canada, on receipt of three dollars and twenty
cents by the publishers; six months, $\$ 160$; Clubs.-One extra copy of the Scientific Amiritan will be supplied gratis for every club of five subscribers

One eqpy of the Scientific American and one copy
f the Scien tific American Suppleminnt will be sent for one year, postage prepaid, to any subscriber in the the publishers. remit is by Postal Order, Draft Express. Money carefully placed inside of envelopes, securely sealed, and correctly addressed, seldom goes and make all orders, drafts, etc, payable to

MIUNNN \& CO.
261 Broadway, New York. To Foreign Subscribers.- -Under the facilities of
the Postal Union, the Scientific American is now sent by post direct from New York, with regularity, to subscribers in Great Britain, India, Australia, and all other British colonies; to France, Austria, Belgium, Germany, Russia, and all other European States; Japan, Brazil,
Mexico, and all States of Central and South America. Terms, when sent to foreign countries, Canada excented, $\$ 4$, gold, for Scientific ambrican, one year; $\$ 9$, gold, for both ScIENTIFIC AMERIIAN and SUPPLEMENT for one year. This includes postage, which we pay. Remit

PRINTING INES:

