
a WeEkly Journal of practical information. art. SCIENCE. MECHANICS. CHEMISTRY and Manufactures.

IMPROVED CALORIC ENGINE.

of the piston a charge of air into a valve casing, where, by
termines what quanty of air is to be delivered to the bottom

The Caloric Engine and Siren Fog Signals Company, of means of a hollow cylindrical valve, it. is divided into two of the fire; 2, what quantity above fire; 3, what quantity of London, bave been occupied in producing caloric engines streams one entering into the annular space above referred air is to be rejected altogether; and 4, at what point of the | suitable for general purposes, and our illustration, which we | to, whence it descends and passes through the grate bars | piston's stroke the supply of motive fluid is to be |
| :--- | :--- | :--- |
| find in Engineering, shows the most recent, design. This | and the fuel, the other stream being delivered directly into | One great impediment tothe successful operation of a caloric | engine is of two horse power nominal, or 3 actual horse the spaces above the fire. The air passing through the in- engine, working at such a high temperature, has been the pow ho horse power nomin

power.
It consists essentially of three parts, viz., a pump for sup plying compressed atmospheric air; a generator or retort and ultimately carbonic oxide, so that the space above the which commands the communication between the generator plying compressed atmospheric air; a generator or retort $\begin{aligned} & \text { fre may be considered as a combustion chamber, containing and the working cylinder. This difficulty is now overcome } \\ & \text { into }\end{aligned}$

IMPROVED CALORIC ENGINE.
der into which the heated air is expanded for the purpose of \mid ered into this space enters into immediate combination with \mid practically a part of the main pipe for conveying the comoperating the piston. The generator comprises a cylindri- the carbonic oxide, and produces an intense heat with a cal frebrick lining of smaller diameter than the casing, so consequent increase of pressure. that an annular space is left between the two, and a set of grate bars upon which the fuel is burned.
After a fire bas been lighted in the generator, the air is,
in the first instance, supplied by a hand pump or (in the case of small engines) by turning the fly wheel until the necessary pressure is created, when the engine commences to work, and the air pump at the top delivers at each upstroke

The governor alters the position of the cylindrical valve according to the load on the engine, so that the proportion of air sent through the fire and into the space above is varied, and also the consumption of fuel, according to the amount of work being done by the engine.
In engines of larger size than the one we illustrate the governor is made to perform four functions, viz.; 1 , it de
pressed air from the pump to the generator; so that for every stroke of the pump there is a current of coldair around the valve. The piston, which, as is usual in caloric engines, is provided with a shield or guard, has rings of the Ramsbottom kind, which are found to answer well
The illustration shows a single cylinder engine, which is very satisfactory for ordinary purposes, but where great regularity and steadiness of working is essential, these engines are constructed with two cylinders, the cranks being
placed at right angles. From a test made with a twelve horse power double cylinder caloric engine the following re sults are stated to have been obtained : Indicated horse power of cylinders, 41.24 ; power of air pumps, 21.04 ; net indicated horse power, $20 \cdot 2$. Tested by the dynamometer the effective horse power was 14.39 . The consumption of ordinary gas coke was 3656 pounds per hour, which equals 1.8 pounds per indicated horse power, and 2.54 pounds per effective horse power. The difference between the indicated and effective power shows a considerable margin for friction, but jut must be remembered that the cylinders are necessarily larger than those of a steam engine of same power.

THE REBACKING OF PAINTINGS

A Washington letter describes the modus operandi of taking off the old canvas of some of the great paintings hang ing in the Capitol rotunda and substituting new. The pic ture is laid upon its back on the floor and a sufficient thick ness of cartridge paper gummed on the face to prevent injury. It is then turned over and the old canvas scoured off with pumice stone. This is a tedious operation requiring much care. The new canvas is stretched and covered with a thick adhesive substance whicb penetrates every part. The back of the painting is then covered with a more fluid mixture, when the canvas is laid upon it. The whole is turned over, the face of the picture coming uppermost Small flat-irons, heated to a temperature that will hasten the drying of the glues without injuring the paint, are passed carefully over the surface, the cartridge paper preventing harm. Toward the close heavier irons are used. The paper is then moistened and removed, when, after imperfections have been touched up, the picture is returned to the wall

MIND YOUR BUSINESS.'

An anecdote is told of a clockmaker who, being employed to construct a new clock for the Temple, London, was de sirous of a suitable motto to be placed under the clock. One day he applied to the benchers of the Temple for the motto, while they were at dinner, and one of them, anuoyed at the unseasonable interruption, testily replied, "Go about your business." Understanding this to be the selected motto, the clockmaker inscribed it under the clock, where it still remains to admonish all to attend to business.
The Continental cent, usually known as the Franklin cent because its legend was proposed by him, gives the same advice in the words: "Mind your business." This is frequently misquoted and corrupted to "Mind your own business," which instead of a counsel to diligence is a rebuke to meddling. Franklin's advice was an admonition to perform duty and to care for the concerns which make life success ful. It contains the very kernel of all business wisdom. A homely adage is that "It is better to drive your business than to let your business drive you," better to be a master and manager of your business than to be its slave and victim. This is the essence of the Franklin cent motto, and, whether acknowledged in so many words or not, it is the actuating principle and the underlying cause of all business management and business success.

A Historical Case of Acquired Automatism.
The venerable pianist, Franz Liszt, says the Times, has ceased to play in public on account of the stiffness of his finger-joints. The fact recalls the method by which he used to keep his fingers supple, a method which is also an interesting illustration of acquired automatism. It was his custom for more than forty years to read a mass immediately upon rising in the morning, and when that duty was finupon rising in the morning, and when that dian whe so seated, he placed
ished to seat himself at the piano. So ished to seat himself at the piano. So seated, he placed
on the rack in front of him, not a musical composition, but on the rack in front of him, not a musical composition, but
some new work of French or German literature, first being some new work of French or German literature, first being read. Then for a long time, sometimes for two or three hours, he would continue to read his book and practice scales. On one occasion, being asked if the reading did not interfere with the playing, or the playing with the reading, he replied: " Oh , no, the playing of the scales is entirely mechanical with me, and simply exercises the fingers; I give all my mind to the reading, very much as do our good ladies who knit stockings and read at the sametime.

An Elastic Lacquer.

A lacquer, said to be of great elasticity, perfectly supple and not liable to peel off, is made in the following manner: About 120 pounds of oil varnish is heated in one vessel, and 33 pounds of quicklime is put into 22 pounds of water in another. As soon as the lime causes an effervescence, 55 pounds of melted India-rubber are added. This mixture is stirred and then poured into the vessel of hot varnish. The whole is then stirred so as to be thoroughly mixed, then strained and allowed to cool, when it has the appearance of lead. When required for use, it is thinned with the necessary quantity of varnish and applied with a brush, hot or cold, preferably the former. This lacquer is useful for wood or iron and for walls; it will also render waterproof cloth paper, etc.

The United States Wood Vulcanizing Company of this city have had sixty of Jenkins' valves in use during the last year, some under steam pressure of 150 to 235 pounds per square inch, others under 150 pounds air pressure. The sizes vary from 4 inch down ward, and we are informed that the cost for repairs for the sixty valves has beeu less than three dollars.

Sruntifir Gmexicam.

ESTABLISHED 1845

MUNN \& CO., Editors and Proprietors. published weekly at
No. 261 BROADWAY, NEW YORK.

O. D. MUNN. A. E. BEACH.

TELEMS FOR THE SCIENTIFIC AMERICAN.
One copy, one year postage included...
One copy, six months postage included

s.
160
160

Clubs.-One extra copy of The Scientific American will be supplied
gratis for every club of five subscribers at $\$ 3.20$ each: additional copies at srame proportionate rate. Postage prepaid.
same

UUN \&

The Scientific American Supplement
a distinct paper from the Scientific anerican. 'THE SUPPLEMENT is issued weekly. Every number contains 16 octavo pages, uniform in size with Scientific american. Terms of subscription for Supplement,
t5.00 a year, postage paid, to subscribers. Single copies, 10 cents. Sold bs Il news dealers throughout the country
Combined Rates. - The Scientific American and SUpplimment ill be sent for one year postage tree. on receipt of se
papers to one address or different addresses as desired.
The safest way to remit is by draft, postal order, or registered letter.
Address MUNN \& CO., 261 Broadway, corner of Warren street, New Y
Scientific American Export Edition.
The Sciwndific Amierican Export Edition is a large and splendid peridical, issued once a month. Each number contains about one hundred large quarto pages, profusely illustrated, embracing: (1.) Most of the plates and pages of the four preceding weekly issues of the Scientific
AMuRICAN, with its splendid engravings and valuable in formation: (2) Commercial, trade, and manufacturing announcements of leading houses. Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the
world. Single copies 50 cents. Manufacturers and others who desire world. Single copies 50 cents. Manueacturers and others who desire
to secure foreign trade may have large, and handsomely displayed ansoccure foreign trade may have large, and hents published in this edition at a very moderate cost. The Scientific Am lilican export Edition has a large guaranteed circulation in all commercial places throughout the world.
CO., 261 Broadway, corner of Warren street, New York.

NEW YORK, SATURDAY, JUNE 16, 1883.
Contents.
(Illustrated articles are marked with an asterisis.)

TABLE OF CONTENTS OF

the scientific american supplement No. 389,

For the Week ending June 16, 1883.

Price 10 cents. For sale by all newsdealers
architecture and decorative art.-Chippendale Fur-

ENGINEERING.-Progress of the Panama Canal
Vibrations in Bridges, etc.-- 1 figure
The Monongahela Suspension Bridge at Pittsburgh, Pa ..
The Albula Bridge, Solis, Switzerland, an illustration The Watson Plan of Grain Elevator.--2 illustrations. Swift Ocean Steamers
Sewage and Sewern
Sewage and Sewerage.
III. TECHINOLOGY.-Apparatus for Extracting Logwood. -1 figure. Stretching Machine for Ribbons and Tapes. -1 figure The Sands Gun Camer
Antiseptic Substances

ELECTRICITY.-Microphonic Contacts.- $\mathbf{3}$ figures.. Solenoid Galvanometer or A
Reis' Telephone. -1 gigure ..
V. NATURAL HISTORY.-Angular Motion in Wind Storms.-By James hog
A Recent Ascent of Popocatapet1..
The Nose-Ape.-Illustration......
Model of the Giant Octopus of the West Coast of America.-
figure.
The G
The Genus Phenaco....................
The Mines of Old Mexico........
CHEMISTRY AND METALLURGY.-Determination of Lea from its Ore by Electrolysis.-By Prof. AD. Sommer. -1 figure. Separation of Nickel from Cobalt.-By
Anthracene from Petroleum Residue
Anthracene
oxalic Acid.
The New Metal-Zircon.....
MEDICINE AND HYGIENE. - Perception of Colors in Darkness.
Suture-Clamp Coaptation.-A New Method for Closing Wounds.
By J.H. CIPPEREY, M.D...................................... 6
Double Identity after Trepanning.-By J. N. MCCoRMACK. M.D.
Double Identity after Trepanning.-By J. N. MCCORMACK. M.D.. 62
Corn Silk Pharmaceutical Preparations.-By GEO. W. KENNEDY. 62 Corn Silk Pharmaceutical Preparations.-By Geo. W. KenNedy. 62
. BIOGRAPH Y.-Marcel Deprez.-Portrait..................... 62
IX. MISCELLANEOUS.-Scientiffe Exhibitions.-Magic Cabinets.-4
figures.. figures...
Large
Large Sale of Mississippi Lands.

OVERTHROW OF THE BARB FENCE PATENTS.

For several years past the manufacture of barbed fencing wire has been under the control, substantially, of a single concern, namely, the Washburn \& Moen Manufacturing Company, of Worcester, Mass. They acquired an eminent position in the trade, in its early days, by the exercise of superior skill and enterprise in producing machinery to make the wire, by honest endeavor to furnish a first class article, by promptness in filling orders, and finally by contenting themselves with a very small margin of profit. This was the original basis of their trade; it has been steadily maintained, and upon it has arisen the gigantic business now governed by the corporation. As soon as the barb fence business began to develop into large proportions, other makers became anxious to dip in and grasp a share; this they could only do by supplying an inferior article. To protect themselves as far as possible, to prevent the ingress and competition from makers of poor stuff, Washburn \& Moen bought up all of the principal patents relating to barb fences; they then applied to the Patent Office and obtained reissues of some of the oldest of these patents, on which new altroad claims were allowed. Some of these reissued claims covered a wire or fence bar of any sort having barbs or points upon it. Other claims were for merchanism of any description for making any kind of barb fence. With these claims and reissues, some of which had been tried and sustained by the courts, the manufacture was so guarded and surrounded by bristling patent points, the margin of profit being low, that few makers have cared or ventured to fight the Worcester holders, but have preferred to pay them a small royalty as licensees.
Under several decisions of the Supreme Court of the United States in various cases, it has been laid down as a new rule that the reissue of an old patent so as to make it cover, by new claims, any new or broader ground than the original patent, is invalid. In view of these decisions Griesche and Fuchs refused to pay royalty to Washburn \& Moen. Issue was joined, and on the 4th inst., in the United States Circuit Court, St. Louis, Mo., Judge Treat decided the case, holding, in effect, that the broad claims of the barb fence patents are invalid, both as respects the article produced and the machinery for making the same.

The magnitude of the barb fence business will be understood when we state that the estimate of the quantity of this fencing made in 1882 was 80,000 tons, or 500,000 miles in length. The firms claiming under their patents the exclusive right to manufacture barbed wire are said to have made right to manufacture barbed wire are said to have made
within the year in royalties from their licenses and from within the year in royalties from their licenses and from
extra profits in their own business between $\$ 4,000,000$ and $\$ 5,000,000$.
The royalty, though large in the aggregate, amounts in the detail only to $\$ 2$ per 1,000 feet of fencing-not a heavy burden upon individual farmers.
Those who imagine that the overthrow of these patents is likely to result in any material reduction in the price of barb fencing, as paid by consumers, probably are mistaken. The decision may bring about a greater division of the trade and its profits than now exists; but where the margin of profit is already low there is not much room for the lessening of prices to the general public.

THE INDUCED CURRENT.

In our own little section, circumscribed by a very short radius, nature seems to be unceasingly striving to obtain an equilibrium : the war of the elements is constant; the changes are rapid; measured by our standard, the propor tions are great-yet the grand barmony of the whole we guess at, but do not understand. A change in the density of the atmosphere is followed by wind: gales, hurricanes, and cyclones. Water seeking a level causes the current; mechanically, the moving water scours the bottom, erodes the banks, and carries a current of air along with it on the surface. We imitate nature in a miniature sort of way in regard to the actions of gases and liquids, and style the results induced currents.
If two copies of this paper be rolled up so as to form tubes, one two inches and the other one inch in diameter, all the apparatus is at band with which to illustrate some of the more striking effects of these currents. Holding the larger tube pressed against the mouth, we blow through it and note the force with which the air strikes against the hand placed about three inches from the other end. Now if the tube be held a short distance from the face and we blow toward it with the same effort as at first, the pressure against the band held in front of the other end will be much in creased. In the first instance the current was only that of the expelled breath; in the second, this current, as it passed through the tube, drew along with it a certain portion of the surrounding air. A candle held near the face will be affected by these currents moving toward the entrance to the tube. Their presence can also be detected by the difference in temperature of the two currents, the second being the cooler. If we go through the same programme, but with the small tube held in the mouth, like results will follow. With the small tube fasteued about half way through the other, leaving a space between sides of the two, we have a crude imitation of an important machine. Air or water sent through the outer tube, entering at the end from which the little tube projects, will make a powerful suction througl the inner. On this plan the sand pump, so successfully used in the Hudson River Tunnel, is designed. That part corresponding to the small tube is placed in the mixture
through the surrounding chamber, when the mixture is now venerable James C. Booth, president of the American drawn up and carried away by the current. A similar method has proved most useful in dredging, and even a bottom of hardpan has yielded to the force of the inrushing water, and gravel and rock been sent rattling out through the tube.
In certain smelting operations, where the fumes are unhealthful, a suction placed instead of a blast has been found to remove all traces of the noxious gases. With the blast every little hole is an outlet for the gas, but with the suction the holes become harmless because of induced currents entering them.
When the hand is held near a stream of water flowing from a faucet, wind will be distinctly felt. The volume and force of this wind depend upon the volume and velocity of the water. A sluggish stream will produce no motion of the air that can be felt, but the same stream tumbling over a fall will create a gale. More than fifty years ago this fact was made use of by a mechanic residing in Watertown, this State. He constructed a box which he placed in front of the falls, as near the water as possible, learjing the side next the water open. This was connected at the bottom to a roughly-made wooden box, through which the current of air was led some distance to his shop where it furnished all the blast required by the forge. One of the schemes for utilizing a part of the enormous energy now wasting over Niagara is identical with the above. The measure of this force can be appreciated by those of our readers who have been near enough to the descending torrent to feel its influence
One of the most characteristic features of the induced current is the apparent increase of power resulting from its use. With the hand held in front of the tube first mentioned the force is considerable, but if the hand be held the same distance from the mouth, say three inches, the expelled breath strikes it with a sligbtly greater force. The difference is caused by the friction in going through the tube, the effort to draw in the outer air, and the loss of particles of air which do not enter the tube

AMERICAN ASTRONOMICAL SOCIETY.

At the June meeting of the American Astronomical Society, held at the Packer Institute, Brooklyn, June 4, the subject of the "Fuel of the Sun" was discussed for the second time. Professor Young, of Princeton, opening the discussion, said that to account for the heat of the sun there might be some truth in Helmboltz's notion that the sun is fed on its way through space with meteors attracted to it by its immense mass.
If this theory were true, then the earth ought to get as much heat from shooting stars as from the sun, and the surface of this globe would have three tons of meteoric matter to the square mile. Yet in some way this objection could be explained away. If we are to suppose that heat is derived from matter distributed through space, we should first remember that the matter would make itself felt on the planets of the solar system. Professor Proctor must be wrong in saying this does not necessarily follow. Another thing: if, as some suppose, a current of meteors toward the sun existed, then mischief would be played with comets. They would encounter resistance. Then, too, the temperature of the sun would not be hotter from such meteoric combustion than the carbon points in the electric light.
Professor Young had always supposed that the heat in the sun was not less than 10,000 degrees Centigrade. Yet, as a very slight iucrease of heat produces an immense increase of radiation, the heat of the sun might be lower than he had supposed; yet he could not believe it as low as that of an electric light. Another puzzling theory had been proposed, viz., that the sun sends its heat only to that which receives it, only to each of the planets, while space outside of a direct line from the sun to the planet remains cold. The idea being that the heat action between sun and planet was reciprocal like that of gravitation. The trouble with that theory was that heat must radiate on all sides, not in one direction only. Finally, there was a theory that solar heat was due to the contraction of the sun's body; the objection to the theory was that it put a limit to the universe. If it is a true hypothesis, then the sun could not be more than $15,000,000$ years old, and it could not continue to give heat more than $15,000,000$ years more. Such a limitation is not to be thought of.
The subject was further discussed by Mr. S. V. White, president of the society, Mr. G. P. Serviss, secretary, Professors Stevens, Levison, and Parkhurst, Mr. G. D. Hiscox, and other members of the society. The subject selected for discussion at the October meeting is the moon.

THE FRENCH PHYSICAL LABORATORIES.

It is within the memory of many now living that the first laboratory for the instruction of students in the science and art of chemistry was instituted by the celebrated Liebig, at Giessen. Previous to that time most of the chemical work and investigations had been done either in the back room of an apothecary shop or in the kitchen of some enthusiastic preacher like Priestley. The late Professor Woehler gave an interesting account of how he pursued the study of chemistry with the famous Berzelius in Sweden, and of how the faithful Anna washed dishes in one end of the room, while master and pupil solved the mysteries of nature in the other end of the same room. Probably the laboratory of this immortal Swede differed but little from the ordinary wash kitchen of to-day.
For many years American students, beginning with the

Chemical Society, flocked to the laboratory of Wôehler to obtain what they could not get on this side of the Atlantic, practical instruction in chemistry. Then came Bunsen and Kolbe, Kekule and Hofmann, and now Fittig aud Meyer with a host of others, who open their willing doors to American students. But the day is passed when chemical students are obliged to cross the ocean. Nine years ago a chemical laboratory was opened in this city where analysis was taught and practiced, and six or seven years ago a laboratory for research, equal to any in Europe, was opened in Baltimore. To-day no institution worthy the name of college lacks a chemical laboratory of some sort.

Why has chemistry enjoyed such an advantage ove physics? About ten years ago Professor Pickering established the first working physical laboratory for purposes of instruction in the Institute of Technology, in Boston, and at a little later date Professor Mayer did the same at Hoboken. Now most of the larger cities, excepting New York, have a well equipped physical laboratory. Probably the best equipped of these is the one in Johns Hopkins University, but a new one is to be built in Cambridge soon, and we shall be disappointed if Professor Trowbridge does not make it the best in the world.
In Germany the Professor is more thought of than his laboratory, but where the former is excellent the latter is rarely poor. At present, Professor Koblrausch, at Wurzburg, and Professor Helmholtz, in Berlin, seem to be the favorites with our countrymen.
The object to be attained by a course of instruction in physics is twofold: First, to obtain a thorough knowledge of the laws that govern matter and force; and an understand ing of the action of heat, light, and electricity upon matter. Secondly, to acquire the power of investigating these properties and discovering new laws. It is unnecessary to say that a person should be familiar with known facts and laws before attempting to discover new ones. The former may be accomplished more or less perfectly by reading books and hearing lectures; the latter involves actual work; but we believe that the former is best accomplished by actual contact with the things themselves, so that their properties and relations may become familiar as solid, first-hand mental acquisitions, for this trains the judgment as well as develops the power of correct observation. This is not the opinion of all educators, for Prof. T. C. Mendenhall says that he " would relegate to the lecture table of the instructor all illustrative experiments and qualitative work necessary to a good understanding of the underlying principles of the subject, which every student should possess when he enters the laboratocy.'
Without venturing to differ with so distinguished an authority we still think that the majority of college students and others, especially those that do not intend to devote their lives to the pursuit of this science, but to become teachers, chemists, engineers, architects, inventors, etc., may derive much benefit from a course of practical instruction. What if the crude experiments of the student do seem to disprove the law that he was expected to establish? It leads him to take into consideration the secondary causes and con ditions, and to make due allowance for errors of experi ments. It were well for the business man, still more for a scientific man, to learn to distrust the adage that 's seeing is believing."
In all the walks of life effects are traced to the wrong causes for want of the power or habit of making allowance for secondary causes. Cbarlatans would find their tricks exposed, mysterious sights and sounds lose their mystery, were people more capable of drawing correct conclusions from their observations. Wonder workers now excite the admiration only of the ignorant masses, but lawyers, politicians, and theologians impose upon the better educated, and scheming financiers, Keely-motor men, and pseudo-scientists succeed in robbing men of high ivtelligence, while we all yield our bodies and our purses to quacks and other doctors of medicine. In proportion to our ignorance of a subject is our danger of being duped by those skilled in its mysteries. But to return to our laboratory; while the student should oot be expected to rediscover for himself the principles of physical science, be may be allowed to verify these laws by measurements and determinations of his own until he feels rather than thinks these laws are true. And while doing
this he has learned his own personal coefficient of error and is gradually reducing it to a reasonable limit.
Having given our views, the results of much observation and study, as to what can be done in a physical laboratory, without, however, claiming for them any originality, we will conclude with a brief description of the physical laboratory under the direction of Professor Desain in the Sorbonne,
Paris.
At the time of our visit it occupied a number of separate and distinct rooms scattered about in the old buildings that constitute a portion of that venerable institution. In each room was from one to three pieces of apparatus. Near each there hung, in a little trame, brief directions in French for performing a given experiment, and formula for calculating the results. The experiments were usually such as could be satisfactorily performed in two hours, and the sessions
were limited to that time- 10 to 12 A.M. Professor Desain and several assistants were then on hand to give advice, explain difficulties, and offer suggestions.
The following is an incomplete list of principal experiments to be performed, but this particular order was not ments to be performed, but this particular order was not
insisted upon, as no two men could use the same instru-
ment the same day, and each important piece of apparatu was usually engaged a week in advance. Of course a person experimenting with light was expected to finish that before taking up electricity, or vice versa, but when sunlight was required, of course the clerk of the weather had to be consulted.

1. Making and graduating thermometers.
2. Estimating the density of a vapor, by Dumas's method.
3. Measuring the magnifying power of microscopes.
4. Measuring the length of waves of light by Fresuel's rrors.
5. Ditto with Newton's rings viewed obliquely.
6. Ditto, viewed perpendicularly.
7. Ditto, with Billet's demi-lenses
8. Ditto, with a diffraction spectrum.
9. Use of Norremberg's polarizing apparatus.
10. Use of Biot's rings.
11. Use of Babinet's compensator.
12. Use of Hoffman's polarizing microscpe.
13. Circular polarization. Biot's laws verified.
14. Jellett's apparatus.
15. Measuring the rotatory power of quartz crystals.
16. Soleil's saccbarimeter.
17. Laurent's saccharimeter.
18. Reflection from metals, Jamin's apparatus.
19. Index of refraction measured with a prism.
20. Ditto, by interference, Jamin's mirrors.
21. Calorific spectrum of the sun.
22. Absorption of heat.
23. Polarization of heat, and law of Malus.
24. Use of Melloui's apparatus.
25. Reflection of heat.
26. Internal resistauce of batteries.
27. Resistance of wires, Wheatstone's bridge.
28. Measurement of electromotive force.
29. Measuring the horizontal component of the earth's agnetism. M. T.
It will be noticed that the experiments upon heat and light were numerous and exhaustive, this laboratory being par ticularly well equipped with excellent apparatus for that purpose. In certain other laboratories, where these receive less attention, electricity and maguetism are better represented.
Ou the whole, we cannot refrain from saying that a course of experimental physics under Professer Desain well repays the time it takes, while his kindness compensates for his ignorance of our tongue.
E. J. H.

ROUND NOSES VS. DIAMOND SHAPE.

Unlike most mechanics, the machinist has a liberty of ndividual expression, one that is not shared by mechanics generally. It is shown in his selection and origination of shapes for tools. And yet there is no department of mechanics where so much of system and absolute rule exists as in that of the machinist; the reproduction of the same sort of machine tools and the duplicating of the same styles of producing machinery is the main object of the machine shop. The production of uniformity in the parts of machines, which is gradually extending, demands absolute sysem in many of the tools used- system as to form, size, material, and methods of operating. Yet with all this tendency to uniformity the machinist is largely independent in his selection of forms of bench, lathe, and planer tools. Adopted shapes of tools, which are not necessarily determined by gauge, have not been successfully introduced into any shops. Attempts have been made, in some instances, to designate the style of lathe turning tools and planing cutters for certain purposes, as roughing and finishing, which do not necessitate gauge exactness. But, even if the tool-forger works to any prescribed pattern, the tool-user can change its characteristics at the grind-stone; a right of which he is not slow to avail himself.
In the use of interchangeable lathe and planer tools-stock and bit, instead of solid tool-there has been a pressure, in some instances, to substitute a round-nosed cutter for the diamond point for roughing up and also for finishing. It would be difficult to convince any machinist, not educated to the round-nosed tool, to believe that it will do the work as rapidly and as well as the ordinary diamond point does. Different workmen have their different shapes for the diamond point. Most experienced machinists insist upon having the innermost cutting point-that which reaches nearest he center of the work-somewhat higher or more projecting than the after-cut portion. Then there are others who insist that a level top to the tool is the best, but one of the most experienced workmen, with many years of practice to draw from, insists that the point of the turning tool-the diamond point-shall be the lowest of any cutting portion, and illustrates it by a pocket knife and a round stick to prove that the cutting of the iron should not be a wedging and gouging out of the material, but a shaving of it off from the core by such a shape of the tool as to insure a drawing cut.
It would be difficult, even after experimental tests, to decide upon any one particular form for these tools, so much depends upon the user, the workman. One man will turn out a large amount of excellent work with a tool that another would condemn as almostuseless; so, although the practice may be indulging "quirks" and fancies, it is probably good policy to allow freedom to the workman in this respect, so ng as it does not degenerate into costly experimental folly.

Friction Wheels.

So much has been published in mechanical periodicals and manuals about belts and gears that another method of transmitting power appears to be well nigh neglected. But for many purposes where absolute contact is permissible or desirable, the use of friction wheels is an excellent substitute for gears. The advantage which they formerly possessed over gears, that of noiselessness, may no longer exist, for gears are made now to run in perfect silence-that is, gears which are properly cut. But friction wheels bave other merits, not the least of which is that the machine they drive can be instantly stopped and started by the slightest separation of their surfaces. These wheels can be used in any position where gears can be run, and may be of bevel or of flat faces. The faces require, however, to be held in close contact while running, as it is upon their friction that their action depends. The face of one of the wheels must be of a somewhat yielding or elastic character, as of leather or wood. Vulcanized rubber and the composition known as "vegetable fiber" are also used. The driving wheel face should always be of the softer material, or it will speedily become worn into hollows. As an instance, let the machine to be driven be suddenly stopped by the slight lifting of the face of the driving wheel. The driving wheel continues to revolve, and when the machine is started again by pressing the two wheels together, the driving wheel will rotate against a single point on the face of the driven wheel before the inertia of the machine can be overcome. In this case, if the driving wheel face is of iron and the face of the driven wheel of leather, the leather will soon be worn into corrugations across its width.
Wheels having faces of the same material also work well together, as two wooden faced wheels, or two of rubber. The wood ought to present the ends of its fibers, the blocks being set radially in a skeleton wheel of iron. Wooden wheels should be kept from moisture, which tends to soften and swell them, rapidly impairing their shape, and rubber wheels should be kept from vil of all kinds, which soon rots this material.

Tanned Fabric

The Chronique Industrielle states that Mr. H. J. Piron ha recently invented a process of rendering fabrics impermeable and preveuting their rotting, without interfering with their softuess or increasing their weight. This process he calls "tanning."
It is well known that the bandages that surround the heads of Egyptian mummies are always found to be remarkably well preserved. Now, this is due to the fact that they have been impregnated with some sort of resin. Mr. Piron thought, then, that in order to preserve vegetable fibers it would be necessary to have recourse to the vegetable kingdom, and he therefore turned his researches in this direction. Of all the products that he tried, the one to which he gave preference was that which is extracted from birch bark, and which serves for perfuming Russia leather. When birch bark is distilled there is obtained a light oil, one quarter of which consists of a peculiar phenol, and this latter is what communicates that well-known agreeable odor to the above'named leather. It results from recent investigations that the green tar of birch contains neither acid nor alkaloid. This tar forms with alcohol a solution which is at first very fluid, but one which when once dried, resinified, becomes proof against the action of alcohol. This solution unites with the most brilliant colors.
As may well be imagined, these qualities permit of its entering thoroughly into every portion of a fabric. Not only does it fill the capillary vessels, but it also covers them with a varnish possessed of great elasticity, unaffected by acids and the corrosive action of sea water, and well enduring changes in temperature. Its density is slight, and it therefore but slightly increases the weight of the fabric prepared with it. This varnish is not only inexpensive, but satisfies all the conditions required of such a material; and the aromatic odorthat it possesses has the merit likewise of keeping out insects. As for microscopic vegetations, such as mildews and moulds, these cannot develop in the prepared fabric, inasmuch as it is impossible for air or water to gain access to the fibers. Mr. Piron's invention is applicable to all fabrics made of vegetable fibers, as well as to rope, cordage, etc.

According to the Milling World, sackcloth or canvas ca be made as impervious to moisture as leather, by steeping it in a decoction of one pound of oak bark with fourteen pounds of boiling water. This quantity is sufficient for eight yards of stuff. The cloth has to soak twenty-four hours, when it is taken out, passed through running water, and hung up to dry. The flax and hemp fibers, in absorbing the tannin, are at the same time better fitted to resist wear.

THE COLUMBIA TRICYCLE

The mechanical refinements applied in the construction of bicycles have not only created a demand for the tricycle, but have brought out the adequate means for supplying it; and it is a matter of gratification that Americans have contributed as much to the structure of the modern tricycle as they did to its precursor.
We find the latest and best development of tricyole in the Columbia of American manufacture. Two large driving and supporting wheels abreast, one smaller steadying and steering wheel in front, rotary crank action and chain transmitting devices for propelling mechanism, equal communi cation of power to both driving wheels, with means for differentiating it for curves, adaptation for position for driving by means of changing the weight of the rider from one point to another, in a natural and easy motion; adjustability of Fig. 2

the handles are inclined, so that the pull upon them is in the line of the rods, and the position of the hands is very comfortable and natural. The wheels are made with good width of hub and flange, a large number of spokes, and with deep and rigid rims. The tires are moulded in endless rings of the best rubber, and will show the earned reputation of C_{o} lumbia tires for never coming loose.
One of the most ingenious and effective parts of this new ricycle is a friction brake, applied in the form of two disks to the chain wheel, with an arrangement by which almost unlimited pressure can be brought to bear, and the machine brought to a halt on the steepest incline. The Columbia ball bearing (Figs. 3 and 4) has done as much as any other one feature of construction to give the machines of this man facture their reputation. There are two sets on the main shaft, two sets on the crank shaft, one set in the front wheel, and two sets in each pedal, so that however the weightor the speed may be dis. tributed, friction is reduced to a minimum. Swivel or compensating bearing box cases are provided for these bearings, so that the bearings arealways true. This tricy cle is constructed for general use, under all sorts of circumstances, on all sorts of roads, by ladies and gentlemen, by the light or heavy, and for taking a reasonable amount of baggage. It is a comparatively light machine, as light as it seems practicable to make without leaving out desirable things, and saving metal where it is needed, and it is exceptionally easy running.

Roofing-linen.

According to the Deutsche Bauzeitung, a new covering material called "roofing linen" has been introduced, which is about half the thickness of good carton-pierre, and consists of a layer of coarse linen which lies between two layers of thin roll-paper. The cohesion of the three layers is effected by an asphalt composition of special make, called "roofing-paint." It is stated that this paint should be freely applied to roofs immediately after their completion, and again about six weeks afterwards. This operation should, it would seem, be repeated every few years. The linen costs about 10d. be repeated every few years. The linen costs about $10 d$.
to $11 d$. per square yard, and the paint 10 s. to 11 s. per cwt. to $11 d$. per square yard, and the paint $10 s$. to 118 . per cwt.
Although this new method appears to have points which deserve commendation, a real estimate of its value cannot be formed until the material has been exposed to the test of several years' use.

Mechanics Appientices.

In an article-"Apprentices to Mechanical Trades"-in our issue of May 19; it was stated that the facts show the popular opinion that learning mechanical trades had failen into disfavor with our boys to be erroneous, and the experience of a single establishment was given to substantiate that view. That establishment is the Pratt \& Whitney Compauy, Hartford, Conn. In a subsequent conversation with pauy, Hartford, Conn. In a subsequent conversation with

Fig. 1.-THE COLUMBIA TRICYCLE. Mr. F. A. Pratt, the president of the company, he stated that he employs as many apprentices as can be usefully occupied, about 70 or 80 in a total force of nearly 700 hands, and in a large proportion of cases the apprentices endeavor to be retained in employment at the end of their apprenticeship. Mr. Pratt believes it to be profitable and economical for the company to educate their own workmen, and not only are their 'sday hands" largely from their own apprentices, but a large proportion of the contractors also. The applicants for apprenticeships come from all parts of the country, are frequently high school graduates, or from the Sheffield Scientific Scbool, New Haven, and the applications are so numerous that the company can take their choice of boys with good school educations and proper, manly habits.

Alluding to the article in a letter, Mr. Robert Allison, proprietor of the Franklin Iron Works, Port Carbon, Pa., gives some facts relative to his own practice in regard to apprentices, which is similar to that of the Pratt \& Whitney Company. With a total force of frow 75 to $100, \mathrm{Mr}$. Allison educates from nine to eleven apprentices, who are taken for three and a half years on the terms of 50 cents per day for the first year, 60 cents for the second year, 70 cents for the third, and 80 cents for the last six months. Twentyfive cents per week is retained from the wages as a bond for faithful service to the end of the term, and is returued to the apprentice in its
toothed wheels (Fig. 2), so arranged and operating in connection with the chain wheel as to distribute the power to the two wheels in proportion to the resistance, evenly on a smooth, straight course, more to the outer wheel on a curve when it ravels faster than the other and more distance, and more to the trigged wheel where obstruction is unequal, and the whole is completely automatic.
The frame and general construction of this tricycle is well shown in the large cut, the frame being of fine steel tubing and very rigid, the rack and pinion front steering mechanism allowing the track to be visible for all three wheels The seat is adjustable, both fore and aft, and vertically, and
ccumulated form at that time. Lost time, except holidays, may be deducted, at the pleasure of the employer. A brief probation is a preliminary to the final contract of apprenticeship, to ascertain the fitness of the candidate. Under these conditions the applications are thirty or forty to one reception, which shows that the desire to learn trades has not died out among American youth.

French silk manufacturers are reported to be very hopeful as to the capabilities of a big spider lately discovered in Africa, which weaves a yellow web of great covered in Africa, wh
trength and elasticity

MIXER FOR CARBONIC GAS AND WATER.

The engravings show an apparatus invented by M. Mondollot for intimately mixing carbonic gas and water without a mechanical agitator, to which there are serious objections. The means for charging water with an effervescing gas by this device are very simple and said to be effective. Friction is avoided, leakage is prevented, and the bottling is unattended by violent spurts and ebullition.

THE CASCADE SATURATOR

The apparatus consists of two vessels, or chambers, A and B, separated by the partition, C. The smaller one, at the top, is the distributer, and the other the accumulator. The gas and water are forced by a pump through the pipes, N , into the distributer, where they separate in consequence of difference in weight. As the pressure increases by the action of the pump the water rises in the tubes, 0 , and descends to the diverging annular space in the top of the accumulator, where it is forcedin spray through the apertures, i, on a mass of broken marble, or other carbonate of lime material, through which it passes and descends through the perforated diaphragm, D, in a fine mist.

The water during this process is in contact with the carbonic acid gas at a ligh pressure, and becomes thoroughly charged. The gas escapes from the distributer by the central tube, t, into the bottom of the accumulator, where it passes through the perforated plate in little bubbles. Bottles, or other vessels, arefilled at the pipes, M.
It will be seen that as the pressure in the lower cylinder decreases by drawing from it, and increases in the upper cylinder by the action of the pump, there is a constant tendency to equilibrium, the water under pressure falling in a cascade into the gas, and the gas, under pressure, rising through the water, giving the largest amount of contact surface.

Ensilage.

Mr. Atkinson, of Boston, recently sent a cask of maize fodder and a cask of rye to Professor Voelcker, the wellknown agricultural chemist of England, with the view of showing the sort of ensilage prepared in America. Having analyzed the samples, the Professor reported the maize
fodder to be perfectly sound and the rye very slightly mouldy; but both were wholesome food for cattle. A little cotton-seed meal having been added to the fodder, it was given to cows on an experimental farm. They took to the ensilage at once, and evidently enjoyed it. With careful management, Mr. Atkinson calculates that four cows can be maintained in good condition to one acre of ensilage.

THE INFLUENCE OF STORMS UPON WATER TRAPS.
The last issue of the Sanitary Record (London) contains valuable article on " The Influence of Storms upon Wate Traps," by Henry Masters. The points he makeshave applica tion in cities in which the sewers are not ventilated. Strange ly , there is considerable opposition to sewer ventilation, or, at the least, indifference to it; the result is indicated below. There are three influences which affect the water seal of a trap, viz., the diffusion of gases, the absorption of gases by the trap water, and pressure by storm water; it is the latter influence which I propose in this paper to describe. I will suppose a common sewer to be cylindrical, and in dry weather the quantity of sewage passing through it is shown by the borizontal lines at a, Figs. 1, 2, and 3, and the space, b and c, above the average sewage contains sewer air; so long as the sewage does not rise above the average height, a, no pressure exists (except by the diffusion of gases, with which at present we bave nothing to do). But sup pose a storm occurs, and sufficient water passes into the sewer by way of the street gullies and bouse drains to raise the water in the sewer to the perpendicular lines, b, a cer tain amount of pressure will be the result, and the air, b and c, will be compressed into the smaller space, c, and in the proportion of b to c. The condition of the sewer air will now be much more dense and elastic, and press equally upon the iutrados of the sewer and on the surface of the sewage, and if there were no escape for the compressed air, and the storm water rose higher and higher, the air would become denser and denser, until the pressure of the imprisoned air became equal to the entrance supply column of storm water, and then the water would cease rising; in our unventilated sewers this condition of things would exist,. if it were not that a large number of house drains join the common sewer somewhat in the manner shown in my diagrams.
I have shown upon Fig. 1 an open disconnecting trap, d, and what would be influence of water rising (as I have described) upon such trap. The compressed sewer air is being forced into the house drains, as shown by a series of circles; in the first place, the air will force the trap at d, and then may escape into the open air through the perforated cover, b. But if the soil pipe, c, be open at its top, or there be any defect in it or in the house drains, there is a possibility of an up or inward current being established, and a portion of such sewer air be drawn into the house drains and escape by way of the soil pipe, or into the house; thus, to a large extent, the house drains will not be effectually cut off from the common sewers, for sewer air by entering the house drains neutralizes to a considerable extent the value of the disconnecting trap.
Fig. 2 shows a common arrangement of trapping drains, and, also, a common arrangement of four inch soil pipe venilation by the extension of the soil pipe less in capacity than the soil pipe itself; it is not an uncommon thing to find such extension pipes varying from three-eighths of an inch to three inches in size. The effect of pressure in such cases is as I have again shown by circles (see Fig. 2). It will be seen that the compressed air ascends freely until it reaches the bend of the soil pipe at d, and at this point a portion escapes up by the small soil pipe extension and into the open air, as shown by small circles, but the major part forces the closet trap, and, of course, enters the house, thus showing for effective ventilation the absolute importance of soil pipes being extended their full size, and, if terminals of any kind be fixed upon their upper ends, the openings of such terminals must be at least of the same area as the soil pipe, for any less size would check the ascension of the air, and an undue pressure be put upon the closet trap water, and the chance of the water seal being broken iv consequence.

In dealing with large soil pipe drains, great difficulties xist in effectually arranging the drainage of a house so as o exclude sewer gas, and to exclude this no one will doubt to be of primary importance. If a disconnecting chamber, or an escape pipe, be the safeguard adopted, the perforated grating, or pipe, should be of equal area to the drains it has to relieve; thus, a nine inch drain must be provided with perforations or pipe equal to about sixty-three superficial nches, a six inch drain twenty-eight inches, and a four inch drain thirteen inches. Perfect safety cannot be obtained unless this rule is made absolute.

PORTABLE MEAT SAFE.

This is a very simple invention which will prove exccedingly useful in summer to protect joints of meat from flies

PORTABLE MEAT SAFE.

or insects. The hook is intended to hold the joint, and the hoop prevents the gauze from coming in contact with the meat. As the joint is completely surrounded by the gauze it is impossible for the flies to effect an entrance.

Silico-fluoride of Ammonia as Test for Boric Acid.
Prof. Stolba says that many boron salts, especially those soluble in water, impart a fine green color to the alcohol or colorless gas flame when mixed with silico fluoride of am monia.
Owing to the intensity of the color, this reaction can be made use of for testing for boron in substances that are totally insoluble in water and acids, as, for example, in glass, enamels, tourmaline, axinite, etc. He proceeds as folows: The substance to be tested is pulverized and mixed with an excess of carbonate of soda and fused. When the fused mass is cool, it is ground t_{0} a very fine powder and mixed with an equal part of the silico-fluoride.
When this mixture is brought into the flame on a platinum or even an iron wire, the smallest trace of boron will be ndicated by a very distinct and persistent green color.Listy Chemicke.

luminum-coated Iron

Dr.Gehring, of L:andshut. has invented a process by which ordinary iron may be rendered highly ornamental. The in-vention-of which, however, we have heard very little lately-of obtaining aluminum very cheaply led Dr. Gehring to coat iron with aluminum, in the same way as iron plates are now tinned, and converted into tin-plates. The inventor states that his process is inexpensive. He uses a Bunsen burner with a blast or a muffle, and is thus able to manufacture various objects of the durable metal for daily use, the coating of aluminum giving them a silver white luster. He also produces a gold luster or any other color, and even an enamel coating, all of which substances are said to adhere very firmly to aluminum. Aluminum, like tin, does not oxidize under normal conditions, and even The effect of air pressure upon a double water seal trap is stands the heat of an ordinary fire, while it is much more hown in Fig. 3, and although the compressed air, as in Figs. 1, and 2, forces its way through the trap, d, nearest the sewer (the escape being of the same area as the drain itself), the inner trap, e, will not be affected by pressure; the sewer air is effectually prevented from entering the house drains by this precaution, showing the importance of two complete water seals to a main trap, and, also
pipe should be set between the traps.
ustrous than tin
THE production of rails of various descrintions in the United States last year was as follows: Bessemer steel, $1,438,155$ tons; iron, 227,874 tons; open hearth steel, 22,765 tons; total, $1,688,794$ tons. The corresponding production in 1882 was as follows: Bessemer steel, $1,330,302$ tons; iron, 488,581 tons; open hearth steel, 25,217 tons; total, $1,844,100$.

Fire-proof Passenger Cars.
The Nero York Herald says that there is no good reason why all passenger cars on steam roads should not be thoroughly fire-proof, and that it is high time that a new departure in this respect should be taken, as it seems easy and entirely practicable to construct passenger cars of metal or other incombustible material.
By way of comment on the above, remarks The National Car-Builder, it may be said that the traveling publie will be provided with fire-proof cars at some future time, perbaps, but not until there is a more urgent demand for them than exists at present. Just now the demand is light, because the great mass of people are very well satisfied with what the great mass of people are very well satisfied with what
they have, or would be, if cars were a trifle more luxurious, they have, or would be, if cars were a trifle more luxurious,
stylish, and exquisite than they are. The vast majority of travelers will take the chances when they journey in winter, rather than dispense with the hot stoves to which they have been so long accustomed; and as for any new-fangled incombustible wood finish, they will continue to prefer the elegant cabinet work and gilded and varnished surfaces to anything plainer and safer.
Metallic car bodies are no new idea. They bave been built of iron tubes and steel rods framed together, with an outside covering of sheet iron, and have done fair service as freight cars. It has been proposed to construct passenger cars on the same plan, the inside finish being wood, of course; but we are not aware that any such cars have yet been built and put in service. There is evidently but one way to make a fire-proof car or a fire-proof building, and that is to construct it throughout of materials that will not burn under any circumstances. The best of the so-called fire-proof buildings are not entirely so. They always contain some wood-work as well as furniture and other property, more or less, tbat will readily take fire, and the same may be said with respect to railway passenger cars. The framing and floors may be made of metal and the outside paneling of iron or of wood well covered witth metallic fire-proof paint. The inside can also be of sheet metal or of wood paint. The inside can also be of sheet metal or of wood
saturated with chemical ingredients that are said to render it incombustible, or nearly so. The seat frames can also be made of iron, and the cushions and backs with the least possible upholstering necessary for the comfort of the sitter. But would such cars be pleasant to ride in? Would the great traveling public, after being pampered so excessively during all these years with luxurious and palatial finery in car decoration, be willing to dispense with mahogany, rosewood, and varnish (all of which will ignite about as quickly as petroleum) for plain surfaces of fireproof paint, just for the satisfaction of knowing that however cruelly they might be transfixed or crushed in a collision by fragments of iron or incombustible wood, they would not be burned alive or cremated? Some people, doubtless, would be willing to do so, but the great majority would not. The mass of people would, and do, prefer to take the chances, just as they do when they put up at six take the chances, just as they do when they put up at six
story tinder-box hotels, feeling in all their bones that after $u s$ comes the midnight conflagration with its horrors unspeakable.
When the demand for safety, as against fire, in railway cars shall become so pressing and universal as to make some effective provision for it indispensable, it will probably be found that there is another way of cornering the problem without resorting to the difficult and even questionable expedient of making cars fire-proof, and that is, not to carry any fire in them. This would not, of course, prevent
the burning of cars from outside contact with fire, but it the burning of cars from outside contact with fire, but it
would prevent conflagrations from originating inside-a class of accidents which are the most to be dreaded, and which have hitherto in our railway history been fearfully destructive of human life. The warming of cars with steam or hot water, conveyed from the locomotive or supplied by a special apparatus in baggage cars, is barely practicable, perhaps; but thus far the unsuccessful efforts of inventors to devise a good practicable working plan is an evidence of the difficulties which lie in the way of the general adoption of these methods.

Pneumatic Transmission of Power

The transmission of power to long distances and its economic distribution over wide areas by a special agency is a thing greatly to be desired, and is, morever, more easily conceived than accomplished. Water has been laid largely and successfully under contribution in this respect. Air has also been utilized, and the principle finds an exponent in the gas engine. It bas further been demonstrated of late that, other things being equal, electricity in a secondary form is well adapted for this purpose. Compressed air is now largely employed in Paris for the transmission of time by mechanical means-the pneumatic clock system-and it bas also for long past been used for other mechanical purposes, as in mining and tunneling operations.
In regard to the distribution of bydraulic power from a given center over a large area, Hull presents a notable example, that town having been the first to adopt the system through the Hull Hydraulic Power Works, of which Mr. Henry Robinson was the engineer. What has been done in Henry Robinson was the engineer. What has been done in
Hull and what is now being effected in other towns with respect to the distribution of power by means of water, it is now proposed to do in Birmingham by means of compressed air. The proposition is to compress the air on a large scale at a central depot or station, and to distribute it throughout
he manufacturing portion of the town by means of mains and supply pipes, just as gas and water are now supplied.

One great advantage of compressed air is that it can be used to drive existing engines without involving any change of plant. Moreover, steam users would be enabled to dispense with their boilers and utilize the space for other purposes, the services of the stoker also being dispensed with. There are also some other collateral advantages to be secured, to which we shall presently refer.

The requirements of the district to be supplied have been carefully considered, and in order to determine the position and extent of the proposed works, the number of steam users in the proposed district were ascertained. The wards selected were those of St. Bartholomew, Deritend, and St. Martin, and the following is an analysis of the results. was found that there are-

164	in	ryi	m $\frac{1}{2}$ to $10 \mathrm{~h} . \mathrm{p}$	vith	tal	710	h.p.	om
59	'	"	" 11 to 20 "	"	*	843플		6
15	'	"	" 21 to $80 \times$	"	"	393	"	"
6	\cdots	"	" 32 to 50 "	"	"	220	"	"
10	"	"	" 52 to 100 "	"	،	574	"	"
4	"	"	" 102 to 289 "	"	"	818	،	"
Total 3 ,5581/2								

It is assumed that of the above only engines up to 30 horse power nominal would be likely to use compressed air
Upon this assumption, then, we have-

These figures, however, only represent the engines now actually in use, but it is to be presumed that the existence of such a convenient and cheap power would attract other manufacturers requiring motive power to the district in which the mains would be laid. Besides this, there are many additional purposes, such as for driving small machinery and for ventilation, for which compressed air is specially applicable. In view, however, of the existing requirements of the districts proposed to be first dealt with, quirements of the districts proposed to provide machinery and plant capable of delivering 5,000 indicated horse power in compressed air, and at the same time to provide room for extension to double that amount.
The site selected for the works is a piece of land belong ing to the Birmingham and Warwick Canal Company situated on the canal side and facing Sampson Road North and Henley Street. Upon half of this site it is proposed to erect four air compressing engines driven by compound condensing steam engines, giving a total of 8,400 indicated horse power (which it is calculated will be sufficient to produce the 5,000 borse power required to be delivered) and forty four Cornish or Lancashire boilers, together with air puri fying apparatus, and the necessary buildings and offices. Before entering the air compressing cylinders the outer air will be passed through an air filtering and purifying appa ratus, by which it will be cleared of soot, dust, and other impurities, in order that it may reach the consumers in a thoroughly pure state.
The air pressure to be delivered has been fixed at a mini mum of 45 pounds effective, or 59.7 pounds absolute, as be ing sufficient to cover the majority of cases, and more economical of production than a higher pressure. In the few exceptional cases, however, where the existing engines work at a higber steam pressure, a slight alteration in the gearing or pulleys connecting to the main driving shaft, so as to run the engine at a higher speed, would enable the lower ai pressure to carry the load. Where such alteration is not
possible or convenient, the bore of the cylinder may be increased, or even a new cylinder introduced of larger bore, at very slight cost. The maximum pressure in the mains would be 50 pounds per square inch, and on reaching the consumer's premises the air would be heated wherever practicable. Before entering the engine the quantity of air sup plied would be measured by a meter, or otherwise in the en-
gine itself by a counter registering the speed and average gine itself by a counter registe
point of cut-off and expansion.
It is unnecessary here to enumerate the many purpose for which compressed air can be utilized; to do so would be to extend the length of this article imordinately. Suffice it to say that there are some special applications in which this power is very desirable, and would prove most convenient Let us turn, then, in conclusion, to the advantages com-
pressed air presents apart from its use as a source of motive pressed air presents apart from its use as a source of motive
power. Foremost stands its hygienic advantages, and first among these would evidently be an important abatement of the smoke nuisance, by the abolition of a number of small factory chimneys which deliver their smoke at a comparatively low level.
There would then be, per contra, the introduction into the manufacturing parts of the town of large volumes of pure air instead of noxious vapors from the chimneys. An im proved ventilation of workshops would also result from the exbaust air from the executive engines. There would likewise be the diminished risk of boiler explosions and of the consequent damage to life and property from that cause, while the public health generally would be improved by means of the purer atmosphere of the town. On the whole, there would appear to be nothing but advantage attending the working of such a scheme, and we hope in the publi interest to see it carried out.-Iron.

Ir is sagaciously noted that to determine the value of building stone a ramble among the tombs is wise. In far

There are now on the Columbia River alone not less than thirty-five canneries, which produced in 1882 about 540,0 c 0 cases of canned salmon, and including the other rivers from the Sacramento to the south of Alaska. On the north the product of canned salmon for 1882 was not far from $1,000,000$ cases, with a value of about $\$ 5,000,000$.
In Mr. Hittel's "Commerce and Industries of the Pacific Coast," we find the following information concerning the canning interest of the Columbia: The salmon fishery of the Columbia gives employment in the season to 5,600 men, 3,100 Chinamen being employed in the canneries, while 2,500 whites take charge of the boats and nets. The cannery proprietors own 1,200 boats, and lease them with nets and all the necessary tools and supplies to the fishermen, a large propertion of whom are Scandinavians, Italians, and Finns, who, as rent, must give one-third of the catch, and must sell the other two-thirds at a stipulated price. Each boat bas two men, a captain and a helper. The former hires the latter, boards him, and gives him ten cents for every fish caught. The fishermen who own their boats and nets sell where they please, but usually receive the and nets sell where they please, but usually receive the
same price as is paid to the men using the cannery boats. It is expected that the captain of a boat will make at leas $\$ 100$, and his helper $\$ 70$ a month for their labor. The average catch of a boat for a season may be 2,000 fish, worth $\$ 1,200$, equivalent to $\$ 300$ a montb, of which $\$ 100$ is allowed for the use of the boat and net and uther material. The price on the Columbia was sixty to sixty-two and a half cents a fish in 1881, the price having increased gradually since 1866 (and is still increasing). In the canneries about 850 white men are employed as superintendents, clerks, foremen, etc, earning from $\$ 50$ to $\$ 175$ a month, averag ing $\$ 62$. White men make the nets, cans, boats, and cases, and bave all the capital used in the business. The 3,100 Chinamen receive $\$ 372,000$ for their work of four months; the 850 white laborers in the canneries receive $\$ 210,000$; the 2,500 fishermen, $\$ 850,000$. The wages in the fishing season, and cost of fish paid by the canneries amount to $\$ 1,433,000$, and of this 4,000 Chinamen get less than a third, while the 3,500 whites divide the other two thirds among themselves. The proprietors get $\$ 2,750,000$ for the product, leaving them $\$ 1,316,400$ above the cost of the fish and wages in the fish ing season to pay other cannery expenses, interest on the investment, and profits.

Manufacture of Gossamer Rubber Goods.

A recentnumber of the American Exchange and Review says: "There is now largely used a very light description of waterproof goods, which, we believe, receives only one coat or layer of rubber mixture." In one rubber factory in Boston the rubber itself is ground up with a mixture of sulphur, whiting, and litharge, and is then rolled out into a delicate sbeet, which passes under immense steel cylinders, and by them is pressed into the surface of cotton cloth, forming the material for men's waterproof overcoats. This process does not materially increase the hazard incident to the business, while the reverse is the case in the "very light description of waterproof goods," known to the trade as gossamer. Here the solution of rubber in naphtha is still further reduced by the addition of larger quantities of this dangerous product of petroleum, and in one of the gossamer factories most recently built the fluid is poured into an inking trough, from which it flows upon the spreading cylinders. As the cotton cloth passes under the cylinder in an endless roll, it receives a mere film of rubber, from which the naphtha evaporates before the web returns from the winding machine at the opposite end of the long hall. The proprietors report that the goods receive from five to seven teen spreadings, according to the grade of goods manufactured.
Necessarily, the air is impregnated with the fumes of naphtha, and the proprietors dread the lack of bumidity in the atmosphere. To counteract this, steam is allowed to escape beneath the spreading machine, and live steam is also sent into the room from a perforated pipe, whenever the coldness of the air does not allow opening of the doors and windows. The saturation of the whole structure with naphtha vapor furnishes sufficient cause for the instantaneous spread of a mere spark through all portions of the structure. As an experienced manufacturer of caoutchouc goods has said: "You may select the best examples of rubber factories. and perhaps you will escape a fire; but no premium will pay for the risk where gossamer cloth is made." The manufacture of gossamer material into clothing does not seem very hazardous, but the careful agent will often find that the seams are made by the use of rubber cement, where again naphtha is the solvent, and even open pans of this volatile and dangerous fluid are in constant use by women and girls to " freshen" the edges of their work. The underwriter will find many risks of fine appearance offered to him, but be cannot afford to lose sight of the naphtha, or his underwriting will descend to gambling.

At the Chicago Railway Exposition is an engine just built or the Southern Pacific Railroad, which weighs, with coal and water, 96 tons, and is designed for heavy service on unusual grades. On a level track it can draw all the freight cars that can be made to hold together by ordinary methods. Steam is required to work its reverse lever, aud the locomotive itself is a mountain of strength and mechanical construction.

The Elm Leaf Beetle

To the Editor of the Scientific American
With this I send you some "bugs" which suddenly ap peared in myriads in our section of New Jersey, viz., Morris Co. Although an old resident, I have never seen anything like them before in our county. On my place they first appeared in a room elevated twenty-five feet, about fourteen feet square, and which contains a large water tank, which supplies my house and grounds. This room has been carefully closed during the winter, to prevent freezing of the water. Now, where did these insects come from?
From the water in the big tank? That seems to me to be impossible. The only water that goes into the tank is rain water, and through a large filter of charcoal and gravel. I think it hardly possible that they could have originated there.

Did they hibernate during the winter, entering during the warm months to remain torpid until the warm spring sun should bring them to renewed life? H. C. Ohlen.
P. S. -Should any of the "bugs" reach you alive, you will find them very lively. I have handled them freely and ind that they are perfectly harmless.
I will suggest that perhaps they may be a new species of fire fly, or perhaps an unusual development of species already known
New York, May 26, 1883
Prof. Riley gives us the following reply:
The insect sent by your correspondent, Mr. H. C. Ohlen, of New York city, with his favor of the 26th ult., and which was found in large numbers in a room of a house in Morris Co., N. J., is the imported elm leaf beetle, Galeruca xanthomelcena, which is so destructive to our elm trees in the Atlantic States. It is possible that the specimens hibernated in the room where they were found, or they have entered the same lately; at any rate they certainly did not come from the water tank kept in said room. There are no doubt elm trees near by, and upon investigation the beetles and theirlarvæwill be found feeding upon the leaves. This pest seems to be more than usually common this season, and will no doubt do a good deal of damage to the elm trees if not checked by their natural enemies or by artificial remedies.

The species belongs to the family Chrysomelidæ, or leaf beetle, and there is an account of its natural history in the American Entomologist, vol. iii., pp. 291-292.
C. V. Riley, Entomologist.

Washington, June 2, 1883.

RECENT DECISIONS RELATING TO PATENTS.

By the Secretary of the Interior

In considering a foreign invention in its relation to an American invention, to determine the "first inventor," not the actual date of the former, but the date when it was patented or described in a printed publication, is the point to be kept in view

In this connection the invention is patented in England, not at the date of the provisional specification, but when the completed specification is filed.
Testimony which would show a date of actual invention in a foreigy country earlier than the date when the com pleted specification was filed would be immaterial in an interference.

By the Commissioner of Patents.

Where the only purpose of the reissue application is to broaden the claims, it must clearly appear that there was a mistake or error in the original preparation of the case, and that the applicant took immediate steps to have the same corrected.
By a failure to take immediate steps toward correcting a patent the patentee acquiesces in the terms of the grant and dedicates the invention to the public use. It has been intimated by the Supreme Court that they regard two years as the natural limit of delay in such cases in analogy to the provisions of law respecting the public use of an invention

Chimney Flues and Fire Places.

The frequent destruction of buildings by fires caused by imperfect hot air flues, poorly constructed chimneys, and defective fire places impels attention to the lack of safe methods of building brick work in these portions of dwellings and other buildings. It has been found, by investigation after a fire has occurred, that carelessness, haste, $\phi /$ parsimoniousness on the part of the architect, the builder, or the owner, had been really responsible for the damage. There are plenty of recorded instances where fires have started because of the presence of a combustible in the chimney flue, as a flooring joist passing through the wall of the chimney and forming a part of the inner face of the flue. In one instance the builder's excuse was that the beam was on the upper floor and at least ten feet from a fire on the floor below, and was therefore out of danger. But a stove was placed so that its delivery flue came within eighteen inches of the exposed beam, and a fire was the ultimate result after an entire winter's charring of the beam. There are instances of a division wall for a chimney flue being laid of only half a brick thickness-the brick widthand the mortar so carelessly applied as to leave chinks between the brick courses. The ledges and projecting ob structions left in unpargeted chimney flues afford inviting places for the deposit of soot and other light substances carried up with the smoke in its upward flight. Occa-
sionally these accumulations take fire, and when a downward blowing gust occurs, the fine particles, all aglow, may be driven through the unprotected interstices of the unrendered brick wall to start a fire between floor and ceiling or in the vertical space between plaster and studding.

The Building News (English) takes up this matter of im perfect chimney building, and suggests, among other precautions, the lining of chimney flues with tubes of fire brick and the filling of the angles between the circular tubing and the square section of the chimney with solid brick work. To some extent this system is in use in this country, vitrified drain tile being employed for the purpose.
The News advocates the thorough pargeting, or plaster coating, of the interior of all chimney flues, where this fireproof tubing is not used, so as to stopup all possible crevices that may have been left by the carelessness of the masons. Chimney walls ought, also, to be carried up nine inches thick to a height of six feet above any fire, as the passage of heat through a bıick wall is very perceptible, even if there is not a strong draught. Angles in the course of chimney flues should be of unusual thickness of brick, and be thoroughly plastered, as they present a face to the impact of the heated gases in their upward tendency.
Whatever other precautions are required, it is certain that wood or other combustible substances should not be brought in contignity with the chimney or the fire place. The present revival of the old fashioned fire place makes these cautions peculiarly significant. Quite recently the owner of a new house, which had a "low down" fire place for wood burning, discovered that the stone slab forming the fire bottom and hearth was supported on cross beams of spruce as a foundation, leaving only three inches, or less, of a heat conducting material between the fire and the wood. These conditions, so favorable to a destructive fire, were remedied at once.

MAKING THE DEAF TO HEAR.

The wife of a clergyman in New Jersey was recently pro vided with an apparatus whereby, for the first time in mor than a score of years, she was enabled to hear her husband's

sermon. The perfect success which attended the exper ment makes us think that others who are troubled with deafness might find the device very desirable.
Two cones of tin, about two feet long, fifteen inches diameter at one end and four inches at the other, were placed one on either side of the preacher's desk, the larger end up. A fine wire cloth covered the smaller end, and this end was extended down through the floor. Thence a four inch pipe, gradually diminished to three inches, extended to the cellar, where the two pipes were joined in a single one of three inches, and this carried a distance of thirty feet under the floor of the church. Here the three inch pipe was reduced to two inches, and extended upward through the floor and the seat of the pew. Another reduction in size to a diame ter of one inch was here effected, and then a flexible tube connected it with a nickel plated ear piece at the proper height. The introduction of the wire cloth serves to obvite the roaring sound, which would otherwise be annoying Our engraving is taken from the apparatus as arranged and recently put up in the church.

Labor and Food.

Tbe buman body never ceases to work. Even in the most rofound slumber some of the functions of life are going on, as, for instance, breathing, the circulation of the blood, digestion, when there is food in the stomach; and it follows that some part of the nervous system is therefore awake and attending to business all the day and night long. In the act of living, some of the substance of the body is being constantly consumed. The amount of work done by the heart in one day in propelling the blood is now estimated as equal to the work of a steam engine in raising 125 tons one foot high, or one ton 125 feet high. We lose in weight by working. Weigh a man after several hours' lard labor, and he will be found two or three, and, in extreme cases, everal pounds lighter. If we do not wish to become bank rupt, we must replace by food the amount we have lost by abor. Hunger and thirst are the instincts which prompt us to do this. They are like automatic alarm clocks, which stop the engine at various points to take on fuel and water. In a bealthy man as much is taken in as is required to maintain the weight of the body against loss. Nature keeps the account. On one side is so much food spent in work; on the other, so much received into the stomach for
digestion. They should balance like the accounts of an honest book-keeper. In an unhealthy person the instiuct of hunger becomes disordered and does not sound the alarm, and so the person goes on working without eating until he becomes pauperized; or the instinct works ton frequently, and he eats too much and clogs the vital machinery. A calculation of the business done in the body reveals the fact that for a hard working person about $81 / 2$ pounds of food and drink are used up daily; some bodies use more and some less, but this is the average. The profit which the body gets on this transaction has been calculated, and may interest our readers. The energy stored up in the $81 / 2$ pounds of food ought to raise 3,400 tons one foot bigh. Most of this energy, nowever, is expended in keeping the body warm and its functions active. About one-tenth can be spent in our bodily movements or in work. The profit, then, on the process is about ten per cent. This is enough to raise 340 tons one foot high each day. A profit which is quite enough for earning a good living if rightly expended, and it is prohably more than most make; but all ought to strive to reach this point if possible.

The Basic Process.

The presence of phosphorus in iron is fatal to the couver sion of iron by the Bessemer process, when it exists in any appreciable proportion. But by the basic process phos phoric iron is perfectly manageable. Its simplicity is one of its best features. Instead of a lining of silicious mortar or paste, as in the Bessemer process, dolomite, or magnesian limestone, is used in the cupolas and also in the convert ers. Lime is added to the fused mass in the converters while the charge is undergoing its burning-out process. The basic process is in use in England, France, Germany, and Russia with excellent results. Germany has large de posits of ore, but the metal is so highly charged with phos phorus that they are valueless for conversion into steel by the Bessemer process. Yet by the basic process, Germany is producing about 350,000 tons of steel annually.
A correspondent of the Industrial World writes of experiments recently made near Harrisburg, Pa ., in the production of basic steel. He says:
For the past three months the Pennsylvania Steel Com pany has been making arrangements with its old two-con verter plant at the works near Harrisburg, Pa., to thoroughly test the value of the Thomas-Gilchrist process for the manufacture of steel, otherwise known as the basic process. The preparations were completed, and on the 7th of May last molten pig iron was run into the converter, and the first heat of basic steel ever made in the United States was a great success. The pig, which was made from equal proportions of mill cinder and Cumberland County, Pa., iron ore, contained $21 / 2$ per cent of phosphorus, $21 / 2$ per cent of manganese, and 1 per cent of silicon; and the basic steel contained only 0.04 per cent of phosphorus, 0.275 per cent of manganese, and $0 \cdot 29$ per cent of carbon. The samples of the basic steel that were tested gave results that were exceedingly satisfactory, and the steel from the heats that bave subsequently been made showed that the quality of the stcel was equal and, in a number of respects, supe rior to the steel previously made at the works by the Besse mer process.
That the basic process is cheaper than the Bessemer method is proved by foreign practice. In France basic steel can be produced nine dollars per ton less than Bessemer, and in England from four to five dollars per ton less. It is said, also, that at the steel works of La Creuzot France, the basic process has been adapted to the open hearth furnace, with excellent results.
The bed of the furnace is made of magnesian lime stone and the roof is of silica bricks. A charge of phosphoric pig iron is introduced into the furnace, the furnace being heated in the usual manner, and common iron gradually dissolved in the bath. A quantity of lime is added from time to time, and the slag is removed with a rake. The silicon entirely disappears, and nearly all the phosphorus is removed. The operation lasts about twelve hours, and about fifteen tons of steel are produced.

malaria.

The Italian Minister of War has published a statistical map, based on the official reports from the different provincial governments about malaria, by which the extent and the ntensity of this disease can be estimated. Italy counts 69 provinces, 6 of which only are completely free of this pest; o 21 provinces its ravages are most severe. It has been calculated that morethan 40,000 soldiers every year have to pay their tribute to this terrible scourge. Malaria causes to he State an annual expense of two million dollars through the necessity of maintaining a number of hospitals expressly for malaria patients. The damage to the national wealth cannot be calculated, but is immense; hundreds of thousands of working people in their best age are seized by the disease, and large tracts of else fertile country have to be left uncultivated. A very remarkable feature is the progress and the greater violence of the disease since the construcion of railways, which circumstance is ascribed to the ecessary earth-cuttings and the baring of stagnant waters. There are in fact some lines along which the strongest, healthiest workmen or officials stationed there are unable to esist the attacks of fever; the consequence is that the requisite working staff can be kept up with great difficulty, in spite of the exceptional high pay allowed to the men.

A Canse of Boiler Explosions.

According to M. Treves, some occasionally mysterious ex plosions of steam boilers, when apparently in good structural and working order, may be thus explained: Supposing that work is to be suspeuded either for the night or for any long interval, after a stated hour, and that a boiler is commonly driven under an average pressure of 80 pounds or 90 pounds of steam; some time before the hour of closing, the stoker lets his fire slacken, fills up the boiler, and leaves off with perhaps 50 pounds or 60 pounds on the gauge. Next morn ing, or after the interval, he finds the pressure gauge stand ing at 20 pouuds or 30 pounds, with a good supply of water Consequently, in order to save the heat stored in the boiler, he begins to fire up, without thinking of the danger whicl may lurk in the water that has been boiling all night. The stoker never thinks of putting in more water, because the gauge is all right, and thus prepares the essential preliminaries of a " mysterious" explosion.
The water that bas been standing above the boiling point for hours has lost its power of ebullition, because the air which it formerly contained has long heen driven off; and in this dead condition it is capable of absorbing heat without the power of delivering it up in the form of steam. The water thus becomes superbeated, and at the moment of any mechanical agitation-such as the opening of the steam valve, or the introduction of fresh water-it may instantaneously flash into steam with explosive force. It has been abundantly proved that, apart from gross defects of construction, condition, or management, superheating of the water has of late years been the only intelligible cause of the greater number of boiler explosions. The remedy for this danger is fortunately simple, and resides in the employment of any effective means for preventing the "sleep" of water in boilers by keeping up a constant ebullition.
A good device for this purpose is to prolong the water feed pipe by a T; the horiznotal branch being about 6 inches above the bottom of the boiler. The under part of this tube is to be provided with open conical nipples ranged along the whole length of the pipe, which will extend from end to end of the boiler. Before firing up, therefore, the stoker should force air through the teed pipe so fitted until a pressure gauge on the pump shows a higher reading than the quiescent steam gauge. The uipples are then full of air, and ready to act as the geuerating centers of ebullition, where upon the fire may be pushed as briskly as desired without risk of explosion. This suggestion emanates from MM. Donny and Gernez, and is recommended by M. Treves as an economical embodiment of a universalíy accepted theory.

a QUadricycle for land and water

The accompanying engraving represents an ingenious vehicle for traveling by land or water, recently patented by Mr. H. S. Blanchard, of Cairo, Ill. The in ventor has chosen the form of a swan as being the most graceful and appropriate for the pur pose, although be does not confine himself to that form. A light frame work of wood or iron is covered with sheet metal, waterproof canvas, or other material. From the body of the vessel arises a standard supporting an awning which, by means of adjustable guys and a bal and socket joint, may be fixed at any angle to be used either as a shelter from the sun or storm, or as a sail.
But the principal means of propulsion are pad dles and rotating floats worked by the feet of the rider, who sits on a seat forming a part of the steering lever or helm. From near the top of the standard, curved arms project outside of the vessel, having suspended and supported on the water ellipsoidal floats which steady the vessel on the water and aid in supporting it on the land. As a protection from injury the floats may be surrounded with wire netting, as shown in the engraving. These floats, as well as the ves sel itself, are filled with cases of cork or other buoyant material to insure floating even if the outer case is injured.
Propulsion is secured by the action of hinged foats connected with a platform treadle which carries cone floats, to the rear ends of which the operating paddles are hinged. As the platform is rocked is one direction the cones are advanced forward, the paddles floating horizontally. By he reverse motion the paddles turn against the broad ends of the-cones and present their sur faces to the water. A double crank shaft may also be connected with the foot platform and treadle, so as to rotate floats at either side of the vessel as another means of propulsion.
If the vessel is to be moved on land the buoys may serve as supports and as wheels; or the outer ones may be removed and those connected with the crank shaft be used as a means of propulsion, the buoy in front being used as a guide wheel.

A railroad was opened last month between Tiflis, the capital of Transcauoasia, and Baku, one of the ports on the Caspian Sea. It is intended to connect this last with the Black Sea. This road reduces communication from five days to fifteen hours between Tifis and Baku. It is the greatest commercial achievement yet of Alexander III.'s reign.

pressure gavge testing apparatus.

The use of standard pressure gauges and pumps for test ing and adjusting other gauges and dividing the dials exactly has several inconveniences. Pumps are difficult to keep in good order and to start, if they have been for some time out of use. The standard spring gauges employed for controlling others may become incorrect, and often indicate different pressures when two of them are placed beside each other on the same pipe. Mercurial gauges are certainly the most accurate instruments for measuring pressures, but can-

pressure gavge testing apparatus.
not be used for high pressures on account of their very great beight. They have become already inconvenient for the pres ent medium pressures, without taking into account that the friction of the mercury, which increases with the pressure, necessitates a calculation in order to obtain the correct indications. These inconveniences have led Mr. Ruchholz to design the testing apparatus represented by the illustration with a view to remedy them. One person is sufficient to work it at any time, while the space occupied is small, and the employment of a standard pressure gauge for the pur pose of comparison is avoided, the pressure on the spring of the gauge to be tested being produced by dead weights act ing through the medium of a suitable liquid, such as pure glycerine.

The apparatus consists of a base which contains a pipe

BLANCHARD'S QUADRICYCLE
that connects the two uprights which rise from it, and ar also bollow. A is a cylinder bored true internally and re ceiving a steel piston ground to fit. The cock, B, is threaded to receive the gauge to be tested.
The piston carries a tray, on which weights can be placed, and is so proportioned that a pressure of one atmosphere per square inch is given by the piston itself, while each weight represents an additional atmosphere. When used the apparatus is placed upon a firm table and adjusted by the set screws in its feet till the cylinder occupies a perfectly vertical position, which is indicated by the
spirit level fixed upon the middle of the base plate After taking the piston out, glycerine is poured into the cylinder till the liquid flows out of the upper end of the cock, which is left open, when the gauge to be tested is crewed on, and a further certain quantily of glycerine poured into the cylinder. The apparatus having been thus filled, the piston, which must be kept perfectly clean, is in serted into the cylinder. The pointer of the gauge must then indicate one atmosphere, and maintain its position while the piston is lightly rotated, this rotation being neces sary in order to annul the slight friction of the glycerine against the inclosing surfaces. The weights are then gently placed upon the tray, and the latter is each time rotated in order to obtain the exact position of the pointer.
If the piston should come in contact with the bottom of the cylinder after a certain time, or before the desired pressure is obtained, the cock, B, is closed in order to keep the gauge at the pressure prevailing at the time. The weights and piston are then drawn out so that a further sufficient supply of glycerine can be poured into the cylinder. When this is done, the piston is reinserted, and the same number of weights placed on the tray as when the cock was closed. The latter is then opened, and further weights may be placed on the piston. In this way very high pressures can be obtained.
When the testing or dividing of the dial is finished the disks are gradually removed and the piston withdrawn, and when the pointer has arrived at zero the cock is closed and the gauge unscrewed. The glycerine is tinally drawn off by means of a small tap placed at one end of the base plate.

Colored Varnishes for Tin.

The Gewerbeblatt gives the following: Thirty grammes of acetate of copper are ground to a fine powder in a mor tar, then spread out in a thin layer on a porcelain plate and left for a few days in a moderately warm place. By this ime the water of crystallization and most of the acetic acid will have escaped. The light brown powder that is left is triturated with some oil of turpentine in a mortar and then stirred into 100 grammes of fine fatty copal varnish warmed to $60^{\circ} \mathrm{R}$. $\left(16 \cdot 7^{\circ} \mathrm{Fab}\right.$.). If the acetate of copper was exceeding y fine, the greater part of it will dissolve by a quarter hour's stirring. The varnish is then put in a glass (bottle) and placed for a few days in a warm place, shaking frequently. The small quantity of acetate of copper that settles can be used in making the next lot.
This varnish is dark green, but when applied to tin it requires four or five coats to get a fine green luster; but two coats are sufficient, if it is heated in a drying closet or on a uniformly heated plate, to produce a great variety of shades f gold. A greenish gold, a yellow or dark yellow gold, then an orange, and finally a reddish brown shade is obtained according to the time and temperature. The according to the time and temperature. The
colors are superior in brilliancy to those obtained with the English gold varnish, and have the ad vantage of permanency in the light. If a good copal varnish is used in making this polychromatic varnish, or lac, the tin can be hammered or pressed.

The production of golden colors depends on the reduction of cupric oxide to cuprous oxide (protoxide to suboxide), which, in small quantity, dissolves in the copal varnish with a golden color. The more the heat the greater the reduction, and hence the darker the color. Success depends on applying it evenly and warming uniformly.

Time by Telegraph.

Mr. James Hamblet, Manager of the Tele graphic Time Service in connection with the Western Union Telegraph Company of this city, has patented an improved method of synchronizing clocks, and he is now prepared to furnish clocks with the apparatus included, and correct them each and every hour by signals from the standard clock of the Time Service, from which the signals are transmitted to all the principal watch makers and others in this city.
The problem of correcting clocks throughout cities and towns by electricity has been heretofore supposed to be unattainable; by Mr. Hamblet's system, with a good clock at a central station, provided with the proper mechanism to send a single beat not to exceed one second in duration, exactly at the beginning of each hour, and inexpensive clocks located in places within convenient reach of a local system of telegraph wires, a successful distribution of uniform time may easily and cheaply be maintained.
The clocks that are used for this purpose may independently be regulated to run within a minute or two in a week, and when we remember that the clocks are corrected each hour, making 168 parts into which the two minutes are divided, it will be seen that correct time can easily be assured.
For some time past we have had in operation in the Scientific American office one of Mr. Hamblet's clocks, which is connected by telegraph as above indicated, and the improvement gives us much satisfaction.

The Italians propose to have a world's fair of their own next year in Rome.

THE GIANT LOCUST.

There is no doubt that the order Orthoptera contains the strangest formed and the largest insects. We know, in fact, that the largest of all known insects is an orthopter belouging to the family Protophasma, and found in a fossil state in the coal schists of Commentry. This gigantic articulate, of the Carboniferous epoch, which was 28 centimeters (11 inches) in length, has recently been described by Mr. Charles Brongniart under the name of Titanophasma fayoli, the specific name having been given in honor of Mr. Fayol, directing engineer of the Commentry mine, and a gentleman to whom entomological palæontology is indebted for many valuable discoveries. The species living in our day, although of smaller dimensions, are nevertheless of very respectable size, as may be seen from the accompanying cut, which gives a faithful representation of a female Platyphyllum giganteum, or giant locust of New Caledonia. The genus Platyphyllum (from the Greek $\pi \lambda \alpha \tau \boldsymbol{v} 5$, '"wide," and $\varphi \imath^{\prime} \lambda \lambda \frac{1}{}$ ov, "leaf") belongs to the group of leaping orthopters and to the family Locustidæ. It embraces insects that are remarkable for the size of their wings (the upper ones of which resemble green leaves), and includes several species native of North America, the Antilles, and South America.
North America, the Antilles, and South America.
The giant locust is green, has long antennæ, and its lower wings are in part transparent. It lives, it appears, at the top of palm trees, and is rarely met with elsewhere, and this makes hunting for it difficult. It has only been well known since the return to France of exiles from New Caledonia,

Agricultural Notes from ltaly.

The black truffe at times is worth almost 150 francs (30 dollars) for 1 kilogramme ($2 \cdot 2 \mathrm{lb}$.), and in spite of all the ex pensive investigations made as to its growth its artificia reproduction has not been successful. It now appears, ac cording to the Gazzetta della Campagne, that thet ruffle is an analogous product to the gall nut, with the difference that the gall nut appears upon the leaves and the truffle upon the roots. A little insect with blue wings appearing in certain districts during the months of July and August buries itself in the earth and stings the rootlets of the oak in depositing its eggs within them. Around this strange nucleus an ex crescence arises which we call a truffle. Arriving at ma turity, the egg opens, the larva emerges, and remains as chrysalis until spring time, when it is transformed into a fly with blue wings and provided with the power of reproducing, by the same means, the coveted morsel. This accounts for the failure of attempts to plant trufles, and why they are only found in certain places and only in the oak. We have also in this an explanation of the poverty of the trufle harvest when the months of July and August are dry, the hardness of the ground not permitting the insect to make its way to the buried rootlets.
Hothouses are being widely introduced into Italy. In these generally the air is beated, which again warms the earth. A Turin inventor, M. Cirio, has reversed the procedure and has run hot water through the earth which he wishes to warm. The hot baths of Acqui are supplied by a
large number of white ants, males and females, are caught and roasted on the spot. They are considered a great delicacy, even Mr. Buchner finding them very palatable. A large, fat, subterranean cricket, as well as a large coleopterous larva, living in hollow trees, are equally sought fo: and roasted over fire. But it is especially a large cater pillar catted "ugoungoo," which is harvested by the natives like a field crop. It is about five centimeters long, black, with yellow rings, occurs on the savannas, and "belongs perhaps to the butterfly Crenis." Whenever it appears in large numbers, the negroes march out in full force from their villagrs, camping out for weeks in the wilderness to gather and cure the crop. After the intestines have been pressed out, the caterpillars are dried before the fire and rolled up in packages of fresh leaves. To a civilized taste they are most disgusting, the smell reminding one of that of our cabbage worms. In view of this custom it seems to be strange that the Bantus refuse to eat snakes and amphibia of all sorts, even frogs and lizards not being touched by them in times of starvation.-The American Naturalist.

Explosions in the Production of Ozone

A mixture of equal parts of binoxide of manganese, permanganate of potash, and oxalic acid constitute Lender's powder. It is used for the generation of ozone in bedrooms. A well known pharmacist of Paris made up the above mix ture. Five minutes later it exploded spontaneously. The

GIANT LOCUST OF NEW CALEDONIA.-(NATURAL SIZE)
who had captured a certain number of specimens of it. If ${ }^{\text {not spring. After the various purposes of the establishment }}$ we compare these enormous insects with their representatives in our own regions, we shall be astonished to see how small are the dimensions of the latter. Instead of giant locusts, we have our green grasshopper (Locusta viridissima), which may be seen flying in the fields and woods during fine weather, and the length of body of which does not exceed 4 centimeters, even in the largest individuals. This grasshopper is common in the environs of Paris, where the vulgar call it the Cigale, a name belonging to a singing insect of the order Hemiptera. The male sings his sharp and sonorous song in the evening. The female may be easily distinguished by the presence of an ovipositor, by means of which she deposits six elongated whitish eggs in the ground toward the end of summer or in autumn. In the spring there issue from these eggs small grasshoppers that resemble their parents but are devoid of wings, these being acquired after successive moultings. Our indigenous insects are, it is true, not so curious, not so large, and not so beautiful as those of tropical regions, but, as an offset, we can study them in tropical regions, but, as an offset, we can study them in
detail, in their different stages, and make known their habits (which are often interesting) instead of limiting ourselves to a simple description, without any biological information, as we have just been obliged to do with regard to the giant locust.-La Nature.

Although Russia has vast beds of excellent coal, she imports nearly half of what she uses-chiefly through lack of ports nearly half of what
internal communications.
have been served by it, this water still retains a serviceable amount of heat. M. Cirio has made at the side of the baths a garden inclosing 500 square meters, and by means of earth enware pipes has made the water leaving the baths to circulate under the ground in all directions. He has planted 10,000 asparagus roots, 4,000 chiccory, and 4,000 plants of Roman lettuce, besides strawberries. In passing it may be said that the Japanese have adopted similar methods; the waters of hot springs about Tokio are about to be experi mented with in a similar way, and the volcanic heat of cer tain districts in Japan is also to be utilized, by conducting the heated air from subterranean wells and bringing it to the surface.
The sugar sorghum has been cultivated with success in Italy, but the bigh duty or rather government tax has so en tirely swept away any possible profit that it is being aban doned.-L. T. G., in Les Mondes.

Insects as Food for Man

Mr. Max Buchner's "Contributions to the Ethnography of the Bantus" contains the following interesting notes, which show that insects are by no means despised as food by this tribe of negroes, which inhabit a large portion of Southeastern Africa. Toward the end of the rainy season in April, when the white ants are swarming, the conical buildings of these insects are covered with a dense matting of banana leaves, while, within this cover, vessels are of banana leaves, while, within this cover, vessels are
placed with funnel-shaped entrances. In these vessels a
next explosion we describe was a more dangerous one. Some Germans had recommended ozone for the treatment of croup. An apparatus was tried in which ozone was pro duced by the action of sulphuric acid on permanganate of potash. The experimenters, two scientists of Paris, had placed the apparatus in a cabinet away from the general laboratory, knowing there was danger. Every possible care was taken to avoid an accident. The apparatus had worked quietly for some minutes, when the experimenters went to procure some iodide of starch paper, the ozone reagent They were but six feet distant and with their backs toward the apparatus, when a terrific detonation took place, deafening them by the violence of the sound. The generating flask completely disappeared and the acid was scattered right and left. The probable explanation of the trouble is that some organic matter from the corks of the apparatus was introduced into the permanganate. It is also suggested that the sul phur of the rubber connections played a part in the explosion.
A method for the production of oxygen at ordinary tem peratures has during the last few weeks been quite extensively circulated by the scientific press. It consists of a treatment of solid permanganate of potash with concentrated nitric acid. This mixture liberates oxygen in considerable quantity, and to evolve the last portions a gentle heating of the mixture is advised. The extreme danger of this experiment is well illustrated by the ozone explosions wehave just described. The danger would be great enough normally but is increased by the subsequent recommendation to heat the mixture.
S. T.

FARM HAND CARTS.

There are many occasions when a wheelbarrow is too small, and a larger band cart will answer the purpose and save the hitching up of a team to a wagon. A farm cart can be made at a very small expense after the plan shown in the accompanying engraving, which we transfer from the Farm and Fireside. There is very frequetly an old pair of wheels that have outlived or outlasted the other parts of the wagon, and will serve an excellent purpose for the running gear of the farm cart. If the cart is to be mostly used for drawing coarse material, like straw, hay, green fodder, etc., the body should be low for the greater convenience in loading and unloading, and increased ease and safety in the transfer.
The engraving shows how a rack can be made so that the load is brought down to a low and handy point. The frame may be eight feet long, three feet wide, or any other size desired, with a depth depending upon the size of the wheels.

Soap two parts, carbonate of soda half part, water 100
parts, brought nearly to a boil. For the same purpose exposure to the vapors of glycerine is sometimes preferred.

Houses and Homes in the Great City.

The population of New York city is now nearly 1,500,000, and for dwelling purpose in whole or in part there are said to be 78,368 bouses. Of these 49,565 are exclusively occupied as dwellings. The total nnmber of families is 200,000 , and of this number only 32,100 own their houses. The remainder pay rents. Within a comparatively brief period large numbers of what are known as apartment houses or flats have been erected. For the most part they consist of large buildings about 50 feet wide, 90 feet deep, and 6 stories high. Through the center is a hall and stairway. On each side of the hall way on each story, the space is occupied by a series of connected rooms, small in size, ordinarily intended to consist of a parlor, kitchen, dining room, bath room, and three bed rooms, with sundry closets. These apartments, collectively called "a flat," are cramped and contracted, affording but a limited amount of light and air. The rentals run from $\$ 30$ to $\$ 70$ per month, depending upon the location of the building.
For better flats the rents are from $\$ 100$ to.$\$ 500$ per month; for the latter sum large and superior apartments, in a ten story fireproof building may be bad, with passenger elevator, etc. For entire dwell-

The bottom of the frame should be a few inches above the ground. The engraving gives only the frame with the end wings on for drawing coarse material. The side wings are for covering the wheels, and may consist of bent half poles of bickory, fitted into arms placed to the front and rear of the wheels, much in the same way that the bind (and sometimes the fore) wheels are protected in the common low, or flat, bay rigging. If a tight box is needed, it can be made of light stuff, and either permanently attached to the frame or placed in the frame as the work requires it.
A hand cart upon the farm, or for use in gathering leaves and conveying newly mown grass from lawns, is very useful. The simplicity of the device renders it easily made by any unskilled person, and it will be found a handy implement for many other uses than those named about a gentleman's place. It costs but little, and saves much time and labor. There should always be a wheelbarrow and a hand cart on every well regulated farm.

Carding and Bleaching of Ramie

The society for promoting the ramie industry in France has approved of the decorticating machine of Messrs. Labarie and Berthat. By it the difficult problem of separating the ligenous matters from the fiber has been solved. The invention of a method of preparing the fiber for spinning remained, and this appears to have been made by M. Scheifner.

The fiber is placed upon a horizontal endless band, which carries it to a pair of fluted drums. These distribute it to a cylinder, which is covered with teeth, about 3 millimeters in diameter, and 3 centimeters long. Then it passes another cylinder, having teeth, $11 / 2$ millimeters in diameter and 20 millimeters long, and then to the third yet smaller. Between the cylinders and above them small rollers, covered with carding, direct and maintain the fiber. The motion of the cylinder increases in rapidity from the coarsest to the finest in the proportion 10, 20, and 40 . Two fine rollercards deliver the fiber to a drum containing a system of jaws, operated by eccentrics and cams. An intermitting rotary movement is given to the drum, and when it stops, the pair of jaws opposite to the latter of the small cylinders seize and close on a portion of the fiber, which they submit to the action of a card drum making 50 turns a minute. This mechanical combing is so repeated on a pair of adjoining and similar drums that the portions of the fiber which have been pinched by the jaws are now combed. The fiber is again carded and run off in a continuous band. To remove the mucilaginous and ligneous portions which still remain, the fiber is steamed with the vapor of water acidulated with hydrochloric acid. This operation is followed by a bath at a temperature varying from $80^{\circ} \mathrm{C}$. to $120^{\circ} \mathrm{C}$., containing from 5 to 10 per cent of carbonate soda made caustic by lime. Then follows the bleaching, which comprises four distinct operations:

1. Make a bath of four times the weight of the fiber, containing 10 per cent chlorinated lime and 5 per cent hydrochloric acid. Enter and steep for from fifteen to thirty minutes
2. Make a bath of eight times the weight of the fiber, containing 10 per cent of Epsom salts; the chlorine remaining from the last bath will combine with a portion of the magnesia; this compound will assist in the bleaching without acting injuriously on the fiber.
3. Make a bath containing 5 per cent carbonate of soda, and enter fiber, in order to convert the magnesian salt into the carbonate.
4. Neutralize any remaining chlorine by the action of sulphurous acid.
After bleaching, pass through bath of carbonate of soda, and then through bath of dilute bydrochloric acid, which serve to divide the fibers very finely, and give tham the luster of silk. Finally, to increase their flexibility and softness, make use of the following soaping:
ing houses, of 3 or 4 stories, with 9 to 13 rooms, the rentals vary from $\$ 600$ a year to $\$ 3,000$; the finer houses costing much more. The opening of the great b:idge between New York and Brooklyn will, it is supposed, be of great advantage to the working people of New York, by enabling them to secure new and comfortable homes at moderate prices, without the necessity of the close crowding to which they are now subjected. Brooklyn has an unlimited area, it is supplied with horse cars running in all directions, and families of small means may rent full dwellings there for less money than they pay in New York for narrow and confined apartments.

ELECTRICAL RAILWAY SIGNALING.

We know the difficulty of making a good electrical contact when it is to be worked by a train running at a high speed, and that this contact is exposed to all kinds of atmospheric changes with scarcely any attention. It is to meet the requirements of a contact of this kind that M. L. Mors has invented the contact represented below, of which the principle and disposition are easily understood by reference to the description which accompanies the figure.
It consists in utilizing the vibrations produced by the pas sage of the train upon the rail to which it is fixed, to pro duce, by the movement of the mercury, a contact, in a hermetically closed space, which continues during the passage of the train. The contact works any apparatus whateverbell, signal, disk, etc.
Experiments made upon the Paris-Lyon-Mediterranean line have given satisfactory results. The apparatus may be applied in any case where it is required that any mechanical vibration shall cause automatically a corresponding signal.

A. Lever, bent at the end to be riveted to the fish plate. B. Contact cone, insulated from the iron box by a piece of ebonite or wood, upon which is a small plug, which is removed to replenish the mercury in. the cup, if necessary. The large surface of the cone is about 2 mm . from the surface of the mercury in a state of repose.
C. Cup containing mercury. This cup communicates with the rail by the lever, and forms the "earth" pole (copper or zinc, according to position).
D. Small screw for regulating height of mercury, also for emptying the cup.
E. Nipple, through which is forced the junction cable, covered with a thick India-rubber tube; upon this tube is placed another tube, which covers the nipple in such a maner as to form a hermetically closed joint.
F. Iron cup containing mercury.-Electrical Review.

Fool's Gold.

As every substance has its shadow, everything genuine an
imitation, it is to be expected that gold itself, the king of metals, should have its counterfeits, natural or artificial. Leaving aside the latter class, from time immemorial have men been deceived by those of the former, that is, in mis taking other minerails for gold.
A farmer's lad, slowly wading through a little stream, the sparkling rays of the sun, he sees something glistening and shimmering so brightly that, seized by sudden curiosity, he runs his hand through the bed of the brook and brings up a handful of sand interspersed with shining yellow
specks, and, behold, he has found gold! So he fancies, and the wonderful discovery is noised far and wide. A sample is quickly sent to some expert, and the report is, mica in sand. But who can blame the infatuated, self-deceived rustic? It looks like gold to him, and his castle in ceived rustic? It looks like gold to him, and his castle in
the air rises higher and higher until the rude fiat of the one who does know dashes it to the ground.
It is not so long ago that a pill-box containing an ounce or more of this mica bearing sand was sent to me to ascertain its value; and the sender was exceedingly disappointed when I informed him of its worthless character. And today I preserve some of it in my cabinet to show my visitors, and when the question is asked of each as to its nature, nine out of ten promptly reply that it is gold. . Then, as a short, practical lesson in mineralogy of this metal, a second bottle, containing sand carrying the genuine article is brought out, and the difference is seen at once.
What assayer, mining engineer, mineralogist, or metalurgist has not had the same experience?
But mica is not the mineral that has done the most harm. Pyrites of iron and copper (copper pyrites or chalcopyrite), and pyrites of iron, the "fool's gold," have misled thousands.
In general appearance, this "fool's gold" is not so very unlike the true gold, that is, when the latter is not directly compared with it. It has a bright, yellow, metallic luster on the surfaces of unoxidized pieces and the interiors of freshly-broken pieces which are decomposed on the outfreshl
side.
In 1
In 1608, about the time of the first settlement of Virginia, the colonists "believing that they had discovered grains of gold in a stream of water near Jamestown, the entire in dustry of the town was directed to digging, washing, refining, and loading gold; and not withstanding the remonstrances of Smith, a ship was actually freighted with the glistening earth and sent to England" (Willson's American History). Whether this glistening earth was mica or minute pyrites in the clay or sand, history does not tell us, but presumably the latter, since it is found to a considerable extent throughut that State.
From that time down to the present, the mistake has often been made, not of imagining the pyrites to contain gold, but that it is gold.
There is probably no other metalliferous mineral more widely distributed than iron pyrites. It is found in rocks of every age, and almost in all parts of the world. Hardly a State or Territory of the United States but contains it to a greater or less degree, hence the great prevalence of the error concerning it.
To illustrate: a colored man in Mississippi mailed me a ump of this mineral, water-worn into a rude semblance of a gold nugget, and desired me to sell it for him! All I couid do was to tell him of its worthlessness, and instead of a piece of gold worth $\$ 40$ to $\$ 50$ as be supposed, it was, in fact, not worth the postage paid on it.
To come nearer home: from two separate places in Michigan, and from two different counties in Wisconsin, has the same mineral, with the same question, been sent me, and lately an intelligent-looking gentleman brought me three or four pounds of this same delusive stuff, picked up on the shores of our lake, twenty miles north. It is needless, perhaps, to say that they were all disappointed in their reat expectations.
From all that I have written there can as surely be deduced a moral as it can from the history of any nation, race, or sect, or life of any eminent individual, and the moral is, a more practical education in all of our schools.
I do not refer to those institutions which make a specialty of teaching geology, mineralogy, metallurgy, assaying, or other branches of science, but to the average, the common schools, for it is in such that the majority of our people obtains all it knows of books and learniug. It should be as imperative for the scholar to know a lump of coal from a piece of iron ore, to be able to distinguish a copper ore from one of lead, to learn the difference between granite and limestone, between " fool's gold" and real gold, as it is for him to learn that six and seven do not make eleven or that the wonderful English language is capable of pronouncing rough as ruff and bough as bow!
It is not necessary to make of the youth whose entire school education is acquired in one or two years, an expert mineralogist-there are limits to all things-but simply to know more of the material things, such as he is likely to, meet with in his every day life.
To give a point to my moral and to return to my subject, let the one who fiuds something bright and yellow and imagines it to be gold try to cut it (if it be large enough to bandle) with his knife. If it cuts easily (somewhat like lead) and flattens by use of hammer and anvil, it probably is what it is thought to be, at all events it is worth investigating. If, on the contrary, the specimen is too hard to be cut (iron pyrites), or crumbles instead of being sliced (copper pyrites), it certainly is not gold. Finish the test by placing some of the suspected mineral, powdered, in a common iron spoon over a fire. If; when it has been well beated, fumes arise and a smell as of a burning match is perceived, then pyrites is present, for it is the sulphur leaving the iron (or iron and copper) with which it was united to form the pyrites that causes the fumes and odor.
In conclusion, let the enthusiastic oeeker of the precious metal remember the ancient but wise adage that "All is not gold that outward shewith brighte."-Walter Lee Brown, in Mining Reviero.

RECENT INVENTIONS.

 RECEN INVNTIONS.

 RECEN INVNTIONS.}We give an engraving of a new device for holding a bag raised and open while it is being filled. The bag holder is formed of two curved arms provided with hooks, the arms being attached to toothed disks rest ing against another toothed disk on the upper end of a rod which is supported by a forked brace, the latter being driven into the ground or into some post or wall. The several toothed disks are pressed against each other by a screw passing through them. By this means the curved arms can be adjusted to hold bags of any desired size. This invention has been patented by Henry W. Nelson, of Ord, Neb.

Shield for Shirt Studs.

The object of this invention is to provide a device for preventing the screws or spirals of shirt studs from irritating the skin and cutting boles in the underwear. The invention consists in a shield, into which the screw or spiral of the stud can be screwed after having been passed through the aperture in the shirt bosom. This shield is preferably constructed of two disks secured to each other at the edges, one of the disks being provided with an aperture, through which the screw of the stud can be passed. This useful device is the invention of Mr. Daniel W. Wilkins. All communications in regard to it may be addressed to Noyes Brothers, 4 Summer St., Boston, Mass.

Improved Harrow.

This is a novel arrangement of the harrow frame in sepa rate sections, which are jointed together so as to enable sections to be added or detached for increasing or diminishing the size of the harrow ; also for changing its form as may be desired, each section being preferably constructed for one tooth, and consisting of a center and four arms radiating from it for jointing with the other sections, the joints being interchangeable, so that any section may be added to any others. Beside enabling the harrow to be varied as to size and shape, the teeth will conform to the surface of the ground better and do better work, and by making the sections in cast iron or steel the harrow can be made very cheaply. This invention has been patented by Mr. Joel A. Thronson, of Dayton, Washington Territory.

Improvement in Trays.

The annexed engraving shows an improved tray on which articles can be carried without danger of their sliding off, and without requiring the use of both hands while carrying. An oval or circular tray is provided with wings, to which handles or bails are hinged, and the latter are curved in such a manner that when they are folded down they rest on the rim of the tray. The hinges of the bails or handles are provided with stops to prevent swinging them upward or outward too far beyond the vertical position. While carrying the tray, the highest points of the handles or bails are to be swung in contact, so that the tray can be carried and held by one hand, leaving
the other free to open doors, etc. The rim prevents the dishes and other articles on the tray from sliding off in case the tray is accidentally inclined. The tray can be used in dining rooms, sick rooms, etc. When the bandles or bails are swung down, they cross each other. The rim of the tray is about one inch high. In place of making the tray oval, it can be made circular; but the oval shape is considered preferable. This invention has been patented by Sara L. Vreeland, of Hackensack, N. J.

Improved Pipe Wrench

The annexed engraving shows a simple and very effective pipe wrench patented by Mr. C. C. Coleman, of Honolulu, Hawaii Island. In this wrench the serrated jaws are pivoted together, the arger one being pivoted to the lever handle and forming a fulcrum for it , the smaller one being connected with the short arm of the lever by a link. The mechanical arrangement is such that any increase of pressure tending to turn the pipe insures a firmer hold of the jaws on the sur face of the pipe.

Protector Attachment for Electrical Conductors.
The engraving shows an improved device for preventing he stretching or breaking of electrical conductors while being introduced into or removed from their inclosing tubes, and for removing the conductors from their tubes should they become severed. The improvement consists in attach ing to the conductor, by a wrapping of wire, a spirally wound wire or clips, a straight wire having a protective coating of guttapercha or other suitable mate rial, and of sufficient strength to be used in introducing the conductor into or removing it from its tube or casing. This device will render it a simple matter to remove and replace any conductor; it will also greatly facilitate the construction of underground lines. Further information in regard to this useful invention may be obtained by addressing the inventor, Mr. William E. Townsend, Jr., 30 So. Elliott Pl., Brooklyn, N. Y.

Combined Heater and Oven.

This device is formed of a vertical drum or cylinder made of cast or sheet iron, and provided with a central cast iron tube extending through the drum and projecting from the top and bottom, the lower end of the pipe being curved. An annular firebox made of cast iron and provided with a dome is contained in the lower part of the drum, and the pipe passes through this firebox and dome. The bottom of the firebox is a sufficient distance above the floor of the drum to form an ashpit. The grate rests on an annular projection of a short cylinder surrounding the pipe in the ashpit. A baking oven is arranged in the upper part of the drum, and is provided with a door. Below the oven a chamber is formed and provided with an apertured bottom the outer end of this chamber being closed by a sliding gate. If the heater or oven becomes overheated, the sliding door or gate is opened to let the surplus beat out. The heated air in the vertical pipe can be conducted into several rooms or apartments, as may be desired, suitable registers being provided for regulation. This invention has been patented by Mr. Joseph H. Lindsay, of Freeland Pa.

Combined Shutter Worker and Blind Slat Operator
This is a combired shutter worker and blind slat operator which is capable of manipulation from the interior of a window. It consists in a pair of concentrically arranged sliding shafts with knobs and clutches for controlling them, and wheels on the outer ends of the shafts. There is a toothed sector on the shutter for connecting it with the toothed wheel on one of the shafts, and sliding toothed rack connected with the bar that control the slats and engaged by the toothed wheel on the other shaft, so that according as one or the other of the knobs is pushed in or out and turned, the shutter or the slats will be closed or opened and locked in any desired position. This useful invention has been patented by Mr. David Beal, of Doylestown, O.

New Emery Wheel.

This emery wheel bas a cast iron wheel with wrought iron tire shrunk upon it. To the wrought iron tire is secured by rivets a leather band to form a seat for the leather cover tha carries the emery compound. The hub of the wheel is cast with a circular web. The rim is thickened to form a sub stantial seat for the tire. The tire in addition to being shrunk on is furtber secured in place upon the wheel by screws passing through the tire and into the rim. To the tire is secured by copper rivets or otherwise a leather band, to which is cemented a second leather band; to this the emery compound is applied in the ordinary manner. With this construction the wheel bas no project ing parts to catch the air, and it will run smoothly, and at the same time the wrought iron tire binds the wheel firmly together so that it will not be liable to burst. This invention has been patented by Mr. John McLaughlin, 453 Water Street New York city.

Reflector for Lamps.

The engraving shows a novel and simple reflector for ap plication to lamps of all sizes and forms. To the upper edge of the reflector are secured wire hooks bent downward to pro vide for hooking over the top edge of the chimney. Wire
stays or braces are attached to the lower edge of the reflector, and diverging with their front ends rounded to cause them to receive partly within them the lower portion of the chimney, and to keep the reflector set out its proper distance at its bottom from the chimney. By slightly straightening outthe hooks and bending the stays further apart the reflector will be made to occupy a low er position relatively to the flame, and it will then be converted into a simple shield for use in a sick room or else where, or by straightening the stays the reflector may be adjusted into a position which will adapt it to act as an ordinary lamp shade. In both of these positions it will cast no shadow or have any darkening effect on the portion of the room deigned to receive the light. This invention has been patent ed by Mr. Henry.F. W. Seele, of Rolla, Mo.

Calf Weaner.

This invention relates to the class of calf weaners adapted o be attached to the central cartilage of the calf's nose, like a bull ring, the parts of the weaner being provided with sharp points that come against the cow's bag when the calf attempts to suck. The parts or sections of the device are attached together by a pivot forming a part of one of the points. They are held closed by means of a small screw. This device is very effective, simple, and cheap. Mr. William F. Geissler, of Comfort, Texas, is the patentee oif this invention.

Hints on Sleep.

The question of chief importance to most people in these overwrought, wakeful days and nights is how to get good sleep enough. Dr. Corning drops a few simple hints which may be of value. In the first place, people should have a regular time for going to sleep, and it should be as soon as can well be after sunset. People who sleep at any time, according to convenience, get less benefit from their sleep than others; getting sleep becomes more difficult; there is a tendency to nervous excitability and derangement; the repair of the system does not equal the waste. The more finely organizer people are, the greater the difficulty and the danger from this cause. The first thing in order to sleep well is to go to bed at a regular hour, and make it as early as possible. The next thing is to exclude all worry and exciting subjects of thought from the mind some time before retiring. The body and mind must be let down from the bigh-pressure strain before going to bed, so that nature can assert her rightful supremacy afterward. Another point is, never to thwart the drowsy impulse when it comes at the regular time by special efforts to keep awake, for this drowsiness is the advance guard of healthy, restorative sleep. Sleep is a boon which must not be tampered with and put off, for if compelled to wait, it is never so perfect and restful as if taken in its own natural time and way. The right side is the best to sleep on, except in special cases of disease, and the position should be nearly horizontal. Finally, the evening meal should be composed of food most easily digested and assimilated, so that the stomach will have little hard work to do. A heavy, rich dinner taken in the evening is one of the things that murder sleep. Late suppers with exciting foods and stimulating drinks make really restorative sleep next to impossible. Narcotics are to be avoided, save as used in cases of disease by competent physicians. The proper time, according to Dr. Corning, to treat sleeplessness is in the day-time, and it must be treated by a wise and temperate method of living rather than by medicines. This is good common sense, says the New York Star, from which paper we copy, and doubtless a vast deal of the debility, nervous derangement, and the insanity of our time would be prevented by more good, restful natural sleep.

Iron and Steel Magnetized by Breaking.

At a recent meeting of the Society of Physical and Natural Sciences, Karlshruhe, M. Bissinger made a communica tion on the magnetization of bars of steel and iron when broken on the machine serving to test them. The phenomenon is not due to elongation of the bar, but to the actual breakage; and both parts are converted into two magnets of sensibly equal power. The shock and trembling of the metal on brcaking is probably the cause of magnetization. According to Professor Hughes' recent experiments, in the testing machine the bars are placed vertically, and the south pole is formed at their upper part. The different iron ob jects near the machine at the moment of rupture and vibration are also magnetized, but to a less degree.

Mr. W. H. Vanderbilt recently received a letter from an inventor, asking him for a gift of $\$ 500,000$, to enable him to perfect a perpetual motion machine. As incredible as it may appear, the request was not complied with. We fear Mr. Vanderbilt has very little sympathy with struggling genius; and if the inventor becomes discouraged and commits suicide, he will be another victim of monopoly.

ENGINEERING INVENTIONS. An improved car axle is the subject of a
patent granted to Mr. Henry C. Atkinson, of Franklin, patent granted to Mr. Hennry C. Atkinzon, of Franklin, Ky., in which prals, so that when the journals become
movable journals
worn the axle may be repaired by placing new journals worn the axle may be repaired by placing new journals
thereon.
Mr. Edward R. Brown, of Spartanburg, S. C., is the patentee of an improved car couping. The
upper part of the drawhead is provided with a hook
projection, over which a U-shaped spring frame is projection, over which a U-shaped spring frame is
passed for coupling the cars. This frame is held firmly in place by two hooks on the extremity of a lever which exteuds to the top of the car, between which Jevers the
crossbar of the frame is passed. The cars are uncoupled by raising this lever and thuselevating the frame which
A very simple automatic car coupling has been patented by Mr. T. B. Nutting, of Morristown
N. J. The drawhead is provided internally with a drawbar which has a hook on its forward end that en gages with the connecting link for coupling the cars,
the said drawbar being raised automatically by the en the said drawbar being raised automatically by the en
tering link. A rod from the drawbar passes to the top tering link. A rod from the drawbar passes to the top
of the car for uncoupling the same. This invention is intended as an improvement upon a patent grante
Messrs. Nutting \& Graveline in December, 1877 .
Mr. Cephas Shelburne, of Johnson City, Tenn., has obtained a patent for an improved gas en-
gine in which gaseous pressure within the cylinder, re-
sulting from the combustion of a mixture of inflammasulting from the combustion of a mixture of inflamma
ble gas and air, causes the piston to perform its stroke the products of the combustion being expelled by the re-
turn stroke of the piston. The objects of the invention turn stroke of the piston. The objects of the invention
are to obtain greater speed and power in proportion to are to obtain greater speed and power in proportion to
the size of the cylinder, and greater uniformity in its running; further, to simplify the construction of the engine, thus rendering it more practicab
gas engines which have been introduced.
An improved car coupling has been patent
ed by Mr. William E. Drew, of Richmond, Va. The ed by Mr. William E. Drew, of Richmond, Va. The
drawhead has a V-shaped mouth to receive a clevisdrawhead has a V-shaped mouth to receive a clevis-
shaped coupling link and a horizontal coupling pin held forward by a spring. With the coupling pin is connected the arm of a spring-drawn sliding rod, and with this sliding arm is connected the arm of a second spring-
drawn sliding rod having projecting ends, by which the coupling pin can be pushed back to uncouple from the
sides of the cars. Within a recess in the two part draw sides of the cars. Within a recess in the two part draw-
head is pivoted a spring pressed arm to engage with the head is pivoted a spring pressed arm to engage with the
end of the coupling pin and hold it in an uncoupled end of the
Mr. Levi H. Roberts, of Paris, Ill., is the patentee of an improved car axle and box, the object of
which is to prevent the sudden stop of the cars in their sidewise or swaying movement, and to lessen the friction, in rounding curves; and to so construct the frame
of the axle box that the parts of the box will remain these ends the invention consists in providing elastic or yielding surfaces for taking the side thrusts of the
axle, and in making the bottom and ends of the frame from one piece of metal with solid, bent, or welded corners. This invention is an improvement up
patent granted to Mr. Roberts in December, 1882 .
Among the recent improvements in car couplings is the invention of which Mr. Wheeler W
Fitch, of Honeoye Falls, N. Y., is the patentee. The drawhead consists in two hollow castings secured to gether by suitable bolts, and having its throat cut away to
receive the spear-headed connecting link, for coupling the cars. This counecting link is retained in the draw
head by means of jaws formed upon the shaft, which are journaled vertically in the casting. The shaft is provided with springs which hold the jaws face to face
in the center of the casting, so that they will engage in the center of the casting, so that they will engage
with the head and retain it securely. Devices are provided for turning the shaft and releasing the connecting link in uncoupling the cars. This car conpling is auto-
matic in its action, very strong, and not likely to ge matic in its

MECHANICAL INVENTIONS.

 An ingenious improvement in door locks has been patented by Mr. William Rowe, of Haverhill,Mass., the important feature consisting in the construction of the lock so that it can only be unlocked from the side of the door upon which it was locked, rendering it
stitutions.
stitutions.
A novel machine for improving and mending roads has been patented by Mr. Lewis Lamborn. of
Hamorton, Pa. This machine is mounted upon wheels Hamorton, Pa. This machine is mounted upon wheels
and is so constructed that the surface of the road will and is so constructed that the surface of the road will
flrst be scratched by a series of teeth arranged in the
forward part of the frame, after which the loose earth forward part of the frame, after which the loose earth
will be disposed by a scraper set at an angle, so as to ive the desired shape to the road.
Mr. Auguste Lambert, of Fosse, Belgium, has obtained a patent for some important improvements
in sewing machines. The invention just patented is an improvement upon a patent granted to the same invent or in August, 1882, and relates, among other things, to mechanism for driving the shuttle driver and for rotat-
ing the hooked ring, both being accomplished in a very

Mr. John Dempster, of Knoxville, Tenn., has recently obtained a patent on an improved millstone
driver which is designed specially for that class of mills driver which is designed specially for that class of mills
in which the spindle,is made to stand vertically and support the runner stone. The object of the new inven
tion is to provide better means for balancing the runner stone and rigidly securing it to the spindle, so that the flour may be granulated in a superior manner.
An automatic safety cock for gas burners
has been patented by Mr. Andrew Archibald, of Yonkers, N. Y. The object of this invention is to provide a safety cock for gas burners which will automatically
close when the light is extinguished, whether this be close when the light is extinguished, whether this b
done by turning the cock or by blowing the ligbt out and which will be reliable and certain in its action, a
will not interfere with the flow of gas while burning.

A cotton gin rib of improved device has been patented by Mr. W. S. Anderson, of Duncausby, Miss. This invention consists of the combination of re-enforcing wearing platess applied the combe sidatios of the
ribs, these plates being made tapering toward their ribs, these plates being made tapering toward their
lower ends, and flared inwardly with said ribs, which are recessed correspondingly to permit the holding of he plates in position without sciews, and to permit
Mr. George W. Foskett, of Winchendon, Mass., has patented a machine for turning round tenons
for chair legs and similar articles, and the invention consists in the combination of rotary clutches for carying the work to the cutters, revolving chucks carry-
ng the tenoning cutters, and saws for cutting the ng the tenoning cutters, and saws for cutting the legs or orner aricies to uniform lengt,
chanism for regulating the length of the tenon and for effecting the successive operations automatically.
Mr. Daviel Hansz, of Sullivan, Ind., has obained a patent for an improved motor, which con-
ists of a triple crank driving shaft with foot treade hand lever, and seat lever attachments, whereby the
power of the hands and feet and the weight of the body power of the hands and feet and the weight of the body
may be exerted on the drlving shaft. The inventor claims that this power, while it may be employed for other purposes, is especially adapted for propelling
wagons, hand cars, tricycles, boats, elevators, etc.
An improved boot or shoe sole stamp is
he subject of a palent granted to Mr. William C. Hoar, the subject of a palent granted to Mr. William C. Hoar, of Spencer, Mass. This invention consists of a device
for stamping the holes in the soles of boots and shoes for stamping the holes in the soles of boots and shoes
in which the nails or pegs are to be driven for making in which the nails or pegs are to be driven for making
flgures in special design, and it is equally applicable for making the holes around the edges for the pegs, by which
shoe.
A novel invention for facilitating the manufacture of lead pencils has been patented by Mr. Paul
E. Gonon, of New York city. This invention relates I. Anon, of weo of that class of pencils which have a
the manumarting
central marking core, incased by a wood fiber or analocentral marking core, incased by a wood fiber or analoous material pressed around the core in a plastic
semifluid state. The great advantage of this process that a superi
duced price.
A very convenient and practicable camera stand, which presents many improvements over those at present in use, has been patented by Mr. W. R.
Wright, of Princeton, Ind. This stand is supported a tripod and hae a central shaft, to the lower end of which is attached by a cord a balancing weight, by deaired beight. The table, upon which the camera ests is so constructed that the instrument may be revolved or adjusted right and left, and may be set in any
angle to the horizon.
agle to the horizon.
An ingenious adding machine has been paented by Mr. Albert Stetner, Jr., of Berlin, Germany. he invention consists in an anding machine constracted
with a spirilly grooved cylinder carrying the numbers fom 1 to 1,000 , which cylinder is revolved more or less ocorating as the series of key rods are depressed. The number be wishes to add, and after he has manipulated all the numbers he ascertains the result by looking
through an opening left for that purpose at the top of

Mr. Andrew H. Ballagh, of Macon, Mo at patentee of an improved baling press. The mateber through an opening in the top. The follower is hen brought to bear against the material by means of sweep, which is connected by links with the toggle
ars of the follower. When the material has been com pressed into a bale, separating boards are inserted and the operation continued as before, the baling chamber thus containing several pressed bales at the same time, the bands and ties being applied to the completed bale while the next bale is being compressed.
A new and improved station indicator bas been patented by $\mathbf{M r}$. Henry Koehler, of Pomeroy, \mathbf{O}.
This improvement consists in a band having the names of the various stations indicated upon it. The band is arranged to wind over two rollers, one of which is provided
with a crank by which the attendant rotates the band, with a crank by which the attendant rotates the band,
and exposes to view the name of the station at which the rain is stopping. A gong is sounded at the same time call the attention of the passengers to the ind ers for sho strips may be provide train has run from a iven place, the time it was due, etc.
Mr. William H. Ernst, of Chase, Kan., has obtained a patent for an improved grain weighing apparatus which automatically weighs and registers the of hoppers with falling bottoms and a shifting gate o valve, connected with one another in such a manner
that the bottom of one hopper, falling to discharge its load, is made to raise and close the bottom of the other hopper, the valve by which the grain is conducted into while the registering apparatus is operated by the falling of the bottoms.
A very simple and practicable amalgamator or separating the free gold from auriferous earth, withif desired, has been patented by Mr. Henry Conk, of Leadville, Colo. This apparatus consists, essentially, of means for rolling and otherwise causing the earth o powdered ores to flow over amalgamating copper plates
charged with quicksilver, in imitation of the action of waterin the sluice machines, and causing the particle of gold to come in contact with the charged plates, to-
gether with an arrangement of quicksilver baths for gether with an arrangement of quicksilver baths for
separating particles too large to be taken up by the

Mr. Charles Conner, of New York city, is the patentee of an improved wire wrapping or covering
machine. The object of the invention is to provide a machine by which wire may be wound with one or ore strips of rubber or similar material for insulating
ire. The strip or ribbon first applied to the wire is off from a reel attached to the eye plate, and thence
the edges of the strip before it reaches the wire and eye, the eye and sleeve by means of rubber rollers place immediately in the rear of the sleeve, from which roller it passes, completely covered, to the final winding drum
An improved apparatus for soaping and dyeing textile fabrics, in which the material to be ope ated upon is passed over rollers, and is thus immersed
in the soaping or dyeing liquid, has been patented by Messrs. John Gibson, Jr., of Mottram, County of Ches ter, and John Platt, of Manchester, County of Lancas plied to soaping, is to get rid of the thickening which when printing a vehicle to carry the color or mordan fabric. When applied to dyeing the color only in the the coloring matter in the liquid to thoroughly impreg nate the fabric. This improved apparatus is claimed to
effect this operation with greater facility than any hitherto employed.

AGRICULTURAL INVENTIONS.

A combined harrow, seed planter, and cul tivator, which recommends itself to farmers as savin them the expense of buying a separate machine for each
operation in raising crops planted in rows, has been paented by Mr. Robert F. Ellis, of Whitt, Tex
Mr. Francis A. Pettitt, of Valley Mills, Tex., has patented an improved cotton chopper and
cultivator, which commends itself to the simplicity. The machine can forthe most part be made by hands of ordinary skill, such as are generally availa ble whenever such machines are required for use. Mr Pettitt is to be congratulated for producing a machine to supply such a long felt want.
A new hand corn planter, designed to expedite the operation of planting corn in the hill, has been patented by Mr. Samuel M. Macomber, of Grand Isle,
Vt. This planter is provided with a seed box and with a sliding seed cut-off, by means of which the seed is admitted in the quantity required into a receiver below from whence it is dropped into the ground. A plate
projects a few inches above the lowest part of the planter for regulating the depth of thrust of the machine, so that all the kernels of seed may be deposited at equal depth in the soil. This hand seed dropper is a
provement on a similar machine patented in 1882 .
A very simple device to be applied to a harvesting wagon for stacking straw has been patented by
Mr. Christopher Leffingwell, of Clarksburg, O. The wagon is provided with a stacker made in two parts hinged together at their adjacent ends, so that when
the stacker is to be brought into use it may be readily he stacker is to be brought into use it may be readily chains and guy ropes. The stacker may be so made to folded into small compass for transferring from one field to another, and for convenient housing after the

MISCELLANEOUS INVENTIONS.

A composition to be used for kindling fires has been patented by Mr. William J. Babb, of Troy N. Y. The mixture consists of charcoal, corn cobs, pe-
troleum, tar, and some heavy hydrocarbon, such as linseed, cotton seed, or fish oil, mixed together in certain
Mr. Wilhelm Reissig, of Darmstadt, Germany, has patented an improved stamping ink which is
made by adding to ordinary printer's ink iron oxide and oxidulated iron, metalic iron in the finest possible soluion or powder, all of which is intermingled with lin-
Mr. Magnus Gross, of New York city, has patented a retort for making illuminating or fuel gas
from crude oil, naphtha, or other liquid hydrocarbons rom crude oil, naphtha, or other liquid hydrocarbons and superheated steam, by the aid of which dissocia-
tion and readjustment of the constituents of any liquid hydrocarbens and steam can be accomplished simulta

A horse blanket has been patented by Mr. Edgar W. Allen, of Rock Island, Ill. The novelty and use consist of stays, instead of being attachedin the ordinary way, extending along the side of the horse, and
connect with one another at the neck and tail, so that the strain will be brought to the neck the stays instead of upon the blanket.
A harness pad has been patented by Mr. Edward Kettering, of Jefferson City, Mo., which can
be very quickly and cheaply made. The new pad is very neat in appearance, and is so constructed that the trimmings and skirt straps may be removed and new
ones supplied without taking the pad apart, thus lesening the liability of injuring it.
An improved mode of attaching lumber patented by Mr. Palmer Stafford, of Green River, Ill By a peculiarly constructed strap the inventor confine the body of his wagon to the bolster so firmly that the
jar and rattle usual in this class of farm wagons is jar and r
viated.
A workman's dinner pail for carrying food and liquids in a eompact and tidy manner is the sub-
ject of a patent recently granted to Messrs. F. McC. Starbuck and R. M. Taylor, of Ansted, W. Va. The pail is provided with a movable dish and with two semi circular covers hinged on opposite sides of the pail,
The covers are provided at their inner edges with projections for holding a cup when the covers are closed
A simple and convenient bag fastener bas been patented by Mr. C W. Bradford, of Belfast, Me slitted curved a crossbar is attached to one end and provided with a hook for holding it to the bag. The
chain is passed around the gathered part of the bag and drawn up tight, and a link is passed into a slit of th An improve bag
An improved starch for stiffening and giving a superior gloss to washed articles without injuring their texture, has beenpatented by Mr. Julius Gunther,
of Quincy, Ill. This starch consists in the combination of Quincy, Ill. This starch consists in the combination
in certain proportions of common starch, crystallized
sulphate of ammonia, and crystallized boracic acid, the whole forming a compound which not only presents the
dvantages above cited, but renders the objects on hich it is used fireproof.
An under waist for children is the subject of a patent granted to Mary E. Higgins, of Cadillac, osed of two seamless half bories and and waist comustment down its back and front tovary its size of adined with the waist straps for supporting the hose and eggins of the wearer, all the parts being so adjusted at a child wearing the article has the greatest liberty
Mr. Joseph T. Dun ham, of Brooklyn N.Y., has patented a combined tag and euvelope, which is so
constructed that the bill or invoices can be sent with the goods, which is a matter of great importance, especially if the goods are perishable, so that the merchant may know the cost to permit immediate sale. Furthermore, in this envelope the address is concealed, and of their competitors. The invention is particularly de-
A very convenient shot holder for the use of retail dealers has been patented by Mr. James C.
Turner, of Sterling, Kan. This improvement consists Turner, of Sterling, Kan, This improvement consists ach compartment being designed to hold a different ize of shot. These chambers are provided at the botcharged as desired. Each chamber is likewise provided with a glass side opening, by means of which the An improved spring bed has been patented Mr. George Wenzell, Detroit, Mich. This improvement consists essentially of two frames connected by levers and springs, so that either frame may serve for the base, and will support the other, which has
the bed on it, the spring or springs, together with the the bed on it, the spring or springs, together with the ing the required elasticity of the bed, whereby the bed ill be depressed alike over all its if the weight entered upon one part only
Mr. Jacob O. Hopping, of Sagg, N. Y., is the patentee of an improved thill coupling, which risdeigned to prevent rattling of the thills. The invention xle clip, which latch prevents the bolt from passing ut of the jaws and the thill eye. The latch is provid. ed with a plate filting over the head on the end of the bolt, and the inner end of the latch is provided with a
curved shank fitting on the axle. This device is very curved shank fitting
A very simple and inexpensive box opener as recently been invented, which greatly facilitates the operation of removing covers from boxes. This tool
consists of two cross pivoted handles provided at their consists of two cross pivoted handles provided at their at the edges, and adapted for insertion under the cover of the box. By pulling the two handles away from one another, the two jaws will be brought together and the cover of the box pried up. The patentee is Mr. 'I.L.
Messrs. James G. Leslie, of Oregon, and W. A. Hall, of Pine Rock, Ill., have obtained a patent or an improved wagon box and hay rack. The box of tions are attached to the sides by means of outside and nside cleats, by which device the capacity of the box is greatly increased. The rack attachment consists of
inclined arms which rest upon the upper edges of the nclined arms which rest upon the upper edges of the
sides, being stayed at the end and middle by jointed crossbars. The arrangement is s
readily adjusted by a single person.
An improvement in pantaloon suspenders as been patented by Mr. Abraham Schenfield, assignee ender straps are of the usual form, and the improve ments relate to the buckles and the end straps, the ormer being double buckles, in the upper portion of which the main suspender slides, and is held at any deired length. The lower portion of the buckle is provided with a tongue which engages with the end straps,
which âre secured together by eyelets which hold them ecurely in place.
An improved coffee pot has been patented y Mr. Lewis W. Walker, of Minneapolis, Minn. The invention relates to the class of coffee pots in which an ner vessel for the coffee is arranged within an outer
vessel, with a water space between the vessels. The object of Mr. Walker's invention is to condense the steam formed in the water jacket between the vessels
in the process of making the coffee, and allow it to flow in the process of making the coffee, and allow it to flow
back into the water jacket, whereby the quantity of back into the water jacket, whereby the quantity of
water necessary to be used in the water reservoir is reduced, and its escape in the form of steam is prevented.
A grain drying and cooling shelf for manipulating the grain in drying kilns where artificial heat s employed for rapid expelling of the moisture has een patented by Mr. Henry Cutler, of North Wibraam, Mass. This invention consists of a series of inpread out to be cooled over large areas of surface and returned again to the delivery spout by the action of gravity. The grain is moved slowly over the shelves,
its direction being frequently changed and its motion its direction being frequently changed and its motion eing retarded by the shelves and by counter currents air, so that the veloin thorougly cooled and dried.
Mr. August Hoen, of Baltimore, Md., has btained a patent as a new article of manufacture on a hat lining, which consists in providing by any printing
process an imitation of the more expensive kind of hat lining, where the central colored strip is made of heavy material for stamping the manufacturer's name uvon it, and the side strips of lace or other gauzy material. Mr. Hoen bas also obtained a patent for preparing a lithographic stone or platefor lithocaustic engraving, con-
sisting in stopping out or filling in with ink at regular sisting in stopping out or filling in with ink at regular intervals of space the lines drawn on an etching ground,
thereby producing a series of dotted lines in place of thereby producing a series of dotted iines in place of
those which were previously continuous. Clouds and by Mr. Hoen's newly patented process.

The Chargefor Insertion under this head is one Dollar a line for each insertion : about eiglit worrds to a line. Advertisements must be received at publication office
as eanly as Tluursay norning to appear in next issue.

Catalogues free--Scientific Books, 100 pages; Electri cal Books, 14 pages. E.\& F. N. Spon, 35 Murray St., N. F. Wanted to sell on commission on the road, engine nd boiler supplies. Box 127, Painesville, O.
For Sale.-Clock maker's wheel cutting engine, dial, 24 inches; fly and mill cutters. J. L. Finn, Elyria, o.
Fifty for fifty cents, one hundred for one dollar. Fifty for fifty cents, one hundred for one dollar.
Bona flde addresses of thriving South Carolina farmers. Bona flde addresses of thriving South Carolina farmers.
Men who make money. Archer \& Rains, Strother, S. C. Fire Brick. Tile, and Clay Retorts, all shapes. Borgner Fire Brick. Tile, and Clay Retorts, all shapes. B' Peck's Patent Drop Press. See adv., page 365.
Diamond Tools. J. Dickinson, 64 Nassau St., N. Y. Steam Hammers, Improved Hydraulic Jacks, and Tube 50,000 Emerson's Hand Book of Saws. New Edition. 50,000 Emerson's Hand Book of Saws. New Edition.
Free. Address Emerson, Smith \& Co., Beaver Falls, Pa. Eagle Anvils, 10 cents per pound. Fully warranted. For Pat. Safety Elevators, Hoisting Engines, Friction Gould \& Eberhardt's Machinists' Tools. See adv.,p. 365. Barrel, Key, Hogshead, Stave Mach'y. See adv. p. 366. For Mill Macb'y \& Mill Furnishing, see illus. adv. p. 364 . Mineral Lands Prospected, Artesian Wells Bored, by
Pa. Diamond Drill Co. Box 423 . Pottsville. Pa. See p. 366. Pa. Diamond Drill Co. Box 423 . Pottsville. Ea. See p. 366 .
Upright Self-feeding Hand Drilling Machine. Excelent construction. Pratt \& Whitne Co., Hartford, Conn. For best low price Planer and Matcner. and latest improved Sash, Door, and Blind Machinery, Send for
catalogue to Rowley \& Hermance, Williamsport, Pa. The Porter-Allen High Speed Steam Engine. SouthContracts taken to manuf. small goods in sheet or cast brass, steel, or iron. Estimates given on receipt o
model. H. C. Goodrich, 66 to 72 Ogden Place, Chicago. Brush Electric Arc Lights and Storage Batteries. Twenty thousand Arc Lights already sold. Our largest
machine gives 65 Arc Lights with 35 horse power. Our Storage Battery is the only practical one in the market. and
Curtis Pressure Regulator and Steam Trap. See p. 349 . LightningScrew Plates, Labor-saving Tools, p. 248. Engines, 10 to 50 horse power, complete, with govern-
or. $\$ 250$ to $\$ 550$. Satisfaction guaranteed. M ore than or, $\$ 250$ to $\$ 550$. Satisfaction guaranteed. More than
eight hundred in use. For circular address Heald $\&$ eight hundred in use. For circular add
Morris (Drawer 127), Baldwinsville, N. Y.

Metal Patterns,

Geo. Van Sands, Middletown, Conn. C. B. Rogers \& Co., Norwich, Conn.. Wood Working The Sweetland Chuck. See illus. adv., p. 334 Knives for Woodworking Machinery.Bookbinders,
Paper Mills. Taylor, Stiles \& Co., Riegelsv:lle, N. J. Best Squaring Shears, Tinners', and Canners at Niagara Stamping and Tool Company, Buffalo, N. Y. Lewis' Combination Force Pump makes three ma-
chines made of brass throughout. See Adv. page 317. Saw Mills, Hauck \& Comstock, Mechanicsburg, Pa. Stenographers, type-writers, clerks, and copyists may
be obtained free of charge at the Young Women's Chris-
tian Association, 7 East 15th Street, New York. tian Association, 7 East 15th Street, New York Lathes 14 in . swing, with and without back gears and
screw. J. Birkenhead, Mansfleld, Mass. Five foot planers, with modern improvements. Geo.
s. Lincoln \& Co., Phoenix Iron Works, Hartford, Conn. s. Lincoln \& Co., Phomix Iron Works,
The Best.-The Dueber Watch Case.

If an invention has not been patented in the United States for more than one year, it may still be patented in Canada. Cost for Canadian patent, $\$ 40$. Various other
foreign patents may also be obtained. For instructions foreign patents may also be obtained. For instructions
address Munn \& Co., Scientipic American Patent Agency, 261 Broadway, New York.
Farley's Directories of the Metal Workers, Hardware Trade, and Mines of the United States. Price $\$ 3.00$
each. Farley, Paul \& Baker, 530 Market Street, Phila. Improved Skinner Portable Engines. Erie, Pa. Guild \& Garrison's Steam Pump Works, Brooklyn, N. Y. Steam Pumping Machinery of every description. Send for catalogue.
Permanent Exposition.-Inventors' Institute, Cooper Union, N.Y. City. Every facility for exhibition of machin-
ery, merchandise, and inventions. The expense is small ery, merchandise, and inventions. The expense
-the advantages great. Send for particulars. Nickel Plating.-Sole manufacturers cast nickel anodes, pure nickel salts, polishing compositions, etc. Com
plete outfit for plating, ett. Hanson \& Van Winkle Newark, N. J., and 92 and 94 Liberty St., New York.
Lists $29,30 \& 31$, describing 4,000 new and 2 d -hand Machines, ready for distribution. State just what machines
wanted. Forsaith \& Co., Manchester, N. H., \& N. Y. city "Abbe" Bolt Forging Machines and "Palmer" Power

Railway and Machine Shop Equipment.
Send for Monthly Machinery List
to the George Place Machinery Company,
121 Chambers and 103 Reade Streets, New York. 25"' Lathes of the best design. G. A. Ohl \& Co.
East Newark, N. J. "How to Keep Boilers Clean." Book s
James F. Hotehkiss, 84 John St., New York.
Wanted.-Patented articles or machinery to make
and introduce. Gaynor \& Fitzgerald, New Haven. Conn. Water purified for all purposes, from household supplies to those of largest cities, , by the improved fllters
manufactured by the Newark Filtering Co., 177 Commerce St.. Newark, N.J.
Latest Improved Diamond Drills. Send for circular to M. C. Bullock Mfg. Co., 80 to 88 Market St., Chicago, In For Power \& Economy, Alcott's Turbine, Mt.Holly, N. J. Ice Making Machines and Machines for Cooling
Breweries, etc. Pictet Artiffial lce Co. (Limited), 142 Breweries, etc. Pictet Artifcial, Ice Co. (Limited),
Greenwich Street. P. O. Box 3033 , New York city.

Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J.
Split Pulleys at low prices, and of same strength and Split Pulleys at low prices, and of same strength an orks, Drinker St., Pbiladelphia.Pa
Machinery for Light Manufacturing, on hand and
built to order. E. E. Garvin \& Co. 139 Center St., N. Y. Supplement Catalogue - Persons in center St., N. Y. Supplement Catalogue.--Yersons in pursuit of infor tifle subject, can have catalogue of contents of the Scl
ENTIFIC AMLRICAN SUPPLEMENT sent to them free entific amierican supplement sent to them free the whole range of engineering, mechanies, and physi-
cal science. Address Munn \& Co. .Publishers, New York

HINIS 'TO CORRESPONDENTS.
No attention will be paid 10 communcations unless accompanied with the full name and address of the
writer. Names and addre
We renew our request that correspondents, in referring
former answers or articles, will be kind enough to former answers or articles, will be kind enough to
name the date of the paper and the page, or the number name the date of
Correspondents whose inquiries do not appear after a reasonable time should repeat them. If not then pub
lished, they may conclude that, for good reasons, lished, they may conc
Editor declines them.
Persons desiring special information which is purely of a personal character, and not of general incerest, should remit from $\$ 1$ to $\$ 5$, according to the subject, as we cannol be expected to spend time and lab
obtain such information without remuneration. obtain such information without remuneration.
Any numbers of the Scientific American Any numbers of the Scientific American Supple-
ment referred to in these columns may be had at the MENT referred to in these co
office. Price 10 cents each.
Correspondents sending samples of minerals, etc. label their specimens so as to avoid error in their identi label the
fication.
(1) W. A. P.-Lacquer for brass: Dissolve good clear shellac half an ounce in one pint 95 per cent alcohol, in a botule, corked: put in a warm place
and shake occasionally for a day or so. Then let ti set and shake occasionally for a day or so. Then let it set
tee;pour off the clear transparent part for use. If to thick, thin with 95 per cent alcohol. If more color meric for yellow.
(2) A. W. W. asks: Where can I find data relating to the number of units of heat that will be radiated from steam pipes? A. The following formula is given by Haswell, and may answer your parpose:
$1 \cdot 7 l(\mathrm{~T}-t)$
$=\mathbf{R}=$ Radiation in degrees per secon
$\stackrel{d v}{l=\text { length of pipe in feet; } \mathrm{T}=\text { temperature of surface of }}$ pipes; $t=$ temperature of the air; $d=$ diameter of pipe (3) H. C. asks if it is possible for water to e forced through rubber which is warranted to b waterproof, supposing that the rubber is supported
by a hard substance so as to prevent its stretching by a hard substance so as to prevent its stretching,
or suppose it to be stretched, now thin a piece or suppose it to be stretched, iow thin a piece
would prevent the water from penetrating it? If it will penetrate a thin piece and not a thick one, how thick shonld it be in order to prevent water from coming through it? A. It is probable that rubber that
is warranted waterproof is waterproof under ordinar circumstances. Water under pressure will pass throug many substances, that are considered waterproof when
no pressure is oflied. You may possibly obtain pure gum that wif stand considerable pressure if it is pro (4) ${ }^{5}$.
(4) S. S. M. asks how to make a paint for blackboards. A. To make one gallon of the paint take
10 ounces of pulverized and sifted pumice stone, 6 ounces powdered rotten stone (cr infusorial silica) three-quarters pound of good lampblack, and alcoh
enough to form with these a thick paste, which must be well rubbed and ground together. Then dissolve 14 ounces of shellac in the remainder of the gallon of alcohol, by digestion and agitation, and finally mix this varnish and the paste together. It is applied to the board with a brush, care being taken to keep the pain well stirred so that the pumice stone will not settle, Two coats are usually necessary. The first should be
allowed to dry thoroughly before the second is put on.
 or rub off any portion of the first. One gallon of this paint will ordinarily furnish two coats for sixty square yards of blackboard. When the paint is to be put on plastered walls, the walls shonld be previously coated
with glue size-glue, 1 pound; water, 1 gallon; lampwith glue size-glue, 1 pound;
black, q. s. to color; put on hot.
(5) B. G. writes: I want to know how to tan skins so as to leave the fur on. Can you give this information? A. Wash the skins in water, and cleanse
them thoroughi by scraping or rubbing. Then rub well into the flesh side of the skin the following mix-turer-Alum, powdered, $23 /$ pounds; salt and coarse Wheat meal, each one pound; sour milk, q s. 10 form a thin paste. When the skin will absorb no more of this flesh side), and fold up the:skin with the flesh surfaces together and put it away in a cool placefor a day. Repeat this pasting and rubbing each day for a week, washing out and half drying the skin every third day Finally, thoroughly wash the skin in running water drain, brush over it (fiesh side) a strong solution of alum in water, and hang it up to dry. The dry skin ib softened by rolling and pounding it with mallet or rub-
bing and stretching it with a flexible tool. It is commonly finished by rubbing down the flesh side with umice stone.
(6) E. A. Y. asks: Can any injurious effects result from having plants in living or sleeping amination and otherwise that plants in living rooms or
in bed rooms rather purify the air than otherwise. I when the odor is offensive to invalids. Whatever annoys the sick does harm to a greater degree than ealthy persons can understand.
(7) L. B. D. asks how to remove black worms from the face. A. The black points, fleshworms, or coyedones, which are found in the face, and
especially nofr the nostrils, are not at all produced by the accumplation of the particles of dirt or dust, as has eneralif been believed, but by pigmentary matter when is soluble in acids. The following treatmeni parts; acetic acid, 2 parts, with or without the addition of a small quantity of some ethereal oil. With this pomade cover the parts affected in the evening, and if need be during the day. After several days all the omedones can be easily expressed: most of them even come out by washing the parts with pumice stone soap.
The same results can be obtained by bandaging the parts affected for a long time with vinegar, lemon juice, or diluted bydrochloric acid. The acids act like cosmetics, as they transform the black color into a brow
and yellow shade and destroy it gradually altogether. (8) J. asks bow to produce artificial marble. A. Reduce marble dust or white limestone /oi
very fine powder by grinding and sifting, miz/with intimately about one-fourth its weight of
oxide (zinc white) and one-eighth its we ht with a sufficient quantity of a hot aqueos onck past waterglass, containing about 40 per cent of the glass. Mould the paste under pressure while warm, and expose the moulded form fo
air, before finishing.

INDEX OF INVENTIONS
For which letters Patent of the United
tates were Grante
May 29, 1883,
AND EACH BEARING THATC DATE.

[Seenoteat end of list about copies of these patents.]

Advertising fan, C. De Qu
ir engine, H. H. Burritt
Alarm. See Fire alarm. Fize
Auger, Halligan \& Rugg....
Axle, vehicle,
Baby carrier. J. H. Lancaster
Bagasse menace, I. A. Hedg
Baling press, J. A. Spencer.
Barrel cover, F. G. Lane...
Barrel cover, expansible, A
Barrel cover, expansible, A. Swoboda
Bed bottom, M. E. Graves................. Bed bottom, M. E. Graves.
Bed bottom, spring. . F.
Bed, folding, L. Leeds..... A.........
Purefoy Bedstead fastening, B. A. Wilton Belt fastener, Budlong \& Talcott.
Bessemer process. basic, J. Reese

Bicycle saddle, T. J. Kirkpatrick
Board. See Bulletin board. Electric switch board Board. See Bulletin b
Boat. See Life boat.
 Bottling liquitds, device for, W. T. Ferre Box. See Bottle carrying box. Match box. Paper box. Wagon box.
Box covering machine, Manneck \& Witte.
Bracket. See Lamp bracket.
Brake. See Locomotive brake. Loc............
car brake. Wagon brake.
Bridle bit attachment, D. . . McCoy.........
Buckle and trace carrier. W. S. Brown
Building, flre proof, w. L. Black:..
Bulletin board, C. H. Tessy.......
Burner. See Gas burner. Oil burner.
Bushing for tube sheets. J. Strachan.
Button, J. Costello....................
Button, R. H. Isbell.
Button fastener, G. W. Prentice
Button holes, making
Button holes, making, J. Wa
Button or stud, I. S. Burke
Cake, jumble, and snap mach
an. See Ice machine can.
Can opener, O. R. Webster
Car brake, C. W. Smith..
Car buffer, A. Gallinant.
Car buffer, J. T. Schaffer
ar coupling, N. P. Cowel
Car coupling, H. E. Hawk
Car coupling, C. E. Mark.
Car coupling, J. Rhule...
Car coupling link, F. Sweetland
Car door and fastening, W. P. Senour
Car door catch, grain, D. F. Van Liew
Car, dumping, S. D. King.
Car starter, C. P. Warnick
Cebrian.:. Molera
Card grinding machine, c. schrebler.
Card, playing, A. Dougherty
Carriage, jump seat, o. Morrill
rier. Straw carrier.
Cartrige se primer, J. H. B
Carving fork, C. L. Butler
Cartridge primer, J. H. Bu
Carving fork, C. L. Butler.
Cash and parcel carrier, G.
Cash and parcel carrier, G. R. E. Elliott.................. 27858

Coram

ang steel ingots having iron centers, method
of and mold for, J. Pedder.......
asting stereotype plates, C. Baechler
Celluloid, etc., apparatus
tubes of, A. Olszewski..
tubes of, A. Olszewski
Diss
Chain, ornamental, J. B. Peck
Chandelier, extens. rower, smooth rope and knot...
Spooner...88,992
Clamp. See Boot or
Clamp. See Boot or shoe
Clasp. See Corset clasp.

Clevis, plow, A. Patton.........
Clock springs, maintaining power for. F. T. MarClothes pounder, Elliott \& Lloyd. Clutch and brake, comb
Coach, H. F. Stahmer.. Condenser, injector J
Cooling or drying , granular materials, apparatu
for, Niese \& Dinkel. for, Niese \& Dinkel............
Coping for walls, E. C. Clark...
Coping for walls, E. C. Clark..... Cord, tape, etc., device for holding, C. F. Sleep
Core or center, contractible, Hoopes $\&$ Paist.. Corks from bottles. drawing, J. E. Berlien. Corset clasp, M. W. Henius.
Cotton gin feeder, W. O. Coleman....
Cotton separator and cleaner, see
man separator and cleaner, seed, w. o. Cole-
upling. See Car coupling. Harness coupling.
Thill coupling.
Covering, non-conducting, G. Kelly..
Cáit vator, E. R. Ham...............
Cátivator, E. R. Ham........
cutivator, G. W. Hammond
Cut
Cuytivator, J. T. MCIntire
Ciftivator, H. H. Sater.
Gultivator, D. Unthank..
Dental lip and tongue holder, J. H. Doyle.........
Disintegrating fibrous plants, machine for, D
Disintegration of abagase and other vegetabi

Doll. Ftertar, appadge.

Domino, R. H. Williams
Electric curren
Electric currents from high to low tension, appa
ratus for translating ratus for translating, T. A. Edison............
Electric light conductors, support for, L. Stie
ringer..
Electric machine, dynamo, T. A. Edison.
Electric machine, dynamo, E. Weston..............
Electric machine regulator, dynamo, T. A. Ediso
Electric machine regulator, dynamo, E. Weston, 278,41, 278,414,
Electric machine regulator, dynamo, E. Weston.. 278,64
Electric switch board, W. J. McEIroy......... 278,38
Electrical conductors protector
Electrical conductors. protector attachment for
W. E. Townsend, Jr.
Electrical connecter, H. E. Long....
Electrical distribution, system of.....................
Electrodes for secondary batteries, making Wallace.
Elevator. See Water elevator.
Elevator safety dog, G. Pilson
Emery wheel, J. McLaughlin..........
Engine. See Dental engine. Gas engine. Hot ai engine.
Encaver
Excavator, Simar \& Dale 278.36
Excavator and loader, D.I. Calboun............... 278,399
Extractor. See Stump extractor.
Fabrics, uniting. S. Arnold...
Fabrics, uniting. S. Arnold.....................
Fucet, self-closing, Prier, Doherty $\&$ Everett.. 278,484
278,597
278,590
Feed water heaters. overflow for, G. A. Otis....... 278,590
Fence, barbed wire, G. C. Bigelow............2288,889
D. C.S.tover............
Fencing, machine for manufacturing barbed, Ell278,624

Fertilizer, J. R. Young, Jr............278.
Fertilizer distributer, J. R. Anthony...
Fire alarm, G. W. Nason........
Fire and burglar alarm. . J. Antrim
Fire
Fire alarm, magazine, W. H. Elliot.
Fire arms, extractor for,
Fire arms, extractor for, G. H. Fox..................
Fire arms, fore end for breech loading, G. U. Fox
Fire escape, A. L. Aldrich..
Fire escape, C. F. Bierbach.
Fire escapape, $\mathbf{\text { w. . . Chase. }}$
Fire extinguisher, automatic, C. E. Buell.
Fire extinguishing apparas
Fire extinguishing apparatus. D. Beck.
Fire extinguishing compound. G. J. Crik
Fire extinguishing compound. G. J. Crik
Fire kindling composition, w. M. Koon.
Flour from grain, manufacture of, L. Gathmann. 278,5
Flue plugging device, F. Sharp........................ 22888,612
Fluting iron, R. Young.................... 2780
Fluting iron, R. Young.
Fork. See Carving fork
Form or stand, dress, G. M. Rockwell (r) 10,334
Fruit jar, L. Gallaher 278,530
Furnace. See Bagasse furnace. Boiler furnace.
Furnace for ingots. soaking, T. Critchlow..............58,
Gag runner, G. M. Hubbard
Gage. See Water gage.
Garment supporter, w. L. Braddock.
Garment supporter, W. L. Braddock 278,43
Gas burner. A. B. Lipsey278.56
Gas engine. J. A. Ewins....
Gas engine, J. Robson

Governor for railway heaas,
Ayers.......................................
Governor, steam engine ball, W. E.
Grain binder, J. W. Webster......
Grain binding machine, G. Esterly
Grain binding machine, G. Esterly
Grinding minerals, etc., machine for
Gun barrel, auxiliary, L. S. Harrison...... Cutler
Handle. See Pestle handle.
Hanger. See Shat hat.
Hanger. See Shaft hanger.
Harness coupling
Harness coupling, adjustable, L. Wartenberg. ... 278,474
Harrow, J. A. Thronson 278,632
Harvester binding attachment, E. Ebi.....................278,551
Harvester platform adjustment, D. R. Preston... 278,596
Harvesters, grain adjusting device for, M. E
Blood.
Hat curling
Hat curling machine, G. Roth....
Hat sizing machine, A. T. Clark
Hat sizing machine, N. Harper.
Hat starting and sizing machine, W. Simmonds.........
Hats in the process of manufacture Hats in the process of manufacture. machine for
washing. E. B. Taylor................... son...
Hay knife, J. C. Moss.
Hay rake, horse, M. Hallenbeck....
Head rest, portable, E. F. Prescot
Heat of furnaces, utilizing the waste, \mathbf{w}.
Heater, L. Stockdale..
Heater and oven, combined. J. H. Lindsa
Heater and oven, combined. J. H. Lindsay........
Heating apparatus, steam and hot water, F. Tudor
Heating apparatus, seam 278,51
Hoist, barrel, W. Mack
Hoist or elevator, T. McDonough.................
Hoistway covers, closing and controlling, D.
Fraser ..
Holder. See Bouquet holder. Pillow sham holder.
Sash holder. Spooling machine bobbin holder.
Hook. See Snap Hook.
Hose, c. Callahan................ 278,s12
Hot air engine, T. McDonough............ 278,446

 Weeily and \$11. \$10,000 Insurauce, with \$50 Write or call for Circular and Application
Blank. Blank. CHAS. B. PEET (of Rogers, Peet \& Co.), Pres't. 320 \& 322 BROADWAY, NEW YORK $\$ 5$ to $\$ 20 \begin{gathered}\text { per day at home: } \\ \text { Address } \\ S_{\text {risson }}\end{gathered}$ Roininarive For STEEP and FLAT ROOFS of all kinds; THIRD the cost of TIN. Send for a a sample
Snd our circular which eives full directions how to apply your own roof; also how to repair
W. Address,
A. STETWRT,

HOWPHOTMAKE PHOTOGRAPHS.

 esergtiovitu MANUFRCTURNS Co
 50 All Xew Enam oled Gild and Fion Chromo Card
 A.Woder iun Discovery

 Clarist Noisioles, Ruphbr Wheris

? ALYON\&HEALY

 RUPTURE cured withoutan operation or the injury trusses inflict
bs D. J. S. SHERMA ROOFING. at MANHOOD! An KNOW THYSELF, A Book for Every Man! Young, Middle-Aged, and Old. The intola mparides that reasit from fnitasertion in

 pages, bound in beautiful embossed covers, fund gilt
embelilished with the very finest steel engravings. guar
anteed to be a finer work in every anteed to be a finer work in every sense-mechancal
itterary, or professional-than any other work retailed

 The author may be chen
bkill and experience

Jack Knife.
Nack Knife.

 0 Minroe street TOLEDO, OHIO.
 ENGINEER AND MACHINIST,

The New Baxter Patent Portable Steam Engine.

Send for deseriptive circular. J. Adress $\mathbf{C .}$ TODD, Paterson, N. J., Or No. 17 Barclay St., New York.

ROOTS NEW IRON BLOWER.

IRON REVOLVERS, PERFECTLY BALANCED, Has Fewer Parts than any other Blower P. H. \& F. M. ROOTS, Manufacturers, s. S. TOWNSENDNERSVILLE, IND. S.S.TOW NSEND, Gen. Agt., 22 Cortland St., 9 Dey St. BLGS CO., Selling Agts. 9 Dey Street,
INriv YORe FOR PRICED CATALOGUE.

$\$ 66$ a week in your own town. Terms and. 85 oqtitit
 chinery is portabie, operated by horse or steam
power. Procures water in earth or rock, anywhere, no matter how great the drouth. We want names of parties wanting water. Send
3c. stamp for catalogue. C. D. Siorce Woll Co., 29 Rose St., N. X.

WITMIERBY, RUGGG R RICHARDSON. Manufacturers
of Patent Wod Working Machinery of every descrip. tion. Facilities unsurpassed. Shop formerly ocupupied.
by R . Ball \& Co., Worcester, Mass. Send for Catalogue.

WATCHMAKERS.

 Before buying lathes see the "Whitcomb," made byAMERICAN WATCH TOOL CO., Waltham, Mass. The Brayton Petroleum Engine Co.

SPECIAL NOTICE.
A POCKET MANUAL FOR ENGINEERS. Edited by JOHN W. HILL,
Mechanical Enineer, Member A merican ,
Engineoriety of Civi
Member Ame rican Association, R.R.M.M. Of which first 2,000 conites will be furnished, postage pre paid, at one dollar (\$1) each ; subsequent coppes prut
nished (postage prepaid) at one dollar and a half ($\$ 1.50$) A pocket manual of use fun information for mechanican pages see. in nom users, and mechanics, containing of carefull seleceted datas
formuas and experimental investigations from the latest and most axproved sources.
Printed from electrotye plates. on white No. 1 book
paper, in stiff morocoo covers, with. cardinal edges.
 Corbiss steam Engines, P Rovidex EE, R. 1. , to whom all
subscriptions for copies should be sent. EVAPORATINC, FRUIT

Steel Castings
 and su,
its suoriority over ore other steel nostings suming prove
circular and frice inst. Cold Revile
The fact that this shafting has to per cent. greater
strength, a finer finish, and is truer to gauge, than any other in use renders it nndoubtedy the most economica
We are also the sole manufncturers of the CKLERRATKD ColLLe st.
ete. of the most approved styles. Price list mailed on application to Try $^{\text {Street. } 2 \mathrm{and} \text { and } 3 \mathrm{~A} \text { Avenues, Pittsbyrg. Pa, }}$ F- Stocks of this shafting in store and or sale by

Satutituments.

(About eight words to a line.) Engravings may head advertisements at the same rate
per line, by measurement, as the letter press. Advertisements must be received at publication office a
as Thursday morning to appear in next issue.

The " MONITOR." A NEW LIFTINGAND NON-

Best Roiler Feeder
 Sudden changeso
Steam Pressure. EJECTORS
 For Convesing
Pater and
Patertat andirawe

H.W.JOHIS Assemitas

ASBESTOS ROPE PACKING,
ASBESTOS WIGK PACKING,
ASBESTOS FLAT PACKING, ASBESTOS SHEATHINGS,
ASBESTOS GASKE'AS,

ASBBESTOS BUULIDING FELTR
H. W. JOHNS M'F'G CO. 87 Maiden Lane, New York,
Sole Manufacturers of H.W. Johns' Genuine ABIBENOS HIOUID, PAINTS, RONF
PANNE, ROOFING, SNEAMM PIPE FIREPRUEN COATNNS,
Descriptive price lists and samples free

SPEAKNG TELEPHONES.
the andirican bell trlepilone company,

 corresponding to the words spoken, and which artieula-
tions produce smiar articulate soump at the reviver.
The commissioner of Patents and the U. S . Circuit Court

 can be procured directly or through the authorized
agents of the company
All telephos otianed excent from this company, or tts authorized licensees, are infringements, and the
makers. enllers and userg will peroceded aganst.
loformation furnished npon application. agin.

1JACKET KETTLES,
 pren JAMES C. HAND \& CO.
614 and 616 Market St., Philadelpha, Pa. NEW HAVENMANUFACTURINGCO.

MABETINTG DODIE Lathes, Planers, Drills, Shapers, etc.
ILLUSTRATED CATALOGUE ON APPLICATION.

Pyrometers, For showing heat of

Solld CA STr NTEEL Face and Horn. Are Fn!ly War-

NEW AMERICAN FILE CO. PAWTUCKET R.I. U.S.A
 ICE MAKING MACHINES,

And Machines for Cooling Breweries, Pork Packing Estab lishments, Cold Storage Warehouses, Hospitals, etc. PICTET ARTIFICIAL ICE CO. (Limited), P. O. Box 3083.

MORPHINE

 ano WHISKEY REMEDIES. 5,000 cures. Bonks FREE.
LESLIE E. KEELEY. M. D.
 - dre NATIONAL STEEI TUBE Cleaner. For cleanlng Boiler Tubes. Saves its cost every time
is used in indorsed by best Engineers. Asbest os Mmaterings, Fiber, Millboard,

 Lehigh Valley Emery Wheel Co

ONE THOUSAND TONS METALLIC SHINGLES
 ANGLO-AMERICAN ROOEING CO, R THE RIDER HOT AIR COMPRESSION Pumping Engine, For city and eountry residences where
itis required to oraisea supply of water. simple, Economical, Effective.
 CAMMEYER \& SA YER,
19 Dey St., New York.

REMMOVAL.

THE NEW YORK BELTING AND PACKING CO. RUBBER BELTING, PACKING \& HOSE,
Nos. 13 and 15 PARK ROW, opp. Astor House, NEW YORK.

ROCK BREAKERS AND ORE CRUSFERSS.

KORTING UNIVERSAL
double tube. INJECTOR

A $A_{S_{S}}$: POBITVE ACTION GUARNTEEO UNDER
NO ADJUSTMENT FOR VARING STEAM PRESSURE.
WILLIFT WATER 25 FEET.
BENO FOR OESCRITTVE CIRCULAR. OFFIES AND WAREROMS:

 HARTFORD.
STEAM BOILER
Inspection \& Insurance COMPANY.
W. B. FRANKLIN.V. Pres't. J. M. ALLEN, Pres't. J. B. PIERCE, Sec'y.

WM. A. HAREIC

Sciuntific Anuxuixu

The Most Popular Scientific Paper in the World. Only \$3.20 a Year, including postage. Weekly.

This widely circulated and splendidly illustrated paper is published weekly. Every number contains six.
teen pages of useful information, and a large number of teen page engravings of new inventions and discoveries,
original representing Engineering Works, Steam Machinery, New Inventions, Novelties in Mechanics, Manufactures, Chemistry, Electricity, Telegraphy, Photography, Archi-
tecture, Agriculture, Horticulture, Natural History, etc. All Classes of Readers find in the Screnvirit American a popular resume of the best scientific information of the day; and it is the aim of the publishers
to present it in an attractive form, avoiding as much as to present it in an attractive form, avoiding as much as
possible abstruse terms. To every intelligent mind,
this journal affords a constant supply of instructive reading. It is promotive of knowledge and progress in every community it circulates.
Terms of Subsctiption.-One Terms of Subscription.-One copy of the Scres-
TIFIC AMEHICAN will be sent for one yearpostage prepaid, to any subscriber in the United States or Canada, on receipt of three dollars and twenty
cents by the publishers; six months, $\$ 1.60$; three months, $\$ 1.00$.
Clubs,
Clubs.-One extra copy of the Scientifio Ammerat $\$ 3.20$ each; additional copies at same proportionate rate.
One copy of the ScIENTIFIC AMERICAN and one copy
of the SCIENTIFIC AMERICAN SUPPIET of the SCIENTIFIC AMERICAN SUPPLENENTI Will be sent
for one year, postage prepaid, to any subscriber in the for one year, postage prepaid, to any subscriber in the
United States or Canada, on receipt of seven dollars by the publishers.
 securely sealed, and correctly addressed, seldom goes
astret astridnt is at. the sender's risk. Address all lutters
and

MrUnN二 \& CO
261 Broadway, New York.
To Foreign Subscribers.-Under the facilities of
the Postal Union, the ScIENTIFIC AMERICAN is now sent the Postal Union, the Scientific Amprican is now sent
by post direct from New York, with regularity, to suboy post direct from New York, with regularity, to sub-
scribers in Great Britain, India, Australia, and all other
British colonies; to France, Austria British colonies; to France, Austria, Belgium, Germany,
Russia, and all other European States; Japan, Brazil, Russia, and all other European States; Japan, Brazil,
Mexico, and all States of Central and South America. Mexico, and all States of Central and South America. \$4, gold, for Scientific American, one year; \$9, gold, for both SCIENTIFIC AMERICAN and SUPPLEMENT for one year. This includes postage, which we pay. Remit
by postal order or draft to order of MUNN \& CO., 261 Broadway, New York.

PRINTING INES

