a WeEkly Journal 0f practical information. art. SCIENCE. MECHANICS, CHEMISTRY and ManuFactures.

THE LEPANTO.

The Lepanto, launched on the 17 th of March last, is sister ship to the Italia. The following description is partly abbreviated from one given in King's "War Ships," and copied from that work into Sir Thomas Brassey's work on the "British Navy." Side armor proper is dispensed with, the only plating being about 19 inches of steel-faced or steel armor on the barbette tower, and horizontal armor in the form of a deck, 4 feet 6 inches below the water line, consisting of 3 inches of steel. She carries four Armstrong breech loading 100 ton guns in the center barbette tower, which is of peculiar shape, and consist́s of a wall inclosing two turn tables placed diagonally, like the turrets of the Inflexible, and so arranged as to permit of all-round fire from the guns. The hull in of steel sheathed with wood, the lines fore and aft being very fine. It is constructed with the usual double bottom, 3 feet 3 inches between the skins amidships, and divided into numerous separate cells. Great strength is given to the structure by the bulkheads and decks. Two longitudinal water-tight bulkheads extend for the length of 254 feet 6 inches in the ship. These, together with the 254 feet 6 inches in the ship. These, together with the
transverse bulkheads, divide the hull into fifty-three large compartments, which are again subdivided horizontally by four water-tight decks. The first of these is the armored deck above mentioned, which extends from stem to stern, and is incurvated at both extremities, meeting at the bow the extreme point of the ram, and thus adding material strength where most needed in the event of ramming an enemy.
Immediately above this armored orlowest deck is another 6 feet above the water line, constructed of thin iron or steel and covered with wood. The side compartments between this and the lower deck just named, which are divided into water-tight cells, are to be filled with cork, as in the Inflexible. There is, however, this important difference, that whereas the last named ship has a long citadel in the middle of her length, protected by heavy armor, and relies upon cork only at her extremities, in the Italia the cork and water-tight cells afford the only means of preserving stability when the

NEW YORK, APRIL 21, 1883.
sides are penetrated near the water line. The third or bat tery deck is 14 feet above the water line, and upon it are to be carried twelve guns of 6 inches caliber; and 7 feet 9 inches above this, and 25 feet above the water line, is the fourth or upper deck, supporting the casemate battery, 7 feet 6 inches in height, in which are to be placed the great guns in quadrantal shields at each extremity of the oval. The guns are to be fired en barbette, being supplied with ammunition from below the armored deck through armor-plated cylinders or shafts, of 9 feet inside diameter
M. Dislère, in the Revue Maritime, gives further particu ars as to the Italia and Lepanto. Each vessel is to be propelled by two screws of 19 feet diameter, each of them being worked by an engine of six cylinders. The power expected is 18,000 horses, giving, it is hoped, a speed of sixteen knots. The usual amount of coal is 1,500 tons, but 2,500 can be caried. At low speed the fires might be kept in for six months. The principal dimensions are as follows:

Length between perpendiculars Breadth of beam at water line. Breadth of beam at upper deck. Draught of water forward...
Draught of water aft.
Draught of water, mean.
Area of immersed midship section
Displacement at load draugh
Length of armored tower on fore and aft line Breadth of armored tower across ship, extreme
Breadth of armored tower
Distance of stem from armored tower..
Thickness of sides of tower, including armor.
Thickness of iron armor on tower
Height of center of heavy guns above water line. eight of top of tower above water line Height of upper deck above water line forwa igh of upper deck above water ine aft Height of upper deck above water line amidships Height between battery and second deck.... Height between second and armored deck. Depth of lower deck below water line amidships at sides
[\$3.20 per Annnum.

Depth of hold under lower deck
Extension of ram beyond forward perpendicular.....
$21 \mathrm{ft}$. Distance of point of ram below water line

6 " 4 "
$8 " 6$ "

MOTIVE MACHINERY.

Number of engines.

Number of engines....
Number of cylinders....
Number of cylinders.
Diameter of propellers
Number of boilers.
Number of furne......
Number of furnaces-three to each boiler.............
Length of ship for and aft occupied by engines, coal, and boilers. 4
12
2
. 250 ft . mately as follows:

Hull	5,000 tons
Armor of armored de	1,200
Citadel.	900
Ammunition shafts.	246
Chimneys.	552
Total weight of armor	2,898
Teak backing	

The boilers were designed and made by Messrs. Penn. The engines are two sets of the three-cylinder vertical inverted type, on each of the two screw propeller shafts, making twelve cylinders in all. Twelve of the boilers will be located in three groups art of the engines, and fourteen in the three groups forward of the engines. The after boilers are placed sufficiently high above the keel to admit of the passage of the screw shafts under them. The engines are of the same type as have been supplied by Messis. Penn to the Northampton and Agamemnon, the cylinders being of equal diameters, applied to cranks set at equal angles. The steam and exhaust valves are so arranged as to allow the engines to be worked either on the compound or non-compound system, as desired. We are indebted to the Engineer for the foregoing particulars, and to La Ilustracion, of Madrid, for our sketch.

The capacity of pipes is as the square of their diameters. If you double the diameter of sa pipe, you increase its capacity four times.

Srientific ©mexiram.

ES'SABLISHED 1845.
MUNN \& CO., Editors and Proprietors.
published weekly at
No. 261 BROADWAY, NEW YORK.
O. D. MUNN:
A. E. BEACH.

TERIMS FOR THE SCIENTIFIC AMERICAN.

One copy, one year postage included... $\mathbf{S 3} \mathbf{2 0} \mathbf{6 0}$
One copy, six months postage included
Clubs.-One extra copy of The scientific american will be supplied same proportionate rate. Postage prepaid.
ame proportionate rate. Postage
Remit by postal order. Address
MUNN \& CO., 261 Broadway, corner of Warren street, New York
The Scientific American Supplement
is a distinct paper from the Scievitific american. 'The supplemen' is issued weekly. Every number contains 16 octavo pages, uniform in siz 5.00 a year, postage paid, to subscribers Single cipies, 10 cents. Sold by all news dealers throughout the country
Combined Lates. - The Scientific american and Suppiamient will be sent for one year postage tree. on receipt of
papers to one address or different addresses as desired. papers to one address or different addresses as desired.
The satest way to remit is bv draft, postal order, or re Address MUNN \& CO ., 261 Broadway, corner of Warren street, New York.

Scientific American Export Edition

The ScienTific ambrican Export Fdition is a large and splendid peridical, issued once a month. Each number ccntains about one hundre arge quarto pages, profusely illustrated, embracing: (1.) Most of the
plates and pages of the four preceding weekly issues of the Sctevtric AMurican, with its splendid engravings and valuable information ; (2. Commercial, trade, and manufacturing announcements of leading houses T'erms for Export Edition, 85.00 a year, sent prepaid to any part of the world. Single copies 50 cents. Manu facturers and others who desire
to secure foreign trade may have large. and handsomely displayed an nouncements published in this edition at a very moderate cost. The SCIENTIFIC AMERLCAN EXport E ion has a large guaranteed circu-

NEW YORK, SATURDAY, APRIL 21, 1883.

TABLE OF CONTENT's GF
the scientific american supplement No. 381,
For the Week ending April 21, 1883.
Price 10 cents For sale by all newsdealers
I. Engineering and mechanics.-The Indus Railway Bridge. -3 illustrations
Foot Bridge at La V
New York Terminus, N. Y., w.S. \& \mathbf{B}. R. -3 figures Grain Elevators..
Siebel's Coke Furnace.-3.........
A New Ores
A New Ore Separator. -5 figures..
Harrow for Breaking up the Surfa
Harrow for breaking up the Surface of Macadamized Roads.
Megy's Compressed Air Whim.--Several figures
I. ELECTRICITY.-An Electric Alarm. -1 figure.

Desruelle's Galvanometric Trial Bell.-1 figure
Hopkinson's Current Meter.-2 figures
A New Experiment in Electrolysis. -2 figures
A New Experiment in Electrolysis.- 2 tigures..
Nitric and Chromic Acid Batteries. By Jön
iI. ohemistry and metallurgy.-lce Under Leage..... -1 figure..

V. MEDICINE AND HYGIENE.-Alcohol in Health

Low, M.D.................................... Health. By C. BARMalaria. By D..
several cases.-Therapeutical remarks.-Plants in the urine of ague.-Numerous figures.
TECHNOLOGY.-Thorough whease TECHNOLOGY.-Th
\qquad vi. architecture.-The Palazzo Vendramin-Calergi, Venice $\quad . .608$ Color in Architecture. By Geo. Airchison.-Relation of color to man.-Color on the outside of buildings.-Origin of fine color.Various specimens of polychromy.-Dificulties to be overcome in -
II. AGRICULTURE AND HORTICULTURE -The Chrysanthemum
and its Culture............... .. Manuring Pot
III. BIOGRAPHY.-Captain Eyre Massey Shaw, C.b.-With por trait.
IX. MISCELLANEOUS.-Professor Huxley on Education

New Weights and Measures in Turkey
progress of archeological discovery in central AMERICA.
Of the fact of there being ruins of ancient cities, hitherto shrouded in mystery, scattered over that large tract of country which separates North from South America most persons are now aware. But their nature, age, or relation to the early history of the world has remained till quite recently a matter of which comparatively nothing has been known. .It has, however, been for some time recognized that among the most interesting of these archæological remains are some in Yucatan-a peninsula dividing the Gulf of Mexico from that of Honduras, situated between $17^{\circ} 30^{\prime}$ and $21^{\circ} 50^{\prime} \mathrm{N}$. lat., and at no great distance from Cuba.
Determined to explore these ruins and learn the lessons they might teach, a scientific investigator, Dr. Augustus Le Plongeon, accompanied by his wife, set out on a mission of discovery to Yucatan in August, 1878, from which he recently returned. Ten years previous to this he had determined the task of writing an account of prehistoric America, and having dedicated himself to this work, had found, after having explored the ruins of antiquity found in Peru and Bolivia since 1862, that in Yucatan were situated the most valuable materials for such work; and a residence of nine years, constantly engaged in explo rations both of a super- and subterranean mature, has made him familiar with many of the Yucatan ruins. Both he and his wife being skillful practical amateur photographers, they have secured numerous negatives of the ruins, embracing many detailed portions. They have also obtained, by means of a plastic material similar to what is used in French stereotyping, upward of two hundred casts from the more mportant sculptures and mural decorations, several of which are being reproduced in plaster, thus showing the work in facsimile.
Attention was concentrated upon the cities of Uxmal Chichenitza, Ake, and Mayapan. There are other cities as large as these, but they are in the possession of the bostile Indians. Still other cities exist which are fraught with interest in an exceptional degree, for they. have been inhabited by a race of dwarfs,compared with whom the dwarfs of popular exhibitions are almost giants. The diminutive stature of the inhabitants is shown by the buildings, the doorways of which, Dr. and Mrs. Le Plongeon assured us, are thirty-six inches high by aeighteen inches in width. One of the largest temples in these dwarf cities is twelve feet long by nine feet wide, everything else about them being in the same ratio of dimensions. The names of some of these cities are Meka, Nicte, and Cankun. These are situated on the east coast of Yucatan, opposite the islands of Mugeres and Cozumel. They are at present very difficult of exploration owing to the frequent visits made by parties of hostile Indians, who are well armed, and in skirmishes with whom no quarter is either expected or given.
In Uxmal there are several ruins in a state of excellent preservation. These prove in an incontestable-manner that in early ages a high degree of civilization existed. The date of the erection of several of these edifices is believed to be not less than six thousand years ago, although Dr. Le Plongeon is of opinion that there is much that points to an antiquity of ten thousand years. It being of the greatest importance that the antiquity of these remains of a former civilization should be determined, we here present a few of the reasons given by which this is sought to be established.
In one temple, which is richly decorated both with marble and other stone, portions are profusely covered over with inscriptions and writings in the Maya language, in writing of an ancient nature hitherto unknown, but the key to which has been discovered by Dr. and Mrs. Le Plongeon, by din1 of much perseverance. With this new alphabet they have been enabled to decipher many of these records of ages
of the long ago. The age of these erections is discoverable, first from the Katuns found in the city of Ake, mentioned by the chroniclers, who tell us that at the time of the Spanish Conquest such Katuns were still being used. These consist of columns of stone, eight in a column. One is placed every twenty years. On the top of the seventh, and at each corner, is placed another stone, these corner_stones being laid at intervals of four years, and on the completion of the twenty years represented by them a large stone is placed over all, thus completing the column, or Ahau-Katun, which thus marks a period of one hundred and sixty years. Now, in one building were found thirty-six of these columns, which represents at least six thousand years as the time that had elapsed from the erection of that temple to that at which the last stone was laid on these time columns; and the time that intervened between the completing of these records by the placing of this last stone and the Conquest is not known in this case.
Another guide to the discovery of the antiquity of these erections is the worship o! Deity in the form of the mastodon's head. Now, as this animal bas been extinct for ten thousand years, it follows that either the builders of these temples or their fathers were familiar with it, for had they not known the mastodon they could not have made an image or a picture of $i t$, and all of the buildings throughout the peninsula are ornamented with the mastodon's head, and some of the sculptures represent human figures in the act of worsbiping it.
The buildings in most cases are formed of a white limestone, the stones being all cut nearly to one size and very closely fitted together. The outsides are square, but they closely fitted together. The outsides are square, but they
are cut in a pyramidal form. The ceiling of the buildings
form a triangular arch; the rooms are generally long and narrow, but very lofty, the walls and floors being cemented with concrete. At Uxmal is a building called Monjas, which consists of a hundred and twenty rooms, all arranged in pairs, each pair communicating with one another by a doorway, but with none of the others, except through the courtyard. There are no interior sculptures, all being on the outside, and in these a certain local style or order has been observed, for while at Uxmal the ornaments are all found above the doorways and facades, at Chichenitza they reach down to the ground. One edifice, known as the Governor's House, is 293 feet in lengtb. They are mostly erected on artificial terraces composed of stones laid on the top of each other, one of these being similar in style to the "hanging gardens" of Babylon.
The great question of popular interest regarding these archæological remains is, What do they teach us? Apart from the history of the family affairs of the contemporary kings, which can now be read with comparative plainness by the explorers, it has been discovered that there is an almost absolute identity between the language, the manners, and customs of these prehistoric Yucatanese and those of Chaldea, Egypt, Hindostan, Persia, Burmal, and Siam, and that an early and cultivated civilization, imagined to be of a higher type than any other, existed in Yucatan. It has also been discovered and established beyond cavil that Freemasonry existed in these prehistoric times with the same Masonic symbols as are now in use, proofs of this being found in the photographs and casts; and that what is now known as mesmerism existed six thousand years ago in very much the same form as it does at present, as shown by the decorations on the frescoed walls. Among the customs common to the Yucatanese, are to be found some also common to the inhabitants of Hindostan, such as the manner of carrying children astride on the hip. The making of an impression of the hand in red pigment on the walls of certain sacred edifices was common in former times both to Yucatan, to Elephanta and other places in India, and even in caves in Australia and others of the South Sea Islands. There is scarcely a monument in Yucatan upon which is not to be found the impression of a red hand, this being the record of a vow made to the Gods. Fire worship, phallic and mastodon worship, together with gods having elephants' heads, flourished in Yucatan in these early periods.
The Maya language, still spoken in Yucatan, was also known in many parts of the East. The last words of Jesus of Nazareth, Eloi, Eloi, lama sabachthani, are said to be pure Maya words, and to mean, " Now, now, I sink; darkness comes over my face." From the narrative, it would seem that none of those standing within hearing understood the language made use of, as they imagined he was calliag upon Elias to aid him. Enough has here been said to indicate the great interest that attaches to Yucatan.

TAE BURSTING OF ARMATURES.

The bursting of the armature of a dynamo, as recently reported in the daily papers, has caused much comment as to the possible danger arising from accidents of this kind, and, as usual, conclusions have been arrived at without any inquiry being made as to the facts of the case. Knowing that there is danger from flying fragments when a rapidly revolving mass is disrupted, and recalling the damage done by flywheels and grindstones, the writers guess that the effects produced by armatures acting similarly would be equally disastrous.
In some classes of dynamos the armature consists of a shaft upon which are placed many hundreds of disks of iron separated by paper, and around which coils of copper wire are wound longitudinally. Upon revolving this, the centrifugal force tends to throw the copper wire off, but to hold it in place strands of spring brass wire or piano wire are bound at intervals about it. These confining bands have to resist the weight of copper only, the tensile strength of the disks being ample so far as they are concerned. Taking the diameter of the armature as twelve inches, and the speed as one thousand revolutions per minute, each pound on the circumference would exert a force of about one hundred and sixty-nine pounds. The aggregate number of pounds of copper on the surface would cause a strain to be resisted by the combined strength of the copper wire itself and the confining bands. The difference is sufficient for a large margin of safety.
When the armature is made of cast iron, the tensile strength of the iron will resist the centrifugal force if the casting be without flaw, and the high degree of perfection to which casting is brought at the present time makes this aspect of the question hardly worth considering.
The armature first considered is so incased by massive field magnets, and the fragments would be so light in comparison, that but little danger would menace either life or property in case of rupture.

IT is not much use asserting, says the Lancet, that assemblies of sane persons ought not to become victims of panic; but, in truth, umess the nervous system of man could be reconstructed on a new principle, which would necessarily deprive it of some of its most excellent qualities, it is impossible that there will not always be a tendency to impart and receive this impression, which so powerfully affects the body and mind that judgment is for the time suspended, and the limbs either refuse to act impulsively or under the control of the emotional part of the being. Discipline is the
only remedy for a tendency to panic. control of the emotional part of the be
only remedy for a tendency to panic.
the clock of strassburg.
The late transit of Venus curiously proved the accurate calculations of the ancient makers of that famous horological curiosity, the Strassburg clock. A few days before the transit, the American Register tells us, visitors to the cathedral, inspecting in the planetarium attached to the clock noticed that one of the small gilt balls representing Venus was gradually moving toward a point between the sun and the earth, and on the day of the passage the ball stood ex actly between them. Old Conrad Dasypodius, the Strass burg mathematician, sunerintended the manufacture of the clock and its accompanying planetarium some time between 1571-74, the dates differing according to various authorities and it is interesting to note that, after three hundred years o existence, the clock faithfully fulfills the calculations of its dead inventor.
A correspondent sends the foregoing, which is quoted from the London Graphic, expresses doubts of its correctness, and asks for information. One of our astronomical cor respondents sends us the following notes:
The construction of a machine which would exhibit ac curately the motions, distances, and magnitudes of the planets, and could be kept in running order for three humdred years, is an impossitility. Such a piece of machinism would require the skill of the Great Architect of worlds.
The history of the Strassburg clock and the planetarium connected with it bears witness, like everything else, to the imperfection of workmanship, and the frequent necessity of changes and repairs.
The clock stands in the cathedral, and dates back to 1352, when it was put up under the patronage of Berthold de Buchek, at that time Bishop of Strassburg. As time passed on, the clock got out of order, and in 1547 three distin gushed mathematicians were commissioned to put it in re pair. They all died before the work was finished, and Con rad Dasypodius undertook the responsible task, which be completed in four years. The clock worked well until 1783, the year of the Great Revolution, when it struck for the last time.
It was left undisturbed for nearly fifty years, and fell into a dilapidated condition, mournful to behold. An effort was then made for its restoration. This was found to be impossible, for the works were rendered almost useless by rust and verdigris. Finally, Schwilgue, an artist and mathe matician of Strassburg, undertook to repair, modify, and re instate the clock. He commenced the task in 1836, and, after working four years, completed it in 1840 .
A mythical story is told of him, which does not redound to the honor of his fellow citizens. It is said that he had engaged to construct a similar clock for the capital of one of the Swiss cantons, and that his tingrateful townsmen put out his eyes to prevent his fulfillment of the contract.
Schwilgue placed the mechanism of the old clock in the old casing, after skillful improvements and alterations, where it continues to be a source of proud satisfaction to the inhabitants of Strassburg, and an unfailing object of attraction to travelers from all quarters of the globe. Besides the remarkable performances connected with the regular clockwork, it shows the siderial time, the movements of the planetary system, and the precession of the equinoxes. It is claimed that the mecharism is so perfectly equabrated that it marks the 29th of February in every leap year.
It is not impossible that the planetarium may have marked the transit of Venus on the 6th of December last, for if the inclination of the orbits of Venus and the earth to the ecliptic is accurately represented, Venus must sometimes he at a point directly between the earth and the sun, and consequently make a transit over his disk. The possibility of such an occurrence probably never entered the mind of the ancient Comrad Dasypodius; much less had he power to make the accurate planetary arrangements to bring about a result, after a lapse of three hundred years, depending on contingencies then unknown. It was not until the seventeenth century that Kepler so far improved the planetary tables as to predict that a transit of Venus would occur on the 6th of December, 1631.
We have no means of knowing what improvements Schwilgue made in the ancient piece of mechanism, but it is safe to say that absolute perfection was not attained. If Venus did actually wheel into line between the earth and sun on the 6th of last December, we are inclined to think it must have been a simple coincidence rather than a result of profound mathematical calculation. If such were not the case, why did we hear nothing of the transit of Venus in 1874, nọr of the six transits of Mercury that have taken place since the planetarium was put in order in 1840 ?

insects and plants.

The tenth of the course of the Saturday lectures under the auspices of the Biological and Anthropological Societies of Washington was delivered by Professor C. V. Riley, his subject being "Adaplation and Interdependence between Plants and Insects."
The first part of the lecture consisted in a popular exposition of the more curious and striking fact that have of late years been ascertained in reference to the mutual adaptation between flowers and insects, and particularly to the movements, structure, digestive powers, and other peculiarities of insectivorous plants. This part of the lecture was illustrated by colored diagrams. and included some of the lecturer's own observations.
The second part of the lecture was devoted to some yeneral conclusions which the facts naturally led to. Here
the chief aim seemed to be to emphasize the principles of
evolution as applicable to the development of special or peculiar structures. The attention and approval manifested by the audience were noteworthy as indicating the increasing acceptance by the intelligent masses of the more modern biological ideas.
We give some of the closing words of the lecturer, who described many of the actions of insects as rational and the movements of plants as voluntary: " It may be that plants can appreciate neither pleasure nor pain, and that all their actions are reflex and automatic, but, if so, then so are the majority of the movements, not only of the lower, but likewise of the higher animals. It may be that all the actions of insects and the lower animals are instinctive; but I prefer to believe, and feel convinced, that many of them are rational.
"Allowing all the power they deserve to radiation, light, heat, electricity, etc., and they yet fail to explain these plant motions which I have called voluntary, and which are performed independently of those influences. Darwin, in the last published work of his life, felt obliged to use the word perceive in reference to many of these movements, and it is
difficult to conceive of irritation without sensation. difficult to conceive of irritation without sensation.
Protoplasm is, so far as we know, the basis of both vital and psychic phenomena, and the manifestations of sensation and consciousness are of the same nature throughout the organic world. They differ only in degree, and it will ever remain, perhaps, a matter of opinion and faith as to just where volition and consciousness begin, or, to use another figure, just how much concentration or massing of the protoplasm or how much organization of structure is necessary to intensify those phenomena into consciousness. One thing is certain and profoundly significant, viz., that the lowest organism and the first existant on our planet possessed at some stage of development-whether in the embryonic, the larval, or the sexual state -the power of independent mo-tion-activity. It matters little whether we call them animals or plants; they were, and their present representatives yet are, perlaps, combinations of both. They represented the potentiality which has developed on the one side the most complex animal intelligence, and on the other the highest vegetative organization.

One thing at least I hope I lave demonstrated, viz., that the study of nature loses nothing of interest by the developmental principle that her manifestations are due to secondary laws; that in tracing the origin of things, as they now exist, from pre-existing things the mind is but grasping at the method by which the Creator works. There must ever remain to the philosophic student of life upon our planet a sense of his nescience of the ultimate first cause-the Infinite; and the highest induction as to this infinity is perfectly consistent with the theory of evolution so irresistibly impressed upon those who study aright the great book of Nature !"

Incidents in a Philosopher, Boyhood.

Prof. Joseph Henry, one of the most eminent of American scientists, died May 13, 1878. On Thursday, the 19th day of the present month, his memory is to be honored by the unveiling at Washington of a magnificent bronze statue, made by W. M. Story, and costing $\$ 15,000$.
Among the interesting reminiscences of his boyhood is the story of his first pair of boots--a true story, often tola by himself in later years.
When he was a boy, it was the universal custom to have boots made to order, and his grandmother, with whom he was living, indulgently allowed him to choose the styie for himself. There was no great variety of styles. Indeed, the choice was limited to the question of round toes or square toes. Day after day Joseph went to the cobbler's and talked over the matter without coming to a decision, and this even after their manufacture was begun, until at last the shoemaker, fairly out of patience, took the decision into his own hands and made a most remarkable pair of bootsone boot round toed, the other square toed.
Later in life Prof. Henry often came deliberately to his decisions, with theadvantage that he seldom if ever had occasion to abandon them.
Whi:e Juseph was a schoolboy he acquired a taste for reading in this peculiar way: Ove day he chased a pet rabbit through an opening in the foundation wall of the village meeting-house. While crawling about among dirt and rubbish a gleam of light enticed him through the broken floor, and he found himself in a room containing the open bookcase of the town library. The title of one of the books struck his fancy and he took it down. It was Brooks' "Fool of Quality," and he read, coming again and again through the hole in the floor, until access by the door was finally granted him. From this first book that he ever read with relish, he passed on eagerly to other works of fiction in that library.
A few years later, in a way almost equally accidental, his mind was turned to an entirely different class of reading. Confined at home by a temporary illness, he took up a book casually left on the table by a boarder, and entitled "Lectures on Experimental Philosophy, Astronomy, and Chemistry, intended chiefly for the Use of Young Persons. By G. Gregory." It began with a few questions: "You throw a stone, or shoot an arrow into the air; why does it
o forward in the line or direction that you give it?
Why does flame or smoke always mount upward,
no force is used to send them in that direction? And l why should not the flame of a candle drop toward the floor.
when you reverse it or hold it downward?
Again, you look into a clear well of water and see your own face and figure, as if painted there. Why is this? You are told it is done by the reflection of light. But what is the reflection of light?"
The trifling incident of taking up this book may be said to have turned the whole course of this lad's life.
After his death this book was found in Professor Henry's library with the following entry upon the fly-leaf, written in his own hand:

This book, although by no means a profound work, has, under Providence, exerted a remarkable influence upon my life. It accidentally fell into my hands when I was about sisteen years old, and was the first work I ever read with attention. It opened to me a new world of thought and enjoyment; invested things before almost unnoticed with the highest interest; fixed my mind on the study of nature, and caused me to resolve at the time of reading it that I would immediately commence to devote my life to the acquisition of knowledge."
Many young men quit school at sixteen years of age. They should take a lesson from Joseph Henry, and regard education as not completed, but just begun.

C. P. Osborne.

Fishing by Electricity.

According to a correspondent of the Philadelphia Press, the eléctrical apparatus of Professor Baird's expedition is very complete. The search light is one of the most novel of the wonderful inventions of the nineteenth century. It consists of three Edison electric lights of 16 candle power each, inclosed in a hermetically sealed glass case, which is surrounded by a glass globe, and capable of resisting the pressure of the water at a great depth. It is proposed to sink the lamp and illuminate the sea by turning on the light. This, it is expected, will attract the fish, and a net ten feet in diameter at its mouth placed below the light will be drawn at the proper time, and the unknown fish of the lower waters will be caught. "It is an improvement," said one of the officers of the ship, " on the method of the Indian who searched the rivers at night time with a burning pine knot in the bow of his canne and a spear in his hand, but the idea is really stolen from him."
Paymaster Read has the most perfect arrangements for his work. He will be able to photograph fish and shells, as soon as they are taken out of the water, by a vertical camera. This is necessary, as in some cases the air changes the form of some of the curiosities of the sea. The sea water will also be brought to the surface from any depth desired for analyzation. During the trip of the Albatross from Wilmington an arc light has been first successfully operated on an Edison circuit, and an invention has been completed for lighting the surface of the sea, which will be useful for signaling and for the prosecution of all kinds of work at night.

An Internal Mite in Fowls.

Professor Thomas Taylor, microscopist of the Department of Agriculture, had occasion recently to dissect a sick chicken, and he found that all parts of the lungs, the bronchix, and the linings of the thorax and abdominal cavities were cov ered more or less thickly with a mite. An examination we were requested to make showed it to be in all respects identical with Cytoleichus sarcoptoides, Mégnin. This parasite is known in Europe to inhabit the air passages of galli naceous birds, giving the transparevt and membranous linings of these passages the appearance of gold beater's skin speckled with flour. It is likewise found in the bronchial tubes and their divisions, and even in the bones with which the air sacs communicate. Mégnin believes that while the mite may be extremely numerous, so as to cause mucous irritation and induce asphyxia and congestion by obstruction of the bronchiæ, and that birds may thus die, yet it is incapable of causing, as Gerlach and Zundel believe, enteritis or inflammation of the peritoneum.

Talking one Thousand Miles.

We recently described some extraordinary telephone experiments on the Postal Telegraph Company's line between this city and Cleveland, O., a distance of six hundred and fifty miles. This experiment was so successful that it was expected the distance could be greatly extended. The Pos tal Telegraph Company's wire now reaches Chicago, which is distant one thousand miles, and we are informed that telephonic communication has been carried on for some days between this city and Chicago; the transaction of business over the line by this means being an every day occurrence. The instrument used in this experiment is the Hopkins telephone, described in our former article.
Mount Æta is in eruption, pouring out from the central crater a stream of lava. Vesuvius is in its usual passive state, although there is always a subterranean stream of lava flowing. Visitors are conducted by guides to the spot where the liquid fire may be seen through an aperture in the solid crust of lava... The column of smoke constantly ascends, and at intervals at night there is a brilliant light.
New subscribers to the Scientific American and Scientific American Supplement, who may desire to have complete volumes, can have the back numbers of either paper sent to them to the commenceement of the year. Bound volumes of the Scientific American and Scientific American Suppiement for 1882, may be had at this office, or obtained through news agents.

The Steam Engine.
The Commercial Bulletin justly concludes that it seems ike a reproach upon the mechanical skill and ingenuity of the nineteenth century that nine-tenths of the caloric forc applied to even the most economical steam engine is wasted That is to say, every ton of coal is one-third wasted in the process of generating steam, and when the steam is once formed, only one-seventh of it is actually converted into work by the engine. The remaining six-sevenths is lo either in the exhaust or through radiation from the cylinders or in similar ways; so that only one-seventh of two-thirds, or about one-tenth of the whole heating power of the fuel, be comes actually embodied in the working power of the engine
An actual test made with the pumping engine of the Lynn Mass.) water works showed that of $4,264,125$ units of heat generated by the furnace, only $2,798,660$ (or 66 per cent) were converted into steam, and only 430,625 (or a trifle less than 10 per cent) contributed to the working force of the engine. A unit of heat is the amount required to raise the emperature of a pound of water one degree, and is one forty-second part of a horse power. It follows, therefore from the above figures that of 100,000 horse power generated in the furnace of the Lynn pumping engine, 35,000 were wasted between the furnace and the boiler and 55,000 in the engine.
But even those results were only obtained on one of the most economical of engines. A common high pressure engine of the best type usually utilizes but 6 per cent' of the energy generated by the fuel. In locomotive engines only $21 / 2$ per cent of the caloric power is used
Invention is said to be the result of two things: first of the sagacity which has discerned a want; and secondly of a resolute effort to supply that want. The first of these requisites is evidently at hand in the case of the steam en gine, and if "necessity is the mother of invention," the econd ought not to be wanting in this age of marvelous mechanical and scientific achievements.

Economy in Hops.

The extraordinary prices which hops bave fetched this season must have set many brewers thinking as to how som economy might be effected. Auy process, says the Brewers Guardian, by which three pounds of hops can be made to go as far as four pounds would be of enormous value. Many suggestions have been made, but we hear of none of them being practically applied. There seems to be two ways in which some economy in hops might be effected : one is to grind or tear the hops before maceration, so that their essence may be more easily and completely extracted; the other is to prevent the loss of the essential oil by extracting the hops in closed vessels. Long boiling undoubtedly dissi pates much of the fragrant aroma of the hop, as the neigh borhood of any brewery so frequently testifies. If the hops were submitted, prior to boiling, to a current of steam at high pressure, a large percentage of the volatile oil might be condensed and collected ; this oil could be added to the wort at the termination of the boiling, and the steamed hops could be boiled with the wort as usual ; our brewery engi neers ought to have no difficulty in devising and construct ng the necessary plant for this operation, and its cost would soon be saved in a season like the present.

IMPROVED SAWING MACHINE.

Our engraving represents an improved sawing machin ecently patented by Mr. H. K. Olson, of Coalville, Utah l'er., and designed for felling trees and saw ng logs into lengths. The machine can be driven by hand or power, and is capable of working either horizontally or vertically. It has an automatic screw feed for moving the saw forward when making a horizontal cut and this feed is readily detached when it is desired to saw vertically, so as to allow the saw to feed by its own gravity. The entire apparatus is mounted on a light portable frame, so that it may be easily transported from tree to tree or lng to \log, as occasion may require. The crank shaft and the driving shaft are mounted in sliding boxes, mova ble up and down by the windlass at the top of the inclined posts. The crank is wide to admit of the lateral movement of the con necting rod, and it is adjustable as to the length of its stroke; the design of this ar rangement being to adapt the machine to different kinds of work. The saw guide moves through a sleeve that is adjustable along the slotted bar by means of the screw in the slo of the bar. The screw receives its motion from the driving shaft of the machine by a belt. As the crank of the drive whecl is turned the saw i reciprocated, and at the same time moved forward to its work. When it is desired to saw vertically, the feeding screw is disconnected from the saw guide, and the slotted bar is placed in a vertical position, as shown in dotted lines in the engraving. The joint between the saw guide and the connecting rod is swiveled to admit of turning the saw at any desired angle. This machine works rapidly and easily and may be operated by one or more men, or by hors or steam power.

The ordinary speed to run a pump is one hundred feet of piston per minute.

NEW LAMP EXTINGUISHER.

The extinguisher shown in our engraving is applicable to all forms of lamps, and is capable of putting out the flame instantly, without the slightest danger of exploding the lamp. It is well known that to extinguish a lamp by blowing down the chimney is a dangerous operation, especially where the lighter grades of oil are used. It is troublesome to remove the chimney whenever it is desired to put out the amp, and blowing from beneath does not usually accomplish the object.
The ingenious invention shown in the engraving obviates all these difficulties, and adds but a mere trifle to the cost of the lamp. Two extinguishing plates, hinged under the cap

GREENHALGH'S LAMP EXTINGUISHER
and near the wick tube, are provided with arms, which project outward and through oblique slots in a plate connected with a wire that extends downward along the side of the lamp and its standard, and is provided with a knob or handle, by which it may be readily pulled down, so as to effect the closing of the extinguishers over the end of the wick tube. A spring surrounding the wire returns the parts to their ormal condition.
This useful inven*on has been patented by Mr. John B. Greenhalgh, of Blackstone, Mass.

The London Fish Exhibition.

The largest and most complete fish show ever held will be opened by Queen Victoria at the South Kensington Gardens, London, during May, which in importance and extent, it is expected, will eclipse the great German Exhibition of 1879. All branches connected with fish or fishing in their practical, commercial, scientific, and historic ways will be represented. One class of exhibits will include sea fishing gear

OLSON'S SAWING MACHINE

of kinds. Fresh water fishing will be represented by ods, reels, artificial flies, etc. Another class will show all kinds of articles used and worn by fishermen, even to the clothing. Fish in all forms, carned and uncanned, as prepared for commerce will occupy a large space, and will conitute one of the most important features of the show.
From former shows of this kind held in Europe great benefit has been reaped by this country. Above all, a vast inrease of export trade for American fish products has sprung up from these exhibitions. To Australia alone are now sent ten times as many of these products as in 1870-last year' shipments amounting to two million dollars.
The fishing interests of the United States greatly exceed
those of any other country, and it is expected that the exhibits shown by us will surpass all others in the completeness and variety of articles shown. For the collective exbibit at Berlin the United States obtained the first prize and the greatest fame; and the collection made up for London is more perfect, especially in angler's material, than the one sent to Berlin.

Prof. Baird has loaned and sent over from the Smithsonian Institution a very large and important collection of fresh, stuffed, and preserved fish, and many plaster casts of odd and curious occupants of the sea. The spacious structure in which the exhibition is to be held is located in the beautiful gardens of South Kensington.
A visitor, in passing through the main entrance, will find himself opposite a spacious lobby, the walls of which are marked at the sides " Great Britain," and so apprising him that the space is to be devoted to articles connected with the British fisheries. To the left, just immediately on entering, are spacious dining rooms with large kitchens in the rear, while to the right and left, running from the central walk which goes due north, stretch east and west on each side respectively, the halls for life boats, of which there will be a grand display, a prize of $\$ 3,000$ being offered for the best and safest; and the machinery in motion, such as for fish curing and tackle making. Beyond these ranges, and immediately on entering upon the foreign and colonial branches, a site is being prepared for the Prince of Wales' pavilion.
Passing the royal pavilion, will be found arranged, running east and west, exhibits from Newfoundland and the Netherlands, the former, no doubt, being mostly representative of cod fishing on the world-famed banks. The sections for America, Canada, Newfoundland, Nor way, Sweden, the Netherlands, and Belgium apply for an average of 10,000 square feet each; China, Japan, India, and New South Wales requiring together about 30,000 square feet.
The United States exhibit will be found to the left, alongside of that for Canada, while running nor th and south, parallel and alongside, will be the collections of Sweden and Norway; Spain and New South Wales occupy, together with China, corridors in the right wing; the Chinese exhibits will be arranged in the form of a pagoda. Great Britain, again, runs right round the outside of the exhibition, through the conservatory on the north down to where the aquarium will be situated. Close to the aquarium will be found the exhibits of Belgium and Russia, which will also be well represented. A fish market at the right entrance will be an in teresting feature, and the fish dinners in the dining rooms will, no doubt, be indulged in by many; simply with a view to learn how many different ways a fish may be cooked after it has been hooked.
The Berlin exhibition was visited by 483,000 people, while this one in London, a city of $5,000,000$ iuhabitants, will unquestionably be visited by several millions.
The American commission who go out in charge of the United States exhibit are Prof. G. Brown Goode, Deputy U. S. Fish Commissioner; Mr. R. E. Earl, in charge of fish culture; Capt. J. W. Collins, in charge of nets, boats, and marine fisheries; Mr. Joseph Palmer, taxidermist: Mr Reuben Wood, in care of the angling exhibit; a secretary, and perhaps others:

The Cost of Stopping a Train.
This is a problem which may possibly be cleared up one of these days, but just now the outlook in that direction is not promising. The best plan would seem to be, to get a large number of experienced railroad men to guess at it and then average the guesses. This would be an approximation near enough, perhaps, for all practical purposes.
Any one who will figure the cost of stopping a pasenger train down to the fraction of a cent, and then prove his figuring to be correct, will beat the weather prophets all to pieces. A very little reflection, however, ought to satisfy any rational mind that it is quite impossible to disentangle and separate all the elements of cost that enter into the stopping of any particular train from the various elements of cost involved in the general operations of a road.
There is manifestly no dividing line by means of which the former can be eliminated with any degree of precision. The basis upon which to work in order to arrive at an approximate result is more unreliable than that upon which the mileage cost of transporting freight is estimated, and apparently of much less importance. It is a problem, as it seems to us, that is more speculative than practical. The making of stops by railroad trains is a necessity, no matter what the cost may be. The cost of the regular stops of passenger trains is probably about as little as it can be with due regard for the interests of the traffic, and if such cost couid be ascertained with absolute certainty for each and every train, it would amount to little more than a curious piece of information.-National Car Builder.

Messrs. Emerson, Smith \& Co., Beaver Falls, Pa., have received notice that, with a 68 -inch No. 7 gauge circular saw purchased from them, Messrs. Terry \& Casey, of New Orleans, lately sawed 600 feet of $6 \times 8,8$ feet long, 200 feet $11 / 2 \times 14$ inches, and 260 feet of inch boards, all yellow pine, in three minutes, making 1,060 feet in all.

TORPEDO BOATS IN COLLISION.

Last year the Italian Government made some very ex haustive experiments at Spezia with the numerous torpedo boats they then had. Some of these were supplied by Messrs. Yarrow \& Co., of Poplar, and the annexed engravings represents one of them, named the Falco, which, during some maneuvers round one of the large Italian ironclads, was run into by a similar torpedo boat built by the same firm. The Engineer says, at the time of the collision, which took place inside the break water in the Gulf of Spezia, the two boats were running at a speed of nearly fourteen knots, which speed was perbaps reduced to ten kuots at the actual instant of the collision. The Falco was saved from sinking partly by the water-tight bulkhead, which happened to be by the raised weight lifting a lever. When the weight is
close to where she was struck and partly by her pumping
thus raised to the top, the clock has a sufficient store of machinery. An idea of the extent of the damage sustained energy to go for eight days or more, so that it will be seen is very clearly given by the sketches. The fore end of the that it is by no means dependent on a regular current of air. ram of the other boat not only penetrated the starboard side, but went right through and out beyond the port side of the Falco. However, both the boats could steam on, and reached the dockyard at Spezia in safety. It was satisfactory to find that the engines and all the accessories gines and all the accessories
on board the Falco sustained on board the Falco sustained
no damage whatever by the no damage whatever by the
shock, which was entirely confined to the head of the boat. It is the opinion of the Italian authorities that, had the boats been less strongly and substantially built, one at least must have gone to at least must have gone to
the bottom. These first-class the bottom. These first-class torpedo boats, which are 100 feet in length by 12 feet $6 \mid$ The Belgian Government has for the past two years adopted inches beam, one of which, it will be remembered, attained this system of clocks on the State railways, and we are inthe remarkable speed of 22.4 knots when tried in London, have been in commission the greater part of last year, making numerous cruises from Spezia along the coast, and constantly at exercise. One important feature in these boats is an arrangement introduced by Messrs. Yarrow \& Co., by which means, if the stoke-hole becomes flooded with water through the boat's side being penetrated or otherwise, the fire would not be extinguished, which, on account of the low position of the fire grate in boats of this class, would otherwise almost immediately result from only a very small quantity of water finding its way into the stoke hole The value of this arrangement is clearly evident from such an accident as we now illustrate.

Sir William Thomson follows Dr. Thomas Reid in ascribing to man six senses instead of five, namely, the sense of force, of heat, of sound, of light, of taste, and of smell.

Perpetual Motion Clocks.

There is an automatic clock at the Stock Exchange, London, which has now performed very well for six months, invented by a M. Dardeme. The winding apparatus conists of a small windmill, fixed in a chimney, or any other place where a tolerably constant current of air can be relied upon. By means of a reversed train of multiplying wheels this windmill is continually driving a Hughens' endless chain remontoire, a device well known to clock makers. A pawl acting on a wheel prevents the motor from turning the wrong way, and, by a simple arrangement, whenever the wrong way, and, by a simple arrangement, whenever the
weight is wound up right to the top, the motion is checked by a friction brake automatically applied to the anemometer
by the raised weight lifting a lever. When the weight is energy to go for eight days or more, so that it will be seen
that it is by no means dependent on a regular current of air.
horizontally and terminates in the tool, X , is placed upon a platform, A, which is provided underneath with two grooves, a, by means of which it rests upon the rails, B. It is upon these latter that the entire machine moves according to the advance made by the tool. This motion of the machine on the rails is effected by means of a mechanism whose principal parts are contained in the frame, C, which is affixed to the bottom of the quarry.
The platform, A, is, in fact, attached to the extremities of two chans, D, which at one end run over the indented pulleys, E (Figs. 7 and 8), then pass through the interior of the rails, and afterward run over two like pulleys whose axles are united, through sleeves, F, with a transverse shaft, G. This latter carries in the interior of the frame, C , a wheel, H , with helicoidal teeth, which engage with an endless screw, H^{\prime}, forged with the vertical shaft, I. The upper extremity of this latter carries a bevel wheel, J, which is driven by the similar wheel, J^{1}, mounted on the shaft, J^{2}, to which are attached the maneu vering winches.
It will be seen that through this easily movable arrangement of the wheels and shaft, G, the frame or rails may be moved, the driving gear be arranged at one or the other extremity of the latter, or the position of the two rails be reversed, since the four pulleys, E , are exactly alike. The motor used to drive the apparatus is a Gramme dynamo electric machine, which is itself set in motion by a like machine that may be placed outside of the mine this system of clocks on the State railways, and we are in- This electric machine, K, is fixed upon the same platform formed that they are now being tested by certain English as the hammer, and the axle, K^{\prime}, of the induced ring is prorailway companies with a view to their adoption.

CHENOT'S ATMOSPHERIC ROCK DRILL.

The accompanying plate, reproduced from the Publication Industrielle, shows the details of a very effective rock-cutting machine devised by Mr. Cbenot for forming horizontal grooves in mines or quarries, in order that the rock may be taken out in blocks.
Fig. 1 represents the machine in longitudinal section through the axis of the tool carrier. Fig. 2 is a horizontal projection of it, the frame containing the driving gear for moving the machine on its rails being shown in section. Fig. 3 is an end view of the tool carrier driving gear, but partially in section on the line 5-6. Fig. 4 shows a transverse section of the frame just mentioned.

The machinery of this hammer, which is here arranged

slightly eccentric in order that they may operate as cranks of short radius. The axle, P^{\prime}, is provided with a lever handle, P^{2}, for causing it to oscillate and to thus bring about an oscillation, in one direction or the other, of the frame that carries the axle of the disks, L '-that is to say, these latter are put in contact, at will, with the friction wheels, L , or isolated therefrom, according as it is desired to set the hammer in operation or stop it.
By modifying the pressure between the parts, L and L^{\prime}, the speed of the hammer may be either checked or carried to its maximum. It should be stated that this system of frictional driving gear has been found to work just as well when applied to the electric machine as to all those high speed apparatus in which it is not prudent to attempt a sud den change from a state of rest to a maximum of velocity, and vice versa.
It results, also, from the arrangement that we have just pointed out, that it is by bringing the parts, L and L^{\prime}, in contact that the belt acquires sufficient tension to carry along the pulleys, \mathbf{M}^{2}, while it slackens naturally when the mechanism is thrown out of gear.
The maneuver by which the entire machiue is moved along the platform, A , to regulate the distance of the too from the surface to be operated upon, and also to change its position in measure as the cutting deepens, is likewise performed by hand. The mechanism by means of which this operation is effected may be seen in Figs. 2, 5, and 6. It consists of a horizontal shaft, Q, carrying an endless screw, e, that engages with a wheel, f. This latter is fixed upon a vertical shaft, g, to whose lower part is forged a straight pinion, R, which gears with a rack, \mathbf{R}^{\prime}, affixed to the side of the platform. It is by acting upon the winch, \mathbf{Q}^{\prime}, then, that the machine is moved so as to bring the tool to its point of attack. Every time the position is changed the macline is fixed firmly in place by means of a binding screw provide wilh a handle, h (Fig. 6).
arrangement of the tool carrier and its motor.
The tool carrier, properly so called, consists of a tube, s sliding by slight friction in a hollow cylinder which is cas in a piece with the plate, S^{2}, upon which are fixed all the parts composing the machine. This plate and the cylinder, S^{1} (as shown in the transverse section in Fig. 7), are mounted like a carriage upon the platform, A. The tool, X , is a steel bar having a cylindrical base, i, by means of which it is keyed to the socket, i^{\prime} (Figs. 11 and 12). This latter belongs to a piece X^{\prime}, which is united by a simi ar keying to the movabl tube, S . It is in the interio of this latter that move the two pistons, \mathbf{T} and \mathbf{T}^{\prime}, that are affixed to the rod, j, to which is attached the rod, N^{\prime}, of the driving gear. These wo pistons, which have an ordinary backward and for ward motion, operate on each side of a fixed cut-off, k There result from this ar
rangement two chambers, l and m, in whose interior the air is alternately compressed and expanded between the fixed partition and the surfaces of the pistons. So, then, when by virtue of the motion communicated by the connecting rod, he two pistons move from left to right, the air, through the inertia of the tube and its equipments, becomes compressed in the chamber, l, until such compression is sufficient to overcome the said inertia and to give an outward thrust to the tool. In the contrary motion it is evident that compres ion will occur in the chamber, m, and bring about a return of the tool.
Seeing that it would be impossible to keep these air cham bers absolutely closed, and consequently at the same degree of mean tension, they are arranged so as to be in constant communication with the external air through two apertures, l^{\prime} and m^{\prime}, which are sufficiently large to allow a re-entrance of the air during the period of expansion, and which do not interfere with compression, since they are closed bythe corresponding piston as soon as compression begins.
We show by the aid of a geometrical diagram, in Fig 10, the relation between the rotary motion of the driving shaft and that of the tool carrier, whose axis is nearly tangentia to the circle described by the head of the connecting rod, so that the whole resolution of the motion is carried over to the inactive return period.
It is estimated that the forward thrust of the hammer is effected while the crank is describing only one-twelfth of a revolution. Now, this shaft being very well able to make 240 revolutions per minute, it results that the contact of the tool with the rock cannot last more than one forty-eighth of a second. The striking of the bar is effected, then, with sufficient velocity to permit the machine to be moved at the same time with all the facility desirable.
This utilization of compressed air, which establishes the sole interdependence of the tube and pistons, is also accom panied by an independence between the travel of the tool and that of the hammer which is highly advantageous; for, according as the rock is more or less penetrable, the tool
reaches or does not reach its maximum travel, and it is the air chambers that undergo the sole consequences of it. In conclusion, we may state that it is possible with this machine to make cuttings as much as two meters in depth in slaty rocis.

THE FIRST TELEPHONE, AS DESCRIBED BY THE

 INVENTOR.The following is a copy of an autograph description of Reis' telephone, which has been presented to the library of the Society of Telegraph Engineers and Electricians, Lon don, by Mr. William Ladd, member
[Copy.]
Institut Garnier,
Friedrichsdorf
Dear Sir: I am very sorry not to have been in Frankfort when you were there at Mr. Albert's, by whom I have been informed that you have purchased one of my newly-invented instruments (telephons), though I will do all in my power o give you the most ample explanations on the subject. I am sure that personal communication would have been preferable, specially as I was told that you will show the apparatus at your next scientifical meeting, and thus introduce the apparatus in your country.
Tunes and sounds of any kind are only brought to our conception by the condensations and rarefactions of air or any other medium in which we may find ourselves. By every condensation the tympanum of our ear is pressed in ward, by every rarefaction it is pressed outward, and thus the tympanum performs oscillations like a pendulum. The smaller or greater number of the oscillations made in a second gives us, by help of the small bones in our ear and the auditory nerve, the idea of a higher or lower tune
It was no hard labor, either to imagine that any other membrane beside that of our ear could be brought to make similar oscillations, if spanned in a proper manner and if taken in good proportions, or to make use of these oscillations for the interruption of a galvanic current. However,

SKETCH OF THE FIRST TELEPHONE, AS MADE BY THE INVENTOR.
above, thereby the platina foot, c, of the movable angle wil be lifted up, and thus will open the stream at every condensation of air in the box. The stream will be re-established at every rarefaction. In this manner the steel axis at station B will be magnetic once for every full vibration, and, as magnetism never enters or leaves a metal without disturbing the equilibrium of the atoms, the steel axis at station B must repeat the vibrations at station A , and then reproduce the sounds which caused them. any SOUND will be reproduced, if strong enough to set the membrane in motion.
The little telegraph which you find on the side of the apparatus is very useful and agreeable for to give siguals between both of the correspondents. At every opening of the stream, and next following shutting, the station A will hear a little clap, produced by the attraction of the steel spring. Another little clap will be heard at station B, in the wire spiral. By multiplying the claps and producing them in different measures, you will be able, as well as I am, to get understood by your correspondent.
I am to end, sir, and I hope that what I said will be sufficient to have a first try ; afterward you will get on quite alone.

I am, Sir,
Your most obedient servant,
Friedrichsdorf, 13, 7, '63.
To Mr. William Ladd.

An Electrical Street Car.

The Electrical Power Storage Company, London, has recently built a street passenger cir worked by electricity. This car was constructed at the company's works at Millwall, and is of the usual dimensions for carrying forty-six inside and outside passengers. It weighs with its accumulitor and machinery, but without any passengers, $41 / 2$ tons. Under the inside seats of this tramcar is placed the accumulator, consisting of fifty Faure-Seilon Volckmar cells, each measuring 13 inches by 11 inches by 7 inches, and each weighing about 80 pounds. This accumulator, when fully charged, is capable of working the tramcar with its maxi. mum load for seven hours, which means half a day of tram way service.
From the accumulators the current is communicated by insulated wire to a Siemens dynamo placed under the car, and which acts as a metor, the motion being transmitted to the axle of the wheels through a driving belt.
To start the car the current is switched on from the accumulator to the dynamo, the armature of which being set in motion, the power is communicated to the driving wheels. The car can be driven from either end, and the power required can be exactly apportioned to the work to be done by using a greater or
 were sufficient to induce me to try the reproduction of tunes t any distance. It would be long to relate all the fruitless ttempts I made until I found out the proportions of the intrument and the necessary tension of the membrane. The pparatus you have bought is now what may be found most simple, and works without failing when arranged carefully in the following manner:
The apparatus consists of two separate parts, one for the singing station, A, and the other for the hearing station, B. The apparatus, A, is a square box of wood, the cover of which shows the membrane, b, on the outside, under glass. In the middle of the latter is fixed a small platina plate, to which a flattened copper wire is soldered, on purpose to conduct the galvanic current. Within the circle yon will further remark two screws; one of them is terminated by a little pit in which you put a little drop of quicksilver, the other is pointed. The angle, which you will find lying on the membrane, is to be placed according to the letters, with the little hole, a, on the point, a, the little platina foot, b, into the quicksilver screw, the other platina foot will then come on the platina plate in the middle of the membrane.
The galvanic current coming from the battery (which I compose generally of three or four good elements) is introduced at the conducting screw near b, wherefrom it proceeds to the quicksilver, the movable angle, the platina plate, and the complementary telegraph to the conducting crew, s. From here it goes through the conductor
ther station,. B, and from there returns to the battery.
The apparatus, B, a sonorous box, on the cover of whic is fixed the wire spiral with the steel axis, which will be magnetic when the current goes through the spiral. A second little box is fixed on the first one, and laid down on the steel axis to increase the intensity of the reproduced sounds; On the small side of the lower box you will find the corresponding part of the complementary telegraph.
If a person sing at the station, A , in the tube, x, the vibraIf a person sing at the station, A, in the tube, x, the vibra-
tions of air will pass into the box and move the membrane
lesser number of cells. On a level road, for instance, with a light load, only a comparatively small number of cells will be necessary, but with a heavy load or on a rising gradient greater power will be required, and additional cells must be switched in.
The action of the motor, and consequently the direction of the car, can be readily reversed by reversing the current, and the car can also be as readily stopped by shutting off the current entirely, and applying the hand brake with which the car is fitted. At night the car is lighted by means of four Swan incandescent lamps, two of which are placed under the roof and one at each end of the car. All the lamps derive their current from the accumulator. The car is also fitted with electric bells, worked from the same source. With regard to the all important question of expense, it is stated that the actual daily cost of horsing a tram car, as given by some of the metropolitan companies, is $£ 1$ 6 s , while that of electrical power is put at 6 s . 3 d . Thequestion of first cost, it is said, need not here be taken into consideration, inasmuch as it is almost identical in each case. Electricity, however, would appear to have the advantages of requiring less space and a smaller working staff, while the machinery would be exempt from those epidemics which may at any time incapacitate the stud of a tramway company.

The Railway Age publishes a summary of railway construction in the United States for the year 1882. The account covers only the main track, and shows the construction in States and Territories. On 342 lines the aggregate is 11,343 miles, or about 2,000 miles more than in 1881, which exceeded any previous year by 2,000 miles. The construction is divided as follows: Five New England States, 531/2 miles; four Middle States, $1,3151 / 2$ miles; five Mıddle Western States, 2,077 $1 / 2$ miles; eleven Soutbern States, 1,490 $1 / 2$ miles; four in Missouri River belt, $2,0631 / 2$ miles; five in Kansas belt, $2,1571 / 4$ miles; five in Colorado belt, 1,165 Kansas belt, $2,1571 / 4$ miles; five in

(10rxempanture

Electricity in Printing

I have considerable trouble with electricity, which gets nto the paper as it passes through my cylinder printing press. If I have a small quantity of highly calendered sheets to be printed on both sides, when I run the blank sheets through there is no electricity in them; but as they pass through, the cylinder-I judge--generates the electrici ty and imparts it to the sheet being printed, and when the sheet comes out it is sometimes so charged that it adheres to the other sheets, causing an "off-set;" and the electricity does not leave the sheets for some time, thereby interfering with the feeding of the sheet the second time through.
Several plans have been tried in this and other printing offices, such as oiling and chalking the tympan, running copper wire underneath the paper and into a pail of water, and numerous other ways have been resorted to, to remove the difficulty, but with no success. Can you suggest a plan whereby the electricity can entirely be removed?
Chicago.
[Answer.-The same difficulty that our correspondent peaks of is experienced in many other printing offices. In a dry atmosphere, in buildings where the floors are insulated by dry timbers, electricity will be abundantly generated when non-conductors such as belts or sheets of paper are put in motion. The most effective remedy is to produce a damp tmosphere in the room or shop.
This may be done by thoroughly wetting the floor with water. In the printing rooms of the Scientific American it is found that sponges saturated with water and placed on the fly table serve a good purpose; and our printer has proposed to use pans of water having perforated covers, for the same purpose. In damp weather the electricity does not make its appearance.]

The Loon.

o the Editor of the Scientific American
While on Lake George last summer, I observed an inter esting trait in the loon, which may be set down to the credit of the species.
Returning one evening to our camp in the "Narrows," and threading the islands which add so much to the beauty and attraction of that part of the Horicon, we suddenly reached an open space where, immediately ahead, I observed a family of loons disporting themselves in the water. They had evidently sighted us first, and for a short time appeared o be discussing the situation, but their resolve was quickly made and speedily executed. My companion had followed a suggestion to measure our paddles with theirs, although we knew that to pursue them in a boat, if not a wild goose chase, was something even more hopeless, and expected they would dive and make off in the usual manner. Their tactics were, however, somewhat different on this occasion, as they had their young to look out for.
When we were well on their track all disappeared simulta neously, and shortly after the mother-loon came up with her young in the middle of the lake, and began sculling rapidly to the opposite shore, but, wholly to our surprise, paterfami ias rose to the surface in his former position, and there awaited our approach.
On the impulse of the moment I sent a few shot after him when about a dozen rods off, but fortunately they only ruffled the water where he had disappeared, and in a moment he was up again uninjured. Instead of retiring at this signal, as might have been expected, he rather assumed the offensive, and appeared to challenge assault by coming nearer and occasionally giving an ironical laugh.
He continued about our boat, sometimes within oar' reach, for several minutes, diving spasmodically and immediately returning to the surface as if he had made some mistake. Whenever he balked us successfully, he celebrated the event by uttering a peculiar and unearthly sort of howl, more like th
He was evidently sacrificing hımself for the safety and preservation of his young and mate, as he must have known, f his ruse worked, it would be at extreme personal risks. While keenly watching us, I noticed that he had also an eye to his little family, which was evidently the object of his chiefest solicitation, and was now nearing the western shore
The two young presented an interesting sight, swimming side by side in front of the old bird, and probably also at her direction. As was somewhat singular, we did not get a glimpse of them, after they first disappeared, until they were well over to the opposite side. By what chicanery they were concealed I do not know: when well out of harm's way there was a reunion, and loud and long was the laugh ter of the whole family.
This strong instinct, which prompts a bird to preserve its offspring at all hazards to itself, is always admirable. In such cases, birds which are the slyest underordinary circum tances become frequently the boldest and most venture ome.
The loon in the water plays a similar role to that of the partridge on land, yet in the case of the latter there- is less display of bravado and daring. When the ruffed grouse sometimes spins around before you, mewing and trailing her wings in such deshabille that you have to pause for an instant to make out what sort of a creature it is, she usually exposes herself but a few momonts in the attempt to bewil
der you, while her chicks seek the leaves, and then retires to a safer distance.
I have seen the wild duck whirr off and leave her brood, in a small stream, to their own resources, but they disappeared as if a whirlwind had swept them away, finding a cover amid the grass on the banks. The young loon seems to look to protection.
Scarcely any bird has learned to avoid man more successfully than this. and few better appreciate the meaning of the gun. Shy of the shore, which he seldom approaches except in the gray of the morning, he maintains himself at a safe distance at all other times. When surprised near the land, he instantly dives and speeds his way under water, like a fish, to the widest and deepest parts of the lake, now and then lifting his black head above the surface to take his bearings. If pursued thither, he maneuvers with great skill, even passing under the boat of his adversary, but always outwiting him in the end.
Before reaching the island where we had encamped, a rain came up which lasted through the night and the two following days. I mention this fact, because on the night before (July 3) the loons had been unusually boisterous. Their wild, demoniac laughter was doubly interesting at this point, where the echoes were several times repeated. The hills and mountains seemed alive with. demons.
Wilson, in describing this bird (v. Ornith., Colymbus glacia $i s$, L.), says they are particularly restless before a storm, and mentions a shipmaster of his acquaintance who always knew when a tempest was a-brewing by the cry of these birds, which at such times was unusually shrill. He had also noted this himself, and the present instance would serve either to confirm the observation, or to show a curious coincidence at least.
F. H. Herrick.

Burlington, Vt., April 5, 1883.

[The Electrician.]

The Inventor of the Telephone.

Sir: As your editorial note of p. 374 invites me to give the references that I have indicated in evidence of Reis claim to be the inventor of the telephone, which he designed for the express object of transmitting human speech and other sounds of all kinds, I have much pleasure in giving you the very same references which I have myself obtained from the published writings of Graham Bell (‘" Researches in Telephony," Journal of Society Telegraph Engineers, 1877) and of Edison (see Prescott's "Speaking Telephone," p. 218).

The following are a few of Bell's references
(1) "Telephonie," Dingler's Polytechnisches Journal, clxviii:, p. 185, extracted from the Juhresbericht des Physi kalischen Vereins zu Frankfurt am Main, 1860-61, pp. 57-64. This is a scientific memoir by Pbilipp Reis, having for title "On Telephony by the Galvanic Current." On p. 58 he says his endeavor was to find an instrument which should reproduce the total action of all the organs set in action in human speech (menschlichen Spräche), and that he took the human ear as model, because the tympanum of the ear could respond to all sounds. After discussing the problem of representing the pressures of the air in sound waves by a "curve," he says that if it is possible at any place to reproduce vibrations having a similar "curve," the very tones will be reproduced. He then says that, taking his stand on the principles laid down, he has succeeded in reproducing the tones of various instruments, and to a certain degree the human voice (die menschliche Stimme). After describing his instrument-the well known combination of a tympanum in imitation of that of the human ear, with an electric current regulator, consisting of an interrupting apparatus, which embodied the loose-contact principle of the microphone, and which is in many respects exactly like the interrupter in the Blake transmitter-he says (p. 62): "I give to my instrument the name 'Telephon.' " Later on he says that the reproduction of human speech which he has attained is not so clear as to satisfy everybody, and that though the consonants are transmitted distinctly enough, the vowels are not equall so, and he proceeds to discuss why this is the case.
(2) Brix's Zeitschrift des deutsch-oesterreichischen Telegraphen Vereins, 1862, vol. ix., p. 125. This article is also reprinted in Dingler's Polytcchinisches Journal, 1863, vol. clxix., p. 23.
This is a report by Inspector Von Legat on Reis' telephone in its developed form. Inspector Von Legat says that this instrument was able to reproduce single words uttered as in eading and speaking, though not so distinctly as it reproduced chords and melodies, which latter it transmitted with marvelous fidelity. He even added that the inflections of the roice, the modulations of interrogation, exclamation, wonder, and command attained distinct expression!
So mucb for Bell's references; Edison's reference is the same as No. 2 of the preceding.
As to the publicity of these documents, permit me to refer you to the
libraries.
I do not say that there is not plenty of further evidence, were such needed. But here I am quite content to accept the references given by such unimpeachable authorities as Bell and Edison. When they refer me to papers wherein Reis says in substance, "I am theinventor of the telephone. My instrument is intended to transmit human speech and all other kinds of sounds that a human ear can hear, and it succeeds in doing so, though I find to my disappointment that it is not quite yet perfect, because, though single words and
am bound to believe, on the authority of Bell and Edison, who give me these references, that Reis' modest claim is just. And I am bound to this belief still more strongly because I find, when I make careful trial of Reis' own telephones, that they will do exactly what he said they were intended to do-namely, transmit human speech to a distance by the agency of the galvanic current.
You have, Mr. Editor, most aptly said that the question is, What was the kind of success aimed at and attained by Philipp Reis? and I entirely agree with you that this question is not in the least degree affected by whetber Philipp Reis is dead or alive. Though himself be dead, and the task of defending his memory from outrage fall to others, his words still live to testify in the most unmistakable manner to the aim which he set before himself, and to the measure of success which he attained in his invention of the telephone. Yours, etc.,

Bristol, March 4, $1883 . \quad$ Silvanus P. Thompson.

Waste Products Utilized.

We all know something of what is doing in the way of utilizing materials which have commonly been regarded as useless. With the growth of the world and the steadily increasing and remorseless demand upon the long established sources of supply comes the urgent need of something to make up for this depletion. In response to this need we have paper made from wood instead of from rags, colors made from the refuse of the gas house instead of from natural products, and so on. These are hints at the more commonly known forms of substitution.
There was a time wheu in wire factories the dilute sulphuric acid, formerly used to clean the wire, was allowed to run into the sewer whei it had become so charged with the iron scale as to cease to "bite," and large quantities of refuse wire were employed only to fill up hollows in grading, or thrown into a heap. All this waste material is now, however, converted into articles of commercial value. The first product is copperas. Even the waste of this product from waste is utilized. The settlings of the boiling tankoxide of iron-together with the waste copperas, an alkali, and an inexpensive substance to give "body," are roasted, ground, and converted into a pigment quite equal to imported Venetian red.
It is well known that heaps of refuse, or "tailings," as they are technically termed, accumulate where mining operations are carried on. The sludge which is emptied from the puddling mills in Australia contains a considerable quantity of fine gold. Muck of this is now recovered, and the yitld of gold from these exceeds three hundredweight per ton. After a large gold coinage at the Royal Mint, there is always a great deficiency in waste and sweep. The sweep is composed of cinders or dust from the forge, the sweepings of the workshops, broken crucibles, the dross which adheres to the ingots of metal after fusion, and of every waste which can possibly contain minute particles of the metal. This is generally sold. The silver and gold from photographers' waste is also now carefully collected, and form a considerable item in economy. A method of utilizing the waste of gold leaf used in printing and the arts is by converting it into what is called fleece gold. The composition is used like the ordinary bronze, except that rather more copal is mixed with it. It is used for all fancy papers for which gold leaf and bronze have hitherto been used.
A lecturer before the famous Society of Arts refers to still other movements in this same direction. The waste of the glass furnaces, such as pieces of broken glass, flaw glass, the hearth droppings, and the glass remaining adherent to the blower's pipe, is utilized again, serving a purpose in the manufacture of glass similar to rags in paper making. Agate glass is made by melting waste pieces of colored glass. Broken bottles are now collected and utilized. Broken " wines" and broken "sodas" are converted to many useful purposes, the latter especially. The broken bottles are utilized for the manufacture of cheap jewelry, chimney ornaments, and inferior household glass for the manufacturing districts. They are also used for the manufacture of emery powder, glass paper, etc.
There can be little doubt that the people of the future will live and thrive and grow rich by putting to practical use the things which the people of the present throw away. To the above, compiled from various sources by one of our contemporaries, might be added many other products which modern chemistry and invention have produced from heretofore useless dirt heaps. One of the latest of these savings is the treatment by naphtha of iron filings and the cotton waste of machine shops, by which the oil is separated and sold, and the cotton waste is cleaned and restored for use again.

The Usefulness of the Scientific American
A valued correspondent sends in his usual súbscription, and writes us as follows:
I have been a regular subscriber for the Scientific American from vol. iv., old series, and have the whole, bound and on file unbound, except first volume, old series; and, although I am now on the last quarter of the sixtyninth year of my age, I still consider it interesting and profitable to peruse the pages of "Old Sci." It has truly been an educator to me, and, no doubt, the same to many others. Long may it live and prosper, and in the future, as in the past, contribute its due share in the enlightenment and improvement of mankind. Hamburg, Erie Co., N. Y.
G. W.
G. W.

A Compressed Air Locomotive.
What is undoubtedly the first practical attempt to use compressed air as an underground motor in a coal mine in this copntry is meeting with success at the Old Eagle pits of W. H. Brown Sons, 27 miles up the Monougahela above Pittsburg. The new motor was built at the Baldwin Locomotive Works, and is a most singular looking affair. The available height above the pit rails being only 5 feet 10 inches, the air locomotive had to conform thereto. The air receivers are 27 feet long and 38 inches in diameter, and made of sheet steel. These are filled with air compressed to 400 pounds per square inch, forming the actuating power of the machine. These air receivers rest on four wheels, driven by a pair of locomotive cylinders, gearing, etc., just as in a railway engine, the air taking the place of steam. The originator of this idea, Capt. Harry Brown, expressed himself as more than satisfied with this locomotive. It does the work of a score of mules, requires the attention of only one man-who also operates the air compressing machinery -and can haul 55 loaded cars (60 tons) up a gradient of 100 feet to the mile.-Coal Trade Journal.

ow Method of Printing a Positive from a Positive

MM. Cros and Vergeraud have worked out a process for obtaining images so as to have a positive impression from a positive plate, and a negative print from a negative original The process is based on the following circumstances: The easy reduction of soluble bichromates mixed with certain organic substances, and the relative insolubility of bichro mate of silver. Suitable paper is covered with a solution of two grammes of bichromate of ammonia, and fifteeu grammes grape sugar, dissolved in 100 of water; when dry, it is exposed to light under a positive. As soon as the yellow paper becomes gray, it is removed, and immersed in one per cent silver bath, to which ten per cent of acetic cid has been added. The image will immediately appear f a ruddy hue, due to the bichromate of silver. The print on being washed, retains the red impression of the insoluble bichromate, which becomes dark brown on exposure to sun light. On submitting the print when dry to the fumes of sulphureted hydrogen, or dipping in a solution of sulphite of copper and potash, it becomes black. The latter process is preferable.-Photo. News.

MACHINE FOR MEASURING TEXTILE FABRICS.
To measure aextile fabrics correctly by a machine is fa more difficult than many people would suppose. The difference may be unimportant in the case of calico or other equally unelastic goods, but where woolen goods are concerned, which can be pulled out considerably by a slight stretching, the difference between the measurement of one person and another is sometimes serious. For this reason it is also customary to measure all goods with an elastic selvage down the middle, even when they are not doubled as naturally the selvages stretch more than the body of he cloth.
In mills where large quantities of goods have to be mea sured, this is nowadays generally done by machinery. Very often the measuring arrangement is in conjunction with plaiting or rigging machine, and the number of plaits or layers is registered, the division of a whole plait being thu roughly taken from an index, or the goods pass over a roller covered with cloth or baize, which is in connection with a dial, and is turned by contact with the passing cloth. But even here the measurement is unt always correct, because in order to secure adhesion to the roller there must be a certain drag, and this means, of course, a stretching of the cloth.

machine for measuring textile fabrics
Smaller quantities of goods, especially of the more valua be ones, can be measured more correctly in other ways, and our illustration shows an appliance for the purpose
Here the cloth does not pass over. a roller, or has to drag a heavy cylinder, but is simply drawn by hand or by power over a table. This can be done without exerting any drag upon the cloth. A light iron pulley runs over it, and is turned by the passage of the cloth. This pulley, whose axle runs in two small standards placed upon the table, is connected in the usual manner with a dial, upon which the number of revolutions or yards, or any other standard measure, is registered, while the subdivisions of the same are in dicated by a finger and small pulley, the latter of which is keyed direct upon the shaft of the larger pulley. In orde
obviate the least drag of the cloth upon the pulley, the latter is counterbalanced by a weight, which can be shifted according to the adhesiveness required. The little machine appears simple, and will no doubt measure correctly if well made.-Textile Manufacturer.

IMPROVED FIRE ESCAPE

The engraving shows a fire escape in which a carriage is arranged to run upon a track near the top of the house. It is provided with a pendent ladder, and may be moved along the track by an endless rope and chain and chain pulleys in one direction or the other, for the purpose of bringing the ladder opposite a window, door, or other place of escape.
A horizontal rail is attached to the building beneath the

COPELAND'S FIRE ESCAPE.
cornice, and supports a carriage, which consists of a U shaped frame mounted on grooved or flanged wheels, that travel on the rail.
An endless rope passes over grooved pulleys journaled in he frame, and an intermediate pulley which is journaled in he lowest part of frame
A chain pulley is mounted loose on the projecting axis of the lower rope pulley, and may be locked thereto by means of the spring clutch, which is fixed on the axis, and ope rated by a lever and hand rope extending to the ground.
An endless chain connects the lower chain pulley with the upper pulleys, which are fixed on the same axis as the langed transporting wheels.
By pulling the hand rope the lower chain pulley and rope pulley will be locked together; then, by pulling the endless rope in oue direction or the other, the carriage will be propelled on the rail in a corresponding direction. It is within the power of any person, stationed on the ladder hanging from the carriage, or on the ground, to propel the carriage and its attachments along the rail to any desired point, and thereby render the ladder available for convenient and immediate use. The ladder furnishes the chief means of escape, but a clamp, which is attached to the endless rope, can also be used as means of escape
To render the movement of the endless rope uniform during the descent of a person on the endless rope, and at the same time automatic, an automatic governor is provided, which retards the descent and renders it uniform.
The entire fire escape apparatus, with the exception of the rail, which is a fixture, may be inclosed in a suitable box or casing on the rear side of the building, where it will be out of observation and protected from the weather, as well as from access of thieves or burglars designing to enter the building.
By constructing the box or casing with a door properly arranged, the carriage, ladder, and other attachments may be moved out at once when required for use, and guided to the desired point.
To allow the escape to travel around a corner to a different side of the building, the supporting rail is curved, and the flanged supporting wheels are made with a tread wide nough to accommodate the curve.
Further particulars may be obtained by addressing Mr. F. A. Copeland, La Crosse, Wis.

The Commissioner of Patents has recently decided that in interference cases before the Patent Office, to determine who is the prior inventor, the wife of either contestant may

Dil of Wintergreen in the Treatment of Acute

Rheumatism.

Dr. F. P. Kinnicutt draws the following conclusions from he results obtained in twelve cases of acute rheumatism, treated by oil of wintergreen:

1. In the oil of wintergreen we possess a most efficient salicylate in the treatment of rheumatism. 2. In its effici ency in controlling the pyrexia, the joint pains, and the dis ease, it at least ranks with any of the salicyl compounds. 3 The best method of its administration is in frequently repeat ed doses, continued in diminished doses throughout the convalescence. 4. Its use possesses the advantages of being unattended with the occasional toxic effects, the frequent gas tric disturbance produced by the acid or its sodium salt, even when prepared from the oil of wintergreen; that its agreea ble taste, and finally its comparative cheapness, are further recommendations in favor of its employment

ELECTRO PULVERIZER AND AMALGAMATOR

The Manes electro pulverizer and amalgamating machine shown in the cut, is designed for saving the rusty and fine gold, also the quicksilver, that has been lost in hydraulic washing for gold on the coast of California ever since the commencement of hydraulic washing in the summer of 1852. It is said that the loss has been at the rate of from 20 to 35 per cent of the precious metals and mercury, which, if saved, would amount to hundreds of millions of dollars.
Notwithstanding all the modern improvements in mining machinery, immense quantities of the precious metals are constantly washed away and irrecoverably lost. The value of this lost portion, according to various estimates, is very nearly if not quite as great as that of the metal secured. A great deal of engineering skill and inventive genius have been engaged in trying to devise means of preventing this great loss. This has generally resulted in placing various devices in the sluices to catch and retain the stray particles of gold or sulphuret. Some of these inventions have been more or less successful, but none of them have saved anything like a reasonable proportion of the valuable part of the metals.
The electro amalgamator, it is claimed, will save from 50 to 75 per cent of all the gold and quicksilver that passes through the machine, as the rusty gold will be perfectly scoured and electroplated with quicksilver, and thoroughly amalgamated by the rapid action of the electrical steel brushes and steel mullers that revolve inside of the series of steel cylinders in the machine, placed one above the other, and made cone shape, and connected with spouts; the large end of one cylinder is placed under the bottom of the small end of the next one and so on, forming inclined planes for the sand or crushed ore to run down by its own gravity, which is assisted by streams of water and quicksilver, constantly fed into the machine from a hopper on the upper part of the machine; and the powerful current of electricity is constantly passing through the sands or ore, as it passes from one cylinder to another, and as it is thoroughly mixed at the same time with the quicksilver by the steel brushes, no gold escapes without having been thoroughly amalgamated. The material passes through a movable iron spout into settling tanks, where the cleaning up is done. The machine does not stop except when repairs are needed; the waste water of the sluice boxes is used for driving the machines, and but oue

MANES' ELECTRO PULVERIZER AND AMALGAMATOR. man is required to attend to each machine. The fine sands will be conveyed into the maches through screens of the proper size. This apparatus can be used in stamp mills for amalgamating purposes, and will surpass the old process of treating gold and silver ores. The inventor, Mr. James Manes, is now engaged at the new chemical works in Morrison, Jefferson County, Colo., for the Colorado Paint and Chemical Company, as chemist and metallurgist. Mr. Manes, as an inventor of mining machinery, is well known in this and other countries. The first one of the electro amalgamating machines has just been completed at the extensive shops of the Colorado Iron Works, Denver, Colo., and the models and complete drawings are exhibited at the office, 5 Windsor Block, Denver, Colo.

Peter Cooper

The departure of Peter Cooper was the peaceful close o memorable life. If ever the contemplation of death can be not merely without terror, but even without pain, it is in such a case as this, where, surrounded by thè loving circle of children to the third and fourth generations, and by hosts of warm personal friends, loaded with well earned honors, and cheered with the enthusiastic affection of the civilized world, a man who bas done great things for his kind goes in the ripeness of age to his rest and reward.
Peter Cooper had long outlived his proper contemporaries and this generation, which knew him best as a benefactor, had never known him as a bold inventor and enterprising pioneer in great business adventures-still less as an indus trious mechanic, practicing a patient perseverance and a frugal economy which seem nowadays to have gone somewhat out of fashion. It is hard to realize that his life covers nearly the whole history of the United States. Born in the middle of Washington's first presidential term, when the population of the country was about $4,000,000$ souls, he lived to see it the most powerful of Christian nations, containing more than $53,000,000$ inhabitants, triumphant over internal rebellion, fearless of foreign foes, and filled from one ocean to the other with appliances of science and monuments of human skill not dreamed of in his boyhood. Except the stationary steam engine, which had just begun to be generally used when he was born, Peter Cooper witnessed the inception and growth of all the great material improvements which make our modern life what it is. Many of them, dotably the railway and the telegraph, he essentially assister in the days of their feeble beginnings; and his characteristic ttitude toward them all was one of encouragement and hope. He was an optimist of the most whole some type, not believing that things were well enougb as they are, but full of a sublime fait hat things can be bettered, and ready to wel come with sauguine support all attempts to bet er them.
In this, as in many other particulars, the his ory of Peter Cooper is distinctively American No other country, in the early years of this cen ury, could have given free scope to the versatile ingenuity and unconquerable perseverance with which he turned from one trade to another, until he planted his foot upon the road to fortune. Under other instilutions, he would have remain d a hatter, like his father, or become a brewe a coach maker, after once beginning in eithe of those trades.
But in this free atmosphere he was able to fol low each path that offered itself, to master each business that he undertook, and to leave it for another that promised larger scope. He failed nothing; each step was an advance; and when at last he took up the manufacture of glue and isinglass, the principal occupation of his life, he pursued it with an unwearied and unconquerable ardor as truly American as his versatility
Another peculiar feature of his career was his conception of the uses and duties attached to wealth. He felt bound by the very fact of his prosperity not only to relieve the unfortunate but also to organize agencies which should per manently benefit the city, the growth of which had been the basis of his own success, and the working classes, by whose co-operation all great ortunes are built up. The absence of governmental endowments for charity and for learning has always rendered the claims of these objects upon individual generosity stronger in this country han elsewhere. Public spirit has done among us more than official action could have accomplished; and this spirit, fostered by our political system, has gathered strength through the inspiration of great examples, among which that of Peter Cooper is one of the most conpicuous, and has been perhaps the most fruitful
Notable as have been the results directly flowing from his beneficence, they are insignificant compared with the indirect consequences of the noble contagion which his enthusiasm communicated to other men. It is impossible to measure the effect of his example, showing as it does both sides: the joy and potency of a wise benevolence, and the immediate eward which it commands in the affection and praise of all mankind.
We had intended, in commencing this article, to emphasize particularly Mr. Cooper's earlier achievements, and their relation to the progress of the arts. But goodness is more than greatness; and we feel that the universal feeling is right when it mourns to-day the departure, and rejoices in the history, not of the ingenious inventor, the successful manufacturer, or the enterprising capitalist, but of the lover of men, whose widest schemes, like his most trivial acts and words, uttered his inmost disposition. The Cooper Union, planted by his hand, and tended with daily assiduity by him to the last, bears in every part the indelible marks, not merely of the man's wisdom or philanthropy, but of the man's self. As his benign face has been for years a most frequent and familiar object within its walls, so his gentle soul pervades and inhabits it forever.-R. W. Raymond, Eng. and Min. Jour.

Atrp, the highest mountain in the Philippines, is 10,824 feet high. Only recently has it been ascended by explorers.

A HAIRY CHILD

The picture is that of a girl, six years of age, covered from ead to foot with soft, silky bair. Upon first sight little Kra-o, as the child is named, would appear to be the " miss ng link" between the ape and man, but a closer examina tion of this peculiar being will prove that this diagnosis is faulty in all respects. We have simply an excellent type of hypertrichopherosis (superabundance of hair), cases of which bave been known in this and previous centuries. Kra-o, who is being exhibited in London at present, is quite an inelligent child, and has acquired enough knowledge of the English language within a few months to be able to make herself understood; and this is an ample proof that, although her outward appearance is that of an animal, she has a bright mind and considerable intelligence. A correspondent of the Institution Ethnologique, Mr. H. Kaulitz-Jarlow, writes as follows to the editor of the Illustrite Zeitung:

Kra-o is about six years old; she is of the same size as other children of her age, but of a finer build; thick, jet black hair covers her head and reaches down to the backone, and forms a perfect mane on the shoulders; the eyebrows are wide, glossy, and silky, and the eyes are of a deep black with open pupils, and the iris is missing entirely, as in the gorilla; the resemblance to the face of the latter is very great and astonishing; the nose is flat, and has wide oostrils inclined diagonally toward the cheek bones; the cheeks hang down and are baggy, and in them Kra-o stores her food and carries it about with her in the same manner as her cousins of the ape tribe.
Her head, like the human type more than any other part of her body, and the intelligent eyes, the agreeably rounded mouth with the full lips, which can smile very pleasantly

HAIRY CHILD FROM BORNEO.

which has a gravity of 0.82 or 0.83 and burns between 20° to 30° C. (68° to 86° Fah.), witb another product of Baku petroleum called "intermediate oil," which has a gravity of 0.86 to 0.88 and does not take fire below $100^{\circ} \mathrm{C}$. $\left(212^{\circ} \mathrm{Fah}\right.$.), a safe oil can be prepared, using them in the proportions in which they occur naturally, namely, 2 or 3 parts of the former to 1 or 2 parts of the latter. This mixture has a specific-gravity of 0.84 or 085 , and fills all the requirements of an illuminating material free from danger, as it takes fire only between 50° and $70^{\circ} \mathrm{C}$. (122° and 158° Fah.). Since such a mixture burns well in the ordinary kerosene lamp, it can be recommended as an excellent illuminant.
The crude petroleum from the Caucasus yields from 20 to 30 per cent of the lighter oil above described (called over there kerosene) and 10 to 20 per cent of the "intermediate" or heavier oil. By the utilization of the described mixture a much larger portion of the petroleum product becomes available for illumination, which would result in reducing cost.
Mendelejeff proposes the name of "Bakuol" for his new ixture
[Mixing the oils of high and low flashing points from American petroleum has a very different effect, namely, that of reducing the flashing point of the mixture to a dan gerously low point.-Ed.]

The Aim of Exercise

It should be understood by the public, as it is known to the profession, that the aim of exercise is not solely to work the organism which is thrown into activity, though that is one, and a very important, part of the object in view, because as the living body works it feeds, and as it feeds it is replenished; but there is another purpose in ex ercise, and that is to call into action and stimu late the faculty of recuperation. Those who believe in the existence of a special system, or series, of tropbic nerves will not object to this designation of the recuperative function as a separate "faculty," and those who believe nutri tion to be effected in and by the ordinary innerva tion will recognize the sense in which we employ the term in italics. It is through defect or de ficiency in the vigor of this faculty that unaccus tomed feats of strensth, whether of mind or mus cle, are found to be exhausting
The task is performed, but the underlying faculty of restorative energy, or power of re cuperative nutrition, located in the particular part exceptionally exercised, is not in a condition to respond to the unusual call made upon it When a man goes into training, or, which is practically the same thing, when he habituates himself to the performance of a special class of work, he so develops this recuperative power or function that the repair or replenishing neces sary to restore the integrity and replace the strength of the tissue "used up" in the exercise is instantly performed.
The difference between being accustomed to exercise and able to work "without feeling it," and being barely able to accomplish a special task, and having it "taken out" of one by the exploit, whether mental or physical, is the differ ence between possessing the power of rapid re pair by nutrition, and not having that power in working order-so that some time must elapse before recovery takes place, and during the in terval there will be "fatigue" and more or les exhaustion.
The practical value of a recognition of this commonplace fact in physiology will be found in the guidance it affords as to the best and most when Kra-o plays and talks, de not at all correspond with direct way of developing the power or faculty of recuper the ape-like body of the child. Kra-o is of a brownish-yellow color, and the hair extends from the crown of her head to the soles of her feet. She is generally very jolly, loves to play, and is more thankful than most children if persons take the trouble to amuse her. If she is molested and teased, her wild nature shows itself; she throws herself on the ground, screams, strikes the person, and finds great pleasure in tearing out some of her superabundance of bair."
We must call the attention of our readers to the fact that the above is only an extract from a letter from Mr. KaulitzJarlow, who seems to be very enthusiastic in the matter of classifying Kra-o as one of the apes. Kra-o was found in the presence of her parents in the Loas district, in Borneo. Her father died while traveling to Bangkok, and her mother is at present at the court of the King of Loas. Mr. Karl Bock brought the child to England, and it is now exhibited by Mr. Jarini.

Bakuol, a Safe Illuminating Oil from Baku Petroleum.

The introduction of the oils of the Caucasus into com merce naturally attracts much attention in Europe, but more especially in Russia. That their composition is not precisely like that of American petroleum was ascertained a few years ago, and is still further illustrated by the following report of Professor Mendelejeff, president of the Chemical Society of St. Petersburg, upon the preparation of a safe illuminating oil, not flashing below 50° C. (122° Fah.), from Baku naphtha.
Mendelejeff says that by mixing ordinary Baku kerosene,
tion by exercise. Many persons make the mistake of doing too much. Exercise with a view to recuperation should never so much exceed the capacity of the recuperative fac ulty as to prostrate the nervous energy. The work done ought not to produce any great sense of fatigue. If "ex haustion" be experienced, the exercise has been excessive in amount.
The best plan to pursue is to begin with a very moderate mount of work, continued during a brief period, and to make the length of the interval between the cessation of ex ercise and the recovery of a feeling of "freshness" the guide as to the increase of exercise. We do not mean that false sense of revival which is sometimes derived from the re course to stimulants, but genuine recovery after a brief period of rest and the use of plain nutritious food. If this very simple rule wére carried into practice by those who de sire " to grow strong," there would be less disappointment and a generally better result, than often attends the en deavor to profit by exercise unintelligently employed.-

Chlorine as Plant Food.

A German exchange says that chlorine is a very import ant nutrient for plants. To all appearances the chloride of potassium exceeds the nitrate in nutritive value as long as the quantity does not exceed a definite limit. When there is too much of the chloride, the quantity of chlorophyl decreases, the plants ripen sooner, but the oxalic acid in creases in quantity. In fact, it acts just like hydrochloric acid would.

REGENT INVENTIONS.

Improved Butter Case

The engraving shows a butter case provided on two of its opposite sides with vertical sockets for the reception of handles adapted to slide up and down in the sockets.. The transportation case is made with one or more partitions separating the interior into cells in which to place the butter tubs or cases. The latter are made of metal, glass, porcelain, stone, or other material that the butter will not destroy. The cover of the outer case is hinged to it, and provided with rubber cushions on the inside to press down on the covers of the butter cases when it is closed and fasten ed, so as to confine the butter cases and prevent them
 from shaking about in tran sit. The butter case covers close over the tops of the cases, and the cases are provided with sliding handles at the sides for lifting them. The butter cases are surrounded by air spaces between them and the walls of the outer case which protect the butter from the heat while in transit and while the outer case is exposed to the sun. This invention has recently been patented by Messrs. F. Leete and W. C. Wilbur, of Mapleton, Ia.

Improved Elevator.

The annexed engraving represents an improvement in ele vators recently patented by Mr. William Goddard, o Chester, Ill. The principal feature of the improvement is the arrangement of serrated cam that are arranged to grip the uprights in case of the breakage of the lifting chains or ropes. These cams are fixed to the opposite ends of two shafts extending over the top of the elevator car and on opposite sides of the uprights. The shafts are provided with levers for receiving the lifting chains or sopes, and the levers are placed relative to the cams, so that when the
 car is being supported by car is being supported by the ropes or ciains the cams are held out of contact with the uprights, bet when the ropes give out a spring connecting two arms of the shafts brings the cams into engagement with the uprights and arrests the car. This is very simple in its construction, easily applied, and certain in its operation.

Traction Wheel.

The engraving shows a novel endless track whieel rim for application to wagon and traction engine wheels, when being used on soft ground or roads, the object being to pre vent the wheels from sinking in the ground. The improve ment consists of a series of planks linked together, forming an endless track of greater length than the length of the rim of the wheel, to enable the planks to drop flat on the ground before the wheel passes on to them. The planks have prongs which straddle the rim of the wheel, to keep them on the rim, and at the same time to allow the requisite movement of the planks relatively to the rim for enabling them to so drop on the ground in advance of the rim, and also to allow the planks to lie flat on sloping ground.
 The inventor connects
one of the joints of the endless track by removable or de tachable devices of any approved kind, enabling the track to be disconnected for ready application to and remova from the rim of the wheel, as may be required for putting on the track when the ground is soft and taking it off when the ground is dry and bard. This device has been patented by Mr. Oliver F. Gilbert, of New Haven, Mich.

The Relation between Fluorescence and Chemica

 Constitution of organic Bodies.Why do some substances exhibit fluorescence and others not? This is a problem that must remain for a long time unsolved, and we cannot, at present, expect to answer that question any more than we can tell why sodium sulphate is soluble in water while barium sulphate is not
In order to approach a little nearer to an understanding of the subject, we must decide to proceed in such a way as to find out what may be called the statistical reason, as distinguished from the true and actual cause. This can be accomplished by grouping together known facts and cases so as to see what peculiarities of constitution are common to substances having the same physical peculiarities. This method has been pursued in the numerous experiments made to determine the cause of colors in dyes, and it can also be applied
to the study of fluorescent bodies, of which there are alread quite a large number to experiment upon.
Liebermann collected the fluorescent derivatives of anthra cene, and thereby arrived at a very remarkable result. Anthracene has the formula $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{CH})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, or two groups of $\mathrm{C}_{6} \mathrm{H}_{4}$ are connected by a pair of carbon atoms, to each of which is attached one of hydrogen ; hence these hydrogen atoms (which we have placed in the parenthesis) have an entirely different position from the others. Liebermann found that all anthracene derivatives which contained these hydrogen atoms unchanged, or had them replaced by monad groups, possessed fluorescence. If, however, the CH groups
are changed to CO groups, as in anthraquinone, which has are changed to CO groups, as in anthraquinone, which bas
the formula $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{CO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, and its derivatives, the fluothe formula $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{CO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, and its derivatives, the fluo-

rescence is wanting.

'Jhe most beautiful and intense exhibition of fluor escence is shown in a substance discovered by Baeyer, and called Fluoresceine. It is made from resorcine, $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH})_{25}$ and phthalic acid, $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{COOH})$, by fusing them together. The new compound may be looked upon as resorcine, in which one of the hydrogen atoms of the $\mathrm{C}_{6} \mathrm{H}_{4}$ group has been re placed by the residue of the phthalic acid. For brevity we may represent this residue by Phth, and write the formula of fluoresceine thus: $\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{Phth})(\mathrm{OH})_{2}$. It is a brick red
powder, and when dissolved in alkalies forms a red liquid which has such an intensely green fluorescence that, viewed by reflected light, one thinks that he sees a glittering green precipitate in the liquid, which was clear by reflected light and of a red color. This peculiarity enables us to utilize the phthalic acid as a delicate reagent for the detection of resorcine. If the slightest trace of the latter is melted with phthalic acid, and the fusion dissolved in alkali, the liquid will exhibit this magnificent fluorescence in the most intense degree.
Orcine is a homologue of resorcine. In constitution it is a resorcine with the hydrogen atom replaced by the methy group, CH_{3}, a methylated resorcine having a formula $\mathrm{C}_{6} \mathrm{H}_{3}$, $\mathrm{CH}_{3},(\mathrm{OH})_{2}$. This substance is very similar to resorcine in all its properties and reactions, except in its action toward phthalic acid. It does, indeed, unite with the latter, but the resulting compound has no fluorescence at all. In a free state it is colorless, and its alkaline solution is red both in transmitted and in reflected light.
To ascertain why it was that a substance so similar to resorcine should act so differently in that one respect, Knecht adopted an ingenious method of experimentation. He prepared a substance homologous with resorcine, but having the same chemical composition as orcine, a new isomeric body. This substance, which he called cressorcine, has the formula $\mathrm{C}_{6} \mathrm{H}_{3}, \mathrm{CH}_{3}(\mathrm{OH})_{2}$. It was made from cressol, or methyl phenol, the constitution of which is well known.
Cressorcine, this new isomere of orcine, was found to yield a fluorescent body when melted with phthalic acid, although the new substance had the same chemical composition as the colorless one obtained from orcine and phthalic acid.
The fluoresceine prepared from cressorcine is so similar to that obtained from resorcine that Knecht sought for a long time before be could discover any method of distinguishing the one from the other. Both are brick red powders, soluble in alkali with an astonishing green fluorescence, but by the action of acetic anhydride, acetyl ethers of unlike melting points are produced.
The theory proposed to account for this is that in orcine the CH_{3} group occupies the position usually designated as No. 1, and that when this is left free the phthalic acid attaches itself there to form fluoresceine, but that is not possible when this is occupied, as it is in orcine, by a methyl group. The following diagrams exhibit the relative positiou of the groups on Kekule's benzol ring :

Manufacture of Blue Coloring Matters.

R. Meldola's process, according to the Journal of the Socicty of Chemical Industry, is divided into two parts. In the first operation ten parts by weight of the amidonaphthalene sulphonic acid, prepared either by the action of sulphuric acid upon betanaphthylamine, or by reducing the nitro-sulphonic acids obtained by the action of nitric acid upon the betanaphthalene-sulphonic acid, as discovered by Cleve, are suspended in cold water acidulated with muriatic acid, and a solution of nitrite of soda is gradually added in suci quantity as shall contain $3 \cdot 69$ parts by weight of pure nitrite. The solutions after being mixed are kept well cooled, and are allowed to stand forsome hours, so as to form the diazo-
sulphonic acid, or mixture of isomeric acids as mentioned. sulphonic acid, or mixture of isomeric acids as mentioned.
When the diazotizing operation is complete, which is the case in about two hours, there is added a solution containing 5.4 parts by weight of dimethylaniline, or 6.7 parts by weight of diethylaniline, dissolved in the necessary quantity of muriatic acid, and after standing for some hours the diazo color begins to separate, and is completely thrown out by the addition of ammonia to the mixed solutions.
In the second operation the ammoniacal solution containing the ammonium salt of the diazo color in suspension is mixed with a solution of yellow sulphide of ammonium, and
till the diazo color is completely reduced, as is ascertained by the mixture becoming colorless. The reduction is much hastened by the addition of a small quantity of zinc dust. The solution is now rapidly cooled, and made acid by means of muriatic acid, and the sulphur and amidonaphthalene sulphonic acid thus precipitated is removed by filtration. The solution is then oxidized by ferric chloride, or other suitable oxidizing substances, till the smell of sulphureted bydrogen is destroyed, when the coloring matter at once forms and is precipitated by the addition of chloride of zinc and common salt in the usual way.
The amidonaphthalene-sulphonic acid is freed from sulphur by dissolving it in a weak solution of an alkali, filtering, and precipitating by muriatic acid, and the acid thus recovered can be again used for the manufacture of the blue dyestuff. The coloring matter precipitated in the mannerabove described is collected on filters, in order to remove a red coloring matter which remains in the solution, and is purified by dissolving in hot water, filtering, and again precipitating by zinc chloride and common salt. When collected it can be dried, and is then ready for use, or it can be employed in the form of a paste. It is stated to dye silk and wool (from a neutral or ammoniacal bath) of a fine blue shade, aud it can be used also for cotton, with or without a mordant, according to the shades required.

Hardening Taps and Dies.

A writer in the Chicago Journal of Commerce gives his exerience in tempering as follows:
The great difficulty in hardening tools is principally their iability to twist or get out of true; second, cracking (especially if large) after hardening; thirdly, getting the right temper. In our factory we use a great number of small taps and rimers; some of the rimersare 9 inches long and a quarter of an inch in diameter; these we barden very successfully, not more than one out of a dozen being out of true. Our plan is as follows : First, carefully select your steel; let it be of the best cast, with a medium grain (a fine grained steel will break when much less force is applied than a coarser grained, and, although it will take a keener edge, it will not resist the strain required by a tap or rimer). Next center it, and turn off the scale and soften. The object of softening after the scale is removed, is to make the grain of the steel equal throughout; if it be softened with the scale on, it will gencrally cast. To suften, inclose the articles in a piece of gas tube, filling up with wrought iron turnings and plugging the ends with clay, making the whole red hot and allowing it to cool very slowly-i.e., leaving it in hot ashes all night. This method makes the steel very soft, and equalizes the grain. After softening turn up the work, taking care not to bend it or straighten it, should it have cast, as it probably wifl in the process of softening. The reason for this is that, if the steel be bent or hammered, the grain will be closer in one place than another, and heat has a great tendency to bring it back to its original position. The next thing after finishing your tool is to harden it; first, slightly heat it over a gas or other flame, and rub it all over with a mixture of Castile soap and lampblack. This is to prevent the edges from being burnt. The next is to get a thick iron paper (the size we use is 2 inches diameter and threo-fourths bore). This is well filled up with taps or rimers and charcoal dust, the ends being closed with clay as before. This is placed in the furnace and occasionally turned, until it is one uniform heat of cherry red, or on the outside a trifle hotter. It is then carefully removed from the fire, one end of the clay knocked off, and the contents allowed to drop perpendicularly into a solution of water, chloride of sodium, and nitrate of iron; this is kept at a temperature of 60 degrees. The articles hardened should remain at least a quarter of an hour before being removed. This method of hardening may be summed up thus: Make the steel of one grain throughout, prevent it from oxidizing while being heated, allow every part to heat at the same time, avoid bending while hot, and lastly restore, if possible, by adding to the loss of carbon caused by heating. As I have taken up already too much of your valuable space, I will defer the method of tempering to some future time.

Dried Leaves as Food for Lepidopterous Larvæ.
Lepidopterists engaged in raising larvæ will be interested in a note by Mr. А. H. Mundt, of Fairbury, Ill., published in Papilio for January, 1883, giving his experience in feeding caterpillars with dried food. He gathers the leaves in summer, pressing them quite dry like botanical specimens, and before using them as food he soaks them one night in fresh water. This experiment was successfully tried with the larvæ of Papilio cresphontes and Apatura clyton. Mr. Mundt adds that the dried leaves must be kept in the dark in order to preserve the green color and the flavor. This experience with preserved food may prove equally useful for other species, and promises to be of great advantage in raising larvæ on food to be obtained from distant sections. We have never tried this method of curing leaves, though we have successfully used pressed fresh leaves, mailed and kept in tight tin boxes. In this way we have fed larvæ for weeks, in Washington, on food obtained in Florida. If 'hay making" should prove as successful as Mr. Mundt's experience would indicate, we would recommend, as a possible improvement in the curing and retention of the nutriive properties, the chopping of the leaves, which will per mit of more rapid curing and more convenient packing.- 0 . V. R., in American Naturalist.

MeCHANICAL INVENTIONS.

Messrs. E. and H. T.Anthony, of New York city, are the assignees of an invention by Mr. W. H. Lewis. recently granted for a plate hodar for photo-
graphic cameras, the object of which is to facilitate the insertion and
plate holder.
A novel saw mill dog has been patented by Mr. George F. Knight, of Hicksville, \mathbf{O}. The invention ple and effective manner, and is an improvement on a previously patented dogging device, issued to the
same inventor October 26,1880 .

A machine for adding numbers, intended for counting houses, bookkeepers, etc., is the subject of a
patent reeently granted to Mr. Wm. H. Beatley. of Humansville, Mo. A cylinder is provided within a case, with figures of an almost indefinite number marked on its surface. Finyer keys with numbers on them from 1 to
9 actuate the cylinder when pressed upon, similar to the action of a type writing machine.
Mr. Theodore A. McDonald, of New Albany, Ind., is the patentee of a new and improved gauge
for rip sawing The new gavge is intended especilly for rip sawing. The new gauge is intended especially
for circular saws used for ripping boards into strips. The distance the gauge bar is moved toward or from the saw is indicated by a graduated bar attached to the
gauge bar. The invention is very simple, and evidently usefl improvement fee saw mill owners.
An improved rug making machine has been patented by Mr. Orison Huff, of Goodwn's Mills, Me.
The machine relates to the manufacture of rugs in which a piled surface of yaru or worsted is formed invention consists in novel mechanism for forming the loops or stitches,
vary the colors.
An improved saw setting and jointing device has been patented by Messrs. Millard E. Beach
and Albert Burch, of Cadillac, Mich. At one end of the implement a slot is provided for passing upon the saw
teeth in setting them. For jointing the teeth a file is teeth in setting them. For jointing the teeth a file is
inserted in a slot at the other end of the instrument and fastened by a set screw, so that the instrument is
made to serve as a handle to the file. The invention is made to serve as a handle to the file
very simple, and seems practical.
Messis. Josiah Austin and Rossco Chamberlain, of East Liberty, O., are patentees of an automa-
tic double gate which i onened and closed thy sure of the wheels of the passing vehicle upon aresimple arrangement of devices. The advantage of providing a double gate lies in the possibiity of lightening
materially the weight of the gates upon the driving gear. which is very important when they are to be operated by the wight of the veliole soley.
A stop chamfer plane, designed to facilitate the cutting of chamfers of all kinds on the edges of
boards, posts, etc., has been patented by Mr. Joseph Lee, of Garnerville, N. Y. The stop chamfer plane is
formed of two parallel bevel guides united by ble cross rods, and carrying a cutting blade which is gauge is also provided for facilitating the adjustment of the implement.
A machine for renovating feathers is the subject of a patent recently granted to Mr. George F . Tallman, of Deposit, . . Y. A A jacket cylindrical case
for holding the feathers is provided with steram heated arms, which are made to revolve, stirring up, beating und renovating the feathers in the most thorough man ner. It is claimed that by this machine feathers can
be purified and renovated in a better manner than by the machines heretofore used for this purpose
A delicate scale for weighing diamonds, balance screws for watches, etc., is the subject of a pa-
tent issued recently to Mr. Ferdinand F. Ide of Spring tent issued receny till. The importance of a simple weighing me
feld chine for precious stones and like valuable and delicate articles which shall be weighed accurately is well
understood. Mr. Ide, in his newly patented scale, claims to accomplish this, and certainly his mechanism
A guard for band pulleys, to prevent acci ing, is the subject of a patent granted to Mr. Charles E. Frick, the shaft and held to it by an elastic band, which is at-
tached to hooks on the inner surface of the cap, and passed around the screw which holds the pulley on the
shaft. shaft. This guard also protects machinery belts from
catching on the screws which fasten the puley to the

Messrs. E. and H. T. Anthony, of New York city, by assignment from E. B. Barker, have reso constructed as to enable pictures to be taken in either horizontal or vertical positions, without moving
the lens frame. The same inventor and same assignees as the above have also patented a photographic shield, for holding and securing the end mate of a septum in the shield.
An improved machine for sawing match cards has been patented by Messrs. Gilford Flewwell A disk with a series of holders for the blocks or cards to be sawed, is mounted on slides, which are moved up
to and away from the saws by a cam device located under thedisk. A series of grooving saws, and aseries of sliting saws, also a cutting off saw, are so combined and
arranged as to enable making match cards in a rapid peditious manner
Mr. William E. Williams, of Dodgeville, Wis, has patented an improvement in wind mills, which
has for its object to enable rigid wheel windmills to be regulated by the varying force of the wind, and without the use of vanes. By the arrangement of a weighted lever the wheel is torced into the wind as the force of
the wind decreases. Yanes can be used for the better control of the wind wheel under certain circumstances, but are used as an ausiliary arrangement to the weighted lever appliance.
An improved pig iron breaker has been pa
tented by Messrs. William R. Haveus and Jonn W.

Nesmith, of Denver, Col. A pair of stationary jaws are the pigs and hold them between two or more points each sidi of the middde, while a movable or aw with a a single
die is made to press against and break the pigs in the most approved manner. The grooves for the breaking dies are so formed that they may be readily removed and others replaced when too much worn.
An improvement designed to facilitate the pening and shutting of a gate has been patented by Mr. Amon W. Chilcott, of Mattoon, Ill. The invention consists of a gate sliding on rollers, and so arranged as some way on each side of the gate. The gate and its operating mechanism is so constructed that when the ate is closed the arm of the lever mentioned, and
ar connected with it, are brought below the pivot line connecting the pivoted centers of this lever and bar,
whereby a lock will be formed which prevents the gate
Mr. William E. Harris, of New York city, rating fine gold from pulverized ore or sands. An amal amating pot is set in a case, which is made stean posited inside the part of it. The quicksilver is de forty pounds is conducted in contact with the ore, as the latter is fed through a funnel-shaped conductor, a stream of water fiowing with the ore through the same funnel, which ore is forced by the steam into the quick-
siver, where the particles of gold are taken up, and the

Inse is permitted to run to waste

To provide a better means for producing and istributing heat into dwelling apartments and office from stoves than has been heretofore employed, is the
subject of a patent reeently granted to Mr . Wm. H . subject of a patent recently granted to Mr . Wm. H
Pratt, of Rondout, N. Y. The device substituted by Mr Pratt for the ordinary drum and base burning stoves of the stove combustion of coal by the use of his steam heating attachment, which may be applied at very little expense to most kinds of stoves other than the base burning A novel grain and seed cleaning mill has seen patented by Mr. William Bowen, of Edina, Mo the object of which is to separate the chaff and poo
seeds from the good seeds. The inventor provides a cylinder with a series of mnciined plates, upon which the rains or seeds are fed, which cylinder istvibrated, soa onase the light grains and seeds to pass to one corne grains and seeds pass over the front edge of the plates nto a chamber surrounding the cylinder. The cylinder is geared to vibrate, and the plates are made of highly Mr. Robert C. Sno wden, of Elizabeth, Pa. nas obtained a patent on a metal bending machine for
tin roofers, which is intended to save much hard work, time, and expense to tin roofers. A great deal of work has been heretofore done on the roof which this ma chine is intended to do in the shop. By this machine edge, and on the otheredge is bent up at a right angle and then down again to lap over the standing edge of the adjacent sheet or plate, thus rendering them ready to lay when taken upon the roof. The interlocked
edges of the plates are hammered down, and forma ater tight joint without the use of solder.
An invention for indicating to the engineer or conductor of a railway train, when approaching a ject of a patent recently granted to Mr. Orry M. Shepard, of Boston, Mass. Attached to the station hoone denoting the time the preceding train had passed, but n last passed-freight, dicated the nature of the train last passed-oses appropriate sign to the incoming train from inside the
tation, so that the conductor may not only see the time the last train passed the station, but the nature of he train, if it were passen ger, freight, etc
An improvement in davits for boats, de signed to economize space and promote convenience in Mr. John F. Mumm, of Brooklyn, N. Y. The davit arm, which is curved outwardly, is provided at its outer nd with a tackie in the ordinary manner. The lower ion of the davit socket. which is formed of two parallel plates, the upper edges being curved in the arc of a circle, and provided with shoulders at their ends. The movement of the davitarm is limited by the said shoul
ders. By this construction of the davit, the boat is held either over the water or over the deck of the ves-

Improvements in evaporating pans for sac charine juices have been made by Mr. Jacob Shoemakpatent. The invention conesists in forming the pan of a number of plates, which are joined together by turning
up a flange on the edge of each plate and uniting these up a flange on the edge of each plate and uniting these
flanges by solder, so that the solder will not be subjected to the direct heat, whereby the pan is rendered nuch more durable. The furnace is located directly connecting valves for regulating the heat of the furnace An inclined trough is mounted upon crank supporting
cods directly over the pan, and is so arranged that it rods directly over the pan, and is so arranged that it may be swung from over the pall out of the way when
An improved shingle machine has been pa tented by Mr. John P. Bowling, of Guthrie, Ky.,
the object of which is to provide a planing device for slingle machine, which may be conveniently geared orm bevel by transferring them from the riviug de ce tothe planing device while both devices are in atent, bearing the same date as the above, for rivin bolts out of hard woods. By an ingenious arrangement of the apparatus the weight of the bolt causes the balanced frame on which it rests to dip to the thickness of
the shingle below, insuring each shingle of the same

thickness. Gauges are provided, ate the thickness of the shingle.

An improved machine for weighing an easuring grain as it is delivered from the thrashing nachine or elevators is the subject of a patent recent${ }^{1}$ cranted to Mr. Freeman C. Mason, hich receptacle is divided by a board forming an pper and lower compartment. The grain is deposited in the first compartment, and when it is full is dischargd into the second compartment by the tilting of the receptacle, which is operated automatically by the
weight of the grain. The alternate movements of the box operate a pawl and ratchet, which conveys to a dial late the number times the receiver diveys toarges it contents, and thns the amount of grain that passes hrough the mach
A novel musical instrument called a pianoviolin is the subject of a patent recently issued
Messrs. J. Parsons and J. W. Trinkle, of Kent, Ind. case is provid resting behind and connected to the other. To the front side of the inner sounding box is secured a brige
transversely to the box. To the front of the bridge a series of jaws are secured, between which the string bars are passed, the latter of which are provided with a spring tongue. An endless belt is made to pass by the strings in the instrument by means of a treadle, and as he keys aredepressed, the corresponding strips winpo
drawn upward, bringing the lowerend of the corresponding string bar toward the belt, which coming in contac with the string produces a vibration and soun.
as the belt is kept in contact with the string.

agricultural inventions.

A useful garden implement in the form of a com It is a hand machine. and accomplishes a number of objects, such as marking the ground, planting and cov-
ring the seed, and cultivating the plauts, and is witha ing the seed, and cultivating the
A harrow provided with a seat aud otherwise so arranged that the attendaut, by means of seat, has been patented by Mr. Thomas Van Ostrand, of Kinsley, Kan. Provision is made for changing the angle of the teeth, when desired, by means of another lever, and this may also be done without the driver leaving his to transform the ordinary process of harrowing from tiresome labor into a pleasant pastime.

miscellaneous inventions.

Mr. John H. Solis, of New York city, Las patented an improved compression basin cock, con-
structed in such a manner that it can be closed by tuirning the valve stem through a quarter of a revolution in mprovement. Prer the ordiuary basin tock
Mr. J. L. Clingman, of Cynthiana, Ky as added to the list of railway supply appliances a new nut lock for rail joints. It is a very simple device,
cheap to make, very strong. and at the same time it is capable of removal and reapplication without damage to any of its parts.
A patent for a gas seal for blast furaaces was granted a few weeks aqo to Mr. E. A. Uehling. of Sbarpsville, Pa. The newly patented gas seals are
opened and closed automatically in the charging of furnaces by a system of levers, which are so fitted as operated by either steam or compressed air
A steam radiator of novel construction has recently been patented by Mr. A. A. Grifing. of Jersey ty, N. J., the object of whichis to so construsi rad tor tube and its interior air pipe that a maximum of he interior pipes.
Mr. Peter Dickman, of Defiance, O., has carriages to prevent the wheels from seraning the bod when cramping or turning around. The iron being nearly the same form as the wheel on its wearing sur face, there is no possibility of the wheels locking.
An improved furnace door latch which Closes automatically, and holds the door perfectly closed ed by Mr. E. J. Shields, of Elizabethport, N. J. The simplicity of this invention is very great, and itcan be Mo as well as to large furnace
Mr. F. T. Knauss, of Scrauton, Pa., has ecently patented improvements on his knock-down
table, which was originally patented May 2,1882 invention relates principally to certain detais of construction of the frame. mode of attaching the legs to the

A novel clothes pin has been patented by Mr. Richard B. Perkins, of Hornellsville, N. Y. The invention usials cof hes pia shape will slon serted in the pin, to prevent the cloohes pin from dropping from
the line, and also to prevent the garments from blowing Mr. F. A. Curpen, of Upper Sandusky, O has patented a hair spring protector for watches, whic
is intended to prevent the liability of the second curl of the spring being caught by the pius. To obviate the a device for closing the space between the prins after

he spring is applied.

An improvement in sheet metal elbows for F. Peters, of Millbury, Mass. The inventor produces very strong, smooth, and durable elbow for stove pipe by making it in longitudinal sections, which parts are closed by lap folded seams at the outer straight portions and by flange joints at the curved parts.
A patent for a very simple boiler cleane
has recently been issued to Mr. G. A. Chapman, Strawberry point, Isowa, which, it is claimed, will not
of the heat and water will remove what has already and sediment crom off the partijes of both the scal Mr. O. C. Retsloff, of Winnebago City Minn., has patented an improved pendulum, the obje of which is to provide for the accurate regulation of
pendulum clocks by adjustment of the length of the rod. A bob is fitted to the pendulum and rotated by an adjusting nut with a pointer attached, to indicate on An the extent of the movement.
An improvement in that class of ornament A1 chains in which a large number of units are joined and know po to torm a a and of any desired width, ject of a patent recently "roller chains," is the subof Brooklyn, N. Y. By countersinking the outside and using riv M Messrs. William Oldroyd, of Columbus, and George H. Smith, Jr., of Lancaster, O., have paThe object of this improvement is to effect the neecssary lengthening or shortening of the hair spring, and putt ing the watch in perfect beat without detachmen
of parts or changing the collet at the center of the bal of parts or chang,

ance wheel.
A latch has been patented by Mr. L. A Randall, of Birmingham, Mich. The bolt is so con-
trived as to automatically shift forward by gravitation trived as to automatically shift forward by gravitation
into the position by which it engages with the catch. The bolt is made reversible in different ways, and by this arrangement, in connection with the locking device, by which the spring usually employed is dispens

Mr. E. S. Kingston, of Little Falls, N. Y as received letters patent for an improvement in shoe
nakers' lasts. This device is made of malleable iron in such a form that it can be removed from a boot or shoe n one piece intean of sections, a spring keeps the pulled upon, allowing it to leave the shoe, requiring but light of ont the pat of the workman.
A canteen, water cooler, jug, or vessel, made of metal or other stiff material,and having a portion or the whole of its body provided with perforations
and clothed with a covering of cloth or other absorbent material, is the sub; jet of a patent recently granted to Mr. C. G. Jordon, of Catlin, Colo. Evaporation is pro moted and the liquid contents of the vessel are kcp the above arrangement of materials, and its use Mr. Joseph C. Cramer, of Leadville, Colo. has patented a novel improvement upon a pick for
which he obtained a patent November 8 , 1881. This which he obtained a patent November 8,1881 . This
present invention consists in forming the outer wall of heeye in the socket head with an inwardly projecting of the pick to fit it. Furrher, the socket head is pro vided with a pivoted plate for locking the wedge in in the wed
Mr. Olin Pitts, of Newborn, Ga., is the pa entee of a back band hook for harness, the object of
which is to prevent the destruction of the lines or ropes used as reins when plowing. A plate is hooked into the harness belt, which plate is provided with Lwo prong or projecting hooks, through one of which the reins run chain. By this device the reins are prevented from get fing entangled with the traces, and are kept from the
Mr. G. W. Doxsie, of Haring, Mich., re logging wheels for carting heavy lumber. The tongue is used as a lever for raising the logs into place between from the swinging of the chains or logs in going rough roads is provided and a seat is attiached for th driver. In the act of hoisting. the team is attoched to the end of the tonguc by a long chain, by which is actuated an eccentric hitch of the suspendiug chains on actuated
A simple device for tightening the tires of Peeter and James Young, of Monticello, Iowa. The in-
Pete ention consists in a novel mode of tightening the tire of wagon or other vehicle wheels, without removing he tires from the wheels. A strong metal band of the
size the tire should be when tightened is heated quite bot, and while expanded by the heat it is clasped snumgly ver the whel tire, which shortens it to the size de sired by the contraction of the outer band, aided by the screw and nut, which are used to bring the tightening ooop band upon the tire.
A barrel adjuster is the title of a patent re cently granted to Mr. William E. Foreman, of Pierrearrel manor. N. Y..t the object of which is to enable olded flat to the floor. The frame, or adjuster, as it is ermed, is then raised into position by a lever, with the barrel upon it. The barrel is held firmly in any posi-
tion desired for drawing off the contents. The frame ion desired for drawing off the contents. The frame
is preferably of metal, neatly constructed, and the contrivance is admirably adapted for the dispensing of
lager beer, and will be likely to come into extensive
Messrs. Robert B. F. Reed and George Freund, of Durango, Colo., have recently patented a re employed, such as giant powder. The material is used in sticks or candles, and for firing the charges a fuse. The method of attaching the cap has heretofore been to bore a hole in the end of the candie and insert he cap, which is held in place by a wiuding of cloth, the fact that as the candle has to he warmed before it can be bored the charge is liable to be exploded by the warming, and the cap to be disconnected, so that the firing of the charge is prevented or delayed so long as vention is to obviate these difificulties and to secure perfect safety in the use of giant powder and similar ma-
terials ior blasting purposes.

cusines and extwoul.

The Chargefor Insertion under this head is One Dollar a line for each insertion: about eight words to a line. Advertisements must be received at publication office
asearly as TI/kursaay morning to appear in next issue. Guild \& Garrison's Steam Pump Works, Brooklyn, N. Y. Steam Pumping
tion. Send for catalogue.

Wanted.-Foreman for malleable iron foundry. One familiar with the running of air furnaces preferred. A
dress M. J. C., Letter Carrier No. 2 , St. Louis, Mo. ForSale Cheap.-Patent in the agricultural malleable hardware line. E. L. Bracken, Dawson, IIl.
Electrical Works.-Splendid chance to purchase the
隹 oldest telegraph supply depot in Ohio. Best facilities
for manufacturing all kinds electrical instruments, for manufacturing all kinds electrical instruments,
burglar alarms, etc. Address M. A. Buell, 144 Superior burglar alarms, etc. Ad
Street, Cleveland, Ohio.
The New System of Bee Keeping.-Every one who has a farm or garden can keep bees on my plan with
good proft. $11 l l u s t r a t e d$
circular of full particulars free. Address Mrs. Lizzie E. Cotton, West Gorham, Maine.
Things to be remembered: That the Esterbrook Steel
Pens are of standard quality; are adapted to the needs Pens are of standard quality; are adapted to the needs of all writers; ar
Wanted.-Iron castings to make. Give us a chance to make a bid on
Leighton, Pa.
Wanted.-A first-class Brass Pattern maker as fore man in our pattern room. Must be a draughtsman, State age and salary expected; married man preferred. Address Duggan Parker Hdw. Mfg. Co.'s Malleable
Works, 806 to 822 South 12 th Street, St. Louis, Mo.
Fire Brick, Tile, and Clay Retorts, all shapes. Borgn Peck's Patent Drop Press. See adv., page 237. steam Hammers,Improved Hydraulic Jacks, and Tub Diamond Saws. J. Dickinson, 64 Nassau St., N. Y. Diamond Saws. J. Dickinson, 64 Nassau St., N. Y.
50,000 Emerson's Hand Book of Saws. New Edition. 50,000 Emerson's Hand Book of Saws. New Edition.
Free. Address Emerson, Smith \& Co., Beaver Falls, Pa. Eagle Anvils, 10 cents per pound. Fully warranted For Pat. Safety Elevators, Hoisting Engines. Friction Gould \& Eberhardt's Machinists' Tools. See adv.,p. 237 . For Heavy Punches, etc., see illustrated advertise ment of Hilles \& Jones, on page 238
Barrel, Key, Hogshead, Stave Mach'y. See adv. p. 237 For Mill Mach'y \& Mill Furnishiug. see illus. adv. p. 236 See New American File Co.'s Advertisement, p. 238. Mineral Lands Prospected, Artesian Wells Bored, by
Pa. Diamond Drill Co. Box 423. Pottsville. Pa. See'p. 237 . Renshaw's Ratchet for Square and Taper Shank Drills. The Pratt \& Whitney Co., Hartford, Conn.
For best low price Planer and Matcher. and latest improved Sash, Door, and Blind Machinery, Send for The Porter-Allen High Speed Steam Engine. Southwork Foundry \& Mach. Co.,4s Washington A ve.,Phil.Pa.
Steam Pumps. See adv. Smith, Vaile \& Co., p. 236. Boiler Scale.-Parties having fine specimens for sale
or loan, address Jas. F. Hotchkiss, 84 John Street, Fan, adre Farley's Directories of the Metal Workers, Hardware
Trade, and Miners of the United States. Price $\$ 3.00$ Wodw Woodwork'g Mach'y. Rolistone Mach. Co. Adv., p. 221. Common Sense Dry Kiln. Adapted to drying of all ma-
terial where kiln, etc., drying houses are used. See p.222. Lightning Screw Plates, Labor-saving Tools, p. $2: 2$. The Best.-The Deuber Watch Case.
Curtis Pressure Regulator and Steam Trap. See p. 206 The Sweetland Chuck. See illus. adv., p. 206. Knives for Woodworking Machinery.Bookbinders, an
Paper Mills. Taylor, Stiles \& Co., Riegelsville, N. J. Paper Mills. Taylor, Stiles \& Co., Riegelsville, N. J.
The Celebrated Wooton Desk. See adv., page 206. Comfort Dinner Pails.-Most convenient in use. For
sale everywhere. Reardon, Ennis \& Co., Troy, N. Y. C. B. Rogers \& Co., Norwich, Conn.. Wood Workin Machinery of every kind. See adv., page 190.
Permanent Exposition.-Inventors' Institute, Cooper
Union, N.Y.City. Every facility for exhibition of machinery, merchandise, and inventions. The expense is small Contracts taken to manuf. small goods in sheet or
cast brass. steel, or iron. Estimates given on receipt of cast brass. steel, or iron. Estimates given on receipt of
model. H. C. Goodrich, 66 to 72 Ogden Place, Chicago. Nickel Plating.-Sole manufacturers cast nickel an--
odes, pure nickel salts, polishing compositions, etc. Comodes, pure nickel salts, polishing compositions, etc. Com-
plete outfit tor plating, etc. Hanson \& Van Winkle plete outfit for plating, etc. Hanson \& Van Winkle
Newark, N. J., and 92 and 94 Liberty St., New York. Lists $29,30 \& 31$, describing 4,000 new and 2 d -luand Ma
chines, ready for distribution. chines, ready for distribution. State just what machine
wanted. Forsaith \& Co., Manchester, N. H., \& N. Y. city "Abbe" Boit Forging Machines and "Palmer" Power
Hammers a specialty. Forsaith \& Co., Manchester.N.H. Magic lanterns, stereopticons, cond. lenses, etc., on
hand and made to order, C. Beseler, 218 Centre St., N. Y. Railway and Machine Shop Equipmen
Send for Monthly Machinery List the George Place Machinery Compa 121 Chambers and 103 Reade Streets, New York. $25^{\prime \prime}$ Lathes of the best design. G. A. Ohl \& Co.,
East Newark, N. J. For Power \& Economy, Alcott's Turbine, Mt.Holly, N. J "How to Keep Boilers Clean." Book sent free by
James F. Hotchkiss, 84 John St N James F. 10 to 50 , 84 John St., New York, Engines, 10 to 50 horse power, complete, with govern
or. $\$ 250$ to $\$ 550$. Satisfaction guaranteed. More than or. $\$ 250$ to $\$ 550$. Satisfaction guaranteed. More than
seven hundred in use. For circular address Heald \& seven hundred in use. For circular add
Morris (Drawer 127), Baldwinsville, N. Y.
Wanted.-Patented articles or machinery to mak
and introduce. Gaynor \& Fitzgerald, New Haven. Conn Latest Improved Diamond Drills. Send for circular
to M. C. Bullock Mfg. Co.. 80 to 88 Market St., Chicago,III Water purified for all purposes, from household supplies to those of largest cities, by the improved filters mpes to those of largest cities, by the improved filters
manufactured by the Newark Filtering Co., 177 Com-
merce St., Newark, N.J.

Wanted.-Parties to manufacture buby carriage
wheels of iron and steel. Moore, 34 and 36 Elizabeth Street, New York.
Ice Making Machines and Machines for Cooling Breweries, etc. Pictet Artificial Ice Co. (Limited),
Greenwich Street. P. O. Box 3083 , New York city. Split Pulleys at low prices, and of same strength an appearrance as Whole Pulleys. Yoco
Works. Drinker St., Philadelphia.Pa
Machinery for Light Manufacturing, on hand an built to order. \&f. E. Garvin \& Co... 139 Center St., N. Y
Presses \& Dies. Ferracute Mach. 'co., Bridgeton, N. J.

Supplement Catalogue.-Persons in pursuit of infor mation on any special engineering. mechanical, or scien tific subject, can have catalogue of contents of the Scl
ENTIFIC AMLRICAN SUPPLIEMIGNT sent to entific ambrican supplemient sent to them free
The suppiement contains lengtby articles embracing The whole range of engineering, mechanies, ambracing physi-
cal science. Address Munn \& Co . Publishers, New York.

NEW BOOKS AND PUBLICATIONS

The Magazine of Art. Cassell, Petter,
Galpin \& Co., New York. Monthly, $\$ 3.50$ a year.
As its title implies, the Magazine of $A r t$ is an illus rated publication pertaining to art and art culture. It
Is issued in monthly parts, and every number abounds in beautifully executed engravings of famous paintings interior views of modern houses and ancient castles,
and fine art objects of a varied kind. The March num and fine art objects of a varied kind. The March num-
ber contains among other illustrations of interest several views of the most important and artistic rooms in the new residence of Mr. William H. Vanderbilt, on Avenue, this city
The Decorator and Furnisher. E. W. Bollinger, 75 Fulton Street, New York. Monthly, $\$ 4$ a year
Some examples of inside decorations for houses, in
cluding the arrangement of the rooms, painting of the cluding the arrangement of the rooms, painting of the
walls, designs for the furniture, window and hanging walls, designs for the furniture, window and hanging
curtains, fireplace mantels, wall papers, etc., are, illus curtains, fireplace mantels, wall papers, etc., are, illus-
trated and described in this magazine. The publication treats on all departments of house decoration and furnishing, and is therefore useful to those persons who
are building new houses or altering over old ones. The are building new houses or altering over old ones. The agazine contains valuable suggestions to housewivese n embelishing their homes, and rendoring them attrac
tive at small cost. The engravings are finely executed, and the descriptive letter press is printed on the page opposite the illustration, or in close proximity to it, so that the eye rests upon the latter while the descristion is read. Some of the examples of parlor and hall de corations are printed in several colors, which enables a person to see the effect of the different colors as ar-
ranged, and teaches them how to form harmonious ranged, and teaches them how to form harmonious
combinations with other colors. The magazine is use ful to architects, house furnishers, and decorators, and ul to architects, house furnishers, and
Hydraulic Manual, consisting of Work ing Tables and Explanatory Text, Calculations and Field Operations By Lowis D'A. Jackson. 8vo, pp. 179. London: Crosby Lockwood \& Co. In the present edition of this standard work, som alterations and extensive additions have been made, although the same general principles have been adhered to that were enunciated in the first edition of
1868; the same limited object has been kept in view; 1868; the same limited object has been kept in view;
and the same opposition to old hydraulic text books and the same opposition to old hydraulic text book
and old formulas is still maintained. The working and old formulas is still maintained. The workng
tables in this edition have been increased from a hundred to a hundred and eighty pages, and enlarged in other respects. They have also undergone some re-
arrangement, though not sufficient to confuse those accustomed to the use of the tables in their previous
form. This work will prove invaluable, as a work of form. This work will prove invaluable, as a work of tions, to every civil engineer.
McCarty's
pp. 624.
Annual
Yerk. York.
This work, now in its sixth edition, is a perfect enyclopedia of statistical information, in condensed form, on almost every topic relating to human progress
and events, and pertaining to biography, history, all and events, and pertaining to biography, history, all
branches of science, finance, ttc. As the author very branches of science, finance, etc. As the author very
justly observes, the possession of a copy of this book "will save any pupil, teacher, superintendent, or school imilar number of pages in the English language."
Bulletin of the United States Fish ton: Government Printing Office.
This is the first of a series of volumes that Congress
has authorized to be printed for the purpose of promptly disseminating the large amount of information that is constantly being acquired by the Fish Commission, hrough correspondence. The present volume contains many announcements that are of considerable
mportance in relation to the subjects of fish culture and capture.
Handrailing and Straircasing. By Frank O. Creswell. 16 mo , pp. 95. London
and New York: Cassell, Petter \& Galpin.
In this little work, which has been prepared to encourage working joiners to study drawing, practical deails of stairs are given and explained, and a system of handrailing is introduced which is claimed to be simple and accurate. The book will doubtless serve to remove
difficulties from the paths of numerous beginners, and induce many others to study this branch of the joiner's induce
trade.

Chronological History of the Origin AND DEVELOPMENT OF STEAM NAVIGA
TION. By George Henry Preble. 8vo,
pp. 483 . Philadelphia: L. R. Hamersly, pp.
1883.
This interesting volume is a revision and chronologi-
al arrangement of a number of "Notes for a Histor of Steam Navigation" that the author has been collecting for the last twenty-five years, and most of which ing the last elghteen months. The work does not for-
ind
low all the inventions and improvements in ships and navigation that have intervened, but begins with the first practical use of steam as a motive power for ves-
sels at the beginning of the present century, and shows sels at the beginning of the present century, and shows the progressive advance in steam navigation up to our
own day. It will be gratifying to American readers of this book to find how large a share their countrymen have had in the invention of the steamboat.
Practical Mechanics. By John Perry,
M.E. With numerous illustrations.
Cassell, Petter, Galpin \& Cous., London, Cassell, Petter, Galpin \& Co., London,
Paris and New York, 1883. Pp. 271 . Paris and
Price $\$ 1.50$.
This little book is one of the series of "Manuals of T.R.S., and R. Which is edited by Professor Ayrton, F.R.S., and R. Wormell, D.Sc., and is an attempt to studying mechanics. It will doubtless prove a most valuable aid to the intelligeñt mechanic or foreman who has not enjoyed the advantges of a liberal education, but who desires to add to his own practical knowledge an insight into the laws that govern matter. The
readers of this book are supposed to have some previous readers of this book are supposed to have some previous
knowledge of the behavior of materials and machinery, knowledge of the behavior of materials and machinery,
and the treatment which the subject receives differs and the treatment which the subject receives differs
from that generally met with in school text books, inasmuch as the author attempts to approach it from the practical side, believin g that the most illiterate men may be rapidly taught practical mechanics in this way,
for, unlike school boys or college students, the pupils may already possess an excellent foundation on which a superstructure of knowledge may be built. When glancing over the work, the non-mathematical student
will probably be frightened by the free use of mathewill probably be frightened by the free use of mathematical formulas, and feel inclined to doubt the asser mathematical readers. carefully it will be found that each point is fully puci dated as it arises, and though a few hints from teacher might be an advantage at the start, the perse vering student will generally succeed in conquering the difficulties alone. The book contains a large number of experiments, which should be repeated by the student with sufficient care to obtain satisfactory quan titative results.

LISH.

The growic Cuba, Mexicommerce with our southern neighbors, which the and the remarkable industrial progress now going on in Spain, render especially needful a good book of technological definitions in the Spanish and English
languages. Mr. N. Ponce de Leon, the well known editor of this city, 42 Broadway, has undertaken to supply this want, and we have now before us the first part,
entitled as above. The work is to be completed in tw, entitled as above. The work is to be completed in two
volumes, each issued in twelve parts of about 48 pages, volumes, each issued in twelve parts of about 48 pages,
at 50 cents per part. The first volume will consist of at 50 cents per part. The first volume will consist on English technological terms with Spanish definitions,
The second volume will present Spanish technology with definitions in English. The volumes will give the terms and phrases used in applied sciences, indus trial arts, fine arts, mechanics, mines, metallurgy, agriculture, commerce, navigation, manufactures, archj tecture, civil and military engineering, marine engineering, military affair
tricity, telegraphy, etc.
Report of the New York State Survey
For the Year 1881. James T. Gar-
diner, Director. Albany, 1882. As-
sembly Document, No. 94. Pp 94. Maps
The report before us shows that a considerable amount of work was done during the year .n the mat-
ter of triangulation. Twenty-nine signals were erected, three of which were towers 30 feet high, one 40 feet, and another 50 feet. The body of the report consists of tables showing the latitude, longitude, azimuth, etc.، of each station and of many prominent objects, such,
for instance, as the Catskill Mountain House Peak, Overlook Mountain, Union College dome an other points in Schenectady, the old Capitol and other points in Albany, as well as Hudson City.
large trigonometrical maps accompany the report.

HIN'IS 'TO CORRESPONDENTS.
No attention will be paid to communcations unles accompanied with the full name and address of the
writer. writer.
Names
Given to inquirers. o forme rew request t will be kind enourh name the date of the paper and the page, or the numbe of the question.
Correspondents whose inquiries do not appear after
a reasonable time should repeat them. If not then published, they may conclude that, for good reasons, the Editor declines them.
Persons desiring special information which is purely of a personal character, and not of general interest,
should remit from $\$ 1$ to $\$ 5$, according to the subject, as we cannol be expected to spend time and labor obtain such information without remuneration. Any numbers of the Scientific American SuppleMENT referred to in these columns may be had at this office. Price 10 cents each.
Correspondents
Correspondents sending samples of minerals, etc. label their specimens so as to avoid error in their identification.
(1) P. J.-An ink for type writer ribbons is made as follows: Aniline black
Pure alcohol.
Concentrated glycerine
Dissolve th.
glycerine.
(2) L. M. L. says: I have quite a collection chrysalides, and should like to have your opinion in them and the butterfies, when they come out. A seneral works on North American insects and thei transformations we recommend Th. Harris' "Treatis on Insects Injurious to Vegetation,", and A. S. Pack-
ard's "Guide to the Study of Insects," of works on the ard's "Guide to the Study of Insects." Of works on the classification and systemization of Lepidoptera we have
only the incomplete and now antiquated synopsis of only the incomplete and now antiquated synopsis of lished many years ago by the Smithsonian Institutio and long since out of prin.. Numerous monnations single families and genera have, however, been recently published by various authors, but the literatnre is scat ered through the trausactions and proceedings of ou scientific societies and the publications of the govern ment. We would also recommend C. V. Riley's Report (3) H .
(8) H. B. C. writes: We have tried to copper some articles, like bright tacks, and followed a dip in a solution of 3 pounds rain water and 1 pound sulphate of copper." The copper coats the surface nicely enough, but when apparently solid, wll peel off
like bark, leaving a dirty black surface underneath And how, leaving a dirty black surface underneath And how should one dry articles so coated so as to
leave them nice and bright? A. We recommend the use of solution of copper nitrate instead of the sulphate Dissolve one-half ounce of pure copper in nitric acid, and use the battery. Everything in use must be per fectiy clean.
(4) W. W. A. asks: 1 . What is the best and cheapest to mix with hard coal dust for fuel? A. The general method of enploying coal dust is to com press it into bricks, but this requires machinery. We little clay paste and dried. 2 . Is there anything to put in the in side of stove pipe to keep it from eating through Asphaltum
Boiled linse
Boiled linseed oil
.2 lb.
1 pint.
Fuse the asphaltum in an iron pot, boil the 2 qts. and add while hot. Stir well and remove from the fire When partially cooled, add the oil of turpentine.
(5) E. D. T.-To produce a red color on billiard balls, first imbue the balls with a tin mordant neal, or a mixture of the two. Lac dye may be use with still greater advantage to producea scarlet tint. I the scarlet balls be plunged for a little while
tion of potash, they will become cherry red
(6) W. R. P.-The lengths of several large eamers are given below:

ere are many others over 400 feet in length.
(7) S. H. J.-The sulphocyanide of mercury is made by mixing solutions of mercurous nitrate with potassium sulphocyanide. It forms a white pre before mixing. Use city pressure to feed your boiler, (8) C. D. A.-For black ink try extract of logwood, 4 ounces; potassium dichromate, 12 grains; gallon.
(9) J. H. N. wishes to know (1) what is is a mineral. A. How . How prepared? A. It is found in nature, and ground. 3. Will not sulphuric acid direct rom the manufactory, mixed with the fiuate of lime,
nswer the purpose of glass etching? If not, how could I concentrate it myself? A. It will. 4. What is white I concentrate it myself? A. It will. 4. What is white
acid used by embossers; is it fiouric acid? A. White acid used by embossers; is it fiouric acid? A. White
acid is fiuoric acid 5 . What numbers of the Scienacid is fiuoric acid 5. What numbers of the Scienon etching on glass and also glass painting, and also
are such numbers in print, so that I can get them? A. supplement No. 313. Any back numbers of the Supriement can be had at this office.
(10) L. D. D. writes: In a number of the Sientific American. dated January 20, 1883, was an rticle headed "Snlphurous Acia in Consumption." conveniently, so that consumptives can produce it in their own homes? Am I to understand by the article that it can be produced by evaporation on a hot stove? A.
Sulphurous acid is prepared by burning sulphur in the Sulphurous acid is prepared by burning sulphur in the
air. We would recommend that it be taken only under air. We would recommend that it be taken only under
a physician's direction. (11) J. C. asks: 1. Can you use in constructing an induction coil wire of the sizes 19 and 29 respectively, instead of those prescribed in your Supplement
No. 160? A. Yes, but you would get better effects by sing a finer secondary wire and a coarser primgry. use S. C. wire? A. Yes. 3. May I twist the ends of the two parts of secondary coil instead of soldering; and if they must be soldered, what kind of solder is to be used? A. The ends may be twisted together; it would be better to solder them also. Common soft solder is used for this purpose.
(12) G. \because W. B. asks: 1. What size wire should the carbon disks be wound with in the Lyons transmitting telephone shown in Supplement No. 163,
page 2592? A. About No. 24. 2. Should it be silk covered or bare? A. Bare. 3. Would it improve the new form of transmitting telephone, Supplement No. 163, page 2593, Fig. 4, to use a piece of platinum wire on
the end of wooden spring instead of carbon? A. No. coil, the same as with Lyons? A. Yes mall induction
（13）G．R．R．－The theoretical welocity of air flowion ito a vacuan is 1,348 feet per secon Practicaly
feet per second．
（14）D．F．Co．－The term case hardening is generally applied to the operation of forming a su
perficial steel surface upon iron．steel castinos are pericicial steel surface upon iron．Steel castings are
already of the nature of steel ，and will bear hardening There is considerable difference in the quality of steel castings，as made for different kinds of work，and at different works，and also as to whether they have been annealed or no．You will have to makea trial，and they will have to go through an annealing process of from threeto five hours for small castings in an iron can be case hardened by the methods employed for iron．
（15）J．W．W．－The＂squeaking＂or jar ring noise in a music boz is generally due to the ab－
sence of the small pieces of quill placed underneath the tongues to arrest them on the near approach of a and the noise will probably cease．If the box is one of the cheaper kind，it may be that no provision is made for the quills．
（16）F．L．M．asks：1．How many cells of a mitery will it tang，using a ground wire and having two instru－ ments，one at each end of the line？A．Four cells o gravity．2．Can I use common wire？If so，what size？
A．Use No． 10 iron wire．3．Can I make a ground wire A．Use No． 10 iron wire．3．Can I make aground wire
work by simply putting the ends of the wire in a well of water at each end，without having a piece of zinc at the bottom？A．Unless you put a considerahle length of
（17）J．K．－About 166 feet of gas can be made from a gallon of gasoline．Benzine will not a
（18）H．R．H．－The link motion is a very safe and sure arrangement for quickly reversing en gines，and is therefore used on locomotives，hoisting enyines，etc．It is not so economical as an adjustable
（19）F．W．I．－To deodorize petroleum， mix chloride of lime with petroleum in the proportio of three ounces for each gallon of the liquid to be puri－ fied．It is then introduced into a cask．Some muriatic bring the whole of the liquid in wo intimate contact with the chlorine gas．Finally the petroleum is passed into anather vessel containing slaked lime，which absorb the free chlorine and leaves the oil sufficiently deodor ized and purified．
（20）G．M．C．－Plumbago or powdered graphite mixed with some oily material is largely used for lubricating purposes．It is difficult to specify the
exact proportions of each，but we would suggest experi－ menting until a suitable mixture was obtained．See article on lubricants，Scientific American Supple ment，Januaiy 21 ，1882．For leather preservatives tha are waterproof i we add the followi
TIFIC AmERICAN for May 10,1883 ．

Beeswax．．． Spermaceti

Asphalt varnish．．
Vine twig，black
Prussian blue．
Nitro－benzol． of jelly f powered borax and stir till a kind add the asphalt varnish，previously mixed with oil of turpentine，stir well，and add to the wax．Lastly，add the color，previously rubbed smooth with a little of the mass．Perfume with nitro benzol and pour into boxes． Use only once a week．
Minerals，ett．－Specimens have been re－ ceived from the following correspondents，and examined，with the results stated
W．A．C．－From a superficial examination of the spe－ clay．An analysis would determine its value，if it has any．－A．B．C．－The sample is rock containing pyrite， iron sulphide，and is of no value．－R．B．I．－The min－ eral sent is a gold and silver ore；it contains pyrite car－ ry ing gold；galena carrying silver，with a slight coating of malachite（copper carbonate）．It is worth an assay， which would cost about $\$ 5.00$ ．－J．W．B．－The sample is kalenite，of value for porcelain manufactures．
［OFFICIAL．］

INDEX OF INVENTIONS

whice

Letters Patent of the United States were Granted in the Week Ending

April 3，1883，
AND EACH BEARING THATC DATE
［Those marked（r）are reissued patents．］
A printed copy of the specification and drawing of any patent in the annexed list．also of any patent issued
since 1866．will be furnished from this office for 2 cents In ordering please state the number and date of the In ordering please state the number and date of the patent desired and remit to Nunn ©o．，
way．corner of warren Street，New York city．We
also furnish copies of patents granted prior to 1866 ； also furnish copies of patents granted prior to 1866 ；
but at increased cost，as the specifications，not being but at increased cost，as the sp
printed，must be copied by hand．

[^0]Alphabet block and case，W．E．Crandall．．．．．．．．．．
J．Brönner．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Axes，machine for making，E．Rogers．
Axle，car，M．O．Baldwin．
Axle．car，G．W．Bedbury
Bag holder，c．T．Smith．．．
Baling press，E．J．Bennet
Baling press，E．J．B
Banjo，E．J．Cubley
Banc，E．J．Cubley．．．．．．．．．．．．．．．．．．．．．．．．．．．
Barnace grate bar．Glazing bar
Barrel making machine，J．S．O＇Sulivan

Backus．

Bed bottom，spring C．H．Fitch
Bedstead，G．Gentle

Beehive，A．F．Combs．
Block．See Toy block．
Board．See Vehicle dash board．
Boiler covering．H．C．Good
Boiler covering．H．C．Goodell．．．．．．．．
Bolt cutter，A．Blowers
Boot and shoe indicator，Woodlie
Boot and shoe nail，H．R．Adams．．
Boring，drilling，and facing machine，W．E．Wild． Bottle，feeding，J．Thomas
Bottle or jar．stopper or cover，A．V．Whiteman
Box．See Toilet set box．
Braiding machine，J．McCahey．．
Bronzing machine，J．Humphrey
Brush and blacking box holder，combined black
ing，E．L．Wood．
rushle R Hag，etc．，J．F．Sargent
Buck le．R．G．Hanford，Jr．
Burial case mould，C．E．Wi
Burial casket，W．Hamilton．
Burial casket，Powers \＆Walke
Burner．See Gas burner．
Burner．See Gas burner．
Button，C．H．Kapp．
Camera．See Photographic camera．
Can．See Glass lined metal can．Tilting can．
Candlestick，miner＇s，J．C．Martin． candlestick，miner＇s，J．C．Martin．
Cane and pipe case，combined，J．P．
Capsule machine，H．H．Tã̉lor．
Car brake shoe，H．A．Bañing
Car brake shoe，H．A．Bañning．
Car coupling，A．H．Armstrong
Car coupling，N．Campbell．．．
Car coupling，B．W．Cloak
Car coupling，D．W．Cobur
Car coupling，E．C．Eyl．
Car coupling，w．W．Newwom
Car，hand，G．s．Sheffield（r）．
Car starter，Hewett \＆
Car，stock，E．Koehler．
Car，stock，S．P．Tallman
ar window ventilator，railway，i．H．Reynolds．
more．．．
the same，C．F．Brush．．．．

Carrier．See Hay carrier．
Case．See Butter case．Show case．Watch case．
Caster，w．w．Box
Farrell．．．．
Caster，furniture．O．Pederson（r）．．．．．．．．a．10；304，
Castings，pattern for producing，J．．Donovan．．
Ceiling，freprooof，A．W．Cordes．．．．．．．．．．．．．．
Celluloid，etc，apparatus for moulding，I．．．．．．．．．．．．
Celluloid，etc．，manufacturing sheets of
Hyatt．．．
Matteson．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Chair．See Folding chair．School chair．
Chair，C．P．Nash．
W．M．Llewellin．．．．
Cigar cutter，P．Abbott
Clamp．See Floor clamp．Ironing board clamp．
Clevis，plow，F．Bastam
Cloth pressing machines，bed for．G．W．Miller． Clutch，friction，Gass \＆Galashan
Clutch hook，C．Green
king
Cock，gauge，D．F．．．．．．．．．．．．．．
collar，horse，J．W．Peas．．
ompound for lining and coating tubes，cylinders
etc．，also for joint packing．taking impressions，
making castings，etc．，indestructible，I．R．
Blumenberg．
Conveyer for mill products，R．C．Craik．
Cooking apparatus，steam，J．E．Well
cooler．See Milk cooler．
Coop，poultry，F．M．Woolard．
Corn sheller，G．H．Pattison
Cotton cleaner．C．W．Turne
Cotton gin feeder，M．L．Nix
Coupling．See Car coupling．Pump rod coup－

ling．

Crib．child＇s．G．S．Van Pelt．
Crib，trundle，C．T．Shepard
rucible furnace，gas．L．Sti
Crusher．See Ore crusher
Crusher．See Ore crush
cultivator，E．P．Davis．
Cultivator，S．\＆R．Day
Cultivator，J．H．Nutting．
Cultor．W．H．Pennock

Cupel furnace，J．Lynch．
Curtain cord tiphtener
Curtain cord tightener．F．J．Werneth
Curtain pin，J．Day
uspidor，sheet metal．G．T．Sutterley
Cut－off valve gear，J．M．Higbe．．．．．．．
Cut－off valve gear，J．M．Higbe．

ble cutter． Cylinders，mac

y ylinders，machine for
Datt，H．L．Marbach．．．．．
Dish，covered，T．Spence
Dish made from ceramic material or glass，oval \ldots
circular，O．A．Gager．．．．．．．．．．．
Door lock，sliding，W．T．Mingus．

041	$\begin{array}{l}\text { Dough cutting machine，L．J．Anger } \\ \text { Draught equalizer，W．}\end{array}$,

Drawer pull，E．J．Blackham
$\cdots 27,321$,
of of
Drill．See Twist drill

웅

274．925
275,187

$\begin{array}{ll}\text { 275，202 } & \text { Ele } \\ \text { 275，322 } \\ & \\ \text { Ele }\end{array}$

engine．Wind engine．
Engines，utilizing the exhaust of，D．Renshaw．
274,969 t
Fabric．See Flocked fabric．
Fan attachment，P．Hebner．
Fan exhaust，w．D．Smith．
Fastening for straps，etc．，R．G．Hanford，
Faucet，self－closing，T．H．Walker
Faucet，self－clolosing，R．R．．Walke
Feather crushing machine，w．Hammermiller．
Feed water heater and feeder，J．Park
Feed water heater and feeder，J．Park．．．．．．．．．
Felt upper for shoes or slippers，N．Moulton．． Felt uppers for shoes or slippers，making， Moulton
Fence，hedge
Fence，plashed，w．Bald wi
Fence post，F．Brown．．．
Fence post，G．Swingle．
Fence post，G．Swingle．4th．．．．．．．．．．．．．．．．．．．．．．．．．
Fence stay or brace，W．W．Worcester ．．．．．．
Fertiiizers，apparatus for desiccating animal ma
ter for，H．Breer．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Fertilizers，apparatus for treating animal matter

S．Richards．．．．．．．．．．．
Fire escape，D．F．，Black
Fire escape，D．F．，Black
Fire escape，W．W．Griffin
Fire escape，
Fire escape，H．J．H．Schuett
Fire escape ladder，W．C．Bush
Fire

Evans ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Floors．partitions．etc．，application of wire gauze
in the construction of，J．McCarroll．．．．．．．．．．．．．
Folding chair，H．J．Harwood．．．．．．．．．．．．．．．．．．
Food，process of and apparatus for curing articles
of，A．J．Chase．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．275．145
Form，ajjustable dress，S．M．Moschcowitz．．．．．．．．．2754，958
Frame．See Net frame．
Fruit，etc．，apparatus for bleaching，J．R．Hillman． Fruit jar cover，H．A．Hoppe．．．．．．．．．．．．．．．．．．．．． Furnace．See Crucible furnace．Cupel furnace．
Gas retort furnace．Puddling furnace．Roast－ ing and reducing furnace．
Furnaces，machine for pushing tubes into，E．W Wolfe．． 275,312
Galvanic battery pole，Blackall \＆Decker．．．．．．．． 274.899 Game，E．G．Williams．．．．
Gas burner，J．A．Wison．．．．．．
Gas machine，H．S．Maxim
Gas retort furnace R．Schlist
Gas retort furnace，R．Schliter．．．．．．．．．．．．．．．．．．．．．．．
Gas retorts，device for fastening for mout
piecesto，

pieces to，J．Delt Gate，W．C．Pettis

Gelatine coated sheets，apparatus for stretching，
o．Lelm．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Generator．See Hydrocarbon generator．Hydro－
carbon vapor generator
Glasssware，device for handling．D．A．Brown．．
Glassware，manufacture of，w．M．Wallace．
Glazing bar，C．H．Pennycook
Grain binder，J．F．Appleby
Grain binder，A．S．Clow．．．
rain cleaner，separato and grader，w．E．Wild
Guard．See Railway cattle guard．
Gun，magazine，Simmons \＆Adams．．
Gun rod．jointed，L．Keller．．．．．．．．．．．．．．．
Hame attachment，G．J．Letchworth．．
Hammer and box scraper．F．A．Cowles．
Harrow，sulky，J．Feess
Harvester，cotton，G．N．Tod．．．．．．．．．．
Harvester，grain binding．J．S．Davis
Harvester，grain binding．
Hay carrier．J．Nettleton．
Hay rope，machine for twisting，J．W．Purslow．．．． $275,2 \mathrm{l}$
Heater．See Feed water heater．
Hemp drawing and spinning machines，feed regu－

A．Whiting．．．．．．．．．．．．．．．．．．．．．
Holder．See Bag holder．Lead or crayon holder． Hook．See Clutch hook．Neck wear hook．Snap
hook．Whiffletree hook． Horsestioe，E．A．Carroll．．．．．．．．．
Horseshoe blank roll．J．N．Clark
Hose coupling，J．H．Luther．．
Hotel indicator
Hotel indicator，R．S．Hering．．．．．．．．．
Hydrocarbon generator，I．F．Hayden．
Hydrocarbon vapor generator and burner，Blum－ enberg \＆Whiting．．．．．．．．．．
Hygroscope，w．Klinkerfues
Ice cream freezer，D．S．Coskrey．．．．．．．．．．．．．．．．．．．．．．．．．．．．275．220 2752
Ice，process of and apparatus for blocking，G．W．
Goodell．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
dicator．See Boot and shoe indicator．Spee
indicator．Station indicator．
njector，D．Renshaw．．．．．．．．．．．．．．．
Injector．feed water，W．McFl．．．．．．
nlaid frames，making，Baughart \＆Treat．．．
Inlaying and embossing celluloid．W．F．We
Ironing board clamp，Ross \＆Bliss． Ironing machine，M．I．Remy ．．．
etty for connecting the channels of rivers．et
102 Joint．See Pipe join

	75,102	Joint．

${ }_{275}{ }^{2753} \begin{aligned} & \text { Key．See watch key．} \\ & \text { Key seat milling machine．A．H．Campbell．．．．．．} \\ & \text { Knitting machine，J．P．Kidder }\end{aligned}$
$\begin{array}{ll}275,1033 & \text { Knitting machine，J．P．Kidder ．．．．} \\ \text { 275．066 } & \text { Knitting machine burr，s．G．Hall．} \\ \text { 274．492 } & \text { Knob spinde }\end{array}$
$\ldots . .274 .892$
$, \ldots 21,275,322$
$\ldots . . .275,326$
275,078
nob spindele fastening, C. L. Taylor....

274,900 272007

Mould．W．Ce Bural case mould．

man．．274，9
Mowing machine．R．A．Leonard．．．．．．．．．．．．．．275，
Neck wear hook，W．W．Fichtenberg
Needle threading device，J．Darling．
Nest egg，，
Nest，hen＇，J．Q．Sook．．．．．．．．．．．．
Nef frame，horse fly，W．H．Osmer
Net frame，horse fiy
Nut lock，T．Weaver
Nuts，bleaching edible，F．M．Ironmonger．．．．．．
Oil cake former and spring mat，W．F．Shafter
Ore crusher and pulverizer，R．McCully ．．．
Packing，automatic metallic，H．P．Weale．
Packing for ice machines，W．A．Reid．．
Packing for ice machines，W．A．Reid．．．．．．．．．
Packing for valve stems，etc．，L．Grannan．．．
Pad．See Truss pad．
Paddle．feathering，G．A．Keene ．．．．．．．．．．．．．．．．． 274,945
Paddlewheel，C．P．Thresher．．．．．．．．．．．．．．．．．．． 275,291
Paper folding machine，L．C．Crowell（r）．．．．．．．．．．． 10,300
Paper，etc．，machinery for folding w C．Cross
Paper，etc．，machinery for folding，W．C．C．
Paper making machinery，G．E．Marshill．．
Paste，adhesive，Schanze \＆Weigman．．．．．．．．．．．．．．．
Photographic camera，folding，G．F．E．Pearsall．
Picture mounts and frames，manufacturing，C．A Pin．See Curtain pin．
Pin for neckwear shields，J．T．Lyrich．．．．．．．．．．．．．．．275，234
Pipe bending machine，J．M．Evarts．．．．．．．．．．．．．．275，029
Pipe joint，flexible，M．Walker．
Pipe wrench，H．B．William．
Planing machine，metal F．B．．．
Planter，corn，A．Fox
Planter，corn．J．Selby
Planter，corn．J．Selby．．
Plow，R．W．Whitehurst
Plow，sulky，w．Strait．
Post．See Fence post．
Post driver，R．M．St．John
Postal cabinet，L．C．Gray．
Pot．See Tea pot
Precious metals，apparatus for sizing and amalga－
mating．C．D．Bigelow．．．．．．．．．．．．．．．．．．．．．．．．．．．．325
Printing blocks，producing patterns upon，A
Printing blo
Jackson．
Printing mac
Projectile，E．Pallier Anthony
Puddling furnace，J
Pulverizing machine，H．B．Felsdmann
Pump．F．B．Hans
Pump rod coupling，o．R．Mehaffey Punch for nut machines，G．G．McMurtry．．．．．．．．．．．．．．274，9 Rack．See Hay rack．
Railway cat：le guard，Dillon \＆Gartner．．．．．．．．．．．． 275,333
Railway crossing．E．Evans
Railway crossing．E．Evans．．．．．．．．．．．．．．．．．．．．．．．．．． 22
Railway crossing and station signal，w．B．Wood． 2
Railway rails，bar for aligning，B．J．Noonan．．．．．． 275,256
Railway signal，automatic，J．S．McLeod ．．．．．．．．．： 275,064
Railway signal，electric，H．C．Nicholson．．
Railway signal，pneumatic，E．M．Chase
Railway switch，Gray \＆
Railway ties，wear plate for，D．Servis（r）．．．．．．．．．．．
Railway track circuits，electrical connector for
S．I．Field．．．．．．．．．．．．．．．．．．．．
Reaping machine，W．Gause．．．．．．．．．．．．．．．．．
Reflector for chandeliers，etc．，I．P．Frink．
Refrigerating structure，K．H．Waters．． Reservoir for waterworks，B．F．S．
Rivet，tubular，B．L．D＇Aubigné．． Roasting and reducing furnace for gold and silver ores，J．E．Rice．
Rod．See Gun rod．
Roller mill，Marmon \＆Warrington．
Roller mill sieve，H．J．\＆G．A．Gilbert．．．．．．．．．．．．．．．．275，0
Rolling metal bars，machine for，
Rolling mill，metal，J．Williams．
Routing machine，R．T．White
Sash fastener．R．Chandler．．．．
Sash．window，R．Langtry
Saw，circular，C．H．Douglas
Sawing machine，H．K．Olsen ．．．．．．．．
Sawing machine．band，W．w．Carey
School chair，O．C．Cpark．
Scraper，dirt．J．Porteous．．．．．．．
Screw cutting tool，J．G．Dalie
Screwdriver，M．B．Crawford．
Seal lock，A．O．Dayton．．．．

993
938

THE RIDER HOT AIR compression Pumping Engine,
 Sinplé, Economical, Effective.

Valuable Manufacturing Property at auction.

If not sold privately, the undersigned will, on
fith of June, 1883 , sell at auction, at Bagg's Hotel, Htica, N: $Y^{\text {.. at }} 2$ P.M., the property formerly be-
P.
Clayville. shops, one with steam, and each with good water Attached to the works are shops, offices, residence, and twenty-four acres of land.
They are on the line of the $\mathbf{D}_{\text {, }}$, L. \& W. R. R They are on the line of the D., L. \& W. R. R.,
ten miles from Utica. Were formerly used for the manufacture of hoes, forks, scythes, etc., but
can be readily adiapted to any purpose. Taxation
light. Coal and labor secured at lowest rates. light. Coal and labor sceured at lowest rates.
The owners will let the property go at a great The owners will let the property go at a gre
sacrifice, and to any one desirous of engaging
manufacturing no better location can be found If not sold as an entirety, the manufacturing establishments will be offered separately.
Terms, one-third cash; balance on bond and For particulars and description, address
H. C. SHOLES, Att'y at Law,

ORNAMENTAL METAL PATTERNS Moulds and Dies, Modeling, Designing, erc.

cUNS $\sqrt{2}$

WATCHMAKERS.

 ROOFIN.Suitinime
UITITERESAT
ENGONESLE AND STATIONARY BOILERS

KEMP'S MANURE SPREADER,

Lowest Price
PLANER
CHEAPEST
FOR THE MONFIY With Buzz Attach
ment or
manutactirers of the
\qquad WaterRRams C. Hodgkins \& Son, Marlhoro, N. H REA WESTCott's WARRANTED SUPETHE WORLD

In capacity, strength, durability, and convenience,
Onnidd Steam Engine and Foundry Companit,

TU1 8

Elements of Construction for ELECTRO-MAGNETS

 E. \& F. N. SPON, 44 MJRRAY ST, NEW York.

DPARENINE

-iFIRE-AND- VERMIN: PROOH
S Sample and Circular Free by mail.
U. S. MINERAL WOOL CO, 22 Courtandt St, N. Y.

FEED WATER HEATERS. THE BEST AND CHEAPEST IN THE MARKET. Warranted to heat water by exhav
2120 Fa hrenheit.
Her

THE NATIONAL PIDE BENDING COO,

Self-Oiling Loose Pulley. SATISFACTORY RESULTS guaranteed, if directions are followed. Orders filled fo
Pulleys from 6 in. to $\geqslant 0$ in. diameter.

LANE \& BODLEY CO.,

Shafting, Steam Engines, Boilers,
SAW MILLS. ANB GENERAL MACHINERY.
WHEABLED FINE GRAY IRON ALSO STEEL

PATENTS.

n with the pub
lication of the scientific Ambrican, continue to exor Inventors.
In this line of business they have had thirty-eight
years' experience, and now have nnequaled facilities for the preparation of Patent Drawings, Specifications, and the prosecution of Applications for Patents in the
United States, Canada, and Foreign Countries. Messrs. Munn \& Coo also attend to the preparation of Caveats, Munn \& Co. also attend to the preparation of Caveats, Copyrights for Books. Labels, Reissues, Assignment intrusted to them is done with special care and promptA pamphlet sent free of charge, on application, containing full information a bout Patents and how to pro
cure them; direcions concerning Labels, Copyrights, cure them; directions concerning Labels, Copyrights,
Designs, Patents, Appeals, Reissues, Infringements, As
signments, Rejected Cases, Hints on the Sale of Patents, etc.
also send. free of charge, a Synopsis of Foreig Patent Laws, showing the cost and method of securin MUNN \& CO., Solicitors of Patents,
BRANCH OFFICE ${ }^{261 \text { Broadway, New York. }}$ BRANCH OFFIC
Washingtnn. D. C.

UNITED STATES
 MUTIIAL ACCIDENT ASSOCIATION

WANTED Situation by Foreman Biacksmith, thop

$\$ 68$ Itreel

25 Importea design Chromit cards for 18s. name non WANTED tomantacture and sellon oroant, ome

 How, 82 INVESTED bring
830, oon. A tirtune win

$\$ 5$ to $\$ 20^{\text {p }}$

KEUFFEL \& ESSER, NEW YORK.
Pidjanad Blide Piocosss Papejs ur Paperswill keep for a long time. Always fre

Rioficinc
 For STEEP and FLAT ROOFS of all kinds; can be applied by ordinary workmen at ONE THIRD the costof TIN SNend for a sample and our circliarwhich ives unl directions how to apply your own roof; adio how to repair to apply your own roof; aligo how to repa teaky roofs of all kinds. Address,

MANHOOD

A Book for Every Man
Young, Middle-Aged, and old. Thho htotid wiseries that resilit from indideretion

CHASE'S IMPROVED

 TIQTIJ GTGTH,
 Ar Miscta HOLWAY, WRIGHT \& RICH, Sole Agents,

 ICE MAKING MACHINES,And Machines for Cooling Breweries, Pork Packing Establishments, Cold Storage Warehouses, Hospitals, etc.
 PICTET ARTIFICIAL ICE CO. (Limited)
P. O. Box $3083 . \quad 142$ Greenwich St., New Yorli City, N. Y.

ROOT'S NEW IRON BLOWER.

posirivye munst. IRON REVOLVERS, PERFECTLY BALANCED, Has Fewer Parts than any other Blower,
P. H. \& F. M. ROOTS, Manufacturers S. S. TOWNSEND, Gen. Agt., 6 Cortland St, 8 Dey St JAS. BEGGS \& CO., Selling Agts. 8 Dey Street, SEND FOR PRICED CATALOGUE NAVALA Aente wantod of BATTLES. THE BIGGEST THING OUT

OPIUM

I CURE FITS!

RUPTURE

ored without an operation or the injury trusses inflic
Dr. J.A.SHERMA NSS method.
office, 251 Broadway

MORPHINE

 ano WHISKEY CHLORIDE OF GOLD REMEDIES. 5,000 cures. Bonks FREE Surgẹn C.\&A. Railroad. Dwight. III.
CONSUMPTION.

 The " MONITOR." $\begin{gathered}\text { Best Roiler Feeder } \\ \text { int her }\end{gathered}$ A NEW LIFTINGAND NON-

 EJECTORS Water Elevators, For Coneving
Water and Silinuld
Patert silere, Lut
 PHOVIDENCE, A. HARIRIS. HARRRIN-CORLUNSS ENGUNE
 Diamonds carbon
 Mechanical Purposeses.
Carbon for Mining Drills

 NEW HAVENMANUFACTURINGCO.
 Lathes, Planers, Drills, Shapers, ete.
mLUSTRATED CATALOGE ON APPIIATION. PAYNE'S AUTOMATIC ENGINES.
 Bi W. PAME

 597 Washington St., Boston, Mass.

H.W.JOHIS assespos

 ASBESTOS ROPE PACKING ASBESTOS SHEATHINGA:ASBESTOSGASKEESS.
ASBESTOS BUIL.
H. W. ${ }^{\text {made o of strnctly pure e Asbestos. }} \mathrm{CO}$., 87 Maiden Lane, New York,
Sole Manufacturers of $\mathrm{H} . \mathrm{W}$. Johns' Genuine
 Descriptive price lists and samples fre

ROCK DRILIS \& AIR COMPRESSORS

 1 fark place rock drill co yow yPyrometers.

JFINKINS PATHINTVATVFSS

 Sou do not have to take them orf to repair them

Establ'd EACLE ANVILS: 1843 Solid CAST STEEL, Face and Ho
ranted. Retail Price, 10 cts. per 1 b .

CROWELL MANUFACTURINGCO. Greencastle, Penn.,
Manufacturers
of
En-

 Toorme remprew
Asbestos Lined Removable Covering

THE MEDART PATENT WROUGHT RIM PULLEY, McMURRAY \& STOUGHTON, HARTFORD, CONN

EJECTOR CONDENSER FOR STEAM ENGINES OR VACUUM PANS.
 B

(2)JACKET KATENT

Pen Holdars, Pencil Cases. Mackinnon Stylographican
Eliastic Fountain Pens.
over

The Mines of the carolinas Ise

EVAPORATING, FRUIT

NEW YORK BELTING AND PACKING COMP'Y.
 $\mathbf{E M E R Y} \mathbf{W} \mathbf{E} \mathbf{E L S}$

\qquad

ERICSSON'S New Caloric
 Pumping Engine,
Dwellings \& Country Seats simpiest! Cheapest! Eco
nomicall
Absonotely safe c. H D Delamater $\begin{aligned} & \text { Propriters, } \mathrm{Co} \text {., } \\ & \text {, }\end{aligned}$

SPEAKING TELEPHONES. THE ANIERICA)
W. H. Forbes

NUT TAPPINC DURRELL'SPATENT.
 cknowledged to be be an indispenss
able tool Manufactured by howard bloos.

WITHERBPY RUGGG \& RICHARDSON. Manufacturers

VOLNEY W. MASON \& CO.
FRICTION PULLEYSS, CLUTCHES, and ELEVATORS,

 ROCK BREAKERS AND ORE CRUSHERS

KORTING UNIVERSAL INJECTOR
 OR BOILER FEEDING.

POSITIVE ACTION GUARANTEED UNDER
NO ADJUSTMENT CONATIONS.
WILL OFFFICR 25 FEET. VARYING STEAM PRESSURE
 PHILADAN,",
BOSTOLIV
OLIVER ST.

HARTFORD
STEAM BOILER
Inspection \& Insurance COMPANY

IT. B. FRANKLIN.V. Pres't. J. M. ALLEN, Pres't.

WANTEED.
Correspondence with Engine Builders. Boiver Makers,
and Supply Dealer in
Steam Gools. We manufacture

$-$
FRICTION CLUTCH. Send for lllustrated Cata
logue and Discount sheet

Steel Castings

FOR 1883.
The Most Popular Scientific Paper in the World. Only $\$ 3.20$ a Year, including postage. Weekiy.
This widely circulated and splendidy illustrated
paper is published weekly. Every number contains sixpaper is published weekly. Every number contains six-
teen pages of useful information, and a large number of teen pages of useful informion, and and and iscoveries,
original engravings of new inventions and dis.
representing Engineering Works, Steam Machinery, representing Engineering Works, Steam Machinery,
New Inventions, Novelties in Mechanics, Manufactures, Chemistry, Electricity, Telegraphy, Photography, Archi-
tecture, Agriculture, Horticulture, Natural History, etc. tecture, Agriculture, Horticulture, Natural History, etc.
All Classes of Readers find in the ScIenvirio AMERICAN a popular resume of the best scientific in-
formation of the day; and it is the aim of the publishers to present it in an attractive form, avoiding as much as
possible abstruse terms. To every intelligent mind,
this journal affords a constant supply of instructive this journal affords a constant supply of instructive
reading. It is promotive of knowledge and progress in
every community reading. It is promotive of knowledge and progress in
every community where it circulates.
Terny of subscriprion.- One copy of the Scien-
TIFTC AM ERTCAN will be sent for one year- -52 numbersTIFTC A A ERELTAN will be sent for one year- 52 numbers-
postage prepaid, to any subscriber in the United States postage prepaid, to any subscriber in the United States
or Canada, on receipt of 1 li ree dollars and twenty cents by the publishers; six months, $\$ 1.60$; three
months, $\$ 1.00$. months,
One copy of the ScIENTIFII AMIRRICAN and one copy
of the SCIENTIFIC AMERICAN SUPPLEM of the SCIENTIFIC AMERICAN SUPPLEM HNT Wilibe sent
for one year, postage prepaid, to any subscriber in the
United States or Canada on receipt of seven dollars by the publishers.
The safest way to remit is by Postal Order, Draft, or
Express. Money carefully placed inside of enver Express. Money carefully placed inside of envelopes,
securely seealed, and correctly addressed, seldom goos astray, but is at the sender's risk. Address all letters
and make all orders, drafts, etc., payable to

MIURVMV \& Co
261 Broadway, New York.

PRINTING INKS.

[^0]: Acids and chemicals，apparatus for boiling，
 Hesch．．．．．．．．．．．．．．．．．．．．．． $\stackrel{\text { Hesch }}{\text { Aerated }}$

 Puffer

