a WEEKLY JOURNAL 0F PRACTICAL INFORMATION. ART. SCIENCE, MECHANICS. CHEMISTRY AND MANUFACTURES.

Vol. XLVIII.-No. 8 .

NEW YORK, FEBRUARY 24, 1883.

APPARATUS FOR COALING SHIPS

In the ports of England the loading of ships with coal is generally effected in the following manner: The car coming from the mines is hauled to the upper part of a trestle-work, the bottom of the car is opened, the coal falls into a hopper, follows an inclined chute as far as the hatchway, and from there is thrown into the bold. This mode of loading is very rapid and very economical, the only disadvantage that it presents being that large coal, on falling into the hold from the end of the chute, breaks into small fragments. To obviate such a disadvantage, Mr. James Rigg has invented and constructed, in his works at Chester, an apparatus which is shown in three annexed figures, and which constitutes a system that can be employed not only for the loading of coal, but also for letting down to the bottom of the hold bricks, stones, salt, etc.
One of the figures gives a general view of the apparatus arranged in the interior of a ship's hull; and from the other

MACHINE FOR EXCAVATING THE CHANNEL TUNNEL.
An interesting lecture was lately delivered at the conversazione held at Leeds during the meeting of the Institution of Mechanical Engineers, by Mr. Crampton, in which he described his proposed method of executing the work of boring the Channel tunnel. We condense the following from the lecture:
The tunnel is assumed to be twenty miles long, independent of approaches on either side, to be excavated 36 feet in diameter in one operation, which, with an internal lining of 3 feet all round, will leave a clear tunnel 30 feet in diameter; and that the work will be commenced simultaneously at both ends. It follows, therefore, since tlee approaches may be made at the same time as the main tunnel, that we need only consider here a length of ten milesof excavation worked from one face.
Practical trials in chalk made with machines many years since, established the fact that a rate of advance may be easily

IMPROVED ELEVATORS FOR LOADING SHIPS WITH COAL BALLAST, ETC.

Abstract

two figures may be seen how it operates when the loading|nearly to the base of the bucket frame, is provided with a maintained of one yard per hour, or twenty-four yards per begins and the hull is still empty, and when, the hull being \quad groove throughout its entire length, in order that the action day, at which rate the work of excavating ten miles of tunnearly filled, the operation is aboutended. Asmay be easily of the brake may occur, whatever be the position of the nel would take two and a half years to accomplish, taking seen from these cuts, the apparatus is exceedingly simple, con- bucket frame. Mr. Rigg's apparatus is constructed almost the year at 300 working days. With the simple apparatus sisting of an endless chain provided with buckets, and run- wholly of steel, thus causing it to be very light, while having on the table, as much as five yards forward per hour has been ning around a vertical bucket frame. At the upper part there is a wooden frame to which is fixed the head of the bucket frame and which is laid across the hatchway. The weioht is very portable, and, in the different applications that alone of the materals is utilized to cause the working of the $\begin{aligned} & \text { desired. }\end{aligned}$ endless chain, without the necessity of having recourse to a motor. The bucket frame is raised or lowered according to needs, either by the aid of a pulley installed in the masting or by means of a small windlas fired upon the frame. The buckets, in. their descent, pass in front of an open hopper, where they become filled, and empty themselves only at the moment at which they are revolving over the lower drum at the extremity of the bucket frame.

In order to regulate the descent and prevent its taking place too rapidly, a brake is fixed on the upper frame, and serves to actuate a vertical shaft that acts upon the axle of the upper drum by means of a cone wheel. The vertical shaft, which descends

ADTOMATIC MACHINE FOR TRE SUBMARINE TUNNEL BETWEEN FRANCE AND ENGLAND cut 12 inches in diameter. The advance of one yard forward per hour in a 36 foot tunnel will necessitate the removal of 113 cubic yards of chalk per hour. In order to insure the due performance of the necessary work, I will add fifty per cent to the figures here given, and shall benceforth deal vith other items in the same proportion. We have to pro vide. then, for the removal of 170 cubic yards of débris per hour, equal in weight to 250 tons, a greater quantity than is lifted in two of our greatest collieries together in the same time. Near the mouth of the up right shaft powerful machinery will be erected to pump water from the sea, to press it up, and hold it under com pression by means of force pumps and accumulators. The water will be compressed on the top to 512 pounds per square inch, the fall through 400 feet from the sea will add another 188 pounds per square inch, producing thus at the bottom of the shaft 700 (C'ntinued on page 116.)

srientific gmoxicam.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors.

published weekly at

No. 261 BROADWAY, NEW YORK.

O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

 One copy, one year postage included...One copy, six months postage included
Clubs.-One extra copy of The Scientific American will be supplied gratis for every club of five subscribers at $\$ 3.20$ each : additional copies at same proportionate rate. Postage prepaid.
Remit by postal order. Address

Remit by postal order. Address

The Scientific American Supplement

is a distinct paper from the Scientific american. THE SUPPLEMEN'T is issued weekly. Every number contains 16 octavo pages, uniform in size with Scientific american. Terms of subseription for Supplement, \$5.00 a year, postage paid, to subscribers. Single copies, 10 cents. Sold by Combined Rates. - The Scientific
will be sent for one year postage free. on american and Suppilimin.int papers to one address or different addresses as desired. The satest way to remit is by draft, postal order. or registered letter.

Seientific American Export Edition.

The Sciuntific ambrican Export Edition is a large and splendid periodical, issued once a month. Each number cantains about one hundred
large quarto pages, profusely illustrated, embracing: (1.) Most of the large quarto pages, profusely illustrated, embracing: (1.) Most of the
plates and pages of the four preceding weekly issues of the Scu cNTIFIC plates and pages of the tour preceding weekly issues of the SCI ©NTIFIC
AmuRICAN, with its splendid engravings and valuable information : (2.) Commercial, trade, and manufacturing announcements of leading houses. Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the
world. Single copies 50 cents. Manuacturers and others who desire world. Single copies 50 cents. Manufacturers and others who desire
to secure foreign trade may have large. and handsomely displayed announcements published in this edition at a very moderate cost. The SCI ENTIFIC AMEMICAN Export Edition has a large guaranteed circulation in all commercial places throughout the world. Address M UNN co., 261 Broadway, corner of Warren street, New York.

NEW YORK, SATURDAY, FEBRUARY 24, 1883.

onten	
(Ilustrated articles are marked with an	

TABLE OF CONTENTS OF
the scientific american supplement No. 373,
For the week ending February 24, 1883.
Price 10 cents. For sale by all newsdealers

III.

 ATrial of Tomatoesis
Effect of Air on Seeds.

VII ARCHITEUTURE, ART, ETC.-The WOodlands, Gillersome,
Leeds. -1 illustration.
projects for increasing the water supply of NEW YORK CITY.
A committee has been holding daily sessions to consider projects and receive suggestions relating to an increase in the water supply of this city. It is admitted that the need of such an increase is urgent. The largest capacity of the present Croton aqueduct is $100,000,000$ gallons a day, and this at a pressure that seriously imperils the integrity of the structure. The engineers in charge agree that the aqueduct ought not to be made to carry more than $72,000,000$ gallons a day. The present storage capacity is about $9,000,000,000$ gallons. The Bronx River aqueduct, to be completed next year, will increase the supply about $20,000,000$ gallons a day. A large proportion of the present supply is wasted. Mr. John C. Campbell, formerly chief engineer of the Cro ton aqueduct, estimates the waste at "about 50 per cent of the entire amount of the water furnished by the aqueduct" this partly through the carelessness of consumers, but largely through leakage from the water-mains.
Could all the waste be prevented, the supply already provided might answer for the present, but it would soon become inadequate through the natural growth of the city If the city increases during the next quarter century as it has during the past twenty-five years, there will be needed from $250,000,000$ to $300,000,000$ gallons of water a day. The question is, how can the requisite provision be made, not merely for the immediate future, but, if possible for centuries to come?
The Department of Public Works is in favor of building The Department of Public Works is in favor of building
dam at Quaker Bridge, six miles below the Croton dam, to retain the water which now flows over the latter in sea sons of abundance, with a new aqueduct to deliver the water thus saved. The supply of the Croton watershed, it is claimed, is sufficient for a population of $5,000,000$.
To this plan it is objected that the proposed dam would have to be larger and higher than anything of the kind before attempted, and possibly hazardous, and that the Croton region is becoming so populous that the sources of contamination must soon become so numerous as to seriously injure the quality of the water supply from that valley.
Other plans for the better husbanding of the waters of the Croton region contemplate the damming of the east branch of the Croton, by which means, it is claimed, additional storage can be provided for $4,000,000,000$ gallons. The amount of water flowing from the Croton watershed varie from $250,000,000$ to 600,000 gallons a day.
To lessen the demand for Croton water, it is proposed to supplement the fresh water supply wilh salt water drawn from the adjacent rivers, for the use of the fire department, for flushing the streets and water-closets, for water power, and so on. This to be done either by direct pumping under the Holly system, or by a reservoir system. One engineer proposes a huge water tower in the middle part of the city helow Central Park, the tower to be 100 feet in diameter and 350 feer high above tide water. On the top of this tower he would place a reservoir holding $2,000,000$ gallons, to be pumped up from the river.
These methods would involve a new set of water mains and pipes, to cost, according to the estimates of Mr. Isaac Newton, chief engineer of the Croton aqueduct, more than would be required to furnish the city with the requisite dditional supply of fresh water.
Another plan of drawing upon the Hudson River contem. plates a pumping station above Poughkeepsie, the water to be brought in an open canal, or through pipes, to this city. This plan would necessiate the lifting of the water at both ends of the aqueduct, which would be expensive, and the propriety of drawing water from a river which has received the sewage of large cities like Troy, Albany, Hudson, and the rest, would be extremely questionable.
Other schemers propose to go still farther up the Hudson, to its upper reaches in the Adirondack region, or to Lake George, a distance of nearly two hundred miles, the water to be conveyed part of the way in an open channel, the rest purity, and all the cities along the Hudson River could be provided for in one scheme. The project is a gigantic one, 598 and not likely to be seriously undertaken for many years if ever
Two other general sources of fresh water are under consideration. The Housatonic River might be dammed near Falls Village, Connecticut, and the water brought by open canal and tunnel into the Croton valley, a distance of forty miles. This is a project of Mr. Allen Campbell, formerly Commissioner of Public Works. The estimated cost of supplementing the Croton valley supply, in this way, is about $\$ 2,000,000$. To this would have to be added the cost of a
new aqueduct from Croton to the city, which might better be used in bringing to us the Croton water now allowed to run to waste.
The proposed sources west of the Hudson are the Hackensack, Ramapo, and Passaic rivers of New Jersey, and the lakes of Orange and Rockland counties, New York.
To draw from either of the New Jersey rivers would in_ volve the passage of the Hudson, and either tunnels through the Palisades or costly pumping works to carry the water over them. These sources are open to the further objection that all the available water on that side of the Hudson will be needed, sooner or later, for the numerous populous cities growing there.

The lake region of Orange and Rockland counties is
that territory are ten lakes, with a storage capacity of $8,500,000,000$ gallons, available sites for ten artificial reservoirs, and adjacent lakes and watersheds capable of yielding $100,000,000$ gallons a day, 300 feet above the tide level. But they are on the wrong side of the Hudson River.

torsion testso of cast steel.

Some very careful tests have been recently made, to ascertain the relative resistance to torsion of tool cast steel in its unannealed form, as it comes from the manufacturer and is cut off the bar; in its annealed condition; and as hardened for tool purposes to be used on iron, as taps, reamers, drills, and similar tools that are worked by torsion.
It is not generally supposed that hardening and tempering cast steel increases its torsional resistance: on the conrary it is usually accepted that resistance to torsion depends mainly on toughness-the coherence of fibers when twisted -and that this toughness is much diminished by the process of hardening. But in the tests to which reference ha been made, from a number of different manufacturers, the specimens that showed the least torsional strength, when bardened, were yet one and a balf times stronger, or resistant to twisting, than unannealed specimens from the same brand. To be more exact, the figures for the unannealed were 5,114 , the annealed 5,166 , and the hardened 7,596 , being an increase in torsional strength of the hardened and tempered specimens over the annealed and the unannealed of more than 33 per cent. Other specimens-those of different brands-showed a still wider difference between unánnealed and hardened conditions: as of 5,010 unannealed, and 8,418 bardened; 5,346 against 8,814; 5,124 against 7,920; and of 5,100 against 8,232 . These figures may represent pounds, as they actually did in the tests, the pieces tested being of round steel minus five-eighths of an inch diameter, with a distance between shoulders of two and three eighths inches. The hardened specimens had been hardened and then drawn to a straw color, leaving them as hard as any tempered tool used for working metals, and inferior only to the file, which is not tempered, or drawn, at all.
One of the peculiarities of the tests was that so slight a difference existed between the torsional strength of unanealed steel and that which had been carefully annealed wenty-four hours, the results showing slightly in favor of the specimens tested as cut directly from the bar. The folowing shows the comparison:

$\begin{array}{llllll}\text { Unannealed.. } \ldots . & 5,514 & 5,010 & 5,346 & 5,124 & 5,100\end{array}$
 Annealed........5,166 $4,572 \quad 4,864 \quad 4,128 \quad 4,552$

From this it appears that no increase of toughness, or of resistance to torsion, comes from annealing cast steel. But annealing is valuable in rendering the steel more amenable to the action of the cutting tool.

PROGRESS OF MUSIC IN JAPAN.

An interesting reception was given at the New England Conservatory of Music, Boston, Feb. 6, to Prof. Luther Whit ing Mason, on his return from a three years' absence in charge of the music in the public schools of the Japanese Empire At the time of our Centennial Exhibition in 1876, the com missioner from Japan was impressed by the manner in which music was taught in the Boston public schools, and his recommendations led to the calling of Prof. Mason to take charge of the musical instruction given in the schools of the Empire. Prof. Mason had not only to introduce new methods of teachng, but a new order of music, and his success speaks well not only for his methods but for the tolerance and teachableness of the Japanese people, to whom he is about to return. At the reception he explained the development of his method of teaching Japanese children, and exhibited a number of beautiful gifts he had received from the Empress and other people of distinction in Japan. Professor Mason carries back with him as a personal gift to the Empress a handsome crystal vase on which is engraved her portrait. The engraving was done in Munich, and is a fine example of the highest style of the art.

SHALL FAILURE TO DEVELOP FORFEIT PATENT RIGHTS ?

 It is not an unfrequent occurrence for individuals and corporations having large sums invested in patented ma chines and processes to take out or purchase rival inventions for the purpose of preventing their development. Where a change of plant would entail a heavy loss, the manufactu rer naturally prefers to go on in the old way. He does not want to risk making a bankrupt of himself to introduce improvements for the benefit of others. Accordingly, if he sees where a radical improvement can be made in his work he obtains a patent for it, if be can, and thus forestalls a possible rival. Or, if another man makes an invention which, if put into use, would compel the established manufacturer to adopt it to his temporary or permanent loss, or else retire from the competition, the manufacturer is bound o suppress the rising tyrant if he can. Probably three manufacturers out of every five are owners of patents which they have thus taken out or purchased for their own financial protection.Occasionally the suppressed inventions are big with promise of benefit to the world, and it is something of a hardship to the public to see the dog-in the-manger policy pursued with regard to them. Of this nature are some of the undeveloped patents for improvements in steel making controlled by the Bessemer Steel Organization.
To prevent such practices a bill hàs been prepared to be submitted to Congress, with a view to legislative action to
break down (in specified cases) the exclusive monopoly enjoyed by patentees. The proposed law provides :
"1. That all associations or combinations, either of natural persons or incorporated companies, formed for the purpose of purchasing a patent or patents for any process of reducing iron ore to steel or iron, with the intention of withholding the use thereof from the public or from individuals or associations desiring to use the same, are hereby declared to be unlawful, and any purchase or attempted purchase of any such patented process by any such association or combination for the purpose or with the intention of preventing the use of the same, shall be construed to be an abandonment to the public at large of all exclusive rights under any such patent.
2. That where any person, association, or incorporated company shall own, or claim to own, any patented process for reducing iron ore to stecl or iron, such owner or claimant is hereby required to issue license to use such patent process to any person, association, or corporation who may desire to use the same in the manufacture of iron or steel. Said license shall be granted upon such terms as may be-just and reasonable, to be agreed upon, if practicable, with the owners thereof. If a satisfactory agreement cannot be made, the person or association desiring to use said patented pro cess as above set forth, is thereby authorized to apply to any Circuit Court or District Court of the United States where the owner of said patent or any of them resides, or may be served with process, to have the value of such license ascertained by commissioners to be appointed by said court or by empaneling a jury, as either party may elect, to ascertain the value thereof. Such proceedings shall, as near as practicable, conform to the proceedings for the appropriation of private property for public use as are prescribed by the laws of the State wherein the proceedings hereby authorized shall take place.
" When the value of such license thus applied for shall have been ascertained, as herein provided, the court in which
such proceedings are conducted shall enter a decree or judgment setting forth the conducted shall enter a dire manner in which payment for said license shall be made, and shall make such further order in the proceedings as shall duly protect the rights of all the parties thereto. As soon as the party applying for said license shall comply with the orders of the court, he shall be entitled to use said patent process in accordance with said judgment or decree.
' 3. Jurisdiction to conduct the foregoing proceedings is hereby conferred upon all circuit and district courts of the United States."
This is a new phase of an old scheme, and, as usual, one palpable, though comparatively small, wrong is made a pretext for legislative action calculated to introduce or open the door for vastly greater wrongs.
Grant that it is an injury to the community to delay or willfully prevent the development of a new and useful invention. Grant that the proposed law would tend to prevent such delays. Has Congress the right to prevent such wrong in the manner prescribed? Would it be good p
remedy the evil in that way, the right being clear
While Congress is constitutionally authorized to shorten or lengthen the lifetime of patents for invention, or to abolish the patent system entirely, the Constitution gives it no authority to provide for the issuing of letters patent for other than the exclusive right to make, vend, and use the thing or process patented. If Congress can make void one class of patents that may be withbeld from use ? If Congress can compel one class of patentees to issue licenses, why not all patentees? By what authority is Congress to enact a special law, a law applicable only to makers of iron and steel ?
The trouble with those who desire legislation of this sort arises from the narrowness of their view. Their selfishness is too short-sighted to be wise.
It is obviously a misfortune to have a useful invention withheld for seventeen years; but the misfortune would be vastly greater if the invention were to be absolutely suppressed, kept secret by the inventor to die with him; and greater still if inventors were debarred or discouraged, as they would be under such a law, from trying to make " new and useful inventions.'
Seventeen years is but a little time compared with the life of the nation. It is unquestionably desirable that all novel ideas shall be immediately worked out as factors of industrial progress; but the country can better afford to wait a few years for their development than to burry them by means calculated to hazard their very existence.
The patent system is designed not for the rewarding of inventors, but for the advancement of the useful arts and sciences. That advancement is to be secured primarily by the immediate registration and publication of novel ideas to serve immediately or remotely for the instruction and guidance of all workers in arts to which the new ideas are helpful; secondarily, by giving the patentee a temporary control of his invention, to incite him to make greater efforts and to justify larger expenditures to hasten the practical development of his invention. If the latter incentive fails, and the invention remains unimproved for the full term of
the patent, the public is still the gainer. The disadvantages attending the occasional willful holding of a patented invention in abeyance are vastly more than overbalanced by the advantages which flow from the prompt admission of new ideas into the world of creative thought; and ultimately the public enjoys the full and free use of the invention specified.
Further, the disadvantages chargeable to patents temporarily
withheld from use are out of comparison with those which would certainly result from an invasion of the patentee's exclusive control of his invention during the lifetime of his patent. The proposed law would at once destroy a large part of the incentive to invention which the patent laws now hold out, and at the same time a large part of the patentee's inducement to spend the money necessary to develop and perfect his invention. Under a license system the inventor's rivals would share all the advantages of his success without having shared any of the preliminary risks and expenditures.

THE ZEBRA WOLF.

Of all the mammalia, none possess so much that is interesting and peculiar as the so-called marsupials or pouched animals; and excepting the opossums, strange to say, this class is confined exclusively to Australia, Tasmania, and the isles of the Papuan group. With kangaroos, petauristes, wombats, and " ursine devils," we are more or less familiar, through the mediumslip of zoological gardens, traveling menageries, and the writings of accredited travelers; but the Tasmanian or zebra wolf is almost unknown, and so far as the writer has been able to discover bas been exhibited in captivity only in a single instance. Two specimens were obtained by the Royal Zoological Gardens of London, England, but quickly died, pining away through confinement, and, perhaps, disease brought on by a two months' sea voyage and change in climate.
The peculiar modification of the nutrient organs that has
ven rise to the title marsupial (from marsupium, a pouch), is the peculiar sac provided the females for the protection of their immature young. This is developed in a greater or less degree in each species, but may easily be studied in our common or Virginian opossum, whose chief place in the world seems to be to provide Sambo or Cuffy the material for a Christmas dinner, peculiarly his own. Mind you, I do not decry its edible qualities, but would merely suggest its being far more interesting under the dissecting knife than at the festal board. Examination reveals the pouch to be supported by two elongated bones that project, or are rather prolonged, from the crest of the hip, and which lie just beneath the skin and in the same general plane with the back; and within this pouch are concealed the breasts or mammæ.
When the young marsupial is first ushered into the world it is a tiny and helpless being, of such minute size as to be out of all proportion to its parent; even the young of the bush kangaroo, an animal nearly or quite as large as our common deer, being scarcely larger than newly born rats; and they are blind, naked, and even incapable of voluntary movement. As quickly as born the youngling is seized by the
lips of the mother and at once conveyed to the interior of her pouch, meantime held open for its reception by her forepaws, and placed upon the breast, to which it at once clings instinctively, not again releasing its hold until of considerable size and capable of voluntary exertion-a matter of weeks, sometimes months. Once so placed, the little one demands little attention, and to all intents and purposes is as much a part of its parent as during the period of gestation. It would seem to be incapable of again letting go its hold, as the muscles of the mouth at once contract so strongly about the bulbous portion of the vipple that even in death separation is effected only with some difficulty.
I have said that the wee marsupial is incapable of voluntary movement. This is so much the case that it has not the power to draw the nourishment from the maternal fount, or even swallow when once its mouth is filled; consequently, the mother is provided with a supernumerary musclethat, passing over the glands, compresses them at her will, forcing the
milk directly into the little one's stomach, and at this time, too, Nature has wisely provided to prevent strangulation by elongating the larynx or windpipe to the nasal cavity, so that it is joined to and forms at once a part of the nostrils themselves, thus allowing breathing and feeding to go on simultaneously. When able to feed itself, this prolongation is gradually absorbed. As the youngster now approaches his more perfect form, his eyes are loosened from their bands and the tender skin is covered with a coat of hair, and he begins to act more like the offspring of other animals. Now his mouth is under control, and he can release himself and feed at will; and in the spirit of curiosity frequently puts bis head out from the sheltering pannier to survey the surrounding world; and finally ventures therefrom in search of more solid food than that to which he has been accustomed, though still retaining the pouch as refuge when fatigued or shelter when threatened with danger. With some animals it is no uncommon affair to find young of different ages occupying the pouch at the same time-some almost ready to be emancipated, the others weak and imperfect creatures of recent birth.
It is strange that all the mammals of Australasia are marsu pials, from the pygmy pitaroo and the haunting phalangers up to the giant kangaroo. To the same class belongs the zebra or Tasmanian wolf, an animal far the most formidable, as it certainly is the most savage of indigenous quadrupeds. Too feeble and cowardly to successfully attack man, it is, nevertheless a terrible pest, committing serious ravages among all other creatures, irrespective of form or habits of life, the wombat alone excepted. No matter how hungry he may be, he will not touch this fat and sluggish marsupial, though, as it subsists on fruit alone, it would seem to
and crawling in habits, the zebra wolf nevertheless manages to kill the kangaroo in defiance of its boasted leaping powers and powerful claws of its hind feet, and to secure the ornithorynchus, or common duck bill, in spite of its subterranean burrows and natatory habits. It does not even hesitate to seize upon and devour the prickly echidna, a much more formidable mouthful than any porcupine; and even prowls the sea shore searching for food among the heterogeneous masses flung up by the waves, renewed or added to. by each succeeding tide. Shore crabs, which dot the beach in numbers after every flood, are caught with no little dexterity, and mussels and limpets are readily detached from the rocks, while the carcass of a seal or fish, or the body of a wild fowl, no matter how oily or fishy, serves as a tidbit. As quickly, however, had civilized man taken uphis abode in Tasmania, the wolf became an object of dread, as poultry and domestic animals were never safe from its attacks. The sheep especially became the objects of the settler's anxious care, for no sooner were they introduced than a most unmistakable appetite was developed for mutton, seemingly preferring the flesh of that useful and easily mastered animal to that of any kangaroo, however venison-like, or bandicoot, howsoever savory.
In size this wolf approaches a large setter or Newfoundland dog, averaging perhaps a little more than five feet in length from snout to tip of tail, the latter appendage claiming a little more than one-third of the measurement; but specimens are sometimes killed that exceed this by half a yard; at the shoulders it is some twenty or twenty-two inches in height. The feet are protected on their bottoms by rough pads, and the toes, of which there are five on the fore feet and but four on the hinder ones, are all armed with short, straight, powerful claws. The head is very like that of a dog, the muzzle being long, narrow, and pointed, with a white, grizzled upper lip, sparsely sprinkled with a few black hairs, a few of which also ornament the cheeks and ridges above the eyes. The ears are sharp, pointed, erect, very broad at their base, and covered with hair both without and within; while the eyes are sharp, full, and black, and protected with a false or nictitating membrane like the owl, to shut out the unwelcome light of the sun, for it is nocturnal in habits, rarely venturing out during the day, but hiding in the recesses of the rocks among which it chiefly dwells. Of a general grayish-brown hue, mixed with yellow, banded above with a series of black stripes, which beginning at the shoulder diversifies the whole back to the tail, gradually increasing in length on the haunches and prolonged on to the thighs, it is this marking which gives rise to its many names of zebra, hyena, and tiger wolf.
There are several reasons why the animal is seldom exhibited in captivity. First, they are exceedingly sly and wary, and are hidden in dens most difficult of access, where daylight seldom penetrates, and where the female brings forth her young, four at a litter, remaining with them and supplied with food by her spouse until they are able to care for themselves. Second, when brought to bay by dogs, they fight with incredible fury, and yield only when torn in pieces. Again, the hatred of the settlers is so intense, that scarce any rew
Fored animal.
Formerly they were quite prevalent in Tasmania; they would seem never to have been known on the continent of Australia, but by degrees the guns, traps, and poisoned baits of the settlers bave prevailed, stimulated perhaps by the bounties offered; and the war of extermination has waged so fiercely, that the wolves have been driven from the haunts that once knew them, the few survivors being confined to the wildest and most inaccessible regions of the Humboldt Mountains and Hampshire Hills.

Preservation of Butter.

Dr. W. Hagemann has observed that cow butter contains 0.5 to 0.6 per cent of milk sugar, which under the influence of bacteria is transformed into lactic acid, and this liberates from the glycerides the acid, containing less carbon. It is obvious from this that summer butter becomes rancid more rapidly and strongly than winter butter, and that for the preservation of butter two methods may be adopted, viz., either the lower fat acids are removed by soda solution, as proposed by Adolf Mayer and Dr. Clausṇitzer, or else the milk-sugar must be removed, or its decomposition prevented by sup. pressing the vegetation of the bacteria.-Chem. Ztg.

Treatment of Bulbs.

An ounce of nitrate of soda dissolved in four gallons of water is said to be a quick and good stimulant for bulbs to be applied wice a week after the pots are filled with roots and the flower spikes are fairly visible. A large handful of soot, or about a pint, tied up in a piece of old canvas and immersed in the same quantity of water for a day or two, will give you a safe and excellent stimulant; also good and safe is a quarter of a pound of fresh cow-dung mixed in a large garden pot of water and used as required. Any of these stimulants will do good, as the whole of them applied alternately will benefit bulbs that need more sustenance than the soil affords.

Photograph of Comet's Tail and Stars.

Dr. Gill, at the Cape of Good Hope, succeeded in photographing the comet's tail and with it fifty stars that were seen through the tail. The plate was exposed 140 minutes,
and was kept up to the motion of the earth by clockwork.

new key fastener.

The engraving shows a novel lock escutcheon, by which the key may be held and securely fastened in the lock, and by which the keyhole may be closed when the key is not in the lock. A device is provided for preventing the escutcheon from being operated from the opposite or under side by a knife or sharp pointed instrument.
The escutcheon consists of two plates of circular form, one plate being fastened by screws to the door, and having in it a keyhole and a curved slot, shown by the broken lines. The second or outer plate is pivoted to the inner plate, and has a keyhole with a straight slot opening out of it. A stud passes through a slot in the inner plate and limits the motion of the outer plate, and a knob is provided by which the plate may be moved, so that the keyholes in the two plates will correspond. The key is inserted and turned, throwing the bolt until the flat part of the handle of the key stands in the proper position to be received by the slot in the outer plate, when this plate is moved back to correspond with the under plate, with the key inclosed in and held from turning by the slot.
When the two plates coincide, holding the key in the slot, it would be possible to enter a knife or pointed instrument through the opposite keyhole, and by pressing the point into the under surface of the movable plate to move it back, causing the keyholes to correspond, when the key may be turned or pushed out. In order to prevent this, notches are formed at the inner end and on the sides of the curved slot in the fixed plate, and two wings are formed on the opposite sides of the stud or pin projecting from the movable plate, so they coincide with notches in the fixed plate when the key is locked in; and any pressure against the under side of the plate will push the plate so that the wing on the end of the stud will enter the notches, effectually preventing the plate from being moved in the manner described. This device ... answers the purpose of an extra lock or bolt, and is very easily applied to a door, and cannot get out of order It effectually prevents the key from being turned with for ceps or pushed out from the opposite side. It makes the cheapest lock perfectly safe, and it presents a neat appear ance on the door. It can be used with either flat or round keys.
This invention has been patented by Mr. Edward K Tolman, of 59 Pleasant Street, Worcester, Mass., who may be addressed for further information.

Vegetable Substitute for Renmet

 BY Substitute for

 BY Substitute for}Mr. Stormont, Superintendent of the Government Farm Khandesh, reported May 10, 1880: "Cheese making is branch of agricultural industry altogether unknown in this district, and but imperfectly understood in any part of India; yet there seems no reason why it should not be successtully practiced."
Commissioner E. P. Robertson minuted upon this, June 10, "Cheese to be salable among the natives of this country should be made with some vegetable rennet. Natives would not touch cheese made with ordinary rennet, and I am convinced that good cheese cannot be without the use of some rennet. If a good vegetable rennet could be procured, he curd cheeses could be made; they would be cheap, and yots would soou find a ready sale for them.'
These facts having attracted my attention, I consulted Mr A. H. Church, formerly Professor of Chemistry in the Royal Agricultural College, Cirencester, but who has taken up his residence at Kew, and is now Professor of Chemistry to the Royal Academy. This gentleman very kindly made some experiments on curdling milk, with calcium chloride and with vegetable acids. He arrived at the conclusion however, that though in the laboratory good results could be obtained, they depended too closely on careful attention to the conditions of the process to afford a workable method for everyday use in India. Meanwhile, I had turned my attention to some suitable vegetable "rennet." Surgeon Major Aitchison, while engaged at Kew, in working up bis Afgban collections, under instructions from the Government of India, suggested a well known northwest Indian plant Puneeria coagulans) as possessing the desired qualities.
The plant in question is one of the best known plants in Scinde, Beloochistan, and Afghanistan. - "It bears the name of Puneer bund (cheese maker), from its being used by the Beloochees and Afghans in making cheese (puneer), as a substitute for rennet.'
I communicated this information to the India Office. As will be seen from the following extract from Mr. Stormont's report for 1881, the suggestion was immediately acted upon with very gratif ying success:
" During the year a good deal of attention has been devoted to dairy experiments, especially the making of cheese after the practice of Italy and Switzerland. The Commis sioner, C. D., pointed out that, before cheese making can ever become an industry of the ryots, some vegetable substance must necessarily be found to take the place of the animal rennet used in European countries.
"In connection with this difficulty, Surgeon-Major Aitchison brought to the notice of the authorities at Kew that the fruit of Puneeria coagulans, a shrub common in Afghanistan and Northern India, possesses the property of coagulating milk.

A quantity of the dried capsules of this plant was ac cordingly obtained, and part of it tried here, and found to be most suitable for the purpose. Being a member of the poisonous nightshade family, its safety was in the first place
carefully and gradually tested. It has been ascertained that an ounce of the pounded capsules in a quart of water is a very suitable strength for use; a tablespoonful of this deoction coagulates a gallon of warm milk in about half an hour. Seeds of the plant sown have germinated freely, and heir further progress will be specially reported upon."
The anxiety as to the botanical position of Puneeria among the Solanacece has, I think, no solid foundation. The genus Puneeria is now reduced by botanists to Withania. This is member of the tribe Solanere, which appears to be gener-

NEW KEY FASTENER.
ally free from the poisonous principles so characteristic of Atropere and Hyoscyamex. It abounds, in fact, in plants producing fruits which daily experience shows to be innocuous, such as the tomato, aubergine, capsicum, Cyphomandra, and cape gooseberry.-Kew Report.

IMPROVED THILL COUPLING.

The engraving represents an improved coupling for the thills of carriages and wagons, recently patented by Mr. G. W. Beebe, of Swanton, Vt. This device is simpler than the ordinary coupling, while it is perfectly secure against accidental uncoupling. It consists of two parts, one attached o the thill, the other to the axle.
Fig. 1 shows the coupling in condition for use; Fig. 2 shows it with the two parts separated; Fig. 3 is a sectional view, showing the end of the pin and the recess in the fork attached to the thill. The part of the coupling carried by the axle consists of a clip secured to the axle in the usual way, and having on the front side an arm supporting a short

beEbe's thill coupling.
cylinder having at each end a cylindrical stud with a flat tened end. Each branch of the fork attached to the end of the thill has a cylindrical cavity opening inward and proided with a side opening, which will admit the stud at the end of the short cylinder carried by the clip, when the thill is in a vertical position. When the thill is turned down nto a horizontal position for use, the flat portion of the stud will be arranged transversely relative to the narrower ortion of the side opening in the end of the fork.
It will be seen that with this arrangement it is impossible remove the thill except by bringing it into a vertical
position and moving it backward, as shown in Fig. 2. A spring riveted to the fork prevents rattling by pressing against the cylinder carried by the axle clip.
Further information in regard to this useful invention may be obtained by addressing the inventor as above.

The Yankee in the South

The impression still obtains that the Southern people cherish -such a deadly hatred to Yankees that they will neither smell, taste, touch, nor handle anything contaminated by Yankee hands. This is a most egregious error. The Southern people love the Yankee, and they show this affection in a thousand different ways. When they retire at night, they unbutton Yankee buttons to Yankee made coats, waistcoats, pantaloons, shirts, and drawers. They pull off Yankee boots with Yankee boot jacks and divest their feet of Yankee socks. They march to Yankee bedsteads, turn down Yankee coverlets, Yankee blankets, prostrate themsel ves on Yankee mattresses, and lay their heads upon Yankee pillows. The bedbugs are the only things not made by Yankee hands and imported from the land of the Yankees. On rising in the morning we tread Yankee carpets, stumble over Yankee chairs and sofas, build a fire with Yankee coal taken from Yankee scuttles, in Yankee grates, catch the ashes in Yankee pans, and use Yankee pokers, Yankee shovels, and tongs. We repair to Yankee washstands, pour water from Yankeepitchers into Yankee bowls, and wash with Yankee soap; then use Yankee towels and Yankee tooth brushes. Next we march to a Yankee bureau, stand before a Yankee glass, and use Yankee combs, Yankee brushes, Yankee powder, Yankee cologne in Yankee bottles. We sit down in a Yankee chair to a Yankee table, covered with Yankee cloth, Yankee knives and forks, Yankee dishes, and fed upon Yankee food. We call for Yankee toothpicks, seize Yankee hats from Yankee racks, turn the key to a Yankee lock, open a Yankee door, enter a Yankee buggy, seize the Yankee reins to a Yankee harness, and repair to our place of business, and spend the day in trading on Yankee industry. The South is rich in resources, but our people are so fond of the Yankees that they lavish their wealth upon Yankee enterprise.-Memphis Appeal.

Cure for " Spinning.,"

M. Poisot lately communicated to the Société de l'Industrie Minérale de Saint Etienne some useful information as to the means for preventing the "spinning" of locomotive wheels in the Mazenay mines, no more fuel being now employed for hauling out 100 tons than for 80 formerly. He observes that the ventilation is effected by diffusion, and there is constantly in the rolley way a tolerably thick smoke, which with condensed steam from the engine and the dampness of the workings causes the rails to be slippery. The consequence is that every time they tried to ascend the gradient of 1 in 66 with a full train, they could only get up half of it, about 180 meters (590 feet) without the wheels beginning to spin; and during the rest of the rise, notwithstanding the use of fine and dry sand, this difficulty frequently began again, so that they lost pressure to such an extent that they were obliged to stop to make steam. This difficulty caused great consumption of fuel, excessive wear of the working parts of the engine, and a rapid destruction of the rails. About two months ago the joint of one of the cylinder cocks leaked, and a jet of steam escaping from it was directed on to the rail, when the train took the gradient without the engine once spinning. For two days they worked without making the repair, and the locomotive drew all the trains without the slightest stoppage. In consequence of this experience they altered the cylinder cocks so as to make them discharge directly on to the rails, and when they get to the gradient the cocks are slightly opened, so that they ascend it without difficulty.

The Inventor of the Incandescent Electric Light. Prof. W. Mattieu Williams, writing to $\dot{\text { Nature, says : In }}$ the "Notes" of Nature, vol. xxvii., p. 209, M. De Chagny is described as " the first electrician who attempted to manufacture incandescent lamps in vacuo, about twenty years ago." This invention and its successful practical application (irrespective of cost) was made by a young American, Mr. Starr, and patented by King in 1845. A short stick of gas-retort carbon was used, and the vacuum obtained by connecting one end of this with a wire sealed through the top of a barometer tube blown out at the upper part, and the other end with a wire dipping into the mercury. The tube was about thirty-six inches long, and thus the eularged upper portion became a Torricellian vacuum when the tube was filled and inverted. I had a share of one eighth in the venture, assisted in making the apparatus and some of the experiments, and after the death of Mr. Starr all the apparatus were assigned to me. I showed this light (in the original lamp) publicly many times at the Midland Institute, Birmingham, and on two occasions in the Town Hall, all of them more than twenty years ago. The light was far more brilliant, and the carbon-stick more durable, than the flimsy threads of the ncandescent lamps now in use. It was abandoned solely on account of the cost of supplying the power. As a steady, reliable, and beautiful light, its success was complete. In "A Contribution to the History of Electric Lighting," published in the Journal of Science, November 5, 1879, and reprinted lately in my "Science in Short Chapters," may be found further particulars concerning this invention and its inventor.

How to Help a Man Who Swears Off.

A large audience assembled at Franklin Institute Hall, Philadelphia, recently to hear the last lecture of the New Century Course for Women. Suggestions contributed by Dr. Joseph Parrish, of New Jersey, Dr. R. P. Harris, of the Franklin Home, Dr. Jos. Klapp, of the Washingtonian Home, Dr. T. D. Crothers, of the Hospital for Inebriates in Hartford, Conn., Dr. Chas. Mohr, Secretary of the Pennsylvania Homœopathic State Society, and many others, were read.
Mr. C. Gibbons, Superintendent of the Franklin Home, made an earnest appeal to women for patience with the men whose weakness has tried them so sorely, and who suffer so deeply themselves in their efforts to reform. Very interesting addresses followed from Mr. S. P. Godwin, founder of he home, and the Rev. Chas. G. Ames. All agreed that the the home, and the Rev. Chas. G. Ames. All agreed that the
safest of all ways to stop drinking is to stop short off from safest of all ways to stop drinking is to stop
all stimulation whatever, hot drinks, cold drinks, bitters, and all the list.
The Philadelphia Ledger sets down some of the advice given for the benefit of those to whom such a break would be an impossibility. For such let the house mother al ways have on hand something hot, or tonic or refreshing, to tide over for the hour the agonizing demand of the body for stimu lation. Hot drinks-coffee, sometimes tea cocoa, either ground or in the form of shells or cracked cocoa. This is nutritious as wel as satisfying. Hot broth, beef tea, or beef essence can be bought, but are far better made at home; hot milk, ginger tea, cayenne pepper tea, and an article called tabasco, which is botter than ordinary cayenne Aerated drinks-lemon soda, zoedone, and ginger ale can be kept in the house, and are barmless, the tang being given by fixed air; the home-made beers, on the contrary, ar the life depending directly on fermentation. Refreshing drinks are cold milk, buttermilk, whey, drinks from lemon and other acid fruits, Horsford's acid phospliate, and what is just as effectual and much cheaper, dilute phosphoric acid. A few drops in water, sweetened, makes a pleasant drink, and ten cents' worth will last for months. Oatmeal wate, just a handful in a pitcher of water. This is both refreshing and strengthening, especially in summer.
In the Baldwin locomotive shops, where about 5,000 men are employed, this is kept on hand in large quantities, and, strange to say, even drinking men grow fond of it. They say that when they drink it they don't seem to want their beer. Juicy fruits-apples, oranges, melons, etc. The surest way to bring up children not to care for alcohol is to accustom them early to liking all sorts of fruit. The lec turer spoke in the strongest terms of the misery caused by physicians by the reckless prescribing of alcoholic stimulants to patients, without a word of inquiry as to the habits or the inherited tendencies of the individual.

A New Test for Living Germs in water. Many analysts, says the Brewer's Guardian, are in the babit of testing the organic purity of a water by dissolving a little sugar in it; if the germs of any living organisms are present, the water will, after being kept in a warm place for about twenty-four hours, become cloudy, and sometimes quite milky or opaque, owing to the rapid development of fungoid organisms, resulting from the growth of the germs in a suitable nutritive medium. The test is a valuable one, but requires to be used with caution. It is well o remark, however, that some chemists believe that the growth of the fungoid organisms is dependent upon the presence of phosphates ratber than upon any organic impurities, and that it is possible the germs may be derived from the air, and not from the water itself. Those who have experimented on the subject cannot bave failed to observe how very varied is the behavior of different waters when treated with sugar
Recently Dr. Smith, of Manchester, has pointed out that gelatine is most valuable in detecting organic vitality in waters. About $21 / 2$ per cent of gelatine well heated in a little water is mixed with the water to be tested, and the mixture forms a transparent mass, which is not movable like the water itself. When solu ble or unobserved matter develops from the organic matter of the waters, and makes itself visible in a solid and insoluble form, it does not fall to the bottom, but each active point shows around it the sphere of its activity, and that sphere is observed and remains long. The gelaine pressrves the whole action, so far as the more striking results are concerned, and keeps a record for a time both of the quality and intensity of life in the liquid. Dr. Smith speaks of the more striking effects, which are clear and abundant, every little center of life making itself apparent to the eye, and sometimes expanding its influence to reach both sides of the tube.
It seems to him now essential that all chemical examination of water should be supplemented by an inquiry into the somparative activity of the living organisms.

IMPROVED SEED SOWER.

rearward, is attached to the seed box and serves as a guard to prevent the discharge openings from becoming clogged by the contact of soil with the bottom of the seed box.
The principal advantages possessed by this machine are simplicity, lightness, durability, and cheapness. It is adapted to all kinds of seeds, is reliable, working equally well on rough and smooth Jand, and is capable of being used when drills are unavailable. We understand it has been approved by our best farmers.
'This invention has been patented by Mr. John F. Heady, of Ghent, Ky.

The facetious Mark Twain says there is something very fascinating about science-it gives you such wholesale returns of conjecture for such trifling investments of fact.

Under the name of crayon-feu, Dr. Moses describes a preparation made as follows: Cbarcoal powder, 30 grammes; potassium nitrate, 4 grammes; powdered iron, 5 grammes; benzoin, 1 gramme; the whole to be made up with some active substance into forty crayons. He so obtains a hard preparation, which is easily inflamed by a match, and which he proposes for the cauterization of poisoned wounds and when the actual cautery is required.-Medical News; Gaz. Hebdomadaire.

IMPROVED SEED SOWER.

This is a machine for sowing tobacco seed, cabbage seed, turnip seed, and other small seeds, accurately and expeditiously. The shell of the seed box is cylindrical, with a vertical upper part provided with a cover. The hubs of the drive wheels are connected with the axle by set screws, so

IMPROVED SEED SOWER

Floral Decorations.
Ornamental grasses impart to an arrangement a lightness and distinctive character which fern fronds, handsome as they are, fail to give. Moreover, it is difficult to keep up the needful amount of cut ferns without disfiguring the plants; therefore, we should grow ornamental grasses for the purpose, thus sparing many fern fronds. Most of the useful sorts are easily grown from seeds. We sow them in March in the open border in well prepared soil-the earlier in the month the better, if the weather is favorable. We have fóund the following six kinds to be among the most useful, viz., Agrostis nebulosa, and pulchella.
These come into flower early, and are about the very lightest that can be grown; they are also often sown in pots, and in this manner are useful for furnishing purposes. Briza maxima and gracilis are two of the best of the quaking grasses. We find the former to be especially valuable, and to arrange well with water lilies and similar subjects. This sort is also one of the best for cutting and drying for later use; if cut while the deep green tint is in it, it retains its color better than if left till it has assumed a brownish tinge.
Lagurus ovatus ('he Turk's head grass) is one of the most distinct kinds, as well as one of the best for keeping purposes if treated as just advised in the case of the Briza. For bold arrangements in association with large flowers this is an excellent kind. Another valuable grass is Eragrostis elegans; this is a later kind than those previously named, and comes in useful for cut purposes up to the time when the early frosts spoil its color. It is a somewhat stronger sort than the others; when well grown it attains a height of from 2 feet to $21 / 2$ feet ligh. It should therefore be allowed more room than the others in which to develop itself. The following sorts are all useful and distinct, viz , Anthoxanthum gracile, Brizopyrum siculum, Bromus brizæformis and giganteus, Hordeum jubatum, and Paspalum elegans.

Two new kinds have recently been brought forward, viz., Briza spicata and Bromus patulus nanus, both of which will doubtless prove useful. These grasses, taken collectively, are about the best that can be annually raised from seed Stipa pennata and elegantissima may be increased by division, perbaps, with more certain results than from seeds. These ornamental grasses are all valuable in their seasons, and for preserving for use afterward, not, however, after they have been disfigured by drying. When those raiscd from seed are well above the soil, it will be well to thin out any kind that has come up too thickly. This will throw more stamina into those that are left, rendering them more durable.

The following annuals are all useful associated with grasses, viz., Campanula loreyi and its white variety Catananche cœrulea, sweet sultan (yellow), Rhodanthes, Linum grandiflorum coccineum, the Corn Flowers in various colors, dwarf poppies, single dablias, which have a future before them, and last, but not least, Gypsophila elegans and its variety rosea. Many more annuals might be named, but theseare among the best for decorative arrangements and for using in conjunction with grasses. One of the hardy perennials that may be raised from seed is Chelone barbata coccinea; this when in flower yields good spikes for trumpet vases. - The Garden.

The Great Wall of China.

An American engineer who, being engaged in the construction of a railway in China, has bad unusually favorable opportunities of examining the famous Great Wall, built to obstruct the incursions of the Tartars, gives the following account of this wonderful work : The wall is 1,728 miles long, 18 feet wide, and 15 feet thick at the top. The foundation throughout is of solid granite, the remainder of compact masonry. At intervals of between two hundred and three hundred yards towers rise up twenty-five to forty feet high, and twenty-four feet in diameter. On the top of the wall, and on both sides of it, are masonry parapets, to enable the defenders to pass unseen from one tower to another. The wall itself is carried from point to point in a perfently straight line, across valleys and plains and over hills, without the slightest regard to the configuration of the ground; sometimes plunging down into abysses a thousand feet deep. Brooks and rivers are bridged over by the wall, while on both banks of larger streams strong flanking towers are placed.

The Unused Water Power of North Carolina.

Recently, in Congress, Senator Vance, of North Carolina read from a report of the late Professor Kerr, geologist of that State, an estimate of the unused water power of the North Carolina rivers. The main streams bave an aggregate length of 3,300 miles, with an average fall of ten feet to the mile, giving a horse power of $3,300,000$. The numerous tributaies are not included in this estimate. The wasted water power of the State rivals the estimated engine power-stationary and locomotive一of Great Britain.

MACBINE FOR EXCAVATING THE CHANNEL TUNNEL. (Continued from first page.)
pounds per square inch, a pressure commonly employed. The cutting machinery at the face will be driven by an ordiuary hydraulic motor direct without the interventicn of gearing. The débris of chalk cut down will be taken up by a series of cups and thrown into a chute, at the top of which the waste water from the hydraulic motors is conducted The water flowing down carries with it the débris of chalk, and both pass into an ordinary cylindrical revolving drum, where it is reduced to sludge. The quantity of water used by the hydraulic motors will be so calculated that it will amount to about three times the quantity of chalk débris by weight. When mixediwith the water in the revolving drum, the very small débris almost instantly dissolves, and the re sult is a cream or sludge, which is taken up by ordinary pumps, worked by hydraulic motors, and forced into the main outlet pipe to the bottom of the shaft, or direct up the baft to the sea if required. The pumps are placed upon the main frame of the boring machine, and driven by high pres sure water taken from the main inlet pipe.
The cream is forced by the pumps through the excavated portion of the tunnel to the bottom of the shaft, and thence may be raised by pumps or other suitable means to the top and discharged into the sea, or disposed of in other ways.
It will now be perceived that the space lying between the boring machinery and up to the top of the shaft is left entirely free, excepting so small a portion of it as is occupied by the two pipes-the high pressure water inlet pipe and the cream outlet pipe.
The operation of lining the tunnel may therefore be carried on with the greatest facility, there being no traffic upon the rails, no hoisting up or lowering in the shaft except that necessary to transport the workmen and the building materials for lining the tunnel, amounting to only one-quarter that required on the ordinary system, or in other words, three-quarters of the whole weight to be disposed of is car ried through pipes instead of by locomotives and trucks.
The cutting machine is of a most simple construction, de signed for the purpose of excavating the chalk. It consists of a number of small disks attached to a large boring head made to revolve at any given speed. The disks turn freely on their spindles, and as they cut only a width about one quarter of their diameter, they turn in an opposite direction to that in which the large disk is turning, and thus act by rolling into the chalk and changing the cutting edge continually, whereby the wear and tear of the edges is reduced to a minimum; at the same time the cutting edges do not requir sharpening, a most material feature.
By trials I have ascertained that two horse power per cubic yard of chalk excavated would be more than ample; and if in piercing a tunnel 36 feet in diameter 170 cubic zards of chalk will have to be cut down, 340 home powe will have to be provided for this part of the work.
In the real machine the pressure of the incoming water upon the area of the telescopic joint, in the onecase, and the back pressure of the cream, forced toward the exit, on the other, will push the machine forward automatically, and it becomes necessary to provide an arrangenent to control this speed and allow the machine to advance only at a certain desired rate forward. There are various simple means of effect ing this object.
To cut a clear face 36 feet in diameter will require seventy two 12 inch cutting disks upon the arms or cross-beam-each cutter in one revolution of the machine taking off a concentric ring 3 inches in width and one-sixteenth of an inch thick-supposing the cross beam or head to turn at the rate of ten revolutions per-minute. This would give the cutter on the extreme outside a periphery speed of 1,130 feet per minute, which has been found to be well within practical limits. It will be understood that the cutters turn at different speeds, those near the outer periphery doing considerably more work than those near the center, the revolving cutters being equally effective at all speeds.
The apparatus for the reduction of the chalk débris to sludge or cream is a plain cylindrical drum. One face of this drum is made of a strong wire grating except in the center, where a hole is left. Through this central aperture the débris of chalk and the water in whatever quantities required are introduced, and as the drum revolves, the particles of chalk, saturated and softened by contact with the water, are quickly dissolved, and a cream or sludge of more or less consistency is produced, which escapes through the meshes of the wire grating and collects in a reservoir, whence it is taken up by a pump and iorced to the place where re quired.
As a matter of fact, two drums, 7 feet in diameter and 7 feet in length, will be amply sufficient for the purpose with 85 horse power.
The conveyance of the cream through ten miles of pipe on a level, back to the bottom of the shaft, will be done by a 12 inch main pipe with a pressure of 700 pounds per square inch; the water passing through this pipe at a velocity of $61 / 2$ miles per hour, or 9.5 feet per second. The total horse power developed by this quantity of water amounts to 1,377 horse power at our disposal at the face. The sludge being composed of chalk, 76 cubic feet per minute; water, 459 cubic feet per minute; cream, 535 cubic feet per minute.
A main outlet pipe, 20 inches in diameter, will be required to convey the cream back to the bottom of the shaft through ten miles of level tunnel, and the cream will have to flow through it at a velocity of 245 feet per minute or 4 feet per
bottom of the shaft is 214 feet, or $211 / 2$ feet per mile. This represents a force of 224 horse power, the pressure in the pipe being 96 pounds per square inch.
To lift the cream from the bottom of the shaft to the surface will require a total of 525 horse power.
The cubic foot of cream of the above admixture weighs 72.06 pounds. If we now add up the powers required for the several operations, we find:
(1) For cutting the chalk. Horse power
... .. 340
(2) Reduction of chalk to cream

Total required at the face
As we have provided 1,377 horse power, there will be no deficiency, even if the hydraulic motor should only yield 50 per cent duty, which is a very low estimate.
The 525 horse power required for lifting the cream to top ill, of course, have to be provided for at the top of the haft, and will be in addition to the power necessary for the compression of the water.
To compress 459 cubic feet of water per minute to a presure of 512 pounds per square inch, or about 1,200 feet head, ould require a force of 1,040 horse power.
We have, therefore, to provide on top of shaft-

For compression of water...

Total .
Horse power.
$\ldots . .1,040$
$\ldots . .525$
to carry out the entire operation of cutting required, 172 cubic yards per hour, reducing it to cream, and conveying t to the surface in pipes and into the sea.
This power is independent of that required to transport he material necessary for lining the tunnel, which will be done by locomotive or other means, the same as that employed in the ordinary system.

The Preservative Treatment of Timber for Railway

 Cross Ties.The National Car Builder estimates the yearly consumpion for cross ties for new roads, and for replacing worn out ties on old tracks, roughly at thirty millions, assuming the average life of the ties now in use to be about seven years. The annual increase in track mileage, if it is to continue at a rate approximating that of the past year, with a corresponding increase in the great volume of traffic, points to a continuous yearly increase in the consumption of timber for ies for an indefinite period in the future-a home consump tion strictly, and not including timber exported for like uses on the roads of foreign countries. How to meet this prospective demand with our annual increase in track mileage without causing such an excessive draught on our forests gives the problem of future supply a greater importance every ear.
With respect to cross ties more particularly, attention has of late years been directed to three methods to check the excessive consumption of timber material, namely, preserva-
tive treatment, tree planting, and the substitution of iron ties for wooden ones. What is wanted, so far as wood is concerned, is a material that will have twice the durability of the ties now in use, and at the same time cost less, or at all events not any more, for a given period. If the average life could be doubled, it would save a vast quantity of growing timber, and also the cost of one renewal for the total track mileage. This would go far to compensate for the cost of treatment, or the cultivation of timber of exceptional dura-
bility and capacity of service, like the catalpa, for example. Tree planting and the use of iron will avert the impending evil to some extent, no doubt, but the main reliance must be upon methods which will make the various kinds of timber now in general use for tes more lasting, by subjecting it to ome kind of preservative treatment that is both effective and cheap. Mavy processes for accomplisbing this have been tried and recommended, some of which are reported as
having been very successful in Europe, but as yet they have scarcely passed the experimental stage even there, while in his country none of them are in general use, and very few have been put to a satisfactory preliminary test even. These methods, although various, all aim to render the timber less perishable by expelling the sap and all humidity, and then filling the pores or cells wlth creosote oil, or with a solution of certain metallic salts, both of which have the quality of arresting fermentation and preventing decay-a treatment somewhat analogous to embalming as practiced upon human bodies to arrest decomposition. These processes are known under many names, the more noted of which are the Kyan Burnett, Bethell, Hayford, and Boucherie methods. The most effective agents appear to be chloride of zinc and creosote, the preservative effect on the timber being about the same for each, but the creosote treatment being twice as
expensive as the zinc, the latter is mostly used on foreign railways, and to these we must at present look for the best information extant upon the subject.
The preservation of timber by artificial means has been esorted to more or less in this country for many years in cases where it was to be used for the foundations of heavy masonry and structures of great weight and durability, but
for railway ties, telegraph poles, driven piles, and a host of other uses to which timber is applied, its preservative treatment has been little thought of, and nothing very definite has been realized in practice. In practice one thing is quite ertain, and that is that soft, poroustimbers, such as pine, fir hemlock, spruce, and the like, can be rendered vastly more serviceable and lasting for cross ties by creosoting or by 1 m -

pregnation with solutions of zinc than if used in the natural

 state or with ordinary seasoning, especially upon roads with light or medium traffic and with tolerably good ballasting. With respect to economic results, the reports from the German and Austro-Hungarian roads are the most definite. The ties used are mostly of oak, pine, fir, and beech, and nearly one-half of the total number in use have been subjected 1.0 antiseptic treatment according to various systems, with a reported increase in their average life over and above the average life of untreated ties, as follows: Oak six years, fir seve, years, pine nine years, and beech nine years.If preservative treatment is profitable on European roads, where the scarcity and cost of timber naturally lead to close and careful investigation in order to get at the truth, the Car Builder inquires why the same thing cannot be made profitable here, irrespective of any threatened exhaustion of our existing timber resources? There is no very obvious reason why it cannot, except that it is a new economic rut to get into after being so long accustomed to plentiful supply and wasteful profusion, and everybody knows how difficult it is to introduce innovations in the face of long established usage and the prejudices thereby engendered.

The Ready Made House Industry.

The Canadians are making such a considerable and profitable business of ready made house manufacture that the Northwestern Lumberman (Chicago) thinks it strange that Americans, who have the reputation for seizing new opportunities for money getting, do not branch out in this direction more extensively.
Illustrative of the manner this industry is progressing, it is mentioned in the London, Ont., Advertiser that the Truaxes planing mills at Walkerton, are turning out material for ready made houses at a rapid rate. Orders for a whole row of houses can be filled in a few days, and it is not uncommon to see an entire street for Brandon or a block for Winnipeg sent out on a train twenty or thirty days after the order has been received. During the past season Messrs. Truax shipped 219 cars of knock down house material to the Northwest. One of the partners in the concern accompanies each train, and superintends the putting up of the houses. Sometimes houses are ordered by telegraph in this fashion: "What can you furnish me a tidy cottage for, $22 x 40$ feet, with bay window and veranda?" Next spring the enthusiastic house builders expect to receive@rders for entire villages, something after this style: "What is your lowest figure for five stores, two wagon and two blacksmith shops, one Methodist and one Presbyterian church, twenty-five cottages, a town hall, and a lock-up, to be delivered on or before July 1?" Orders have been received for twenty-one houses to be put up in Brandon next spring. The freight rate on these bouses from Walkerton to Chicago is $\$ 40$ a car; from Chicago to Minneapolis $\$ 20$ a car. The charge the balance of the way is enormous, owing to the lack of competition, the cost of a medium car through from the start to Winnipeg being $\$ 361$. The large ones used by the Truaxes cost more. Considering the fact that Chicago is nearer Winnipeg than Walkerton, Ont., why cannot, adds the Lumberman, the knock down bouse business be made profitable here, and still more so at Minneapolis, Duluth, or any other lumber point in the Northwest?

An Electromotive Torch

Dr. Brard, of La Rochelle, some time since announced his discovery of a method of preparing blocks of combustible matter, capable of being used as fuel, which at the same time developed a current of electricity. See engravings in Scientific American, October 28, 1882. Proceeding on the same lines, Dr. Brard has succeeded in making a kind of torch which yields a current of electricity in burning. He makes first of all an inflammable wick of coal dust and molasses, moulded into a rod. A thin sheet of asbestos is then wrapped round this wick, and the whole is dipped into fused nitrate of potash until a good thickness of the material adheres. When the wick of the torch thus made is ignited, a current of electricity may be detected in a circuit of wire connecting the coal paste and the nitrate of potash. It does not appear that such a torch is at all a good one for giving light, and, indeed, the contrary might be inferred from the materials used in its construction. Neither does it develop a useful current of electricity, for the electromotive force produced is insignificant. Still the discovery is regarded as important, because it proves the possibility of electro-generative fuels. It also affords a starting point for the imagination of sanguine individuals, who have already begun to speculate on the time when the fireplaces of living rooms will be made available for supplying electricity-not only for ringing bells, but also for charging accumulators, and thus giving light also. It is reported that Dr. Brard has this latter object in view.

Hemlock Bark.

There are produced annually in North America 100,00 ? barrels of hemlock bark extract, of which a single Boston firm produces 72,000 barrels. They own niue extract works and operate twenty-three tanneries. All the tanneries of he United States consume annually $1,250.000$ cords of hemlock bark, produced in nine States. As the yield of bark is about seven cords to an acre of hemlock timber, the yearly consumption implies the clearing of 178,000 acres. In the main, the bark is stripped from trees cut for timber; and as he demand for this timber exceeds the supply, the supply of both timber and bark is threatened with speedy exbaustion

curvespmatute.

"Indian Holes" on Lake George.

T'o the Editor of the Scientific American:
While camping on Lake George last summer, my attention was directed to the" Indian holes," as they are called, near the foot of the lake. They were pointed out by an old resident, and owing to the obscurity of their location, must be rarely seen by tourists. The visitor to that beautiful region may find them on a small rocky projection in a bay, about a mile south of "' Rogers' Slide," on the western shore, in Hague, N. Y. My curiosity to see them was aroused by being told that there the Indians had been accustomed to grind their corn.
These aboriginal mills, if such they may be called, consist of about a dozen well defined " pot holes" in a solid ledge of gneiss, and are grouped together in an area of a few square yards.
The majority of these have a circular opening and the greatest diameter at the center. One, a well 2 feet in width and 3 feet deep, is cut as neatly in the rock as if bored by artificial means. This and several others were filled with stagnant water, which was frequented by swarms of mosquitoes in their several stages of development and other larval congeners. The largest which I observed was nearly 4 feet acrose, and probably 5 or 6 feet in depth, although I was not able to determine this accurately, as it was filled with earth. Many of the old inhabitants would doubtless still affirm that these were the work of the Indian.
It is very evident that the configuration of the surface was essentially different, when these curious pits were formed, from what it is at the present time. Long and persistently must a powerful torrent have rolled over these ledges to have kept the stones in motion, which slowly drilled their way into the hard rock, and produced the results which we see to-day. Up to a comparatively recent date they may have been filled with soil and detritus. The red man then found them, and excavated such as were suited to his purpose, removing also the stones which had been instrumental in the work. Here was mortar and pestle for him ready made. None of these grinding stones were seen, yet it is likely that some of them are still there.
It is not knowon, of course, if the Indian ever used these stone mortars for domestic purposes, but it is bighly probable that he should have done so, for here was a favorite hunting ground, and doubtless the best of fishing, certainly the lest which the lake now affords.
Here, making temporary encampments at certain seasons, he might prepare a supply of ground corn, or else, while passing to and from Champlain, he would merely turn his canoe in hither to pulverize a few handfuls of maize. Mingling thisः with the limpid waters of the Horicon, be would soon have bread enough baking over bis fire, with which to satisfy his appetite for bass and venison.

Rock Pt., Burlington, Vt., Feb. 12, 1883.

Flying.

To the Editor of the Scientific American
I see it stated in your article on flying that the albatross is the largest flying bird. In the year 1858 I was in Nebraska, on the Missouri River, at a place called St. Helena, about two miles below the mouth of the Little James River, and one hundred miles east of Fort Randall. There I ate a one hundred miles east of Fort Randall. There I ate a
piece of a wild turkey, shot by an Indian, that weighed, feathers and all, thirty and a quarter pounds. The flapping of his wings broke off quite large branches of the cotton wood trees, through which he was flying at the time he was shot. How, then, can it be said in view of this fact, for fact it is, that the albatross is the largest flying bird? It seems to me that weight, not bulk, is meant in your article.
The bird has the same relative advantage with his wings in the air as the man has with his legs on the ground, has he not? Hitch a rope to five such birds standing on their legs to pull against a man weighing one hundred and fifty pounds -would not the man be equal to their united strength? If so, how then have the birds greater muscular power than the man, even though the birds use both wings and feet, saying nothing about one albatross being equal in muscular strength to one man?
As sure as the world, I think I could pull more than tive thirty and a quarter pound turkeys. It seems to me that the muscular strength of man is not concentrated enough nor located in the right place to enable him to fly, not that he has not the strength.
Brooklyn, N. Y., Feb., 1883.
Samuel R. Goodsell.

Horn and its Uses.

Under the general name of horn may be included (chemically considered) a great variety of tough, somewhat flexible, semitransparent organs intended by nature for defense or covering; of this kind are the hollow horns of the ox, goat, ram, and some other animals, the hoof, the horny claw and nail, and the horny scale of certain insects and animals, chiefly cold blooded, such as the shell (so called) of the tortoise. All these resemble each ather very closely in chemical character, and differ considerably from some of the harder and bony defences of some animals, such as the stag's horn, jvory, and the hard tusks of the sea cow, and many others.
Horn (used in the above general sense) has various degrees
ble, even in the cold, so that, however dried, it cannot be bruised to powder as bone can. It is also distinguished from bone very remarkably, in being softened very completely by heat, either naked or through the medium of water, so as then to be readily bent, moulded, and made to adhere by pressure to other pieces of horn in the same state. No such change takes place with bone.
The valatable experiments of Mr. Hatchett, with those of preceding chemists, have also shown a most decided chemi cal difference between horn and bone. When bone is boiled with water in an open vessel, a large quantity of gelatine is extracted, and the insoluble residue consists of the earth of bone, together with albuminous cartilage, so that the texture remains unbroken. On the other band, the different species of horn boiled with water, even for many days, give to it but very little gelatine, the softer and more flexible horns giving the most. The horn itself during the digestion is softened considerably by the hot water, but on being taken out and dried, it becomes more brittle than at first, and in proportion to the loss of gelatine. Bone therefore contains much gelatine, and horn scarcely any.
Another difference appears after the utmost action of fire on each. When hone is burnt, a number of substances are procured, and the last residue is an earthy salt, chiefly phosphate of lime, amounting on an average to from half to one third of the entire weiglit of the bone. When horn is treated in the same way, the volatile products are indeed the same, or nearly so, but instead of a large earthy residue, scarcely any earth or any other combustible matter remains. Bone therefore contains much phosphate of lime, but horn hardly any.

But the substance which they possess in common is that condensed tough matter, insoluble in water and weak acids, which Mr. Hatchett has so satisfactorily shown to resemble albumen in all essential properties, and which in bone forms the original organic cartilage on which the earth is deposited during the growth of the animal, and in horn forms almost the whole substance.
Horn seems to consist in by far the largest proportion of condensed albumen, combined hovever with a small and varying. portion of gelatine, which modifies its texture and flexibility, and also with a small portion of phosphate of lime.

It has been mentioned that boiling water in open vessels had bardly any action on horn, but when confined in a digester, horn as well as bone is totally soluble, because water assisted by the strong heat of a digester will dissolve condensed albumen as well as gelatine. This method therefore is not sufficiently distinctive for chemical analysis.
The fixed alkalies readily and totally dissolve horn into a yellow saponaceous liquor.
The products obtainable from horn and bone of all kinds by distillation per se, were early attended to by chemists, as it is from these substances that a variety of valuable ammoniacal salts and preparations are obtained.
The products from bone and horn by fire are very similar, and it is only the soft parts, such as gelatine and albumen, that are decomposed in the process, the earthy phosphate remaining inert without adding to or modifying the volatile products. These latter are a weak ammoniacal phlegm or water, on the first impression of the fire, to which succeeds an oil, thin and limpid at first, but afterward brown and foul, and at last of a pitchy color and consistence, and an extremely fetid and empyreumatic smell. During the whole of the distillation, carbonate of ammonia comes over, partly dissolved in all the liquid products and partly concreting on the sides of the receiver in crystalline plates. A second distillation with regulated heat is used to procure the ammonia purer ; but it can hardly ever be totally freed by this means from the volatile oil ; so that, though limpid and gratefully ammoniacal, the alkaline liquor or salt thus obtained always retains somewhat of the peculiar smell of the oil, as must be observed by every one who compares the scent of common spirit of hartshorn with that of the pure carbon ate of ammonia or sal volatile, which is prepared in a different way and from other materials.
But horn (properly speaking) is seldom employed for the purpose of distillation, being too valuable as an article of manufacture to be thas sacrificed. The only horn ever used is the stag's horn or hart's horn, which, as above mentioned, partakes much more of the nature of bone, is not flexible like ox and other horn ; when in shavings, readily dissolves by boiling water into a pure nutritious jelly, entangling the phosphate of lime along with it, which makes it slightly opaque. Stag's horn, therefore, is somewhat intermediate between bone and true horn.
Horn and tortoise shell being applied to a number of mechanical purposes, must be cut, bent, and shaped in an infinite variety of ways. This is done in most instances by the assistance of heat applied either dry or by softening the horn in boiling water, and sometimes with the assistance of a weak alkaline liquor. When thus softened, one part may be made to adhere to another by mere pressure as firmly as the undivided substance. Thus, for example, to make the horn ring that surrounds a common opera-glass, a flat piece of horn is cut out of the requisite shape, the ends intended to
join are thinned down by a file, the piece is then put into boiling water till sufficiently supple, and is then rolled round a warm iron cylinder, and held in that position by a vice, so that the ends envelop each other. Another piece of iron heated and grooved is then laid upon the seam of the joint ed ends, and pressed upon the cylinder, and confined there
portion of the horn, and cements the ends so completely that o seam or joining can be observed when cold.
In a similar manner two pieces of tortoise shell may be joined together by first neatly shaping with a file the parts that are to be united, then tying a thick paper doubled in several folds over the joining, and pressing the whole to gether with a hot iron instrument like curling irons, heated just sufficiently that the shell when warmed by it will begin to bend by its own weight. When cold the joining is per fect, and without seam. Too great heat would make the hell rise in opaque blisters, and spoil its beauty.
Horn is made to imitate tortoise shell in the following manner : Make a paste with two parts of quicklime, one of litharge, and a little soap-maker's lye, or solution of caustic potash ; apply it skillfully on a thin plate of horn in a way that will best imitate the natural spots of the tortoise shell, leaving the light parts untouched; let this paste dry on then brush it off, and the horn will be permanently stained. The effect is much improved by laying beneath it, when used, a piece of brass leaf. This staining may be varied at pleasure by substituting other colored substances for the itharge.
The tips of horns are used for knife handles, buttons, and other purposes. Horn for knife and whip handles is sawed into blanks, heated, pared, and partially shaped; then heat ed in water and pressed between dies. It is afterward scraped, buffed, and polished. Deer horns are worked like bone or ivory.-Glassware Reporter.

Falsification of Brandy.

A lamentable picture has been drawn in a recent report of the American Consul at Rochelle of the falsification of brandy, which, it appears, in the last three years has undergone a complete transformation, and is no longer brandy, the greater portion being prepared from alcohol of grain potatoes, or beet. The most unsatisfactory circumstance i that even the merchants who desire to purchase a pure cu gnac cannot be certain that they do so, for the proprietors of the vineyards, all of whom are distillers, have become so clever in the manipulation of alcohols and the accompanying drugs that they deliberately make a brandy of any re quired year or quality. The mention of the years 1849 or 1876, for instance, in an invoice or on a label, means simply that the article is presumed to have the taste or color of the brandies of those years. The increasing importation of German potato and beet alcohols into the Charente ports is an additional proof that the less brandy that is consumed, the better for the health and intellect of the consumer.
It is, moreover, becoming a custom to sell the brandy in 12 bottle cases, marked with one, two, or three stars ac cording to the presumed quality, thus avoiding any compromising mention of year or place of production. Some of the manufacturers import the small raisins from the East and make what they call brandy from the juice, there being at least one such establishment in operation at Coguac. Apart from the unsatisfactory purchase of a brandy which is not a brandy, drinkers should seriously consider what are the properties of the liquid which they are so complacently mbibing. It is simply an active poison, the imported alcohol, which is known to the trade as "trois-six," being of 90° strength, and sold at a little less than three francs a gallon. Its characteristic effect is to produce an intoxication in which the patient is especially inclined to rage and physical violence, while insanity, of an obstinate and almost hopeless form, is the inevitable consequence of a prolonged use of it. It is said that the great increase of violent and brutish crimes in France may be traced to the drinking of this brandy and absinthe. The slang term for a glass of cognac is un petrole and for coffee with cognac, un grand deuil. Not only in France, but in other countries, and even in the United States, these liquors are producing a condition of national alcoholism of the worst kind, far beyond the ordinary drunkenness arising from unadulterated intoxicating drinks.

Ancient Mode of Baking Walls.

Among the recent discoveries at Hissarlik by Dr. Schliemann are the remains of buildings which he supposes to have been temples. The walls are respectively 1.45 meters and 1.25 meters thick. Nothing, he says, could better prove he great antiquity of the buildings than the fact that they were built of unbaked bricks, and that the walls had been baked in situ by huge masses of wood piled up on both sides of each wall and kindled simultaneously. Each of the buildings has a vast vestibulum, and each of the front faces of the lateral walls is provided with six vertical quadrangular beams, which stood on well polished bases, the lower part of which were preserved, though, of course, in a calcined state. Dr. Schliemann maintains that in these ancient Trojan temples we may see that the antce or parastades, which in later Hellenic temples fulfilled only a technical purpose, served as an important element of construction, for they were intended to protect the wall-ends and to render them capable of supporting the ponderous weight of the superincumbent crossbeams and the terrace. Similar primi tive antoe were found jn two other edifices, and at the late ral walls of the northwestern gate. It was also discovered that the great wall of the ancient Acropolis had been built of unbaked bricks, and had been baked like the temple walls in situ. According to Dr. Schliemann, a similar process of baking entire walls has never yet been discovered, and the antoe in the Hellenic temples are nothing else than reminiscences of the wooden antce of old, which were of important constructive use.

LANTERN ILLUMINATION.

by geo. m. hopedns.
The most avallable and satisfactory illumination for ordinary projections is the oxyhydrogen or lime light. The two -forms of compound blow pipe generally employed for this purpose have their defects, as every user of the instrument knows. The form in which the two gases are mixed within the nozzle, and projected through a common orifice, produces by far the stronger light, but its use is fraught with danger. The concentric or annular form of blow pipe, in which the gases are mingled as they issue from their respective orifices, is perfectly safe, it being impossible for the gases to mix in the tubes or gas holders; but ordinarily it is necessary to em ploy a superfluity of bydrogen gas to realize the full effect of the oxygen jet This is especially true where illuminat ing gas is used instead of pure hydrogen. The result of this extra amount of gas is a large and intensely hot flame, surround ing the incaudescent spot on the lime and flaming out in all directions. This im pairs the ligh t, heats the lantern, and endangers the condenser, which is very liable to become broken by the heat

The engraving shows a modified annular oxybydrogen burner, in which the serious defects of its predecessors are overcome while their good qualities are preserved; at the same time the illuminating power is increased. The central or oxygen tube bas a conical end with a central orifice 0.03 inch in diameter. The hydrogen tube is provided with an adjustable cap, having a central orifice 0.1 inch in diameter. The cap is conical internally and externally and when properly adjusted, as shown in the sectional view, the thin space between the internal surface of the cap and the conical end of the oxygen tube forms a passage for the hydrogen, which directs it across the path of the jet of oxygen. By this simple device the gases are intimately mixed at the moment of ignition, and the result is a clear, intense light with no superfluous flame, and with little free heat. The performance of the burner compares favorably with those that mix inside, while it is perfectly safe, and may be used with gas cylinders or bags and with ordinary illuminating gas at the usual pressure.
A simple and effective device for turning and elevating the lime holder is shown in the cut. It consists of a spiral spring soldered to the lime holder spindle, and secured to a rod extending to the back of the lantern. It is, in fact, a small use of the "flexible shaft." By turning the rod the lime is turned and elevated.

NEW BAG AND TWINE HOLDER.

The engraving shows several forms of a novel paper bag and twine holder for grocers and others who use paper bags for putting up goods. The essential feature of the in vention is a stand or support of suitable form, with wire pins, rods, or hoops fixed thereon in a convenient way, so that they may be wholly or partly detached for stringing the bags on them, and replaced in retaining hooks or notches, to support the bags in position to be readily detached when wanted for use. Twine ball cups are provided for lrolding the twine for tying the bags.
The several figures in the engraving represent different forms of the invention.
The holder may have one or more standards attached to a base or other support. To each standard are attached. horizontal arms for supporting the wire pins, hooks, or rods on which the bags are strung. The pins are fixed so that their points can be readily freed from their supports at any time when it may be required to replenish the stock, and at the same time be so placed, when returned to their resting places, that the stripping of the bags from them will not dislodge either hem will not dist the points or the heads. For this purpose the pins may b connected to the arms in various ways, and the connectin devices may also be varied to suit the forms and arrange ments of the pins and their supporting arms. For instance, n Figs. 1 and 4, where the wire forms a circle or hoop around the standard, two of the arms may have hook ends, in which the bent or notched head of one pin and the point of another may be lodged, as shown, the other arms having a notch in which the pins rest at the middle, the pins being bent so as to extend half-way around the staud and spring
into the hooks and notches, so as to be readily put in or taken out, the tension of the wire keeping them in place when lodged therein. In Figs. 3 and 6 the pin heads are bent at right angles and pivoted to the notches in the arms, so that the points will spring into the notches of the adjacent arms. In Figs. 2 and 5 the heads of the rods have a collar, and the points rest in the notches in the arms by their weight, the said head and collar preventing the rods from shifting lengthwise, and the notches are crooked, to prevent the accidental escape of the rods in case of being thrust upward.
When the device is arranged as in Figs 4,5, and 6, it

Ordinary commercial shellac, it is well known, when reated with alcohol does not furnish a clear solution, but always produces a more or less turbid, yellowish solution, which, when warmed, clears itself by forming a brown solu tion and throwing down a grayish-yellow sediment. Also by filtration through good thick filter paper, a perfectly clear solution can be obtained, but this succeeds only when there is about ten per cent of shellac in the solution, and not in work ing on large quantities. Of course, there is no difficulty in subsequently concentrating the thin solution by evaporatalcohol, but the filtration of large quantities is attended with loss of time and material, as well as other difficulties, for it is not easy to make the filters tight enough to prevent loss of alcohol, and the filter paper has to be frequently changed.
Dr Peetz proposed to add finely pulverized chalk or carbonate of magnesia, which would carry down the light particles of wax that make the solution turbid. This may answer for small quantities, and where the cost of manipulation is not taken into account, but is absolutely useless for large quantities.
Shellac is not a pure natural product, but is prepared from stick lac by melting, straining, and washing. Both in stick and shell lac there is a substance which some chemists call wax and others fat, that will not dissolve in alcohol and ether, but is soluble in beuzine, naphtha, etc. Dr. Peetz adds to three parts of shellac solution one part of petroleum erher and shakes well. After standing quietly for a few minutes the liquid forms two layers; the upper light brown one is petroleum ether containing the dissolved fat or wax,

IMPROVED OXYHYDROGEN BURNER accidentally scattered.

while below is a clear yellowish-brown
solution of shellac to which only a little naphtha adheres.
support. This device lables the dealer to take the bags one by one for use, the object being to so arrange the bags that one can be readily selected from the rest, and can be de tached without disturbing or scattering the others, and at the same time to hold them so securely that they will not be

This device has been patented by Mr. Louis Steinberger
of Bradford, Pa. (P. O. Box 1,933).

The St. Gothard Railway.

It was naturally to be expected that the opening of the St. Gothard Railway would divert the bnlk of the Italian trade into the hands of Germany, Belgium, and Hollaud. This is being accomplished with surprising rapidity. Early fruit and vegetables are conveyed without transshipment from all parts of Italy to Ostend, Antwerp, and Rotterdam, whence they are taken by fast steamers to London and other English ports. The Great Eastern Railway Company alone is stated to have carried over 6,000 tons of these goods, via Antwerp and Harwich, in a few months. Malta is now likewise brought On removing the upper layer and allowing it to evaporate spontaneously, a white residue is obtained, consisting of the fat that was in the solution. This fat can be saponified with caustic alkali, but is not dissolved by carbonated alkali, and on this property depends the new process for refining of shellac.
Edgar Andes, of Vienva, bas been experimenting upon the best methods of refining slellac, and communicates his results to Neuste Erfindung. Passing by the details of his experiments as given in the original, we give his final results. He says: "I have come to the conclusion that for the preparation of a perfectly soluble shellac, that shall retain its other qualities unchanged, ten pounds of shellac should be treated with three pounds of soda (carbonate of soda) dissolved in ninety pouncts of water.
The operation is conducted as follows: The water is heated to boiling in a suitable kettle, the soda added next, and when that is dissolved the shellac is put in slowly, waiting for the first portion to dissolve before adding more The liquid has pink and the well known agreeable odor of shellac. It is turbid from the small amount of fat in it. After all the shellac is dissolved, the solution is boiled a few minutes longer, and the kettle covered with a tight fitting wooden lid, which is luted on with clay, so that no air can enter. It is then allowed to cool slowly, and when the cover is at length removed, a thin cake of fat will be found floating on the liquid.
"' This is removed and the liquid strained through linen. The shellac is then precipitated with dilute sulphuric acidadded drop by drop. The yellow shellac is washed until it is no longer acid. The well pressed cake is put in boiling water, when it becomes softened, so that it can be worked by the hands into rods, strings, or rolls, which are next put in cold water containing glycerine, so that it will harden quickly, and then dried.
"The hot, soft shellac must be squeezed, wrung, and

BAG AND TWINE HOLDER.

 [pressed to remove all the water. This refined shellac has a silver white brilliant surface, is yellowish-brown within, and must be perfectly dry, so as to dissolve without residue in alcohol." The presence of water in alcoholic solutions of any resin makes it turbid and milky.

The venerable Professor Listing, of Gottingen, died in that city, December 24, in his 75th year. Professor Listing numbered many warm friends among his scholars in this country, who will hear of his death with profound regret.

THE FOLIAN HARP．

The Æolian harp is a musical instrument which is set in action by the wind．The instrument，which is not very well known，is yet very curious，and at the request of some of our readers we shall herewith give a description of it．
According to a generally credited opinion，it is to Father Kircher，who devised so many ingenious machines in the seventeenth century，that we owe the first systematically con structed model of an Æolian harp．We must add，however， that the fact of the spontaneous resonance of certain musical in－ struments when exposed to a cur－ rent of air had struck the ob－ servers of nature in times of re－ motest antiquity．
Without dwelling upon the history of the Æolian harp，we may say that in modern times this instrument has been espe－ cially constructed in England， Scotland，Germany，and Alsace． The Æolian harp of the Castle of Baden Baden，and those of the four turrets of Strassburg Cathe dral are celebrated．
We shall first describe Kir－ cher＇s harp，which this Jesuit savant constructed according to an observation made by Porta in 1558．The instrument consists of a rectangular box（Fig．1），the sounding board of which，con－ taining rose－sbaped apertures，is provided with a certain number of strings stretched over two bridges and fastened to pegs at the extremities．This box car－ ries a ring that serves for suspending it．Kircher recom－harp swinging at the top of a tree deprived of verdure，and mends that the box be made of very sonorous fir wood， like that employed in the construction of stringed instru－ ments．He would have it 1.085 meters in length， 0.434 me－ er in width，and 0.217 meter in height，and would provide it with fifteen catgut strings，tuned，not like those of other instruments to the third，fourth，or fifth，but all in other instruments to the third，fourth，or fifth，but all in unison or to the octave，in order，says he，that its
shall be very harmonious．The experiments of Kir－ cher showed him the necessity of employing a sort of concentrator in order to increase the force of the wind， and to obtain all the advantage possible from the current of air that was directed against the strings． The place where the instrument is located should not，according to him，be exposed to the open air， but must be a closed one．The air nevertheless， must have free access to it on both sides of the harp The force of the wind may be concentrated upon such a point in different ways；either，for example， by means of conical channels，or spiral ones like those used for causing sounds to reach the interior of a house from a more elevated place，or by means of a sort of doors．These latter，two in number，are adapted to a kind of receptacle made of boards and presenting the appearance of a small closet．In the back part of this receptacle there is a slit，and in front of this the harp is hung in a slightly oblique position．The whole posterior portion of the appa－ ratus must be situated in the apartment，while the doors must remain outside the window（Fig．1）．In later times the Æolian harp has been improved by Messrs．Frost \＆Kastner，whose apparatus is repre－ ented in Fig．2．It consists of a rectangular box with two sounding boards，each provided with eight cat gut strings．In order to limit the current of air and to bring it with more force against the strings，two wings are adapted near the thin surfaces opposed to the wind，so that the cur－ rent may reach each group of cords on passing through the narrow aperture between the obliquely inclined wing and the body of the instrument．The dimensions of the resonant box are as follows ：height， 1.28 meters；width， 0.27 meter； and thickness， 0.075 meter．Distance between the two bridges，or length of the sonorous portion of the cords，about 1 meter；width of the wings， 0.14 meter．Distance between the sounding board and the wings， 0.42 meter．Inclination of the wings， 50 degrees．
The celebrated Æolian harps of the old castle of Baden Baden are entirely different，and merit description．One of them（Fig．3）is formed of a resonant box，the construction of which differs from that of 巴olian harps with a rectangu－ lar box，in that it is prolonged beyond the place occupied by the strings，and is rounded off behind．In the opposite side there are two long and narrow apertures．To prevent the ap－ paratus from being injured by the weather，it is inclosed in a sort of case occupying the recess of the window in the old ruined castle in which it is exposed．Behind the harp there is a wire lattice door，the purpose of which seems to be to pro－ tect the instrument against the attempts of robbers or the in－ discreet contact of tourists．We annex to the general view of the instrument a front and profile plan（Fig．4）．The Æolian harp has often inspired both writers of prose and poetry． Chateaubriand，in Les Natchez，compares its sounds to the magic concerts that the celestial vaults resound．Without attributing such effects to the instrument，it must be ad－ mitted that it possesses remarizable properties，which act sions，according to the temperament of those who listen to La Nature．

ig．3．－EOLIAN HARP IN THE OLD CASTLE OF BADEN BADEN．
instantly calmed by the sweet and varied accords of an Æo－ lian barp．Other observers narrate that they have heard the efficacy of Æolian sounds spoken of in Scotland for produc ing sleep．
Telegraph wires are often，under the influence of the winds，submitted to vibrations which reproduce the phe－

Fig．4．－PLAN OF THE BADEN BADEN INSTRUMENT．
nomena of the Æolian harp．The electric telegraph，which， before the construction of the Kehl bridge，directly traversed he Rhine，very frequently resounded，and the observer who placed his ear against the poles on the bank of the river was
upon the nervous system and cause very different impres－enabled to hear something like á far－off sound of bells．－
its accords．
Hector Berlioz，in his Voyage Musicale en Italie，has given as follows the curious effects that an Æolian harp produced upon his lively and impassioned imagination：＂On one of those gloomy days that sadden the end of the year，listen， while reading Ossian，to the fantastic harmony of an 酉olian

Fig．2．－FROST \＆KASTNER＇S IMPROVED $\mathbb{E} O L I A N ~ H A R P ~$

The Disinfection of Tubercle．

From current theories of the infective nature of tubercle， it naturally becomes exceedingly important to ascertain by what agents its virulence may be most effectually neutralized． A series of experiments on this subject have been communi－ cated to the Academie de Mede－ cine by M．Vallin．Fragments f tubercular pulmonary tiscue removed from the body of a man who had died of phthisis were well mixed with distilled water， and fifty centigrammes of the fil－ tered liquid were injected into the peritoneal cavity of a guinea pig． No inflammation was produced， but at the end of a few weeks the animal began to lose flesh， and died at the end of the fourth month．The liver，spleen，and ungs were full of granulations and gray masses，transmissible by inoculation．It was this sec－ ondary tubercular substance which supplied the material for the inoculation experiments． With distilled water，an infusion of caseous fragments of the or－ gans was made，and a sheet of filtering paper was saturated with the liquid and then allowed to dry．It was then cut up in strips of the same width，each of which would yield，to a small quantity of water，a similar dose of the virus．Preliminary experiments harp swinging at the top of a tree deprived of verdure，and showed that the inoculation of this produced tubercle with I defy you not to experience a profound feeling of sadness
and of abandon，and a vague and infinite desire for avother existence．＂
An English physician，Dr．J．M．Cox，in his practical Observations upon dementia，asserts that unfortunate lunatics have been seen whose sensitiveness was such that ordinary have been seen whose sensitiveness was such that ordinary
means of cure had to be given up with them，but who were certainty．Some strips of the paper were exposed to the ac tion of various disinfectants．In a chamber fifty cubic me ters in area，strips were exposed to the fumes of sulphur for twenty－four hours．The results showed that it was neces sary to burn twenty grammes of sulphur in this chamber to render the virus innocuous．When the quantity burned was an twenty grammes；the animals usually died tubercu lous．Boiling water was found invariably to secure immunity，and so also did corrosive sublimate in a solution of one per thousand．The conclusion M． Vallin draws from the experiments is that it would be well every year to purify by sulphurous fumiga－ tion all prisons，barracks，hospitals，and schools． Lancet．

Improved Papier Mache Process

A durable and inexpensive method of employing papier mache as a substitute for mattings，carpets， oil cloths，and other floor coverings has been intro duced，says the Providence Journal，the simplicity of the process being also an additional advantage in its favor．After the floor has been thoroughly cleaned the holes and cracks are then filled with paper putty， made by soaking newspaper in a paste made of wheat flour，water，and ground alum，that is，to one pound of such flour are added three quarts of water and a tablespoonful of ground alum，these being thoroughly mixed．With this paste the floor is uni formly coated，and upon this a thickness of Manila or hardware paper is placed，or if two layers are de－ sired，a second covering of paste is spread on the
first layer of Manila paper，and then the second thickness of paper is put on，and the whole allowed to be－ come perfectly dry；on this being accomplished anotber sur face of paste is added，succeeded by a layer of wall paper of any style or pattern desired．On the work becoming entirely dry，it is covered with two or more coats of sizing，made by dissolving one－half pound of white glue in two quarts of hot water，and when this has dried，a coat of＂hard oil finish varnish，＂nothing more being required after the latter has had time to become thoroughly dry in every part．

The Niagara Ice Bridge．

An unusually extensive and interesting ice bridge was formed early this winter across the Niagara River below the falls．

The architect of this stupendous structure，says an intel－ ligent observer，is the south wind．A steady blow from this quarter causes the ice in Lake Erie，twenty－five miles away，to break up into gigantic fragments，which float down the current of the Niagara until they shoot the rapids and plunge over the cataract－a sight worth a long journey to see Below the falls some of these enormons cakes lodge，here against a rock，there upon the beach at the foot of a cliff． Others follow，and，tossed by the seething billows against their predecessors，find lodgment also．They are welded by the frost and dashing foam，and this process goes on until the river is covered from shore to shore．The accumulation increases，the cakes of ice being forced under the mass by the pressure of the waters，until，as now，the bridge extends from shore to shore，and from the foot of the great cataract way down nearly to the railway suspension bridge，three miles，and of a thickness often equal to the tallest of city business blocks．

Substances Used in Amalgamating.

The application and modification of the amalgamation process, as practiced on the Comstock, bas occasioned among experienced millmen great doubt as to the beneficial results derived from the use of any chemical agents at present mixed with the ore. This doubt is occasioned, or at least strengthened, by the custom of late years of decreasing the quantity of salt and sulphate of copper added to the charge, without apparently diminishing the product of bullion. Many amalgamators now abstain from the use of both reagents; others add a small quantity of sulphate of copper, but no salt; in a few instances the custom is to throw in only a little of the latter, while in many mills the rule is to employ a small amount of both substances, owing to a slight prejudice against the abandonment of "chemicals" altogether.

The action exerted by these two reagents in the pan would appear clearly to indicate that the benefits derived from their use are partly to aid in converting the sulphide into chloride of silver, as in the patio, and partly to decompose such minerals as are but slightly attacked by the mercury. In the Comstock process, however, the large quantity of iron present must tend greatly to produce subcbloride of copper almost as soon as the chemical agents are thrown into the pulp.

Notwithstanding the importance of common salt and sulphate of copper in the patio, and, under certain conditions, in the pan, their value must be considered as only secondary in the decomposition of a large proportion of the Comstock ores. The advantages derived from their use are shown to be exerted chiefly upon such minerals as blende and galena, which are but slightly attacked by the mercury. But the amounts employed are in most cases too small to effect any favorable results. On the other hand, if a sufficiently large proportion of the reagents are consumed in the pulp, in order to produce the beneficial returns, it is always at the expense of preserving the necessary purity of the mercury. The quantity of salt deemed necessary by millmen varies from one-quarter of a pound up to seven or eight pounds per ton; scarcely any two establishments have the same rule.
The consumption of sulphate of copper also depends upon the ideas of the amalgamators, but the amounts do not differ so widely as in the case of the salt. It ranges from onequarter of a pound to three pounds per ton.
The addition of the sulphate without salt is of late years a common practice. The opinion among those who work their ore in this way is that it gives a little better yield than when mercury alone is employed, particularly where the ore indicates the presence of galena in any considerable amount, in which case it is said to "quicken" the mercury and render it more euergetic.
Continued experience appears to determine this fact with a considerable degree of certainty. In working ores containing only a small percentage of lead, the quicksilver very soon becomes dull and inactive, or, as it is technically termed, it "sickens," and the yield from the pan is consequently low. Lead is one of the most deleterious metals in destroying the amalgamating energy of mercury, and at the same time is very rapidly absorbed when the two metals are brought into contact. Sulphate of copper possesses to a certain extent the property of expelling lead from the mercury, copper being amalgamated and sulphate of lead formed at the expense of the sulphuric acid of the copper salt.
If a concentrated solution of sulphate of copper be allowed to stand upon the lead amalgam, the action takes place quite rapidly, mercury containing lead acting much more energetically upon the copper solution than when perfectly pure.
This salt, however, dees not appear, under any circumstances, to possess the power of completely driving out the lead.

Another advantage derived from the addition of a small quantity of the sulphate of copper is that mercury, under certain conditions, when exposed to the solution, forms a minute amount of copper amalgam, which causes the metal to act with a somewhat, greater intensity in the decomposition of the silver sulphide than when perfectly pure. Iron, as a reducing agent in the pan process, probably plays an important part in bringing about the favorable results obtained. This may occur, according to Mr. Hague, in three ways:
First.-It, aids in a great measure the decomposition of the chloride of silver.
Secondly.-It reduces the calomel formed during the operation; the chlorine combining with the iron, goes into solution, and the heavy metal is liberated. In this way it not only prevents a chemical loss of mercury, but also serves to keep the surface of that metal bright and clean, which otherwise might be coated with a thin film of subchloride, which would greatly destroy its activity.
Thirdly.-It undoubtedly assists directly in the amalgamation where the two metals are brought into close contact with the easily reducible sulphurets. The successful and continued operations on the Comstock without the aid of any other chemical agents sufficiently prove this statement. The experiments in treating argentite and iron filings with mercury confirm the fact
Humboldt, in speaking of the amalgamation problem in Mexico, draws attention to this point, and remarks upon the rapidity with which amalgamation was secured when
action of iron is obtained not only from the constant agita tion maintained, which brings the pulp and metal in coutact with the sides and bottom of the pan, but also from the amount of iron disseminated in a fine condition through the ore, produced by the wear of the stamps, shoes, and dies.Mining and Scientific Press.

Consumption of wood.

It would seem from the following statistics that the inventors of wood sawing and splitting machines have an ex traordinarily large field for the use and sale of improve devices.
The Census Bureau has presented its figures respecting the consumption of wood as fuel for the census year 1880. The number of persons using wood for domestic purposes is given at $32,375,074$, and the record of the various States and Territories, in amount and value, is shown in the following table:

	cords.	value.
Alabama	6,076,754	\$8,727,377
Arizona	170,017	724.572
Arkansas	3,923,400	5,095,821
California	1,748,062	7,693,731
Colorado..	426,719	1,638,783
Comnecticut	525,639	2,371,532
Dakota	422,948	3,028,300
Delaware	177,306	751,311
District of Columbia	26,902	80,706
Florida.	609,046	1,230,412
Georgia.	5,910,045	8,279,245
Idaho....	99,910	383,689
Illinois.	5,200,104	14.136 662
Indiana	7,059,874	13,334,729
Iowa	4,090,649	14,611,280
Kansas	2.095,438	7,328,723
Kentucky	7,994,813	13,313,220
Louisiana.	1,944,858	4,607,415
Maine	1,215,881	4,078,137
Maryland.	1,152,910	3,170,941
Massachusetts.	890,041	4,613,263
Michigan.	7,838,904	13,197,240
Minnesota	1,669,568	5,873,421
Mississippi	5,090,758	7,145,116
Missouri.	4,016,3\%3	8,633,465
Montana	119,947	460,638
Nebraska	908,188	3,859,843
Nevada	155,276	972,712
New Hampshire	567.719	1,964,669
New Jersey	642,598	2,787. 216
New Mexico	169,946	1,063,360
New York	11,290,975	37,539,364
North Carolina	7.434,690	9,019,569
Ohio...	8,191,543	16,492.574
Oregon	483,254	1,254,511
Pennsylvania	7,361,962	15,067,651
Rhode Island.	154,953	706.011
-Stuth Carolina,	3;6\%0.959	11.505,997
Tennessee	8,084,611	10,674,722
Texas.	4,883,852	10,177,311
Utah	171,923	418,289
Vermont	782,338	2,509,189
Virginia	5,416,112	10,404,134
Washington	184,226	499,904
West Virginia	2,241,069	3,374,701
Wisconsin	7,206,126	11,863,739
Wyoming	40,218	224,848

T'otal............................... 140,537,439 \$306,950,040
Other lines of consumption as a total for the United States e represented by the following figures:

	cords.	value.
Railroads	1,971,813	\$5,126,714
Steamboats	787,862	1,872,083
In mining and amalgamating precious metal.	358,074	2,874,593
Other mining operations...	266,771	673,692
Manufacture of brick and tile...... ..	1,157.522	3,978,331
Manufacture of salt.	540,448	121,681
Manufacture of wool.	158,208	425239

The consumption of charcoal in the twenty largest cities in the United States, in the manufacture of iron and in the production of the precious metals, is placed at $74,008,972$ bushels, valued at $\$ 5,276,736$. Maine and Massachusett imported some wood from Canada.

Car for Transporting Live Fish.

One of the fish cars of the United States Fish Commission was recently" dispatched from Washington for California with a cargo of live fish-some 18,000 in number-for stocking Western waters. As described by the Washington Star these cars resemble in external appearance, and to a large extent in internal arrangements, a modern sleeping car There are compartments at each end, one for the superintendent, the other for a kitcben. Through the middle por tion of the car an aisle runs between wide ledges, on each side, for supporting the tin tanks in which the fish are carried. There are two ice boxes next the superintendent's room, for cooling the air of the compartment in which the fish are carried. Delicate fish are transported in pails holding a gallon of water, and accommodating about twenty ish each. These pails are then placed in the water tanks. By this plan the young fish are protected from being dashed to death by the motion of the cars. In transporting carp the pails are sufficient. The motion of the water due to the motion of the cars helps to keep the water well aerated. Care is taken, however, to renew the water every
eight hours, and to remove promptly any fish that may die. The loss by this method of carriage is very small.

The Ice Plant

This annual plant, the botanical name of which is Mesem brianthemum crystallinum, and which is remarkable for the transparent vesicles filled ${ }^{\text {w }}$ with water, and resembling frozen dewdrops, that cover its fleshy stem and large, thick leaves, is also a striking instance of the elective power of ronts, whereby plants can take up from a complex soil the mate rials proper to them.
M. Mangon has cultivated it for seven or eight years, in La Manche, on the same ground with cabbage, celery, etc., and while these latter had their normal composition, the ice plant dried and burnt, furnished an ash with so much of chlorine and alkalies that at first he was inclined to think that some mistake had been made in weighing. Taking six pecimens, he finds the average percentage composition in 100 kilogrammes to be: water, 96.810 ; combustible matter, $1 \cdot 800$; ash (comprising chlorine, potash, soda, and other mineral matters), $1 \cdot 390$. The plant, then, is formed of a weak solution of alkaline salts, held by a vegetable tissue whose weight reaches less than 2 per cent of the total mass. The ashes formed of salts of soda and potash form nearly half (43 per cent) of the dried plant. This composition recalls that of seaweed. From one hectare ($2 \cdot 47$ acres) of ice plants M. Mangon obtained 1,820 kilogrammes of ashes conaining 335 kilogrammes of chlorine, as much soda, and 588 kilogrammes of potash, the latter capable of furnishing 868 kilogrammes of carbonate of soda, or nearly as much as is got from incineration of one hectare's yield of the saltwort at Alicante. M. Mangon asks whether the cultivation of the ice plant as a potash plant might not be lucrative under certain conditions; in any case, it would probably be useful, he thinks, in removing from the salt ground on the Medi terranean coasts (its place of origin) the excess of alkalinu salts which render it unproductive.

Novel Gas Burner.

The latest novelty in the way of gas burners is now to be seen in action at the Crystal Palace, Jondon, so says the Lancet, and all who see it will confess that the inventor hay succeeded in getting a most powerful light by the consumption of a very moderate amount of gas. The light is evolved from a cage of platinum wire, which is kept at a white heat. An ordinary gas pipe is fitted with a Bunsen burner of rather special construction, and the flame is further supplied with a jet of air under pressure, so that practically the Lewis light consists of a platinum gauze cage kept at a white heat by means of an automatic blowpipe. It is needless to say that special arrangements are necessary for supplying he air jet to the flame; but the arrangements are comparatively simple, and will not, we think, militate against the introduction of the Lewis light. It need not be said that the light gives off no smoke, and that the combustion of the carbou is perfect. Further, it is not influenced by any amount of draught, and cannot be extinguished or sensibly affected by blowing upon it, so that the light requires no protection in the shape of chimney or globe. The light given off is equal to that of five candles for every cubic foot of gas consumed per hour, and an ordinary Lewis light consumes twelve and a half feet per hour, and gives off the light of fifty candles. The light can easily be made to ventilate. The heat given off is necessarily considerable, and we think the light will prove more generally useful for street lighting than for inside lighting. Unless provided with means of ventilation, the Lewis light would certainly be too hot for use in ordinary sitting rooms.

Photographing Speech.

The Photo. News says: The new system of teaching the deaf and dumb by directing them to look at a person speaking, and to note the position of his lips in giving utterance to different sounds, has now been in practice for several years on the Continent; and, as our readers are probably aware, has also been adopted in this country with some success. A Continental teacher has now bit upon a plan of furthering the instruction by having recourse to photography. A model has been chosen whose lips are particularly expressive in their action, and a series of photographs taken of him while pronouncing the different sounds that go to make up a language. Such a "speaking likeness" has been obtained, that, in many cases, even an untrained observer has little difficulty in guessing the letter on the lips of the model, as the photographs are displayed one after another. Mr. Warnerke exhibited several of the pictures at the last meeting of the Photographic Society.

Stopping Engines by Electricity.

We lately described an electric apparatus for closing the valve of an engine and thereby stopping it. This apparatus is now at work in some of the large mills at Dundee, in Scotland. In describing the apparatus at work, the Dundee Advertiser says: "The buge engine in Manhattan Works Colonel Sandeman's), workıng at from six hundred to seven bundred horse-power, and driving a fly-wheel of about thirty. five tons weight, formerly took two minutes to come to rest after the steam had been: taken off. This apparatus has been fitted to it, and the ponderous engine is now brought up in thirty seconds. To see this powerful, majestic piece of machinery, the developer of power for a large range of works, almost immediately brought to a standstill by the mere touching of a button at the far end of the building is an impressive illustration of the easy control of enormous force by wisely ordered arrangements. To mill-owners the utility of the apparatus will be evident."

RECENT INVENTION.

improved Harness Loop

This invention belongs to the class of loops baving two openings for the strap or straps formed by an intermediate plate to which the strap is riveted, and it consists in a metallic double loop with the top plate and the bottom plate, located aside from the plane of the rivet, which is inserted tbrough an intermediate plate. The side plates may be made narrow to save material, or they may be made broad enough to cover the edges of the strap. When made broad they will add materially to the strength of the loop, and at the same time present a surface which may be rendered highly ornamental to the harness. In attaching the strap to the loop,
one end of the strap is to be doubled upon itself as shown in the sectional view, so as to include the intermediate plate between the folds, and the rivet is then to be passed througb the folds and said plate and secured in the ordinary manner. The heads of the rivet will thus lie in contact with the yielding leather, and will be less exposed to the danger of being wrenched off than when in contact with the metallic plate. The strain upon the strap or trace, as the case may be, will thus be thrown upon the center of the rivet instead of one end, and being thus equalized, there is less danger of the parts separating under strain. This invention has been pat ented by Mr. Henry A. Pott, of Cape Girardeau, Mo.

Effects of Iron on Digestion.

In an inaugural dissertation published at Berlin, Dr. A. Düsterhoff records the results of some experiments bearing on this subject. One gramme .f fibrin was added to twenty c.c. of artificial gastric juice, and during digestion equivalent quantities of various preparations of iron were also added. At the end of the process the undigested fibrin was dried and weighed, and the quantity of soluble syntonin in the solution was also estimated. The time of digestion was in one case three hours ten minutes, in another it was seven hours and a half. In the first series $0 \cdot 0614$ gramme of metallic tron was in eacb case added, in the form of pyrophosphate, perchloride, and protolactate respectively. In the second series various other preparations were used, the amount of metallic iron being in each case equivalent to 00077 gramme. Other experiments were made with white of egg, the amount of albumen precipitated by boiling after digestion being estimated. The outcome of the experiment is, that the organic salts of iron seriously hinder and check peptic digestion. Probably the hydrocbloric acid rof the gastric juice displaces the organic acidsfrom the iron salts and so is used up ; while the free organic acids in the digestive fluids are far less powerful digestive agents than the hydrochloric acid. But this cannot be the only cause at work, for perchloride and phosphate also tend to hinder digestion. Even reduced iron has a similar effect, for it partially dissolves in the juices, forming chlorides. Its solubility, like that of the phosphate, is however not very great. Ferrous salts seem to interfere less with digestion than ferric salts.-Practitioner.

Proposed Improvement in Soda Manufacture.
A very interesting and exhaustive paper on the present position of the soda industry was read before the London Section of the Society of Chemical Industry on January 8, 1883, by Mr. Walter Weldon, F.R.S., chairman of the section. In the course of his remarks the author referred to the conversion of coal into coke by the user, and the utilization of the by-products and gases in the following terms: There has come to me from Newcastle a very bold but, I venture to think, quite practical suggestion, the result of which can hardly fail to be of enormous importance, not only to the soda indiustry, but to almost all industries whatever. That suggestion is that the soda maker sbould entirely cease to use raw coal as fuel, but should convert all his coal into coke, collecting for sale the oil and ammonia evolved during its conversion into coke, and himself using for heating purposes the gases evolved during the coking operation and the coke itself. It is believed that in the Newcastle district, at any rate, by this mode of proceeding the soda maker would obtain bis fuel virtually for nothing. In that district there is produced per annum some two millions of tons of very small coal or "duff," which is almost a waste product, and which, singularly enough, yields more oil than the more costly kinds of Newcastle coal, while at the same time yielding a very fair coke, sufficiently good, at any rate, for use in the furnaces of cbemical works, especially when its combustion is assisted by that of the gases from the ovens in which the coke is produced; and the value of the oil and ammonia obtained when this "duff" is coked in ovens to which the Jameson system is applied, is greater than the cost of the "duff," plus the cost of coking it. And it is probable that improved condensing arrangements will render the yield, if not of oil, at any rate of ammonia, so much greater than the yield bitherto actually realized as to enable the same result to be obtained in the case of ordinary steam coal, not only in the Newcastle district, but in the Lancashire district also. If so, the cost of producing Leblanc soda in both districts will be diminished by almost the total amount of the present cost of Leblanc soda for fuel. I say "almost," because, so far as one can
see, the use of raw coal for " mixing" in the blackash process must still be continued. And it seems to me that this idea cannot but be as applicable to almost all other industries as to the soda industry; while the result to the material well being of mankind of its general application, it is utterly beyond the power of any imagination adequately to conceive. This idea means, among other things, cheaper fuel for all purposes, an enormously increased supply of agricultural produce, and the entire, suppression of smoke even in the busiest centers of industry. It means that manufacturing towns by and by shall no longer deserve such names as that which Mr. Matthew Arnold recently applied to St. Helens, aud may even become tolerable in the sight of $\mathbf{M r}$. Ruskin. And for my own part I venture to think that the same idea might be applied even to the fuel required for domestic purposes, rendering London absolutely free from smoke, and pea soup fogs only things of tradition. I think hat the time will come when our gas works will be replaced, at least to a large extent, by establishments in which coal will be treated for the production of coke, illuminating oils, ammonia, and heating gases: the coke to be burnt in our domestic fire places, the oils to be used for lighting the interiors of our houses, the ammonia to be employed in agriculture, to cheapen and render more abundant our supplies of food, and the gases to be burnt for raising steam for driving dynamos for lighting our streets by the electric arc.

Awards for Inventions to Workmen.

In respect to a scheme of awards to workmen which has been established by Messrs. Denny in their shipbuilding yard at Dumbarton, we learn, says Iron, that the committee's annual report for the year just closed is gratifying. The committee state that during the year 1882 they have had under consideration twenty-seven new and four postponed claims. Of these twenty-one have been considered worthy of award, seven have been rejected, and three are still under consideration. When compared with the preceding year, there is a slight decrease in the number of claims received; but, on the other hand, the awards made are all but equal, while some of the inventions are of even greater merit and value than any previously brought forward. The committee also state that the total sum paid in grants is about one-half more than last year, owing to the greater value of some of the claims, and the more liberal scale of payment adopted by the committee, as was intimated at the beginning of the year. The joiners, as in former years, take the first place in the list of the successful claimants, about one-half of the awards going to that department alone. Siace the awards scheme was started two and a half years ago, the committee have received seventy-one claims for adjudication, of which number fifty were considered worthy of award; the total sum paid amounting to £171, being £18 in 1880, $£ 62$ in 1881, and $£ 91$ in 1882 . In contradiction to the belief entertained by many that the workmen would soon exhaust their resources in the matter of invention and improvements, the report goes on to show that the reverse is
the case, as the past year has witnessed better results than any preceding one. Some of the improvements have evinced considerable inventive talent, and in two cases the highest
granted.
[According to the above account, fifty useful inventions have been made, for which $\$ 855$ have been paid, being an average of a trifle over $\$ 17$ for each. Rather poor encouragement, that, for genius.]

Consul King, writing from Birmingham to the State Department, says: Large quantities of American produce continue to be sold here, and many American "notions" are to be found. One or two firms seem to do a good business in selling American stoves and ranges; and I think that the dealers in American meat find the prejudice against it has generally disappeared, now that, for a time, the supply has been uncertain.
I bave spoken before of American apples and have suggested more careful packing, but I venture to urge this again. These apples are generally admitted to be better than European apples, and the taste for them is general, yet several dealers here have told me that they must cease to deal in them, because they arrive in such a condition that it is necessary to put a price upon the few that remain sound which purchasers object to paying.
I have frequently wondered if our grapes, by careful pack ing, might not compete with Spanish grapes in the English markets. Enormous quantities of Spanish grapes are sold in this country. Very fair ones can be bought at retail at sixpence a pound. They come carefully packed in sawdust, but they are tasteless, and I feel sure that if American grapes could be offered for sale here in as good condition, the variety and superiority and individuality of their flavor would recommend them, even at a slightly higher price.

Mr. E. F. Loiseau, inventor of the process and machinery for manufacturing the pressed fuel from antbracite coal dust, who two years ago lost the sight of one eye from a cataract, has been again unfortunate in suddenly losing the use of the other eye from the same cause. . Recently while returning from the works at Port Richmond; be was nearly run over by a cart, and had to be taken home by a gentle-

Birds and Telegraph Wires.

Some very curious observations have been made on the German telegraph lines at the instance of the Secretary of the Post Office. Herr Massmann stated in a paper read before the Electrotechnic Society of Berlin, that in districts where there are no trees he found that the smaller birds of prey, such as crows and magpies, are very fond of roosting on telegraph poles, while sparrows, starlings, and swailows frequently alight on them in great numbers. Swallows like to build under the eaves where wires run into telegraph offices, and sometimes cause an "earth" contact.
Contacts between wire and wire are frequently caused by large birds, such as bustards, storks, swans, and wild ducks. They cause the wires to swing and sometimes to break. Accidents of this kind were frequent when the wires ran by bighroads, along which young geese were driven to their pastures. Smaller birds, even partridges, are generally killed by the shock of striking the wires. They do not cause much damage to the lines. Holes are often pecked through the poles by woodpeckers (the Picas martius, or black woodpecker, the P. viridis, or green woodpecker, and the P. major, or piebald woodpecker). These birds spare no kind of wood, unprepared pine and oak poles, as well as poles treated with sulphate of copper, chloride of zinc, or sublimate of mercury. Some even state that they will attack creosoted poles. The theory that the birds mistake the vibrations of the wires in the poles for insects bumming is doubted by Herr Massmann, who states that they often find insects in the dry poles.

The Latest Electrical Discovery.
The Rev. Mr. Gilbert, during an address at Christ Church the other night, remarks the Otago Times, while speaking of the telephone, asked his audience if they would be astonished if he were to tell them that it was now proved to be possible to convey by means of electricity vibrations of light -to not only speak with your distant friend, but actually to see him. The electroscope-the name of the instrument which enabled us to do this-was the very latest scientific discovery, and to Dr. Gnidrah, of Victoria, belonged the proud distinction. The trial of this wonderful instrument took place at Melbourne on the 31st October last in the presence of some forty scientific and public men, and was a great success. Sitting in a dark room, they saw projected on a large disk of white burnished metal the race course at Flemington with its myriad hosts of active beings. Each minute detail stood out with perfect fidelity to the original, and as they looked at the wonderful picture through binocular glasses, it was difficult to imagine that they were not actually on the course itself and moving among those whose actions they could so completely scan.

Spencer B. Driggs.

Spencer B. Driggs died at his residence, 3 East Forty-first treet, in this city, on January 26, 1883. He was born near Auburn, N. Y., on January 5, 1822. In 1855 he came to New York city and organized the Driggs Patent Piano Company, his instruments containing valuable improvements. Mr. Driggs will be best remembered by his success in draining the Hackensack meadows, which comprise that great swampy region lying between Jersey City and Newark, N. J., a task which others had attempted and failed in accomplishing. He laid nine miles of iron dike around a part of the meadows, bought by the late S. N. Pike, of Cincinnati. After the land was drained a part was sold to the Pennsylvania Railroad Cumpany, and the round houses and workshops now standing on the meadows were built on the drained land. The railroad company paid $\$ 1,200$ an acre for the swamp which Mr. Driggs had paid $\$ 25$ an acre for. Tobacco, corn, potatoes, and hay are now grown in other parts of the meadows which were once a salt marsh. Mr. Driggs' mind was full of novel plans. At the time of his decease he bad just completed a new system of running gears for railway cars, that he expected would greatly reduce the costs of transportation.

Archæological Discovery in Asia Minor.

A discovery has been made lately by a Bavarian archæoloyist, Herr Sester, at the point where the Euphrates bursts through the Taurus Range. Here, in a wild, romantic district, lying between Madatieh and Sanisat, he found a line of megalithic monuments, averaging between 55 and 60 feet in height, and bearing inscriptions They are in a remarkable state of preservation, and Herr Sester has no doubt that they formed a part of some great national sanctuary, dating back some 3,000 years or more. There was formerly at this place a necropolis of the old Commagent kings, so that it seems rea sonable to attribute these colossal monuments to this ancient people, the hereditary foes of the Assyrians. Very little is known about them. The classical writers allude to them only in casual passages, and the arrow-headed inscriptions, although mentioning them very often, have hitherto yielded scanty information.

The new five-cent piece just issued is a little larger and binner than the old one, and possesses the same lead appearance. On one side is the head of Liberty, the date, and the usual thirteen stars. On the reverse is a \mathbf{V} in a wreath of cotton, wheat, and corn, surrounded by the inscriptions, "United States of America." and "E pluribus unum." The letter V in the center does notindicate if the value of the coin is five cents, or five dollars, which seems to be an unfortunate oversight.

ENGINEERING INVENTIONS.

A car brake of simple device has been patented by Messrs. Alden D. Kiiborn and William F. Smith, of Tuscon, Ariz. Between the brake beams on
car trucks the connecting rod is provided with springs so arranged as to produce an elastic connection between
An forward and rear brakes.
An improved car coupling bas been patented
y Mr. Edward S. Carter, of Keokuk, Ia. The invenby Mr. Edward S. Carter, of Keokuk, Ia. The invention consists in a coupling loop or link which is arched
upward in the direction of its length, one end of the upward in the direction of its length, one end of the
link being secured upon a shaft, so that the points of bearing are confined to the pin heads, and a loop is appied to the drawhead without providing a fiat sur-
face for the link, as is required in the ordinary coupling An improved car coupling has been patented by Mr. Asa Kenton Owen, of Tennessee, III. The in-
vention consists in a drawhead having a recess in the ventior surfece and a raised outer end provided with a upper surface, and a raised outer end provided with a
vertical recess. A tranverse rod passes through the
drawhead and through the est in the disk and has drawhead and through these elot in the disk, and has a
plate or block which is in the slot, so that the arm will plate or block which is in the slot. so that the arm will
be sung wen
Mr. Ross B. Meeker, of Sandford's Corners, N. Y., has patented an improvement which relates to
the laying of the rails on railroads. The invention con. sists of metal ties, stay bars, and joint connections contrived for dispensing entirely with the wood ties now constructioni, and may be adjusted to the rail quite readily.
A noiseless and durable railroad frog has
een patented by Mr. William H. Waters, of Muskegon Mich.. which consists in a filling of cast metal applied between the side rails of the frog and around the point
by pouring the molten metal so that the block fits nugly beneath the heads of the guard rails and to the flanges, and is thus retained securely in place. The
metal becomes chill hardened by the surrounding iron and becomes immovable, consequently there is no ratMessrs. Dudley W. Haines and
Messrs. Dudley W. Haines and Alwyn D. Hankerson, of Readfield, Me., have patented a car
coupling of novel and useful construction. By the improvement just patented the brakeman is able to couple
and uncouple from either side or top of the car without and uncouple from either side or top of the car without
passing between the cars when being brought together, passing beiween he danger of being crushed. When it
thas avoing the teong
is desired to connect two cars, the coupling pin is is desired to connect two cars, the coupling pin is
raised by a crank attachment operated by a chain, one end of which is secured to the corner of the car, and the other end to the crank which raises the pin.
An improved rock drill of light, simple, but durahle construction has been patented by Mr. William
J. Barber, of Covington, Ind. It consists of a screw threaded drill rod mounted upon a firmly planted tripod, and connected with it is a cam wheel furnished with a
handee for turning the same, by means of which wheel hande fur turning the same, by means of which wheel
the drill rod is elevated in the air and then suddenly permited to fall, and at the same time the drili rod 1 is is readjusted on the rod, so as to reach deeper in the drill hole.
An improved combustion chamber för steam boilers has been patented by Mr. James Scott, of Pitts-
burg, Pa. The invention consists of a combustion chamber supplied with gases from a blast furnace using either coke, coal, or charcoal, and as soon as the cham-
ber becomes heated, air is forced by a blower into the combustion chamber. The air passing through the p pass-
ages to the chamber becomes i ighly heated with the gases in the best possible conditions for promoting combustion. In this manner the heated gases
are utiliz z, and $i t$ is claimed that no solid fuel is required to maintain combustion.
A system of transporting cars on a single track elevated above the ground is the subject of a The invention consists of a light rail mounted upon a frame, which is firmly planted in the ground. Upon
this rail the car is made to run, which is constructed of light metal and mounted upon two wheels, and which carries the panniers of the wagon on each side. The method of transporting merchandise and troops, and is mines.
An improved tipping wagon has been paThe wagon is of such construction that the truck may be The wagonis of such construction that the truck may be
tipped at either side (or end, as the case may be) and the truck body may be given a combined movement of translation and oscillation, whereby the load may be
discharged quite clear of the rails, and even to a greater discharged quite clear of the rails, and even to a greater
distance therefrom than is possible with an ordinary pivoted truck of the same height and form of body, the ipping and righting or liable to be fouled by dirt or to get out of order with rough usage.

An improved propeller, the object of which

 the vessel may be steered in case of injury of the which ing apparatus, has been patented by Mr. Ephraim Shay, of Haring, Mich. The invention consists in the combination with a tube, situated within the stern of the hull of a vessel and open on each side, of a gearing appa-ratus operated by a shaft, by which are set in motion ratus operated by a shaft, by which are set in motion
two propellers fixed on oppositely rotating shafts, whereby the two propellers will move in opposite directions, but co-
same direction.
An improved caloric engine has been patented by Mr. Thomas Beesley, of Muscatine, Ia.
This invention relates to the application of force geneThis invention relates to the application of force gene-
rated by expansion of air and water by electric currents. this force being utilized for action ou a piston
fitted for reciprocation in a cylinder. For heating and expanding the air and converting the water to steam, an electric arc is used inside the generating chamber. The combining of a pump for supplying water in jets, and a pump for supplying air, with a generating cham-
ber, heated by an electric current for producing exber, heated by an electric current for producing ex-
pansion of the air, and conversion of the water to steam,

A novel car coupling has been patented by Mr. George A. Cline, of Philadelphia, Pa., which con-
sist in a drawhead in which is pivoted a U -shaped sists in a drawhead in which is pivoted a U-shaped piece having a long and a short shank, provided with
ooks at the ends. The U-shaped piece is pressed in looks at the ends. The U-shaped piece is pressed in
the direction in which the books project by a spring the direction in which the books project by a spring
acting on its rear end, whereby, when two drawheads strike ongettere, the hooks will catch on each other and couple the cars automatically. If the cars are to be unanpled, the hooks of the U-shaped piece are moved
rom each other by turning shafts provided with cam. lugs which act on wings at the rear ends of the pivoted U-shaped pieces, and thus press these pieces in the in-
verse direction of that in which they are pressed by the orings, and permit them to be disengaged.
Mr. Leo Ebrlich, of St. Louis, Mo., has patented a portable transfer track for street railroads, the
bject of which is to provide means for enabling object of which is to provide means for enabling a
car to "skirt" or pass around any obstruction on car to "skirt" or pass around any obstruction on
the road without the necessity of jumping the track. The invention is designed more particularly for streee cars, whose travel is frequently arrested by the break
ng down of heavy vehicles on the track, but it mat ng down of heavy vehicles on the track, but it may
be used upon steam railways, in transferring cars from one track to another, or from a track to a siding without the necessity of running to a switch. To acomplish hthis a pais of skid rails with tapering ends
for each track and a set of transfer rails are provided, for each track and a set of transfer rails are provided,
to span the skid rails. Upon these rails platform truck o span the skid rails. Upon these rails platform truck
frames are placed to support the car which is being frames are placed to support the car w,
transferred from one track to the other.
A stock car of improved form has been patented by Mr. Adolph V. Anderson, of Virginia City,
Nevada. The invention consists in a stock car with Nevada. The invention consists in a stock car with
extension partitions forming stalls, and having at the extension partitions forming stalls, and having at the
top feed compartments provided with discharge tubes, top feed compartments provided with discharge tubes,
and at the ends water tanks, provided with discoarge pipes and fancets, so that the feed and water will be discharged into feed boxes and water troughs in the
stalls in a most effective manner. The rear ends of the stalls are separated by bars hinged to the car frame, and engaging with the edges of the extension partitions to prevent the animals from backing into adjacent stalls.
To the feed box bottom is attached an arm which is To the feed box bottom is attached an arm, which is
connected by a bar with the pivoted bars of the extenconnected by a bar with the pivoted bars of the exten-
sion partition, so that the bottom of the feed box will sion partition, so that the bottom of the feed box wil
be swung up and down by the extension and contracbe swung up and down by the extension and contrac-
tion of the said partition. The water troughs are hang tion of the said partition. The water troughs are hung
upon sliding plates connected by rods provided with upon sliaing plates connected by rods provided with
levers which are pivoted to the car frame, and conuected with the water discharging faucets, held up by springs, so that the variation in the amount of water in
the troughs will operate the fancets to off the supply oprate the fancets to admit and shat pipes and valves, so that the tanks of all the cars in th

mechanical inventions.

Mr. David G. Wyeth, of Newark, O., has patented improvements in buggy tops, the prinicipal ad-
vanages of which rest in placing the bracesininid the top, rendering it easy for the occupant to open or close the top without leaving his seat.
An improved fanning apparatus for cooling he atmosphere in rooms has been patented by Mr.
Jacob Reimers, of Davenport, Ia. The invention Jacob Reimers, of Davenport, Ia. The invention con
sists of a series of fan willgs or blades mountied on rotary shaft, and contained within a casing which is provided with a series of tubular arms
ducting the air in different directions.
A simple wire twister has been patented by Messrs. Axel L. Sjolinder and Emanuel Larson, of South Pueblo, Col. It consists of a base plate having a concave channel on its lower side, through which passes
the wire to be twisted, and with a slotted cylindrical twister located in the middle of the channel, which is

A fish trap has recently been patented by Mr. James M. Frazer, of Portland, Ore. The inventio consists in a trap or cage having converging rows of staple shaped bars sffixed to an upright frame, the cage or trap being elevated or lowered by any of the known
means. A lead net having a month, which is held against the action of the current conducts the fishes into the

trap.

An adjustable saw guide, designed to do or guiding circular saws, has been patented by Mr. Hiram Carman, of Portland, Pa. By the ordinary
method the saws are guided while in motion by means method the saws are guided while in motion by means ary jaws. In this improved guide the jaws made adjustable by means of a screw, so that they can be moved to guide the saw while the saw is in motion
An improved trap for preventing foul gase from rising in waste pipes has been patented by Mr.
Herman Pietsch, of Flatbush, N. Y. The invention consists in a trap formed of two vessels, one contained within the other. Into the inner vessel an inlet pipe projects from the top of the outer vessel, which inle
pipe is provided with an outwardy projecting spout collar, whereby, when the succion in the soil pipe ts to collar, whereby, when the suction in the soil pipe eis too
great, the valve opens and admits air, thus preventing the siphon
the trap.
Mr. Peter Straitb, of Toronto, Canada, has of reapers and mowers. In use the cutter bar is held by an adjustable frame consiructed so that the bar can be turned back from the stone. Devices are also provided Whereby the cutters are given an oscillating movement
upon the stone. On the axle of the grindstone a nipon the stone. On the axle of the grindstone a
pinion meshes into the driving pinion, which is so proits mored and arranged that the knife cannot reverse its movement on the stone in one place more
thus insuring an even wear upon the stone.
An improved washing machine has been patented by John F. Adam8, of Eliza. IIl. The invention consits of a tub lined with galvanized sheet iron,
and furnished with a lower and upper set of rubbers and a lever by which these eeveral rubbers are operated
at once. The clotbes to be washed are placed between
the upper and lower rubbers. Then by working the the upper and lower rubbers. Then by working the
lever horizontally the clothes will be forced between the rubbers. By working the lever vertically the
clothes are pounded, sot that the washing is done quickly and thoroughly.
An improved shutter worker, arranged in such a way that window blinds and shutters may be patented by Mr. John W. Harrison, of Wheeling, w. Va. The invention consists in a shaft passing through the wall and operating bevel pinion wheels which connect this shaft with the hinge of the blind, and by which the blind may be brought into any position re-
quired by turning the handle attached to the shaft from quired by turning the handle attached to the shaft from the inside of the house. Devices are likewise
for holding the blind in the position desired.
A novel window shutter opener has been atented by Messrs. John J. Donahoe and Peter J Finn, of New Orieans, La. By this arrangement the
shater is fastened by a pin, and is operated by a rod shuture is sastened by a pin, and is operated by a rod is so is adtached by a rod to another longer lever, which
 one side of a builing by one operation. Springs are
arranged between the shutter and window sill for forcarranged between the shutter and window sill for f
ing the shatter open when the pin is withdrawn.
An improved lathe for turning ovals, hat locks, etc, has been patented by Mr. Michael Quinn, of Fishkill Landing, N. Y. The invention consists in a latbe constructed with a shaft carrying a stationary arrying a work holding plate, and provided with flange receive and slide upon the adjustable plate provided with a pulley which revolves upon the stationary shaft. The work holding plate is thus made to slide back and orth as it is rotated.
Mr. Charles E. Brennan, of Charlottesville, Va., has recently patented an automatic fire extin-
visher, the object of which is to provide an apparaguisher, the object of which is to provide an appara
us that shall be brought into operation automatically when a fire occurs in a building or other place contiguous to the machine. In case a fire occurs in a room, as soon as the temperature reaches a high enough point
to fuse metal, a weight and lever will thereby be released, and falling opens a valve which connects with the pipes for conveying water from the tank or resernent and extend around the room. The moment the valve is relieved by the fusible metal the water com. nences to flow through the sprinklers aboat the room, and thus the fire is subdued.
A novel rice hulling machine has been patented by Mr. William C. Howard, of. Grahamville, S. . C.
The invention consists of a stone mounted on a plat form which may be elevated or depressed by weighted evers attached to the platform, their fulcrum resting on the frame which supports the machine. The stone
is concave in its upper side, and in in revolves a wood
and cylinder faced with steel plates which answer the double kernel of its chaff Between the cylinder and the stee plates strips of India-rubber are interposed, which allow the plates to yield to the rice under treatment. The object of the adjusting weights is to regulate the pressure
upon the rice as it is being fed between the cylinder

Mr. William A. Allen, of Jersey City, N. J., as patented an improved drying house or kill. The improvements relate to kins fordrying kindling wood ma-
terial in mass, and particularly the slabs or refuse from terial in mass, and particularly the slabs or refuse from
saw mill logs, which, being thoroughly water-soaked when sawed from the log, requires to be dried in order to it it for use. The great lifficulty experienced in in getting rid of the moist air or vapors driven off from the mass of material. This condenses rapidly, and unless means are provided for keeping it in a heated and rarefied condition, it is a source of great trouble and an noyance. Mr. Allen has devised the means or ober workof the drying apparatus at all
A novel sewing machine motor has been patented by Mr. David L. Miller, of Madison, N. J. This motor is intended to be operated by the foot or by the operator to rest his feet upon, while he sits in a chair the latter of which is attached to the platform which platform is pivoted to an upright lever through which the power is transmitted. The act of leaning back and forward by the operator oscillates the chair, which transmits motion and power to the upright lever. The upper end of the vertical lever is provided with a double rack and pinion, which is driven by the power
conveyed by the footrest or by the rocking movement of the operator, as the case may be. This invention of the operator, as the case may be. This invention
possesses much ingenuity. and is very simple and inex-

MISCELLANEOUS INVENTIONS

A spoon bolder for cooking vessels bas been patented by Mr. John A. Hemsteger, of Piqua, O. ther vessel uconsists in combining with a sauce pan or holding a spoon, the object being to save the trouble and annoyance caused by the spoon slipping into the vessel.
Mr.
Mr. George A. Fitch, of Oakland, N. Y. has patented an improved speaking telephone. This
invention relates to an improvement in receiving instruments for the electrical speaking telephone. The invention consists of an apparatus in which a strip of suitable material is connected to a diaphragm and passed supported in the armature of an electro-magnet. The armature is provided with an adjusting spring to prevent it from responding to induced or minor currents. When an electric current is passed through the rotating will be and the strip, the friction between the said parts varying intensity of the current proporion to the vibration of the diaphragm will be produced.

he Chargefor Insertion under this head is one Dollar a line for each insertion : about eight words to a line.
Advertisements must be received at publication office as early as Tl/urssday morning to appear in next issue.

Pandora's box was full of evils. A box of Esterbrook's Pens, on the contrary, contains one hundred
and forty-four perfect pens. The stationer will supply and for
Lyman's Gear Chart. How to lay out gear teeth. Price 50 cents. E Lyman, C.E., New Haven, conn.
For Mill Mach'y \& Mill Furnishing, see illus. adv. p. 110. Soapstone Packing and all kinds of Steam Packing, Engine Lathe 26 inc
Engine Lathe, 26 inches bed by 6 inches swing, $\$ 70$.
utting-off Machine, $21 / 4$ hole in spindle, $\$ 100$. Geo. F . Cutting-off Machine, $2 \neq 1$
Shedd, Waltham, Mass.
rop Forgings. Billings \& Spencer Co. See adv., p. 109. Fire Brick, Tile, and Clay Retorts, all shapes. Borgner Peck's Patent Drop Press. See adv., page 110.
steam Hammers, Improved Hydraulic Jacks, and Tube Diamond Planers. J. Dickinson, 64 Nassau St., N. Y. 50,000 Emerson's Hand Book of Saws. New Edition. Eagle Anvils, 10 cents per pound. Fully warranted. For Pat. Safety Elevators, Hoisting Engines. Friction Gould \& Eberhardt's Machinists' Tools. See adv.,p. 110. For Heavy Punches, etc., see illustrated advertise Barrel, K ,
Barrel, Key, Hogshead, Stave Mach'y. See adv. p. 108. Combined Concentric and Eccentric Universal and Independent J
ford, Conn.
Mineral Lands Prospected, Artesian Wells Bored, by Catechism of the Locomotive, 625 pages. 250 engravngs. Mostaccurate, complete. and easily understood
book on the Locomotive. Price $\$ 2.50$. Send for catalogue f railroad books. The Railroad Gazette, 73 B'way, N.Y. For best low price Planer and Matcher. and latest
mproved Sash, Door, and Blind Machinery, Send for talogue to Rowley \& Hermance, Williamsport, Pa. Steam Pumps. See adv. Smith, Vaile \& Co., p. 110. Scientific Books. See page 108. 100 page Catalogue
ree. E. \& F. N. Spon. 44 Murray Street, N. Y. Valuable manufacturing property for sale at Taunton ass., by Geo.Place MachineryCo., 121 Chambers St.,N.Y. Magic lanterns, stereopticons, cond. lenses, etc., on
hand and made to order, C. Beseler 218 Centre St., N. Y. See New American File Co.'s Advertisement, p. 94. Curtis Pressure Regulator and Steam Trap. See p. 76 Free.-"Useful Hints on Steam," a book of 96 pages,
nlustrated. By mail, 15 cents. E. E. Roberts, 107 Libillustrated. By mail, 15
erty Street, New York.
The Portable Electric Light Co. are having large sales the Mazw
Cope \& Maxwell M'f'g Co.'s Pump adv., page 77 .
Woodwork'g Mach'y. Rollstone Mach.Co. Adv., p. 77. The Sweetland Chuck. See illus. adv., p. 78. Knives for Woodworking Machinery. Book binders, and Railway and Machine Shop Equipment.
Send for Monthly Machinery List
to the George Place Machinery Company,
Improved Skinner Portable Engines. Erie, Pa.
Contracts taken to Manuf. small goods in sheet or
cast brass. steel, or iron. Estimates given on receipt of ast brass. steel, or irron. Estimates given on receipt of
model. H.C. Goodrich. 66 to 72 Ogden Place, Chicago. $25^{\prime \prime}$ Lathes of
East Newark, N. J.
For Power \& Economy, Alcott's Turbine, Mt.Holly, N. J. How to Keep Boilers Clean." Book sent free by "Emes F. Hotchkiss, 84 John St., New York.
Engines, 10 to 50 horse power, complete, with governor. $\$ 250$ to $\$ 550$. Satisfaction guaranteed. More than
seven hundred in use. For circular address Heald $\&$ Bris (Drawer 127), Baldwinsville, N. Y.
Brass Finishers Turret Lathes, 131/2 x 4, \$165. Lodge,
Barker \& Co., 189 Pearl St., Cincinnati, o. Wanted.- Paten Pearl St., Cincinnati, o.
Wanted.-Patented articles or machinery to make Latest Improved Diamond Drills. Send for circular Water purified for Water purified for all purposes, from household sup-
plies to those of largest cities, by the improved filters Wes to those of largest cities, by the improved filters
manufactured by the Newark Filtering Co., 177 Commanuactured by the
merce St.. Newark, N. J.
Guild \& Garrison's Steam Pump Works, Brooklyn, N. Y. Steam Pumping Machinery of every descrip-

First Class Engine Lathes, 20 inch swing, 8 foot bed, Ice Making Machines and Machines for Cooling Breweries, etc. Pictet Artificial lee Co. (Limited), 142
Greenwich Street. P. O. Box 3083, New York city. Steel Stamps and Pattern Letters. The best made. J. Split Pulleys at low prices, and of same strength and Works. Drinker St., Philadelphia.Pa. Machinery for Light Manufacturing, on hand and Presses \& Dies. Ferracute Mach. Co., Bridgeton. N. J. Supplement Catalogue.-Persons in pursuit of inforfic subject cap have catalogue of contents of the Sol ENTIFIC AME ERICAN SUPPLEMLNT sent to them free. The whole rang. contains lengthy articles embracing cal science. Address Munn \& Co.. Publishers, New York The Porter-Allen High Speed Steam Engine. South-
work Foundry \& Mach. Co., 430 Washington Ave.,Phil.Pa. Blake's Belt Studs, Belt Hooks, Belt Couplings, Lace

Tuschayn

HINIS 'TO CORRESPONDENTS. No attention will be paid to commumications unless
ccompanied with the full name and address of the writer.
Niven to inquirers. T erenew our request that correspondents, in referring o forner answers or articles, will be kind enough to
name the date of the paper and the page, or the number of the question.
reasonable time whose inquiries do not appear afte ished, they may conclude that, for good reasons, the Editordeclines them.
Persons desiring special information which is purely of a personal character, and not of general interest, should remit from $\$ 1$ to $\$ 5$, according to the subjecr, as we cannol be expected to spend time and
Any numbers of the Scientific American Suppleoffice Price 10 cents each.
Correspondents sending samples of minerals, etc. for examination, should be careful to distinctly mark or abel their specimens so as to avoid error in their identi fication.
(1) J. E. asks: When will a crosscut saw straight on the bottom cut the faster-when drawn straight across the log, or by giving it a rocking motion?
Why are are crosscut saws made round on the botiom instead of on top? What is the cheapest power for a bowing to make it cnt faster and to accommodate the wear by sharpening. A saw worked by hand naturally ocks a little, which is advantageous. The cheapest reliable power is steam, unless you are situated so as to have water power. A windmill is good and cheap as ar as it goes.
(2) G. P. W. writes: 1. I want to elevate water tabout 600 gallons daily) 35 feet to a tank. What is the cheapest and best means to employs A. Any
house force pump will answer your purpose. 2. How hould a tank be built when placed in the second story of a dwelling, so as not to leak? A. The best tanks for honses are what are called staved tanks, made of pine ownward. Any carpenter can make them. Box tanks are often used, but are not as reliable as staved tanks. In putting in a furnace for heating a dwelling, should the smokepipe enter the chimney at once, or could it run horizontally 12 or 15 feet as well as not, and be inlosed in a hot air flue connected with a register above, and would it pay to do it? A. If your chimney has a good draught, there is no oojection to carrying the pipe 2 or 15 feet and covering with a warm air chamber. I proportion to grate, the pipe should not be hot enough o pay for inclosing, as a source of heat to supply a register. 4. How should a chimney for a furnace be built, and how large? A. The ordinary chimneys of dwellings are generally large enough for heaters. No chimney flue should be less than 8 inches square- 8 inches by 12 nches would be best.
(3) O. S. F. asks if it would be safe to run a three-quarter inch common pipe into the firebox
and out again; pipe bent in shape of a yoke. Steam is hen carried about fifty feet from boiler. I wish to ge as dry steam as possible. I use it to steam carpets, feathers, hair, etc. If it is a safe plan, please tell me he best way to arrange it. A. It need not be dangerwant. You want superheated steam, which you can have with low pressure. The way you propose to arrange the pipe is very well, bnt there must be a constant current of steam through it, or your pipe will soon burn out.
(4) J. K. H. writes: I am using a canvas belt for polishing up whifferrees. I find difficulty in asing common glue. Is there any kind of cement that would answer the purpose better than glue? A. There is no cement that is equal to the best glue for sand belts. Common glue is poor staff for any use. Use only the best. quality of light brown glue, and select it yourself. By bending a few pieces in your hands, the weak, brit-
tle glue will break easy and fly; the strong, tough glue will bend with difficulty, and finally splinter and not fly into pieces.
(5) R. S. F. asks: 1. When two induction coils are arranged so that the secondary current from
the first shall traverse the primary wire of the second, is break necessary, or will the secondary current induce currents like itself? A. No break is necessary in the econd coil, as the secondary current is intermittent and alternating in its character. 2 Is the current thus induced in the second coil stronger than if the same battery power were used direct to it? A. No; it is of
higher potential; but the quantity will be small. 3 . How long a Geissler's tube will a coil giving a spark
(6) J. M. writes: I contend that if a person jump up perpendicularly from the rear platform of a freight car, shelded from the wind by the back of the ar, that he will come down in the same place from which he jnmped. My opponent disputes it. A. Theo-
retically he wonld not come down in exactly the same retically he would not come down in exactly the same In reality he loses an infinitesimal part of his forward velocity during the time he is not on the platform
(7) W. T. asks of bow much advantage is "lead" on a locomotive's valves. A. Lead is neces-
sary to the smooth working of the engine. It furnishes an elastic cushion to absorb the momentum of the reciprocating parts, and gradually taking up all the "slack" of the joints and connections. By this means, also, the piston has the full pressure of the steam at or
slightly before the change in its direction of movement.

INDEX OF INVENTIONS

Letters Patent of the United States

February 6, 1883,

AND EACH BEARING THATC DATE.

[Those marised (r) are reissued patents.]

Advertising card rack, M. Umbdenstock carburete, , E. Vigreux
Air cooling apparatus. H. Kropff. Animal trap, T. B. Turley.
Hess.
Automatic gate, P. J. Wiel
Axle box, H. V. Appley....
Back rest, A. W. Streeper........
Bag holder. W. E. Shellenberger
Bag nolaerine, B. F., sawyer...................................271, 271,
Bag machi,
Baling press. P. K. Dederick...........2
Bar. See Harvester cutter bar. Harvester sickle
$\underset{\text { bar. Sash bar. }}{\text { Barrel head cutter, w. J. Smith.. }}$
Barrel heater, S. Anson.................................
Barrel rack for storing and aging whisky McMutry \& Johnson............................
Base-burning boiler, portable, A. H. Fowler.....
Battery. See Galvanic battery. Secondary bat Battery. See Galvanic battery. Secondary ba Batting, fibrous, D. Goff
Bed bottom, spring, W. D. Bed, folding, A. A. Allen
Bed, sofa. H. R. Plimpto

Bed, sofa, H. R. Plimpton Bedstead fastening, H. E.

Belting, manufacture of, J. J. Haley........271,629, 271,69 Berth-lock for sleeping cars, J. Kirby, Jr
Block. See Headblock. Snatch block. Board. See Center board. Electrical s Boiler. See Base-burning boiler. Boiler furnace, \mathbf{W}. A. Greene.
Boilers. apparatus for purifying water for,
Elliot
Eolt. See Flour bolt.
Bolting reel, J. D. Hurst
Book holder, C. L. Work
Book and shoe insole, E.K. . Cooles....
Bottle stopper
Bottle stopper, I. N. Peirce............................
Box. See Axle box. Letter box. Paper box
Show box.
Bracelet chain, H. M. Herring
Brake setting apparatus, Wagon brake.
Breaking-down shovel, Starke \& Crowley
Brick and tile moulding machinery, T. I Poidevin.
Brick machine, J. H. Konefes.
Brick moulds. machine for sanding, D. Ralston. ing, J. C. Anderson..............
Brick, tile, etc., ornamentation of, J. C. Ander-
son........571,58, Brush, i. C. Wells
Brush protector, paint, I...............
Building,
Burner. See Gas burner. Gas-lighting burner Vapor burner.
Button, collar, J. E. Vanderbilt.
Mitchell. machinery for ornamenting, J. H.
Calculator, interest, M. Todd..........................
Cans, machine for putting tops and bottoms on Car brake, B. Bennett.......
Car coupling, w. L. Albrigh
Car coupling, w. L. Albright
Car coupling, W . Crandell..
Car coupling, L. Davis, Jr........
Car coupling, L. A. Houghtaling.
Car coupling, S. A. Milligan..
Car coupling, J. J. Pursley.
Car coupling, J. J. Roberts..
Car coupling, J. G. Trenear.
Car coupling, J. T. Wright..
Car drawbar, C. Alkin........
Car door, grain, W.J. Arndt.
Car, hand, E. B. Linsley...........
Car signal, electro-magnetic, J. w. Marley.
Car starter, A. W. Smith
Car, stock, J. C. Foster.

Mason......... Anden.... 271, 271,
Carriage spring, W. Van And
Carriage window cushion, I. H. Mulford......... 271.9
Cart. driving Hutson \& Squire
Carrige driving, Hutson \& squires....................
Cartridge shells into tubes, machine for feeding
metallic, w. Mason......................
Case. See Lunch case. Pencil case.
Cement, building J. E. Trask
Cement, building, J. E. Trask................. 271950
Center board for boats, J. E. Couch...................
Centering gauge, A. Sequeira
Chair. See Dental chair. Folding chair. Steamer
Chair. See Dental chair. Folding chair. Steame
chair.
Chairs. settees, car seats, etc., seat and back of, J.
H. Woodman......

Checkrower, L. A. Williams.
Chlorine and sodium, process of and apparatus
for obtaining, A. L . Nolf
Chopper. See Cotton chopper
Chuck. Sleeth \& Lucas
Chuck, tenon and turring, B. A. Whitsett.
Churn S. E. Dunn.
urn mechanism, Heldreth \& Umberger........................71,76 Clay reducer and disintegrator, \mathbf{j}.

Cleaner. See Seed cleaner.

Cloth napping machine E. Gessnatic. C. Mayrhofer
Clothes pounder, O. Colvin.
Clothes reel, T. Alderdyce.
1,963

271,892 271,621

| | D |
| :--- | :--- | :--- |
| D | |

271,624
271,945
2711790

Coal hod or scuttle, Gardner \& Mills Coatand cloak hook, D. Kelly....
Coffee drying apparatus, F. Kiee.
Coffee roaster, portable, Beecher \& West
Coffee separator, . P. Brannon..
Collar, horse, R. Porter
Collar, horse, R. Porter...................................
Colors on cotton fabrics, production of azo,
Hallidяy..
Confectionery icing machine, J. H. Mitchell.
Congelation of water, etc., facilitating the.
Guthrie (r).......................................
Cooler. See Evaporative coolele.................. Grain cooler.
Cornice, window, E. Kigemann

Corset, M. P. Bray. Corset, S. B. Ferris

 coupling. Thill coupling.
Coupling link,
Coupling link, H. M. Jones...
Coupling link, ,
Crate for transportation of winer......... glass. R. D. Flynn..
Culinary heater, W. H. Benson.
Culinary vessel, F. Schifferle
Culinary vessel, F. Schifferle
Cultivator, J. H. Allen.......
Cultivator shovel, \mathbf{k}. Childr Cultivator shovel, E. Children.....
Cupola furnace, Clapp \& Grifitith.
Curd cutter, D. G. Young............

Cushion. See Carriage window cushion.

Cut-of, C. P. Allen....
Cutter. See Barrel head cutter...................
Groove cutter. Tobacco cutter. Vegetable
cutter.
Cutting machine. G. Gilbert.............
Dental chair, folding. W. G. Browne ..
Dental plugger, G. Rehfuss..
Die. See Screw cutting die.
Z. Coles check row attachment. combined, H.
Z. Z. Coles
Duster, feather, J. w. Little..................
Egg preserver, rotary, A. R. . Robinson.....
Electric circuit wires, fastening for, H. G. Fisk Electric circuit wires, fastening for, H. G. Fis
Electric current regulator, E. Thomson......
Electric machine, dynamo, W. Baxter, Jr..... Electric machine, dynamo, W. Baxter, Jr..........
Electric machine, dynamo and magneto, E. Gor-
don...
Electric machine, dynamo and magneto, C. A.
Seeley....................................
Electric machine governor, dynamo, T. A. Edi-

Electric machine regulator, dynamo, J. F. Ott....
Electric machines, commutator for dynamo, E.
Thomson...
Electric switch

Electrical conductor, P. G. Gardner,
Electrical switch board, T. J. Perrin
Elevator. See Hod elevator.
Emery wheel for sharpening saws, J. R. Hoff-
man...........................
Engine. See Gasengine. Steam engine.
Evaporative cooler. G. W. Deitzler
Eyeglasses, G. Johnston..............
Fare register, Fowler \& Lewis.
Fare register and recorder, Fowler \& Lewis.
Fence, D. S. Morrison.
Fence. J. L. Sullivan.
Fence wire, barbed, Edenborn \& Griesche
Fermenting vessels. apparatus for regulating the
pressure in a series of J. M. Pfauder (\mathbf{r})
pressure in a series of, J. M. Pf
Fertilizer distributer, T. D. Gere...
Fertilizer distributer J.
Firtilizer distributer, breech-loading, F. Peironnet.
Fire escape, $\mathbf{\text { E. }}$. H. Craigie...
Fire escape, R. J. Dearborn.
Fire escape, R. J. Dearborn..........
Fire extinguisher, automatic, c. C. Walworth.
C. E. Buell................
Fire kindler, A. C. Miler .

Flour bolt, centrifugal, Holcomb \& Heine

Flush valve, automatic, H. C. Lowrie
Folding chair, J. J. Bowker..
Frame. See Quilting frame.
Furnace. See Boiller furnace. Cupola furnace.
Smoke burning furnace.
Smoke burning furnace.
Gag runner, M. E Zeller
Gauge. See Centering gauge.
Galvanic battery, A. M. Rosebr

for, I. W. Heysinger.
Gas burners, base for, S.
Gas engine, L . H. Nash.
Gas exzhauster, steam, Leadley \& Hanlon. Gas lighting burner, electric, C. H. Crockett
Gas lighting burner, electric Gas pressure regulator, F. Pi
Gate. See Automatic gate. Turbine wheel................
Glass beveling machine, T. F. Gilroy.
Griddle, cake, O. R. Hanchett.
Groove cutter, J. Martignoni..
Guns, auxiliary rifie barrel for, H. T. Martin
Guns, extractor for breakdown, J. Maloney
Handle. See Saw handle. Valve handle.
71,607 Hanger. See Door hanger. Picture hanger.
Hammer, H. O. Hooper....
Hammer, bush, A. Nelson..

${ }_{271}^{271,739}$ Harrow and cultivator. W. B. Carruth

271,756	Harrow tooth clamp, L. J. Stanton
Harvester cutter bar, J.	

Harvester sickel bar, C. Schmidt
Harvester traction wheel. R. H. Dix
Hat blocking table, revolving, M. A. Cum
Hay and grain unloader, A. I. Jordan....
Head block, Smith \& Myers.
Heater. See Barrel heater. Culinary heater.
High and low water indicator for steam boilers
Hinge, spring A. B Tanne
Hitching post, W. P. Beach
Hod elevator, safety, L Atwood...............
Hoisting buckets to belts. device for attaching

271,699 271,640 271,89 271,770 271,79 271,921 271,636 271,897 10,283 1,

See Berth lock. Door lock. Nut lock 271,663
$.271,962$
.271 .852
2

ock nut and bolt, D. Hull. unch case, D.H. Mathias.						

Mail conveyer, electric, E. Nicolaisen................... 271,904
Mash heating and cooling device, Dodsworth \&
Match igniter, J. Pusey................................ 271,737
Matrix drying press, W. . . Johnson............ .211,858
Measuring machine, cloth, S. B. Luckett.... 271,879
Measuring machine, cloth, S. B. Luckett............. 271,879

Mill. See Windmill.
Millstone dressing machine, C. S. Hoover.......... 271,849
Millstone driver, P. Steinmetz....................... 271.849
Money strip, gummed, Z. G. Wilson................
Motion, apparatus for starting, stopping, aud re-
versing rotary, F. Reuleaux................... 271,987
Motion, device for converting, J. S. Parmenter... 211,909
Motor. See Oscillating motor.
Jails, making brass headed, c. H. Yarington 2722,010
Nut lock, J. J. Waddill........ 271,955
Nut searator, J. H. Doman................. 271,815
ilicloth, etc., machan
ting, A. F. Buchanan.......................
Oils from vegetables, etc., manufacture of, C. F.
stollmeyer. 271,664
Oleaginous matter from animal and vegetable
substances. extracting, J. D. Jones............ 271,859
Ore and mineral separator. Richards \& Coggin.... ${ }^{271,657}$
Organsher rake, w. R. Jenkins, Jr................ 271,856
Orgatic action for, w. .t. Cooper..... 271,066
271,039
oven, baker's. A. Crumbie.................................. 271,639018
Oven light, baker's. A. Klemt............................. 271,714
Packing, metallic rod, C. D. Stevens............. 271,748
Pad. See Absorptive pad.
Pad tree and harness saddle, c. C. Schwaner 271,927
Paint, detergent or compound for removing, A.
Paint, detergent or compound for removing, A.
Munder. $\ldots .271 .901 ~$
Pantaloon protector. C. J. McDermott.............. 271,891
Paper box, C. De Quilfeldt........................ 271,975
Paper box, C. De Quilfeldt 271,975
Paper stock, treating. H. Carmichael (r)......... 10,88
Pastry board, D. . Heller....................... 271,700
P.
Pen and pencil rack, F. F. Dumke....... 271,817
Pencil case, J. H. Knapp.................. 271,872
Photographic cameras, plate holder for, M. Flame
mang
.....................................
271,8

Picture hanger, A. Kluge........................... 271,715
Pile, iron and steel, w. G. Howell.............. 271,689
Pin. iron and steen, Safety pin.
Pin package, V. Fountain............. 21.... 271,828

Planter, check rower corn, A. W. Cash................ 221,788
271,722
Plantfor, gang spring, J. H. Grogan .
Plat
Plow, C. Hanson............
Plow, E. D. Meagher.....
Plow point, W. F. Baldwin
Post. See Hitching post
Potato digging and separating machinery, R. A.
Clark..601
Press. Se Baling press. Matrix drying press.
Punching and drawing press.
Press, Wildey \& Rollins............
Prison. cells, armor for, P. Herzog.........
${ }_{271,633}^{271,754}$
Protector. See Brush protector. Pantaloon pro-
tector.
tector.
Pump, G. F. Blake
Pump and preserver, beer, E. Sharfenberg
Pump, double-acting, French \& Shenton ..
Punching and drawing press, J. Gardner
Putty, commercial, R. W. Dav
Quiting frame, H. T. Davis...
Quilting frame for sewing machines, H. T. Davi
Rack. See Advertistng card rack. Barrel rack.

271,775
271.659
$271 ., 829$
27159
271.723
Tanning, hides, con
Target, F . Medart
Telegraph, railway train. w. T. Waters
Telegraphs. station switch for fre, G. F. Bulen
apparatus for, G. F. Bulen.
Telephone, Loring \& Pierce...
Dean...................
Telephone transmitters, mouth piece for, A.
Thill coupling, J. Lauth.
Tobacco cutter, J. S. Seach.
Tool, combination. H. U. Ki
Toy building, M. E. Converse..
Toy, mechanical, C. A. Crongeyer
Trap. See Animal trap.
Traveling bag handle
Turbine wheel gate; E. B. Williams
Type setting apparatus. Johnson \& L
Valve. See Flush valve.
Valve handle, steam. F. I. Maule.
Valve, oscillating, M. R. Moore..

Kailway erossing signal andalarm, H. H. Liemke.
Railway switches and signals, apparatus for operating, A. G. Cummings...........................
Railwaytracks, device for raising and lining, w Railways, construction of, D. J. Miller. Rake. See Ore washer rake. Razor strop, Tower \& Lamont Register. See Fare register.
Regulator. See Electric current regulator. Elec-
tor.
Rendering tank, R. Garstang. Reticule, C. De Quilfeldt Eing. See Lamp coupling ring. Roller. See Curtain roller. Rolling mills, billet guide for, w. W. McCallip. Roling mills, lift for plate, R. Barrett
Roof, ett.; illuminating, J: K. Ingalls: Rubber, method of and apparatus for making.art afety pin, A: Van Houte Sap boiling appbratus, C. A.
Sash bar, lead, A. Friedrick
Sash for glazing purposes, building lead, A. Fried ash holdor, Nix \& McClelland aw arbor. T. N. Hacket.
Saw handle, J. R. Woodrough . Saw machine, drag, J. C. Wygan Scale pan, G. H. Chatillon cale, platform, C. C. Miller... crew conveyer coupling, Webster \& Chivill Scrubbing floors, machine for, P. Gallagher
econdary battery. A. Haid
econdarry battery, J. A. Maloney.
eed ceaner, J. Grube.
ding machìne fertilizer attac, R. Platma Fugham
seeding machine, grain, J. M. Westcott.. Ore and mineral separato
Settee and lounge, combined, E. S. Amrock. sewing machine, C. H. Palmer Sewing machine, buttonhole, Sullivan Sewing machine guide, W. P. Miller ewing machine quilting attachment, O. C. Pop ewing machine ruffler, G. W. Baker. McCaslin
hafting, T.
k trimming shears Sheet and plate roll. I. W. Cooper......
Sheet metal shearing machine. C. Wais
Knapp
Shirc boso ms, machine for cutting, E. Schott Shoe heeling machine, M. V. Ethridge Shoe horn and jack, Gysin \& Huber
Shoe tip blanks, machine for fo

Holton.

hovel. See Breaking-down shovel. Cultivat
shovel Show box and card, L. Sonn
Show stand. E. Leger......
Sifter, ash, R. S. Van Zand
Signal. See Car signal. Railway crossing signal Skate, roller, G. D. B
Skid; F. N. Godfrey...
Slates, abacus attachmen
Smoke burning furnace, J. Ritchie Spark arrester, T. Patterson. Spectacles and eyeglas
Spittoon; W. H. Earls.
form spring.
Stand. See show stand. Switch stand.
Station indicator, G. P. Rasck ...
Steam engine, B. Brazelle
Steam shovel, Starke \& Crowley Steamer chair, adjustable, Johnson \& Hayward Stone drilling machine, J. T. Clark Stopper. See Bottle stopper. stove drum, N. B. Acheson... Stove oven, oil and gas, C. F. Whorf..
Straw stacking machine Street sweeping machine. P. Kyan..
Switch and signal comnections, deflection stan Switch stand; automatic, True \& Houghton. Table. See Hat blocking table
Tank: See Rendering tank.

271,700
271.974
241,80

Vapor burner, H. S. Belden
Vegetable cutter, rotary, H. L. Goodwin
Vehicle wheel, C. Snyder.
Vehicles, mechanism for propelling, W. S Mitchell.
Velocipede, J. J. Cox
Velocipede, marine, F. A. Coomans
Votes, apparatus for registering, H. Zimm
Wagon brake, L. L. Jame
Wagon Lound, A. J. Harpe
Washing machines, churns, etc., gearing for ope rating, G. H. Connor.
Watch, C.v. Woerd
Watch balances, machine for pointing, drilli and tapping, C. V. Woerd.
Water closet, C. F. Pike...................271,91
Water closet, D. Wellingt
Water, gas, or drain pipe, J
W ater wheel, A. Figge
Well digging machine, J.
Wheel. See Emery wheel. Harvester traction wheel. Vehicle wheel. Water wheel.
Whifletree hook, D. S. Blue..
Whiffletree hook, H. \& A. T. Hatch
Wick trimming shears, R. F. Holley
Wind locomotive, o. W. Burnell.
Windmill, w. H. \& C. A. Holcombe
Windmill, S. E. Limpus
Wire cloth sample card, H. H. W
Wire, manufacture of covered or insulated, J. D. Thomas.
s, cooling rack for bent, W . Ald
ch. See Pipe wrench.

DESIGNS.
 Hardware, ornumental pan
ers', G. S. Barkentin..

ers', G. S. Barkentin. Musical instrument case, Stove, W. P. Warren.		

TRADE MARKS.

Biscuits, W. G. Wilson..

buoks, pamphlets, catalogues,
publications, J. R. Jones.
Cigars. F. Garcia, Br.
Cigars. F. Garcia,
Cigars, C. A. Yale.
Cotton duck, Brinckerhoff, Turner \& Co................. to
Cotton piece goods, Brinckerhoff, Turner \& Co.....
Oils, lubricating, Brooks Oil Company
Pills, liver, J. w. Angell..............
Pills, liver, J. W. Angell..............
Preparation for softening and beautifying th
hands and face, J. F. Stevenson.............
Sheep dip, Louisville Leaf Tobacco Company
Soap, laundry, Colgate \& Co...
Thread, package of, Clark Thre
Tobacco, Pfingst, Doerhoefer \& Co
Toilet preparation, J. E.
Whisky, A. Halliday \& Co

Engravings may head adver tisementents at the same rate
per line, by measurement. as the letter press. Advertisements must te received at publication office
as Thursday morning to appear in next issue.
SPECIAL MACHINERY OF ALL KINDS GRA Designed and built to order
Cor. Bay and Greene Streets, Jersey City,

 R RIDER COMPRESSION PUMPING ENGINE

271,722
271,01 ,,935

NUT TAPPINC DURRELL'S PATENT. No. 1 Machine $9,0001 \mathrm{lb} .7$ spindles.

Capacity of ${ }^{7}$ Spindles, 8,000 per
cknowledged to bers. an indispens
able tool Maufactured by.
HOW $\triangle \mathbf{R D} \mathbf{~ B R O S}$
HOW SRD BROS.,
2H. P. Boilers, \$60. T. MCDONOUGH, Montclair, N.J. PAYNE'S AUTOMATIC ENGINES.

THE MEDART PATENT WROUGHT RII PuLLEY
McMURRAY \& STOUGHTON,

TOUL

Hlatitical Ipist Intrinueris IELLIOTTBROS., LONDON. THE ELECTRICAL SUPPLY CO 109 LIBERTY ST., NEW YORK.

$\frac{10 \text { Liberty St., N. Y. City. }}{\text { ADDRESS OF DR. C. W. SIEMENS AT }}$

BUFFALOFORCECD
FEED WATER HEATERS.
THE BEST aND CHEAPEST IN THE MARKET.
Warranted to heat water by exhaust steam from 200° to
212 ${ }^{\text {Franrenheit. }}$
For description and price, apply to

WITHERBX, RUGG \& RICHARDSON Manufacturers
of Patent Wood Working Machinery of every description. Facilities whsurpassed. Shop formerry occupiped
by R. Bail \& Co., Worcester, Mass. Send for Catalogue.

MACHINISTS, TOOLS.

Send far new illustramprod catalogu

Lathes, Planers, Drills, \&c

WATCHMAKERS

VOLNEX W. MASON \& CO. FRICTION PULLEYS, CLUTCHES, and ELEVATORS,

BUSINESS.-An old established Grain Cradle Business and business tand
rial for the present season on has. had. For information
apply to
WM. A. APGAR, Somervile, N. J.

INTERNATIONAL Electric Exhibition, VIENNA, 1883
 isitorss
The Regulations and the blanks nece ssary for Applica-
The
 It will certainly afford a a ood opportunity to inventors
to show their latest improvements. This Exhibition is is reativy farored by the Austrian well remembered Universal Exhibition of 1873 .
Exhibitors are
pequested to procure the necssary

End PATENTS.

ication of the scientific Amprican, continue to ex amine Improvements, and to act as Solicitors of Patents
for Inventors.
In this line of business they have had thirty-eight years experience, and now have inequaled facilities for
the preparation of Patent Drawings, Specifications, and the prosecution of Applications for Patents in the Munn \& Co also attend Foreign Countries. Messrs Copyrights for Books. Labels, Reissues, Assignments, and Reports on Infringements of Patents. All busines ness, on very reasonable terms.
A pamphlet sent free of charge, on application, con aining full information a bout Patents and how to pro Designs, Paients, Appeals, Reissues, Infringements, As Designs, Patents, Appeals, Reissues, Infringements, As
signments, Rejected Cases, Hints on the Saie of Patents, etc.
We also send. free of charge. a Synopsis of Foreign Patent Laws, showing the cost and method of securing MUNN \& CO., Solicitors of Patents,
BRANCH OFFICE -Corner of F and '7th Streets,
Washinghn, D. C.

CARLETON’ TREASURY OF KNOWLEDGE,
THUBLST SELING BOOKEVER KNOWN. The His: BLST SELLING BOOKEVER ENOWN. The
arest idsout. Circulars free Agents ad-
ress G. W. Carleton \& Co., Publishers, N. $\begin{aligned} & \text { Y. }\end{aligned}$ Party with some means to take interest in and finish in-
vention. Nearly completed now. Wonderful machine Will pay enormously. Full investigation requested be-
fore investing. Stephen W. Keyes, 5 Jay St., New York FOR SALE.-An Achromatic Equatorial Telescope brass inder, rack. and pinion; six eyepieces; on
complete. Address R. B. GAXS, Columbia, Mo. WANTED-To negotiate with manufacturers for the Misses' Carriage. A.K. McMurray (Room 2), 181 Broad
was, N. Y.

BRADLEY A. FISKE, CONSULTING ELECTRICAL ENGINEER, Office, No. 59 Astor House

In wewtumay iow

ROOFING.

 $\$ 72$ Aurek siva day thome easily made Coslly

CONSUMPTION.

 位

 位}

CLARK'S RUBBER WHEELS. This wheel is unrivaled for durability
simplicity, and cheapness.
 Heary Casters, and all purposes for which
Wheels are used circula
tree. GEO. P. CLARK, Windsor Toce Thist, Ct

RUPTURE

 Rocining

For STEEEP and FLAT ROOFS of -all kinds; can be applied by ordinary workmen at oNE
THIRD the cost of TIN. Serd for a sample and our circularwhich gives full direrectons home
an apply your own roof; also how to repair
to and our circur
to apply your own roof; also how to repair
lealky roofs of all kinds. Address,
74 Cortlandt St., New Hew Hork

AGENTS

 an for wipatatiue ot
TELEPHONES!

A Book for Every Man! Young, Middle-Aged, and Old. The untold miseries that result from indiscretion in
early life may bealleviated and cured. Those tho doubt
this assertion should purchase and read the new medical

 skill and oxperience.

THIRTY-EIGHTH ANNUAL REPORT

New-YorkLifieInsurannce Co.
OFFTCE, Nos. 346 and 348 BROADWAY. JANUARY 1, 1883. Amount of Net Cash Assets, January, 1, 1882.....\$45,130.006.86 Premiums.
Less deferr REVENUE ACCOUNT.
Premiums...
Less deferred premium
Interest and rents (including realized gai $\$ 9,604,788.38$

Less interest accrued january $\mathfrak{i}, 1882 .$.
3,089,273.21 291,254.80-2,798,018.41-\$11,950,645.79

DISBURSEMENT ACCOUNT.

Lesses by death, including Reversionary additions to same... . $\$ 1,955,292.00$
 Taxes and paid policicy-hadders.
Commissions, brokerages, agency expenses and physicians fees. $234,678.27$
$1,332,038.38$ $234,678.27$
$385,383111.18-\quad \$ 8,162,137.54$
38 $\$ 48,918,515.11$
Cash in bank, on hand, and in transit (since received)...... \$1,276,026.67 nvested in United Sta
$\$ 19,953,956.52$). $18,072,074.81$
$4,133,065.13$ Real Estate 9,306,940.16
$4,313,000.00$
or $\$ 17,950,000.00$ and the policies assigned to the Company as ad-

Temporary loans, (secured by stocks, market value, $\$ 5,191,139.50$) 1 .
Loans on existing policies, (he reserve held by the Company on the

*Premiums on existing policies in course of transmission and coilection. 494,032.23
 $\begin{array}{r}540,555.91 \\ 394,395.19 \\ 62.424 \\ \hline 20.425\end{array}$

CASH ASSETS, January 1, 1883.
\$50,800,396.82
Approprlated as follows:
$\begin{aligned} & \text { Adjusted losses, rue subsequent to January } 1,1883 .\end{aligned}$
Reported losses, awaiting proof, \&c.....
$\$ 351,451.21$
$138,97.23$
56

Annuities, due and unpaid (uncalied for, .iolicio. participating insuranc
Reserved for re-insurance on existing poicies
at
Reserved for contingent liabilities to Tontine Dividend,
Fund, January 1,1882 , ver and above a 4 per cent.

DEDUCT-
Returned to Tontine policy-holders during the year on
Matured Tontines.
alance of Tontine Fund January 1,1883.......................072, $1,07237.87$
eserved for premiums paid in advance...
$\begin{array}{r}2,091,372.16 \\ 35,782.36 \\ \hline\end{array}$
$\$ 45,851,555.03$
Divisible Surplus at 4 per cent. \$, 4,948,841.79 Surplus by the New York State Standard at $4 \frac{1}{2}$ per ct., estimated at $\mathbf{1 0 , 0 0 0}, 000.00$ From the undivided surplus of $\$ 4,948,841$ the Board of Trustees has declared a Reversionary dividend
pron to participating
annual premium

During the year 12,178 policies have been issued, insuring \$41,325,520.

MORRIS FRANKLIN
WM. H. APPLETON,
WILLIAM BARTON,
WILLIAM A. BOOTH,
DAVID DOWS,
HENRY BOWERS,
LOOMIS L. WHITE,

THEODORE MT. BANTA, Cashier.
D. O'DELI, Superintendent of Agencies. MORRIS FRANKLIN, CHARLES WRIGHT, M. D., $\}$ Medical Examiners. WILLIAM H. BEERS, HENRY TUCK, M. D.,

Vice-President and Actuary

 HENDERSON'S SPECIAL REFRACTORY COMPOUNDS.
Costs less than common red bsick. Practically infusible. Can be made in any locality where sand is found. No

ROOT'S NEW IRON BLOWER,
 IRON REVOLVERS, PERFECTLY BALANCED, P. H. \& F. M. ROOTS Man Plower, S.S.TOWNSEND, Gen. Agt., 6 Cortland St., 8 Dey St،
 SEND FOR PRICED CATA.

Self-Oiling Loose Pulley. Fully tested by several years' use and found relia
SATISFACTORY RESULTS guaranteed, if directions are followed. Orders fllled for
Pulleys from 6 in. to $\because 0$ in. diameter.

LANE \& BODLEY CO., CINCINNATI, OHIO,

Shafting, Steam Engines, Boilers, SAW MILLS, AND GENERAL MACHINERY.

 construction, quickest in operation, and perfect in re
suits. Prevents checks. warp, or hardened surface

THE SEIBERT CYLNDER OIL CUP CO.,

ERICSSON'S

New Caloicic Pumining Engine
Ni) CO Simplest cheapest, and most economical pumping engine
for domestic purposes. AnY servant girl can operate.
Absolutely safe. Send for circulars sand price lists DEIANATER IRON VOORES No. 10 Cortlamdl street, New York, N: Y.

$\$ 66$ a week in vour own town. Terms and \$5 outfit 50 Elegant large chromos, no 2 alike, name on, 10e. pre-

[^0]

Saverisements.

 BLISS'S ANEERICAN WONDER PEA.
 Extra Early, Very Dwarf(8 to 10 inches), Re-
quines 110 Bushing, Exquisite Flavor.

 B. K. Bliss asons'

HAND BOOK for tho FARM \& GARDEN.

 TO MANTFACTVEERSANDUSERS OF

 EJECTORS
Water Clevators,

 B

 HW.J.JOHIS As8Esites
ASBESTOS ROPE PACKING,
 made strictly BUILDING FELT.
 87 Maiden Lane, New York,

 HARRIS-CORLINS ENGUINE

JHNKINS PATHNT YALVES

ROCK BREAKERS AND ORE CRUSHERS,

The fact that this shafting has tis per cent, greater
strentha a finer ftisish and it truer to gauge, than any

EVAPORATING, FRUIT

 AMERICAN MANUF'G CO.,

Establ'd EACLE ANVILS. 1843 Sold CAST STEEL. Face and
ranteo. Retall Price, 10 cts. .per Il.

COLUUMBIA BICYCLE

Steel Castings

AUTOMATIC DAMPER REGULATORS AND WEIGHTED GAGE COCKS

Portable Electric Lighter.

 Devils Lake, , Turtie Mountain, And Mouse River Co

 PRICE, \$5.00.
 POortable Electric Lighter with

 Incorporated under thela ws of Massachusetts, Dece
ber, 1882 .

UPREHT DRILLS IG 6 GOINCHSWING BORNG \& TURNING MILLS TOSWNGG4.66\&84NCHESHBCKORD

 NORTH DAKOTA, tice at GRAND FORKS, DAKOTA. SECTIONAL MA Pand FULL particuars maliedFEEE to any addres H. c. DAVIS,

St. Paul, Minneapolis, and Manitoba R. R st. padl, minn.
Best Boiler and Pipe Covering Made The Celebrated Patent

ICE MAKING MACHINES,

And Machines for Cooling Breweries, Pork Packing Estab lishments, Cold Storage Warehouses, Hospitals, etc. PICTET ARTIFICIAL ICE CO. (Limited), P. o. Box 3083.

142 Greenwich St., New York City, N. Y.
NEW YORK BELTING AND PACKING COMP'Y.

EMERY

WHEELS

KORTING UNIVERSAL DoUble tube INJECTOR

和

 OFFICES AND WAREROOMS: HILAOA., 12 THH \& THOMPSON STS. NEW YORK, 109 LIBERTY ST.
EOTON, 7 OLVER ST.

HARTFORD

STEAM BOILER
Inspection \& Insurance
COMPANY
W. B. FRanklin.V. Pres't. J. m. alden. Pres't. J. B. Pierces. Sec'y.

SPEAKING TELEPHONES.
THE AMERICAN BELL. TELEPIIOVE COMPANY,

For 1883 is an Elegant Bonk of 150 pages, \boldsymbol{g}
Colored Plates of Flowers and Vegetables, and Colored
more than 1,000 of llowers and Yeqetrables, and
Flowers, Plants, more than 1,000 Mustrations of the choicest
Flowers, Plants, and Vegetables, and Direttions for
crowing. It is handsome enough for the Center Table arowing. It is handsome enough for the Center Table
or a Holiday Present. Send on your name and Post
ofice address, with 10 cents, and I will send you a copy, postage paid. This is not a quarter of its oost. It is is
printed in both English and German. If you afterward
order seeds, deduct printed in both English and Germ
order seeds, deduct the 10 cents.
Vick's Seeds are the Best in the World!
The FLoral Guide will tell how to get and grow them,

JAMES VICK,

The Most Popnlar Scientific Paper in the World.
Only \$3.20 a Year, including postage. Weelíly. 52 Numbers a Year.
This widely circulated and splendidy illustrated paper is published weekly. Every number contains six-
teen pages of useful information, and a large number of original engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery, New Inventions, Novelties in Mechanics, Manufactures, Chemistry, Electricity, Telegraphy, Photography, Archi-
tecture, Agriculture, Horticulture, Natural History, etc. All Classes of Readers find in the Scievitific Ameritan a popular resume of the best scientiflc in-
formation of the day; and it is the aim of the publishers to present it in an attractive form, avoiding as much as
possible abstruse terms. To every intelligent mind, possible abstruse terms. To every intelligent mind,
this journal affords a constant supply of instructive reading. It is promotive of knowledge and progress in every community where it circulates. Terms of Subscription.-One copy of the SCIEN-
TIFIC AMERICAN will be sent for one year- 52 numberspostage prepaid, to any subscriber in the United States
or Canada, on receipt of three dollars and cents by the publishers; six months, \$1.60; three cents by the
months, $\$ 1.00$.
of the Sciev of the SCIENTIFIC AMERICAN and one copy or one year, postage prepaid, to any subscriber in the United States or Canada, on receipt of seven dollars by
the publishers.
The safest way to remit is by Postal Order, Draft, or Express. Money carefully placed inside of envelopes,
securely sealed, and correctly addressed, seldom goes astray, but is at the sender's risk. Address all letzers
and make all orders, drafts, etc., payable to

$$
\begin{aligned}
& \text { MIUMVN \&E CO., } \\
& 26 \text { r Broadway, New }
\end{aligned}
$$

PRINTIING INKS,

[^0]:

