
a WeEkly Journal of Practical information. art. SCIENCE. MECHANICS. CHEMISTRY and Mantractures.

Vol. $\underset{\text { [NLEW SERIES.] }}{\operatorname{Xin}}$

NEW YORK, FEBRUARY 17, 1883.
[\$3.20 per $\underset{\text { [POSCAGE }}{\text { AMMIMm }}$

Stixutific simxriam.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 261 BROADWAY, NÉW YORK.

O. D. MUNN.

A. E. BEACH.

TELEMS FOR THE SCIENTIPIC AMERICAN.

 One copy, one year postage included...One copy, six months postage included 1830
Clubs.-One extra copy fite The Scientific American will be supplied
gratis for every cul of subscibers at $\$ 3.20$ each : additional copies at same proportionate rate. Postage prepaid.
Remit by postal order. Address

MUNN \& CO., 261 Broadway, corner of Warren street, New York
The Scientific American Supplement
is a distinct paper from the Scientific American. THE SUPPLEMENT
is issued weekly. Every number contains 16 octavo pages, uniform in size with Scientific American. Terms of subscription for Supplement $\$ 5.00$ a year, postage paid, to subscribers. Single copies, 10 cents. Sold b Combined Rates. - The Scientrifi
will be sent for one year postage tree. on AMERICAN and SUPPILMMINT papers to one address or different addresses as desired. The satest way to remit is bry draft, postal order, or regegistered letter.
Address MUNN \& CO.. 261 Broad way, corner of Warren street, New York

Scientific American Export Edition.
The Sciwntific ambrican Export Edition is a arge and splendid periodical, issued once a month. Each number contains about one hundred
large quarto pages, profusely illustrated, embracing: (1.) Most ot large quarto pages, profusely illustrated, embracing: (1.) Most of the
plates and pages of the four preceding weekly issues of the Sci N.vipic AMurican, with its splendid engravings and valuable information: (2.) Commercial, trade, and manufacturing announcements of leading houses. Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the world. Single copies 50 cents. Manutacturers and others who desire
to secure foreign trade may have large. and handsomely displayed an to secure foreign trade may have large. and handsomely
nouncements publishedi in this edition at a very moderate cost.
The SCIENTIFIC AM EIICAN Exnort Edition has a large guaranteed circuThe Sciextific Ameinican Exnort Edition has a large guaranteed circuLation in all commercial places throughout the world. Address MUNN
Co., 261 Broadway, corner of Warren street, New York.

NEWW YORK, SATURDAY, FEBRUARY 17, 1883.

table of contents of
the scientific american supplement No. 372,

For the Week ending February 17,1883 . Price 10 cents. For sale by all newsdealers

VIENNA INTERNATIONAL ELECTRIC EXHIBITION.
In the ten years since the Universal Exposition of 1873 was held in Vienna, the larger part of the modern advance in the utilization of electricity has taken place. Electrical science has entered upon a new phase, and from a very subordinate position among the great factors of the world's progress it has risen to a place very near the front.
Vienna, too, has undergone many and material changes Though outstripped by Berlin, the city has grown rapidly and bas added much to its attractiveness to tourists by the erection of a large number of monumental public buildings and otherwise. The city has been surprisingly prompt in the adoption of electrical improvements and novelties in the way of telephones, electric lights, and the rest, and by its commanding position enjoys superior advantages as the commercial entrance to a large and populous portion of southeastern Europe.
Accordingly, to American engineers, inventors, owners of electrical patents, and manufacturers of electrical appliances and machinery, the International Electrical Exhibition in Vienna, to be held next fall, రffers a very favorable opportunity for observation and study, and for presenting new electrical inventions and manufactures to a considerable portion of the civilized world.
A communication from Mr. Carl Pfaff, of the Managing Committee, dated Feb. 4, announces that the exbibition will continue from August 1 to October 31. No prizes or medals are to be awarded.
Among the more recent indications of electrical progress in that part of the world, our correspondent, Alfred Pollak de Rudin, in Vienna, mentions the lighting of the streets of Temesvar, in Hungary, by means of Edison lamps, to be completed next summer ; the lighting of the Emporor's palace in Vienna by electricity; the introduction of telephones in the great general hospital of the same city, to enable patients in the infected wards to converse with their friends without risk of infection; the use of incandescent electric lamps in three of the large silk establishments of the city, the current being supplied by means of accumulators; and the lighting of the National Theater, in Prague, by means of Edison lamps.

THE PROBLEM OF THE TELEPHONE.

That the American Bell Telephone Company is master of the telephone field must be acknowledged. Every telephone user knows it. Every would-be user knows it. Every telephone inventor knows it. The recent consolidation of telephone interests, the massing of capital, the successes in court, have made this company a tower of strength. • With a capital of $\$ 10,000,000$, swelled by premium to $\$ 18,000,000$, with legal advisers, and experts schooled in the art of telephony from the beginning, and with judicial prejudice in its.favor, it appears futile for a rival to attempt a contest with so powerful an opponent. If the claims of the Bell patent are to be construed by every court as covering any and all methods of transmitting speech electrically, then telephone inventors must be content with the bare possibility of disposing of their inventions to the controlling power; but if, on the other hand, the Bell patents are found to cover only a specific method and apparatus for trans mitting speech, then there is a field in which inventors may work with prospects of a reward.
Hitherto, nothing has transpired in court by which the true status of the Bell patent has been defined, for in no instance has the court passed upon the merits of the questions at issue. The decrees bave been obtained by default, or by consent, or in cousequence of admissions of the defendants, which resdered it unnecessary for the court to decide upon the merits of the case.
It is held by some that the Bell patent covers only the method of and apparatus for transmitting speech electrically by means of undulatory currents of electricity. It is held by the Bell counsel and experts that there can be no other method, while it is claimed by others that another method and other apparatus may be employed to accomplish the same end. In all these phases of the telephone problem there arise questions for which there is now no answer. The most intricate points of law as well as the most subtile physical principles are involved; and now the question is, as to the advisability of pursuing telephone investigations as to the advisability of pursuing telephone investigations
for purely monetary considerations. Any one familiar with the present status of telephonic apparatus can readily see that there is no greater field for study, and none that has greater promise of profit in it, than that of telephone invention.
Let the legal aspect of the matter be as it may, it is positive that the accomplishment of certain improvements in the telephone would yield a far richer harvest than has been reaped by any inventor in this line. It should be no source of discouragement to the determined and intelligent inventor that hundreds, and probably thousands, have reached toward the prize with a grasp too short, for it is only a faithful index of the great value of the prize that so many have striven for it.

The results to be attained are continuity, uniformity, and reliability of action, increased volume of sound, freedom from external disturbances, increased distances, and better service for less money. How all this is to be accomplished we shall not attempt to suggest, but a few of the obvious things to be done are to reduce the delicacy of the apparatus, to increase the current used on the line wire and to use a current of lower potential, and to isolate the telephone wires from other line wires carrying heavy currents.

Why should not the telephone speak out in the ordinary conversational tone, and why should.it not be spoken to in the same tone, without the necessity of being near the instrument? Why should not the distance over which conversation is carried on equal telegraph distances? Of course, we know that electricians and physicists have struggled with these problems. but what are the results?
If we are to have a long distance telephone, the induction coil must be discarded, because the secondary current vails itself of every avenue of escape from its conductor, and everytbing with which it comes into contact-the insuators, the air, even contiguous wires-rob it of some of its strength, so that in attempting to communicate by telephone over long lines the current is lost, little by little, at every insulator, and all along the line until it is finally insufficient to affect the receiver.
If a battery current of the strength used in telegraphy be employed, evidently something besides carbon must be used for electrodes in the transmitter, or the instrument under some conditions might yield an electric light instead of transmitting speech.
Some are of the opinion that speech can be transmitted by means of an interrupted current on a broken circuit. If this is possible, a proper apportionment of the periods of contact and periods of separation of the electrodes of the ransmitter should give increased volume of sound, and permit of the use of a battery current on the line.
The fact that more than five hundred patents bave been ssued for telephonic improvements will naturally discourage nventors, but let the student of telephony consider that there is a great similarity between many of the telephone inventions; that the variations are mostly structural, and ot in principle; that the majority of inventors are wedded to certain accepted theories; and finally, that most if not all of hem are in the same groove, and that to obtain new results there must be a radical departure from the reigning idea; then he will look for means and methods differing from hose of his predecessors.
In what the telephone of the future will consist we cannot predict; but it should be capable of talking and heing talked to, as one person talks to another; and a man in New York should be able to transact business orally with andther in Cbicago or San Francisco.

A FOUR-MILE DEPOSIT OF IRON ORE

Public attention has just been brought to a deposit of carbonate of iron-siderite-extending a distance of four miles along the Hudson River, in Columbia County, and having a depth of eighteen feet. The control of this enormous body of potential wealth bas recently been acquired by a combination of prominent iron and steel manufacturers, who after careful investigation are convinced that the new deposit contains a volume of ore equal to that of the famous Cleveland mine in the north of England, which now yields something like $6,000,000$ tons of ore a year. The ore is similar in character, but superior in quality to the Cleveland ore. It is also closely similar to that of the great Luxembourg deposit in Belgium.

The geological and chemical features of the Columbia County deposit have been carefully studied by Prof. John C. Smock and Mr. Walter L. Lawrence, who, it is said, have demonstrated its volume and quality to be as above stated. They find that the ore contains 48 per cent of iron, 914 per cent of silica, one-half of one per cent of sulphur, and one-fortieth of one per cent of phosphorus.
The deposit is so situated that from every point the ore can be run to the water's edge by gravity, passing over the track of the Hudson River Railroad. The title to the whole tract is now vested in the Hudson River Ore and Iron Company, and it is promised that the active development of the property will begin early in the spring. Already the necessary machinery has been prepared for early shipment, and the construction of wharves, tramways, workmen's dwellings, etc., will begin as soon as the weather will permit.
The men who bave invested so largely in this enterprise are among our wealthiest and most capable producers of iron and steel, and are not likely to be mistaken with respect to the value of the deposit they propose to develop. Accordingly, there is good reason to anticipate early changes in the iron and steel trade, which will make the United States entirely independent of foreign ores, and New York pre-eminently the iron State of the Union.

Curious Effects of Lightning.

Some interesting effects of lightning have been observed by M. Alluard at the summit of the Puy de Dome, where, on a circular tower, is an iron mast about twenty feet high, supporting an anemometer of the Robinson type, with four copper cups. There is also a ladder and stand (both made largely of iron), to allow of access to the anemometer, for cleaning. Two metallic cables connect the system with copper plates in the gromnd. Under these conditions, St . Elmo's fire often appears at the salient points of the mast, tand, etc., and a slight hissing is sometimes beard. All the cups of the anemometer show numerous signs of fusion by lightning, and only in their upper balf; their connecting iron circle has also been fused in some places. Wherever such fusion has occurred, the metal has been raised like a small volcanic cone in the center of a crater. Some exterior attractive force seems to have raised the melted substance. M. Alluard proposes to study the phenomenon more closely.

WHAT IS AN ARTIST?

In a recent lecture in this city, Dr. Seymour Haden, the eminent English etcher, gave a definition of art which is commendably more comprehensive than artists are apt to conceive. His view is so like that heretofore taken in this paper that we quote at length:
"An art and the principles of an art-what are they? The words are heard so often, they seem to come in at one ear and go out at the other. Yet I do not remember ever to have seen a definition of the word art which entively satisfied me. The best way to arrive at a definition, perhaps, is to approach it, so to speak, from its negative side, and explain at least what art is not. Art is not manufacture. The French say Arts et Metiers, and we, Arts and Manafactures, using the words for the sake of the apposition. For all useful purposes the phrases are good; yet neither is correct. Metier means mastery, and may apply to art as well as to manufacture; manufacture means made by hand, and yet is constantly applied to works of the loom. Now in what does art differ from manufacture? An art differs from a manufacture in this, that though it depends on material agents for its means of expression, yet those agents are of a simple kind, and are wholly directed by an impulse which has its seat and origin in the brain of the artist. Invest any of these simple agencies-the brush of the painter, the pencil of the designer, the needle of the etcher, the chisel of the sculptor, the knife of the surgeon, or the pen of the author, with any of the properties of the machine; ender it in any way automatic, so as to place it in abeyance, and render unnecessary this brain impulse, and you will have as a result of their agency not an art, but a manufac ture

A principle of an art, again, is that condition, or one o those conditions which by common consent are admitted to be necessary to its healthy existence, or, indeed, I may say to its existence Now, it follows that if this brain impulse is really at the bottom of art, the first principle of art is personality, originality, out of which come ideality, sensibility to external impressions, a sense of the beautiful, pas sicn, poetry, and whatever else the mind of the artist i capable of. I do not say that all these attributes are neces sary to the production of an ordinary artist; one may be a fair artist with one or two of them, and he must be a great genius who possesses them all. But one is absolutely essential-personality."
As far as be goes, Dr. Haden is rigit. But does he mean to limit the artist's agenciés to the brush of the painter, the pencil of the designer, the chisel of the sculptor, the pen of the author, and the rest? We bardly think it. The tools of the goldsmith and of the silver (or white) smith have long since been admitted among the agencies of genuine art work. When the silversmith, having a noble purpose, puts limsel -his personality, thought, feeling-in sufficient measure into his work, his art is justly called fine art. This being admitted of the whitesmith, who can deny it of the black smith ? The fact that tlie blacksmith's aim is utility oftener than mere ornament only strengthens his position in the art world if his personality is fine and noble and is well express ed in the thing of iron his skillfully-wielded hammer has wrought out. All genuine art development has blossomed out of and around pure utilities. The right of the potter, he wood-worker, the weaver, and all other masterful workers (who put themselves into their work, and have in themselves something worth putting into work) to be ranked among artists depends upon themselves, and what they do, not up on the material they work upon or the tools they use.
On the other hand, many an æsthetic marble-cutter or brush-wielder, who thinks hinself an artist in the highest seuse because true painters and sculptors are, is after all no artist. His "art-work" is make-believe. It is mimicry not the expression of creative brain-power, and not to be compared with the purposeful work of many whom he would call mere mechanics and manufacturers.

THE STAR OF BETHLEHEM.

The reappearance of the variable star poetically known as the Star of Bethlehem is among the possibilities of the present year; for unless astronomical calculations are in fault, this long-looked for star must flash forth from the sky depths before the year 1885 has completed its course, and i may appear at any time, as its period, if it have one, is very near completion.
In the year 1572, Tycho Brahe, a Dutch astronomer, discovered a new star near Caph, in the constellation Cassio pea. It was of the first magnitude when first seen, increased rapidly in brilliancy, outshining Sirius, and soon equaling Venus, and was easily detected at noon-day by good observers. The color of the great star was at first of a dazzling white, then it changed to yellow, and finally became red. It shone brightly for nearly a month, then gradually aded, and in sixteen months disappeared from view.
There were at the time a variety of opinions concerning the cause of this remarkable phenomenon. Some observers looked upon it as a fresh creation, a new comer in the universe. Other observers, and the larger portion, considered it as a sun on fire, a grand celestial conflagration, symboliz ing the fate sure to overtake our sun and his retinue of worlds when the end of all things arrives. Astronomers were content with various speculations on the subject without coming to any definite conclusion, though it was the general opinion that the bright star in Cassiopea had fulfilled its mission, and would never again shine in the star-depths. A few stars with a similar history had been observed at
long intervals, and these, as well as the brilliant new-comer, were included in a class known as new or temporary stars. Forty years after the occurrence of this event, the telescope was invented. When it was turned to the position in the heavens occupied by the blazing star, a telescopic sta was found within a minute of the identical spot which had been carefully mapped out by Tycho Brahe. This telescopic star is still found there, and is probably the same star hat suddenly flamed forth in 1572 .
The discovery that the famous star had not ceased to ex ist stimulated investigation. Astronomical annals were diligently searched, and it was found that similar bright tars were recorded as appearing in the same region of the sky in the years 945 and 1264. It is therefore inferred that he great new star of 1572 is a variable, with a period of a few more than three hundred years. If this theory prove true, we may soon hope to witness a repetition of this incompre hensible phenomenon. The last period was three hundred and eight years. The star was therefore due in 1880, and, if it appear at all, must dazzle our admiring eyes in the imme diate future. By counting back three periods from the tar's first recorded appearance in 945 , we are brought to he near vicinity of the birth of Christ. Observers gifted with poetic fancies have not failed to connect the two events, and to infer that the Star in the East pointing to the place f the Nativity was the sudden outburst of this extraordi ary star. Hence it has received the name of the Star of Bet blehem.
About twenty-four temporary stars have appeared from time to time in the last two thousand years. It is nearly certain that they all existed in the skies as very small stars before they blazed forth, and that, though apparently blotied out, they still exist there, ready to blaze forth again when the same conditions induce another conflagration. They are now classified as variable stars, thougb their long periods are of an incomprehensible and irregular character. Thus there are variable stars of many varieties, from a well-behaved variable like Algol, that completes its regular changes in a period a little less than three days, to an erratic variable like the star in Cassiopea, that appears with a sudden outburst and then remains quiescent for centuries. In he case of the regular variables, it is easy to account for

the maximum and minimum light by the interposition of ark satellites, hiding a portion of the light as they pass beween us and the star, or by the theory of sun spots, lessenng at times the light of the star. Our sun is a variable star, and viewed from the nearest of the neighboring orbs probably shines as a yellow star of the third or fourth magnitude with a period of about eleven years, identical with the sul spot cycle. In the case of fitful variables, there is reason to believe that the sudden flames are due to outbursts of glowing hydrogen, resembling those of which the rosy protubeances around our sun give an illustration on a small scale.
If these outbursts are caused by eruptions of burning hydrogen, and if the protuberances around the sun are due to the same agent, the question naturally arises whether there may not be danger of similar outbursts from the solar surface. Such a catastrophe would doubtless involve the destruction of at least the higher forms of animal and vegetable life. Such a possibility exists, but the probability is too small to excite a moment's alarm. Only twenty-four blazing suns have been observed in two thousand years, while millions of stars have shone in the her vens, with' a constant and serene light that has remained unchanged since men began to study these twinkling mysteries. The chances that the sun will blaze forth in the erratic style of the star of 1572, are therefore not more than one in a million, no greater than the probability that a huge comet will plunge headlong into the sun, or come into collision with the earth. Observers will do well to keep an eye upon the constellaion Cassiopea. Unscientific observers are as likely to be the first to detect the presence of the brightly beaming orb as those who possess special training for the work. If the long lost Star of Bethlehem return to its old position in the sky, it must return speedily, for every day increases the nearness of the advent. The year 1883 may, therefore, be made illustrious by a celestial visitor with a dozen comets, an event that would be almost as welcome to astronomers as the discovery of the cause of sun spots, or the accurate de ermination of the sun's distance.
Cassiopea is a constellation excellently situated for observation. It is on the opposite side of the pole from the Great Dipper, and at nearly the same distance. A line drawn through Megrim, one of the stars in the square of the Dipper, continued to the Polar Star, and extended to an equal distance beyond, will reach Caph, a star of the third magnitude in Cassiopea. This star with three others of about the
ame magnitude and a smaller one form the figure of an inar. As in this latitude the constellaton is alway bove the horizon, it can be seen at all hours of the night
The diagram shows the principal stars of Cassiopea, and gives the relative position of those that form the chair. The point where the star of 1572 appeared is marked with a cross. Its right ascension is 0 h .19 m ., and its declination is $63^{\circ} 24^{\prime}$ north. It is about 5° north northeast of Caph or Beta Cassiopeæ.

the Past year in the patent office.

The annual report of the Commissioner of Patents for the year ending Dec. 31, 1882, shows that the balance in the Treasury on account of the Patent Fund was increased during the year from $\$ 1,880,119.32$ to $\$ 2.205,471.10$. The usiness done was largely in exess. of that of the previous year and more than double that 僕 1860, as shown by the fees received and the number of patents issued, evidence nough of the rapid development of the service.
The total number of applications relating to patents was 31,522 ; of these 30,270 were for inventions, 948 for designs, and 304 for reissues. The number of caveats filed was 2,553; applications for registration of trade marks, 796; labels, 532; disclaimers filed, 20; appeals, 691; making in all 367,114 occasions for investigation and action. The number of patents granted and certificates issued was 20,518 . Six thousand and ninety-nine patents expired during the year, and 1,791 were withheld for non-payment of final fee.
New York led in the number of patents received (3,779), and was followed at a long distance by Pennsylvania and Massachusetts, close together (1,843 and 1,815), and by Ohio and Illinois, also close together (1,466 , and 1,422). New Jersey took out 835 patents, Connecticut 794,Michigan 637, Indiana 613, California 486, and Missourl 485. Wisconsin took 356, Iowa 348, Rhode Island 382, Maryland 372, and the rest smaller numbers. New Mexico took 8, the Armiy and Arizona 7 each, Idabo and Wyoming 4 each, and the Indian Territory brings up the rear with 3 . Connecticut led in the ratio of patents to population (1 to 782), and was closely followed by Rhode Island (1 to 980) and Massachusetts (1 to 982). Excluding the District of Columbia, which is not representative, New York, ranks next with one patent to 1,345 people, and New Jersey next with 1 to 1,354 .
Eleven hundred and thirty-five patents were issued to foreign inventors, England taking the lion's share, 399; Canada took 228, Germany 219, and France 129. Switzerland is credited with 35, Austria with 32, Italy with 20, Belgium with 11, Denmark, Sweden, and Russia with 10 each. The remaining few were widely scattered.

The Commissoner renews the annual appeal for more help, more room, and more morey-needs which are plainly obvious everywhere except in Congress. The urgent necessity of carrying on the suspended work of making a classified abridgment of patents already issued is again insisted upon. In view of the fact that accumulated funds of the Office already exceed two million dollars, there can be no reasonable excuse for depriving the Office and the inventive public of the henefits of the much needed digest.

Improved Accumulating Batteries

A great improvement has, it is said, been effected in accumulators by a combination of the Faure-Sellon-Volckmar patents. The Pullman train on the Brighton line, which formerly was lit by 18 incandescent lamps, supplied by 70 Faure accumulators, is now illuminated with 40 incandescent lamps, the current for which is supplied by 30 Faure-Sellon-Volckmar accumulators, the total weight of which is less than half those formerly employed.
According to Prof. Ayrton, the old accumulators weighed 130 pounds in working order, and gave a current equivalent to one horse power for three-quarters of an hour ; whereas the new pattern weighs only about 75 pounds, and gives a horse power for an hour. The flannel or felt is now dispensed with, and the plates are so arranged now that a defective or imperfect one can be easily removed.

A New Fish and New Insects.

Several animals, new to science, were lately described to the Paris Academy. One is a strange fish brought up from a great depth off the Morocco coast ; it is about a foot and a half long, and of deep black color ; but its most striking feature is its very large and capacious mouth with elastic membranes, much resembling a pelican's. Probably, food is partly digested in this cavity. The fish (which M. Vaillant calls Eurypharynx pelecanoides) bas very little power of locomotion. M. Brongniart described a new fossil insect of the order of Orthoptera from the coal formation of Commentry (Allier). Insects are rare in the Carboniferous strata; hitherto only 110 specimens have been obtained in the whole world. That now found is of remarkable size-about ten inches long, and the family of Phasmidæ, or "walkingstick insects," is that which comes nearest to it. M. Brongniart names it Titanophasma fayoli (M. Fayol sent it). The upper part of the thorax not being preserved, it is impossible to say whetber the insect was winged. Once more, M. De Merejkowsky described a new class of infusoria, called Suctociliates, and forming a sort of connecting link between ciliates, which are characterized by small vibratory hairs, and acinetians, which have no such hairs, but have \$ubkers.

AN AMMONIA STILL FOR SMALL GAS WORKS The accompanying illustration represents an apparatus designed by Herr J. Gareis for the distillation of ammonia from the ordinary ammoniacal liquor of gas manufacture, and is taken from the Journal fur Gasbeleuchtung. The arrangement is intended for small gas works, being compen dious in design, cheaply constructed, simple and economical in working, and reliable. The smallest example, for treating one cubic meter, or 220 gallons of liquor per 24 hours-a class of apparatus that has a long time been in regular use-produces 40 kilos of sulphate per cubic meter of liquor of 2.25° Baume, with an expenditure of 30 kilos of acid, 4 kilos of lime, and about 50 kilos of coke for fuel. A larger apparatus for 2 cubic meters, or 440 gallons of liquor daily, gave 5,547 pounds German (5,714 pounds Eng. lish) of sulphate from $59 \cdot 280$ cubic meters (13,042 gallons) of liquor of 2° Baume.
The principle of the arrangement is clearly shown in the drawing. The boiler comprises four distinct parts, $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D, of which A and C contain the pure liquor to be distilled. The section, B, contains liquor with the addition of milk of lime, for setting free the fixed ammonia. \mathbf{D} is the lime box.
The division, A, is heated directly by fire in the furnace, f, whence the smoke as well as hot gases escape through the chimney, n. The steam and ammonia developed from the liquor in A, pass together in the direction shown, to the bottom of the division, B, where they meet with the liquor mixed with lime. A constant boiling is maintained in this compartment, whereby the heavy particles of lime are prevented from settling to the bottom. The steam and gases from B escape through the pipe as shown, and find their way to the bottom of the division, C. In this a partial condensation of the steam takes place, with consequent heating of the liquor; while the incondensable ammonia escapes through the pipe, h, for conversion either into liquor ammouiæ or sulphate.
When, through long conticued boiling, all ammonia has been driven off from the contents of B , the cock, i, is opened, and the vessel is thereby emptied. The cock, k, is then opened, and the liquor from C is admitted to the lower part of the division, A, while the liquor previously contained in this division overflows into B, until the working level is reached. This cock may then be closed, and the required quantity of milk of lime run into B by opening the cock, l, communicating with the lime tank, D; the necessary proportion being found by experience. The division, C , must now be filled with fresh liquor from the store tank, and the operation then goes on as before. The change of liquor herein described is made about every four hours, when the apparatus is in regular working. The drawing shows how the fresh liquor, before being admitted to the division, C , may be warmed by passing through an annular jacket, V , surrounding the furnace chimney; the supply of cold liquor being taken into the bottom of this jacket through the pipe, t, fitted with the cock, m.
The necessary cleansing of the boiler, A, is provided for by the movable cover, o, secured merely by a crossbar and screw. The section, B, is cleaned when required through the manhole, p. The compartment, C, may be cleaned by removing the small lime tank, D. It is not necessary that this tank should always be fixed on the top of the still itself, since any other elevated position will serve, so long as the

contents will run into the division, B. Neither is direct heating, by means of a furnace as shown, essential to the proper working of this arrangement. All that is necessary for the successful use of the apparatus is that the raw liquor shall be stored so that it will run into the vessel, C , and that the lime tank is charged with a sufficiency of liquid. Any kind of saturation tank or fishing box may, of course, be used to receive the evolved ammonia. The cost of the apparatus as illustrated, in Germany, for 1 cubic meter of liquor per 24 hours, is about $£ 75$; for 2 cubic meters of
liquor, about $£ 115$; and for 3 cubic meters, about $£ 150$. The arrangement appears to be particularly neat and simple, and to be well adapted for the class of establishments mentioned by the designer. Although nothing is said about constant working in the original description, it would appear upon inspection of the drawing, that at least a regular flow of liquor might be permitted, even if the admission of milk of lime were intermittent. The small space occupied by the still is not the least advantageous of the several peculiarities which it presents; although this very compactness may form ground of objection to many engineers. It must be remembered, however, that the design is not put forward as a plan for treating liquor on a large scale, but is intended to meet the case of small establishments where the ammonia has not hitherto been recovered on the premises.-Journal f Gas Lighting.

ELECTRIC MOTORS WITH INDUCTORS CONTAINING NO IRON
It is at present demonstrated that the best electric motors are those machines that are based upon the principle of the Pacinotti ring. In these apparatus, in fact, the attraction of the magnetic field on the armature is exerted continuously

BURGIN'S SPHERICAL MOTOR.
and without any changes of polarity that are capable of giving rise to retarding effects as a consequence of the magnetic inertia of the iron core. By reason, however, of the high price of ring machines, it is as yet advantageous, for small powers, to make use of motors in which there is a reversal in the direction of the current. In the construction of motors on this principle, the fact (indicated for the first time by Deprez in 1878) is taken into consideration that the iron cores of the movable parts should be reduced as much as possible, in order to suppress in a great measure the prejudicial effects due to the slow magnetization and demagnetization of the iron; and, in the majority of the present motors, there is employed as a movable armature Siemens' double T iron bobbin, which was pointed out by Deprez as very well realizing the conditions just mentioned
With this system we diminish in a great measure the effects due to the magnetic inertia of iron; but we do not eliminate them completely, and the idea of entirely suppressing such prejudicial actions has given rise to a series of apparatus all based upon the same principle, and which the motor recently constructed by Mr. P. Jablochkoff gives us an occasion to pass in review.
In order to avoid remanent magnetism, Mr. Dering, about thirty years ago, devised an apparatus called the Galvanometric Motor. This consisted of a certain number of galvanometric helices, all of the magnetized bars of which reacted upon the same axis, and reversals of the current occurring at every half revolution of the bars, in the wire of the inducting helices. The motor contained no piece of soft iron capable of intervening through its remanent magnetism.
In 1879 Mr . Deprez constructed, with the same end in view, a machine of which some idea may be had by imagining one of his motors in which the permanent magnet was replaced by a flat rectangular galvanometric helix, so constructed as to embrace as perfectly as possible the curve of the bobbin. The changes of direction in the current took place in the galvanometric helix, and, the poles of the bobbin always remaining of the same name, there were no longer any contrary actions due to remanent magnetism. This apparatus gave so poor results that its inventor did not deem it worth while to publish a description. In 1881, Mr. Burgin exhibited at the Pal-
ace of Industry an apparatus called the Spherical Motor, but when released immediately expands, freeing itself from based upon the same idea. The field magnet consisted the accumulated dirt, and offering little resistance to the of a spherical shell, around which were rolled borizontally flushing current that is then sent through it in the opposite the copper wires, F F.

In the interior of the hollow sphere there revolved around cylinder, and normally compressed between the cylinder end an'axis, A, a spherical electro-magnet having for core the and a piston. While the cleansing operation is being conmass of iron, $\cdot N$. The flat springs, $L L^{\prime}$, bore against the ducted, the piston is alternately raised and lowered, the action solid parts of the commutator in such a way as to send into on the filtering medium being similar to that ordinarily
he wire, f, a current always of the same direction; but the springs, $l l^{\prime}$, through which the current entered the wire, F , rested against the cleft middle part of the commutator, so that at every half revolution the current changed direction in the wire, \mathbf{F}. Motion was thus produced by the action of the magnet, N, upon the wire, F, in the same manner as in other motors; but the reversal of the current was effected in a part that contained no iron, and the effects due to the magnetic inertia of that metal were suppressed as in the preceding apparatus.
Finally, very recently, Mr. Jablochkoff has devised a new motor, which he calls the Ecliptic. The movable part is formed of a flat bobbin, b which is placed obliquely on the axis of rotation. This bobbin is of iron, and the whole thus forms a short electro-magnet. The fixed part is a larger bobbin, B, with a copper frame, arranged obliquely to the axis like the other, but in an opposite direction. The arrangement of the commutator is such that the current always traverses the movable bobbin in the same direction, and that the changes of directions, at every balf revolution, take place only in the fixed solenoid. The actions that are exerted between this solenoid and the armature cause a rotation of the latter.
It will be seen that although Mr. Jablochkoff's bobbin differs from those just described in the peculiar and original arrangement of its bobbins, it likewise utilizes the idea of producing changes in the direction of the current in a part containing no iron.
All these apparatus, then, suppress the inconveniences re sulting from the magnetic inertia of this metal; but this is no reason why they should be considered an improvement over systems employing iron cores of small dimensions. Although the prejudicial action of iron is, in effect, suppressed, there still remains that of the extra currents produced by the influence of the wire spirais upon each other; and these extra currents inevitably produce a notable contrary effect. Besides, although the iron is no longer there to intervene as a disturbing force, it, on the other hand, no longer lends the solenoid its re-enforcing action, so that what is gained in one direction is lost in another.
It goes without saying that all the apparatus described above are reversible, and may be regarded not only as motors but also as dynamo electric machines. But they evidently present no more advantages from such a point of view, and the fact is, they should be considered, not as practical apparatus, but as interesting arrangements that ingeniously utilize electro dynamic actions.-La Lumiere Electrique.

IMPROVED SPONGE' FILTERS.

The problem of constructing a filter for steam users and manufacturers that should be able to deal with large quantities of muddy river and canal water, and should at the same time be capable of being easily and efficiently cleaned, has been solved, says Engineering, by the Pulsometer Engineering Company, of the Nine Elms Iron Works, by the adoption of an elastic filtering material, which when compressed forms a compact bed through which the water percolates,

IMPROVED SPONGE FILTERS.

adopted in washing a soapy sponge; it is first allowed to absorb water until the pores are filled, and then the water is squeezed out, carrying a part of the mud with it, the process being continued until the effluent water is clear.
A very successful installation of these filters is now in operation at the works of Messes. Garion, Hill \& Company, saccbarum manufacturers, Battersea, London, where it is supplying feed water for eight boilers, each 30 feet by 7 feet. Two filters of the largest size are employed, and when the five remaining boilers that will be required when the works are complete have been put down, will run night and day At the present time, when the river is particularly muddy, the effluent water from the filter is bright and clear, and as far as appearance goes, is similar to the company's water which is also drawn from the Thames, though of course at at a higher part-of the river, and has been submitted to an elaborate process of settling, and filtration by sand beds. The immense quantity of mud eliminated by the filter is made manifest as soon as the cleaning process is commenced, when it pours out in a thick stream, gradually becoming clearer and clearer until the turbidity ceases. It is not contended that sponge has any power to extract the soluble impurities contained in water, or to counter act the ill effects of contamination by sewage. All that is claimed for the filter is that it will rapidly cleanse large quantities of muddy water sufficiently for every mana factoring purpose and for feeding boilers both on shore and in rive boats, and that with a very small amount of care it will remain in good working order for years. Large numbers of these filters have be delivered both at home and abroad one firm having already ordered nine for use on river steamers in Deme rata. These filters are made in five sizes, the smallest of which will pass from 100 to 150 gallons per hour, and the largest 2,000 to $3,800 \mathrm{gal}$ Ions.
The construction of the filter is clearly shown by the illustrations, one being a vertical central section, showing the parts as they appear while the filter is being cleaned, and the other a perspective view of the double installation at the saccharum works. The apparatus consists of cast iron copper lined cylinder fitted with a piston, formed of a circular grating covered with wire gauze The filtering medium is contained between this piston and a perfo rated plate, I, which forms the face of a collecting chamber constructed in the cylinder cover. The piston rod is coated with gun metal, and passes through a stuffing box to a guide fixed on the cover. Between the gland and the guide it is provided with a crosshead, J whose position can be adjusted by means of a screw thread on the rod. This crosshead is connected by two links to a double lever, A, by which the piston can be raised and lowered in cleansing the sponge. The agency for operating the lever varies according to circum stances and the size of the filter. In the annexed section a hand lever is shown, while in the installation at Messes. Garton, Hill \& Company's works a connecting rod couples the lever to a crank disk driven by a worm and worm wheel and fast and loose pulleys. In some cases it is more con venient to dispense with the lever and to employ a steam cylinder mounted upon the guide bracket after th manner of a steam hammer cylinder set fast, even it ere may be no liability of the apparatus to before being subjected to the operation, and the printing and wooden guiding strips are made as narrow as possible strengthening ribs. The water to be cleansed enters at the lower part of the filter at D , and rising through the piston and the compressed layer of sponge, escapes by a pipe, E , from the chamber formed in the cover, to the tank where it is to be stored, the propelling force being preferably the action of gravity. When the filter is to be cleaned, the supply of dirty water is cut off by closing the valve, F; the mud cock, G, and air inlet, K, are opened, and a portion of the filtered water allowed to flow back to waste, while at the same time the piston is slowly raised and lowered.

A FISE of solid gold, of the bullion value of $\$ 2,500$, is reported to have been dug up in Ober-Lausitz, the border land between Saxony and Silesia. Its surface is said to be incised with mythological figures, wrought after archaic Greek patterns.

How to Split a Sheet of Paper.

Many people who have not seen this done might think it impossible; yet it is not only possible, but extremely easy as was explained in this paper, several years ago, and recently described in the British and Colonial Printer and Stationer, which is as follows: Get a piece of 'plate glass, and place on it a sheet of paper; then let the latter be thoroughly soaked. With care and a little dexterity the sheet can be split by the top surface being removed. But the best plan is to paste a piece of cloth or strong paper to each side of the sheet to be split. When dry, violently and without hesitation pull the two pieces asunder, when part of the sheet will be found to have adhered to one and part to the other. Soften the paste in water, and the pieces can be easily removed from the cloth. The process is generally demonstrated as a matter of curiosity, yet it can be utilized in various ways. If we want to paste in a scrap book a newspaper article printed on both sides of the paper, and possess only one copy, it is very convenient to know how to detach the one side from the other. The paper when split, as may be imagined, is more transparent than it was
ink is somewhat duller; otherwise the two pieces present the appearance of the original, if again brought together. Some time ago, the Stationer says, the information of how to do this splitting was advertised to be sold for a considerable sum.

improvements in Wrought Iron Tubes.

Some improvements in the manufacture of covered wrought iron tubes have recently bean made, intended to remove some objections hitherto urged against this kind of pipe, especially when used for hot gases or laid in a damp situation. The inventor, a Mr. Rhodes, proposes to take sheets of asbestos paper or cloth, prepared with a suitable glutinous size. The material is then coiled upon a manrel, and when set it is removed therefrom; being flt for use as a fireproof lining for metal tubes, or for covering the same, when they are used for ventilating-pipes for gas burners. Tubes of similar construction are also recom-
mended for chemical works, because of their power of

IMPROVED SPONGE FILTERS FOR BOILERS.
withstanding the action of corrosive vapors and liquids. For outlet tubes of ventilating gas pendants the asbestos layers may be laid of sufflient strength without any metallic covering or lining. Another method of making wrought iron pipes, recently introduced, consists in laying on a mandrel alternate volutes of sheet iron strips and hot asphaltum. The iron is laid in contrary folds, one over the other, and simply bonded together with asphaltum. For -inch and 6 -inch pipes there are two layers of sheet iron, and more for large tubes, according to diameter and the strength required. The ends of the tubes are finished off with cast iron rings coated with asphaltum, forming a straight butt joint readily covered with a welded iron sleeve, lined with lead at the works, and only requiring to be placed in position and set up when laid. Repeated tests of this form of pipe show that it possesses a bursting strength corresponding so exactly with the tensile strength of the set iron employed that the latter may safely be taken as guide, and the pipe made of any desired strength by increasing the thickness of iron to the required extent. Bends or branches for use with this description of spiral pipe are made of cast iron asphalted. The absence of brazed or riveted joints in the length of this pipe is claimed to be a valuable characteristic.

Petroleum in 1882, and the

Outlook

The last year has been altogether the most extraordinary one in the history of the oil business. It has exhibited, among other things, these peculiar phases:

1. The largest volume of daily production. 2. The most sudden development of the richest pool var discovered. 3. The largest and most sudden decline in daily production ever known.
We began the year with a daily production of about 76,000 barrels. By the opening of the Cherry Grove field, we increased this daily output in the month of July to 105,000 barrels, the largest daily production ever reached. In the month of July the Cherry Grove field yielded about 30,000 barrels daily; it then became defined and reached its height. From this time it began to decline, first moderately, then rapidly until the close of the year, when its daily yield was less than 4,000 barrels. The general decline in daily yield, chiefly caused by the decline in Cherry Grove, has continued, until at the end of the year it reached 61,210 barrels.
The average daily production for the year was 82,000 barrels, so it will be seen that the production at the end of the year is considerably below the average for the year. The average daily shipments for the year were about 60,000 barrels. These shipments may be treated as entirely gone to consumption, and in this view they fairly indicate the extent of consumption for the year.
The present daily average production is nearer the daily average consumption than it has been at any time in the past five years. The conditions in the producing field have also undergone a phenomeal change during the year. The Bradford and Richburg fields (which have been by far the largest in area and permanency that we have ever had) now exhibit unistakable evidence of depletion and exhaustion; and the fewness of the

- counted for by the fact that new ventures there do not promise to repay the investment. The only districts that can be looked to for supplying the trade for the oresent year are the Cooper Tract district and the Grandin Lease in Forest County, and the Bald Ridge district in Butler County; but these districts combined cannot, from their known character, be expected to maintain the decline occasioned by the depletion of Bradford and Richburg. Late drilling has already somewhat defined the Cooper Tract and Grandiń Lease districts, and indicates the deposits to be limited "pool" deposits; and the Bald Ridge district is already marked by dry holes in close proxamity with the best wells, thus showing its spotted and uncertain character.

In our opinion, nothing but the discovery of a new district like that of Bradford, will give us a continued accumulation of stocks and the low prices we have had for seraral years past; and fortunately for the holders of stocks on such district is at all indicated by any existing development.

TERRA COTTA LUMBER.

One of the most interesting and useful inventions made within the past few years is the process of making terra cotta lumber. The making of fire hardened clay materials, whether brick, tile, or vessels of any kind, carries us back to the dawn of history. While clay beds are to be found in vast quạntities in almost all countries, the utilization of the material so lavishly bestowed by nature bas been, for the most part, limited to brick and pottery. It is only recently that the idea has been suggested that a material might be produced from clay which would lack the brittleness of the articles so long known, and possess the exceptional and highly valuable quality of admitting of being cut and "dressed" into irregular shapes with edged tools.
Before our time anything constructed of clay had to be given its finished form while soft, and before the material had "set." Now we can make the materialin large blocks, and afterward cut and shape it as we can lumber. This peculiarity, which is so valuable, is due to the same character of internal structure which wood possesses-that is, porousness. In proportion as wood is porous, within limits, of course, it is most useful for the vast varieties of building purposes to which it is applied. And so by making terra cotta porous we bring it more within the category of wood substances, and then properly name it " terra cotta lumber."
It has similarities and dissimilarities of the utmost importance in contrast with wood and clay materials, and they seem to supplement each other. In other words, terra cotta lumber orcupies an intermediate position between brick-like substances and lumber. It is, for instance, brittle and not fibrous, it lacks strength to resist the transverse strain which is possessed by wood, quantity for quantity; but it presents greater resistance to superimposed weight. It is fireproof, while wood is not, and it can be "dressed" by the plane and saw, which, generally speaking, clayey substances cannot be. In addition, it will receive and retain on its surface plastering or other surfacing without the application of lath. It must be borne in mind that, being at once an earthy substance and of open or porous structure, it possesses all the qualities which appertain to those two characteristics in all substances; and it possesses the advantages not belonging to substances not having these both.
As an article of commerce and use it may be produced easily, the clay being found at liand in almost any part of the country. Hence its cheapness; hence its universal util-
ity. Compared with other commodities it may be called home-made, like those articles of universal use produced in the farm houses everywhere. It may be applied to domestic purposes on a small scale or to the largest public structures. Its uses, indeed, require no enumeration-they suggest themselves readily to the mind. Thus invention in the useful arts is steadily bripging into utility the products of nature, which otherwise would lie like worthless material on the surface of the earth. If clay were valuable only for brick, piping, etc., but a small fraction of the clay would be utilized; but with this process a very large percentage of it becomes immediately useful. In this material, what New Jersey alone produces may be taken as au example.
The belt of country underlaid by these clays extends entirely across the State, and, as described by Prof. Cook, the State Geologist, includes an area of 320 square miles; while the area within which these deposits have been worked up to the present time is only 68 square miles, the actual openings of the clay beds being only a fraction of this last area, so that, notwithstanding the hundreds of thousands of tons that are annually produced, the industry itself may still be regarded as in its infancy. The average depth of these clay deposits is about 400 feet, and their order of superposition is shown in the following table:

Dark colored clay (with beds and	
Sand	
3. Stoneware clay bed.....	
4. Sand and sandy clay (with lignite)	
5. South Amboy fire	
6. Saudy clay, generally red or yellow7. Sand and kaolin..........	
8. Feldspar bed........ 5 9. Micaceous sand bed.	
10. Laminated clay and sand.	
11. Pipe clay (top white). .	
12. Sand clay, includingleaf bed	
13. Woodbridge fire clay.... 20	
14. Fire sand bed 15	

These clays form one of the most important elements of material wealth that the State possesses. Several hundred thousand tons of fire clay are dug annually and sent into market for making fire brick, fine pottery, sewer pipe, terra cotta ware, retorts, and crucibles, facing for wall paper, etc. The average price per ton is about $\$ 4$, and the aggregate production of fire clay alone in its crude state exceeds $\$ 1,000,000$. The stoneware clay from Perth Amboy is shipped to all parts of the United States, and supplies the material for most of the stoneware that is used in the country. Fine earthenware was formerly imported almost wholly from Europe, but within the last few years extensive potteries have been established at Trenton, which have been remarkably successful in the qualities of the wares made, and in finding a ready market for them. The Trenton potteries employ several thousand men, women, and boys, and produce several million dollars' worth of ware annually. Although the principal ware made is of the common white
earthen and iron stone, the quality of which is fuily equal to
the best English ware of those grades, these works at Trenton also produce a much higher grade of decorated ware, that bids fair to supersede that which is now imported of this kind. The manufacture of pottery is rapidly increasing in quality and extent. The great abundance of the clay, its superior qualities, and its convenience to market have made it almost essential to the successful prosecution of some of the great industries of the country.
Our illustrations explain themselves, and require but a word of description. The terra cotta lumber is rendered porous by the simple though ingenious device of mixing in resinous saw dust with the wet clay, and when the clay has dried burning out the saw dust, thus leaving interstices in the brick like material. The fine clay, free from vitreous ingredients, is taken from the bed thoroughly mixed by means of small quantities of water with any desirable quantity of resinous saw dust, increased in proportion as it is desirable to make the product more porous. At Perth Amboy, where the works of the New York Terra Cotta Lumber Company are located, there are eight of these mixing mills in use, run by steam.
After a thorough mixing has been accomplished, the workmen shovel the mixture out of the mills and into a traveling trough, constructed of a wide leather belt and side walls, to the belt elevator, by means of which it is carried to the third floor. Here it is shoveled into a compressor, also worked by steam, through which it passes to the floor below, and is forced through a die into any requisite shape. Here, usually in the shape of large slabs, it is left to air dry. After partially drying here, it is carried to the first floor, and then dried on a brick flooring heated by flues running underneath it from grates, as shown in our illustration on first page. Here in a short period it is thoroughly dried and hardened. It now goes, in the form of slabs, to the ovens, six in number, where it is piled up in layers, and, after all openings are closed, brought to an intense heat and all the saw dust burned out. This occupies forty-eight hours, and produces in that time about 180 tons of completed fireproof lumber.
It is now planed, tongued, grooved, sawed, etc., into any desirable shape, and this floor almost resembles a saw mill or carpenter's shop. The dust of the sawing is carried off by means of a steam blower.
In conclusion, we may enumerate some uses to which it may be applied. It is light, bulk for bulk, and may be united like joiner work or nailed into place like so much wood. In the waterworks of the Holly system it has been used and pronounced admirable for filters. Saturated with petroleum, it becomes a valuable fire lighter or kindling wood which may be used indefinitely. When immersed in boiiing asphalt for a few moments, sufficient bituminous matter is absorbed to resist the action of water, for the asphalt becomes part and parcel of the material itself, and does not flake off when exposed to cold or dampness, as with common brick, solid terra cotta, or iron.
This fact and the splendid insulating qualities both of the material and the asphalt are now attracting the attention of electricians, and give reasonable hope that one of the problems of underground telegraphy has at last been solved.
The many future uses to which it may be put can be conjectured from the number of applications for patents being now made by Mr. Gilman, the inventor, for special purposes, to wit: Filters, underground electrical insulation, steam
boiler and pipe sheathing, fire ligbters, imperishable ground sills, waterproof brick, grain and elevator bins, refrigerators, safe and vault linings, fireproof jackets for iron columns, furnace linings, safety warehouses, etc.
Not the least noteworthy claracteristic of this material is the fact that there is no waste in its manufacture, for the reason that all the remnants and edgings made by sawing, etc., find a market
Up to this time, the factory of the company, located near Perth Amboy, N. J., has been engaged chiefly on architectural work for Columbia College, the H. H. Cook mansion, and other modern fireproof structures.
Samples of this firepronfing exhibited at the American Institute in this city received the medal of superiority, with a diploma. A new mill, the largest plant of the kind in the world, will be erected the coming season.
Patents have been granted by England, Canada, and Continental governments of Europe, as well as by the United
States. The New York offices of the company are at 71 States. The New York offices of the company are at 71 Broadway.

The Dust in the Atmosphere.

by dr. assmann, of magdeburg.
Every one has noticed that when a ray of sunlight streams
through a dark room, the air that otherwise seemed pure is through a dark room, the air that otherwise seemed pure is These little bodies are all embraced under the general name of "atmospheric dust."
There is a considerable difference in the general properties of this dust both in size and shape, as well as in weight. In size the particles of dust vary from several millimeters in the large flakes of soot from our factories, or the pieces of carbonized vegetable particles that are carried aloft in burning over swamps, down to the almost immeasurable
particles that are designated by the term "cosmic dust," and probably result from the combustion of meteorites, They do not exceed in extent the ten-thousandth part of a mall snow crystal.
If water from fresbly fallen snow be evaporated under
origin from all three of the natural kingdoms, animal, vegetable, and mineral.
Floegel, for example, found, in such cases, living infusoria and algæ, bacilli and micrococci, mites, diatoms, spores of fungi in immense numbers; also fibers of wool, mouse hairs, pieces of butterfly wings, skins of the larve of insects, cot ton fibers, pieces of grass seed, bits of grass, epidermis, pollen grains, rye and potato flour, grains of quartz, minute pieces of roofing tiles, with bits of iron and coal.
The weight of the particles is limited by the possibility of their being sustained and floated on the currents of air. The larger their surface and the less the weight, the longer hey will continue to float in the atmosphere.
Dust can be raised only by mechanical force, and this force s the moving air. If the motion of the air is horizontal, tie quantity of dust lifted from the ground is comparatively small, particularly if the inclination of the surface varies but little from the horizontal. If the horizontal motion of the air is changed by a vortex or whirlwind into an ascend ing one, it raises a much greater quantity of dust. Those regions that have few or we plants in them are specially favorable to formation of ascending currents of air, in consequence of their being strongly heated by the sun's rays. But these very regions are most frequently covered with a fine grained, light soil that is easily carried off by the wind, so that we may consider our deserts as the chief source of he atmospheric dust.
It has long been known to seamen who sail in that por ion of the world, that off the west coast of tropical Africa the atmosphere is often filled with a thick cinnamon colored dust, so that the coast is scarcely visible at a distance of five (English) miles. This dust consists chiefly of fine quartz sand, and of still finer yellowish detritus, mixed with very numerous organic forms. Hellmann has proved that the furnace which makes this "trade dust" is western Africa. The rain of dust thus formed often lasts ten days. and extends several miles from the spot where it originated.
In many cases masses of dust are precipitated from the atmosphere in form of rain, snow, or hail; hence snow and rain water not infrequently have a yellowish red color.
The phenomenon known as "rain of sulphur" depends upon an admixture of pollen with the rain.
Volcanoes furnish a second source of atmospheric dust. During the eruptions huge volumes of ashes and fragments of rocks are carried up into the air and borne to a great distance. The swamp burning common in northwestern Ger many (and the forest fires in America) cause the formation of large quantities of dust
Fires for domestic and manufacturing purposes contribute a large percentage to the atmospheric dust. If we consider hat in London over seven million tons of coal are consumed annually, and in the whole of England fifty million tons, and that the products and residues of this combustion are for the greater part carried into the air, it will be possible to form some conception of the quantity of dust derived from this source.
Finally we have to mention cosmic dust, which is referabe to meteorites.
Concerning the actual quantity of dust floating in the air Tissandier found in the air of Paris, after a week of dry weather, that there were 23 milligrammes in a cubic liter (or about 1 grain to 100 cubic feet). After a heavy rain there was about one-fourth as much (6 milligrammes to 1 liter).
The effect of the atmospheric dust is to diminish the amount of light and heat received from the sun, in the first place, and in the second to condense the aqueous vapors. An English investigator maintains that without dust no clouds could exist, no rain be formed; that dust is the nucleus on which vapors are condensed. Whether he is correct, farther research must decide.
The effect of atmospheric dust is of a manifold nature. Many plants owe their fertilization to the winds which carry the fructifying grains of pollen. But the moving air also bears along with it a number of germs that cause plan diseases, such as rust, mildew, and blight. Animal bodies suffer in two ways from dust, either by the mechanical irritation of delicate organs, or by infection. In the latter re spect the recent investigations of Pasteur, Naegeli. Kock, etc., render it exceedingly probable that all infectious diseases are due to the introduction into the system of a specific living germ of disease.
Hence the dust of the atmosphere is a factor which, in a meteorological and morphological, as well as phainclogical and bygienic aspect, exerts an important influence on our ball of earth and its inhabitants. Its investigation and ball of earth and its inhabitants. Its investigation and
study is still in itsinfancy and will certainly bring to light study is still in itsinfancy and will certainly bring to
many other very important results.-Chemiker Zeitung.

City Telegraph Wires Underground.

It is gratifying to know that the Western Union Telegraph Company have decided to begin in earnest the work of putting all the wires of the company in this city underground. The first underground main will extend from the company's building at Broadway and Dey Street, up Broadway to 23 d Street. The wires, it is said, will be laid in a tube large enough to contain 200 wires. The contract for this primary line has beepn given out, and work upon it will begin, it is promised, as soon as the weather will permit. The right to use the streets for this purpose was secured a few years ago. The promise is that, if the underground system adopted works. well, it will be extended to all parts of the city.

Underground Steam Pipes.

To the Editor of the Scientific American:
In your issue of January 20 appears an article under the above caption, in which points are raised that do not meet my approval, although indorsed by yourself. The writer of the article is of the settled opinion "t that the system will prove a blank and disastrous failure," and forms his opinion from three considerations: First, cost of original plant and subsequent repairs. Second, utility and convenience to parties who use the steam. Third, effect on public convenience, etc.
I chance to live in a city of 15,000 inhabitants, being the chief city and county seat of a county containing 60,000 in habitants, with an area of 22 by 30 miles of the very richest soil for agricultural purposes, and underlaid at an average depth of 125 feet with an average 7 foot vein of coal for manufacturing purposes. My city is already a thriving manufacturing place, destined to become (in the language of our Mayor) "the Pittsburg of the West." It has upward of 15 miles of excellent macadamized streets, generally crowded with travel. In 1879, one Jacob Brosius, quite an enter prising citizen of our city, undertook the work of supplying our city with steam from a common source, by means of underground pipes in the streets, called the Holly system. A small piece of ground was selected for the location of the boilers, and about ten miles of pipe have been laid in the streets of the city. There are ten boilers at the supply works. The pipes were laid about four feet deep in the streets along the side, but not in the center, thus leaving plenty of room for travel and causing no impediment. The workmen employed first dug a ditch, and in this ditch placed a box well covered with pitch, called double air space insulating box, and on the bottom of this box they laid four inch tile. In this box were placed the steam pipes, and the ditch filled up to a level with the street and covered with macadam. The cost of all this was only $\$ 45,000$.
Several factories, among them the renowned "Brosius Oil Works," public buildings, among them the court house, a large three-story brick building, and numerous private dwelling houses, are operated and warmed by steam supplied through these pipes from boilers one mile away. This provedsatisfactory during the hard winter of $1879-80$, and is working well now, with the mercury at zero. The pipes bave not been touched since they were placed in the ground, and the traveler never knows he is walking or riding over the steam that is warming the city. The cost of repairing in three years is nothing, and if the whole pipe should give way at one time, which is hardly possible, it could be readily replaced.
The pipes laid in this manner are not subject to any change of temperalure from the outside; and as factories run in summer as well as winter, they are seldom, if ever, permitted to cool off. The iron pipes are common steam pipes, and would require some time to wear out by the scaling off process I am disposed to say, then, that the " cost of the 'plant' and subsequent repairs" are not in the way of the success of the system. Nor is "the utility and convenience to parties who use the steam" against its success, but largely in its favor, for it is quite a comfort to have your rooms and halls at an even temperature all the time, meeting with no inconvenience in three winters. How often would a stovepipe have to be cleaned in that time? As to the inconvenience to the public, they know nothing about it. Of course steam supply companies may fail, but that will not prove that the system is wrong practically.
Of course these pipes are subject to corrosion and will wear out, but I fail to see why that should prove that the system is a failure. The same thing was said of the railroad enterprise, but what is the result? I think I know something about the practical workings of underground steam pipes, and I pronounce the system a decided success.

Don Turner.
Belleville, Ill., January, 1883.
P. S.-I inclose you a model of the insulating box, and circulars explaining its construction.
[Note.-The statement that there have been no leaks or troubles or even repairs with the Belleville Steam Works, seems rather extraordinary, although the projectors have no doubt had a clear way for their pipes, and freedom from the blockade of sewers, gas, water, and electric pipes that have caused so much trouble in New York.
The wearing and cutting of the interior of the pipes, mentioped in a communication from a correspondent a few weeks since, have not yet had time to cause apprehension. It would be a great advantage to the reputation of the system as developed in New York, to have a detailed description and plans of this most perfect plant. If there is any advantage and profit in the system of street steam supply, it should be made apparent, if anywhere, in such plants as that at Belleville, Ill., St. Paul, Minn., and Lockport, N. Y., where, in addition to plane sailing, as the saying is, individual enterprise and strict economy have been the controlling influence in the engineering and financial policy.-Ed. S. A.]

Hungary is entering the field of silk culture on a large scale. Reports for 1881 show that there were then 2,976 producers, who turned out 41,537 kilogrammes of cocoons, which yielded a profit that, augmented by State aid, provided for the establishment of a model school, which has already given great impetus to this industry.

The American Collection for the London Fish

Exhibition.

A Washington correspondent of the New York Times A Washington correspondent of the New York
states that the collection of objects illustrating the fishing states that the collection of objects illustrating the fishing
industries of the United States, to be shown at the exhibition of fish and fisheries to be opened in London on the 1st May, is substantially complete. As shown by the late census, the fisheries of the United States exceed in value those of any other country, and it is the design of the Fish Commission to make the American exhibit at London as superior to all others as our Berlin display was. The collection for this purpose is now distributed in the various departments of the National Museum, and, says the correspondent named, the visitor is amazed at its completeness. It shows both
what has been done and what is being done to develop our important fishing interests, and comprises a complete representation of American ichthyology.
The exhibit contains a full set of plaster casts of all the important fresh and salt water fish of the national wate modeled from uatural specimens and colored from life.
These casts will be further supplemented with photographs of all the fish, each picture giving the exact length and size of the fish. To these are added alcoholic preparations of the fish themselves. All the works written on American fish are to be sent, with the fishing literature of to-day. To illustrate the whaling business every variety of harpoon, lance, and gun in use, with all the projectiles employed in the capture of the cetaceans, are shown on employed in the capture of the cetaceans, are shown on
screens. This collection is endless. The archæology of whaling has been exhausted to make this exhibit perfect. There will be sent a perfect whale boat, thoroughly equipped with everything that is wanted, down to the tinder box. In this collection are exhibited the log books of former whaling cruises, which are very curious specimens of marine compilations.
When a whale is captured, it is the habit of the captain to print with a wooden stamp, right across the page, a picture of a whale, but when whales are seen and not captured, the fact of having sighted them is shown by means of another stamp, which presents the tail only of the creature. Looking over such logs, it is curious to notice that, considering the number of whales seen, few have escaped capture. All the makeshifts of the whaler, who is so long away from the land, have been brought together, such as strange lamps, manufactured out of tumblers, and other ingenious things. Here are rough skates, fashioned out of files, which some ice bound sailor has made and used, perhaps, for sport or to follow the sea elephants over the slippery ice. There are charts here, too, over which New Bedford skippers have pondered for many a long dark winter's day when nipped in the ice, wondering whether they could ever get free of the floes and trick their way brek to the New togtand coast.

Clever Yankee inventions are there bere for slicing blubber so as to try out the oil, and various are the tubs, buckets, and pails in use in securing the oil. Here is a peculiarly formed vessel, which is lowered down into the head of a spermaceti whale, so as to bale out every drop of the precious oil. Old New England haunts have been ransacked in order to procure these objects, belonging to the past and present, all of which serve to explain the history of the whaling business. In a special portion of the museum building the heads of departments, with workmen under their charge, are placing the various objects on screens.
Two objects particularly attract attention. One is the bow of a whale boat, and on it is the figure of a harpooner as large as life, with arms outstretched ready to throw the iron. The other is the bowsprit of a sword fisherman, with a man out on the bowsprit, harpoon in hand, in the act of darting the grains into the Xiphias gladius. These two exhibits, which are exceedingly clever in conception, the action of the figures having been skillfully modeled, will decorate the entrance to the American exhibit in London.
In order to better explain the complete cbaracter of any department, that of the oysters will show as well as anything else that thoroughness which is the main object of the United States Fish Commission. The geographical distribution of all the edible mollusks on the American coast will be shown by means of maps. Then the biology and embryology of the oysters will be explained. Next will be shown the varieties of oysters and such differences as may be due to environment, with those changes having their origin in culture. The fishery of the oysters will then be illustrated with models of all the varieties of vessels, boats used, with the a
A. m .

A model of an oyster bed in its natural condition is being made, with other models showing how excessive dredging has changed its face. All the enemies of the oysters are to be exhibited. After this come the numerous methods of pungy dumps on a Baltimore wharf her hundreds of bushels of oysters, and in an hour afterward they have been opened and canned and ready for transportation. The apparatus and industrial methods are all to be shown by models. In this oyster exhibit alone there will be fully three hundred different objects.

An exceedingly novel feature of the exhibition will be the presentation of all the phases of fishing, illustrated in a pictorial way. To do this, photographic artists attached to the museum have traveled all along the coast and taken their prictues from life. Besides this, a whole series of sketches in crayon have been made illustrative of river and sea fishing.

Every picture has attached to it a printed label. For instance, here is one entitled "Dressing Mackerel," which reads as follows: " On the left is a man splitting a mackerel. In the center another 'gibbing' or eviscerating the fish, which he holds in his left hand. The man on the right, dressed in a 'petticoat barvel,' is 'cutting away,'" etc.
Every stage, then, in American fishing is illustrated, from the way the fish is caught until it is finally prepared for food. Here are scenes of vessels caught in a gale of wind, with ishermen in dories rowing for their lives, in order to escape from the coming storm. Characteristics of the fishermen have not been overlooked. Here is a group of Irisb fishermen who draw the net or set the line in and around Boston, who still, in a certain measure, adhere to the old country methods, using some of their Irish gear. Here are Portuguese, Malay, Kanacka, and Chinese fishermen, the gleaning of the American seas attracting labor from all parts of the world. The Indian porpoise fisherman is represented, who launches his frail boat and, with a rusty musket, rarely misses the ocean pig.
In food preparations the exhibition will be very comprehensive. Of canned fish over 200 various brands will be shown, almost every fish packing house of importance in the United States having sent samples. It may be stated, as showing how great is the development of this business, that $\$ 5,000,000$ worth of general fish products are exported today from the United States, of which as much as $\$ 2,000,000$ is represented by canned goods alone. The oil from the menhaden, the fertilizers, the fish glues, all find an appropriate place.
In fish culture, every process in use in the United States will be exbibited. One of the most attractive features will be a series of tables provided with the various apparatus. This apparatus may be divided into three departments-the closed apparatus, the trough, and the floating apparatus. There will be a large water tank, the water in which will be forced through the fish hatching appliances by means of "a gas engine. Form, color, and appearance of the various kinds of eggs will be imitated by means of glass beads. Another important feature will be the models of a group of experts in the act of procuring the eggs and the milt from the salmon. These figures of life size will show exactly the manipulation used in stripping salmon.
There will be photographs of all the American fish which have been propagated by fish culture in the United States, as explaining the development of the egg; an entire series of specimens will be shown, illustrating the growth of the fish in the egg from day to day, to be followed with others explanatory of the size and condition of the fish after it has been hatched out. The fish hatching apparatus will be practical working ones, exactly such as are used, with all the appliances which serve for the transportation of the eggs, be young fish, the feeding troughs, the fish pens, with models of the cars used to carry young fish over the United States. Finally, on a large map will be shown all the hatching houses in the country, with the various points where shad, salmon, trout, white fish, carp, etc., have been distributed.
When the section of apparatus used by our fishermen is examined, the visitor is amazed at its magnitude. Here is a model of that vast net used by the mackereler, and to show its size a model of a mackerel schooner, with the seine boat, is suspended near it. Some idea is thus had of proportion. The lines, hooks, trawls, and engines of capture will fill in bumerable cases. After this come the rods, reels, lines, and flies used by the angler. Here are cases of flies, with pictures of the insects which they imitate.
A fishing box-one of those light, portable houses which pack up in small space-will show our English friends how the American angler takes his ease. This house will have in it all the traps the angler may want, lis bed, his store, and his cooking utensils.
Nothing has been forgotten or overlooked which might illustrate the ways and manners of our New England fisherman, for here are his amusements, his games, the literature he reads, the medicines he takes, the clothes he wears, the food he eats. There is the greasy pack of cards, thumbed almost out of existence, with which he plays euchre or high low jack, and the accordion that wails melancholy of nights, or the fiddle, which, when he scrapes, brings the wind.
As to books, his library is larger than oue would think. There are his Bible, Shakespeare, Walter Scott, and next to it "Robinson Crusoe;" there are "Two Years before the Mast," all Dickens, with the "Red Rover of the Seas," and old Captain Marryat with the younger Russell. Here are love stories of the most languishing kind, with song books innumerable.
Fisherman Jack takes little medicine if he can help it, but here is his rough and ready pharmacopœia; plasters for his wounds, and castor oil, and blue mass, and one immensely big box, as large as a salt box, labeled epsom salts.
Were the description extended over innumerable columns, t would hardly give more than a scant idea of the thoroughess of this exhibition. All the sea birds, the animals which prey on fish, will be sent, together with all the primitive fishing gear in use by the American Indians. In addition to the objects illustrating fish and fishing, the Lighthouse Board and the Life Saving Service will send exhibits. Everything has been so arranged and systematized that the process of installation in England will require but very little labor.

Some Facts about Alaska

Commander Henry Glass, U. S. Navy, who was for some time stationed at Sitka, Alaska, with the United States ship Jamestown, and afterward visited every part of the coast in command of the Wachusett, was in San Francisco recently, where he was interviewed with regard to the productions and possibilities of our great northern territory.
The fisheries of Alaska he thought very valuable, and destined to play an important part in the commerce and industries of the Pacific const. Salmon of fine quality are found in the greatest abundance in every creek and river of the territory. It is probable that several canneries will be in operation this year (1883). The waters in places are teeming with halibut of the finest quality, and already the herring fishery has become of great value, works having been established during the past year for the manufacture of herring oil. Great numbers of whales frequent the inner channels and bays, and arrangements are now being made to prosecute whaling extensively. This can easily be done, and at much less expense than in the open seas, as small and inexpensive vessels can be used on the calm bays and channels of southeastern Alaska. To the northward and westward of Sitka are banks of considerable extent, where very fine codfish are found in great abundance.

The vast timber products of Alaska promise to be great value in the near future.
On all the islands and the mainland of Southern Alaska are heavy forests of fir, spruce, alder, and cedar. Up to the present time very little timber has been cut in Alaskaonly that needed for consumption in the Territory. But, with the in roads now being made on the timber of California, Oregon, and Washington Territory, Alaska must soon become a source of supply, and from the accessibility of the timber along the extensive shore line it can $b \in$ exported very cheaply. On many of the islands are found large quantities of a hard yellow cedar, superior to any found elsewhere on this coast. This wood is quite hard, is easily worked, takes a ligh polish, is quite aromatic, and is said to possess the power of resisting the attacks of the teredo, which, if true, would make it very valuable in ship building. Commander Glass was told when in command in Alaska that the timbers of a Russian vessel constructed of this wood, after being some forty years under water, were found perfectly sound, and that they had not been touched by the teredo.
Of the mining prospects of Alaska, Commander Glass was quite hopeful. The placer mines of the Harris district are already valuable. During 1882 over $\$ 200,000$ in gold dust were sent away, only the crudest machinery being used by the miners.
Quartz mining is equally promising in the same district, several extensive ledges having been discovered and traced one or two miles, and although only surface work has been done in prospecting, a great deal of fine quartz has been shown. The want of laws and courts to adjudicate disputed claims has prevented any extensive work being done up to the present time. With the organization of the Territory, capital would be attracted there and mines of value be developed.
Coal has been reported in several portions of the Territory, but as yet nothing of value has been discovered. Copper is reported in considerable quantities about the Copper River, to the westward of Mount St. Elias. This, however, Commander Glass had no opportunity to in vestigate.

At present nothing of importance is done in agriculture, only a few small gardens being planted about the principal settlements to supply vegetables. The summer is too short for any of our cereal crops, but potatoes of very fine quality could be grown in Alaska, and in all the valleys fine grasses grow luxuriantly, and portious of Alaska will hereafter be valuable for grazing purnoses.
Southeast Alaska produces furs of value, and quite a large trade is carried on. Land and sea otter, lynx, several varieties of the fox-the most valuable being the silver gray fox-bear, and deer skins are exported, in considerable quantities.
Contrary to popular opinion, Commander Glass regards southern Alaska as an exceedingly healthy country, with a climate not at all severe. The lowest temperature that he saw recorded in Alaska during the two winters he was there was four degrees below zero (Fabrenheit); this was only on one day of January, of 1882, in latitude 59 degrees north. The highest temperature recorded on board ship during the summer was 80 degrees; this was at Sitka, about the middle of August. The mean temperature for December, January, and February, as found by hourly observations taken on board the Jamestown, was about 32 degrees (Fabrenheit). A great deal of rain and snow fall in southeastern Alaska, and there are few perfectly clear days during the year in what is known southeast Alaska, say from Mount St. Elias to the southern boundary at Portland Canal. The climate of western and northern Alaska differs very greatly, and a very low mear temperature is experienced in that portion of the territory. This difference is largely due to the influence of the Japanese current, or Kuro Siwo, a portion of which is deflected by the Aleutian Islands, and impinges on the coast in about the latitude of Sitka.

THE engineer constructing the Washington monument reports that it reaches a height of 340 feet.

flexible self-gauging faucet.

The engraving shows, in two views, an improved self gauging faucet recently patented by Mr. William T. Robertson, of Montgomery, Ala. This device answers all the purposes of an ordinary faucet without being liable to the objections of wear and leakage, and at the same time it serves to indicate at any time the level of the liquid in the barrel. A tap or tubular plug is screwed into the barrel or other vessel near the bottom, and on the outer end thereof is secured a flexible tube, which is about equal in length to the depth of the barrel. On the free end of the flexible tube there is a metal valve seat, to which is fitted a ball valve and a cage to retain the valve. The valve is so adapted to its seat that when the tube is vertical the valve is seated,

flexible selffgavging faucet.
and when the tube is let down to draw liquid from the bar rel, or to ascertain the level of the liquid in the barrel, the valve unseats itself and allows the liquid to escape, while the valve is retained by the cage in position to reseat itself when the tube is again put in a vertical position.
Near the upper end of the barrel spring clips are applied in position to secure the tube when in its vertical position. These clips are apertured transversely to secure a padlock to prevent theft. It will be noticed that this device is free from parts liable to derangement, and will at any time gauge the depth of the liquid in the barrel.

THE NEW OTTO ONE-HORSE POWER STILENT GAS ENGINE.

Since the "Otto" gas engine was invented, and its practi cability fully demonstrated, large numbers of them have been put into use in our cities where other engines could not be operated to any degree of advantage. The sizes

the new otto one-horse power silent gas engine.
made, however, were not below two-horse power, and the demand for smaller amounts of power could not be satisfied, on account of difficulty in m cost proportionately reduced.
Messrs. Schleicher, Schumm \& Co., Philadelphia, the well known builders of the "Otto" engine in this country, have now constructed a one-horse engine, which is nffered at a proportionately reduced price, the special construction of the engine permitting a reduction in the cost of manufacture without sacrificing quality.
Our illustration shows the engine from a point that makes all its main parts visible, the governor being particularly
apparent. This latter will regulate the speed of engine, and, at the same time, the consumption of gas, which varies in an automatic manner, in proportion to work done, from wo to five cents per hour.
The engine has already found its way extensively into the workshops of jewelers, printers, and amateurs, and is seen giving attraction to the show windows of tea and grocery tores. For similar work the new size engine was purposely constructed, and the demand found for it is such that the makers cannot always fill it promptly.
The special features of gas engines, we suppose, are known o our readers. Above all, there are the advantages of perect safety and cleanliness, there being no boiler, steam, coal, or ashes. A gas engine is also started at once whenever wanted, and is ready thus without preparation, and when stopped there is no continuation of expense. Engines of large size-as high as 25 -borse power-are at present constructed, as well as smaller sizes, competing with steam, and surpassing it in many cases on the score of economy and absolute safety.
Illustrated catalogues, prices, and any information desired can be obtained by addressing Messrs. Schleicher, Schumm \& Co., 33d and Walnut Sts., Philadelphia, Pa.

Sandakan Harbor, Borneo.

Captain Green, of the steamer Tannadice, entered the harbor of Sandakan, North Borneo, on a recent voyage from Australia to China. He gives the Australian press an interesting description of the settlement newly acquired by Great Britain there. The harbor, he says, surpasses that of Sydney, not only in extent but also in beauty of scenery. From east to west it is seventeen miles, and from north to south fourteen, and its shores are thickly covered with magnificent timber, many of the trees being 300 feet in height. No fewer than seventeen rivers flow into the harbor, two of them being navigable for twenty miles inland for vessels of a draught of twelve feet. The Kinibatangan River, a little way down the coast, is described as being navigable for 400 miles, with a draught of twenty-six feet when the bar is crossed. The town of Elopura is built on rising ground about a mile and a half inside the harbor, and already contains a population of 3,000 Chinese and natives. The climate is reported to be exceptionally cool for the tropics.

Wooden Ship Building in Maine.

In an extended review of wooden ship building in Bath, Maine, the Boston Advertiser shows that Bath is not only tha greatest wooden ship building place in the United States, but the greatest in the world. The value of the shipping built there within a century past is estimated to be upward of $\$ 50,000,000$. The largest annual production was in 1854 , when 64,327 tons were built, or 87 vessels. Of this number 59 were ships. In the ten years ending 1840 the building amounted to 69,559 tons. The next decade showed a gain of about 70 per cent, the total being 118,732 tons. Between 1850 and 1860 the product nearly trebled, and reached 324,888 tons. The war period brought the yield of the next erm down to 163,539 , but between 1870 and 1880 there was gain of $371 / 2$ per cent, giving a total for that period of 225,046 tons. During the past sear the tonnage of vessels launched at Bath was 39,090 , with vessels of $13,5: 0$ remaining on the stocks. The cost of a completed wooden ship, or other new vessel, is reckoned at from $\$ 50$ to $\$ 55$ a ton.
The vessels launched last year at all the Maine ship yards gave a total tonnage of 62,567 tons, with 23,016 tons on the stocks. The official report of the wooden ship building of the whole country for the year ended June 30, 1881, places Maine at the head, with 41,374 tons. Next in rank is Michigan, with 5,852 tons. Then come Massachusetis, with 4,723 tons; Wisconsin, 3,429 tons; Pennsylvania, 3,278; and California, with 3,197 tons.
In one of the Bath ship yards is a planer, said to be the largest in the world. It is capable of working a keel piece of timber sixty-six feet long, five feet wide, and two and one-half feet deep. The keel comes out of the machine ready for laying on the blocks, and perfectly smooth and true on all sides. A beveling saw is another capacious machine, which turns out timber sawed at any desired angle from the horizontal, and by it curved timber and ship knees can be worked true to the line.
The steam engine which runs these machines runs also a bolt cutting machine which will nip off round iron of any diameter up to two inches; also a large and a small circular saw, a machine for making treenails, and, in the finishing shop, a band and circular saw, a planer, moulding machine, and a plug and wedge machine. The waste steam is used in bending timber. A plant for the construction of iron ships is now under way, and it is expected that the first iron vessel will be begun in May.

An Asbestos Balloon.

A fire-balloon has been made, in which the lower part is constructed of asbestos cloth, while the upper part is covered with a fire-proof solution. A spirit-lamp is used to supply the hot air for inflating it, and, being fire-proof, there is no risk as with ordinary hot-air balloons. The system is said to be specially valuable for war balloons, as a supply of spirit can be easily carried where it would be difficult to take the appliances for preparing gas.

A glass globe from which three hundred

 Watch crystals were cutOur illustration shows a hollow sphere of glass now in possession of L. Royer, in Paris. The diameter is not possession of L . Royer, in Pared but the size can be judged from the fact that three hundred watch crystals have been cut out of it. The cut is taken from Ackermann's Geverbe Zeitung, and is from an actual photograph.

the automaton chess player.

A few days ago the newspapers announced that the police of Bordeaux had fortidden the exhibition of the automaton Az Rah, one of the attractions of the Exhibition Theater, because it had been discovered that the manikin was set in motion. not by mechanical arrangements, but by a youth of eighteen years, inclosed within a cavity behind the wheelwork, and whose health was gravely compromised by this daily torture.
This automaton recalls the famous Turkish chess player that was constructed in Hungary by Baron Kempelen in 1769, and exhibited in Germany, Russia, France, England, and America, without the public succeeding in ascertaining its mechanism. In 1819 and ' 20 a man named Melzer showed it anew in England. Robert Houdin saw it in 1844 at the house of a mechanician of Belleville, named Cronior. Since then its fate has been unknown, and it is very probable the Az Rah of Bordeaux is nothing else than the Turk of Vienna. Our readers who bave seen it at the exhibition will be enabled to decide the question after reading the description that we shall give. Baron Kempelen, a Hungarian nobleman and an Aulic Councilor of the royal chamber of the Domains of Hungary, being at Vienna, was called to the court to be present at a seance of magnetism that a Frenchman named Pelletier was to hold before the Empress. Kempelen was known as an ingenious amateur of mechanics, and the persons present having asked his opinion in regard to the experiments which he had witnessed, he happened to say that he believed that he could make a machine that would be much more astonishing than anything that he had just seen. The Empress took him at his word and expressed a desire that he should begin the work. M. De Kempelen returned to Presbourg, in his own country, and, in sis months, produced an automaton which played a game of chess against any one who offered himself, and nearly always won it.
This automaton was a human figure of natural size, which was dressed in the Turkish style, seated on a chair, and placed behind a wooden chest on which was laid the chessboard. He took the pieces up with his hand in order to see them better, and nodded lis head three times when he checkmated the king, and twice on attacking the queen:- If his adversary made a mistake, he shook his head, removed the wrongly plased piece, deposited it outside of the chessboard, and played his own. The showman, who stood near the automaton, wound up the mechanism after every ten or twelve moves, and occasionally replaced certain wheels; and, at every motion of the Turk, were heard noises of moving wheelwork. To show that there was nothing within but mechanism, duors were opened in the chest and body. There was also a magnet lying on the table to make believe that magnetism, then in great vogue and as yet full of mystery, played a preponderat. ing role in the affair. M. De Kempelen was accustomed to say: "The machine is very simple, and the mechanism appears wonderful only because all has been combined with great patience in order to produce the illusion."
Many hypotheses were put forth on the subject; and two books, one published in 1785, and the other in 1789, were devoted to a discussion of them. Those that appeared to be most likely were, on the one hand, that the Turk's body contained an extraordinarily small dwarf, and, on the other, that the showman acted upon the automaton from a distance by the aid of magnetic influences. These two explanations gave a very imperfect account of the facts, and it was not until some years ago that the trick was unveiled in an auonymous book.
The following is an exact description of the apparatus and the successive operations performed by the exbibitor:
The chest was $31 / 2$ feet long, 2 feet wide, and $21 / 2$ feet high, and was provided with doors and drawers whose use will presently be seen. The front part of the chair seat was affixed to the chest, and the back part rested on the floor by affixed to the chest, and the back part rested on the floor by
two legs which, as well as the four legs of the chest, were
provided with casters. The right hand of the manikin was movable on the upper part of the chest that formed a table, and, at the beginning of operations, held a pipe, which was afterward removed, and it rested upon a cushion lying in a certain definite position. The chessboard in front of the player was 18 inches square. The exhibitor, provided with a light, begins by allowing the interior of the apparatus to be examined by the spectators. He opens the door A (Fig 1), and allows to be seen a series of gearings that occupy the whole width of the chest. Then he passes behind and opens the door B (Figs. 2 and 8), opposite the door A, and introduces a light into the interior to show that it is empty. The spectators standing on the other side can, in fact, see the ight shine through the different pieces of mechanism

a Glass globe from which three hundred watch crystals were cut.
series of movements when the different doors of the apparatus were successively opened:
The drawer, G G, when closed, does not reach the back side of the chest, but leaves between it and its back an empty space, O, measuring 14 inches in breadth, 8 in height, and 2 feet 11 inches in length (Figs. 9, 10, and 11). This space is never shown to the spectator. The little closet exending from A to B is separated into two parts by a dark banging, S (Fig. 8), which is raised when the door, B, is opened, and lowered when it is shut. The front part of the closet is entirely filled with the wheels that are thought to move the automaton. The back part is empty and is separated from the large closet that the doors, C, form by a thick curtain, R, which hangs freely, being ouly fixed at its upper part. A part, \mathbf{Q}, of the bottom partition of the large closet, C C-the part in front of the Turk-is movable around a horizontal axis, and is provided with a weight toward the interior of the closet sufficient to cause it to fall always in a vertical position. The box, L , is movable and serves to hide an aperture in the floor of the closet; and the box, M, is stationary, but has no bottom, and covers likewise a corresponding hole in the lower floor over the space, \mathbf{O}. The interior of the Turk is arranged as indicated in Figs. 8, 10, and 11. Finally, the end of the clest to the right of the Turk slides in horizontal grooves (properly hidden) in such a way as to give access to the space, K. It will now be seen that if a man of small stature introduces himself on this side into the chest, be will be able to thrust his legs into the empty space hidden behind the dra wer, and to place the rest of his body in the space, K, as may be seen in Fig. 5, and by pushing the curtain before him and removing the movable box, L , he will be able to assume the position shown in Figs. 3 and 4. It is in such position that he awaits the beginuing of the exhibition. The box, \mathbf{M}, serves for receiving the extremity of his feet.
It will be remembered that the first operation of the ex hibitor consists in opening the door, A, at which time the public sees only the mechanism, and, behind it, the dark curtain, S , whose distance cannot be estimated. The exhibitor next passes behind the chest, and, opening the door, B, introduces a light behind the mechanism, which is believed to occupy the whole width of it. The curtain, S , being raised, it is seen by the light that shines through the different pieces that they cannot serve to hide any one. He then closes and locks the door, B, and, returning to the front, opens the drawer and performs the operations already described, in order to give his confederate time to take the position shown in Fig. 5. The box, L, having been put back in place, as well as the curtain, R , the public sees only an empty space when the doors, C, are opened. The curtain, S, which has fallen, hides the back of the confederate, athourb the door A remains open; and it is then that on introducing the light through the door, D , the exhibitor shows that the large closet has not a double bottom. The doors, C, being again closed with the same key, so as to
make believe that these different closings are due to the necessity of removing this key at every operation, the chest is turned around, the two doors, E and F , are opened before the public to show that the body of the Turk is empty, and finally the machine is wound up slowly, the wheelwork making considerable noise the while. During this time the confederate raises the movable partition, Q, takes his legs from behind the drawer, introduces the upper part of his body into a portion of the manikin, which is so arranged as to give his loins a convenient support, and seats himself on the box, L , as shown in Figs. 6 and 7. The game may then begin, the hidden player following his moves through the sufficiently transparent fabric that forms the Turk's clothing. In order that the confederate may easily introduce his arm into that of the manikin, it is necessary to give the latter a certain position, this being the reason for the addition of a pipe in the hand and a cushion under the elbow,

THE AUTOMATON CHESS PLAYER.

closes this door again, and also the doors A and C , by means of the same isey. Next he turns the apparatus around so as to show the public the other side (shown in Fig. 2), and
raises the clothing of the Turk, and opens the apertures, E and F, in the back and thigh to show that no one is hidden within. These doors remain constantly open afterward. Finally, the showman turns the Turk back to his former position facing the spectator, removes the cushion and pipe nd then the game may begin.
We shall explain as clearly as possible how the game wa directed by a man who succeeded in hiding himself by a
 both of which are removed when the game begins. A simple cord permits of moving ore of the manikin's fingers so as to pick up or drop the chessmen The left arm of the confederate, which remains in the machine, is employed in moving the head and in producing the noise of wheelwork at every motion.
In reality, in M. De Kempelen's automaton, it was the left arm that moved the pieees. It is said that this peculiarity was due to the fact that the chess player who operated the automaton was left handed. There has even been a touching romance related on this subject, to the effect that the
hidden chess player was a Polish officer who, having been compromised in the revolt against Catharine the Great, and having lost his two legs in fighting, was received by Kempelen, who thus hid him so well from the searches of the Russian police that he could go to conquer his sovereign in the game in the midst of her court.

The figures which accompany this article are a reproduction of those that were inserted in the anonymous book that we have mentioned. They were very imperfect and not on the same scale, and we have corrected them slightly to render them intelligible.-La Nature.

Boots vs. Shoes.

The Shoe and Leather Reporter calls attention to the remarkable change that has taken place in men's foot gear during recent years, and attributes to it some notable changes in the leather trade. Less than thirty years ago, the man who wore sboes was an exception. It was heavy boots, common boots, and light boots-boots for the field, the workshop, the drawing room, or the dancing saloon, but always boots. In very hot weather low shoes were sometimes admissible, but the tailor would always insist that $n o$ gentléman should wear shoes in full dress, since without the boot legs the pantaioons could not sit well. It would seem, in fact, that boots came in as knee breeches went out; for in the days before Blucher and Wellington buckle shoes and small clothes were the rule. The return to shoes began shortly before our civil war, the first styles being button or laced shoes coming to tice ankle.
In the early part of the war, the prescribed army shoe was pretty generally rejected by officers and men, who soon learned, however, that for long marches and heavy campaigning the despised shoes were the best. After the second year boots were a rarity in the army, except, of course, among the cavalry.
There is no doubt, the Reporter thinks, that the general change from boots to shoes was hastened if not largely broughtabout by army experience. At the West the boots held out longer, but at present they form a very inconsiderable feature in the stocks of most retail stores. An ordinary average of sales is six pairs of men's shoes to one of
boots. In the cities the proportion of boot sales is even smaller, and the man wearing boots is almost looked upon as an old fogy.
According to the recent census report, the total product of boots in the United States for 1880 was $30,590,876$ pairs, and of shoes, $94,887,615$ pairs. Under the heading of boots, however, is included all goods for men, women, or children that are button or lace fastened. This would reduce the number of regular men's boots to probably not to exceed $15,000,000$ pairs out of a total of $125,478,511$ pairs of all kinds of boots, shoes, and slippers, according to the census figures
Aside from the curious feature of the change in styles, the Reporter notices a practical question for tanners as to how far the decreased manufacture of boots affects the consumption of leather. The ordinary boot leg above the ankle takes from one and one-half to one and three-fourths feet of leather, or not less than three feet to the pair, which is about as much as is requi red for the foot portion of the boots. In round numbers we might say the consumption of uppor leather for shoes is only one-half as much as would be required for boots. Thus considering the subject,
it appears that a production of upper leather that would be sufficient for, say, $15,000,000$ pairs of boots in 1870 would still be ample for $30,000,000$ pairs of shoes in 1880 . The increase in the production of upper leather since 1870, while it has not been in proportion to the growth of boot and shoe manufacturing, has unquestionably been somewhat in excess of the actual demand for the leather, so that the buyers bave had the advantage. Whether there is still an overproduction or not is an open question, but from the small stocks of upper leather, including calfskins, now offer ing in the principal markets, it looks as though the point of equilibrium had at last been reached. If this proves to be the case, and the business of the coming season will develop it, then any further growth of the boot and shoe manufacturing must have a direct effect on the leather markets, and the demand will have to be met by a corresponding increase in the activity of tanners. It must also be borne in mind that, although boots are on their last legs, so to speak, just now, there is no certainty that they may not again come into favor. Fashions have a curious way of
repeating themselves, and if boots were the style we would repeating themselves, and if boots were the style we would cdl wear boots, irrespective of con\$iderations of comfort or therefore, look forward to great possibilities.

The Earth a Great Magnet.

This was the title of a lecture recently delivered by Pro fessor Silvanus P. Thompson at Glasgow, under the auspices of the Glasgow Science Lecture Association. Professor Thompsen traced the history of magnetism from the time of Dr. Wm. Gilbert, one of the physicians of Queen Elizabeth, by whom it was raised from the region of superstition and fable to that of true science, remarking that in Gilbert's book he had found the title of his address, "The Earth a Great Magnet." According to The Electrician (London) from which we copy, he showed by experiment the proper ties of the loadstone, of the magnet, and of the mariner's compass, and pointed out the various modes in which a magnet might be formed. He illustrated the declination of the magnetic needle, and explained the difference between
the magnetic and geographical poles. The magnetic pole housand miles to the west of the ge Ferx, more that 1657 the position of the needle showed the magnetic pole to be due north. It had been eastward before that. It then began to point westward; and the westward variation in creased till 1816, when the maximum was attained. It had since steadily diminished, and in 1976 it would again point to the true north. The changes which had been observed, not only in the direction but in the strength of the earth's magnetism, showed that the same causes which originally magnetized the earth were still at work. Strangely enough these changes did not occur at long intervals in the course of centuries, but were going on from day to day, from week to week, and from year to year. This was illustrated by those magnetic storms which interrupted telegraph operations, rang telephones, and, as was reported lately, kept one of Edison's lamps alight, though he would bave liked to have seen it.
These magnetic storms were most frequent in the month of May and fewest in June, again reaching their maximum bout October. It had also been observed that the more violent the magnetic storms the more numerous were the pots on the sun, and the more brilliant were the auroral displays around the poles. The phenomena of the aurora were among the mysteries of science, of which no explanation had been given; but it was certain that the aurora was an electrical discharge passing from the equatorial regions through the upper air and descending at the poles, where a condensation of vapor was continually taking place. The earth was thus continually surrounded by electricity, and here, he thought, was to be found the answer to the ques tion, How did the earth become a magnet? That it was not
always a magnet he regarded as certain, seeing that there were good geological grounds for believing that it was once a molten mass, and that nothing destroyed magnetism like heat. Faraday had found that by taking a bar of iron, spinning it on its axis, and carrying a current of electricity ound it from the center to the poles, a magnet was formed As, therefore, there was a current of electricity continually flowing from the equatorial regions to the poles and return ing again to the equator, he put forward as a guess that in this way the earth revolving continually on its axis had been converted into a magnet. This theory, of course, in volved that the magnetism of the earth had been growing was growing, and would continue to grow.

Contracted Feet and Proper Shoeing.

Contracted feet are more commonly the consequence of ameness in horses than the cause. Any diseased condition inside the hoof giving rise to an unusual degree of heat leads to a more rapid evaporation from the surface of the horn, to drying and shrinking of the hoof, and to absorption of the soft parts within. The shrinkage or narrowing takes place especially at the heel, where the foot has not a long, but only an elastic, cartilaginous internal support, which yields easily to any pressure from without. A second condition, which al ways coincides with this drying due to disease, is the disease of the heel caused by the animal standing on its toe, or replanted on the ground and the weight thrown upon it, the soft parts descending within the hoof tend to press it outward, and as a matter of fact the hoof does actually expand at the upper part, next the hair, and thus the natural tendency of the unused elastic horn to contract is to a great extent counteracted. Disease is, therefore, a more common cause of contraction, and in all cases of contracted feet it is well first to look for some existing disease, such as corns, bruises, pricks, and other wounds, graveling, thrush, inflammation from uneven bearing of the shoe, from the nails being drawn up too tight, from navicular disease, from ringbone affecting the econd or third phalame, and so on.
Apart from any disease sufficient to cause lameness, con raction of the feet sometimes goes on to an extreme degree until, indeed, one heel may meet the other; yet lameness is not induced. Yet, if contraction takes place with rapidity as under the influence of a long period of rainless weather following a wet spring, the compression of the soft parts by the drying and shrinking horn will cause inflammation and lameness. During the past dry summer this was not uncommon, and the lameness thus started bade fair, if neglect ed, to go on to serious structural disease and a permanent lameness. Contraction caused in this way may be counter acted and corrected by measures calculated to soften and expand the horn, followed by such as will retain its natural moisture and give proper bearing on the shoe. To soften the contracted foot, keep the unshod animal standing every day for sixteen hours in a stream of water coming up to the hair around the top of the boot, or in a soft muck of clay puddle closing in around the foot to the same level. In frosty weather a warm poultice placed in a strong bag drawn over the foot is preferable, the more so that it can be kept
applied night and day. At the end of a fortnight the foot will usually be found to have expanded to its natural dimen sions.
If there is much lameness, it will be desirable to apply a blister on the front and sides of the pastern during the period of poulticing. This may be repeated and the poulticing con-
inued, if lameness remains at the end of a fortnight tinued, if lameness remains at the end of a fortnight. As a blister, the following may be rubbed into the skin on the front and sides of the pastern: Powdered cantharides, oneIt may be repeated thender, ten drops; olive oil, one ounce.
have not been induced by the first application, and also as soon as the effects of the first applicatiou have passed off and the resulting scabs have dropped off. When lameness has disappeared, and the foot has been sufficiently expanded, it sould be dressed carefully, going the same height to the wall at all corresponding points on the inner and outer sides, and paring heel and toe in proper ratio with each other, the sole being left as far as possible to come to the heel with the hoof wall at all points, and furnish with it a surface of bearing for the shoe.
The shoe should be perfectly loose.and smooth, and when applied should press evenly at all points. It should be drawn only moderately tight, and on giving its final dressing the use of the file should be as far as possible avoided. The orn is formed of a series of pus tubes with an intertubular cellular structure, and when the rasp or file is used so as to expose the open ends of these tubules the contained moisture exhales, the horn withers, and the soft parts may be injuiously pressed upon. For this reason the use of the file on the front of the hoof is to be severely deprecated. It should only be used on the lower edge of the hoof wall, where it projects over the shoe, and when the sharp edges might therwise split up. For a similar reason, the sole should never be pared down into the tough, elastic horn, though all saly masses on the surface may be safely removed. After shaving, the use of hoof ointment will serve to prevent eva poration and drying, and is absolutely needful after the fuot has been softened by poulticing. A mixture of equal parts f wood tar and sweet oil will answer admirably. This brushed daily over the entire surface of the horn-wall, sole, and frog-will usually preserve a sufficiency of moisture and he natural elasticity and toughness of the horn.-Prof. J. Law, in lrish Farmer's Gazette.

Crow and Snake.

While riding down through Occum, Conn., on May 26 th ast, we noticed a crow on a level garden bed killing a nakerwich was not less than eighteen inches long. The snake seemed fully conscious of what was going on and tried to get away, but showed fight every time it was seized. It was interesting to see the crow bite him, lift him up, and hrow him to the ground, keeping one eye on us the while. This went on for some time, the snake getting weaker every bout.
The crow evidently not liking the nearness of myself and carriage, seized the snake within a few inches of its head and flew with it into the large trees beyond the Wequonock River, where we could not watch its further operations. The sake hung down its full length while being carried over the river. Crows are great scavengers, especially while they have young in the nest, and during this time they will carry off more very young chickens than any hawk in North America.-Ornithologist.

Pearl Patterns on Cloth

Flexible mother-of-pearl patterns are produced on cloth tuffs, according to a recent German patent, as follows : On a soft elastic base is placed thin caoutchouc as large as the pattern, and upon this a thin plate of copper, with the patern cut through. Over the copper is placed the cloth on which the mother-of-pearl pattern is to be produced. A heater is now passed over the whole, with the result of melt ng the thin caoutchouc, and causing it to be pressed up gainst the cloth, in form of the pattern. The cloth is now emoved with its adhesive pattern, and powdered mother-of pearl is sprinkled on it ; then a heater is passed over it, and any superfluous powder is removed with a soft brush. A fine crape-stuff, moistened with gum solution, is next laid on the mother-of-pearl pattern, and, after drying, adheres to it with protective effect, while the varying color of the mother-of-pearl is but little affected.

Rum in Switzerland

Among other matters discussed at the Congress of Hygiene which recently met at Geneva, was that of intemperance, which M. Roulet showed to be making rapid progress in witzerland. He desired heavy duties on the sale of drink, especially distilled liquor, severe surveillance of it, and eneretic repression of drunkenness. He insisted on the utility f temperance societies, and said, in closing, that the war gainst intemperance would not succeed till all alcohols, xcept ethylic, were removed from beverages. . It is ueces ary to find a reagent enabling to determine accurately and quickly the quantity of those other alcohols in the drink. M. Alglave advocated monopoly of the sale of alcoholic iquors by government. The Congress passed a resolution calling on all Governments to abolish legislative obstacles to he practice of cremation, and urging the advantages of this practice in the case of serious epidemics.

Lightning in January.
Lightoing began its work early this year. On the last day of Sanuary a brilliant flash lighted up this city, attended by a loud peal of thunder. In Brooklyn a dwelling house was struck and materially damaged. A mother and child were hurt, and shocks were felt in streets and houses for several blocks around. Telephone bells were set to ringing, and in most of the telegraph offices startling electric effects were experienced. The superintendent of the police telegraph department said that the current came into headquarters with fearful volume, all the annunciators were knocked down, and a relay was burnt. Fortunately no one was using the telephones at the time.

RECENT INVENTIONS.

mproved Vehicle Axle

The engraving shows an improved vehicle axle recently patented by Mr. John J. Maroney, of Bergen Point, N. J. The axle is made with a collar at the inner end or base of its arm, in the usual manner. On the axle at the inner side of the collar is formed a second collar to receive and fit into the end of a hollow cylinder, which is.made of a larger diameter than the diameter of the axle, and has an inwardly projecting annular flange, formed upon its nner end. The edge of this flange has a screw thread
 formed in it to fit into the thread formed upon the collar on the axle. The space between he cylinde: and the axle is to receive oil or other lubricant, and may be filled with cotton waste or other packing, if desired. In the shell of the cylinder is formed a number of holes through which the lubricant can escape to lubricate the outer surface of the cyliuder and the surface of the part of tie thimble skein or axle box that fits upon the cylinder. In the top of the arm of the axle is formed a long groove, and in the bottom and sides of the axle arm are formed short grooves. Both grooves pass through the collar and serve as channels to conduct the lulricant from the cylinder to the forward part of the axle. The thimble skein is made with an enlargement at its inner end to receive the cylinder, and is provided with wings to prevent it from turning in the hub. In the engraving parts are broken away to show the internal construction.

Improved Instrument for Leveling, Surveying, etc. Tine object of this device is to combine into one compact instrument the different tools used by engineers who erect machinery, foundations, shafting, bridges, etc. The instru ment consists of a rectangular frame, carrying in its lower part a longitudinal and a transverse spirit level. The top part of the instrument is hollowed out for a telescope tube, having a center on one end and a wire cross at the other end. The instrument can be used as a try square, as a spirit level, as a spirit plumb, and, with a small addition, as an inclino-
 meter. The telescope tube is
intended to facilitate the erection of such pieces as are required to be in a straight line toward a given distant point, as for instance parts of line shafts, etc. In this case the engineer places the instrument on the shaft he wants to adjust; he then looks through the telescope tube toward the given distant mark, which mark shows the point where the shaft is to go through the wall, and he then adjusts the shaft until he can see the desired mark through the telescope, the shaft then being in proper alignment, and level. This instrument may be provided with the foot of a surveying instrument, as for instance the one shown in the engrav ing, which is formed of a shoe having a center in a graduated plate, the plate having adjusting screws for vertical adjustment. Thus it will have all the requirements of a common surveying instrument. The principal feature of this device is its compactness considering the many uses to which it is adapted. The instrument has been patented by Rudolph Peter, P. O. Box 40 Hartford, Conn.

Improved Car Coupling.

This invention is designed to improve the usual mean for uncoupling the pivoted wings of a drawhead from an arrowhead link, and for bolding the link up in front, so as to be conveniently guided into an opposite drawhead. The draw head is provided with an inwardly-tapering end opening, behind which the opening in the drawhead is straight, and provided in each side with a recess or groove, in which are placed wings (Fig. 2) adapted to swing laterally, and mounted on vertical shafts journaled in the top and bottom of the drawhead, the upper ends of the shafts projecting from the top of the drawhead. Hooks projecting toward each other, so that the point of one rests against the shauk of the other, are rigidly mounted on the upper ends of the wing shafts. One hook is pro vided with an arm, to the end of which an angle lever is pivoted, the outer end of this angle lever being pivoted to a horizontal movable rod, which extends to the side of the car. A lever pivoted to the rod extends to the top of the car for operating the coupling from the car top. The cars are coupled automatically, the end of the drawbar entering the drawhead, pressing the wings laterally until the arrowhead has passed. Then the springs hold the ends of the wings against the shank of the drawbar, and prevent it from being withdrawn, as the shoulders of the drawhead strike against the
ends of the wings. When the cars are to be uncoupled, the rod is drawn toward the side of the car, turning the shafts, so that the wings will be swung from each other, thus permitting the drawbar to be withdrawn. If the rod is moved in the opposite direction, the inner end of the angle lever will be pressed on the head of the pintle, and the pintle will be pressed down into the drawhead, and depress the inner end of the drawbar, thus raising the outer end, to guide it into the opposite drawhead. This coupling is the invention of Mr. B. F. Metz. Further particulars may be obtained by addressing Messrs. B. F. Metz and J. Kauffmann, • Osborn, Ohio.

New Pencil Holder.

The engraving shows a pencil holder having spring jaws for pushing the pencil outward, ànd conical jaws held to their seat by a spring for holding the pencil against the return movement of the push jaws, the whole being inclosed in a case. The tubular case of the holder is made of convenient length and size, and into the upper end is fitted a short tube having a knob or cap upon its outer end, held up by a spiral spring. The movement of the short tube is limited by apin projecting from a slot in the side of the case. To the inner end of the short tube are attached the upper ends of two springs which extend downward and are curved outward, and the bends thus formed rest against the inner surface of the case, so that their elasticity will force the jaws, formed upon their lower ends, inward to gra $\cdot p$ the pencil or lead. As the tube and springs are pressed downward, these jaws clamp the pencil and force it downward. The lower end of the holder is made conical and fits upon the pencil. The upper part of the point is made tubular in form, and of such a size as to fit into the lower end of
 the case, where it is secured. Upon an internal shoulder of the point there is a small spiral spring, through which the pencil passes, and which supports two jaws, which are concaved to receive and fit upon the pencil. The outer surfaces of the jaws are made conical in form, and fit into a conical tube which fits into the upper part of the point, where it is secured in place by a bayonet clutch, as shown in Fig. 2. As the pencil is forced downward by the downward movement of the spring jaws, the friction of the pencil upon the conical jaws will tend to move these jaws downward into the larger lower part of the tube, and the pencil will slide down between the conical jaws. As the upper or spring jaws begin to move upward, teir tendency is to carry the pencil with them, but the spring forces the conical jaws into the tube, where they are contracted upon the conical inner surface of the pencil with sufficient force to hold it against the pull.of the upper spring jaws, so that the pencil will be forced downward a shor.t distance at each downward movement of the jaws. In supplying the holder with a pencil, the point is detached from the case, and the pencil is inserted through the tube and spring jaws from the inner end of the point. The upper end of the pencil is inserted in the lower end of the case, is guided into the space between the jaws, and pushed upward until the point reaches its seat. The pencil is then pushed inward to the proper point, when it is ready for use. When the pencil is not required for use, it can be pushed inward, so that the pencil point will be protected from being accidentally broken. This invention was recently patented by Mr. B. Eybel, 321 East 54th Street, New York city.

New Fire Escape.

This fire escape is built on a truck having attached to it a base frame provided with upright rods connected at their upper ends in pairs by cross bars. Bearings attached to the corners of a canvas covered frame slide on the upright rods; and are held up by springs connected with the base and top frames, and with interposed sliding side bars. The top frame is held from rebounding by ratchet bars and spring pressed pawls, which can be withdrawn, to allow the top frame to be raised by the supporting springs, by arms attached to upright rack bars, connected by levers and a rod, whereby both pawls can be withdrawn at the same time. When the drawn to the side one after another of a burning building, the people jump upon the covering of the top frame. As each one aligh pon the covering of the frame and forces the frame down cessively, so that the downward movement of the frame will be stopped before the frame encounters a rigid resistance, and the person will be saved from severe shock. The person using the escape is kept from being thrown off and injured by the rebound of the springs by the ratchet bars and pawls, which detain the frame at its lowest point of descent. This invention has been patented by Mr. Jarvis E. Davis, of Union, Oregon

Improved Rotary Plow.

The engraving shows an improved rotary plow, recently patented by Mr. G. A. Betancourt, of 108 Aquacate, Entre Teniente Rey y Muralla, Havana, Cuba. This plow has a rotary drum carrying plowshares, and mounted in a suitable frame guided by bandles, and drawn forward by horses in the usual manner. The drum is provided with a series of diametrical slots or mortises, in which are placed as many plow standards, each capable of sliding each capable of sliding
longitudinally through the drum and carrying at each end a plow. As the plow is drawn forward, the points enter the soil in succession, and remain there until the limit of the end motion of the standards. At he same time they are tipped in the soil very much after the manner of hand spading, loosening and turning the soil in a very effective manner. The plows may be made in various forms and sizes, and they may be used in gangs.

Stripes of Red Blood in Fishes.

Professor H. N. Mosely, in his Challenger Notes, says: While dredging was going on off the Kermadec Islands, a shark (Carcharias brachyurus) which was attended by a pilot fish (Naucrates sp.) was caught; it was, as is commonly the case, covered by a small parasitic crustacean, a species of Pandarus. Some specimens of this parasite had, curiously enough, a barnacle (Lepas) attached to them as large as themselves.
On the shark being skinned, I noticed that a layer of superficial or skin muscles, extending all over the animal, and only about onefourth of an inch in thickness, is colored dark red by blood coloring matter (hæmoglobin) as are all the muscles of mammalia. The main internal muscular mass of the shark is pale, almost white. Professor Ray Lankester has described several instances of the restriction of the red coloring matter to certain muscles only, in animals which possess it.*

A closely parallel case is that of the little fish, the "sea horse"(Hippocampus), in which the muscles of the dorsal fin only are red.
Mr. Lankester accounts for the presence of the hæmoglobin in the dorsal fin muscles only in this case, by the special activity of the fin in question, but such an explanation fails in the case of the shark, the skin of which is apparently immovable: moreover the structure of the skin precludes the idea of the red matter beneath it baving a respiratory function. Mr. Lankester has shown that hæmoglobin is entirely wanting in one fish at least, the white transparent oceanic surface fish Leptocephalus, and I believe that small oceanic flat fish, Pleuronectids, will prove also to be devoid f red blood coloring.

Nickel Wire in Silver and Gold Lace.

The silver plated copper wire hitherto employed soon rubs off, and the unwelcome disagreeable red color of the copper makes its appearance in sp,ts here and there. MM. Conte and De Bary Kroess have used aluminum alloyed with silver to avoid this difficulty.
We learn from the Polytechnisches Notizblatt that Troeltsch and Hanselmann, in their lace factory at Weissenburg, make use of nickel which has been deprived of its brittleness Fleitmann and Witte, of Iserlohn, made the discovery, not long since, that the addition of a small quantity of other metals would render the nickel so ductile that it could be drawn out into wire of the finest numbers and be scarcely inferior to copper. Wire has been drawn so fine that 18,000 meters only weighed 100 grammes (or twelve miles weighed about $31 / 2$ ounces avoirdupois).
Ductile nickel differs from copper, so that the increase of price for increased sizes differs from that of the plated copper wire hitherto in use.
For articles subjected to much wear and the action of the weather this ductile nickel will be very useful. For the lace used on military uniforms the plated copper wire will go out of use entirely, as nickel wire would always keep white and no verdigris ever be formed. Great anticipations are made for it in other directions. too

The Hudson River Ice Harvest.

The Hudson River ice crop of the season just closed is rated as one of the largest, if not the largest, ever harvested. It amounted to nearly $3,000,000$ tons
It is said that not so many new houses were built last fall as the previous one; still, those constructed were quite large, and increased the storing capacity 200,000 tons. The ice gatbered ranges in thickness from eight to twenty inches, and, owing to the low condition of the river when it froze over, is as clear as crystal. The housing this year cost from 4 to 7 cents less per tou than last year. Notwithstanding the cry of short crop last winter, about 100,000 tons remained in houses unsold at the beginning of the year. Nearly 50,000 tons of this was ice gathered in 1880 , which had been held ever since for a good market. But little ice was stacked.

[^0]
engineering inventions

An improvement in journals and other bearings has been patented by Mr. Ferdinand E. Canda, of New York city. It has for its object the production of an improved anti-friction material for journals and other moving parts of machinery, which consists of the pulverization of any of the metals which amalgamate
with mercury. The inventor heats the mass to a suffiwith mercury. The inventor heats the mass to a sufficient degree (say 280° Fahr.), when the whole forms a plastic mass which he casts into moulds of the shape the bearing to be produced, adding pressure to give it when it is ready for use.
Mr. Levi H. Roberts, of Paris, Ill., has paented an improved journal box. The object of the inention is to provide a practical antı-friction journal or aste principally of journaling two anti-friction wheels or rollers in and between two boxes; these are coupled together and adspted to be placed upon the journal porion of the axle, with the anti-friction wheels or rollers resting upon the azle and supporting the weight of the
car. The invention also cousists of oil bozes fur the car. The invention also consists of oil boxes fur the
journals of the anti-friction wheels, of the means for coupling the front and rear boxes together, and of journal blocks to fit in the front and rear boxes upon that by this invention the capacity of the motive power is increased, and the danger from bozes becoming
An improved mining auger bas been patented by Mr. William N. Talley, of Hampton, W. Va. The invention consists of an auger and threaded shaft
mounted in a screw threaded supporting nut, which nut is made in two parts, so that it may be taken apart and reset for beginning a new bore, and these are held to gether by a pi voted S-shaped button, which passes into holding the auger is mounted on uprights with a pointed head piece to be set against the roof of the mine, and ackscrew to rest in a cavity in the floor. The nut is
held in position by clamps which fit into recesses prepared for them in the supporting bars. In this way the
auger is readily detached from the frame, in order that auger is readily detached from the frame, in order that
the anger bore may be cleaned without the frame being the auger bore may be cleaned
taken down from its pesition.
An improved stock car, in which the animals may be easily and rapidly fed, and in which they may be transported without being subjected to the inHenry R. Borhwell and James H. Strusnell, of Toronto Canada. The invention consists in chains attached to he opposite standards of the car, and provided wim chains which are attached to adjcining transverse chains or forming supports under the bellies of the animals o prevent them from lying down, but on which theycan est. Combined with manger bars are a series of hooks on the standards and on the walls of the hay boxes, for the purpose of facilitating the adjustment of the man-
gers to the size of the animals. A diagonal bar is at gers to the size of the animals. A diagonal bar is at-
tached to the ceiling of the car and to one of the sides, and a piece of canvas is attached to it, and also to the ciling and side of the car, which forms a partition at he head end of the stalls. Hay and water boxes are arranged on top of the car, and are provided with proper outlets at the bottom by which the animals are fed
An improved device for applying the brakes to railroad cars has been patented by Mr. Charles Van
Dusen, of New ilbany, Ind. The invention consists of a cylindrical reservoir suspended beneath the tender or by a horizontal partition, the lower compartment being parially filled with water; steam heing introduced into this from the engine by a pipe which is provided with a stop cock, and with a valve for permitting the water chamber. The only connection between point in the ower compartment is by a large pipe, whicheis pro vided with a floatby means of which the water is prevented from rising above the neck of the pipe and
passing into the upper chamber when the pressure is bepassing into the upper chamber when the pressure is be-
ing applied to the water in the lower chamber oy the steam from the engine. The air is compressed by the nising of the water in this poly but this is not absolutely ear this for a reserve supply, bit by means of proper hose and connecting pipes to the braking apparatus on the car, passing into a chamber provided with a piston working vertically and connected with a cam lever arrangement by which means, when the pressure is applied, the toe of the cam is elevated and the friction wheel is brought against the inner sur-
face of the car wheel. This air brake arrangement is very simple in its construction, and is intended to be entirely under the control of the engineer

mechanical inventions.

Mr. Joseph H. Hunter, of Adair, Ill., has patented an improved water elevator. The invention consists of a combination of pawl and ratchet wheels, forming an endless chain, and passing over a whee provided with forked arms, by means of which contrivnce the water is elevated and discharge
Mr. Henry Cutler, of North Wilbraham, Mass., has patented an improved grain drier, whose ob-
ject is to provide driers of large capacity, in which the temperature can be raised to a high point without any njury by expansion and contraction, to the machine, or This invention is an improvement on a machine for the same purpose patented by Mr. Cutler on September 20 1881.

Meissrs. James Kneen, 2d, of Birmingham, and Wellington M. Reed, of Huntington, Conn., have patented an improved escapement mechanism for
watches. This invention relates to the ruby pin tables of watches, with the object to allow adjustment of the tables and hair spring of the balance wheels without removal, as is required when the wheel and table areat-
tached permanently to the pivot shaft. The parts can tached permanently to the pivot shaft. The parts can
beereadily adjusted in relation to each other on the

An improved hand vise for brooch pins has \mid over swinging wings into suitable receptacles. The been patented by Mr. Myer Moss, of Yarmouth, Nova
Scotia, Canada. This invention relates to a tool used
heave ciee and stones drop upon the wings and slide
dow Scota, canada. Thisinvention relates toa tion usea articles. The tool is provided with jaws to grip and hold the article to be mended, with a series of gradua-

the brooch being repaired

A novel hand truck, the object of which is hand trucks while the load is being placed upon them has been patented by Mr. George P. Clark, of Windso Locks, Conn. The invention consists of a spring-actu-
ated holder or clamp placed upon the shaft or axle the truck, which is adapted to be pressed down by the foot of the user to engage with the floor while the bo A novel circular sawing machine has bee patented by Mr. Christian J. Steinbach, of St. Louis, Mo. The invention relates to cut-off sawing machine stead of the wood. In this machine ar single eaw slide and belt are made to work two saws instead of one of the gear for reciprocating the saw slide an an automatic apparatus for discharging the pieces sawed off, and an Mr. Aaron Emerick, of Johnsburg, Pa., has patented an improved shingle sawing machine. This invention consists of a a shingle sawing machine having
a carriage provided with an automatically operating gauge for the bolt. This gauge is so constructed that by a slight movement of the bolt the butts of the shingle
may be formed alternately at opposite ends of the bolt. may be formed alternately at opposite ends of the bolt.
The arrangement of the mechanism is such as to allow the shingle to drop with ease as soon as severed from he bolt
An improved draughting instrument has been patented by Mr. Henry C. Root, of San Francisco
Cal. This invention consists in an instrument for de termining the lines and bevels of circular stair rails, fo determining the lines and bevels for jack rafters in hipped roofs, and other purposes of a similar nature,
the object being to determine the angle subtended by the object being to determine the angle subtended by
the tangents and the pitches or bevels which are in th same plane. For architects and builders this instrument. Which is denomina
seem to be highly useful.
A new washing machine, an improvement apon that class of washing machines having a slotted o perforated revolving cylinder for containing the clothe
which rotates in a box containing the water patented by Mr. William Bruen Smith, of Clayton, Ill. rubber and preser the improvement so as to swing freel within the cylinder. The revolving movement causes the clothes to rotate in contact with both the rubber and
periphery of the cylinder, and the water being kept in periphery of the cylinder, and the water being kept in
motion thus washes and rinses the clothes in the shortest possible time.
An improved boiler and furnace, the object of which is to econonize space and fuel in the consiruc by Mr. James H. Mackintosh, of Paterson, N. J. The invention consists in
with three concentric nected by pipes, divided into compartments by parti-
tions, and having enlarged lower ends. The wate chambers are supported upon a base, are inclosed with a casing, and are provided with a central coal reservoir and two fire pots. The boiler is so constructed that the water is caused to circulate in thin sheets, and, exposed
to the heating surface on both sides, insures rapidity in the heating of the water.
A novel fire escape has been patented by Mr. Charles Roberts, of Montgomery City, Mo. The a platform and turn table frame, to which ladders ar attached, which platform carries a windlass for raising the ladders. The ladders can be raised by means of the windass, and are held in position by ropes. The plat
form and the frame can be turned on the siandard form and the frame can be turned on the slandard, the
ladders being balanced by the overhanging part of the ladders being balanced by the overhanging part of the
frame. After the ladders have been erected they can be swung into any desired position by turning the plat very rapidy, and can be moved from one placeto a other very easily
A pump of improved construction has been patented by Mr. Jesse A. Heydrick, of Barnhart's Mills, der attached to the lower end of a rotary stand pine which cylinder contains a reciprocating piston provided with downwardly projecting shanks or prongs resting on spiral tracks, whereby the piston will be reciprocated and water raised when the pump tube and the cylinder are rotated. The piston is provided with a perforated
pipe within a larger perforated pipe connected with the pipe within a arger perforated pipe connected with the
spiral tracks. The invention further consists in an in stand pipe, into which cup is a tubular projection which forms part of a vessel surro:nding the inverted cup. An improved spindle and bearing therefor have been patented by Messrss. George B. McCracken an lates to that class of spindles in which the bobbin i held steady at the top by a short spindle and turned by
a whirl placed on a central stud, whereby the bobbin made to run easy, steady, and true, the bearings pro perly oiled without retarding the motion of the spindil or songh the bobbin. The oil may be used over and cleaning and the wearing parts replaced with ease and small expense. The bobbin being held at the top an bottom only, prevents friction, and enables the spinde to run very lightly and steadily.
A machine for grading coffee according to the size of the berries, and at the same time to free
the coffee from sticks, stones, sand. and other impurities mixed with it, has been patented by Mr. Elam Rakestraw, of Cambridgeport, Mass. The invention
consists in a reciprocating screen shoe combined with a consists in a reciprocating screen shoe combined with a
box with a curved surface, upon which the coffee drops from the screen shoe, and in passing is exposed to
which raises them to a hopper, so that they pass
hrough the screen shoe a second time, and perfect the hrough the
separation.
A new apparatus for making salt, the ob ject of which is to provide an improved concentration folshine, has been patented by Mr. Clemens von Bech-
Lol Munich, Germany. The invention consists in the arrangement with a brine boiler of a device for receiving brine from the boiler, and two evaporating pans, One of the pans is connected with the boiler and a pumping engine in such a manner that the steam from the
pan, which is heated by direct flames, can be used to pan, which is heated by direct flames, can be used to heat the brine in the boiler and to work the pumping
engine. From the boiler the brine passes into the ngine. From the boiler the brine passes The steam
dome, and is then pumped into the two pans. dome, and is then pumped into het two pans. The steam
from the dome is uiliized to heat one of the pans. The rom the dome is uiliized to heat one of the pans.
main object of the invention is to economize fuel.
An ingenious post hole boring machine bas been patented by Messrs. William Graham and William
I. Staley, of London, Ohio. The machine is designed for baring of London, say siz. The machine is designed according to the length of the boards to be used; but it may be constructed to be adjusted for any distances withIn practical limits. The augers are secured to a frame
ne at each end, with the driving mechanism which con ne at each end, with the driving mechanism wlaced in
ists of an ordinary horse power arrangement plat the center of the frame midway between the two
uggers. The master driving wheel meshes into the gearing attached to the two augers, and when the large heel is propelled by horses attached to the sweep, both the
An improved foot power mechanism applicable to bicycles, sewing machines, lathes, and similar patented by Mr. Anson F. Fisher, of Chico, Cal. The nvention consists in a horizontally swinging treadle connected with a pawl carrier, which in turn is conhe axle with a ratchet wheel, the latter keing located at hen the treade ikewise pushed forward to the ratchet wheel, which sets the whole mechanism in motion. The treadle is
brought back in place by a spiral spring, one end of which is attached to the propelling shaft, and the other end to the forked standard of the bicycle, and thus a otary motion is kept up.

AGRICULTURAL INVENTIONS

An improved cultivator, the object of w hich to remove the vines from between the rows of swee injury to the vines, and at the same time cultivate the paces between the potato rows, has
Mr. Bernhart Kemper, of Muscatiue
An improved protector for hay and grain atacks, to prevent the top from being blown away and protect them from rain, has been parented by Mr. George
G. Matthews, of Wichita, Kan. The invention'consists in protector for hay and grain stacks constructed with ${ }^{2}$ board having longtudinal drain grooves along its upper surface. A narrow top board is secured to it for clamp. ing the overlapped ends of the thatching material. To
the lower side of the base board are hinged tapered akes with teeth for securing the protector firmly he stack.
An improved cultivator has been patented y Mr. William H. Luce, of Prairie Centre, Ill. The n whe the machine consists of a cross beam mounted extremities of which depend the plowshares, so adjusted that their proximity one to the other is regulated by a very simple mechanism. The depth which the
lows are to work is determined by a curved connect g b ba which is attached to the pole or tongue of the venicie, and passing through a sloted post is held in
any desired position. A lever connected to the afternart of the machine is operated by the driver, by which he is enabled to alter the pitch of the machine.
An improved corn planter, designed to aciilitate the planting of corn and also to promote convenience in guiding the machine paal. John R. Owen of Pulaski, Tenn. Attached to the axle of the wheel cal box with two chambers cut in it it, of a a ize suitable to hold enough corn for one hill, these chambers heing placed immediately opposite one another, and thus emp ying their contents at every half revolution of the
wheel. Above the cylinder is placed the supply box The seed is planted and covered, and the mound formed by plows located at the rear of the vehicle, and a horizontal bar to assist the eye in the guiding of the
machine is provided, so that every row is equally separated from every other row, and the whole field uniformly planted.

miscellaneous inventions.

A novel sand band adapted to be applied to himble skein axles has been patented by Mr. Delos M. collar divided into equal or nearly equal parts, and of a
dust chamber and of flanges and belts so related as dust chamber and of flanges and belts so related as
to keep the axle almost completely clean from dust and to kee
An improvement in crimping machines, where the crimping and stretching is done at the same ime, has beel patented by Mr. Dominick A. McDonald. lessen the number of times of handling the leather or susstance to be
when desired.
A new composition for removing scale or calcareous deposits in boilers has heen patented by
lessrs. Charles R. Bacon and Frank Queen, of St. James, Minn. It consists of aqua calcis, or lime water. and pure sweet oil, of equal proportions. This compound mixes readily with the water in the boiler, and
attacks all lime deposits alike and softens them. This attacks all lime deposits alike and softens them. This compound does not remove the deposits, but softens
them to such an extent that they can be washed off hem to such an extent that they can

The Charge.for Insertion under this head is one Dollar line for each insertion : about eight words to a

 a line for each insertion : about eight words to a line.Advertisements must be received at publication office asearly as Thursday norning to appear in next issue.

Valuable nanufacturing property for sale at Taunton,

 Magic lanterns, stereopticons, cond. lenses, etc., onnd and madeto order, C. Beseler, 218 Centre St, N. \mathbf{x}. A 30 -inch Backus Water Motor in good condition, for for good condition, for eld. 100 Central Ave., Newark, N. J.
Baxter Adjustable Wrenches, fit peculiar corners. InRare Business Opportunity. Owing to the death of he aftirs of the frm the business real the "Morgans \& "ilcox Manufacturing Co.," manufacprinters' material, office furniture, and various othe kinds of wood work, located at Middeletown, N. Y... 66 miles from city, on Erie Railway. is offered for sale. Busiwhich meet with ready sale; employs 30 hands the year round; has choice real estate, good buildings and machinery, railroad switch, etc. Profts all that can be desired, formation call upon or address immediately, H. K. Wil cox, surviving partner in Morgans \& Wilcox Manufac

American Fruit Drier. Free Pamphlet. See ad., p 94 Am. TwistDrill Co.,Meredith, N. H., make Pat. Chuck For best Portable Forges and Blacksmiths' Hand Brass \& Copper in sheets, wire \& blanks. See ad. p. 93 The Chester Steel Castings Co., office 407 Library St, Philadelphia, Pa.. can prove by 20,000 Crank Shafts and
5,000 Gear Wheels. now in use, the superiority of their 5,000 Gear Wheels. now in use, the superiority of their The Improved Hydraulic Jacks. Punches, and Tube Diamond Drills, J. Dickinson, 64 Nassau St., N. Y.

Tight and Slack Barrel Machinery a specialty. John a Co., hochester, N. Y. Pays well on small investment.-Stereopticons, Magic Lanterns, and Views illustrating every subject for public home amusement. 116 page illustrated catalogue free.
McAllister, Manufacturing Optician, 49 Nassau St., N. Y. See New American File Co.'s Advertisement, p. 94 Renshaw's Ratchet for Square and Taper Shank Drills. e Pratt
Trevor’s Patent Kes Seat Cutter. Trevor \& Co., LockCurtis Pressure Regulator and Steam Trap. See p. 76. Free.-"Useful Hints on Steam," a book of 96 pages ustrated. By mail, 15 cents. E. E. Roberts, 107 Lib
erty Street, New York.
Walrus leather, selected heavy trimmed hides. Wa , all sizes. Greene, Tweed \& Co_{3} The Portable Electric Light Co. are having large sale r their Portable Electric Lighter. See adv. Cope \& Maxwell M'f'g Co.'s Pump adv., page 77 . oodwork'g Mach'y. Rollstone Mach. Co. Adv., p. 77. Common Sense Dry Kiln. Adapted to drying of all maThe Sweetland Chuck. See illus. adv., p. 78. Knives for Wood working Machinery.Bookbinders, and Works by Tyndall, Huxley, Spencer. etc., 15 cts. each.

Railway and Machine Shop Equipment.
Send for Monthly Machinery List
the George Place Machinery Comna
to the George Place Machinery Comnany,
.121 Chambers and 103 Reade Streets, New York
Improved Skinner Portable Engines. Erie, Pa.
Contracts taken to Manuf. small goods in sheet or odel. H.C. Goodrich. 66 to 72 Ogden Place, Chicago. Stone bottles for beer and ink. Merrill \& Co., Akron, 0 $25^{\prime \prime}$ Lathes of the best design. G. A. Ohl \& Co. or Power \& Economy, Alcott's Turhine, Mt.Holly, N.J. "How to Keep Boilers Clean." Book sent free by "mes F. Hotchkiss, 84 J ohn St., New York.
Engines, 10 to 50 horse power, complete, with govern-
$\$ 250$ to $\$ 550$. Satisfaction guaranteed even hundred in use. For circular address Heald $\&$ Brass Finishers' Turret Lathes. $131 / 2 \times 4, \$ 165$. Lodge, Brker \& Co 189 Pearl St, Cincinnti, $\mathbf{0}$
Wanted.-Patented articles or machinery to make Latest Improved Diamond Drills. Send for circular M. C. Bullock Mfg. Co., 80 to Water purified for all purposes, from household supmanufactured by the Newark Filtering Co., 177 Com-
merce St.. Newark, N. J.
Guild \& Garrison's Steam Pump Works. Brooklyn,
Y. Steam Pumping Machinery of every descrip Fion.
First Class Engine Lathes. 20 inch swing, 8 foot bed, Ice Making Machines and Machines for Cooling Breweries, etc. Pictet Artificial lce Co. (Limited), 142 Steel Stamps and Pattern Letters. The best made.
. B. Rogers \& Co.. Norwich, Conn.. Wood Working achinery of every kind. See adv., page 6 .
Split Pulleys at low prices, and of same strength and Works. Drinker St., l'hiladelphia.Pa
Machinery for Light Manufacturing, on hand and
Presses \& Dies. Ferracate Mach. Co., Bridgeton, N.J

Supplement Catalogue.-Persons in pursuit of infor
mation on uny special engineering. mechanical, or scientitic subject. can have catalogue of contents of the Sci-
ENTIIIC AMKLIICAN SUPLLEMNTT sent to them free The SUPPILLMAENT contains lengthy articles embracing the whole range of engineering, mechanics, and physi-
cal science. Address Munn \& Co.. Publishers, New York

HINIS TO CORRESPONDENTS.
No attention will be paid to communcations unless accompanied with the full name and address of the
writer. Names and addre
given to inquirirs.
We renewour request that correspondents, in referring We renewgur request that correspondents, in referring pame the date of the paper and the page. or the numbe of the question.
Correspondents whose inquiries do not appear after
a reasonable time shouid repeat them. If not then pub a reasonable time shouid repeat them. If not then pub-
lished, they may conclude that, for good reasons, the lished, they may concl
Editor declines them.
Editor declines them.
Persons desiring special information which is purel of a personal character, and not of general interest, as we canno from $\$ 1.0 ~ \$ 5$, accorning to the subje. obtain such information without remuneration.
Any numbers of the Scientipic American SuppleMENT referred toin these columns may be had at thi office Price 11 ceuts each.
or examindents shoning samples of minerals, etc for examination, should be careful to distinctly mark label their specimens so as to avoid error in their ident
(1) F. S. D. asks: How does the winding of the magnets in a magneto call bell differ from that in ordinary electro magnets? I wish to make one so that the magnets draw alternately. A The winding is he same in both cases
(2) A. W. W. asks whether sulphurous acid can be administered to any one with bronchial anywhere. As it is somewhat dangerous, we should commend its use only under a physician's guidance.
(3) H. E. F. asks for a good receipt for making " treer's blacking," that which is most gene-
rally used by " treer's " in the boot and shoe manufacrally used by " treer's" in the boot and shoe manufac tories. A. Dissolve gum tragacanth in water, then add a little ink to make it black, and finally add a small
quantity of neatsfoot oil. It must be quite thin, or quantity of neatsfoot oil. It m
(4) C. A. B. asks: We have a melting ket tle of cast iron, holding abont five tons of metal (lead), lad finds its way, Can this be repaired, and how? A If the crack in the melting kettle is where the fire touches it. you cannot mend it by patching with rivets as it will not be reliable. If the crack is very small, it might be drilled out, tapped with a taper pipe thread, and plugged. If the crack is directly over the fire, this will not save the kettle. A foundryman could "burn" the crack out, if you can take out the kettle and send it
to him. Otherwise you will have to procure a new ketto him. Otherwise you will ha
tle, which is probably advisable
(5) T. S. C. writes: I want an anti-friction metallic piston for packing a three inch steam or water
cylinder. I am using lead for the rings. Can I mix it cylinder. I am using lead for the rings. Can I mix it
with any other metals so as to make it harder and be elastic too? If so, please state the component parts Can a small cylinder, as described above, be made tight with exclusive metallic ring packing? If so, please state how. A There is no way of making it perfectly tight; if the cylinder is for cold water, use a cup leather packing; for steam, you can add tin to your lead and get a
(6) G. B. M. asks why hot air can be seen coming up from a hot stove, while we cannot see the wind blow. A. The refractive power of hot air differ rom that of cold air, and when in circulation, mixed with cold air, as in a column rising from a hot stove, it t. You also see particles of dust fioating in the upward current, but you do not see the air itself. The circulaton of air is indicated by the fioating dust when a bean f sunshine enters a dark room.
(7) E. M. writes: 1. I have an engine, 4 inches bore and 6 inches stroke; I also have a boa moanght buit 21 feet long by 5 feet beam, 2 feet in depth, can also get 14 -inch propeller wheel. Will this be large enough, or too large? A. Your wheel should be 18 inches diameter. 2. Will this run her direct-acting
frame engine to wheel? A. Yes, 3. What speed frame engine to wheel? A. Yes. 3. What speed up-
stream will she make, current three miles an hour? A. stream will she make, current three miles an hour? A
Speed depends on power applied; probably not more than $31 / 2$ to $41 / 2$ miles. 4. How many revolutions a minute will the engine be required to make. A. 360 to 400 revolutions per minute. 5 What sized boiler will it
rake for engine to make plenty of steam? A. 80 to 90 take for engine to make ple
(8) A. J. H. asks: 1. How much power will a 12 foot windmill generate in an ordinary wind? A. Average about $11 / 2$ horse power? 2. Will the dyna61, produce twice as much electricity if it is built twice as large? A. Yes. 3. Will you please mention the
name of a good firm of which to procure cotton and silk name of a
(9) A. P. C. asks how to polish the blades of knives and scissors after sharpening. Ihave a small lathe, if that would be of any service. A. For a small athe a buff made of two or three disks of thick sole spindle of wood or iron, pressed together with nuts and and use the finest flour emery and a little oil to hold the emery. If a higher polish is reqnired, use tripoli o rotten stone or crocus, as you may find best by trial.
[0FFicial.]
INDEX OF INVENTIONS for whice

etters Patent of the United States w

 ranted in the Week EndingJanuary 30, 1883,
and each bearing that date.
[Those marked (r) are reissued patents.]
A printed copy of the specifleation and drawing of any
patent in the annexed list. also of any patent issued nce 1866 will be furnished from this ofice tor 25 cents. In ordering please state the number and date of the ay. corner of Warren Street, New York city. also furnish copies of patents granted prior to 1866 but at increased cost, as the s.
printed, must ne copied by hand.
luminous cake, manuture of, C. Semper
Amalgamator. A.C. Bow
Arch, T. J. Lovegrove
Arm, universal jointed, J. J. Greenough (r)
Auger, portable steam, W. F. Leach.
Ax handle, J. D. Blaker.....
Axle, vehicle, M. E. Burris.
bag fastener, G. II. St. Joh
Bait, artificial. H. Comstock
Baking pan, H. Dyer.
Baking pans, manufacture of wi.......................271,321
Bale ties, wire bending machine for, C. D. Randel 271,514 Bat gathering attachment for cotton Grate bar.
F. C. Mann.....................
Battery. See Galvanic battery.
ed bottom, spring, D.
Bed spring, J. Walters...
Elanket, bed, J. Holland
Block. See Pulley block.
Boat. See Outrigger boat.
Bolts, etc., air separator and feeder for, R. Wil
son... 271,389
Boot and shoe channeing machine, T. . Dill... 271,227

```
closet splash board.
```

Bottle capsuling machine, F. W.A. Boldt......... 271,304 Box. See Journal box.
Bracket. See Curtain 1 ture bracket Brake. shoe A Banning
Brick and fre-proof lining for furnaces, G. Duryee .J..............
Brush. J. L. Whiting.
Bucket and stocl, combined milk, A. Woodward
Buckle, harness, J. H. Huntress
Buckle. harness, M. W. Zeller.
Buffing machine, G. W. Coffin.
uilding, knockdown or portable, L. F. Bronnum
uilding material and preparing the same, com
Hobbs...................................211,239,
Butter, apparatus for treating artificial...... Butter, etc., apparatus for treating artificial Hobbs.....................................271,241,
Camera, M. Flammang.............
amp chair, folding, S. C. Hopkins............
Cap, traveling. H. H. Snow.......
Car and vessel signal, O.C. Knipe
ar brake, W. H. Adams
ar brake rod, M. Van Tassel
ar coupling, N. A. Me
Car coupping, B. F. Metz
Capling, A. Rice
Car coupling, C. B. \& J. Tucker
ar coupling, W. T.
ar door fastening, J. B. Calkins
ar draw bar, H. Burkhardt.
Car signal, J. A. Miller....
Car wheel, S. T. Wellman
Card teeth, machine for setting, J. J. Hoey ards, pictures, and transparencies, producin ornamental, C. H. Muhrman
Carding machine, W. W. Whitehead arpet cleaning apparatus, Bowman \& Hunsche Carriage wrench, D. True.
arrier. See Hoisting carrier
Cart, road, T. F. Conklin.
Cartridge. Baker \& Scott.
Case. See Shipping case.
Cash register and indicator, Ritty \& Birch
Chain swivel, Simms \& Cody....................... Chair. See Camp chair.
chair. Reclining chair.
airs, arm for folding steamer. Johnson \& Hay ward.
Chandelie
Chuck, H. H. Barnar
Churn, Ball \& Tripp
Churn, Ball \& Tripp.
Churn, J. K. Pomeroy.
Churn dasher, C. Berst
Chute, coal and ore, G. H.
Cider press, J. L. Wilcox
amp. See Sewing machine clamp
lasp for suspenders, etc.. H. A. Hayden leat, F. W. Limeburner
lock system, pneumatic and electric, L. Mau ner...
Coffee substitute. E. A. Grote.................... Composite washer, C. A. Rodney
Cooling liquids. apparatus for, Duryea \& Grimm Copying press, P. Schneider
Cotton an
Graner........ Cotton gin, W. B. Burdine. Coupling. See Car coupling Coupling. See Car coupling

1.437

R. W. Willson...
Electric motor, A. Millar..
Elevator. See

Elevator. See Hay ele
Elevator, C. R. Otis
Elevator,
Engraver's Phillips....
Engine. See Rotary engine. Traction engine.
Envelope. P. Busse..................................
Envelopes, machine for making. G. Sic
Evaporator, H. E., w. \& J. A. Tupper.
Extractor. See spike extractor. Farin lining garments, etc.. A. W. straw

Fan

Feed water heater, H. G. Eckstein......................
Felt, method of and apparatus for finishing, J. H.

File, letter, G. V. Nauerth. W. Liebmann
File, letter, G. V. Nauerth............
Filtering apparatus, R. C. Armstrong
Fire escape, Clowes \& E. L.
Fire escape, J. E. Davis.
Fire escape, J. H. McElroy.
Fire escape, J. H. McElioy...........................
Floors and arches, device for constructing brick A. Mattice........................

7 Flour dressing machine, L. W. Pruss................ Foot board, spring, Moor
Foot rest. E. W. Dolph...
Foot warmer, J. Robins
Foot rest, E.

Furnace, J. Carson.....................................
Gurnture feet, sei-acting clip tor, E. C. Phillips
Gauge. See Saw table gauge. Shrinkage gauge. Galvanic battery. J. A. Barrett
Game board, J. D. Spang
Gas, apparatus for makin
Gate. See Tilting gate
Gate. See Titing gate.
Generator. See Steam generator.
Governor. speed, \mathbf{P}. Wells.................271,287,
Governor, steam engine, W. H. Craig
Governor, speed, P. Wells......................271,287,
Governor,steam engine, W. H. Craig...........
Grain. apparatus for the gradual reduction of, w.

Grain drill, C. o. Gardiner.............................

Grain drill, starr \& Vanneman

Grapple, bowlder, J. Marshall..............
Grate bar for furnaces, etc., J. F. Newton, Jr.
Gun wad, Leerbech \&
Gun wad, O. F. Seibold.............. :
Gun; wre wouna; W; E: Wodabiage
Hame fastener, J. Hudson
Hame fasterk or bed bottom, I. E Palmer.
Hammle. See Ax handle. Mower handl.
Handle
Harness pad plate, D. McMillan.
Harness pad press, E.
Harrow, J.L. McKay.

Cold well................
Hay elevator and carrier, E. A. Byer
Hay loader, D. c. Jewett.
Heater. See Feed water heater
Hoisting apparatus, R. Stone...
Hoisting carrier, G. D. Rowell............
Holder. See Pencil holder. Tool holder
Horseshoe, G. Brandl..
Horseshoe, J. B. Burr
Horseshoe, т. Doyle..................................
Hose pipes and sprinklers, standard for garden
F. O. Worthley.........
Ice cutting machine, A. C. Chaplin...
Incubator, J. Peterson......... ...
Inkstand, I. Brooke
Journal box for grinding and polishing lathes, J.
M. Riley
Kiln. See Malt kiln.
Knob attachment, F. Lattimer.
Knob attachment, F. Lattimer........
Ladders, raising and supporting, Titmer....
Ladders, trestle or platform attachment for, T. J
Nolton..
Lamp, electrlc arc, E. H. A met..
Lamp, electric arc, J. R. Finney
Lamp, electric arc, W. Hochhausen
Lamp for railway cars, etc., J. L. \& C. P. Howard
Lamp, incandescent electric, ,. Bernstefin....
Lamps, automatic cut out for electric, W. Hoch

Lamps, auto
hausen.
Lamps, devi

Lathe. wood turning, A.....
Lathing and furring, W. B. Brown
Lifter. See Dish or plate lifter.
Lifter. See Dish or plate lifter.
Lifting machine, H. E. Townsend.
Lock. See Nut lock. Safe lock. Switch lock.
Lock, L. Rhoades.............................
Loom shuttle, G. W
Mail bag catcher and deliverer, Thompson \&
Malt kiln, continuous, J. Ulrich
Match holder. R. V. Jones........
Match sphnts for dipping, apparatus for filling, M
Mechanical movement, B Anderson
Mechanical movement, F.
Meter. See Rotary meter.
letronome, Greene \& C. J. Emerson, Jr.... Mill. See Roller mill. Sawmill. Miling links for engines, machine for, W. H. D ney.......... Monument, C. J. Heidmeyer...

271,33
271,31
271.432
271,44
271,35
271,47
271
271,50
271,34
261,38
271,2
271,56

271,502
${ }^{271.553}$
271,264
271,306
271,418
271,882
nett... 271,402
Pipe. See Telegraph cable pipe.

Pipe cutter, 1. Kinney...71,569
Plane, bench, J. Campbell.. 271,219
Planter, seed, L. Luppen.....
Planters. trip wire for check row corn, Caviness ${ }^{2} 11,51$

Baker.. 271,39
lastic or yielding substances, mechanism for cut-
Pneumatic apparatus for the separation of mine-
rals. etc., B. W. Hart..............................
Press. See Cider press. Copying press. Cotton
press. Harness pad press. Printer's proof
press. Printing press.
press. Printing press.
Printer's proof press, B. F. Jacobs................... 271.468
Printer's roller, 1. P. Bardwell............... 271,567
Printer's rules, machinery for cutting and miter-
Ting,
Profectile press, J. W. Ho Hopkins.
Propeller, screw, A. P. Bliven..
Pulley block, C. Maschmeyer...
Puiley, wood rim, W. W. Carey...
Pump bucket, chain, L. M. Rumsey............... 271,522
Punching and shearing machine, J. M. Sailer..... 271,277
Pyroxyline fabric, J. A. McClelland............ 271,493
Quilling machine, E. Barton...............
Quilting machine, W. Koch.....
Radiator, steam, Gordon \& Hobbs........................ 271,350
Railway buffer stop, A. A. Langley 271,78
Railway chair and joint, T. J. Christy........ 271,573
Railway chair and joint, T. J. Christy.............................1,473
Railway, elevated, G. W. Cook................... 271,296
Railway signal, A. H. Baker.................
Railway switch, P. Lyon 271,486
Railway switch and signal mechanism, ${ }^{21}$. Stewart. 211,534
Rake and tedder, combined, A. B. Pixley........ 271,265
Reclining chair, J. Pursell, sr......................... $271,51,512$
Reflector, gaslight, J. S. Havens............. 271,45
Refrigerator, B. F. Adams...
271,39
Register. See Cash register.
Regulator. See Speed regulator
Reverberatory furnace, Fenwick \& Cochrane..... 271,442
Rod. See Car brake rod.
Roller mill, S. B. Rickerson
Roller. See Printer's roller. Spring roller.
Rolling metal roãs and bars, F. H. Daniels....... 271.225
Rotary engine, J. c. Wand
Rotary meter, H. Fredrick..
Rotary motor, H. F. Hodges.........................
Safe. burglar-proof, W. Corliss.........271,313,
Sash fastener, J. S. Sammons....
Saw table gaage, J. R. Brennan.
Sawing machine, J. Hendershot................................271.048 271,454
Scale beam, I. Rigdon 271,274
Scoop, weighing, I. L. Bevis...............................271, 271,298
Scow, dumping. N. Barney..................
Seal, metallic. P. A. Curtis................................... 271,298
Seat. See Counter seat.
Seed separator, cockle, Adams \& Jenkins.... 271,392
Separator. See Match splint separator. Seed
271,307
271,217
271,288

271,519
271,479
271,289
ing, C. F. Pike.............. apparatus for absorb-
sewing on beads. mechanism for, T..................................... 271,
Sewing maccine, carpet, B. Refsumm.... 271.51515
Sewing machine clamp, buttonhole. F. Egge..... 271,228
ewing machine fanning attachment, J. H.
Tabony
Sewing machine guide, G. Patek... 271.354
Sewing machine table, C. B. Rathbun 271,3662
Shaker for mixed beverages, w. H. Murphy 271,550
Shipping case, O. F. Silcott.................................... ${ }^{271,4071}{ }_{271283}^{271283}$
Ships, construction of, A. P. Bliven.........
Shirt, R. Cluett.....
hot machine, E. Shiver
hrinkage gauge, H. S. Brown............................ 271,411
Shutter, window, C. E. W eber
Sieve, grain, S. McClure............................... 271,
Signal. See Car signal. Car and vessel signal.
Railway signal. Train-order signal.
Sirup, apparatus for the manufacture of corn, s .

Soap, process of and apparatas for manufacturng,
M. B. Sherwood, IJ. \& Farnsworth..................
Soda ash. purifying, E. H. Russell............. 271,

Speed regulator, H1. F. Hodges 271,245 271,245
Spike extractor. A. P. Prout....................... 271,268
Spinning machine spindle and flier, J.. Jr. \&
V. Royle.............................
271,521
Spinning mules, feed winding regulatior for, Gil-
bert $\&$ Greenwood 271,47
pring. See Bed spring
pring motor, G. W. Fitts..

271.232
271.339
211290

Steam boiler, F. F. Land1s............................... 271,947
Steam boiler or generator. J. Russmann.............. 271.541
Steam boilers. setting. W. J. F. Liddell 271.482
Steam engine reversing mechanism, J. Frazier.... 271,327
Steam generator. B. T. Babb:tt........................ 271,997
Steam generator, Gordon \& Hobbs............. 271,329
271.431
a
271,270
271,572

271,270
271,572
271,458

Henry Carey Baird \& Co., Industrial Publishers, Booksellers, and Importers, 810 WALNUT ST., PHILADELPHIA, PA. have recently published a

 IN ACTIVE PIREPARATION
mining any Simplified. Easy Methods of Deter-
means of the Bloifying Minerals, including Ores. by
mind turried Chemical Analysis, By Henri Erni, M.D. Second edition, rewritten,
 Mannal of Assaying. By Bruno Kerl. Trandated
from the German by William Tr. Brannt. Editat by
Wm. H. Wahl, Ph.D., Secretary of the Franklin InModern American Locomotive Engines. By
Emory Ewards. lliustrated. 12mo.

 Bow The above, or any of our Practical and Scientific
Books, sent free of postage, at publication price, to any
address in the world. scientific Bour new and revised catalogue of Practical and Catalog ues, the whole covering every branch of Tech- Tech-
nology, sent freee, and free of postage, , any one in any
part of the world who will send his address. AILL YOUTHS AND ADULTTS, EXPERRTS IN

Young, Middle-Aged, and Old.
The untold miseries that result from indiscretion in
ahily ilfemay bealleviated and cured. Those who doubt
hhis assertion shoul
or this assertion should purchase and read thenew medica
Work published by the Peatody Neelical In mityte
Boston. entitled the icience of life:

Chicago, June 8, 1882. We are MORE THAN SATISFIED with our Pictet Refrigerating Machines,
and consider them THE BEST IN THE MARKET. We have two of the and consider them THE BEST N THE MARKET. We have two of the Your size in full operation. ARIMOUIR de CO. THE PICTET ARTIFICIAL ICE CO., Limited,

The Westinghouse
THE WESTING

The Westinghouse

Machine Company
 HOUSE ENGINE AOTEEFTED Machine Company, CHOICE SEEDS! BEST OFFER YET! SAFE and SPEEDY ON FORTUNE FOR

RUPTURE

PLAYS $\$ 5$ to $\$ 20 \begin{gathered}\text { perday at home. Sample. worth \&fstree. } \\ \text { address }\end{gathered}$

TELEPHONES!

GATELY'S UNIVERSAL EDUCATOR

DUC'S MEGHANICAL ATOMIZER OR PULVERIZER,

320 ACRES FREE!

Devils Lake, Turtle Mountain,
And Mouse River Country NORTH DAKOTA, GRAND FORK, DAKOTA.
 FREE to any address by H. C.DAVIS,

St. Paul, Minneapolis, and Manitoba R, R S't. PAUL, MINN.
$40 \begin{gathered}\text { Chromo Visiting Cards. no } 2 \text { alike, for } 1883, \text { name on } \\ \text { and Illustrated } \\ \text { sold. Ageminm } \\ \text { sist }\end{gathered}$ CONSUMPTION.
10,

INVESTORS Watkinsaxco

Portable Electric

 Lighter. PRICE, \$5.00. electric current being generate bion hemeal action.

PORTAARLE ELECTRIC LIGHT CO Incorporated under the laws of Massachusetts, Decem-
ber, 188 .

IRON REVOLVERS, PERFECTLY BALANCED, Has Fower Parts than any other Blower.
\& F. M. ROOTS, Manufacturers, P. H. \&F. M. ROOTS, Manu
 NEWV YOMKI.

SARE! PROFITABLE!
$\$ 100$ FOR \$20!
\$500 FOR \$100! $\$ 1000$ FOR \$200! THE NEW ENGLAND AND COLORADO MINING, MILLING, AND PROSPECTMA CTMPANY

ROOT'S NEW |RON BLOWER,

ONE DOLLAR PER SHARE

PAID IN DIVIDENDS
 Within Three Years.

The First Dividends

$3=5$
management. REGULARLY, WHICH YIELDS $\$ 100$ Early application only will secure stock at $\$ 2.00$.
The best references and testimonials given. For ProHham BLAISDELL,
Trustee of Working apital Stock,
48 Congress Street. Boston.

The "MONITOR." Best Boiler Feader A NEW LIFTINGANDNN.

P

asbestion rope packive

asbestois sheto miat Picking,

H. W. JOHNS M'F'G CO., 87 Maiden Lane, Now York,

PATENT QUICK SHAPERS

Stevens' Roller Mills, gradual reduction of grain.

 the new otto silant gias engine

Intelligent Mill Operators in every State in America Use
Van Duzen's Patent Steam Jet

 Mans per hour. send for:": flatalo ue No.49.". Hutirlealin Mach case PROVIDENCE, A. HARRIRIS. PRo Six minutes waik ivest from station. HARMRN-COILLINS ENGINE

SHAFTS PULEVSTANGERS

ROOFING.

COMBINED PunchandShears
 Lambertville Iron Works,
THE J. L. MOTT IRON WORKS,

vouthle Screw; Paraliel, tēg Vises

Foot and Steam Power Machinery

 STEAM PUMPS

 I
 and Asbestos Lined Removable Covering,

Self-0iling Loose Pulley. ully tested by several years' use and found relia
SATISFACTORY RESULTS guaranteed, if directions are followed. Orders filled f
Pulleys from 6 in. to $\because 0$ in. diameter.

LANE \& BODLEY CO.,

CINCINNATI, OHIO
Shafting, Steam Engines, Boilers SAW MILLS, AVD GENERAL MACHINERY.

W. BAKER \& CO 1, Dorchester, Mass,

LITTLE WONDER.

and Shaped Diamond Carbon Points, Imdispensable for
Truing porcelain, Hardered Steel, ohnllen Iron. and
Painer Calender

DWELLINGS ANID COUNTRY SEATS. Simplest cheapest, and most economical pumping engine
for domestic purposes. Any sermat gri coin oprate.
Absolutely sif
DELAMATER IRON WORKS C. H. Delainarier \& CO., Propiecoras
 TM CLAISK'S RUBBER WHEETSS

THE DUPLEX INJECTOR. The constantly increasing demand for this Boiler n use. Send for illustrated circular and price list.
Manufactured by JAMES JEN KS, Detroit, Mich

MIREROPE

Address JOHN A. ROEBLING'S SONS, Manufactu
Mhels and Rope for conveying power long distances.
send for circular.

KORTING UNIVERSAL
 HARTFORD
STEAM BOILER
Inspection \& Insurance COMPANY.
W. b. franilin.V. Pres't. J. m. allen, Pres't. J. b. pierce. Sec'y.

UPRIGHTDRLLS IGTOGOINCHSWING BORNG \& TURNNIG MILLS TOSWNG4.66884NOHES H BIGKORD

SPEAKING TELEPHONES.

THE anlemican beld Tlidilione company W. H. Fontas, W. R. Drivir, THro. N. Vail, Alexander Graham 1, lell's patent of March 7, 1876,
owned by this company, covers every form of apparatus.

 tions produce similar articulate sounds at the receiver.
The Commissioner of Patents and the U. S. Circuit Court
have decided this to the true meani
the his ciam the vaedity of the patent has been sustalned in the cir-
the rait on fnal haeringin a contested case and many In
cunctions and final decrees have been obtained on them. This company also owns and controls all the oth.
telephonic inventions of Bell, Edison, Berliner, Gray,
Blake. Phelps, Watson. and others.
 can be procured directly or through the authorized
agente of the comnany.
All teleho
its authorizes obtained except from this company or or
licensees. are infringements, and the its authorized licensees. are in ringements, and
malkers. sellers. and seres will be proceeded against.
Information furnished upon aplication.
Address all communications to the

The Most Popnlar Scieutific Paper in the World.
Only $\$ 3.20$ a Year, including postage. Weekly.
This widely circulated and splendidly illustrated paper is published weekly. Every number contains six-
feen pages of useful information, and a large number of original engravings of new inventions and discoveries, epresenting Engineering Works, Steam Machinery,
New Inventions, Novelties in Mechanics, Manufactures, New inventions, Nove, Tes in Mech, Phes, Maraphy, Archi-
Chemistry, Electicity, Telegraphy, Photorap
tecture, Agriculture, Horticulture, Natural History, etc. All Classes of Readers find in the Scientifio American a popular resume of the best scientific inormation of the day; and it is thealm of the publishers possible abstrnse terms. To every intelligent mind, this journal affords a constant supply of instructive
reading. It is promotive of knowledge and progress in ,
Terms of Subscription.-One copy of the Scien-
TIFIC AMEBICAN will be sent for one year- 52 numberspostage prepaid, to any subscriber in the United States Canada, on receipt of three dollars and twenty
ents by the publishers; six months, $\$ 1.60$; three months, 81.00 .
One copy of the Scientific American and one copy of the SCIENTIFIC AMERICAN SUPPLEMEN' will be sent
for one year, postage prepaid, to any subscriber in the for one year, postage prepaid, to any subscriber in the
United States or Canada, on receipt of seven dollars by the publishers.
The safest way to remit is by Postal Order, Draft, or
Express. Money carefully placed inside of envelopes, securely sealed, and correctly addressed, seldom goos
astray, but is at the sender's risk. Address all letters astray, but is at the sender's risk. Address
and make all orders, drafts, etc., payable to

MIURNX \& CO.,
PRINTINE INKSS.

[^0]: *E. Ray Lankester, "On the Distribution of Hemogiobin." Proc.
 Royal Soc., No. 140, 1873.

