
a WEEkLY JOURNAL OF PRACTICAL INFORMATION. ART. SCIENCE. MECHANICS. CHENISTRY AND MANUFACTURES.

	NEW YORK, DECEMBER 30, 1882.	

HSTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 261 BROADWAY, NEW YORK.
o. D. MUNN.
A. e. beach.

TELRMS FOR THE SCIENTIFIC AMERICAN. One copy, one year postage included..
One copy, six months postage included $\$ 390$
.160 Clubs.-One extra copy of The Scientific American will be supplied gratis for every cuub of five subscribers at $\$ 3.20$ each : additional copies at same proportionate rate. Postage prepaid.
Remit by postal order. Address
MUNN \& CO., 261 Broadway, corner of Warren street, New York.

The Scientific American Supplement

 is a distinct paper from the SCIENTIFIC AMERICAN. THE SUPPLEMENTis issued weekly. Every number contains 16 octavo is issued weekly. Every number contains 16 octavo pages, uniform in size
with Scientiric American. Terms of subscription for Supplement, $\$ 5.00$ a year, postage paid, to subscribers. Single copies, 10 cents. §old by all news dealers throughout the country
will be sent for one year postage tree American and Supplimiment papers to one address or different addresses as desired.
papers to one address or different addresses as desired.
The safest way to remit is sy draft, postal order, or registered letter.
Address MUNN \& CO ., 61 Broadway, corner of Warren street, New York.

Scientific American Export Edition.

The SCI INTIFIC American Export Edition is a large and splendid peri-
odical, issued once a month. Ench number contains about cine bundred odical, issued once a month. Each number cantains about (Re hundred large quarto pages, profusely illustrated, embracing: (1.) Most of the plates and pages of the four preceding weekly issues of the Scievtrific
Amurican, with its splendid engravings and valuable information; (2.) AM"RICAN, with its splendid engravings and valuable information: (2.)
Commercial, trade, and manufacturing announcements of leading houses. Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the world. Single copies 50 cents. Manufacturers and others who desire to secure foreign trade may have large. and handsomely disp
nouncements published in this edition at a very moderate cost.
nouncements publised in this edition at a very moderate cost.
The SCIENTIFIC AMLuICAN Export Edition has a large guaranteed circu-
tation in all commercial places throughout the worli. Address MUNN \&
tation in all commercial places throughout the world. Address MUN \& $\& ~$
CO. 261 Broadway, corner of Warren street
co., 261 Broadway, corner of Warren street, New York.
NEW YORK, SATURDAY, DECEMBER 30, 1882.

TABLE OF CONTENTS OF
the scientific american supplement NO. 365,
For the Week ending December 30, 1882.

Price 10 cents. For sale by all newsdealers.

I. ENGineering and mechanics.-Louis Favre, Constructor of the St. Gothard Tunnel.- 2 figures.- Portrait an
Turin to commemorate the tunneling of the Alps.
The New Harbor of Vera The New Harbor of Vera Cruz.-New artuficial harbor for Vera Cruz.-Capt. Fads's plan.-1 figure.-Plas of harbor and improve-
 De Junker and Ruh's Machine for Cutting.- - figures. figures.
Recen
Recent Hydraulic Experiments.-Results of experiments on the
The water in the Ganges Canal................................. 5819
Therm Shall It be Retained in Flour By ARTHUR ATKINS. 5820
wheat Tests 5820
. TECHNOLOGY AND CHEMISTRY.-A pparatus for Manufacturing Gaseous or Aerated Beverages.-11 figures.-Bicarbonate of soda apparatus.--Generator.- Washer.-Suction pump.- Saturator. -A pparatus for using carbonate of lime.-Apparatus completely Detection and Estimatio Detection and Estimation of Fusel Oil... Stannous Nitrates.-The formation of e of platinum mac.-.es by tre corrosion formation of explosive Metallic Thorium. By L. F. NILson
Friedrich wöhler. Friedri
chemist
uparatus for........ ... Whitaker. -3 figures
II. ELECTRICITY, LIGHT, HEAT, A New Pocket Opera Glass.-4 figures.
Atoms, Molecules
Atoms, Molecules, and Ether Waves. By Jön TYNDA................................ ploring molecular conditions.-The results of as an agent in exinto the extra-sensible world of atoms and molecules... Apparatus for Measuring Electricity at the Upper School of Telegraphy. By E. MERCADIER.-5 figures.-Constant vibrator.-The
Electrical tuning fork-Arrangement for testing electric piles.Very rapid electric tuning fork.-A vibrating micrometer.... V. NATURAL HISTORY.-Our Origin as a Species. By Richard OwEn.-The Neanderthal skull.-Differential characters between
the lowest Homo and the hignest Stmia.............................. 5
The Aba or Odika. By Dr.W. H. BACHELER.-A remarkale The lowest Homo and the hignest Stmia.............................. 5
Tre Aba Odika. By Dr.W. H. BAcHELER.-A remarkalle
tree of West Africa.................... 5 tree of West Africa.
California Cedars.

THE EDISON ELECTRIC LIGHT.

The difficulties encountered by the Edison Light Company in the development of their public system in this city appear to be serious as well as perplexing. The main difficulty, arising from the lack of unison in the working of the engines, seems to have proved insurmountable except by a change of plan. The president of the company tells the Post that it has been determined to replace the engines of the central station by others, one of which is already in position. The experiments made to overcome the defects of the first battery of engines have retarded the work, he says, have made the light uneven, and severely tried the lamps; yet there has been no break in the service, which has been extended from 85 houses with 2,000 lamps to 226 constant use.
A change has also been made in the price of the light The clarge is now at the rate of $\$ 2$ an hour for a light equa to 2,000 candles, or about the cost of gas at $\$ 2$ a thousand cubic feet. Meters for the registry of the current used
are being put in as fast as they can be made and tested.
The isolated system has been more successful than the pub lic system. In a year and a half, 154 plants have been established in the United States, employing 29, 192 lamps.

THE UNDULATORY THEORY OF ODORS.

The immortal Newton, in common with other savants of his time, believed that light consisted of minute particles emitted from luminous bodies and traveling through space with immense rapidity till they reached the eye. This theory, known as the corpuscular theory of light, has since been almost entirely abandoned by scientific men in favor of the "undulatory theory," so ably advocated by Huyghens, and perfected by Young, Fresnel, Cauchy, and others When Crookes succeeded in weighing a sunbeam, the cor puscular theory was supposed to have received a frest lease of life, as better able to explain the action of the radiometer But the disciples of the undulatory theory soon rallied from the blow, and, notwithstanding the difficulty of conceiving of an imponderable ether, omnipresent and persistent, the undulatory theory still prevails. Not only light but heat is now explained as a form or mode of motion, and the whole phenomena of gases are now explained on the kinetic theory, which has motion for its basis.
Notwithstanding the success thathas attended the application of the undulatory theory to the varied phenomena of heat, light, and electricity, chemists and physicists still adhere to the corpuscular theory of smell, and teach that odor is due to small particles thrown out from the odoriferous body. A phenomenon that goes far todisprove th is assump tion is seized on by chemists to illustrate the smallness of the molecule and by physicists to prove the (almost) infinite di-
visibility of matter. A few grains of musk will impart a visibility of matter. A few grains of musk will impart a
strong odor to the air of a room for years without suffering any appreciable loss of weight. Other instances of non volatile substances possessing a remarkably strong odor might be cited; a familiar example of a powerful and penetrating odor from a liquid with high boiling point and of very slight volatility is found in carbolic acid, the loss of volume by evaporation being entirely out of proportion to the odor. On the other hand, the fact that many volatile liquids are odoriferous does not prove that it is the particles of liquid or vapor which, coming in contact with the organs of smell, produce the well known phenomena, for there are volatile substances innumerable which bave little or no odor. The elementary gases, with the exception of chlorine, are without odor, and many of the compound gases, such as nitrous oxide and carbon dioxide, are void of odor when pure.
Dr. W. Ramsey, of England, has recently called attention to the fact that the lower the specific gravity of a gas the less odor it has, and this we find confirmed in the case of elementary gases by chlorine, which alone is odorous, while its specific gravity (35.5) is more than double that of oxygen (16) or nitrogen (14).

One of the most remarkable phenomena of light, except ing polarization, is that known as "interference." It was ing polarization, is that known as "interference." It was theory, while it was easily accomplished on the undulatory theory. Sound, which is due to vibrations of the air so large as to be easily observed, does not afford such striking examples of interference as seen in the case of light, yet a delicate ear has no difficulty in detecting such interference in many of the commonest affairs of life, such as two clocks ticking, the interference between musical notes, etc.
If smell depends on vibrations of any sort, it must be pos sible to detect cases, however rare, of interference. There are familiar instances where one strong odor masks and conceals another, as also of substances of unlike odors combining chemically to produce odorless ones, but it is doubtful if these are true cases of interference. The observation recently made that quinine destroys the odor of musk deserves a closer study to determine whether this is not due to interference, just as red and green light produce white. We do not even know as yet whether odorless substances owe this property to absence of vibrations, or, as in the case of light, to vibrations too long or too short to be taken cognizance of by our olfactory nerves. It is well known that light-waves shorter than the violet or longer than the red produce, on the optic nerve, the sensation of darkness. The range of the eye is scarcely one octave, while the ear distinguishes sounds produced by waves from a few inches to several feet in
length, including several octaves. What length of waves are able to affect the olfactory nerves we are not yet able to determine, nor do we know whether disagreeable smells are caused by undulations of greater velocity than pleasant ones, or the reverse. It is probable that each odor consists of several separate and elementary notes; that when these are harmoniously combined the result is agreeable, and that vile odors are simply the result of discord.
One fact may be of use in the study of the undulatory theory of odors: that sunlight causes sneezing, even in the blind, while certain odors produce a like effect.
The difficulty in the way of investigating the subject of smells is the lack of any instrument for measuring odors, all depending as yet on unreliable senses, and all observations being subject to a very large discount for "personal error." When a spectroscope for analyzing odors shall have been inrented, it is not unlikely that we shall find certain lines corresponding to certain elements, each being so modified by the other elements in the compound that it is not possible to distinguish it in the general effect on the olfactories. How ever this may be, it is probable that nitrogen, arsenic, and phosphorus (pentads all), as well as sulphur and selenium, will be found to possess some peculiar modifying power over the others. Perhaps it will be found that simple bodies vibrate only in one plane, like polarized light, but not all in the same plane; that when two elements vibrating in different planes combine, the resulting vibration, being the resultant of two forces, differs from both of them, and hence the odor of the compound differs from that of each constituent. One of the most remarkable and familiar cases of this sort is where odorless nitrogen and hydrogen combine to form ammonia gas, NH_{3} with its penetrating odor, which is, nevertheless, so easily destroyed by combination with more lydrogen, and an equal volume of chlorine (HCl).
What effect the slape of the chemical molecule may hav n the odor is evident from the fact that all ring-shaped hydrocarbons like benzole, and the double and triple ringed naphthaline and anthracene, are called "aromatic," from their characteristic and remarkable odors. The chain compounds, like the paraffines, have less characteristic odors; but of either class, the greater the number of atoms in the molecule the stronger the odor; yet isomeric bodies often differ in odor, proving still more conclusively that the shape of the molecule affects the smell, probably by changing the plane of vibration.
Perhaps we are in advance of the times; the age is not yet ripe to accept the undulatory theory of smell, but the day is not so far distant when discoveries will be made that will establish and sustain our views.
E. J. H.

gas meters as helps to fires.

In most buildings designed for multiple tenancy, like our great apartment houses and the capacious office buildings which comprise so large a part of the busi , ess part of this city, it is customary to provide a separate $\& \wedge$ s meter for each room or suite of rooms. These meters are commonly placed in closets and out of the way corners, and are very apt to be surrounded with much combustible matter
The connections of meters with the gas pipes are usually, if not always, of lead, a metal that is easily fusible, and the solder with which the plates of the meter are joined together yields even more readily to heat.
Let a fire break out in a building containing, as many build ings do, a score or more of these fragile fire feeders, and the hot air sweeping in advance of the fire will quickly melt the lead or solder. The outpouring gas fills the building with an explosive atmosphere which hastens the spread of the flames, and keeps up an inexhaustible supply of fuel. Such burning gas jets, sometimes of great size, are to be seen after almost every city fire, when nothing is left of a build ng but blackened and broken walls.
The gas poured into burning buildings through such openings doubtless belps materially to account for the surprising suddenness with which many great buildings have been swept by flames; and in all cases the outlow of gas must seriously counteract, if it does not altogether thwart he efforts of the firemen.
The remedy for this great evil is not so easy to point out. It is obvious that where a multitude of meters are to be dis tributed through a building, they should be more securely ncased, and provided with infusible connections; or some means should be devised whereby the gas supply shall be automatically shut off whenever the temperature rises so as to imperil the integrity of the meter. There should also be near the outer door and readily accessible to firemen some means by which the connection of the house with the gas main in the street can be quickly closed.
There is clearly an opportunity here for useful and profitable invention.

A Licensee Cannot sue for an Infringement.
Judge Wallace, in the case of Ingalls vs. Tice, U. S. Circuit Court for this district, has decided that an agreement whereby the patentee granted to the complainant the sole and exclusive right to sell the patented articles within certain specified territory was not a transfer of an individual part of the whole patent or of the exclusive right of the whole patent for a particular territory. It is simply a license, and does not entitle the complainant to bring suit in his own name, the patentee not being a party to the suit.

aspects of the planets for january.

JUPITER
is evening star, and easily wins the place of honor on the January list, not only among his brother planets that play the same role, but also in comparison with every other star that twinkles in the sky, during his presence there.

It is true that he passed his brightest and nearest point on the 18th of December, and, since that time, has been traveling away from us and approaching the sun. But his light has not yet perceptibly paled to the eye. No one can behold him without a feeling of admiration, as he appears in the eastern sky soon as it is dark enough to see him rise with stately step to the zenith, and sinks slowly to the west, glowing in the celestial dome during nearly the whole night.
The galaxy of stars surrounding the distinguished chief is also to be noted. Among them may be easily traced the magnificent cluster of Orion, the beaming Sirius, the red stars, Procyon and Aldebaran, and the white Capella. The giant planet can find no fairer portion of the sky in which to track his wandering steps, and no more brilliant retinue to grace his court.
Jupiter plays no prominent part on the records of the month. There are specialties that distinguish each separate planet, as marked and diverse as those found in different members of the same family

The great planet, the pride of the system, seems to have a consciousness of his princely bearing, and to be contented with looking his best as he leads the celestial host, outshining them all. A vein of egotism and seif-conceit are, to the eye of fancy; as apparent in his appearance as gentleness and feminine grace are in that of Venus, or a warlike aspect in Mars.

The right ascension of Jupiter is 5 h .36 m ., his declination is 23° north, his diameter is $45^{\prime \prime}$, and his position in the heavens is on the border of Taurus near Gemini.
Jupiter sets at a quarter after six oclock in the morning; at the close of the month he sets about seven minutes after four o'clock.

SATURN

is evening star during the month, ranking next to Jupiter in size and brightness among the evening stars. His soft light is now very attractive, especially in comparison with the murky hue that distinguishes him in less favored aspects, and was interpreted by astrologers as ominous of ill to those whose horoscopes were cast when be was in the ascendant, hence he was called ill-boding Saturn. If astrologers had seen this planet in a modern telescope, nothing but good fortune could have been associated with a brother world so magaificent and complex in structure.
Since September, Saturn has been apparently retrograding or moving backward, and also traveling south. Toward the end of the month, he will begin to move in a direct course or forward. The planets all travel in this way, sometimes direct, sometimes indirect, and sometimes stationary. The reason is that they are moving and the earth is moving, and this is the way they appear projected on the sky as seen from the earth, which is a moving observatory. In reality all the planets revolve in elliptical orbits round the sun, and they would appear to move in this way, if we could see them from the sun. If Saturn's position in regard to the Pleiades be carefully noted, the proof of the way in which he seems to travel will be plainly perceived.

The right ascension of Saturn is 3 h .11 m. . his declination is $15^{\circ} 26^{\prime}$ north, his diameter is $18^{\prime \prime}$, and his place is in Aries. Saturn sets at twenty minutes past three o'clock in the morning; at the end of the month he sets at twenty-two minutes past one o'clock.

neptune

is evening star, and though taking precedence of the trio in the order of appearance above the horizon, he does not arouse the same interest because he is too far away to be visible. He is still near Saturn, there being now only ten minutes difference in the time of transit.

The right ascension of Neptune is 2 h .57 m. , his declination is $14^{\circ} 58^{\prime}$ north, his diameter is $2 \cdot 6^{\prime \prime}$, and his place is in the constellation Aries.

mercury

is evening star during the whole month. He reaches his greatest eastern elongation on the 22 d , at two o'clock in the morning. He is theu $18^{\circ} 32^{\prime}$ east of the sun, and this is one of the three occasions when he may be seen during the year as evening star. His southern declination at that time is $14^{\circ} 21^{\prime}$, which will make it more difficult to find him. Mercury at elongation on the 22d sets about half-past six
o'clock, an hour and a half before the sun, and will be visio'clock, an hour and a half before the sun, and will be visilooked for in the southwest, three quarters of an hour after sunset, and 5° north of the sunset point. Fine views of Mercury are often obtained in the clear winter evening sky, but there must be no clouds around the horizon, or he will fail to appear.
The right ascension of Mercury is 19 h .21 m ., his declination is $24^{\circ} 17^{\prime}$ south, his diameter is $48^{\prime \prime}$, and he is in Sagittarius. Mercury sets about a quarter after five o'clock in the evening; at the end of the month he sets at ten minutes after six o'clock.

venus

is morning star, and will continue in this role until the 20th of September, when she is in conjunction with the sun. She has lost the prestige that attended ber movements before and during the transit, and has returned to the rank of an
ordinary planet, the most .beautiful one, however, that graces the sky.
She makes a superb appearance now in the eastern morning sky, rising nearly three bours before the sun, and being far more worth getting up to see than the fading comet. Every one should endeavor to behold her shining face near the 9 th of the month. She then reaches her period of greatest brilliancy on the western side of the sun. She has two of these periods, one thirty-six days before inferior conjunction when she is evening star, and the other, thirty-six days after inferior conjunction, when she is morning star. In the former case, seen in the telescope, she takes on the aspect of a waning crescent, like the old moon; in the latter, as at present, she is a waxing crescent, like the new moon.
On the 19 th, Venus is in conjunction with the star Eta Ophiuchi, being $2^{\circ} 21^{\prime}$ north. The stars will be nearest at eleven o'clock in the evening, but they will be sufficiently near to make an attractive picture on the morning of the 20th, when Venus rises not far from four o'clock. If Jupiter is prince of the evening stars, Venus is queen of the morning stars, only needing one condition, that of being farther north, to present her fairest and brightest phase. The right ascension of Venus is 16 h .27 m. , her declina tion is $17^{\circ} 4^{\prime}$ south, and her diameter is $48 \cdot 6^{\prime \prime}$.
Venus rises about a quarter before five o'clock in the morn ing; at the end of the month she rises a few minutes after four o'clock.

mars

is morning star, but moves at a slow pace and keeps near the sun. He is of little account at present, excepting to hose who wish to keep track of his course.
The right ascension of Mars is 18 h .21 m. , his declination is $24^{\circ} 6^{\prime}$ south, his diameter is $6^{\prime \prime}$, and he may be found in Sagittarius.
Mars rises nine minutes after six o'clock in the morning; at the end of the month he rises not far from half-past six o'clock.

dranus

is morning star, although he rises before midnight. Likeall the outer planets, he is morning star from conjunction to opposition, a goal that he will reach in March. His right ascension is 11 h .37 m. , his declination is $3^{\circ} 21^{\prime}$ north, and he may be found in Virgo.
Uranus rises about a quarter before eleven o'clock in the evening; at the end of the month he rises about half-past eight o'clock.

THE MOON.

The January moon fulls on the 23d at thirty-one minutes past 2 o'clock in the morning. The old moon is in con junction with Venus on the 6 th, passing $3^{\circ} 5^{\prime}$ south. Planet and crescent, if not very near, will be fair to see on the morning sky. On the 8th, the moon is near Mars, but both are nvisible. The new moon of the 9 th pays her respects to Mercury on the 10th, and draws near Neptune and Saturn on the 17 th . She passes 2° north of Jupiter on the 19th, on the 17 th. She passes 2 north of Jupiter on
and is at her nearest point to Uranus on the 27 th.
The moon is in perigee or nearest to the earth on the 12th, and the moon "runs high" on the 19th. The winter nights will be superb about this time, for the moon, rising high in the heavens, near the full, and near the brilliant Jupiter, will, on cloudless nights, flood the frost bound earth with silvery light. At such times she is so radiantly beautiful that we can forgive her for paling the luster of the stars.

THE MODIFIED INSTINCTS OF A BLIND CAT.

 by H. C. Hovey.The family favorite whose misfortunes have afforded an pportunity to observe the workings of instinct under difficulties is a noble specimen of the genus Felis. "Dido" is his name-given for simple euphony, without regard to gender. During the four years of his life he has never been known to do anything wrong, unless it be to fight most desperately against all feline intruders. In some one of his many encounters, Dido met with an injury to one of his feet that made a surgical operation necessary, from which he recovered, but shortly afterward went totally blind. A cataract was formed over each eye, by which, as repe This calamity came on wadderoughly obscured.
This calamity came on suddenly, and placed the cat in circumstances not provided for by the ordinary gifts of instinct. What to do with himself was plainly a problem hard to be solved. He would sit and mew most piteously, as if bemoaning his condition; and when be attempted to move about, he met with all the mishaps that the reader will be likely to imagine. He ran against walls, fell down stairs, stumbled over sticks, and when once on the top rail of the fence he would traverse its entire length seeking in vain for a safe jumping off place. On being called, he would run about bewildered, as if not knowing whence the voice
came nor whither he should go to find the one calling. In short, Didn's life seemed hardly worth living, and we were seriously plotting his death, when the cat himself clearly concluded that he must make his other senses atone for the loss of sight.
It was very curious to watch his experiments. One of the first of these was concerning the art of going down stairs. Instead of pawing the air, as he had been doing on reaching the top step, he went to one side till he felt the bandescend safely and at full speed, turning into the hall on
gaining the last step. One by one he made each familiar path a study, determined the exact location of each door, explored anew all his old haunts, and seemed bravely resolved to begin life over again. The result was so unexpectedly successful that we were deceived into the notion that sight had been restored. But by placing any obstacle in the path, and then calling him eagerly to his customary feeding place, it was evident that he was entirely blind, for he would run with full force against the box or other obstruction, and then, for some time afterward, he would proceed with renewed caution.
Dido's " voice is still for war," and his blindness does not make him any less successful in his duels with in truders. He even goes abroad in quest of adventures, and comes safely home again.
His value as a mouser does not seem to be in the least di minished. One of my experiments as to his capacity in this direction came near costing me dear. I had heard the gnawng of a rat in an old closet where there lay a quantity of newspapers. Here it was decided to leave Didn over night, and while arranging the papers for that purpose, my hand was suddenly caught by the claws and teeth of what at the moment seemed like a small tiger. Poor Dido! He really looked ashamed of his blunder in mistaking my hand for his anticipated victim. Fortunately the papers served as a shield, or the injury inflicted might have been more serious. I may add that, on opening the closet the next morning, there was Dido mounting guard over a slain rat as big as ever spoiled good provisions or tried a housekeeper's temper.
It is well known that the house-cat will find its way back from distant places to which it has been carried blindfolded; and how it performs such feats naturalists have never satisfactorily explained. The theory accepted by some of them is that the animal takes note of the successive odors encountered ou the way, that these leave as distinct a series of images as those we should receive by the sense of sight, and that, by taking them in the inverse order from that in which they were received, he traces his homeward route.
But, in the cat now described, the sense of smell is by no means acute, as has been proved by a variety of methods; and moreover, although, as one might say, perpetually blindfolded, he quite uniformly chooses the shortest road home, without reference to the path he may have taken on leaving the house. Curious to see how far this homing instinct would extend, I took advantage of a fall of snow that wrapped under its mantle every familiar object, concealed all the paths, and deadened every odor and sound. Taking Dido to a considerable distance from the house, and making a number of turns to bewilder him, I tossed him upon a drift and quietly awaited results. The poor creature turned his sightless orbs this way and that, and mewed piteously for help. Finding, at length, that he was thrown entirely on his own resources, he stood motionless for about one minute, and then, o my amazement, made his way directly through the unrodden snow to the house door-which, it is needless to add, was promptly opened for the shivering martyr to scientific investigation, to whom consolation was forthwith offered in a brimming bowl of new milk.
My conclusion, therefore, is that Wallace's ingenious heory of accounting for orientation by what he calls "brain registration," will not explain what has been described; but hat the mysterious homing faculty is probably independent of such methods of gaining knowledge as have been ordinarily observed, and is analogous to the migratory instinct controlling the long flights of some species of birds.

The Last of the Year.

This issue closes another volume of this paper, and with t several thousand subscriptions will expire.
It being an inflesible rule of the publishers to stop send ing their publications when the time is up for which subscriptions are prepaid, present subscribers to the Scientific American or Scientific American Supplement will oblige us by remitting for a renewal without delay.
By heeding this request to renew immediately, it will save the removal of several thousands of names from our subscription books, and insure a continuance of the papers without interruption.
Employers cannot invest $\$ 3.20$ better than by subscribing for the Scientific American for a trusty superintendent, foreman, or other employes whose good services they wish o recognize.
It would be a weekly reminder of the donor's generosity during the entire year 1883.

Mails Burned.

On the 21st of December, one of the postal cars bound west, on the New York Central Railway, was destroyed by fire. It is estimated that upward of fifty thousand letters and many thousands of newspapers from this city were lost. Among the latter, doubtless, were copies of the Scientific American. Should any of our subscribers miss a number, they will know the reason; and if they will send us a postal card, we will at once supply them. Those, also, who fail to receive expected answers from us to their letters, by reason of this mishap, will oblige us by informing us of the fact, and we will write again.
M. Nordenskiold maintains that the aurora is a permanent phenomenon in polar regions, being always seen when the sun is below the horizon and when the moon is invisible.

AMERICAN INDUSTRIES.-NO. 85

the manufacture of wood working machinery.J. A. FAY \& Co., Cincinnati, o

In any review of the growth and progress of a great manufacturing house during a period of nearly a half century, much that is interesting and suggestive must of necessity be omitted, and many things treated superficially.
A brief history of the house whose name heads this article is illustrative of the progress of this country, especially in respect to its manufacturing industry in every branch of business connected with the manufacture or use of lumber. In no department of mechanics has the advancement been more rapid and the improvements more radical than in the machinery for working wood. Up to the beginning of the last quarter of the eighteenth century, the wood worker, with the ax, adz, pit saw, chisel, and rasp, did his work, and it may be said that, with the exception of a few saw mills, there was in that day no machinery for working wood. That saw mills were rare at that time may be gathered from the fact that one established in Limehouse, in the western district of London in 1767, was destroyed by a mob of sawyers, who considered their craft in danger. Many of the old residents of this country distinctly recollect when logs and tree trunks were sawed from end to end, to work them into dimension stuff, by two sawyers, one standing on the \log and the other in the pit beneath "with a veil over his eyes to protect them from sawdust. These sawyers were truly hard workers. The top sawyer, while he swung his weight upon the handles above, invariably bossed the wretch in the hole who pulled down.
Now there are hosts of saw mills of various kinds in all great lumber centers of the country. They are driven by steam and water power in gangs on the most gigantic scale, and there is no end of wood working machinery in use in manufactories, also machines for special work in all cities where the stuff thus roughly " got out" into square stuff or merchantable lumber is sawed into plank, dimension lumber, slats, veneers, and worked into thousands of forms.
In the invention, manufacturing, and introducing of wood working machinery, J. A. Fay \& Co. have been the pioneers; their name is known all over the world, and their machines are in use in every land. They are still as full of the pioueer spirit as ever, being constantly on the alert to accede to the demand of the times by introducing everything new or useful in their department of manufacture. This business, which has made the name of Cincinnati known at the remotest corners of the earth, was not built up in a single day. Its growth bas been like that of the oak from the acorn, slow but sure, until its trade and trade ramifications are enormous. Successive years only add to and increase its volume.

We present to our readers an engraving of the extensive plant of this house, with an inside view of a few leading departments, together with facts of its history, which will be to many very interesting. (See our first page.)
In 1834, George Page, of Keene, N. H., invented and began the manufacture of foot mortising machines. These were the first machines of the kind made in this country, if not in the world.
In 1835 , Mr. J. A. Fay, of Marlboro, Mass., associated himself with Geo. Page, and under the firm name of Page \& Co., Mr. Fay introduced- the Fay tenoning machine for tenoning and coping doors, sash and some other wood-working machines. The country was not then opened up by railroads and was sparsely settled, and Mr. Fay found a market for his machines by taking them in a wagon over the bills and through the valleys, introducing them in various sash and door shops.
These machines were so wonderfully labor-saving, as compared with the old tedious and laborious hand process of worizing, that it was but a short time before their merits became established, and a rapidly increasing trade followed. In the mean time, Mr. Edward Joslin, of Keene, N. H., who had been in the employ of the company as a workman from the beginning, joined with Mr. Fay, and bought out the business of Page \& Co. He was of a quite inventive turn of mind, and from this time the firm introduced various laborsaving wood working machines. This was in 1841. In 1848, their business having increased beyond the capacity of their works, they started branch manufactories at Worcester, Mass., and at Norwich, Conn. In the manufactory at Norwich, Mr. C. B. Rogers, now deceased, had a large interest and was the resident partner. The business increased rap idly and steadily, until, eleven years later, or in 1852, the enterprise was so great that they felt they must have a Western connection.
This was before there were railroads traversing the West and Southwest, as now; and in this year they established, at the corner of Augusta and John Streets, Cincinnati, another branch house of J. A. Fay \& Co., with Mr. John Cheney and Mr. E. Reed as resident partners. Later in the same year, while Mr. Fay was in Richmond, Va, with a view of establishing a branch house in the South, he died. In 1855 his executors sold out his business at Norwich to C. B. Rogers \& Co., and later, in 1862, discontinued the Worcester house, and still later, in 1863, discontinued the parent house at Keene, N. H., transferring most of the important machines to the Western house at Cincinnati.
In 1861, 21 years ago, Mr. Cheney retired, and Mr. W. H. Doane, who had been several years with the company, became the leading member of the house and manager. Its history during these 21 years is marvelous. And to recount

In 1860, the establishment of J. A. Fay \& Co. was considered one of the largest in the West, but since that time it ha more than quadrupled its size, and now it covers more than six acres of floor space, and furnishes steady employment to about 400 skilled artisans and mechanics, who, aided by the most improved labor-saving machines, are able to turn out the work of more than $2,000 \mathrm{men}$. The buildings are five stories in height and of the most substantial character, and are pro vided with four power elevators. The motive power is sup plied by a Corliss automatic cut-off engine, which takes its steam from a battery of Babcock \& Wilcox sectional wrought iron boilers of 250 horse power. Over 2,000 feet shafting and 5,000 feet of belting are in use in the different depart ments. The strictest system pervades the whole establishment; there are all together 15 divisions, each with its own foreman and all under the immediate supervision of a general superintendent. The foreman are especially selected from among the most skilled workmen of a department, and all vie with each other upon the general excellency of the product of their different departments, the aim of each being excel the other.
To form a correct opinion regarding the immense number and variety of the machines made at these works, they should be,visited; but for the benefit of our foreign readers, we will enumerate a few of the principal ones and the uses for which hey are designed.
Of car building machines for railroad shops, they make about thirty-five different varieties. Of planing, including matching, machines, over twenty, adapted to all kinds of work, from the smallest cigar box and cabinet making machines to those for the largest possible requirements, and weighing many tons. The number of wheel and carriage making machines, including machines for making and finishing every part of the wheels and carriage, is between hirty and forty, and of sash and door machines about the same number. Of cabinet making, including furniture, machines, twenty-five or more; agricultural implement machines, about twenty-five; and bridge building machines,
about twenty-five. Of band sawing machines, they build ten sizes, from the largest costing two thousand dollars with a capacity to saw a log six feet in diameter to the smallest
size, costing one hundred and fifty dollars and suitable for ize, cosling one hundred and fifty
To describe the capabilities of the machines would requir a volume, but their utility and power may be inferred from a brief description of a few. Among the more ponderous and massive are those designed for railroad car building. In fact, it may be stated that these are of a special character,
particularly designed to decrease very materially the labor and cost of handling heavy timber; and to such perfection have these devices attained, that in dressing car sills, where formerly several machines were required to dress and square up fifty in a day, one machine will now do the same amount of work in an hour. The power of a large timber dressing machine is so great and its execution so precise that timbers even up to twelve inches square and of any length can be inished on all four sides at one cut at the rate of thirty feet per minute. If required, it will reduce one inch by the top cutting cylinder and the same with the heads which cut upon the sides. This, exclusive of the cut of the lower or under head, would make three inches off the surface of a imber, or equal to more than one inch reduced at one cut from a timber twenty-four inches wide. The vertical car tenoning machine, which takes the sill or timber from the machine first described, makes single, double, or triple tenons, first on one end, then on the other, without reversal. This one machine alone, it is said, saves the labor of sixty men. Another machine, the car gaining and boring machine, is capable of automatically traversing back and forth over timbers, and at each passage cutting grooves of any desired epth or width.
Stops regulate the precise distances apart, so that exact duplicates of the gains can be made in any part or numbe of pieces of timber without laying out. A vertical boring attachment completes the holes in the timbers for joint bolts while it is on the carriage of the machine, thus saving the abor of additional handling and separate machines. This machine is capable of doing the heaviest class of work required. Heavy mortising and boring machines are con structed that will "beat" mortises up to two and a half inches in width and of any ordinary depth, the peculiarity of which is the graduated movement of the chisel bar, which commences from a still point above the upper extreme throw of the chisel mandrel, and working down gradually into the wood without jar to the operator. In this department alone are turned out machines for boring with one, two, or three spindles either vertically, horizontally, or radially, that will finish a piece of timber in from four to five minutes. In all these machines, the quality as well as the quantity of the product are the leading features attained, and these remarks will apply with equal force to every class of machines made in the factory, regardless of the grade of work for which they are intended. Had we space, we might extend ou review of the capabilities of the different machines to an unlimited extent. It is, however, a fact that the largest variety of machines for wood working purposes to be found In any manufactory in the world is made at this establish ment, and its facilities rank it among the most extensive establishments of the kind in the world. To this house the manufacturers of the United States look for their best equip ments. Here, furniture makers, wheel and carriage makers, planing mill owners, and other users of labor-saving wood working machinery look for the highest standard of excel
lence and perfection. The striking originality of the machinery, possessing as it does all that is desirable in accuracy of workmanship, precision of action, strength of construc ion, solidity, and uniformity, has attracted not only the at ention of manufacturers, but also the executive depart ments of foreign governments, who have given the firm many orders.
The house of J. A. Fay \& Co. have many established gencies and correspondents throughout the world. The following is a partial list of their principal representatives:
Messrs. Cayley \& Cayley, Brackley St., Golden Lane, London, are the agents for Great Britain and Ireland. The same extensive house has also a branch in Hamburg, and are also agents for Germany, Austria, Norway, Sweden, and Prussia. The well-known house of H. P. Gregory \& Co., of Sydney, epresent the company in Australia.
In the city of New York, the George Place Machinery Co. are the general agents. Utilles Baird, of Water St., Pittsburg, Pa., is the agent of that city. At Detroit, Mich., the house is represented by James Jenks, Nos. 48, 50, 52, and 4 Randolph St. At Chicago, the firm have a branch house at 207 and 209 Lake St., over which Mr. John A. Roche, a mechanical engineer of reputation and ability, presides.
At St. Louis, Mo., the company have their own warehouse at 720 North Second Street, under the management of Mr. C. C. Harris, well known in that part of the country. On the Pacific coast, both at San Francisco, Cal., and at Portland, Ore., the house is represented by H. P. Gregory \& Co., Market Street, San Francisco, who have extensive houses at each place. The general agents have also many minor agencies under their management and jurisdiction.
Large shipments are constantly being made to Great Brit ain, Russia, Germany, Italy, Sweden, France, Japan, Africa, South America, New Zealand, Mexico, and other countries. In all of these countries, their machines are looked upon as unrivaled.
The many displays of machinery by this house at the inernational expositions have done not a little toward bringing the excellence of their manufactures before the public, especially as at all of the expositions they have received the highest awards, which was the case at Paris, Vienna, Australia, etc.

The prominence gained for this house during twenty-one years, from 1861 until the present time, is undoubtedly argely due to the most indomitable energy, sagacity, me chanical skill, and executive ability shown by its president, Mr. W. H. Doane, and Mr. D. L. Lyon, secretary, who have lived to see the business of the house increase to the most extraordinary dimensions, with its reputation extending throughout the whole earth.

Absorption of Volatile Substances.

T. Schloesing has attempted, in Comptes Rendus, p. 1,187 to explain the fact that when air containing hydrochloric acid has been passed through ammonia, it is filled with clouds of salammoniac vapors. He says that solid and iquid substances floating suspended in gases possess so little power of motion that they do not come into contact with the liquids through which such gases are conducted, and hence are not retained by them. This mobility, however, is attained by vaporizing the substance and converting t into a gas.
If air containing vapors of sulphuric acid is passed over ommon salt at ordinary temperatures, the hydrochloric acid given off always contains sulphuric acid. But if the salt is heated to $350^{\circ} \mathrm{C}$. ($632^{\circ} \mathrm{Fabr}$.), so as to convert the sul huric acid into vapor, it will be completely retained by the salt.
If air containing hydrochloric acid is passed up through a vertical column, and water trickles down through it coninuously, the acid will not be entirely absorbed; but the so ution is perfect if the temperature is raised to that of boilng water.
It air containing carbonate of ammonia in form of dust is conducted through a small tower of coke, with sulphuric acid on it, the alkali will not be completely retained by the acid until the temperature is raised to 212° Fahr. Schloesing herefore recommends heating instead of cooling as favor able to absorption.-Ind. Zeitung.

Coal Mining in Ohio.

In his report for the year ended last June, the State Inpector of Mines of Ohio states that the annual production of coal has increased since 1872 from $5,315,294$ tons to $9,450,000$ tons in 1882 . The increase upon 1881 was over , 000,000 tons. The undeveloped coal of the State is estimated at $85,000,000,000$ tons. The amount mined thus far is about $70,000,000$ tons. The Inspector is of the opinion that an equal amount has been wasted on account of a lack of accurate mining plans and engineering skill.

Professor Koch's Discovery Disputed.

At a meeting of the New Orleans Pathological Society, November 20, the President, Dr. H. D. Schmidt, made an mportant microscopic demonstration to disprove the reported discovery of Professor Koch, in Berlin, as to the bacilli of tuberculosis. Dr. Schmidt claimed to demonstrate that the bacilli thought by Dr. Koch to be the cause of tubercular consumption were simply fatty crystals. Dr. Schmidt's researches have been long and minute, and he is confident that Dr. Koch is in error.

Lead Pigment

The manufacture of lead paint was begun in America by John Harrison, of Philadelphia, a young man, who, according to the Glassware Reporter, believed that a large number of chemical products which were being procured from abroad might be made here as well. Having finished a thorough education in chemistry under the celebrated Joseph Priestley, of England, Harrison started a factory of sulphuric acid and white lead in Philadelphia in 1798, and prospered from the very first. The house of John T. Lewis \& Brothers, founded in 1807, afterward went into the same business. The manufacture soon extended all over the country. It became particularly successful in Brooklyn, N. Y., owing to the growth of the communities in that immediate vicinity. At the present time there are 145 factories engaged in the production of paints, the manufacture of lead pigments being a part of their business. They employ 3,000 hands, and produce $\$ 17,000,006$ worth of goods annually, in average years. Of the total number, 34 are in Pennsylvania, 16 in Massachusetts, 11 in New York, 14 in Ohio, 10 in Missouri, and 4 in Illinois.
The principal pigments made from lead are minium or red lead (which is easily produced by exposing litharge at a continued low red heat to the action of the air), white lead, a carbonate of the metal, chrome red, and chrome yellow. They are all beautiful, brilliant, and valuable pigments. Oxide of zinc now contests with white lead the favor of builders; but the importance of the pigment is scarcely affected by the competition.
White lead was originally made in Holland; and invention has thus far failed to supersede the "Dutch process" of its manufacture. Some variations in the details have been made in America, but the process is essentially the same in principle as that invented by the people who taught Northern Europe the arts of industry.

To prepare the pigment, the purest metallic lead is obtained. Originally it was subjected to the chemical operation in the form of loose rolls of sheet lead. The American tion in the form of loose rolls of sheet
method is to cast the lead into circular gratings looking very much like shoe buckles. In whichever shape prepared, the lead is put into earthen jars, with a little vinegar at the bottom, the lead being supported by earthen ledges from coming into contact with vine gar. Sometimes the pots have open ings in the sides to permit a free circu lation of the vapors set free in the pro cess. An immense collection of the jars, tens of thousands in number, is then packed in alternate layers witl layers of some fermenting material which will give out carbonic acid gas. Originally stable manure was gas. Originally stable manure was ferred. The layers of jars and bark are carried up sometimes twenty feet high, the bark being kept out of the jars by sheets of lead and by boards A large building being filled in this way is then closed. The fermentation sets free a large quantity of carbonic acid. Basic acetate is first formed on acid. Basic acetate is first formed on
the surface of the lead in the pots the surface of the lead in the pots,
which is decomposed by the carboni which is decomposed by the carbonic acid gas, forming carbonate and free acetic acid. The latter acts again on the lead. Very little vinegar is required; and the process goes on continuously, assisted by the heat of the fermentation, until, at the end of ten or twelve weeks, fermentation stops. The process is then at an end. The stack is taken to pieces, and the lead is found in its original form, though increased in bulk and weight, and converted into a very white and soft carbonate. If the conversion has not been thoroughly done, a can of metallic or blue lead will be found in the interior of some of the pieces. The pieces of lead are now thrown into large tanks filled with water, in which they rest upon shelves of copper full of holes. They are beaten to separate and pulverize the carbonate, the water preventing the fine dust from poisoning the air and injuring the workmen. Grinding and washing in water then fullow, until the carbonate is reduced to an impalpable powder. It is then dried in steam pans or upon tile tables, and put up for the market. The carbonate obtained in this way is superior to that obtained in any other; but a very fair article is made by boiling solutions of nitrate or acetate with litharge, and precipitating the solution with carbonic acid. White lead is not alone employed as the best white paint; but it constitutes the body of almost all other paints, it being colored by intermixture with other pigments.
Chrome yellow is obtained by precipitating a solution of nitrate of lead with chromate of potash, and washing and drying the product. The red, a bright powder, is obtained from the yellow by boiling it with lime or some other alkaline; also by digesting levigated litharge, by boiling with neutral yellow chromate of potash, etc. A green lead is also made.
Considering how far a pound of oil paint goes in coloring a house or fence, the consumption of pig lead in paint making must be regarded as enormous. It now amounts in the United States, yearly, to about 50,000 tons. Notwithstanding the cheapness of lead paint, it is largely adulterated for the market, by small dealers, with sulphate of baryta. This
is absolutely white and is not easily affected by gases, but it does not make so brilliant a paint.
Litharge, frequently alluded to above, is protoxide of lead, produced by exposing melted lead to a current of air. It fuses readily, and, on cooling, forms a mass consisting of glistering, semi-transparent, yellow or reddish yellow scales. It generally contains more or less red lead, whence the variations in its color. It is used in the composition of flint glass.

Solar Cannon of the Palais Royal.

Strangers in Paris who have happened to be in the garden of the Palais Royal at noon on a fair day, will have noticed groups of persons watching intently at a not very conspicuous object in the garden, but all eyes seem turned toward it. The object which attracts their attention is a small cannon of antique pattern, which is automatically fired at midday by the arrangement of a sun glass so adjusted as to concentrate the sun's rays upon the priming powder, and produce an explosion at exact noon. Referring to this little cannon L'Astronomie says it dates from a greater antiquity than is generally known. It thundered during the Commune, under the Empire, during the days of '48, under Louis Philippe, under the Restoration, during the wars of the Grande Armee, during the guillotines of the Reign of Terror, on the day when Camille Desmoulins barangued the people, under Louis XVI., under Louis XV. In his charming "Journey from Paris to St. Cloud, by Land and by Sea," published in 1751, Néel makes his young tourist regulate published in its watch by it. The pillar on which it is fixed stands at his watch by it. The pillar on which it is fixed stands at
the point where, in 1641, a year before his death, Cardinal Richelieu established a bound between the manors of St. Honoré and of the Archbishopric.

SHEFFIELD SECTION HAND CAR.

The Sheffield patent section hand car shown in the engraving is superior in many points to other section hand cars now in use. It is made light, yet very strong and durable.

A Nitro-Glycerine Factory.
Near the village of Tweed, Ontario, and at the water's dge of Stoco Lake, is a fair sized, unpretentious, isolated, wooden building, the appearance of which would cause a stranger to inquire why such a good building was erected in such an isolated locality, and why it was so closely guarded, as a solitary watchman, day and night the year round, checks the steps and inquires the business of the curious as they stray near. As the eye passing upward reads " Nitroglycerine factory, very dangerous !" in big letters above the door, the use for which the building is intended and the necessity for watchful care over it is apparent. At the door were seen lying iron casks sheeted inside with lead, and in these casks are imported the pure glycerine and mixed acids used in the factory
A cask of mixed acid is hoisted by machinery to the upper story and dumped into a mixing tub, in which the mixing blades are moved by a crank turned by a man who is stationed in a tight box and has in front of bim a thermometer, As the glycerine runs into the acid, a vapor is engendered in which life is scarcely supportable, hence the man turning the crank is stationed in a close box. The acid and gly cerine in their admixture rapidly heat, and the compound has to be toned down by cold water or ice, hence the greatest watchfulness is necessary at this point; as the heat is allowed to run up to 80°, and as nitro-glycerine explodes at 90°, there remains but 10° of heat bet ween the known and eternity, or, as the manager remarked, if the heat was allowed to run up to 90° they would not have time to pucker heir mouth to say good-by.
It is needless to say that, while the work is guing on, strangers are never allowed to enter the building, as it is ne cessary that every man should have his individual attention at such times upon his work. "Strict rules govern our men," remarked the manager, "as the least venture at experimenting would leave no ene to tell how the accident happened." The nitro-glycerine thus manufactured has an explosive force ten times greater than that of blasting powder, and is used on very heavy work, but we sell very little in that shape, remarked the manager, as it is run down a tunnel to the room below, where it is manufactured into dynamite, dualin, or vigorite, all of which have nitro-glycerine as their basis, but are known by different names to desig rate the degree of power. As rapidly as possible the nitro-glycerine is mixed with charcoal, wood pulp, or other mixtures, and reduced into a com modity more readily handled; for although dynamite is understood to be extremely dangerous to handle, it is rammed into the cartridges with a stick, with as little apparent fear of the result as would be the case were the substance so much dirt.
The cartridges are made to hold from a pound to two pounds each; and are carefully packed each day and taken to an isolated magazine owned by the company. The output of the factory is about 1,000 pounds daily now, but

It is easy to haudle, and at the same time serviceable. The walking beam or hand lever of this car is of wrought iron, and is connected to the drive gear by a rod provided with devices which enable all lost motion to be readily taken up.

The rock shaft of the walking beam is removable and adjustable. The crank shaft is attached to the crank by a new method which dispenses entirely with the use of the ordinary key and key way, thus obviating all trouble relating to that style of fastening. The axles, $11 / 4$ inches in diameter, are made from the best open hearth steel, and run in brass boxes.
The construction of the brake is readily understood from the cut. It brakes both wheels, and is very efficient. The wheels are made under a patent granted September 5, 1882 and combine lightness with great strength and durabilty. Though placed on the market less than six months ago, this car has already gained great popularity, and has been adopted by such roads as the Chicago and Atlantic, Central Iowa, and many others.
Forfurther particulars address the Sheffield Velocipede Car Company, Three Rivers, Mich.

Heavy Rainfalls.

It is a heavy rain in this latitude when an inch of water falls in one day, yet this amount is occasionally exceeded. According to the Signal Service Bureau, the greatest falls in the last twelve years have been as follows:
March 24, 1871, $2 \cdot 37$ inches; July 26, 1872, 3.80 inches; August 21, 1873, 2.24 inches; September 17, 1874, $2 \cdot 41$ inches; August 12, 1875, 3.34 inches; March 25, 1876, $3 \cdot 45$ inches; October 4, 1877, 4.2 inches; August 1, 1878,. 2.39 inches; May 19, 1879, $1 \cdot 11$ inches; July 22, 1880, $1 \cdot 81$ inches; March 19, 1881, $2 \cdot 40$ inches; September 23, 1882, $6 \cdot 17$ inches.

A FEW weeks ago, during a heavy storm, the Rio Grande River suddenly changed its course by cutting through a bend near Camargo, and thus placed several acres of inhabited territory within the legal limit of the United States.
the owners expect shortly to increase the capacity to meet the requirements of a rapidly increas ing demand, as this is the only factory of the kind in Ontario, and the development of the mines has rapidly increased the demand, as blasting with powder has been almost en tirely superseded by the use of dynamite, which is not only more efficacious, but also safer to handle. The manager remarked: "I have to pay•my men large salaries, although the work is comparatively light, as a very slight accident would put them out of the way of drawing their salaries, I have worked at the business for the past seven years, and own a mill in Algoma as well as this one here, but in this business life is the result of vigilance."-Manufacturers Gazette.

How to Stop the Echo.

A subscriber in Mississippi writes: "We have a large hall in this city, one hundred feetby fifty, twenty feet from floor to ceiling; the echo is so great that con versation cannot be understood. We have tried stretching wire across the ball, but it does not have the desired effect."
Where the rectangular form of a hall cannot be changed to advantage or economically, much may be gained by hanging draperies at the ends of the room for preventing reverberation. The rostrum should be placed in the middle of one side of the room for the best effect. This arrangement is supposed to break up the reflected waves of sound, which s the cause of reverberation.
Our correspondent might make a trial by hanging a few ieces of cheap goods upon the end walls.

Since referring to the death of Mr. Desnos a few weeks go in these columns, we learn that Madame Desnos will continue the business established by her late husband at 11 Rue Magenta, Paris. Mr. Chassenent will bave the direction of the engineering department, and Mr. Guion is advanced to the post of administration director, as well as secretary. The latter position he held under Mr. Desnos for more than twenty years.

Mechanical Telephone

This telephone allows the operator to remain in the same position while giving and receiving messages, so as to avoid the necessity of alternately applying mouth and ear to the instrument; and it eliminates the reverberations which take place in telephones in which the diaphragm is inclosed. The diaphragm is of dish form, made from a single piece of thin metal pressed or spun into shape. The bottom or base of the dia phragm is flat. Its sides are con caved outward from the bottom and their outer edges are formed with a narrow rim. A call button is fitted at the center of the diaphragm, and the line wire is connected to the button and is connected to the button and
passes through an aperture in passes through an aperture in
the base. The instrument is to the base. The instrument is to
be attached to the wall. A similar instrument placed at the point to which it is desired to communicate, and the two connected by the line wire, which is to be drawn tightly. The call button is struck with a pencil or other bard substance, and the speaker, standing in front of the instrument, talks directly into the dish-shaped diaphragm. The hearer stands in the same position. This diaphragm. The hearer stands in the same position. This
invention has been patented by Mr. Harvey E. Huston, of invention has b
Monticello, Ill.

Improved Peg Cutter.

This invention is an improvement in the class of peg cutters or floats mounted on a fixed standard, and having a device for maintaining the cutter proper in the required angular position. The hollow iron standard is screwed into a fixed base. The plate that carries the cutter is attached to a bar that is free to slide vertically in the upper end of the standard, its movement being limited in each direction by means of an abutment or stop-piece that enters a slot in the bar. The latter rests on a spiral spring whose.tension may be adjusted by means of a set screw. The cutter is detachably connected with the plate at the top of the bar by means of spring clamps attached to its
 sides and fitting in notches

cle, for convenience in removing any matters that may settle therein. The water collected in the first receptacle

will be useful for many purposes about a house and garden, and will not therefore be lost. Of course, the cistern and the smaller receptacle may be placed in the cellar or underground if desirable. This invention has been patented by Mr. George Lemle, of 169 Baroune Street, New Orleans, | Mr. |
| :--- |
| La. |

Improved Washing Machine.

We give herewith an engraving of an improved clotheswasher recently patented by Messrs. Robert J. Biggerstaff and Jeeonard Hilpert, of Blanchard, Iowa. The machine is provided with a perforated cylinder, C, inclosed by a tub, A, provided with a an open cover. In the perforated cylinder there is a conical plunger, F, which is operated by a lever at the top of the by a lever at the top of the
machine. In using the mamachine. In using the ma-
chine a suitable quantity of soap and water is placed in the tub, A, and the clcthes to be washed are placed in the
 C. The plunger, F is then
placed in the cylinder, C , and is worked up and down by the lever. This machine, although very simple, is claimed to be more effective and more rapid in its operation than the more complicated and more expensive devices.

Oven Thermometer.

The object of this invention is to provide an improved combined clock and thermometer to be attached to cooking stoves and ranges and bakers' ovens, for the purpose of indi cating the heat in the oven and the time the article is exposed to the heat in the said oven.
The invention consists in the combination of a clock attached to the upper end of a thermometer casing. The latter and the clock are combined with a cooking-stove, and arranged in such a manner that the lower end of the thermometer casing projects into the oven, and the clock is above the top of the stove, so that the thermometer will indicate

the number of degrees of heat in the oven, and the clock will show the length of time the article is exposed to the heat in the oven.
The inventor has published a "Scientific Cooking Instructor and Key" to be used in connection with the above described improvement. In this key is given the required temperature for cooking or baking the articles, and also the number of minutes or the time that the said articles must be exposed to the heat. The articles can thus be cooked or baked 'without once opening the oven door to ascertain the condition of the article. This invention has been patented by Mr. Joseph C. Waller, of Plattsburg, N. Y.

A Business Man's Travels Abroad.

Andrew Carnegie, Esq., of the great Pittsburg iron firm Carnegie Brothers, has recently written and pablished for private circulation a very entertaining volume of travels in England, under the title of "Our Coaching Trip."
As the title implies, the author relates his experiences in coach traveling with a party of friends whom he bad selected for his traveling companions, and whose names he familiarly uses in relating incidents of the journey.
The excursion was by coach from Brighton to Inverness; but the author does not confine his description of events to his travels by land alone, but be relates some amusing incidents which occurred on shipboard from New York to Liverpool. Mr. Carnegie is very practical as well as facetious, and his book contains a great deal of information that should not be confined to the few friends into whose hands the book may chance to fall.

Referring to the character and ability of the men in charge of the Cunard steamships, it is probably not generally known what smail wages these brave, intelligent, and capable men get for their services. According to Mr. Carnegie, the captains of these magnificent ships, with the responsibility of providing for the comfort and safety of several hundred persons, receive only $\$ 3,250$ per annum; the first officer, $\$ 1,000$; the second, third, and fourth officers, $\$ 600$ each. The chief engineer, a man capable of controlling and keeping in order, in all weather, the ponderous machinery of the Servia, receives $\$ 1,250$ a year, and the firemen at work down among the coal bunkers, amid stifling coal dust and almost intolerable heat, shoveling into the capacious furnaces one hundred tons of coal per day, receive only $\$ 30$ per month.

Mr. Carnegie, referring to the advance which has been made in ocean navigation during the last twenty years, in the matter of speed, cost of transportation, etc., makes the following comparison: The Persia, once the favorite ship of the Cunard line, required the expenditure of $\$ 35$ against her successor, the Servia, $\$ 1$; in other words, the latter will carry thirty-five tons of cargo across the ocean for what one ton cost on the Persia twenty years ago; and so in every other department of a steamship's economy; such improvements have been made in their construction and machinery as renders the carrying of our products so much cheaper than formerly as to seriously impair the prosperity of the English farmer.

A Costly Cellar.

The cellar under a block of apartment houses, now building on Seventh avenue near Central Park, resembles a great quarry. In some parts of the block the rock towered twenty-five feet above the adjacent street level, necessitating an excavation thirty-six feet. The grade of the cross streets is such that in the length of the building, 425 feet, there is a rise of fourteen feet in Fifty-ninth street and nineteen feet in Fifty-eighth street. Consequently, the level of the parlor in Fifty-eighth street. Consequently, the level of the parlor
floor, which is seven feet above grade at Seventh avenue, floor, which is seven feet above grade at Seventh avenue,
will be twenty one feet above grade at the eastern extremity of the building, and in the four houses toward the end will be the second story. The houses are spoken of as separate, and they practically are so, but in appearance they will all form one structure, arched colonnades connecting and binding them together.
The cellar starts four feet below the grade at the eastern end, and is eighteen feet below grade at the western-that is, for a space 405×200 feet. Around this is a vault under the sidewalk, fifteen feet wide, at a uniform depth of six teen feet below grade, to afford perfect drainage as well as to give space for boilers and coal storage. The central tunnel, entered from the eastern end, will have a depth of twelve feet in the clear below the courtyard. and its floor at the entrance will be only six feet below the grade of the cross streets at that point. By this tunnel access will be given to the servants' and freight elevators. Messrs. Hubert \& Pirrson, the architects, the Sun says, estimate approximately the total amount of rock removed at 45,123 cubic yards, which, at $\$ 2.50$ per cubic yard, the ordinary price for such excavation, would bring up to $\$ 112,800$ the cost of merely digging this big hole. The foundation walls required to support the ten story construction to be reared upon them, the cementing, etc., will increase the expense of this cellar by about $\$ 320,000$, so that the total cost up to the top of the cellar wall will be not less than $\$ 430,000$.

Improvement in Chimneys.

The best chimneys are made by inclosing hard baked glazed pipe in a thin wall of bricks. Such chimneys will not only draw better than those made in the usual way, but there will be less danger from "defective flues." A fourinch wall of bricks between us and destruction by fire is a frail barrier, especially if the work is carelessly done or the mortar has crumbled from the joints. To build the chimneys with double or eight-inch walls makes them very large, more expensive, and still not as good as when they contain the smooth round flues. To leave an air chamber between them for ventilating, is better than to open directly into the smoke flue, because it will not impair the draught for the fire, and there will be no danger of a sooty odor in the room when the circulation happens to be downward, as it will be occasionally. The outside chimney, if there is one, will be occasionally. The outside chimney, it there is one,
should have an extra air chamber between the very outer should have an extra air chamber between the very outer
wall and the back of the fireplace to save heat, a precaution that removes to a great extent the common objection to such chimneys. A very large per cent of fires comes from defective chimneys.

New Safety Lamp.

M. Tricot, the Manager of the Mons Gas Works, at the recent meeting of the Association des Gaziers Belges, described a new fixed lamp, invented by M. Lechien, for burning safely while surrounded by an explosive mixture of air and gas, such as may be present in gas works. It consists of a metal bracket (with an orifice in connection with a pipe leading a supply of pure air from a safe distance) securely fixed to the wall, and provided with a groove, filled with sand for receiving a projecting collar at the bottom of the lamp, so as to form an air tight joint. In the bottom of the lamp is a valve, opening inwards, which keeps it closed until placed in position, when it opens automatically. The cover, made separate for facility of cleaning, is also provided with a sand joint, and the trunco-conical chimney is f such dimensions that no air or gas can enter the lamp by its means; while a sheet of perforated metal or wire gauze, placed across it, affords an additional safeguard. When the source of light is a vegetable or mineral oil, the lamp has simply to be lighted, in a pure atmosphere, before being placed in position, as it contains sufficient air to support combustion for two or three minutes, when the air valve opens. When ordinary coal gas is used, the simplest method is to light a small piece of taper near the burner before fixing the lamp and making the connection with the gas supply pipe; or the gas may be lighted by electricity. or by a fulminating capsule.

PROTECTOR FOR BUILDINGS.

A novel device for protecting buildings against destruc tion by storms has been patented by Messrs. Ezra Crowell and Elisha C. Dawson, of Dawson, Neb. This apparatus is designed as a temporary or permanent attachment to a building for preventing it from being blown over during wind storms, and to protect it from lightning. As will be seen by reference to the engraving, the building is secured by wire ropes of suitable strength passing over the house and connected with threaded rods extending into the earth, and secured to suitable anchorages. The tension of the ropes is adjustable by means of the nuts on the rods, which permit of putting on or taking strain off from the ropes, or of removing them altogether, as occasion may require.
The building is provided with brackets at the side, and with a saddle at the top, over which the wire cable passes. These bearings for the cable are placed in the vicinity of the corners of the building, or otherwise located over the end

APPARATUS FOR PROTECTING BUILDINGS.

framing and studding of the structure, where the strain is greatest.
A lightning rod point attached to the saddle permits of utilizing the cables and anchorages as a protection against lightning.
This invention is especially adapted to the portions of the country periodically visited by wind storms, and its adoption will preserve many buildings from destruction, and prevent loss of life and bodily injury during such storms.

BOYS' POWER METER

We annex engravings of a new form of enginc power meter which has been recently designed by Professor C. Vernon Boys. The object of the engine power meter is to find automatically the amount of work done by steam or other fluid under pressure, such as gas, water, etc., upon the piston of an engine, whether single or double acting, and to record the result on a dial during any period of time, so that the total amount of work done in one or any number of strokes may be found by inspection and without calculation.

As in an ordinary indicator, there is in the appara tus illustrated a piston controlled by a spring, the dis placement of which is a measure of the steam pressure in the cylinder of the engine at every moment. When used with a double acting engine, if the total work is required, each end of the indicating cylinder is con nected with one end of the cylinder of the engine, so that the displacement is a measure of the difference of pressure or the effective pressure. To find the work done, this varying pressure must be integrated with re spect to the motion of the piston of the engine. In the ordinary indicator the process of integration is repre sented by a. "diagram," the area of which is a measure of the work. In order to make the diagram on a sufficient scale, the motion of the piston is multiplied Now the inertia of the piston alone, which cannot be obviated, tends to slightly modify the diagram, but that of the parallel motion and pencil, light though they be has a greater effect than is often supposed, owing to the fact that the energy of motion varies as the square of the velocity.
In the engine power meter there is no multiplication of motion, and all errors due to this cause are removed Instead of having to move a pencil at a higher speed than itself in contact with paper, all the work that the spring piston has to perform is to turn an excessively light and delicately mounted disk on a swivel axis mor or less in accordance with the movement of the piston a motion in which sliding friction is absent. This disk rests against a cylinder, which is capable of moving longitudinally on its axis, but which, if turned, cause the axis to revolve also. The cylinder is moved longi tudinally on its axis in time and in proportion to the motion of the piston of the engine. The plane of the disk is parallel to the axis of the cylinder when the spring piston is in its normal position, in which case longitudinal movement of the cylinder is unaccom panied by rotation, for the little disk rolls straigh along it; if, however, in consequence of steam pressure the disk is inclined, it will tend to run in a spiral line round the cylinder, thus causing the cylinder to rotate to a proportionate amount. Now the rate of rotation
of the cylinder is directly proportional to the rate of its longi tudinal motion multiplied by the tangent of the inclination of the disk; or, as the longitudinal motion of the cylinder is directly proportional to the piston of the engine, and the tangent of the inclination of the disk to the effective pressure, and the product of these two is the rate of doing work, the rate of rotation of the cylinder is at every moment directly proportional to the rate at which work is being done in the cylinder of the engine, and the number of turns recorded on the dial is a measure of the total work done.

In theory the instrument depends nowhere on approximations. It is mathematically perfect in every respect. In practice it is exceeding simple. The one adjustment that might be expected to be important and troublesome, viz., making the plane of the disk parallel with the axis of the cylinder when there is no steam pressure, is of no conse quence whatever, for if it is not parallel, any error that ma be made during a forward stroke is absolutely removed during the return stroke, because the tangent of the angle is as much too great in one as it is too little in the other, and therefore no accumulating error can result
As constructed, the calculating mechanism is inclosed in a box separated from the indicating cylinder by an air space, and is so protected from injury by dirt and heat. One spring can be removed, and replaced by another instantly.
Our illustration is a perspective view of the instrument, showing the dial plate on the left, the spring cover at the top, and the integrating mechanism within, part of the casing being shown broken away. The axis of the cylinder carries the first index on the dial plate.-Engineeriug.

One of General Washiugton's Patents.

We were recently favored with an inspection of an original patent, which ranks among the earliest documents of the kind that were issued by the United States. We allude to the letters patent granted on May 4, 1796, to Peter Zacharie, of Maryland, for a new and useful mode of mak ing nails and brads from cold iron. A good description of the machine is given in the patent, and the inventor says he can make with the machine eight millions of nails a day. Pretty good for 1796. The patent is written upon parchment in a large clear hand. The front page bears, in large type, an official certificate of the fact of the granting of the patent, the wording being almost identical with the officia form that is to-day used by the Patent Office. At the bottom of the certificate is the well-known bold signature of George Washington, President; it is attested by the signature of Timothy Pickering, Secretary of State; and is countersigned and certified by Charles Lee, Attorney-General. It is dated at Philadelphia, which was then the seat of government.
Taken altogether, it is a most interesting old document. It was shown to us recently by Mr. R. S. Chilton, formerly (from 1849 to 1851) librarian of the Patent Office. He now resides at St. Catharines, Ontario, but was appointed from New Jersey.

AUTOMATIC FLY FAN.

The engraving shows a novel spring-actuated fly fan for driving flies from the table or from a sleeping person or invalid. The spring mechavism in the base of the apparatus revolves the verticial spindle, which carries two jointed arms, each having at its outer extremity a swivel for receiving a paper flier like those in the foreground of the engraving. These fliers may be cut from ordinary plain or fancy paper by any one according to taste, and may be renewed from time to time, so that the wings of the fan are always resh and clean.
The arms may be extended more or less, and as they are revolved by the spring gearing, the Hiers are revolved on the swivels, giving the apparatus a very curious appearance.

COFER'S AUTOMATIC FLY FAN.

The fan is compact, ornamental, and inexpensive, and voids the objection of having dirty, unsightly wings. This invention has been patented by Mr. Thomas W. Cofer, of Portsmouth, Va.

Curious Facts about Precious Stones

In bis lecture on precious stones, Professor Egleston, of he Columbia School of Mines, says there is in Paris a diamond so hard that the usual process for cutting and polish ing made no impression upon it. The black diamond is mostly used for tools. In Russia it is broken into flakes, polished, and worn as court mourning. The historic diamonds have no more luster than a piece of glass. The sham diamond was more beautiful than the genuine stone, but it has a tendency to decomposition and does not retain luster The diamond mines of Brazil were first opened in 1727. It is estimated that since that time they have produced at least two tons of diamonds. In England, a stone weighing one carat and of the purest water is worth, when cut and polished, about $\$ 60$. The dealers in rough stones acquire the habit of distinguishing the water of a rough stone by simply breathing upon it. Among the historic diamonds, the Rajah weighed 367 carats, and the Great Mogul 280. Before it was cut the latter weighed 900 carats. From the composition of the diamond we see what costly things Nature makes from common mate ial. All the diamond fields of the world are not worth the anthracite fields of Pennsyivania.
A ruby of five carats is double the value of a diamond of that size, and one of ten carats is worth three times as much as a diamond of corresponding size. A perfect ruby is the rarest of all stones. Rubies are often imitated with real stones, the most common being spinel. But it is not difficult to distinguish the imitation, as the ruby is the only stone having a pigeon blood color. Another precious stone is the sapphire, which is like the ruby, with the exception of the color. He had seen a small stone which was ruby on one side and sapphire on the other. The emerald is a deep green, the deeper the better. It loses no brilliancy in an artificial light, but its color may be expelled by a gentle heat.
Most of our emeralds come from New Granada, and will always have flaws. In imitations it is not the hardness nor the color that is sought, so much as the law. The first eye-glasses were made in England of emeralds.

Bands from Sheep's Entrails

The mode of manufacturing bands from sheep-guts is described as follows in the Shoe and Leather Reporter: The entrails, which are about 15 yards long, are well cleaned, and laid for a few days in salt water. They are then not thicker than ordinary cotton yarn, but will bear a strain of nearly 12 pounds, and are wound upon spools like yarn. If it is required to make round bands, the procedure is the same as in the making of ordinary rope; if, however, broad flat bands are required, this must be done in a loom, and in 5 strands, as in the making of ribbon. Flat bands can be made of any size; round ones have various diameters. The round ones have either the form of a smooth cord or that of a cord of from 3 to 5 strands.

Kidd's Cave.

During the dog days last summer, I amused myself by hunting up some of the localities linked by tradition with the name of the famous pirate, Captain Kidd. It is certain that, when hard pressed by Lord Bellomont, who finally caused him to be hanged, the pirate concealed in some safe place a vast amount of treasure! We have nothing now to do with the whimsical stories told about excitiog adventures in digging for these coveted chests glittering with costly jewels, ancient coins, and solid wedges of gold. The matter of fact is that, within the memory of persons now living, excavations for Kidd's treasures have actually been made in the bank of the stream that used to run near Silver Street, in New Haven, Conn.; and the probability is that Kidd used occasionally to sail into the bay for repairs at Greenough's ship yard.
Pits are also visible on Money Island, one of the group known as the Thimble Islands, off Branford, where treasure hunters have been at work within the present century. Nearly everything, indeed, about these picturesque islands is flavored with reminiscences of piratical adventure. Kidd's Harbor lies between two of the highest rocky points, and Kidd's Punch Bowl is exhibited as a great curiosity. The latter is a natural hollow in the granite ledge on Pot Island, and is about three feet long by a foot or more in width, and the same in depth. 'There is no proof that it was ever used for convivial or even culinary purposes
Kidd's Cave, however, deserves more particular description. It is one of several small grottoes in the granite ledges near Short Beach, about six miles from New Haven. Leaving the cluster of cottages by the shore, we made our way through thickets of laurel and bay to what was once the natural sea wall. Following this for three hundred yards, we came to a rift in the rocks, around which a mass of fragments lay scattered for twenty feet. Measuring the height of this wall, 1 found it to be about thirty feet above the sea level, and twenty-four feet above the adjacent meadow.
Some former explorer bas taken the pains to paint the name of "Kidd's Cave" on the wall near the entrance, which is an opening eighteen inches wide and five feet high. .The adit slopes for ten feet at an angle of forty-five degrees to a small chamber, the floor of which is encumbered with fragments. The main passage runs from east to west for twelve feet, and then turus abruptly north for sixteen feet. This measurement does not include rifts and seams that reach much fartber in several directions. The height of the chamber varies from three to eight feet, and there is an opening at one place up to the surface, through which smoke might ascend as by a chimney. Remnants of fire show that the spot has been used at some time as a hiding place; though it would not be easy to tell if the refugees were pirates, Indians, or modern tramps. At one point the floor was examined for relics, and search was rewarded by the discovery of a few arrowheads and two stone axes.
The fauna of Kidd's Cave includes spiders, flies, frogs, slugs, snails, and mice. Three of the latter were caught, and were found to be specimens of the common field mouse.
The temperature in the shade near the mouth of the cave, at $4 \mathrm{P} . \mathrm{M}$. on the day of our visit, was 74° Fahr. But, within the grotto, the mercury fell, after an interval of ten minutes, to 55° Fahr., which is only one degree above the mean tem perature of Mammoth Cave, as determined by the same instrument. I regard this fact as remarkable, considering the limited dimensions of the excavation; and it confirms the opinion to which other tempera ture observations have led me, that the mean temperature of the earth's crust in this latitude is about 54° Fahr., both winter and summer.
The origin of Kidd's Cave was undoubtedly marine; and the probability is that it was formed at a time when the coast was considerably higher than it now is, ${ }^{\boldsymbol{e}}$ and that the upper portion of the cave is all that is now visible. I judge thus from the fact that large masses of rock have evi dently fallen from the roof into some lower cavity, where they have disappeared.

Subsidy to Pasteur.

The French Minister of Agriculture has lately placed at the disposal of M. Pasteur a new sum of $50,000 \mathrm{fr}$. $(\$ 10,000)$, in order to continue his admirable investigations upon the contagious diseases of animals. The government had already granted to the illustrious savant, for the same object, $50,000 \mathrm{fr}$. in 1880 and 40,000 in 1881. The minister consulted a special committee, minister consulted a special committee who, in view of the brilliant success obtained by Pasteur in his previous investigations, unanimously recommended a renewal of the grant.-Les Mondes.

In the eastern part of Massachusetts, and with head quarters in Boston, are seven nail mills, operating 300 machines, and turning out an average of 10,000 kegs per week, mostly for the home trade, but furnishing shipments for Cuba and South America.

the brush storage battery.

The storage battery used on the evening referred to was charged by the current from a No. 8 Brush dynamo at the Elizabeth Street station, which at the same time furnished thirty-four arc lamps on a circuit a little over ten miles in length, the conductor being a No. 6 copper wire. The bat tery consisted of twenty-four elements, and furnished a current to twenty-seven sixteen-candle power Swan lamps. The carbon filament was maintained in a high state of incandes cence, emitting a very steady white light.
The general appearance of the storage battery is shown in our engraving. It consists of lead plates treated by a process not explained by Mr. Brush. The plates are arranged by pairs in cells and connected up in series. Each battery of twenty-four cells is connected with the "current manipulator" fixed to the wall, and the charging current entering the manipulator is switched from one battery to another automatically by the manipulator, and when all of the batteries are fully charged they are cut out of the dynamo circuit by the same means. When either of the batteries is partially exhausted, it is switched into the charging circuit by the manipulator, and even while receiving its charge the battery may be supplying its current to the lamps, the needs of the battery being provided for by the manipulator, which also records the amount of current used.
The sizes and capacity of the cells are given below.

Size of cells.	Capacity in Swan lamps.	Size plates in inches.	Number cells re quired for Swan lamps.
No. 1.	5 to 8.	8×8.	20.
" 2.	10 " 15.	8×16.	20.
" 3.	20 " 30.	8×16 dibl.	20.
" 4.	40×60.	16×16	20.

These batteries, we are assured, will furnish 9 to 10 lights of the size or power of an ordinary 5 -foot gas burner (usually 16 -candle power), for each horse power absorbed by the dynamo electric machine used in charging them.

This is an economy which we believe has not been claimed for any other system, and which is partly due to the greater efficiency of the battery, and partly to the use of a distributing and charging current of comparatively high electro motive force. This kind of electric current permits of the use of small conductors and long circuits, and is effective in charging the secondary batteries, while the batteries yield a current of low potential adapted to incandescent lighting.

As to the durability of the Swan lamp, we are informed that in the Savoy Theater, London, which is illuminated by them (the current being supplied by a dynamo), the lamps have lasted 3,000 hours. This is due, in a great measure, to the homogeneity and density of the carbou filament, and the perfect uniformity in its size and shape from end to end. This lamp, as will be noticed by reference to the smaller engraving, is similar to others of its class; the mounting, however, is different. The wires which hold the ends of the carbon, and are fused into the glass, are bent into hooks for engagement with other hooks forming the terminals of the circuit wires, the lamp being pressed downward, so as to bring the hooks into engagement by the spiral spring into which its neck is inserted.
All danger from short circuiting the lamp or wires is avoided by means of an exceedingly simply and inexpensive device consisting of a strip of tinfoil secured to the face of a piece of vulcanized fiber, the tinfoil forming a part of the circuit. When the lamp is short circuited, the tinfoil melts and is thrown off from the strip of fiber thus interrupting the circuit. The vulcanized fiber with its attached tinfoil is readily replaced.
The Brush Electric Company assert that this system of lighting is now entirely beyond the experimental stage, and that it is commercially practicable and ready for the public.
In addition to the extensive works already in operation in Cleveland, the Brush Electric Company is erecting a large building to be supplied with steam power to the extent of 1,000 horse power, for the purpose of manufacturing the new storage battery.

Headache.

Dr. Haley says (Australian Medical Journal, of August 15, 1881) that, as a rule, a dull, heavy headache, situated over the brows and accompanied by languor, chilliness, and a feeling of general discomfort, with distaste for food, which sometimes approaches to nausea, can be completely removed, in about ten minutes, by a two-grain dose of iodide of potassium dissolved in half a wineglassful charged by machines set apart for this use alone; but the of water, this being sipped so that the whole quantity may important features of the system are: first, to provide an unfailing supply of electrical energy, which is secured by the use of the storage batteries; and second, to utilize the arc light plant at times when it would otherwise be idle, thus virtually diminishing the interest on the investment.
The employment of storage batteries not only produces a perfectly steady light, but the uniformity of the current in sures great durability in the carbon filament of the lamp.

It is announced that a contract has been closed between the Canada Southern Railroad Company and the Phœnix Bridge Company, for the building of a new suspension bridge across the Niagara River, a quarter of a mile south of the old suspension bridge. The new bridge is to be ready for traffic by September, 1883.

3

The Charreefor Insertion under this head is One Dollar a line for each insertion; about eight words to a line. 4dvertisements must be received at publication office
aseanly as Tluursday morning to ctppear in next issue.

Unless you open a barrel of apples at the right end they will be found getting steadiily worse as you reach the bottom. Not so with a box of Esterbrook's Steel
Pens, which are of uniformly good quality throughout. Special Emery Grinding Machinery, Automatic Knife mers, ete. Write for cuts, descriptions, and p
Lehigh Valley Emery Wheel Coo, Lehighton, Pa.

 DEAR SIRS: The steam pipe covering applied by you
in this department eighteen montsagag has proved very
sutisfactory, not only convenience in being removed and replaced withoutany loss or injury

ours, etc. THOS. A.

H. N. Veefkind, Agriculturist and Darymar, Arnhem, Holland, will arrive in New York during the
month of January, 1883, with a, by him. newly invented Hand Butter Churn, which excels all existing churns i the following points : Simplicity of construction, cheap-
ness, easy operation, durability, and minimum of power required. Parties desiring to enter into negotiations for
rights of single states rights of single States or the United States will please
communicate with the manager of the Nieuws en Hanmunicate with the manager of the Niewws en
Courant, No. 25 South William Street, New York Woodworking M'ch'y. Bentel, Margedant \& Co., p. 413. stéam Hammers, Improved Hydraulie Jacks. and Tube Diamond Drills, J. Dickinson, 64 Nassau St., N. Y. 50,000 Emerson's Hand Book of Saws. New Edition. For Pat. Safety Elevators, Hoisting Engines. Friction Gould \& Eberhardt's Machinists' Tools. See adv.,p. 414. For Heavy Punches, etc., see illustrated advertise ment of Hilles \& Jones, on page 414
Barrel, Key, Hogshead, Stave Mach'y. See adv. p. 414 . Magic Lanterns and Stereopticons of all kinds and
prices. Views illustrating every subject for public exprices. Views illustrating every subject for public ex
hibitions, Sunday schools, colleges, and home entertain hibitions, Sunday schoos, colleges, and home entertain
ment. 16 page illustrated catalogue free. McAllister
Manufacturing Optician, 49 Nassau St., New York. Sewing Machines and Gun Machinery in Variety
The Pratt \& Whitney Co., Hartford, Conn. Mineral Lands Prospected, Artesian Wells Borod, by
Pa. Diamond Drill Co. Box 423 . Pottsville. Pa. See p. 412
c. B. Rogers \& Co., Norwich, Conn.. Wood Working Machinery of every kind. See adv., page 414. For best low price Planer and Matcner. and latest
improved Sash, Door, and Blin \& Machinery, Send for The Porter-Allen High Speed Steam Engine. South Common Sense Dry Kiln. Adapted to drying of all ma4 to 40 H. P. Steam Engines. See adv. p. 412.
4 to 40 H. P. Steam Engines. See adv. p. 412 .
"How to Keep Boilers Clean." Book sent free by James
Scientific Books. See page 396. Catalogues free
E. \& F. N. Spon. 44 ,Murray Street, N. Y. Lubricator. See advt., Detroit Lubricator
Lubricator. See advt., Detroit Lubricator Co., p. 398,
See New American File Co.'s Advertisement, See New American File Co.'s Advertisement, p. 398.
Steam Pumps. See adv. Smith, Vaile \& Co., p. 398. Steam Pumps. See adv. Smith, Vaile \& Co., p. 398.
Engines, 10 to 50 horse power, complete, with governEngines, 10 to 50 horse power, complete, with govern-
or, $\$ 250$ to $\$ 550$. Satisfaction guaranteed. More than seven hundred in use. For circular add
Morris (Drawer 127), Baldwinsville, N. Y.
Brass Finishers' Turret Lathes, $131 / 1 \times 4, \$ 165$. Lodge, Barker \& Co., 189 Pearl St., Cincinnati, O
Important to Inventors.-The Anglo-American Paten Development Company, Limited, 28 Southampton Build prepared to receive applications from American Invent-
ors to develop (by manufacturing or otherwise) their inby Registered Letter to be forwarded, with $\$ 5.00$ U. s Currency. to covere expense of investigation, otherwise
applications cannot be considered. Inclose stamp for Prospectus of Company to
Kuhne. Bankers, New York.
Thomas Camp, of Covington, Georgia, General Agen for the sale of Portable steam Engines. has a trade of
$\$ 250,000$ per annum in that State. Manufacturers wil flnd this the best medium in the South through which
to sell such goods. None but first-class engines sold. to sell such goods. None but first-class engines sold
Best of reference given and required. Curtis Regulator, Float,and Expansion Trap. See p. 364 Woodwork'g Mach'y. Rollstone Mach. Co. Adv., p. 382. The Sweetland Chuck. See illus. adv., p. 382. Knives for Wood working Machinery.Bookbinders, an
Paper Mills. Taylor, Stiles \& Co., Riegelsville, N. J. Permanent Exposition.-Inventors' Instıtute, Cooper
Union, N.Y. City. Every facility for exhibition of machinery, merchandise, and inventions. Send for particulars. ©ope \& Maxwell M'f'g Co. 's Pump adv., page 366. For Mill Mach'y \& Mill Furnishing. see illus. adv. p. 364 . Wanted.-Patented articles or machinery to make
and introduce. Gaynor \& Fitzgerald, New Haven. Conn. To stop leaks in Boiler Tubes use Quinn's Paten
Ferrules. Address S. M. Co., So. Newmarket, N. H. Latest Improved Diamond Drills. Send for circula
to M. C. Sullock Mfg. Co., 80 to 88 Market St., Chicago, ul M. C. Bullock Mfg. Co., 80 to 88 Market St., Chicago, u .
To make Violins, write James Roblee, Syracuse, N. y Water purified for all purposes, from household sup-
plies to those of largest cities, by the improved filters plies to those of largest cities, by the improved filters
manufactured by the Newark Filtering Co., 177 Commanufactured by the N
merceSt.. Newark, N. J.
Assays and Analyses of ores and all commercial pro ducts. Advice given and investigations made in all
branches of chemical industry. Send for circular
N. Y. Assay Laboratory, 40 Broadway, New York.
Sheet and cast brass goods, experimental tools, and fine machinery. Estimates given when models are fur-
nished. H. C. Goodrich, 66 to 72 Ogden Place, Chicago.

Guild \& Garrison's Steam Pump Works, Brooklyn,
. Y. Steam Pumping Machinery of every descrip-
Improved Skinner Portable Engines. Erie, Pa.
$25^{\prime \prime}$ Lathes of the best design. G. A. Ohl \& Combination Roll and Rubber Co., 68 Warren stree First Cluss Engine Lathes, 20 inch swing, 8 foot be First Class Engine Lathes, 20 inch swing, 8 foot bed
ow ready. F. C.\& A.E. Rowland, New Haven, Conn. Ice Making Machines and Machines for Cooling Breweries, etc. Pictet Artificial Ice Co. (Limited),
Greenwich Street. P. O. Box 3083 , New York city. Steel Stamps and Pattern Letters. The best made. For Power \& Economy, Alcott's Turbine, Mt.Holly, N.J. For Power \& Economy, Alcott's Turbine, Mt.Holy, N.J.
Presses, Dies, Tools for working Sheet Metals, etc.

orks, Drinker St., P'hiladelphia.Pa.

Supplement Catalogue.-Persons in pursuit of information on any special engineering. mechanical, or scien-
tiffc subject, can have catalogue of contents of the Screntific amigrican supplement sent to them free. he SUPPL, MMENT contains lengthy articles embracing
he whole range of engineering, mechanics, and physihe whole range of engineering, mechanics, and physi-
al science. Address Munn \& Co.. Publishers, New York. Machinery for Light. Manufacturing, on band and
built to order. E. E. Garvin \& Co., 139 Center St., N. Y.

NEW BOOKS AND PUBLICATIONS.
Forty Years in Phrenology. By Nelson
Sizer. New York: Fowler \& Wells, Sizer. New York: Fow
12 mo , cloth, pp. 413,
$\$ 1.50$.
Mr . Sizer has brought together from the notes and ecollections of his long service as a phrenological lecturer and examiner two or three hundred anecdotes Illustrative of his varied experiences. Many of them
are amusing, and all of them are intended to enforce ome social or educational lesson, or to demonstrate the value of phrenology as a guide in the affairs of life. A brief review of the principles of phrenology are given at the end.
Electricity. By Robert M. Ferguson.
Revised and extended by James Blyth.
London and Edinburgh: W. \& R. Cbambers. 3 s . 6 d .
The additions to this new edition of Dr. Ferguson's well known work are intended to cover the more implications of electricity. The recently adopted units o lectrical measurement are given and explained, and also the leading mathematical formulx, so far as can
done without recourse to the higher mathematics.
Traits of Representative' Men. By
George W. Bungay. New York: Fow-
ler \& Weils.
The thirty or more representative men whose charac-
eristics and achievements are here very sketchily presented include prominent Americans chiefly, either
living or recently dead. For each character there is ven ing; the rest were so cut as to make them caricatures rather than of likenesses, and bad printing has intensified their wooden ugliness.
harles Darwin. London: Macmillan \& This latest addition to the Nature Series embraces the memorial notices of Darwin first printed in "Nature."
Professor Huxley furnishes an appreciative introductory notice of Darwin's life and work. Dr. Romanes discusses his life and character. Dr. Geikie reviews his work in its bearing on geology: Thistleton Dyer his
work in botany; Dr. Romaines his work in zoology and in psychology. An admirable portrait of Darwin, on Heroes of Science. By Prof. P. Martin Duncan. London: Society for Promoting
Christian Knowledge. New York: E. \& J. B. Young \& Co. 12 mo . $\$ 1.20$.

Evidently written to order, and remarkable rather for
avoiding than for dwelling upon those acts and opinions avoiding than for dwelling upon those acts and opinions of the characters named that showed any heroic quality. And there is a careful omission of all essentialy moders ork in the sciences-botany, zoology and geology-the
earlier development of which is reviewed. The heroic period of botany appears to have ended with De Candolle, of zoology with Cuvier, and of geology with the earlier work of Lyell. Nevertheless, so far as it goes, the
book is readable, and wonld make a valuable addition to any Sunday-school library.
The Complete Guide to Silk Culture.
By L. Capsadell, New York: W. B. Smith \& Co. 25 cents.
Those who think of experimenting in the reviving ar sidk culture will find this a handy and trustworthy tirely practical, and commendably free from extravagan promises of possible results. The author is an enthusiastic promoter of the new industry, but, while furnishing specific directions as to the treatment of silk worms and
their products, he is content to rest his case there, leavtheir products, he is content to rest his case there, leav-
ing the financial inducements to engage in the work to ing the financial inducements to engage in the work io
be offered by the publishers in the advertising pages In this, as in every other industry, the beginner should bear in mind that experience and practical skill have to be paid for, and that every new industry is apt to be at-
tended by many failures, losses, and disappointments. Monaco. United States Game Publishing News Company, Sole Agents.
This new game is played somewhat like checkers.
The pieces are numbered, and the value of each when taken is the product of its number by the number of its place in the column of the captured. It is fairly interesting as a game, and may be made useful in giving
young people a thorough, as well as diverting drill in young people a thorough, as well a
simple multiplication and addition.

The Still Hunter. By T. S. Van Dyke Published by Fords, How
New York. Price $\$ 2.00$.
Thisis unquestionably the best book ever published in this country on the art of still hunting, or deer stalking, and is written by one who evidently thoroughly understands the subject he treats. He has made a very men who potter away three months in a year in the inanities of watering places, when they might enjoy month or two of exhilarating sport and healnimul exerwant such a book to screw up their courage to go fort and hunt. It teaches how to hunt and where to hunt giving directions where they are needed, and wisely in dicating the circamstances in which a man's commo sense must be the teacher
Practical Microscopy. By George
Davis.
Illustrated. Philadelphia: J.
B Lippincott \& Co.
Though this excellent treatise has reached a second edition, it is substantially a new book to American mi croscopists. It is thoroughly practical and profusely
illustrated. The first half of the book contains little that is new, yet the chapters on staining and on reagen and recipes will be found suggestive and very useful The author's process for the double staining of vegeta ble sections is particularly good, and gives beautiful re
sults. The chapters on micro-photography are also sults. The chapters on micro-photography are also ex
cellent, being well illustrated and full of practical details. The test of every day use justifies a hearty recommen
scopists.
American Foundry Practice. By Thos. D. West. New York: John Wiley \& Sons. Embodies the series of practical articles on moulding
contributed by the author to the American Machinist during the past two years, describing American methods in moulding with loam, dry sand, and green sand, the management of cupolas, and the melting of iron. Mr West believes that to master bis trade the young moulder needs something more than the brute force required fo ramming sand; indeed, that there is no trade that call for greater intelligence, skiil, and care, than that of the moulder. The book is full of instruction for beginners
and contains many facts and suggestions that seem like'y to be of use to foundrymen of longer practice.
Gymastics of the Voice. By Oscar Gutt-
mann. Albany, N. Y.: Edgar S. Wermann. Albany, $\underset{\text { ner, }}{12 \mathrm{mo}}$, cloth, Y . 25.
Professor Guttmann's treatise, which has been befor more, has now been fuly illustrated and carefully vised, materially increasing its already eminent value. Its four parts treats respectively of the anatomy of the respiratory and vocal organs, the activity of these or elements of speech and song, and the art of breathing easily and effectively when speaking and singing. The
work shows not only how to train the vocal organs so as to attain strength, purity, and beauty of tone, but gives abundant anatomical, physiological, and hygieni

Madics Marries

HINTS TO CORRESPONDENTIS.
No attention will be paid to communcations unless
accompanied with the full name and address of the accomp
ven to ind addr
We renew our request that correspondents, in referring orme toe date of the paper and the bage, or enough th of the question.
Correspondents whose inquiries do not appear after
reasonable time should repeat them. If not then pub a reasonable time should repeat them. If not then pub-
lished, they may conclude that, for good reasons, the lished, they may conc
Editor declines them.
Persons desiring special information which is purely of a personal character, and not of general interest,
should remit from $\$ 1$ to $\$ 5$, according to the subject, as we cannol be expected to spend time and labor to obtain such information without remuneration.
andy referred to in these columns may be had at thi office. Price 10 cents each.
Correspondents sending samples of minerals, etc. Cabel their specimens so as to avoid error in their mark o cation.
(1) P. F. M. writes: Please decide a discusits on a telegraph winds of mine. A says that if a bird an electrical shock more or less intense, according to the state of the atmosphere and the strength of the cur rent passing through the wire. B says that the bird will that it is known in physics that a current always follows he best conductor. and that a body through which a charge is to be passed must form part of the circuit, consequently, he concludes that in the present case the bird will receive no shock, because it is a worse conducor than the wire, and because he thinks it forms no part of the circuit. A, without contradicting the alleged physical principies, argues that the living animal body s a good conductor of electricity, and that the momen it bird sits on a wire through whicha current is passing circuit part of that wire, and consequently part of the the known physical fact (which he quotes from Ganot's Physics) that, when two conducting bodies are in con act, one of which is electrified and the other in it
natural state, the electricity is comparted between the two in a relation proportional to the surfaces of the
bodies. Finally, A, to prove entirely his assertion, refers to the fact that there are always dead birds beneath the telegraph wires. I decided the discussion in favor of
A, but offered them both to get a decisionifrom you, and
expect to have it soon. A. Undoubtedly a small porexpect to have it soon. A. Und oubtedly a small por-
tion of the current passes through the bird, but not suf ficient to produce any noticeable effect. The bird, being comparatively poor conductor, forms a shunt of high
resistence to so much of the wire as is between his laws. The dead birds found in the vicinity of tele raph wires are killed by striking the wires during rapid light
(2) E. F. L. asks: 1. How fast can an ordinary engine be run without danger? Willit do to speed them up to 800 feet per minute? A. There are many ngines running to 800 feet per minute, but they must be carefully fitted and well balanced. 2. What would be revolutions and 400 revolutions, with the same amount of steam, say 90 pounds? A. If you double the speed of steam, say 90 pounds? A. If you double the speed
with the same pressure, the power will be doubled. 3. Is there any rule for the gearing up of machinery? For instance, I want to run a saw from a countershaft; does it matier how large or small the different pulleys are, so get the desired speed? A. The larger the pulleys, the arrower belt can be used. 4. Is there a book on the and where can it he had? A. There is no one book; the information is scattered through many books. 5 I se there was an engine run on some road last May by aphtia; what has become of it? Is it a success, and if o, why are they not put on the market? A. We believe
hat no naphtha engine has yet proved a success practically.
(3) S. S. asks: What is the best way of tinning malleable iron bright? I have seen some castings that were bright and smooth, others that were dark an tin bright and smooth without extra work of polish ing? A. You cannot tin malleable iron without clean ag it thoroughly in dilute muriatic acid; rinse in ho water, dip in bath of hot muriate of zinc and sal
moniac, then cautiously in a bath of melted tin.
(4) N. T. C. O. asks: 1. In what ratio does the diameter of copper wire stand to the force (in horse power) transmitted through it from a dynamo machine.
a. This depends, first, upon the kind of current used, a current of high potential not requiring as large a conductor as a current of low potential, and, second, upon the Whance through which the power is to be transmitted capable of being generated by a dynamo ${ }^{\text {a }}$ A. The limit, if there is one, has not yet been reached. 3. What is the actual percentage of useful power transmitted at a distance, say of a hundred miles from dynamo, or gene-
tal ratio of force and distance? A. See article "On the al ratio of force and distance? A. See article "On the ransmission of Work to a Great Distance on an OrdiIo Amencan 4 It proctically Ho American. 4. Is it practically possible to transmit, a distance of one hundred or more miles? A. Yes . What may be the approximate (primary and running cost of an engine capable of producing the effec tated in quesion 4? A. Correspond with some of the prominent manuacturs
(5) C. E. E. W. writes: I notice in your issue of Nov. 25, 1882. vou give in answer to question of
W. P. S. (No. 1,) in regard to arrangement of two call bells on one wire with open circuit batteries, a
plan in which one bell is cut out when the signal is plan in which one bell is cut out when the signal is
iven. Don't you think the arrangement shown in the given. Don't you think the arrangement shown in the arrangement you describe
you could not tell whether you could not tell whether
 the line was in working or tion, whereas by this plan the bell will ring when the
key is pressed down, in all cases, except when the line is out of order, when you
would know that there was not any signal made at dis.
tant station ine needed repairs. I should think W. P. S. would get ore satisfaction from this arrangement. [The plan bells, and may be adopted where the sound of the bellat he transmitting end of the wire is not objectionable. he extra bell increases the resistance of the circuit,
(b) A. writes: Will youn.-ED.]
(6) J. A. writes: Will you kindly inform me, through your Notes and Queries, how I can successfully finish smanl brass articles, such as tubing and thin rods? I am making a few fancy things just for
home decoration, and I succeed very well until I come the lacquering, and then, no matter how much pains I ave tamen to polish the brass, it is sure to look dirty
fter it is lacquered. Now, I want to get that beautiful Iter it is lacquered. Now, I want to get that beautifu
olden look that you see on lamp fittings, etc. Is it polden look that you see on lamp fittings, etc. Is
possible for me to do it with ordinary lacquer and a common kitchen stove, or is there any lacquer you can ell me of, better for the purpose than that I buy at the tore? A For lacquering bright brass work, use for our lacquer half a pint 95 per cent alcohol; one ounce eed lac, or. if not to be had, the same quantity clear hellac; half a drachm of dragon's blood; half a drachm turmeric; put all in a bottle, cork tight, and shake up
often for a few days, then let it scttle for a few days fen for a few days, then let it scttle for a few days
nd pour off the clear part for use. It is well to filter it Use a fine flat camel's hair brush of a size to work uickly with (say three-fourths of an inch to one inch wide). Warm your finished work in the oven or over a pirit lamp to about the temperature of 150°, and varnish quickly as possible, avoiding going over any part a second time. If upon a preliminary trial the lacquer
appears too thick or waxy, dilute with 95 per cent apears too thick or waxy
(7) N. C. S. writes: One of the receipts for making the gelatine printing pad includes "a little
soap." How much soap to a pound of gelatine, and A. Use oximary hard oap, 1 ounce to 1 pound.
(8) D. L. F. asks: What will prevent glyme kind of oil be mixed with it for this purpose? A. Nothing; no oil can be mixed with it that would
(9) R. R. W. writes: I am told by prac tical men and of experience that hardening tools in oil,
such as sledges, hammers, chisels, and picks, is proof against cracking. Please tell me the kind of oil used and the process of so doing. A. Much depends upo welding as to its final condition in hardening. Steel for sledges, hammers, and picks should be of low grade and not the highest for chisels. If careful attention is given to hardening at the very lowest heat possible, it will insurs freedomfrom cracks even with water. You ca harden at a higher heat with oil than with water wit safety and that gives a preference to oil with many. The best oil is "pure winter strained lard," althongh many compounds of lard, fish, and mineral oils are used for ing the article horizontally fast enough to free the surface of vapor bubbles, especially in hammers.
Minerals, etc.-Specimens have been re ceived from the following correspondents, and examined, with the results stated:
S. B. A.-A is quartz rock with mica. B is a chloritic gneiss, holding iron pyrites, and probably contains gol and silver. An assay of both would be advisable.-
J. E. G.-It is a very pure kaolin or china clay, and J. E. G.-It is a very pure kaolin or china clay, and very valuable to manufacturers of porcelain; its value
is about $\$ 10.00$ per ton in New York city.-J. L. - No. 1 is what is termed an ironsand, and composed of mag netite and menaccanite, garnet rock, and quartz. The
two first are black, the garnet yellow or red, and th quartz white. No. 2 is an ordinary micaceous clay of little value.-J. W. B.-A clay slate, holding iron pyrites, possibly containing gold or silver. An assay would be advisable.
communications received. A Sure Preventive of Chicken Cholera, by W. H. G.
Comet, by C. H. C. $\xlongequal[{\text { [OFFICIAL.] }}]{ }$

INDEX OF INVENTIONS

Letters Patent of the United States
Granted in the Week Ending
December 12, 1882,
AND EACH BEARING THATE DA'TE. [Those marked (r) are reissued patents.]

A printed copy of the specification and drawing of an . patent in the annexed list, also ot any patent issued
since 1866 , will be furnished from this office for 25 cents In ordering please state the number and date of the
patent desired and remit to Nunn \& Co., 261 Broad was. corner of Warren Street. New York city.
also furnish copies of patents granted prior to also furnish copies of patents granted prior to 1866
but at increased cost, as the specifcations, not being
printed, must be copied by hand.

Haworth..... 268,993	Electrical conductors, conduit for, J. K. McLaughlin..................................269,085, 29,1
rtising wayon, J. S. Goldsmith 269,045	Electrical locomotive, E. J. Molera
Air, compensating reservoir for compressed, C .	Elevator. See Hay
L. Beers.............................. 268,	Elevator indicator, hydraulic,
Lhaltum concrete mixer, Dorsett \& Ellacott... 269,	Engine. See G
uger, hollow. II. Beisheim............ 268,986	
vning, window, J. Willie........... 268,968	Fence, W. M. Butler
Axles, device for cutting metalic wagon, W. B.	Fence wire, machine
Carpenter................. 268,780	Filter, water, P. Abb
aling press, T. W. \& C. L. Ames........... 268,974	Filter, water,
Barber's chair, L. W. Boys... 268,992	Fire alarm signals, recordin
Barrel register, Muiller \& Mauser.................. 26	Dean \& whiting
Bath apparatus, vapor, E. Pond................... 268.9	Firearm sight, F. D
Bathing tub, portable, A. P. Browne.............. 268,8	Fire damp indicator, I. K
Bed lounge, P. Herbold, Jr	Fire escape, O. Sutph
Bell ringing, pneumatic, R. P. Ga	Fire escape, extension, P.
Bending machine, L. B. McNut	Fire extinguishing sprinkler,
Binder, temporary, J. L. Cassid	
Bit stock, A. H. Reid 26	Fireproof chest, J. H. N
Blind slat, S. E. Adamson.	Folding and reclining cbair
Blind slat adjuster, G. W. Springsted............. 268.835	Folding table, E. F. Bly
Boiler. See Steam boiler.	Foot coveringa manuf
Bolting chest, N. Cornelius........................ 269,0	Erame. See Drill f
Bone black kilns, discharge apparatus for coolers	Frame and plaque, comb
of, R. J. Barr	Fruit jar, e. Livermore
ot or shoe, J. R. Cancio	Fruit picker, L. Simkins
Boot or shoe, S. K. Hindley.......268,891 to 268,88	Fuel in cities. process of
Boot or shoe. W. Lyon.............. 269,077	buting liquid, Du M
Bottle stopper, J. B. Davids 268,872	Furnace door, H. Higgin
Bouquet holder and badge pin, combined, C. P. Jacobs. \qquad	Furnace raking attachment. A. H. Gauge. See Cutter head gauge.
x. See Packing	Galvanizing appliance, H
	Game.
	, apparatus for reg
Bracket. See Lamp bra	McLennan \& Ow
Brake. See Ca	Gas engine, K. Teichm
Brick die, G. F. Earhart............................ 268,87	Gas engine, H . Wiedli
Brick, method of and apparatus for making, J. C.	Gas fixture, extension, J. F
Anderson....... 268,976	s generating process and appara
Bridge guard, swing. G. E. Mörstad 269,093	
Brush boring machine, M. G. Imbach.... 268,798	Gas meter, P. E. Pe
Buckle, harness, F. Conway.	Ga
Buckle, suspender, S. A. Bostwick 268,788	H. M. \& J. S. Pierso
Buckle, trace, G. B. Northrup..................... 269,102	Gate. See Car platform gate. Railwa
Buildings, protecting apparatus for, Crowell \&	Girth, A. V. Smith
Dawson. \qquad	ass and crockery ware, screw thre
Burner. See Hydrocarbon burner. Vapor	articles of. W. H. Brunt Glass signs, manufacture of, T. B
Butter jar. Carey \& Cavanaugh....... 269,005	Grain binder, J, E. Buxton
Candle moulds, air distributer for, w. H. Haney.. 268.888	Grain binding machine, J.
Cane and picnic chair, combination walkng, H .	Grain decorticator, Mc
M. Houston 268,897	Grain drill. J. A. Carr
Canes, umbrella handles, etc., attachment to, F.	Grain separator, J. Brunne
G. \& B. C. Stidger 268,338	Grate, fire, P. Richards.
Capsule cutting machine, H. H. Taylor............ 268,961	Grinding mill hoppers, cover
Car attachment. street, C. De Staebler............ 269.161	Grubbing shears, P. Durham
Car brake, E. H. Brown...................... 288,998	Guard. See Bridge g
Car brake, H. F. Notbohm 269,103	Gun, composite, W. Palliser
Car brake, automatic, C. Van Dusen............... 269.142	Guns, mounting boat, Mason
Car coupling, J. Geddes.................... 268,7	Hame, E. G. Latta.
Car coupling, E. N. Gifford......................... 269,043	Hammock and cot, J. C. Do
Car coupling. F W. Kelly............ 268.955	Handle for knives, forks, etc.
Car coupling, Peace \& Sankey........ 269,106	Hanger. See Door hanger.
Car coupling, A. E. rooland......................... 268,83	Harrow, J. F. Lymburn
Car coupling, W. J Ross............ 268,829	Harrow, F. A. Mor
ar label holder, C.J. Slafter............. 268,834	Harrow and cultivator, sit
platform gate, A.	

Carburetor, A. W. Lacy....
Carpet lining, F. P. French
Carpet sweeper, I. B. Shute............. .
Carriage spring machine, Briggs \& Hess
Cash raiway G wile Cash railway, G. wiliett.
Chain carrier, G. Gowanai........................ 2626
chair. Window cleaning chair.
Berry
Chest. See Bolting chest. Fireproof chest. Cherry seeder, G. W. Knapp
Chimney, J. Browell........
Churn, N. Smith....
Churn, W. A. Wilson.......
 Clevis, C. F. Duling................
Clock, calendar, M. L. Jacquemin.
Clock movement, time and alarm, F. A. Lane. Clock stand, G. Hills
Clock, torsion pendulum, A. Harder....... Cock for steam engines, cylinder, E. E. Mueller.
Coffee compound or sustitute. A. \& M. Conroy.. Coke oven door, w. G. Merriman
omposite washer, C. A. Rodney
Billings.
Cooking vessel spoon holder, J. A. Hemsteger. Cooler. See Water cooler.
Corset, S. Heilner..................................... 268
Cot, folding, F. S. Martyny.............................
Cotton gin rib, J. M. Mitchell................
Coupling. See Car coupling. Harvester pitman Coupling. See Car coupling. Harvester pitm
coupling. Pipe coupling. Shaft coupling. Crane for clothes-lines, pulley, D. Sulnivan..........
Culinary utensil, E. J. Barlow.... ton.. ultivator, spring tooth sulky, C. La Dow utter. See Lozenge cutter.
utter head gauge, w. L. Dodge Delivery apparatus, L. C. Crowel Dental plugger, W. H. H. Hunter Desk, writing. J. J. Johrston.
Die. See Brick die. Thread cutting die. Difiusion apparatus. R. Sieg.........
Door and drawer plate, S. G. Howe. Door and dra wer plate, S.

Draught equalizer J W. \&

Draw bar spring, J. F. Collins...........................
Drawing, spinning, and twisting apparatus, F. W. $\underset{\text { Fox (r). }}{\text { Ded }}$
Dredging machine, H. B. Angell
Drill. See Grain drill.
Irill frame. Clark \& Lee.
Dumping platform, Savage \& Love
Dust and sewer trap, H. Pennie
Dust and sewer trap, H. Pennie
Eaves trough, C. R. Everson.
Edger, gang, C. White............................. Electric machine, dynamo, E. A. Sperry...........
Electric machines, armature for dynamo, F. Bain. Electric machines, armature for dynamo. A. B.
Electric motor for Geissler tubes, W. J. McCol Electrical locomotive, E. J. Molera............... .
Elevator. See Hay elevator.
Elevator Indicator, hydraulic, Schon \& Brown....
Engine. See Gas engine. Rag engine. Iraction Engine. See Gas engi
engine.
Fence, W. M. Butler..
Fence wire, machine for wi
Filter, water, P. Abbott...
Filter, water, J. W. Bailey.
fire alarm signals, recording instrument for,
Dean \& whiting.....
Firearm sight, F. De Lorme
Fire escape, o. Sutphen.

Folding and reclining chair, W. G. Sands.
Folding table, E. F. Blythe Folding table, E. F. Blythe
rame. See Drill frame.
Fruit jar, E. Livermore.
Fruit picker, L. Simkins
eel in cities. process of and apparatus for.distri
buting liquid, Du Motay \& Stern Furnace door, H. Higgins............... 2688899
urnace raking attachment. A. H. Lee......... 268,913
Galvanizing appliance, H. Cull..
McLennan \& Owe
Gas engine, K. Teichman
Gas engine, H. Wiedling...............
Gas fixture, extension, J. F. Brown.

Gas meter, P. E. Perez....................

H. M. \& J. S. Pierson......
Gate. See Car platform gate. Railway gate.

Glass and crockery ware, scr
articles of. W. H. Brunt
lass signs, manufacture of, T. B. Atterbury.
Grain binding machine, J. F. Gordon
Grain decorticator, McChe
Grain drill. J. A. Carr
Grain separator, J. Brunn
Grate, fire, P. Richards...
Grubbing shears, P. Durham
Gun, composite, W. Pallise
Hammock and cot, J.
Handle for knives, forks, etc., J. S. \& A. Ray
Hanger. See Door hanger.
Harrow, J. F. Lymburner.
Harrow, F. A. Morand.
Dow.........................
268,852
$.268,887$
268,887
2699707
269,069
003

269,025 266.019 688,900
 | 9.919 |
| :--- |
| 8.9057 |
| 8 |

\section*{| 268,949 |
| :--- |
| 269,058 |
 68,949}

68.943

269,039 269,127 268.995

 268,883| 68,910 | |
| :---: | :---: |
| 69,039 | |
| 127 | Har |
| 995 | Ha |
| 68,967 | Ha |
| 68,883 | |
| | |
| | |
| 268,988 | |
| | |
| | |
| 129 | |
| 268,969 | на |
| 268,960 | |
| | Ha |
| | |
| 268,785 | H |
| | |
| | |
| | |

mp, w. Sellers....... .. 268,882
to 268,845
0 052 Holder. See Bouquet holder. Car label holder

$$
\begin{aligned}
& \text { Horse tail holder. Lamp carbon holder. Pen- } \\
& \text { cil holder. Pillow sham holder. Sad iron }
\end{aligned}
$$

$$
\begin{aligned}
& \text { hll nol } \\
& \text { holder. } \\
& \text { Hook. }
\end{aligned}
$$

Horse power, A. G. Holbrook........................
Horse tail holder, H. W. King
Horseshoe nails, machine for making, H. E. \& E.

Hypodermic needle, A. W. Brinkerhof..............
Hypohydroscope, W. L. Trenholm.o.............
Indicator. See elevator indicator. Fire damp in-


```
Knife, I. S. & A. Ray....
```

Lamp bracket and mateh box, combined, J. Simp-
son.....................................
Lamp, electric.....................
Lamp, electric arc, C. M. Ball..
Lamp, electric arc, L. G. Woolley
Lamp carbon holder, electric. C. M. Ball
Lamp fixture, extension, D. W. Parker.
Lamp, miner's, J. Sawyer.

Latch, reversible, M. C. Nilles.......

Lock. See Padlock. Permutation lock. Sea
lock. Vehicle top lock.
Lumber assorter, F . McDonough
Lumber drying apparatus, A. Thalheimr
Mechanical movement, C. A. Wenborne
Mechanical movement, C. A. Wenborne
Medical compound, J. S. H. Whealton..
Medicinal compound,
Middlings detacher and granulator, C. Brown ...
Mill. See Rolling mill.
Mill. See Rolling mill.
Millstone dress, E. L. Conklin..
Millstone dress, E. L. Conklin.................269,0

Motor. See Electric motor.
Motor. See Electric motor.
Musical instrument, mechanical, o. H Arno,
268,979,
Musical instrument, mechanical, H. B. Morris....
Motor. See Electric motor.
Musical instrument, mechanical, o. E. Arno,
268,979,
Musical instrument, mechanical, H. B. Morris....

ton...
Daytonting and stamping machine, w. H.
Dayt.
Oats, process of and apparatus for hulling, G. H.

Cormack............
Oil pail, J. w. Collier.
Ore, process of and apparatus for the reductio
of iron, E. Tourangin...
Pack strap, C. Poirier......
Pack stap, C. Poirier...

Paper, etc...
letter, Ainery for edging or bordering
letter, ,.. Dachiner....
Parer, apple, A. Rippi
Parer, apple, A. Rippien........
Pencil holder, C. H. Hilliard..
Pencil holder, C. H. Hilliard..
Permutation lock, J. W. Saxon
Permutation lock, J. W. Saxon
Permutation lock, W. Streeter.
Permutation lock, W. Streeter
Permutation lock, W. W. Swet
I'icker. See Fruit picker.
Picker. See Fruit picke
Picker lag, J. N .
Picker lag, J. N. Jones............................
Picks, etc., machine for forming the eyes of, \mathbf{w}
Pillow sham holder, A. H. Phelps......................
Pipe junctions of cay, ett., machine for cutting
and fitting branches of, W. W. Stickney
Pipe coupling, T. B. Clatworthy
and fitting branches of,
Pipe coupling. T. B. Clatwor
Pipe coupling w. Martin
Pipe coupling, W. Martin.............................
Pipe, etc., machine for bending gas, J. C. Spring.
Pipe wrench. J. Lee......................
Planing mill feed roll, T. . Rodenboh
Planing mill feed roll, T. T. R. R
Planter, corn, F. W. Merritt.
Planter, corn, F. W. Merritt.
Planter, corn, A. Woodward.
Planter, corn, A. Woodwara.....
Platform. See Dumping platform
Plaw. D. Beets.....
Plow and pulverize
Plow and pulverizer. combine..................................
Plow, gang, C. D. Carter......
Plow, revolving, M. C. Niles.
Plow, subsoils. S. B. Dover..
Plow, wheel, F. C. Bryan...
Plow, wheel, F. C. Bryan..
Potter's lathe, H. Mishler
Potter's lathe, H. Mishler.
Power. See Horse powe
Power. See Horse power.
Preserved compound for mince pies, H. J. Allen.
Preserved compound for mince ples, H. J. Allen.
Press. See Baling press. Hay press.
Printing machine sheet delivering mechanism, L.

Printing machines, air
L. C. Crowell......
Proje

Shaft coupling, F. F. Landis.
Shears. See Grubbing shears.
Sheet delivery apparatus, L. Crowell............ 269.0
Shelf box, merchant's, B. F. Robinson........... 268,9
Shoe fastening, Morton \& Bennett..................
Shoe heel burnishing machine, Keighley \& Blais-2668,939
269,094
dell.........................
Signal. See Railwa signal.
Skinning knife, P. Brion....
Skinning knife, P. Brion..
Snap hook, F. A. Hake
Snap hook, F. A. Hake... 26999950
Sole edge trimmer, B. D. Boover................. 2688858
26888
Spoke trimming machine, A. Eckman.
Spring. See Draw bar spring. Vehicle spring.
Sprinkler. See Fire extinguishing sprinkler.
Sprinkler. See Fire extinguishing sprinkler.
Stamp mill speeding device, . . . Uton ..
Stand. See Clock stand. Sewing stand.
Star,963

Moths, mildew, etc., preserving furs, feathers,
 clothing, carpets, etc.. from, Stockman \& Duffin..........................

Stove heater attachment, N. J. গraham............ 2696,047
Stove, vapor, R. F. Danforth................. 268871
Stoves, cooking attachment for oil, M. E. Porter. 288,935
Strap,

ous, J. Newton............
Table. See Ironing table.
Table. See Ironing table.
Tap wrencl, F. Armstrong......
Telegraph for railways. w. . H

268,927268,978
2689796
269,124
,014
$\begin{aligned} & \text { Telegraph signal box, automatic, P. Seiler..... .. } \\ & \text { Telephone exchange, automatic, F. H. Snell..... } 26.124 \\ & \text { Telephone, mechanical, C. Egan } 2690\end{aligned}$
Tele.
1814
Telephone, mechanical, C. Egan................... 269,
269,061
268,997
score in, T. L. Jones........................ 2688.80
Thermometer, clinical, J. Barry............. 268.85
Thermometer, clinical, J. Barry...................... 268880.853
Thermostat coil, H. J. Haight $\ldots \ldots268,885$
Thrashing machine cleaning attachment. B.
hermostat coil, H. J. Haight 268,885
Thrashing machine cleaning attachment. B.
Chamberlain 269.157
Thread cutting die, F. Armstrong.... 269,153
Thread cutting die, F. Armstrong 269,15
Tie. See Necktie.
Tire. wagon wheel, G. D. Smith 269,12
Tire. wagon wheel, G. D. Smith 269,1
Toy, railway..J. D. F. Meier....... 268,9

Trap. See Dust and sewer trap. Sewer gas trap.
Trimmer. See Sole edge trimmer.
Trimmer. See Sole edge trim
Trough. See Eaves trough
Trough. See Eaves trough.
Truck for moving reapers, H. Clayton 268,867
Trumpet, ear, A. Macdonald.................... 269.078
Truss, T. Simmons......................... 268,951
Truss, T. Simmons........
Tub. See Bathing tub.
Tube expander. adjustable, N. G. McIntyre..

268,955	Tube expander. adjustable
269,107	Tube fagot, T.J. Deakin...

Tube fagot, T. J. Deakin......

Valve, globe, G. Reimann....
Valve, stop or gate, F. H. Treat.
Vapor burner, J. ह. Baker...
Vapor burner, J. R. B. B. Aker........
Vapor burner, I. D. McCormick.
Vapor burner, T. D. McCormick.
Vehicle spring, R. T. Bishop......
Vehicle spring, R. T. Bishop......
Vehicle spring, L. L odenhausen
Vehicle spring, L. Rodenhau
Vehicle spring. L. C. Wood..
Vehicle top lock.J. Wilson..
Velocipede. E. Lïdeke......
Vehicle top lock.J. Wilson
Velocipede. E. Lüdeke...........
Ventilating grain, etc., J. K. Stre
Velocipede. E. Lüdeke.............
Ventilating grain, etc.,. J. K. Street
Ventilation, W A.
Ventilation, W. A. Pitt
Vise. pipe, N. .w. Vandegrift
Vise. pipe, N. W. Vandegrift
W agon box, E. F. Chapman...
Wand
Wagon box, E. F. Chapman...
Wagon, road, S. D. Reynolds.
Wagon, road, S. D. Reynolds.
Wall paper, w. C. Walter.....
Washer. See Composite washer. 266989.1264
Wall paper, W. C. Walter............ 268.964
Washer. See Composite washer.
Washing machine, T. A.H. Cameron................ 269,155
Washing machine, J. P. Myers................... 269,095
Washing machine Z C. mith
Washing machine, J. P. Myers.
Washing machine. Z. C. Smith.
Watch movement box, W. A. G
Watch movement box, W. A. Gustafsson
Water cooler. H. S. Dimock............ ...
Water to houses, supplying, A. Campbell
Water to houses, supplying. A. Campbell .
Window cleaning chair, D. V. Howell.....
Window screen, adjustable, E. L. Lloyd...

Wire stretcher, O. M. Pond............................. 268,934
Wrench. See Pipe wrench
Tap wrench
Wrench. B. Do
Wrench, B. Dono
Wrench, J. Lee.
DESIGNS.

Chair, H. J. Schmeti
T'ype, font of printing, J. Graham
Type, font of printing, c. H. Beeler,
Type, font of printing, H. Ihlen bur TRADE MARKS.
Cigars, M. Strasser \& Co
Cigars, smoking and chewing tobaceo, cigarettes, and snuff, M. Strasser $\& \mathrm{Co}$
Hairpins, Kirby, Beard $\& \mathrm{Co}$ Hairpins, Kirby, Beard \& Co.....
Liniment, pile, Janes \& Tibbetts.
Liquors, malt, W. McEwan. Medical preparation, certain, A. H. Vordick Remedy for Bright's disease, H. H. Warne Works...

English Patents Issued to Americans. From November 21 to December 1, 1882, inclusive Breech-loading guns, W. Gardner. Hartford, Conn. Button fastener, J. Weidenmann et al., New York cit Button fastener, J. Mathison, Lynn, Mass. York city.
city.
Electric wire, R. S. Waring, Pittsburg, Pa.
Furnace and steam engine, V. W. Blanchat
解
Grain drier, F. W. Wiesebrock, New York city
Grain elevator, I. Smith, Kansas City, Mo.
Ladies' dress bodice forms, c. I. Haley, New Yor
Ladies' dress bodice forms, c. I. Haley, New York city.
Magnetic wearing apparel, S. A. B. Wilson
Magnetic wearing apparel, S. A. B. Wison,
Mass.
Mashing apparatus, N. Pigeon, New York
Motor, carbonic acid gas. A. G
Nail, W. Taylor, Pittsburg, Pa
Nail, w. Taylor,
Nalls, mane
Opera glass. W. Mack, Terre Haute, Ind.
Shears, G. s. Van Pelt, New York city.
Stone. artificlal. W. Matt et al.. New York cit
Sugar and cane shredders, J. Parker, New York city.
Telegraph, railway train, R. M. Hunter, Philadelphia,
Telephonic apparatus, J. H. Rogers, Washington, D.
Tongs, R. W. Turner, Boston, Mass.
Toys, J. N. Gifford, Jr., Fairhaven, Mass
Toys, J. N. Gifford, Jr.., Fairhaven, Mass.
Tramway. A. S. H.aladie. San Francisco, Ca
Wheels and axles for vehicles, B. N. Shelley, Anderson
Wheels a
Ind.
Wire, ma
addertiviments.
Inside Page, each insertion - - 7.5 centsa line.
Back Pare, each insertion - - $\$ 1.00$ a line
Engravings may head advertisem to line.
Engravings may head adver tisements at the same rate
per line by measurement. as the letter press. Adver
tisements must be reeceived at publication ofice as early
tisements must be reeeived at publication office as
as Thursday morning to appear in next issue.
fot RIIER COMFRESTION PUMPINGENGINE

Hot Air, for city or country resi- dencese where it is required to raise supply of water, It the most Pertect Pumping Mach ne in the market Its

 e run by any inexp erienced perso
Cond for catalogue a price list to
CAMMEYER \& SAY ER,

Plativum,
Scientific and Mechanical Purposes.
THE S. S. WHITP DENTAL MP'G CO.
 BOSTON, \qquad 13 and Tremont Stree $\left(\begin{array}{l}\text { SUPERIORITY PROVED } \\ \text { THE SIMPLEST\& BEST SEWINGMACHINE ISTHE } \\ \text { LIGHT-RUNNING }\end{array}\right.$

NEN HDNE

 fect in every particular. 200,000 sold yeatNEW HOME SEWING MACHINE CO., 30 Union Squares, N. Y.
Chicago, Ills., Orange, Mass., or Atlanta, Ga.
VALUABLE PATENTS FOR SALE. PAY interest in MARTIN BRICRK MACATE, No. M38,754, No. 150.065, issued to Henr W. C. McCLALLAN, Springfield, Mass.

THE BEST BAND SAWBLADE

 Machinists Tools. ThatThat hes, Plan Prs.
Urillis, to new haven banctargining

THE AMERICAN PEERLLESS DICTIONARY wo lnformation ne Everyhody.

 The above offer of H. C. Wilkinson \& Co., will not be made again to our readers, All should takeadvantage of it before it is too late. In
 ENGINEER AND MACHINIST.
 The New Baxter Patent Portable Steam Engine.

1 Horse Power, $\$ 150$.	$11 / 2$ Horse Power, $\$ 190$.
2 Horse Power, 245.	$21 / 2$ Horse Power,
275.	

 SPGA OFPR
 NEW YORK BELTING AND PACKING COMP'Y.

 Race veal

AUTOMATIC DAMPER REGULATORS AND WEICHTED GACE COCKS. In extensive and successful use by the best concerns in the country. They have no equals. Liberal discounts to
the trade. Send for Circulars and Price lists. MURRILL \& KEIZER, 28, 30 , 22 Holliday Street, Baltimore, Md

ICE MAKING MACHINES,

And Machines for Cooling Breweries, Pork Packing Establishments, Cold Storage Warehouses, Hospitals, etc. send for illuytrated and descriftive circulars.
PICTET ARTIFICIAL ICE CO. (Limited) P. O. Box.3083. 142 Greenwich St., New York City, N. Y. DUNTINENTAL WORKS, BROOKLYN, N. Y.

WATCHMAKERS.
 Model Angines,

VOLNEY W. MASON \& CO.
FRICTION PULLETS, CLUTCHES, and ELEVATORS,

DAAESNG
 LIFIRE -AND-VERMIN:PROOE
 U. S. MINERAL WOOL CO, 22 Courtandt St, No Y.

LARGE TOOLS WANTED.

STEMWINDING Perantation Loek

PATENTS.

MESSRS. MUNN \& CO., in connection with the pub-
lication of the :cirmstric American, continue to examine Improvements, and to act as Solicitors of Patents for \ln ventors.
In this line of business they have had thirty-five eare expertence, and now have unequalea fracilities for
the preparation of Patent Drawings, , ppecifications, and he prosecution of Applications for Patents in the United States, Cinada, and Foreign Countries. Messrs.
Mumn \& co. also attend to the preparation of Caveats, Coprrights for Books. Labels, Reissues, Assignments, and Reports on Infringements of Patens. All business
intrusted to them is done with special care and promptintrusted to them is done with special care and prompt-
nesss, on very reasonable terms. A pampheet sent free or charge, on application, con cure them; directions concerning Labels, Copyrights, Designs, Patents, Appeals, Reissues, Infringements, As-
signments, Rejected Cases, Hints on the Saie of Patents, etc.
We also send. free of charrge, a Synopsis of Foreign Patent Laws, showing the cost and method of securing patents in all the principal countries of the world.
MUNN $\&$ CO., Solicitors of Patents, 261 Broadway, New York. BRANCH OFFICE -Corner of F and 7th streets, Washingtnn, D. C.

ILLUSTRATIONS.

MISCELLANY, Figures preceded by a star (*) refer
to illustrated articles.

103

 - fitagit

Keely motor decen tion．．．．．．．．．．．． 1442 Key－ring，Melend Koch，Prof．，discovery disputed．． 419

－MrームームートHー

Haeckel，Prof．，in Ceylon

 Hailstone an s0－pound ．．．．Hail storms and forests
Hail storms in the South
 Handle attach for tititing chair
Handle．pant trumh，Smiths．．．．
Hanging，scientitic． Harmony Mills，Conoes
Hawes，Georg．
Hay－loader，Meader＇s． Health Associatation，American．．．．$*_{3} 30$
Health Association．Amer．Public
Heart Astrition Heart，nutrition or the
Hearto 10.
Heat，of dead man made in combustion．．．．．．．．．． Heat specificind latent．．．．．．
Heater sat iron，McDonalis
Heavens，starlit，gories of the

Hecker mills fire．

Heloderapa，experriments w．
Herrins and herring the．
 Hinges，how polished Hods，construction and use
Hog，pigmy，of Nepaul．
Hole，a microscopic． Hole，a microscopic．$\%$ of
Homeopath，progress of
Honey，preservation of．

 Horse－power，Brewer
Horses，feed ba for
Horses，hygiene for
Horses hyition im Horses，trotitine，impiroved yai．：．
Horseshoe，Fenleys．
Hot－ar en， Hot－ari engine，new，
House－f．
Houses，where it it breeds
Houses，new old－rashedy

 Hydroqen，sulphate．eruptions．．． 16
Hydrophobia，recovery from
How to cool ana
Howel and croze，Sessent．．．．．． 18

Mexico，railway progress．．．．．．．．${ }^{277}$ Mica． Mica face－mäsk
icroprismatic meth
as a curative ag
Milk and oil in disease．．．．．．．．．．． 357
can lock，Horton＇s．．．．．．．．．．＊361
on＇do
1 s ，Harm
Mills，Hecker．fire
Millstone，paint stuff，Davis＇s．．．． 2.21
Millstones，grit，Mowe Co ．．．．．．． 33
neral deposits，Mendoza．．．．．．． 129
ng cab
sissippl floods，theory of．．．．． 225
issippi，th
ouri，petroleum
treal scientitic meetings ${ }^{\text {and }}$
ment，Gartiela，exhib
Moon，an art ficial．．．．．．．．．．．． 10
Moon，Due
，
－hold
Morgue Paris，freezting bodies 308
ue， $\mathrm{Pa} \cdot \mathrm{s}$ ，improvements．${ }^{\text {a }}$ 34
imp
ther－of－p
Motion，the pho
tor and thra
Motor，electric，Jablochk off＇s ．．．＊34
Motor，rarefied air
Mountain，sliding，Oregon $\cdots \cdots{ }^{\text {a }}$ ，${ }^{2}$
Museum，Cent．Pk．，Amer．woods 309
Museum of hygiene，nat．．．
M ushroom，a vigorous ．．．．．．．．．．． 135
ts poison．．
N
al search el
tion，
ation，steam，lak
ether spray i
${ }^{\text {ia }}$ a oil peppermin
Nevada，Pliocene man in．．．．．．． 192
Ni

 Oaks，ancient English ．．．．．．．．．．．．
Observatory，Red Hous，impr．．
Observatory，Yile new

－w

SCROLL SAWYER

|ONLY CATARRH!

Many thousands fully believe they or their friends are being hurried toward the grave by that terrible disease Consumption, and are some of its many forms. We do not claim to cure Consumption, but fully believe from the results of our daily practice that we can save many who feel their case hopeless.

More Than 100,000 Die Every Year.
More than moo,ooo die annually from Consumption in these United States, and a careful classification has rerealed the starting fact that fully 50,000 of these cases were caused by Catarrh in the head, and had no known connection with hereditary causes. A large share of these cases might have been cured.

Danger Signals

Have you a cold in the heac. that does not get better? Have you an excessive secretion of mucus palate, or hawked or snussed backward to the throat? Are you troubled by hawking, spitting, weak
nd innlamed eyes, frequent soreness of the throat, ringing or roaring or other noise in the e more or less impairment of the hearing, loss of smell, memory impaired. or oulness or dizziness of the
hcad, dryness and heat of the nose? Have you lost ail sense of smell? Have you pain in the chest lungs, or bowr ls? Have you a hacking cough? Havc yuu dyspepsia? Have you liver complaint?
Is your breath foul? IF so, You Have Catarnh. Some have all these symptoms, others only a part.
greenish colored matter. As evcry breath drawn into the lungsmust pass over and become polluted by thesecretions in the asal passages, bit must necessarily follow that poisoning of the whole system gradually takes place
while the morbid matter that is swallowed during sleep passes into the stomach, enfeebles digestion

Catarrh Is A Dangerous Disease,

and should not be trifled with; care should be taken to look for the first indications, and cure them promptly. If your case is a bad one, affecting the throat and Bronchial tubes, producing tickling, coughing, and an almost constant effort to clear the passages, with tough, vile phlegm in the
glottis on getting up in the morning, which is hard to eject, and other glottis on getting up in the morning, which is hard to eject, and other
plain symptoms that the disease is stealing into the lungs, it should be attended to promptly and thoroughly.
$10 \begin{aligned} & \text { Catarrhal cases have applied to me for relief. Many thousands have received } \\ & \text { my specific, and are cured. We deem it only fair that every one who wishes } \\ & \text { should have the opportunity to ascertain whether we are able to accomplish } \\ & \text { all that we claim; and for this purpose we add a fow of the }\end{aligned}$ should have the opportunity to ascertain whether we are able to accomplish espond to themselves, they doubtless will be willing to let the afficted know why postage they can find certain boen rele ef.
We have thousands of these certificates from all classes-physicians, clergymen, lawyers, judges, rs, and business men.

I write to tell youthatI Iam per fectly cured of Catarrh.
Your treatment has cured my daughter of Catarrh
induese by a severeattack of measles. My health is fully restored. The horrid and loathsome
disease is all gone. My lungs feel all right.
MRS. W. D. LINCOL
Your treatment did me great good. I have not lost a I am glad to say that I found your medicine all that I am glad to say that I found your medicine all that
can be claimed for it. I am full restored.
J. H . SIGFRIED, Pottsville, Pa. Your treatment cured me; your inhalers are excel-
lent. Thisisthe int radical curre have rever found.
E. S. MARTII, Pastor M. E. Church, Port Carbon, Pa. I am so far recovered that I am able to attend church,
can walk half a mile. HRave amooa apeetite; an gaining
all the time.
Mrs. A. NUNGRR, Detroit, Mich.
 It affords me great pleasure to notify you that I have,
as 1 sincerely believe, entirely recovered from that
lathsome disease, catarrh, through your very b neflicial B. BENEDICT, Baltimore, Md.
treatment. MI Mrant is now so well restored that ti can lecture
daily without any difficulty, and flind no difficulty whatver in preaching E. B. FAIRCHILD, D.D., LL.D..

My wife continues in the best of health, and has no
cough. It it with rreat plaasure we are able to recon--
mend so wonderful a medicie as yours has proved to be
tens
to us.
Between nine and ten years ago, spring afili, Masted with
Catarh, persisting in its use some months, was completely cured
and have had no return of the disease
A. J. STILL, Pattenburg, N. J.

I was terribly afflicted with nasal and bronchial Ca-
tarrh, and concluded to give your treatment atest. In
a short time it cured me. I induced my brother to try More than a year ago I used your Catarrh remedies,
with almost nntold beneft to myself. I prize your reme
dies more than I can tell you. MRS. E. P. HOOKER, Defiance, O.
Your wonderful remedy has, by close application
cured a most stubbon case. Yourtrears trunt has proved a complete surna, Tenn.
case; the dinease hay troubled me for about fifteen
yen Mr. Z. Z. LEE, of Grangeville, St. Helena Par., La,
writes: I cannot speakto highy in praise of Pour valu
whit able remedies, which act tilike a charm in in oryyeving the
athsome disease for which they are recommended. I have been permanently cured of Catarrh in th
head by the use of your Catarr rh secific. I wil anse
aill letters addressed to me in regard to this subject.
Yours with thanks.
 You may use my name as a reference, as I have be
cured by your treatment. II shall be pleased to answ
any inguires in rearat to yours rurur remedies.
HARRY TRUESDELL, Rock Dale Mills, Mass.
 Yours truly $\begin{aligned} & \text { B. } \mathrm{D} \text {. DUNKIN, Carroll, Ind. } \\ & \text {. }\end{aligned}$
 recom mend your remedies to all we hear saying they
have Catarry.
entiously, for we know of it what we speask. and consci-

Childs' Catarrh Specific

Will effectually and permanently cure any case of Catarrh, no matter how des-
perate. The treatmentis 10 cal as well as constitutional, and can only be obtained at Troy, ohio. We especially desire to treat those who have tried other remedies

Childs' Treatment for Catarrh, and for diseases of the Bronchial Tubes, can be taken at home
with perfect ease and safety, by the patient. No expense need be entailed beyond the cost of the medicine. A full state.nent of method of home treatment and cost will be sent nn application.
say you saw this in SCIENTIFIC AMERICAN. Address REV. T. P. CHILDS, Troy, Ohio.

FOSTITIVE BIASTH
REVOLVERS, PERFECTLY BALANCED Has Fewer Parts than any other Blower. P. H. \& F. M. ROOTS, Manufacturers,
 \& CO., Selling Agts. 8 D
INEVURKK.

> SNEWV YORER-

 ROOFINC.

CONSUMPTION.

DROP RORMDNGS Oi RoM

 TELEPHONES!

ARTISTIC HOMES. And

To Electro-Platers. THE VICTOR DYNAMO PLATING MACHINES.

MACHINISTS' TOOLS, IRON PLANERS A SPECIALTY.

WITHERBX, RUGG \& RICHARDSON. Manufacturers
of Patent Wood Working Machinery of every descrip

WANTED. A Superintendent for a White Lead Factory, In a Western city. Applications, with full particulars of

Watar Flevators

H.W.JOHIS asesmas ASBESTOS TROPE PACKING, ASBESTOS SHEASTHINGST PACKING, ASBESTOS SHEATHINGA,
ASBESTOS GASKE'S,
ASBESTOS BUILD

SBESTOSGASKE'S,
ASBESTOS BUILDING FELT.
 87 Maiden Lane, New York,
Sole Manufacturers of $\mathrm{H} . \mathrm{W}$. Johns' Genuine
 escriptive price lists and samples free

Stevens' Roller Mills, GRADUAL REDUCTION OF GRAIN.

COLUMBIA Bicycles.

S97 Washington sireet Mre insane,

$\frac{\text { ur ratalogue. The John wikkinson } \text { co., } 27 \text { state st. } \text { shicago. }}{\text { Betahld }}$ Solid CAST STEEL Face and Horn. Are Fully WarSolid CASTSTEEL Face and H
ranted. Retail Price, 10 cts. per 1 l
 MACHINERY

 JENKINS PATENT NALV

4. They canbe repaired by any mechanic in a f few minutes.
 The Jenkins Disk used in these Valves is manufactured under our 1880 Patent, and will
stand 200 lb. steam. Simple orraers solicited. All Valves sold by us re warranted and are
stamped stamped. Street, New York.
WIREROPE THE WIRE ROPE, BRIDGE CABLES, SHIP RIGGING Tramway Rojes, Champion Barbed Wire, etc, Office and Works:
WILKESBARRE, PA. $\}$ price list.

ELECTRIC POWER.
 The Double Induction Motor and Auto- matic Tattery (imitation wallut case),

 Where, wigh power is is required for driving
Wewelers' lathes. other small lathes, dental and jewelers' lathes. other small lathes, dcntal and
surgical tools, jig saws, etc., this apparatus is
unexcelled.
 THE ELECTRO-DYNAMIC CO.,
Philadelphia,
Pa

ERICSSON'S

Neer Calicic Puninige Minine
DWELLINGS AND COUNTRY SEATS. Simplest cheapest, and most economical pumping engine
for omestic purboses. An yservant girl can operate.
Absolutely safe. Send for circulars and price lists. DELAMATER IRON WORKS C. H. Delamatere \& co, proprietors,
No. 10 Cortlandl Street, New York, N. \mathbf{y}.

NATIONAL STEEL TUBE CLEANER.

For cleaning Boiler Tubes. Saves its cost every time
is used ; indorsed by best Engineers. Asbest os Materials, Fiber, Millboard,
Packing, and Cement. Address CHALMERS SPENCE COMPANY,

HA ORIRİN and ónly builder of the
With Harris' pratented Improvements,
from 10 to 1,000 H.

(2)
 \section*{FOR 1883.}

The Most Popular Scientific Paper in the World. ESTABLISHED 1846.
C Ciroulation Larger than all Papers of its Class Combined.
Only $\$ 3.20$ a year, including postage to United States and Canada. $\$ 4$ a year, including postage to all countries in the Postal Union.

This widely circulated and splendidly illustrated paper is published weekly. Everynumber contains six-
teen pages of use ful inforuation and al large number of original engravins of new inventions and disoveries

 The safest way to remitis by Postal Order. Draft, or Express. Money carefully placed inside of envelopes
securely seale., and correcty adressed seldom goes astray, but is at the sender's risk. Address all letters and
make all orders, drafts, etc., payable to

MUNN \& CO., 261 Broadway, New York.

HARTFORD
STEAM BOILER
Inspection \& Insurance COMPANY.
W. B. FRANKLIN,V. Pres't. J. It. ALLIEN, Pres't. J. B. PIERCL. Sec'y.

Steel Castings

THETHEOUESEBWATCH CASE

SPEAKING TELEPHONES.
 Alexander Graham Bell's patent of March 7, 1876,
owned by this company,
including Microphones or ors Cavery including Microphones or Carbon Telephones, in which
the voice of the speaker causes electrtic undulations
corresponding to the ords soken, and which articula-
tions produce similar articulate sounds at the receiver.

 This company also owns and controls all the oth
telephonic inventions of Bell, Edison, Berliner, Gray
Blake Mhelps, G atson. and others.
 All telephones obtained ex exp from this company or
its authorizers licensees. are infringements, and thi
makers. sellers. and users will be proceeded against. makers. sellers, and users will be procee
maformation furnished upon applicati
Address all communications to the Address all communications to the
AIVIERICAN IBEAN TELEPHOXE COMPANY
95 Milk Street, Bost on, Mass.

MACICIANIERINS

 THE SEBEERT CYLINOER OIL CUP CO.,

THE SEIBERT CYLINDER OIL CUP CO.,
50 Elegant Genuine Chromo Cards, no two alike, RDCK DRILLS \& AIR BOMPRESSORS.
1 PARKPRSOLL ROCK DRILL CO FOAK. PRRTMTLTNG TMTKG: $\left\{\begin{array}{l}\text { THE "Scientific American", is printed with CHAS. } \\ \text { Bard Sts. Phila., and } 47 \text { Rose St., opp. Duane St., N. } \mathrm{S} \text {. }\end{array}\right.$

