

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION. ART. SCIENCE. MECHANICS, CHEMISTRY AND MANUFACTURES.
Vol. XLV1I.-NO. 25.
NEW YORK, DECEMBER 16, 1882. $\left[\begin{array}{c}\text { \$3.20 } \\ \text { [POSTAGE } \\ \text { PerAnEPAMD. }\end{array}\right]$

Fig. 1.-PICTET ICE MAKING MACHINE (25 tons per diem) AT LOUISVILLE KY.

Fig. 2.-PICTET REFRIGERATION MACHINERY AT ARMOUR \& CO.'S PORK PACKING ESTABLISHMENT CHICAGO.-[See page 386.]

Sinntifu gmprum.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 261 BROADWAY, NEW YORK.
o. D. MUNN.
A. e. BEACH.

TELEMS FOR THE SCIENTIFIC AMERICAN.

 One copy, one year postage included...One copy, six months postage included
Clubs.-One extra copy of The Scientific Am Erichan will be supplied gratis for every club of five subscribers at $\$ 3.20$ each : additional copies at same proportionate rate. Postage prepaid.
Remit by postal order. Address
emit by postal order. Addres

The Scientific American Supplement

is a distinct paper from the Scientific american. THE SUPPLEMENT is issued weekly. Every number contains 16 octavo pages, uniform in size with Scieniticic American. Terms of subscription for Supplement, \$5.00 a year, postage paid, to subscribers. Single copies, 10 cents. Sold by
all news dealers throughout the country all news dealers throughout the country
will be sent for one year postage tree. on receipt of seven dollars. Both papers to one address or different addresses as desired. The safest way to remit is bv draft, postal order, or registered letter.
Address MUNN \& CO . 261 Broadway, corner of Warren street, New York.

Scientific American Export Edition.

 The Sciwntific Ambrican Export Edition is a large and splendid periodical, issued once a month. Each number cGntains about nne hundredlarge quarto pages, profusely illustrated, embracing: large quarto pages, profusely illustrated, embracing: (1.) Most of the
plates and pages of the four preceding weekly issues of the ScIeNTIFIC AM:RICAN, with its splendid engravings and valuable information : (2) Commercial, trade, and manufacturing announcements of leading houses. Terms for Export Edition, 85.00 a year, sent prepaid to any part of the
world. Single copies 50 cents. Manufacturers and others who desire world. Single copies 50 cents. Manutacturers and others who desire
to secure foreign trade may have large. and handsomely displayed announcements publistied in this edition at a very moderate cost. The SCIENTIFIC AM ELHCAN Exiort Edition has a large gaarianteed circulation in all commercial places throughout the world. Address MUNN \&
co., 261 Broadway, corner of Warren street, New York.

NEW YORK, SATURDAY, DECEMBER 16, 1882.

Contenis.	
(Illustrated articles are marked with an asterisk.)	
Californ	
	Making glass, improvements in.: ${ }^{390}$
imal tag, novel* ${ }^{\text {a }}$............	Metal Cæsium................... 391
Beetle, harlequin, of Cayenne*..	Mother
ulph. carbon	
coupling,	
践 of offspring in animals*	ts, pract
Cooling breweries, refriceration**386	Pictet ice machin
ton centennial, pros	Pillow-shamhold
rious nesting	Pla
estibility	Railway enterprise, fie
inage and typhoid i	Recent finds in
ctric boat	Refrigeration
ineeri	Ribwon reel
at lake in Africa, an	Saw mililim
Harlequin beetle Caye	Statue of the
nstructio	Stinging
an footorin	Temperi
	Venus, the transit of............. ${ }^{384}$
ention a means of edutation. ${ }^{385}$	Watch tra
Jacobi's electric boat, engin	Woodeock carrying her young*..

TABLE OF CONTENTS OF
THE SCIENTIFIC AMERICAN SUPPLEMENT
No. 363,
For the Week ending December 16, 1882. Price 10 cents. For sale by all newsdealers
I. ENGINEERING AND MECHANICS.-The New York Canals.-

III. ELECTRICTTY, ETC. Sir William Thomson's..................

VIII. HYGIENE AND MEDICINE.-Remedy for Sick Headache.....
LX. ORNITHOLOGY.-Sparrows in the United States. -Effects of ac-

The sky was overcast throughout a great part of the United States on the morning of December 6; and, as a rule, the atmospheric conditions during the time of the transit were not favorable for continuous and exact observation. Yet there were but few places at which no observations of value were possible, while at most of the stations enough was accomplished to make the watching astronomers fairly well pleased with the results of their day's work.
In this city the observations were fairly good after the first contact, which was missed, until toward the end of the transit, when the sky became overcast again.
At the Naval Observatory, Washington, all four contacts were observed with the twenty-six equatorial, the first and last contacts through thin clouds. The sun was obscured during the middle of the day, yet a number of good meas urements of the diameter of Venus were secured. No black drop or other extraordinary phenomenon was observed, ex cept by Superintendent Sampso
fifty photographs were secured.
At Princeton, Professor You
At Princeton, Professor Young observed all four contacts, partly through thin clouds, but on the whole satisfactorily, and took one hundred and eighty-eight photographs, mostly excellent; some were affected by clouds. Complete measures of the diameter of Venus were obtained by both inlar and double image micrometers. Spectroscopic examination of the planet's atmosphere showed lines of water vapor conspicuous, and some unknown lines.
At the Allegheny Observatory, Pittsburg, Professor Lang ley's observations were only partially successful. Clouds prevented exact determinations of contacts and all photo metric and spectroscopical work. He noticed a curious and novel phenomenon as the planet was entering upon the solar disk. When Venus had about one half entered on the sun's face, a tolerably bright point of light was seen near the circumference of the dark body of the planet outside the sun, and where no direct ray of sunlight could reach it. The position angle of the center of the bright spot was about 172 degrees, and it extended for something like 30 degrees along the planet's limb. It was luminous and distinct, and, Professor Langley thinks, was certainly not a phenomenon of irradiation, nor due to any instrumental cause, but what it
physical signification is he could not conjecture. It was ob physicd with the great equatorial and a mifying was ob 244, used with the polarizing eyepiece by Professor Lang. ley, but was seen also and quite independently by his assistant, Mr. J. E. Keeler, with a very much smaller telescope and a power of 80 .
Observers in other places noticed light spots in the surface of Venus, some suspecting them to be snow-fields.
The observations of Professor Eastman, at Cedar Keys, Florida, were quite successful, though the first contact was lost by the intervention of a clond. The second contact was abtained very well; no black drop or ligament was seen,
and the limbs of Venus and the sun were very steady. The sky was mostly clear from 11 o'clock to 1 h .40 m . One hundred and fifty photographs were taken with dry plates and thirty with wet plates, all good. The third and fourth contacts were very well seen, with noblack drop.
The observations made at Yale College were much impaired by clouds. Professor Waldo reports over one hundred and fifty photographs, showing the full sun with a reference line from a horizontal mercurial surface photo graphed at the same time. The heliometer observations were particularly successful, and the definition of the sun in spite of the clouds was such as enabled the atmosphere of Venus to be clearly visible in the heliometer, and the silvery aspect which this atmosphere assumed between the third and fourth contacts was clearly discerned.
Considerable good work was done at Cambridge Observa ory. The German astronomers at Hartford, Conn., secured eight sets of observations with the heliometer. The German party at Aiken, S. C., were less fortunate. The French observers at St. Augustine, Fla., bad a clear day. All the contacts weie perfectly taken, two hundred photographs were secured, and many micrometrical observations were made. Professor Asaph Hall and the Belgian party at San Antonio, Texas, missed the first two contacts, owing to clouds. The last pair were taken perfectly, no black drop or point of any kind being seen. Professor Houzeau ob tained, in addition to these contacts, one hundred and twentyfive measurements. Professors Hall and Woodward got over two hundred good photographs.
At the Licik Observatory, Monnt Hamilton, Colo., the day was splendidly clear, and many photographs were taken.
The European observers were generally thwarted by bad Town Favorable observations are reported from Cape
Professor Davidson's party in New Mexico were favored
with a clear sky and steady atmosphere. The contacts were clearly observed. Two hundred and sixteen excellent photographs were obtained, and a la? je number of measurements were made with great precision. Indeed, not a single item in the long programme of the day's work was missed. At nearly all the Mexican stations the weather was good. The observations of the French Commission in Puebla were entirely satisfactory.
Favorable reports are also made by observers in the West Indies and Central America. At Melbourne, AusQueensland and observations were made, but observers in can partyat Wellington, New Zealand, took two hundred and thirty-six photographs.

the great statue of liberty.

A large and enthusiastic meeting was held in this city November 28, to promote the subscription for the pedestal of Bartholdi's "Liberty Enlightening the World," to be presented to the United States by the French nation and rected on Bedloe's Island, New York Harbor. A number of addresses were made by prominent citizens.
The chairman of the committee having in charge the colection of money for the pedestal, Hon. Wm. M. Evarts, after reviewing the circumstances under which the project was started in our Centennial year, said that a communication had just been received from the Committee of the Franco-American Union describing the popularity of the project in France. As early as the year 1881 the euterprise had been indorsed by 181 towns in France, acting through their municipal council, by 40 general councils of as many provinces, by all the chambers of commerce of the great cities of the republic, and by 100,000 individual subscribers. The statue will probably be ready for transportation next summer.
Touching the magnitude of the proposed monument, Mr. varts said:
The simple statue will be, from the plinth to the top of the torch, 145 feet in height. From the water level up to the highest point in the span of the Brooklyn Bridge is but 135 feet-10 feet less than this truly colossal statue. The dimensions of the plinth, the space occupied by the feet and drapery of the figure, is 40 feet square-as large as a house. It is fitting that so noble a monument of skill and industry, so generous a contribution, should be framed as a munifi cent gift from the French people, as one of the great evidences that the great international relations of value and importance between great countries are no longer maintained by courts and cabinets, but spring out of the intermingling pulses of the people.
The great Colossus of Rhodes, known in its time as the eventh wonder of the world, was erected to show the gratitude of the Rhodians to the Egyptian king who was heir ally in war when their liberties were threatened by the King of Macedon. They were a small people, inhabiting an island of but 450 square miles, but that great work of theirs was erected at a cost of 300 talents, of the value then of beween $\$ 400,000$ and $\$ 500,000$. It was but 105 feet high. This statue of Liberty Enligbtening the World will be 14. feet high, upreared upon a pedestal of equal height, and will be, not the seventh wonder of the world, for the wonder of the world are never ceasing in number, but will be the wonder of the world as much greater than the Colossus of Rhodes as the world now, of which it will be the wonder, is greater than the world of the Mediterranean Sea in classic times. The largest modern statue is the one near Lake Maggiore, in Italy, erected to the great Cluristian saint, Charles Borromeo, which, upon a pedestal 40 feet in heiglt, is in itself 66 feet high. Nothing in the history of the world has approached the greatness of this statue of Liberty. Our genius did not conceive so great a statue; our art and our munificence have not contributed to its production. This great free gift we are simply called upon to receive, to place upon a perpetual site under the perpetual care provided by the Government of the United States, on a pedestal that comports in dignity and in solidity with the statue it is to bear up, and which shall comport with the wealth and the numbers of these great cities and this great country, and show our appreciation of the debt we can never repay to France, and which she simply adds to by this magnificentgift. The umbers of those who will come hither to see the light of his commemorative statue no man can count, and they shall not cease coming until liberty itself shall have ceased to enlighten the world, nor until this home of the free shall cease o attract the footsteps of the multitudes that seek this shrine and this safety for their love and exercise of liberty.
All the conditions of our acceptance of this great concepion and great execution are already fixed. The French have spent $\$ 250,000$ upon the statue, and the best compuation, without unnecessary expense, fixes the cost of the pedestal at $\$ 200,000$ to $\$ 250,000$.

the proposed cotton centennial.

The great success of the cotton fair at Atlanta, and the resulting advantages to the colton growing States, have led to a still more ambitious project, which the South ought not to allow to fail. It is nothing less than a World's Fair in commemoration of the hundredth year of the cotton industry of this country. The first shipment of American cotton across the Atlantic was made in 1784, when eight bags were sent to England, where the cotton was seized by the cust,ms officers on the groưd that it could not have been grown in the United States, and was therefore liable to seizure under the shipping acts as not imported in a vessel belonging to the country of its growth.
The National Cotton Planters' Association of America are esponsible for the proposition and the choice of date for holding the fair, and are now waiting to see which of the commercial cities of the South will subscribe the half million dollars for the choice of location. In a recent press communication the President of the Association, Mr. F. C. Morehead, says:

It is proposed to raise not less than $\$ 2,500,000$, one-fifth of which, at least, will be required as a subscription from the city securing the exposition. Every kind of machinery used in the manufacture of cotton is expected to be exhibited in motion and at work just as in the factory. The utmost importance will be attached to exhibits of improved
plantation machinery and agricultural implements, and special inducements will be offered with a view to placing before the planters and farmers the most approved appliances for successful diversified farming, the encouragement and stimulation of which is one of the chief missions of the National Cotton Planters' Association and one of the chief benefits hoped to be derived from the proposed exposition."

Under proper direction such an exhibition could not easily fail to be popularly successful and of great benefit all around. Though the chief benefit would accrue to the cotton growing States, the cotton manufacturers, machine builders, and makers of agricultural implements and machinery throughout the country would share in the general profit.
The South is to be the region of the greatest natural and industrial development during the rext two or three decades; and nothing is better calculated to hasten such development than the demonstration of the capacities, needs, and possibilitjes of the Southern States by means of great popular expositions of their resources and requirements.

the transit of venus as seen at the seagrave OBSERVATORY.

The transit of Venus on December 6 was as successfully observed as the clouds would permit at Mr. F. F. Seagrave's private observatory in Providence, Rhode Island. The telescope is a fine instrument of eight and a quarter inches aperture, made and equatorially mounted by Messrs. Alvan Clark \& Son, of Cambridgeport. The observatory is of the first order, including every kind of apparatus that will furnish aid in astronomical research. The owner of the observatory is a young man, endowed with a natural taste for astronomy, zealous and untiring in the investigation of the science, and possessing ample facilities for the pursuit of his favorite study.

The contact and photographic methods were used in the The contact and photographic met
observations made during the transit.
The polar and equatorial diameters of the planet were measured by means of a double-image micrometer. The contacts and general course of the planet were observed by Mr. Seagrave through the large telescope in the observatory, the aperture having been diaphragmed or cut down to three inches to make it available.
A small building erected for the purpose was devoted to the photographic work in charge of skillful operators. An able assistant had charge of the three-inch telescope, stationed in the open air, and used for the micrometrical mea surements of the planet's diameters.
The observing party was promptly on hand to commence work as soon as the sun should appear. A few minutes before the time for the momentous event of the day, the great luminary burst forth from the encompassing clouds and shone from a clear sky. But at the critical moment, a dark cloud flitted over his face, and the first external contact was lost. When the cloud passed, Venus had made the entering notch and was partially on the sun's disk, the view being unimpeded until she was entirely on his face and had made her first internal contact, the observed time differing a minute and three-quarters from the predicted time. This aspect was very satisfactory, for Venus left the sun's border without any appearance of the connecting ligament known as the "black drop," while the film of light surrounding her proved the existence of an atmosphere beyond dispute. As the transit progressed, the sky was by turns clear and obscure until 2 o'clock, when the clouds became masters of the situation, and the scientific work virtually ended, though glimpses of the planet were occasionally obtained as she reached the second internal contact, and finally, arriving at second external contact, made ber exit into the immensity of space, where she was lost to view. Every moment of clear sunshine was improved in photographing the sun with the planet on his disk, and twenty-three excellent pictures were
the result. Several measurements of the planet's polar and the result. Several measurements of the planet's polar and
equatorial diameters were made, which are yet to be reduced. Thus the Seagrave observatory contributed its share io swell the roll of observations that must be multiplied like grains of sand upon the seashore before certainty can be reached. It is probably the last time that so much scientific stress will be laid upon a transit of Venus. For before the stress will be laid upon a transit of Venus. For before the
next one, in 2004, we have faith to believe that other and next one, in 2004, we have faith to believe that other and
more accurate methods will be found for computing the sun's more acc
Independent of the scientific work accomplished, there was the highest kind of enjoyment in watching the grand phenomenon itself. Through the large telescope, Venus moon, and crowned with a film of light. She filled nearly the whole field of vision, only a small portion of the sun being visible outside of her, and this was paled into bluish white light, by the colored eye-piece that alone made it possible to behold the solar brightuess. Through a threeinch telescope the aspect, though not so wonderful, was far
more interesting. Here she looked as large as a ball that more interesting. Here she looked as large as a ball that
children play with, black as ink, moving serenely over the children play with, black as ink, moving serenely over the
sun's disk, the whole lower limb of the sun being easily brought into the field of vision. Through smoked glass, the eye could just discern the planet passing like the head of a eye could just discern the plack pin over the sun's face.
The view in the small telescope was the most suggestive of the whole. Here, apparently, is a little black ball easily held in the palm of the hand, clinging to the sun's surface as it glides over it. In reality, the little ball is a great globe almost as large as our own, dwindled into tiny dimensions by a distance of twenty-five million miles, and separated
from the sun, on which it seems to hang, by a distance of sixty-seven million miles.
The transit of Venus is a feature of special interest, a mirror in which we may see the semblance of our own
planet. For as Venus looks to us, so does the earth look planet. For as Venus looks to us, so does the earth look the sun. Perbaps, while we watch the transit, observers in Venus are watching the earth. It is night on the beautiful planet, for the dark side is turned toward us. In the starlit sky arching above her, a star rises when the sun sets, and shines through the entire night. This brilliant evening star is the earth in opposition, and, accompanied by a tiny moon, she is larger and more brilliant than Venus ever
appears in our sky. For when we see Venus in her brightappears in our sky. For when we see Venus in her bright est phase, she is a crescent. When, observed from Venus,
the earth is seen in her brightest phase, her whole illumined disk is turned toward her sister planet.

A POSSIBLE FIELD FOR RAILWAY ENTERPRISE,

Some of the English papers are discussing the merits of
system of freight roads proposed for the manufacturing districts of Lancashire, England. In that region a vast amount of material, raw and manufactured, is subject to transportation for short distances. The railway charges are exceptionally high, and the cost of repeated bandling adds materially to the burdens of manufacturers and dealers.
For instance, a bale of cotton received at Liverpool is lifted out of the ship's hold and deposited on the quay. It is then lifted upon a cart and hauled to the railway station. There it is unloaded, and after one or more handlings is re loaded in a freight car, and after a long succession of shuntings the car is marshaled into its proper train and started for Manchester. Here another series of handlings are in order, ending with the delivery of the cotton at the factory. From the mill back to the ship, the manufactured cioth is subject to the same treatment, largely enhancing its cost to the shipper. Indeed, owing to multiplied handlings and excessive railway charges, the cost of sending goods from Liverpool to Manchester is said to be actually
it used to be before railways were introduced.
The magnitude and urgency of the traffic forbid a return to the old cartage system for the whole journey; so a compromise is proposed in the form of a "plate way," on which rdinary wagons are to be hauled by steam motors.
The estimated cost of the plate way and its equipment is about $\$ 175,000$ a mile, which would build a respectable railway in the American style. Obviously, the carrying capacity of a plate way used by ordinary road wagons would be much less than that of a regular railway.
The question arises whether the avoidance of repeated loading and unloading of freight could not be secured, and all the advantages of the railway retained, by simply transporting the loaded wagons upon properly constructed flat cars, to be hauled by locomotives in the usual way.
Of course this plan would be feasible only where the railway carriage was short, compared with the rest of the haulage, as, for example, between the wharf or warehouse of the city and the factory in the suburbs or in a near-by town, or between an outlying market garden district and the city market.
In many American cities from which railways radiate to all points of the compass, this method of transportation might prove decidedly economical, especially in saving repeated and destructive handlings of fruit and vegetables brought in from the surrounding country. The farmer's loaded wagon might be hauled upon a platform car, as upon a ferryboat, and carried with its team and driver to the city station, whence it could proceed to market without delay. Or those whose market business is extensive might have relays of horses and drivers, and send the loaded wagons only by ail.
Vast quantities of farm and garden produce are hauled in road wagons fifteen or twenty miles to city markets. Railway facilities for the larger part of the distance, and for distances considerably beyond the present range of road haulage, would seem to offer many advantages; while the saving in time and wear and tear of wagons, harnesses,
teams would amply offset reasonable railway charges.

INVENTION AS A MEANS OF EDUCATION.

Young people are commonly dissuaded from exercising their native talent for invention by, or because of, the miswhat opinion that youth is exclusively a time for learning any discovery or invention a young person may make can be either new or of any value. Any utility that a boy can recognize or develop, it is too commonly thought, must of necessity bave been discovered and tried before; and it would only be a waste of time to reinvent old or impracticable devices.
This opinion involves two grave errors. In the first place, it is not always a waste of time to rediscover or reinvent, though there may be no immediate money profit to be got from such work. Original investigation and creative thought of invention is best acquired by inventing, even though fifty other men may have individually worked out the same practical problems before. For mathematical training, the patient and thoughtful solving of problems brings the same disci-
pline, no matter how many other students have already pline, no matter how many other students have already
solved the same problems. The skill which a young draughtsman may acquire in the work of sketching machinery off-band is not lessened in any way by the fact that the
draughting-room of the machine shop is full of much more perfect drawings of the same machinery than be can bope to make.
In like manner the time of the young inventor may be most profitably employed in inventing, even when it turns out that the product of bis labor is nothing new. Indeed, there is no better way for the young inventor to acquire skill in his art than by resolutely working out (to him) novel problems the best way he can, even when he knows that hey have been satisfactorily solved by others; then comparng his invention with the products, it may be, of older and more experienced minds. The skill so gained will tell in his favor when he strikes a problem that is entirely novel.
The other error referred to is the assumption that the inventions of young people are not likely to be of any value. The history of invention is full of illustrations to the contrary. A recent instance is recorded in a morning paper. A young lad in the Cooper Institute class in mechanical drawing has devised a simple attachment to the ordinary bat! tub, by means of which any bath room is enabled to furnish every variety of baths, Russian, spray, vapor, medicated, or other, as may be desired. The Herald says that one apparatus has been manufactured and placed for trial in the Frenc! Hospital in this city, where it is being experimented with in the treatment of rheumatism and acute nervous diseases by spray baths permeated with drugs. The same contrivance, attached with rubber tubes to the faucets of a washbowl, serves to produce vapor impregnated with chamomile or other berbs for inhalation in cases of bronchial affections. A number of physicians have called to see the young inventor, and all commend the invention, but express surprise that something of the kind was not produced long ago.
That is the usual way. When an invention is made, the wonder is that no one has ever seen the way to do it before. It is safe to say that there is not a single article in every day use that will not sooner or later be greatly improved: we do not see the opportunity now because we are blinded by habit. It requires a novel point of view to make the requirement visible; and to a large extent the keen eyes of youth, if encouraged to be critical, are best situated for taking novel views of things. And bearing in mind the truth that the most profitable field of invention, all things considered, is in connection with matters of every day use by everybody, the common custom of discouraging the efforts of young people in this direction, however crude at first, is far from wise. The habit of mentally challenging the economic right of everything in common use to fill the position it occupies, of asking what its real function is, and whether it might not be bettered or possibly displaced entirely by something cheaper, handier, or more efficient, is one of the most promising habits that the young can acquire. There is money in it, and public benefit as well.

TEMPERING STEEL.

More tools are ruined by overheating, cold-hammering, and over-tempering than can be redeemed by all the new receipts that bave been invented. The only way that is really good, is first to find a brand of steel that is good and suitable for the tools to be made, and stick to it. Next find by a few trials the lowest heat that will harden it in pure water at 70°, or ordinary shop temperature. If steel is hardened at the lowest heat, the temper will require drawing very little, i. e., to a pale straw, full straw, or brownish yellow, but not deeper unless for wood working tools with thin cutting edges, when a full brown may be desirable.
File makers use salt water for a bardening bath, because it makes the water more dense and the teeth harder and of course more brittle.
Sulphuric acid or mercury is sometimes used for harden. ing very small tools for cutting glass and etching stone.
For springs the same care should be taken in regard to low even heating that is necessary with tools. Pure lard oil is as good and probably better than any of the many mixtures that have been tried for the hardening fluid; burcing off may do for drawing the temper of small or thick springs, but is totally unfit for long or slender ones.
Dip the hardened spring into a bath of oil heated nearly to its boiling temperature; this is the only way to get an even temper.
ortions of Lenses. We say, in reply to a correspondent, that we do not know of any telescopes with bisulphide of carbon correcting lenses having been made of late years. They were never a success. It requires the grinding and polisling of four surfaces or the correcting lens, and as there are no formulas, to our knowledge, for the bisulphide, you will have to make an experimental trial. For your front glass, you may make the curves one to six or nearly a plano-convex flat side next the eye, the radius of shortest curve about six times the diameter of the lens. For the correcting lens, the diameter should be not less than one-third the diameter of the front lens. Its general form should be plano-concave; and as the dispersive power of bisutphide is more than three times as great as crown glass, its refractive power being about 50 per cent greater, you may make the side next the object glass plane, and the side next the eye convex on the inner side and plane next to the eye, if convenient to do so. This will require only one curve to be altered for final correction. To start, make this curve the radius of the first surface of the front lens, and place the lens about one-third the focal length of the object glass from the eye.

ICE MAKING AND REFRIGERATION.-THE

 PICTET PROCESS.The Pictet process beautifully illustrates how a liquid in the act of volatilization absorbs heat, so as to freeze bodies with which it is in contact, and which, upon condensation, gives out the heat it had just taken up.
The artificial production of low temperatures is based upon the property of all bodies, whether solid or liquid, to absorb or take up heat while in the act of expanding; and the more volatile the body, the greater its power of accumulating heat and retaining it in a latent condition in itself. What such a body gains in heat, surrounding bodies lose. For instance, anhydrous sulphurous oxide, escaping in the air from its liquid state, produces a fall of temperature of 135° Fahr. A given quantity of the liquid will instantly freeze several times its own bulk of boiling water. While the physical law has long been known, the problem until recently has been to select the liquid and invent the machinery for its practical utilization. The liquid must volatilize spontaneously when allowed to expand; the machine must control the expansion, and reutilize the liquid, and the disadvantages of different liquids must be offset against their advantages.
It is claimed that the Pictet ice machine, which emplnys sulphurous anhydride, has at tained a higher degree of excellence than any yet invented, its prominence in the market securing forit a more worthy distinction than even the prizes won for it at international expositions. As to the liquid, there has been a variety of liquids used for this class of machines in general, having different merits. Ammonia has ligh power or range of condensation and expansion, and was the element first used for the production of cold. Briefly, it is held in solution in water, and by the application of heat is vaporized or released from the water and passes into gas, takes up the heat surrounding it, and is brought again into contact with water, and returned into the retort to be revolatilized. The disadvantage of this machine is the great pressure to which the containing vessel is necessarily subjected, being 240 to 300 pounds per square inch, while that in the Pictet machine is only 35 pounds per square inch at its highest pressure. To this danger must be added the fact that the liquid is highly corrosive and gradually destroys the vessel designed to resist the already severe strain. Another recognized disadvantage is the use of heat to volatilize instead of the more efficient and controllable mechanical means used in the Pictet machine, and which could not be applied to the former.

Another objection to the use of these ammonia absorption machines is their intricacy and the absolute necessity of constant and watchful attention, it being unsafe to leave the apparatus for even ten minutes at a time, whereas the Pictet marhines require only such casual attention as suffices in the running of any ordinary steam engine.

It must be borne in mind that in the construction of all machines, and in the use of materials, the advantages and disadvantages are to be contrasted.

Fig. 4.-GENERAL PLAN OF ICE-MAKING MACHINE.
perate degree of heat, when it liquefies, and then flows into
the refrigerator to be volatilized by the removal of pressure, to repeat the cooling process.
The accompanying cut, Fig. 4, serves to illustrate the principle and process.
A, horizontal engine; B, compression pump directly conbected with the engine; C, refrigerator and tank; D, condenser and tank; E, freezing tank holding cans for ice blocks; F, pump for circulation of water; G, pump for circulation of brine; H , copper pipe for conducting gas to compression pump; I, copper pipe for conducting gas from compression pump to condenser; J, copper pipe connecting condenser and refrigerator; K , overflow from freezing tank o refrigerator tank; L, ice cans.
Refrigerator C is placed horizontally in the tank, through which an uncongealable liquid (chloride of magnesium) is circulated. The moulds or ice cans may either be placed in this refrigerator tank or in a separate tank as shown. The sulphurous oxide is volatilized in the refrigerator, C, by the pump, B, which draws the oxide from the refrigerator through the pipe, H , producing intense cold, which is communicated to the surrounding liquid, and the pump then

The energy of the anhydrous sulphurous oxide is released by the simple removal of pressure which is controlled by mechanical appliances. Its economy is wonderful; it is very remarkable that a machine of this make has been known to run for six months with the loss of only $61 / 2$ pounds of the oxide.
The construction of the machine and the method of its operation are very simple. The liquid to be volatilized is put in a copper cylinder free from moisture and air. At this time it has no cooling effect. Part of it is now released by the action of the pump. This relief of pressure allows the liquid to expand and volatilize spontaneously, and, as has been explained, this volatilization enables it to absorb the heat contained in bodies in contact with the refrigerator, and hold it latent in the condition of latent heat. After absorbing the heat previously from the surrounding body, it is forced by the action of the pump into a condenser, where it is cooled
to the temperature of munning water, that is to say, a tem-
forces the vapor through the pipe, I, into the condenser, D. The condenser is a series of copper tubes; a current of cold water is kept constantly flowing through the condenser tank and about the tubes, which abstracts the heat from the vapor and brings it back to a liquid form. The pipe, J, returns the liquid sulphurous oxide to the refrigerator to be revolatilized, while a stop-cock regulates the supply. The compression pump, B, used is double-acting, and of iron. The piston is of metal, without packing. Its action is very easy owing to the lubricating nature of the oxide.
It will be readily seen that the water in the cans, L, is frozen into solid blocks of ice by the cold brine in the tank, which is several degrees below the freezing point, and that there are no chemicals or gases that can possibly affect the ice in color, taste, or smell. If the water is pure, the ice made from it will be equally pure if not more so. The locks of ice vary in size according to the different apatie of machines.

We present three illustrations of the machinery for practical application of the process. Fig. 1- is the manufacture of ice as a merchantable article. What nature affords precariously in the winter season is here systematically produced winter and summer in all climates. That which is pro nd summer in ald and as good ice as that which is produced by and as good ice as that which is produced by
nature in the Alps. The illustration shows the cans or forms filled with pure water set in the uncongealable liquid in close proximity to the rapidly volatilizing anhydrous sulphurous oxide. The water in the cans gives up its heat to this powerful agent and congeals into ice. This cut is drawn from works at Louisville, Ky.
Another illustration (Fig. 2) is the " refriger ating" process. It is not here intended to freeze water, but only to cool the air of a room in which meat is preserved. And this can ee brought to a sufficiently low temperature to freeze, if required. The pipes are suspended along the roof of the storeroom, and through them continuously flows a "brine" reduced to a temperature below $32^{\circ} \mathrm{Fah}$. The chilled air, by reason of a well known law, descends, while the warm ai rises to be cooled, and both establish circulation and ventila tion. This method may be adapted to vessels for ocean ransportation as well as for storehouses. The pipes over head are covered with a beautiful crystallization of moisture in frost.
This cut represents the meat market in the establishment of Armour \& Co., at the Union Stock Yards, Chicago, Ill The firm mentioned say
' We are more than satisfied with our Pictet refrigerating machines, and consider them the best in the market. We have two of the largest size in full operation.
The same process of refrigeration is applicable to brew eries. The pipes are suspended from the ceiling in the vaults, and as shown in the illustration, Fig. 3, absorb the heat from the rooms and casks. Apart from the necessity of pure water in brewing, uniformity of temperature is of

Fig. 3.-PICTET REFRIGERATION MACHINERY FOR COOLING BREWERIES.
paramount importance, and that can be secured and controlled irrespective of climate or seasons. The process is used on a large scale by:

Armour \& Co., Union Stock Yards, Chicago, Ill. (50 tons); New Orleans Refrigeration and Manufacturing Company; Rohe \& Bro., New York; Roth, Meyer \& Co., Cincinnati, O.; A. Merkle, Zanesville, O.; Charles Lang \& Co., Covington, Ky.; Henderson Coal and Mining Company, Henderson, Ky.; J. O. Powlis, Louisville, Ky. (25 tons per diem); Brenham Ice Company, Brenham, Texas; Rio Grande Ice Company, Brownsville, Texas; C. H. Lawrence \& Co., New Orleans, La.; Huse, Loomis \& Co.. St. Louis, Mo.; Z. Wainwright \& Co., Pittsburg, Pa.; Reymann Brewing Company, Wheeling, W. Va.: Russell H. Nevins, Lake Maitland, Fla.; S. H. Macrae, Granada, Nicaragua, C. A.; Rubsam \& Horrmann, Staten Island, N. Y.; Peter Harley, Puenta Arenas, Costa Rica; L. Bon, Santiago, Cuba; aud many others.
Anhydrous ammonia is also used, and vaporized and condensed by mechanical action of a pump upon the same principle as in the Pictet machine. But the resistance which ammonia offers to condensation is much greater than that by anhydrous sulphurous oxide, in round numbers about 600 per cent greater. For if we take a pump of say 11 inches in diameter, having a superficial area of 95 square inches, and multiply this by the Pictet pressure of 35 pounds per square inch, we have a resistance to be overcome a each stroke of the piston of 3,325 pounds, whereas if ammonia were used in this same sized cylinder with its pressure of 200 pounds the resistance would be 19,000 pounds to be overcome at each stroke of the piston. One great advantage in the use of anhydrous sulphurous oxide is that the machines using it can be built of any metal, as this gas has no effect upon any.
The Pictet machines, with the exception of the pump and engine, are built entirely of copper and are practically indestructible. Ammonia corrodes all metals, though it has less effect upon wrought iron than other metals. In a sbort time it will, owing to its high pressures, actually " honeycomb" cast iron plates an inch in thickness.
Furthermore, iron being used throughout, the entire apparatus, with the exception of the pump and engine, is exposed to water, the condenser to fresh water and the refrigerator to salt water, and so the more or less rapid oxidation finally de stroys the macbine
Another serious trouble arises in the machines using anhy drous ammonia from the necessity of oiling the gas pumps The oil combining with the ammonia forms a stiff soap, and this is carried into all parts of the apparatus, and soon chokes up the tubes of both refrigerator and condenser, necessitating the frequent stoppage of the machine for the purpose of taking it apart to cleanse the pipes.
This amounts almost to a rebuilding of the apparatus, takes a long time, and often becomes necessary during hot weather, causing a stoppage of the machine of several days' duration, when its wark is most needed. Anhydrous sulphurous oxide being a lubricant in itself, the pump of the Pictet machine is never oiled, and consequently it never becomes necessary to cleanse the interio of the machine.
An ice making machine of $11 / 2$ tons capacity can be seen in operation at the warerooms of the Pictet Artificial Ice Company, Limited, 142 Greenwich street, New York. A personal examination of this machine gives a very good insight, not only into the Pictet system, but also into the process and modus operandi of the machinery, which is exceedingly simple, economical, and efficient. The company build ice making machines of different capacities varying from 1,200 pounds to 25 ltons of ice in twenty-four hours; also air cooling machines especi-
ally constructed for cooling breweries, pork packing estab lishments, cold storage warehouses, hospitals, etc
Further information may be had on application to the company whose address is given above, and whose advertisement may be found in another part of this paper.

The new ship canal which is to connect the Baltic and the North Sea will save nearly 600 miles of the water journey now made around the Danish peninsula. The cut, as proposed, will be from Gluckstadt to Kiel, and the length will be about half that of the Suez Canal, or some fifty miles.

NOVEL ROAD VEHICLE.

The vehicle represented in the annexed engraving is a very novel and ingenious contrivance, as the reader will observe Whether the invention is as useful as it is novel, is a matter of considerable doubt. It consists of a ring within which the seat of the rider is supported by a frame provided with three or more small grooved wheels resting against and running on the inner edge of the ring. The frame is provided with an axle carrying a balancing or staying wheel at each end, and with a mud guard and thills to which two hinged rings, provided with a saddle, are attached for hitching the horse to the thills. The vehicle is made entirely of iron, and is balanced by the side wheels and the thills. If the road is very narrow, the side wheels can be dispensed with. The vehicle is specially adapted for country roads and for the use of mail carriers, sportsmen, etc., it is claimed by the in

NOVEL ROAD VEHICLE.
entor, Mr. F. von Grubinski.-Neueste Erfindungen und Erfahrungen.

OBERSTADT'S MELTING FURNACE WITH DRYING CHAMBER.

Generally, small furnaces in which metals are melted in the crucible are united closely to a chimney; and often here is added to the melting furnace a drying chamber for cores and small moulding frames, although it seems preferable to separate the drier from the furnace, since the long flat channels of these driers become easily choked up with ashes, and respond only imperfectly to the end in view.
The inconveniences attending the ordinary arrangement of these apparatus appear to be entirely got rid of in the furnace shown in Figs. 1 and 2, aud described by Mr. Oberstadt in his work entitled " Die Technologie von Eisenbahnwerkstätten." Cast iron boxes constitute here heating flues which may be easily cleaned and freed from ashes, and which serve at the same time as tables for the frames to be dried.
The furnace consists of wrought iron cylinders, c, provided at their lower extremity with angle iron rings, upon which is arranged an inner lining of refractory bricks. The fireplaces rest on walls, m, which are also lined with firebricks, and are anchored by the rods, d, and carry the rates, l. Channels, r, with register at e, for convenience water.

This beautiful material, whici is so much used in many kinds of artistic productions, is chiefly obtained from the pearl oysters (Meleagrina margaritifera) which are found in he Gulf of California, at Panama and Colagua, at Ceylon and Madagascar, at the Swan River in Manila, and at the Society Islands. The black lipped mussels from Manila ring the best prices. The Society Islands produce the silver lipped mussels, and Panama the so-called "Bullacks." The peculiar and varied tints and colors exhibited by mother-of-pearl are due to the structure of the surface, which covered with innumerable fine plates-often several thouand to the inch-which break up the rays of light falling on it, and reflect it in all different tints. The oyster pearl has a lamellar structure, and can actually be split off in scales, but they are very rarely divided in this way, as there is always danger of destroying it. In working mother-of-pearl, says Wieck's Illustrated Art Journal, the saw, file, and polishing stone play the principal parts. A mussel shell is selected that is covered with the peculiar pearly substance to such a thickness as is necessary for the work in hand.
The square or angular pieces are sawed out with a small saw, the piece being held in the hand or clamped in a vise. Buttons and similar round pieces are cut with a crown saw attached to a spindle. All the tools employed in working mother-of-pearl must be kept con tinually moist to prevent their sticking fast. The pieces are generally shaped on a polish ing stone, the rim of which must be ribbed to void daubing and smearing. The stone, of course, must be kept wet while in use; a weak soapsuds works better than water alone. When the pieces have been brought to the proper shape on the stone, they are then polished with pumice and water. In many cases it is well to shape the piece of pumice so as to fit the form of the article to be polished, and then the latter can be fastened to a handle and rotated in a lathe. It is afterward polished with finely powdered pumice on a cork or wet rag, while the final polishing is done with English tripoli, moistened with dilute sulphuric acid. The acid brings out the structure of the pearl very beautifully. In many articles it is necessary to use emery before the tripoli is applied, and then employ oil instead of acid. Kuife and razor handles have the holes bored in them after they are cut in the proper shape, and are then lightly riveted together, polished on the stone, and nished as before described
In many workshops the polishing is performed on wheels covered with a. wet cloth which holds the polishing material. For common work some pulverized chalk or Spanish white is substituted for the English tripoli.
Mother-of-pearl is frequently etched like copper. The design is put on with asphalt varnish, which protects the parts that are not to be etched, and the piece is then put in itric acid. When the exposed portions have been sufficientls corroded by the acid, the article is rinsed with water, and the varnish dissolved off with turpentine or benzole.
Thin pieces of pearl which are to have the same shape are glued together, and all cut and bored at once like a single piece, and afterward separated by putting them in hot

In ordinary inlaid work of mother-of-pearl, scales or very thin pieces of pearl are fastened on iron or some foundation, usually made of papier mache, with Japanese varnish. The plate is first cleansed and dried, then coated with varnish; when the latter is nearly dry, cut pieces of mother-ofpearl are pressed into he varnish by the arist so as to adhere to it. The plate is then baked in an oven until the varnish hardens, when a second coating is put over the entire article, which is then polished again.
Besides the white and aurora-like mussels above mentioned, the sparkling green snail shells sometimes find use; these exbibit dark
cleaning, lead the gases due to combustion through smal tubulures, o, into the horizontal iron smoke conduits, z, and rom thence into the chimney, J. The upper wall of these conduits is arranged so that it may serve as a table for the cores and frames to be dried. The cleaning of the conduits, z, is effected through the apertures, x, which may be closen by covers. The extremity of these conduits are connected by a channel, z^{1}, which is covered by two cast iron plates, and b, placed one alongside of the other, and which ar likewise utilized as drying tables. Registers, u, permit of regulating the direction of the hot gases, and, consequently, the temperature of the drier
or light tints of green, yellow, or pink, or
into another.-Deutsche Industrie Zeitung.
Mr. Wake, engineer of the River Wear Commissioners, and Mr. Irish, manager of the Northern District Telephone Company, in England, have made some interesting experiments in the use of the telephone by divers. The length of the cable connecting the receiver in the diver's helmet with the transmitter above water was 600 yards. It was found that the diver could converse with ease, and ask for tools in any position in which his work might require him to place himself.

Hydrogen Peroxide

MM. Paul Bert and P. Regnard have studied the action of hydrogen peroxide upon various forms of organic matter and upon fermentations, and find that it possesses very remarkable antiseptic properties. All fermentation due to an organized ferment is immediately and definitely arrested by hydrogen peroxide, the ferment is killed, and even after the removal of the hydrogen peroxide by one of the substances which destroys it most rapidly, the fermentation does not recommence. The yeast of beer is in this manner killed instantly, although it possesses itself the property of decomposing hydrogen peroxide. Specimens of wine, urine, and milk, each containing a few drops of bydrogen peroxide, have been exposed for several months in open vessels without exhibiting the least sign of alteration, while other specimens of the same identical liquids, without the addition of hydrogen peroxide, placed beside them, were in a state of complete decomposition. Although organized ferments are destroyed by hydrogen peroxide, soluble ferments do not seem to be affected by it, saliva, diastase, thel gastric and pancreatic fluids continue to act in solutions containing hydrogen peroxide. MM. Bert and Regnard have also studied the action of hydrogen peroxide upon various organic materials, including the albuminoid substances and all the tissues composing the animal body in a healthy or pathological state. The results of their investigations may be summed up as follows:

1. Hydrogen peroxide, even when very dilute, arrests fermentations due to the development of living organisms, and the putrefaction of all substances which do not decompose it.
2. It has no effect upon diastase fermentations.
3. Dilute bydrogen peroxide is not destroyed by fats, starches, soluble ferments, egg albumen, casein, the peptones, creatine, creatinine, or urea.
4. It is rapidly destroyed by nitrogenous collagens, by musculin, fibrin of the blood, and various nitrogenous vegetable matters.
5. This action is definitely arrested by a temperature above 70°. Putrefaction, however, leaves it entirely intact.
As it appeared from the powerful antiseptic properties of hydrogen peroxide that it might prove of value in surgery, experiments were made upon the point by MM. Péan and Baldy at the hospital of St. Louis, with very successful Baldy a
results.

The hydrogen peroxide, in solutions containing from two to six times its volume of oxygen, according to the circumstances of the case, was used, both externally, as a dressing for wounds, ulcers, etc., and also given internally in certain affections, in doses of from three to five grains, containing six times its volume of oxygen. As a result of their experiments, MM. Pean and Baldy consider themselves justified in ments,
stating:

1. Hydrogen peroxide containing, according to circumstances, from two to six times its volume of oxygen, appears to be capable of advantageously replacing alcohol and carbolic acid.
2. It can be employed, externally, for the dressing of wounds and ulcerations of all natures, in injections and in vaporizations, and internally.
3. The results obtained, even in the case of the largest operations, are, up to the present, in the highest degree satisfactory, Not only fresh wounds, but also old ones, proceed rapidly to cicatrization, and reunion by first intention of amputation wounds appears to be encouraged by this mode of dressing.
4. The general as well as the local state appears to be favorably influenced.
5. The advantages of hydrogen peroxide over carbolized water are its not having any poisonous effect nor unpleasant odor, while its application is entirely painless.
M. Bert calls attention to the fact that hydrogen peroxide for surgical use must be entirely neutral, while that obtained from the greater number of dealers in chemicals trequently contains a considerable quantity of sulphuric acid, so that its use would not be without danger.-Comptes Rendus.

Alleged Human Footprints in Tennessee Rocks.

 A correspondent of the Nashville American tells of some curious fontprints in sandrock at a place about twenty miles west of Nashville. "At this point Harpeth River forms a horseshoe bend, making a circuit of six miles, and doubling back on itself to within 80 or 90 yards. In the heel of the shoe rises a ridge, forming almost a perpendicular bluff on both sides, extending about half a mile south in the direction of the toe of the shoe. It rises to the height of about 400 feet, and at the highest point is not more than eight feet wide on the top, with a perpendicular face on the east side for 100 feet or more-that is, a plumb line suspended from the edge of the precipice at the top would hang clear for 100 feet or more before it would encounter any obstruction. The ridge at the bed of the river is some 90 yards wide, but the slope which brings it to that width at the bottom is mostly on the western side."At the highest point on the crest of this ridge is a flat surface rock, and on that rock are imprinted six and a balf tracks of human feet. These tracks are indented into the rock as much as a quarter of an inch, or in some places more. The tracks are of bare feet, toes all pointing in the same direction-toward the east. Most of the tracks are as perfect as if they had been imprinted on moist sand or earth. They are in three pairs. The first or largest pair is furthest
north. They are less than the average size man's foot, and larger than the average size woman's foot, one a little in advance of the other. The next pair is on the south side, but near to the first. In size and appearance they represent the tracks of a child fifteen or eighteen months old. The track of the right foot of this pair is turned in a little at the toes, and the toes of that foot are turned down, as we often see children, when first learning to walk, seem to endeavor to clutch the floor with their toes, as if to avoid falling or slipping. The topographical relation of these tracks to the large ones indicates that the child might have been holding to the finger or hand of the larger person.

South of these little tracks, but near to them, is the third pair, indicating a child some four to six years old. These last were made by a beautiful pair of feet, and are as pretty tracks as a child ever made in the dust or soft earth. All of these tracks are within three or four feet of the edge of the precipice on the eastern side, as already described. But I have said there was a balf track, which is the most interesting feature on the tablet. This half track is printed on the very edge of the precipice, and represents the heel and hinder half of the foot from the middle of the instep back, and would indicate that the toes and front part of the foot projected over the precipice, or that the rock had broken off at that point. This balf track is of the large size foot, or foot of the adult person, and is immediately in front of the large pair of tracks already mentioned.'

the first electric boat.

The idea of propelling a boat through water by the motive power of electricity is no uew one. The invention of the electro-magnet showed the power of an electric current to produce a mechanical force. It was no very difficult matter, therefore, for the electricians of fifty years ago to utilize the forse of the electro-magnet to drive small electro-magnetic engines; and from the small beginnings of Dal Negro, Henry, Ritchie, and Page grew up a group of electric motors which only awaited a cheap production of electric currents to become valuable labor-saving appliances. Nor was it a very long stride to foresee that if a sufficiently powerful battery could be accommodated on board a boat, it might be possible to propel a vessel with electro-magnetic engines

the engine of jacobi's electric boat, 1838.
drawing their supply of currents from the batteries. This suggestion-one of the earliest, indeed, of the many applications of the electro-magnet-was made by Prof. Jacobi of St. Petersburg, who, in 1838, constructed an electric boat. Fig. 1 which we here reproduce, says Nature, from Hessler's "Lehrbuch der Technischen Physik," represents the rude electro-magnetic motor or engine which Jacobi devised for the driving of his boat. Two series of electro-magnets of horse-shoe form were fixed upon substantial wooden frames, and between them, centered upon a shaft which was connected to the paddle-wheels, rotated a third frame, carrying a set of straight electro-magnets. By means of a commuta tor made of notched copper wheels, which changed the direction of the current at appropriate intervals, tiu moving electro-magnets were first attracted toward the opposing poles, and then, as they neared them, were caused to be re pelled past, so providing a means of keeping up a continuous rotation. This machine was worked at first by a Dan iell's battery of 320 couples, containing plates of zinc and copper, 36 square inches each, and excited by a charge of sulphuric acid and sulphate of copper. The speed attained with this battery did not reach so much as $11 / 4$ miles per hour. But in the following year, 1839, the improvement was made of substituting sixty-four Grove cells, in each of which the platinum plates were 36 square inches in area The boat, which was about 28 feet long, $71 / 2$ broad, and not
quite 3 feet in depth, was propelled, with a convoy of fourteen persons, along the river Neva, at a speed of 2 $1 / 4$ (Engish) miles per hour.

Hods: Their Construction and Use.

Hods are of two kinds. One form of hod is devised for carrying bricks, and the other for the transportation of mortar. While differing somewhat in purpose and balance, the uwo species of hod are yet so closely allied as to be utterly indistinguishable when apart. Indeed, it is a matter of grave interest to men that during the whirl of centuries, when every other inanimate thing has, through the indomitable perseverance of invention, been forced through a process of evolution that has robbed it of almost every semblance of its pristine nature, the hod remains to day in struc-
was. At present hods are cheap. Eighty-four cents will purchase one. The craze for all that is æsthetic, early Eng. lish, Japanese, Etruscan, or antique has passed by the hod unchallenged. The early Irish hod still reigns supreme. The dimensions of a mortar bod are as follows: Length of bowl, $223 / 8$ inches; mean depth of bowl, $91 / 2$ inches; greatest width of bowl, $91 / 4$ inches; height of back piece, $123 / 8$ inches; width of pieces forming lateral sections of bowl, $111 / 2$ inches. The dimensions of a brick hod, it will be seen, are different. They are as follows: Length of bowl, $237 / 8$ inches; mean depth of bowl, 8 inches; greatest width of bowl, $81 / 2$ inches; height of back piece, $101 / 4$ inches; width of pieces forming lateral sections of bowl, $87 / 8$ inches. It is generally conceded that the mor ar hod is built larger than the brick hod so as to make the weight when both are loaded as nearly equal as possible. The shank or bandle is 4 feet $21 / 2$ inches for each species of hod, and the shoulder rest is always 9 inches long, 3 nches wide, and $1 \frac{1}{4}$ inches thick. This shoulder rest is attached to the inverted ridge pole of the hod, and prevents the edge from cutting into the shoulder of the proprietor.
Tonching the materials used in hod building, it may be said that the earliest ideas still obtain. Iron hods have been tried, but abandoned, because they were liable to rust and to become cracked when dropped six or seven stories by proprietors, who invariably and instantly relinquish all ideas and implements of labor at the stroke of 12 and of 6 . The verdict of ages is that the bowl of the hod shall be of yellow pine, and the shank a hickory pole with the bark on. In constructing a hod, it is found necessary to use thirty three nails for the brick species, and twenty-nine nails and four screws for the kind intended for mortar. The screws are used in the latter instance to fasten the two arms of the shank to the bowl, because screws do not leave holes, as do nails when they become loosened. Small holes allow mortar to escape, and are therefore open to objections. In making the bowl of a hod, eightpenny nails are used; fourpenny nails answer best for the shoulder rest, and shingle nails for securing a narrow strip of sheet iron that runs over the top of the back piece of the bowl for the purpose of imparting additional strength. All of the nails are machine made, with the exception of those used in fastening the shank to the bowl, which are hand made and highly malleable. The mortar hod, besides having four screws, is lined at the seams with white lead. It bas been considered somewhat superior to the brick hod. The weight of hods one hour after completion is ascertained to be exactly as follows: Brick hod, 9 pounds 6 ounces; mortar hod, 10 pounds 3 ounces. Fifteen bricks are carried in the common hod.
There is a widespread impression that the shank of a hod is steamed after being split into the V-shape necessary to accommodate the bowl. This is erroneous. The shank after being slit for a distance of $75 / 8$ inches, is violently forced asunder by pressure against the wedge-like base of the bowl, and is secured while in that position.
Very many hods are owned privately, and many thousands more are owned by a large company up town, which makes hods and rents them to builders along with its patent hod elevators. The introduction of hod elevators, oddly enough, met with no opposition from individual proprietors of hods, but, on the contrary, was warmly welcomed by hem. The elevators do the work of many men, but as building has increased in a satisfactory ratio, there has always been enough work for men who decided to adopt the hod as a means of advancement or sustenance. Indeed, so well have the individual hod proprietors in question adapted themselves to the existing state of things, that they absolutely refuse to climb higher than the second story now, and builders must, perforce, employ the elevators for stories of a loftier pitch.
At no time in the annals of the city has the hod industry been at a higher tide of prosperity. Thus the outlook for the hod is as bright as its history has been unvarying. New York Sun.

The Digestibility of Oysters

Why oysters should be eaten raw is explained by Dr. William Roberts in his lecture on "Digestion." He says hat the general practice of eating the oyster raw is evidence hat the popular judgment upon matters of diet is usually trustworthy. The fawn colored mass, which is the delicious portion of the fish, is its liver, and is simply a mass of glycogen. Associated with the glycogen, but withheld from actual contact with it during life, is its appropriate digestive ferment-the hepatic diastase. The mere crushing of the oyster between the teeth brings these two bodies together and the glycogen is at once digested without any otber help than the diastase. The raw, or merely warmed, oyster is self-digestive. Butthe advantage of this provision is wholly lost by cooking; for the heat immediately destroys the associated ferment, and a cooked oyster bas to be digested, like any other food, by the eater's own digestive powers.
"My dear sir, do you want to ruin your digestion?" asked Professor Houghton of Trinity College one day of a friend who had ordered brandy and water with his oysters in a Dublin restaurant.
Then be sent for a glass of brandy and a glass of Guinness's XX, and put an oyster in each. In a very short time there lay in the bottom of the glass of brandy a tough, leathery substance resembling the finger of a kid glove, while in the porter there was bardly a trace of the oyster to be found.

The Practicability of Patents.

There seems to be no abatement in the number of patents issued weekly from the Patent Office on railway appliances. The average American genius is determined that there shall be one patent in kind, better than all others, and this is the stake he plays for. Even if there be already patented 999 devices for accomplishing a desired result, or perfecting a principle in railway mechanics, it does not follow, so thinks our inventor, that his patent will be another dead cock in the pit awaiting the resurrecting hand of appreciative capital; so he applies for a patent upon his car coupler, or track washer, or whatever else it may be, with a claim stated as broadly as may be possible upon an idea sandwiched between the existing 999 ideas of the same device "already gone before."
Taking out a patent is a comparatively inexpensive gratification, and the honor of being an inventor is something, because it is generally conceded by all right-minded people that inventors are thinkers. If we number our thinkers by the number of patents already issued on car brakes, couplers, track fasteners, and other multifarious appliances for railway purposes, there are a host of them in the United States. Judging from the number of this class of patents, the individual who can evolve a new idea without a twinge of infringement upon existing devices must have a thinking cap of a " higher order."
Herbert Spencer probably never took out a patent in his life, and perhaps he never will, as his thinking runs to the primitive order of things, not the progressive. His thinking is contemporaneous with the origin of the lever, the screw, the pulley, and the wedge, the four great mechanical powers -all of which we bave the free and untrammeled use of without fear or hinderance from royalty lawsuits.
As soon as our inventor gets the necessary paper from the Patent Office, making him a greedy monopolist for seventeen long years, he has his invention aired in the Rural Register, and then with his model in hand he calls upon the nearest railroad manager, who is generally so case-hardened at the sight of these things that he causes a chilling sensation to seize upon those who have the temerity to invade his office with models of railway appliances. Our inventor is deeply chagrined at his reception. He expected to be received as a scientist, a discoverer of one of the lost arts; he is surprised that he is not told immediately to go and put his device upon every engine, passenger coach, and gravel car on the road--and at the expense of the company. Instead of this he is told that his device is not needed, and thus another disciple is added to the waiting army of cynics who believe that railway managers know not the good things of this life which underlie royalties.
The railway manager of the future will probably enjoy his dolce far niente and attend to business at the same time--at least our inventors seem determined that he shall do so, whether he will or not. The laborious routine and vexatious cares attendant upon railway operation will possibly become extinct. The railway superintendent, in the management of his road and his army of employes, will not only be autocratic, but automatic. He will move (automatically) his automatic train over his automatically laid rails, across bridges which will stand automatically, and the automatic train will be stopped by the automatic brakes at the station, where passengers, baggage, and express goods will be discharged automatically and received by an automatic agent. The passengers will ride and goods will be shipped per automatic rates, which will adjust themselves automatically to existing pools, thus avoiding a "war of rates." And the bappy stockholders will weep for joy at the automatic evenness of dividends and the excellence of the automatic era generally.
We know that there are many meritorious patents not in use, and many of them never will be. They may be correct in principle, and their workings all that could be desired, yet the reason they are not adopted, it most generally will be found, is that they cannot supplant a cheaper substitute which answers the same purpose equally as well. Railway managers are not ready to adopt a new device simply because
it is ingenious and "handy." Yet patentees cannot complain if their devices are not always used. In many instances they have patented articles for which there is no demand and very little use.
Our railway managers have taken up with many patents where they could see that the safety of lives and trains could be promoted by using them. Let any one examine the exterior of a passenger coach, and the interior also, and see how often and upon how many different parts he will find the word " Patented," and the date thereof. It is the same with engines, bridges, tracks, depots, ticket offices, as well as the shop machinery which gives employment to large forces of mechanics to keep these adjuncts of railway operation in repair. Although many of the articles mentioned may not have the word "patent" stamped upon them, a royalty for their use is paid to the inventor by the railway company. We have seen a street car in Chicago with the words painted on enumerating the list. This certainly is not a moiety of the number of patents used by railway companies in the make-up of their plant. If as simple a thing as a street car cannot be constructed with less than seventy-five patents, what is the number in use in the make-up of a first-class passenger
train? train?

We are indebted to the fostering spirit and protection of our patent laws for the best machinery and processes we have to-day in use in the agricultural, manufacturing, and railway world, and they have been the means of enriching
hundreds of people. Out of the thousands of patents issued
many are chaff and many are wheat. Our shrewd, practical many are chaff and many are wheat. Our shrewd, practical is rarely qualified to do.-Railway Review.

Drainage and Typhoid in Paris.

Again the grave increase of typhoid fever in Paris must, says the Lancet, call public attention to the extraordinary imperfections of the drainage of this " center of civilization." Most of the houses communicate direct at once with a cesspool and with the public sewers. That the water in these sewers is highly contaminated has been demonstrated over and over again by the death of all the fish in the Seine near the sewer outfall and by numerous analyses. No sink pipe is trapped in Paris, though it is sometimes conducted through the wall; where, as it measures only about two inches in diameter and joins the water spoutjunction, which is some four inches in diameter, the connection might be broken off and a sort of ventilation established. This, however, is carefully prevented by the use of a quantity of ce ment, so that the gases rising up the water spout are con-
ducted straight into the house, attracted by the higher temperature of the interior.
Of late some of the iron pipes coming from the houses into the sewer have been bent upward at their extremity, and form a sort of spoon which retains a little water and is supposed to act as a siphon. But this is a mere illusion, as there is no "dip" whatsoever to the siphon, and the slightest pressure or the smallest ripple over the surface of the water, caused by wind or the falling of a heary substance, would suffice to break the seal. We may therefore safely assert that an enormous majority of the Paris houses are utterly unprotected against the injurious emanations from cesspool and sewer. Further, many closets are utterly devoid of water supply, while in all instances the house drain pipes are much too large, and therefore cannot be kept clean, particularly when the fe
ates a stint of water
Over and above these considerations, the sewers themselves are so unsuitably constructed that they do not act, and it is consequently necessary to maintain, at great cost, an army of 800 men to literally push the heavy deposits along to the sewer outfall. Many of the small branch sewers also are so dangerous and foul that the men refuse to enter them, and these bave to be left to engender disease, without even an effort to cleanse them. Finally, there is no organized method of ventilating the sewers. The necessity of sewer ventilation has not yet been recognized, and what ventilation there may be is of a purely accidental description. In fact, the houses, by reason of their superior elevation and temperature, are the most active sewer ventilators that exist, and it is nat till after the sewer gas bas been breathed by the inhabitants of the apartments that it reaches the streets or open air. Of course, the more elevated quarters of Paris are subjected to a stronger pressure of sewer gas, which in unventilated sewers generally tends to ascend to the highest points. Hevce, typhoid fever is usually more prevalent at Montmartre,
Batignolles, and along the course of the "collecteur du Nord."
It will take many years and a large expenditure of money to remedy all these defects; still the evils might be modified to some extent by the immediate introduction of good siphons at the junction of the house drains with the public sewers. Pending their reconstruction, the sewers might with comparative facility be ventilated, and police supervision could insure greater cleanliness within the houses. All this could
be done pending the adoption of some comprehensive and be done pending the adoption of some comprehensive and
general scheme of drainage; and, though such measures would not suffice to place Paris on a par with modern principles of hygieue, still they would save many valuable lives. Considering the large number of Englishmen who frequent the French capital and, by their lavish expenditure, enrich the hotel and shopkeepers of that attractive city, we have a
right to complain of the risks our compatriots are compelled to incur when they visit Paris.

Curious Nesting Places.

A few years ago a pair of pewees built their nest on a brace under the guards of the steam ferryboat running between Portland and Middletown, Conn., the boat making trips every ten minutes. They seemed to claim Middletown as their home, as they appeared to collect their building material on that side of the river. When the boat was on this side they would wait patiently, sitting on the piles until she came into the slip, although I have occasionally seen them Hy out and meet the boat in the middle of the river. "John," the veteran collector (he has been on this ferry thirty years), took quite an interest in them, and did what I doubt he never
did before-let anything cross on this boat without collecting the fare. The birds did well, and we watched them until the young left the nest.
I have a bad habit of waking up about four o'clock'in the roungs, and in summer, to keep out of mischief, I "pot" spring I noticed a bluebird flying toward the house with has bill full of dried grass. I watched her, and you would never uess where she went with it-right into the kitchen chimney. The chimney has a flat stone on to!, with openings beneath. I sat down and watched the pair work most lively until the conk came down and started the fire, when, as the smoke that up as a the birds left. , Well, thinks 1 , you have given work as hard as ever. I waited for about ten days, when the
cook complained that the fire did not seem to work right. the stone draw, in. The chimney is not a straight one but has what the masons call a "draw off" in it. On that ledge, as you might say, they had begun their nest, and had finally nearly filled up the whole space in the chimney. In ne corner was the nest as natural as life. I took a long wooden rake and carefully brought up and out the whole structure, and, if you will believe me, there was material enough to fill a half bushel measure.
I notice your remarks on "Coe's Strain," in October number. Had the usual luck this spring. Although I have had little time, I have managed to take the great horned and barred owls, a beautiful set of sparrow hawks, red-headed woodpecker, fine nest of white-bellied nut-hatches, and a few others of less account.
Took a chipping sparrow's nest with one of her eggs and one cow bunting's in it. The sparrow had built over the top of the nest a perfect network of horse hair, same as the lining of the nest, and so nicely that although one could see the eggs plainly it could be turned "bottom side up," and the eggs not fall out. I never saw this before in chipping sparrows' nests. "I put 'em in the bag" with the rest. Have a fine specimen of a chicken which I mounted a few days ago -perfect in every way except that he has four legs. What a sweet thing he would be in an early garden! I have a martin box on a pole some fifteen feet high. The martins came in the spring and stayed a few days, and then for some reason best known to themselves left. A pair of robins at once took possession and built a nest in one of the compartments, and when finished the old lady sat (?) set (?) sot (?) with her head out of the front window, showing that she was " at home."
But the sweetest of all this year is this: When I built an addition to my horse barn, I was obliged to cut down an old cherry tree, which I did, leaving a stump some six feet high, into which I placed a ring to bitch my horses to. One morn ing I noticed a pair of chickadees at work on the stump, and I gave them my closest attention. My man hitched the orses to this stump every morning as be cleaned them off, and although the horses' heads were within a foot of their hole they kept at work, and finally laid their eggs and brought forth the young in good order. By the aid of a mirror I threw the light into the hole, so that I could see all that was going on. They began work April 27, carried in nesting material May 10, began setting May 17 , hatched May 26 , and the young flew June 12. What I notice in this as singular is the fact that we usually find these birds breeding in the thickest of swamps, and almost always in white birch tumps; and that they should come into the open and so close to the house; and more, they worked most systematically, each working and taking out chips. One would carry away the chip that he (or she) had pecked out, and fly to a pear tree near by and "wipe" it off her bill, when the other would at once go in and go to work. They did it so regularly that, an one went out of the hole the other met it about half way between the pear and cherry tree.-W. W. Coe, Portland, Conn., in Ornithologist.

The Stinging Trees of Australia.

The stinging plants of Queensland, Australia belong to the natural order Urticaceæ, and represent two genera, Urtica and Laportea. Of the first named genus there are two species in Queensland, both herbaceous plants:

1. Urtica incisa, found chiefly on the Fitzroy River, and said by M. Thozet, of Rockhampton, to grow in great profusion.
2. Urtica urens, a common weed in this country-the nettle-and found in the neighborhood of dwellings in Queensland.
In the genus Laportea, on the other hand, there are three great stinging trees:
3. Laportea gigas, a large tree, often attaining a height of 100 feet or more. The wood is soft, fibrous, and juicy, and the bark smooth and ash colored. The base of the tree is supported by prominent angles or buttresses. The leaves are from 1 foot to 1 foot 6 inches long, and nearly as broad, smooth above and sprinkled with a few stinging hairs, but more or less covered with short, soft hairs underneath. It is found chiefly in South Queensland. The sting is severe, but not so bad as that of L. moroides.
4. Laportea photiniphylla.-A fine tree, from 60 to 70 feet in height, with a straight stem. The wood is soft, and the leaves are almost elliptical in shape, nearly smooth, and sprinkled with a few stinging hairs. It is found in the Moreton Bay district, and also in North Queensland. M. Thozet mentions having found it on the Fitzroy River.
5. Laportea moroides.-A small tree, with most virulent stinging hairs. The leaves, which are about 9 inches long, are covered with short soft hairs on both sides. The fruit is of a beautiful purple color, succulent, and densely clustered. This tree is found chiefly in the Kennedy district in North Queensland. Mr. Fitzalan, of Bowen, mentions hat it is common about Port Denison and Edgecumbe Bay. These three stinging trees, which Bentham and Von Mueller place in the genus Laportea, are by many botanists ncluded under Urtica
Of all the stinging plants of Queensland, Laportea moroides urpasses the others, both in the severity of the pain produced at the time and in the duration of its effects.

IMPROVEMENT IN WATCH HANDS.

This improvement in watch hands is designed to enable the wearer to see at a glance the different times of the place he is leaving and the place of destination, or to enable him with one watch to keep both standard and local time. The value to the traveling public of such a device is apparent in the facility which it affords for making connections between trains run by different times, as well as in keeping appointments between different cities.
This invention provides a simple and practical device for uniting the two hands. It consists in a groove turned upon the hub of one hand, and a split spring ring formed on the other hand and sprung into the groove, and which by its elasticity preserves a constant and uniform frictional contact with the other hand, that always maintains its proper relation during the normal movement of the hands, but still permits an adjustment between them to adapt them to point to different times when it becomes necessary to adjust them to the longitude of different places
Fig. 1 shows a watch having the auxiliary hands set for Chicago time and the usual hands set for Boston time. Fig. 2 shows the hands as they appear when only one kind of time is indicated-that is, when the auxiliary hands are pushed around behind the outer hands.
Fig. 3 is an enlarged view of a pair of hands. Fig. 4 shows one of the auxiliary hands baving the spring end, and Figs. 5 and 6 are respectively side views of the hour and minute hands with the auxiliary hands applied.
This improvement will be appreciated by all travelers, and by others who are obliged to differentiate time. It is possible that this simple device may go a long way toward introducing a standard time.
This invention has recently been patented in this country, in Canada, Great Britain, France, Belgium, Germany, Spain, Italy, and Austria by Mr. John Wethered Bell, Conowingo, Maryland

IMPROVED SAW MILL

We present a cut of the Taylor Manufacturing Company mproved plantation saw mill, a machine designed to mee the wants of parties who desire a mill to do neighborbood sawing with engines of small power, say from 8 to 18 horse power.

This mill has a solid iron girder frame of great strength and is provided with substantial friction feed with two changes of speed. Friction feed is $31 / 2$ inches wide; feed belt, 2 inches. The mandrel has solid 8 -inch bearings. Thi mill is so arranged that carriage can be set at either th right or left hand of the saw frame, a very essential feature where parties desire to change location. The carriage runs on a V wrought iron rail, and has two screw blocks that are made so that they can be used as a screw block, or as a ratchet block when desired. Head blocks are made heavy and substantial, and have a sliding dog in knee that is very handy to dog the last board. The knee recedes 30 inches from saw, so that the carriage may receive a large log

This company also build the patent \log beam mills i three sizes. The No. 3 mill was illustrated in the Scientific American of October 21, 1882. The No. 2 mill is of	the same design, only heavier; and their mammoth No. 1	Italian Government to make good the damage done to
mill is made with or without top saw, for heaviest power	bridges, and public buildings by the late inundation.	

解 he plate against the under side of the sensitive film. Blur ring effects and halos around bright objects in negatives are thus produced. It takes place more readily in thin gelatine films than in those that are thick. Several plans have been proposed to prevent halation. One of the simplest consists in smearing over with glycerine a piece of black American cloth or of mackintosh, and quickly squeegeeing the smeared side on to the back of the sensitive plate before exposure care being taken to use a small quantity of glycerine. A rejected negative or any glass plate is sufficient to squeegee with, which is done by pressing down the cloth by pressure on the plate; the spare glycerine is thus expelled, and the air bubbles with it. After exposure in the camera, the cloth backing is easily removed from the sensitive plate and ap plied to successive plates.
Another method consists in flowing the back of the sensi tive plate with a collodion solution made as follows: One part saturated solution of aurine in absolute alcohol with hree parts of plain collodion, adding one per cent of castor oil and one per cent of a saturated solution of roseine.
Before development the collodion film must be removed. -British Journal of Photography

IT will require an expenditure of at least $\$ 5.000,000$ by the
and lumber. They claim for these mills very rapid work, done perfectly and accurately.
This company will remove to Chambersburg, Pa., Janu ary 1 , to new and extensive works that now are nearly com pleted, where their facilities for turning out work will be greatly increased.
For further particulars address Taylor Manufacturing Company, Westminster, Md.; New York store, 107 Liberty Street.

Methods of Preventing Halation in Gelatine Sensitive Plates.
Halation in gelatine plates is caused by the bright light of an object passing through the gelatine film during exposure

The high expectations in regard to toughened glass can carcely be said to have been realized as yet, and several im provements must still be made before the process can be conidered as perfect.
The original method consisted in immersing the article while still red hot in a bath of oil heated to $200^{\circ} \mathrm{C}$. $\left(392^{\circ}\right.$ Fahr.), and letting it remain there until it had cooled down to that temperature. Glass hardened in this way was, in deed, hard enough, but at the same time it was very brittle, o that if put away and kept untouched it would frequently xplode and fly in pieces wilhout any visible cause
T. Lubisch claims to have discovered a better method of T. Lubisch claims to have discovered a better methed of
hardeving glass, or, rather, an improvement on the same pro. cess. He also immerses the article, while red hot, into a hot bath, but he takes it out again when it has nearly lost its redness, and lets it cool very slowly in an oven that is heated nearly to the temperature of the glass.
As the bath does not need to be much above 212° Fahr., he prefers to use solutions of the carbohydrates in water (starch, gum, or the like). Such a bath does not soil the surface of the glass, as is the case with fats, oils, and bituminous substances.
Glasses subjected to this operation re sist pressure and shock just as well as those hardened in oil, but possess this advantage, that they can be cut with a diamond or polished and cut with sandstones.
While the oil method only permits of the bardening of articles of simple shape, by Lubisch's process all glass things can be hardened, as, for example, bottles, mugs with handles, pitchers, and other vessels.-Industrie Zeitung.
[We have used vessels hardened by Le Bastie's process, and have observed that when broken the pieces are not smaller, as a rule, than those which would result

BELLS IMPROVEMENT IN WATCH HANDS.

from breaking an ordinary glass vessel,
beve we noticed anything an ording glass vessel, although such explosions do sometimes occur in hard glass. $-E d$.

Recent Finds in Connecticut Valley Sandstone
Mr. Elias Nason reports, in a Boston paper, that some very ne specimens of tracks bave lately been uncovered in the famous quarry at Turner's Falls, Mass. One of the slabs has on it a series of 15 -inch tracks (three toed), the stride measuring five feet. Mr. Nason was permitted to take with him several beautiful specimens, one of which exhibits the delicate tracery of the feet of an insect escaping over the soft mud; another exhibits the ripples of the wave, another the drops of rain, and others have well-defined imprints of the tracks of birds. He also saw the impressions of several kinds of ferns and grasses. Mr. Stoughton, who is working this geological mine, considers some of the largest slabs to be worth from $\$ 500$ to $\$ 1,000$; but the cost of excavating them s heavy.
This whole region is supposed to have been originally covered by the sea. As the waves receded, birds and quadrupeds whose species are extinct left the impressions of their feet upon the mud, which, hardening into stone, has held them through the ages for the examination of he scientists of the present day. Compared with these tracks as to age, the pyramids of Egypt are but as of yesterday.

THE GREAT HARLEQUIN BEETLE OF CAYENNE.
Among the Coleoptera which present the most singular forms may be mentioned the Longicorns, so called on account of the extranrdinary length of their antennæ.

Any one who takes a walk in the oak woods on a summer evening may see the largest representative of this family in Europe flying about. It is called the Great Capricorn (Cerambyx heros, Linn.), and is of a brown color, almost black. The larvæ, called wood worms, bore large passages in the interior of the oaks, and often spoil the most beautiful timber. The Parisian amateurs go in search of this beautiful insect in the old oaks which border the pool of Auteuil.
Many of these oaks were cut down during the war of 1870, but there are still some in the fields which conceal the larvæ of the Longicorns in their old perforated wood.

The small Capricorn beetle (Cerambyx cerdo, Linn.) is black, and very much like the preceding one, but less than half the size, and lives in a larval state in apple and cherry trees. They may often be caught in July warming themtrees. Thes in the sun upon the classic cherry trees of Montmorency. In very warm weather they fly at mid-day and feed, as if intoxicated, upon the odorous umbels of the leek and onion.
Walking in a warm evening under willow trees, one produced by the secretions of very beautiful Longicorn of a rich metallic green, the larva of which lives in the wood of the willow. It is the Aromia moschata.

Often at the end of winter a Longicorn with black antennæ may be seen running along the floor of the room; it appears to be dressed in the richest red vel vet. The larvæ of this blood colored beetle live in the logs of the beech tree.

The most curious European Longicorn, from the length of its antennæ, is the one called by entomologists Astynomus edilis. It is from twelve to fifteen millime ters long, a little flattened, asb colored, cloudy, with yellowish hairs, and two arched irregular brownish bands upon the elytra.
The antennæ are almost three times as long as the body in the females, and about five times as long in the males.

Such appendages are very troublesome in flying. These insect may be found in April and May upon the trunks of the pine and fir, in the interior of which they have passed their larval state; they are found in the wood of all the coniferous trees

The passage of a Longicorn from the larval to an adult state requires a very complex modification of the organs. The larvæ are whitish worms, with the thorax more or less swelled, and a form which resembles a prism with six faces.
They really possess no limbs, the small scaly legs being of no use in locomotion, the movements of the grub being performed by the contraction and extension of the ringed body. The seg. ments are furnished above and
below with strong retractile tubercles; these aid the larvæ in moving along the passages which they have bored out in the interior of the trunks of trees.
The Longicorns are also found in warm regions, as in Europe, some of them of considerable size corresponding with the enormous trees of a luxurious vegetation. The most singular kind is a large insect, which seems to be found in all tropical America, and where the exaggeration of the appendages appears not only upon the antennæ, but also upon the feet, principally the anterior ones.
The Acrocinus lorgimanus, which is shown in the engraving, has antennæ nearly twice as long as the body, black, with the base of the long joints ash colored. The corselet is black with oblique red lines. It has above near the sides two small black spines, and upon each side another very strong spine. The elytra have a spine at the base and two at the extremity; they are of an oblong form, black and silky, varied by watered spots, red, and of a greenish gray.

This variety of colors has given this insect the name of the " Great Harlequin of Cayenne," a commercial name under which it has been known for at least two centuries, in the boxes of curiosities from America sold by the merchants.

The thighs are long, sleek, and black, with a reddish ring near the joining with the leg. The anterior legs are black, furnished below with strong spines-all the others are bare, with rings of ash color. In the male the anterior thighs are	with rings of ash color. In the male the anterior thighs are	
the length of the body. The anterior legs, of the length of the	logs	

Rojas. It is said that this beetle lives in cold climates (that
anterior thighs, are spinous, bent back from the top, and terminate there in a strong spine on the inner side. There is less disproportion in the female.
It may be said that the larva of the Acrocinus longimanus is entirely different from the adult. Its legs are absolutely useless, its antennæ extremely small.
The body is divided into thirteen segments besides the head, is eighty millimeters long, with a very large overlap ping prothorax, from sixteen to eighteen millimeters long protected in the upper part by a large shield, very wrinkled and granulated. The segments of the abdomen in the mid dle from ten to twelve millimeters large, lengthened gradually; diminishing in size from the first to the sixth, the sev enth and eighth are enlarged.
The first seven segments of the abdomen are furnished with large flattened tubercles covered with blackish granulations, and divided by creases. This larva is white, the under part yellowish, the upper shield of an obscure brown. The anterior of the head and the mandibles is black. The middle part of the head is almost smooth, the two extremities having scattered golden hairs. This larva has been found by M. Salle in Mexico, at Cordova, under the bark of a arge tree of the species Ficus.
Rojas. is

$$
\log \cos
$$

the great harlequin beetle of cayenne.

The Metal Cæsium.
Bunsen and Kirchhoff, when working on the method of spectral analysis, which they completed in 1860, hit upon two metals which gave lines in the spectroscope that were quite new to them. They were called rubidium and cæsium. The salts and the metal itself, in the first case, were soon prepared and studied; the second metal has only just now been obtained in a free state. It has been accomplished by Dr. Carl Setterberg, whose paper has been communicated to the Academy of Sciences at Stockholm, and the work was done at Marquart's laboratory in Bonn, where, as a by-product from the manufacture of lithia from lepidolite, the alums of these metals were to be obtained in hundreds of hundredweights. By allowing a hot concentrated solution of the alums of the two metals and of potash alumfor of these it consists-to stand, all the alum of the rare metals first separated out; the process is repeated several times, and in this way 40 kilogrammes of rubidium alum and 10 kilogrammes of cæsium alum were crystallized out. Boiling water dissolves much more of the rubidium alum than of the cæsium alum-at 0 degree 3.74 times as much, and at 80 degrees 4.08 . To get the hydrates of the metals from the alum they are treated with barium hydrate, which brows down beth the alumina and the sulphuric acid. This was then, in the case of the cæsium, converted into cyanide by passing perfectly dry hydrocyanic acid into solution of the hydrate of cæsium in alcohol. It is absolutely necessary that the materials should be quite anhydrous. The reduction of the cyanide was conducted in a little clay cell, as described by Professor Bunsen in his paper on the isola tion of other metals, like lithi um, calcium, etc., and a mixture of four parts of cæsium cyanide with one of barium cyanide, and a current of the intensity 25 , ex pressed in absolute measure, em ployed. The actual reduction of the metal from the cyanide was effected at Heidelberg in the laboratory of Professor Bun sen; and here it was that the long desired view of the curious metal was first obtained. The metal closely resembles the other alkaline metals in appearance it is silver white in color, can be drawn out, and at ordinary tem peratures is very soft. It may be stated here that Professor Bunsen told the writer of these lines some fifteen years ago that be expected cæsium would be, like mercury, a liquid metal for in this group of metals the temperature of fusion falls as the atomic weight increases. Though not liquid, it melts at a low temperature, between 26 degrees and 27 degrees Cent.at about 26.5 degrees Cent. In contact with water it swims on the surface, flame being evolved, as do potassium and rubidium when exposed to the air, it soon takes fire. Two determinations of the density of the metal showed it to be 1.88 and 187 . All experiments made with a view to reducing the chloride were attended with difficulty, and led to the employment of
which the Coleoptera sucks the milk. The larva is found in the interior of this tree, and the perfect insect, which also inhabits it, comes out regularly in the morning to fix itself upon the Ficus, and feed upon the milk or descending sap. M. Rojas found them there, and also in their retreat, by cutting away the trunk where he saw the entrance to their dwellings, always large and opening outward.-La Nature.

There was recently felled in Sonoma County, California, a tree which cut up as follows. The Petaluma Argus says that the details can be relied upon. The standing height of the tree was 347 feet, and its diameter near the ground was 14 feet. In falling, the top was broken off 200 feet distant from the stump, and up to the point of breaking the tree was perfectly sound. From the tree saw-logs were cut of the following lengths and diameters: 1st, 14 feet long, 9 feet diameter; 2d, 12 feet long, 8 feet diameter; 3d, 12 feet long, 7 feet 7 inches diameter; 4th, 14 feet long, 7 feet 6 inches diameter; 5th, 16 feet long, 7 feet diameter; 6th, 16 feet long, 6 feet 10 inches diameter; 7th, 16 feet long, 6 feet 6 inches diameter; 8th, 16 feet long, 6 feet 4 inches diameter; 9 th, 16 feet long, 6 feet 3 inches diameter; 10th, 18 feet long, 6 feet diameter; 11th, 12 feet loug, 5 feet 10 inches diameter; 12tb, 8 feet long, 5 feet 6 inches diameter. It will thus be seen hat 180 feet of this remarkable tree was converted into saw that 180
logs.
the cyanide instead. A curious point in connection with the bistory of cæsium was the point in connection with the history of cæsium was the pollux from Elba, which he published in 1863. Plattner held it to be a silicate of alumina and potasb, but his numbers fell short to 92.75 per cent, and finding the result inexplicable, he published it. It was afterward found that the supposed loss was due to the oxide present being, not potash but cæsia, of which it contained 3407 per cent, and thus brought the analysis up to the 100 , and made it come right. This shows the importance of setting down the results of an analysis conscientiously without making up the " loss."

OII Bath.

In order to render silk which has been dyed black more lustrous and shining, Mr. A. Gillet recommends the use of the following bath: Two parts soda crystals are dissolved in 100 parts water, the obtained solution being of $2^{\circ} B$. Olive oil is added to this bath until the oil begins to remain the top of the solution. Soap can be added. The addition of citric, tartaric, or acetic acid to tbis bath is not re commended, as any acid would only diminish the alkaline strength of the bath. If it is required to remove the white reflection the silk has acquired in the above bath, the silk can be washed in water containing citric, tartaric, or acetic acid.

CARE OF OFFSPRING IN aNIMALS.

The accompanying illustration shows one of the most interesting cases of maternal care among lower animals on record. It was observed by F. L. Harvey, Esq., of the Arkansas University, at Fayetteville, Arkansas, probably for the first time in America, though such occurrences have been several times chronicled in England.
Prof. Harvey was in the field gunning, and suddenly noticing a woodcock (Philohela minor) rise near him and fly off laboriously, he ran after it, and distinctly saw the young one clasped and held between her feet, and watched the transportation for one hundred rods, when the mother alighted and they both probably ran off together. This certainly shows a remarkable and unsuspected amount of intelligence in the woodcock, and places it in this respect above many other birds who are ranked higher.
The peculiarity of carrying the young in one form or another is seen in many families of animals. It has been recorded that the night-hawk will carry off its eggs in its mouth, an occurrence that, though doubted, would not be more remarkable than the case of the woodcock. The king penguin carries its eggs around in a sac; moving about with it with a hopping motion peculiar to this time. This is probably true of many of the penguins; also of the albatross, that builds a nest, even then holding its egg in the curious sac that is analogous to the pouch of marsupials. In the kangaroos, the appearance of the young clinging to a nipple has often caused curious errors, many observers believing the young to have grown there; and it was my privilege to read recently a pamphlet written by some observer (?) upholding this theory. The stomach of the kangaroo is of large size and very complex, its walls being puckered up by longitudinal muscular bands into a great number of sacculi, like those of the human colon. The alimentary canal is long, and the cæcum well developed. All the species have a marsupium, or pouch, formed by a fold of the skin of the abdomen, covering the mammary glands with their four nipples. In this pouch the young are placed as soon as they are born; there their growth and development proceeds; and to it they resort temporarily for the purpose of shelter, concealment, or transport, for some time after they are able to run and jump about the ground and feed upon the same herbage which forms the nourishment of the parent. During the early period of their sojourn in the pouch, the blind, naked, helpless young creatures (which in the great kangaroos scarcely exceed an inch in length) are attached by their mouths to the nipple of the mother, and are fed by milk injected into their stomach by the contraction of the muscle covering the mammary gland. In this stage of their existence, the respiratory organs are modified much as they are permanently in the Cetacea, the elongated upper of the larynx projecting into the posterior nares, and so maintaining a free communication between the lungs and the external surface, independently of the mouth and gullet, thus averting all danger of suffocation while the milk is passing down the latter passage.
The opossum not only rears its young in the pouch, but they cling to the mother's back, their tails entwiued about her tail, presenting a curious appearance. Among the pipe fishes, the sea-borse, etc., the males receive the young into a pouch in a very similar manner. The female deposits the eggs unimpregnated, and they are caught in the pouch of the male, where they are impregnated, also drawing nourishment from the fat that lines the pouch, and are finally born the second time, over a thousand or more regular sea-colts. Dr. Lockwood thus describes the actions of his brood immediately after birth: "The scene that followed was one of singular and lively interest. I was nervous wish delight, and wished that every naturalist could see it for himself. I am sure there is no student of nature but will excuse the enthusiasm which prompted me to write at once to a friend ' that he must not set the minister down as a horse jockey on being informed that he was now the proud possessor of the most numerous drove of colts ever owned by one man the whole wide world over.' Using my best judgment, for, owing to the mazy motion of this tiny throng, counting was out of the question, I set the number down as not far from a thousand. Each measured from five to six lines in length. Very minute creatures truly, when one considers how large a proportion is taken up by the tail, which organ was of but little more than thread-like dimensions. We might suppose that it would require a few days for young hippo to find out the remarkable monkey-like endowment of its tail. Not so. Only look at what my own eyes beield many a time when a stampede of these little colts was going on, although they were but one day old. There came two little hippos, each swimming in a direction at right angles to that of the other. Just at the point of passing, one, lasso-like, whips his caudal extremity round that of his fellow, who, of course, in like manner returns the compliment, which, to speak technically, acts as a "double lock." Of course, both pull, and, by a natural law, the force is exerted in exactly opposite directions, and the right angle is resolved into a straight line. It is but poor headway they make, nor does it mend the matter much that a third little fellow comes giddily on, and switching his tail, takes a hitch in that precise point in space where the two others meet. Now a triple force is exerted, and the effect is, with two straight lines, to project three obtuse angles. And so the three toil on; obtusely laboring in statu quo. But a droller sight is that of yonder juvenile lophobranch, who seems to be of somewhat belligerent proclivities, as he is leading by the nose a weaker member of
his own species, having, with his caudal extremity, noosed him on the snout. These funny antics, though oft repeated, are of short duration, as the parties soon have to rest from sheer fatigue."
The lamented Agassiz discovered among the South American fishes some remarkable instances of affection for their young; they were in some cases endowed with certain modifications of structure that enable them to conceal their young or eggs about their bodies. Prof. Agassiz thus refers to bis discovery in a letter to the Emperor of Brazil:

- Teffé.
"Sire: On arriving here this morning, I had the most agreeable and unexpected surprise. The first fish brought to me was the acara, which your Majesty kindly permitted me to dedicate to you; and by an unlooked.for good fortune it was the breeding season, and it had its mouth full of little young ones in the process of development. Here, then, is the most incredible fact in embryology fully confirmed, and it remains for me only to study, in detail and at leisure, all the changes which the young undergo up to the moment when they leave their singular nest.

An Indian species of arius has a similar habit, while another of the same genus, found at Panama, bas a fold in the skin in which the females carry their eggs. When hatched, they are received into the mouth of the male, and the remarkable sight is seen of young moviag in and out of the capacious mouth, fleeing to it in time of danger.
Those familiar with the gigantic studis of South Ameri ver that it has a similar babit of protecting its young.
Perbaps the most remarkable instance among the catfishes is that of the aspredo. During the breeding season, curious horny stalked.capsules appear upon the ventral surface and fins; to these the eggs become attached, and the fish moves off, her coming progeny dangling and swimming after her When the young are hatched, these cradles disappear.
Some of the tree-toads-the hylodes of the island of Gua

deloupe-bear their young about clinging to their backs, and in Martinique the tadpoles (Hylodes martinicensis) are carried about in the same way. The female of Notorema bas a sac upon the back in which the young are carried, and similar methods are seen in notodelphys. The most remarkable case, however, is that of the Surinam toad.
The ant eater carries her young upon her back, a sketch of which has been shown in a former number of the Scientific American, and this is equally true of a number of animals, not including the monkeys.

Among insects, love of offspring seems to be predominant, and the most elaborate structures are formed for their protection. Who has not watched the jealous care of the ants over their presumable offspring! If the nest is destroyed, each ant will be seen carrying off one or more of the curiously colored young to a place of safety.
Some spiders carry their young about with them; and the corpions, some of which are a foot long. have been seen covered with their minute young, and a popular belief exists that the mother dies a victim to their bunger. Goss gives a curious account of the care a scolopendra shows over her young: " Under a stone by the roadside at Sabito Bottom I found a centipede performing the duties of a mother. It was a blue species, about three inches in length; it was lying in the form of a bow, the head and the tail curved forward toward each other, almost on its back, the curved body embracing some ten or fifteen eggs, which slightly cohered. The parent on being disturbed darted away among the stones, leaving the eggs, so that I did not capture her. I brought home the eggs, and. having taken out a few for preservation, placed the rest carefully on moist earth in a phial, hoping to rear them. They soon, however, became covered with mould, and decomposition destroyed them. The mother's care is perbaps indispensable, as in the case of ants, regulating the admission of heat and moisture to them according to cir-

Antiseptic Properties of Carbonic Acid.

Since 1874, when the author published his first experiments on the antiseptic action of salicylic acid, it has been his constant endeavor to find out a suitable method of its employment for preserving meat. Invumerable experiments, repeated under varied conditions, have convinced me that although meat impregnated with carbonic acid is, in fact, protected from decay, it acquires an unpleasant flavor after a few days, and when boiled or roasted it disseminates a disagreeable (but not putrid) odor. In spots where any decomposition was noticed, the meat no longer reacted acid, but alkaline.
This experience led to the conjecture that meat could be protected from spoiling by the acids in general, as well as by their gases, if it is thereby protected from the liberation of ammonia which accompanies decomposition, in the same manner as by putting it in vinegar.
The first experiment in this direction, made by putting a piece of beef on a plate under a glass bell jar of carbonic acid, was unsatisfactory. Before the end of the week, a putrid odor was perceptible, and the parts in contact with he plate, where no carbonic acid could reach them, showed an alkaline reaction.
The results were better when the meat was suspended so as to hang freely in a vessel filled with carbonic acid.
The experiment was repeated in apparatus of various izes. The meat to be preserved was hung on a tiuned iron hook that moved along a borizontal iron rod in a cylinder made of sheet tin. On the bottom of the cylinder was a porcelain dish to catch the dropping liquid from the meat, and in the side of the cylinder, just above the dish, a tubulus is soldered on air-tight, and through it passes a short glass tube connected with a rubber tube for introducing the car bonic acid gas. The rubber tube can be closed quickly and tightly by means of a pinch-cock. The cylinder also has a tightly by means of a pinch-cock. The cylinder also has a
gutter around the top into which the lid sits, and which is half full of glycerine. A tubulus is also soldered into the top of the metallic cover, and provided with a glass tube like the lower one.
The glycerine acts like a water seal, and when the vessel is closed, carbonic acid from a Kipp's constant apparatus is passed in by the lower tubulus and expels the air through the upper one, which is left open. When nearly all the air the upper one, which is left open. When nearly all the air
may be supposed to have been displaced by carbonic acid, the two rubber tubes are securely clamped.
The first series of experiments were made in winter, the second in the hot months of summer. The cylinder containing the meat stood in the warmest room of my laboratory, which, being on the south side, was exposed to the sun's rays for the greater part of the day, and at noon the temperature rose to $32^{\circ} \mathrm{C} .\left(90^{\circ} \mathrm{Fahr}\right.$.). Pieces of fresbly killed beef weighing from two to five kilos ($41 / 2$ to 11 lb .), including bone and fat, were used.
A week after the beef bad been put in the cylinder of carbonic acid, it could not be distinguished by appearance color, or odor from fresh meat. It reacted slightly but distinctly acid everywhere.
After being carefully washed off it was boiled in water. The broth made from it smelled and tasted just like that from fresh meat, and the meat itself, if not boiled too long, from fresh meat, and the meat
was soft and tender, not stringy.
Meat suspended in carbonic acid for two weeks bad the same qualities as the other, except that it looked grayer, but within it was red and juicy. The broth made from it, as well as the meat itself, had a pleasant flavor, and only a very sensitive palate could distinguish a slight difference in the taste of this broth and that from fresh meat. In a few cases the meat as well as the soup had a slightly acid taste, which was completely removed by putting in a very small quantity of carbonate of potash. Meat kept in carbonic acid for three weeks was as good as that left there for two weeks, but was softer than fresh meat, and required less ime to cook it, or to obtain good broth.
After being kept in carbonic acid for four or five weeks, the meat was still free trom putrid smells, but the broth made from it did not taste as good as fresh bouillon. The experiments were not continued any longer.
From this it will be seen that carbonic acid is an excellent reservative for beef, in which it will retain its flavor for several weeks.
It is worthy of note that mutton acts quite differently, and after being kept in carbonic acid gas for a week it begins to have a putrid smell.
Veal does not keep as long as beef. No experiments have been made with game or fowls.
Fish, oysters, and fruit only keep a short time.
This property of carbonic acid to preserve beef a long time will scarcely become of any great practical importance, but may find use where carbonic acid is given out in abundance from the earth. At the Nauheim baths there are dry wells in which almost unlimited quantities of carbonic acid stream forth and are pumped out to be used for making soda water, and for other purposes. It would be worth while to try how long beef could be kept fresh by hanging it on a rope in such a well.
The experiments described give rise to many other queries, such as whether light has any effect on the preservative power of carbonic acid.
The author does not propose to extend his experiments any further, and leaves the field free for others who wish to study the chemical and physiological changes and reactions.
-Chemiker Zeitung.

RECENT INVENTIONS.

Novel Animal Tag.
This is a new tag for animals, consisting of a tube provided with a removable cover and an elongated staple for the strap by which the tube is held to the animal. A tube or lengtheued box or casing, A, preferably made of metal, is closed at one end, and at the opposite end is provided with a hinged cover, which can be secured and locked on the tube by means of a spring tongue or any other suitable device. The tube, A, is provided with an elongated staple, through which a strap can be passed to secure the tube on the animal's neck. If desired, the tube,
 A, can be held within the staple of a bell, as shown in the engraving, the bell-strap passing through the staple of the tube, A, and through the staple of the bell. Papers or documents bearing the name of the owner of the cattle, or other information in relation to the animal, are placed in the tube or casing, A, which is then closed. The tube is to be made very small, so that it will not molest the animal. This invention has been patented by Mr. Elias G. Queen, of Big Valley, Tex.

Improved Car Coupling.

This invention consists in the combination, with a drawhead having a hook formed at its end, of a spring which presses the drawhead in the direction toward the open side of the hook, and of loop frames formed on the top and bot tom of the draw head, whereby two such draw heads can catch on each other or on the loop frames, accordingly as the draw-heads are at the same or different eleva tions above the track. The operation is as fol
 lows: When the
 dra wheads come
together, the beveled ends strike against each otber and are moved laterally from each other. When the ends of the short prongs of the hooks have passed each other, the drawheads snap toward each other, and the hooks catch and engage as shown in Fig. 1. When the drawheads are at different elevations above the tracks, the hooks catch on the frames projecting from the tops and bottoms of the drawheads as shown in Fig. 2. This invention has been patented by Messrs. Geiger \& Lynn, of Norristown, Pa.

Improved Letter File.

The letter file shown in the engraving is so constructed that the curved locking pins will be out of the way when letters and other papers are placed on the file. Two tubes, having their upper ends beveled to form points, project upward from a board, and between the tubes and the nearest transverse edge of the board two thin rods or wires project upward, the wires being about the same height as the tubes. Two curved wires or rods project upward from a strip which rests on the board, and is connected by means of two pivoted links with a similar strip fixed on the board parallel with the transverse edge. The strip carrying the curved wires can be moved upward from the fixed strip. The curved wires are so arranged and of such size that when the movable strip rests against the fixed strip the upper ends of the curved wires
 will pass into the upper ends of the tubes. By pushing against one end of the movable strip the curved wires will be moved from the ends of the tubes, and the sheets to be filed can be placed on the board, the tubes passing through the sheets. The straight wires form guides, against which the edges of the sheets are rested, so that all the sheets will be pierced by the tubes a like distance from the edge. When the file is closed, no paper or sheets can be removed from or placed on tubes. This invention has been patented by Mr. Morris Herzberg, of West Point, Ga.

Pillow-sham Holder.

The annexed engraving shows an adjustable extension frame, by means of which pillow-shams may be made to re-
tain the smooth and neat appearance they present when coming from the hands of struction and arrangement of bars, made of wire or other suitable material, having looped and hooked ends or bowed ends lapping past each other and secured adjustably in clips, thus forming a rectangular frame easily adjustable as to length and justable By this width. By this construction the supporter may be adjusted for any size pillow-sham desired. This useful device has been patented by Mrs. Mary A. Steers: Further information may be obtained by addressing Mr. George Steers, 427 North West Street, Kalamazoo, Mich.

Novel Horseshoe.

This horseshoe has a base made in two parts, hinged to: get her at their forward ends, and baving a cap, also made in two parts, attached to the base, the parts of the cap being provided at their upper forward corners with eyes and a fastening staple, and the binged parts of the base being locked in place by a screw-rod passing through the hinged end of the base, whereby the shoe can be readily applied and detached, and will be securely held in place while in use. With this construction the shoe can be easily and quickly applied to and detached from a horse's foot by removing the screwrod and fastening, and when
 rod and tastening, and when
 applied to the foot will be
beld firmly in place by the screw-rod and fastening. This shoe has the further advantage of protecting the hoof and preventing the hoof from spreading or cracking. Fig. 1 is a perspective view of the shoe, and Fig. 2 shows the bottom. This invention has been patented by Mr. George W. Fenley, Sr., of Tolosa, Tex.

New Ribbon Reel.

The engraving shows a new reel or frame for holding rolls of ribbons in such a manner that they can be exhibited to great advantage, and can easily be unwound when parts are to be cut off. The shaft or rod is supported in the standards having notches in their upper ends to receive it. The shaft has washers and a binding screw for holding the rolls of ribbon in place.
Any desired number of ribbon rolls
are passed on the are passed on the
shaft. By means of a screw, the base of the reel can be secured in a show window: W hen the ribbons on the reel or frame are in the window, they can be examined conveniently by buyers, and will be exhibited to great advan tage without becoming mixed with other articles. One or more of the ribbons may be unwound and drawn into the store, when the desired length can be cut off conveniently. The remaining part may be wound on the roll, and secured by means of a pin. This invention has been patented by Mr A Пen T. Cook, of Morven, Ga.

The Swiss Watch Trade.

The Geneva correspondent of the London Times writes: According to the annual report of the Swiss Handels und Industrie Verein, the Swiss watch trade during the last thirty years has undergone some notable changes. The more general use of machinery, the establishment of factories, and the introduction of improved methods of manufacture have cheapened production and led to a great extension of business. In these factories, watches, with some trifling exceptions, are made from beginning to end, as they are made in the large American watch factories. It is nevertheless not the case, as is sometimes asserted, that Americans were the first to make watches by machinery. A firm at Geneva, Vacheron \& Constantin, had a factory and turned out watches by machinery before a single watch was made in tbe United States, and the Americans procured their first watch-making machinery from Switzerland.
But Geneva has lost its ancient supremacy in watch making. Fine watches (montres soignées) are put together and regulated here, but the greatest market in the country, probably in Europe, is Chaux-de-Fonds, in canton Neuchatel. The factory system is being largely adopted in the newer watch making districts, such as the Bernese, Jura, and the town of Bienne. The latter place is fast becoming a sort of horological Sheffield. Many Geneva houses have found

Geneva had once the monopoly-the making of watch cases -has gone altogether to Bienne.
The movements of complicated watches-chronographs, repeaters, and perpetual calendars-are still made exclusively in the valley of Lake Joux, and no place, in or out of Switzerland, shows any disposition to dispute the supremacy of the mountaineers of the Vaudois Jura in this, the highest branch of horologic art. The report from which I quote observes that one of the results of the extension of mechanical watchmaking has been to deprive Switzerland of the practical monopoly in the production of time keepers which she once enjoyed. She has now several foreign competitors. American competitors, albeit their pretensions are as lacking in modesty as their goods in quality, are regarded as the most formidable-in America. This competition has, however, its favorable side, for during the last two years American watchmakers have procured many of their movements and their most tastefully executed cases in Switzerland. English and German competition, especially German, are mentioned with something like contempt.
Swiss watches, owing to improved methods of manufacture, are now higher in quality and lower than ever, and, say the authors of the report, the best and cheapest in the world. Many foreign watchmakers resort to Switzerland for their supplies, and hundreds of watches sold abroad as "home-made" are made in this country. The calamitous crisis which followed the over-production of 1874 and previous years is now at an end, and, thanks chiefly to the American demand, the Swiss watch trade is fairly active. England and France (notwithstanding the rivalry of Besancon) are good customers; the demand from Germany, Austria, and Russia (which take mostly watches of inferior quality) is not so good as could be wished, but the trade with Spain, Portugal, Italy, and the East shows decided signs of improvement. Prices have not, however, increased in proportion to the increased demand, and there is reason to fear that production is again outrunning consumption. Wages, too, are showing a tendency to rise; in several departments an advance has been already conceded, and altogether the position and prospects of manufacturers are much less satisfactory than might be desired.

Another Great Lake in Africa.

The existence of another equatorial lake in Central Africa, far to the west of Albert Nyanza, rumors of which have reached Europe from time to time since Sir Samuel Baker's first journey, is again reported, this time in a much more definite form. Mr. F. Lupton, Governor of the Egyptian province of Bahr el Ghazal, writes to the London Times trom his station, Dehm Siber, on the 27 th of July, to the effect that Rafai Aga, an employe under his command, on his return from an expedition toward the Uelle, told him that he and some of the members of the expedition had seen great lake in the country of the Barboa, a powerful coppercolored tribe clothed with a peculiar grass cloth (of which Mr. Lupton sends a specimen in his letter). Mr. Lupton gathered that the position of the lake was in about 3 degrees 40 minutes north latit ude and 23 degrees east longitude, and that it was quite as large as Victoria Nyanza. When the weather permits, the Barboas cross the lake in large open boats made out of a single tree, the voyage taking three days, and they obtain from the people living on the western side (their own country being east of the lake) articles of European manufacture, such as blue beads and brass wire. Mr. Lupton adds Rafai Aga's own account of his route to the lake: Started from Dehm Bekeer, marched six days southwest to Zeriba el Douleb, then four days south-southwest to Bengier; four days southwest to Zeriba Warendema; six days southwest by west to the Bahr el Makwar, which he crossed after visiting several very large islands inhabited by a people who call themselves Basango. The Makwar is called by the Arabs Bahr el Warshal, and joins the Uelle, but is a much larger stream; both flow in a west-southwest direction. After crossing the Makwar. Rafai marched ten days south-southwest and reached the residence of the Sultan of Barboa, by whom he was well received; the lake is situated four days' march to the southwest of the Sultan's residence. Mr. Lupton concludes by saying: " I feel I should not be doing right in keeping dark this information, which, when looked into by competent persons, may throw some ight on the famous Congo and Uelle rivers. I believe that he Uelle flows into the lake discovered by Rafai Aga, and that the strenm which is said to flow out of the lake probably joins the Congo." Mr. Lupton further informs the Times that he isengaged in preparing a map of this province, and that he was about to start in a few days on a journey to country called Umbungu, some fifteen days' march to the west of Dehm Siber.

The Voltaic Arc

At a recent meeting of the London Physical Society, Prof. S. P. Thompson read some "Historical Notes on Physics," in which he showed that the voltaic arc between carbon points was produced by a Mr. Etienne Gaspar Robertson whose name indicatês a Scotch origin), at Paris, in 1802. This reference is found in the Journal de Paris for that year. Laboratory notebooks at the Royal Institution, however,'are said to show that Davy experimented with the arc quite as early. The experiment usually attributed to Franklin, of exhausting air from a vessel of water "off the boil," and causing it to boil afresb, is found in Boyle's "new experiments tpaching the spring of the air."
engineering inventions.
Mr. Frederick H. Rudd, of Hebron, Neb., has patented a self-acting contrivance for lifting the car coupling pin to allow the liuk to enter the drawhead
and dropping it into the link after it has entered; also and dropping it into the link after it has entered; also
an improved arrangement for setting the pin so as an to couple when desired
Mr. James Clement, of Grand Forks, Dakota Ter., has patented an improved elevator or carrier, for rasing the earth from the plow by which it is dug
in the ditch up to the chute by which it is discharged upon the bank at the side of the ditch, the object being to contrive an endess carrier that will not be clogged y the earth, but will keep free and run easily.
Mr. Leffert L. Buck, of New York city, has patented a machine which may be adapted to be used
as a pump, a water motor, or a water meter. The inas a pump, a water motor, or a water meter. The in-
vention consists in the combination of a screw of pevention consists in the combination of a screw of pe-
culiar form with a wheel whose wings work in the culiar form with a wheel whose wings work in the
threads of the screw, all of the working parts being inclosed in a metallic casing having suitable induction and eduction orifices for the reception and discharge of the water or other liquid.
Messrs. Thomas A. Cullinan and Augustus W. Baldwin, of Junction City, Kan., have patented a car coupling constructed with a drawhead, a hinged coupling pin, a hinging cross pin having a crank arm upon its end, a chain attached to the crank arm, a rod
having crank arms for raising the coupling pin and lockhaving crank arms for raising the coupling pin and lock-
ing it when raised, a guard to protect the hinging cross ing it when raised, a guard to protect the hinging cross
pin, and a cap plate to prevent rain and sleet from enterpin, and a cap plad
An improved tie bar for railroad rails has been patented by Mr. E. Daniel Samain, of Pierceville,
Kan. The invention consists in a bar having its ends bent over the outer edges of the bases of the rails, combined with a plate attached to the under side of the bar, and provided with upwardly inclined prongs or clips overlapphng the inner edges of the bases of the rails, whereny the rails will be held firmly on the bar. The plate is held on the bar by means of a bolt in such a manuer that the upper surfaces of the prongs or clips
rest against beveled shoulders on the bar a short disrest against beveled shoulders on the
tance from the inner edges of the rails.

MECHANICAL INVENTIONS.

An improved combined cotton press and gin power has been patented by Mr. Edward Franklin, of Thomasville, Ga. This invention consists of attachments to a horse power cotton press, whereby the same
power may also be utilized for driving the gin and other machinery.
Mr. Isaac F. Bissell, of Brooklyn, N. Y., has patented an improved car axle box consisting in a
follower for applying lubricants to journals, made in follower for applying lubricants to journals, made in
two parts, hinged together at their adjacent edges, and provided with a fastening and separate springs, where-
by the follower can be inserted in a journal box while by the follower can be
the journal is in place.
An improved peg cutter has been patented by Mr. William R. Stringfield, of Pineville, Mo. The improvement consists in the construction of parts for attaching the peg cutter proper to a carrier or plate, for securing the cutter at any required angle, and for limitter is attached.
An improved carpenter's square bas been patented by Mr. W. H. Callihan, of Galveston, Texas. similar metal; and the invention has for its object such onstruction of the square that the plated surfaces will be protected from wear, and the square made stronger and better than those in common use.
An improved straw conveyer belt has been patented by Mr. Alton J. Park, Jr., of Virginia, Mo.
The invention consists in the combination, with a conThe invention consists in the combination, with a con-
veyer belt and the cross slats, of strips of leather seveyer belt and the cross slats, of strips of leather se-
cured on the belt in advance of the slats at the ends and overlapping the slats for preventing straw from An improved lock stike has
An improved lock strike has been patented by Mr. James Hoover, of Gratis, O. This invention a spring lever. This invention lessens the friction of the latch bolt in closing a door, as the bolt is not forced back, as in the old style of keepers. This improvement is adapted for use with ordinary door locks.
An improved machine for bending lock plates has been patented by Messrs. Thomas Donahue
and William W. Cone, of Terryville, Conn. The object and William W. Cone, of Terryville, Conn. The object of this invention is to produce lock plates and caps
more accurately and more cheaply than has heretofore been done. It relates particularly tofeed devices which are combined with such machines for automatically
feeding the plates. The feed devices consist of a funnel in which the plates are stacked and a reciprocating feeder that carries the plates one by one to the bending die. The punch and die are constructed to bend the plates and cut the pin and cheek holes at the same time, and the finished plate is displaced by the next one brought beneath the dies.

AGRICULTURAL INVENTIONS

An improved garden tool has been patented by Mr. Joseph J. Swain, of Montevallo, Ala. This invention consists of an improved contrivance of the han-
dle socket and the shank of a hoe or other tool for a ready and simple means of detachably connecting them together, so that one handle may serve for a whole set of hoes, weeders, rakes, and other forms of hand tools employed in garden work.
Mr. Seth Bottomley, of Nashville Center, Minn., has patented an automatic straw stacker having
an upright shaft journaled in an extension of a separator top, and having hinged to its lower end a frame pro vided with pulleys carrying endless toothed belts. The apright swiveled shaft has a ratchet wheel artached to
it. and is operated by a double pawl placed upon a vibrating lever, and is reversed by pins attached adjustably to the ratchet wheel. The toothed belts of the bands from the driving mechanism of the separator.

An improvement in churns has been painvention is based on the discovery that cream may b rapidly converted into butter by causing it to be forced through and discharged from suitable pipes or passages effect a double acting force pump is provided, which forces the cream from the main body of the churn
through the piston wells of the pump, thence through through the piston wells of the pump, thence throug suitable passages and pipes which discharge the cream
back into the body of the churn, the circulation of the back into the body of the churn, the circulation of the
cream being thus made continuous and caused to pas through the pipes or passages over and over again.

MISCELLANEOUS INVENTIONS.

Mr. Wilhelm Reissig, of Darmstadt, Ger of black or dioxide of manganese and linseed oil var insh.
Mr
Mr. Joseph W. Congdon, of Paterson, N. J., has patented a garment that may be worn either as an
outer or an inner garment and as a shirt, frock, coat,
Mr. William K . Rairigh occasion may require Mr. William K. Rairigh, of St. Petersburg Pa., has patented an improved trace hook. The hook
is cast with the recess filled with rubber packing, by is cast with the recess filled with
which the hook is made noiseless.
Mr. Benjamin Wilson, oi Keyport, N. J. s parented a composicon for polishing metals, con coal, two pounds; oxide of iron, one pound; chalk on
Mr
Mr. Henry D. Merrill, of Springfield, Ill., as patented a fence for low lands liable to be submerged by high water, so constructed that it wil swing down in either direction when struck by rubbish right position when the rubbish has passed
Mr. Cbarles E. Seabury, of Stony Brook N. Y., has patented a fire escape constructed with
shaft, a flexible ladder connected with the shaft, guy shaft, a flexible ladder connected with the shaft, guy
ropes connected with the flexible ladder by brace ropes to steady the ladder, and a hauling rope for drawing out he ladder.
Mr. Cbarles S. Barnard, of New York city, has patented an improved draw handle which consists
of a spun or sheet metal cap for receiving the ends of of a spun or sheet metal cap for receiving into which cap a stem or pin is placed, and is secured therein by pouring molten metal into the
Mr. James H. Baxter, of Portland, Me. solid matented a package of boneless ish pressed into incased in a wrapper which is marked into equal divi sions indicating where the package may be cut across
to separate it into multiples of the whole package, as e-half, one-third, one-fourth, etc
Mr. Francis G. Powers, of Champaign, Ill., as patented a die or mould for forming elastic corn and bunion pads, consisting of a metal core having the cir in combination with the metal dies having a central Vosely adapted to receive such projection, but fittin
Mr. John H. Solis, of New York city, has patented an improved close fittting cock of simple conof a cock casing having in the upper surface of one side a longitudinal groove, a rack or toothed bar having a valve and shoulder sliding in the groove, and a spin de provided with teeth gearing with a rack.
An improved fence and gate post has been patented by Mr. Arthur O. Barnes, of Moore Park, Mich The invention consists in a post for fences and gates,
having a foot moulded of cement and sand, with a conical lower end, and having an interior screw collar post provided with an ornamental head, and having a collar to rest upon the upper end of the foot.
Mr. James H. Barrett, of El Dorado, Ill., has patented an improved contrivance by which the the horses, so that the traces will detach and allow the carriage to be disconnected from the horses when they become uncontrollable, the arrangement by which this is accomplished being very simple, cheap, and effec
tive.
Mr. Francis M. Hazleton, of Red Bluff, Cal., has patented an improved car coupling. The
drawhead has a sliding block actuated by a spring for holding up the coupling pin when uncoupled and press ing against the link and pin when coupled, a sliding coupling pin, and a pair of springs for pressing laterally against the link to hold it in position.
A table which may folded into small comstowing away has Blakeslee, of Grand Rapids, Mich. The invention re lates to the construction and arrangement of parts, whereby the hiuged braces of the folding legs are held
in place both when the legs are extended and folded, in place both when the legs are extended and folded,
and whereby the folding side leaves are supported when tended.
Mr. William B. Farrar, of Greensborough, N. C., has patented an attachment to a bed, couch, or
berth which serves as a brace or stay to the body of the is caused by thent involuntary rolling in bed, such as rolling of a ship, or even the involuntary movement of a sleeper in an ordinary bed, when it may be desirable by reason of a wound or other cause, to prevent the in dividual from turning over.

A device for effectually securing, sealing, and labeling bags and other receptacles generally, but
more especially intended foruse on mail bags containing mail matter, specie bags containing specie, and othe receptacles for private or valuable matter, has been
patented by Mr. Thomas A. Platt, of Brooklyn, N. Y. The device consists of the cup and the frame, the cup provide a staple or loop.

An improved electrode for batteries has been patented by Mr. James Pitkin, of Clerkenrell, County of Middlesex, England. This invention ary bateries, but it is also applicable to primary batteries. It consists in an improved construction of holder or frame to contain lurnings or other shreds of
lead of which the electrode is made, without the use oad of which the elec
Mr. Charles Knopp and Joseph Knopp, of Winona, Minn., have patented an improved currycomb consisting of a series of coils of spring wire placed side ach other and attached to the back at the ends of the each other and attached to the back at the ends of the
coils, so that the numerous oval projections of the coils orms excellent and very efficient teeth for currying animals, the teeth
An improved bottle label holder bas been patented by Mr. William Wallace Quiggle, of Winne bago City, Minn. The invention consists in the combi ation, with a bottle provided wita horizontal segmenal grooved tanges, of a glass or porclain label having its top and bottom edges passed the grooves of e trip is inserted to hold the label in place and prevent from sliding or slipping out from between the grooved fanges.
An improved furnace grate has been paented by Mr. Frederick Shriver, of Grand Rapids, he form of the gration consists of an improvement in to resist the tendency of the heat to spring and bend it more effectually. It also consists of improvements in the construction of the points or projections of the
sides of the bars, designed to facilitate the discharge of he ashes and other matters by the rocking of the grate

An improved thill loop for harness has been patented by Mr. William K. Rairigh, of .St. Peters-
burg, Pa. This is an improvement in that class of thill oops for harness having a metal bushing or block provided with a frictional roll. to reduce friction between the thill and the bushing or block; and it cons:sts in rojecting beyond its sides, and with a pin or projec tion at its lower end, the flanges having loops formed integral with themselves upon their side edges at the
upper ends.
Mr. Hans J. Müller, of New York city, has patented a dynamo electric machine constructed with wo sets of field magnets, which are united and com-
bined in such a manner as to form two double outer poles, and four independent inner poles, between which overlapped by the projecting ends of the magnet cores The coils of the magnets can be united in such a manner that the polarity of the double pole and the corre sponding inner poles will be alike or opposite, as may
be necessary, according to the kind of armature used.
An improved filter has been patented by Mr. John N. Stevens, of Toledo, O. This improvement is designed to facilitate the settling of the matters contained in the water into a mud space before the wate enters the filtering material, also, to facilitate the cleaning of the mud drum and the fitering material at the same time by causing water to flow back throng mud space under the filtering material, pan into the mud space under the filtering material, and thence diulated to efficiently cleanse the filter.
Mr. Henry Coker, of Indianapolis, Ind., has for storing grain for conveying grain in bulk or large quantities from one part of the building to another, which consists in a novelconstruction of parts, whereby a more perfect dump hole than is usual with other trough and erfect freedom through the though, and are prevented from carrying grain over the dump hold or its edges, and the links of the chain by which the flights are car ried and moved are prevented from holding grain while assing over the dump hole
A novel book holder and arm rest combined has been patented by Mr. John J. Armstrong, Jr., of is to provide a device for book-keepers' use for holding the journal or day book open and in convenient position for posting therefrom. Another object of the invention is such construction of the book holder that it is adapted to receive and hold the ordinary book keeper's
arm rest, so that the two may be united and sold as one article. The device consists of a board provided with hinged book rest one side and a sliding arm rest sliding in ways close to tne board.
Mr. Alexander C. Landry, of New Orleans, La., has patented a novel filter press, designed more solid residuum in the manufacture of glucose and grape ugar, but applicable also for other purposes, such as il refining, etc. It is an improvement upon that form of filter press in which a set of separable rectangular rames are clamped together in marginal contact, and are provided with filtering partitions having a central
hole that permits the mash to distribute itself through the entire series of chambers formed by the frames which chambers retain the solid residuum, while the partitions and are separated from the solid matters.
Mr. Allen C. Burner, of Green Bank, W. Consists mainly in the improvement in cider mills which consists mainly in the combination, with a case having
an elliptical or oval shaped chamber, of a horizontal re volving disk having radial sliding pistons, with the pair of pistons which are at right angles to each other coupled or connected together for the same movement o that when one of these pistons is resting against the wall of the chamber at the minor axis of the ellipse the
other piston of the pair will be projected beyond the periphery of the disk to the major axis of the ellipse arting to squeeze and crush the apples in the crescent the inner wall of the case.

INDEX OF INVENTIONS

Letters Patent of the United States wer Granted in the Week Ending

November 28, 1882,

ND EACH BEARING THAT DATE

[Those marked (r) are reissued patents.]
A printed copy of the specification and drawing of any patent in the annexed list, also of any patent issued
since 1866 . will be furnished from this office for 25 cents In ordering please state the number and date of the patent desired and remit to Munn \& Co., 261 Broad-
way. corner of Warren Street, New York city. We also furnish copies of patents granted prior to 1866 ;
but at increased cost, as the specifcations, not being but at increased cost, as the sp.
printed, must be copied by hand.
Adding machine, Shattuck \& Thorn, Jr............ 268,135
Air, transmitting power by compressed, A. D. F. Farley.... 268,210 Alarm. See Burglar alarm. Elevator alarm.
Angle irons, bending, G. J. H. Gnehler.....26.010, 268,011 Angle irons, bending, G.J. H. Gnehler.....268,010, 268,011 Axle gauge. R. Boyce..........
Baling press, E. B. Cunningham. Baling press, E. B. Cunningham
Baling press, R. W. Whitehurst Barrel, J. H. Elward....
Bathing cabinet, folding, W. K, Jones.... Bathing cabinet, folding, W. K. Jones...................
Battery. See Secondary battery. Stamp battery Beatery. See Secondary battery.
Bearing, anti-friction, J. G. A very
Bed bottom, F. M. . Case Bed bottom, F. M. Case
Bed bottom, spring. H. Benedict. Bed, folding, A. L. \& C. A. War
Bedstead, cabinet, J. Lowth ... Bedstead, invala,
Bedstead, sofa, R. W. Taylor
Belt shitter, F. S. Stevens Bedstead, sofa, R. W. Taylo
Belt shitter, F. S. Stevens..
Bevel, D. A. Clarke....... Bevel, D. A. Clarke.....
Billiard cue, C. J. W1les

Bolt threading machine, H. C. Brill
2m Bolt wedge. split, J. P. Edmonds........................ 268.24
Boot and shoe fabric, H. E. Urann 258.32 ing, M. Dudiey (r)................. Boot and shoe soles, machine for moulding Poope \& Fox..................... 10,250 Boot or shoe insole, J. B. Stevens...................... . 268,124 W. Blakeslee....................................... 268,073
Boring and tenoning machine, H. J. Miller...... 268,118 Bottles, jars, etc., packing for. J. Lamont
Box. See Cake or cracker box. Feed box.
Musical box. Packing box. Tobacco steam. ing box. Box fastener. W. Lang.. Brake block, U. M. Gor
Bridge, E. B. Bridge, E. B. Stephen
Broom corn press, A Brush, L. Stone
Brush handle, extension paint. G. W. Smith Brush trimming machine, J. M. Pickering Bung, J. Kırby.
Button, w. C. Howard....
Button fastening, W. Wig
Buttons to materials, securing, J. Mathison Cable, scrap metal, J. C. Milligan ...
Cake or reacker box, H. R. Stewart
Calculator for millers' use, Haight \& segu Can jacket, sheet metal. Stokes \& McNally Can opener, R. B. Pumphrey Capsule machine, Hubel \& Tayl
Capsule remover, \mathbf{H}. Н. Taylo Capsule remover, H. H. Taylo
Car, ballast, T. P. Cordrey..
Car coupling. . . W. Grant. Car coupining. E. W. Grant...
Car coupling, S. A. Hauser. Car coupling, S. A. Hauser
Car coupling, W. McCubbin Car coupling, T. H. Mebane Car coupling, I. H.
Car coupling. E. \& A. Ta
Witt.

Car, dumping, shoudy, Jr, \& Atherton

arding machines, side drawing device for,
Furbush
Carriage, child's, G. P. Steinbach $.268,139,2688,140$ Carriage spring, J. Walsh...68, 267,997
Carriage top. .. G. Britton................. arrier. See Trace carrier.
Cesspool, L. Mouras........................ 268,120
Chain, ornamental, J. J. Horton........... 268,102 Chair. See Opera chair. Rocking chair. WinCheck row cord or wire, anchor for, T. C. Lord... 268,110

Check-rower, R. C. \& A. L. Jordan 288,241 | Chopper. See Cotton chopper. |
| :--- |
| Churn, J. J. Kimball.. 268.243 | Cigar packing press, C. H. Evers....................... 268,088

Cleaner. See Cotton cleaner. Cleaner. See Cotton cleaner.
Clocks, synchronizing, L. Waldo.................... 268.322
Clothes drier, T. D. Brown 268,076
Clowhes Cock, stop, J. L. Dibble. Cock, stop, J. L. Dibble.. Coin holder, G. W. Rowley.
Coloring matter, C. Martius Composing stick, extension, C..................... . 2688,268113
$\begin{aligned} & 268,061 \\ & \text { Cooler. See Water cooler. }\end{aligned}$. Divine......... 268,084 cooler. See Water cooler.
Cooling apparatus, H . Kropff orn popper, J. Wilkie.......
Cortice, window, H. F. Gray Cotton chopper, H. C. Dyer.. Cotton cleaner, J. E. Engram Cotton gin rib, T. C. Garlington …..................... 268 268 Culinary fork or domestic implement, stearns \& Cultivatori, J. J. Deal Cultivator, Howe \& Oatley. Curtain rod holder. W. J. Mullen268,2 268
Cutter. See lathe cutter thread cutter. Straw cutter.
Desk, school, J. Peard 268
Detecter. See High stem and low water detec
Dock, screw, M. Bowe
Door hanger, A. Parkman
Door or wíndow screen R. H. Hooper.
Nold

tor, w. Lair	
Spring. See Carriage spring. Vehicle spring. Springs, apparatus for making, Woodruff \& Bar-	
steel blooms and billets, manufacture of, W Hainsworth \qquad	
Stencils, perforating instrument for producing D. Gestetner \qquad	
Stool foldin, B. .razae	
and burner and heating drum, zas, E. Detere 280,080	
Stovepipe shelf Kurtis \& Bray	
Sugar. salt, etc., apparatus for the manufacture of, F.P. Taber...................................... 268.056	
exchange system and apparatus, J. H. Rogers \qquad	
Tilting gate, automatic, W. S. Castor.. 268,080Toaster, reversible, R. Sherman................. 268,047	
Tobacco, process of and apparatus for moistening \qquad	
Trap. see stamam	
\qquad 267,998 Twine polishing and finishing machine, R. A.	
Urinal, R. E. Day	
Valee balaneea silie,	
Wasbing out or separating soluble from insolu-	
Watch plate. dust proof, A. Bitner....................	
aill at. il Meger.....	
Wind	
Wire feeding apparatus, H. Roberts.................. 268.288Wire pickling apparatus, H. Roberts................ 268,130	
Wire wiping apparatus, H. Roberts................... 268,129 Wooden plpe, Jobnson \& Williams..................... 268,024	
	н. K
trade marks.	
Soap, laundry, Procter \& Gamble. $9.841, ~ 9,842, ~ 9,843, ~$ $9,844, ~ 9,849$ Stationery, certain articles of, E. Faber $\ldots \ldots \ldots \ldots .9,847$	
Jones... tin \qquad	(5) J. R. W. writes: In your November 4
English Patents Issued to Americans. From October 31 to November 3, 1882, inclusive.	
Bathing apparatus, W. W. Rosenfield, New York city	
Cable traction railway, C. F. Findlay, Chicago, Ill. Elbert et al., New York city. pany, Boston, Mass.	

（7）E．N．P．asks：Will you give me formula for calculating the horse power when the fall of water is 16 feet，and volume or flow 450 cubic feet
per second？ I find a rule thus，but I don＇t exactly un－ derstand it：．Wo the actual head or depth of fall，add
the height due to the velocity of the water in the height due to the velocity of the water in the head
race．Multiply the sum by the volume of the flow of water per second，and by the gross power in foot pounds
（62：4）per seond，this divide 5 ． 50 gives the eross horse （aver．＂Phease dive me explanation of what consi－
powe＂the eheight due to the velocity．＂
tue＂The height due to the velocity＂is the additional power given by the velocity of the current，and is obtained by dividing
the square of the velocity of the current in feet per the square of the velocity of the current in feet per
second by twice the distance that a body falls in one second．This quotient multiplied by the constant one and one－tenth $(1 \cdot 1)$ gives the height due to the velocity
of the water in the head race；the velocity being the of the water in the head race；the velocity being the
cubic feet of flow divided by the area of the sluice in square feet．The formula as given is $\frac{\mathrm{V}^{2}}{2 \mathrm{~g}} \times 1 \cdot 1$ ，where $\mathrm{V}=$ velocity； $2 \mathrm{~g}=64333=$ twice the height a body falls in （8）H．N．asks：1．What is the proper size of 9 feet，forty $24 /$－inch tubes？ diameter．Your draught cannot bs strong．as it will be cramped in the tubes．2．The distance the brick wall either be from rear end of boner？Is there ${ }^{4}$ a rule for there is no rule． 18 inches is more than necessary for draught，but there should be room for a man to work．
${ }^{(9)}$ P．R．C．asks：What acid is．commonly used for cleaning mortar，etc．，from brick work before penciling，and should it be used ful strength？ A ．Use
（19）G．A．H．writes：1．I have some samples or pig iron which 1 wish to coat with some anti－rust
preparation that will not deaden the luster or rub of when the samples are handied．Can you tell！me of such a preparation？A．Try a solution of gum arabic or a
thin mastic varnish．2．A friend has a very old and choice piece of Japanese carved landscape in ivory， the same and whiten the ivory without injury to the the same and whiten the ivory without injury to the
delicacy of the carving？A．Benzine carefully used wil
（11）J．W asks：How far can the best known fire engine throw water horizontally，when it
has to pump the water out of a reservoir？A． 210 to 215 plished on test trials．
（12）A．C．asks if there is more strain on one part of the main rod of a locomotive than another If so，what part，and why？A．No；not from the direct
action of the steam，but there may be lateral strain more at one point than another

Minerals，etc．－Specimens have been re－ ceived from the following correspondents，and examined，with the results stated：
F．H．－It is a very impure but finely divided kaolin or china clay，and could be used for making pottery or in the present condition as a soft polishing compound
-S ．L．M．-It is carbonate of lime colored with sesqui－ oxide of iron．

Magic Lanterns and Steieopticons of all kinds and prices．Views illustrating every subject for public ex－ hibitions，Sunday schools，colleges，and home entertain－
ment． 116 page illustrated catalogue free．McAllister Manufacturing Optician， 49 Nassau St，New York． Renshaw＇s Ratchet for Square and Taper Shank Drills． The Pratt \＆Whitney Co．，Hartford，Conn．
ork＇g Mach＇y．Rollstone Mach．Co．Adv．，p． 382. For best low price Planer and Matcner．and latest catalogue to Rowley \＆Hermance，Williamsport，Pa． The Porter－Alien High Speed Steam Engine．South－
work Foundry \＆Mach．Co．，430 Washington Ave．，Phil．Pa． The Sweetland Chuck．See illus．adv．，p． 382. Knives for Woodworking Machinery．Bookbinders，a Permanent Exposition．－Inventors＇Institute，C Union，N．Y．City．Every facility for exhibition of machin－
ery，merchandise，and inventions．Send for particulars． Drop Presses，Bending Machines，the Justice Ham－ er，tools for plow and agricultural implement makers． Cope \＆Maxwell M＇f＇g Co．＇s Pump adv．，page 366. or Mill Mach＇y \＆Mill Furnishiug，see illus．adv．p． 364 Red Jacket Adjustable Force Pump．See adv．，p． 366. Common Sense Dry Kiln．Adapted to drying of all ma－ Bonhack＇s Match Splint Setting Machine．Best and quickest in the market．Recipes and advice gratis．Ad－
dress C．F．Bonhack，patentee， 527 W． 43 d St．，New York． Wanted．－Patenteci articles or machinery to make To stop leaks in Boiler Tubes use Quinn＇s Patent ，Don Latest Improved Diamond Drills．Send for circula The Berryman Feed Water Heater and Purifier and Frump．I．B．Davis＇Patent For Pat．Safety Elevators，Hoisting Engines，Friction Mineral Lands Prospected，Artesian Wells Bored，by
Pa．Diamond Drill Co．Box 423. Pottsville．Pa．See p． 350 ． C．B．Rogers \＆Co．，Norwich，Conn．．Wood Working 4 to 40 H．P．Steam Engines．See adve 350 ．
To make Violins，write James Roblee，Syracuse，N．Y． Water purified for all purposes，from household sup－ Wies to those of largest cities，by the improved filters
nanufactured by the Newark Filtering Co．， 177 Com－ merce St．．Newark，N．J
Drop Forgings．Billings \＆Spencer Co．See adv．，p． 333. Assays and Analyses of ores and all commercial pro－ branches of chemical industry．Send for circular．
N．Y．Assay Laboratory， 40 Broadway，New York． Guild \＆Garrison＇s Steam Pump Works，Brookly

Solid Cotton Belting．all widths，in lengths to suit rheet T weed \＆Co．， 18 eods erperimental fine machinery．Estimates given when models are fur－
nished．H．C Goodrich 66 to 72 Ogden Place，Chicago Improved Skinner Portable Engines．Erie；Pa． $25^{\prime \prime}$ Lathes
East Newark，
Combination Roll and Rubber Co．， 68 Warren street First Class Engine Lathes， 20 inch swing 8 foot bed now ready．F．C．\＆A．E．Rowland，New Haven，Conn． Ice Making Machines and Machines for Cooling Breweries，etc．Pictet Artificial lee Co．（Limited），
Greenwich Street．1＇．O．Box 20033 ，New York city． Jas．F．Hotchkiss， 84 John St．，N．Y．：Send me your
free book entitled＂How to Keep Boilers Clean，＂con－ taining aseful information forsteam users \＆engineers． Steel Stamps and Pattern Letters．The best made．J．
F．IV．Dorman， 21 German St．，Baltimore．Catalogue free． For Power \＆Economy，Alcott＇s Turbine，Mt．Holly，N．J． Presses，Dies，＇Tools for working Sheet Metals，etc．
Fruit and other Can Split Pulleys at low prices，and of same strength anì appearance as Whole Pulleys．Yocom．
Works．Drinker St．，Philadelphia．Pa．
Supplement Catalogue．－Persons in pursuit of infor mation on any special engineering．mechanical，or scien
tiftc subject．can have catalogue of contents of the Scr ENTIFIC AMLAITAN SUPPLEMLNT sent to them free
The SUPDINEYT contains lengty articles embracing the whole range of engineering，mechanics，and physi－ cal science．Address Munn \＆Co．．Publishers，New York．
Machinery for Light Manufacturing，on hand and Presses \＆Dies．Ferracute Mach．Co．，Bridgeton，N．J． nd Cast Nickel Anodes，Nickel Salts，all Pol－

THE SEIBERT CYLINDER OIL，CUP CO．，

FOR SALE！

FOR SA LE．－One－third interest in Letters Paten
No．Psph9，overing the Automatio Cash Boy
PRACTICAL Instruction in Electricity．Day and
evening classes．Henry E．Stammers， 1430 Broad way．N．Y PAYNE＇S AUTOMATIC ENGINES．

 H．W．PAYNE $\&$ song，Corning， ELECTRICAL GOODS．

 LARGE TOOLS WANTED．

 The Sugar Refineries at Demerara Ise
sTrAN DUZENSPATNENT WもWます

RHEA．－PAPER BY J．R．HOYLE reviewing the progress that has thus far been made in

PERFECT
NEWSPAPER FILE

MUNN \＆CO
\rightarrow STEMWINDING Pormpation Look

PATENTS．

PERIN BAND SAW BLADES， NEW BOOKS． COLD．

SUGAR GROWING AND REFINING

EVERY MANEFACTIRER SHOLLD HAVE

Books sent on application．
4 E．\＆F． \mathbf{N} ．SPON，

To Electro－Platers． THE VICTOR OYNAMO PLATTNG MACHINES ＇IHOMAS HALL， 19 Bromflel
St．，Boston，Mass．

byAEENING PRAOOE
 Sample and Circular Free by mail
 U．S．MINERAL WOOL CO．， 22 Courtlandt St，N．Y．

MALABL
 ERICSSON＇S

New Cadoric Punning Engine DWELLINGS AND COUNTRY SEATSS．
 DELAMATER IRON WORKS C．H．DELAMATER \＆Co．，Proprietors，
No． 10 Cortlindi，Street，New York，N．Y．
 cation of the Scientific American，continue to ex－ mine Improvements，and to act as Solicitors of Patents In this line
In this line of business they have had thirty－five years＇experience，and now have unequaled facilities for
the preparation of Patent Drawings，Specifications，and the preparation of Patent Drawings，Specifications，and
the prosecution of Applications for Patents in the the prosecution of Applications for Patents in the
Jnited States，Canada，and Foreign Countries．Messrs． Munn \＆C＇o．also attend to the preparation of Caveats， Copyrights for Books．Labels，Reissues，Assignments，
and Reports on Infringements of Patents．All business and Reports on Infringements of Patents．All business
intrusted to them is done with special care and prompt－ ess，on very reasonable terms．
A pamphlet sent free of charge，on application，con－ taining full information about Patents and how to pro
cure them；directions concerning Labels，Copyrights， cure them；directions concerning Labels，Copyrights，
Designs，Patents，Appeals，Reissues，Infringements，，ss－ tents，etc．
We also send．free of charge，a Synopsis of Foreign Patent Laws，showing the cost and method of securing patents in all the principal countries of the world．
MUNN \＆CO．，Solicitors of Patents，
MUNN \＆CO．，Golicitors of Patents， BRANCH OFFICE 261 Broadway，New York．

A DIVIDEND

 PAYING INVESTMENTTHE NEW ENGLAND Synuicite \& Deriopmanil Co. offres a Lumired amoont of its

ONE DOLLAR PER SHARE Is Guaranteed and Secured, to be PAID IN DIVIDENDS Within Three Years. It is full paid, and can never be assessed. A Dividend of Ten Cts. per share will be paid Jan. 25, 1883. Secure this Stock before the next Advance in Price, January 15, 1883, to $\$ 2.00$ per share. Correspondence as to all classes of in in
PROMPTLY $A \triangle S W E R E D$ WITHOUT CHARGE. Government Bonds Bought and Sold. Railroad and other Corporat
For Prospectus, with full particulars, apply to HIRAM BLLA ISDELLL, Financial Ag
48 Congress Street, Boston, Mass. aLWAYS MENTION THIS PAPER.

 the Eastern
Seased
wato water main from the grounds of the Washington Bar
racks, at Greenleaf's
the Goint, to o ovent ont on the gound of

A DEAF MAN

 KNOWLEDCE IS POWER READ!

KNOW THYSELF

 early lifemay be alleviated and cured. Those whodou

- I I want this beautiful P

 FREIGHT PREPAIID. any going west of it. This is a rare opportunity to
plate an instrument. as it were, at your very
all
all
freight
 address on CDANIEL F. BEATTY, Washington, New Jersey.

ELECTRIC POWER.

The Double Induction Motor and Auto-
matic (Sattery (imitation walnut case), with all attachments for driving the
Family Sewing Machine.
The same, with battery in ebonized case.... $\$ 4000$ Where, light power is required for driving
jewelers lathes, other small lathes, dental avd
surgical tools, jig saws, etc, this apparatus is surgical tools, jig saws, etc., this apparatus is
unex celled.
Always Always ready for use. Under pe
ger No noise ${ }^{\text {No of funes }}$
Manufactured and for sale by

THE ELECTRO-DYNAMIC CO.,
Write for catalogue. L'hiladelphia, Pa.

MOSS ENGRAVING COMPANY ENGRAVINGS FO

ICE MAKING MACHINES,

And Machines for Cooling Breweries, Pork Packing Establishments, Cold Storage Warehouses, Hospitals, etc. PICTET ARTIFICIAL ICE CO. (Limited) P. O. Box 3083 . 142 Greenwich St., New York City, N.

NEW YORK BELTING AND PACKING COMP'Y

 Emery

ROCK BREAKERS AND ORE CRUSHERS.
 the manufacture of Blake Crushers in this country pand fifteen ye COPELARIDEL FOUNDRY AND MACHINE
DON'T BUILDA

ROOT'S NEW IRON BLOWER.
 IRON REVOLVERS, PERFECTLY BALANCED Has Fewer Parts than any other Blower.
P. H. \& F. M. ROOTS, Manufacturers CONNERSVILLE, IND.
 SEND FOR PRICED

ROOFING.

FRETSAWYERS
J. R. Bownan's
Latest Buan of Designs.
afy
Wawtw
No.535. No. 536.

o. 535. Mountain Sheep.
Cor.Brkt. Sizinclit in.
Price 10 .

MORPHINE

 anv WHISKEY

CONSUMPTION.

 Leading London Phy-
ician establishes am
Office ician establishes am
Office in New York
for the Cure of

* THE STAR PRTMTING CO, Northford, Conn, *

parmers and farmerss sonso CANMAKE STO

BUFFALOFOR(GECO. Whe

 10ctsavasu=w

SHAFIS PULLETS HAMGEAS

A. © I. Bhow, 43 park Pace, New York Pyrometers. For showing heat of

COLUMBIA Bicycles.

 THE POPEMD, PG CO.,Street, Boston, Mass. THETHE GIITBEBWWATCH CASE

The " ${ }^{\text {4 MONITOR." }}$ MONI $\left\lvert\, \begin{gathered}\text { Best Boiter Feede } \\ \text { in the world. }\end{gathered}\right.$ NEW IIFTNNGAND NON-
IIFTING INJEC'IOR. $\left|\begin{array}{c}\text { Greatest Range } \\ \text { yet otained Doos } \\ \text { not Break. } \\ \text { unde }\end{array}\right|$

EJECTORS
Water Elevators. For Coneving
Pater and
Patentinuld

Establ' EACLE ANVILS. 1843 Solid CA STN STEEL, Face and Horn. Are Fully War
ranted. Retail Price, 10 cts. per lb.

Stevens' Roller Mills, GRADUAL REDUCTION OF GRAIN
 \%

WITHERBY, RUGG \& RICHARDSON Manufacturers
of Patent 1 ood Working Machinery of every descrip-

VOLNEY W. MASON \& CO.,
FRICTION PULLEZS, CLUTCHES, and ELEVATORS.

FLOUR SIFTER PATENT. FOR SALE OR TO LET
on royalty. Address Box 296, Warsaw, Illinois.

WIREROPE: Tramway Ropes, Champion Barbed Wire, etc. Office and Works: $\}$ Send for $\left\{\begin{array}{c}\text { onfe and Warehouse: } \\ \text { WILKESBARRE, PA. }\end{array}\right\}$ price list.
s7 LIBERTY ST., NEW YORK

KORTING UNIVERSAL Dovele vee INJECTOR

HARTFORD

STEAM BOILER
Inspection \& Insurance COMPANY
W. B. frankin.v. Prest. J. .n. ALuen, Pres't. J. B. PIERCE. See'!

WM. A. HARRIS
PROVIDENCE, R, IV (PARK STREEN),

ROGK DRILIS \& AIR GOMPRESSORS. SPEAKING TELEPHONES. THE AMERICAN BELL, TELEPHONE COMPANY, W. H. Forbes, W. R. Driver, Theo. N.Vati, Alexander Graham Bell's patent of March 7, 1876,
owned by this company, coversevery

 junctions and fual iecrrees have been obtaine on them.
This company also owns and controls all the other
telephonic inventions of Bell, Edison, Berliner, Gray,
Blake. Phelps, Watson, and others.

 Information furnished upon application

MACHINISTS' TOOLS.

Larhes, Planers, Drills, \&o. anen maneweruning con:
EVAPORATING, FRUIT

MACHINERY

RUPTMUE

WATCHMAKERS.

COLD ROLLED
 SHAFTING.

PRINTING INKS.

