a WeEkiy journal of practical information. art. SCIENCE. MECHANICS. CHEMISTRY and mantractures.

NEW YORK, OCTOBER 28, 1882.
$\left[\begin{array}{c}\$ 3.20 \\ \text { [POSTIAGE } \\ \text { PREPAD } \\ \text { Pnn }\end{array}\right]$

MACHINE FOR FIXING THE THREADS OF FABRICS.

The machine shown in the accompanying engraving is designed to effect one of the principal operations that have to be performed before the dyeing and finishing of cashmere merinos. The object of fixing is to render stable each filament composing the fabric, so as to keep the threads of the ment composing the fabric, so as to keep the threads of the
warp, like those of the woof, in the position that has been given them in weaving, and to prepare them to undergo the successive operation without the fabrics fraying or breaking. It is a moist finishing performed at a temperature equal to that which the fabrics will again have to withstand. In weaving, the threads of the woof, in crossing those of the warp, assume a wavy form that results solely from the ten sion that the latter have received. If a thread of the woof be removed from the fabric it will imperceptibly tend to assume its original form. It results from this that if the operations of dyeing were proceeded with before the fabric had been submitted to fixing, the woof th reads would become easily displaced and form frays. In the second place, as manufacturers of fabrics size the warp threads so as to give them greater firmness, it is necessary before proceeding to the fixing to remove this dressing, which exists in the proportion of 8 to 10 per cent, and which dissolves in water raised to a temperature of 40° to 50°
Fixing, then, consists of two very distinct operations: (1) the removal of the sizing, which is done with water heated to 40° or 50°; and (2) fixing, properly so-called, which is performed with water raised in this case to a temperature varying between 70° and 80°
The new machine under consideration permits of performing the work continuously, and of obtaining a uniform treatment of the fabrics as well as a complete inxing of all

the fibers. It advantageously replaces those old manipula-

 tions that were attended with a great expense, due to the manual labor required; for the results there all depended upon the surveillance and the intelligence of the workmen.The machine consists of two roll vats, each containing a rotary apparatus that carries rollers designed for receiving the woven pieces. The first vat, which serves for unsizing, is heated to the temperature requisite for dissolving the dressing and gelatine with which the warp threadshad been sized. The liquid contained in this vat is quite quickly aturated, and is renewed twice a day. One of the lower cocks serves for emptying the first vat; which is afterward partially filled with liquid from the other one. This transfer of liquid is effected by means of a connecting pipe placed between the two tanks. The remainder of the filling of the first vat is done with ordinary water, to which has been added carbonate of soda to soften it. The water in the sec ond vat is likewise heated to the temperature indicated above and it is in this vat that the fixing is actually effected.
The rotary apparatus in each vat consists of two wheels mounted upon a common axle, and carrying between them, their periphery, six rollers for receiving the fabrics. Each of these latter, on winding on the roller arranged for it, passes through a device designed to keep it taut and regular. As soon as one roller is entirely surrcunded, the large wheels are caused to move forward a sixth of their circumference by means of handles, thus carrying the full roller into the liquid and presenting an empty oue to be wound.
Each of these rollers is furnished at its extremities with mall screw-brakes, which prevent the rotation of the axle during the immersion of the fabric in the liquid, and which give a certain tension to the fabric when it is passing from the
first into the second vat, or from the latter to the squeezer. Rotary motion is transmitted to the receiving roller by means of a driving gear, acting progressively, and of a coupling sleeve. These mechanisms also actuate the roller of the second vat, through the medium of an endless chain On leaving the first vat; to pass in to the second, the fabric passes over a guide-roller, for which there may be subsi tuted a widening bar or a stretching cylinder.
A maneuver similar to the preceding is performed in the econd operation; so that, counting five minutes for the winding of a piece, the latter afterward remains for thirty minutes in each of the vats before being carried toward the queezer.
The rollers are arranged for the reception of two pieces of oods of 100 meters each in length, but experience has shown that it is preferable to treat but one piece at a time In this way there are prevented any irregularities that migh therwise occur in the selvages.
On its exit from the second vat, each piece descends into reservoir containing tepid water, and afterward passes between the squeezing rollers of the drying apparatus. One of these rollers has a copper surface and the other is covered with India-rubber. The requisite amount of pressure is given them by means of a pedal at the base, connected by levers with the parts above. It varies according to the nature of the fabrics and the degree of dryness that it is esired to obtain.
When the first piece begins to leave the squeezers, the operation proceeds afterward in a continuous manner. Thus, during the winding of a piece over the roller located front, the back roller unwinds, and its fabric then winds about the first roller of the next tank. At the same time,

the fabric on the very last roller disengages itself, passes into the reservoir of tepid water, and then goes to the squeezing appàratus.
The mechanical movement of the folding machine draws the fabric on to the table, where it is properly arranged in folds, and from whence it is next taken to undergo the operations of scouring, rinsing, mordanting, and dyeing.

The same machine, arranged with perforated rollers and a pump for the circulation of liquid through the fabric, serves likewise for the ungumming of siiks and the rinsing and scouring of cotton and woolen fabrics.-Revue Industrielle.

Hints to Swimmers.

When a swimmer gets chilled the blood ceases to circu late in the fingers, the finger nails become a deathly white color, the lips turn blue, and should he persist in staying in the water after these symptoms develop he is sure to have cramps. So long as the swimmer can discern spots on his finger nails he knows that his blood is in good order, and that he is safe and free from chills. I have been remark ably free from chills, and feel most at ease when in the salt water under a hot sun. Salt water seems to attract the heat, and, no matter what the temperature of the water, under these circumstances I feel warm. I have on some occasions swum so as to keep my body under water, but even in such instances on coming out I have found my back and limbs blistered. This shows the penetration of the heat from the rays of the sun on the water. On one occasion, since I was here last, I swum for $£ 400$ at Scarborough, staying in the water seventy-four hours. I use a preparation of porpoise oil, which I rub all over my body, even my face. The oil fills up the pores of the skin and keeps the salt water from permeating my vitals. All pro fessionals now use oil.-Captain Webb, in Boston Herald.

Albumen in Cows, Milk.

Dr. Schmidt, Mülheim, has been investigating the nitrogenous bodies in cows' milk, about which so much diversity of opinion has hitherto prevailed. He says that three albuminoid substances are regularly present in the milk, viz. caseine, albumen, and pepton. The average of seven analy ses gave 2.43 per cent of caseine, $0 \cdot 38$ per cent of albumen, and 0.13 per cent of peptons. Under certain circumstances the amount of albumen may increase until it equals that of the albumen. The pepton is formed from the caseine by a fermentative process; this ferment is destroyed by a boiling temperature, but its activity is not destroyed by salicylic or carbolic acid, so that in this respect it resembles the fermen that digests the albuminoids. Since milk, on long standing, may lose 10 per cent or more of its caseine by its conversion into peptons, it should be made use of as fresh as possible when employed for making cheese.

Sulphocyanide of Barium.

The adulteration of this substance is carried to such a degree that in some French specimens only 80 per cent of the pure salt, $\mathrm{Ba}(\mathrm{SCN})_{2} 2 \mathrm{H}_{2} \mathrm{O}$, was found, the impurities consisting largely of barium chloride.
Dr. J. Tscherniac gives the following simple test. The sulphocyanide of barium is completely soluble in absolute alcobol, while all the barium salts that can be profitably em ployed for adulteration are insoluble in it, or very slightly so. Hence it is only necessary to shake a sample of the salt with two or three timesits weight of alcohol, and then wash, dry, and weigh the insoluble residue, to determine the quantity of impurities.

Remarkable Surgical Operation

'The Paris Academy of Medicine was yesterday informed by the operator that the young man on whom an operation was performed for the extraction of a spoon from bi stomach has completely recovered from the effects of the hazardous operation, and is now enjoying his usual health Interesting particulars are given of this operation, which was performed by Dr. Felizet. By the use of the Faucher tube introduced through the mouth the stomach was cleansed prior to the novel operation, which prevented the risk of peritonitis. An incision was then made in the epigastric region. In order to render the coat of the stomach easily accessible, M. Felizet employed the following contrivance: To the end projecting from the man's mouth he fitted a spherical vessel containing ether. This he heated by submersion in water of sixty degrees tempera ture. The ether vapor rushing through the tube filled the stomach, which, becoming distended, was brought forward to the wound effected by the operator's knife. The spoon was thus readily found and extracted. It measured over nine inches. It had been accidentally swallowed by the man, a waiter at a café, in the attempt to imitate the feats of the famous sword-swallower.-Paris Correspondence of the London Standard, October 7.

The northernmost place in the world where rye and oats mature is at Kengis, in the Swedish province of Norrbotten forty-nine miles to north of the Polar circle, whereas the northernmost spot where corn is grown is at Muoniovara ninety-eight miles to north of the circle.

The Bell patent would, it is considered by those compe tent to form an opinion, be cheap at $\$ 10,000,000$. The con solidated telephone interests of the United States are estimated at from $\$ 100,000,000$ to $\$ 150,000,000$.

MUNN \& CO., Editors and Proprietors. published weekly at
No. 261 BROADWAY, NEW YORK.

o. D. MUNN.

A. E. BEACH.

WERMS FOR THE SCIENTIFIC AMERICAN.
One copy, one year postage included...
One copy, six months postage included
$\begin{array}{r}. \\ .8390 \\ \hline 60\end{array}$
 me proportionate rate. Postage
Remit Hy postal order. Address

The Scientific American Supplement is a distinct paper from the SCIENTIFIC AMERICAN. THE SUPPLEMENT
is issued weekly. Every number contains 16 octavo pages, uniform in size

Sciéntifc American Export Edition
The ScrivNific AmicricAN Export Edition is a large and splendid peri-
dical, issued once a month. Eith number contains about

NEW YORK, SATURDAY, OCTOBER 28, 1882.
Contents.
(Illustrated articles are marked with an asterisk.)

TABLE OF CONTENTS OF

THE SCIENTIFIC AMERICAN SUPPLEMENT INO. 356,

For the Week ending october 28, 1882

Price 10 cents. For sale by all newsdealers

THE PAST YEAR'S WORK IN THE PATENT OFFICE
The report of the work of the Patent Office for the fiscal year ended June 30, 1882, just submitted by Commissione Marble, shows that there were received 27,622 application for patents for new inventions; 854 for design patents; 40 for reissue patents ; 737 for registration of trade-marks, and 442 for labels, a total of 30,062 . There were filed during the year 2,455 caveats. The number of patents granted, including reissues and design patents, was 17,713. The number of trade-marks registered was 1,079 ; labels, 223 total, 19,015. The number of patents withheld for nonpayment of final fee was 1,637; patents expired, 5,123 . The receipts of the office from all sources were $\$ 930,86414$ expenditures (not including printing) were $\$ 651,719.50$; sur plus, $\$ 279,144.64$.
The abridgment of United States patents was discontinued August 1 for lack of appropriations. The Com missioner asks that legislative action be taken to authorize the office to compel the attendance of witnesses to testify as to the use or sale of any invention before the two years' limit, when an application for a patent therefor is pending. He also expresses the opinion that the terms of patents issued should not be rendered uncertain by the operation of the laws of any foreign country, nor by the failure of the patentees or their assignees to do what such laws require. If the patent for an invention which ha been first patented in a foreign country should be limited in its term, he thinks that a definite term should be fixed, and a time within which application must be filed in the Patent Office after the issuance of such foreign patent be pre scribed. In view of the fact that the terms for which patents may be granted in foreign countries are shorter than that for which they may be originally granted in this country, he thinks that twelve years would be a prope term for patents where the invention has first been patented, or patent applied for, in a foreign country, and that the applicant should file his application within two years after the issuance of such patent or application therefor.

THE GARFIELD MONUMENT EXHIBITION.

Last summer Congress gave the Society of the Army of the Cumberland permission to use the rotunda and adjacent halls of the United States Capitol from November 25 to De cember 3, for a bazaar and reception, for the purpose of raising funds to aid in the erection of a monument in Washington to the memory of the late President Garficld.
The propriety of making a show house of the national capitol may be questioned; but since it has been allowed, it is to be hoped that the exbibition will be as commendabl as its object and worthy of its unparalleled housing.
The Board of Directors comprises representatives of the executive, legislative, and judicial branches of the Government, the army and navy, the Society of the Army of the Cumberland and the citizens of the District of Columbia assisted by State boards of commissioners. The exhibits will be shown in eight groups and sixty-four classes, and awards will be made according to the rules observed at the Centennial Exhibition of 1876. Applications for space for exhibits (loaned or donated) must be made before November 1; and the exhibits must be placed in the hands of the directors before November 11. Donated exhibits will be sold for the benefit of the monument fund.
The exceptional conditions under which the National Ba zaar, Industrial and Art Exposition is to be held would seem to make especially inviting the opportunity offered to manufacturers and others to exhibit their wares. The headquarters of the Board of Directors are at the Ebbitt House, Washington.

QUEER DOINGS IN OIL.

The summer of 1882 must pass into history as having wit nessed the most memorable doings in the annals of the petroleum trade of Pennsylvania. In the Scientific American for July 22, 1882, reference was made to the re sults which followed the opening, in May, of the new oi deposits in Warren county, Pennsylvania. A most ruinous policy was followed by the producers, who succeeded in obtaining a lease upon the prolific sand rock. Five wells to the acre were pierced in the heart of the rock, and when signs of weakness were no ted in the flowing of these wells, nitroglycerine torpedocs, of 40 quarts each, were exploded in the bottom of the well. The latter, in a number of cases, yielded when first struck 2,500 barrels every twenty-fou hours; at least one produced 3,000 barrels, and a 500 barre well was regarded as a small affair. Other and older oi regions were comparatively deserted, and in August last the new field, from less than 200 wells, was yielding 25,000 bar rels of oil daily, bringing up the production of the entire oi regions to the unparalleled figure of 105,000 barrels daily, and sending the price below fifty cents per barrel. But it was the fable of the killing of the goose that laid golden eggs modernized and enacted on a stupendous scale.
Early in September, after the best wells had been 'shot' by torpedoes repeatedly, they suddenly ceased producing in a way that caused a revulsion of feeling and intense excite ment among all interested in producing petroleum. By October 1st the daily production had, in all the regions, fallen off nearly 25,000 barrels, and for the first time in five years, production and consumption nearly approached each other, namely, 70,000 barrels per day. Prices advanced, and the excitement at the Oil Exchanges of Pittsburg, Oil City, Titusville, Bradford, and New York City was so great,
and the activity so intense, as to be phenomeual. The sale at Oil City during September reached $153,000,000$ barrels On one day alone, Sept, 18, the sales were over $11,000,000$ barrels. Meanwhile 70 wells in the choicest territory ceased producing, and early in October the new territory was not yielding over 5,000 barrels daily, and the price had mounted to oue dollar. The records of the oil trade, show but feeble parallels to last summer's development, and the rise and decline of the Cherry Grove, Warren Co., Pa., regions is a unique bit of oil history.

speed in war vessels.

The French have lately launched a new turreted ironclad, i.e Arethuse, carrying four steel guns in her turrets, besides a battery of twelve smaller guns. Her engines are intended to develop as high as 4,200 horse-power, giving her an average sea speed of 16 knots an hour. Her length is 296 feet 8 inches be
3,360 tons.
It is but a few months since our Naval Advisory Board recommended the building of unarmored cruisers to have a speed of 15 knots. The inability of such cruisers to cope in speed with unarmored vessels like the Arizona and the Alaska, which would be promptly converted into cruisers in case of war with a commercial power, was pointed out the moment the recommendation of the Advisory Board was submitted.
In the Arethuse the proposed cruisers would meet an antagonist which they could as little fight as run away from with any hope of success; and the naval constructors of other nations are not likely to rest until still higher speeds are attained by ironclads, as they have already been by lighter vessels.
It would be consistent with the general conduct of our naval affairs to go on with the building of 12 knot cruisers, admirably appointed to secure the comfort of officers on official picnics and practically useless in time of war; but it may be questioned whether the people, who have to foo the bills, will be at all pleased to have it done.
If the navy department cannot design or get designed a cruiser capable of making or approaching twenty knots, the reconstruction of our antiquated navy had better be post poned until the department itself has been reconstructed.

more railroad inventions wanted

With the rapidly increasing traffic on American railroads there is a demand for greater facilities for loading and unloading freight. It would seem that an improvement in the construction of warehouses might be made that would ren der the rapid handling of heavy freight an easy matter, as compared to the present clumsy and inconvenient struc tures.
There is hardly any country station but has more or less beavy freight to handle, and frequently much trouble is experienced for the want of proper appliances for the work.
Of course at terminal stations something has been done by way of cranes and derricks, hoisting machinery, etc., but even the best regulated warehouses are open to radical improvements in apparatus and appliances for moving heavy as well as light and bulky freight. This is worth the study of inventors.
There is also a chance for improving platforms, so that moving goods from the cars to the warehouses may be an easy matter, without the use of the ordinary trucks.

Another thing that interferes with the rapid handling of freight is the location of the doors of freight cars mid way bet ween the ends. Ordinarily, this is the proper place for the door, and is preferable for a single door. But if a car
were so constructed that goods could be loaded in any part were so constructed that goods could be loaded in any part
of its length, it would certainly be more convenient than with the central door. This might be accomplished by constructing the car with a system of slide doors the entire length of its sides, so that a car might be loaded in sections and much sooner than if loaded from the middle This would also facilitate unloading. Appliances for loading and unloading goods from platform cars are nearly satisfactory, but may be improved.
This is an inviting field for the inventor. But if any
American inventor would reach the top of the ladder of fame at a single bound, let him produce a station indicator that will inform railway passengers where they are when they arrive at a station. How well the human machine fails to do this is well known by every railway traveler. For a brakeman to speak the name of a station so that any human being can understand it seems to be one of the lost arts, and it remains for the inventor to produce a
substitute to perform this duty. This has already been accomplished so far as "braking" is concerned. Now let us have a reliable station indicator.
Then there is a want of a humane invention to prevent people being caught in frogs and switches, guard rails, etc. Hundreds of people are killed or maimed every year by being caught in the "boot-jack" portion of frogs and held fast, and run down by cars or locomotives. This trap is a peculiar one. A person slides his foot into the wedgeshaped opening, where it is held in horizontally, while the rail heads prevent his lifting his foot vertically, and before he can extricate himself he is a mangled corpse. Some
devices bave been tried to prevent these horrors, but none is effective. It will not do to fill this space with any rigid substance, for the wheel flanges must have room. ©ome yielding substance, as a spring, may be made to fill the space, so as to keep the feet out of the trap and yield
to the pressure of wheel flanges. This is a serious evil, and there is no doubt that the railway community will rewar the inventor who will produce an effective remedy. W. S. H.

the educational want of the south.

It is not many years since the young men of the South were studiously instructed to despise mechanical employ ments. The "greasy mechanic" of the North was an object of Southern scorn, and the true Southerner was ex pected to thank God that few of that class were ever likel to venture south of Mason and Dixon's line.
An amazing and most encouraging change has been wrought in the popular sentiment of the South on this score during recent years. Factories are springing up undeveloped resources are being turned to use and profit and almost everywhere the feeling is coming to be, if it ha not already become, one of respect for and desire for a rapid development of mechanic arts. As an expression of
this feeling we ha ve seen nothing more significant than this feeling we have seen nothing more significant than a recent article in the Atlanta (Ga:) Constitution, from whic he following is eminently quotable. It is a lesson whic oung men of the
"W We to heart:
cians, and we always will of clerks, lawyers, and poli ticians, and we always will have; but we are sadly defi cient in men whose hands are cultivated as well as thei brains. We lack intelligent mechanics and civil engineers, and foremen, and managers of machinery. If we gather enough money to start a factory, we have to send to other States to get men competent to guide the machinery and conduct the inside operations of the factory. If we build a railroad, we must at the outset import engineers, and after ward men skilled in operating a railroad.

This is all wrong. The young man of the future in the South-the best in the land-should study, as soon as he leaves school, some department of manufacturing. He must first, of course, make himself a skilled mechanic-
learn a trade, in other words-and he need not and should learn a trade, in other words-and he need not and should
not dislike the phrase. It is certainly as honorable and as pleasant to set a horse's shoe as to pettifog a case in a justice's court, or sell ribbons in a retail store, or serve in any other half paid and precarious employment. We must get rid of the sham gentility that despises labor, and espe cially labor in which brain and skill are barmoniously and effectively united. If the South is to become independent
if her industrial interests are ever fully developed, -if her industrial interests are ever fully developed, her young men must abandon old time nctions of labor, and prepare themselves to take charge of matters that are now necessarily the spoil of strangers. The best and most inviting places in the southern country now go, as they do in Mexico and Egypt, to skilled men from other and more sensible States. The better the boy is educated, the better mechanic, or superintendent, or engineer, he will make. The high school is as useful to the future mechanic as to the future lawyer or merchant. All boys need all the
schooling they can get; but, after they leave school, let schooling they can get; but, after they leave school, le
them turn to industrial rather than professional avenues.
"To effect this we need, as in all other reforms, a change in public sentiment. We need a sentiment that will condemn the folly of the past in this respect. We need a senti ment that will recognize the fact that the great industries furnish the best field for the young man who has a career to make-that in them is to be found both good wages and the most promising and desirable employment that the land ffords. If we can once secure such a public sentiment, we an safely trust the remainder of the problem to the courag and good sense of the young men of the South."

CHEAPER MEAT FOR NEW YORK.

The shipment of dressed meat from Chicago to this city continues, and a sharp fall in prices has resulted. Other and larger firms have taken up the business, and the entire slaughtering interest of this city is threatened with extincion, together with several trades depending largely if not wholly upon it-hide salting, glue making, soap making and the manufacture of oleomargarine. The public gain in lower prices promises to much more than offset these losses.
It is said that several of the largest slaughterers of this city
It is said that several of the largest slaughterers of this city have resolved to transfer their slaughterhouses to Chicago and ship their dressed meat here for sale, as it is not thought possible to bring western cattle here to kill in competition with the sellers of beef dressed in Chicago. The expense of killing in Cibicago is no greater than here, while the hides, fat, and offal are worth about the same in both mar sets, the advantage, if any, being with Clicago. A ca that will accommodate fifteen live steers will carry nearly three times as many dressed cattle; and the saving in shrink age and loss through accident is very great. The time of transmission is reduced to forty hours. If the railway companies do not interfere by putting up the rates for dressed meat the new venture cannot fail of success. Hitherto from eleven to thirteen thousand cattle have been slaugh
tered in New York every week. For three years or more tered in New York every week. For three years or more
Chicago killed beef has been regularly shipped through this city to the London market, arriving in good condition.

Professor Haeckel in Ceylon.

" My frugal dinner at an end, I usually took a solitary walk on the shore, or delighted my eyes with the sight of the illumination of the palm woods by myriads of fire-flies and glow-worms. Then I made a few entries in my note book, or tried to read by the light of a cocoanut oil lamp.

But I was generally quite tired enough to go to bed soon after nine o'clock, after another careful shaking of the clothes for the expulsion of scorpions and millipeds.
"The great black scorpion (nearly a foot long) is socom mon in Ceylon that I once collected half a dozen in the
course of an hour. Snakes exist also in course of an hour. Snakes exist also in great numbers. Slender green tree snakes hang from almost every bough, and at night the great rat snake (Coryphodon blumenbachio) hunts rats and mice over the roofs of the huts. Although they are harmless and their bite not poisonous, it is by no means a pleasant surprise when one of these rat snakes, five feet loug, suddeuly drops through a bole in the roof into one's room, occasionally alighting on the bed.
' On the whole, howe ver, my nights in Belligam were but little disturbed by animal intruders, allhough I was of ten kept awake by the howling of jackals and the uncanny cry of the devil bird (a kind of owl, Syrnium indrani) and other night birds. The bell-like cry of the pretty little tree-frogs which make their dwelling in the cups of large flowers, acted rather as a slumber song. But I was far oftener kept awake by the whirl of my own thoughts, by the recollection of the many events of the past day, and the anticipation of that which was to come. A brilliant succession of lovely scenes, of interesting observations, and varied experiences mingled in my brain with plans of fresh enterprise and new discoveries for the morrow."

A Poison for Tubercular Bacteria

A paper was recently communicated to the Paris Académie des Sciences, by M. De Korab, on the action of helepine on the bacteria of tuberculosis. The facts mentioned deserve notice, although we fear that the hopes suggested are too bright to be realized. The bacilli were cultivated in bovine blood serum, which was daily heated for a week to effectually sterilize it, and was then coagulated by a tempera ure of $65^{\circ} \mathrm{C}$. A guinea-pig having been rendered tuber cular by inoculation and inhalation, small tubercular masses were taken from it, introduced into ten tubes containing the tubercular serum, and the tubes plugged after some helenine bad been poured into three of the tubes. All were kept at temperature of $37^{\circ} \mathrm{C}$. for a week, and at the end of that time inoculation experiments showed that the organism in the tubes to which the helenine had been added no longer caused tuberculosis, which was readily produced by the conents of the other tubes.

Railway Photography.

Instantaneous photography, in its more familiar aspect; upposes motion of the objects photographed; but another form of it is that in which it is the camera, more especially, that has motion of translation, as in photographing from balloons or trains. The practicability of photographing landscapes from the window of a train running at a rate of even forty miles an hour has been recently proved by Dr. Caudèze, who uses what he calls a gyrograph for the purpose. The apparatus comprises a copper tube similar to that which carries the lenses in ordinary cameras, but the lenses are placed on opposite sides parallel to the axis. Within is a shutter similar to the box of a stopcock; it presents two quadrangular apertures, which, according to the position of the'shutter, do or do not let pass the light rays n making a quarter of a turn. This rotatory movement is obtained by means of a spring liberated from a catch. An exposure of only one one hundredth of a second may be had. With a little practice wonderfully distinct views, it is said, can be obtained with the apparatus.

The New York Elevated Railroads amenable for Dam-

 ages to Property.Five years ago, Rufus Story, of this city, sued to restrain the New York Elevated Railroad Company from constructing and operating its road through Front street, opposite his premises. The action was tried in the Court of Common Pleas, in October, 1877, and resulted in a judgment for the railroad. The case was carried to the Court of Appeals, and he final arguments were made last June in Saratoga, John E. Parsons and William M. Evarts appearing for Mr. Story, and David Dudley Field for the railway company.
The Court of Appeals rendered its decision Oct. 17, reversing the decision of the lower court, and practically declaring that the owners of property along the lines of the elevated roads have a right to recover damages where their property has been injured in value by the construction and operation of such roads.

Fatal Accident in Splicing Electric Conductors.
The killing of a lineman whise splicing an electric light wire in this city was noticed a few weeks ago. A corre spondent, "A. P.v. R.," writes us from Vienna that a similar ccident occurred at Triest, September 15. The Industrial Exhibition Building there had been partially unroofed by a storm, and in the fall of a pavilinn the wires leading from a dynamo machine to lamps used in lighting the park around the exhibition building were broken. The engineer in charge, without stopping the dynamo, went to repair a broken connection, and, on grasping the two ends of the severed wire, received a shock that killed him. The victim was accounted a capable electrician, and was one of the firm of engineers who had introduced the lights and exhibited electric lamps and machinery in the exhibition.

PLANE GUIDE

This device, which may be used on an ordinary work bench, is particularly adapted for use with the dado plane in cutting gains transversely or obliquely, and is so constructed that, after one piece is gained, any desired number of duplicates may be made without being previously " laid out."
The plane guide-which may be eight or ten feet in length -is placed on an ordinary work-bench for use. An adjust able guide, \mathbf{B}, is hinged at the rear to the pivoted bar, \mathbf{A}, and capable of being opened or raised vertically to facilitate the placing and removal of the stuff to be worked. The guide can also be adjusted to suit material of different thicknesses

C is a sliding gauge, which may be set at any desire position on the graduated plate or rule, D , and serves to mark the length between the gains to be cut.

In operation, the guide is opened to a vertical position, the material placed in position, the guide closed down and fastened, thus securing the material in position and furnishing a guid to direct the plane in cutting the groove. The guide, in connection with the pivoted bar, may be set at any desired angle and secured by the thumb-screw.

With this device, window frames, door frames, etc., may be accurately gained in less time than is required to lay them out for gaining in the usual manner with saw and chisel ; besides, the work may be done by an unskilled workman

When not in use, the device, being hinged at H, may be folded up and placed in any conve nient place in the shop. Further particulars may be obtained by addressing the patentee, Mr. Wm. H. Stinson, Scandea Kansas.

Artificial Gems.

P. Weiskopf gives in the Diamant the following formulæ for the frit or mass used in Bohemia for making imitations of some of the precious stones:
Initation agates.-10 kilos quartz, 17 kilos red lead, 3.2 kilos potash, 22 kilos borax, and 0.1 kilo arsenic. The quantity of chloride of gold added is equal to that obtained from 0.4 of a ducat.
Agate glass. - 10 parts of broken glass is melted, and to it are added 0.15 part suboxide of copper, the same quantity of the oxides of chromium and of maganese, 0.02 part each of oxide of cobalt and nitrate of silver, 001 oxide of uranium 04 red argols, 0.3 part bone meal. Each oxide is added alrne and at intervals of ten minutes. After heating the mixture for an hour, 03 or 0.4 part of fine soot is put in.
Red marble. -80 parts of sand, 40 of potash, 10 of lime, of table salt, 1 of saltpeter, and $0 \cdot 1$ of arsenic. The mixture is melted, and then 25 parts of suboxide of copper and 1 part of sattpeter mixed in
Artificial turquoise are made in Paris and Vienna that cannot be distinguïshed by external appearances from the natural product, and when artistically made can only be distinguished by means of the file, being usually softer. They are made from phosphate of alumina and phosphate of copper mixed together and subjected to bydraulic pressure. Even in chemical composition it resembles the natural miveral, which is a hydrated phosphate of alumina with 2 per cent of oxide of copper.

Artificial Vanilline.

Some six or seven years ago, the discovery of a method for the preparation of artificial vanilline, the odorous principle of the vanilla bean, was announced. Its production as a commercial article was soon begun, and high hopes were entertained that it would be a financial as well as a scientific success, but as yet its use is very limited and its price very high. Several methods for its production have since been discovered and patented; the most recent is the subject o a patent taken by Meister, Lucius, and Brüning. Although a very simple one, the names of the products made use of enjoy the advantages of long names. The meta form of amido benzaldehyd is first converted into the diazo com pound, in the usual manver, and by decomposing with water it forms meta oxyl-benzaldehyd. This is nitrated and methylated, and thus converted into para-nitro-meta-meth oxyl-benzaldehyd, $\mathrm{C}_{6} \mathrm{H}_{3} . \mathrm{NO}_{2} . \mathrm{OCH}_{3}$. CHO . By reducing th nitro group to an amido group, converting into a diazo com pound and decomposing that with water, they obtain vanil line, $\mathrm{C}_{6} \mathrm{H}_{5 .} \mathrm{OH} . \mathrm{OCH}_{3 .} \mathrm{CHO}$, the full scientific name of which is para-oxy-meta-methoxyl benzaldehyde. Whether this new and simple process will be any more successful than those hitherto tried is doubtful, to say the least.

Tin in Colorado.

A promising discovery of tin is reported in a Denver, Colorado, paper. The lode is said to be situated in the American basin, on the lake fork of the Gunnison, in Hinsdale county, just beyond the San Juan county line, Col. A poor prospector commenced work on the mine in 1874 The ore is of two kinds-leaf tin and English or silver tin, carrying also fifty ounces of silver and five ounces of gold. The vein is 12 feet wide, and shows on the surface for 1,500 feet. The ore is pronounced by experts in Denver, Pueblo, and Washington the richest tin ore ever discovered in thi country.

IMPROVED HOT AIR ENGINE.

The "vertical" hot air engines, it will be observed, diffe from hot air engines that have already been introduced into the market in the arrangement of the cylinders. The air cylinder is placed outside the casing, offering thereby greater facilities for cleansing and lubricating, also fo examining the different parts. This cylinder is fitted with a metallic piston, and the shape of the cylinder enables this type of engine to be made as compact as possible. The action of the engine may be described as follows: After the fire is made the retort becomes heated to a dull red heat This rise of temperature expands the small amount of air inside, which then forces the piston in the air cylinder downward. After this expanded air has done duty, the downward. After this expanded air has done duty, the
displacer, which is actuated from the crank, forces the air
stinson's adjustable dado plane guide

Are Toads Poisonous
In answer to this query, propounded by Mr. Herber Brown in a recent number of Knooledge, a decided affirm ative may be returned. The toad is venomous, though not in the way that is implied by the general acceptation of that term, as is commonly believed. Nothing can be more harmless than the bite of the common toad-if it can be said to bite, for it has no teeth. But the glands contained in the papillæ and rugosities of the skin covering the back, and especially those which can be plainly seen in the form of two bean-like eminences just behind the head, secrete a milky, highly acrid fluid, which is exuded profusely on ritation. Indeed, if it were not for this poisonous secre tion, the poor toad would fall an easy victim to many enemies, having neither the agility of the frog or lizard to enable it to make its escape, nor the teeth and claws of other reptiles wherewith to defend itself. Cats, which are eager hunters of frog for food, spit and foam at the mouth when they pick up the wrong batrachian by mistake, and are often affected in a similar manner to Mr Brown's St. Bernard ; frog-eating snakes, too, detect the difference, and will not take toads, as a rule. When a snake, greatly pressed by hunger, swallows one, it usually rejects it again immediately afterward, and not unfrequently dies. Those frogs which prey upon their own kind (as most frogs do) despise their ugly rela tive from an alimentary point of view ; and curiously enough, certain toads which devou frogs share the same antipathy to their race Except with very small animals, the poison ap pears to act rather as a local irritant than
which bas been condensed against the cold sides of the to part of the cylinder back to the hot end of the retort. A the piston performs its stroke, due to the expanded air in the cylinder, a small air valve is kept closed by the pressure, but as the piston makes the return stroke a small valve on the top of the cylinder opens for a sufficient length of time to permit air to enter the cylinder to replace any which has been permitted to escape through any defect in packing so that it will be seen that not only is it automatic in receiv ing the proper supply of air for expansion, but it is also automatic in its lubrication, for wherever this down strok is made a small amount of oil is drawn into the cylinde for lubricating the metallic piston. The manufacturer claim in this type of hot air engine that the design admits
of the engine being made much cheaper, as well as afford

ng great facilities for examining, lubricating, and repairing, thau is the case with any other hot air engine. It is being made in considerable numbers by Messrs. Bailey \& Co. Salford, London.-The Engineer.

During a recent tornado in Brewer, Me., a plank wa lown with such force against a cistern with wooden wall an inch and a half thick, that the board penetrated some distance through the wall into the water. It was found hat the board was wedged in so closely that the water did not leak, and the owner simply sawed the plank off, leaving the wall in the cistern all right.
toxæmic agent; it has no effect upon the sound skin bu will cause any abraded surface to inflame to extensiv ulceration, while great pain results from its application to the coujunctiva or internal mucous membranes. Any on who can overcome his repugnance to the creature suffi ciently to put his lips or tongue against the skin of an angry oad will experience an intensely acrid taste; he should shut his eyes in making such an experiment, as the post occipital glands sometimes emit their secretion in a jet. Mr. Frank Buckland quotes a case which occurred i Oxfordshire, where a drunken brute bit a toad's head off Happily, his teeth went right through these glands, and hi mouth and throat immediately became swollen and inflamed to such an extent that bis life was in jeopardy for some hours. These characteristics are much more strongly marked in many of the tropical Bufonidæ. My giant toads (Bufo agua) used to swelter venom when they wer taken in the hands in such abundance that it would pour off their backs and drip from them, before they became tame ; and I was thus enabled to collect a large amount This species feeds on rats, and it is possible that this copious exudation may serve to prevent their prey from biting them when seized by the leg, or otherwise awkwardly caught. I once put a "cribo" snake (Dromicus fugitivus) into a box with three of these toads for a single night, fo lack of other accommodation ; it was a fine, active speci men, five or six feet long, and its movements during the night so disturbed them that in the morning I found the floor of the box all awash with fluid. The snake was lying on its back, apparently dead; and, though it recov ered somewhat on being plunged into a bath, it survived only a few days.-Arthur Stradling, C.M.Z.S., in Knowledge

Photograph of an Explosion.

The United States Engineers recently photographed the explosion of a wreck, which was blown to pieces by sub marine charges of dynamite, to ascertain, among other things, how long the spectacle really lasted. The result was exceedingly interesting. There were six cameras em ployed, and the instant of the explosion, as also the several instants when the exposures were made by shutter, were electrically timed by a chronograph.
A photograph taken one-tenth of a second after the explo sion showed the vessel broken, and a column of water 70 feet high; a photograph secured 1.5 seconds after the instan of explosion showed a column of water 160 feet high; third photograph, taken 23 seconds after, showed the col umn at its full height of 180 feet, while fragments of wreck age were in the air, but none had fallen to disturb the sur face of the water; a fourth picture, taken 3.3 seconds after showed the column falling, and the surface of the wate disturbed; while a fifth photograph, secured 43 second after, showed that all was over.

Height of Buildings.

In the Insurance Cyclopedia, Mr. Walford mentions the Swedish law which came into force in 1875, and which probibited the erection of buildings in cities and towns of a height more than five feet above the width of the street on which they are built. A wise precaution, says the Ameri can Exchange, to secure proper ventilation and avert the spread of conflagrations, and which somewhat qualifie Capt. Shaw's rule that the safety or saving of the individua gnited building is indirectly in the ratio of the height to rea or cubic content under equal combustible condition therwise. This is part of the question, whether we shal in the futare build cities, or continue, as in the past, to build capricious individual structures.

NEW BOX FASTENER.

The device shown in the engraving is designed for fasten ing lids on boxes without the use of screws or nails, and in such a way that the lid can be readily fastened or removed.
The lid fastening consists of a pivoted bail at one end of the box, to which springs are attached. These springs pass through staples on the end of the box, and press the bail over the end of the lid. The latter is provided with a series of tongues fitting into recesses and between tongues on the upper edge of the end of the box, the end of the box being provided on its upper edge with a spring, which presses up ward and holds the lid up against the pivoted bail to pre vent the bail from becoming loose.
To fasten the lid on the box, one end of the lid is passed under the fixed strap or band, and the bail on the opposite end is pulled outward, and the tongues at the end of the lid are pressed into the recesses in the upper edge of the end of the box. Then the bail is pushed back again over the tongues. The bail is pushed back again over the tongues. The
bail and the straps pass into recesses in the end, bail and the straps pass into recesses in the end,
sides, and lid of the box, so that their surfaces sides, and lid of the box, so that their surfaces
will be flush with the surfaces of the box. Stamps of muslin or paper are secured on the lid and box to indicate whether the lid has been tampered with or not. This useful invention has been patented by Mr. William J. Baker, of Denver, Col.

Changes in Cruls, Comet

Spectroscopic observations of the great comet, made by Commander Sampson, at the Naval Observatory, Washington, October 15 and 16, showed the spectrum to consist of three bands. The brightest band was in the middle of the green, nearly corresponding to the " B " lines; the second was in the orange yellow; the third, at the middle of the blue. The middle band was very bright, and sharply defined on the least refrangible side. The other two bands were of about equal brightness, but wer much fainter than the middle band. Like it, their brightes portions were near the least refrangible side.
sharply defined on both sides could be made out.
This spectrum is quite unlike the one observed when the comet was nearer the sun: a spectrum bright and continuous, with many bright bands, among which the sodium bands were particularly prominent. In the spectrum of October 15 and 16 there was no trace of the sodium band.
It was found that when the brighter portions of the bands were removed as far as possible from the field of view, the fainter portions were seen to extend themselves into an almost continuous spectrum. When the tail of the comet near the nucleus was examined, it was found to consist of a faint continuous spectrum, without any bright bands. The explanation of this great change in the spectrum is that when the comet was first examined just after it had passed the sun, the continuous spectrum was due to reflected light, while the bright bands were due to the incandescent vapor formed by the intense heat of the sun. The comet has now so changed its position with regard to the sun that the amount of reflected light has greatly diminished, and th comet itself has greatly cooled after its bot bath in the atmosphere of the sun. The beautiful silvery appearance of the comet is attributed to the preponderance of green light which it emits, as shown by its spectrum.
To account for the apparent separation of the nucleus of the comet into three or more parts on several days with subsequent consolidations, the hypothesis has been advanced that the nucleus is not a single body, but is made up of a cluster of independent parts with a motion among themselves. The discovery by Dr. Schmidt, at Athens, October 8, of a small comet near the great comet, and pursuing the same general course, tends somewhat to confirm the hypo. thesis of a broken or "cluster" nucleus.

Medical Case for Railways.
The Pennsylvania Kailroad Company has had prepared for carriage on each locomotive of the company, a box of appliances to be used in case of accidents. The box contains: one rubber compress, one package of absorbent cotton, six rolls of bandages, and one pyramid of pins. A label on the box tells how the outfit is to be used, and directs that it must always be kept up by immediate requisition for any article needed. This outfit is obviously intended mainly to meet necessities arising from accidents to trainmen in the ordinary course of events; yet it might prove very serviceable to injured pas sengers in case of large disasters.

The promising discoveries of coal in Iowa have been fol lowed by not less promising discoveries of iron ore.

AN ENGLISH FOURTEEN-STORY HOUSE.
rojectors profess to be confldent that they will be able to supply gas enough to Pittsburg to meet all requirements for heating and lighting.

At a meeting of the New York Microscopical Society Oct. 10, Dr. William B. Carpenter, of London, summarized his investigations of the structure of Eozoon Canadense, and ahibited many specimens under the microscope. Dr. Car penter holds to the theory of the organic origin of this much
disputed fossil. danger is represented as slight.

New Method of Printing Photographe in Colors
The Hoeschotype is the invention of Herr F. C. Hoesch of Nuremberg, who has spent the last three years in bring ing his process to perfection. The method by which Herr Hoesch works is at once simple and rapid. A photograpl is first taken of the picture. From the negative six gela tine prints on glass are made, and a color plan having been made on one, on each of the other five a separate colo scheme is worked out corresponding to the particular tint desired, all the portions not required being painted out. desired, all the portions not required being painted out.
The colors used are the three primaries, a neutral gray, and The colors used are the three primaries, a neutral gray, and
a brown, and with these five tints any combination can be a brown, and with these five tints any combination can be produced. The gelatine is made insoluble with bichromate , and thus can be printed from in an ordinar lithographic press. The advantage which Her foesch claims is that where a chromo lithograph of an extended scale of tints may require from a dozen to twenty printings, the Hoeschotype may be produced in five printings. The various stages of the color printing by which the finished print is built up are exceedingly interesting. 'The print we examined was the portrait of a girl. Plate No. 1 showed only the yellow tint graduating from the deep points of color in the bat to the light tints in the hair. The outline of the features was only jus discernible, while the cheeks were left white. In the next printing the color was red. Here, where necessary, the red mingled with the yellow, produc ing orange. No. 3 was blue, and the greens and purples made their appearance in their proper places. No. 4 was a neutral tint of gray, which toned down the crudeness of the three primaries. Finally came the brown, which gave a mellowness and warmth to the shadows, and completed the picture. For the result we have nothing but praise; and if examples like the ones we saw a Messrs. Gladwell's can be produced rapidly and at small cost, chromo-lithography will be almost superseded It is evident that some artistic skill in manipulating the gelatine plate is absolutely necessary, for herein lies the power of being able to produce graduated tints at one work ing; but whether the gelatine is worked upon before or ing; but whether the gelatine is worked upon before or
after being bichromatized we are unable to say. So far as after being bichromatized we are unable to say. So far as
the artistic element is concerned, we understand that Herr Hoesch is certain that any South Kensington student o average skill could, with three months' practice, acquir proficiency. If this be so, there is no insuperable difficulty for the artist. We believe that no attempt has been made in connection with enlargements of portraits from life, but we saw several Hoeschotypes of vases from the objects them selves, which left nothing to be desired. Of course it is not selves, which left nothing to be desired. ond in the reproductions of the vases three only were employed. To insure absolute accuracy in the matching of tints, the inventor has prepared a scale in which every combination of the fiv colors in certain proportions is shown. Herr Hoesch divides his five colors into fifths, and having thus twenty-five portions to ring the changes upon, he gets 1,600 tints, each of which has a number attached to it which shows on refer ence to a table that it is composed of so many fifths of one color and so many fifths of another, as the case may be. The equality of the prints may therefore be depended upon. So far as we could see from the result shown by Messrs. Gladwell there is hope that the Hoescho type may take its place before long as one of the recognized art processes of the day.-Photo. News.

Gunpowder Engine.
A powder engine has been pa tented in Germany by Herr Beck In it a piston is forced to and fro in a horizontal cylinder by small quantities of powder ig nited on either side alternately Powder pans are provided on the bottom within, on which, at the proper moment, powder falls through passages from two hold rs which rest on distribution slides. The igniting of the pow der is effected by means of spirit or gas flame from the cyl inder cover, drawn in through an oblique aperture by the suction force of the piston. The ccess is regulated by slides The gases of explosion are ex pelled through holes furnished with slides, on return of the piston. The heavy residues are pushed by the piston into bags, which are emptied at intervals. It is claimed for the new motor that, with small occupied space, it is very effec tive and easily set at work. The consumption of pnwder is comparatively small, and the engine regulates itself. The

Sx. Louis is to be supplied with water gas for fuel pur poses. The laying of pipes is progressing rapidly.

Cunt Rymutate

The Largest Leather Belt

To the Editor of the Scientific American:
In your journal of August 19 last, you refer to a leather belt 48 inches wide, which you assume is the largest belt made; this is not so, as we manufactured last year a belt 75 inches wide and $1561 / 2$ feet long. The belt is now at work transmitting six hundred indicated horse power, and gives every satisfaction.

Manchester, England.

Sampson \& Co.
[It is proper to say that in our paragraph above referred to, the Jewell belt, 48 inches, was mentioned as being probably the largest ever made from a single width of hide. The 75 -inch belt of Messrs. Sampson was supplied to the order of the Société Anonyme de Loth (Woolen Mills), near Brussels, a double belt, 75 inches wide and $1531 / 2$ feet long, to transmit 650 horse power indicated. It is made on their patent system, without cross joints. The power is obtained from a Corliss engine, 800 horse power. From the flywheel, which is 28 feet diameter by 6 feet 9 inches wide, the force is transmitted direct to the weaving shed, which contains 1,000 looms, and spinning mill adjoining. The belt runs perfectly straight, and gives entire satisfaction. The mills are the largest of the kind in Belgium, giving employment to over 3,000 workpeople.]

Ants on the wing.

To the Editor of the Scientific American:
Owing to the important additions which have recently been made to our knowledge of the habits and ways of ants, the subject has become one of general interest. The fol lowing uotes may be worth recording:
On the 8th of October, Burlington Bay, in Lake Champlain, was visited by an immense horde of flying ants. Th scene of their arrival, or of their shiporreck, to speak more properly, was the sandy beach which stretches a mile or more from Rock Point to Burlington city. Along this line the sands were teeming with formic life. It is likely that in an attempt to cross the lake they were caught up by the wind, which was blowing from the south, and thus driven ashore. Many, doubtless, were blown into the water and took passage on the waves, which they seemed to sur-
vive, although with some difficulty. Every wave tossed up several individuals, who, half drowned, struggled slowly from the wet sand to the drier driftwood above, and began observations on their surroundings. A large stump, embedded in the sand and stretching its prongs several feet into the air, was covered to nearly half an inch in depth with these swarthy voyagers. This mass of life exhibited restless activity, individuals crowding past their fellows, trampling their neighbors under foot, or pushing them down from their lookout. Those who fell seemed to suffer no inconvenience, but, using their wings in the descent, caught on a convenient place below and began to climb up ağain.
The activity of these little creatures is worthy of notice. The bee, in the course of her honey-gathering pursuits, frequently comes to rest, but in the case of this ant motion seems to be natural. It moves about continuously, fre quently changing its direction, but rarely stopping. This was partly due to their inability to fly. Indeed, their flying apparatus was in many cases sadly out of order, some
having lost both pair of wings and others being only partially provided.
For several days these unfortunate ants wandered about the sands of the shore, collecting on the driftwood, or huddling in hollow places to avoid the wind. Some advanced inland, as if for the purpose of exploring the country, in animals could not readily be estimated, but must have been of great size. It was a noticeable fact that the males were greatly in excess of the other sex.
The sexes of ants are not always distinguished with ease. The males, however, may be identified by the number of joints in the antennæ, which is thirteen, and by the wings, which they are supposed to retain throughout life. The females, on the other hand, have twelve-jointed antennæ, an ovipositor or sting, and wings which they lose shortly after maturity. The neuters are noticed to want the last two mentioned cbaracteristics of the female.
It is a well known fact that the male and female ants leave the nest when fully grown, and take to flight. After this the males die, and the females, rendered helpless by the loss of their wings, are cared for by the neuters, who seek a suitable place for a nest, and assume the domestic duties and the care of the offspring. If the appearance of this horde of ants had been earlier, it might thus be accounted for.

Rock Point, Burlington, Vt., Oct. 13, 1882.
How the Telephone Business is Growing.
An illustration of the rapid growth of the telephone business generally is found in the increase which has taken place in Lowell, Mass. In the fall of 1877 the exchange
was started with sixty subscribers. October 1,1880 , it had 600 subscribers, and at the present time, says the Boston Globe, there are about 900 subscribers connected with the exchange, showing an increase of 150 subscribers a year. The company is now putting in about twenty new instru-
the population is about the same throughout the territor covered by the consolidated exchanges. Lowell has one telephone to every sixty-two of its population, a very large
proportion. In Portland, Me., there are 700 telephones, proportion. In Portland, Me., there are 700 telephones,
and the ratio is one to every fifty of population, the largest and the ratio is one to every fifty of population, the larges
ratio in the world in any city of the same size. Consider ing, however, that there are in Lowell 20,000 mill-operatives, the large number of telephones in use in that city is even more remarkable. One would naturally suppose that the increased use of the telephone, particularly for longdistance talking, would seriously affect the business of the telegraph companies. Oddly enough, this appears not to have been the case. In Lowell, for instance, to-day the telephone company receives and sends as many messages as the Western Union Telegraph Company, and yet the telegraph Company is doing half as large a business again as it was two years ago. The distance from Lowell to Portland 115 miles, and, unless the atmospheric influences are ex ceptionally unfavorable, conversation can be readily carried on between these two points. The consolidated New
England companies have a standing order with Washburn \& Moen, of Worcester, for 300 miles of wire a month. They also have standing orders for 400 signal bells a month from Post \& Co., of Cincinnati, Charles Williams, of Boson, the Western Electric Company, of New York, Gilli land \& Co., of Indianapolis, and Davis \& Watts, of Baltimore. The insulated copper wire, which is used for inside work, comes from the Ansonia Brass and Copper Company and Eugene Phillips, of Providence.
A novel experiment is now in progress with a view to overcoming the difficulties attendant upon long-distance
talking. Between Boston and Worcester a line is being talking. Between Boston and Worcester a line is being constructed of No. 4 gauge wire, which reduces the tele-
phone distance between the two cities about one-half. This line will cost $\$ 10,000$, whereas an ordinary line of No. 9 wire would cost only about $\$ 4,000$. If the experiment is a success, the line will be extended to Springfield, and similar lines will be built from Boston to Portland, Plymouth, N. H., and other distant points, enabling subscribers there to talk with Boston as readily as subscribers in Lowell, Salem, Lawrence, and other ueighboring places. The ordinary elephone line, running straight across the country, costs from $\$ 100$ to $\$ 150$ per mile. The big wire is now completed between Boston and Hopkinton, a distance of twenty miles. Communication over the line on this twenty-mile stretch is as distinct as in the city.
The number of operators required to answer the calls of subscribers is, in Lowell," fifteen to 900 , or one to every sixty. The operators are paid from $\$ 18$ to $\$ 30$ a month, according to their ability, experience, and the service re quired of them. They are mostly ladies, between eighteen and twenty-four years of age. The superintendents of ex-
changes receive salaries varying from $\$ 50$ to $\$ 100$ a month. changes receive salaries varying from $\$ 50$ to $\$ 100$ a month.
These are the average salaries paid for the work throughout he country.

The Employment of Tobacco.

It is probable that no physiologist would contend that to bacco in any form is essential to the well-being of the body. Thousands of healthy men and the vast majority of women never touch it; yet it is certain that its use is becoming daily more frequent, and that when once introduced into a ountry it is almost hopeless to eradicate the taste for it. It is clearly not necessary for the exercise of the highest intellectual powers. Dante and Chaucer, Michael Angelo and Raphael achieved their triumphs without its aid; and no encomium of its virtues will be found in the wise sayings of Sancho Panza or in the pages of Sbakespeare; nor have less, indeed, a habit of smoking in bed led to his not very clearly explained connubial disturbances, and to his tart reatise on divorce. Be this as it may, the eagerness with which it is sought after by its devotees, who allow neither
manners, nor the presence of ladies, nor the comfort of others to interfere with their enjoyment, the distress that is occasioned by a temporary failure of the pernicious weed; the difficulty with which the habit of smoking once acquired is broken-indicate clearly enough that it supplies
some want in the econs,my or exercises some influence on the system which cannot be replaced by other means. To many men a poison, to others tobacco is the very staff of life, and to be without it is the extremity of misery. Enforced abstinence from it is to many a convict the severest part of his sentence, and the cunning and deception, as well
as bribery, employed to effect its introduction into prisons are well known. An amusing address has lately been de livered by M. Bouley to the Societe contre l'Abus de Tabac, on the economical and hygienic aspects of the use of this narcotic. The total value of the tobacco smoked in France amounts, he tells us, to no less than $352,538,000$ francs, nearly eighteen millions sterling, which immense sum represents the increase in the taste for tobacco since the year 1830, when this singular babit took its origin from the leisure of the Corps de Garde after the restoration of the Na-
tional Guard suppressed by Charles X., M. Bouley points out how smoking has effected an intellectual separation be tween men and women, conversation being no longer maintained after dinner as in his earlier years. The men are anxious to smoke, and the ladies retire early, to the great detriment, in his opinion, of the mental faculties of both sexes. He is reminded by the present condition of things of Voltaire, who, when condoled with by Piron on the ill-
success of one of his comedies, ventured to say, "Well, at
any rate, they didn't hiss it." "No," replied Piron, "how could they, when they were yawning all the time?" In France the state promotes smoking, since each soldier re ceives, every ten days, 100 grammes of tabac de cantine, on payment of the extremely moderate sum of fifteen centimes. It is given in the belief that it constitutes to some extent a substitute for food, and affords relief to, or at least prevents grumbling at the monotonous character of the diet. As long ago as 1854, Marshal St. Arnaud, when at Varna, wrote to the Intendant of the War Department: " Have you sen tobacco for the trocps? It is very important, for tobacco is undoubtedly the best means we possess to prevent attacks of nostalgia and to alleviate the miseries of the bivouac. General Brac, again, in his "Traite des avant Postes," strongly insists that a taste for smoking should be cultivated in the light cavalry, on the ground that it keeps him awake, employs spare moments that would otherwise be employed in thinking, and keeps him near his horse, which he sees has its forage and is not abused. "How comforting it is ! he adds; "in the early morning; it drives away sleep, and enders the rain less cold, thirst less severe." The pipe gain, demands a steel and some tinder, and the implements for the production of the bivouac fire are therefore always at hand. But there is another side to all this. Dr. Blanchet, an army surgeon, writes that "constant association with the soldier, and inquiring into the effects of smoking, have taught him that the illness of many men is to be traced to the abuse of tobacco alone. Ulcers on the lips, in the mouth, on the tongue, in the nose, necrosis of the maxillary bones, are not uncommon results of its use. Others suffe righttfully from gastralgia, gastritis, and enteritis; others from vertigo, mental debility, and even transient attacks of mania." Who is in error here, the general or the surgeon? What have our English surgeons to say to it? In moderation, as Sir B. Brodie said long ago, it probably acts as a calmative to the nervous system, especially when in a condition of excitement and worry, and its abuse only should be deprecated.-Lancet.

Tar Roofs.

The London Builder says that the German Government has on several occasions pointed out to farmers and others interested in agriculture that too great an expenditure of capital on buildings is a mistake. With a view of illustrat ing the application of this principle of economy to roofing, the Cologne Gazette points out that the system of using tar for roofing purposes is at the same time economical and suitable for agricultural buildings, and what is said may serve as an answer to a recent inquiry in our own pages. The framework of the roof can be of relatively slight con struction on account of the nature of the covering it is in tended to support, and the perpendicular height of the roof can be one-eighth to one-tenth of the entire depth of the building. The distance of the rafters is arranged according to the width of the covering material, the scale being that from the middle of one rafter to the middle of another. The distance should be $23 / 8 \mathrm{in}$. less than the width of tar roofing sheets.
Immediately upon the rafters come boards, and upon these (exactly in the center of the separate rafters) are placed strong laths, about 2 in. wide and $15 / 8$ in. thick, the upper edges being taken off. The roofing sheets are now placed so as to cover the spaces between the laths, and are nailed. Over the laths are placed strips of paper, 5 in. to 6 in. wide, fastened with nails at intervals of $23 / 8$ in.
In order to make the sheets lie smoothly upon the boarding, it is suggested, in case they are too dry, to soften them by immersion in water. It is recommended that the work men should not wear heavy-nailed boots, and also, that if the rain comes on, the roof should not be walked upon im mediately after. When the entire surface of the roof is covered with sheets, the strips of paper (or caps) already named, as well as the joints, are painted over with a hot mixture of coal tar and pulverized lime. Pure dry sand is at once sprinkled over this coating, and particular care must be taken that all the nail-heads are well covered. When the paint is dry the whole surface of the roof is once more coated with the same mixture, and is sanded.
The object of this careful method of overlaying the roof with several coatings of specially prepared solutions is to preserve in tine tar those oleaginous and fatty properties which it soon loses if exposed to the air, and the retention of which is an indispensable condition of its resistance to water. Clay and sand do not afford sufficient protection, and they are removed by violent winds.
Reference is made to various systems of coating the tar roof with protective substances, for the purpose indicated. One of the most successful methods consists of a mixture of cow dung and thin white lime, which is spread over the entire surface of the roof. If such a coating is not applied the tar paint must, during the first four years, be annually renewed, which enhances the cost of the roof. If the lastnamed protective composition is used, and renewed every two years, the coating of tar and lime can be dispensed with. Particular mention is, however, made of a coating of tar mixed with Portland cement, the tar being well heated and used in the proportion of 111 pounds to 200 pounds of cement. The mixture should be kept well stirred during the preparation, and should be applied as soon as made. This particular method has been tried in many cases in Germany, and, according to the journal quoted from, its satisfactory results have caused its adoption upon a scale of satisfactory results have
progressive importance.

ASPECTS OF THE PLANETS FOR NOVEMBER.

 venusis evening star, and leads off in the programme by initiating the most brilliant event of the month at its commencement. On the 1st day of November she reaches her period of greatest brilliancy as evening star, as every one who looks upward to the heavens will gladly acknowledge. She is also a beautiful object in the telescope, especially when observed in the daytime, for her light, unpleasantly dazzling on a dark sky, is then subdued to a soft, pearly luster. In the present part of her course she takes on the phase of a waning crescent, becoming larger, sharper, and thinner as the month advances, and she comes really nearer the earth, and apparently nearer the sun.
No one who has closely studied this charming planet need be told that the variations in her appearance are very great. When at superior conjunction, and on the opposite side of the sun, she is one hundred and sixty million miles distant, and presents the aspect of a small round disk, $10^{\prime \prime}$ in diameter. When at inferior conjunction, where she will be on the 6 th of December, she is directly between the earth and the sun, is only twenty-five million miles distant, and, if he whole face were visible, she would be $64^{\prime \prime}$ in diameter. But her dark side is then turned toward us and she is invisible Between these positions she takes on all the phases that the moon takes on from full to new. The law of her movemen is that the nearer she comes to the earth the smaller is the portion of her illumined disk; but the larger would her disk appear if the whole of it were visible. Her greatest brilliancy occurs thirty six days before her inferior conjunction After that period her illumined crescent diminishes so rap dly that the increasing nearness to the earth is insufficient to make up for her lessening light and her glory visibly wanes. This month is, therefore, the time to enjoy the lovely evening star, which, at its close, will be nearly eclipsed in the sun's rays, and will for many months cease to shine in our evening sky.
The right ascension of Venus is now 17 h . 52 m .; her declination is 28° south, and her diameter is $42^{\prime \prime}$. Her place is in the constellation Sagittarius.
Venus sets about half-past six o'clock in the evening; at the end of the month she sets a few minutes before five o'clock.

saturn

is morning star until the 14th, and evening star for the rest of the month. On the 14 th , at 10 o'clock in the evening, he reaches the most interesting point in his course, as far as errestrial observation is concerned. He is then in opposi tion with the sun, apparently farthest from the sun, and really nearest to the earth. The sun, the earth, and Saturn are in a straight line, with the earth in the center, and the planet is one hundred and eighty million miles nearer to us than when in conjunction. He is literally opposite the sun, for he rises when the sun sets, and sets when the sun rises.

The present opposition of Saturn is one of remarkable brilliance, combining three favorable conditions, all tending to increase the interest of his appearance as he comes glowing with soft light above the eastern horizon in the early evening He is in high northern declination, and the law is, the farther north the planet the better is the position for observation. His rings are @pening to their widest extent, thus largely increasing his size and brilliancy. He is approach ing perihelion, the happy combination of events all lending an éclat to the Saturnian opposition of 1882 . The wonderful planet deserves the closest study, and no one who has access to a telescope should fail to improve the opportunity for a view of this magnificent member of the system, with his rings, belts, and moons.
It seems anomalous to call Saturn a morning star when he rises before six o'clock in the evening. But astronomy has inexorable laws, and one of these laws is that the outer planets, including Mars, Jupiter, Saturn, Uranus, and Neptune, are morning stars from conjunction to opposition and evening stars from opposilion to conjunction. There fore Saturn is classed as morning star untıl the 14th.

His right ascension is 3 b .28 m . ; his declination is $16^{\circ} 22$ north, and his diameter is $19^{\prime \prime}$. His place is in the constel lation Taurus, differing little from that of last month
Saturn rises on the 1st a quarter before six o'clock in the evening; at the end of the month he sets about a quarter before six o'clock in the morning.

JUPITER

is morning star during the month, and the brightest star in the heavens while he is above the horizon. For before he reveals his regal presence the short-lived glory of Venus has passed away, the peerless planet being hidden below the horizon.

The right ascension of Jupiter is 6 b .5 m .; his declination is 23° north; and his diameter is $42 \cdot 6^{\prime \prime}$. His place is in the constellation Gemini.
Jupiter rises on the 1st a few minutes before eight o'clock in the evening; on the 30th he rises a few minutes before six o'clock.

neptune

is morning star until the 9 th, and evening star the rest of the month. On the 9 th, at four o'clock in the afternoon, he is in opposition with the sun; as he is then at his nearest point to the earth, he may be easily seen in a good telescope. He is the first of the four giant planets to reach opposition, preceding Saturn five days. The same laws govern his move ments at opposition as those that have been described in the
case of Saturn, but owing to the immense distance of this wanderer on the system's verge he is never visible to the naked eye.
Neptune's right ascension is 3 h .3 m . ; his declination is $15^{\circ} 20^{\prime}$ north; and his diameter is 2.6°. His place is in the constellation Taurus, near that of Saturn. There is only wenty-one minutes' difference in the time of transit of the wo planets.
Neptune rises on the 1st about half-past five o'clock in the evening; on the 30th he sets about a quarter after five o'clock in the morning.

URANUS

or the student
His right ascension is 11 h .31 m ., and his declination is 3° 54^{\prime} north. He has entered the constellation Virgo, where he will remain for the next seven years.
Uranus rises about half-past two o'clock in the morning at the end of the month he rises thirty-nine minutes after twelve o'clock.

MERCURY

is morning star throughout the month. On the 7th he reaches his greatest western elongation, and is then $19^{\circ} 3^{\prime}$ west of the sun. For a week before and after that time he may be picked up as a beautifulmorning star by bright-eyed observers. It will be the only opportunity for a glimpse of his face during the rest of the year. He rises on the 7th ew minutes after five o'clock, an hour and a half before the he sun, and must be looked for 8° north of the sunrise point The bright star in his vicinity is Spica. It will be of no use to look for him unless the sky be exceptionally clear.
The right ascension of Mercury is 13h. 28m.; his declination is $7^{\circ} 11^{\prime}$ south; and his diameter is $7 \cdot 8^{\prime \prime}$. His place is in he constellation Virgo.
Mercury rises on the 1st about five o'clock in the morning on the 30th he rises about half-past six o'clock.
mars
is evening star, and approaches conjunction. His right ascension is 15 h .14 m ., and his declination is 18° south. His place is in the constellation Libra.
Mars sets about half-past five o'clock in the evening; the end of the month he sets about half-past four o'clock. THE MOON.
The November moon fulls on the 24th at eighteen minutes past nine o'clock in the evening. The waning moon passes bout 3° north of Mercury on the morning of the 9 th, and will thus be a help in discovering the sky planet. The new moon of the 10th passes 56^{\prime} north of Mars on the 11th, and the three days' old crescent makes a lovely celestial picture in conjunction with Venus, on the 13th. The moon pays er respects to Neptune on the 23d, to Saturn on the 24th, and to Jupiter on the 26th.

Railway Progress in Mexico

The twenty-fifth anniversary of the opening of the first Mexican railway was celebrated July 24. The only railroad xisting in 1857 was between four and five miles long. About 300 miles were added during the next fifteen years In 1877 a new period of railway activity was begun, and since then nearly 2,000 kilometers-about 1,200 miles-hav been put in operation. Before 1877 the only roads built were from Mexico to Vera Cruz, 471 kilometers; Vera Cruz to Jalapa and Coatepec, 144 kilometers; and various tram ays aggregating 140 kilometers.
The roads now in operation or in process of construction given officially as follows

Vera Cruz to Mexico City, and bravch to Puebl
Vera Cruz to Jalapa and Coatepec
Vera Cruz to Medellin.
Esperanza to Tehuacan
Merida to Progreso
Mexico City to Leon (Mexican Centra)
Mexico City to Tol uca (Mexican National)
Mexico City to Cuantla Morelos
Paso del Norte to Chihuahua (Mexican Central)
Puebla to San Marcos.
Vera Cruz to Anton Cizardo and Alvarado.
Vera Cruz to Jalapa and Chalchicomula..
pachuca to Irolo and Teoloyucan.
Altata to Culiacan
Meridan to Peto.
San Luis Potosi to La Soledad (Mexican National)
Tampico to San Luis Potosi (Mexican Centra).
Mexico City to El Salto (Mexican National)..
Zacatecas to San Luis Potosi (Mexican National)
Mexico City to Toxoco
Nuevo Laredo to Monterey (Mexican National)...
Guaymas to Magdalena.
Puebla to Matamoras I
Chalco to Tlalmanalco... 23
Guadalajara.......................... 130
Totai....................... ...
This is equal to 1,632 English miles.
The Mexican National Railway from Corpus Christi,
Texas, reached Monterey, a distance of 333 miles, Aug. 31.

zinc in Boilers.

Since 1875 experiments have been carried on in the rench marine, particularly with boilers having surface , offensive products. Commandant Frené has recently given
an account of the results obtained on board the Desaix to the French Academy of Sciences, of which Engineering gives the following summary:
The zinc inside and the iron of the boiler constitute a voltaic element which decomposes the water and liberates oxygen and hydrogen. The oxygen forms oxide of zinc, which combines with the fatty acids mingled with the feed water, thus forming "soaps" of zinc, which, coating the tubes of the boilers, prevent the adhesion of the salts left by evaporation. It is easy then to brush away the fixed matter on the tubes which is in a mealy state. As to the hydrogen, it tubes which is in a mealy state. As to the hydrogen, it
behaves as MM. Gernez and Donny have described in the Annales de Chimie et de Physique for 1875. Ebullition takes place by evaporation at the surface of a gas whether dissolved in the liquid or clinging to the solid envelope of the containing vessel. If the gas is expelled from boiling water the latter can be superheated to 30° or 40° Cent. above the normal boiling point, and in such a case evaporation only takes place at the surface. When the temperature of the vapor emitted corresponds to the tension which equilibrates the pressure exercised at the surface of the liquid, the ebullition can be started at will by introducing a gas bubble into the liquid. Solid bodies operate in the same way by reason of the film of gas adhering to them. When by long boiling all the gas is expelled, the water becomes superheated, and thus an element of danger is introduced. But by the employment of zinc in the boiler a constant supply of gas is maintained, and all danger of superbeating is avoided. The hydrogen not only starts the boiling, but keeps it up. It is, however, necessary from time to time to take out the zinc plates from the boiler and clean from them the salts adhering to them, else the galvanic action will dwindle and perhaps stop altogether. M. Frené is of opinion that the action of the zinc is, however, not so regular as theory might expect, and advocates the substitution of a sure and constant mechanical action under the form of a moderate but continuous injection of warm air by the lower part of the boiler, or, better still, a non-oxidizing gas, such as carbonic acid. This plan, he thinks, would produce a perfectly regular ebullition, a rapid evaporation, a saving of fuel, and freedom from risk. Superbeating, which he figuratively calls a sleep of the liquid, would be no longer possible. The carbonic acid could be developed by the combination of carbonate of lime and hydrochloric acid.

New Green Pigment.

Chromium is always determined either as green oxide or as lead or barium chromate. It may also be exactly determined as phosphate, and this method is often convenient A. Carnot says, in Comptes Rendus of May 8, that in boiling a solution of a salt of chromium slightly acidified, to which has been added an alkalive phosphate and sodium acetate he whole of the chromium is precipitated as phosphate This method succeeds both with the green and the violet alts, chlorides, and sulphates, and with the acetates, but not with the oxalates. It is also suitable for alkaline chro mates, but in this case the action of the phosphoric acid must be combined with that of sodium thiosulphate (hypo sulphite), which acts as a reducing agent. The solution of chromate, to which is added a sufficient quantity of phosphoric acid or of a phosphate, then of acetate, and lastly of hypophosphite, and which has been slightly acidified, is boiled for about an hour; it deposits all the chromium as phosphate, with a little sulphur derived from the hyposul phite. The phosphate precipitated is a green hydrate. It may be washed with boiling water, or, preferably, with ho solutions first of ammonium acetate followed by ammonium nitrate. On calcination it turns gray, and contains chromic oxide in the proportion of 51.86 per cent. In former researches on the determination of aluminum (Comptes Rendus, July 18, 1881), Carnot showed that alumina can be readily separated from chromium by converting the latter into an alkaline chromate, acidifying the solution slightly into an alkaline chromate, acidifying the solution slightly
with acetic acid, and adding an excess of sodium phosphate. with acetic acid, and adding an excess of sodium phosphate
The mixture is boiled and filtered to separate the aluminum The mixture is boiled and filtered to separate the aluminum
phosphate. When this is done it is easy to determine the chromium by pouring into the liquid hyposulphite, and, if needful, a further quantity of alkaline phosphate, and boiling. The precipitate of chromium phosphate is then washed, ignited, and weighed. The same reaction is capable of industrial application. It yields an insoluble green coloring matter, which retains, when dry, a very fine shade and may be used in painting in place of the dangerous com pounds of arsenic and copper. This color, which is perfectly inoffensive, may also be used in dyeing, as the insoluble green phosphate may be produced in the fiber.

A Growing Youth

Jean Condoist has been brought to Paris as a medical curiosity from the Haute Caône. According to a medical contributor to a Parisian contemporary, this youth, aged 19 took a start on the 17 th of May, 1881, being then six feet three inches high, and found one morning that he had grown an inch. Every week since then has he registered himself, and on the 14th of September this human beanstalk had gained nearly five inches; be grew five inches more before the 20th of January, 1882, and seven more before March 15, and he now stands 7 feet 10 inches. All this has been accompanied by great pains in the back, and he stoops considerably; but since last June, it is his legs only that have grown, and his feet are already twenty-four inches long.-London Pall Mall Gazette.

JACQUET'S WATER METER.

The Jacquet water-meter, shown in the accompanying engravings, consists of three very distinct parts:

1. A cylinder, whose capacity and number of piston strokes determine the volume of the liquid that has traversed the apparatus.
2. A system of valves that changes at each extremity of the piston stroke the direction of the distribution of water.
3. An ordinary dial-train, which, actuated by the endless screw of the arbor of a ratchet-wheel, registers the quantity of water measured by the meter.
Fig. 1 is a perspective view of the apparatus. Fig 2 is a vertical section. Fig. 3 is a horizontal section of the distributing box, and Fig. 4 is a transverse sec tion of this same box.

The cylinder consists of a cast iron box, having in side of it a thin brass cylinder in which moves vertically a piston formed of two pieces of leather held back to back by two disks of copper and galvanized sheet iron.

The distributing box, which is also of cast iron, is bolted on to the cylinder. It is divided by vertical partitions into four chambers-one communicating with the bottom of the piston, a second with the top the third with the inlet, and the fourth with the outlet These compartments communicate with each othe through four transverse orifices, traversed two by two by iron axles, each carrying two circular valves. These axles are connected by means of a crosspiece containing a rectangular aperture in its center. The axles, crosspieces, and valves form together a rigid whole, capable of being moved in a longitudinal direc tion, so that if two of the valves are closed, the two others are of necessity open, and reciprocally; or, in other words, if the inlet and the top of the piston are in communication, the bottom of the piston neces sarily communicates with the outlet, and vice vorsa. In the center of the distributing box there is fixed a bracket of hard bronze, which holds in a lower groove a knife whose back serves as a bearing point for a stir-rup-shaped spring. The center of rotation of this spring, which consists of six strips of Prince's metal, is in th vertical axis of the knife. Owing to such an arrangement, the knife, rolling at one side in the bracket, and at the other on the spring, is always pushed to the right or lef without ever resting in the median position, which is one of

Fig. 2.-VERTICAL SECTION OF JACQUET'S WATER METER.
through its action on the knife-arm, an opposite effect, but one that is identical with that just described. Finally, during the ascent of the piston, a pawl carried by the latter causes a cast iron ratchet-wheel to advance by one tooth. $\left.\right|_{\mathrm{k}}$

Fig. 1.-JACQUET'S WATER METER.

The arbor of this wheel actuates, through an endless screw, clockwork movement, which in its turn registers the water that traverses the apparatus in cubic meters, hectoliers, and decaliters.
It is easy to understand that, as the water is measured by the volume of the cylinder, and as the piston makes a tight joint at every pressure, this meter registers with exactness all the water that has passed through it. Moreover, the closing of the valves on their seats being tight, and the change of distribution occurring instantane ously, the apparatus marks and measures with exactness to a mini mum discharge of one liter in a mum discharge of minutes. As for the maxhundred minutes. As for the max-
imum discharge of the meter, the following table, drawn up from experiments, will give sufficient information.

Diameter of the Orifice of the Metel in Millime	$\left\{\begin{array}{l} \text { Pressure on } \\ \text { Entrance } \\ \text { in Meters of } \\ \text { Water. } \end{array}\right.$	Discharge in Litres, per hour.
10	30	2,400
13	30	4,000
15	30	5,400
20	30	8,000
25	30	10,000
30	30	12,000
40	30	24,000
70	30	100,000

Fig. 3.-HORIZONTAL SECTION.

As regards the length of time that the Jacquet As regards the length of time that the Jacquet that provision is made against wear by a sandbox placed at the inlet to the apparatus, and which prevents gravel and other solid bodies from entering the distributing chambers; and, as regards all plastic impurities, such as mud, carbonate of lime, etc., that the water might hold in

Fig. 4.-TRANSVERSE SECTION.
suspension, no deposit of these is to be feared. The piston in fact, working vertically, deposits could only occur on the bottom of the cylinder or the top of the piston, without ever being in contact with the parts in friction.
Finally, the knife, which, with the spring, is the delicate part of the meter; is made of bronze of a hardness equal to that of steel. Moreover, although the great elasticity of the
utes it exploded violently. This tube had often before orne a rise of temperature to 31°. The explosion is attrib uted to thermal expansion of the solid carbonic acid (as a more likely cause than vapor-pressure on glass rendered rittle by a low temperature).
In the second case, a large sheet zinc bell-gasometer, used xclusively for keeping oxygen gas, was concerned. It had stood about six months unused, containing a little of the gas. When the issuing gas was being tested with a glowing match, an explosion occurred, shattering the apparatus. Any entrance of hydrogen or coal gas is out of the question. It is supposed that the water had gradually absorbed acid vapors from the air of the laboratory, and that the zinc had been thus attacked, yielding hydrogen. The zinc was in fact somewhat corroded. It is recommended that the zinc in such cases be coated with a lac.

Pure Hydrochloric Acid.

Giudice prepares the pure acid, whether gas or liquid, for experimental purposes, by the action of sulphuric acid on sodium chloride, but adds to the former some oxidizing sub stance like potassium bichromate or permanganate, or the black oxide of manganese. The gas is passed through mercury, contained in a Liebig's potash bulb, or other suitable apparatus, before it is passed into water or used.

A FUEL THAT PRODUCES ELECTRICITY

The object which M. Brard, of La Rochelle, has in view in his researches is to produce an apparatus capable of trans forming beat into electricity without having recourse to the complications presented by dynamo-electric machines which have been hitherto inapplicable for domestic illumination. M. Brard wishes to produce a veritable electro-generative stove, furnishing at the same time heat, light, and elec tricity. After having demonstrated by his experiment that thermo-electric batteries have on one hand only a feeble production, and on the other hand are soon rendered useless under the action of heat, M. Brard thinks he has found, according to the Electrical Reviev, the solution of the difficulty in a thermo-chemical battery, in which the current is pro duced by chemical action, the combustion of carbon, under the influence of an elevated temperature produced by a special method, by the oxidizing action of nitrate of potash or soda. It forms thus a veritable thermo chemical battery, analogous to the ordinary batteries, in which the oxidizing of the carbon takes the place of the oxidizing of the zinc, and the nitrate of potash of the oxidizing body. The carbon is, therefore, the negative pole, and the nitrate the positive pole of the element.
M. Brard alluded, in reference to his labors, to the ex periments of Antoine-César Becquerel in 1855, and those more recently made by M Paul Jablochkoff in 1877; he has, however, gone further than his antecedents in this way, for he has presented to the association the principal features of an apparatus actually in construction, and showed some electro-generative slabs which we are about to describe, re serving the description of the complete generator until it has been tried, and until it has undergone certain modifications which the experiments will suggest.
Electro-generative Slab.-The electro-generative slab may be defined as a piece of prepared carbon, which, when thrown into the fire, products electricity by its combustion. The sub joined figures, which represent the exterior view of it, the longitudinal section, and the transverse section, will de monstrate clearly the principle of it.

The slab presents the external appearance of a parallel opiped, about 15 centimeters (6 inches) long, $31 / 2$ centimeters (2 1-6 inches) wide, and 25 millimeters (1 inch) thick; the materials which compose it are enveloped in a sheet of asbestos paper, only two thin sheets of brass being exposed to view, which serve as conductors of the current. The interior consists theoretically of a prism of carbon and a prism of nitrate of potash, separated by a plate of asbestos, which plays very nearly the same part as the porous cell in ordinary batteries. In practice the sheet of carbon is formed of about 100 grammes of coal-dust, formed into a paste with molasses or tar. The paste thus obtained is strongly compressed, cold or preferably with heat, in a mould of suitable form, at the bottom of which bas been placed previously a sheet of copper, of brass, or any other metal which is a good conductor, cut into several strips, which are found embedded in the agglomeration of the car bon and project from one of its extremities to constitute the negative pole. The mould is disposed in such a manner that the slab is perforated throughout its thickness with numerous holes intended to facilitate combustion and to multiply the points of contact of the carbon with the nitrate, as we shall presently see. It bears besides upon the upper surface rectangular depressions, 15 millimeters deep, divided by transversal partitions more or less numerous, obtained by the moulding. The angles thus formed are intended to prevent the flowing of the melted nitrate into the fire during the working of the apparatus. The whole surface of these compartments is covered by a thin sheet of asbestos paper. The upper part of the brick is formed of a mixture of three parts of ashes and one part of nitrate of soda or potash. The ashes are inpotash. The askes are intended to prevent a too rapid combustion, and to prevent
the slab from melting. This the slab from melting. This
mixture is melted and poured mixture is melted and poured
upon the brick very hot and in a sirupy state. About 100 grammes per slab are required, equal to about 25 grammes of nitrate and .75 grammes of ashes. A second sheet of copper or brass analogous to the first is embedded in the nitrate before cooling, and forms the second pole of the slab. The whole is enveloped in a sheet of asbestos paper.
It is sufficient to place in a fierce fire the extremity of the slab opposite to the conductors, in order to obtain in a few minutes a continuous current-and a constant one if the slab is homogeneousduring its combustion, lasting an hour and a half to two hours. M. Brard has not yet taken the constants of this new thermo-chemical battery, but in an experiment which we owe to the chemical department of the labora-

MEMBERS OF THE FRENCH ASSOCIATION CARRIED TO THE MUSSEL CRAWLS IN ACCONS

MEETING OF THE FRENCH ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE AT LA ROCHELLE.
The eleventh meeting of the French Association for the Advancement of Science recently took place at La Rochelle. As usual on such occasions, many interesting excursions were made to localities where historic curiosities abound. We shall not describe all these excursions, but shall speak only of the more interesting of them, and especially of the visit to Esnandes and its mussel crawls.
Sunday, August 27 , everybody was astir, and omnibuse were filled with excursionists at the Place d'Armes, and set out one after the other for the coast at Esnandes, reaching it two hours afterward, during low tide. Here was seen an immense beach of slimy mud, on which it would have been impossible to venture without sinking in up to the waist Yet it was necessary to cross this to reach. the stakes that are planted at some distance out, and where the culture of mus sels is carried on. For navigating this sea of mud the fish ermen bave devised a very ingenious process; this being the use of small flat-boats, called accons, that slide over the mud without sinking into it. In the middle of this boat they place the objects that they have to carry; in going, wooden poles or fagots for constructing the crawls, and in return ing, the baskets filled with mussels. To move the accon forward over the mud they place themselves in the stern, with one leg banging over the boat's side to serve as a pro peller. By a series of energetic thrusts of the foot against the mud they cause the boat to glide along with great speed. When a visitor comes they place him in the middle of the accon, where he sits down on a little straw.
The fishermen are young and robust, and bave acquired in this peculiar sort of work an uncommon skill. When the wind is favorable a small sail is hoisted in the bow of th accon, and this aids its running considerably. On the day of the visit to Esnandes it was curious to see the ocean of mud plowed by these little boats, each containing onesometimes two-passengers squatting in the bottom, pushed along by long legs that successively bent and straightened after the manner of angle levers, and which served at once as boat hook and rudder. A few intrepid ladies likewise consented to participate in the excitement of this sort of navigation. It takes about half an hour to effect the cross ing of the muddy beach. As soon as the ocean is reached the accon is sheved into the water and becomes a boat, which is maneuvered with either a pole or a wooden scoop serving as an oar. When the wind is favorable a sail is also used. The crawls are immense angles formed of stakes and han dles, the base of which points toward the land and the apex seaward. A narrow aperture in the extremity of the angle, to receive nets or other apparatus to stop the fish at ebb tide, completes the crawl, and makes of it at once a mussel pen and a fishing place. It is here that the mussels are raised. It is asserted that this sort of culture extends back to the eleventh century
"'In 1035," says Mr. L. de Richemond, " an Irishbark ran aground at balf a lieue from Esnandes. The master, named Walton, was the only one saved. Having settled in the country, he first invented the Allouret nets that serve for capturing the birds that sweep the surface of the water during the evening and night. To stretch these apparatus it was necessary to reach the center of the muddy beach. To effect this object Walton constructed the accon, a sort of boat from 2 to 3 meters in length and 50 centimeters in width, that was maneuvered by resting on one knee and propelling the boat with the other leg, which "was incased in a long boot. In visiting bis nets he perceived, one day, that the spawn of mussels had attached itself to the stakes, and that the shellfish thus developed in clear water were superior, as regards size and quality, to those that developed in the mud of the coast." It was then that he devised the crawls of which we have just spoken. Walton's invention was received with much favor. Following his example, others constructed crawls, and, without waiting for the mussel spawn to at tach itself to the hurdles, it was collected on the coasts and carried to the inclosures prepared for it.
"At the same time," says Mr. De Quatrefages, in his "Souvenirs d’un Naturaliste," " the industry was per fected and systematized, so to speak, and each of its opera tions received a name, which, borrowed from another class of ideas entirely, might make one believe that two crawl owners when talking about their business were convers ing about agriculture."
The small mussels hatched in spring are called "seed." They are scarcely larger than lentils up to near the end of May. Beginning with this epoch theygrow rapidly, and in July, attain the size of a kidney bean. At this time they take the name of "sets,"
and are fit for transplanting. To perform this latter operation, they are detached from the crawls in deepest water, and are placed in pockets made of old nets that are fixed on wickerwork not so far in the sea. The young mussels spread all around the pocket, and attach themselves thereto by the aid of filaments called byssus by naturalists. In measure as they grow and space begins to fail them, they are " thinned out" and "transplanted" on to new poles nearer and nearer the shore. Finally, the mussels that have acquired their full size and become salable are " planted" on the highest crawls. Here it is that the "crop" is gathered. Every day an enormous quantity of freshly gathered musels is carried to La Rochelle, from whence shippers send them to Tours, Limoges, and Bordeaux.
Arrived at the fishery, the owner of a crawl gathers his crop, and returns laden with it at the rise of the tide, which carries him to the shore without difficulty. The crawls, which are now arranged in seven rows, and some of which re one kilometer from base to apex, occupy a space 10 kilometers in length by 4 in width.
The next excursion of the association was made on the 29th of August to Saintes, for the purpose of visiting the remarkable buildings, etc., at that place; but steady rain prevented any localities of interest being visited on the occasion. After partaking of a dinner here, the excursionists left by rail for Rochefort. Arriving there the association visited the arsenal, and afterward the port, where a torpedo boat was made to explode, under water, an apparatus charged with guncotton, which shot into the air a column of water 20 meters in height. Afterward, there were visited the ironclad Tonnant, now in course of construction, and the military hospital. In the evening, after dinner, a reception at the Hôtel de Ville wound up a very interesting day.
The final excursion, which was made on the 1st and 2 d of September, to Royan and Ile de Ré, was, likethe ones just mentioned, full of interest.-La Nature.

Petroleum in Missouri.

Very promising discoveries of petroleum are reported in Vernon County, Missouri, where shallow wells had been sunk by persons prospecting for asphaltum. The supposed asphaltum, which in places covered the ground to a depth of four or five inches, has been pronounced by oil experts to be heavy petroleum. It is described as of a blackish green color, and of the consistency of thick molasses. The region in which petroleum is supposed to exist in quantity is a plateau about 5,000 feet above the level of the sea, lying near the center of a spur of the Ozark Mountains and beween two arms of Clear Creek. The soil is of a silicious nature, yet so finely decomposed that it is admirable for farming purposes. Beneath the snil there is a thin stratum of clay which rests on a layer of argillaceous rock. Underneath this rock is a stratum of porous sandstone from 20 to 40 feet thick. Next comes a thin vein of coal, and beneath that is the oil deposit. The wells that were sunk in the search for aspbaltum are from 25 to 40 feet in depth. Arrangements are making for the sinking of deep wells.

Turkey-Red from Alizarine.

Fifty grammes turkish-red oil are dissolved in 1,400 c. c. water, 15 grammes of 22 per cent alizarine added, also 0.2 grain of tannin. The mixture is then slowly heated to boiling temperature, and $60 \mathrm{c} . \mathrm{c}$. are added of a solution of aluminum sulphite of $1 \cdot 1014$ specific gravity, which has been previously mixed with 22 per cent of soda crystals. On prolonged boiling, the alizarine lake separates out, which is freed from excess of oil by washing with ether. It then forms a powder of splendid carmine red color, which is constant in the light, and is not attacked by dilute acids and alkalies. It still contains a certain quantity of oil, which cannot be removed by ether, but which causes the luster of the preparation. When mixed extremely well with water, the lake can be used for dyeing tissues in shades similar to those produced by eosine. By using other mordants than. alumina, different shades can be obtained.-A. Müller-Jacobs, Moskau.

Zinc in Making Potash

Numerous methods have been iuvented for converting the chloride of potassium into the more useful and hence more valuable carbonate: The latest is that of Wittgen and Cuno, in which zinc oxide, or its hydrate or carbonate, is added to a concentrated solution of potassium chloride, which is then subjected to the action of carbonic acid gas. A double carbonate of potassium and zinc is thrown down as a precipitate, while the zinc chloride remains in solution. The former is decomposed into its constituents by means of hot water, and the solution of carbonate of potash evaporated down. The zinc chloride solution still contains some potassium chloride and zinc dissolved as a bicarbonate. Upon evaporation of this solution, the carbonate of zinc separates first, and afterward the double chloride of potassium and zinc. The latter is separated into the two separate salts by dissolving and crystallizing.
G. P.

Salt in the Wyoming Valley.

An experimental well sunk for salt midway between the Warsaw and Wyoming wells (in Wyoming county, New York) has proved successful at the depth of 1,350 feet. This would indicate a wide extension of the Wyoming salt basin. The salt is exceedingly pure and in great quantity. The brine pumped is said to be nearly a third stronger than that of the Syracuse salt basin.

RECENT INVENTIONS
 New Shading Pen

We give an engraving of a novel marking pen, called by he inventor "the chromatic," from the fact of its using two kinds of ink at once, the pen being provided with a longitudinal partition to prevent the mixing of the two inks. Each part of the pen is also made to put each kind of ink on the paper in delicately shaded lines, so that with

one stroke lettering may be made of two different colors that would be impossible with the old pen or a brush. The pen is especially adapted to lettering all kinds of show cards, notices, bulletins, signs, for making headings, etc. It is also excellent for writing mottoes, texts, etc. This invention was recently patented by Mr. J. W. Stoakes, of Milan, 0.

Wagion Hub.

An improved hub for wagon or carriage wheels, shown in he annexed engraving, has been patented by Mr. Jorn D. Torrence, of Vermilionville, La. A tapering axle box, A, provided at its inner end with enlargements for the collar on the axle, is screwed into a tubular core of the hub. It is provided at or near its middle with a ring of mortises, the separating partitions of which project above the surface of the core, so that the depth of the mortises will be greater than the thick ness. The core is provided with a collar, E, forming the stationary end wall o the mortises height equal to height equal to
 about double
ring, F, is provided with a flange of the same outer cir cumference as the collar, E. This ring fits on the core B, and the outer end of the core is threaded to receive sleeve for holding the ring in place. A dust cap is screwed on the outer end of the core. The collar, \mathbf{E}, and the flange of the ring, F , have annular sharp-edged projections on their inner surfaces. The tenons of the spokes are fitted into the mortises, one of the sides resting against the collar, E. The flange of the ring, F, is placed against the oppoite surface, and is pressed firmly against the tenons by the screw sleeve on the core

Draught Regulator

We give an engraving of a device for automatically reguating dampers in steam boiler furnaces. It has been pa tented by Mr. Hippolyte Bisson, of Henderson, Minn. A pipe leading from the boiler is bent downward at right angles, and connected with a reservoir, B , in which steam is condensed to prevent direct contact of the steam with the mer cury in a reservoir, C, below. From the reservoir, C , the pipe, c, is continued perpendicularly for a short distance and then turned horizon tally, as shown; and in this portion is a cock for emptying the pipe and reservoirs of their contents. Beyond the cock, the pipe, A, is bent upward vertically, terminating in a reservoir, D, which is open at
 the top, and contains a float that is connected to the damper in the usual manner. When the pressure is up in the boiler it acts on the mercury, forcing it into the float chamber, rais ing the float, and permitting the damper to close by its own gravity. When the pressure is reduced the mercury flows back from the float reservoir, permitting the float to resume its normal position, opening the damper.

Insect Trap.

A trap for catching and destroying insects, shown in the annexed engraving, has been patented by Mr. William L. Waddy, of Peytona, Ky. Conical plates are provided with apertures in the middle, and are united by radial plates in such a manner that the coues project toward each other and a short chimney provided with a cap is aftached to the top of the device. The conical and radial plates are all made of reflecting material, so that a flame placed in the central aperture of the reflector will be reflected multifold, and a brilliant light will be produced. The insects are attracted to this light and rush to it, and strike the reflectors and drop upon the flame and are destroyed

Car Coupling.

The accompanying engraving shows a car coupling which has been patented by Messrs. John W. Allen and Ashley B. Poynor, both of Franklin, Tenn. The draw bar of the car is connected to the frame in the usual manner, and is recessed to receive the shank of a coupling hook, which is pivoted to the draw bar by a bolt, and the forward or hook end of the coupling projects so far that it will readily engage the coupling
hook on an adjacent car. The outer ends of the hooks are beveled upon their inner sides, so that the sides, so that the will slide past and engage with each other automati
 cally as two car
and they are also beveled upon their lower sides, so that they will slide readily upon the draw bars. The hooks are pressed forward to cause them to engage with each other by spiral springs attached to the draw bars and pressing against the hooks. The hooks are forced back to uncouple the cars by levers pivoted to the front end of the car, one arm of which rests against the forward side of the hooks, while the other projects over the top of the car. To this lever a cord is attached to operate it from the side of the car.

Revolving Stalk Cutter for Plows

The engraving represents a novel device for attaching to plow beams in front of the plow to cut the stalks and other rubbish that come before the plow when in use. A is a plow beam, having a colter, C, attached to it by two bolts, one above and the other below the beam. The bolts pass through the colter and a bar placed upon the opposite side of the beam from the colter, and have nuts screwed on their outer ends. The heads of the bolts are countersunk in the colter. A bolt which passes through the colter, midway between the yoke bolts, is countersunk in the inner side of the colter, and upon it is placed a
 hub that is secured in its place by a washer and nut, so that it will be free to revolve upon the bolt. In the inner end of the hub are formed radial sockets, into which are fitted the shanks of radial knives, B, secured in place by bolts countersunk into and passing through the knives and the hub, the outer surfaces of the knives being flush with the surface of the hub, so that the knives and hub can work close to the colter The outer ends of the knives are tapered to an edge, so that they will take firm hold upon the ground, and thus rotate the hub, causing the successive knives to operate in connec tion with the colter as shears to cut stalks or rubbish. This device has been patented by Mr. Albert A. Kellogg, of Chamois, Mo.

Walking Stool for Children

The engraving shows a new walking stool for the use of children when learning to walk. Such stools have been made with a ring-shaped top supported upen legs, and they have been used by placing the child's feet foremost through the top of the stool. This invention avoids this trouble by having a ring formed with a hinged section between two of the legs, so that the section may be swung outward. The section rests at the ends upon two of the legs, and is provided at its under side with a sliding bolt, for retaining the segment in its closed position. In the lower ends of the legs are balls provided with stems or shanks entering holes in the bottoms of the legs, so that the balls can be readily adjusted to vary the height of the stool to suit the child. The child can be readily placed with in the ring by swinging out the removable sec
 tion, and when the child
is in place the section is
closed and fastened. This avoids the necessity of placing the child in the ring feet foremost, and avoids the risk of injuring or breaking its limbs. The invention has been patented by Mr. Gustav Peterson, of Galveston, Texas.

A Ship Burst by Wet Rice.-The Italian ship Fran cesca, laden with rice, sprang a leak and put into port at East London, May 11. She was promptly pumped out and a large force of men were set to work to unload her. The rice was in bags and the work was pushed with all speed; yet the wet rice swelled so rapidly that the ship was violently burst asunder May 18.

ENGINEERING INVENTIONS

Mr. James Mallen, of Wellsville, O., has patented an improved pulley for driving light machinery. A pulley made in skeleton form is keyed to the
shaft, and a loose pulley consisting of a tire like band shaft, and a loose pulley consisting of a tire like band
surrounds it and revolves in the same plane. On the inside of the band are notches that are right angled on one side and inclined on the other, into which radia
arms are forced by means of levers, and a sliding collar on the shaft to attach it to the fixed pulleys. Latera
displacement is prevented by lugs on the fast pulley.

An improved device for heating cars ha been patented by Mr. James M. Thayer, of Randolph
Mass. A furnace is held in a box suspended from the Mass. A furnace is held in a box suspended from the through which the heat passes into the car. Around the furnace is a water space with which hot water heating pipes are connected that pass around the car and are
connected with a supply tank that also serves as a condenser

A device for holding car coupling links in such a manner that the links can be passed into the drawhead without endangering the hands of the brake-
man has been patented by Mr. Frank Sweetland, of Edwardsburg, Mich. The device consists of a plate having a hand slot at its upper end, and below this a slot through which the coupling link is passed. A key
fitting into part of the slot adapts it to be enlarged to fitting into part of the slot adapts it to be enlarged to
admit a link having its sides pressed together at the middle, and decreased in size to retain the link. By this plate the link is guided into the drawhead.
An apparatus to prevent the accumulation of scale or sediment in boilers has been patented by
Mr. William Ord, of Brooklyn, O. A brush of steel or other suitable material, shaped to conform to the in terior surface of the boiler, is hung in the boiler on the ends of two wires that pass to the outside through op-
posite ends of the boiler, and connect to rollers, by posite ends of the boiler, and connect to rollers, by
which the brush is drawn backward and forward on the nner surface, to loosen the sediment and carry it to brush prevents its working when it is drawn to the front.
An apparatus for deepening the channels of rivers and removing sand bars where the tides are
strong, has been patented by Mr. Gustav Peterson, of Galveston, Texas. The apparatus consists of a rotating drum provided on its periphery with spading devices.
The ends of the shaft of the drum are journaled in bearers he each end of which a drag chain is secured. Behind the drum and connected to it by chains is a drag constructed similar to the ordinary square harrow. The apparatus is dragged over the surface to be removed,
spading and loosening it, so that it may be removed by spading and loosening it,
the current of the water.
Messrs. Frank S. Anderson and Charles Messrs. Frank S. Anderson and Charles
Sauer, of Easton, Md., have patented a combined feed Sauer, of Easton, Md., have patented a conibined feed
water and low water alarm for steam boilers. The deproper height the injector is shut off, and when it falls again is let on to feed the boiler. If the injector should fail from any cause to work, and the water level is
brought down below the safety point, a whistle valve is pened and the whistle blown.
Mr. Henry Webster, of Cassville, Wis., has patented an improvedmanner of feeding water to steam
boilers, by which better circulation is obtained. The eed waterpipeenters one side of the rear end of the
boiler, and passes forward to the front end, thence boiler, and passes forward to the front end, thence
across it and back part of the length of the boiler, thence again nearly to the front and vertically downat the portion over the furnace most highly heated. By discharging the water at this hottest point, the impuri-
ties become finely granulated and do not form scale.
Mr. James H. Gamble, of Nebo, Ill., has patented improvements in safety switches for railroads,
adapted to be operated by hand or automatically. The adapted to be operated by hand or automatically. The end to the sleepers of the main track, their opposite bevel ends resting on the track sleepers, but are free to of one of the main rails and the other of one of the switch rails. The switch rails are connected by a rod,
and are thrown to switch by devices on the cow catcher and are thrown to switch by devices on the cow catcher
of the locomotive, and are released by a device on the ear car of the train.
Mr. Charles M. Emeis, of Mount Joy, Ia., has patented improvements in traction wheels for road
engines by which the slip of the wheels and consequent waste of power in the engine is prevented. In adjusted by devices secured to the hub of the wheel to project more or less for varying the tractive effect, or spiked arms may be fully projected or withdrawn, or in Im intermediate position.
Im provements in rotary engines have been patented by Mr. Thomas Hawkins, of San Francisco,
Cal. A revolving cylinder is formed with radial grooves in which are sliding pistons that are projected against is smaller than the interior of the case leaving a steam way around it that is uniform in width a part of the way, and from thesteam port then increases in width to exhaust port, the steam being used under high pree-
sure in the narrow chamber, and expansively in the sure in the nar
A traction wheel for road and other analogous engines, having an elastic connection between
the running wheel and the gear wheel, for overcoming the strain of vertical jolts, has been patented by Mr. braham 0 . Frick, of Waynesborough, Pa. The running wheel and the gear wheel each have separate
axles or bearings, and springs are interposed between the axles ana bearings, and the sides of the two wheels
are connected by elastic links that permit both vertical are connected by elastic links that permit
and rotary play to the wheels and bearings.
An improvement in car couplings has recently been patented by Mr. Charles E Macarthy, of For-
syth, Ga. This invention relates to an improvement in atomatic car couplings, designed principally to hold the ordinary link

An improvement in elevated railroad con Rockaway Beach, N. Y. This invention relates to the Srights or posts which support the superstructure of rounding the ballast, made conical and adapted to be used with a lower sheet, also in a pedestal or base part of the post, formed wit
An improved spark arrester has been pa tented by Mr. John H. Optenberg, of Oshkowh, Wis This is an arrangement of a wire screen guard, de-
flectors, pockets, and draught-regulators, which effectuflectors, pockets, and draught-regulators, which effectu-
ally prevent the escape of sparks from the smoke-pipe ally prevent the escape of sparks from the smoke-pipe
of a locomotive or other boiler furnace, especially when artificial draught is employed to accelerate the com-
Mr. Clemens von Bechtolsheim, of Munich Germany, has patented an improved direct-acting rotary engine for steam, compressed air, water, etc., devoid of the defects of the usual rotary engines, such as leakage, undue friction, overheating of the parts, and
jerking movements. The engine is constructed with jerking movements. The engine is constructed with
rotary cylinders having their inner ends resting against rotary cylinders having th.
a valve trunnion or pivot.
A novel car brake and starter has been painvention relates to improvements in devices for assist ing the horses to start street cars; and it consists in
the arrangement of a coil spring and two ratchets placed on the axle and contrived so that the stopping o the car by the resistance of the sp
to be given out in starting the car.
An improved spark An improved spark arrester has been pa-
tented by Mr. George Green, of Toyah, Tezas. This tented by Mr. George Green, of Toyah, Tezas. This
invention consists of an inverted hollow cone suspended within a hollow and tlaring receiver for the sparks, located in the upper and enlarged portion of the smoke pipe, to deflect the sparks against a conical annular
cover to the receiver. By this means the sparks are broken and thrown against an arrester located over the hollow cone, and by the latter the sparks are again
broken and then thrown down through the cone, to be broken and then thrown down through the cone, to be
returned as before, and continued in that course until extinguished and broken sufficiently to pass away with

An in
An improved car coupling has been patented The invention $\cdot \mathrm{A}$. V. Hartwell, of Valley Center, Kan. with a bar hinged in the interior of the drawhead in
such a position that its forward end will rest upon the such a position that its forward end will rest upon the
rear end of the coupling link, and connected by a short bar with a lever hinged beneath the drawhead, and having a crossbar artached to its forward end, so that
the link can be controlled from the side of the track.

MECHANICAL INVENTIONS.

Mr. George Dietzel, of New York city, has patented an improved machine for making beaded
chenille, or chenille with a varying diameter. The isvention consists in the combination of a lateraily-recating the knife as the pattern of the chenille may require, and means for operating the cam.
A novel saw sharpening machine has been patented by Mr. Charles M. Elkins, of Matteawan, and
Wilbur H. Weston, of Newburg, N. Y. The device is adapted to be attached to a bench or other stationary object, and is composed mainly of two jaws for clampand laterally-traveling or movable handle for holding and operating the file, the handle being axially adjustable for giving the proper stand to the file, and is pivoted so that it may be adjusted horizontally for filing both sides of the teeth of the saw, graduations being provided for setting the handle so that both sides of the
teeth may be beveled alike. An improved aligner for type-writers has been patented by Mr. Charles J. Baker, of Topeka,
Kan. This invention consists of a gauge constructed Kan. This invention consists of a gauge constructed
and arranged for temporary attachment to the top of type-writer, so as to occupy a pokion in such relain operation that the type may be successively raised in adjusting them, the gauge being essentially a bar of metal bridging over the type basket and resting on the type writer case, with an opening at the type center, in which slides for the type, also having openings and beMr. Charles J. Gibson, of Bergen Point, N. J., has patented an improvement in that class of about a horizontal axis. This machine possesses several points of
A machine for making split keys has been is an improvement on a machine for bending split metal
in keys, patented by the same inventor September 6, 1881, and it consists mainly in the substitution for hand the levers actuating the forming pia, and to a slide which operates the bending-levers.

MISCELLANEOUS INVENTIONS

A new switch for grounding telephone telegraph lines has been patented by Messrs. Benjamin McCabe, Charles R. Swain, and James T. Sutton, of
Peekskill, N. Y. The object of this invention is to being during thunder storms. It is constructed with a seri of conductors and springs connected with the ground wire, a series of conductors and springs connected with the instrument wires, and a series of conductors atwires, so that the line wires can be connected with the ment.
A new and simple device for holding reins securely has been patented by Mr. Leslie R. Hyde, of
Montague, Tex. Two cuniform sleeves are mownted
loosely and eccentrically on two upright shafts that ar
inclined toward each other at the bottom and inclined toward each other at the bottom and have spira
grooves into which pins in the sleeves pass. These gage with each other and move simultaneously. drawn forward are grasped firmly.
Mr. James W. Patterson, of Philadephia Pa., has patented a trunk frame that combines ligh
ness and durability. The frame is constructed of metal bars connected by diagonal rods, all held togethe by corner pieces. The frame and lid are covered with a layer of wire netting, and the netting is covered with
an external layer of canvas oilcloth or other waterproo materternal layer of canvas oilcloth or other waterproo frame by rough handling.
An improvement in gang sawing machines, by which they are adapted to saw curved timbers, has
been patented by Mr. Charles S. King, of Houtzdale been patented by Mr. Charles S. King, of Houtzdale,
Pa. The saws and feed rollers are operated in the usual manner. A pattern made of the exact curve required
in the timber is placed upon the feed rolls. The sides of \log are slabbed to the required thickness, and the imber is firmly secured upon the pattern. The pattern is guided in the required curve by rollers which resi the timber is sawed accurately and as rapidly as the

traight sides.

Improvements in door latches have been patented by Mr. John Brownlee, of Evansville, Ind end of thendes and rotates in apertu and is held forward by partition near the rear end, passes through the case, and a cam block that is ope-
rated to move the latch back by turning the knob. rated to move the latch back by turning the knob,
Opon the side of the knob spindle are formed teeth, Upon the side of the knob spindle are formed the latch. A pin works against a spiral shoulder in the latch, and
by pulling the knob spindle the latch is rotated and

Mr. James M. Harvey, of Palmyra, Tenn. has recently patented an improved shingle shaving ma chine. The shingles are cut from the shingle bolt by
means of a riving knife placed in a vertical sliding means of a riving knife placed in a vertical sliding
frame operated by cam devices, the shingle block being frame operated by cam devices, the shingle block being
turned a little at each cut to make the shingles thick at one end and thin at the other. After being cut the shingles are placed on a platform and hel by suitable backward motion of the knife releasing the holding

Mr. Henry C. Keeler, of Council Bluffs, Ia., has patented improvements in lifting jacks. The
rame consists of parallel uprights placed on a support, and provided with slotted plates having notched projections on their edges, with which pendent pawls of a rocking lever engage to raise or lower a standard to
which the rocking lever is pivoted. The pawls are held to the notched projections by means of springs attached to the
raised.
Improvements in devices for packing dried fish have been patented by Mr. James H. Baxter, of
Portland, Me. Moulds having a cylindrical contour on their interior are made in two longitudinal sestions, and hinged together at one side. These sections have cor-
responding transverse internal grooves for the reception responding transverse internal grooves for the reception
of binding cords. The fish are placed in the mould avd the mould placed under a press. The mould is held together by hooks and removed from the press to tie the $\stackrel{s}{\mathrm{~A}} \mathrm{f}$

A faucet whereby ale or beer is so inter rupted and agitated in its passage as to produce an in-
creased amount of foam has been patented by Mr. Joseph H. Dorgan, of Plattsburg, N. Y. The outer
end of the body is formed with a stuffing box through which the valve rod moves, the lower end of which is provided with a valve that is seated in the body. Below projection, against which the ale strikes, and also against the valve and valve seat, causing it to be agitated

Mr. Charles B. Quick, of Penn Yan, N. Y., has patented a device for warming peanuts. A hollow with a removable pan, upon which the nuts are placed. A perforated tube is neath the aperture and overthe lamp is a deflecting plate that distributes the heat of the lamp over the surface of the pan to warm the nuts.
A machine for bending wooden stirrups bas been patented by Mr. John B. Chiles, of Kernstown, Va. A former-block, over which the stirrup is to be against the bottom of the former by a foot lever. By suitable devices operated by a crank shaft the block is pressed around the former-block to fit it, and it is semake place for another bloc
Water boilers are usually fitted with rings in their ends for the attachment of pipes. Mr. John tached in a quick and inexpensive manner. The aperture in the boiler is made slightly elliptic in form, and
the ring fits closely across the thortest diameter. The the ring fits closely across the ehortest diameter. The
ring is heated and placed in the aperture into which it is swaged to fill the aperture by means of a suitable the ring from turning in cutting the thread.
Mr. Justus M. Silliman, of Easton, Pa., has patented an improved instrument for projection drawing. A rectangular frame adapted to rest and top and bottom edges, and has two quadrant-shaped graduated frames for crystallographic drawing. To
the upper side of tbis frame two wires are attached the upper side of tbis frame two wires are attached that pass around
receive a tension spring that holds the wires taut, so be parallel with the winding roller
Mr. Noble A. Boies, of East Palestine, O., vicious habits, to allow them to be successfully worked. The device consists of a safety bar attached to th: bride
of the horse, and hooked at the other end to an eye
upon the pole or shaft a suitable distance from the apon the pole or shaft a suitable distance from the
forward end. For a single horse one bar is placed on forward end
each side.
Improvements in baggage checks and clasps have been patented by Mr. James H. McLeary, of San circular chamber and an elliptical opening leading to the chamber. A destination plate of elliptical form is adapted to be inserted into the chamber through th opening, and turned to cross the opening, so that a wire that secures the check to the baggage, and passe
through the check, also passes through the plate. A through the check, also passes through the plate. A
duolicate of the destination plate is given to the bag duplicate of t
gage owner.

Improvementsin ironing boards upon which shirts are ironed have been patented by Mr. Davic McArthur, of Oswego, Kan. The body portion of the
board is cut away at its upper end to form a head, and through the head an elastic cord is passed the oute ends of which are attached to the shoulder portions o the board, the cord stretching the neck and upper par of the bosom, so as to be free of wrinkles. At the lowe end of the board is a hinged tail piece, by which th
lower end of the shirt is grasped to stretch the lowe lower end of the
Mr. Alexander J. Young, of Atlanta, Ga. has patented an attachment for ordinary hand lantern that enables it to be used for giving danger or other sig als. A hollow cylinder, in the ends of which a wind on shaft is journaled, is secured in an upright position suitable translucent material, and of a color employed to indicate danger, is wound on the shaft, and wien it is desired to give a signal the screen is drawn out throngh desired
a slot in
tern.

A barrel hoop, having an elastic connection between its ends, by which the hoop may expand when the barrel swells, ana contractwhen it shrinks, has been patented by Mr. Quincy King, of Colorado Springs,
Col. The connection consists of a rod of spring metal, Col. The connection consists of a rod of spring metal,
bent forward and backward on itself to form a series of loops, and connected at its ends by hooking them through loops in the end of the hoop. Mr. King ha that connects the girth to the saddle and the girth proper is an elastic section, formed by bending a spring
rod or wire in a series of loops, the loops being proprod or wire in a series of loops, the loops being
erly formed for attaching to the girth a strap.

A sanitary steaming stove for destroying human parasites, with their eggs and larva, in clothing, and also to disinfect and destroy the gera in cores of in fectious diseases, has been patented by Mr. Henry Cart wright, of Portland, Or. Over a furnace is placed an
evaporating pan, which in turn is covered with a steamtight casement provided with doors. A rack lining mad of wood laths is provided with hooks from which the clothing is suspended. Water is supplied to the pan, and a charge of clothing is steamed for ten or fifteen

Mr. William McCaine, of St. Paul, Minn., has patented an improved pyroxyline compound. The or cinnamon, and a portion of the oil always remains in the compound and acts as a solvent of the solidified collodion at any time when it is exposed to heat, making it possible to take separate pieces after they become
hard, and under heat and pressure to form them into one solid homogeneous mass.
Mr. Elvearo Stout, of Ottumna, Ia., has patented improvements in refrigerators. The ice cham-
ber is in the upper part of the case, and the bottom of the chamber is perforated to permit the water from the ice to fall into a pan which forms the top of the pro-
vision chamber. The water passes through a series of vision chamber. The water passes through a series of
water spaces that form the shelves or chambers of the water spaces that form the shelves or chambers of the
refrigerator, the shelves or spaces being a little inclined refrigerator, the shelves or spaces being a little inclined
so that the water runs across them to vertical spaces so that the water runs across them to vertical spaces
that connect them at their ends, and passes out at the that connect them at their
bottom of the refrigerator.
Improvements in portable fences have been patented by Mr. William C. Gholson, of La Grange,
Ga. The fence panel is made of two or more longitudinal bars having at each end two upright bars, between which the other bars are placed. One of the uprights which the other bars are placed. One of the uprights
is wider than the other, and projects slightly beyond the panel, so that the panels when placed end to end form a worm fence. The panels rest on the ground, and are held together by means of wires that are long enough to connect four panels, and placed in the spaces between
the upright bars. The wires are provided at each end the upright bars. The wires are provided at each end
with a block upon which they are wound to tighten with a block upon whic
them to stiffen the fence.
Mr. Nathaniel B. Sollers, of Cove Point, oard for manufacturing nets. The board is nearly semicircular in form and is
provided with a perforation near its lower end and a block on its under side by which it is steadily held in the hand. A loop holder is secured to the face of the board that is so formed that the loops or meshes are easily placed on it, and will not slip off in use. The net is secured to some stationary object, and the board holds
the meshes taut while the shuttle is passed through

Mr
Mr.
Mr. Cornelius Kunkel, of Oregon, Mo., has patented improvements in windmills, consisting of ner as to counterbalance the tendency of the wind to change the angle of the wings of the wind wheel, so that a governor employed to regulate the position of
the wings will be relieved of the work of holding the he wings will be r
wings to the wind.
A light and convenient device for gumming cross-cut saws has been patented by Mr. Clarence A.
Stafford, of Norwood, Mich. Die blocks adapted to move between two plates are moved by two cam levers that are so pivoted to the die blocks and plates that move the blocks. The saw plate is entered between the dies, and when the levers are pressed, the leverage being powerful, the cutters act with precision.

The Chargefor Insertion under this head is one Dollar
a line for each insertion ; about eight words to a line. a line for each insertion; about eight words to a line. as eanly as Tluarsday morning to appear in next issue.
Machine Tools.-We now have in stock, ready for instant delivery. part at our N. Y. Warerooms and a por-
tion at our works, Manchester, N. H., the following new machine tools, which we offer at the below-named ex-
ceptional prices. All modern, latest patterns, lathes, ceptional prices. All modern, latest patterns, lathes,
screw cutting, rod feed, power cross feed, 20 in. and unpeund rest. viz. $:$ Engine Lathes. $-2-16$ ft. $x 26$ in.. $\$ 886$

 ${ }_{\$ 365}$ ea.; 1-30 in., back geared, $\$ 325$; $2-28$ in., back geare

 1-7 spindle Durrell nut tapper, $\$ 300$; No. $2-7$ spindle Dur rell nut tapper, ${ }^{\$ 350}$. In addition we have an immens
assortment of new and second-hand machine tools, en gines, boilers, and pumps, woodworking and general
machinery; fully described in our catalogues 29, , 30 , and machinery; fully described in our catalogues 29,30 , and
31, which we mail free on application. s. C. Forssaith \& 31, which we mail free on application. Sal C. Forsaith
Co., machinists and general machine dealers, Manches ter, N. H., and 209 Center St., New York city.
Hand Saw Manufacturers address John E. Tyler,
Water Motor and Electric Light Machinery for sale a a low price. See advertisement on page 284 .
I will invest in a good thing, part or whole. Address,
with particulars, orno answer, 21 Park Row, Box 357, N.Y. Excelsior Metallic and Steel Tapes, the best artic made. General Depot, Keuffel \& Esser, New York. Sheet and cast brass goods, experimental tools, and
fine machinery. Estimates given when models are furfine machinery. Estimates given when models are fur
nished. H. C. Goodrich, 66 to 72 Ogden Place, Chicago.
American Fruit Drier. Free Pamphlet. See ad., p. 270. Am. Twist Drill Co.,Meredith, N. H., make Pat. Chuck Fire Brick. Tile, and Clay Retorts, all shapes. Bornerg Peck's Patent Drop Press. See adv., page 268 For best Portable Forges and Blacksmiths' Han Drop Forgings. Billings \& Spencer Co. See adv., p. 270. Brass \& Copper in sheets, wire \& blanks. See ad. p. 269. The Chester Steel Castings Co., office 407 Library St., Philadelphia. Pa.. can prove by 20,000 Crank Shafts and
15,000 Gear Wheels. now in use, the superiority of their Castings over all others. Circular and price list free. The Improved Hydraulic Jacks. Punches, and Tube
Expanders. R. Dudgeon. 24 Columbia St., New York. Machine Diamonds. J.Dickinson, 64 Nassau St., N.Y
Eagle Anvils, 10 cents per pound. Fully warranted Tight and Slack Barrel Machinery a specialty. John
Greenwood \& Co., Rochester, N. Y. See illus. adv. p. 268. Garmore's Artificial Ear Drums for relief of partial or entire deafness. Invented by one who has been deaf thirty years. Simple and scientific in construction; not S. W. cor. 5th and Race Sts., Cincinnati, o.

Pays well on smatl investment. - Stereopticons, Magic
Lanterns, and Views illustrating every subject for public xhibitions. Lanterns for colleges, Sunday-schools, an home amusement. 116 page illustrated catalogue free.
McAllister, Manufacturing Optician, 49 Nassau St., N. Y. Sewing Machines and Gun Machinery
The Pratt \& Whitney Co., Hartford, Conn.
Catechism of the Locomotive. 625 pages, 250 engravings. Most accurate. complete. and easily understood
book on the Locomotive. Price $\$ 2.50$. Send for catalogue frailroad books. The Railroad Gazette, 73 B'way, N. Improved Skinner Portable Engines. Erie, Pa.
Common Sense Dry Kiln. Adapted todrying of all ma-
erial where kiln, etc., drying houses are used. See p. 270 . erial where kiln, etc., drying houses are used. See p.270.
Trevor's Patent Key Seat Cutter. Trevor \& Co., Lockort, N. Y. See page 269
Lubricator. See advt., Detroit Lubricator Co., p. 252, Engines, 10 to 50 horse power, complete, with gover-
nor. $\$ 250$ to $\$ 550$. Satisfaction guaranteed Nearly seven nor. $\$ 350$ to $\$ 550$. Satisfaction guaranteed. Nearly seven
hundred in use. For circular address Heald \& Morris hundred in use. For circular ad
(Drawer 127), Baldwinsville, N. Y
Pat's Mfg'd on royalty. A. B. McCool, Pottsville, P
The Sweetland Chuck. See illus. adv., p. 254.
Steam Pumps. See adv. Smith, Vaile \& Co., p. 252
Knivesfor Wood working Machinery.Bookbinders, and
Paper Mills. Taylor, Stiles \& Co., Riegelsyille, N. J.
Calcium Light Apparatus and Stereopticons at lo

For Mill Macb'y \& Mill Furnishiug, see illus, adv,
See New American File Co.'s Advertisement, p. 238. Woodwork'g Mach'y. Rollstone Mach. Co. Adv., p. 238. $25^{\prime \prime}$ Lathes of the best design. G. A. Ohl \& Co ast Newark, N. J.
Red Jacket Adjustable Force Pump. See adv., p. 220 Collection of Ornaments.-A book containing over
, 000 different designs, such as Crests. Coats of Arms ,000 different designs, such as Crests. Coats of Arm rignettes. Scrolls, Corners, etc., will be mailed free on
receipt of $\$ 1$. Address Palm \& Fechteler, 6 West 14th Street, New York.
Combination Roll and Rubber Co., 68 Warren street,
N. Y. Wringer Rolls and Moulded Goods Specialties. Pure Water furnished Cities, Paper Mills, Laundries, Steam Boilers, etc., by the Multifold Ssstem of the
Newark Filtering Co., 177 Commerce St. Nswark, N. J. Latest Improved Diamond Drills. Send for circular First Class Engine Lathes, 20 inch swing 8 foot bed First Class Engine Lathes, 20 inch swing, 8 foot bed,
now ready. F.C.\& A.E. Rowland, New \#laven, Conn. Ice Making Machines and Machines for Cooling Bree eries, ett. Prictet Artificial lee Co. (Litmited), 142
Greenwich Street. P. O. Box 3088 , New York city.

Jas. F. Hotchkiss, 84 John St., N. Y.: Send me your
ree book entitled
How to Keep Boilers Clean," con taining aseful information for steam users \& engineers. Steel Stamps and Pattern Letters. The best made.
F.w.Dorman, 21 German St., Baltimore. Catalogue fre For Power \& Economy, Alcott's Turbine, Mt.Holly, N. J. Presses, Dies, Tools for working Sheet Metals, etc
Fruitand other Can I'ools. E. W. Biss, Brooklyn. N. Y Supplement Catalogue.-Persons in pursuit of info mation on any special engineering. mechanical, or scien tiffc subject, can have catalogue of contents of the Sci-
ENTIFIC AMIRICAN SUPPLEMENT sent to them fre The SUPPI, MMENT contains lengthy articies embracing The SUPPI, ME.NT contains lengthy articles embracing
Che whole range of engineering, mechanics, and physi-
cal science. Address Munn \& Co.. Publishers, New York. Machinery for Light Manufacturing, on hand an built to order. E. E. Gat Co., Wood-Working Machinery of Improved Design and
Workmanship. Cordesman. Egan \& Co., Cincinnati, 0 . Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N.J
Presses \& Dies (fruit cuns) Ayar Mach.Wks., Salem,N.J. Split Pulleys at low prices, and of same strength an Works, Drinker St, Puileys. Yocom \& Son's Shafting

NEW BOOKS AND PUBLICATIONS.

Supplement to Grimshaw on Saws, By Robt. Grimshaw. Philadelphia: E

 By Robt. Grimshaw. Philadelphia:Claxton \& Co. 8 vo , cl. pp. 120. The first part of Mr. Grimshaw's work was noticed in
hese columns some months ago. The new part con ains material, chiefly relating to saw blades, which ha come to hand since
about a hundred.
Constitutional History and Political Development of the United States Petter, Galpin \& Co.
An unpretending work, sketching the development of umesing somewhat dryly the merits, faults, and failure of our political methods. While we cannot agree with the author on some disputed points of public policy we
can heartily commend his work generally to popular can heartily commend his work generally to popular
favor. The information given should be of interest very citizen.
For Girls: A Special Physiology. By
Mr. E. R. Shepherd. New York: Fowler \& Wells.
Most girls are allowed to go in ignorance of the pecial organs and functions, to pick up, sooner or late by tradition or otherwise, an amount of misinformation Even when formally taught anatomy and physiology the instruction always leaves out those matters about whic is to present the lacking information in a wholesome way, and to supplement it with good advice tonching personal hygiene, dress, conduct, and so on. The
spirit of the little book is admirable, and its execution spirit of the
fairly good.
Report of the New York State Survey
For 1880. James T. Gardiner, Director
Albany: Weed, Parsons \& Co
Albany: Weed, Parsons \& Co
Describes the method of marking trigonometrica stations in the State Survey, and tabulates the approxi-
mate geonraphical positions of the stations of the central chain of primary triangles across the State. The ost notable risting maps exceedingly inace completio of the first accurate measurement across the State from the extreme western boundary. near Lake Erie, to the
Massachusetts line. The width of the State between hese points is 326.46 miles $-2 \% / 4$ miles less than the be maps make it. This makes a from 300

The Odyssey of Homer. Done into English
prose by S. H. Butcher and A. Lang
New York: Macmillan \& Co. $\$ 1.00$.
The translators' aim has been to make a truthful ren-
dering of the story of Odysseus in simple!English prose dering of the story of Odysseusin simple! English prose.
The studied simplicity of the style adopted comports well with the story, though the language lacks at times the flexibility and rhythm of gennine English. As much favor in England, this edition being the third The publishers' part is uncommonly well done for the ,
History of Woman Suffrage. Edited by thony, and Matilda Joslyn Gage. Vol
II. New York: Fowler \& Wells. 8vo. cl., pp. 952. $\quad \$ 5.00$.

The second volume of this monumental history of
the efforts of women to secure for women legal and political rights corresponding to those of men, covers the period between 1861 and 1875. A considerable part of it is devoted to the national services rendered
women during the civil war. A third volume is promised in 1884 .
A Solution of the Prramid Problem; or
Pyramid Discoveries, with a New
Theory as to their Ancient Use. By
Theory as to their Ancient Use. By
Robert Ballard. New York : John
Wiley \& Sons.
The author writes
The author writes as an engineer, and is curiousl
ree from the religious, astrological, or other more o ree from the religious, astrological, or other more o
less fantastic whims of ordinary pyramid solvers. He presents with a good deal of cogency the theory that the pyramids were erected as a system of landmarks
for the establishment and periodical readjustment of the land holdings of the people. The pyramid builder may have made the entombment of their kings one of morbid vanity of their rulers to induce the on the work: but their primary purpose was to make use of these structures in land surveying. The manner in which the pyramids may have been used as great theo
dolites, to be observed from a distance, is clearly shown

Hadex Muries

HIN'SS 'TO CORRESPONDENTS.
No attention will be paid to communications unless
ccompanied with the full name and address of the writer
Namesand addresses of correspondents will not b iven to inquirers
We renew
We renew our request that correspondents, in referring o former answers or articles, will be kind enough to of the question.
Correspondents whose inquiries do not appear after
a reasonable time should repeat them. If not then published, they may conclude that, for good reasons, the Editor declines them
Persons desiring special information which is purely of a personal character, and not of general interes
should remit from $\$ 1$ to $\$ 5$, according to the subject should remit from $\$ 1$ to $\$ 5$, according to the subject, obtain such information without remuneration.
Any numbers of the Scientific American SuppleMENT referred to in these colu
office. Price 10 cents each.
Correspondents sending samples of minerals, etc. or examination, should be careful to distinctly mark or abation.
(1) R. D. asks: Will you please inform me what is used to darken bronze? I have the bronzecast-
ings, and want to finish them like the bronze bell pulls ings, and want to finish them like the bronze bell pulls
and door trimmings we buy at the hardware stores. It cacquer for bronze A Cleanse the motal by dipping it frst momentarily in nitric acid, then rinsing quickly in running water, and rubbing with sawdust. The bronzing dip may be prepared by dissolving in a gallon of hot water $1 / 2 \mathrm{lb}$. each of perchloride of iron and perchloride of copper. The metal should not be allowed to
remain in this dip any longer than is necessary to proremain in this dip any longer than is necessary to pro-
duce the desired color. Rinse well, dry, and polish in ace the desired color. Rinse well, dry, and polish inze
warm sawdust or with a rag buff. To make a bronze lacquer, dissolve $3 / 1 \mathrm{lb}$. of shellac and $1 / 2 \mathrm{lb}$. sandarac in quod and turmeric to produce the desired color
(2) J. K. asks: Is there a way to prevent ing on change of temperature? A. The only remedy we know of is to use thoroughly seasoned wood, and to so construct the box that one part will restrain any ten-
dency of another to warp by "dove-tailing" battening dency of another to warp by "dove-tailing," battening, or crossing the grain. There is nothing of
nature that will prevent warping in wood.
(3) D. C. asks: 1. How is the bright brass plating applied to the cast iron buckles of suspenders (4) F. C. writes : After inserting a small gas pipe through some Scotch water gauge glasses, and
etting them lie over night, I found several broken in he morning. Being told thatit was caused by the iron touching the glass, I covered the gas pipe with paper, but with the same result. The breakage was not due to any strain, as the piping fits very loosely in the tubes. Could you give any reason for such results, and what I should do to prevent it? A. Scotch glass water gauge
tubes, like other glass tubing, is not annealed, or may be tubes, hartially annealed, which leaves the glass with neventension or strain; and from experiments made for testing these conditions, we are led to believe that the inner surface has a strain tending to pull it apart, and
the outer surface has a strain of compression. These the outer surface has a strain of compression. These conditions are due to the unequal cooling of the two
surfaces. The outside cooling the fastest, compresses the inner surface while it is plastic from heat, and then sets; the inner surface cooling last or slowest, con
tinues to shrink after the outside is set, and thereby in duces a tensional strain upon the inner surface. The facts that sustain this theory are these : you may mpunity; but if you scratch the inside or touch it with nything that produces the least scratch, even if you cannot see it, the chances are that the tube will show
the crack in a short time. These tubes can be cleaned with a small pine stick and cotton wad with safety: but if you undertake to clean them with a piece of iron pipe or rod covered with a peroxide scale that is almost as hard as emery, you can hardly expect better results than you have experienced. The paper that was put
upon the iron tube may itself have had particles of grit or sand upon it, that produced an imperceptible scratch (5) H. O. writes: Will you please inform me of a varnish and the process of making it, that I
could varnish some ornaments that I have bronzed with could varnish some ornaments that I have bronzed with
gold colored bronze? The method I used to put the bronze on was to paint the article, which is cast iron,
with white paint, which is white lead and oild when hard dry, varnish with copal varnish; when sticky dry, dust the bronze powder over it; and when hard dry, brush off all the superfluous bronze with a camel's hair brush. What I would like to know is how to protect it from the dust and from soiling. Is my
process correct? A. Coat the bronzed surface, when process correct? A. Coat the bronzed surface, when
dry, with spirit copal varnish. Your process is correct.
(6) C.S. asks: How is glucose manufactured? Do you think I could make it from sweet potatoes ?
What would it cost to make it on a small scale? A. What would it cost to make it on a small scale? A. production in SUPPLEMENTS, Nos. 96, 259, and 260. It
(7) J. S. L. asks: What material (not acted on by caustic soda) can I use to make non-porous the
lower portion of porous cell used in the "cheap electric pile," mentioned in Scientific American, Aug. 5 page 85? A. Try plaster of Paris, filled after "setting with melted paraffine.
(8) G. A. F. asks: What will make the best oak stain to apply to pine finish, and how should it be
applied A. Tincture of turmeric (curcuma).five ounces;
dragon's blood half an ounce; alcohol threepints. Rub quantity of boiling water in a hot mortar, then add the alcohol, and finally the yellow tincture, mixing aill well together. Let the mixture stand for eight hours in a covered vessel, and strain through a cotton cloth for
Apply with a brush, adding wine spirit if too dark. (9) W. A. M. writes: I have a rope, with
hook attached, running over a pulley which I use for hook attached, running over a pulley which I use for
hoisting light packages of merchandisefrom the ground hoisting light packages of merchandise from the ground
to the second and third floors of a building. The rope is exposed to sun and rain. Please tell me how to treat it so that it will not rot out, as I find the action of the hours (or over night) in warm dead oil (a cheap product of the distillation of tar).
(10) J. B. writes: I am about to lay an iron pipe 10 inches diameter, made of plates aboot three-six-
teenths of an inch thick, across the street underground to my boiler shop, for the purpose of transmitting blast to the forges. Will you kindly inform me through the medium of yourpaper what would be best to use in the way of paint to prevent injury to the pipe from rust or corrosions A. Dissolve genuine asphaltum in oil of
turpentine; give the pipe two good coats of this, allowturpentine; give the pipe two good coats of this, allow-
ing the first to dry before the second is applied. See ing the first to dry before the second is applied. See
that the pipes are quite dry before putting on the that the p
varnish.
(11) H. L. D. asks: Is there any remedy for falling bair, or any preparation that will cause a new dandruff? A. See "Hygiene of the Hair," by Prof. Erasmus Wilson, in SUPPLEMENT No. 102, and "Bald-
(12) A. H. J. asks: Can you suggest some way of making paper transparent? I have tried soaking it in machine oil with results not satisfactory. A. may be made translucent by saturating it with castor il or bleached balsam.
(13) W. G. B. asks: Can you give me directions for putting a high polish on ebony, one that wil be durable? A. Give the work two coats of fine copal
varnish, and rub this down (when dry) quite smooth with fine pumice stone; put on a third coat of the same, and rub down with rotten stone; clean and put on a fowing coat of best spirit copal varnish, and when this has become quite dry, polish with chamois skinand the palm of the hand. 2. Also for a mixture to dye pine to a dark walnut color. A. Dissolve in a pint of
water two ounces of sal soda, heat to boiling, add three ounces of hichromate of potash and eight ounces of Van-
dyke brown, with enough water to reduce to the proper dyke brown, with enough water to reduce to the proper
consistency for use with a flat brush or rubber. Use consistency for use with a flat brush or rubber. Use
the stain hot, and not too concentrated. This, when ry, takes varnish or oil very wel.
(14) J. L. B. writes: In Scientific AmericAN of May 20 , page 323 , answer to J. H. Z., No. 22,
you give receipt for starching collars, cuffi, etc. Allow ou give receipt for starching collars, cuffi, etc. Allow as when ordinary starch is used! A. Yes. 2. Do you mean a common sadiron when you say "use a polish-
ing iron ?" A. No; the polishing iron is usually smaller than the ordinary sadiron, and has all the face edges well rounded, so as to admit of a burnishing action, in which the full pressure is brought to bear on a small
area, thus developing a gloss not easily obtainable by er means.
(15) H. C. asks: At what temperature the alloy, note 14, page 139, current volume, melts? A. At
about 210° Fahr. The receipt should read : "lead $11 / 2$ arts, cadmium $1 / 2$ part," etc.
(16) E. B. S. asks: Will you please tell me purpose of cleaning, particularly for cloth and silk? A. The potatoes are simply washed and reduced to a fine pulp by grinding. See "Potatoes and their Utilizaion,' page 229, vol. xlv.
(17) D. E. S. asks: 1. Can you tell me bow much pressure a boiler made of 14 inch lap-welded
wrought iron pipe will stand? Do you not think it would stand 500 pounds to the square inch? If not how much will it stand? It is a good quality of pipe.
A. We believe they are proved to only 300 pounds per square inch. Pipe can of course be made, and has been square inch. Pipe can of course be made, and has been
made, to stand much more than 500 pounds. 2. Do you think cast steel is as good for boiler heads as wrought ron, that is, to insert two-inch flues in? Will it espand more than wrought iron: Imean such as the Chester
steel casting, as cast at Chester, Delaware Co., Pa.? Would itnot make good heads for small 14 inch boilers with about twelve 2 inch fues? If not as good, is it not nearly as good? A. Yes, if soft or low steel, differ3. How much pressure will 2 or $21 /$ being very slight. 3. How much pressure will 2 or $21 / 2$ inch steam pipe
stand, outside pressure, that is, used for flues? A. We do not know of actual tests, but it will stand much more than any pressure used ordinarily in steam boilers. Locomotives use pressures up to 150 to 200 pounds. 4.
Do you think the heads could be put into 14 inch pipe Do you think the heads could be put into 14 inch pipe
so as to hold as much as any part? A. Yes, if properly done.
(18) J. E. D. asks: Can I use an upright tubalar boiler for heating the room in which it stands, The trouble I no The trouble 1 apprehend is to return the water from by fiow of hot water, and upper one by steam? Can I run a small engine, say, four or five horse power,
in a block of buildings in an unincorporated village without a licensed engineer? A. There would be difficulty in returning the water from coils on rooms and on the same floor as the boilers. The condensed water
would have to be trapped into a cistern and pumped would have to be trapped into the boiler or returned by an injector We think tha
engineer.
(19) G. N. asks: What is used by brass finishers to give that peculiar luster to their work? I have been told it was some kind of acid? A. The
luster given to brass work other than by finishing and
polishing is produced by acids and then lacquered. A
good receipt for dipping cast brass is：equal parts by
measure of sulphuric and nitric acid and water．The work must be cleaned with a strong hot solution of soda
n water．Dip but a few seconds，and rinse in clean hot water；dry in sawdust．
（20）W．H．W．writes：I have some wood ork painted zinc white．Can I ebonize it，and if so， first be removed by spirits of turpentine or aqua am－ monia，and the wood treated with a hot concentrated monia，and the wood treated with a hot concentrated over with a logwood decoction thus prepared：one part of fine logwood is boiled with ten of water，and filtered to one half；to avery quart of this add from ten to fifteen o one half；to every quart of this add from ten to fifteen After rubbing this into the wood it is treated with a saturated and filtered solution of verdigris in hot con－
centrated acetic acid．This whole treatment is repeated nce or
（21）C．M．C．writes：We have tried most of the different kinds of wood for building steam boxes， and find that ahout two years is as long as any of them places a heavy tax on the business．Iron is being used by some for this purpose with very little better success．Kindly give me your opinion on how brick
would answer？Boxes require to be about seven feet oach way，and no connection between about seven feet Steam boxes used here are made of wood．If you
should thoroughly paint the wood with coal tar，such s is used for iron work，you would no doubt add one or two years to its life．Brick would not do unless reated with coal tar，as the hot steam disintegrates brick and mortar very rapidly．The best and most durable steam boxes that we
hooped like cisterns or tanks．
（22）O．R．R．writes：Is the green scum which collects upon the surface of stagnant water a
vegetable growth？I have thought that it might be a species of alga，and that it is 10 ight：if ed by its name？A．The green scum is composed of con erva，chiefly the microscopic globular alga，called Clathrocystra æruginosa．
（23）H．A．O．asks：I get forty pounds of beef per week，and wish to keep it fresh so that \cdot it will pring of water，high enough to come above the wate How can 1 keep the barrel from becoming damp in side？How can I cover it tightly？A．Your plan is good one in the absence of a supply of ice The barre should be tight．and kept well down in the water．The
meat may be suspended from hooks in the under－ side of the cover，the latter being well packed wit little unslaked lime in the bottom of the barrel will absorb moisture．If the meat were immersed for a few
minutes in Professor Barth＇s boroglyceride solution it ight insure its keeping
（24）W．J．P．requests a recipe for color ng brass black，something that will bear handling if possible．I have used a dip of butter of antimony，but the mention a book containing such recipes？A．To color bass black try－a weak solation of permanganate of p ． （25）A．S．L．asks：1．How can the grease e prevented from collecting in the trapunderneath th kitchen sink．thereby causing foul smells；and if no reviabl，whatis che most efective method coean ipe wash down the pipe every day with boiling hot water，which will melt the grease and carry it down t the sewer．If this does not entirely clear it，put some sal soda in the water and pour it slowly into the pipe boiling hot．2．How can I take the stain from white marble occasioned by water in which flowers have been kept？A．For removing stains upon marble，wash th marble thoroughly with scda and warm water to re move any grease，and apply oxalic acid by laying
piece of white cotton cloth saturated upon the spot or a short time．If it destroys the polish you may re polish with oxide of tin and water applied with a with the ozalic acid and water upon a small piece of cloth quickly，and wash，to free the marble of acid
（26）L．L．J．asks：1．In extracting the esulting liguid tee a tem wher resulting liquid keep better whether the vegetable is builed，or soaked in cold water and then subjected to
pressure？A．The more matter dissolved the greater sour．2．Also，pleas rown vegetable dye，mithount for disagre or taste？The dye is to be used on vegetable matter， and the ordinary tannic acid adds a peculiar and un－ pleasant odor and taste．A．Nothing of this character is known．Copper or iron salts are g
（27）J．B．says：I have at my residence in the country just put in a water closet on the second ing．Which，with my waste from the bath，I drai The said well is lined with dry stone 18 inches thick to within 4 feet of the surface．the 4 feet laid in mortar nd cov on the wall．joints calked，beside being firmly spiked to two pieces heavy timber crossing the well and buil in the wall，making it quite hermetical．I think．Now， what Idesire to know is，would it be proper to make generated therein to escape，and would it（if it did es not such an opening have a tendency to drive the foul ai or gas toward the water－closet above it？In short，whic do you suggest as the better plan，to keep the well her metically sealed，or make a hole in the same？A．I your house pipes are properly arranged there will be no driving back of foul air，whether you have an opening in you describe is a bad thing to have near any dwelling，
because by leakage into the adjacent ground it is all the
time breeding a poisonous atmosphere．The opening
you propose will not help the matter．If you are obliged
to have a cesspool，then it should be made absolutely to have a cesspool，then it shonld be made absolutely
tight，likea kottle，so that there can never be leakage into the earth；it should be ventilated by a liberal pipe， leading to the top of your house；the contents should
be removed by pump whenever required，and carted way．In addition to this your house pipes should be rapped and should be ventilated by pipes leading
above the roof．
（28）T．E．H．asks：Please inform me of a good and simple way of cleaning and recoloring the
barrels and other metal parts of a double barrel shot gur which are quite rusty？Would it be best to color or nickelplate the small parts？A．Take the barre from gritty matters．Attach the brush to the washing od，and get out all adhering powder and residues； take tow and wash until the barrels are quite clean．If the parts have rusted it will be necessary to use a little mery flour．Dry the barrels with clean cotton rags， rubbing until the metal feels warm．Plug the ports and nuzzles securely，then cleanse the outside parts with strong alcoholic solution of caustic potash，aided，if Rinse thoroughly in water，dry thoroughly，warm，and while warm rub over every part with the following pre－ paration：pure（dry）zinc chloride 1 oz ；nitrate of anti－ mony $1 / 4$ oz．；olive oil 2 oz ．；well rubbed down into a mooth uniform paste．After half an hour＇s exposure， ub off excess of this paste and polish with clean soft oinjure the temper．Guns look nicely when properl electroplated with nickel，but ordinarily the coating is not very serviceable．
（29）E．G．S．asks：What are the difficulties attending the invention and use of a steam road car iage for common roads？A．The principal difficulty is
to so＂hang＂the engine and boiler that the carriage may run in any direction or over obstacles，without affecting the joint and machinery connections．You
would get much information by reading up the English would get much information by r
experience with steam carriages．
（50）W．W．C．asks： 1 ．What the component parts are of the black paint used for school black boards？ ．The following composition is recommended for oz．；powdered iron ore or emery in fine powder， 3 oz． If too thick thin down with alcohol．Give the wood hree coats of the composition，allowing each to dry before putting on the next．The first coat may be
shellac and lamp black alone． 2 ．How can I mix good glossy and durable green or red paint for wagons？ A．Better lay on the color in oil and varnish over it Vermilion or chrome green are good colors．You can purchase the colors ready ground in oil much more
cheaply than you could mix them yourself．To obtain cheaply than you could mix them yourself．To obtain he paint；let each dry thoroughly，then rub them down water，and finally lay on one or more coats of good pal varnish．
（31）D．C．asks：How can I make nitrate of opper，or where I can procure it？A．Some clean turn ngs of pure copper are placed in a glass or porelain
vessel，and nitric acid diluted，one part of acid to three of water poured upon it；the mixture is set aside out of doors to avoid the poisonous fumes evolved，and whe he copper has entirely dissolved the solution is evapo rated down in a porcelain dish until it is dry．The green salt thus obtained is the nitrate of copper．It is
very corrosive to the skin and must be carefully han－ very corrosive to the skin and must be carefully han－
dled．You can procure nitrate of copper from any arge drug house．
（32）W．E．D．writes：Having read a recipe or making a black ink from nigrosine，I resolved to $t r$ it，but find that the ink will smear if accidentally Would by the hand，especially if the hand is moist． Would you please inform me how to obviate the difl forax 1 part；shellac 4 parts；builed together and mized with sufficient nigrosine to give the requisite
（33）E．H．R．asks：How can I test amber A A small portion of oleic ac dropped upon the lump and gently warmed．If the more or less reduced in size
（34）J．G．asks how to make a cement dhat will be as hard as stone when dry，and which wil elt 1 oz resin and 1 oz ．of pury the following receip， an，and thoroughly stir in 1 oz ．of Venetian red，unti perfect misture is formed，which is used while ho When cold it is as hard as stone；or if the color an mixed with some quicklime
（35）B．R．H．asks：Will you please give u eceipts for canning sugar corn and tomatoes\％A．TT cald，and remove the skins and pack in the cans is preferred by many to remove at least one－third of the uid portion of the fruit before packing．Put on the avers and immerse the cans in boiling water for from n hour to one and oae－half hours．When taken out pen a small vent（preferably not larger than a pin hole） the head or eacc cover，and as soon as the conthed air side．In the course of a week aramine put the can if they are tight．Corn is canned in a similar manner but requires much longer heating to cure it properly： six hours＇exposure is frequently required．If the wate bath contains a solution of salt or chloride of calcium nstead of pure water，the curing operation is facil ated and the curing more effectual．If not properl ared such goods will not keep，and the cans are apt to of fermentation or decay．Care must therefore b aken to avoid accident in storing the cans．
（36）C．F．T．writes：1．Sponge is porous

Does sponge absorb gas，such as oxygen or hydrogen？
Would it become heavier or lighter by so doing 9 A．If the sponge is me heave into small compass and then allowed to expand in a gas，the latter will rush in to fill the interspaces and pores，just as water does under similar circumstances；there is no absorption of gas in any other sense．Sponge inflated with air or gas is
slightly heavier than when compressed．Hydrogen is much lighter than atmospheric air，so that a sponge in－ flated with that gas would weigh less than when filled air support or prevent from sinking in water？A．At mospheric air varies slightly in volum temperature and barometric pressure．At 60° Fahr，an 30 inches barometric pressure，dry air is $813 \cdot 67$ times lighter than pure water．A cubic toot of pure water under $1 k e$ conditions weighs about $6 a / 3$ pounds，and a cubic foot of air about $1_{5}^{\frac{1}{3}}$ ounces．The difference the weight necessary to sink this volume of confine
air in pure water．3．What amount of confined air would prevent a human body（say one weighing about 150 pounds）from sinking in water？A．The specific gravity of the human body in life is nearly that of
water．To support the head out of still water 100 cubic inches of air in a light envelope will suffice．A larger
（37）D．H．asks：Can you tell me the （ickest method for taning thin rawhide regardless of the quantity of the leathor after it is tanned？A．Put the wasbed hide into milk of lime until the hair come out easily，then rinse，pull the hair out，and with a blunt nife remove the fatty integuments from the fiesh side， trong，warm decoction of extract of hemesck in a bark，which beep in a warm place and strenther ew days by fresh additions of bark extract，until it is found on cutt $n g$ a trial slip of the skin that it has been tanned througn．The more the skin is handled－taken out，rolled and rubbed，and put in again－the quicker and more uniform the tanning operation proceeds．Any－
thing that tends toforce the tannin into the skin hastens hing that tends toforce the t
（38）A．D．P．writes；I have occasion to make casts or moulds of plaster of paris from metal
types，but am troubled with air bubbles，or picks as the are sometimes called．What can I do to avoid them A．In the first place use the finest and purest plaster p the requisite quantity of cream quickly to be with care to avoid making it too thick．In pouring this in ase a good camel＇s hair brush to displace air bubbles；a mere surface cover of this thin cream is all that requisite．While doing this have ready the thicke plaster，of the consistence of light sirup，and fill up the mould at once．In about twenty minutes you can open mized．If you do not put too much oil on the type and have used your brush properly，you will find clear poulds．
（39）E．T．S．asks：1．Can the gas（hydro－ en）generated by immersing scrap zinc in acidulated ater be ignited？A．If by＂ignited＂you mean in small electric motor which I wished to convert into a generator of electricity；have made all connections a sated in Supplement，No．161，for making small dyna－ mo，and although the armature revolved at a high rate take lies？A．There may be some defect in mis hine or its connections．We are unable to judge from your brief statements．Attach the terminal wires to galvanometer to ascertain if any current is developed． If not，put a battery in circuit，including galvanometer and machine．If no current passes，there is a break in the coils or a bad connection．If，on the contrary，the carrent passes while none is developed on operating the that the armature coils are short circuited，or cut out by a cross contact，supposing the machine to be properly state what chemicals are used to make oil and water unite？Usually caustic soda or caustic potash．Con－ （40）J．T．E．wite I hishe．
（40）J．T．E．writes：I wish to know what best to use to take printer＇s ink out of silk with－ out damaging the goods？A．Put the stained parts of he fabric into a quantity of benzine，then use a fine， rather stiff brush，with fresh benzine．Dry and rub vill not injure the fabric or dye．
（41）J．Mc D．asks： 1 ．What is the amount sulphuric acid per gallon of water generally used in 10 per cent．2．How can I cleanse a cask that Abou tained vinegar for several years，so that it can be used or other purposes？Can it be done by slaking lime in he cask，and allowing the lime water to remain in it
some time？Have been informed that coal oil barrels some time？Have been informed that coal oil barrels
are sometimes cleansed in that way？A．Old vinegar barrels become impregnated to such an extent with thei cender them fit for the storage of any other liquid．Fil he barrels with milk of lime，and let this remain in hem for several months，then rinse out well with
plenty of warm water，and steam them inside for half
（42）H．H．C．writes．There is a＂remedy or dypsomania＂put upon the market here and exten ively sold as a＂solution of the double chloride of hemists Eas t ，to whom specimens have been sent．de lare that there is no gold in it．Will you please sug hat could be used by a person tolerably well skilled in harmacy but who lays no claim to being an anulytic chemist，and which wonld indicate to a certainty the ain plate put a drop each of pure hydrochloric aci nd of the solution to be tested；mix them togethe and drop inte the mixture a small crystal of pure stan ous chloride．If gold is present，a dark，purplish colo will at once be developed．Repeat with a drop of purs cate and conclusive
［OFFICIAL．］

INDEX OF INVENTIONS

 for whice． Letters Patent of the United States weGranted in the Week Ending

Octojer 10，1882，
and each bearing that date． ［Those marked（r）are reissued patents．］

A printed copy of the specifcation and drawing of any
patent in the annexed list，also of any patent issued patent in the annexed list，also ot any patent issued
since 1866 ，will be furnished from this office tor 25 cents In ordering please state the mumber and date of the
ind patent desired and remit to Munn \＆Co．， 261 Broad－
way．corner of Warren Street，New York city．We
also furnish copies of patents granted prior to 1866 also furnish copies of patents granted prior to 1866 ；
but at increased cost，as the specifcations not being printed，must be copied by hand．

265，836

Alarm．See High and low ．．．．．．．．．．．．．．．．．．．．．．．
alarm．Vital heat aiarm．
alarm．Vital heat aia
Animal trap，H．Tinker．．．．．．
Apple slicing machine，P．

Band compressing machine，W．K．
Bandage，supporting，E．H．Hart．
Bar．See Cutter bar．Grate bar．
Bar．See Cutter bar．Grate bar
Basket，lunch，J．w．Boteler ．．．．
Battery．See Floating battery．
Bed bottom，E．A．Sawyer
Bed，folding，H．A．Thaye
Bell for tableware．call，Mille
Belt，waist，F．T．Donaldson．

265,892 265, e50

Billiard tables，pocket tron attachment for，．．．．．．．．．．．．．．．．．．．．．． 26
Colle
Blank creasing and pasting machine．．65，643
Rankin．．．．．．．．．．．．．．．．．．．．．．．
Rankin．．．．．．．．．．．．．．．．．
Block．SSe Snatch block．
Boiler．See Revolvin
Boiler．See Revolving boiler．Steam boiler．
Boiler furnace，steam，M．A．Foster．．．．．．．．．．．．．．265，794
Bone

Bottles，tool for flishing the necks and lips of，
A．F．Wilson．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 265,726
Box，H．P．Fiske．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．265，589，265，590
Bracelet．F．G．Hodges．
Bracket．See Carriage curtain roller bracket．
Brake．See Air brake．Car brake．Steam brake．

Brick，fre，A．Brase ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 265
Brick machine，J．o．Smith．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 265
Brick press，e．R．Gard
Burner．See Bone and wood burner．Hydrocar－
Burner．See Bone and wood burner．Hydrocar－
bon burner．Vapor burner．
Butter or olemargarine manuf

Cable coupling，A．W．Brewtnali．．．．．．．．．．．．．．．．．．．．．．．．．．．．265，746
Can heading machine，G．A．Marsh．．．．．．．
Cans
Can heading machine，G．A．Marsh．．．．．．．．．．．．．．．
Cans，process of and apparatus for testing，W．
Mann ．．．．．．．．．．．．
Mann
Candy，
Car brake

Car door，grain，L．Mancy．．．．
Car，dumping，S．D．King（r）．
Car，railway，G．Van Nostrand
Car，sleeping，J．H．Laskey．．．．
Carding machine，C．E．Whitwo
Carpet stretcher，J．A．Bidwell ．．．．．．．．．．．．．．．．．．．
Carriage curtain roller bracket，
隹p－seat，J．Jackson．
Carriage wrench，T．C．Rice
Car，road，J．W．Diller．．．．．．．．．．．．．
Case．See sewing machine case．
Caster，O．F．Paepke．．．．．．．．．．．．．
Caster，C．Stengel．．．．．．．．．．．．．．．．．．．．．．．．
Casting pig metal，J．G．A．Lelshman ．．．．．．．．．．．．．．．．．2656，926

Cleaner．See Bottle tube cleaner．
Clip for coiled fabrics，H．C．Babcock．．．．．．．．．．．．．． 265,558
Cloth shearing machine，J．H．Smith．．．．．．．．．．．． 265.882
Clip for coiled fabrics，H．C．Babcock．．．．．．．．．．．．．．． 265,558
Cloth shearing machine，J．J．Smith．．．．．．．．．．26．582
Cloth shearing machine， \mathbf{D} ．．S．Sumner．．．．．．．．．．．265．644
Coat hook，G．H．Mills．．．．．．．．．．．．．．．．．．．．．．．．．．． 265.622
Cock for steam brakes，three－way，T．J．shellhorn， 265,880
Comb．See Curry comb．
Cornice．extension，J．M．Montgomery，Jr．．．．．．．．．． 265,851
Corset，C．A．McGee．．．．．．．．．．．．．．．．．．．．．．． 265,690

Curry comb，C．\＆J．Knopp．．．．．．．．．．．．．．．．．．．．．．．．．．．265，831
Cutter．See Feed cutter．Tobacco cutter．
Cutter bar，Williams \＆Preston．．．．．．．．．．．．．．．．．．．．．． 265.906
Dairy apparatus，J．B．Marquis．．．．．．．．．265，84，265，844
Desk frame and tablet，combined，Nelson \＆
Waterman．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 265,855
Dinner pot，J．J．Johnston．．．．．．．．．．．．．．．．．．．．．．．．．． 265,610
Dish draining rack，Raughtigan \＆lark．．．．．．． 265653
Dit
Ditching and grading machine．T．B．Niles． ${ }_{265,856}^{25565}$

Door check，pneumatic，G．R．Elliott．．．．．．．．．．．．．．．265，921
Drawers，R．H．Anderson．．．．．．．．．．．．．．．．．．．25，733
Drier．See Grain drier．
Drill jar，L．D．Eshenbaugh．．．．．．．．．．．．．．．．．．．．．．．．．．．265，788
Earring，T．H．DeVausney，Jr．．．
Electric are light．T．A．Edison．

\section*{| 65 |
| :--- |
| 30 |
| 38 |
| 1 |} ．954

艮

Electric lighting system, T. A. Edison...
Electric machine, dynamo, T. A. Edison
Electric machine, dynamo, T. A. Edison.
Electric machine, dynamo, H. J. Muller.
Electric machine regulator, dynamo, 17........... Adi- ${ }^{265,}$
son265.779 to 265, ,
Electric machine regulator, dynamo, E.Thomson, 265,859
Electric signal. I. Kitse
Electric signaling apparatus, J. H Cary65.677
the transmission of power, apparatus for
Electrical transmitter, Carney \& Meigs Electrode for batteries, J. Pitkin
Elevator. See Water elevator.
Elevator for loading and unloading vessels.......
A. D. Fox...., …..............................

Engine. See Pumping engine. Railway engine. Traction engine.
Extension table. H. S. Hall
Extension table \mathbf{H}. M Ka Eyeglasses, S. B. B. Opdyke.
Fence. J. T. Guthrie
Fence, flood, H. D. Merril
Fence, iron, J. J. Johnston
Fence, iron, J. L. Thomso
Fence post, I. D. Cleme
Fence post, W. McGee
Fence post, A. K. Stiles
Fertilizer distributer, J. F. Kelle
Fifth wheel,
E. P. Carter
Firth wheel, E. P. Carter
Fire escape, C. E. Seabury
Fire escape, G. W. Smith
Fire extinguisher, 1. Kiteee............................... 265,675 , Fireplace $\begin{aligned} & \text { guard, } \\ & \text { adjustable, E. Bett. }\end{aligned}$ Fish, putting up dried, J. H. Baxter. Floar mill dust
Four mill dust collector, J. G. E. Reichard.... Frame. See Desk frame. Fireplace frame. Quilt ing frame.
Furnace. See Boiler Purnace.
Furnace regulator, automatic, W. E. Puffer. Furnace regulator, automati Garment, combination, J. W. Congdon Gas compressing pump, w. w. Doolit
Gas cut-off J. Farthing............ Gas, manufacturing, T. B. Fogarty
T. B. Fogarty auparatus for manufacturing

Gas, process of and apparatus for manufacturin
hydrogen W. H. Brades
hydrogen, W. H. Bradley
Gate, J. F. Cadwell.
Gate, G. W. \& C. E. Tee
Gearing, J. F. Gilliland
Grain binder. G. Davis.
Gran drill, J. Fournie...
Grain heater, R. English
Grain heater, Re English...........
Grain separators, etc..feeding apparatus for, He
Gridiron, J. J. Johnsto
Governor. steam engine, J. F.
Guard. See Fireplace guard:
Hair for textile purposes, treating animal G.
Hammer, rotary, W. T. Browne
Hammers, device for operating drop, D. Wilcox.
Harness mounting, C. D. Page
Harvester, grain, O. . . Castle
Iarvester rake, W. A. Wood
Harvester rake and reel, W. A.
Harvester reel,
Harvester reel, A. O. Carman...
Hat singeing device. J. J. Metz.
Hatter's kettle, C. W. Glover
Hay stacker, Ball \& Davis
11 eater. See Grain heater.
Heater and ventilator, combined, M. Heckel.
Heating apparatus, meter for steam, E.
Heating apparatus, steam, w. E. Haxtun.
Heating apparatus, steam, E. F. Osborne
Heel pressing machine, D. Hitlock..............
Hoe, rake, etc.,. J. R. Hood..
Holder. See Chalk line holder. Cigar holder
Flower holder. Label holder. Lead and
crayon holder. Mail tag holder. Stereotype
plate holder.
Hominy, grits, etc., method of and apparatus for
manufacturing, F. Melkersman..................
Hook. See Coat hoo
Horseshoe, J. D. Billings.
Horseshoe, C. Chamberlin...................................
Horseshoe blanks, die for moulding, D. Wilcox.
Horseshoes, machinery for manufacturing sprin
Hose discharge pipe, C. Callahan...
Hydraulic main, W. R. Beal.
Hydrocarbon burner for illuminating purposes R. McAlister...
Index, L. B. Tebbet

Injector, steam, G. C. Williams
Ink, printing, w. Reissig....
Insulating electrical wires, G. A. Gage
Iron gate, J. J. Johnston
Jar. See Drill jar.
Kiln. See Lime kil
Knife polisher and grinder, J. Carreer.
Knurling tool, W. Stokes...............
Label holder, bottle, W. w. Quiggle
Lamp, J. J. Johnston
Lamp, electric, G. W. Beardslee
Lamp, electric, D. D. Hurlbut
Lamp, electric arc, J. H. Guest
Lamps. treating carbons for electric, T. A. Edi-
Lantern attachment. C. J. Higgins
Lasting tool, F. Henderson
Latch, aate, A. C. Belte..........................
Lead and crayon holder, R. W. Ublig.

Stereotyping, preparing matrix forms for, M. H Stocking, W. H. Abel...
Stone lathe, E. R. Chene
Stone lathe, E. R. Cheney...
Stove attachment, cooking, s. G. Randall Stove, ironing, J. J. Johnst Suppository mould, J. L. Wiggin Switch. See Telephone switch Table. See Extension table.
Tag fastener, Phillips \& St. John Tapping mains, machine for, H. Mue
Teiegraph, multiplex, B. Thompso

Theaters, proscenium opening for, D. C. W. Waugh
Thrashing machine feeder, M. C. Dilman
Thrashing machine feeder, M. C. Dillma
Tie. See Railway tie.
Tile, decorative
Tile, decorative, S. Van
Tile. J. Taylor.....
Time lock, H. F. Newbury.
Tobacco cutter, H. C. Hall.
Toe calk swage, R. H. Dennis........................
Toy box for exploding fulminate wafers, Lon
Lockwood...
Traction enkine. Hoag \& Drew
Trap. See Animal trap. Sediment trap.
Truck, car, I. Barker.....
Truck, car, s. D. King (r)
Truck for moving harvesters, Calais \& Barnes....
Types, machine for cutting wooden, V. M.
Moreau.
Underground
Mershon
Valve gear, w. w. Lovell
Valve, piston, E. A. Wildt
Vehicle bow trimming, H. Higgin.
Vehicle seat back, J. w. Anderson
Vehicle seat back, J. W. Ander
Vehicle spring, J. Hutchins
Vehicle spring, J. W. Wetme
Vehicle spring connection, P. Ba
Velocipede, H. C. Buddenber
Ventilator, R. S. Read.
Ventilator or chimney cap, J. H. Irwin
Vital heat alarm, W. Reissig
Wagon, L. B. Berkly..........
Wagon, dumping, J. M. Kimball.
Wagon jack, M. Cahill.
Wagon rack, J. Shafer
Wash bowl, stationary, w. Blackwood, Jr.
Washer. See Ore washer.
Washing machine, C. Barbe
Washing machine, C. Barber..........
Washing machine, Burtner \& Bodley
Washing machine, w. Myer...
Washing machine, W. Myer..........
Watch regulator, A. Bitner...................
Watchman's electric register, G. W. Adam
Watchman's electric register, G. W. Adams
Water closet tank or cistern, S. F. Sniffen..
Water elevator, J. J. Hamilton
Water elevator, J. Patten....
Water elevator, steam, E. W. Vanduzen
Water elevator, steam, E. W. V
Water grate bar. M. L. Ritchie..
Water grate bar. M. L. Ritchie......
Water meter and filter, R. C. Barri
Water through siphon pipes, apparatus for rais
ing, J. Patten...............
Water wheel, J. B. McCormick.
..
Edison,
Feeding, p
Fletch
Fletcher...
Wells to flow without tubing above the packer
Wheel. See Fifth wheel.
Whindow shade, L. L. Sawyer et al.
Window shades to t. Illers, attaching,................ 26
Wood working machines, cutter carrier for, H.

DESIGNS

Carpet, W. L. Jacobs.

Carpet, W. McCallum. Globe, J. J. Nichol

Lamp and vase, com bined, W. S. McLewee
Lamp, hanging, W. S. McLevee
Lamp, hanging, W. S. McLewee...
Photographic cara, F. . . Clench..
Shelf cover, H. Force.............

TRADE MARKS.

Bitters, H. D. Cook........ Cheese, Mende Brothers

Coffee. unground roasted, W. F. McLaughlin.... Medicine for the cure of rheumatism, Rheumati

 Manufacturing CompanyPerfumery, J. B. F. Rigaud...
Rerfumery, J. B. F. Rigaud.... Rings, ten carat gold, Dueber Watch Case Manu facturing Company
Starch gloss, A. Maul.
Obacco for smoking and chewing, and cigars. cut
Globe Tobacco Company Watch cases, efghteen carat gold, Dueber Watch
Case Manufacturing Company Catch cases, ten carat gold, Dueber Watch Case Manufacturing Company
Whisky, G. Simmonds
Wines and liquors, Dulany, Meyer \& Co............... 9,711

English Patents Issued to Americans.
From September 22, 1882 , to September 26, 1882, inclusive.
Carbon conductor for electric lamp, E. Weston, Newark, Car wheel, G. W. Miltimore, Chicago, 11 . Drying apparatus, R. S. Jennings. Baltimore, Md.
Electrical meter, T. A. Edison, Menlo Park, N. Electro magnetic engraving machine, G. M. Guerrant New York city.
Embroidering machine, J. A. Groebli, New York city.
Glucose, manufacture of, W. T. Jebb. Buffalo. N. Y. Glucose, manu facture of, C Semer Philadelphia, Pa. Midd $l i n g s$ purifer, C. Brown, St. Louis, Mo.
Nut lock, L. Triplett. Jr.. Mt. Jackson, Va. Padlock, registering, R. G. Usher et al., Boston, Mass. Sewing machine, preventing noise of, J. B. Hain, New-
ark. O.
Sar, Sugar can
Ind.
Telephone
Mass.

instantaneous photographs.

M Y L C E A N

PROO ${ }^{\text {PA }}$
me and Circular Free by mall

Water motir and Electric hight

 PATENTS.
MESSRS. MUNN \& CO., in connection with the pubamine Improvements, and to act as Solicitors of Patents for Inventors.
In this line of business they have had thirty-five years' experience, and now have unequaled facilities for the preparation of Patent Drawings, Specifications, and
the prosecution of Applications for Patents in the the prosecution of Applications for Patents in the
United States, Canada, and Foreign Countries. Messrs. Munn \& Co. also attend to the preparation of Caveats, Copyrights for Books, Labels, Reissues, Assignments, and Reports on Infringements of Patents. All business intrusted to them is done with special care and promptness, on very reasonable terms.
A pamphlet sent free of charge, on application, con-
taining full information about Patents and how to taining full information about Patents and how to pro
cure them; directions concerning Labels, Copyrights Designs, Patents, Appeals, Reissues, Infringements, Assigments, Rejected Cases, Hints on the Sale of Pa-
tents, etc.
We also send. free of charge, a Synopsis of Foreign
Patent Patent Laws, showing the cost and method of securing patents in all the principal countries of the world.
MUNN \& CO MUNN \& CO., Solicitors of Patents, BRANCH OFFICE
261 Broadway, New York.
Wherner of F and 7 th Streets,

VALUABLE BOOKS
Tin; Sheet Iron, and Copper Plate Working BOIIER MLAIEINTG.

W1ZIRSTSTEPS IN LHEMISTRY

 Patent Rights For, Snle-The American Paten

 DYNAMOMACHINES must be run with uniform

 THE BERRYMAN Feed Water Heater PURIFIER FEED ${ }^{\text {AND }} \mathbf{P} \mathrm{EJ} \mathbf{M P}$

NUT TAPPING DURRELL'S PATENT

Capacity of 7 \% Splncles, 8,000 per
 HOWARDBROS.,

Ciolurs

We are MORE THAN SATISFIED with our Pictet Refrige, June 8, 1882. and consider them THE BEST IN THE MARKET. We have two of the largest size in full operation. ARIMOUR de CO.
THE PICTET ARTIFICIAL ICE CO., Limited,

—

AGENTS Wanted for handsomeliluatrated stanct

Wesfinghouse ENGINE, 2 to 150 Horse Power,

 eTrad
trand ist.

WIRE ROPE, BRIDGE CABLES, SHIP RIGGIMG, Tramway Ropes, Champion Barbed Wire, etc.

IRON REVOLVERS, PERFECTLY BALANCEL, P. H. \& F. M. ROOTS, Manufacturers,
 SEND FOR PRICED CATALOGUE.

Proposals for Dredging.
Potomac River Improvement near WashU. S. Engin ington, D. C.

WA LHINGTON, D. C., September 27, 1882 .

 Bean forms on which proposals must be made, speci-
fications, and any desired information can be had, ponap-
pication to this office.
PETER C. HA LNS

Send for Circulard Price List of
COPE \& MAXWELL M'F'G CO'S
New and Improved styles of
 BOILER FEEDERS.

MACHINERY

 PROFESSORS AYRTONN AND PRERYY'S

SPEAKING TELEPHONES.

the american bell theephove company W. H. Forkes

Junctions and flnal dearees have been obtained on them.
This ocmpany also owns avi controls all the other
telephonic inventions of Bell , Aison, Beriner, Gray,

AMERICAN BELL WELEPHONE COMPANY,
DOBBIES PATENT DERRICK
POWERS \& BOOM HOISTER

THE DUPLEX INJECTOR.

PHOTOGRAPHY ON WOOD-NEW PROCESS The Rockwod Photo-Engraving Co., 15 City Hall
Suare, New York, have received from Europe new
and excellent process for photographing on wood for engravers. The pithures are exceedingly brilliant, an
do not chip under the tool. PAYNE'S AUTOMATIC ENGINES.

Relinhle, durable, and economical, will furnish
horsepowerwith one-third less fuel and a waterthan any other

prices. 1207. W. PAYNE \mathbb{B} SONS, $\mathbf{C o r n i n g , ~ N . ~ Y . ~}$

 Heavy Punches, Shears, bOILER SHOP ROLLS, RADIAL DRILLS, Etc. HILLES \& JONES, GMPIRE FORGES Improved without Belts, Bellows, Crank Pins, Dead
Centers.or Bacc Motion, send forcircular.
EMPIRE PORTABLE FORGE CO., COHOES, N. Y.

Spactal Machines for Car work and the
Wood Working Machinery of ail kinds.

SHAFTS PULLEYSHANEEAS
 A. ACt Lo

For Packing the Piston Rods and THE WORLD
 This Packijig is made in lengths of about 20 feet, and of all sizes from 34 to 2 inches square
, Treas. NEW YORK BELTING \& PACKING CO., 29 Pa SPECIAL NOTICE.-Owing to the recent great fire in the "World" Building, our office has
been removed as above.

ERICSSON'S

Ner Canici Puminic higire
DWELLINGS AND COUNTRY SEATS.
 DETAMATER IRON WVORKS C. H. DELAMATER \& CO., Proprietors,
No. 10 Cortlandl Street, New York, N. Y.

ROOFING.

Pyrometers. $\underset{\substack{\text { For } \\ \text { Ovens, } \\ \text { showing } \\ \text { Hot } \\ \text { Bate } \\ \text { hent }}}{\text { Pipe }}$

Horizontal Steam Engines,
 perior Desigu,
complete in Every Respect
ADDRESS LAMBERTVILLE IRON WURKS,

 MOSS ENGRAVING COMPANY -

 Double Screw Parallel, Leg Vises.

THE J. L. MOTT IRON WORKS,

Address JOHN A. ROEBLING'S SONS, Manufactur
ers Trenton, N. . R

SHEPARD'S CELEBRATED Screw Cutting Foot Lathe
 hight, Gas Mactines, etc. Send
for catalogaof outats for amateurs or
artisans. Adder

THE NEW OTIIO SILENTI GAS ENGINE.

TELEGRAPHY

SWEEPSTAKES, WITH THE ELLIS

 sand Blind Machinery a speecialty extra, Corresponde.
and
licited. Rowley \& Hermance, Willamsport, Pa.

"BLAKE'S CHALLENGE" ROCK BREAKER.

189
 43n ${ }^{\text {mactin }}$

KORTING UNIVERSAL DoVble TUE: INJECTOR $\frac{\pi}{4}$ N T POBTIVE ACTION LUAAANTEED UND
 OFFICES AND WAREROOMS:

HARTFORD
STEAM BOILER
Inspection \& Insurance COMPANY
N. B. FRANKLIN.V. Pres't. J. II. ALLEN, Pres't. J. B. PIERCE. Sec'

6OINCH SWING DRILL

Stevens' Roller Mills, GRADUAL REDUCTION OF GRAIN THE JOHN T. NOYE MVG. CO., Buffilo. N. Y
 HAKRRN-C'ORLINS ENGINE With Harris' Patented Improvements,
from 10 to 1.000 H. P. ROCK DRILLS \& AIR COMPRESSORS 1 PARK PLAGE ROCK DRILL NEW YORK
 by JAMES BRAND, 85 Beekman St., New Yorts. for sale
and

9ROUSTM

§nientific Ammexicau

FOR 1882.
The Most Popular Scientific Paper in the World. Only $\$ 3.20$ a Y Year, including postage. Weekly. 52 Numbers a Year.
This widely circulated and splendidly illustrated paper is published weekly. Every number contains sixoen pages of useful information, and a large number of original engravings of new inventions and discoveries,
representing Engineering Works, Steam Machinery, Chemistry, Electricity, Telegraphy, Photography, Architecture, Agriculture, Horticulture, Natural History, etc. All Classes of Readers find in the SCIENTIFIC
Ambrican a popular resume of the best scientific inAMERICAN a popular resume of the best scientific in-
formation of the day; and it is the aim of the publishers fo present it in an attractive form, avoiding as much as possible abstruse terms. To every intelligent mind,
this journal affords a constant supply of instructive reading. It is promotive of knowledge and progress in Terms of Subscription-One Terms of Subscription.-One copy of the Scien postage prepaid, to any subscriber in the United States or Canada, on receipt of three dollars and twenty
cents by the publishers; six months, cents by the publishers; six months, $\$ 1.60$; three
months, $\$ 1.00$. months, 81.00 .
Clubs.-One extra copy of the Scientigio amiriAN wil be supplied gratis for every club of five subscribers
$\$ 3.20$ each; additional copies at same proportionate tat.
One copy of the SCIENTIFIC AMERICAN and one copy
of the ScIENTIFIC AMERICAN SUPPLEMENT will be sent for one year, postage prepaid, to any subscriber in the United States or Canada, on receipt of seven dollars by
The safest way to remit is by Postal Order, Draft, or Express. Money carefully placed inside of envelopes, securely sealed, and correctly addressed, seldom goes
astray, but is ${ }^{\text {at }}$ the sender's risk. Address all letters and makeall orders, draft MIUNTN \& CO.

261 Broadway, New York. To Foreign Subscribers.- Under the facilities of by post direct from New York, with regularity, to subscribers in Great Britain, India, Australia, and all other
British colonies; to France, Austria, Belgium, Germany, British colonies; to France, Austria, Belgium, Germany, Mexico, and all States of Central and South A merica. Terms, when sent to foreign countries, Canada excepted,
$\$ 4$, gold, for Scientific Ambican, one year: $\$ 9$, gold for both ScIENTIFIC AMERICAN and SUPPLEMENT for one year. This includes postage. wh
by postal order or draft to order of MUNN \& CO., 261 Broadway, New York.
PRINTIING INTKSS,

