PROJECTED AMERICAN LINE OF FAST OCEAN

STEAMSHIPS.

The decline in ship building and shipping interests, so noticeable in the United States, promises to be retarded, by a new project now being promoted by prominent capitalists in this country; the project being nothing less than the establishment of a new line of very swift express steamships, calculated to cross the Atlantic in five and one half days.
The importance of shortening the time of passage to this extent can scarcely be overestimated. It would not only facilitate business transactions between this country and Europe, and add greatly to the comfort and convenience of passengers, but would also increase the amount of service accomplished by each steamer.

This new project is based on a novel form of vessel, which render high speeds possible, while at the same time adding greatly to the carrying capacity as well as the stability of the vessel. This new model is the design of Captain C. G. Lundborg, who has patented it both in this country and in Europe.
While the general appearance of the vessel is shown by our engravings, it will be necessary to enter somewhat into the details of construction, and into the theories upon which the new construction is based.
The design, while affording ample space for passengers and valuable cargo, has been prepared with the primary object of attaining a velocity of twenty to twenty-one knots an hour, with a comparatively moderate expenditure of power. The prominent idea involved is that of making the main body of the ship divide the water borizontally instead of vertically. By adopting this system of construction it becomes possible to build a ship of the greatest capacity for a given draught-an sdvantage which speaks for itself. But besides this it is also evident thattbis ship of shallow draught and great capacity can have admirable lines. In other words, her resistance may be reduced to a minimum. The principle admits of the naval architect imparting to his ship a splendid clean run aft, and the screws can be carried far astern and yet be well supported. The advantages to be derived from thus placing the screws far astern have been insisted on by the late Mr. Froude. It will also be seen that no scheme has ever before been put forward which is so perfectly adapted to the use of twin screws. When it is desired, the stern of the ship can be carried further aft, to protect the screws; but this, it is claimed, would probably be unnecessary. There is ample room provided for engine power,
notwithstanding the excessively fine run of the hull aft. The accompanying table contains the principal dimensions and other important data:
Length of hull below water on the plane of greatest beam..... 450 feet.
Greatest breadth........ Geneatest breadth
. .66 "

STERN OF CAPTAIN LUNDBORG'S STEAMSHIP.

Breadth on load water lin
 Draught of water on load water line
 ength over all on upper deck
 of frames)........ at greatest transverse section (outside of frames),................. 6

Depth from top of upper deck beams to bottom plating Height between the upper and second deck
 Height between third and orlop decks. Area of greatest immersed transverse section. Coefficient of greatest immersed transverse section. Area of load water plane... Displacement to load water
 \qquad $\ldots009303$ ""
 Horizontal distance of center of buoyancy from thę submerged stern
 Vertical distance of center of buoyancy below load water line, 11,456 Height of metacenter above center of buoyancy..7,469 " Height of metacenter above center of gravity of the ship when fully equipped and loaded...3,458
 Height of metacenter above center of gravity of the ship at $14{ }^{\circ}$
 feet draught of water, witb no cargo, coal, stores, water, or
 ballast, and no water in boilers, but otherwise completely fitted and fully rigged....
 Height of metacenter above center of gravity of the ship at $9 \cdot 6$ feet draught of water, the hull being complete, with masts in and rigged, but empty, without engines or boilers.
 Wet surface when immersed to load water line...............38,389 Angle of obliquity of load water line at the bow.....................50 5 Angle of obliquity at the stern.....

7°
The ship is to have two propellers of 16 feet diameter and 28 feet pitch; the propelling power to consist of four com pound engines, two on each propeller shaft, developing each, when making 90 revolutions per minute, 4,500 indicated horse power, or for all four engines together 18,000 indicated horse power.
With this power the speed, according to Professor Ran kine's formula, would be 20.7 knots per hour; but that speed would in all probability be exceeded, as little powe will be lost by wave making, the water having a clean run astern, being divided horizontally by the lower part of the hull.
The ship would have room to accommodate about 600 first class and 1,000 second and third class passengers, and carry 3,000 tons of cargo, besides 2,700 tons of coal, sufficient for 180 hours run.
The ship is designed to be built of iron or steel, with a double bottom, and with a great number of water-tight compartments, transverse and longitudinal.
The peculiar form of the hull of this vessel makes it pos sible to unite great carrying capacity with the finest lines for high speeds. The submerged stern, which divides the water horizontally, admits of the finest possible run aft and affords a perfect support and protection to the propeller shafts. With this construction the propellers act constantly

in solid water, unaffected by stern post, rudder, and the overhanging part of the stern, as in ships of the usual form. This feature secures an economy of power, or, what is the same thing, an increase of speed.
A vessel of this form will not roll and pitch as much a other vessels, as the body of water above the projecting par of the hull offers considerable resistance to such motions.

The rudders may be nearly balanced, and will require but little power to work them, and on account of the peculiar form of the stern, the rudders may have considerably less area than those of the common model, as it requires les power to move the stern laterally
The form of the hull, while permitting very sharp entrance and run, affords ample room for the application of the greatest engine power compatible with carrying capacity. Two propellers, acting entirely independent of each other, will increase security against accidents to the machinery at sea, and the same may be said of the two rudders, which, although designed to be worked together by the same steering apparatus, may in case of necessity be worked separately. The arched form of the hull, with projecting sides below water, and the general absence of any plain surface exposed to the sea, admits of great strength of construction, and with suit able watertight compartments the vessel may be made exceedingly strong and safe.
The increasing width of the hull below as well as above the load water line gives great steadiness to the ship, so that it may be moved about even without load or ballast. This is owing to the fact that the metacenter rises with increased beam much more rapidly than the center of gravity.

The merits of this system are likely soon to be brought to a practical test, and it would be no surprise to those who have given the subject a careful investigation, if the efficiency of the system should prove greater than is indicated by the figures given.

Dangers of Phosphorus.

A series of investigations that have been published in sev eral numbers of a German match journal has led to the fol lowing general conclusions:

1. The manufacture of matches from white phosphorus, owing to the unavoidable evolution of phosphorus vapors, is fraught with the gravest danger to the health and lives of the workmen.
2. The vapors of phosphorus, if breathed for a long time, produce general ill-health, under circumstances not yet fully understood, but which are probably to be sought for in the idiosyncrasies of the individual. Usually it takes the local form of necrosis of the maxillary or jaw bone.
3. The necrosis of the jaw, if not relieved in time by an operation, results in death.
4. The injurious constituents of the phosphorous vapors are neither phosphorous acid nor phosphoric acid, but phosphorus itself, free and uncombined, which passes into the blond a such, and probably circulates in the blood in the form of vapor, and from the blood acts upon special organs (liver kidney, heart, stomach, and muscles) as well as on the bone tissues.
5. The most dangerous operations in making matches are making up the paste, dipping the splints, drying and pack ing the matches.
6. The manufacture of matches should only be permitted under the conditions that the phosphorous vapors shall be completely excluded from the work-rooms
7. These conditions can be sufficiently complied with by energetic ventilation, and the use of a safety apparatus lik those constructed by Beck \& Henkel in Cassel. [The paper quoted does not inform us what this safety apparatus consists of.]
8. The absolute prohibition of the manufacture of matches from white phosphorus does not seem necessary from the sanitary police point of view.
Dr. Hahn, in a communication to the Chemiker Zeitung, makes the following comments to these conclusions: All the objections that have been made to the use of white phos phorus would deserve the fullest consideration if it was possible as yet to make cheap and easily inflammable matches without phosphorus. This, however, is not the case. Matches made of chlorate of potash, bichromate of potash, sulphur, and glue or gum, ignite only on a prepared surface covered with red phosphorus, gray antimony, pyrites, black oxide of manganese, and glass. The so-called "Swedish matches" fulfill the hygienic conditions of freedom from danger in manufacture perfectly, and are only in a slight degree explosive. In their manufacture the wood of the aspen tree must be used, and as this is very scarce in Ger many, or has to be imported from Russia, they are about twice as expensive as the ordinary matches made of pine splints and hence have not found much favor among the people there
But all inflammable mixtures made without the use of red phosphorus bave the disadvantage of being uncertain, or difficult to ignite, and although theoreticians and some manufacturers that are trying to introduce such matches consider them a grand suc
Matches should, of course, never be made at home, where in addition to poor ventilation, the work-room must often serve as eating and sleeping room as well.

An anvil cast in Pittsburg is supposed to be the heaviest casting made in this couutry. It is said 160 tons of iron was melted to pour it.

sumtifir Cmerican.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 261 BROADWAY, NEW YORK.

$$
\begin{array}{ll}
\text { O. D. MUNN. } & \text { A. E. BEACH. } \\
\hline
\end{array}
$$

TERIS FOR THE SCIENTIFIC AMERICAN.
One copy, one year postage included...
One copy, six months postage included
$\$ 390$
160
 Re proportionate rate. Postage prepaid.

MUNN \& CO., 261 Broadway, corner of Warren street, New York.
The Scientific American Supplement
is a distinct paper from the SCIENTIFICAMERICAN. THE SUPP LEMEN'T

Scientific American Export Edition

The ScI wNPIFIC A MuricAN Export Edition is a large and splendid peri-
dical, issued once a month. Each number contains about cne hundred

NEW YORK, SATURDAY, OCTOBER 21, 1882.

TABLE OF CONTENTS OF

the scientific american supplement,
 No. 355,

For the week ending october 21, 1882
Price 10 cents. For safe by all newsdealers.

V HGGIENE AND MEDICINE.-Phenic Acid and Potassium Bro-
mide in Whooping Cough ...
 ARCHITECTURE, ART, ETC.-Streatham Hall.-2 Agures.-Sug-
gestions in landscape gardening....................................$~$
56 I. MISCELLANEOUS.-Blair Athol.-The most valuable racehorse
ever known.- fifure.
The Commercial Museum at Brussels.-Report by U. Si. Sionsul

A DUBIOUS AMENDMENT OF THE COPYRIGHT LAW.
At its last session Congress passed an act (approve August 1), which provides "That manufacturers of designs for moulded decorative articles, tiles, plaques, or articles of pottery or metal subject to copyright, may put the copyright mark prescribed by section forty-nine hundred and sixty two of the Revised Statutes, and acts additional thereto, upon the back or bottom of such articles, or in such other place upon them as it has heretofore been usual for manu facturers of such articles to employ for the placing of manu facturers', merchants', and trade marks thereon.'
This act is a model of ambiguity. The only thing certain about it is that it gives permission to put the copyright mark on the back or bottom of articles "subject to copy right." By implication it includes among articles subject to copyright moulded decorative articles, or designs therefor, hitherto protected only by design patents; but it does not say that such articles may now be copyrighted.
The purpose of the author of the bill was evidently to bring under the action of the laws of copyright a class of purely decorative objects not already subject to copyright ince they are not " models or designs intended to be per ected as works of the fine arts;" but the bill as draughted signally fails to do so.
The Librarian of Congress accordingly refuses to allow the registration of such purely decorative articles, for which no specific provision is made in this or previous statutes relating to copyrights, leaving them to be protected as here ofore by the law for design patents.
We are informed that the bill as enacted was introduced in the Senate by the patent committee, which properly had nothing to do with the subject; that neither the proper com mittee nor the Librarian of Congress ever heard of the bill until it was passed; and that the House acted upon it without due consideration and without referring it to the prope committee.
Thus it would appear that the manner in which the bill was passed was as loose as its grammatical and logical construction. As a law it is unintelligible, and only adds confusion to what was sufficiently confusing before.

NEW ANTISEPTICS FOR SURGICAL USE.

Certain inconveniences and disadvantages attending the use of carbolic acid spray in dressing wounds have led to a general search for acceptable substitutes. One of the most promising is the use of substances which are volatile as wel as of antiseptic nature, such as eucalyptol, cajeput, tere bene, and peppermint, by means of which a wound may be kept, if necessary, in an antiseptic atmosphere not merely while being dressed but at all times.
At the late annual meeting of the British Medical Association Mr. A. W. Mayo Robson described a series of experiments made by him to test the efficiency of atmospheres charged with such volatile antiseptics in preventing the development of life in putrescible fluids, the results being exceedingly encouraging. Flasks of sterilized hay infusion suspended in large, wide-mouthed, open jars, into which a little eucalyptus oil, cajeput oil, or the like, had been poured, remained clear, while flasks of the same infusion briefly exposed to ordinary air and then covered with cotton wool began to lose clearness and to scum over within a few hours. Altogether the results were thought to indicate that at ordinary temperatures air saturated with vapors of the class named was fatal to the germs of bacteria and micrococci, and probably also to the germs of fevers and other infectious diseases. As the vapors tested are not unpleasant or injurious when breathed, it is to be hoped that practical tests in hospital wards will confirm the promise of Mr. Robson's experiments. As eucalyptol-derived from the common eucalyptus-is abundant and cheap, it has been selected for further tests. Several surgeons have taken part in these tests, and the results are decidedly encouraging. When the vapor is used during surgical operations a bellows is employed to discharge air charged with it upon the spot exposed. The air is first drawn through a vessel filled with cotton wool, then through others filled with pumice stone over which a small quantity of eucalyptol has been poured The emerging air is thus loaded with invisible particles of the antiseptic, which seems to be capable of destroying any vestiges of germ-life which may have been drawn in from the surrounding atmosphere. This is a pleasanter method than Lister's or the boroglyceride treatment of Professor Barff.

Not less promising is the turf-mould dressing of Dr. Neuber, of Kiel, the result of investigations of the antiseptic qualities of turf-mould made by him during the past two years. The fibrous and friable character of turf, and its lightness, softness, and elasticity, make this substance much neater and more comfortable than "dry earth" as a surgical dressing; and it seems also to have much greater antiseptic power. The mould, reduced to powder, is inclosed in bags of carbolized gauze, and simply bound upon the wound, which has previously been washed with a carbolic or other antisentic lotion. This dressing has been used by Professor Esmarch in fifty-five cases, most of them severe operations with wonderfully good results. In thirty-one cases there was no fever, and in only five cases was it necessary to remove the dressing, owing to either local or general dis turbance. The chief advantages claimed for this dressing are its great absorbent power, its tendency to prevent the formation of putrefactive products; the easy adaptability of the turf pads to the surfaces of the body and limbs; and its cheapness, the cost being about one-ninth that of the Lister-
ian dressings. For use in public hospitals and in private practice among the poor, the element of economy is a very important one.
Another great advantage, if the apparent virtues of turf mould are confirmed by wide experience, will arise from the circumstance that it is everywhere obtainable. Dr. Neuber's attention was drawn to its possible merits by the appearance in the clinic of Professor Esmarch of a patient who reported that his arm had been badly hurt eight or ten days before while he was at work upon a moor. The injured arm had been simply covered with mould and protected by a rude wooden splint. The patient appeared to be in good general health. When the primitive dressing was removed the surgeons were astonished to find that with an extensive laceration of the soft parts of the arm, a rupture of the wrist joint, and a fracture of both bones of the fore arm, the wound was free from suppuration-in some parts already united by first intention, in others granulating in a satisfactory manner. The physical condition of the patient and the purity of the country air may have contributed somewhat to the healthy condition of the seemingly neglected wound; but, as subsequent trials proved, the main protection came from the antiseptic mould; a dressing most easily obtained where other antiseptics are to be had with difficulty. Country practitioners and workmen on railways aud other works away from surgeons and surgical appliances will do well to bear this fact in mind. Of cours care must be exercised in selecting turf-mould for such purposes from spots not likely to be subject to local contaminations, else it might serve to introduce the very germ which it is sought to avoid and exclude.

SEWING MACHINES IN GERMANY

In a long communication from Berlin a correspondent of the Sewing Machine Journal sets forth very clearly the reason why the introduction of improved sewing machines of American manufacture has been so difficult in Germany. After describing the failure of several companies to work up a German market for their machines by a liberal distribution of samples, by establishing local agents, and so on, he attributes the failure mainly to the high prices asked for American machines. Even where the American machines are far superior to German imitations the preference is given to the cheaper machines. "The production of sewing machines in America is attended witi more expense than in Germany, owing to higher wages; to which must be added freights, duties, shipping expenses, and commissions to agents. These increase the cost of American made machines in this market considerably. Germany is producing sewing machines more cheaply than any other country on the globe; and the quality of German machines has been greatly improved in the last ten years. German machines are provided with all the modern improvements, such as loose pulley, automatic bobbin winder, snuttle ejector, tension liberator, etc.; while most of the old American companies refuse to introduce those essential improvements on their machines. In consequence of this fact German machines are very often preferred. For instance the Wheeler \& Wilson machines still have the bobbin winder on the stand under the table. For this reason some dealers do not want them.
"Another reason why American manufacturers cannot so easily gain a foothold in this country is the very close relations existing between the dealers and manufacturers here. The dealers are frequently finaucially dependent upon the manufacturers, and are too frequently visited by their travelers, etc. These are circumstances which the Ameri can manufacturers cannot so easily overcome."
To meet this difficulty the way suggested is for American manufacturers to "branch out," as the Singer Company bas done. The only competitor who has made himself fel by the German manufacturers is the general agent of this company, whose success is attributed to their method of disposing of machines in a way to creaie a demand among consumers, thus compelling local dealers to supply them.
Another fact of importance to American manufacturers s the promptness with which their machines are imitated in Germany as soon as a regular demand has been created, unless the machines are fully protected by patents. These imitation machines are sold at exceedingly low rates, for example the German machines of the Singer pattern are sold in Berlin at from ten to twelve dollars, wholesale, complete machines with all improvèments.

Hops and Hop Growing in New York

The hop growing region of New York embraces parts of Schoharie, Otsego, Herkimer, Oneida, and Madison counties. The extent of the industry and the manner in which the gathering of the hops is effected are well described by a correspondent of the Evening Post, "H. D. C.," in a letter from West Winfield.
It will be noticed by inventors that hop picking machines are as yet but little used, though promising experiments have been made in this direction. The field for invention here is a wide one and well worth cultivating.
The principal gateways to the hop region at present are the junction of the Cooperstown Railroad with the Albany and Susquehanna and the city of Utica. From these points hundreds of men, women, and children are now daily hurrying to the hop fields. It requires a good deal of skill and experience on the part of growers to manage these people so
product as possible. Strikes are not uncommon at the most critical period of the hop picking season. When these occur
the grower is apt to accede to the terms of the pickers, the grower is apt to accede to the terms of the pickers, hops he has still on the poles. The hop picking season has a cheerful side also. The occupation is healthful, and many go to the smaller and more retired fields to pick for their health. The open air, the pungent aroma of the hops, and the useful exercise excite digestion and give the picker an appetite which he or she needs as a prerequisite to invigorated physical condition. Before the picking season closes the young people have their dances and their frolics, which partake of the mixed character of country and city ways and manners.

wages.

The work of the pickers is done " by the piece," the unit of labor being the box. A field of good pickers will average two boxes a day each, though some who turn a deaf ear to the gossip of the yard and attend strictly to business may fill three and even four boxes. The four-box picker is not usually as highly esteemed by the grower as a slower one, for the reason that he is apt to have his pickings too liberally mixed with leaves and stems. The picker's pay averages fifty cents a box. The larger grower sometimes offers as high as seventy-five cents, in order to secure his crop before it can be injured by frost or the equinoctial storms. Except in the small yards that are picked by help from the immediate neighborhood, provision is made for boarding and lodging the pickers on the farm where they are employed. The price of board is placed at the lowest possible figure, and is deducted from the pay on settling day. The picker's account is kept by checks, one being given for a box or a given number of boxes. These are exchanged for larger ones, and when the poles are all stripped the checks are redeemed in cash. The boxes are constructed in groups of four. Each picker usually fills his own box, but it is not uncommon for two or three persons to join forces and to divide the earnings. A mother and two children are often found picking in one box. Many women take their little children to the field, receiving such assistance as the older ones can render, while the smaller ones play in the dirt till they are tired and then go to sleep on the hop sacks or under the shade of neighboring bushes. Besides the pickers who are paid by the box, "tenders" are employed by the day, whose business it is to pull the poles, to strip off the vines, and to deposit the latter convenient to the picker's hand.

USE OF MACHINERY.

Within a féw years several experiments have been made in the southern part of Oneida county with hop-picking machines, but no substautial success has yet been achieved. An improved machine now at work in a large yard near this village was observed by the writer a few days ago. It is a simple contrivance, which the patentee, who was operating it, acknowledged to be as yet in an imperfect and experimental state. It consists of a set of small rollers geared upon bearings which separate or draw close together by means of spiral springs. The hop vine is cut from the poles in pieces, and is fed between the rollers, butt end first. The vine and leaves pass between the rollers, but the hops break off in front of the rollers, drop down upon a receiver, and are carried to a table where two persons are kept busy picking out the leaves that may follow the course of the hops. The machine operates some what like the common clothes wringer, the hops, being more bulky than the vines and the leaves, breaking off when they come to the rollers, as a shirt-button is torn from its fastening while the shirt passes smoothly between the rollers which press the moisture from it. Last year this hop-picking machine was operated by foot power, the man who fed in the vines also plying a foot treadle as a motive-power. The patentee has his year geared his machine to power, which is operated by a sheep. The power is the common treadmill used by farmers who do their churning by dog or sheep power When the writer saw this hop-picking machine in operation it was run by a medium-sized, mild-eyed ewe, whose piaintive bleat now and then pleaded to be released from the endless up-hill journey. Near by two other wool-bearers were ethered waiting their turn on the treadmill. By thus changing sheep frequently the three are able to keep the picking machine running throughout the day. To operate he machine to its full capacity requires two persons to fetch the vines from the poles, one to feed, and two to pick out the leaves that drop down among the hops. The
machine does its work so well that it promises to come into general use as soon as it can be made to do more than it now does. The five persons who are required to attend it could pick nearly as many hops as the machine does.

this year's crop.

The crop this year is considerably below that of last year. In Otsego county the estimate is two thirds; while in Herkimer, Oneida, and Madison growers expect threeourths of last year's yield. The price, however, is so strong that growers are feeling in the best of spirits. No
one thinks of selling for less than fifty cents, while the expectation is for considerably more than this. As it is estimated that ten cents a pound is the average cost of production, the hop-growers this year are in a fair way to make money.
General average for seventeen years $341 / 3 \mathrm{c}$. nearly. The total acreage of hops in this country in 1879 was
tion of $26,583,314$ pounds this State furnisked $21,663,131$ pounds. Wisconsin produced $1,966,42^{7}$ pounds. Statistics show that while the New York yield increased in ten years from $17,000,000$ pounds to $21,000,000$, that of Wisconsin decreased from $4,000,000$ to about $2,000,000$.
The soil of California seems to be the best adapted of any in the United States, so far as experiments have been made, for raising hops, the yield per acre being 1,274 pounds. At the prices prevailing this year the hop farmer of the Pacific slope will thus earn $\$ 637$ per acre, or several times the price of his land
The hop industry of this State, and in fact of this country, is of comparatively recent origin. The first vines in America were planted by James D. Cooledge, in the town of Madison, Madison county, seventy-four years ago. Forty years ago there were raised in this State only 2,236 bales. The counties which now lead in this industry have always led; but it looks as if the seat of the hop empire would in a few years be transferred from Otsego county to Oneida. Hops and cheese have an affinity which induces them to remain close neighbors. The hop vine requires rich soil, and an abundance of fertilizer on soil that is naturally thin and weak. The dairies furnish much of the fertilizer used in the hop-yards throughout this part of the State, where cheese-making and hop-growing are almost the only sources of income to the farmers.

New York Academy of Sciences

The Geological section of the Academy of Sciences met at their rooms, 12 West 31st Street, Monday evening, Oct. 9. Dr. J. S. Newberry president, in the chair. Mr. Chamberlain exhibited some beautiful specimens of hiddenite from North Carolina. Mr. Geo. F. Kuntz exhibited fine crystals of apatite from Rideau, Canada, also large plates of phlogopite (mica) which exhibited a very interesting property, viz. : when held between the eye and a gas light, six rays were seen to extend from the light at angles of 60° from each other, each ray being made up of a series of short parallel bright lines very close together. Mr. F. Cope Whitehouse exhibited, by means of a lantern, a large number of views of the caves on the Island of Staffa, the most interesting being the famous Fingal's Cave. After fully describing their form, size, etc., Mr. W. stated his belief that they were not, as generally supposed, produced by natural causes, but are artificial caves made by the hand of mat at some very early period. Among other reasons given for this conclusion were the following: The high and pointed roof of Fingal's Cave, resembling the roof of a Gothic church, whereas natural caves have a low and flatly arched roof; the caves of Staffa are protected by breakwaters, or other barriers, from the force of the waves of the Atlantic, which could hardly have excavated caves of such depths at few points; some of the caves are twelve times as deep as they are wide, with straight sides; the basaltic columus do not crumble nor form shingle, yet none of their remains are found near the mouth of Fingal's Cave, hence they must have been carried away by man to a great distance, probably to Scotland. Some discussion followed the reading of the paper by Prof. Day and others, showing that the members of the Academy were scarcely prepared to accept the conclusions of Mr. Whitehouse.

The Comet and the Moon in Arizona

A correspondent who resides at a mining camp on the mountains in the south-eastern corner of Arizona, says that the great comet comesinto view there about threeo'clock every morning, presenting a wonderful spectacle, remaining visi ble until after the full sunrise.
The brilliancy of the moonlight at this elevated station is uch that mountains seventy miles distant are seen

Improved Mortar

Sawdust is said by some one to be better than hair in protecting rough cast from peeling and scaling under the influence of frost and weather. The sawdust should be first dried and then thoroughly sifted, in order to remove the coarser particles. A mixture is then made of two parts sawdust, five parts sharp sand, and one part cement, which should be thoroughly stirred together and then incorporated with two parts of lime.

On the authority of a Pittsburg paper there are fifty:one completed rolling mills and steel works in Pittsburg and Allegheny county, and two building. Of these, eight are rail mills, six making only light rails, twelve are crucible steel works, one makes cemented steel only, three are Bessemer steel works, seven are open-hearth steel works, and one open-hearth steel works is building. Besides these are several other iron and steel works located outside of the county, but owned in Pittsburg.

What a learned physician of New Albany, Ind., pronounced to be a cancer in a boy's throat was discovered by the mother of the child to be caused by a beard of wheat three inches long and containing eight grains of the ...
Pearl fishing is pursued by no less than 1,000 divers on the coast of Lower California. The pearl oysters are found from one to six miles from shore, in water from one $\$ 500,000$.

A NEW SMELTING FURNACE

The remarkable increase within the last few years in the production of argentiferous lead in connection with the great commercial success of the operations as exemplified at Leadville, Colorado; Horn Silver Mining Company, Utah; Eureka and Richmond Consolidated, Nevada; and nume rous other almost equally great enterprises, has naturally stimulated improvement of methods of reduction. The new smelting furnace, manufactured by the Lane \& Bodley Company, Cincinnati, possesses several features that think of sufficient importance to describe in this article.
Whenever the use of cast iron has heretofore been objectionable on account of liability to breakage from unequal expansion or other cause, wrought iron has been substituted; also in other places where the use of cast iron resulted in great weight, a similar substitution of wrought metal has been resorted to, thus producing a furnace of maximum strength and durability with minimum weight.
The ground plan of the crucible binders is that of a rect angle with the corners chipped off, thus allowing the upright supports of the deck-plate to be entirely independent of the masonry within the binders. The uprights are wrought iron I beams in lieu of the usual cast iron columns, thus avoiding weight, securing more room, and the flanges on the sides forming excellent racks for supporting bars and other implements used about the furnace.
The usual troublesome cast iron deckplate is superseded by I beams, the space between them being utilized as a channel to conduct off the noxious gases and fumes that escape to a greater or less extent from all furnaces, owing to the pressure within, due to the blast pressure; from the channel above mentioned are flues to conduct the gases, etc., to the outside of the stack building.
At the feed door is a ledge a few inches high, thereby requiring the feeder to throw the charges over it into the furnaces, thus preventing the charges being shoved in, and the fine materials all falling in on one side of the furnace.
The space between the crucible and deck plate cau be filled with brick and water tuyeres or spray jackets, or water jackets of cast iron, wrought iron, or steel, with closed or open tops; the engraving represents open top steel jackets. Jackets of this construction have been thoroughly tested at the large new smelter of the Horn Silver Mining Company near Salt Lake City, Utah, and proved to be the most economical, although of somewhat higher original cost, than other form of jackets. These jackets are constructed by forming the sheet next to the fire into a box-six inches deep, the corners being shaped up without cutting, welding, or riveting (the back is formed by a shallow box fitting into the deep one), resulting in a presentation of no welded or riveted joint to the action of the fire, excepting where the bronze metal tuyere thimble is secured by countersunk rivets to the inside sheet of the jacket, and from which no trouble has resulted, owing to precautions taken in the details of construction.
The end jackets do not run down to the crucible, the spaces so left being closed by small jackets with the tap hole through them; these small jackets can readily be removed without disturbing the main end jackets, in cases of necessity admitting the introduction of a bar without "running down the furnace."
One of the most fruitful sources of annoyance about furnaces is the blast and water pipes; in this furnace the details of
these pipes have received great care. The blast pipes do not interfere with putting in or removing jackets, and they are out of the way of water pipes, permitting of readily repairing the same. The blast pipes are not in the way in bricking up from top of jackets to deck-plate. All the water pipes are readily accessible for repairs, and the water pipe valves are within easy reach of the furnaceman, yet out of the way in working around the furnace. The water pipes and valves are so arranged as to admit of removal, and repair of any jacket without disturbing the water supply, or connections of other jackets.
There is frequently considerable trouble in keeping jackets properly cool, when first starting, upon account of their not being protected with a layer of chilled slag; this trouble is found to be entirely overcome by the use of an auxiliary supply, obtained through the connection to the blow-off hole in each jacket, which supply is only used under the circumstances above indicated.

The brace under the slag spout is notched in steps for the purpose of catching the edge of slag pots, thus holding them level without putting a block under the foot of the pot carriage; such blocks being a source of annoyance, as
the slag pot wheels frequently strike them, causing the bot
slag to be spilt.
Frequent reference has been made to details, as they are an indication as to the convenience in the practical operat ng of any device.
In this furnace the maximum strength and durability with minimum weight are secured, and there is no piece but admits of ready transportation. The total weight is very small, consequently cost of transportation small. There are no cast iron parts liable to break, and all parts are readily removable for repairs. The escaping noxious gases and vapors are carried off. The forms of all essential parts have been approved in practical working.

Magazine Guns.

The Board of Army Officers designated to examine into the merits of the different magazine guns have just concluded their report and transmitted it to the Secretary of War. The tests of the different guns were commenced in the early part of July, 1881, and included every magazine rifle brought before the Board
The Lee gun, No. 36, the Chaffee-Reece, No. 33, and the

SMELTING FURNACE MANUFACTURED BY THE LANE \& BODLEY COMPANY, CINCINNATI.
new Hotchkiss, No. 34, representing the different system of the detachable and fixed magazines, passed these tests in a satisfactory manner, possessing in a remarkable degree efficiency as single loaders, safety, ease of loading, rapidity of fire, endurance, moderate weight, and simplicity of construction. The Board, therefore, regard them as suitable for the military service, and recommend them in the order named.
On account of the novel and meritorious features of the Spencer-Lee, No. 35, and its record made before the Board especially for rapidity with accuracy, it is recommended that the manufacturers be invited to produce models embodying suggestions of the Board as to weight, etc., and to submit them to the War Iepartment with a view to the trial of a limited number in service.

Tradition says that beer was first made at Pelusium, on the Nile, 400 B. C.; but nowadays only a crude kind of barley beer is made by the natives in Egypt. There is, however, a brewery in Cairo, owned by a Geneva company, and worked on the German system, which can turn out 400 barrels a week.

A method of obtaining oxygen from air, for technical purposes, has been recently devised by M. Margis, of Paris. The principle is that of dialysis, or diffusion under pressure Atmospheric air being forced against a first caoutchouc membrane by suction, a mixture of about 40 per cent of oxygen and 60 per cent of nitrogen is obtained on the other side. A second membrane increases the proportion of oxy gen to 60 per cent; that of the nitrogen being reduced to 40. A third gives 80 per cent of oxygen ; a fourth, 95 per cent. M. Margis prepares bis membranes by immersing taffeta in a solution containing sulphide of carbon (or light petroleum ether), spirit of wine, ether, and caoutchouc. After drying, the taffeta has a tine layer of caoutchouc on it. A bag of the membrane, with a framework of rings of galvanized iron wire, is placed in a cylindrical iron vessel admitting air. It is connected by means of strengthened caoutchouc tube with the suction pparatus, which is (pre ferably) formed of a cylinder containing a series of conical cups with small spaces between. Steam is forced through these, and draws in the gas obtained from the first diffusion, passing on with it through a cooler, where the steam is con densed and the gas separated for its second diffusion. This latter occurs through a similar apparatus, except that the space round the bag is provided with a tube passing down into water. The pressure can thus be regulated, and the superfluous gas let off. Four sets of the apparatus are generally used (as already indicated), and the final gas with 95 per cent of oxygen is collected in a holder. Even the mixture obtained from the first dialysis is strong enough to considerably increase the luminous power of a gas holding hydrocarbons, M. Margis says as much as tenfold.

Parisian Real Estate

It is calculated that no less than eleven hundred dwelling houses are now being constructed in Paris. In order to realize what this means, attempts at comparison with English houses must be put aside, for by far the greater part of these new buildings are of immense size-what the French call maisons de rapport-i. e., destined to be let out in suites of apartments, each of which is a complete dwelling in itself, so that the average number of inhabitants per building will be at least ten times greater than that sheltered by London houses. Notwithstanding this abnormal activity in the building trade, which has, moreover, continued for upward of three years, the value of house property is rising every.day. Taking at random a few instances from a list of recent sales in the French metropolis, we find that No. 62 Boulevard Malesherbes has just realized $1,200,050$ fr.; No. 64, 1,030,000 fr.; the private residence of M. Secretan-Overnay, 59 Rue de Ponthieu, 1,500,000 fr.; and that of the Comte d'Haussonville, 35 and 37 Rue Saint Dominique, 2,900,000 fr. The Architect.

The London Fisheries Exhibition.
The prospects of the International Fish eries Exhibition in London, next year, as indicated by a report of the Executive Committee just issued, are exceedingly bright. Applications for space have been received from all parts of the world, and the expectatioy is that the successful exhibition at Berlin will be surpassed.
The exhibition area will cover about 250,000 square feet. A prize of $\$ 500$ is offered for the best essay on catching and distributing sea fish, and another, also of $\$ 500$, for the best essay on the food of fish; while the best lifeboat exhibited will carry off the fine gift of $\$ 3,000$. Among the other money prizes are four offered by Ashmead Bastlett Burdett-Coutts for the best collections of fishing rods; a prize of $\$ 100$, given by the Baroness Burdett-Coutts, for the best plan of a fish market; and a prize of $\$ 300$ for the best model of a carrier boat, the boat to be specially adapted for preserving the lives of her crew. The English Government will strike medals at the Mint as rewards of merit, will issue diplomas of honor, and will probably make a grant of public money toward the expenses of the exhibition.

Vegetable Butter.

N. Jepson, an English vegetarian, not wishing to use poor and adulterated animal fats, has sought a substitute, and found it in a composition for which the following is the formula: Take four ounces of the finest Brazilian nuts, pounded very fine in a mortar; four ounces pure olive oil; rub them into a smooth jelly; add eight ounces of fine wheat flour and a quarter of an ounce of salt. Rub the whole into a smooth paste, and use as butter. This would certainly be preferable to much that goes by the name of butter.

The Ames Monument

Th commemorate the services of Oliver and Oakes Ames in connection with the building of the first railway across the United States, connecting the Atlantic with the Pacific, the Union Pacific Company are erecting a granite pyramid on the highest point near its track. The monument is now nearly finished. It is 60 feet square at the base and 60 feet high, laid up in undressed red granite, in a style calculated to last for centuries. On the west side is a medallion bust of Oakes Ames, 9 feet high, with the date of his birth and death. On the north is the inscription: "In memory of Oakes Ames and Oliver Ames." On the east side the bust of Oliver Ames has yet to be placed. The top is rounded off, and does not make an acute angle. The cost is said to be nearly $\$ 90,000$.

A Curious Tree.

Lieutenant Houghton, who has recently visited New Guinea and several other groups of islands in the Pacific, reports the existence of a prehensile tree. It appears to be a species of ficus, allied to the well-known banyan-tree, which throws out from its branches air roots, that eventually reach the ground, and take root there, and in their turn become new stems, which perform the same function; so that a single tree will.eventually extend so far as to form a complete forest, in which the stems are united by the branches to each other. The prehensile tree in question similarly throws out from its branches long, flexible tendrils, which, touching the ground, do not take root there, but twine around any article that may lie within their reach. After a time these quasi branches contract, so that they fail' to reach the ground; but the finger-like processes con tinue to closely gripe the article round which they have twined themselves, and which are consequently suspended in mid-air. In this way, articles of considerable weight may be literally picked up from the ground and held in suspension.

Aluminum.
At the reeent meeting of the British Association, Mr. Barlow read a paper "'On the Mechanical Properties of Aluminum." This metal is used chiefly as a substitute for silver, but the author had found it to be exceedingly strong in proportion to its weight. Experiments bad been carefully made for him by Prof. Kennedy, from which its valuable properties of ductility, tensile strength, and elasticity were fully demonstrated. This was well illustrated by the comparative length of rods of uniform section, but of different metals, which could be suspended witbout rupture, the lengths in the case of steel and aluminum being equal and exceeding all others. Unfortunately it is an expensive metal, and the process by which it is at present extracted metal, and the process by which it is at present extracted
leaves little hope of its use being greatly extended. Sir H. leaves little hope of its use being greatly extended. Sir H.
Bessemer said he did not think any metal could be depended on like the one in question, from the small part its weight took in producing its rupture. He exhibited a key of the material (about the size of a large latch key), and it was stated that forty-five of these would only weigh one pound.

Obsenvationg upon Rusian railway bave
Onsen upon Russian railways have resulted in howing that for the period of six months 77 per cent of the fractures of tires occurred when the temperature was below zero, 4 per cent at zero, and only 19 per cent at higher temperatures.

IMPROVED CIRCULAR SAW MILL
We present an engraving of a circular saw mill lately intro duced by the Taylor Manufacturing Company, of Westminster, Md. Circular saw mills have, to a certain extent, dis placed the reciprocating mills. and are now chiefly used in the
liable to deceive those who are not familiar enough with the subject to know how much a mill should do. They work very fast, and when the stuff is badly sawed, as is invaria bly the case when a mill is built regardless of quality, so that it can be sold at a low price, the loss is very great

The object of the manufacturers in de

Fig. 1.-GAUGE ROLLER.
manufacture of lumber. The improvements made in saws in the last few years have done much toward bringing the circular mill into popular favor. To keep pace with these and other improvements, and to more perfectly meet the wants of saw mill men, the mill illustrated has been designed.

Fig. 3.-EXTENSION GUIDE.
There is probably no machine made by which purchasers are in so great danger of being misled by appearances as in circular saw mills. The chances for deception are numerous; circular saw mills cut so much faster than old fashioned sash or muley mills, that they seem to be doing wonders, and are signing this mill is to furnish the machine at a fair price, and at the same time pre sent entirely new valuable features in construction and design. The main frame is of castiron, of girder shape; it is well proportioned for strength, and being cast in one piece cannot spring out of line. The mandrel is made of steel, and of large diameter so as not to spring. The mandrel boxes are self-oiling, and have large bearing surfaces; they are provided with an ingenious device for giving lead to the saw. The feed and the backward motion of the carriage are operated by friction, thus doing away with belts and complicated gearing. There are three fixed changes of feed operated by one lever, and the feed can be varied or stopped instantly by a slight movement of the lever. The gigging back is controlled by the same lever, and can be speeded slow or as fast as seven hundred feet per minute. This rapid gigging back saves much time, and is secured without any injurious jar on the machinery, as the movement of the carriage is gradual to its fastest \cdot speed. A rapid movement for setting up the \log to the saw is secured by the combined gear for moving up the head block, and a novel quick-acting accurate gauge roller. This gauge roller, shown in Fig. 1, is placed on the end of the frame in front of the saw and at the feed lever where the saw yer stands, thus being convenient to his hand. The roller is operated by one lever to set it in position, and the lever is held in place by a latch in notches cut in an arc, as shown in the engraving. These notches are marked in one-quarter inches, and serve as a rule to saw by, so that the sawyer only has to set the roller, and an attendant who rides on the carriage brings the log up to the gauge-roller, while the carriage is moving toward the saw, and the result is the lumber is sure to be straight, and of whatever thickness the roller is set for. The connections of the lever to the gauge roller are provided with an adjustable link, by means of which all lost motion of parts connecting the roller and the lever can be corrected and the roller always kept true to the saw and the figures on the notched arc. This adjustment can also be used for setting the roller to any fraction less than a quarter inch; for instance, for lumber that is one inch full, or one inch and an eighth, and so on, it is only the work of a few minutes to set the roller for it. This gauge roller is an entirely new feature, and has been patented. It is very important on any saw mill, and is applicable to all mills.
Another very important feature of this mill is a continuous \log beam in combination with a main head block for dogging the log. This log beam extends the whole length of the carriage, and is arranged every eighteen inches of its length with fending blocks that are dovetailed into the beam as shown. The blocks virtually serve as head block knees in keeping the lumber to the saw and prevent its springing, and the face of these blocks can be trued in perfect line with the saw by taking a cut-off of them after the mill and carriage has been set in position, and it may be kept true by same means, and when worn out can be replaced. It can readily be seen that the lumber, by having \mid to pass between these blocks, and the gauge roller and the

Fig. 4.-NEW. CIRCULAR SAW MILL MADE BY THE TAYLOR MANUFACTURING COMPANY.
face of the blocks being true to the saw, straight and even lumber only can be produced, it being impossible, if the saw is in proper order, to saw bad lumber. This is a novel and important feature.
The log beam is made of three pieces, in box form, and is very rigid. It is secured to the elbows of the head blocks, three of which go with twenty-four feet of carriage, and two short elbows that fit into back of log beam, and one main dogging block at end of beam, as shown in cut. Combined in the elbow of this main block is an ingenious device for dogging or holding the log in place on the carriage. This dog is the only one needed on the carriage, it is very complete, and being part of the head block proper is very rigid and strong. The dog is arranged in a cross-head that slides up or down in the elbow; through this cross-bead the dog can be made to project so as to fasten well out on a rough \log while it is being slabbed, or it may be set for holding the last board one inch thick. It is held securely in place by means of a clamping device, and cannot come in contact with the saw. The cross-head and dog are operated by a long screw that is threaded its entire length, and engages two half nuts that may be opened and closed, and by which the screw and dog are held suspended at any point, or released, and when dog is lifted to the top of elbow out of the way of lng as it is rolled into the head blocks by releasing the two nuts the cross-head dog and long screw will drop down, and the weight of all together will force the dog into the log sufficient to hold, and if it does ot the nuts can be engaged into the screw, and by turning the handle shown t top of elbow, the dog can be forced into the \log as far as desired, and by the turning of the same crank the dog can be pulled out of the log, and when out of the og can be drawn quickly to top of elbow by releasing the nuts and lifting by the end of the screw that projects out of the top of elbow. This whole movement is very rapid, and is accompl:shed by a man riding on the carriage. The dogging and setting up of the log can be done while he carriage is in motion, and according o directions given by the sawyer. It is evident that by such arrangements the saw can be kept in the log a greater pro portion of the time than with other mills where the sawyer sets up the logs and must stop the carriage to do so. A detail iew of the main dogging block is given in Fig. 2.
A plain lever with simple ratchet ar rangement is used for moving the elbows of head blocks. A figured rule is also rranged on the main head block, so that he man at the head block can keep tally with the gauge roller and also use it for slatbing. The shaft connecting the head blocks is of large diameter, so as not to spring nor twist in bringing up the log The carriage is strong and well braced and held together by iron rods and extenions at each end, eight feet long, which allows a log to be sawed full length of the carriage; on each side of extensions there are guides, Fig. 3, that run in rollers and prevent the rack on the extensions from springing out of the pinion and tearing off the cogs. This allows of the sawing of pieces 10 feet longer than the carriage. It is an improvement peculiar to this mill, and any one familiar with mills will understand the importance of it. The rack is wide on the face, and cogs are large and strong. The rollers under the carriage are of large diameter and strong, one being flat and the other being flanged on both sides so as to run over a regular T rail, same as used on railroads, which runs easier and less wear than the V-shaped track used by other builders, and the track being high is comparatively free from being covered with sawdust.
The company build five sizes of circular saw mills; the mill shown in Fig. 4 being their No. 3 mill, or medium size. No. 5 mill, called the plantation mill, is the smallest size. No. 1 is their largest mill, suitable for heavy engines, and built to stand the heaviest kind of work; feed belt is six inches wide, and feed of carriage to saw three and four nches.
For further particulars address Taylor Manufacturing Company, Westminster, Md.

Enameled Cloth

As a substitute for leather, enameled cloth is now largely used where lightness and pliableness are desirable. Having the appearance of leather, and nearly, if not quite, its durability, it is used where strength is not so important as a good appearance. In the covering of carriage tops, the upholstering of furniture, the covering of trunks and traveling bags, a great quantity is used, and it is also employed in garments, coverings, etc., as a protection from water. Enameled cloth originated in America, and was first made at Newark, N. J., in 1849. The details of its manufacture are very simple, and can soon be told. The foundation of the article is cotton cloth of the best quality, and generally
made expressly for this purpose. The cloth is taken from a
bale and wound upon a large cylinder preparatory to receivbale and wound upon a large cylinder preparatory to receiv-
ing its first coat. It is then passed between heavy iron ing its first coat. It is then passed between heavy iron of compom the top one of which it receives its first coating knife under which the web passes. The composition is made of linseed oil, lampblack, resin, and a few other ingredients, which are boiled together till they reach the consistency of melted tar. From between the cylinders it is carried to a drying frame made in the shape of a reel, and sub jected to a high temperature in the drying-room, which is heated generally by steam pipes. After the drying process it is given to workmen who make all the rough places smooth by rubbing with pumice-stone and water. The cloth is then passed through the same operation as before, rolling, drying, and rubbing, and this is repeated from three to five times, or until the required thickness has been laid on. After the last scrubbing down, the fabric is taken to anothe department, thoroughly varnished, and again passed through the heater. It now appears as a piece of cotton cloth, with one black side looking very much like patent leather. One step yet remains to be taken. The cloth is passed between heavy rollers, which cover its surface with regular indentations resembling the grain of leather. It is now ready for the market. We venture to say that as many frauds are perpetrated in this article as in any other article that can be

Fig. 2.-HEAD BLOCK.
material first fill the cloth with clay, and the result is an enamel that will crack diuring the cold weather of winter, or, in their endeavor to turn out a cloth that will stand a low temperature without cracking, they fill the merchant's shelves with material that will be sticky in summer. The poor quality is used in the cheap trunk and bag trade, but none but the best will do for the outside wear that comes upon carriage tops. Taunton turns out the best line of goods of this description that comes to the market.-Manufacturers' Gazette.

Baked Angle Worms.

The Pall Mall Gazette (London) gravely reports that a group of French gourmets have tested the edible qualities of the common earth worm, whose agricultural services have been so recently demonstrated.
"Fifty grests were present at the experiment. The worms, apparently lob-worms, were first put into vinegar, by which process they were made to disgorge the famous vegetable mould about which we have recently heard so much. They were then rolled in batter and put into an oven, where they acquired a delightful golden tint, and, we are assured, a most appetizing smell. After the first plateful the fifty guests rose like one man and asked for more. Could anything be more convincing? Those who love snails, they add, will abandon them forever in favor of worms."

Explosives from Tar, Pitch, Coal Dust, and Peat.
Two years ago, Hellhoff, of Berlin, patented a process for making explosives from crude coal tar oils by direct nitration with strong nitric acid. The mixture of various nitro-substances thus obtained was washed and diried, then mixed with oxygenated substances. The alkaline nitrates, chlorate of potash, and the strongest nitric acid served for this purpose.
Experience gained by the long-continued manufacture with aid of steam proved that the separate fractions of the crude tar oils, even those of the highest boiling point, were capable of nitration, and gave a satisfactory'yield of nitro-derivatives. The question naturally arose whether the tar itself could not be nitrated and utilized for making explosives. Experiments made in this direction soon proved that the treatment of coal tar with strong nitric acid was a very dangerous operation, that its employment on a large scale would be attended with great difficulties, and the greater part seemed to be burned up and lost. In subsequent experiments, therefore, an acid of 1.53 to 1.45 specific gravity was employed. The liquid tar is gradually stirred into the acid, the surface of the acid becoming covered with it. After a while this layer of tar contracts on stirring and settles slowly to the bottom. After about ten minutes the mass at the botom puffs up, and gradually changes from a liquid to a solid or pasty state. The completion of the operation can be recognized by the mass rising from the bottom and spreading itself evenly over the surface.
When the acid has been all used up the tar which is added no longer contracts and settles to the bottom. The chemical changes does not produce an excessive amount of heat, so that cooling is unnecessary.
The product thus obtained is well washed with excess of water, and the sour wash water that remains in its pores is expressed out. The purified product is then mixed with the oxygenated bodies above mentioned. One part by weight of the product dissolves very slowly with the evolution of but little heat, in three parts of nitric acid, specific gravity 1.52 .
All these mixtures gave new explosive compounds of different degrees of violence. The power possessed by a solution of these new nitro-derivatives in concentrated nitric acid is evident from the fact that a small quantity of it, when exploded by a double dynamite exploder, was able to shatter an iron shell.
Owing to the varying composition of the tar, it is impossible to give the exact proportions in all cases of the oxygenated substances which must be added, but in the experimentsit was found that two to five parts of concentrated nitric acid (chloric acid), or four to six parts of the salts, were sufficient for one part of the nitro-derivative. The great advantages offered by this process are: cheapness of the material to be acted upon, the cheapness of the lighter acid used (the difference is about 60 per cent), and finally in the quiet and regular manner in which the operation takes place, permitting of the use of more simple and less expensive apparatus, etc.
These favorable results led to further experiments upon the pitch, the paraffines, etc., as well as the mineral oils. The pos. sibility of nitrating the latter seemed probable from their great similarity to the crude tar oils. Experiment, in fact, proved that they reacted exactly alike. But the strongest nitrating agents are required to act upon the purified mineral oils used for illumination. A mixture of equal weights of the strongest nitric and sulphuric acids, or a mixture of an alkaline nitrate with sulphuric acid, was employed.
On paraffines and similar products the weaker acids are as ineffective as on purified mineral oils. By the action of the nitrating agents mentioned upon purified mineral oils, nitrocompounds were precipitated of a light yellow or light brown color having the external appearance of rancid fat. These products are difficultly soluble even in the strongest nitric acid. Pitch treated with nitric acid of 1.45 to 1.52 specific gravity gave a yellow-brown solution, and from this light yellow to brown scales separated on washing with water. The oil and pitch from wood tar were treated with the weaker acid ($1 \cdot 45$), and those from brown coal and stone coal with the stronger acid $(1: 52)$. The products thus obtained are easily soluble in strong nitric acid with slight evolution of heat. These nitro-compounds when mixed with oxygenated bodies also form powerful explosives, but the quantity of the latter used must be two to four times gi,eater than that added to nitro-derivatives of tar. There is no special advantage in working these materials as compared with tar or even the tar oils, for a high grade of acid must be used, while the increased quantity of oxygenated salts raises the price still higher. Still, this process is of some importance in so far as pitch is concerned, since the price of ar is likely to increase as more uses are foend for it. All the special products of the distillation of coal having
been found capable of being converted into explosives by nitration, it only remained to try an experiment on the original materials, coal and peat. Wood was excluded from the list for its conversion into an explosive (pyroxyleine) had already been accomplished by Trauzl. It was found that the direct conversion of coal into an explosive by extracting the nitro-products, would in volve very expensive and tedious manipulations. After numerous unsuccessful experiments, in which the product was either completely burned up; or the coal was but slightly acted on, we were induced to try a gradual nitration. The coal, in form of a fine dust, was first treated with weak nitric acid, specific gravity 140 to $1 \cdot 48$; the weight of acid required was ten times that of the coal used. When stone coal was introduced slowly into the àcid the rise in temperature was inconsiderable, and some hyponitric acid was formed. The action was much more violent in the case of brown coal, and least so with wood coal. After the operation with any coal, a large portion of the material to be nitrated remained apparently unaffected, and formad a thick sediment on the bottom of the vessel, while the nitro product was dissolved in the acid layer above and imparted to it a light brown color-with brown coal nearly a black color. When this fluid layer was well washed with water, the nitro product was thrown down as a fine brown powder. This precipitate was filtered out, and washed repeatedly until the wash water was no honger acid. The sediment was also washed several times to remove the exhausted acid, then dried and finally treated with the most
concentrated acid. It separated into two layers, the liquid concentrated acia. It separated incol product suspended in it. Again the precipitate was brown, product suspended in it. Again the precipitate was brown,
either light or dark. The solid residue was again washed either light or dark. The solid residue was again washed
and dried, then treated with the most powerful nitrating and dried, then treated with the most powerful nitrating
agents. In this way we succeeded in converting nearly all the brown coal and stone coal into nitro bodies, as well as the larger portion of the wood coal.
The yield was scarcely sufficient to compensate for the large consumption of acid, especially with the wood charcoal and coke. All the nitro products obtained are nearly alike in color, state of aggregation, and other properties. They are insoluble in water, soluble in alcohol, and the most concentrated in nitric acid, and burn with strong aromatic odor. They are heavier than water.
The results of experiments made on peat were consider ably more encouraging, different kinds being tried. A firm, solid kind called "bog peat" (Moortorf), from Lüneburg, was tried after a small test had shown that the reaction would not be too violent. It was first subjected to the action of equal parts by weight of the strongest nitric and sulphuric acids for several hours. The substance changed color from dark brown to dark red. Ignited in the air it burned with a lively flame and strong, aromatic odor. When soaked in a solution of chlorate of potash and dried, it formed a power ful explosive. If the same peat was well pounded before the nitration so that the humus substance was separated from vegetable fibers, and a larger surface was exposed to the powerful action of the acids, the earthy humus constituents were converted into a dark brown liquid, sticky nitrobody, have the external characters of that obtained by nitrating the heaviest tar oils. Its action when mixed with oxygenated bodies is also just like the latter. The other nitro substance, formed from the finely divided fibers left in the dry distillation that attends the formation of peat, yields an explosive without any admixture of an oxygenbearing salt. In the open air it burns very rapidly, leaving a slight carbonaceous residue.
Peat containing animal admixtures acts just like this bog peat. Peat that seemed to be of later formation would not bear the action of concentrated acids. There was a violent evolution of byponitric acid, and in spite of the most careful cooling the heat became so great that there was danger of its reaching the ignition temperature of the nitro-derivative, so that the process had to be interrupted. The same peat was then mixed with ordinary commercial nitric acid, specific gravity $1 \cdot 35$, and as the action of this acid was scarcely perceptible, concentrated acid was gradually added until the process began to be quite violent. The acid had then been brought up to a gravity of $1 \cdot 45$. After the reaction had gone on for several hours with careful cooling, the product was washed and dried. This is also an explosive without the admixture of the oxygenated body, but not so strong as that made from bog peat with the stronger acids.
Others of the newly prepared nitro derivatives, especially those from the crude tar oils by repeated nitrations, form explosives alone; but they are always weaker than when mixed with oxygenated bodies.
The manufacture of explosives from peat, owing to the cheapness of the material and its wide dissemination, as well as the simplicity of the process, is doubtless an important step in advance.
The chief characteristics of the newly-prepared nitro-substances are the following: The specific gravity of all is very nearly that of water. They all possess a powerful aromatic odor, resembling the fruit ethers, which is particularly noticeable on burning them. All solutions of these substances have a strong. refractive power. The greater part. of them are soluble in the strongest nitric acid, as well as in alcohol; they are all insoluble in water. In the open air they all burn with a bright, but more or less smoky flame. Their molecules are so slightly united that they can be exploded alone or mixed with oxygenated substances, by simple ignition.-Deutsche Industrie Zeitung, No. 36.

The Microphone and Fire Damp.

A new application of the microphone to the determination of the position of nodes and ventral segments in columns of vibrating air has been communicated to the Academy of Sciences by M. Lerra-Carpi. The microphone is mounted on an elastic membrane stretched over a little drum, and then lowered into the sounding pipe. When the apparatus phone gave out a rumbling sound, similar to that caused by an induced current. On the other hand, when the microphone passed a belly the sounds become very faint and rare, while at intermediate points they increased or diminished according as the microphonic sounder was brought nearer to a node or a belly. It is believed that the microphone may thus be made useful as a detecter of fire damp in mines. According to some observers such explosives are
anays preceded by undulations too feeble to be dealways preceded by undulations too feeble to be de-
lected by the human ear, but these latter would be revealed by a system of microphones placed at intervals through the mine.

apparatus for changing car trucks.

The engraving siows a novel device for facilitating the changing of the trucks of railroad cars when the cars are to pass upon a track of different gauge. The invention con sists of a platform or frame raised and lowered by means of eccentrics, and provided with rails corresponding with stationary rails placed at a lower level than the rails of the main line and sliding tracks, and at right angles therewith, and carrying a transfer-truck to receive and carry the car trucks. In combination with the eccentrics carrying the

atkinson's apparatus for changing car trucks
platform or frame there are chain-wheels, chains, and a capstan, by which the eccentrics can be readily operated to rise and lower the truck receiving the platform or frame.
By means of this apparatus a train of cars can be transferred, or all of the trucks changed, without disconnecting the train. All that is necessary to do is to back the train over the apparatus and transfer the trucks in the manner illustrated by the engraving.
This invention has been patented by Mr. Geo. W. Atkinson, of Petersburg, Tenn.

Cotton Manufacturing in the South
The development of cotton manufacturing in the South is ne of the most notable and promising industrial occurrences of the day. Not merely because of the rapid growth of the business, but more because of its appropriateness and apparent profitableness. The conditions would seem to be altogether in favor of the Southern mills, so far as the supplying of their home market is concerved at least, and it remains to be determined whether they have not also marked advantages in the competition for control of the markets of the West. The larger part of the charges for freight, job bers' commissions, storage, insurance, etc., which the East ern mill owner has to pay, the Southern mill is exempt from;
and the difference from $\$ 2$ to $\$ 3$ a bale in freight. alone is and the diffe
clear saving.
The Baltimore Journal of Commerce estimates the actual capital now invested in Southern cotton mills at $\$ 50,000,000$, of which nearly one-third has been invested within two years.

Touching the prosperity of these Southern mills the Journal says that ten per cent annual dividends are the lowest reported, and this after a large amount has been taken from the earnings for increasing the size and capacity of the mills. Under more favorable conditions the dividends have been much larger, as in the following instances
The Augusta, Ga., factory, the oldest mill in that city, has a capital of $\$ 600,000$, and runs 26,200 spindles and 790 looms; from 1865 to 1882, 17 years, it has paid out in cash dividends $\$ 1,467,000$, or about $2 \frac{1}{2}$ times its capital, or an average of $14 \frac{1}{2}$ per cent per annum; besides this it has laid aside a surplus of between $\$ 340,000$ and $\$ 350,000$, or over 50 per cent of its entire capital; its stock is worth from 160 to 170 . The Langley mill of the same city has a capital of $\$ 400,000$, with 10,000 spindles and 329 looms; it has paid in the past $3 \frac{1}{2}$ years $47 \frac{1}{2}$ per cent dividends, or an average of about 15 per cent per annum; last year it paid a dividend of 20 per
cent; its present surplus is $\$ 200000$, and its stock is worth from 160 to 170 . The Graniteville mill, also of Augusta,
with a capital of $\$ 600,000$, has 34,600 spindles and 900 looms his company pays 10 per cent dividends, and then puts it surplus into new spindles; out of its surplus earnings, that is, its earnings above its dividends, it has built, without a dollar's ; expense to the stockholders, the Vaucluse mills, with 10,000 spindles for making fine fabric, at a cost of $\$ 340,000$; it has also laid aside an additional surplus of $\$ 125,640$. The Enterprise was started in 1877, with a capi tal of $\$ 900,000$; it has also paid 10 per cent dividends, and laid aside the rest of its earnings as a surplus. The Wesson mills of Mississippi have paid a dividend of 26 per cent, and the Troup factory of the same State 24 per cent, while from ime to time we have noted dividends of from 30 to 50 pe cent, the latter having been earned by a Pulaski, Tenn. mill last year.
Against this, by way of comparing the relative profitable ness of Northern and Southern mills, is set the assertion of Mr. Russell, Member of Congress from Massachusetts, who said in the House of Representatives that he had from official sources a statement showing that fifty of the leading corporations in Lowell, Lawrence, Chicopee, and Salem Massachusetts; Manchester, Nashua, and Newmarket, New Hampshire; Lewiston, and other points in Maine, repre senting a capital of $\$ 50,000,000$ engaged in manufacturing the various grades of cotton and woolen fabrics, have paid to their stockholders in the last five years an average dividend of a little less than 7 per cent per annum only.
The cotton mills of the South already give employment to something like 40,000 operatives.

Georges Leclanche.

On the 14th of September, 1882, at 7 P.M., Georges Leclanché died at Paris, at the age of 43 years, a man universally well known and esteemed, the inventor of the peroxide of manganese battery. After leaving the Ecole Centrale des Arts et Manufactures de Paris, in 1860, Le clanché entered, as chemical engineer, the laboratory of the Compagnie des Chemins de Fer de l'Est, where he remained until 1867.
The year 1867 was the time of his first patent for peroxide of manganese batteries with a porous cell. He left the Compagnie to devote himself almost entirely to the indus trial development of his idea, which he completed by a series of subsequent patents. Two of these new patents are especially important: that of 1873, relative to cylindrical agglomerate surrounding the carbon, and that of 1876, relaagglomerate surrounding the carbon, and that of 1876, rela-
tive to movable agglomerate plates maintained against the tive to movable agglomerate plates maintained against the
carbou by India-rubber bands. Very limited at its commencement, the manufacture of Leclanche batteries is now almost monopolized at Paris by M. Barbier, employing 50 workmen, who manufacture at least 2,000 plates per day, and bave turned "out during the year 1881° about 280,000 elements.

At the present day complete elements or simply agglomerated plates manufactured at Paris are exported to all parts of the world. Leclanché batteries have penetrated everywhere; the recent invention of the telephone has given them a fresh impetus, and opened up an immense trade, of which the importance can scarcely at present be predicted; their increasing employment for domestic purposes, bells, calls, electric lamp-lighters, telephones, etc., has familiarized the public with electricity, and, to some extent, made way for more important applications. The capital invention of M. Leclanché will have been, therefore, at once a service and a benefit. His premature death in the full maturity of his intellectual power and of his chemical and electrical know ledge will be deeply regretted by all those who are interested in the progress and future of the applications of electricity.

Outside of his researches on batteries, which, to reduce them to a practical form, absorbed a large portion of his time, M. Leclanché was occupied with electric horology, and devised, to distribute the time to recording chronom eters, a sure and ingenious system of simple contact, very little known, and applicable to a number of electrical instru-ments:-The Telegraphic Journal and Electrical Review.

The Atlantic ocean Cable of 1869 .

It is stated by the Anglo-American Telegraph Company that the Telegraph Construction and Maintenance Com pany, with their S.S. Scotia, bave succeeded in picking up the Anglo-American Company's cable laid in 1809, between Brest and St. Pierre, in mid-ocean, in depths varying from 1,600 to 1,930 fathoms of water, and repairing the fault which occurred on the 18th March last. They have also repaired a minor fault at a distance of 335 miles from Brest, in a depth of 1,269 fathoms. The whole of the company's system of cables and land lines is now in perfect working order and condition.

Novel Fire Escapes.

The last invention for the protection of theater audiences is a " penetrable safety wall," which has just been patented by an engineer at Kottsbus, Germany. The plan is to make the interior wall in all parts of the theater of papier mache, made after a certain method. Such a wall will have the appearance of massive stone, but, by pressure upon certain parts where the words are to be painted in luminous letters "To be broken open in case of fire," access to the exterior corridors is to be obtained, whence escape to the outer air can be made.

IMPROVED THREE-CYLINDER ENGINE.

We give engravings of a new pattern of three-cylinder engine constructed by Mr. Jabez James, London, the engine being one designed and patented by Mr. James in conjunction with Mr. Walter Wardrope. The special features of the engine are the arrangement of the valves and ports, and the manner in which the valves are driven.
Referring to our illustrations, it will be seen that the engine has three single-acting cylinders, each of which is engine has three single-acting cylinders, each of which is
provided at its outer end with a short straight port leading provided at its outer end with
to the corresponding valve to the corresponding valve
casing. The slide valves are casing. The slide valves are
piston valves, and the cylindrical casing in which each valve works communicates at its outer end with the exhaust, while the central portion of its length is in communication with the steam supply. In addition to the supply. In addition to the port just mentioned, the opening and closing of which is controlled by the valve, each cylinder has other exhaust ports, so placed that they are uncovered by the piston when the latter has made about five-eighths of its stroke toward the crankshaft; these supplementary exhaust ports are shown dotted in Fig. 1, and in section in Fig. 2, from which their arrangement will be readily understood. These supplementary ports permit of the escape of a large proportion of the steam, as the piston, after having uncovered them, moves but slowly, so that they are left uncovered during a considerable fraction of the revolution. As will be seen from our engravings, the exbaust steam enters the engine casing in which the crank revolves, and finally escapes at the bottom to the exhaust pipe.
The manner in which the valves are driven willobe readily understood from Fig. 1, from which it.will be seen that each valve is driven by a rod connected to the piston next in the rear of it, the engine illustrated being arranged so that, looking at it as in Fig. 1, the crank-shaft would rotate in the direction of the hands of a clock. It will be noticed that the arrangement of valves and steam passages adopted allows of the connecting rods being made long, without causing any increase in the clearance spaces due to lengths of steam ports.
The crank-shaft has very long bearings on each side of the The crank-shaft has very
crank, and also a very long crank-pin bearing as shown in Fig. 2, so that the engine is well adapted for high speeds. Powe can be taken off eithe end of the crank-shaft and the arrangesk lows the encine to be ac curately balanced of these engines. On of these engines, shown at work lately at Mr James's factory, ran ex ceedingly smoothly and steadily. This engine has 6 -inch cylinders and 6 inch stroke, and is capable of being worked up to 40 in dicated horse present, however, it has been worked up to 16 horse power only, on ac count of an insufficien steam supply. .The en gine illustrated is fitted with single slide valves only, but the engines ar also arranged to be fitted with expansion gear con structed on the compound system. In another ar rangement adopted the valve rods, instead of be ing coupled to the pistons, are coupled to the connecting rods, it being thus possible to vary the cut-off within wide limits without incurring complication -Engineering.

The great iron bridge of the Atlantic and Pacific Rail road over the Cañon Diablo, in Arizona, has recently been completed. It is 500 feet long, the cañon being some 250 feet deep. The height of the bridge is 240 feet, or 14 feet higher than Bunker Hill Monument. The weight of the bridge amounts to something like 800,000 pounds, and the cost of construction was $\$ 200,000$.

FOUR-SIDED MOULDING MACHINE MADE BY ROWLEY \& HERMANCE.
venient to the operator. The arbors are steel, running in Rowley \& Hermance's patent journal box, which is mad in three parts, taking up side as well as top motion, thereby allowing this machine to do very smooth work. The heads are also of steel, the top head being slotted on four sides the two side and the bottom head are slotted on two sides. The top head-stock bas a lateral adjustment, and by a novel device the outside head antock be set at any angle de evice the outside head-stock can be set at any angle de sired and fastened, and then moved out or in or up and head-stock has a horizonta adjustment. There is a slide fitted into the table that can be moved to and from the under cutter-head, so as to allow cutters to project through the face of the table and act as a chip breaker.
The patent hood over top cutter-head is adjustable to and from the cutters to al low long knives to be used on head, and the hood is weighted to act as a com bined pressure shoe and chip breaker. The frame which holds the hood is hinged, and has a swivel or circu lar motion, and can be thrown entirely out of the way to give the operator fre ccess to cutter-head Ther are two adjustable yielding pressure shoes for holding the stuff firmly to bed while being worked.
These machines are made by Messrs. Rowley \& Her mance, Williamsport, Pa. who also manufacture mor who also manufacture mor or in other words, that the power required to produce 12 amps of 20 candle-power each by the Brush system is roughly speaking, about four times greater than that neces sary to give the same result in the former. The electro-mag nets of the new machine are intended to be excited from a separate source. Mr. Robert Hammond states that one of the new machines will light five times as many incandescen amps as any other machine.

NEW FOUR-SIDED MOULDER

With moulding machines heretofore made the principal fault has been that the feed works were not strong enough to carry the work through the machine, the operator being obliged to crowd the stuff, especially when it is a little damp. This is not only annoying to the workman, but ex damp. This is not only annoying to the workma,
pensive to the proprietor. on account of time lost.

Artificial wool from Vegetable Fibers and wool
E. Stutzer, in Berlin, has devised a method for making artificial wool by mixing wool with vegetable fibers like flax hemp, jute, etc., so that it will have a beautiful silky luster, and both the wool and other fiber will take the same colors It is well known that in bleaching and dyeing, fibers of vegetable origin require an entirely different treatment from those of animal origin. Hence it was necessary, when col ored wool was to be mixed with other colored fibers, to dye them separately, for if the mixture was dyed the different bers would take different colors in the same bath.
Stutzer found that this unequal dyeing was due to a gum Stutzer found that this unequal dyeing was due to a gum-
my substance found in the cells of the plant fibers, and his process is intended to en tirely remove this substance. Iu a vessel capa ble of holding about a hundred gallons, and filled about two-thirds full of water, he puts 220 lb . of the stuff and adds caustic alkali, and afterward some soap. The liquid is beated to 175° C. (347° Fahr.), by means of a coil of steam pipe in the bottom of the vessel, and the materials boiled half an hour. At the end of this time they are taken out, washed, and :insed, and then put in a second bath containing 62 parts ammonio-sulphate of copper to 2,000 of (carbon ate of) soda, or twice the quantity of the former without the latter. The goods are boiled in it for half an hour, washed rinsed, and dried If the goods are to be very soft the last bath is omitted.
When silk is to be mixed with vegetahle fibers a similar difficulty is met with in dyeing the mix ture. Agache \& Imbs, in France, overcame this difficulty by softening the

In this machine there is an entirely new device for gear ing the under feed roll, making it a very strong feeding machine. The under roll is so geared that it feeds equally strong when the bed is lowered to fourteen inches, as when working thin stuff. This is an important feature in sticking door stiles and rails or other wide stock, and is peculiar to this machine. There are two upper feed rolls, one weighted, the other held firmly by springs. The frame is heavy and strong, abeing one solid casting. The table is raised and lowered with a crank on top of the machine, con-
vegetable fibers in an emulsion of arimal oils with a soda solution, and then iling them up in the The plant fibers are mordanted in this way, and when mixed with waste silk can be spun like flax, wet or dry.
P. N.

Mediterranean fishermen complain that their sea, formerly free from sharks, is now infested with them. The arks come through the Suez Canal from the Red Sea and the Indian Ocean, and make sad havoc among food fish.

THE PROSPECTS OF SILK CULTURE IN THE UNITED states.
The prospects of a large and healthy, though probably not rapid, development of the native silk industry in this country are now particularly bright, for three reasons:

1. The general prosperity of our people and the wide dif fusion of wealth have been attended by, if they have not cre ated, a large and steadily increasing demand for silk fabrics, as the annual importation of over forts million dollars' worth of raw and manufactured silks amply demonstrates
2. The rapid and stable development of silk manufactur ing here during the past ten or a dozen years, and the probability that our manufacturers will notstay their efforts until at least the home market has been conquered. Our two hundred silk mills are already converting from ten to.twelve million dollars' worth of imported raw silk into manufactured goods, worth thirty million dollars or more. , In other words,
local and personal capabilities for silk production; and American raw silk and grain have been submitted for critical tests in Turkey, Milan, and Lyons, winning such commendations as to prove that, if the question of cost can be as satisfactorily settled as that of quality has beev, our silk growers need not fear competition in any quarter.

The question of cost is now the important one. The caring for silk worms is likely to be here, as it is almost everywhere where its prospers, a domestic enterprise chiefly employing the spare time of women and children during the early sum mer. The time available for such pursuits is now largely unoccupied; devoted to silk growing it would be so much clear gain; yet the industry must yield an enticing profit for the time devoted to it, compared with other possible occupa pations, or it will not command more than sporadic atten
tion. Fortunately the number of those who are now trying tion. Fortunately the number of those who are now trying
their hands at silk raising is so great that the financial prob

The beginning of the revival was manifested during the Centennial Exhibition. The exhibition and training school organized in the Permanent Exhibition by the association gave it a new and powerful impetus, the influence of whic was broadened by subsequent exhibitions of silk production at State fairs in Pennsylvania and New Jersey, and at the American Institute Fair in this city. The remarkably suc cessful exhibition of the Women's Association in Philadel phia last spring added materially to popular knowledge of silk culture and the industrial inducements it offers. In the meantime a silk culture society has been projected if not organized in New Orleans, and establishments for the culti vation and distribution of silk worm eggs and trees for feed ing worms have been established in or near various Southern cities. In this city a Silk Exchange has been organized fo the purpose of furthering the silk industry, and during th

 leaving cocoon (natural size) - 10. The ailantus moth and larva (half size).-11. Reel and finished raw silk.-12. Loom. -13 . Apparatus for loosening the silk threads from the cocoons.
there is now a home demand for at least ten million dollars' lems involved cannot remain long in doubt. If the stories and manufacture was maintained for several weeks. The worth of raw silk to encourage home production-a demand of profit told by many of these experimenters are no more accompanying engravings give several views of the mate that has doubled in the past two or three years, and is likely than half true the industry is bound to prosper, certainly in to increase quite as rapidly in the future. The declining the South, where the conditions are most favorable.
silk production of Europe, owing to diseases affecting the The Women's Silk Culture Association, whose headworms, indicates that we may, if we choose, compete with quarters are in Philadelphia, has been, perhaps, the most in the East for that vast market also certainly with the supply of eggs and cocoons.
3. In all parts of the country, particularly in the South and Soutbwest, a lively populer interest in silk culture has arisen durirg the past five years, and hundreds are experimenting in that direction with encouraging results. The Women's Silk Culture Association of the United States, es tablished only two years ago, reports over ten thousand correspondents. Trees and silk worm egys-technically grain respondents. Trees and silk worm eggs-technically grain for the soundness and prudence of the methods of the asso -have been sent by them to twenty-four States for testing \mid ciation.
fluential single agency, both in developing the revival of interest in silk culture and in keeping it from extravagance or anything tending to a repetition of the popular craze of forty years ago. The establishment of a new industry, in volving the intelligent action if not co-operation of thousands largely unfamiliar with business methods, and unused to sustained painstaking labor, is not an easy undertaking; and he success already achieved through their efforts speaks wel r the soundness and prudence of the methods of the asso
ation.
ccompanying engravings give several views of the mate rials and processes there shown. The contrast in size of the cultivated silk moth and some of our native moths yielding silk (and of their cocoons) is very great; yet none of the lat ter appears to yield so large a quantity of fine silk in condition to be readily unwound or reeled from the cocoon. It is quite possible, however, that by careful cultivation and selection there may ultimately come from our native moths insects which, in yield of silk, hardness, and general availability for this climate, will surpass the foreign moth as markedly as they already do in size and beauty.

The deepest mine in the world, according to Prof. H Hoefer, is the Przibram silver mine in Bohemia. The low est depth is 3,300 feet below the surface.

RECENT INVENTIONS.
 New Alcohol Cock.

This is an improved alcohol cock to be used in dissolving the hydrocarbon substances in gas service-pipes, and it is arranged so as to prevent the loss and waste of gas and alco hol during the operation. The device consists of a closed vessel, adapted to contain alcohol, connected with the gas service-pipe, and provided with a three-way cock for estaid lishing communication with the gas service-pipe or between the gas service-pipe and a pipe or tube leading from the cock up to the top of the closed vessel, so that the gas issu ing from a test-cock on the vessel can be ignited when the direct communication between the gas service-pipe and the vessel is interrupted, this test-cock being used to ascertain if the obstructions in the service-pipe have been removed by the alcohol flowing from the vessel into the service pipe for the purpose of dissolving these obstructions, generally consisting of congealed hydrocarbons. The alcohol is filled into the vessel through a tube provided with a circular loop or bend. In this way trap or seal for preventng the escape of gas is formed. To use the alco hol cock the cap at the top is unscrewed and the alcohol is filled into the vesse through the seal tube, the plug of the lower stopcock having been turned so as to close the communication of the glass ves$\epsilon \in l$ with the service-pipe, and close the pass-tube shown at the front of the glass cylinder. When the vessel is filled the cap is closed. If the plug of the lower cock is turned to establish a communication between the top and bottom of the vessel and the

New Alcohol Cock. service-pipe, the alcohol will flow from the vessel into the service-pipe and will dissolve the hydrocarbon substance which closes the pipe and obstructs the passage of the gas. After a certain quantity of alcohol has been admitted into the service-pipe the plug is turned one-quarter of a revolution, so as to interrupt the communication between the servicepipe and the bottom of the vessel, and to establish a communication between the service-pipe and the top of the vessel by means of the pass-tube. The cock near the burner is opened, and if the gas can be ignited at the burner, the ser-vice-pipe is clear and the substances have been removed; but if the gas cannot be ignited the service-pipe is still obstructed and an additional quantity of alcohol must be admitted into the service-pipe, and this must be repeated until this pipe is cleared-that is, until the gas will burn at the test-burner.
This invention has been patented by Mr. C. C. Mulford, of Streator, IIl.

New Tube Cutter or Expander

We give an engraving of a new tool designed for the removal of tubes from boilers in order that they may be re placed with new ones. The tubes are cut from within just inside of the flue sheet by the revolving expanding cutters of the tool, and its central bar being considerably longer than the main portion of the tool, prevents the tube from dropping after being cut. The tool may be withdrawn and the cutters removed and replaced by the wrench jaws which bite into the inner surface of the tube end and admit of wrenching it out of the tube shect. Should a burr be found on the outside of the end of the main part of the tube, it may be removed by using the three external cutters shown in the engraving as detached from the tool. A set of jaws for engaging the inner surface of the tube, for the purpose of pulling it out, of the boiler, are also shown in detail. These cutters and jaws are moved by the spiral in the end of the conical portion of the tool, and by expanding them more or less the sametool is adapted
 to different sizes of tube. The tool is worked by the pawl and ratchet in either direction, and when it is desired to work near the rim of the boiler one half of the handle may be removed and the tool can be worked by the remaining handle. This tool may be used to great advantage as a tube expander, also as a wrench for nipples and pipes. As it works from the inside there is no danger of collapsing the tube. It can also be
used to hold nipple and short pieces of pipe while they ar being threaded on the outside. The general usefulness o this tool will be understood and appreciated by fitters and boiler makers whose patience has been tried by ordinary tools for performing the various operations of which this instrument is capable. This invention has been patented by Mr. A. C. Hunsberger, of Portland, Pa

Device for Laying and Holding Underground Elec-

 tric Wires.The engraving represents an improved device for laying and holding underground wires, recently patented by Dr. H. C. Register, of 1907 Chestnut street, Philadelphia, Pa. In this device there is a water tight longitudinal boxing of cast or sheet iron, or of wood or clay, placed in the street under the roadway, and at suitable intervals it is provided with enlargements having manholes leading to the street. On the bottom of the longitudinal box there are two or more longitudinal troughs or compartments, some for telephone and telegraph wires, and the others for electric light wires Two partitions on the bottom of the longitudinal box ex tend throughout its entire length, and near the upper edges of these partitions a series of rollers are joirnaled. In each nlargement at the end of a section, and at suitable inter vals in the longitudinal box, is journaled a horizontal shaft,

each carrying a grooved pulley directly above the middle line between the partitions. Endless ropes pass over these pulleys, and the ropes can be moved by turning the shaft by means of hand wheels at the manholes
A carriage rests on the upper edges of the partitions, and can be firmly clamped to the endless rope. In operation he clamping carrier is fastened to the rope at one manhole or enlargement of the box, and one or more wires are atached to the pegs or staples of the carrier. By rotating the haft the carrier will be carried to the next enlargement or manhole, and the wires will have been carried through the longitudinal box from one station or enlargement to the next, and can easily be placed into one of the compartments of the box. In this manner the wire can be carried through any length of boxing, for when the ends of the wires have arrived at one station-that is, at the end of one section of arrived at one station-that is, at the end of one section of
the boxing-the wires can be attached to the carrier of the next section, and so on. The wires can be removed in a imilar manner.

Reversible Plow.

The engraving shows a new reversible plow, constructed so that it can be reversed at the end of the furrow in a very simple and convenient way, can be adjusted in height a may be necessary, and is provided with a carriage that can

be adjusted in width to suit the furrows, and which draws the plow with an equal and uniform draught. The engrav ing shows the plow with one of the shares raised, while the other: is in position for work. This improvement is the invention of Mr. Julius Hartman, of New York city.

Ammonia for Extinguishing Petroleum Fires.

A committee of the Polytechnic Society of Munich has issued a report on the means to be employed for extinguish ing burning petroleum. They say that since concentrated water of ammonia evolves a great amount of gas when heated, and as this gas is unable to sustain the combustion of any burning substance, burning petroleum must also be extinguished for want of oxygen if brought into a space filled with ammonia gas, and it may be safely asserted that petroleum will not continue to burn even in a room filled with atmospheric air, when there is a considerable quantity of ammonia gas mixed with the air, assuming; of ${ }^{*}$ course, that the place is closed so as to prevent a free interchange of air and cut off the access of a fresh quantity of oxygen o support combustion.
A second condition necessary for success, which is inti mately associated with the first, is that the space be not much larger than that of an ordinary house-cellar, so that there all be only a small number of barrels of oil, as is the case with a retail dealer. It may be assumed with certainty
that it would be in vain to attempt to put out a fire in a Finally, the store with ammonia.
Finally, the third condition is that the ammonia be used in large amount and of sufficient strength. The ordinary commercial aqua ammonia has a specific gravity of 0.906 , and contains nearly 10 per cent by weight of ammonia gas, but it can be made a good deal stronger, for cold wate absorbs so much ammonia gas that when the water is per fectly saturated with this gas the solution contains nearly 47 per cent of ammonia. The stronger it can be used, the more gaseous ammonia will be evolved on heating it, and the more efficient it will be for extinguishing a fire. But in no cases should ammonia water be used that has a highe specific gravity than 0.960 , and hence contains less than 10 per cent of gas.
Unfortunately it is impossible to say definitely how much ammonia ought to be kept in a petroleum room as a pre caution against fire. For while it is easy to determine the cubical contents of the room, experience is lacking to tel what volume of ammonia must be mixed with a given vol ume of air to extinguish a flame in it. Nor is it possible to tell how much of the ammonia which is there will be evapo tell how much of the ammonia which is there will be evapo
rated if a fire breaks out, and how much ammonia gas will rated if a fire breaks out, and how much ammonia gas will
be evolved and mixed with the air. Yet there will only be a greater or smaller portion of ammonia liberated according to how much heat is produced.
In 1881, Schlumberger proposed to extinguish a fire in a petroleum store quickly at the outset by keeping a large closely stoppered bottle of concentrated ammonia on every barrel, so that in case of a fire or explosion the bottles would break and the evolved fumes of ammonia prevent the fire from spreading any further. Schlumberger employed this simple method with the best results in his extensive experi ments on the distillation of petroleum.
Assuming that a large bottle held 10 liters of water of mmonia, and this contained but 10 per cent of gas, so that in the 20 liters there is dissolved not quite 2 kilos (1,920 grammes) of ammonia, and if on the breaking out of a fire only half of it vaporizes or is converted into gas, it would still fill quite a large space with ammonia gas. The weight of a liter of ammonia gas is at $0^{\circ} \mathrm{C}$., and under the normal pressure only $0 \cdot 761 \%$ gramme, so that 1 liter of liquid am monia would produce 1.313 cubic meters ($48 \frac{1}{2}$ cubic feet) of gaseous ammonia, measured at the freezing point of water. At the high temperature produced by the burning oil the gas would naturally expand and fill a much larger space.
It must also be remembered that Schlumberger's proposition, to put a large bottle of ammonia on each barrel, could be easily carried out without interfering at all with business. The cost of ammonia can scarcely stand in the way of its use for prevention of petroleum fire from spreading, because at retail 100 kilos (220 lb .) can be had for $\$ 9.25$. If no fire takes place none of it is lost, and when it is no longer needed it can be easily dispensed with
The use of water of ammonia as a preventive of petro leum fires, or rather to extinguish a fire that breaks out in a small store of it, ought to attract the attention of companies and societies concerned in extinguishing fires, and although the matter has not yet been so thoroughly tested that the owners of these store-houses can be compelled, as Schlumberger proposed, to keep closed bottles full of ammonia in the cellars where petroleum is stored, it might be well to recommend that this should be done, leaving it to the owners, if they would consult their own interest, to carry it out.-Deutsche Industrie Zeitung.
An illustration of the action of ammonia gas in extinguishing flame was afforded recently at a fire in Scharmann's brewery in Brooklyn, E: D. While repairing the Delamater ice machine the ether vapors took fire, and an explosion followed which enveloped the whole building in flames. As a result of the heat the ammonia machine ex ploded, and liberated such an enormous amount of ammonia gas that it checked the fire and prevented it from spreading to the neighboring buildings.

Novel Telegraphic System.

The Mutual Union Telegraph Company proposes to adopt a new method of doing business by telegraph. The plan is not unlike the telephone system. To illustrate the scheme Suppose that A in New York finds in the course of the day that he wishes to settle a certain matter with B , of Chicago. He sends word to the Mutual Union office to send to B, asking if he can be in the Chicago office of the Mutual Union at, say, 4 o'clock, in order to talk with A. If the answer is "Yes," then the two meet at 4 o'clock; one in Chicago and the other in New York, and two operators ask and answer whatever questions and answers are sent over the wire. In this way there will be no opportunity for delays or misunderstandings.

Grape Leaves for Pickles.

A writer in the Country Gentleman recommends the use of fresh green grape leaves to place on top of pickles in jars in place of flannel or other cloth usually employed. He claims the leaves will preserve the vinegar sharp and clear and impart a nice flavor. The leaves should be rinsed in pure water and left to drain before use, and occasionally changed. They exclude the air, and besides imparting.a de wife.

ENGINEERING INVENTIONS.
An improved mechanism for applying brakes to the wheels of cars has been patented by Mr John C. Glass, of Verona. Pa. The brake shoes are
suspended by links and are fitted on their rear sides suspended by links and are fitted on their rear sides
with toothed wheels. On the piston rod of a steam o air cylinder, placed above the brake shoes, is adjusta by secured a wedge-shaped block that is toothed o its edges to correspond with toothed wheels with brake
shoes When the piston is drawn upward the wedge shoses. When the piston is drawn upward the wedge
block draws between the brake shoes, pressing them gainst the wheels
Mr. Henry D. Thorp, of Fort Wayne, Ind., has patented an improved car coupling. In the opening in the drawhead is placed a latch, bent upward at its that presses it outward. In the latch is an aperture through which the coupling pin can pass, and when the latch is pressed out the coupling pin rests on the rear side of the aperture. When the cars are run togethe
the bumper strikes the head of the latch, pressing it back and Johowing the pin to drop to couple the cars.
Moupt, of Springtown, Pa., has patented an improved pump for supplying steam boiler with hot water. The feed pump of the boiler is vertical
and of the usual construction, and between the feed and of the usual construction, and between the feed
pump and the feed water heater is placed an auxiliary force pump. The pistons of the two pumps are reciproated simultaneously in the same direction, thus al ump cylinder
Improvements in automatic car brakes have been vatented by Messrs. Lafayette D. Hawley, of Ada,
and Addison R. Spalding, of Lake City, Minn. The brake cars and shoes are of ordivary form, and upon the rake bar at the end of the car is pivoted an angle plate which carries a buffer rod provided with a spring to the rod is uffer plate, and when the cars are run togeher, bifer heads come together, the roas
ing the brake bars to brake the wheels
Mr. Jackson J. Kennedy, of Cleveland Tenn. has patented a car coupling in which the draw
barss are oscillating shafts, having on their outer ends pecuiarly constructed goose-neck coupling hook which are permanentily hela in a position for coupling by weights hat tend
come together, the hooks strike each other, and by their peculiarshape cause the shaftst to rock and the weights Devices are provided for locking the hooks open closed.
cedice

ELECTRICAL INVENTION.

A device for giving an alarm as soon as the locking bolt is thrown back in the lock has been
patented by Mr. James P. Freeman, of New York city. Contact strips attached to the sliding bolt of the lock rest in such a manner against a slide for closing an
electric circuit, that when the door is locked the circuit will be broken, and when the bolt is drawn to unlock on a bell placed in the circuit.

AGRICULTURAL INVENTIONS.

Improvements in thrashing machines, by which grain is srevented from being carrien over the
tailboard' of the machine with the straw, and also that the sieves from clogging, have been patented by edge of the board that feeds the thrashed straw and grain to the sieves are attached fingers that allow the grain to drop through, while the straw and chaff are rought into suitable position to be operated upon by the air blast. A tail board inserted in the shoe of the
sieves catches the headings, and they are returned to sieves catches the headings, and
the cylinder to be re-thrashed.
Mr. Fontain P. Hoke, of Sullivan, Ill., has patented an improved method of adjusting the rear end
of a plow beam to or from the land The landsid of the plow is secured too a standard thet ins pro.
vided with a rear brace that is corved forward at its apper end, and is provided with an inwardly projecting rm that is serrated on its under side. The beam is pivoted to the standard, and at its rear end is slotted
and secured by a bolt to the arm of the brace, the head of the bolt engaging with the
Mr. William Scott, of Buffalo, W. Va., by the axle is adapted to pass over tall plants. The connection between the axles consists of arched bars that are sufficiently elevated to allow the plants to pass
under. The tongue is also so secured to the arched under. The tongue is also so secured to the arched bar that the whiffletrees do not break the plants. Beweon which is placed a driver's seat, and also levers by apon which is placed a driver's seat, and also evers sired. The driver's seat is provided with a cover, and foot rests are secured to the reach.
A combined scraper and cultivator has been The plow beam and handles are of the usual construc tion, and near the rear end of the beam are secured ad justable standards that support the cultivator plow in
such a manner that they can be raised or lowered as desired. In front of the cultivator plows is adjustabl tached a scraper, placed in an inclined position with th plow beam. The machine may be used as a scraper and cultivator combined, or as either singly
An adjustable furrow opener for attaching to the legs of a land marker has been patented by Mr.
George W. Nutter, of Corinna, Me. The furrow opener is made with a double mould board. and has on its back a curved bar that fits into a corresponding recess in a
bearing block that fits upon the leg of the marker to bearing block that fits upon the leg of the marker to
which it is held by an eye bolt and nut. By loosening Which it is held by an eye bolt and nut. By loosenin
the nut the opener may be adjusted to work deeper he nut the opener may be adjusted to wor
hallower as desired for planting the seed.
Mr. William B. Packard, of Bloomington, which they are more easily controlled and adjusted.

The axle of the wheels is bent at right angles to rais
its midde part to enable it to pass over tall plants, an support a frame to which the driver's seat is secured. The plow beam is adjustably pivoted at a little distance xle, and in to a bail that is ady suitable devices unde ontrol of the driver from his seat.

textile invention

Messrs. John Wiggins and John B. Green algh, of Waterford, Mass, have patented a mechanis for reversing the rotation of the spindles of spinning
jacks and mules, without changing the bands or reversing the race belt. The main pulley of the shaft of he mule frame that carries the cylinder from which th Sindles are revolved is so secured to the shaft that gear is secured that engages with other bevel gears to urn the cylinder in either direction according as the pulley is tight or loose on the shaft.
Mr Isaac W. Lamb, of Parshallville, Mich. has patented improvements in knitting machines fo
moving the needies in and out of the path of the cas moving the needles in and out of the path of the cam,
so as to increase the range of work and avoid the risk so as to increase the range of work and avoid the risk
of injury to the needles. The needle beds are constructed in sections, providing grooves of sufficient or controlling and operating them, thereby adapting ny machines to have nedle shifters, and their cor ponding advantages.

miscellaneous inventions.

An improvement in sights for firearms has een patented by Mr. Frederic J. Gardner, of Elm St., Wore particularly intended to be ased for target practic and it consists of both a front sight and rear sight of peculiar and advantageous construction, the fore or
front sight being opaque, of tubular construction, with front sight being opaque, of tubular construction, with
a transparent cross plate or disk of glass having a sighta transparent cross plate or disk of glass having a sight
hole in it, and the rear sight comprising a transversely hole in it, and the rear sight comprising a transversely-
slotted body and a transversely-adjustable cross-slide provided with a sight-hole within range of the slot he rear sight.
An improved vessel anchor has been pa tented by Mr. Abram A. Goldsmith, of Charleston, S. C The anchor has two circular concave surfaces, and on periphery between the surfaces is a V-shaped groove. nchor, and to it is secured the anchor chain. With this construction the chain is free to play with the tid
without disturbing the anchor.
Mr. J. E. Tynan, of Paterson, N. J., has patented improvements in machines used for spinning, The improvements consist in driving the spindles by means of friction wheels, or disks, and also in a pecu-
liar combination of devices by which, when a thread breaks, the bobbin "ceases to wind and the feed pulles
Improvements in machines for felting and calding hat bodies have been patented by Mr. Jarvis C. Brush, of Newburg, N. Y. The machine consists of
a vat having a perforated steam pipe or chest in its vat having a perforated steam pipe or chest in dif-
lower part and above the pipe polygonal rollers of dif frent diameerers connected and operated by sprocke bodies are rolled up and placed in the space between he rolls and the rollers revolved, the shape of the oiliers causing them to beat and turn the hat bodies.
Improvements in tuyeres have been pa ented by Mr. Jacob Stoll, of Milwaukee, Wis. The pip that leads from the blower is curved and threaded a chexternal ena, and to it is atachen a perforated an manner that a portion of the blast escapes into a cham ber formed around the pipe, carrying out all gases or dust from the forge and preventing them from entering the blower, to interfere with its action or to cause ex
Mr. William E. Smith, of Berwick, Pa has patented an ink well for school desks, that is
adapted to be hermetically closed when not in use to void the waste of ink. The ink well is placed in hole in the top of the desk, and is provided with pivoted cover having a yielding packing, and the cove pivoted curred to of the well when il is closed by and engaging an inclined surface on the top of the
A device for adjusting the tension of ey glass springs has been patented by Mr. Frank R.
Woodard, of Hill, N. H. The eye glass spring in formed of two spring strips attached to the respective lens frames, one of the springs being provided with pring and socket for receiving the end or the oth spring to be lengthened or shortened, and by this means its tension to be increased or diminished, as desired.
Au improved grain meter has been patented by Mr. Robert H. Edmiston, of Americns, Kan. equal size, their bottoms being hopper-shaped and pro vided with delivery openings over which are gate inged to open outward. The compartments are filled with grain from a movable spout. When one compart weight of the crain in to pans serves to o panate \quad teve weight of the grain in the pan serves to operate al ece
that carries the spout and grain to the opposite com partment, and opens the gate at the bottom to discharg the grain.
A faucet adapted to be fastened in a barrel na removed again without causing any loss of the conA. Naumann, of Newark, N.J. A screw plug is closed at its inner end by a swinging valve, having on its
upper end teeth that engage with teeth on a block monted on a screw-spindle in the plag. When the pinde is turned t
An improved iro
ponst for fences, to whic the wires are easily applied and that is strong and dura-
ble, has been patented by Mr. John J. Kimball, of

Naperville, Ill. The post is formed with three wings
at equal angles, two of which are in the line of the fence, and the third at right angles to the line. On the faces of the two wings are recesses to receive and hold the wire, and above the recesses are lugs, and nails are driven between the wire and the lags to hold the wire.
Suitable braces are provided for holding the posts upight.
A clothes drying apparatus that furnishes a large amount of line in comparison with the length and
width of space occupied, has been patented by Messrs. width of space occupied, has been patented by Messrost
David H. and Jerome H. Payne, of Troy, N. Y. A post is set a suitable distance from the house, and at its pper end has a cross bar. Stout wires extend from the ends of the cross bars to a window in the building to
which they are attached.
Racks carrying lines for clothes are suspended by sheaves on the wires, and ar noved out from the window as they are filled with
lothes.
An improved optometer for ascertaining the proper correction for defects in sight has been patented by Mr. Alfred A. Trow bride, of Danbury, Coni which are on a horizontal line, has also a nose opening nd a hande, and from the back of the plate a hood extends to the sides of the face to shut out the ligh rom the eyes. The lenses are on adjustable slides, so hat the center of the lens may be exactly in front of

An improved milk strainer has been pa tented by Mr. George W. Sutinn, of Dundee, Ill. The body of the strainer is in the shapeof an inverted siphon,
the bottom of which is placed a removable straine nd pocket to collect the sediment from the milk. The eeceiving side has placed in it a deflecting cone to brea
he fall of the milk when poured in side has a fine estrainer through which the milk passes to he drawing fancet.
A device for providing oil for the purpose of labricating oil stoves has been patented by Messrs.
James B. and Burrell A. Pierce, of Browne Hill, Va. In the lower side of the block in which the oil stove is set is placed an oif reservoir, having a filing and a dis charge tabe. The oil is forced from the resevioir by piston and flows through the discharge tube on to the ace of the stove.
A mechanical movement for producing re ciprocating motion has been patented by Mr. Anton frame has at one end a pinion that rack fitted for vertical movement in an upright secur ot the frame. Upon the outerend of the slaft is hang weighted pendulum. When the pendulum is vibrate he pinion imparts a reciprocating motion to the rack

An improved fastener for securing buttons pon shoes has been patented by JosephC. F. Dick, of Bevidiere, mll . The fastener is made in the. form of a
staple, with two points for entering the leather, having a groove to receive the button eye or shank. A tongue wo of the prongs, is of such a length that it covers an olds the eye of the button in the groove, and it canno

A double tree, adapted to be used withou ingle trees, and capable of equalizing the draught whe ne horsegets ahead of the other, has been patented by Mr. Jeremiah C. Jones, of Whitt, Texas. The doabl ooks $2 t$ each end. In the mortise a pules is and has pon which is placed a chain provided at each end with a hook to which the inside trace chains of the harness re to be hooked. It will be seen that the accion of the hain on the pulley i

Mr. Henry F. W. Koehler, N. W. cor. of Twenty-third and Calhoun streets, St. Joseph, Mo., has so as an ordinary carryino wargon. The boz consist of fixed side board secured to the stakes at one end of he bolsters, and a dumping portion consisting of a bot tom board, side board, and end pieces, all rigidly se
cured together. A central bar, secured to the undersid of the bottom buard, is journaled in bearings on the bolster. By suitable devices the dumping is retained in position.
An adjustable tracing wheel for marking
 Flint, Mich. The handie of the wheel has a met shank having at its lower end a transverse shaft. A end of this shaft, and a sharp edged cutting disk io mounted at the opposite end. The cutting disks cut th cloth or paper, and the toothed disk marks the lines for

Mr. Martin B. Wood, of Estillville, Va. has patented an improved heel for boots and shoes that truction. The heel is made of iron, and is a hollow c of the shape of the heel placed against the heel tap on is recessed around its edge to receive the edge of the cup, and the cap is
Mr. William F. Crowell, of Las Vegas T. M., patented an improved wheel for vehicles that aken up without removing and resetting the tire mprovement consists in constructing the wheel with wedging device between the ends of the fellies, that
when the tire becomes loose may be drawn down by hen the tire becomes loose may be drawn do

Mr. Frank M. Harris, of St Charles, Mo bas recently patented a device for spicicing wires. The handle at one end and of ron or steel connected by apering notches opening toward the hande, and a simi lar device having notches projecting from the handle, wires when their handles are drawn together. By
neans of a twie
form the spliee.
Mr. Peter Goergen, of Buffalo, N. Y., has akes but little space, and from which the coal can be shoveled very conveniently. The nd opposite the opening is a trough placed paral with the side that has an inclined piece extending from the top to the botom of the trough. At the inner cor-
ners of the box are bevel corners for tuiding the coal hrough the opening.
A combined book marker and paper cutter has been patented by Mr. Frank D. Adams, of Auburn, or cutting the levermed of a straight elastic blac connected to the blade at one end. The tongue curved toward and then from the plane of the blade, that it may readily pass into books, while the blade acts as aspring to grip the back of the book to ho

保
Improvements in water tuyeres for forges ille, D. T. In the face of the tuyere, which is of the sual form, is a large opening surrounded by four maller openings, and to these openings the upper ends of the air pipes are connected, the lower ends being chamber. Beneath the in the valve plate of the air hat surrounds and protects the air pipes, and is provided with an inlet and outlet pipe for the circula ion Mr. Angus McKellar, of Fort Douglass, Uhich the thrust pated an improved carriage brake in instead of by the the brake is taken up by the axle struction by the body and springs, as in the usual conin front of the wheels, and is connected by wods to the short arm of a rock shaft pivoted to the rear axle. The ong arm of the rock shaft extends forward and is connected by a rope passing over pulleys on
oot lever to be operated by the driver.
An improvement in the centerpiece of stove tops that prevents warping from heating, has been patented by Messrs. William P. Buell and John Wright, its middle in two The piece is divided transversely at adjacent ends lugs that overlap each other, are pivoted thet the center of the plate, Mr. William McAfee; of Independence, Mo., has patented an improved apparatus for scouring ollers that revolve in the bottom of a tank and on horough scoured by the action of the water and soap in the tank. When sufficiently scoured the hanks are attached to a hook at one end and a lever at the other.
The hook is adapted to be revolved by a friction disk en the lever is pulled, thereby wringing the yarn.
A life-preserving mattress has recently been patented by Marshall H. Holmes, of St. Paul, Minn. ess, and is filed with cork ape to the ord the nece sary buoyancy. The mattress is inclosed in a wooden rame and fitted to slide in ways like a drawer in a state room, and may be easily taken out to be used as a lifealso oars for propelling it is secured to the fr ress is closed with a removable filling, and under the hole is a strap secured to the frame to support a person Mr. Chapin C. Brooks, of Lancaster, N. H., has patented an improved log setting apparatus. A
shaftruns lengthwise of and is mounted on the log-sadde, having a spirally grooved drum near each end of he saddle. On each of thedrums a chain is wound that urned to draw the saddle back and forth on the head blocks of the carriage by means of a hand lever and tothed wheel and pawl.
Messrs. Henry M. Wise, Victor M. Stevens, patented an Chapman, of Oskaloosa, Kan., have motor is combined with a churn having a rotary dasher, the power being secured to the cover of the churn, and the speed shaft that rotates the dasher being provided wh a wedged brake lever on which we wigh may egulate the motion of the dasher.
Improvements in shoes, by which they patented by Mr. Thomas J. Strickland, of Randolph Mass. nd the edge of the forward part is sewed to and be the outsole. The rear part of the vamp and the forward part of the quarters are sewed to the edge of the outsole. The edges of the rear part of the quarter and the
counter are turned in and secured between the inner counter are turned in and secured
and outer sole in the usual manner.
A device for opening and closing gates from distance either side of them was been patented by Mr. ames W. Morrison, of Logansport, Ind. The gate is he rear end bar is a spindle, upon which is placed cap wheel. Around the spindle a spring is coiled that brings the wheel back to its normal position after being turned in either direction. On the under side of the wheel is a cam recess in which the upper end of a lever moves that operates the catch of the gate. Chains at-
tached to the cap wheel and operated by levers, turn the wheel to operate the catch and swing the gate in ither direction.
Improvemenṭs in "tubular" lanterns, by which the operations of lighting -the lamp, cleaning the patented by Mr. G. E. Fifield, of Dantorth, has been lantern has the lower ends of the tubes attached to a wire pivoted on the lamp, and a circular wire attached held by a spring catch. A swinging plate on which the lobe rests is pivoted to the tubes. With this construcback and uper part of the lantern can be readily swung

The Chargefor Insertion under this headi is one Dollar

 a line for eacch insertion; about eight words to a line.Advertisements must be received at publication oftice Advertisements must be received at publication office
as seanly as 7 Thursday morning to appear in next issue.

Woodworking M'ch'y. Bentel, Margedant \& Co.,p. . 51. Lubricator. See advt., Detroit Lubricator Co., p. 252 Poet of Poets. Whoever is entitled to this distinction, there is no doubt
Send for List No. 7 of over 2,000 different newand secSend for List No. 7 of over 2,000 different newand see
ond-hand machines, to Rollstone Machine Company, 95 Liberty Street, New York.
Heliographic or Blue Process Paper to take copies of
Drawings, at Keuffel \& Esser, 127 Fulton St., New York. Wanted.-Machine for gla Fulton St. New York. Wars and cuffs. C. Phillips, 82 Mark Lane, London
collang e. C., England.

Engines, 10 to 50 horse power, complete, with governor, $\$ 250$ to $\$ 550$. Satisfaction guaranteed. Nearly seve (Drawer 127), Baldwinsville, N. Y
Pat's Mfg'd on royalty. A. B. McCool, Pottsville, Pa Steam Hammers, Improved Hydranlic Expanders. R. Dudgeon, 24 Columbia St., New York.
Millstone Dressing Diamonds. Simple, effective urable. J. Dickinson, 64 Nassau street, New York. Gould \& Eberhardt's Machinists' Tools. See adv.,p. 254 For Heavy Punches, etc., see i
ment of Hilles \& Jones, on page 252.
Barrel, Key, Hogshead, Stave Mach'y. See adv. p. 254
Magic Lanterns and Stereopticons of all kinds an prices. Views illustrating every subject for public exhibitions, Sunday schools, colleges, and home entertain-
ment. 116 page illustrated catalogue free. Mcallister.

Vertical Engines, varied capacity See adv, p. 25
Combined Concentric and Eccentric Universal and In ford, Conn.
For best low price Planer and Matcher. and lates improved Sash, Door, and Blind Machinery, Send for
catalogue to Rowley \& Hermance, Williamsport, Pa. The only economical and practical Gas Engine in the narket is the new "Otto" Silent, built by Schleich The Sweetland Chuck. See illus. adv., p. 254. Steam Pumps. See adv. Smith, Vaile \& Co., p. 252 The Porter-Allen High Speed Steam Engine. SouthKniven Wher.,Phi.Pa Knives for Woodworking Machinery,Bookbinders, and
Paper Mills. Taylor, Stiles \& Co., Riegelsville, N. J. Small articles in sheet or cast brass made on contrac Ogden Place, Chicago, ill. Mention this paper.
Calcium Light Apparatus and Stereopticons
Bostwick's Giant Riding Saw Machine, adv.,page 23 For Mill Mach'y \& Mill Furnishing, see illus. adv. p. 236 . See New American File Co.'s Advertisement, p. 238. Woodwork'g Mach'y. Rollstone Mach. Co. Adv., p. 238. Wanted.-Liberal inducements and facilities for locat Schools'öen.-Send for Catalogue of Drawing Mat Schools. Keuffel \& Esser, New York. $25^{\prime \prime}$ Lathes of the best design.
East Newark, N. J.
50,000 Emerson's Hand Book of Saws. New Edition.
Cope \& Maxwell M' f 'g Co.'s Pump adv., page 220
The Berryman Feed Water Heater and Purifier and
For Pat. Safety Elevators, Hoisting Engines, Frictio lutch Pulleys, Cut-off Coupling.see Frisbie's ad. p. 222 Rel Jacke Adastable Force Pump. See adv., p. 22 . Mineral Lands Prospected, Artesian Wells Bored, by
4 to 40 H. P. Steam Engines. See adv. p. 220
Collection of Ornaments.-A book containing over 1,000 different designs, such as Crests. Coats of Arms,
Vignettes. Scrolls, Corners, etc., will be mailed free on eceipt of \$1. Ad
C. B. Rogers \& Co., Norwich, Conn.. Wood Workin Machinery of every kind. See adv., page 205.
Combination Roll and Rubber Co., 68 Warren street
N. Y. Wringer Rolls and Moulded Goods Specialties. Pure Water furnished Cities, Paper Mills, Laundries, Steam Boilers, etc., by the Multifold System of the
Newark Filtering Co., 177 Commerce St., Newark, N. J. Latest Improved Diamond Drills. Send for circula M. C. Bullock Mig. Co, tors M., First Class Engine Lathes, 20 inch swing, 8 foot be
Ice Making Machinessand Machines for Coolin Breweries, etc. Pictet Artifcial Ice Co. (Limited
Greenwich Street. P. O. Box 3083 , New York city.
Jas. F. Hotchkiss, 84 John St.. N. Y.: Send me you free book entitled "How to Keep Boilers Clean," con-
taining aseful information for steam users \& engineers. Forward above by postal or letter; mention this pape Steel Stamps and Pattern Letters. The best made. For Power \& Economy, Alcott's Turbine, Mt.Holly, N. J. Presses, Dies, Tools for working Sheet Metals, et
Supplont Cotalo N. Y. Supplement Catalogue.-Persons in pursuit of info
mation on any special engineering. mechanical, or scien tific subject. can have catalogue of contents of the Sc entific amirican supplement sent to them free The SUPPricment contains lengthy articles embracing the whole range of engineering, mechaniss, and physi-
cal science. Address Munn \& Co. Publishers, New York Machinery for Light Manufacturing, on hand and Wood-Working Machinery of Improved Design an Workmanship. Cordesman, Egan \& Co., Cincinnati, O.

Presses \& Dies. Ferracute Mach. Co., Bridgeton, N.J. Presses \& Dies (fruit cans) Ayar Mach.Wks., Salem,N.J.
Split Palleys at low prices, and of same strength and Works, Drinker St, Phileys. Yocom \& Son's Shafting

NEW BOOKS AND PUBLICATIONS

Chatter Box, Jr.

This is a handsome quarto volume containing an unhild ailaren, calculated to afford an endless variety superior, the paper and binding strong. It is one of he best of juvenile books that has come under ou notice. R. Wort
New-York.

The Book-keeper's Companion: J. G Beidleman, Philadelphia. Price 75 cents This little work, by Thomas A. Lyle, accountant. is
intended for the guidance of students and inexperiintended for the guidance of students and inexperi-
enced persons in opening a set of books and keeping anced persons in ope

Light: a Course of Experimental Op-
tics, chiefly with the Lantern. tics, Chiefly with the LaNTERN. By
Lewis Wright. London: Macmillan \& Co.

The author has been very happy in his choice of ex periments intended to develop the physical realities has been quite as fortunate in having his efforts ported by his publishers. In addition to some two hundred engraved diagrams of experiments and apparatus are eight plain and colored plates finely illusrating polariscope objects, the spectrum and its teach ings, interferences of polarized light, and the vario These illustrations upon direct and polarized light These illustrations go a long way to replace the exper helpful suggestions to the teacher of experimenta optics.
Scott-Browne's Text Book of PhonoGraphy. By Mr. and Mrs. D. L. Scott
Browne. New York: D. L. Browne.
Browne.
The authors of this text book are widely known as and good judgment are manifest on every experienc cially in the relative simplicity and writableness of the forms they use and the classification of these for easy learning.
A Dictionary of Economic Plants. By John Smith. Lonỏon: Macmillan \& Co.
$\$ 3.50$.
enlargementand improved arrangement of the d published ten years ago. In this work the popala names of useful and ornamental plants are arranged alphabetically, followed by their systematic names and compact statement of their history, products, char vice as curator of the Royal Botanic Gardens, at Kew, have afforded him rare advantages for becoming prac ically acquainted with the plants which he describes We have found the original work very handy and seldom disappointing as a book of reference, and can commen his improvement of it to all who have occasion to se

India
Natural History. By John Callett, State Geologist, 1881. Indianapolis.
The newly established department for continuing th eological survey of Indiana is manifestly in good illustrate the paleontology of the State, by the State The new work covers the counties of Shelby, Fountain,
Delaware, and Bartholomew. The report of our New Delaware, and Bartholomew. The report of our New
York State Geologist, Professor James Hall, on the Yossils of the Niagara group found at Waldron, Ind., is reproduced with thirty-two plates; seven plates give illustrations of some of the characteristic fossils of other formations, and there are twelve plates o fossil corals drawn and engraved by J. W. Van Cleve The economic geology of Indiana is represented
by about seventy quarries, mostly of limestone; by about seventy quarries, mostly of limestone,
some valuable beds of kaolin and coarser clays; and 216 coal mines. The development of the latter has nly begun, yet Indiana ranks sixth in the list of coal
producing States. The coal field covers nearly 7,000 quare miles; a superior black coal prevails over a area of 600 square miles.
Hand Book of the St. Nicholas Agassiz
Association. By Harlan H. Ballard
Pittsfield, Mass. : The Author. 50 cents
Two years ago the author suggested in St. Nichola nextension of a society of young people which ha natural history, in imitation of the children's scientif societies of Switzerland. The suggestion took so wel among the readers of St Nicholas that something like hree hundred chapters of the Agassiz Association have been started, their geographical range extending from England and Ireland to Texas, California, and Van conver's Island. This little hand book tells how these ocieties are organized, and gives a good many pract the purchase of young naturalists' supplies etc. The pirit of the movement is excellent and we echould be glad to see a chapter established in every school dis
.
United States Commission of Fish and
Fisheries. Part VII. Reports of the
Fisseries. Part VII. Reports of th
Commission for 1879 . Washington
In addition to a review of the special work of the commission in 1879 are several valuable reports an Professor Farlow's " Marine Algæ of New England and Professor Verrell's report on the Cephalopods the Northeastern coast of North America.

HINTS 'TO CORRESPONDENTS.
No attention will be paid to communications unless ccompanied with the full name and address of the writer. Names and addre
We renew our request that correspondents, in referring to former answers or articles, will be kind enough to name the date of
of the question.
Correspondents whose inquiries do not appear after a reasonable time should repeat them. If not then pubished, they may conclude that, for good reasons, th ditor declines them.
Persons desiring special information which is purely should remit from $\$ 1$ to $\$ 5$, according to the subject, as we cannol be expected to spend time and labor obtain such information without remuneration. Any numbers of the Scientific American Supple ENT referred to in hese col office. Price 10 cents each
Cor examination, should g samples of minerals, etc abel their specimens so as to avoid error in their ident ication.
(1) H. K. R. asks (1) what bruised Aleppo nutgalls are, and are they known by any other name find one of the ingredients in a receipt for ink UPPLEMENT, No. 157, and do not know the meaning o the expression. A. The galls referred to are bue found on certain varieties of quercus. When crushed (bruised) and digested with hot water they yield an exract containing a large per cent of tannin. 2. Ca you refer me to some good work on electrotyping?
See "Electrometallurgy," SUPPLEMENT, No. 310.
(2) J. C. H. asks how paper is prepared so that a brass pointer leaves a black mark on it. A. Dissolve a quarter of an ounce of pure sodium sulphide nd half an ounce of sodium hyposulphite in a quart of rain water, fiiter the solution, and with it uniformly
moisten the surface of the paper, then dry the latter oisten the surface of the paper, then dry the latte
(3) J. F. N. asks how gold and silver are refined at the U. S. Assay Office in New York, what kind of acid is used, and how is the silver precipitated? A. The bulic acid, which dissolves the silver and leaves the old behind. The silver is precipitated from this sollion by strips of copper, which take its place in combination with the acid and produce blue vitriol, while the silver displaced is well washed and then melted into
(4) I. S. asks: Will you please inform me how much salt and ice it will take to make a temperature of 22° Fah. A. Use ice and salt in the proportion of 12 of the former to $11 / 2$ of the latter. T
be crushed and well mixed with the salt.
(5) E. T. P. writes: In a late issue of the Sienmio american you gave a receipt for restoring the vapor arising from kerosene. I tried the experi above the oil. For thirty days, could discover no change in the rubber, and then substituted benzine, where the ery little now hung for one week, but as yet there periment is not successful? A. Heat the oil overa san bath away from fire.
(6) J. J. R. writes: 1. In Notes and Queries of your issue of August 19, No 9, R.D. ask per must he use, is it the metallic conper or the per chloride, same as the iron salt? A. It should read pe
hloride of iron and perchloride chloride of iron and perchloride of copper. 2. Afte
drying must this bronze be brushed or polished in som way to give it a glossy surface, and must it also be acquered to keep so? A. It can be burnished with the burnishing tool or the rag buff. It stands exposure to he air very well, but retains the finish better if coated (7) C. W. asks: With what paint or m erial can I coat a water tank lined with sheet lead, as to prevent the action of the water on the lead?
Use pure asphaltum varnish. Give the surface two
coats of this and let both dry thoroughly before wate
ooats of this and let both dry thoroughly before wate
he coating will not materially affect the taste of the
(8) Miss M. C. asks (1) how coal oil is found What does the earth look like? A. Consult "Coal an Coal Oil," and "Petrolia." Address for these and othe his paper. 2. If it should be near a well what would be the effect on the shater? circumstances would be contaminated by the oil.
(9) A. D. C. asks for a recipe for ma ogany stain to use on beech wood. A. A mixture o
one part of glue, six of water, and sufficient brow oxide of iron to give the desired tint of color to a tria stick of wood, are mixed together by heat and stirring; more glue may be added if the coat is not sufficiently adhesive or rubs off; this is then, while hot, brushed ver the article to be stained and well rubbed into th is very porous or rough. The article, after drying, is the varnished over with a shellac varnish and polished when dry with a small quantity of linseed oil.
(10) W. B. N. asks: What are the ingredi ents of the soda dispensed from the soda fountains for drinking? A. The liquid is a solution, under pressure
in water of carbonic acid (gas). The gas is generated under considerable pressure in a closed vessel by the
action of diluted sulphuric acid upon marble dust or ground marble. It is passed over into the cold water
which absorbs it. The names soda or soda water are misnomers, as the liquid contains no soda. It was so miscalled from an imagined resemblance between it and the older effervescent beverages prepared from bi-
carbonates of soda or potassa and vegetable acids or acid salts.
(11) A. O. writes: I bought last year several barrels of apple vinegar which is now old and strong enough for use, but we find it.is made partly at least of rotten apples, which give it a peculiar unpleas-
ant taste. Can yon advise some remedy? A. We know of no practical way of effectually removing the taste. You might try the following, which will in any event mprove the taste and appearance of the iiquid: Scald
out a clean cask, add to and stir up with the vinegar one pound of fine granular bone black and a quarter of a pound of bisulphite of lime, then the whites of three eggs. Let it stand twenty-four hours, and carefully rack off the clear vinegar from the sediment into the clean cask. This should be kept in ascool a place as
(12) J. S. P. asks: 1. Please give a receipt for making soft solder such as the tops of canned goods are sealed up with. All that 1 can get is too hard, as it takes too much heat to open the cans. A. Melt together lead, should be melted first, the tin added next, and firilly the bismuth stirred in well just before pouring. 2. Please give receipt for making ink for marking cotton bales, one not easily washed off by exposure or blurred by handling -a blue black. A. Dissolve about 6 ounces of asphalum (genuine) in $11 / \mathrm{pint}$ of oil of turpentine; you can color with a sufficient quantity of lampblack or mineral

Minerals, etc.-Specimens have been received from the following correspondents, and examined, with the results stated
J. M.-It is muscovite and iron sulphide-pyrite.J. W. The specimen is quartz. It is of no value un-
less of exceptional quality and procurable in large less of ex
quantity.

COMMUNICATIONS RECEIVED Relati
On Parhelia. By L. S.
[OFFICIAL.]
INDEX OF INVENTIONS
Letters Patent of the United States were Granted in the Week Ending

September 26, 1882,
AND EACH BEARING THATE DATE.
[Those marked (r) are reissued patents.]
A printed copy of the specification and drawing of any patent in the annexed list, also ot any patent issued
since 1866 , will be furnished from this office for 25 cents. In ordering please state the number and date of the patent desired and remit to Munn \& Co., 261 Broad-
way. way. corner of Warren Street, New York city. We
also furnish copies of patents granted prior to 1866 also furnish copies of patents granted prior to 1866;
but at increased cost, as the specifications not being
printed, must he copied by hand.
Addressing machine, P. York and G. V. Uhl 264,916
Animal catcher, J. W. Loree 265,113 Annuanciator, speaking tube, J. Walter.............................46,977
Axle tap wrench, I. A. Gates................. 264942 Axle tap wrench, L. A. Gates.................................. 264,942
Axle, vehicle, J. P. Warner......... Ball. See Exercising ball. Banjo, J. Morrison...
Bar. See Grate bar.
Basket making machine, J. Hibbard.................... 265,.121 2679
Bed bottom, adjustable spring, M. N. Lovel......... 2655,152
Bed bottom, spring, M. N. Lovell...64,898
Beehive. J. Phillips...................

Bell, call, J. Y. Fairman.
Bell, door, J. J. Johna.

Bit. See Bridle bit.
Blower, freplace, B. G. Covington................... 264,863
Boiler. See Wash boiler.
Boiler furnace, M. S. Foote.......................... 264,871
Bookbinding, H. H. Hofmann
Book-holder and arm rest combined, J. J. Arm-
strong, Jr..
nell... 265,036
Boot or she sole fastening, . W. Robinson 26,149
Bottle packing box, E. L. Mueller.............. 264894
Bottle packing box, E. L. Mueller.................... 264,894
Bottle stopper, G. \& H. E. G. Luyties......... 265,118
Box. See Bottle packing box. Egg box.
Bracelet, A. Engelmann........................... 265.044
Brake. See Car brake.
Brick elevator, J. C. Bobzien...655.012
Brick machine, G. Davis........
Bridges. guard gate for swing, I. Savanson........ 2644,969
Bridle bit, E. R. \& C. E. Cahoone.
Brid E. R. \& C. E. Cahoon
Broiler. A. H. Ege.........
Broom socket. A. s. Flint.
Burial case corner
W. Comee

Burner. See Garbage burner.
P. Buttons from plastic material, manufacture of

Cable traction, O. H. J........
Can flling apparatus, R. C. A
Cant-dog, W. Peabody
Car brake, Widdiffeld \& Button.
Car coupling, K. S. Blanchard.
Car coupling, D. Carlough....
Car coupling, J. E. H. Chapma
ar coupling, D. W. Deal.....
Car coupling, D. W. Glidden..
Car coupling, H. E. Hawk.

Car coupling, F. M. Hazleton
Car coupling, J. W. Oulton... Car coupling, J. E. Smith.
Car spring. S. A. Bem
Car, street, S. Howe.
Car, street railway, S. Bissell
Cars by steam, warming railway, W. H. Ward
Cars, device for changing gauge of rilwa
Anderson.
Carbon poin
Carpet lini
Carriage gear, P. Wocke
Carrier. See Egg carrier.
Cart. dog E. Bown
Cart, dog, e. Bowman...
Cart, road, J. T. Barnes.
Casting steel ingots, mould bottom for, E .
Barnes....
Cellulose, plastic compound from soluble,
Chair. See Opera chair. Rocking chair
Check rower reel and drill, L. E. Watermann. Chuck, drill, C. Gage (r)....
Chuck, drill, G. S. Roming Chuck, drill, G.
Cigar press, G . Trostel
Climbing device, A. War
Cloth cutting macihine, W. J. Mikels
Clover huller, D. Lipp
Clutch, friction, E. F. Spaulding
Coal scuttle and ash sifter, combined, C. Irwin Cock, J. H. Solis,
Collar and hames, combined, T. Broderic Comb. See Curry comb.
Cork, bottle, C. H. Bennett
Couch, R. C. Millings.
Coupling. See Car coupling. Hose coupling.
Pipe coupling. Thill coupling
Pipe coupling. Thill coupling.
rate, A. J. Horseg..............
Crushing and shelling machine, C. \& W. Finaz
Crutch, F. D. Randall...................
Culinary tool, compound, J. C.Smith
Cultivator, J. J. Motley
Cuspidor, J. A. Mathie
Derrick net for stacking, G. Wi.........
Disintegrating fibrous material, machine for,
Lifft...
Draught equalizer, D. Carr..
Drawer pull, E. J. Blackham
Dredging apparatus for bars, R. D. Hume Dreaging machinery, A. C. Both
Drier. See Fruit drier. Tobacco drier Drier. See Fruit drier.
Egg box, J. L. Stevens.
Egg carrier, J. L. Stevens.
Eleetric conductor, J. V. Nichols
Ele
Electric light carbons, manufacture of,
Weston
Electric generator regulator, E. We......................................
Electric machines, automatic cut-off for dsna
E. Weston.................
Electric motor, J. Batley...
device for laying and holding u
derground, H. C. Register.
Electric wires, underground conduit for, c. H.
O'Bryon
O'Bryon..
Electrical_transmission of power, system for the
.264,981,
Electro magnetic motor, E. Weston...............
Elevator. See Pneumatic elevator. Portable
elevator.
elevator.
Elevator bucket, P. Ehlers
Elevator gate, automatic, G. V. Delue................. 26
Engine. See Compound engine. Rotary stean
engine. Steam engine. Wind engine.
Evaporating train and furnace'for cane juice, etc.
open, f. Cook
Exercising ball for athletes or gymnasts, H. B. Extractor. See Cork extractor
abrics. machine for folding and cutting, N. H
Bruce..
Faucet, G. T. Freeman
Fence and gate post, A. O. Barne
ence post, iron, J. J. Johnston
Fence wire stretcher, I. C. Burgett
encing, barbed, G. Elsey.
ender, L. B. Beaumont..
Fiber, etc., machine for breaking and scutching
vegetable, O. Pagan..............................
ibrous plants, apparatus
ford
ford.....................
Filter, J. N. Stevens.......
Filtering apparatus. A. Fiske
Firearm sight. G. W. Prior..
ireplace, J. G. Smith.
ireplace attachment, J. P. Winter
Frame. See Grinding mill frame. Slate frame
ruit drier
Fruit drier, J. J. Johnston...
urnace. See Boiler furnace. Smeltingfurnac
Tinman's furnace.
Furnace grate, F. Shriver...............
Furnace grate, boiler, Downer \& Mohr
'urnace grate, boiler, Downer \& Mohr............
Furnace lining and fire brick compound, J. Hen
265069

urnace linings and fire brick, manufacture of re
fractory. J. Henderson................. 265,07
urnace linings, manufacture of refractory,
Henderson
Furnaces, etc., lining, J. Hende
Gauge. See Grain drill gauge.
auge. See Grain drill gauge.
Gas consumption and manufacturing to a stand ard, registering, H. H. Edgerton...............
Gate. See Elevator gate. Iron and wood gate.
ate weight, J. J. Johnsto
Grain binder, C. P. Shufelt

Grain conveyer, H. Coker...
Grain drill gauge, P. Deven Grain drill gauge, P. Devening
Grate bar and furnace, W. H. De Valin.
Grate fender, Stedman \& Barker. Grate fender, Stedman \& Barker.
Grate, fre, J. Van Grate, fire, J. Van
Grating, illuminatin

```
F. Shum
```

Grinding mill frame, S. P. Walling
Grinding mill, roller, S. L. Bean...
Gun, machine, S. Federscn
Hammer, atmospheric, J. C. Butterteld
Hammer, atmos
Handle. See Satchel,
Harness, J. D. Blaker.
Harness, G. Robinso
Harness, J. D. Blake.
Harness, G. Robinson
Harness thill loop, W. K. Rairigh
Harpsichord, L. S. Burridge
Harpsichord, L. S.
Harrow, J. Frey...

Hearce..........................
Hedge trimmer, w. F. Throcikmorton
Héel, J. G. Ross......................................
Heel plate and ice creeper, combined, C. Story.
Heel plate and ice creeper, combined, C. Story..
Hinge, awning blind, F. B. Brown................
Holder. See Bookholder. Napkin holder. Neck
tie holder. Pillow sham holder.
Hook. See Trace hook.
Hoop, P. England................
Horse detacher, J. H. Barrett.
Horses, device for stopping runaway, Goudet \&
Durozad....................
Huller. See Clover huller
Hydraulic press accumulator, J. W. Hyatt........ 265,229
Iron and wood gate, combined, J. J. Johnston....
Ironing machine, Sternberger \& Tees...
Jack. See Lifting Jack. Wagon jack.
Joint. See Pipe joint.
Journal bearing, G. P. Fenner
Kitchen cabinet, G. W. Bacon
Knife. See Reaptng or mowing machine knife.
Ladder, step. E. L. Staples
Lamp carbon incandescent
Lamp, electric arc, J. R. Finney...........
Lamp, electric arc, Finney \& Ca
Lamp, electric are, J. olmsted..
Lamp for bycycles, or other vehicles havin
spider wheels, hub, T. S. Miller...........
Lamp socket, incandescent electric, $\boldsymbol{\text { L. F. Barnes, }}$
Lamps, carbon conductor for eleci.ic, E. Weston,
incandescent, I. S. Maxim.....................
Lamps shunting attachment for electric arc,
Weston
Lantern, Mink \& Aling.
Lantern, Mink \& Alling............................
Leather skiving machine, E. Gott..................
Lens and manufacture thereof, T.A. Willson.
Letter and ngure, J. Gunning
Lifting jack, G. R. Elliott.
Lifting jack, H. H. Finn..
Liniment, horse and cattle, P. Corcoran...........
Liquor mixer and strainer, combined, T. Miller
Lock. See Nut lock.
Loom, Crompton \& Wyman
Lubricator, A. W. Swift..........................
Lumber cribs, device for loading and landing
floating, S. T. McKnight.........
Mattress spring, J.A. Widemann.
Measure, grain, B. Chamberlain....... 265,019
Mechanical movement, J. A. Hafner (r).
1020
Medical compound for burns, scalds, etc., L. 264,
Metals by electrolysis, apparatus for separating,
H. R. Cassel..................................
Metals, process of and apparatus for separatin

Middlings purifler, J. D. Hurst....................
Mill. See Pug mill. Roller mill. Windmill.
Caldwell
Motor. See Electric motor. Electro magnetic
motor.
Motor. E. J. Tomlinson
Musicalinstrument, mechanical, G. W. Ingalls.
Nail. See Shoe nail.
Nail feeding mechanism, Smith \& Doig... 265,166
apkin holder, J. Hugil..
Necktie holder, G. L. Lewis
Necktie, reversible, G. L. Lewis.
Nut lock, J. B. Deeds..........
opera chair, B. H. Koechling
Opera chair, B. H. Koechling.
Organ fute, N. R. Marshman.
Overalls, M. Greenbaum
vercoat. H. Emanuel..............
Padlock, permutation, S. H. Leikvo
Paint, 1 . Thenenor,
Paint, self luminous, w. H. Balmain..
Paper cutting machine, c. E. Torrance
Paper cutting machine, C. E. Torrance
Pawls used in lifting jacks, etc., operating, F.
Pen, stylographic fountain, F. C. Brown
Pen, stylographic fountain, J. Ullrich
Pen, stylographic fountain, J. Ullrich....
Perforators, automatic feeder for, F. Anderson
Pianoforte, W. H. Squire.
Pile, J. W. Putnam
Pillow sham holder, G. B. French
Pin. See Clothesp, in. Coupling and linch pin.
Pipe coupling, w. H. Ward.
Pipe joint, manifold, W. W. Doolittle.

Planter and fertilizer distributer, combined co
ton, J. R. Owen
Planter, check rower, and drill, corn, S. S.
Planter, hand corn, Preston \& Stapleton..
Planter, potato, S. H. Fish

| Plow, K. Kellogg............................ |
| :--- | :--- |

Plow, harrow, seeder, and roller, combined sulky,
D. C. Beaty
D. C. Beaty....
Plow, sulky, N
neumatic cylinder for machinery, J.c. Butter
feld......
Pneumatic
Pneumatic elevator for raiimays, C. A. Needham
Pool ball rack, W. M. Bates..
Pool bottle, Kehoe \& Bourke.
portable elevator, R. Dunbar.....................
Post. See Fence post. F'ence and gate post.
Post. See Fence post. Fence and gate po
Power. See Wind power.
Press. See Cigar press. Flter press.
Press, Boomer \& Boschert........
Press, Boomer \& Boschert.
Printing block, J. E. Caps..
Printing block, J. E. Caps.............
Printing machine, J. H. Cranston...
Printing press, tag or ticket number

\%
Propeller, reciprocating, R. Smith................ 264,903
Propelling boats, apparatus for, Tod,
Br

Pruning implement, F. O. Slanker.................
Pug mill, A. Hall.

Wire coiling machine, J. A. Coultaus............. 265,026
Wire, composition for treating iron, P. Tolman Wire, composition for treating iron, P. Tolman
et al....................................94,971
Work supporting frame, C. G. Johnsen.... 265,093 Wrench. See Axle tap wrench.
Wrench, H. Tregellas...........................265,188 Wrench, B. Tregellas................................. 265,188
Writing, device for holding the fingers in, c. I.
Wallis............................... 265,19 Pump, A. A. Hinds
Pump, J. Walcher. Pump, rotary, F. M. Roots..................................
Punching and shearing machine, A. Campbell...
Rack. See Pool ball rack. Railway rail, A. C. Vaughan Reaping or mowing machine knife, v. Lapham... Recorder. See Telegraph re
Refrigerator, L. F. De Voe..

DESIGNS.

ing, H. M. Cochran
Whisky, F. J. Crilly...

FOR THE WEEK ENDING OCTOBER 3, 1882.
Acid, process of and apparatus for concentrating
sulphuric, J. Gridley.....................
sulphuric, J. Gridey..............................
Air for cooling, warming, ventilating. etc., sys-
tem of producing and controlling currents of,
J.Gamgee... 265,256
Axle box, car, I. F. Bissel..........................265,374
A xle for vehicles, self-oiling, L. H. Fisher...... 265.254

Axle for vehicles, self-oiling, L. H. Fisher......... 265.35
Bag holder, H. D. Shriver...............
15

Bag holder, H. D. Shriver............................. 265,450
Baking powder, W. P. Clotworthy......... 265,243, 265,241
Baling press, J. La Dow................... 265,516
Baling press, J. La Dow.
Ball. See Return ball.
Belt
Belt for ditching machines, carrier, J. Clement... 265,385
Belt hook, w. L. Potter 265,280
Belt, straw conveyer, A. J. Park, Jr.............. 265,430
Beveled and miter joints, machine for cutting,
Belt, straw conveyer, A. J. Park, Jr....... 265,430
Beveled and miter, joints, machine for cutting,
Young \& Drake........................... 265,356
Boilers, etc., apparatus for heating water for, G.
Boilers.etc., apparatus for heating water for, G. ${ }^{265,356}$
H. Babock et al............................ 265,234 H. Babcock et al..
Bolt. See Flour bolt.

Bolting and sieve fabric and method of making
the same, S. O. Brigham......................
Book rest for writing desks and tables, R. W.

Boot or shoe, G. H. Clark.... 265,483
Boring head for boring cylinders, R. C. Nugent. 265,535
Bottle stoper, S. B. King..................... 265,424
Bottle wrappers, machine for making M.
Bottle wrappers, machine for making, M. V.
Kacer................................... 265,421
Box. See Axle box. Refrigerator box.
Boxes and baskets, making, J. Howenstine........ 265,419
Box. See Axle box. Reinger. Howenstine....... 265,4,
Boxes and baskets, making, J.
Brake. See Wagon brake.
Brake. See Nagon brake.
Brick kiln, S. D. Rader.....
Bridge, trus.
Brigge, truss, w. Eitel...............
Bronzing machine, H. R. Siliman.
Bung, beer barrel, W. R Ansorge. 265,336
256,331
265.286
265,360
Bureaus, etc., machine for preparing rail pieces
of, G. Luppert........... 265,523
Burner. See Gas burner. Paint burner. Stove burner.
ban. See Milk can.

Car starter, G. W. Smith.
Car wheel, T. B. Howe..... 2655,547
Cars, peripheral runner for, J. E. Miller 265,271

Carriage spring, J. Enders................................. 265,2
Carriages, reversible handle for children's,
Ri. M.
Richardson... 265,
Cartridge feed case charger, L. F. Bruce....... 2 白,2
Cartridge feeder for machine guns, L. F. Bruce.. 265,2
Case. See Dressing case. Thread case.
Chairs, rocker base for, w. Lang.................. 265,2
Chimney, .. B. Colcord..... 265.
Churn, J. Reesman.....
Cider mill, A. C. Burner... 265,3
Cisterns, portable mould for, J. Logan......... 265,

Corset fastening, B. Wood 265, 265,5
Corset stiffener, W. A. Nettleton..........
Cooler. See Milk cooler.
Cotton gin, w. A. Smith.
. 265,452
Cotton press and gin power, combined, E. Frank-
lin.
lin..............

Cultivator, L. B. Owen.... 26.
Cutter. See Lard and butter cutter. Peg cutter.
Detector. See low water detector.
Detector. See low water detector.
Distilling apparatus, A. H. John..............
Distilling petroleum, apparatus for and proces
Distilling petroleum, apparatus
of, C. J. Taagliabue.............
Draught equalizer, M. Brunell..
Drains, flood valve for, F. Dyer. 265,323

Draught equalizer, M. Brunell.,
Drains, flood valve for, F. Dyer.
Drawer pull, J. E. Merriman
Dredging harbors, ditching swamps, etc.,. appara-
tus for, J. P. Herron...........................

BAIRD'S BDOMS

FOR PRACTICAL MEN.

 Riddell: - Mechaniess Geometry, soplate
 gopers Hand Bools of Laina and Marine ${ }_{8}^{8}$
 Roper's Catechism of High Pressure Non-

 of Tools, Tool Grinding, Markilig out Work, etce is
 rose--The slide Valve Practicany Rose.. Mechanical Drawing Sele.-Taught. illustrat
 Shuth:-A Practicai Treatise on Railway Curves and Slater.-The Mannal of Colors. and Lye wares.

 ore The above or any of our Books, sent free of post-

 HITHENRY CAREY - BAIRD \&

$\overrightarrow{T H E}$ BEST BAND SAW BLADE
SAWS How to draighen and gum all kinds. Address

B1BB'S

 IRE-PLAOE HEATERS

WANTED.- Parties to take out Patents in all foreign

 PATENT on N. Necktie Fasteners for sale ocheap. Address BEATTY'S ORGANS, 27 stops, 8125 . Planes, 8297.50
 IRELAND of TO-DAY Mer tomiso

WHAT WILL THE WEATHER BE TO-MORROW

 OPool's Signal Service Barometer

READ WHAT THE PUBLIO SAY ABBOTT IT Tilight," San Franclisco.

MOSS ENGRAVING COMPANY

 - CNEWSRAVINGS FOR CHARLES CHURCHILL \& CO,21 Cross Street, Finsbury, London, E. C., England. NEW YORK OFFICE, 495 GREENWICH ST.
We have been introducing American Machinery and Tools in Great Britain, the British Colonies, and the European Continent since 1862, and are the agents of many of the largest American manufacturers.
Having extensive facilities and connections, we are prepared to introduce new goods invite manufacturers to confer with our New York office, where full information will

THE MECHANIC'S OWN KNIFE.

WIRE ROPE, BRIDGE CABLES, SHIP RIGGING Tramway Ropes, Champion Barbed Wire, etc.

ROOT'S NEW IRON BLOWER.

IRON REVOLVERS, PERFECTLY BALANCED, P. H. \& F. M. ROOTS, Manufacturers, S.S. TOWNSEND, Gen. Agt., $\mathbf{6}$ Cortiand St. 8 Dey St.
 SEND FOR PRICORK.
KEMP'S MANURE SPREADER,

 ROOFING.
 50 Elegant Genuine Cliromo Cards, no two ailike,

This Whel is untrveed for duraniility,

tree. ${ }^{\text {thene. P. CLALARK,W indso }}$ Potomac River Improvement near Washington, D. C.
U. s. Engineer Offico, 21236 Pennsylvania Avenue,
WASHINGTron, D. C., September 27, 1882.
 eeceived at this office untili 11 A. M. Mo Mo MONDATY, octo-

Major of Engineers

RUPTURE

 of bad cases, before and after cure, mailed for 10 e. $\$ 5$ to $\$ 20 \begin{gathered}\text { per day at home. Samples worth } \$ 5 \text { freee. } \\ \text { Address Stins }\end{gathered}$

WATCHMAKERS.

Before buying lathes, see the "Whitcomb," made by
AMERICAN ATCH TOL Co., Waltham, Mass.
 TELEPHONE HONE Latest, Bett. Patented

Gold, Silver, and Nickel Plating

 REMINGTON TYPE-WRITER.

Saluertisumentro Inside Page, each insertion - - - 7 s cents a line
Back Page, each insertion - - $\mathbf{\$ 1 . 0 0}$ a line. Engravings may heat advertisements at the same rate per line, oy measurement, as the letter press. Adver
tizements must bereceived at publication ofice as early

And STEREOPTCOONS all prices. Views illustrat-

Live Foxes Wanted, TTHETHE OUIEBEIBWATCH CASE

H.W.JOHNS natitas

ASBESTOS STEAM PACKING,
ASBESTOS WICK PACKING:
ASBESTOS FLAT PACKING, ASBESTOS SHEATHHINGS,
ASBESTOS GASKENS ASBESTOS BUUIIDING FELT.

```
Ma e of strictiy pure Asbesto
```

PRICES REDUCED. H. W. JOHNS M'F'G CO 87 Maiden Lane, New York, ASBESTVS, HIQUID. PAINTS, ROOF
PAINTS, ROOFING, STEAMIPE AND BOHLELZ COVERINGS, Descriptive price lists and samples free.

PORTABLE AND STATIONARY

Best Boiler and Pipe Coverinin Made : The Celebrated Patent For STEAM BOILERS And PIPES, HOT BLAST PIP
ING ete., ete. Address CHAAIMERS SPENCE CO.
i3 Johu street, New York.

NUT TAPPINC DURRELL'SPATENT.

Capacity of 7 f Spindles, 8,000 per able tool Manufactured by

WITHERBY, RUGG\&\& RICHARDSON, Manufacturer
of Patent Wood Working Machinery of every descrid

SHAFIS POLLEYSHANEETS

COLD ROLLED SHAFTING

Fredonia, N.

HOWARD BROS.,

NEW YORK BELTING AND PACKING COMP'Y.
 EMERY WHEELS.
 Emery Wheel.

The " MONITOR." lifting injectar.

Water Eierators,

Steel Castings

 (unt init

Pyrometers. For shownt haet
 EVAPORATING, FRUIT
 Treatise on improved methods
SENT FREE
Tabies of Yields. Pderfuu results. Tables of Yields, Prices, Protss,
and General Statistics. Adress AMERICAN MANUF'G CO., , mamemop
Stevens' Roller Mills, gradatan reduigion of grait

Spark-Arresting Thrashing Engine

ROCK BREAKERS AND ORE CRUSHERS.

Send for new illusp ratered oatalog Pae

ICE MAKING MACHINES,

And Machines for Cooling Breweries, Pork Packing Estab lishments, Cold Storage Warehouises, Hospitals, etc
PICTET ARTIFICIAL ICE CO. (Limited), P. O. Box 3083.

MACHINISTS' TOOLS.

Lathes, Planers, Drills, \&o New haven mandeaciuring co

RIDER COMPRESSION PUMPING ENGINE

MACHINERY
of every description. 121 Chambers and 103 Reade Sts.
New Yors, $T H E G E O R G E$ PIACEM ACHINERY MGENCY

 CAMMETERE*SAYER,
93 Liberty St., New York,

Engineering, Physics, Chemistry.

Establ'd EACLE ANVILS. 1843. solid CAST STEEL Face and Horn. Are FallyWar-

KORTING UNIVERSAL DOUBLE TUBE. INJECTOR
 NO ADUSSTMENT FOR VARYIIAL CTEODTIONSESSSURE.

HARTFORD
STEAM BOILER Inspection \& Insurance COMPANY.
W. b. franklin,V. Pres't. J. m. Allen, Pres't. J. B. PIERCE, Sec'y.

provelu

Scientific American FOR 1882.
The Most Popular Scientific Paper in the World. Only \$3.20 a $\underset{5 \%}{\text { Year, including postage. Weekly. }}$ This widely circulated and splendidly illustrated teen pages of useful information, and a large number of original engravings of new inventions and discoveries,
epresenting Engineering Works, Steam representing Engineering Works, Steam Machinery
New Inventions, Novelties in Mechanics, Manufacture Cew Inventions, Novelties in Mechanics, Manufacture,
Chemistry, Electricity, Telegraphy, Photography, Archi ecture, Agriculture, Horticulture, Natural History, etc. All Classes of Readers find in the SCIENTIFIC AMERICAN a popular resume of the best scientific information of the day; and it is the aim of the publishers
to present it in an attractive form, avoiding as much as possible abstruse terms. To every intelligent mind, this journal affords a constant supply of instructive reading. It is promotive of knowledge and progress in
every community where it circulates. Terms of Subscription.-One copy of the ScienTIFIC AM ERICAN will be sent for one year-52 numbers-
postage prepaid, to any subscriber in the United States or Canada, on receipt of three dollars and twenty cents by the publishers; six months, $\$ 1.60$; three
months, $\$ 1.00$. months, 81.00 .
Clubs.- One extra copy of the SCIENTIFIC ÁMERI-
CAN will be supplied gratis for every clubof five subscribers at $\$ 3.20$ each; additional copies at same proportionate

One copy of the Scientific American and one copy of the SCIENTIFIC AMERICAN SUPPLEMENT will be sent
for one year, postage prepaid, to any subscriber in the United States or Canada, on receipt of sevien dollars by the publishers.
The safest way to remit is by Postal Order, Draft, or Express. Money carefully placed inside of envelopes,
securely sealed, and correctly addressed, seldom goes astray, but is at the sender's risk. Address all leters stray, but is at the sender's risk. Address all letters

MIUINIV \& CO
261 Broadway, New York.
To Foreign Subscribers.-Under the facilities of
he Postal Union, the ScIENTIFIC AMERICAN is now sent by post direct from New York, with regularity, to sub-
scribers in Great Britain, India, Australia, and all other scribers in Great Brtain, Y
British colonies; to France, Austria, Belgium, Ger many,
Russio Russia, and all oter European States, Japan, Briti,
Mexico, and all States of Central and South Amerta.
Terms, when sent to foreign countries, Canadaexcepted,
 for both SCIENTIFIC AMERICAN and SUPPLEMENT for
one year. This includes postage, which we pay. Remit by postal order or draft to order of MUNN \& CO., 261 Broadway, New York.
PRTNTINE INKS

