a WeEkiy journal of practical information, art. science. mechanics, chemistry and manufactures.

NEW YORK, JULY 22, 1882.
[\$3.20 perA nnumb.

NEW ICE CUTTING MACHINE

The enormous and very general consumption of ice for manufacturing and domestic purposes has made ice harvesting one of our great industries. Important as the ice crop is, it is extremely precarious, being controlled not only by the variable forces of nature, but also by a great army of men, who cut, gather, and store the ice for distribution and use. The ice harvesters, like men employed in many other kinds of business, are liable to disaffection, and it has at times occurred that the best ice of the season has been wasted in consequence of the want of a force of men necessary to secure it.
In view of the great amount of labor required in harvesting ice, and in view of the necessity for accomplishing it at the most favorable time, Mr. Chauncy A. Sager, of Valparaiso, Ind., has devised a very ingenious and effective steam ice cutter, which makes a longitudinal cut while the machine is advancing, and at the same time making transverse cuts, thus forming cakes of suitable size for handling.
The machine propels itself forward slowly, the engine at the same time driving the saws. The saw making the longitudinal cut is suspended on a long arm pivoted to the rear end of the machine on the axial line of the driving shaft, and extending some little •distance rearward, and is driven by a cord or belt from the sheave on the driving shaft.
At the side of the main frame of the machine there is a swinging frame supported from a countershaft journaled
in an overhanging frame. The swinging frame carries at motion through its crank connection. When the cross-cut its lower and free end a saw shaft, on which is secured the cross-cutting saw, and which is provided with a key way, receiving the spline of the driving pulley, the shaft being free to move endwise while the pullcy remains in one position. On the end of the saw shaft is a sharp edged curved shoe, which engages the ice, and is steadied by a rod ex-
tending from the forward end of tending from the forward end of the swinging frame. Motion is communicated to the countershaft of the cross cutting saw by means of miter gearing and a shaft running ward end of a shaft geared to the longitudinal shaft there a crank, which gives lateral motion to the swinging frame and causes the saw to make the crosswise cut.
The motion of the saws is controlled by levers at the forward end of the machine. The driving wheels are provided with spikes to give them a firm hold on the ice, and the forward axle of the machine is movable on a king bolt to permit of steering.
The two saws with their supporting frames are capable of being folded over on the machine when they are not in use, or when the cutter is to be moved from one place to another.
In operation the machine is propelled forward by the action of the engine, the saw at the rear is revolved, cutting the ice longitudinally, at the same time the cross-cut saw is engaged in the ice and the swinging frame receives lateral
motion through its crank connection. When the cross-cut
saw enters the ice the sharp edged shoe engages the ice and prevents the cross-cutting saw raft from end motion while the saw makes its cut. While this is being done, the ma chine gradually moves forward, causing the saw at the same time to make the longitudinal cut which separates the ice into blocks as the transverse cuts are passed. When the cross-cutting saw has completed its excursion it has also compressed a spring which carries the shaft and saw back to the point of starting as the saw is released from the ice either by running out or by being raised by cams provided for that purpose. The cross-cutting saw is now ready for another cut, and the operation just described is repeated.
For gauging the distance between the longitudinal cuts in he ice and for facilitating the making of parallel cuts, the machine is provided with a graduating gauge which extends downward from the under surface of the main frame.
This machine is capable of very rapid operation, and will doubtless be appreciated by ice harvesters and dealers who now the value of time in ice harvesting seasons.
Further information in regard to this useful invention may be obtained by addressing the inventor as above.

A Chance for Inventors.-A prize of $\$ 10,000$ is offered by the French Government to any person who between July 1, 1882, and July 1, 1887, will have invented the most useful application of the Volta pile.

stientifir enmericam.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at

No. 261 BROADWAY, NEW YORK.

o. D. MUNN.
A. е. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year postage included....
$\$ 390$
160
supplied
 Same proportionate rate. Postage prepaid.
Remit py postal order. Address

MUNN \& CO.. 261 Broadway, corner of Warren street, New York.
The Scientific American Supplement
is a distinct paper from the SCIENTIFIC A AERICAN. THE SUPPIEMENY
is issued weelly. Every number contains 16 octavo pages, uniform in size
with ScIENTIFIC AMERICAN. Terms of subscription for SUPPLEMINT

 Scientific American Export Edition.
The SCiwNTIFIC AMvRICAN Export Edition is a large and splendid peri
odical, issued once a month. Each number contains about
line hundrea

NEW YORK, SATURDAY, JULY 22, 1882.

Contents.	
(Illustrateă articles are marked with an asterisik.)	
Alcohol from	
Alexandria, the city of ${ }^{48}$	
Bombardment, the, of Alexandria 48 Lu	
Button, improved**............... 57 Me	
Carbons for the electric light ${ }^{52}$ 52 Met	
Earth scraper**................. ${ }^{58}$	
Electricity, anoth. app. of......... ${ }^{50}$ 50 ${ }^{\text {Electric storage }}$ Para	
Enginering invention............. 588 Ph	
Fremer	
$\begin{array}{ll}\text { Heel plate for boots and shoes*... } 57 \\ 110 r s e ~ p n w e r, ~ n o v e l * ~ & 57 \\ \text { Silk cu }\end{array}$	
Hydrophobia, recovery from..... 54	
Ingenuity, misapplied Invention, electrical. 50 58	
Invention, engineering. \qquad 58	
Invention, mining \qquad ${ }_{58}^{58}$	
Invention, texticultural Inventions mechanical \square58 58 58	

TABLE OF CONTENTS OF
THE SCIENTIFIC AMERICAN SUPPLEMENT NO. 342,
For the Week ending July 22, 1882. Price 10 cents. For sale by all newsdealers.

1. ENGINEERING AND MECHANICS.-The Italian Ironclad

 of Various Articles caried out by suade ties in
aboratory of Rutgers College and the Jersey

H2 way
 S. GReville 1 fg...
Asbestostion of Ozo.e.
Liquetaction on
III. ELECTRICITY, ETC.-An Electric Rail way, actuated by A ccumu-

IV. HYGIENE AND PHARMACY.-The Healthiest and the Unhealth-
 Patchouli..$~$
ARCHITECUURE, ART, ETC. Suagestionsin Decorative Art.-Dining Roo. Furniture.--Fuil

 Lstabishing Cinchona Plantations.-Climate, Soil, Sites, Clearing
Land, Planting Shading, Cuttivation, etc.....................

the bombardment of alexandria.

The Egyptian revolt, under Arabi Bey, against the government of Egypt by European powers in the interest of European creditors, has ended in war. As the party chiefly interested-through the ownership of the Suez Canal and otherwise-England has assumed the responsibility of "restoring order," and has proceeded in the usual way, by
bombarding Alexandria, the chief commercial city of the bombarding Alexandria, the chief commercial city of the of July 11. The attacking fleet comprised seven powerful ironclads and the gun-vessels Bittern, Condor, Beacon, Decoy, and Cygnet. The strength of the ironclads is shown in the following table:

The defenses consisted of forts and shore batteries, mounting for the most part guns of antiquated patterns, firing round shot only, and unskillfully handled. The Egyptians showed great stubbornness, but the weight of metal was overwhelmingly on the side of the fleet. The Inflexible did good work at ranges varying from 3,000 to 5,000 yards, shelling forts right and left from her two turrets. The Monarch fired 200 heavy shells and 6,000 pounds of shot from Gatlings and Nordenfelit machine guns.
The effect of the electric broadsides fired from the Sultan and the Alexandra was very destructive, and excellent work was done by the gunboats. In the course of the forenoon nearly all the Egyptian guns were silenced and the forts badly battered. The loss of men by the English was slight, five killed and twenty-seven wounded. The Egyptian loss was apparently heavy. None of the ships was materially was apparently heavy. None
damaged; few were hit at all.
The next day (July 12) the sea was too rough to allow the fleet to do much execution; and at night the city was evacuated by Arabi Bey, after it had been given over to fire and pillage. The city had been much damaged by the shells of the fleet, and the natives retaliated by burning the European quarter, with a general massacre of the remaining Christians.

It is of course too early to determine how far this bombardment has contributed to advance the art of war. Important results are naturally expected, as it is the first time that the later types of guns and armor have been practically tested.
It is reported that the foreign military observers of the fight say that the English artillerists did not greatly distinguish themselves by the rapidity or the accuracy of their fire, and the judgment of many is that lighter guns, more quickly served, would have ended the action sooner
It is believed that Arabi Bey will retire with his army to Cairo, a fortified city of 350,000 inhabitants, 108 miles up the Nile.

THE CITY OF ALEXANDRIA

Previous to the political disturbances which caused a general exodus of Europeans from Egypt and led up to the bombardment and practical destruction of Alexaudria, the city had a population of about 215,000 inhabitants, nearly 50,000 of them Europeans.
The city lies on the Mediterranean, near the mouth of the westernmost arm of the delta of the Nile, and occupies a peninsula, anciently the island of Pharos, and the neck of land connecting it with the mainland.
On each side of the isthmus is a good harbor, that on the west being mainly artificial. Its excellent position for trade made it the chief commercial city of Egypt and the great central station for passengers east and west, the steamers
to and from India, the Levant, and Western ports all stop. ping there. It is connected with Mansoora and the Suez Canal by railroad, and with Cairo by rail, canal, and river. In its newer portion Alexandria had the appearance of a European city. It was lighted with gas and supplied with water from the Nile. Besides its large export and import trade the city was the seat of large government and private manufactures run by steam. It had many fine residences. Among the prominent buildings were the palace of the Khedive at Ras-el-Tin, the large naval arsenal, the naval and military hospitals, the Custom House, Tribunal of Commerce, Italian College, and the various schools.
Alexandria was founded by Alexander the Great in 332 B.C Under his successors, the Ptolemies, the city contained 300,000 free inhabitants and as many slaves. It became the center of learning, and schools of Grecian philosophy flourished there. Magnificent monuments were erected, among them the Pharos, the Museum, and the Temple of Serapis, and there were many gorgeous palaces and public buildings. Julius Cæsar besieged and took the city in 48 B.C., and eighteen years later Augustus made it an imperial city. It now began a new season of prosperity, continuing till the establishment of the seat of empire at Constantinople. The
Catacombs, public baths, and Pompey's Pillar, with the Roman city wall were erected during this period. In the year 215 the Roman Emperor Caracalla visited the city and
ordered a general massacre, and under the rule of Gallienus
a famine swept off half of the population. In 273 an insurrection resulted in the destruction of the great library of the museum. In 296 another revolt ended in a general slaughter, and in 365 an earthquake destroyed 50,000 persons. The Persians captured the city in 616 , and yielded it to the Arabs in 641 . It then contained 400 palaces, 400 theaters, 4,000 public baths, and 12,000 gardens.
From this time on it rapidly decayed, and its population and trade diminished. Cairo took its place as the chief city of Egypt. It finally sank so low that in 1777 its population was only 6,000 .

FIRING ALLEGED TO BE HEARD 1,000 MILES.

For the first time in history the progress of a great oaval engagement has been consecutively reported by telegraph. Λ novel member of the fleet before Alexandria was a telegraph ship, through which, by means of the Mediterranean cable line, the War Office in London and the civilized world were kept informed of the movements of the war vessels and the results of the firing.
The nearest cable station from Alexandria was at Malta, distant about 1,000 miles from the scene of the battle. A press dispatch says that when a telephone was attached to the Malta end of the cable the firing of the guns at Alexandria could be distinctly heard, though no oral communication was possible over that length of cable. It is not stated whether a telephone transmitter was used at the Alexandria end, or whether the general electrical disturbance, caused by the explosion of the great guns, so affected the cable as to report the shots, through the telephone, at Malta.

REMARKABLE DEVELOPMENTS IN OIL.

The history of the oil trade of this country does not furnish a parallel to. the effect of recent developments. The result of the penetration of a certain rock 1,600 feet below the surface, in the wilderness of Warren Co., Pa., has been to form anew the map of the oil regions, to depreciate the value of oil above ground $(30,000,000$ barrels) 30 cents per barrel, or a total shrinkage of $\$ 9,000,000$, and to enrich a few and impoverish many. The history of well " 646 " would read like a romance, but the reality of its effect upon the trade is grim and matter-of-fact to the last degree. On the 1st of April last crude oil was selling at 80 cents per barrel. The producers had good grounds for encouragement in the general situation. Consumption was increasing, and one of the old producing regions (Bradford) was rapidly declining. Its young rival (Richburg, N. Y.) bad reached its highest point, and everything in reason pointed to "dollar oil." Meanwhile a patient and often disappointed driller was nearing the end of his cable and his credit, in the dense hemlock forest of Cherry Grove township, Warren Co., six miles from any oil well, four miles from the nearest gas well, and two miles from a "dry hole." At 1,612 feet the sand pump brought up that which threw the owners of the well into a fever of excitement. They suspended all operations, boarded up and locked the derrick, and employed a patrol of armed men to keep out every intruder. Every available acre of land in the vicinity was quietly bought up by the few favored ones, and on May 18 the owners were ready to start the drill into the oil rock. In the interval, the fame of the "Mystery, No. 646 " had traveled throughout the region. Producers in general regarded the whole affair as a deeplaid plot, but were uneasy nevertheless, and oil had dropped to 73 cents. Since the "Mystery" had exerted an influence on the market, $10,000,000$ barrels had been sold "short," and every producer heartily wished " 646 " in Jericho. On the date named the fires were lighted and the drill started in the bottom of the well. By the time the soft pebble-filled rock had been pierced 8 feet the oil was flowing from the top of the well, through two two-inch pipes, at the rate of 1,400 barrels per day, and the entire trade was, for the time, paralyzed. To-day this well is rated at 800 barrels, and, since May 18, a 3,000 , a 2,500 , and a 2,000 barrel well have each added their production to the original "Mystery;" a town has grown up in the hemlock forest, and a score more drills are nearing the same long neglected storehouse. The price of oil has reached 52 cents, and the older oil regions are being depopulated to fill the new field with excited multitudes. One thousand dollars an acre and half the oil is the price for all the land on the " 45 degree line"' along which the larger wells have so far been developed. Garfield City is to-day the Mecca of the oil producer, and is as strange a creation itself as can be noted in the entire oil country.

Breaking Iron with Dynamite.

The application of dynamite to the breaking up of masses of iron too great to be broken by other means, was successfully tried near Chicago recently. A refractory chunk, " salamander," of twenty tons weight, was placed in a pit. A hole was drilled in the iron, and a charge of dynamite was inserted. Several bars of iron, weighing tons each, were placed over the pit in order to prevent small pieces of the metal from flying heavenward. The cartridge was connected with a battery, stationed one hundred feet from the pit, and after the spectators had found secluded places, the word was given, and in an instant the twenty tons of iron that had previously stood all kinds of hammering, was reduced to fragments. The steel men were completely surprised, and admitted that a feat was performed that before was held impossible.

Raw Silk Culture and the 1

The subject of silk culture has ever been strangely fascinating to those who gave it attention, and the present high siate of perfection in the culture and manufacture of silk has been attained through the efforts of enthusiasts during a period of more than two thousand years. More than a thousand years since raw silk was brought from the Chinese Empire to Greece and Syria, and there wrought into fabrics by manufacturers who did not know the origin of the fiber they so wrought, and notwithstanding centuries have elapsed since the mystery was solved, and many volumes have been written and published explaining and teaching sericulture, yet many people in this age, who buy and sell or handle silk fabrics daily, appear to know but little more of its source than did the Greeks and Syrians. Certainly very few outside of silk-producing countries realize the amount of labor, as well as sacrifice of insect life, represented in a single pound of this wonderful fiber, to produce which about three thousand silk worms contribute their beautiful robes, and necessarily their lives. The number of species of silk-producing insects is very large, probably more than two hundred, very few of which are of any practical value to mankind; on the contrary, that portion of the caterpillar family which unite their silken tissues to form a family tent have not only defied the ingenuity of man to unravel their handiwork, but have made iis industry contribute to their support by foraging upon fruit-bearing and ornamental trees. The spider family, notwithstanding many attempts to reel their beautiful threads, still monopolize their product for purposes of locomotion and snares for unlucky insects.
Of the family "Bombycidæ" probably fifty species form cocoons, some of which feed upon a species of milk-weed, others on the castor oil plant, mango, oak, Osage orange, etc.; but only those feeding upon mulberry leaves have been profitably raised, owing to inferior quality of silk or difficulty in reeling other species of cocoons. (S. Bertezen states in his book entitled "Thoughts on the Different Kinds of Food Given to Young Silk Worms," published in London A.D. 1789, that one worm fed onblack mulberry leaves is worth more than two fed on white mulberry leaves, and that in the sixteenth century the former leaf was sold in Italy and in France three times dearer than the white.) Having made silk, and illustrated its utility, more could not be expected of the lowly worm, and it remained for mankind to discover means whereby the cast-off robes of these insects might be unraveled and manufactured into fabrics fit for ladies of high degree, as well as into sewing silk and twist for all.
It is said that the art of reeling silk was known in China nearly two thousand years B.C., it having been discovered by "Siling Chi," wife of Prince "Hoangti," third Emperor of China, and that homage is still rendered to her as " Goddess of silk worms." So well did the Orientals guard the secret of silk culture that the nature of the fiber was un-
known in Europe for more than a thousand years after silk fabrics had been introduced there, and as late as the Christian era some silk fabrics were worth their weight in gold; but notwithstanding a Roman emperor once refused to purchase a silk robe for his empress on account of its expense and the bad example of extravagance, the silk worm now spins for all, and whether fashion decrees that garments be made of silk or wool true economy dictates that they be joined with Corticelli silk, to supply which the Nonotuck Silk Co., of Florence, Mass., use over 100,000 feet of floor space on which the various processes of winding, doubling, spinning, reeling, dyeing, skeining, spooling, including the knitting of silk hosiery and underwear, as well as the manufacture and printing of spools are carried on, giving employment to about eight hundred hands, and requiring a weekly supply of between three and four thousand pounds of raw silk, yielding an aggregate length in finished sewing silk, twist, embroidery, and Florence knitting silk of more than 25,000 miles. The average length of
fiber produced from a single cocoon is not over one-fourth fiber produced from a single cocoon is not over one-fourth
of a mile, and as fully 100 fibers are required to produce sewing silk of average thickness and strength, it appears that fully $2,500,000$ miles of this gossamer fiber is consumed weekly in the manufacture of Corticelli silk, to produce which more than $10,000,000$ silk worms are stripped of their robes.
Surprising as these figures appear when separately considered, they seem inconsiderable when compared to the quantity of raw silk required for purposes other than the manufacture of sewing silk, to describe which volumes might be written without exhausting the subject. The manufacture of sewing silk being comparatively simple, we will briefly describe the processes necessary to its production, including those performed by the chief workers, the patient silk worms.
At the expiration of from twenty-five to forty days, according to circumstances and species of worm, they cease to eat and seek convenient places to commence the formation of a castle which shall protect them in the changes incident to caterpillar life. Having selected a site, the insect ejects from two small tubes near the mouth, called spinnerets, a liquid gummy substance secreted from their
food, which at their volition adheres to whatever substance may be within their reach, and, being so anchored, the next movement of the body in the opposite direction draws out the filaments, which unite and form a single thread, which is
and zigzag motions continued for from three to five days, the worm is inclosed within from 300 to 500 yards of gossamer web. Thus self imprisoned the insect, if undisturbed, remains about fifteen or twenty days, undergoing nature's wonderful changes, during which it assumes the chrysalis
form, then that of the moth.
Having entered upon this new life, which at most does not exceed seven days, the moth escapes from the cocoon by moistening one end, and pushing aside the fibers, thus snarling and destroying it for reeling purposes. Thus transformed these insects appear again upon the stage, not as voracious worms, but as radiant society bugs, who promptly choose partners for short but useful lives, no part of which is allotted to eating. Assuming, however, that cocoons are to be reeled into "raw silk," it is necessary to
kill the insect before the cocoon is perforated; this is done by the application of a suitable amount of heat, after which the reeling may be done at a convenient season. This is done by placing from six to ten or more cocoons in a bowl of hot water, thus softening the "gum" in the fiber, after which the outside end of each thread is readily found, and they are collectively placed on a reel, operated by hand or
other motive power, and rapidly drawn on to the reel, the fiber varying from 300 to 500 yards in length, and as the end of each cocoon fiber is so reached another should be added, in order to produce uniformity in thickness of thread, a requisite indispensable in first-class raw silk.
This operation is tedious and necessarily expensive, as four ounces of well reeled silk represents about ten hours' labor of an expert reeler. The reels used are usually 70 or more inches in circumference, and have a traverse rod to properly distribute the thread over a surface two or three inches wide. The thread being thus rapidly crossed from side to side of the skein in reeling facilitates handling and unwinding without tangling. Skeins so reeled weigh from one to several ounces, as desired, and on being removed are dried and neatly packed into "books" (bundles) weighing from five to ten pounds. In China and Japan the books are
usually packed and sold in bales of $1331 / 3$ pounds, called usually packed and sold in bales of $1331 / 3$ pounds, calle
" picul " bales, a very small export duty being charged.
In the process of manufacture, the skeins are soaked
tepid soap-suds for several hours to soften the "gum," after which they are placed upon light swifts and wound off on to boblins, which are then placed upon pins projecting from the bobbin-board of a doubling-frame, and from two to ten or more threads drawn off collectively on to one bobbin, which is next placed upon a rapidly revolving spinning frame spindle; the requisite amount of twist is given while the thread is being drawn from this to the take-up bobbin, which has motion imparted sufficient to give the desired twist, after which it is again doubled, two threads being used for "sew ing silk" and three for " twist " or " three-cord sewing silk," and again similarly twisted, but in the opposite direction. The next operation is reeling into small skeins, for "skein silk," or large "hanks," to be dyed and wound upon spools as desired. This operation is rapidly performed on a partially automatic machine, on which an expert attendant can wind 1,000 to 1,200 spools of 100 yards each, in ten hours, the requisite number of yards being gauged by the number of courses, or layers of silk wound upon each spool. This is done with surprising accuracy at the "Corticelli" manufactory, as shown by daily tests made by a person employed for the purpose, and recorded in book form, many volumes which have been filled. The record for 1881 shows that 13,628 tests were made of "Corticelli," 100 yard, 50 yard, and 10 yard spools of silk yielding an aggregate of 1,122 yards in excess of those stamped on the spools, an average of one-twelfth of a yard on each spool over the standard claimed. Well may the manufacturers of "Corticelli" silk point with pride to their record. "Deserve success, and you shall command it." As the subject of silk culture in ine United States is now assuming its old-time importance in the estimation especially of people in the Southern States, it may be well to realize in advance the probable amount of abor and expense required to produce a given quantity of silk. Assuming that mulberry trees have been grown, and suitable buildings provided in which to rear worms, the next expense will be for silk eggs, say for one ounce (about 40,000), from three to five dollars. Each worm will require during its short life, at least four-ifths of an ounce of leaves, which must be gathered as needed, "rain or shine," dried
if wet, and properly distributed over the space occupied by the worms, care being taken to keep the spaces so occupied clean, dry, and wholesome. The amount of labor thus reguired must vary greatly, according to the abundance of eaves and the facilities for gathering, which may partially account for the discrepancy in the estimates of writers on he subject, in reading which we are impressed with the apparent candor of the Rev. D. V. McLean, of Freehold,
N. J., in a report of his experience in silk culture was prepared for and laid before the executive committee of the "American Silk Society" at their annual meeting in Washington, D. C., December 11, 1839, wherein he states that " 40,000 worms consumed 2,576 pounds of leaves, and produced 130 pounds of cocoons (126 pounds after flossing), hese produced 12 pounds of reeled silk. My experiment was made to get at a fair estimate of what could be calcuHe estimated result."
He estimated that 160,000 worms could be reared from one
 worms would not exceed the value of the labor of two females and one mate exceed the value of the labor of two
his experiment : "My deliberate opinion is that more will fall below this standard than will exceed it, and in one case where a less quantity of leaves will give the above quantity of silk, two cases will occur that will require a greater. I have read with great regret many of the calculations of the day on the subject of silk profits; some of them, I greatly fear, are made purely to subserve selfish ends, regardless of the ultimate consequences to the public."
Among the large number of people engaged experimentally in silk culture in 1839 to 1840 -as then reported in "American Silk Society," vols. 1 and 2-the Messrs. Cheney, then located in New Jersey, were about the most successful, producing in 1839 from 80,000 worms in twentyfour days' feeding, 356 pounds cocoons from 3,970 pounds leaves, yielding 1 pound reeled silk from 9 pounds cocoons the average quantity required in ten other cases reported from different localities being nearly 12 pounds or 4 pounds when dry (equal to 1 bushel by measure). The system of feeding adopted by Messrs. Cheney was that of M. C. Beauvis, with M. Darcet's process of ventilation. The amount of labor required in this case is not stated, but according to the estimate of the reverend gentleman above quoted, four and a half days' labor is ample to rear worms sufficient for 1 pound of silk, the reeling of which, if equal to fine Italian or French silk, would call for four days' work of an experienced reeler, thus requiring about eight and a half days' labor to produce 1 pound of silk, the value of which has not averaged over $\$ 600$ for a few years past.
In the above estimate, leaves from Morus Multicaulis rees were used, which are much larger and more readily gathered than those from the white mulberry tree, the former having been known to reach the dimensions of $151 / 2$ by $141 / 2$ inches exclusive of stem. In this estimate no allowance has been made for labor in cultivating trecs, interest on capital invested, or risk attending the rearing of a crop of worms. But enough has been demonstrated by the epeated experiments made in the United States since James the First sought to substitute silk cuiture for that of tobacco in Virginia, in A.D. 1623, by offering a bounty on every pound of cocoons raised, and by imposing fines on land owners who did not plant mulberry trees, to show that the cimate is favorable for silk culture, and that the probem is simply this: Can we afford to compete with the Chinese or Japanese who are now driving the not over-fed Italians out of the trade they know so well, and necessitating their seeking the more lucrative business of Indian corn growing?
The adage, " history repeats itself," is especially suggestive in respect to the failure in all previous attempts to make silk culture profitable in the United States, from the fact that while the labor market here has advanced, the price of raw silk has receded, quality considered.
The regrets expressed by the Rev. D. V. McLean, in espect to over-estimating the profits of silk culture, seem to us strikingly appropriate to the present time, considering the misleading statements frequently published, some of which we quote from a pamphlet received lately, pul lished in St. Louis, and entitled " A Pamphlet to Introduce and Generalize Silk Culture," wherein it is stated that 'a family of two grown persons and three children can rear n about forty days 38,000 silk worms." 38,000 cocoons weigh about 200 ounces. "The average price of cocoons is about $\$ 1$ per pound; when very good and heavy it is about $\$ 1.50$ per pound." If these statements are correct, and we think the estimate of the labor required is correct, the 200 days' labor quoted would yield from $\$ 200$ to $\$ 300$. On the contrary, experienced silk raisers know that an average yield f cocoons from 38,000 worms will not exceed 125 pounds when fresh, or 42 pounḍs when dry, and that the amount of silk obtainable therefrom would not usually exceed 10 or 12 pounds, 85 per cent of the weight of fresh cocoons being chrysalis; and as the reeling, if well done, costs nearly as much as the rearing of worms, it follows that fresh cocoons at $\$ 1.00$ to $\$ 1.50$ per pound would not be a paying investment for reeling purposes.
In striking contrast to the picture drawn by the St. Louis uthor, we quote from the American silk Journal of May, 1882: "In the silk reports coming from Upper Italy there are complaints that the peasantry in that part of the coun ry are very much discouraged, since silk culture has, from all appearances, ceased to be a paying industry." "The times when they used to get between 6 and 7 lire per kilogramme for cocoons seems to have gone forever"-(6 or 7 ire depreciated currency equal to $\$ 1.00$ to $\$ 1.17$ for $2 \frac{1}{5}$ pounds, or about 50 cents per pound)-"'and they gradually bandon this pursuit and turn their attention to other more profitable branches, like tobacco, for instance. This is paricularly the case with the smaller farms hitherto devoted to raising silk worms. It is estimated that last year onethird less silk eggs were hatched in Upper Italy than in 1880. If the quantity of cocoons obtained was nevertheless large, t was merely due to the casually good yield. As this year ven less eggs will be hatched a deficiency in that region s quite likely to occur."

Canadian Fisheries.

The fisheries statistics for the year 1881, just published, how the total value of the production of the fisheries of Canada to be $\$ 15,817,162$; the value in the provinces for the year amounts to $\$ 14,499,979$, exclusive of the catch in Manitoba and the Northwest territories, of which catch in Manitoba an
there are no returns.

High Waves on Lakes.

The recent storm wave on Lake Erie has called out the following account of earlier waves of like character, first printed in the Cleveland Leader:
"On Lake Superior, in 1789, opposite Isle Royal, there was a sudden fall of four feet in the waters. When they returned they did so with a rush, the vibration continuing for several hours. In 1834 the waters above the Sault Rapids suddenly receded, and in half an hour returned with great velocity. In August, 1845, Dr. Foster states that while in an open boat between Copper Harbor and Eagle River, an enormous surge twenty feet in height and crested with foam rolled toward the shore, succeeded by two or three swells. Dr.Foster observed repeated flows and reflux of the waters in 1847,1848 , and 1849 , which preceded or followed storms on the ake. In 1851 D. D. Brockway reported, in a perfect calm, a sudden rise of one foot and three inches, and in another two and one-half feet. The Lake Superior News, of July 17, 1855, reports extreme fluctuations between the hours of nine in the morning and four in the evening. Father Andre, in 16'0, while on Green Bay, reported a three foot rise, but this was accompanied by a northwester. On April 14, 1858, the Milwaukee Sentinel reported a change of level in Lake Michigan of six feet. May 10,1823, according to DeWitt. Clinton, at Otter Creek, on the Canadia shore, a wave came in nine feet high, and the same occurrence took place at Kettle Creek, twenty miles distant. Another in 1830 reports three waves at Madison Dock, Lake Co., O., the first rising tifteen or twenty feet. In 1844 or 1845 a wave came into Euclid Creek fifteen feet in height, carrying everything before it. On November 15, 1845, the water at Cleveland suddenly fell two and eight tenths feet during a high wind from the southwest. The Toledo Blade records a change of ten feet on December 5 1856. On June 15, 1872, at Charlotte, which is at the mouth of the Genesee River, the water rose twenty-two inches. In May, 1855, the waters of Seneca Lake exhibited a like phenomenon of continued rise and fall of sixteen and a half inches to two feet through two days. Similar agitations of the waters have been observed in Lake Geneva, in Switzerland."

Electric Storage

At a recent meeting of the London Physical Society, Mr Bosanquet described his application of the Faure accumu ator charged by a dynamo-electric generator to the working f laboratory apparatus instead of the usual Grove or other battery. The net result of his experiments is that the ac cumulators charged for two hours have sufficient energy to keep the apparatus employed running for a week, and hence it is unnecessary for him as heretofore to put up thirty Grove ells each day.
Prof. Perry observed that a well made Faure cell, having the minium laid on in a uniform coat, does not lose its charge nor develop local action as is done by those accumu lators in which the minium is put into holes in the plates.
Prof. Clifton described some ingenious devices adopted by him in lecture experiments on electrostatics. These consisted of insulating glass stems with glass cups, to hold sulphuric acid formed on the stems; also a form of key which by rapidly succeeding contacts, brings the spot of light on the electrometer scale to rest without tedious swinging. He also described a form of lecture galvanometer, sine, or tan ent, which could be readily shown in all its working to a large class, and exhibited a simple and inexpensive appa ratus for measuring the focal length of a lens in six differen ways, according to what is known about the lens. The esults showed that the apparatus was very accurate in it ndications.
mportant patent Decision.
In the case of the Detroit Lubricator Company against the American Lubricator Company, February last, in the U. S. Circuit Court, Eastern District of Michigan, before the Hon. Judge Brown, a verdict was rendered in favor of the American Lubricator Company, confirming and re-establishing their rights.

Judge B. F. James.

Judge James was, early in 1861, appointed 3y President Lincoln an examiner in the United States Patent Office, faithfully serving as such for more than eight years, when he became a member of the Board of Appeals, retiring from this position to take up the practice of patent law. For years past he had been suffering from a fatal attack of heart disease, to which he succumbed, June 26, at Washington, D. C.

For two years the officers of the National State Bank, of Elizabeth, New Jersey, have been puzzled by the disappear ance of cash from the drawer of the paying teller during business hours. A change of teliers did not stop the thefts The detectives could make nothing of the mystery further than to establish an overwhelming probability that the rob bery was effected by some one in the employ of the bank. Recently, while attending to a customer of the bank, the teller thought he heard a mouse in the cash drawer. Open ing the drawer quickly a thin line snapped, and he saw

Fig.

HERZ'S LONG DISTANCE TELEPHONE.

lying on a pile of $\$ 20$ bills a small flat piece of lead, about n ounce in weight. On examination, it was found that one face of the lead was coated with gutta percha daubed with soft shoemaker's wax. The officers of the bank were summoned, with two detectives, and the cash was counted, discovering that thirteen $\$ 20$ bills had been abstracted that morning. Further examination of the drawer discovered a thin fish line running through two screw rings, one in the under surface of the counter over the middle of the drawer, and another behind the rear of the drawer. There was a space between the top of the money drawer and the coun ter, concealed, of course, in front. In the floor there was

HERZ'S TELEPHONE SYSTEM.

an old gaspipe hole, left there after some a terations in the arrangement of the office furniture. This was in such a position relative to the cash drawer, that lines reeved through both the screw rings could be so worked as to drop in the lead upon the bills by one movement, and carry it out again by a reverse one, a bill being attached, of course, during the latter movement. It was plain that the work was done from underneath the office, and to this place nobody had access but the janitor, who was arrested and confessed his guilt. He had stolen in this way àbout $\$ 2,000$. The device showed ingenuity, which, if turned to honest ends, might have made the thief a useful and successful inventor.

THE TELEPHONIC SYSTEMS OF DR. HERZ.

M. du Moncel has thoroughly studied the different telephonic systems of Dr. Cornelius Herz, and the object of the resent article is to describe some new experiments, and es pecially the efforts which have been made to simplify the pparatus and give it a practical and convenient form.
The apparatus represented in Fig. 1 is specially designed or lines most affected by induction, which renders communication impossible with ordinary telephones.
This plan utilizes two principles discovered by Dr. Herz : The alternation of the current in the line and employing con densers as receivers. The instrument constitutes a station, completely inclosing, under a compact and appropriate form, all the parts necessary for the call and for communication.
The diaphragm is horizontal, but a funnel placed in front of the box collects the sound and concertrates it upon the diaphragm, and the instrument will transmit words spoken fifty centimeters from it.
Four pairs of microphonic contacts are placed upon an oscillating platform, under the diaphragm and connected with it by a rigid rod, communicating to it all the vibrations of the diaphragm. These conacts are of a special composition, and communicate with the battery and with the line.
In this apparatus it is not necessary to use the induction coil, butit is necessary that the number of elements of the battery in the line be proportioned to the distance of the two stations; for example, between Paris and Orleans it was necessary to use thirty elements of Daniell at each station, in order to obtain the maximum intensity. Besides, the condensers have to be charged, in order to reproduce speech, so that it is necessary to employ another battery which is interposed in the line. It would seem at first sight that the number of elements employed would perhaps be an obstacle to the use of this apparatus, but it must not be forgotten, on the one hand, that the battery designed to charge the condenser, working always in an open circuit, costs very little, and on the other hand, the instrument is designed to work over lines where the employment of magneto receivers would be impossible.
Figures 2 and 3 represent an apparatus where the alterna ion of the current is accomplished in a different manner, and in which the induction coil is used in order to diminish the number of elements necessary in a long line.
Originally this instrument was formed of a vibrating plate, having at each side a contact point touching the diaphragm lightly, and the vibrations increased or diminished the pressure alternately upon each one of these contacts, but this form being inconvenient, M. Herz preferred that which is represented in Figs. 2 and 3, which gives the same results.
The vibrating plate, \mathbf{A}, is of conducting material. Below and touching it lightly, is a cylinder, B, which rests upon a disk, C , the two being made of the same material as the plate. The disk, C, rests, in its turn, upon a thin metal spring, which is made adjustable by means of a screw, so as to vary the contact between the three pieces, $\mathrm{A}, \mathrm{B}, \mathrm{C}$.
The plate, A, and the disk, C, are connected with one of the poles of a battery of four elements, which is grounded at the center. Finally, the cylinder, B, is connected with one of the extremities of the primary wire of the induction coil, the other end being grounded. The secondary wire of the coil passes out from one side to the line, and from the other side to the ground.
It may be seen by referring to Fig. 4 what occurs when the instrument is spoken to. The vibrations determine alternately the increase and diminution of pressure upon the cylinder, B. During the first vibration the power of conducting electricity increases suddenly at A (Fig. 4), while the inertia of the cylinder, B, prevents increas at C , the current follows the route, $\mathrm{A}, \mathrm{B}, \mathrm{P}$, to the ground On the contrary, in the second vibration the power of conducting electricity diminishes at A, but increases at B, and the current follows the route, $\mathrm{C}, \mathrm{B}, \mathrm{P}$, to the ground. It may be seen that during these two phases there are alternating currents passing through the primary circuit of the induction coil, and that in the secondary circuit there will be produced four impulses, two in one direction and two in the opposite direction, passing over the line. By this arrangement the telephones are placed in a derived circuit between the lin and the ground. This instrument has always given very good results upon a long line, of which the static charges are often considerable
Another arrangement has been given to the same instru ment which does not work with alternating currents, but as an ordinary microphone having great power. This arrange ment is represented in Fig. 5 . The current enters throug the cylinder, B, and issues through the contacts, \mathbf{A} and \mathbf{C} and is delivered to the primary circuit of the two induction coils, then to the ground.
The secondaries are independent, as the sketch indicates, or arranged upon the same circuit; in either case they ar
connected with the line on one side and with the ground on the other. The engraving of this apparatus will show how the distribution of the current is made, and in order that the instruments may give good results it is indispensable that there should exist a certain relation in the resistance of the coils, between themselves, and the coils with the line.
Another principle has been utilized by M. Herz, to augment the power of his telephones: it is that of derivation from the ground. Fig. 6 represents an apparatus which is based upon the principle of derivation. Under the vibrating plate are four pairs of contacts arranged as in Fig. 1, but with different electrical connections. The four lower conacts are connected together, and the four upper ones also, in such a way that all the pairs work together without producing an alternating current. Fig. γ shows how the instruments are arranged in two corresponding stations When the two receivers t, t^{\prime}, are hung up, each one of the stations may call the other by pushing on the button C. When the station called has re sponded, the telephones are taken down ; this changes the switches, and conversation may be carried on by the two instruments. Suppose, at first, that the station at the right speaks, the current from the battery, P , passing by the contact, t^{\prime}, re-established ty th raising of the telephone, is divided, the one part passing to the line, and the other to the microphone, M , then to the ground. The variations of con ductivity produced by the microphone in the derived circuit, M, T, will be varied in the same manner as the current of the line of which the resist ance is constant.
At the receiver of the other station, the current from the line passes in at C , then into the telephone, and finally to the ground, the lever, t^{\prime}, having established the lower contact.
The apparatus described is placed borizontally, and may be spoken to directly over the diaphragm, but it may also have a vertical form as shown in Fig. 7; this arrangement, however, is only on the outside, and does not change the interior arrangement of the horizontal plate and the contacts.
The instruments which are the subject of this article put in practice three principles adapted to facilitate communication in various circumstances. These principles are the employment of condensers as receivers, the alternation of the current in the line, and the system of derived circuits. This does not form, altogether, a new method of telephonic communication, but either of them may be employed in cases where their application is specially indicated, and they constitute an important modification of the telephone.-A. Noaillon, in La Lumière Electrique.

Researches on Lung Disease.

Fresh proof has lately been obtained by M. Giboux, of the danger in air expired by consumptives. He experimented with four young rabbits of the same litter, and born of healthy parents. Two of them were kept 105 days in a large wooden case, with side gratings, into which was introduced daily a quantity (about 20,000 cubic centimeters) of air expired by animals in a consumptive state. This operation was performed at midday and in the evening, and each time the gratings were kept closed for two hours. In another quite similar case, the two other rabbits were similarly treated, except that the impure air was made to traverse in its way to the case some wadding impreguated with carbolic acid. The rabbits in the first case, before long, showed loss of appetite, intense thirst, listlessness, diarrhea, and loss of flesh. On being killed, both were found to have tubercles in the lungs, the liver, and the kidneys, those in the lungs being the most advanced, and the upper lobes being chiefly affected. The other couple of rabbits presented nothing abnormal while alive, and no orgaaic alteration was observed in their organs after death. They were eaten without repugnance by the author and his family. Again, observations have been recently made by MM. Gréhaut and Quinquand, both on man and the lower animals, regarding the influence of injuries of the lungs (or of the bronchiæ or the pleural envelope) on the exhalation of carbonic acid. They prove that the amount of this gas exhaled is less where such disorder exists, even where there is fever. Two explanations are conceivable: the pulmonary change might bar the elimination of carbonic acid, which, in that case, would accumulate in the blood, or the injury might have the effect of diminishing the production of carbonic acid by affecting the general nutrition. Experiment favored the latter hypothesis.

The London Lancet says that muscarine, the active poison of mushrooms, is directly antagonized by atropia.

A paper on this subject was lately read before the Lon don Physical Society, by Mr. T. Wrightson and Professor W. Chandler Roberts, F.R.S. The results were obtained by the process described in a former paper to the society on the fluid density of bismuth. The mean results were: For

Fig. 8

HERZ TELEPHONE SYSTEM.

copper, 8.217 ; lead, 10.37 ; tin, 7.025; zinc, 6.48 ; silver, 9.51 ; iron (No. 4 Foundry Cleveland), 6.88 . These results
are slightly less than those given by Mallet's process, but are slightly less than those given by Mallet's process, bu
they are sufficiently close. For bismuth the fluid density found by the authors is 10.055 , which is slightly more than that given by Mallet's method ($9 \cdot 82$). The authors consider their method satisfactory. It consists in suspending a ball of the solid metal from a spiral spring, and allowing it to dip into a crucible of the same metal in a molten state. The
movements of the spring as theball melts are recorded by a pencil on a band of traveling paper.

The fastest regular time known to be made by the passenger trains from Jersey City to Philadelphia, 90 miles,
was 1 hour 50 minutes.

Northern Chili.

The country which looks so narrow upon the map has evertheless a breadth of 150 to 170 geographical miles, and rises with alternating hill and valley to the Cordilleras. This situation, between the Cordilleras upon one side and the quiet Pacific on the other, produces a climate which is very moderate for that latitude. The greatest heat in summer is 78° to 80° Fahr.; in winter nights it freezes, but as soon as the sun rises the cold is reduced to a very pleasant temperature. Certain kinds of palms grow very well in this climate. A remarkable uniformity prevails in the atmosphere, gentle land breezes by night, and sea breezes by day, are repeated day after day with a shining sun and clear only slightly clouded sky. A few imes in winter the sky is thinly clouded over, and a strong, cold, mois north wind prevails, which brings with it a few hours of rain, but it does not penetrate more than an inch into the earth. Perhaps once in twenty years a spell of rainy weather sets in, which produces snow in the higher regions, while in the valleys there are heavy rain torrents, producing frequent brook and rivers, with deeply excavated beds, which are left dry again in a few days, and usually remain thus dry for the ext twenty years. After such a rain the hills and valleys become covered with flowers and plants, which con tinue to grow for several years with no other nourishment but the strong nigh and morning mists peculiar to the deepe regions. Otherwise the land from far south of Copiapo northward to Peru is perfect desert. Even moss is rarely found on the mountains. The moun tain chains, with their gaudy colors stand forth totally barren of vegetation Granitic and syenitic mountains, with requent sand-filled cliffs, valleys cov ered with bowlders, clay, and sand, are seen. The valley of Copiapo, irrigated by a river of the same name, which re ceives its waters from the snowy reThe composition of the new enamel is kept a secret, but is gions of the Cordilleras, makes a very pleasant impression said to differ from the old form in the simplicity of its prepa- By artificial means the water is spread over a broad stretch of ration and the extraordinary cheapness of the materials used. It is so cheap that it has found very extensive use in many branches of industry.
In color this new enamel is gray. It will be useful for gas pipes as well as water pipes, because it will make the pipe absolutely tight by this glassy lining. It will be no less use ful for soil pipes, which are always liable to corrosion from the gas they contain, but for conveying acid liquors, like mine-water, and in chemical works, for sinks and waste-pipe in chemical laboratories, it should displace lead, glass, or terra-cotta.

Fluid Density of Metals

 and barley; wheat, rye, and oats are not cultivated here The soil is so fertile that any addition of fertilizers is totally unknown, and yet barley produces a yield which would be thought impossible in Europe. Outside of this valley, and very few similar ones, there is, of course, no agriculture in this desert. But on the other hand this region is very rich in mines, which frequently occasion the building of a small mining town, but just as frequently they exist without any animal or plant life. The population consists of a mixture of the long since extinct original Indian stock with the later immigrating Spaniards.The Cordilleras, as is well known, extend north and south and parallel to these and to the coast are the different geoogical formations which oecur here. A vertical section rom the coast to the peak of the Cordilleras would cut through all the strata, whereby a glance at the formation of the mountain would be possible. Next to the coast are the oldest stratified rocks, consisting of clay and quartz shale without any fossils, and in which as yet there are no mines, but not destitute of metalliferous veins. The Chilians call this the gold formation! On the coast this is broken through by light colored granites; on the east it is bounded by a later diorite, which is 10,16 , or 20 miles from the coast, and parallel to it. This is the matrix in this part of Chili for the numerou kinds of copper ores, which makes Chili one of the largest copper-producing countries of the earth. The gangue is chiefly quartz. Deep down below the surface the ore is always copper pyrites, but above this, and near the surface are all possible products of oxidation. Descending from above the ores appear in the following order: first, silicate, carbonates, and chlorides, then red oxide, next the black oxide (frequently in large masses), then kupferglanz (calcocite), and finally copper pyrites, with iron pyrites. Native copper is also found mixed with the ores, sometimes in pieces as large as the hand. These veins never contain galena, blende, arsenic, or silver, but, on the contrary, some gold. Beside the regular veins, pockets of wonderful riehness are also found, as, for instance, the mine at Corrizabilo, north of the Chaneral. This lies on the boundaries of the porphyry, and produces monthly 15 to $20,000 \mathrm{cwt}$. of copper pyrites, containing 20 to 25 per cent of copper. The supply of metal is sufficient for a six years' run; a production of $216,000 \mathrm{cwt}$. in six years. The diorite is penetrated by numerous veins of greenstone, both older and younger than the veins of copper ores
Eastly from the diorite we strike upon an eruptive formation, which consists at first of impure limestone, with ammonites; above is a stratum of porphyry conglomerate; between these appears a sandstone formation with argillaceous shale, in which is found the anthracite. Above the conglomerate again is a light marl and clay shale, with numerous ammo-
nites, belemnites, etc. This whole formation is penetrated and other dangers to find these treasures. But many of the with porphyry, with and without quartz, with and without mica, with and without hornblende, and is frequently broken through by hornblendic granite in mighty veins, which also very frequently form the highest peaks of the isolated mountains formed by erosion, while farther down they consist of shales that contain ammonites. Farther in the Cordilleras these secondary strata are also broken through by the diorite. In the above mentioned impure limestone, in a line from 30 to 60 miles from the coast, occur a greater part of the silver mines of Chili, including the celebrated Chanereillos mine, which has produced, since its discovery in 1834, over $\$ 100,000,000$, but is now almost entirely exhausted. Some of these mines are 500 meters deep, and no ore has been found for the last 100 meters. The adjoining rock at this depth is totally different from that near the surface. In the porphyritic conglomerate, too, there are single mines of silver. The previously mentioned occurrence of anthracite has as yet been but little investigated. In the upper marl and shale strata are poor veins of lead ore, which are only seldom worked. In the porphyry, too, there are silver veins, for example, the mine Buena Esperanza, at Tres Puntos, which has yielded $\$ 16,000,000$ since it was discovered in 1848. The most common ores of silver are horn silver, native silver, and ruby silver ore. Both in the stratified secondary formation, as well as in the irruptive porphyry, copper veins are met with, which differ from those in the diorite in this, that the gangue rock consists of calcspar instead of quartz, and that they contain in addition to the chief ore of pyrites, also fablerz and argentiferous galena. Copper veins also occur in the diorite which penetrates the secondary strata further into the Cordilleras, but these are analogous to those that are found in the diorite on the coast.
These eruptive and shale formations form the principal mass of the western slope of the Cordilleras up to a height of 16,000 feet, but at a greater height they are unknown.
The ore veins may be classified as follows:

1. Quartz veins in diorite, with copper pyrites (and copper oxides), sometimes auriferous, but never argentiferous.
2. Calcspar veins in porphyry and stratified secondary rocks with argentiferous copper ores.
3. Limestone and barytes veins, likewise in porphyry and stratified secondary formation, with free-milling silver ores, some of them also auriferous.
4. Galena, with a little silver in the upper secondary marl and clay shale, not much worked
5. Quartz veins in granite, with gold and some copper, but no silver. Its occurrence is not more nearly known; probably they will also appear in the later granite, which breaks through the oldest shale and has given to this formation the name of " gold formation.
Up to a height of 11,000 feet are found large alluvial and diluvial formations, consisting of stone, sand, and mar strata of considerable thickness, with single subordinate strata of trachytic tufa, and frequently covered over with trachytic porphyry with sardine crystals and pitchstone porphyry.
At a height of 8,10 , or 12,000 feet above the sea is found a series of half dried up salt lakes, without outlet, and from 40 to 50 or more miles in length. These lakes have abundant feeders, but the air is so dry and the evaporation so great at this height that an equilibrium is always maintained between the influx and evaporation. In the neighborlood of one of these lakes, very recently, a company found an immense mass of a borate of lime and soda, in layers alternately with common salt (soda chloride); still more recently a similar strata bas been found at another salt lake, which lies near the projected rail way over the Cordilleras, and it is very probable that still more will be found
The eruptive nature of the trachyte surrounding these lakes, and the formation of borax now seen at the hot springs of Tuscany, permit us to conjecture that a similar formation is to be expected here. The present relations of the strata are explained by the evaporation of a former much larger salt lake, to which is ascribed the presence of some large salt deposits in the secondary formation, while others suppose that they are the remains of the large sea which in a comparatively recent time covered the Cordilleras to a height of 11,000 feet.
The trachyte which covers the alluvial strata is purely crystalline, and was formed after the eruption. Mr. Sandt, who observed these upon the spot, explains their occurrence as follows: Up to the time of the tertiary the Cordilleras stood under water to a depth of 11,000 feet, and then arose simultaneously with the eruption of the trachyte.
The alluvial formations are not a local formation, nor as such peculiar to the salt lakes mentioned, but they have here an extraordinary exteusion and contribute essentially to im part to the Atacama deserts the character of a mountain slope, from which the peaks emerge like islands. The borax mineral consists of borate of lime, borate of soda and water, is amorphous, snow white, has the luster of silver, and contains 30,40 , or 50 per cent of boracic acid, as it seems to consist of several varieties, with varying quantities of water and lime.
That an actual, real, epidemic fever should prevail in a country so rich in ores and mineral treasure, might be expected. Under the influence of this fever the search for ores and attempts at opening mines have been made, and our knowledge is derived rather from reports than from careful mineralogical and geological study. Although many of these stories are false, yet there is truth enough to cause
large caravans to be fitted out, which endure cold, hunger,
most celebrated mines in North Chili owe their present existence to the fever and its consequences, else they had long since been exhausted. So too the above-mentioned borax deposits, which are wonderfully rich. Yet in spite of all difficulties of a long transport to the sea coast, borax can be obtained thence more cheaply than from any other place. It has been suggested that this may produce a revolution in some of our metallurgical processes, when, in a few years, perlaps better means of transportation shall be introduced there. Over $\$ 100,000$ has already been expended in making new roads and in preparing the impure mineral for shipment, such as expelling the water of crystallization, although the specfic gravity of the mineral is so small that the cost of transportation is not very great.

Two Live Brant.

Mr. Frederick Mather, Assistant United States Fish Commissioner, has two live brant which he will try to have mate and breed at his trout farm on Long Island. They were wing-tipped last winter on the Virginia broad-water by a New York sportsman who was shooting there, and after a hard chase they were captured in shoal water and confined in a pen. Although, from time to time, brant have been domesticated both here and in Europe, they have never been
known to follow the example of the other varieties of geese known to follow the example of the other varieties of geese解 plorers. Indeed, the surmises that there are open seas at the Pole has been principally based on the observations made of the habits of this mysterious fowl. As farnorth as the explorers have reached the brant have still been seen winging thcir way northward. Their food is known to consist mainly of marine grasses, which grow only on the shoals. This, perhaps, points more to open seas at the extreme north than any other evidence yet brought to light. On the day after the geese were secured they became very tame, and almost instantly recognized the person who fed them. They would run to the side of their inclosure and take sea grass and cabbage leaves from his hand. They arrived here recently from the South in fine condition, and when given their liberty they at once proceeded to eat a good breakfast of corn and make their toilets. Of all the five varieties of geese this fowl is the most beautiful. At this time brant are migrating northward, where they will meet the ice on the coast of Labrador. It is presumed that they descend from their aerial route and feed at the springs above Hudson Bay and in Gieenland

A prominent feature of the coning Con and
A prominent feature of the coming Convention of the New York State Firemen's Association, in Rochester, will be an exhibition of fire engines and apparatus. The central committee have secured a capacious and centrally located exhibition building, having 100,000 square feet of area, the five floors being connected by elevators and well lighted and ven tilated.
On the first floor are the offices of the Central Committee, Western Union Telegraph and Rapid Telegraph Messenger Service; also a display of steam fire engines, hand engines, and hook and ladder trucks The second floor will contain the hose carriages, fire escapes, extension ladders, chemical extinguishers, florists' display, and firemen's periodicals. The third floor will be devoted to hose, nozzles, valves, hose attachments, firemen's uniforms, badges, rubber coats and hats, and every description of small merchandise used by firemen. The fourth floor will be used as a convention hall, with special accommodations for delegates and reporters. On the fifth floor will be found the reception parlors and banquet hall for the special use of visiting delegates.
The building will be open for the reception of articles August 12, and all exhibits must be in position and ready for exhibition on the opening day. Machinery and manufac tured articles must be entered in the name of the manufacturer. Entries will be permitted by manufacturers' agents and through their accredited representatives. All articles on exhibition must remain until the convention closes.
No charge will be made to exhibitors for entries or space for exhibits. The expense of the exposition building will be wholly assumed by the Central Committee. The committee will take charge of all articles upon which the freight has been prepaid, and remove them to the exhibition building at the expense of the exhibitor.
The Secretary of the Central Committee is H. W. Mathews, Rochester.

nother Application of Electricity

The call for an electrical sheep-shearer, made by a New Zealand correspondent in these columns some months ago has apparently brought forth fruit in an unexpected quarter The head of the Hudson Bay Fur Company of England is Sir Curtis Lampson, by birth a Vermonter. It is now announced that he has applied electricity to the trimming of seal skins. The skin is "fed" over a knife-edge bar, above which is stretched a fine platinum wire, which, raised to a white heat by an electric current, meets the longer hairs which rise above the under fur, and mows them down.
A petroledm pipe line, constructed from the Couban oil territory over the Caucasus Mountains to Novoroszisk Harbor on the Black Sea coast, was opened on May 27. This line of pipe, which is 105 miles long, can deliver every day line of pipe, which is 105 miles long, can de
not less than $1,000,000$ pounds of petroleum.

A Perpetual Motion Clock

In September last, a new perpetual clock was put up at the Gare du Nord, Brussels, in such a position as to be fully exposed to the influence of wind and weather; and although it has not since been touched, it has continued to keep good time ever since. The weight is kept constantly wound up by a fan, placed in a chimney. As soon as it approaches the extreme height of its course, it actuates a brake, which stops the fan; and the greater the tendency of the fan to revolve, so much the more strongly does the brake act to prevent it. A simple pawl arrangement prevents a down draught from exerting any effect. There is no neces sity for a fire, as the natural draught of a chimney or pipe is sufficient; and if the clock is placed out of doors, all that is required is to place above it a pipe, 16 or 20 feet high. The clock is usually made to work for twenty-four hours after being wound up, so as to provide for any tem porary stoppage; but by the addition of a wheel or two, it may be made to go for eight days after cessation of wind ing. The inventor, M. Auguste Dardenne, a native of Bel gium, showed his original model at the Paris Exhibition of 1878; but has since considerably improved upon it.

Carbons for the Electric Light

At a meeting of the Paris Academy of Science, M. Jac quelain pointed out that carbon for the electric light should be purer than that obtained by calcining wood; and, if not free from hydrogen, should, at any rate, contain no mineral impurities. There are three methods for accomplishing this result: (1) By the action of a jet of dry chlorine gas directed on the carbon, raised to a light red heat; (2) by the action of potash and caustic soda in fusion; and (3) by the action of hydrofluoric acid on the finished carbons. M. Jacquelain has prepared carbons by all three methods, and has summed up in a table the photometric results of his experiments. He comes to the conclusion that the luminous power and the regularity of the voltaic arc increase in direct ratio to the density, hardness, and purity of the carbons He remarked, incidentally, that the natural graphitoïd of Siberia possesses the singular and unexpected property of acquiring by purification a luminous capacity double tha which it has in the natural state, and which exceeds by one sixth that of pure artiticial carbons.

Fall of Meteors.

The master of a ship which arrived at Dundee in June eported that when his vessel was in latitude $51^{\circ} \mathrm{S}$. and longitude $80^{\circ} \mathrm{W}$., an immeuse meteor of amazing brilliancy fell into the sea within a few cables' length of the ship. As it plunged into the water it made a roaring, hissing noise just as a great mass of red-hot iron would when extin guished. The second officer, Mr. John Veitch, took particu lar notice of this remarkable appearance, and of the noon tide effulgence which the fiery body cast upon a broad space of the sky, and supplemented the entry of the occurrence in the log-book by saying, " that possibly some ships that had gone amissing may have been struck and sent to the bottom by such meteors."
Since then a similar case has been reported nearer home. On the last night of June a great and brilliant meteor was een to fall into Muskegon Lake, the harbor of Muskegon Michigan, near the shore of the lake of the same name. The aerolite struck three or four hundred feet out from the shore, causing a great commotion in the water. The shock was heard throughout the city, arousing those who had not been startled by the glare.

A Rope from Sheep's Entrails.

A strong and durable article of belting is made at Oakand, California, out of the entrails of sheep.
The entrails, which will average about 55 feet in length, re first thoroughly cleaned and then placed in vats of brine, where they remain some days. When thus prepared they are not much thicker than a piece of common cotton twine and will sustain a weight of about ten pounds. The next stage in process of manufacture is to wind the prepared ma erial on bobbins, after which the process is the same as in making common rope. This method is used to produce a round belt; but where a wide flat belt is to be made a oom is employed, and the fine strands are woven together as in ribbon manufacture. The flat belts are made of any size, and the round of sizes varies from one-sixteenth up to one and a balf inch in diameter. The round belts are made either in the form of a smooth cord, or as ropes with from three to five large strands. The three-quarter inch rope is said to years.

Embalming in Italy.

The Lancet describes the chief processes employed*by the principal Italian embaimers; the special processes are kept secret. First, cold water is injected through the whole cir culatory system, until it issues quite clear. This may take as long as five hours. Alcohol is then injected for the pur pose of abstracting all the water from the body. This is followed up by the injection of ether, to dissolve out the fatty matter. After this a strong solution of tannin is slowly injected, and full time is allowed for its soaking into all the tissues; this takes from two to five hours. Lastly, he body is exposed for from two to five hours to a current of warm air, which is previously dried by passing it over heated chloride of calcium. The body can then be preserved for any length of time and is as hard as stone.

A Supposfan Meteor

To the Editor of the Scientific American:
On the evening of the 6th, while engaged in "sweeping" the vicinity of Ursa Minor for double stars, my attention was drawn to a bright object about the size of a star of the second magnitude moving slowly from west to east. It passed within a degree of Polaris and continued steadily in its course eastward, disappearing from view in the neighborhood of Capricornus. In color this object, a meteor doubtless, was deep red, without scintillations or train of any kind, and its slow movement was in marked contrast with the rapid flashing of the common "shooting star." It was visible to me fully three-fourths of a minute, varying but slightly in brightness during that time. In the closeness of my attention to its movement I neglected to note the time of its appearance, but judge it to have been near half past ten. Perhaps there were others of your readers who observed the phenomenon, and can add more specifically to my testimony.

Jersey City Heights, July 8, 1882.
N. S. Drayton.

Notes on the Habits of Some Western Snakes.

by H. A. brons.

While connected with the Geological Survey of the Western States, I had the opportunity to note some peculiar, and as far as I am aware, unreported habits of some of the snakes.
Several of the summers I passed upon the plains were preceded by, rainy springs, swelling to unusual height the small streams, which became inhabited by small fishes. During the drought of hot summers, the receding water left the fishes in shallow pools within creek beds, an easy prey to their numerous enemies.
The mid-day heat caused numbers of snakes to seek shelter from the sun, and the garter snake (Eutnoia radix) in particular chose water at this time. Here the fishes, unable to escape or find deep cool water, were unwilling co-tenants with the snakes. The latter are fond of fish, and would devour great numbers of the smaller ones, chasing them from one part of the shallow pool to another. When the fishes were in water too shallow to swim in, or were struggling upon the sand, they would be seized by the snakes, who would feed upon them until unable to contain more. The snakes would follow the fish through the water, diving and remaining submerged some time. I did not observe them swallow air (see Am. Nat., Jan., 1880). Snakes evince more than ordinary energy and sagacity in capturing fish; half a dozen will congregate within a small pool, all acting in concert.
Mr. J. L. Wortman, who bad charge of a scientific party last year, informs me that while fishing one day he caught numbers of chub (Cyprinida), and, throwing them on the sand, was surprised to see that but few remained. While quietly continuing to replace those so singularly missing, he observed a garter snake seize and swallow one of the fish six inches in length. There were two of these snakes reaping the reward of Mr. Wortman's skill. Upon opening the snakes one was found to contain six fishes. The headwaters of the Smoky Hill and Big Horu rivers abound in this aquatic Entenia rudix
In Texas, while fishing with a common hook and line, baited with a small scale fish, I had the rare fortune to hook what at first seemed to be an eel, but proved a "cotton mouth " snake (Ancistrodon piscivorus).

One morning, on examining a line set over night I found the pole as left the previous evening, but the line drawn to shore, and my curiosity was excited as to the catch. It proved to be one of these snakes, coiled upon the bank, the bait, a small scale fish, mashed within its mouth, and the hook well caught. Upon being disturbed it at first showed fight, but took quickly to water, and was landed with the same effort as a fish or eel of equal size, i. e., about twentysix inches in length. That season I caught th.ree of these venomous snakes in this way while fishing with a hook and line. By Mexicans living on the banks of the San Antonio and San Miguel rivers, I was informed that it is no unusual thing to catch cotton mouths while fishing.
Running short of bait one day, I caught several large toads and tied them together by their hind legs. On nearing the water a snake started to cross the stream; having nothing else to throw at it, I gave the toads a toss in front, hoping to change its course; the snake seized quickly on the struggling mass. Toads exhibit great fear of snakes; it will afford considerable amusement to take a toy or stuffed snake skin and trail it toward one; it will make a strange cry, at the same time making vigorous jumps to escape. Frogs
act in the same way, though they are not so readily capact in the same way, though they are not so readily captured.
Nearly all animals show unmistakable signs of fear when confronted by a snake, though many that do not prey upon them take delight in destroying them, as do the deer family, etc.

Prairie dogs (Cynomys ludovicianus) seem to have a most intense dread of rattlesnakes (Crotalus confluentus). This little animal dreads not only its venomous bite, but more the loss of its young, which serve as food for these snakes, that enter their burrows, take possession, and drive them from their homes. Where does one find a prairie dog town but that it is teeming with snakes and the strange little owl
(Speotyto cunicularia), that "ducks" to passers in ludicrous (speotyto cunicularia), hat ducks to passers in ludicrous constitute a "happy family." The owls, though they generally occupy an abandoned hole or burrow, destroy the young dogs. Nor do the eggs and nestlings of the owls fare with any better treatment from the snakes; between these exists much enmity. One afternoon, while passing through one of these dog towns, in Wallace County, Kansas, we heard a most unusual noise and stir (in the town), as though they were holding a bellicose council. They were collected they were holding a bellicose council. They will,* into which they were scraping dirt vigoraround a hill,* into which they were scraping dirt vigor
ously. On examining the burrow, it was found to contain a large rattlesnake that the dogs were trying to entomb. I noticed this several times, as did other members of our party. To leave no doubt upon the subject we dug out the snakes after shooting them.
The habit of swallowing whole eggs is too well known to merit more than mention. But few persons realize the mischief snakes work in destroying the nests and young of our valuable birds. It is not an unusual occurrence to find whip (Bascanium flagelliforme), racer (Bascanium constrictor), and bull snakes (Pityophis sayi), with the entire contents of quail, prairie hen, or domestic fowl's nests within their capacious stomachs. With a little care they may be compelled to disgorge the ingesta unbroken.
During the breeding season the odor of many snakes is quite distinct and perceptible at some distance. This is quite distinct and perceptible at some distance. This is
markedly so in the rattlesnake (Crotalus confluentus), its markedly so in the rattlesnake (Crotalus confluentus), its
musky and fœtid emanations are quickly recognized by frontiersmen
The manner of union of the sexes at this season is rather instructive. The female among the racers (Bascanium) is larger and darker than the males, and not so graceful in form or movements, she, at times, seems to toy with the male, indisposed to yield to his importunities, though pressed with ardor. To avoid his suit, at times, she will dart through grass, among stones, or enter a crevice. Should he be able to reach his mate while within a hole, he is not slow in bringing her to the surface, again to be
repulsed. Upon an unbroken ground the sexual communion is less prolonged. Here she is unable to free herself from his quick and effectively directed moves. In case she attempts to quit him, a coil is thrown about her body, and his head laid flat upon her neck, and replaced as promptly as dislodged, evidently in the endeavor to propitiate her.
Of all strange habits in snakes, none equals that observed in the blowing adder (Heterodon simus). One aftervoon
returning to camp, I came upon a box turtle (Cistudo ornata) returning to camp, I came upon a box turtle (Clstudo ornata) upon the turtle's left hind foot. The turtle was unable to free itself of its tormentor, as its hold was quite secure; so persistently was it maintained that I lifted the turtle by grasping the body of the snake. Considerable force was required to separate them. The snake was about twenty inches long, the turtle eight inches. The foot was bleached, and blood was still flowing; none had apparently escaped from the mouth of the snake. Two toes were missing, having been digested from the foot. The entire foot appeared as though it had been subjected to a continued maceration within the mouth of the snake.
Twice afterward I noticed this strange habit of the puff adders. The late Professor Mudge mentioned to me that he had observed this habit in these snakes. I have not been able to find any signs indicating that the snake ever attaches itself to a fore foot. It seems as though they chose a foot that the turtle is unable to defend. The neck can not reach the hind foot as it can the front, and free it of any object that may attempt to lay hold upon it. The carapace may protect the tail.
I took pains to examine many box turtles (Cistudo ornata) that occur along the Smoky Hill rivers, and many, one can safely say one-half, are deformed in their bind feet. Very little deformity is found in the front feet. It must not be taken that all, or even a majority of these deformities, are caused by adders. It is not on account of want of food, for there is never a lack of the insects bere upon which the snakes generally subsist. It is not thirst, as the habit is practiced where there is water. The appearance of the foot, and the inability of the snake to masticate, would preclude any solution other than the desire to obtain blood as it flows from the lacerated parts.-Amer. Naturalist.

NATURAL HISTORY NOTES.

Filaria of the Black Bass.-At a meeting of the Philadelphia Academy of Natural Sciences recently (Proceed., p. 69), Prof. Leidy stated that he had been told that the black bass, Micropterus nigricans, in some localities, is much infested with a red threadworm. One procured in market for his table was found to be greatly infected. The worms were coiled in oval masses from the size of a pea to that of a large
bean, and were situated beneath the skin, in the muscles, bean, and were situated beneath the skin, in the muscles, is cylindrical, slightly lining the abdomen. Tounded at both ends, minutely annulate, and otherwise smooth, pale red, bright red or brownish red, translucent, with the darker red or brownish intestine, and the white osophagus shining through; mouth a small pore, unarmed; œesophagus long, capacious, cylindrical, straight or somewhat tortuous. Length from three to six inches, by half a line in diame-
ter. The worm appears to be a filaria, but the determination ter. The worm appears to be a filaria, but the determinatio of the species was left for more extended observation.
rows

An Ancient. White Pine.-The Gardener's Monthly states that a tree of remarkable dimensions was recently felled at Crystal Spring, Yates County, N. Y. The tree was perfectly sound and vigorous, thirteen feet in circumference at the ground, and nearly two bundred feet in height. The rings or annual layers in its stump indicate an age of three hundred and fifteen years, and it is estimated that four thousand feet of lumber will be cut from its trunk.
The Aptery.x.-That curious bird, the apteryx, is still to be found in New Zealand, but it is probable that before many years it will, like the gigantic diornis of the same country, have entirely disappeared. It is poorly armed for self-defense, and the only thing that prevents its entire extermination is its retired and nocturnal mode of life. The number of these birds has diminished very rapidly since the colonization of the island, and from year to year it becomes more and more difficult to secure a specimen. Dogs and cats are their worst enemies, for they can not only discover them by their odor, but pursue them into retreats inaccessible to man. If we add to this constant destruction the fact that they reproduce their species at long intervals, and lay but a single egg, it may be readily seen that the entire disappearance of the bird is a question of comparatively few years. The egg of the apteryx is a genuine curiosity; and, when its size is considered, there is no wonder that this bird does not lay more than one. The egg is deposited in a burrow so difficult to discover that, in a journey of a thousand miles across New Zealand, Prof. Ward, of Rochester, was able to procure but two specimens. The nativestell a host of stories about this egg. Thus, they assert, for example, that the bird buries its egg to a certain depth in the ground and then makes a burrow under it so that she can enter the latter and let the egg rest on her back. This is a fable, however, for Prof. Ward observed the birds sitting on their egg just as others of their race do. The place of the apteryx in a system of classification is far from being determined in a satisfactory manner. It is usual to place it alongside the ostrich and cassowary, in the order of cursores or runners, because it is deprived of the faculty of flying. Prof. Ward seems to take this view of the case.
Chlorophyl-containing Animals.-As well known, there are certain animals, such as some infusoria, certain hydras, and a few worms of the group of Planarians, that contain chlorophyl in grains.
Mr. Brandt (Botan. Zeitung, 1882, No. 15) has just pub: ished some curious researches on this subject, which, if their results are verified, will prove of considerable importance. According to him, these so-called granules of chlorophyl are algæ parasitic on the animals in question, and, in some cases, he states, he has been enabled to isolate and cultivate them. Generalizing the facts observed, he concludes that we have here a curious association of an animal with a plant. The green alga is a parasite of worm, hydra, or infusoria; but rom another point of view, the converse is true, since, under the action of light, the chlorophyl organisms assimilate the carbon of the carbonic acid and furnish it to the animals in which they are established. Mr. Brandt compares the animal thus provided with these sorts of gonidia to a lichen in which the fungus bas been replaced by an animal. Mr. Brandt's conclusion is very clear; from a morphological point of view, these so-called chlorophyl granules are algæ; and from a physiological point of view, they are parasites of the animals.
Longevity of Ants.-Sir John Lubbock says, in the Journal of the Linnæan Society:
In my previous paper I have called attention to the considerable age attained by my ants; and I may perhaps be pernitted to repeat here, mutatis mutandis, a paragraph from my last communication with reference to my most aged specimens, most of those mentioned last year being still alive. One of my nests of Formica fusca was brought from the woods in December, 1874. It then contained two queens, both of which are now still alive. I am disposed to think that some of the workers now in the nest were among those originally captured, the mortality after the first few weeks having been but small. This, of course, I cannot prove. The queens, however, are certainly more than seven, and probably more than eight years old. In the following nests, viz., another nest of F. fusca, which I brought in on the 6th June, 1875, and one of Lasius niger, on the 30th November, 1875, there were no queens; and, as already mentioned, no workers have been produced. Those now living are therefore the original ones, and they must be between six and even years old.
I had also some workers of Lasius niger, which I began to observe on the 6th July, 1875; the last of these died on June 15, 1881; and some of Formica cinerea on the 29th November, 1875; the ants in this nest died off somewhat rapidly, the last on July 23, 1881. There were no . queens in either of these nests.

Eight Preachers - Once.

Eight clergymen preached simultaneously in the Eastern Penitentiary, Philadelphia, on a recent Sunday, to invisible audiences. This prison is conducted on the principle of olitary confinement. Each prisoner bas his own lonely cell. These cells open on eight corridors, radiating from an octagonal center. The preachers stood at the outer ends of the corridors, and could be heard by the occupants of the cells in their several sections. A group of officials and reporters in the middle of the prison experienced the novel sensation of listening to eight sermons at once.

BOURRY'S DYNAMOMETRIC GOVERNOR.

The great increase in the adoption of electrical illumination opens up a new field fur this governor, which is claimed to be the only one, really practical, that permits of employalways an exess of not utilized during cer tain portions of the day may be automati cally distributed among two or more electric generators, which will thus serv as accumulators of elec tricity, their stored up energy being rendered available for the re quirements of illumination. The extreme sensitiveness of thi governor also render governor also render it especially useful in rolling mills, saw mills and other cases where the resistance varies almost constantly, as well as in connection with marine engines Instead of depending upon variations from the normal speed, the inventor, M. A. Bour ry, of Saint-Gall, Swit zerland, turns to ac count the dynamic effect produced by the torsile strain exerted on the shaft, and als the fact that this shaft is subjected to a rota tory force at one end and to a resistance a the other. As a rule this torsile strain, being neither visible nor palpable, is not immedi ately utilizable; but in order to make it serve for the desired purpose, it must be in creased artificially, by concentrating it on a single point by means of springs judiciously applied, in the action of which is reflected as it were, the resist ance opposed to the motor. The arrange ment adopted by M. Bourry consists in con verting all circula strain into rectilinea pressure, which per mits of apply ing the greates number of the best springs known. These are placed round and near to the shaft, a practice that offers great advantages a regards distribu tion of thestrain facility of in stallation, and the replacing of parts. In this way, the inventor obtains a con stant, durable and compact dynamometer, to gether with a perfect gover nor, which may be applied to small powers as well as the larg. est engines, such as those of screw steamers, because it con taius no part, without even ex cepting the springs, that cannot be made as strong as may be required. The engras

Fig. 1.-BOURRY'S DYNAMOMETRIC GOVERNOR.

Fig. 2.-PLAN VIEW OF BOURRY'S DYNAMOMETRIC GOVERNOR.

Figs. 3 and 4.-BOURRY'S DYNAMOMETRIC GOVERNOR BETWEEN DRIVING AND DRIVEN SHAFT.
pulleys may be re placed by geared wheels.
The second arrangement, shown in elevation and plan at Figs. 3 and 4, illustrates the appliance connecting the lay shaft with that of the engine, as in the case of screw steamers. In both arrangements the special parts perform identically the same func tions. The journals of a double crank, of a wheel, or of a pulley, made fast on the driving shaft by means of an articulation, act respectively on one of the arms of two bent levers, which oscillate on strong tenons, belonging to a coupling keyed on the lay shaft. The other arm of these bent levers is connected by rods with a slider working freely on the shaft. Between the slider and the coupling are arranged a sufficient number of springs, having together the necessary resistance, and acting ac cording to circumstances, by tension or by compression. When the engine is put in motion, the effect of the rotation first acts on one side of the bent levers, and is afterward transmitted to the slider and the springs. These Jatter, becoming compressed or extend ed at each change of resistance, give a reciprocating movement to the slider, the posi tion of which always corresponds exactly with the load on the engine. In order to transmit this movement to the steam valves, the sleeve is provided with a collar which partici pates in its re ciprocating, bu not in its rotary movement. This governor,receiving the whole power given out by the engine, acts as a constant dynamo meter, to which may be fitted the various measur ing instruments, the motions of which are derived from that of the collar on the slider.
The first of these instru ments, the dynamometer proper serves to meas ure the resist ance opposed to the engine; it consists of a graduated dial on which works an index, receiving its mo tionfrom a rack
actuating a small pinion. The second is a counter, revolving with greater or less speed according to the resistance to be overcome by the engine, which resistance it records in kilogrammeters or foot pounds, thus constituting a dynamometric indicator, analogous to gas and water meters. A third instrument, the "dynamograph," represents graphically, on an endless band of paper, the variations of the resistance. The first two instruments are easily distinguished in the illustrations. As regards the third, the place of the pencil only is shown at the end of the rack of the dynamometric index, the arrangement of the band of paper varying with the circumstances of each particular case. An ordinary counter is shown in the last two figures.
In order that this appliance may work with pre cision as governor, its action must be regulated so as to correspond exactly with that of the steam valves of the engine; that is tosay, their opening must coincide with the respective positions of the slider, which may be obtained empirically, or better still, by calculation. It is not necessary that al these instruments should work constantly. Thus in stationary engines, the dynamograph will only be used periodically in the same way as an indicator. On the other hand, for screw engines, there is every reason to cause the work of the engine and the resistance of the propellor to be traced continuously during the whole voyage, so as to retain a true rec ord of the state of the sea. It is always useful for the dynamometric counter to work continuously whatever be the uature of the motor to which it is applied; it will indicate the total power given out from any given instant, and will permit of compar ing the effective force developed with the quantity of fuel consumed. For the determination and checking of the amount of motive power let on hire, this instrument is almost indispensable. The dyna mometric index, which gives a constant indication of the resistance, and consequently the strain on the motor, is an excellent guide for the engine man and stoker, enabling them to judge of the quantity of water and fuel required. This index, indeed, records the measure of the work done in any establishment while an exact reproduction of it in the office, by electrical or mechanical means, constitutes a valuable method of supervision which cannot fail to exert a favorable influ ence on the production

New Factory of the Edison Electric Lamp Company.

The moving of the lamp factory from Menlo Park to Eas Newark, N. J., affords a fitting occasion for making a brief mention of the history of the Edison Lamp Company. The manufacture of lamps was commenced at Park, in November, 1880. Prior to that date
a large number of lamps had been made, but the first regular pay roll of the Lamp Company, as an organization distinct from the laboratory and experimental department of the Light Company, was November 11, 1880, which may be taken as the date of the starting of the factory. From that time until April 1, 1882, when moving to Newark was commenced, the factory was running all the time except about six weeks. The largest number of men employed at any one time was 135 , and for the last year there has not been at any time less than 100 hands employed. Up to April 1, 80,000 lamps were shipped, and at that time there were about 50,000 unsold in stock. The reason for moving the factory to East Newark is to secure larger buildings, with increased facilities, als conveuient accommodation for workmen, and to be nearer the source of supply for obtaining reliable help. The manufacturing of lamps was begun in the new factory at East Newark on June 1, 1882, and 150 men are now employed. The tools and power now in the factory are adequate for making 1,200 lamps a day, but the factory has an ultimate capacity of 40,000 lamps a day, which will require from 3,000 to 4,000 hands, according to the style of lamps made. The lamp factory has always been managed with unusual skill and intelligence, and all visitors have united in praising the perfection of the system and the economy and precision of the work. The officers of the Edison Light Company are as follows, namely: Thomas A. Edison, president; Francis R. Upton, treasurer; William Holzer, superintendent; and J. J. Bradley, master mechanic.

Photography of Maps, etc

The difficulty of copying a map or plan by the photographer to whom such work is only brought at rare intervals, is, it is well known, very difficult, the obtaining a perfectly true rectangular image on the ground glass being most wearisome without the aid of special appliances. One plan recommended for the purpose is to suspend a block that is perfectly square by a piece of string against the center of the picture, any departure of the axis of the lens from a true perpendicular to the plan being shown by one or other side of the square coming into view. We recently saw an improvement upon this method says the British Journal of Photography. A pill box with red lining was suspended, by the aid of a piece of cotton, just over the center. of the plan, and the slightest deviation

was indicated by the red lining forming a sort of ribbon on the ground glass, which showed the exact direction the

Coal Jigging in the Schuylkill Region.

The Coal Trade Journal says that the Mahanoy jig house has proved such a success that another near Heckscherville will go up this summer. They will have a capacity of 200 cars per day of pea, buckwheat, and dust coal. In these

PHOTO BASS-RELIEFS.
houses the coal is agitated in water. Slate being the heaviest part drops to the bottom, and the coal is brought out cleaned of this objectionable part. To pick such small sizes of coal would be a tedious and unprofitable job. Under the new process pea coal will receive better treatment than by creening, and its market value will be enhanced. The com pany propose to treat the coal dirt at the collieries in this way, relieving it of about 18 per cent. of slate. The coal
will be used in those engines of the company which are

LUMINOUS SHARK (Squalus fulgenss), -FISH WITH PHOSPHORESCENT SPOTS
(IChthyococcus ornatus).

BASS-RELIEFS BY PHOTOGRAPHY
Among the interesting industries to which electricity may e applied, is the metallic reproduction of photographs in relief. Some curious specimens were exhibited at the Paris Exposition of Electricity, and our engraving represents six mall bass-reliefs in metal obtained from simple photographs.
The process employed by the inventor is one of grea mplicity, and differs only from those already known by mploying gelatine in liquid form, instead of dry or in paste. An ordinary photographic negative is taken and placed in a printing frame. A rubber tube is put behind the negative, and bent around the edge, and over this a second glass is placed; the frame is then closed as in ordinary printing. The space between the two glasses is rendered tight by the rubber tube, and in this space, opened only on one side, a solution of bichromated gelatine is poured then the apparatus thus prepared is exposed to an electric light of sufficient intensity. That which was employed at the Exposition was supplied by a small Siemens machine, consuming about three horse power. A reflector conveniently arranged would certainly have given more complete and rapid results by concentrating a greater number of luminous rays upon the subject experimented upon. When the light has worked upon it sufficiently, the gelatine coagulates in layers or coatings of variable thickness, proportionate to the quantity of light which passes through the negative. The thickness is but little more than two millimeters, and thus hollow reproduction of the photographic design i made. This hollow gelatine mould having been bardened in a suitable bath, an impression is taken by electrotypy, which will be in bass-relief.
These reliefs may be made much more pro nounced by giving to the gelatine mould a slight curvature.
Artistic productions may be obtained by this pro cess at very low prices.-La Lumière Electrique.

a LUMINOUS SHARE.

by c. f. HoLDER.
Among the later outgrowths of scientific investigation we find the theory of abyssal light; intended to explain the presence of eyesin many of the deep sea forms heir existence supposed to be conditional upon the presence of light in the greater deptlis of the ocean. The Ascidians and Alcyonarians are well known as wondrous light givers. The orm of the former we are most familiar with is the oval ball that seems growing upon a stem, and waves to and fro with the tide like a veritable plant; it is, however, a highly organized animal. Some of the Ascidians are free swim mers, and live in colonies; such is the Pyrosoma, one of the most remarkable of all phosphorescent creatures, as well as one of the largest. In appearance they resemble an elongated empty barrel, about five feet long as a maximum, with one end closed, the other open, a provision that insures movement in a given direction. The means of propulsion seems incomprehensible, but it is easily explained, however, upon an examination of the animal. Each individual in the colony draws in water from the outside and ejects it into the interior, where it finds a common outlet at the open end, the current rushing out forcing the aggregation of Ascidians along in the direction it happens to take. The surface is completely covered with curious filaments that appear to wave to and fro. Such is the general appearance of the creature in the day time, but in the night or abyssmal depths of the ocean it presents an entirely different sight, gleaming and glowing with a wondrous golden light, that penetrates the water for twenty or thirty feet around it, and resembling more than anything else a cylinder at white heat, vibrating waves seeming to pass over it in quick succession, producing many different tints of yellow and gold. As may be surmised, at a distance of one hundred feet or more they resemble worms three or four feet in diameter, of wavy, nebulous matter, the celte burning brightly. The appearance of numbers of these wondrous creatures in the water is an extraordinary sight, and looking down into the depths we.seem to be looking into space. Every break of the water is the signal for myriads of beautiful creatures to spring into life, as it were, the sea fairly igniting, the minute gfanules in the depths below sparkling and scintillating in the reflection. Great constellations seem revolving in erratic courses, now rising and falling, meeting each other, the lights intermingling, while smaller phosphorescent jelly fishes, like stars of lesser magnitude, revolve about them, completing the curious scene. The light given out by the Pyrosoma is not confined to the water, but is reflected above it, covering every-
specially adapted to such fuel. The amount of dirt prepared in this way last year at a cost of 5 cents per ton, and in which there remained only 4 per cent of slate, wa When tons, thus saving to the company over $\$ 10.0$. the dirt are completed all stationary engines at the collieries and in the shops and foundries of the company will be supplied with it, and the marketable sizes of coal now used by the company will be sold to the trade.
thing with a pale, ghost J_{y} light. The sails of vessels are lighted up by it, and cast dark shadows about, while with in four or five feet of the animal a newspaper can be read with perfect ease.
But the most curious light-giving forms discovered are the fishes. Among the bony fishes of great depths, the families Scopelids. Sternoptychids, and Stomiatids, have long attracted attention, on account of the rows of bright spots that occur upon their sides, now found to be luminous.

These are found especially upon the fishes Chauliodus sloani, Stomias boa, Scopelus humboldti, etc. In the Ichthyococcus ornatus and Scopelus rafinesquii, they are specially abundant. In one species of the former a large luminous spot occurs upon the front of the head.
The distinguished naturalist of the Challenger expedition Willemoes-Suhm, now deceased, saw Scopelius phosphores cent in the night, of which he says: "One of them hung in the net like a shining star as it came out of the darkness. Possibly the seat of the light is in the peculiar side organs, and it may be that this phosphorescence is the only source of light in the great depths of the sea."
The thought that in the dark abysses of the deep sea every animal carries its lantern as the miner carries his lamp on his head, is a very fascinating one; and, indeed, Herr Willemoes-Sulim observed several other fishes that were provided on the smooth head and on the head-beard with a "remarkably large sense organ." Valenciennes has also remarked of the genus Hemiramphus that it bears a strongly glittering phosphorescent pustule on the tip of its tail.
Among the fishes discovered by the Challenger expedition was the Echiotoma microdon, a dark fish from two miles beneath the surface. Below its eyes were two luminous spots; a narrow elongated one above the maxillary, and a mall, short organ nearer the eye.
Another species, the Micripnus, had long fringed barbels; luminous spots above the maxillary, small and round. This was found on the Australian coast in 2,150 fathoms.
A stomatoid fish, Bathyophis, fuund over three miles below the surface, bad long barbels; small luminous organs above the middle of the upper jaw, and a number of others along each side of the abdomen; also on the tail and outer veutral rays.
In the Ipnops the body was long, covered with cylindrical scales, and devoid of luminous organs. The head was depressed, long, and spatulate, its entire upper surface occupied by a remarkable phosphorescent organ that was longitudinally divided into two symmetrical halves.
The most remarkable light-giving fisi, however, is a shark, a species of Scymnus, and allied to our morse of the southern coast, discovered by Dr. Bennett in Australian waters. The light in this case was universal. In relation to his find, Dr. Bennett says: "When the larger specimen, taken at night, was removed into a dark apartment, it afforded a very extraordinary spectacle. The entire inferior surface of the body and head emitted a vivid and greenish phosphorescent gleam, imparting to the creature, by its own light, a truly ghastly and terrific appearance. The luminous effect was constant, and not perceptibly increased by agitation or friction. I thought at one time it shone brighter when the fish struggled, but I was not satisfied that such was the fact. When the shark expired (which was not until it had been out of the water more than three hours) the luminous appearance faded entirely from the abdomen, and more gradually from other parts, lingering the longest around the jaws and on the ins.
"The only part of the under surface of the animal which was free from luminosity was the black collar around the throat; and while the inferior surface of the pectoral, anal, and caudal fins shone with splendor, the superior surface (including the upper lobe of the tail fin) was in darkness, as, also were the dorsal fins, back, and summit of the head.

I am inclined to believe that the luminous power of this shark resides in a peculiar secretion from the skin. It was my first impression that the fish had accidentally contracted some phosphorescent matter from the sea, or from the net in which it was captured, but the most rigid investigation did not confirm this suspicion, while the uniformity with which the luminous gleam occupied certain portions of the body and fins, its performance during life, and decline and cessation upon the approach and occurrence of death, did
not leave a doubt in my mind that it was a vital principle, essential to the economy of the animal. The small size of the fins would appear to denote that this fish is not active in swimming; and, since it is highly predaceous, and evidently of nocturnal habits, we may perhaps indulge in the hypothesis that the phosphorescent power it possesses is of use to attract its prey, upon the same principle as the Polynesian Islanders and others employ torches in night fishing."

Phantom Lights at Sea.

A Fulton Market fish dealer gives the following explanation of some of the strange lights, phantom vessels, and other mysterious appearances that puzzle seamen:
' Two years ago I went menhaden fishing, and one day as we were going up the Sound one of the hands said be hoped we were not going off the Point, meaning Montauk. I asked him why. He seemed kind of offish, but at last let out that he had seen ships sailing about in the dead of night in a dead calm. I laughed at him, but two nights later we came to anchor at Gardiner's Bay, and as it was a hot night we stretched out on deck. In the middle of the night I was awakened by some one giving me a tremendous jerk, and when I found myself on my feet my mate, shaking like a leaf, was pointing over the rail. I looked, and, sure enough, there was a big schooner about an eighth of a mile away, bearing down on us. There wasn't a breath of wind in the bay, but on she came at a ten-knot rate, headed right for us. 'Sing out to the skipper,' I said. 'It's no use,' said my mate, hanging on to me, 'It's no vessel.' But there she
was, within a hundred yards of us. Shaking him off, I swung into the rigging, and yelled 'Schooner aboy!' and souted to her to bear away, but in a second the white sails were right aboard of us. I yelled to the hands, and made ready to jump, when, like a flash, she disappeared, and the skipper came on deck with all hands and wanted to know if we bad the jimjams. I'd have sworn that I had seen the Flying Dutchman but for one thing. We saw the same thing about a week afterward. The light passed around us and went up the bay. I got out the men and seine and followed in the path of the phantom schooner, and as sure as you are alive, we made the biggest single haul of menhaden on record. The light, to my mind, was nothing more or less than the phosphorescence that hovered over the big shoal. The oil from so many millions of tish moving along was enough to produce a light; but you will find men all along the shores of Long Island that believe there is a regular phantom craft that comes in on and off-sort of a coaster in the spirit trade. I saw an account of something like this in the Portland papers some time after, and they thought it was very remarkable; but wherever you find menhaden you may look out for queer lights on the water-phantom ships and the like."

French Enterprise on the Congo.

The World's correspondent at Paris says, in a letter dated June 23, that the French Geographical Society were making a social lion of the French explorer who claims to have stolen a march on Stanley and his Belgian company in Africa. Stanley had found that the Congo was the great waterway of Africa, though unfortunately, owing to the cataracts near its embouchure, it was not directly accessible
from the coast. It became navigable only at Stanley Pool; but once there traders on the broad river could reach one of the richest regions in the world. How to get to Stanley Pool? Stanley could think of no better way than to cut a road of about 280 kilometers from the coast, parallel with the cataracts. M. Savergnan de Brazza, the Frenchman in question thought of a much better way. It occurred to him that from the French station at Gaboon he might find some aflluent of the Congo floating directly into the pool. He did find such a river, the Alima, which is separated from the Ogoone only by 80 kilometers of land, and the Ogoone is in direct com munication with the French possession. It was a question, therefore, of a land journey of 80 kilometers, as against a land journey of 240 , or a saving of two-thirds. He said nothing, but stole quietly back to France, obtained the necessary funds from his government, went back again and reached Stanley Pool by the short cut in time to welcome Stanley on his arrival. He had taken possession of it in the name of France, made treaties with the natives, and dealt sons and property as lavishly as if they had been mere order of the Legion of Honor.

The Siemens Steel Patents.

By order of the United States Circuit Court, in the suit of the Iron City National Bank of Pittsburg, Pa., against the Siemens-Anderson Steel Company, the interest of the company in the patents of Dr. Charles W. Siemens was sold at auction by the U. S. Marshal, July 6.
The patents are valued at $\$ 500,000$. They cover the celebrated Siemens patent revolving furnace, gas furnaces, and various processes and methods of making cast steel, together with numerous improvements. Although the sale had been duly advertised, there was only one bidder, and the property was sold to the attorney for the prosecutor for $\$ 1$. The reaon is, that under the laws of Pennsylvania, and a recent de cision in the Allegheny County Court, a patent cannot be seized for debt, and nobody thought it worth while to bid. The bank, however, has taken the precaution to go through the form; and if the decision of the lower court is reversed
and the sale declared legal, it will find itself in possession of the sole right to the use of the patents in the United States.

Alcohol from Acorns.
It is said that alcohol equal to that made from grain can be produced from acorns. The acorns are freed from the shell and ground finely; then they are mashed with malt, and allowed to ferment. Acorns contain about 20 per cent of starch, and eighteen per cent of gluten. They would be a valuable article for human food if it were not for the tannic acid (about 3 per cent) which they contain. Vast quantities which go to waste every year, where hogs are not fed in the woods, might be gathered by boys, and converted into alcohol for use in the arts, thus freeing an equivalent amount of grain for use as food. Or some young student of practical chemistry might make a good thing for
himself and for the world by devising an ecopomical process of separating the starch, gluten, and tannic acid, the last for technical uses and the others for food.

Berlin Amber.

Recent discoveries of amber in and near Berlin bave been so promisingly large that predictions are made that the region will yet become a competitor of the amber fishing staions along the shores of the Baltic. Near what is called he port, a large deposit has been found, and in the Genthiner strasse during a single week more than a hundred good-
sized pieces were dug up. In the Landgrafer-strasse, in ancient alluvial soil, about twelve feet down, a systematic bed
ery has also been made. Berlin is known to be built on sand, and considerable surprise is expressed that amber should turn up in it, and especially that its presence should have remained unknown until this late day.

George W. Hawes.

George W. Hawes, Ph.D., Curator of the National Museum of Washington, died at Colorado Springs, June 23, in the thirty-third year of his age. Dr. Hawes was born in Marion, Ind., of New England parentage, and was educated at Yale College, also studying abroad, and receiving the degree of Ph.D. from the University of Bonn. He devoted himself with zeal and success to that department of geology known as lithology, making original microscopic investigations and publishing many papers in scientific journals. He was engaged on the geological survey of New Hampshire, and was Professor in the Sheffield Scientific School at New Haven. In February, 1881, he was appointed Curator of the National Museum, where he gathered an extensive collection of all the building stones in the United States.

William S. Vaux.

William S. Vaux, a well-known amateur mineralogist, died at Philadelphia on May 5, in his 71st year. As vicepresident of the Academy of Natural Sciences, and of the Numismatic and Antiquarian Society, as president of the Zoological Society, and as treasurer of the American Association for the Advancement of Science, he showed an active interest in the progress of science.
The chief object to which he devoted his ample means was he collection of choice minerals, and as a result of extensive traveling and constant collecting throughout a lifetime, he eft one of the finest collections in this country. His cabinet was remarkable for the beauty of the individual speci mens, in many cases unsurpassed. He has bequeathed it to he Academy of Natural Sciences of Philadelphia.

Pre-Indian Relics from Virginia.

Mr. M. S. Valentine, of Richmond, Va., has sent to the Anthropological Institute of London, for exhibition, a collec tion of very curious articles fashioned in soapstone and clay, which were found lately between the ranges of the Blue and Alleghany Mountains, near Mount Pisgah, North Carolina. The objects are said to be of a type absolutely unique, consisting partly of human, partly of animal* figures, either in the round or in various degrees of relief. Some are household utensils. They appear to have been sculptured by metal instruments, so perfect is their workmanship. The human type is alike in the various objects, but is not Indian All are fully clothed in tight-fitting garments. Some are seated in arm-chairs, others on all sorts of animals-bears, prairie dogs, birds, and other shapes belonging to North America. But some also represent types of the Old World, such as the two-humped camel, rhinoceros, hippopotamus Some of the specimens were obviously made since the advent of the whites, and these are fresher-looking and of ruder worknanship. The inference hazarded is that the articles were made by an earlier and more civilized race, subjugated and partially destroyed by the Indians found in Virginia on the arrival of white men.

Recovery from Hydrophobia.

A case of recovery from an attack of hydrophobia was related to the Académie de Médecine at the meeting of June 13, by M. G. Denis-Dumont, of Caen. The details of this case are given more fully in the letter of our Paris correspendent this week. The patient was a man, thirty-eight yars of age, of strong constitution, and previous good bealth, who was bitten on April 16 on the forearm by a rabid dog, which had bitten the same day a woman and wo children. The woman died of hydrophobia on May 20 , and the news of the death profoundly impressed the patient, who became restless, anxious, affected with extraordinary thirst, and complained of sore throat and of difficulty in swallowing. He refused all drink which was offered him, manifested a tendency to bite persons and objects round him, and presented convulsive attacks of the charac er so frequently met with in hydrophobia. He was taken to the hospital on May 23, and none of the medical men in attendance had any doubt that he was suffering from hydrophobia. The treatment employed consisted in hypodermic injections of a centigramme of pilocarpine, which caused an bundant diaphoresis and salivation. At the same time a draught was given of two drachms of bromide of potassium, our drachms of chlural hydrate, and an ounce of sirup of codeia (whether at a single dose or in divided doses the report does not state). The symptoms presented a rapid amelioration, and on the 30th of May had entirely ceased. It seems open to question whether or not the case was one of genuine hydrophobia. When the symptoms commence with mental disturbance, distinctly excited by such intense apprehension of the disease as is excited by the news of the death of another person bitten at the same time, the case cannot be regarded as affording conclusive evidence on the therapeutical question. M. Bouley, however, announced his intention of communicating to the Académie at the next meeting another case of hydrophobia in which recovery followed the use of pilocarpine.-Lancet.

To render thick paper quite translucent, saturate it (while warm) with Canada balsam or castor oil.

RECENT INVENTIONS.

Mr. William H. Ward, of Topeka, Kan., has patented an improved button, shown in the accompanying engraving This button consists of a fastening made of a strip of thin flexible metal having angular slots cut in one end and rolled into cylindrical shape, an eyelet in which the fastening is secured, and a back. The back has a central perforation through which the eyelet and clasp are passed and secured by spreading their passed and secured by spreading their
inner ends. The face of the button is inner ends. The face of the button is
secured to the back in the usual manner, and is constructed with a depression which fits into the end of the eyelet and fastening, and assists in forming a firm and compact button. The eyelet forming the stem
of the button is made so as to allow the face of the button to rotate. Mr. Ward has also recently patented improved pliers for attaching the buttons to garments.

Earth Scraper.

We give an engraving. of a novel earth scraper which combines maximum lightness, strength, and economy of construc tion. The body of the scraper is made of one piece of sheet metal, which is cut out in the flat, by suitable dies, and afterward bent into proper shape, and the joints are locked together by hooked shaped flanges, one edge being turned outward and one inward, and the two are then engaged, and rolled or otherwise flattened, forming a firm lock joint. The handles are attached to the scraper body by open rings riveted to the sides of the scraper in which they are clamped. Two metal shoes, c, are applied detachably to the bottom of the scraper. The shoes are tapered toward their rear ends, and have side grooves. Wings are formed by slitting the bottom of the scaper lengt h wise and crosswise, and bending the portions thus outlined downward at an acute angle. The shoes are attached by inserting their rear ends between the edges thus formed, and are then forced back until they come in contact with the ends of the grooves.

Separator for Starch

A device for separating starch from the other portions of ground corn has been patented by Messrs. William T. Booth and Alexander H. Bell, of New York city. The supporting frame bas longitudinal side rails on which friction rollers are sustained in bearings. Above this frame is a frame which carries a sieve, and is guided and supported by irons on its under side, that slide upon the friction rollers. The frames are so inclined as to insure forward movement of the material upon the screens. At the upper

end of the supporting frame is a shaft, a balance wheel, and an eccentric driven by a pulley. On the screen frame is fixed a yoke that extends over the eccentric, and at the upper and lower ends of the screen are spiral springs attached to each end of the frame, to cause the arms of the yoke at all times to be in contact with the eccentric. The ground material fed to the upper end of the screen is agitated and moved forward by the motion, and the fine particles of the starch fall through the meshes of the sieve, and the refuse passes off at the lower end.

A New Feed Pump for Steam Boilers.

An improved pump for supplying steam boilers with hot water at at higher temperature and with a greater uniformity of pressure than is practicable with feed pumps of ordinary construction, has been patented by John Houpt, of Springtown, Pa., and is shown in the accompanying cut. A vertical pump cylinder is provided with a piston, B, reciprocated by a piston rod attached to a crank shaft. The piston is annular in form, and a relief valve is seated downward therein, and is guided in its vertical movement by a pendent stem. In the upper part of the cylinder is located the discharge der is located the discharge
valve, which seats downvalve, which seats down-
ward, and has a vertical guide stem, around which is a spiral spring, that operates to press down the valve when the piston reaches the limit of its upward stroke. A hot water supply pipe having a check valve is located between the feed pump (above described) and a feed water heater or other source of supply. Between such heater and the check valve is placed an auxiliary force pump, whose cylinder is a continuation of the connecting tube. Its piston is reciprocated, simultaneously with the piston, B, and in the same direction, and at the bottom of the cylinder is a in the same valve.

Heel Plate for Boots and Shoes

We give herewith an engraving of an improved heel plate for boots and shoes, patented by Mr. Ed ward C. Gardner, of Abington, Mass. The metal part of the heel plate is made with a flange around its circumference and is depressed at the middle. The flange has a smooth wearing surface, and the depressed part has ornamental projections formed on ornamental projections formed on
its surface to keep leather filling its surface to keep leather filling
in place. The filling has its edges in place. The filling has its edges
shaped to correspond with the share of the inner side of the flange, and holes formed through it correspond with the studs and holes for nails.

A Novel Horse Power.

Among recent inventions we find an improved horse power for driving cotton ginning and other similar machines, that is simple, durable, and cheaply constructed, and has less friction than machines for this purpose now in use. The device is shown in the annexed engraving, in which A is a borizontal shaft journaled in two posts, and B is a vertical king post to which the main power wheel is secured, and it is revolved by horses attached to a lever secured to the post below the power wheel. Upon the shaft, A, are fixed two

pulleys, one larger than the other, and it receives its motion from the main power wheel attached to the post, B, by a belt a, that passes over the small pulley and communicates it to the ginning or thrashing machine, by means of a belt pass ing over the larger pulley and a small pulley on the machine. The belt is guided from the power wheel to and over the small pulley on the shaft, A; by one horizontal and two ver tical rollers, over and between which it passes, and the belt is kept tightened by a swinging belt tightener, which is provided where it comes in contact with the belt with a roller. The above device has been patented by Mr. Thomas A. Brewer, of Oliver, Ga.

An Improved Stove Grate

Mr. George M. Brill, of New Baltimore, N. Y., has lately patented an improvement in stove grates, the object of which is to allow a small fire to be used in a stove when a large one is not required, and also to allow the fire to be brought close to the top of the stove, when desired The stove grate is made in two parts, and is connected only by a rigid pivot which is of sufficient length to allow the grate to receive a division plate for confining the fire to one part of the fire box. This division plate has a number of holes through it for the passage of air to the passage of air to
keep it from being unduly heated. Upon the outer ends of the
grate are formed pivots which work in bearings in the end plates of the fire box, one of which is extended and squared to receive a wrench for shaking or dumping. When the division plate is inserted a fire can be built upon either half of the grate. In case it is required to have a fire near to the top of the stove, an auxiliary grate can be used, the pivots of which work in bearings in the upper part of the fire box. The improvement is shown in the accompanying cut.

Show Card Holder.

A novel device for holding price and show cards has ecently been patented by Mr. Will. C. Rood, of Quincy,
 Ill., and is shown in the accompanying engraving. A frame is provided on its front side, at its lower edge and ends, with grooved flanges, behind which a sign or show card may be passed and retained. At the rear
side, near its bottom edge, the frame bas a socket for receiving the upper end of a standard, the lower end of which fits in an aperture in the top of a base. At the upper edge of the rear side, a ring is attached, by which the frame may be.suspended from a nail. The frame is also provided with rectangular hooks, that swing in loops attached to its rear surface; by which it can be held in an inclined position, or if desired the hooks may be turned up and used for suspending the frame. A
pin is attached to the back of the frame near its middle pin is attached to the back of the frame near its middle secured to articles to be marked.

Spark Arrester.
An efficient and durable spark arrester, that is easily attached to and detached from the smokestack of a loco-
 motive, has recently been pa-
tented by Mr. John L. Kantner, of South Easton, Pa., and is shown in the accompanying engraving.
Inside of the smokestack is placed a concavo-convex grate, formed of parallel bars attached at their ends to a rim. This grate fits into the upper part of an outer rim, C, and has guide pins which enter vertical slots in the rim. The rim, C, is fitted into the smokestack, and rests against the rim of the lower grate, E. This grate is also concavo convex shape, and is formed of parallel bars attached to a rim formed with slots, to receive bolts that secure it to the stack. The alternate bars of the grate terminate at a distance of half an inch from the rim. The grates are placed with their convex sides toward each other, and are secured to each other at their centers by a bolt. With this construction, the incandescent pieces that are carried up the smoke stack will be broken, by striking against the grate bars, into such small pieces as to be rendered incapable of doing damage; those not broken falling back into the chamber, to be again thrown up until they are broken.

Parasites of the Fly.

A microscopical discovery, which may prove highly important in a sanitary point of view, has been made by Thomas Taylor, M.D., microscopist of the Department of Agriculture. About a year ago, while dissecting out the proboscis of a common house-fly, Dr. Taylor discovered minute snake like animals moving quickly from the proboscis. Continuing his experiments from time to time since then, be found that house flies are very frequently inhabited by these animals. He has found them generally in the proboscis of the fly, although sometimes they are found in the abdomen, and he thinks that since flies are carriers of these minute snake-like animals, they may in like manner be conveyers of contagious germs, much smaller bodies. These animals measure about eight one-hundredths to one-tenth of an inch in length, and about two one-thousandths of an inch in diameter. They are classed under the Nematoider, gemus Anguillula. They are much larger than trichinæ or so called vinegar eels. Mr. Taylor has found as many as seven of these animals in the proboscis of one fly, and three more in the abdomen, ten in all. Sometimes none are discovered, sometimes one only, but frequently four are seen. Their presence is usually indicated by a rolling movement in the anterior portion of the proboscis. When this is observed, if a drop of water be placed upon it, the animals will readily leave the proboscis and take to the water. They are frequently observed passing in and out of the proboscis, to and from the water, as if the proboscis was their uatural home. A power of 25 diameters is sufficient to observe their general movements, but for examinations of their structure from 250 to 500 diameters is necessary. They are perceptible to the naked eye in certain light. Mr. Taylor proposes to make the experiment of feeding flies on trichinosed meat to test the possibility of trichinæ or the eggs of trichinæ being taken up by flies.

A Lecture on Capsicum.

A curious scene occurred a few weeks ago at the lecture room of a well known school of pharmacy, says the Monthly Magazine. The room was pretty well filled, and the lecture was on capsicum and other stimulants.
'Capsicum," said the professor, "is well known to you all; you have, no doubt, often gathered it in your botanical excursions with my learned colleague who occupies the chair of botany in this institution. You all know that when the pods are properly dried and reduced to powder, they produce our ordinary cayenne pepper. They also yield a incture which is often used as an adjunct to medicines when it is desirable to stimulate the mucous membrane of the digestive organs. Cayenne pepper itself has been used with some effect in the treatment of delirium tremens, and a moderate dose of it given on going to bed has been known to cut short a violent attack of cold or ague. The active ingredient of the capsicum pods, as before observed, is soluble in alcohol; little is yet known about it.
The lecturer had got to this point of his discourse when it was suddenly interrupted. One of the laboratory students was desirous of seeing the active principle contained in the tincture, and had been for some minutes evaporating a little of it over a spirit lamp. The fumes of the alcohol carried up into the air of the lecture room a notable quantity of capsicine, and everybody began to sneeze most violently, including the professor. In about two minutes it was quite impossible to stay in the room, and the place was rapidly evacuated by about forty pharmaceutical students amid a perfect volley of sneezing and laughter. The professor who had just observed that with regard to capsicine "little was known about it," was made more intimately acquainted with it at that moment than he desired!

ENGINEERING INVENTION

An improved compound beam engine has been patented by Mr. Gideon B. Massey, of New York city. Instead of the cylinders being arranged side by
side, as ussal, the low pressure cylinder is placed ver cal, its rod connecting to the beam of the engine; and the high pressure cylinder horizontal, and connected to the crank on the shaft. The horizontal cylinder passe through the vertical cylinder at its mid length, at one
side of its axis, to allow the pistor rods to pass en side of its axis, to allow the piston rods to pass each
other, and in the sides of the horizontal cylinder are the other, and in the sides of the horizontal cylinder are the
steam ports to the verticalcylinder. The vertical cylinder being divided, two pistons are secured to the same rod, that work in opposite ends of the cylinder, and the cod, that work in opposite ends of the cyinder, and the air to pass back and forth as the pistons reeiprocate.
At the ends of the horizontal cylinder are exhaust and At the ends of the horizontal cylinder are exhaust and
steam ports communicating with the main steam and exhaust openings, and the valves are provided wit suitable means for their operation.

MECHANICAL INVENTIONS.

Messrs. Henry H. James and John C. Dunbar, of Bangor, Me., have patented an improvement in
sifting grates. The grate bars are provided with projecting prongs on each side, and each bar has a down-
wardly projecting arm attached to its middle part. The ends of the bars rest in recesses on the upper side the grate frame. This frame is pivoted at its frout and the qrate frame. This frame is pivoted at its front and
rear in suitable bearings in the stove frame, and i swings on these pivots. The ends of the downwardly
projecting arms of the grate are passed through slots in abar, under the center of the frame, held to the arms by pins, and when the bar is moved lengthwise the grate bars are rocked. The front pivot of the erate frame is
surrounded by a cam sieeve which passes into recess surrounded dy a cam sieeve which passes into a recess
on the front end of the bar under the grate. The outer end of the flange sleev
An adjustable scale for weighing light articles has been patented by Mr. Rosendo Torras, of
Brunswick, Ga.
Two knife edged sce pivoted in the sides of a casing, and the innerend of each
beam has a convex rack that engages with a pinion beam has a convex rack that engageses with a p pinion
mounted on a shaft journaled in blocks hanging from the top of the casing, and supporting a segmental rack mounted on and connected with the same shaft. This rack engages with a pinion attached to the pointer of a
dial plave on the front of the casing on which the weight dial plaae on the front of the casing on which the weight
is indicated from left to right and from right to left. On the outer end of each of the scale beas are receivin horizontal position.
A rock drill, that will rapidly bore a straight hole in rock, and will not follow the seams,
has been patented by Mr. William H. Silsby, of Orleans has seen patented by Mr. Wiliam H. sisby, of orleans
Bar, Cal. The drill is provided with a cotting edge at its lowest point, and with offsets in its sides forming cutters, each cutter projecting beyond the one next
below it. The parts connecting the cutters are inclined below it. The parts connecting the cutters are inclined
toward the center of the drill. The lowest cutting edge is beveled from the flat side
cuttingedges are flat below.
Mr. George D. Speilman, of Cincinnati, O., has reecently patented an improved padlock. A jaw
which has a recess in i is front end is pivoted in the lock case, and its inner end is round and has two recesses. A spiral torsion spring is wound around its pivot and
forces it to sxing outward. A series of slightily differ ent shaped spring tumblers, all of which have a different shaped projection at the lower end, are pivoted in
the casing. The casing has a transverse slot in its rear, the casing. The casing has a transverse slot in its rear,
and through this the key is passed into the lock. The key has as many projections and recesses in its front
end as there are tumblers in the lock. The casing is end as there are tumblers in the lock. The casing is
provided with a rigid jaw which has a stud at its front provideat ifts into the aperture in the pivoted jaw.
end that
when the key is passed into the lock the tumblers all move back and the torsion spring throws the swinging mar back.

mining invention.

An improved furnace for treating the ores of mercury has been patented by Messrs. Edward G. Hall, of Healdsburg, and Myron D. Haskins, of Guerneran arched top fireplace, and above it are two simimiar
chambers. Above these is a cylindrical chamber, having chambers. Above these is a cylindrical chamber, having
a funnel shaped bottom, communicating by pipes with the midde chambers. In this cylinder are diaphragms that extend nearly across the chamber, and a vertical
shaft is journaled in the chamber which has arms proshaft is journaled in walls, each arm being placed in the space between the diaphragms. In use the upper cham ber is filled with ore and lime. the shaft is rotated, and
as the ore becomes partly roasted it is discharged into as the ore becomene sartly roastede, it it discharged, into
one of the middec chambers and becomes separated and broken up so that the mercury is liberated, and is con veyed to the condensing chamber.

electrical invention

A device which provides for conveniently laying underground telegraph wires, and for access to
such wires, has been patented by Mr. Warren D. B. such wires, has been patented by . Mr. Warren D. B.
Smith, of Boston, Mass. A box is provided which is composed of continuous. sides, a top of removable sec-
tions, and botom pieces connecting the side pieces at intervals. At suitable intervals the box is provided on its inside with dovelail flanges which receive wire
holders, zaving diagonal slots to receive and retain the wires Between the holders, at each side, are posts fixed
on the bottom cross bars, also slotted to receive wires on the bottom cross bars, also slotted to receive wires
It will be seen that the wires are held securely and sepa$\underset{\text { rated }}{\substack{\text { rard. } \\ \text { wat }}}$

textile invention.

Mr. Alvin Woodman, of Lewiston, Me., has patented a machine to be used for tentering cloths,
making them of uniform width, without distorting the checks or plaids. At the feeding end of the frame is a
roller carrying the cloth. The spreader, size box, roller carrying. the cloth. The spreader, size box
squeezing rolls, and carrier rolls are of the usual con
struction, except that the spreader is made adjustable
and the spreader bars are futed diagonally from the center outward. From the rollers to the straightening
mechanism at the other end of the machine are two end mechanism at the other end of the machine are two end-
less chains to carry the cloth. Between the end of the chains and the drying cylinders is fitted a system of adjastable rollers through which the cloth is passed an y which the cloth is delivered to the
with the figure correct as designed.

AGRICULTURAL INVENTIONS.

Mr. Jerome L. Bergen, of Flatlands, N. Y., has patented an improved distributer for uniformly consists of two side bars connected by cross bars, and wh On the rear part of the frame is a hoppe rear side. To the center oxcent strip is pivoted a dis. tributing apron, that is connected at its edge to the hopper by a strip of flexible material, and in the apron,
in front of the hopper, is an opening through which the in front of the hopper, is an opening through which the
fertilizer falls. The amount of the fertilizer distribured fertilizer falls. The amount of the fertilizer distributen
is regulated by an adjustable valve. The hub of the wheel is connected by gear wheels, lever, and connectthe fertilizer as the machine advances.
An ingenious and efficient machine for hulling rice has been patented by Mr. Shad B. Denney,
of Summit, Miss. In the side bars of the frame of the hachine is journaled a cylinder, on the face of which are longitudinal ridges, and to one of its journals is attached a crank. From standards on the side bars of the frame are suspended two parallel plates, made in
the form of annular sections. In the inner surfaces of the parallel plates are are grooves to receive the edges of steel paralel plates are grooves to receive the edges of steel
vibrating plates, so arranged that the upper plate will
be nenly vertical they are held closer or farther from the cylinder as is desired. The rice to be hulled is fed through a hopper and is carried around by the corrugations of the cylinder, and passes beneath the inner edges of the steel
plates by which the hulls are torn from the kernels of

An improved fruit picker has been patented by Messrs. James R. and Joseph A. Williamson, of
Brunswick, Ga. a basket forned of a series of metal strips is secured to the upper end of an adjustable piece. Shears are pivoted to the upper end of the pper edge of the basket, when they are open, and springs on the outer sides of the basket hold them open. Cords attached to the blades of the shears extend down the handles, and by pulling this cord the shears close
Mr. William W. Winegar, of Chambersburg, 111. . has recently patented an improvement in
grain drils, by which trash is prevented from collecting rrain drills, by which trash is prevented from collecting
in front of the drill hoes. The frame, axle, and wheels of the grain drill are of the usual construction. To the ver attached to the upper end of a holding bar that rops by its own weigitit and holds the trash that may ollect in front of the adjacent drill hoes until the drill passes it, when the bar will be raised by the cam and
carried forward so that it may again drop in front of carried forward so that it may again drop in front of
the drill hoes. Any desired number of holding bars may be used.
An economical and effective cotton press as been patented by Mr. M. M. Scherer, of Batesville, ark. The lint room contains a vertically sliding table,
turned by a crank attached to its axis, and raised or lowered by ropes passing over pulleys, and wound upon a windlass. When the table is at its lowest limit it forms
The co nd when is received from the gin into the lint room the table is raised and revolved haif a revolution, and the cot on is thrown beneath into the space before the
horizontal follower, by which it is pressed into a bale horizontal follower, by which it is pressed into a bale
in the baling chamber. The horizontal follower is in the baling chamber. The horizontal follower
noved with great power by a series of levers and rods hich are operated by ropes and a windlass at the oppoite end from the gin. Mr. R. H. Brown, of
Va., may be addressed forfurther information.

MISCELLANEOUS INVENTIONS.

An improved air vent for vessels from which liquids are to be poured has been patented by
Mr. George Janeway, of Junction City, o. The ent is cone shaped, and opens at its smaller end into he vessel containing the liquid. The upper end of the Near the center of the length of the cone is a circular diaphragm, which is concave downwardly and has a central orifice, on which is placed a ball valve which closes the orifice when the diaphragm is horizontal.
When the vessel is tilted to pour out the liguid the ball When the vessel is titted to pour out the liquid the ball
rolls by gravity on the diaphragm, uncovering its cenrolls by gravity on the diaphragm, uncovering its cen-
tral hole, and allows the air to passinto the vessel. The tral hole, and allows the air to passinto the vessel. The
orifice is always closed by the ball valve except when e vessel is tipped to pour out the liguid
Mr. Henry R. Cassell, of New York city, as patented an improved method of making metalic duced in the shape of panels. The work of be reprophotographed and the negative or positive exposed apon a sensitized metal sheet. The sheet is then treated In the usual manner, and the result is an engraved metal sheet, containing the lines of a work of art in-
tended to be reproduced either in relief or intaglio ended to be reproduced either in relief or intaglio.
This metal sheet is then covered with a japan, or other shis metal sheet is then covered with a aapan, or other suitable enamel, and after thoronghly drying or harding, until the raised part of the metal sheet is entirely laid bare, and the enamel is even with the surface of nd the whole produces a very striking and beautiful effect, the enamel representing the original engraving pon a surface of gold and silver.
A new game apparatus consisting of aw inging a suspended ball to strike pins or other ob-
jects set up on a suitable plattorm, has been patented
by Mr. George R. Spear, of Brooklyn, N. Y. Suitable standards are attached to a base, and from the top of
these a ball is suspended by a cord. At the botom of the standard is a platform upon which balls or pins are supported, the platform being spotted for the proper srangement of the pins or balls. The board holds struck, between which the suspended ball must be accurately thrown. The inventor combines with the platform and pins a wheel of fortune and a checker bogrd
that may be removed from the board and replaced when

Mr. Edward Wensch, of Vienna, Austria, has patented an improved escapement for watches, etc..,
and it consists in a balance wheel provided with an eccentric pin and with an eccentric on its arbor, the eccentric being between the prongs of a fork on the
upper end of a pivoted anchor provided with two teeth nd an arm for checking the escapement wheel at in tervals, and locking, releasing, and pushing back pivoted lever provided with a projection, and operated by a spring or weight, which
tric pin of the balance wheel.

A bobbin spindle which has less friction in the creel than those in common use, and will at all times maintain a sufficient and uniform tension, has been The spindle is tipped at its lowere end or bearing with metallic tip that is perforated at the bottom or smal end. The perforation, when the tip is on the spindle permits the spindle point to protrude slightly, or stand
flush with the lower end of the tip. With this con struction the friction of the spindle is greatly reduced by reason of the patiol metal point greatly reauce from running too freely in the creel by the contact of the wood of the skewer with the creel socket insuring
tension that will not vary so as to break, stretch otherwise injure the roving, or cause it to be tuduly
Mr. George B. Owen, of Winsted, Ct., has patented an improved yong bell that gives a louder and more musical tone than bells of ordinary con-
struction. The base of the gong, secured to a clock case, receives the end of a bent standard, the other end having an inwardly projecting flange around its edge and on its outer side the end of the gong is fastened In the flange of the circular plate is screwed a rod that is bent at right angles, with its free end turned against

sounding

Mr. Joseph T. Mills, of Brooklyn; N. Y. ing of a ladder composed of small chains connected brounds of iron. A winding drum, to which one end of upon the roof of the building. The windingrum crank aud a ratchet and pawl for holding the ree The reel is released by means of a small chain attache to the pawl and running down the wall of the building easy reach from the windows.
Messrs. John H. Baldwin, of Port Jeffer n, and Charles S. Baldwin, of New York cily, hav patented an improved vehicle spring by which a car
riage body can be set low without impairing the strength and flexibility of the spring. Upon the for ward axle is secured a half elliptic spring, in the usua manner. Side springs are hung by joose shackles to
the ends of the axle springs, and are rigidy attached to metal cross bars to which the body is bolted. By these means a durable and cheap construction and a low

We find amo of Newark. N J. The main by Mr. William formed of two semicircular plates, hinged together and having flanges soldered on the outer edges of the
plates. These flanges are made hollow, and triangula in cross section, and when the flange is soldered fast t the plate, the wider portion re-enforces and stiffens the plates, making them strong and durable, and prevent
their injury by ordinary usage. By this construction, all the parts of the bracelet can be made very light, and yet strong and durable.
An improved wagon which permits of weighing coal at the point of delivery and in the presence of the purchaser, hasatetey been patented by Mr
Henry R. Robbins, of Baltimore, Md. The body of the wagon has at its corners heavy braced standards.
An inon shell fits into and fills the body of the wagon and rests upon its bottom, and is fastened at its cor ners to ropes passing over pulleys at the tops of the
standards, and thence around pulleys to a windlass standards, and thence around pulleys to a winclass
provided with differential drums. These drums enable one man to raise the shell, and at the same time give it sufficient inclination to the rear to don is combine
tents. With the shell of the wagon weighing scales, so attached to its shell that when it is raised it rests upon the scales.
An improvement in dashboards for sleighs Las been recently patented by Mr. Emil Rattey, of
New York city. The main frame of the dashbord Vew York city. The main frame of the dashboard is composed of tubes slotted lengthwise to receive the edges of a wire netting provided with a bead of metal soldered to the netting; these beads being within the slots. The end
ner if desired.
Mr. William H. Brownell, of Brooklyn N. Y., has patented a receptacle for artists' materials for safe keeping and convenient use. Internally the ceiving brushes, is divided into compartments for re kept from rolling. and at the end of the tray is a hinged flap that covers and protects the paint ends of thebrushes, At one side of the box is a lug, projecting over the rests upen the palette whe cover coner is closed that ests upon the palette when the cover is closed, thu
holding all the materials in their places. The sketchin pad is held in the cover by projections and a spring catch when the box is closed. The pad is held for edge of the coverer, and the cover is held to the pad by

A novel holder for attaching spectacles to shades or the rim of a hat or cap, has been patented by
Mr. Joseph A. Shone, of Salem, Miss. The invention consists of a clip attached by a thumb screw to the unde side of a shade or hat rim, and carrying an adjustable olding bar to the lower end of which the spectacles are may be folded up against the under side of the shade may be folded up against the under side of the shad olded, and they are suspended before the eyes of the

Mr. Thomas J. Porter, of Fleetwood, Engand, has patented an improved type-setting device by ted. The type are placed in troughs that hold them t such an angle that they will slide freely down to its lower end, and are there retained so that be raised by leter in each trough is in position to the type are placed on one bar and are caused to act simultaneously by a treadle. The troughs are placed ata little distance apart, and each aiternate one terminates at its lower end about an inch and three-quarters
higher or lower than the one next to it , so as to enable the compositor to take up the types readily.
An ingenious and novel necktie fastener has been patented by Mr. Parker H . Rew, of Rochester,
V. Y. A spring formed of wire is bent to form side bops from which the ends of the were down ward diagonally and cross each other, that portion of the spring between the loops being bent upward above cross ends of the sping pass through a staple projecting from the back of the stiffening plate of the necktie bow. This fastener is easily attached to and detached from the collar button.
A novel mode of exhibiting photographic portraits and other pictures has been patented by Mr
Francis E. Mills, of Pittsburg, Pa. The invention consists in placing the portrait on a black ground a little distance behind a polished plane glass having a trans parent center and opaque margins. Farther away in ront of this glass is placed an opaque screen having a black center and luminous borders. These parts are so placed that when the light falls obliquely upon the picture, and it is viewed at a point at right angles with leaving the partrait steding apperently selvelibe in he air while imares of the luminous figures will appear around and beyond the portrait
Mr. Charles Pontez, of Omaha, Neb., has patented a peculiar combination of dry and wet amal-
gamating devices for separating fine gold from silicious or black sand. The dry gold bearing sand and mercury
 with mercury, after which they are subjected to the action of water and caused to pass with the water over a
series of amalgamating plates, thoroughly separating the gold from the sand.
An invention for attaching a lantern to a carriage, or to a belt worn around the waist of a per Monroe, Me. Two wire arms provided with spiral springs clasp the top of the lantern, and are attached to an upright wire frame, the lower ends of which are bent outward and engage witb the guards of the lan
tern. A vertical holding loop is attached to the upper clasp and held in a vertical position by the spiral prings.
Mr. William A. Baker, of Coloma, Mich., has recently patented an improved yoke for holding
the tongue of wagons. The yoke is to be suspended the tongue of wagons. The yoke is to be suspended f the herses, Irom straps attached to the back pad its center is pivoted to the under side of the tonguc nd is provided with four mortises, two on each side of he pole arranged so as to come on each side or the horse. straps of the back pads, and in these mortises are also buckled thehold back straps.
Mr. Eleazer Thompson, of Danbury, Ct., as lately patented an improved pedicycle. This inon two wheels, one of which is larger and in advance of the other, the wheels being connected by the foo support. The upright of the foot support may be strapped against the leg below the knee, and the journal weight of the person. In the rear end of the foot support is placed the small wheel, and the forward end of
he support is curved downward. By this arrangement the support is curved downward. By this arrangement
the forward or curved end of the foot board can be ruck against the ground for moving the person for-

Mr. Walter P. Prall, of Colusa, Cal., has patented an improvement in sulky hay rakes. To the
apper side of the axle of the rake a rod is attached to apper side of he axle of the rake a rod tett ate seced to nd from this bar they pass up to and are coiled around bar placed above and parallel with it. 'To the middle of the upper bar is connected at ever that is pivoted to
the thills, and its upper end can be reached by the driver to raise the rake teeth and discharge the hay. A lever is also connected to the upper bar that can be
eached by the foot of the driver. The hand lever and teached by the foot of the driver. The hand lever and the rake so that the driver can use both to the best adtage.
A velocipede sleigh has been patented by Mr.James B. Bray, of Waverly. N. Y. The drive wheel
has a spiked periphery, and is contained in a forked frame swiveled in à vertical bearing in the back bone or main frame, and has handles at its top. Runners are igidly attached to the main frame at its rear end, and king boit. Upon each side of the drive wheel are double crank pedals, which at their outer ends are connected with the front runners by rods, and when the
main wheel is turned on its axis the front runners are imultaneously turned

Busurss and extonal.

The Chargefor Insertion under this head is One Dollar a line for each insertion; about eight worls to a line. Advertisements must be received at publication office
as early as Tlursday morning to appear in next issue.

Magic Lanterns, new model; best madde, small and
cheap. Wm. T. Gregg, π Fulton street, New York. Blind Wirers anà Borers. B.C Davis,Binghamton,N.Y See New American File Co.'s Advertisement, p. 46. Combination Roll and Rubber Co., 68 Warren street N. Y. Wringer Rolis and Moulded Goods Specialties. For Sale.-New High Speed Engine, 10x10; will ind
cate 50 horse power; price complete, $\$ 250 . \quad$ S. M. York cate 50 horse
Cleveland, 0 .
Steam Yacht,41/2ft. by 17. Geo.F Shedd,Waltham,Mass Model making, and large or small Experimental Machin ery. Jerome Redding \& Co., 30 Hanover st., Boston, Mas American Fruit Drier. Free Pamphlet. See ad., p. 45. $72^{\prime \prime}$ Independent 3 Jaw Chucks, $\$ 42 ; 48^{\prime \prime}, \$ 36 ; 24^{\prime \prime}$
$\$ 30$. Warranted best in the world, and sent on trial $\$ 30$. Warranted best in the world, and s
American Twist Drill Co., Meredith, N. H.
Ball's Variable Cut-off Engine. See adv., page 46. Fire Brick, Tile, and Clay Retorts, all shapes. Borgne \& O'Brien, M'f'rs, 23d St., above Race, Phila.. Pa. Drop Forgings of Iron or Steel. See adv., page 46. For best Portable Forges and Blacksmiths' Hand
Blowers, address Buffalo Forge Co., Buffalo, N. Y.
Paragon School Desk Extension Slides. See adv. p. 45. Brass \& Copper in sheets, wire \& blanks. See ad. p. 45. The Chester Steel Castings Co., office 407 Library St.
Philadelphia. Pa... can prove by 15,000 Crank Shafts, and Philadelphia, Pa.. can prove by 15,000 Crank Shafts, an Castings over all others. Circular and price list free. The Improved Hydraulic Jacks. Punches, and Tub Diamond Drills, J. Dickinson, 64 Nassau St., N. Y. Eagle Anvils, 10 cents per pound. Fully warranted Tight and Slack Barrel machinery a specialty. John
Greenwood \& Co., Rochester,N. Y. See illus. adv. p. 46 . Draughtsman's Sensitive Paper.T.H.McCollin,Phila.,Pa For Mill Mach'y \& Mill Furnishing, see illus. adv. p.44. Cutters for Teeth of Gear Wheels formed entirely by
machinery. The Pratt \& Whitney Co. Hartford, Conn. Steam Pumps. See adv. Smith, Vaile \& Co., p. 46. Woodwork'g Mach'y. Rollstone Mach. Co. Adv., p. 28 The Berryman Feed Water Heater and Purifier and Feed Pump. I. B. Davis' Patent. See illus. adv., p. 29. For Pat. Safety Elevators, Hoisting Engines, Friction
Clutch Pulleys, Cut-off Coupling, see Frisbie's ad. p. 28. Bostwick's Giant Riding Saw Machine, adv..page 28. Mineral Lands Prospected, Artesian Wells Bored, by 4 to 40 H. P. Steam Engines. See adv. p. 23.
Pure Water furnished Cities, Paper Mills, Laundries, Steam Boilers, etc., by the Multifold System of the
Newark Filtering Co., 177 Commerce St., Newark, N. J.
Red Jacket Adjustable Force Pump. See adv., p. 13 Cope \& Maxwell M'f'g Co.'s Pump adv., page 13. C. B. Rogers \& Co.. Norwich, Conn.. Wood Workin Machinery of every kind. See adv., page
Supplee Steam Engine. See adv. p. 13. Malleable and Fine Gray Iron Castings to
Capital City Malleable Iron Co., Albany, N. Y. Drop Forgings. Billings \& Spencer Co. See adv., p. 405 Common Sense Dry Kiln. Adapted todrying of all ma"Abbe" Bolt Forging Machines and "Palmer" Power Hammers a specialty. Forsaith \& Co., Manchester,N.H List 28, describing 3,600 new and second-hand
Machines, now ready for distribution. Send stamp for same. S.C.Forsaitb \& Co.,Manchester,N.H.,.and N.Y.city Nickel Plating.-Sole manufaciurers cast nickel anodes, pure nickei salts, polishing compositions, etc. Complete outfit for plating, etc. Hanson \& Van Win
Newark, N. J., and 92 and 94 Liberty St., New York. Latest Improved Diamond Drills. Send for circular Firs. Bullock Mrg. Co., 80 to 88 Market 8 , 8 , First Class Engine Lathes, 20 inch swing 88 foot bed
now ready. F.C.\& A.E. Rowland. New Haven, Conn. Ice Making Machines and Machines for Cooling Breweries, etc. Pictet Artificial Ice Co. (Limited)
Greenwich Street. P. O. Box 3083 , New York city. Jas. F. Hotchkiss, 84 John St., N. Y.: Send me your
free book entitled "How to Keep Boilers Clean," confree book entitled "How to Keep Boilers Clean," con-
taining aseful information for steam users \& engineers. taining iseful information for steam users \& engineers.
(Forward above by postal or letter; mention this paper.) Steel Stamps and Pattern Letters. The best made. J. Machinery for Light Manufacturing on Machinery for Light Manufacturing, on hand and
built to order. E. E. Garvin \& Co., 139 Center St., N. Y. For Power \& Economy, Alcott's Turbine, Mt.Holly, N. J. Presses \& Dies (fruit cans) Ayar Mach.Wks., Salem,N.J. Wood-Working Machinery of Improved Design and Workmanship. Cordesman. Egan \& Co., Cincinnati, 0.
Split Pulleys at low prices, and of same strength and appearance as Whole Pulleys. Yocom \& Son's Shafting Presses, Dies, Tools for working S Presses, Dies, Tools for working Sheet Metals, etc.
Fruit and other Can Tools. E. W. Bliss. Brooklyn, N. Y. Supplement Catalogue.-Persons in pursuit of infortific subject, can have catalogue of contents of the ScIENTIFIC AMLRICAN SUUPLELEMLENT sent to them free.
The SUPPIEMENT contains lengthy articles embracing The SUPpirimest contains lengthy articles embracing Presses \& Dic.

NEW BOOKS AND PUBLICATIONS.

ynopsis of the Fresh Water Rhizopods. Compiled by Romeyn Hitchcock. Pub

A condensed account of the genera and epecies American fresh water rhizopods, founded on the larg work of Professor Leidy and intended as a sort of introduction to it. In view of the comparatively little that is known of the life histories of this class of organisms, Mr. Hitchcock sees in their study a broad field
for original investigation, and hopes by means of his for original investigation, and hopes by means of his
convenient handbook to awaken a livelier interest convenient handbook to awaken a livelier
among microscopists in this interesting pursuit.
The Pettibone Name, by Margaret Sidney
After the Freshet, by E. A. Rand AfTER THE Fork, by Mary Hartwell Cather wood. Boston: D. Lothrop \& Co
Three cleverly told stories of American life, dealing biefly with young people, and well calculated to inter st girls and the gentler sort of readers generally. Without rising to the level of permanent literature they
are first-rate of their class, Uright, clean, and entertaining.

Memoirs of the Science Department.
Tokio Daigaku (Tokio University), Tokio, Japan. Quarto, paper.
These memoirs bear witness of commendable activity in the science department of Tokio University. No. 6 (pp. 73, plates xix.) is an elaborate study of the chemis-
tryof saki brewing, by R. W. Atkinson, Professor of Antryof saki brewing, by R. W. Atkinson, Professor of An-
alytical and Applied Chemistry. No. 7 (pp. 81, charts 26) alytical and Applied Chemistry. No. 7 (pp. 81, charts 26)
is a report on the meteorology of Tokio, for 1880, by is a report on the meteorology of Tokio, for 1880, by
T. c. Mendenhall, Professor of Experimental Physics, with a chapter on fires in Tokio, by Professor K. Yamagawa. No. 8 (pp. 27) embodies a reinvestigation of the wave lengths of some of the principal Fraunhofer lines of the solar spectrum, also by Professor Mendenhall.
The Lord's Purse Bearer. By Hesba Stretton. Boston: D. Lothrop \& Co. London. Why such books should be reproduced and read here is unaccountable.
The Mother's Record. Boston: D. Lothrop \& Co. \$1
A record book with spacesfor entering year by year the more important or interesting facts of a child's
history. The items of entry are largely of sentimental history. The items of entry are largely of sentimental
or domestic interest, yet others of a strictly scientific nature are provided, with blank space for such addinature are provided, with blank space for such addi-
tional entries as the parent may wish to make. Properly kept, a record of a child's physical and intellectual nurture, growth, and development could not fail to be interesting and valuable. The studies of infancy made al, however, whether many parents will follow their xample
The Gas and Water Companies' DirecTORY, 1882; Gas W Orks Statistics, 1882
by Charles W. Hastings. London: The
Scientific Publishing Company.
These useful annuals have now reached respectively their sixth, fourth, and second issue. They all show a creditable advance in the fullness of their statistics and
other information of use to all interested in or having other information of use to all interested in or having
dealings with water and gas works and their management.
Modern House Painting.
ter and F. A. Wright, Architects. K. Rossiter and F. A. Wright, Archite
Contains twenty colored lithographic plates exhibitIng the use of color in exterior and interior house paint ing, with letterpress describing the preparation, use,
and application of color. The arrangements of color and application of color. The arrangements of color
will be found very suggestive, even when they may not will be found very suggestive, eve
be deemed suitable for imitation.

HIN'IS 'TO CORRESPONDENTS. com companied with the full name and address of the riter.
Name
iven to inquirers.
We renew our request that correspondents, in referrin former answers or articles, will be kind enough to ame the date of the paper and the page, or the number of the question.
Correspondents whose inquiries do not appear after lished, they may conclude that, for good reasons, the lished, they may conc
Editor declines them.
Persons desiring special information which is purel a personal character, and not of eneral should remit from $\$ 1$ to $\$ 5$, according to the subject, as we cannol be expected to spend time and labor to obtain such information without remuneration.
Any numbers of the Scientific American SuppleENT referred to in these columns may be had at thi ofice. Price 10 cents each.
Correspondents sending
Correspondents sending samples of minerals, etc.,
or examination, should be careful to distinctly mark label their specimens so as to avoid error in their identi label the
ication.
(1) A. D. A., M.D., asks: What is the difference in value of pure gold and pure platinum?
A. Gold is worth about $\$ 21$ an ounce (troy), platinum? A. Gold is w
$\$ 8$ an ounce.
(2) C. E. P. asks: Please inform me of a oood inexpensive material-which is a non-conducto of sound-to be used between the inner and oute matched board sheeting. A. Dry, coarse sawdust, loose y will probably give satisfaction if properly employed.
(3) Miss M. C. G. asks: What shall I use ocleanse some old engravings and lithographs, nelected and dirty, but apparently uninjured otherwise? A. To clean engravings, prints, or plain uncolored lithographs: Free the paper from traces of dust, and float it, face downward, for half an hour or more on the surface
of a clear solution of six ounces of fresh chloride of lime (calcium hypochlorite) in a pint of soft cold water contained in a shallow porcelain dish. Float on the surface of water containing about three drachms of sulphuric acid to the pint. If not then white enough repeat the operations, and finally rinse thoroughly in a spray of clear cold water, and dry between clean blotting pads under pressure. Colored lithographs cannot b
safely cleansed by this or otherchemical treatment.
(4) F. A. R. asks: What will prevent noisture gathering on a water pipe that runs throug my cellar, overhead? A. Cover the pipe with a non onductor of heat.
(5) J. B. writes: Reading your correspond nce with reference to defective sheets in steam boilers caused by flat surfaces at the end of sheets after bend ing. I am a practical boiler maker, and I have always
used the following plan when bending sheets, which has saved me the trouble of having to draw in the end with the hammer after bending. To place a thin strip of sheet iron betwixt the end of sheet and the lowe roll the whole width of plate when passing through the
rolls. [This is a very good way of overcoming the difirolls. [This i
culty.-EDs.]
(6) A. W. R. writes: Please inform me whether it is necessary that a Leclanche battery must be hermetically closed or sealed; or is it just done to
avoid the evaporation of water? You would oblige me very much by answering in the Notes and Queri column of the Scientific American, of which am subscriber. A. The cups are sealed mainly with a view to prevent evaporation of the solution and the
disagreeable creeping of the salt dissolved, which in disagreeable creeping of the salt dissolve,
some cases materially affects the insulation of the cells. This sealing is not absolutely necessary, however.
(7) D. A. O.-Our answer to this correspondent, about injectors, published July 8, needs to be rendered more full. The Korting Double Tube Injector will elevate water from wells 60 feet deep, by placing the injector within 20 feet of the water and elevating 40 feet to boiler, also feeding the boiler. One handle any one can start and stop injector from top of well any one can
very readily.
(8) H. B. J. asks: 1. Is a large building covered with a tin roof lightning proof? A. No. But a electricity and assist it in taking to the ground by several different routes, with less destructive effect than
if it went on one route. 2. Is there a case known of a if it went on one route. 2. Is there a case known of a
building being seriously damaged by lightning when so covered? A. Yes; you will find examples of buildings that were damaged that had metallic roofs,
in back volumes of Scientific American.
(9) H. H. F. asks: Will you please inform me in the Notes and Queries in the ScIENTIFIC A merican handles, etc.? It produces a clouded surface of various shades of brown which is very fine after polishing. This may be done by running a red hot iron over the surface quickly; producing a variety of effect by touching or not touching the surface or by varying the shapes
of the irons. Similar effects may also be produced by using a blow pipe with a sharp hot blast. It should
int be attached to the lamp and also to a blower with mall rubber hose, so that it can be quickly moved ove tion against hard wood while running in the lathe Polish with a mixture of alcoholic shellac varnish, two parts, boiled linseed oil one part, shaken well together and applied with a cloth while the work is in motion.
(10) M. L. S. writes: 1. If the heat of the sun is seventy degrees on each square foot of surface, what whin thee heat if the rays, naturally falling on to one square foot of surface? A Other thing being equal, the heat will be multiplied by the number of reflectors. The Adams solar boilers (Madras) are operated by batteries of plane reflectors set so as to converge the solar rays upon the boiler. 2. Is
there anything for removing ink (writing ink) stains rom hands? A. Yes; different inks require different
(11) A. L. R. writes: You say in Supple MENT, No. 157, in describing De la Rue's chloride of
siver cell (page 2490): " The pure silver deposit can be readily turned into chloride of silver again by means of a small quantity of chlorine." I do not know this pro cess. I have been told that the usual method is that of precipitating silver, by a quantity of salt dropped into a solution of nitrate of silver, and fusing this precipitate in a crucible with charcoal. Will this produce chloride of silver, or must it be done in a different way?
A. The process referred to is intended to convert fine A. The process referred to is intended to convert fine
metallic silver into silver chloride. Silver chloride may be produced from dissolved silver nitrate more economi cally by the addition of muriatic (hydrochloric) acia to
the liquid chloride of silver precipitates. This chloride may be purified by washing on a filter (with distilled or rain water) and drying in a porcelain dish over a sand bath in the dark.
(12) W. H. E. asks: Is there anything that will take off tattooing? A. The tattooed work can only be cloaked by carefully " pricking in" fresh cream over be cloaked
the design.
(13) A. W. asks: Will you please tell me why hair falls, and what are the principal substances
that make it fall? A. See "Hygiene of the Hair"" Professor Erasmus Wilson, in Supriement, No. 102.
[OFFICIAL.]

INDEX OF INVENTIONS

Letters Patent of the United States were Granted in the week Ending

June 27, 1882

AND EACH BEARING THATE DATE.
[Those marked (r) are reissued patents.]
A printed copy of the specification and drawing of any patent in the annexed list, also of any patent issued ince 1866 , will be furnished from this office for 25 cents. no ordering please state the number and date of the patent desired and remit to Munn \& Co., 261 Broadway. corner of Warren Street, New York city. We aso furnish copies of patents granted prior to 1866 printed, must be copied by hand.

Air cooling apparatus, G. W. Stockman........... 260,060

Alarm. See Fire alarm.
llkali, putting up caustic. B. T.
Amalgamator, C. E. Topping....
utomatic lubricator C. O. Yale
Axle box, car, G. F. Godley..
Axle box, car, H. Millholland
Axle lubricator, G. Brennan
axle skein, D. B. Turnbull
Baker and boiler. combined, w.............. B. Bilings.
Balance, proportional C C.
Balance, proportional, c. Seymour....
Baling press, portable, J. w. Kitchens
Barrel mover, J. H. Quackenbush.
Basin bib, E. O. McGlauflin.....
Bath tub attachment, E. Schutt
Bed, folding, V . Zimmerman.
Bicycle suspender, S. Sawyer........................... 260
Block. See Pulley block. Toy building blocks.
oard. See Dash board. Electrical switch board.
Embalming and cooling board. Ironing board.
Wash board.
oiler former, F. Fellinger
Boot or shoe machine, J. B. Clar
Boot or shoe, H. M. MacDonald
ottle shoe, H. M. MacDonald
Bottte stopper. Madlener 260,305
Botte stopper and fastener, J. D. Roberts....... 260,323
box. See Axle box. Cigarette box.
Brake. See Car brake.
Bread and meat cutter, S. L. Denney.... ${ }^{260,287}$
Breakwater, yieldirg aná buoyant pile, R. M.
Franklin............ 260.016
260,155
brick machine, W. H. Judson............................ 260,101
Brick, tile, etc., compound for making, H. H.
Brick, tile, etc., compound for making, H. H.
Hunt...
Butter and lard cutter. P. F. Moroney 260,2030
Button and means for attachment, J. Wilde...... 260,267
Button, hinged shoe, Scott \& Hill...1260,166
Cake pan, J. Connor.............
Camera. See Folding camera. Photographic
ake pan, J. R. Connor...............................
Camera. Se Folding camera. Photographic
camera.
an. See Oil can.
Cap, band, S. Sim.
Car brake, W. Nurse
Car, cattle
ar couttle, F. Kohler
Car coupling, T. Breen
Car couphling, J. J. Breen
Car courier.
Car coupling, L. H. Finney.
Car coupling. G. F. Hoeffer
Car coupling, A. S. J. Rossman.
Car seat, E. L. Bushnell.
Car, stock, J. Edmands....
G. W. Hunt..................
Carpet lining, E. A. Gaibraith
arpet sweeper, C.: L. Travis.
arriage jack, G. C. Bovey ..
Cartridges, closing blank, G. P. Salisbury
Caster, C. H. Tumey ..
Chandelier, H. Wellington....
huck, drill, Parks \& Sheff
huck, lathe, L. R. Davis..
Cigar tip cuiter, R. N. Oakma
Circuits, testing and breaking. W. R. Nutting
Cleaner. See Flue cleaner.
Cleaning cloths and other fabrics, E. I. Couch.
Cloth folding machine, A. Winter
Clothes pin, S. D. Johnston.
Clothes rack. G. Sepmour....
Clothes reel, G. W. Howd
Clothes reel, G. W. Houdlette
Clutch, friction, W. B. Tatro.
Clutch, friction, W. B. Tatro...
Cock and faucet, S. s. Williams
Cockle machine, A. Life.....
Collar fastening, horse, o. S. Pitny
oloring matter from naphthylamine, manufa
ture of, C. Rumpff

ture of, C. Rumpff

Poppenhusen........... 260,320
concrete abutments, bridge piers, etc., method of
and apparatus for the construct method of
Burnso..................................
Bnetectionery wrapper, A. Schwarzschild.
Cooking prepared meats, etc., can for, W. Arch
deacon..
Cop or bobbin winding machine, J. H. Gomersal
Copying, dampening bath for press, N. C. Stiles.
Copying press, W. Bowker....................
Cordage. oleaginous compound used in manufac
Corset, L. S. Bortree
Corset, \mathbf{C}. W. Foster.........................
Coughs, etc. remedy for,
Coupling. See Car coupling. Thill coupling.
Cradle and crib, child's, H. H. Wiggers.
Creamer. vacuum. A. G.
Cross tie, metal, J. Parr.
Crushing roll, U.
Crushing roll, U. H. Odell.
Cultivator. sulky, J. B. Christian
Curtain holder, W. H. Schick.
260,272
260256
260,344
260,048
260,12
26012
260,277
260,139
260,081
260,127
260.032
260.49
260,217
260,54
260,346
260,053

0,287 0.016 60.155 60,101 260,203 260.30 260,267 260,126 260,166

都

 " 60.14959,999
60,171
 ,

260,162
260,009
260,100
260.091
260257

Curtain holder, W. H. Schick.

Curtain roller, spring. J. M. Osgood.........260,044, 2
Cut-off valve, ad justable steam, W. D. Hooker...
Cutter. See Bread and meat cutter. Butter and lard cutter. Cigar tip cutter.
Cutter bars, elastic cushion for; S. C. Megill.. Cutter bars, elastic cushion for, S. C. Megil..... F. Durfee.
Dash board, W

Draught apparatus for horses, T. J. Slater.
Draught equalizer, J. P. Johnson. Draught equalizer, J. P. Johnson...............
Draw heads, manufacture of, Yakel \& Duff. Drill. See Frain drill.
Dry kiln. E. M. Flaherty
Dust collector, M. Harm
Dust pan, S. M. Perry...
Dust pans, detachable

Electric light, P. O. Jenkins.....................
Electric machine regulator, dynamo, R. Thury..
Electric machines, armature for dynamo, J. J. T. J. McTighe.................................
Electric machines, commutator for dynamo, J.
\& T.J. McTighe..... Electrical switch board, T: N. Vail.. Elevator, G. C.Tewks

 Exhaust, utilizing, Litchffeld \& Renshaw.
Fabric. See Waterproof fabric.
Fabrics, frame for stretching Faucet, J. H. Johnson...........
Fence barb, wire, R. H. Wiles
Fermentation, apparatus for preparing grain for
F. o. Kunz. Fertilizing substances, treatment of excreta fo

File holder, C. H.
Filter. O. Long.
Fire alarm and
Fire alarm and extinguisher, automatic,
Stillson
Fire escape, W. H. \& F. C. Burden
Fire escape, D. Schmidt
Fire extinguishing apparatus, A.
Fire guard and escape, J. O'Neil..
Fish plate joint, F. Holton
Fish plate joint. F. Ho Fox
Flesh fork, W. A. Reddick
Flue cleaner, R. P. Gerlach
Fly trap, S. M. Cook....
Foot mat, A. W. O'Bl
Fork. See Flesh fork.
Fountain. See Soda water fountain.
Frame. See Hammock and tent frame
Frame. See Hammock and tent frame.
Funnel holder, C. A. Barnes ...
Furnace. See Gasol ine furnac

Furnace grate, K. M. Jar Garment, F. Wallach

Garment, F. Wallach Gas regulator, L. H. MeCullough. Gasoline furna.e, \mathbf{D}. Norton....
Generator. See Steam generator. Glass mould for casting ornamental pictur Glove fastening, etc., w. S. R...............
Governor, stenger Governors, de
M. Ferry
Grain binder. J. D. Nix
Grain binder cord knotter, J. H. Dean
Grain drill, A. N. Norris........ ...
Grain drill force feed, D. M. Parry Grain separator, H. A. Barnard et al. Grinding mill, A. W. Straub Guard. See Fire guard.
Hammer, drop, W. Mas
Hammock and tent frame, G. A. Parker. Harness pox loop and ond, B. A. Wils Harrow, F. Nishwitz.
llarrow and cultivivator, combined, T. E. G. Gay. Harrow, revolving C. Williamson Harrow, sulky, J. E. Weller.
Harvester, M. Van Matteson
 Hat holder, J. H. Burns.............
Hat or cap, reverstble, s. Simonson Hat shaping machine.
 Hay stack binder, Hogg \& Hal
Heater. See Steam heater Hedge trimmer. W. F. Throckmorton ..
Heel counters, die for shaping, M. Hyne Heel counters, die for shaping, M. Hy
Hinge for shutters, lock, J. ' ${ }^{\text {P. Maher. }}$
Hoisting apparatus, W. S. Rociewll. Hoisting apparatus, W. S. Rocicwell.................
Holder. See Curtain holder. Emery holder Holder. See Curtain holder. Emery holder
File holder. Funnel holder. Hat holder
Lanterv holder. Pen holder. Rein holder Sash holder.
Hoops, machine for manufacturing barrel, N. P.

Shears, A. J. Lytle.
Shirt, A. R. Perkins
 Skylight, C. Hefe
Sled, A. Sanford.
Sled knee, Ernster \& Gardt. Smoke consuming furnace, Culbertson
Soda water fountain, J. Matthews......
Soldering machine. can, W. D. Brooks
 starch drying house, G. E. Full Steam generator, D. Renshaw
Steam heater, W. H. Page. Steam heater, W. H. Page.
Steam in cities, apparatus f Steam in cities, apparatus for supplying, B. Holly
Steam, utilizing exhaust, Litchfled Stirrup, G. P. Bunce ..
Stopper. See Bottle stopper.
Stove hood, W. J. Hankins.
Stove, oil, A. S. Dinsmore
Sugar from molasses, etc., extracting crystalliz
able, Wernicke \& Pitzinger..................
Sugar from molasses, etc,,separating, C. Scheibler
Sugar from plant juices, obtaining, C. Scheibiber.
Superheater, D. Renshaw......
Supporter. See map and chart supporter.
Tannate of chinoline, acid, Pickhardt \& Ende-
mann. ...
Tannate of chinoline, basic, Pickhardt \& Ende-
mann................................

land..
Telephone signaling and receiving ayparatus, C Telephone si
Ewing...
Tenoning ma
Tenoning mach ine, J. Shetter.
Thill coupling, H. A. Luttgens
Tbill coupling, Smith \& Murphy
Tie. See Cross tie. Umbrella and parasol tie.
Toy building block, J. A. Crandall.
Toy firearm, G. W. Eddy ...
Toy merry-go-round, C. F.C Trap. See Fly trap. Mole
Tree. See Saddle tree.
Trimmer. See Hedge trimmer.
Trunk, desk, table, etc., combined, J. A. Rigby...
Turn table and jack for street cars, combined,
 rial, mechanism for forming, J. T. Edson.
Umbrella, G. Neu............................ Umbrella and parasol tie, D. W. Odiorne
Valve, balanced slide, J.J. De Lancey (r) Valve, globe. A. P. Broomell..
Vehicle, passenger, J. T. Gurn Vehicle, pansning gear, M. Barry......
Vehicle running gear, R. C. Parvin Velocipede pedal, J. S. Murray. Ventiliating attachment to to hearths, J.
Ventilating grain in bulk, J. M. Fennert Ventilator, J. M. Fennerty.
Vessels with coal and iron, ing, Dunn \& Beckert ..
Wagon body, C. Comstock
Wagon bolster, D. B. Turn Wagon bolster, D. B. Turnbull. Wagon, dumping, L. Winslow....
Wagon rub iron, D. B. Turnull. Walls and ceilings of buildings. Material for the decoration of the interior, F. Beck.
wash-board, Wash-board, J. H. Nellis Water closet, Peters \& Donald
Waterproof fabric, G. Streat Water wheel, turbine, J. Humphrey Watch chain charm, w. P. Dolloff
Welding compound, E. s. Fraley. Wheen. See Plow wheel. Polishing wheel. Wat wind engine, H. N. Hill. Wind power machine,
Windlass, T. Maxon.. Wrench. See Monkey wrench.

DESIGNS.
Badge, Bailey \& Dakin..
Bell, table, E. L. Morris.
Cassimeres. F. S: Bosworth......................................
Cotree packages, ornamenting paper for, O. A. Gill,
Coffin pedest
Coffin pedestal, Rappleyea \& Stein
Desk frame, C. Page.
Dinner or tea set, E. C
Dispensing column, J. Matthews
Fire back and jamb.
Floral pedestal, Rappleyea \& Stein Fringe, B. Dreyfus
Lantern, C. A. Kinney...
Settee frame, A. F. old.
Wall paper, E. Leissner...

TRADE MARKS.

Broma, baker's, H. L. Pierce.

Ing Company................

Chocolate, eagle, II. L. Pierce............
Chocolate, French sweet, H. L. Pierce
Chocolate, German sweet, H. L. Pierce.
Cigarette paper, G. D'Argy \& C
Cocoa, baker's, H. L. Pierce
Coffee, roasted, F. MacVeagh \& C
Distilled spirits, Corning \& C Gold, silver, and plated ware, W. N. Boynton.
Hosiery, L. S. Cox \& Co.... .
Ink, indelible, A. Kuttrof...
Ink, indelible. F. A. Whiting
Medicine, C. M. Briggs \& Bro
Medicines. R. Van Buskirk
Mucilage and writing inks and fluids, w. A. Davis.
Needles for hand and machine sewing, D. Evans..
Plows, F. A. Barrows.
Tobacco. manufacture
ley \& Company
Sirup, table. G. Boyd \& Son.
Skates. roller, S. Winslow
Whisky, sperry, Wade \& Co
adarritipmsht
 Engravings may head advertisements at the same rate
per line, by measurement. as the letter press. Adver per line, by measurement. as the letter press. Adver-
tisements must be received at publication offce as early
as Thursday morning to appear in next issue.

PITTSBURG AND HER MANUFAC

MINERAL WOOL.

THE TELEPHONE FROM $183^{\prime 7}$ TO 1882.-

THE DAVIS ISLAND COFFER DAM. -

BAIRD'S Boous

FOR PRACTICAL MEN.

NUT TAPPING DURRELL'S PATENT. . 0.1 Machine, $1,0001 \mathrm{lb} ., 7$ spindles. Capacity of 70 spindles, 8,000 per
cknowledged to to bes. HOWARD BROS.,

SPEAKING TELEPHONES.
 Alexander Graham 13ell's patent of March , 1886,
owned by this company, orversevery form of apparats
including Microphones tor voice of the speaker causes electric unduiations
ionspronduce tot the words spoken. and which articula-
The prodne similar articulate sounds at the receiver.

 All telephones obtained except from this company or
its authorize 1 leanses, are infringements, and the
makers. sellers. and users, will be proceeden against.
Inf

BEFORE YOU BUY BOX BOARD Machine, send for circular and price list of Strange's
new and improved Automatic Box Board Machine. State
where
ou saw this. W A Chat TPA YS to sell our Hand Printing Rubber Stamps.
G. A.Mpples free. C. FOLJAMBBE \& CO., successors to

New and Valuable 0iler for Loose Pulleys. Its use on Loose Pulleyswill prove oiled from three to four weeks with
one filling. Price from $25 . \mathrm{c}$ to 75 c .
each.
sample

 Register for 188 contains a list of the traduartes for the
past 55 years, with their positions;
requirements, expenses eours of study

PROGRESS OF THE METALLURGY OF

 Got same number contians an interesting artic Manufaetures Fwith especial referenter
the uses, materian, and qualities of watch cases.
WOOO-WORKIMG Machlleyy, Mremiversal Wood Workers, Planing, Matching, BENTEL, MARGEDANT \& CO., HAMILTON, OHIO, U.S. A.

RUBBER BACK SQUARE PACKING.

 For Packing the Piston Rods IN THE WORLD. B represents that part of the packing which, when in use, is in contact with the Piston Rod.A, the elastic back, which keeps the part B against the rod with sufficient pressure to be ste creates but little friction. JOHN H. CHEEVER, Treas. NEW YORK BEL'ING \& PACKING CO., 29 Park Row, New York. SPECIAL NOTIGE.-Owing to the recent great fire in the "World" Building, our effice has
been remined as abov.

PORTABLE AND STATIONAPY ENGINES AND BOILLERS

'RELIABLE" Enines cin comple ence

Aatase to trian

panascus broviz.

A composition metal unequaled in
strenth durability, anti-friction quali-
ties, and price pres
send for illustrated circular and pric
ties, and price.
send for illustrated circular and price
list.
The Westinghouse Machine Co.,
$92 \& \underset{\text { Works at Pittsburg, Pa. }}{\mathbf{9 4} \text { Liberty }}$

MACHINERY
MACHINERY
Horizontal Steam Engines,
 perior Design,
lete in Every Respect,
LAMBERTVILLE IRON WORKS

SIBLEY COLLEGE OF MECHANIC ARTS Entrance examinations will be heldJune 12 and Sept. 11, ing reorganized course of instruction. Scientific and
Practical. including Draughtin, Machine Construction,
General Shop Work, etc. apply to the General Shop Work, etc., apply to the
PRESIDENT OF CORNELL UNIVERSITY, Ithaca. N. Y.
 ClAARK'S RUBBER WHEELS.

OPIUM MORPHINE HABIT,
No pay till cured.
years established,
Ten years established, 1 ,
cure.
Marsh, Qute case
Muincy, Mich.

WIRE ROPE, BRIIGE CABLES, SHIP RIGGIMG, Tramway Ropes, Champion Barbed Wire, etc.

"BLAKE'S CHALLENGE" ROCK BREAKER.

ROOT'S NEW IRON BLOWER.

 IRON REVOLVERS, PERFECTLY BALANCED, Has Fewer Parts than any other Blower.
P. H. \& F. M. ROOTS, Manufacturers, S. S. TOWNSEND, Gen. Agt., C Cortland St.,8 Dey St.,
 NVEW YORRK.

 RUPTURE

STEEL STAMPS

Mingents

CAVEATSG, COPYRIGHTS, LABEL
Messrs. Munn \& Co., in connection with the publicaImprovements, and t c, act as Solicitors of Patents for Inventors.
In this line of business they have had over thirty Years' experience, and now have unequaled facilitied
for the Preparation of Patent Drawings, Specifications for the Preparation of Patent Drawings, Specifications, United States, Canada, and Foreign Countries. Messrs. Munn \& Co also attend to the preparation of Caveats, Registration of Labels, Copyrights for Books, Labels, Reissues. Assignments, and Reports on Infringements
of Patents. All business intrusted to them is done with special care and promptness, on very moderate We send, free of charge, on application, a pamphle to procure them; directions concerning Labels, Copy rights, Designs, Patents. Appeals, Reissues, Infringe ments, Assignments, Rejected Cases, Hints on the Sale of Patents, etc.
Foreign Patents. - We also send, freeof charge, Synopsis of Foreigi Patent Laws, showing the costand
method of securing patents in all the principal countries of the world. American inventors should bear in mind that, as a general rule, any invention that is valuable tc the patentee, in this country is worth equally as much in England and some other foreign countries, French, and Belgian-will secure to an inventor the ex clusive monopoly tc his discovery among about ons hundred and fifty millions of the most intelligen people in the world. The facilities of business and steam communication are such that patents can be obtained abroad by our citizens almost as easily as a home. The expense to apply for an English pafent is
$\$ 75$; German, $\$ 100$; French, $\$ 100$; Belgian, $\$ 100$; Cana dian, $\$ 50$.
Copies of Patents.-Persons desiring any patent issued from 1836 to November 20, 1866, can be supplied with official copies at reasonable cost, the price de specifications. Any patent issued since ings and specifications, may be had by remitting to
this office 25 cents.
A copy of the claims of any patent issued since 1836 wili be furnished for 25 cents.
When ordering copies, please to remit for the same as above. and state name of patentee, title of inven A pomplet paining
United States patents, sent free. A handsomely bound Reference Book, gilt edges, contains 140 pages and many engravings and tables important to every patentee and mechanic, and is a useful handbook of refer ence for everybody. Price 25 cents, mailed free.

Address MUNN \& CO.,
Publishers ScIENTIFIC AMERICAN, BRANCH OFFICE-Corner of 5 and 7th Streets

cadurtiswemts.

The " MONITOR." Best Boiler Feede

The MONITOR. a new ifinginion
 GOLD MEDAL, PARIS, 1878.
BAKER'S
 Bpadkfast GOCOD, Warranted absolutely pur
Cocoa, rrom which the excess of
Oilhasbeenrew Oil has been removed. It has three
times $t h e ~ s t r e n g t h ~ o f ~ C o c o a ~ m ~ i x ~ e d ~$
win with Starch, Arrowroot or Sugar
and is therefore far more ceonomical. . It in delicious, nourishing,
strengthening, easily digested, and admirably adapted for invalids as
well as for persons in health. Sold hy tirocers everywhere T. BAKER \& CO., Dorchester, Mass.

ERICSSON'S

New Caloric Pumpings Engine

 D. L. DELAMARER IRON WORKS No. 10 Cortlande street, New York, N. Y.

Stevens' Roller Mills, GRADUAL REDUCTION OF GRAIN THE JOHN T. NOYE MEG. CO., Buffalo, N. y

Engineering, Physics, Chemistry.

COLUMBIA BICYCLE
 THE POPE M'F'G CO. 597 Washiugton St., Boston, Mass.
Bolt Cutting Machinery Howard Iron Works, Buffalo, N. Y.

THE J. L. MOTT IRON WORKS,

H. W. JOHNS M'F'C CO., 87 Maiden Lane, New York.

ROCK DRILLS \& AIR GOMPRESSORS
Pyom
Pyrometers, $\begin{gathered}\text { For showin heat } \\ \text { Ovens. Hot } \\ \text { Past Pipes }\end{gathered}$
 THETHE TIUBEIBWATCH CASE Asbestos Lined Removable Covering,

 DP1 WM MoRxPHINE EATING

THE DOPLEX INJECTOR. The constantly increasing demand for this Boiler
Feeder provesits superiority over ot her machines now
in use. Send for illustrated circular and price ilst. DON TT BUITID A HOUSE OF ANY KIND UNTIL FOU -4, $\frac{0}{651}$
THE NEW 0

Double Screw Parallel, Leg Vises.

WM. A. HARIRIS

Y OU want to be a Telegraph Operator, send 25
Cts. for the Most Complete Telegraph Instructor
in the world. C. E. JONES \& BRO., Cincinnati, 0 .

PENCILS, HOLDERS, CASES, \&c.
The CALLI-CRAPHIC Pen. A GOLD PEN and RUBBER HOLDER, containitg ocket. Always ready for use. A luxury for pe
ho care to preserve their individuality in writing. MABIE, TODD \& BARD, OUR GOODS ARE SOLD BY HIREST-CLASS DEALERS.

WITMERBY, RUGG \& RICHARDSON. Manufacturers
of Patent 1 ood Working Machinery of every descrip $=2=2$

PATENT QUICK
 Adjustable Stroke SHAPERS can be Changed while in Motion. E. GOULD \& EBERHARDT,

MACHINISTS' TOOLS. Send tor new instratecatalague,
Lathes, Planers, Drills, \&c.

THE PORTER-ALLEN High Speed Steam Engine SOUTHWARK FOUNDRY \& MACHINE CO
430 Washington Ave., Philadel phia, Pa.

PRINTING INKS.

