

Frientific ©mericam.

MUNN \& CO., Editors and Proprietors. PUBLISHED WEEKLY AT
No. 261 BROADWAY, NEW YORK.
o. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

One coppy, one year postape included... One copy, six months postaze included

The Scientific American Supplement

 Scientife American Export Edition.

NEW YORK, SATURDAY, MAY 20, 1882.

tents.	
(1llustrated articles are marked with an asterisiz	
al invent	
os, formation of by riessure	cap
	Las
r, pasteurization of	Lifting jack, improved*....... 3 318
	Maynitic
Bushing for barrels*	Milstone driver.new*.
Car coupling device, imp	Nemspapers, Gerrna
Car coupins, street, novel	Ozone, continuous productio
truact, ingenios*:	Papertas diceisio Patents is Pata
parasite of	Pateots
Panter. ceecero rov	(entay
atom	Prowr improved, an*
staks cutter, new	
htheria	
avings, copyins.	(en
ineering inventions.	skylight. improved
cet, ingenious, an**	tarch suxar,
Fring Min saws machin for:	Surgery Pompei
anometer, teiep. cur. on.	TTabe
$\begin{aligned} & \text { orrir } \\ & \text { Pure } \end{aligned}$	Weather compass, Kinkerfue's. ${ }^{\text {31/ }}$

TABLE OF CONTENTS OF

THE SCIENTIFIC AMERICAN SUPPLEMENT,

 No. 333,For the Week ending May 20, 1882 . Price 10 cents. For sale by all newsdealers.

 V. MEDICINE.The Action of Quinine and Salicylic Acid on the 531

 vIU. ABTRONOMY.-On the Conservation of Solar Energy. By Dr.

KIINKERPUES' WEATHER COMPASS.

It is well known that the barometer only becomes a guid to forecast the weather when it is taken in combination with the hygrometer. To combine the advantages of both, Professor Klinkerfues, of Goettingen, has devised a new form of instrument, to which he gives the name of "weather compass." Although not without its faults, this instru ment, says the Polytechniches Notizblatt, is suitable for ordinary use, and will probably supplant the barometer as weather glass. It is in fact a kind of barometer resembling Bourdon's aneroid barometer combined with a hair hygro meter, which acts upon the pointer that indicates the atmo spheric pressure, so as to increase or diminish its motion according as there is a greater or less amount of moisture in the air. Beside this, the direction of the wind is also taken into account according to the influence which experience has shown that the wind has on the state of the sky, aud atmospheric precipitation. For example, observations extending over many years have shown that the change from west to east improves the weather prospects on an average about as much as a rise of 9 millimeters (three-eighths of an inch), or a decrease of 50 per cent in relative moisture. change from east to west has a correspondingly bad effect.
This new weather glass gives us, in the simplest possible manner, information regarding the weather to be expected in the next 12 to 24 hours, whether a clear or clouded sky dry or wet weather. But this is the most important thing that we wish to know beforehand, if it is only approxi mately correct aud reliable. Out of 100 forecasts about 90 are correct. This kind of prognosis has the advantage o being local, and therefore is especially valuable to farmers The weather compass compensates for the action of the barometer and hygrometer in such a manner that a falling of the barometer with a decrease of relative moisture, or
rise of barometer and with an increase of relative moisture acts upon the pointer in opposite directions, and if one is proportional to the other, keeps it at rest. The basis for the calculation of the dial of the instrument is the simultane ously observed variations of the barometer and hygromete and the relations between atmospheric pressure and moist ure, namely, 1 millimeter of pressure is equal to 6 per cen of relative moisture. Thus pressure and moisture, direc tion of the wind, and present weather, become factors in de termining the weather, and are rated at their proper worth On the face of the campass is a small revolving disk, on which is marked east, $\begin{aligned} & \text { N. E., N. W., } \\ & \text { S. } \\ & \text { E., west, for the direction }\end{aligned}$ of the wind. Arcund the circumference of the larger disk are the words wet, very wet, dry, clear, etc. There is also a pointer or index, which extends inward from the edge of the face. To set the instrument, it is only necessary to turn the two disks so that the pointer will point to the presen state of the weather on the weather disk, and to the present direction of the wind on the wind disk. This is evidently necessary, because regard must be had to whether one and the same change will lead to wet or to dry weather. In 10
or 12 hours, if the direction of the wind remains unchanged, the pointer will indicate the coming weather directly. I there is a change in the wind in the meantime, then the outer or weather disk must be turned so that the state of the weather at that time will correspond to the new direction of the wind. This will bring the weather that is to be expected under the pointer. The price of the weather compass in Frankfort is about $\$ 12.50$.

SUFFOCATION BY COAL GAS

Cases of poisoning by illuminating gas are sufficiently frequent to make one suppose that greater care would be taken to prevent their recurrence. Not long since a man in thiscity attempted suicide by means of gas which he inhaled through the mouth, but tbe timely interference of neighbors prevented its having the intended effect. A few days later a Fall River steamer came to her pier with two of her pas sengers insensible from the same cause. Coal gas contains from 5 to 9 percent of carbonic oxide, to which its effects are chiefly due. M. Tourdes says that pure coal gas is instantly fatal, but the case of attempted suicide, as well as the rare occurrence of fatal poisoning in gas works, where
workmen are sometimes exposed to gusts of undiluted gas workmen are sometimes exposed to gusts of undiluted gas,
makes this seem at least doubtful. The same authority says that one-eighth of gas will kill a rabbit in five minutes, and one fifteenth in ten to fifteen minutes. In one case that proved fatal Dr. Taylor estimated the quantity at 3 per cent. Even small quantities, which are only perceptible by their odor, cause unpleasant symptoms, headache, and nausea, if inhaled for a long time. Time seems to be an important factor in gas poisoning, for in most cases where persons are exposed to its influence for a few hours they can be resuscitated, but if left a longer time this is not possible.
Carbonic oxide, as already stated, is credited with being the principal factor in gas poisoning, a question that could be quickly settled by the spectroscopic examination of the victim's blood. Two of the large gas works in this city supply us with gas still richer in carbonic oxide, sometimes reaching 25 or 30 per cent. It was expected that this would prove particularly fatal to its users, but accidents have thus far been fortunately few, which may perhaps have been due in part to its vile odor, which serves as a warning
One of the most convenient safeguards against possible poi soning by gas is to sleep with an open window where fresh air can always enter to dilute it in case of any escape. A person bas been known to sleep in safety the entire night in a room
cock at full head, the secret of his escape being the open win dow. Attempts have been made to construct automatic alarms that should report escaping gas, but none of them are so efficient as might be desired, are liable to get out of order and are not likely to awake the person who is destined to be the victim.

METALLIC CESIUM.

For the past thirty years chemists have been anxiously waiting for somebody to isolate the metal cæsium, which with rubidium, was the first discovery made by the aid of the spectroscope. Bunsen prepared rubidium, as he has so many other metals, by the eloctrolysis of its salts, but he did not succeed in obtaining cæsium. So great is its affinity or oxygen and the metalloids that it is placed at the positiv end of the list, the most electro-positive of all metals. From Liebig's Annalen we learn that C. Setterberg has succeeded in preparing metallic cæsium by the electrolysis of a mixture of the fused cyanides of cæsium and barium. It is a silve white metal, very soft and ductile, nearly twice as heavy as water (specific gravity 1.88), and melts at $29 \cdot 5^{\circ} \mathrm{C}$. $\left(85^{\circ}\right.$ Fah.), so that it resembles gallium in this point. It takes fire spontaneously in the air, and if thrown upon water burns like potassium and rubidium, to which it is most nearly related. The color of the flame is not stated. If true, this will be the first metal known that takes fire in the air, although all the alkali metals oxidize rapidly

Ammonia from its Elements.

Numerous methods have been devised to utilize the atmospheric nitrogen for making ammonia. The latest of these is a French process in which metallic zinc is employed o furnish the elements titanic iron to effect their union Melted zinc falling into water sets free the hydrogen, falling through the air it liberates nitrogen, oxide of zinc being formed in both cases. The nitrogen is passed over titanized spongy iron, and is absorbed by it. When the hydrogen is passed through the retorts containing this spongy iron it will rease the nitrogen from the titanium and combine with it to form ammonit. The oxide of zinc is reduced in retort with carhon, and carbonic oxide is set free, which needs only to be burned in order to convert it into carbonic acid, whic is then allowed to combine with the newly-formed ammonia to form a carbonate. Or, platinized pumice or charcoal ar substituted for the spongy iron and the gases made to act upon it under 10 to 15 atmospheres of pressure. C. Z.

the parasite of the clan

y c f. Gissler

We often meet in opening the shells of the "long clam" Mya arenaria) with a whitish, more or less semi-transparen worm, which Professor A. E. Verrill described under the name of malacobdella obesa.
It is about thirty millimeters in length and some thirteen to fourteen millimeters in width. It has a nearly circularly round sucking disk on the under side of its hind or posterio end, resembling, therefore, and is generally taken for a sor of leech. In reality it belongs to the kind of worms called nemertines. Its front or anterior end has no sucking disk, as is the case with all kinds of leeches, and its internal struc ture or organization is also widely differing from that of the leeches.
The under or ventral side of this curious worm is smooth and flat; above the body is slightly convex and transversely wrinkled. Between and on the wrinkles are innumerable very minute spots and rings, looking like openings. Its head or anterior part appears as if cut off and hollowed ou to some distance of the body. It moves but very slowly its sides in a peculiar wave-like manner, and occasionally con tracts its whole body. Under the microscope we perceiv that its whole exterior surface is covered with extremely fine and sbort hairs or ciliæ, which are seen to inove rapidly in certain directions. These fine hairs can only be seen with a compound microscope, and present to the eye a very nine and interesting object; very small pieces cut off from the side of the worm still show the motions of those hairs for some time.
If we place live specimens of the clam parasite into strong alcohol we notice that some of them protrude a small cylin drical organ a little above the mouth on the upper or dorsal side of the animal; this is the proboscis or tusk. Its hinder end is inclosed in a small sac in the body of the worm, into which sac this tusk can be withdrawn. The mout his situated not in this tusk, but below it on the front or head part of the worm ; meandering through the body is the alimentary canal or stomach and intestine. The intestine is convoluted or folded about six or seven times, until it reaches the extreme hind part, terminating in a small orifice or opening on the upper side, just above the sucking disk.
They probably live on the same food the clam lives on; that is, small particles of organic matter, such as the lowest organisms, infusorials, wheel-animalcules, etc , which abound on the bottom of the sea. These clam parasites have no eyes, as do most parasitical animals.
Our parasite occurs in the branchial or gill cavity of the "long clam," and has been found to occur in Massachu setts, Connecticut, New York, and New Jersey. Another different kind, the Malacobdella mercenaria, occurs in the "round clam" (Venus mercenaria); it is somewhat smaller and narrower, but of the same color and general appearance Oystermen usually do not throw them away when they find them, as it is positively known that they do no harm what ever in the human body.

Cremation.

by dr. samubl kneeland

The four principal ways of disposing of the dead have been: First, mummification; second, burning; third, interment; fourth, aerial exposure. Of the first, practiced chiefly by the ancient Egyptians, and of the fourth, by many savage nations, I need say nothing at this time.
In most nations, savage and civilized, from time immemorial, dead in the ground, or to seal them up more or less tightly in tombs. Though these may answer all sanitary purposes, and fulfill all the sacred obligations of the living to the departed, in scattered populations, they are attended with danger, always increasing in populous communities.
This danger has practically been recognized by the fact that cemeteries have generally been placed without the limits of thickly inhabited districts. When persons, dead from infectious diseases, are buried in graves, they leave behind them to the public, as residuary legatees, a fearful amount of danger; and faithfully and impartially is the deadly legacy divided among all dwelling with'n a circle of one thousand to three thousand feet of such graves. Earth will, to a certain extent, deodorize, but cannot destroy or impede the escape of minute poisonous germs.
The danger from this source has never been fully appre ciated by the public, entirely ignorant of the process of decomposition, and the products thereof. Of course, the decay of the body committed to the grave depends as to rapidity entirely on the soil and temperature. In the Arctic regions decomposition is imperceptibly slow; in dry, torrid sands desiccation takes the place of putrefaction, and a kind of natural mummification takes place. In low, damp, or wet soils, in temperate zones, decay may be complete in one to one and one-balf years, giving off deleterious gases for that lengıh of time, with perhaps the seeds of contagious discase. In dry, high, and airy soils the process is much lower and less dangerous.
What is decomposition of the human body? What are its products? What its dangers?
An English writer has defined the human body, chemically, as 45 pounds of carbon and nitrogen dissolved in $51 / 2$ pailfuls of water. Oxygen, though the principle of life, is also the great destroyer; the moment life ceases, our carbon by its agency is converted into carbonic acid, which escapes into the air, or is taken up by the roots of plants, according to the mode of sepulture; our nitrogen combines with some of the hydrogen of decomposition, forming ammonia, which escopes in a stmilar way; the water which forms about two thirds of our weight is lost by evaporation. We are resolved, therefore, into gases, and the only dust which rem:ins be bind is the four or five pounds of lime salts which constitut our bones and hard parts. Nature provides sufficient ani mate and inanimate agents for the removal of decaying ani mal substances in the air, on the ground, or just beneath it surface, and the more speedy in the hot and damp climates where the results of decomposition are the most deleterinus, provided man in his folly do not interfere with her processes. Man, by his mode of interring human bodies, con trives to prolong as much as possible the decay of his deceased brethren, thereby increasing to the utmost the possi bility of poisoning the air, infecting the earth, aud contaminaling the water in the neighborhood of living beings. Air and surface burial permit free access to the myriads of minute living creatures whose office it is to convert into their own harmless substance the bodies of dead animals and man.
In the grave of six feet or more in depth light and air are in great measure excluded, and there is no access to the insects from whose eggs emerge the grubs or worms, from whose jaws popular belief expects the rapid and total destruction of the body. The truth is that the devouring worm is a myth, as much without foundation as the "dust" into which we are supposed to be resolved, and the results of decomposition are horrible enough in reality without adding any imaginary sensational accessories.
The modern process of cremation is performed as follows The crematory at Washington, Pa., is a brick structure on story high, thirty feet long, twenty feet wide, divided into two rooms, a reception room twenty feet square, including walls, and a furnace room twenty feet by ten feet, including walls. Cremation is performed in a fire clay retort such as is used in the manufacture of illuminating gas, but of a somewhat different shape, heated to a red heat befor the body is introduced, which work requires about twenty four hours. The body is placed in an iron crib made in the shape of a coffin, with small round rods, with feet three or four inches long to keep it up off the bottom of the retort. These feet are inserted into a flat strip of iron two inches wide and a quarter inch thick, turned up at the ends so that the crib with the body will slide into the retort easily. In addition to the ordinary burial garments, the body is cov ered with a cloth wet with a saturated solution of sulphate of aluminum (common alum), which, even when burned, retains its form, and prevents any part of the corpse from being seen until the bony skeleton begins to crumble down. During the cremation there is no odor or smoke from the consuming body, as the furnace is a self-consumer of smoke and other vaporable matter. The time required to complete the operation is about two hours, but improvements in the process will doubtless shorten the time. A very small portion of the remains is ashes, but the mass is in the form of calcined bones in small fragments, very white, odorless, deprived of animal matter, and may be preserved any length of time without change.

There are four to seven pounds of these remains from various sized adult bodies; they can be placed, for preserva-
tion, in a one-gallon druggist's bottle, with large ground stopper, into which a photograph of the deceased, with appropriate record, can be placed before introducing the remains. This bottle can be placed in the columbarium of he crematory, kept among the cherished memorials of the family of the deceased, or placed beside other remains preiously buried in cemeteries or graveyards.
This building, with its appliances, cost about $\$ 1,500$. A plainer one, equially efficient, could now, at the reduced cost of labor and materials, be built for $\$ 1,000$. An impression prevails that this crematory was erected for public accommodation, and that the owner of it follows cremation as a business for fees. This is a mistake. It was built for the use of its present proprietor and friends in the vicinity who concur with him in this reform. No fees have been charged, nor ever will be while in his possession.
A not unimportant item in this process is the great diminu tion in the expense of funerals. The average expenditure for each body buried is $\$ 100$, the average cost by cremation is $\$ 20$; the aggregate saving in the United States, from the adoption of this system would annually amount to millions of dollars. The expense of cremation is less than that of an ordinary burial case.
Cremation certainly is not barbarous, for it never entered, nor could it enter, into the heads of barbarous people. It is not burning; there is no pile of wood or other combustibles, no visible flame, no smoke, no sickening odor; it is a process of great scientific skill, the reduction of the body to ashes by the application of intense heat, $1,000^{\circ}$ to $2,000^{\circ}$ Fahr., by which it is resolved into its chemical elements at once, and without the flame coming into contact with the body.
We are all, more or less, carried away by our emotions and sensibilities, especially in the matter of the treatment of the bodies of our dear ones. As rational beings we must not allow our instincts and emotions to run away with our reason, especially in a matter as important as this.
The history of cremation in the United States is very brief, as the progress of such a radical change in long established customs must, of necessity, be slow. The earliest Known instance was of Colonel Herry Laurens, in South Carolina, in 1790. Including that, to the present time not more than eight, or possibly ten, cases have occurred, the last in the current year, and three or four in the crematory at Washington, Pa. Among those who left instructions fo he disposal of their remains by cremation was Dr. Charles F. Winslow, of California, a former member of the Society of Arts, whose body was cremated about five years ago, in Salt Lake City, in a temporary furnace erected by his com mand, by the administrators of his estate. The Washing ton, Pa., crematory has had nearly one hundred applica tions, which have been declined, as the trustees do not in tend to follow it as a business. They will permit only an occasional cremation there for the purpose of keeping the subject before the public, and of hastening the disappear ance of the prejudice which exists against this mode of dis posing of the dead. It is believed by them that similar structures will be built at other places, and they will furnis or such laudable purpose any information which their ex prience enables them to give.
Leaving out of the question, then, all but sanitary rea sons, cremation is far preferable to earth burial; and we cannot but think that by degrees this reform will supplan prejudiced superstition, the pomp and profits of under takers, and give to the living that immunity from many diseases, arising from foul air, impure water, and poisoned arth, which they are entitled to receive from the progre of sanitary science.-Proc. Soc. Arts, Boston.

The Sellon Secondary Battery.
Last week we gave an engraving of the form of this battery, now in use with much success at the Electrical Exhibition, Crystal Palace, London. We now subjoin ad ditional illustrations,' taken from the English patent of Mr J. S. Selon, No. 3,9\%6.

The invention relates to "the use in the construction of secondary batteries of perforated plates or sheets roughened, serrated, or indented, composed of lead, platinum, or cardiv, upon, in, or against which plates spongy or finely uitable substances or compounds are, or may be, held or retained." Fig. 1 represents a perspective view of a perforated batery plate, formed of dovetail section. Fig. 2 shows a section of a perforated plate formed with angular projec tions or grooves. This plate may be bent into a rectangula or cylindrical form. Fig. 3 shows an irregular section of a compound battery plate formed of two or more plates which
may have flat or irregular surfaces. Figs. 4 and 5 illustrate a plate cast with slits and projections, the latter of which are flattened or riveted over during manufacture to cause the retention of the metallic oxide. A A are sheets or plates of lead, platinum, or other material, so formed that a large quantity of spongy or finely divided lead may be retained in or against them in such a manner as to be readily acted upon by the electric current. The plates may be formed of corrugated lead, or of lead cast with holes, a, either plain or with flutes, corrugations, indentations, or projections, b, in or on which the material, c, can be packed. In Fig. 3 the oxides are placed between the sheets, which are riveted or soldered together.

decisions relating to patents.

supreme Court of the United States.

Decided March 6, 1882.

In error to the Circuit Court of the United States for the District of California
This was an action at law brought by Rice to recover damages for an alleged infringement of reissue letters patent No. 6,422, granted May 4, 1875, to him for improvements in steam boilers. The original patent was No. 146,614, dated January 20, 1874. The invention, as stated in the complaint, consisted, among other things, of a combinalion of a strawfeeding attachment with the furnace door of a return flue steam boiler, for the use of straw alone as fuel in generating
 case was tried by a jury and resulted in a verdict and judgment for th
prosecuted.
A bill of exceptions sets out the exceptions of the plaintiff in error to the rulings of the court below and all the eridence. The court was asked at the close of the plaintif's testimony, and again when all the evidence on both sides had been introduced, to instruct the jury to return a verdict for the defendant, the refusal to do which, among other rulings, is assigned for error, and thus the whole case on the merits is brought here for review so far as they rest upon questions of law.
Mr. Justice Matthews delivered the opinion of the court. The findings in substance were:

1. Reissue-Patent with Drawing-New Matter.In cases of reissues of patents, inoperative or invalid by reason of a defective or insufficient specification, or by reason of the patentee claiming as his own invention or discovery more than he had a right to. claim as new, it is imperative that the new patent, when issued, shall be for the same invention, and that no new matter shall be introduced into the specification when, as in the present case, there is a drawing, with reference to which the invention is described.
2. Same-Comparison of Patents-Question for Cotrt.-If it appears from the face of the instruments that extrinsic evidence is not needed to explain terms of art or to apply the descriptions to the subject matter, so that the court is able from mere comparison to say what are the inventions described in each, and to affirm from such mere comparison that they are not the same but different, then the question of identity is one of pure construction and not of evidence, and consequently is matter of law for the court without any auxiliary matter of fact to be passed upon by a jury if the action be at law.
3. Same-Steam Boilers-Different Inventions.In the present case it appears from the mere reading of the wo specifications that the invention described in the first is for the return flue boiler, while that described in the second, abandoning the claim for the boiler itself, is for a particular mode of using it with straw as a fuel by means of an attachment to the furnace door for that purpose. These two inventions are distinct, and a patent originally used for one cannot lawfully be surrendered as the basis for the reissue for the other.
4. Same-Expansion of Claim.-The rule reiterated that a patent for a machine cannot be reissued for the pur pose of claiming the process of operating that machine, be. cause if the claim for the process is anything more than for the use of the particular machine patented, it is for a different invention. (Campbell ve. James.)
5. Rice Patent Anticipated by Morey Patent.The invention, moreover, is anticipated in Morey's patent, which, in covering the combination of the feeding tube with any kind of thrashing engine or boiler, necessarily includes the combination of the feeding tube with the return flue boiler. This particular application of the feeding tube to the return flue boiler is within the scope and provision of Morey's invention, whether it had been tested by his experience or was anticipated by his foresigh for not.

The " Buffalo Gnat" of the Missiskacipi Valley
This dreaded pest has appeared this spriag in immense umbers in Eastern Arkansas, Weatruction of cattle horses, and mules;caused by it has added to the distress of the inhabitants of those sections of the country caused by he unprecedented floods. The particular species of Simu lium in question has not been determined. As a cheap way of protecting animals, Professor Riley recommends to wash them once or twice each day, or oftener, if required, with water which has been left standing for several days ove coal tar, or in which a small quantity of oil of tar, or oil of turpentine, or any similar material has been stirred.

STATIONARY ENGINE WITH ADJUSTABLE CUT-OFF valves.
We give engravings herewith of a twenty-five horse power engine, a representative of a line of engines manufactured by the Taylor Manufacturing Company, of West minster, Md., and ranging in power from 12 to 250 hors power. For simplicity of construction and quality of workmanship and material employed, they are equal to any other make of engine. This engine is superior in the arrangement of valve gearing, which is shown in Fig. 3. This view represents the cylinder with the steam chest open, showing the main valve and cut-off valves with their connections; B is the main slide valve resting on its seat, showing port openings in each end; A A are the two cut-off valves resting on the back of the main valve; these valves are provided with brass nuts, having a solid collar on one end and two jam nuts on the other, for the adjustment of the nut in the valves and providing against wear. These valves are moved by stems, E and \mathbf{C}, upon which are turned right and left hand threadss one end of stem E is secured to slide piece F by two locked collars, set to permit stem E to revolve in adjusting the valves; the end of stem C, that passes through the hand wheel, D, is provided with a key, so that by revolving the hand wheel the stems, C, E, revolve in the cut-off valves and spread

TAYLOR MANUFACTURING COMPANY'S STATIONARY ENGINE.
practically the point of cut-off will not positively occu equal, or promptly in both or a repeated number of strokes. and the steam follows the piston various distances many times unnecessarily, whereas, with the arrangement as shown, a positive point of valve closure can always be obtained, and with the governor to meet the variable loadi is evident that a high degree of economical performance is secured. By a careful examination of the diagram taken with the Richards indicator from a 14×24 inch engine, it will b seen that the prompt admis sion, precise cutoff, read exhaust, required cushion close approximation to th theoretic curve, commend themselves to the excellence of the valve movement.
This card was taken afte the engine bad run a year, and during that time was handled by three differen engineers, showing the per formance in the hands of average men, and not a card taken under the very best adjustments of parts and di rection of expert engineers.
This engine is driving th flour mill of W. S. Myers \& Bro, of Westminster, Md manufacturing flour known as the new process, runnin five pair of 42 -inch Frenc burrs, two sets of corrugated rolls, and all the other ma chinery required in a modern mill of that capacity, and requiring about fifty hors power. The actual consump tion of fuel was $3,200 \mathrm{lb}$ bituminous coal in a run o twenty-four hours, grinding them apart or draw them together according to the require- insure their perfect balance under all circumstances. The one hundred barrels of flour and making a large percent ments of the cut-off; the pointer, I, indicating by a figured waste of steam that occurs from imperfect balanced valves age of middlings. The amount of work is large for an scale at what part of the piston travel the steam is being is greater than the power required to overcome the friction engine of the size named, and the very highest degree of eco cut-off The bottom edge of the valves rests upon an inclined of the valves as arranged in this engine. \quad nomy could not be expected, but with a greater power or beveled surface that keeps the valves to their proper seats The equalization of the cut-off is accomplished by ad- of one hundred horse power at least ten per cent better and prevents them falling off end clattering when at work. justing the valves separately for the average position results in economy of fuel can be attained; but from th The valves are driven by two eccentrics, the rods of which connect to the wrist pins, G and H .

The advantages gained by using two eccentrics are important, as the adjustment of both main and cut-off valves is independent of each other. The main valve, B, has a lap lead and exhaust closure appropriate to the value of the maximum cut-off, and permanently retains these relations throughout every variation in the point of cut-off brought about; by the separation of the valves. The range of cut-off is from zero to six-tenths of the stroke, while the main valve acts in the interval and cuts off at eight-tenths of the of the point of cut-off which will be practically equal their works to that city as soon as shops are and will remove stroke. It will be seen by the arrargement of the valves, to all points, and the closure of the steam port is neces- further information address the Taylor Manufacturing ComA, that by closing them together they will be thrown out of sarily equal for both strokes, whereas, with the usual pany, Westminster, Md. gear and the control of engine left to the action of the main automatic valve arrangement, the difference in velocity of valve. The decided advantage in this cut-off is the positive piston travel, and actuation of valves by pendulum or spring results obtained, and the range of cut-off fixed upon while the governors, through the various connections, is so great that engine is in motion, and the in troduction of the steam to the cylinder positively fixed ac cording to the re quirements of quirements of the power. The variation of load is met by regu lation of steam through a very sensitive gover nor, that is fit ted with a double valve and is valve, and also provide with a stop mo tion and speede for varying speed of engine as desired with out change of pulleys. With thiscombination of governor the of governor the lieved are re lived of a con siderable portion of the boiler pres sure, but when siding cut-off is

DIAGRAM FROM 14×24 ENGINE alove recults a very bigh degree of excellence is claimed for the engine as a fuel saver, and its simplicity of construction secures durability and ease of operation
We are informed that this engine is having a large sale in the South in vari ous branches of business, and is becom ing very popular. In connection with this class of engine the company manu facture four styles of portable engines four sizes of improved circular saw mills, mill machinery, etc. Owing to the great increase of business the com pany are now erecting extensive shop at Chambersburg, Pa , and will remov

Locusts in Angora.

Last year the village of Angora, in Asia Minor, was de

25 H. P. STATIONARY ENGINE BUILT BY THE TAYLOR MANUFACTURING COMPANY.
vastated by lo custs, and, in order to avert a repetition of th calamity whic had laid wast several produc tive agricultura districts, the governor of the province de creed that every able-bodied pea sant should, du sant should, du ring a certai period precedin the ensuing lo cust-hatching season, collect locust eggs at the rate of two pounds weigh per diem, and deliver them in person to the person to the nearest local au Excellency fixed the minimum quantity of ova to be gathered in this manner at $1,400,0001 \mathrm{~b}$.
weight, and furthermore prescribed that a daily fine of two piasters should be levied upon each peasant who should fail to fulfill the duty thus imposed upon him in the general interest of the province. The practical results of this wise and prudent decretal were as follows: During the firstday or two of the period appointed for the collection of the ova, a few rustics brought in their quota of eggs, but the large majority of the peasantry, far too indolent to take the trouble of digging them up, compounded with the powers that be by privily purchasing the necessary quantity of eggs from the officials at one piaster per kilogramme, and then making public delivery of the quantity to the employes empowered to receive it. Thus the two or three hundred kilogrammes of eggs really collected and deiivered by law-abiding peasants were sold over and over again to the malin gerers. These trickster saved half the amount of sived half the amount o their fines, the official pocketed a piaster ky each transaction, and the crop of locusts for the coming season will, in all proba bility, turn out even finer than that which all but ruined the Angora vilayet last year.-London Tele graph.

Dyestuffs irom Salicyli

 Acid.We are not surprised to learn that salicylic acid now so cheaply prepared from carbolic acid, ha been called upon to yield a dye, which will no doubt give a fresh impulse to its manufacture, as hitherto the consumption has been limited to medicinal and
and pretense on the part of manufacturers in this field shal serve to protect mothers from further betrayal and to rescu infant life from quack articles of nutriment, his work though giving a tremendous shock to our sensibilities and to our faith in medical certificates, will not have been done in vain. $-N$. Y. Times.

Copying Drawings.

Tilhet's method of copying drawings in any desired color thus described in the Polytechnisches Notizblatt
The paper on which the copy is to appear is first dipped in a bath consisting of 30 parts of white soap, 30 parts o alum, 40 parts of English glue, 10 parts of albumen, 2 part of glacial acetic acid, 10 parts of alcohol of 60°, and 500 parts of water. It is af terward put into a second bath, which contains 50 parts of burnt umber ground in alcohol, 20 part of lampblack, 10 parts o English glue, and 10 parts of bichromate of potash in 500 parts of water. They are now sensitive to light and must, therefore, be preserved in the dark. In preparing paper to make the positive print anothe bath is made just like the first one, except'that lamp black is substituted fo the burnt umber. To ob tain colored positives the black is replaced by som red, blue, or other pig ment.
In making the copy the drawing to be copied is put in a photographic printing frame, and the negative paper laid on it
limited to medicinal antiseptic purposes. A so-called salicylic-acid-yellow can be made from it, which is distinguished by its resistance to weak alkalies, and threatens to replace picric acid, which latter is known to be explosive and easily washed off from the fiber. According to the process employed in Schering's works sulphosalicylic acid is nitrated by treatment with nitric acid, sp. gr. $1 \cdot 35$, for a long time at 40° to $50^{\circ} \mathrm{C}$. $\left(100^{\circ}\right.$ to $120^{\circ} \mathrm{Fah}$.). Or a mixture of sulpho acid and barium nitrate is treated with concentrated sulphuric acid. The nitrosulphosalicylic acid, as well as its salts of the alkalies and alkaline earths, is very solnble in water. The solution dyes silk and wool yellow without any mordant. If the nitric acid acts very energetically ou the sulphosalicylic acid the sulpho group will be split off entirely. Bromine can also be introduced into it, forming either a mono or dibromo nitrosalicylic acid, which dyes still more intensely yellow. We should suppose that it would be advantageous to introduce the bromine first directly into the salicylic acid and afterward nitrating with care, since it is said that hot nitric acid converts bromosalicylic acid into picric acid.
Sulphosalicylic acid also forms dyes with the phenols; thus resorcine produces a bronze red, strongly fluorescent when in alkaline solution. With diamidobenzole it yields a Bordeaux red, with diazometaxylidine a fuchsine red, and with diazoamidonaphthaline a violet dye.
P. N.

IMPROVED PLOW.

The annexed engraving shows an improved device for preventing plows from choking with weeds and stalks in plowing, patented by Mr. Fernando Gautier, of Pascagoula, Jackson coun ty, Miss. In this device the arrange ment of stationary cutters and oscil lating cutter is such that when the cutters are ground away by sharpening they may be readily adjusted so as to work as at first. The oscillating cutte is connected with an eccentric at it rear end, the ecrentric being operated by the toothed driving wheel through gear wheels, which are inclosed in suitable case to prevent clogging with soil or weeds. When the plow is drawn forward the drive wheel is revolved, forward the drive wheel is revolved,
and by means of the gear wheels and and by means of the gear wheels and
the cam, the oscillating cutter is moved the cam, the oscillating cutter is moved
vertically, passing the stationary cut ters and cutting weeds or stalks that would otherwise choke the plow. The plow beam is made of cast metal, and at its forward end has an enlargement containing a vertically flaring recess, of sufficient depth to receive a short T shaped clevis, which is pivoted in the bottom of the recess by a bolt, and

GAUTIER'S IMPROVED PLOW.

Eliza McDonough, who preceded Dr Cutter in this field, and then exposed in the usual manner In clear weathe

Eliza McDonough, who preceded Dr. Cutter in this field assertion-that the starch, so far from being transformed into dextrine, was not sufficiently altered to render the recognition of its source difficult, whether from wheat, rye, corn or barley-was strictly true, and that these pretentious foods are, without exception, nearly valueless for dietetic purposes. All of them consist of baked flour mainly, either alone or mixed with sugar, milk, or salts. In some cases, the baking has bзen very inadequately performed, and the doctor found one that consisted merely of wheat and oats whose starch cells were proximately in their natural con dition.
The general result of Dr. Cutter's examination may be stated in brief terms as follows: There was scarceily a sin gle one of the so-called infant fonds that contained a quantity of gluten as large as that contained in ordinary wheat flour. That is to say, a well-compounded wheat gruel is superior to any of them, particularly when boiled with a little milk; and mothers are in error who place the slightest dependence upon them. As respects one very expensive article, professing to possess 270 parts in every 1,000 of phosphatic salts in connection with gluten, Dr. Cutter was unable to find any gluten at ali. The thing was nearly pure starch, sold at an exorbitant price as a nerve and brain food and a great remedy for rickets. So all through the list. Sometimes a trace of gluten was present; more frequently none at all. In one case there were 90 parts of starch to 10
of gluten; but this was exceptional, and the majority were
nd then exposed in the usual manner. In clear weathe an illumination of two minutes will suffice After the ex-
posure the negative is put in water to develop it, and the drawing will appear in white on a dark ground; in other words, it is a negative or reversed picture. The paper i then dried, and a positive made from it by placing it on the glass of a printing frame, and laying the positive paper upon it and exposing as before. After placing the frame in the un for two minutes the positive is taken out and put in water. The black dissolves off without the necessity of moving back and forth

Pasteurization of Beer.

In other countries, notably in Germañy and America, thi system of preserving beer has been extensively adopted, and very favorable results have been obtained. Pasteur's investigations proved that a temperature of $131^{\circ} \mathrm{Fah}$. is fatal to diseased ferments, but that yeast cells are capable of with standing this temperature. In his celebrated work on beer, Pasteur describes the following experiment:
"A number of bottles of beer which had been heated on October 8, 1871, were compared with those of an equal num ber of bottles of the same beer which had not been heated The examination took place on July 27, 1872. The beer which had been heated to $131^{\circ} \mathrm{Fah}$. was remarkably sound well flavored, and still in a state of fermentation. As alcoher fact, we have proved by exact experiments that alcoholic ferments, heated in berr, can endure a temperature of $131^{\circ} \mathrm{Fah}$. without losing the powe of cermination but the action is ren dered somewhat more difficult and dered somewhat more difficult and slower. Diseased ferments, however,
existing in the same medium, perish at existing in the same medium, perish at
this temperature, as they do in the case of wine. The beer which had not been heated had undergone changes which had rendered it quite undrinkable; its acidity, due to volatile acids, wa higher than that of the other beer in the proportion of five to one; the bee which had been heated contained one half per cent of alcohol more than the other."
So important a result as is here de scribed ought to be extensively applied there can be no practical difficulties in the way of pasteurization but such as can be easily surmounted. The first objection that was raised to this pro cess was the risk of the bottles bursting during the process, but this might be easily obviated by firmly fixing the corks in the bottles, and by conduct ing the process in a vessel so con adjusted in a raised or lowered position by a second bolt, \&ass valuable, ounce for ounce, than ordinary wheat flour. structed that the pressure on the outside of the bottle is which is passed through one of a series of perforations in Considering the semi-philanthropic pretensions that have about the same as the internal pressure caused by the expanthe beam and a perforation in the clevis. The clevis is been put forth by the manufacturers of these foods, some of sion of the contents of the bottle by heat. Another objec simply a T-shaped bar of iron requiring but little material, them sustained by the certificates of eminent physicians, the tion that has been raised to pasteurization is that it causes and can be more easily made than any other clevis. The report of Dr. Cutter is one of the dreariest comments upon the beer so heated to become cloudy, but this is the case only handles of the plow are so arranged as to be adjusted to the human nature that has recently fallen under the notice of to a very slight degree when the beer is raised very graduheight of the plowman. the journalist. But if the revelations he has made of fraud ally to the requisite temperature; sudden heating, will render
he beer turbid and also endanger the bottles, but by gradu ally raising the temperature these two drawbacks are greatly obviated. It has also been urged in opposition to pasteurization that the process develops a peculiar and unpleasant lavor in beer, but this objection is not supported by any well-established facts, and we think if the process be conducted gradually no objectionable tlavor will be developed. The Brewers' Guardian says that this systetn of preserving beer appears to offer many advantages, and no difficul ties but such as enterprise ought easily to surmount, and we are therefore surprised that English brewers have made no real attempt to practically apply it.

Alloys.

From a recent work on " Metal Alloys," published in Ger many, the author, Mr. Guetier, gives a few suggesti. ns on the subject of fusing the metals, with which the Jevoelers Journal prefaces the recipes selected.

1. The melting pot should be redhot (a white heat is bet ter), and those metals first placed in it which require the most heat to fuse them.
2. Put the metals in the meltivg pot in strict order, fol lowing exactly the different fusing points from the highes degree of temperature required down to the lowest, in regu lar sequence, and being especially careful to refrain from adding the next metal until those already in the pot are com pletely melted.
3. When the metals fused together in the crucible require very different temperatures to melt them a layer of charcoal should be placed upon them, or if there is much tin in th alloy a layer of sand should be used.
4. The molten mass should be vigorously stirred with stick, and even while pouring it into another vessel the stir ring should not be relaxed.
5. Another hint is to use a little old alloy in making new, if there is any on hand, and the concluding word of caution is to make sure that the melting pots are absolutely clean aud free from any traces of former operations.
Soft Alloy.-This alloy will adhere so firmly to metallic, glass, and porcelain surfaces that it can be used as a solder, and is invaluable when the articles to be soldered are of such a nature that they cannot bear a high degree of temperature It consists of finely pulverized copper or copper dust, and is obtained by resolving copper sulphate, or vitriol of copper, into its original elements, by means of metallic zinc. Twenty, 30 , or 36 parts of this copper dust, according to the hardness desired, are placed in a cast iron or porcelain-lined mortar, and well mixed with some sulphuric acid having a specific gravity of 188 . . Add to the paste thus formed 70 parts (by weight) of mercury, constantly stirring. When thoroughly mixed the amalgam must be carefully rinsed in warm water to remove the acid, and then laid aside to cool. In ten or
twelve hours it will be hard enough to scratch tin. When it is to be used it should be heated to a temperature of 375 C., when it becomos as soft as wax by kneading it in an iron mortar. In this ductile state it can be spread upon any sur face, to which, as it cools and hardeus, it adheres very tenaciously.
Alloy for Small Articles.-This alloy melts at a lower degree of temperature than the one just described, and is very hard without being brittle. Bismuth 6 parts, zinc 3 parts, and lead 13 parts. The three metals, after having been well melted and stirred together, should be poured into annther melting pot and melted again. This alloy cools with remarkably clear-cut edges, and if the articles made of it are dipped in diluted nitric acid, then rinsed in clear water, and polished with a woolen rag, the raised parts of the surface will have a fine polish, while the sunken parts will have a dark-gray, antique appearance, which forms a pretty contrast. The proportions of the different metals, dividing the alloy into 100 parts, are: bismuth $27 \cdot 27$, lead $59 \cdot 09$, zinc $13 \cdot 64$.

Alloy for Small Castings.-Bismuth 6 parts, tin 3 parts lead 13 parts. This alloy should be melted, run into bars, and laid aside till wanted, when it should be remelted.
Bismuth 3 parts, tin 1 part, lead 1 part. This second alloy for small castings is harder, and yet it is not brittle. It can be finished with a contrasting surface of bright polish and dark-gray, if it is washed in nitric acid, well diluted, rinsed, and polished with a woolen rag, as described in the alloy for small articles, given above.
Hard Solder for Gold.-Gold 18 c. (0.750 fine), silver 10, pure copper 10.
Hard Solder for Silver. -Silver 66 parts, copper 23 parts, zinc 16.

Solder for Platinu.-Pure gold, with one-half per cent of platinum and iridium added.
Hard Solder for Aluminum Bronze.—Gold 88.88, silve 4.68, copper $6 \cdot 44$.

Another Hard Solder for Aluminum Bronze.-Gold 544, silver 27, copper 18.6 .

White Alloy.-This amalgam can be turned, filed, and bored; does notadhere to the mould, and will retain its polish a long time after exposure to the air. Cast iron 10, copper 10 , zinc 80 .
Solder for Iron and Brass, which Contracts and Expands at the Same Degree of Temperature as the Latter Metal.—Tin 3 parts, copper $391 / 2$, zinc $71 \frac{1}{2}$.
Solder for German Silver.-German silver 5 parts, tin 4 parts.

Alloys for Medals, Coins, etc.-Kraft's alloy, melting point $104^{\circ} \mathrm{C}$. Bismuth 5, lead 2, tin 1.

Homberg's alloy, melting point 122° C. Bismuth 3, lead 3,

Rose's alloy, melting point $93^{\circ} \mathrm{C}$. Bismuth 2, lead 2 in 2.
Amalgam for Coating Plastic Castings.-Tin 1 part, quicksilver 1 part, bismuth 1 part. The quicksilver is to be mixed with the white of an egg, and added to the tin and bismuth when they are thoroughly melted and blended. The alloy while still hot forms a pasty liquid, which should be applied with a brush.

Safety Car.

The many lamentable accidents which have occurred by eason of the inability of passengers and others in railroad cars to extricate themselves, or to be rescued, in cases of col lisions, derailing, or other accidents, make it highly desirable that better means than are at present afforded should be furnished to meet this difficulty. The ordinary doors and windows of a car are generally blocked, or are otherwise in accessible. And the object of the invention that is shown in the annexed cut, and is patented by Mr. Alfred A. Starr, of Westfield, Union county, N. J., is to provide an improved means of escape in case of accidents. The invention consist in constructing railroad aassenger coaches with rap-doors in their floors within the aisles of the car, and so arranged that they open inward and oward opposite sides. Each of these doors may be nearly the whole width of the aisle, and of any desired length, and when closed are preferably flush
 n their upper surfaces with the floor of the car, so as to offer no obstruction to walking in the aisle. It is also desirable to hinge them in close proximity to the seats, so that the hinges shall offer no obstruction.
It is proposed to hinge the doors alternately on the opposite sides of the aisle, and it is preferred not to secure them by bolts or fastenings, so that they will be free to open of their wn weight, not only when the car is inverted, but als when il falls upon its side. To facilitate the opening of the doors, they are made beveling downward on their opposit ides, and their corresponding seats are made beveling in a reversed direction, so that if violent end pressure is brought to bear upon the car the seats will act as wedges on the side of the trap-doors tu ease and open them. A car thus con structed with trap-doors that are self-opening, or may be con veniently opened either by the passengers in the car or by thers from the outside in case of an accident, combines in n eminent degree the elements of safety and simplicity would be saved that are otherwise needlessly sacrificed.

New Millstone Driver.

The engraving shows an improved millstone driver for which a patent was recently issued to Messrs. Callahan and Davis, of 51 Market street, New York city. This is a secional driver made in two separate arms, having semicircular inner ends. These arms are separated by an intervening cushion of rubber, and are connected together by circular plates provided with lugs which fit into corresponding re esses in the arms.

By this construction a self-adjusting and elastic bearing is provided for both arms of the sectional driver, and all ja ad back-lash common to the rigid bearings are avoided. This driver adjusts the stones perfectly and insures uniform rinding, either high or low, and removes a number of difficulties that are met with in the use of the ordinary driver.

Pompeian Surgery.

An interesting sketch of the surgical instruments collected at Pompeii, aud preserved in the museum at Naples, has been given in a recent number of the Revue Médicale by M. Jouin. At the museum they are arbitrarily divided into surgical and obstetrical instruments, but there is little in the latter to suggest that they were intended for obstetrical purposes. A pair of forceps, for instance, classed among the obstetrical instruments, does not appear to have been ever ntended for such use. The blades are twenty-one centipivot; the handles are curved; they are apparently similar o the instruments now used to remove sequestra, etc. There is, however, a tube clearly intended for injections into the vagina. It is twelve centimeters long; one extremity is mani festly designed to receive the nozzle of a syringe, while the other is perforated with holes, one terminal and the others
arranged in two circles, so that the jet may be broken and arranged in two circles, so that the jet may be broken and
spread, just as in the similar tubes in use at the present day There is also a very ingenious trivalve speculum, evidently intended for the vagina, so made that the three blades can opened or closed simultaneously. There is a rectal specu lum, ffteen centimeters long, composed of τ wo blades which
can be closed or opened by means of a pivot placed in the center of the instrument, and presenting the type according to which all similar specula are made at the present day. There are catheters for women, straight, made of silver. A curious instrument, which consists of an iron rod, at the extremity of which is a small rectangular plate of iron, two centimeters long and three wide, fixed to the rod at an angle of 135 degrees, is exhibited as a cautery for wounds, the Italian surgeons believing that it is intended to cauterize deep structures, such as the uterus or pharynx. The perfect resemblance in form to the laryngeal mirrors now in use suggested to M. Jouin that it may really bave been intended for a similar use, to examine deep structures, if nct the larynx. Catheters for men have also been found; they are twenty-seven centimeters long, and have a very peculiar double curve like a very long S. M. Jouin thinks that this form shows a very imperfect knowledge of the real curves of the urethra; but under ordinary circumstances this is nearly the form of the urethral canal, and although the introduction of such an instrument may have been a matter of some difficulty, its shape would facilitate the emptying of the bladder.
Among the other instruments are a metallic trocar in two pieces, similar to those in use at the present day, bistouries, very large lancets, various forms of stylets, curved and straight, some probably intended for the exarnination of carious teeth, curette spatulas, small forceps, and various needles and hooks. There are also some surgical cases with instruments, and cases for pills, ointments, etc. All these instruments were found in one house, and in number they will certainly bear comparison with those possessed by an average practitioner in a provincial town at the present day. -Lancet.

Electric Photo Shutter.

At a recent meeting of the South London Photographic Society, Mr. G. F. Williams exhibited an instantaneous shutter with an electrical liberating attachment, being an efficient trigger, which can be applied to almost any known kind of shutter or exposing valve. It can be converted into either a horizontal or rising shutter by the mere addition of an elastic spring, with a suitable catch or clutch to retain the moving part of the shutter at the end of its travel.
Mr. Williams has improved upon the clever arrangement f Gaiffe, of Paris-who patented the chloride of silver bat-tery-by cramming two elements into one cell. As is known among electricians, this battery depends for its energy upon the reduction to the metallic state of chloride of silver by the passage of the electric current. A small plate of zinc, no larger than the little finger, has a piece of millboard placed upon it; then chloride of silver is melted in a porcelain crucible, and poured into a mould, which may be made of wood-thus casting a plate of similar size to the zinc. This plate of fused silver chloride is wrapped up in muslin and placed so that the millboard separates it from the zinc. A silver wire or thin plate of silver, laid on the plate of fused chloride, completes the "element;" but, as before stated, Mr. Williams has placed two such elements within an ebonite cell. of about two ounces capacity. When so arranged the composite battery is dipped into a saturated solution of sal ammoniac and the excess allowed to drain off. No fluid is used in this battery-the elements are merely kept moist. A used in this battery-the elements are merely kept moist. A arrangement. The shutter being set "full cock," a touch on the button sets the electric current free; this circulates the wire of the electro-magnet, the keeper is attracted, the detent removed, the shutter moves, and the exposure is made.

Fast Railroad Lines.

The innovation of the Pennsylvania Railway in its fast trains between New York and Cbicago suggests comparisons with lines abroad. The famous Flying Dutchman on the Great Western Railroad, England, makes the run from London to Exeter, 194 miles, in four hours and fourteen minutes. With four stops it attains a speed of almost 46 miles an hour. A train on the Great Northern Road makes the distance from London to Leeds, 187 miles, in four hoursalmost 47 miles an hour, with four stops. The train carrying the Irish mail to Holyhead, over the London and Northwestern line, and dubbed "The Wild Irishman," has now sunk into comparative obscurity with its rate of a little less than 40 miles an hour. The morning express on the Great Northern Road makes only four stops along the line from London to Edinburgh, 395 miles, and flies over the whole distance in nine hours, with an average rate of 44 miles an hour; and on the Midland line the night Scotch express uns the 425 miles to Glasgow with a speed of $471 / 2$ miles an hour. These are the four swiftest trains in England, and, as will be seen, the Leeds express, with its rate of 47 miles an hour, is the fleetest of them all. Three out of the four trains probably beat the running time for the same distance on any other roads in the world. They are all, however far outstripped for a shorter distance by the train on the Pennsylvania Railroad, which leaves Jersey City at 4:10 P.M, and makes the run of about 89 miles to Philadelphia in 100 minutes, with one stop, at Trenton. The 52.8 miles an hour made by this American train is probably without parallel in the schedule time of any railroad company on the globe. On both the American and English railroads it must also be remembered that for short stretches of straight rack, with good road bed and favoring grades, a speed of 60 miles an hour is not very uncommon.-Nat. Oar Builder.

The Acorn-Storing woodpecker. by robert e. c. stearns.
The acorn-storing habit of the Californian woodpecker (Melanerpes formicivorus) has long been known to the "country folk" and others who frequent the country and take notes by the way. Before the American occupation, the Spanish Californians had observed this curious habit and gave the bird the appropriate and musical name, " e carpintero." No doubt, still further back the aborigines had their name for the carpintero, and regarded the bird as in vested with superior power, or possessed by some unseen or hidden influence, which placed it above its feathered congeners and proved it to be in some mysterious way a little closer to the heart of nature.
It is highly probable that if we knew the traditions of the former red men of California, we should find some quaint story or curious legend connected with this ingenious and interesting bird. I find no mention of this woodpecker in either Bancroft's * or Powers' \dagger ethnological volumes, relat ing to the California tribes.
During a recent visit to Napa county, I noticed near the house where I stayed, on Howell Mountain, a fallen pine of the species known to botanists as Pinus ponderosa, the yellow pine of the woodsmen, the bark of which was full of acorn holes.
The tree was a noble specimen, and its prostrate position gave me a chance to learn not only its dimensions, but also to ascertain very nearly the number of holes which the woodpeckers had made in its bark.
In falling, the tip of the tree had broken off, and was so hidden in the general debris of fragments of branches, cones, and underbrush, as to escape detection. The length was not less than 175 feet, the diameter of the butt just above the ground, five feet ten inches. At ninety feet the diameter was three feet eight inches. Above the ninety foot line the holes continued, but were so scattering that they are not included in the reckoning. Neither are those in the first ten feet of the trunk, as between the ten foot line and the ground they were comparatively few.
Between the ten foot line and the ninety. foot line the number of holes to the square foot, with a fair allowance for verification, was from sixty to twelve. A piece of the bark, sawed from the tree by my own hands, which
measures exactly twelve inches by twelve inches, contains measures exactly twelve inches by twelve inches, contains
sixty holes; this is a much smaller number than could be sixty holes; this is a much smaller number than could be
counted in the same sized piece in a great part of the section counted in the same sized piece in a great part of the
of eighty feet, while twelve is a very low minimum.
The two diameters as above given when added make eight feet and eighteen inches, the average diameter being one-half of this, or about four feet nine inches; this multiplied by three, to get the circumference, gives fourteen feet and three inches; and this again multiplied by the length of the section, eighty feet, produces 1,140 square feet.
Now, if we add the maximum and minimum of acorn holes to the square foot (sixty and twelve), we have seventy-two, which divided by two, gives an average of thirty-six to the square foot, and thirty-six times 1,140 gives a product of fo:ty-one thousand and forty $(41,040)$ acorn holes.
The . holes are of different sizes, varying with the size of the acorn which each hole is made to receive, for these birds are good workmen, and each acorn is nicely fitted into its special cavity. Making a fair selection of acorns as to size, I find that it takes on an average seven to wake an ounce (that is, picked when green); and taking that number
for a divisor, it shows the total weight of acorns required to fill the holes in the tree is three hundred and sixtysix pounds seven ounces, avoirdupois. Whether any particular species of acorn is preferred, I am unable to say. The acorns in the tree above described, so far as it was possible to determine them without the cups, which the woodpeckers reject, appeared to belong to the nearest adjacent oaks, Quercus chrysolepis. This oak is very abundant al around the mountain, and is itself peculiar in having two
forms of leaf on the sametwig. At the upper end of Pope Valley, not far beyond Cltna Springs, I noticed a standing pine of the same species as that described and of about the same dimensions as the foregoing. which was full of holes. In Knight's Valley, in August, 1879, I observed woodpecker holes closely set in the bark of a large Douglass spruce (Tsuga douglassii); and I have been informed by various parties that these woodpeckers also bore and deposit acorns in the bark of various species of oaks.
Sometimes the acorn holes are made in the wood, as I have been informed by a friend, Mr. C. H. Dwinelle, of the University of California, who has seen such holes in a species of white oak in Alexander Valley. He also related an instance of the "carpintero" sticking acorns in a crack between the boards in the porch of a house in Redwood City, San Mateo county.
Mr. J. W. Bice, of the University, has also observed acornsstored in the white oaks near Healdsburg, in Sonoma county, as well as in the cracks between the boards in and round the projecting eaves of barns and houses. Where the projecting rafters are boxed in, sometimes they will find a hole, and at other times make one, and store acorns in large quantities in such places.
In clearing land the trees are girdled, and in about two years the bark drops off, leaving the exposed wood of the * " Native Races of the Pacific States." * "Native Races of the Pacific States."

+ "Contributions to Ethnology," U. S. Geog. and Geol, Survey, Powell,
usually in the shade, and this side is especially selected by the woodpeckers for their purposes. They not infrequently drop acorns down chimneys, where of
their labor is without any advantage.
Upon turning to the volume on Ornithology in the Geo logical Survey of (California) publications, in reference to this species of woodpecker, it says: "They are fond of play ing together around the branches, uttering their rattling calls, and often darting off to take a short sail in the air, returning to the same spot. They have a habit, peculiar to them, of drilling small holes in the bark of trees, and fitting acorns tightly into them, each one being carefully adapted and driven tight. The bark is often so full of these as to scarcely leave room to crowd in another without destroying the bark entirely. These are generally considered as laid up
for a winter supply of food; but while in this climate no for a winter supply of food; but while in this climate no
such provision is necessary, it is also very improbable that birds of this family would feed on hard nuts or seeds of any kind. The more probable explanation is that they are pre served for the sake of the grubs they contain so frequently which, being very small when the acorn falls, grow until hey eat the whole interior, when they are a welcome deli cacy for the bird. Whether they select only those contain ing grubs, or put away all they meet with, is uncertain; but as they leave great numbers in the tree untouched, it is probable that these are sound acorns, and often become supply to the squirrels and the jays.
Without questioning the foregoing as to the preference of the woodpecker for animal food, and especially for the larvæ often contained in the acorns, it is undeniable that in common with the jays, they are exceedingly fond of fruit, as many an orchardist can testify; and their predilection for almonds before these nuts are quite ripe, is well known to the cost of many almond growers; that they eat other nuts and also acorns to some extent, I have no doubt. The jays and
squirrels are quite likely benefited by the acorn-storing habit squirrels are quite likely benefited by the acorn-storing habit of this species of woodpecker; and I have been told that the for the carpintero to deposit in the bark; and further that sometimes the jays put pebbles in the acorn holes "to fool the woodpeckers;" but these latter statements, though perhaps true, need confirmation.
As several woodpeckers are engaged in the work at the same time on the same tree, their operations, as may be imagined, are carried on with a good deal of vivacity and noise, in which the jays become interested, and dart about, adding to the tumult in their own peculiær chattering way.
The latter haverelated singularities in the matter of food storing, as will be seen below. The friend, Mr. Dwinelle, whom I have already quoted, states that the large thistle, which is abundant in certain places in Alameda county, owes its distribution in part to the jays, who take the seeds, which are of good size, and plant them in the ground. He further states that a friend of his, who fed Indian corn to his chickens, had observed the jays fly down and fick up a kernel and then go off a short distance and plant it; in this way he discovered how it was that stalks of maize came up and were growing where he had never planted.
Mr. Dwinelle has himself seen a jay plant an acorn in the ground of his (Mr. D.'s) house-yard or garden in Oakland. The bird deliberately made a hole, thrust in the acorn, covered it, and hen put a chip on the spot, perhaps the latter as a mulch; then flew away, found another acorn, which it accidentally dropped in a growth of periwinkle (myrtle), and after searching for it without finding it, gave up and flew away.
As it is hardly presumable that the jays plant either the corn or the thistle tor the purpose of perpetuating those species of plants with the object of obtaining food from future crops, it is likely that being full fed at the time, with appetites satisfied, they simply buried the seed for future need, as a dog buries a bone, and forgot all about it, or not needing the same, the seeds remained where the birds plant ed them, until they germinated and grewinto plants.
The holes made by the woodpeckers in the bark of trees also serve as a lurking place for beetles, ants, and other insects, so that both vegetable and animal food are brought together side by side to furnish a meal in time of need, in which perhaps the jays sometimes participate. Judging•by the tree herein described, it would seem as if there were enough for all.
Mr. Bice is of the opinion that the acorns are stored simply for the larvæ, which the carpintero eats after the maggot has attained a good size. He also relates the following, which is worthy of note: "On cutting down a hollow oak on his father's place, a woodpecker's nest was discovered after the tree had fallen, and a young bird of the carpintero
species was found and caught, being unable to fly. It was carefully reared, and became a great pet with the family. After it had reached maturity and was perfectly able to fly, though no restraint was placed upon it, it would come at once in answer to call, leaving its fellows in the trees. Upon one occasion, when the family went several miles from home to visit a friend, the bird followed them, though at the time hey were not aware of it, and only learned the fact from the friend whom they had visited, and who caught and kept the bird until an opportunity offered for returning it. Probably if it had not been caught it would have followed the family back.'
There is a larger species of woodpecker, with plumage much resembling that of M. formicivorus, which sometimes appears in flocks, and helps itself, or tries to do so, to the
rauder. I have been unable to learn to what species these depredators belong.-American Naturatist.

Dubrunfaut on the Manufacture of Starch-Sugar.

In 1823 Dubrunfaut, whose death occurred last year, laid before the Society of Agriculture in Paris a memorial on the 'Saccharification of Starch." In 1825 his celebrated work entitled " Art de fabriquer le sucre de betteraves," appeared. Afterward he discovered osmose, and also an "elegant" method of separating the two constituents of inverted sugar iz., glucose (maltose, grape, and starch sugar), from lævulose fruit sugar). A few days before his death, which was aused by the inhalation of illuminating gas, he published the following article:
The success that has attended the technical preparation of crystallized or "block" maltose, as well as the crystal sirup that can be made from it, leaves no doubt of the existence of very decisive results of the laboratory experiments, as well as improvements to be effected on a larger scale for brewers and distillers. It must be confessed that, for very important reasons, we have not been able to carry out these improve ments smoothly in practice
The question is of great interest to our own (the European) sugar makers, because the manufacture of maltose is called to be at once the helpful sister, and perhaps the rival of this industry.
Maltose correctly prepared by our method is perfectly free from the impurities which are found in commercial glucose, and the crystal sirups made from it have the properties of refined sugar and its derivatives as a pure substance for sweetening or fermentation. In this respect there can be no doubt that this new sugar, which like starch sugar, for in stance, is less severely taxed by the government, can advan tageously replace the crystallizable sugar for many industrial purposes, especially for sweetening wine.

These uses unavoidably infringe upon the domain of the wonderful products of the sugar beet (that don't apply in this country-Ed.), but it must be remembered that the manufacture of glucose is destined to invade the sugar-boiling establishments themselves, because it makes it possible to keep the whole of the auxiliary apparatus going during the entire year. Then, too, if we recollect that the foundation of this sugar, its raw materials, are agricultural products, which, when used in this way, leave nutritious residues, it will be easy to see that the new maltose industry is really an element
of progress for the interests engaged in the manufacture of of progress for the interests engaged in the manufacture of
sugar comparable with those which would arise from a new use of crystallizable sugar.
Although in our domestic factories the maltose industry would naturally take its place at the close of the sugar campaign, we do not need to postpone our project of introduc ing this industry until the end of the season, and if, as we do not doubt, our other new process of "making sugar with out molasses" ends with the year, the campaign will end in January. Then those factories that use our "no molasses process" will be able to introduce the new maltose manufacture as early as January too.

The editor of the Chemiker Zeitung, from which we take the above, expresses the opinion that the distillers who are already converting sugar into starch by rational methods, would be better able to undertake the manufacture of maltose than the beet sugar factories referred to by Dubrunfaut.

Effects of Heat on Electrical Conduction.
Prof. F. Guthrie, F.R.S., recently read a paper on the discharge of electricity by heat. He showed by means of a gold leaf electroscope that a red hot iron ball, when highly heated, would neither discharge the positive prime conductor of a glass electrical machine nor the negative one, but on cooling the ball a temperature was found at which the ball discharged the negative conductor, but not the positive one. Lastly, on cooling the ball still further-but not below a glowing temperature-it was found to discharge both positive and negative electricity. A platinum wire rendered red hot by the current also discharged a negatively-charged electroscope more readily than a positively-charged one. When placed between two electroscopes, one having $a+$ and the other a - charge, it discharges neither. When the + one was withdrawn the - was discharged ; but when the - was withdrawn the + was not discharged. There therefore seemed a tendency in a hot body to throw out + rather than - electricity. These are interesting experiments, and open a little room for discussion versus positive and negative electricity.

Magnetic Properties of Steel and Iron.
Many investigations upon the relation between the molecular conditions of iron and steel produced by heat, by torsion, and by annealing processes, and the resulting changes in magnetic conditions, have been made. It appears from the paper of Louis M. Cheesman that the effect of mechanical hardening has not been properly investigated, and this paper contains the results of his investigation upon this point. The method of research consisted simply in determining the magnetic moment of the magnetic bar after it had been subjected to well devised mechanical pressures. The result of his investigations is summed up as follows: Iron in a mechanically hard condition can receive more permanent magnetism than in a soft condition. The magnetic moment of a steel magnet in a mechanicaliy hard condition is greater or smaller than in a soft condition, according as the ratio of its diameter to its length is less or greater than a certain limit.-Ann. der Physik und Chemie.

NEW COTTON CHOPPER

The engraving shows a cotton chopper having a carriage with gear wheels connected with its rotary axle and driv ing two shafts connected endwise by a universal joint. Radial arms attached to the rear shaft carry the chopping knives, which revolve at the rear of two plows provided with adjustable colters for barring off the rows. An upright frame is connected with the carriage frame and provided with handles, and a swiveled bearing for connecting the plow beams and handles with the shaft, so that the chopper can be readily guided and controlled.
The radial arms carrying the chopper knives are slotted to admit of adjusting the knives so that they may work at any desired depth in the ground, and to leave more or less of the plants standing, as the adjustment to and from the center opens and closes the distance between the knives.

The knives are set at an inclination with the plane of the chopper wheel, and their entering ends are sharpened so that there will be space between the rear end of each knife and the point of the one following to leave enough plants for a hill.
This implement is easily managed, very simple in its construction, and is well adapted to its purpose. It was recently patented by Mr. Josiah L. Hughes, of Cleveland, Tenn.

Action of Telephonic Currents upon the

Galvanometer.

If in a telephonic circuit we substitute for the receiver a very sensitive galvanometer, and if we act upon the transmitter by means of a tuning fork, an organ pipe, or the voice, we observe no deviation as long as the sound preserves the same intensity, but as soon as it increases or diminishes the needle deviates. This movement changes its direction according as the amplitude of the vibrations of the sounding body increases or decreases. The effect is most marked when the transmitter is affected by a sound of short duration, such as a detonation or by a body struck slight iej upon the vibrating plate. In the latter case, the needle of the galvonometer leaps like the second hand of a clock. The experiment succeeds well if the sounding body is approached to or withdrawn from the transmitter. These deviations appear much more distinctly when a microphone transmitter is used, such as that of Ader, but they are visible with every kind of telephone.
The explanation appears simple. As long as the oscillations of the vibrating plate retain the same amplitude, and consequently the same speed, the induced currents at each complete vibration compensate their action upon the galvanometer alternately in both directions, whether they proceed from an electromagnet or from a microphone. But, if the oscillations tend, e.g., toward zero, each odd semi-oscillation has a greater amplitude than the even semi-ascillation following, and the induced currents, direct and inverse, no longer set in motion, two and two, the same quantity of electricity. The residues of the same direction in each complete oscillation accumulate so as to deflect the needle, and the deflection is the greater as the decrease is the more rapid.-M. de Chardonnet; in Comptess Rendus.

Photo-zinc and Platinum Process

Captain Biny proposes to treat with dilute platinum bichloride a polished zinc plate on which a negative image, with all the half tones (taken from a positive), has been impressed by means of coal tar. He finds that a kind of daguerreotype of great delicacy is produced on the zinc, and with exquisite modeling. These prints will be cheaper than the daguerreotypes produced by the deposit of mercury on silver plates. So far as I know-and it will be easy to verify the statement by, experiment-the black oxide of platinum is deposited to a greater or less degree on all the parts of the zinc plate that are denuded; the half tones of the image formed by the coal-tar will be the resist, and the deposit will be proportional to their intensity. In other words, we shall have an image which, owing to the black color of the oxide of platinum, will be in harmonious contrast with the bright tint of the metallic zinc, and which will be perfectly modeled.

NEW DISINTEGRATING RIFFLES.

Notwithstanding all the modern improvements in minfig
stantly washed away and irrecoverably lost. The value of this lost portion, according to various estimates, is very nearly if not quite as great as that of the metal secured. A great deal of engineering skill and inventive genius have been employed in trying to devise means of preventing this great loss. This has generally resulted in placing various devices in the sluices to catch and retain the stray particles of metal or sulphuret. Some of these inventions have been more or less successful, but none of them have satved anything like a reasonable proportion of the valuable part of the tailings.
Our engravings represent a new form of riffle, which has
sections while securing their accumulations, thus avoidin he necessity of an entire stoppage of work.
Although the illustrations show the form and arrangement of the riffle sections, we give the following brief description:
A is
A is a section of mining flume, or sluice, through which auriferous material is carried by a stream of water. On the bottom of this sluice the riffle sections are placed, covering the bottom of the floor, in longitudinal rows, with ends joining each other. The sections in one row overlap or break joints with the sections of the adjoining row. . The incline on each side of the apex of each section is provided with a number of parallel slots, B, extending its entire length. The portion, C, of metal between each pair of slots is hollowed out on its upper surface, forming channels. In the trans verse shallow box, E , at the bottom of each incline, quicksilver may be used.
A vertical partition, F, extends downward from the under side of the ridge or apex to the flowr of the flume, forming a riffle or obstruction for arresting the heavy particles. The material pass ing through the slots into the chamber underneath the section is arrested by the partition, F , and an eddy is formed in which the heavy par ticles settle, while the water and lighter materia pass on through the open sides of the chamber diagonally across upon the first incline of the following section in the adjoining row, where the operation is repeated. The current is thus broken and separated, and directed from one section to the other, and from one row of sec tions to the other row, throughout the entire length of the floor of the sluice. The effect of alternating the sections in the adjoiuing row is to produce cross currents, which prevents the sand and clay from packing, and washes the sulphurets and heavy particles, thus keeping them in clean condition.
For further particulars address the New
Y York.

Mining

Diphtheria.

Dr. Franklin Staples, of Winona, Minn., after an extended correspondence with physicians in most of the counties of his State, has published a report on diphtheria, in which he zlasses the disease as contagious and infectious, and cemon strates that it is on the increase-a fact due, in his opinion, to failure on the part of physicians in recognizing its self-propagating properties; to want of systematic nursing of patients suffering from the disease; to incomplete disinfection of premises attacked; and last but not least, to the frequen intercourse of convalescents with healthy persons. He maintains that strict regulations, rigidly enforced, are the only means adequate to cut short its career, and since individual power is unable to cope with it, urges that every city and town should devise efficient sanitary laws, and let them be enforced by intelligent medical officers, who shall also make it their duty to instruct the people in sanitary rules. To guard against contamination, he believes that filth, whether guard against contamination, be believes dirty rooms, soiled clothing, defective drains and cess from dirty rooms, soiled clothing, defective drains and cess-
pools, ill-ventilated rooms, poisonous inodorous gases, etc., pools, ill-ventilated rooms, poisonous inodorous gases, etc.,
should be regarded as conditions which invite the disease that the apartments set apart for the patient should be divested of all furniture, carpets, curtains, and fabrics of any kind not absolutely required; that discharges from the nose, mouth, and bowels should be carefully collected and destroyed, and that all personal clothing, bed linen, etc. should be thoroughly disinfected before being sent to the general wash. In case of death, all clothing and unimpor tant articles should be burnt, the body should be immediately disinfected and put into its coffin, which should be kept per manently closed. There should be no public funeral. He prefers disinfection by chlorine gas, which is to be set fre in the room. Ventilation for a number of hours should then be insisted upon. Precautions falling short of these Dr. Staples considers to be useless in preventing the spread of the infection.-Report on Diphtheria to the Minnesota Board of Health, 1881.

Patents in Germany. - Last year there were 7,177 applications for patents in Germany; 4,339 were granted. This is the largest number granted in any year save one, 1879, when the number of patents issued was 4,410 .

the great ant-eater and its young

 by c. f. HolderThe ant-eaters (Myrmecophagidas) form one of the most interesting families known to science, and comprise a number of forms that, as their nameindicates, gain a living by assaults upon the nests of ants found in the countries to which they are indigenous. The largest and best known of the family is the great ant-eater, or ant-bear, which is covered with long, coarse, shaggy hair, except the head, where it is short and close; it has a very long and slender head, and a bushy black tail of enormous size and length, the whole animal measuring often eight feet from the tip of the snout to the extremity of the tail. Being plantigrade, it stands lower on the hind legs than before, which is the case with bears and other quadrupeds similarly formed. It has four toes on the fore feet, the second and third being provided with long, sharp-pointed, and trenchant claws; so that nothing upon which it has an opportunity of fastening can escape. The hind feet have five toes, furnislsed with short weak claws, resembling those of ordinary quadrupeds. In the fore limbs we notice that the ultimate phalanges of the toes, which support the claws, are so constructed as to allow the movements of the latter being restricted to flexion inwards; and in order to maintain this position there are powerful ligaments which keep the pha langes directed langes directed to ward the palm and never allow th digits to be stretched out in the manne of the plantigrade carnivora. The re lative size and strength of the toe are also very signifi cant in this family in those which have five toes the central digit attains an enormous bulk while the outer pair are comparatively very small. And, in order to afford adequate power for the digging and burrowing propensities of these animals, the phalanges are allcloselyconnected togetber up to th base of the ultimate phalanx, converting the handinto a kind of trowel, similar to batfound in moles From what has been advanced, it will readily be re marked that ant eaters do not walk on the soles of thei feet; neither do they tread on thei strongly - curved toes, which would damage the claws, but, in the fore feet at least-as may be seen by referring to the engraving-the anterior part of the body is seen to rest entirely upon their outer edge; and that part of the hands thus subjected, as it were, to an unusual pressure, is, in these creatures, supplied with an efficient callous pad to protect the outer phalanges from injury.
The prevailing color is a deep gray, with a very broad band of black running from the neck downward on each side of the body; its habits are slothful and solitary; and it sleeps during the greater part of the day. It lives entirely upon ants, to procure which it opens their hills with its powerful crooked claws, and draws its long flexible tongue, which is covered with glutinous saliva, lightly over the swarms of insects who flock from all quarters to defend their dwellings. It is a native of Brazil and Guiana.
It seems almost incredible that so robust and powerful an animal can procure sufficient sustenance from ants alone; but this is nothing strange to those who are acquainted with the tropical parts of America, and who have seen the immense quantities of these insects, which swarm in all parts of the country to that degree that their hills of ten almost touch one another for miles together. The favorite resort for the great ant-eaters is the low swampy savannas, along the banks of rivers, and stagnant pools.
The enormous claws of the forelegs. are terrible weapons Waterton recordsan instance of their power in his "Wander ings," and in Brown's "Canoe Life in Guiana" there is a similar account. He says: "We had not gone many miles before the guide lost the path, and we all scattered to look for it. In doing so, I almost walked on the top of a sleeping ant-bear, which, springing up, sat on its hind legs, and grasped at me with its huge fore claws. I sprang
quickly to one side, and thus escaped. Thinking that it us, walking upon the outside of her sharply clawed feet, and was good eating, I shot it, but the Indian said that it was the long noses of the entire family were presented and not wholesome food, although, from the great interest they took in seeing it killed, I thought it was." (Waterton says that its flesh is good eating.)
These large ant-eaters are very dangerous customers, and have been known to kill men. Williams told me that an Indian, living near Roraima, was hunting in the forest to the north of that mountain with some others, armed with his long blow-pipe. In returning home, considerably in advance of the rest of the party, it is supposed that he saw a young ant-eater, and, taking it up in his arms, was carrying it home, when its mother gave chase, overtook, and killed him; for, when his companions came up, they found him lying dead on his face in the embrace of the ant-bear, one of its large claws having entered his heart. In the struggle he had managed to stick his knife behind his back into the animal, which bled to death, but not before the poor fellow had succumbed to its terrible hug. It was evident that he had only heard the ant-eater coming when it was close upon him, and in turning round to look, his blow-pipe got caught across the path in front of him; then, as he turned to run, it formed a bar to his progress, and he fell over it as the animal seized him. So firmly had the animal grappled h he long noses of the entire family were presented and
ubbed against our hands with every demonstration of riendliness.
The tongue is extremely long, and below its roots are two arge glands that emit a glutinous secretion that is so effective in conveying the swarms of ants to its mouth. They were fed exclusively upon hard boiled eggs, upon which we were informed they thrived. The climate, however, is against them, and since our first visit one of the young has died, and the other will probably follow.
In the accompanying illustration the position of the young on the mother's back is shown, where they presented an amusing spectacle.
The little ant-eater occurs also in Brazil and other counies of South America. Its habits are similar to those of its more powerful species.
Von Sack, in his " Voyage to Surinam," gives an interesting account of the tame ones in his possession; and, after describing their characters, he tells us that the inhabitants of that country aver that when captured these animals can not be induced to eat, and only lick their paws after the fashion of a bear. "When I obtained the first," hesays, "I sent to the forest for a nest of ants, and during the interim I put into its cage some eggs, honey, milk, and meat, but it refused to touch any of them. At length the ants' nest arrived; but the animal did not pay the slightest attention to it either. By the shape of its fore paws, which resem ble nippers, and differ very much from those of all the other species of ant-eaters, I thought that this little creature might perhaps live on the nympbæ of wasps, etc. I therefore brought it a wasps nest, and then it pulled out with its nippers the nym phæ from the nest and began to eat them with great eagerness, sittingin the posture of a squirrel. I showed this phenomenon to many of the in habitants, who all assured me that it was the first time they hadeverknown that species of ani mal to take any nonrishment. The ants with which I tried it were the large termites upon which fowls are fed here.' According to Von Sack and most ob servers, the tail is that to separate it from the corpse the Indians had to cut off |employed as a prehensile organ. It is larger than the
its fore legs.
It is very rarely that an opportunity offers to observe in It is very rarely thats of one of these curious creatures, but recently an ant-bear was brought here alive from South America, and on the passage gave birth to two young, which the writer afterward saw, and watched with great interest their movements about the mother. The poor creature fared badily on the voyage to the United States, as the sailors were ignorant of the nature of the animal, and its curious appearance impressed them with such a feeling of aversion tutt no one could be found to approach the family of compulsory immigrants, and they were only kept alive by the boiled eggs that were tossed them by some of the more humane of the crew. The little ones, as we saw them, were about a month or six weeks old, and were perfect images of the mother, with the exception that the tail was not so large in proportion to the body, and the curious color markings were not so pronounced as in the adult. Aswe approached the cage, nothing could be seen but a bunch of coarse grizzly hair; but a word from the owner, and the enormous tail of the parent was raised, and the young were seen. She wa lying on her side, the young embracing ber abdomen, after the fashion of young monkeys, and over all came the tail of the mother, sbutting and inclosing them like a lid, forming effective protection. As she clumsily rose the young scrambled over and attained a position on her back, chinging to her with their long claws, their bushy tai s in air, lost in the voluminous folds of the mother's, that covered them even now as a canopy, being equally protective.
At a word from the keeper, she came laboriously toward
employed as a prehensile organ. It is larger than the
body, very stout and broad at its origin, thickly clothed with short hairs, and much attenuated toward the extremity. Generally speaking, the fur displays a thick, soft, shining, woolly texture. The female, it is said, produces a single young one at a birth, although it is furnished with four ammæ
In the Old World the ant-eaters are represented by the ard-vark and spiny ant-eater (Echidna hystrix), the latter a curious creature with a long, slender, toothless bill, with a palate armed with rows of strong sharp spines; the tongue is similar to that of the great ant-eater of South America, while the body is covered with quills like a porcupine. It is common in various parts of Australia, Port Moresby, New Guinea, and quite recently a new species has been discorred in Northern New Guinea.
The aard-vark, a South African ant-eater, is a strangeooking creature, and a very distinctive character is seen in the head, which has long-pointed ears; while the tail, being of moderate length, not so long as the bodyt is very thick, ounded at the root, and densely clothed with hair. Altorether it is a stout, heavy animal, the large boncs of the neck, in particular, demonstrating its strength in the cer vical region. The fur, which is very scanty, is generally of grayish-brown color. The permanent teeth of the adult, twenty in number, have a simple form and structure, being made up of rootless cylinders, those in front displaying a slightly flattened aspect at the sides. It is rather larger than the common badger, attaining a length of aptherd of four feet. Its babits are nocturnal, and it constructs large subterraneous burrows with extraordinary rapidity. It ap
pears to live entirely upon ants, and for this purpose the tongue is largely developed, and armed with a glutinous secretion. It is not so long, however, as in the true ant-eaters, while it is at the same time more flattened and attenuated. The aard-vark invariably fixes his retreat near to some large ants' nest, which he ventures only to attack after dark. He is a timid creature, and does not move far from his burrow; and when attacked, should he succeed in gaining access to his abode, it is next to impossible to get him out, for it is said he can burrow faster than his enemies can dig. According to those who have witnessed its method of procuring food, the aard-vark, havingapproached an ant-hill, forthwith proceeds to scratch a small part of it, just sufficient to allow of the introduction of its long, narrow snout. These anthills are sometimes three or four feet in height, and contain myriads of insect inhabitants-strongly ensconced in fancied security complete!
"Here," observes Mr. Ogilby, "after having previously ascertained that there is no danger of interruption, he lies down, and inserting his long slender tongue into the breach, entraps the ants, which fly to defend their dwellings upon the first alarm, and, mounting upon the tongue of the aardvark, get entaugled in the glutinous saliva and are swallowed by whole scores at a time. If uninterrupted he continues this process till he has satisfied his appetite; but on the slightest alarm he makes a precipitate retreat, and seeks security at the bottom of his subterranean dwelling. Hence it is that these animals are seldom seen, even in those parts of the country in which they are most numerous. Like other nocturnal animals, passing the greater part of their lives in sleeping and eating, they become exceedingly fat, and their flesh is considered to be wholesome and palatable food. The hind-quarters particularly, when cut into hams and dried, are held in great esteem.
There are some ants that these animals cannot face, and he so-called fire ants of South America will put to flight the largest ant-bears.
To any one who has handled the soft, velvety nose of these animals, it is a mystery how they are able to withstand the savage attacks to which they are subjected. The rapid movement of the snake-like tongue, however, is probably the secret of its boldness.

Our Ancestors.
 by Grant Δ ILEX

There are few questions more immediately interesting to Englishmen than the question: Who are our ancestors? From what elements and in what proportions are we compounded? May we consider ourselves as all pure Teutons? or are we partly Celts as well? Furthermore, may we even reckon among our immediate ancestry some still earlier and less bistorical races than either of these? Such questions
are full of practical importance to ourselves, and they are are full of practical importance to ourselves, and they are
also of a sort upon which modern investigations into language and the science of man have cast a strikingly new and unexpected light.
Of course, in considering the origin of Englishmen, we must look at the matter in no petty provincial spirit. We Scotchmen, and Irisbmen as well; and if our friends in the north prefer to speak of Britain rather than of England, I am sure I, for my part, will have no objection. There are many learned modern historians, with Mr. Freeman at their head, who will tell us that Englishmen are almost pure-blooded Teutons, of the same original stock as the Germans, the Dutch, and the Danes and Norwegians. But when we come to inquire more fully into their meaning, it turns out that they are speaking only of the native inhabitants of England
proper and the Scotch Lowlands, without taking into conproper and the Scotch Lowlands, without taking into consideration at all the people of Wales, Ireland, and the High districts into the southeastern half of Great Britain. Even in the restricted England itself, thesesame doughty Teutonic advocates admit that there is a nearly pure Celtic (or preCeltic) population in Cornwall, in Cumberland, and in Westmoreland; while the western half of the Lowlands, from Glasgow to the border, is also allowed to be inhabited by a mainly Welsh race. Furthermore, it is pretty generally granted by our stoutest Teutonic champions theinselves, that the people of Dorset, Somerset, and Devon, of Lancashire, Cheshire, Shropshire, Herefordshire, and Worcestershire, are all largely mingled with Celtic blood. Thus, in the end,
it appears that only the native inhabitants of the Lothians and the eastern and southern coast of England are claimed as pure Teutons, even by those who most loudly assert the as pure Teutons, even by those who most loudly assert the
essentially Teutonic origiu of the English people. We may possibly find that this little Teutonic belt or border itself is not without a fair sprinkling of earlier blood.
Perhaps the best way to clear up this question will be to glance briefly at the various races which have inhabited
these islands, one after another, and then to inquire how these islands, one after another, and then to inquire how
far their descendants still exist in our midst, how large a proportion of our blood they have contributed, and wbereabouts their representatives are now mainly to be found. Of course, in such an inquiry we can only arrive at very approximate results, for in our present advanced stage of intermixture, it is almost impossible for any man to say exactly what are the proportions of various races, even in his own
person. Each of us is descended from two parents, four person. Each of us is descended from two parents, four
grandparents, eight great-grandparents, and so forth; so that, unless we could hunt up our pedigrees in every direction for ten generations, involving a knowledge of no less than 1,024 different persons at the tenth stage backward, we could 20,000 monuments of this date-perhaps from 5,000 to
not even say how far we ourselves were descended from Irish,
Scotch, Welsh, or English ancestors respectively. As a matter of fact, every one of us is now, probably, a very mixed product indeed of Teutonic, Celtic, andstill earlier elements, which we cannot practically unravel; and, perhaps, all we can really do is to point out that here one kind of blood predominant, there another, and yonder again a third. The men of the very earliest race that ever lived in Eng and are probably not in any sense our ancestors. They were those black fellows of the palæolithic or older stone age, whose flint implements and other remains we find buried in the loose earth of the river-drift or under the concreted floors of caves, and who dwelt in Britain while it was yet a part of the mainland, with a cold climate like tbat of modern Siberia. These people seemed to have lived before and between the recurrent cold cycles of the great glacial period; and they were probably all swept away by the last of those long chilly spells, when almost the whole of England was covered by a vast sheet of glaciers, like Greenland in our own time. Since their days Britain has been submerged beneath several hundred feet of sea, raised again, joined to the conti nent, and once more finally separated from it by the English Channel and the Straits of Dover. Meanwhile our own original ancesters-the people from whom by long modification we ourselves are at last descended - were probably living away in the warmer south, and there developing the higher physical and intellectual powers by which they were ultimately enabled to overrun the whole northern part of the Old World. Accordingly, interesting as these older stone-age savages undo ubtedly are-low-browed, fierce-jawed, crouch ing creatures, inferior even to the existing Australians or Andaman Islanders-they have yet no proper place in a pedigree of the modern English people. They were the aborigi nal inhabitants of Britain; but their blood is probably quite unrepresented among the Englishmen of the present day.
Long after these black fellows, however, and long after the glaciers of the ice age had cleared off the face of the country, a second race occupied Britain, some of whose descendants almost undoubtedly exist in our midst at the pres ent day. These were the neolithic, or later stone-age men, wbo have been identified, with great probability, as a branch of the same isolated Basque or Euskarian race which now lives among the valleys of the Western Pyrenees and the Asturias Mountains. They seem to have crossed over into Britain while it was still connected with the Continent by a broad isthmus, or, perhaps, even by a long stretch of land occupying the entire beds of the Channel and the German Ocean. Our knowledge of them is mainly derived from their tombs or barrows-great heaps of earth which they piled up above the bodies of their dead chieftains. From these have been taken their skeletons, their weapons, their domestic utensils, and their ornaments, all the latter objects having been buried with the corpse, for the use of the ghost in the other world. From an examination of these remains we are able largely to reconstruct the life of the Euskarian people -the earliest inhabitants of Britain whose blood is still largely represented in the existing population.
In stature the neolithic men were short and thickset, not often exceeding five feet four inches. In complexion they were probably white, but swarthy, like the darkest Italians and Spaniards, or even the Moors. Their skulls were very long and narrow; and they form the best distinguishing mark of tbe race, as well as the best test of its survival a
the present day. The neoliths were unacquainted with the the present day. The neoliths were unacquainted with the
use of metal, but they employed weapons use of metal, but they employed weapons and implements
of stone, not rudely chipped, like those of the older stone age, but carefully ground and polished. They made pottery too, and wove cloth; they domesticated pigs and cattle; and they cultivated coarse cereals in the little plots which they cleared out of the forest with their stone hatchets or toma hawks. In general culture they were about at the same leve as the more advanced Polynesian tribes, when they first came into contact with European civilization. The barrows which they raised over their dead chieftains were long and rather narrow, not round, like those of the later Celtic conquerors They appear to have lived for the most part in little stockaded villages, each occupying a small clearing in the river
valleys, and ruled over by a single chief; and the barrows usually cap the summit of the boundary hills which overlook the little dales. Inside them are long chambered galleries of large, rough-hewn stones; and when these primitive erections are laid bare by the decay or removal of the barrow, they form the so called "Druidical monuments" of old-fashioned antiquaries, a few of which are Celtic, but the greater part Euskarian.

At some future period I hope to lay before the readers of Knowledge a fuller account of these neolithic people and their existing remains. At present the points to which I wish to call attention are, first, the fact of their existence in early days iu Britain; and, secondly, the fact that many of their descendants still remain among us to the present day. Nor do I propose in this paper to estimate the numerical strength of the Euskarian element in the population of the British islands as it now stands. It will be best to consider that part of the question at a later point in this series, when we have seen what were the subsequent races which overcame, and in part displaced, the aboriginal Euskarian folk. For the moment, it will suffice to point out that befor the arrival of the Celts and other Aryan tribes in Britain these Euskarians spread over the whole of our islands, and were apparently the only people then inhabiting them. At 20,000 years old-seem to be similar in type wherever they
occur in Britain, and to contain the remains of an essentially identical race. I shall also add here, by anticipation, what I hope to show more in detail hereafter, tbat their descendants exist almost unmixed at the present day as the so-called Black Celts in certain parts of Western Ireland and Scotland, and in a few places in South Wales; while their blood may be still traced in a more mixed condition in Yorkshire, Lincolnshire, East Anglia, the Scotch Highlands, and many other districts of England and Scotland. How they have other districts of England and Scotland. How they have
mathaged to survive and to outlive the various later Celtic an Teutonic conquests we shall have to inquire when we come to consider the origin and progress of those subsequent waves of population.-Knowledge.

The Bibbon Manufacture of St. Etienne.
It may safely be said that St. Etienne is the largest ribbon producing town in the world. In speaking of ribbons, we mean all productions of the small ware looms, in which more tban two pieces are woven at one time, and which include ladies' scarfs, ties, and similar goods. This industry is, with few exceptions, quite a domestic one. St. Etienne and district employs about 17,000 looms, of which only about 1,500 are driven by mechanical means, say 1,000 by water, and 500 by steam power. These 1,500 make partly plain silk ribbons, and partly velvet ribbons, the latpartly plain silk ribbons, and partly velvet ribbons, the lat-
ter numbering about 600 . Most of the weavers have not ter numbering about 600 . Most of the weavers have not
more than three looms, more frequently only one or two. more than three looms, more frequently only one or two.
Generally the master works one and the members of his family the others; sometimes he has also a journeyman. A loom costs from $£ 32$ to $£ 100$, according to its complexity, for some looms witb Jacquard arrangements, and 7 to 12 shuttles for different wefts, are costly. When a journeyman has saved a few hundred francs he buys a loom, pay ing part. of the price down and the remainder in installments as he makes his profit on it. When he has paid for the first loom, and takes a second one to be worked by an assistant, he becomes a member of the masters' guild, who fix the prices to be paid by the manufacturers. From the complicated nature of the work these wages cannot be always alike, but they are regulated according to the difficulty of the pattern, the quality of the silk, etc. If, for instance, a weaver receives a silk which is rather weak, and which necessitates frequent stoppages on account of broken ends, he calls in an expert, who, after examining his case, fixes the amount of the wages to be paid. On the other hand, the master finds it to be to his interest to pay good wages, and to give the weaver an advance when any new article which happens to be in fashion enables him to make extra profits himself Where a master employs a journeyman he gives him half the wages earned by the loom, retaining the other half as hire for the loom and profits. In ordinary times a loom earns about 5 s . per day, which leaves 2 s . 6 d . for the assistant (not very tempting wages our weavers will say). Sometimes, a loom can make as much as 12s. a day, against which, however, slack times must be taken, when the hands get no work, and after spending their wages have to find work in the neighboring mines or elsewhere for a time. They, however, seldom leave altogether, and stick to thei homes as long as possible. Tbe preparatory work of mind ing and spooling is paid by the day, generally from 1 s . 3 d to 2 s . for 10 hours' work. In 1848 the longest permissibl time was fixed at twelve hours in summer and eleven hours in winter. With the ordinary sort of ribbons wages form about 10 per cent to 15 per cent of the price, but with the superior kinds the wages run up to 40 per cent. A singular feature is the fact that the weavers making silk ribbons are more steady and frugal, and work best at home, while those making velvet ribbons have not such a good reputation, and are also more frequently collected in larger numbers in fac tories. Can the latter fact affect their morals? is the ques tion suggested.

New Street Letter Boxes.

New letter boxes are being placed in a portion of New York city. They are painted a bright red, so as to be seen from a long distance. Collections are made through a door that occupies the whole side of the box, and is more convenient for taking out large letters than the openings in boxes of the old style. A card is placed under a square of glass of the old style. A card is placed under a square of glass
in the box, on which is printed a list of the times at which collections are made. There is also in one corner a card on which is printed the hour of the next collection This card is to be taken out by the collector at each trip and another giving the time of the next collection is substi tuted. The card taken out is given to the superintendent on the return of the collector as a proof that the collection has been made. The number of the box to which it belongs is shown on each of these cards.

New Mineral Water from Amherst, British Rurmah
A mineral spring having been discovered in the Amherst district, which is attracting great crowds by tbe wonderful cures reputed to be performed by its waters, the authorities forwarded a few galloris for analysis by R. Romanis, D.Sc., Government Analyst. The following is the composition in parts per million:

Crystallization of Iron.*
 by n. f. bowler.

The theory that pieces of wrought iron or steel will crys tallize by merely hanging for a certain length of time in vertical position seems to be confirmed as true in this instance.

We had a chain in daily use in our foundry-used for raising flasks and castings-requiring it to bang in a vertical position most of the time. It had been in use probably eight or ten years. The links were of about one-half inch wire, as you can see by this piece of it. The service usually required was light compared with the ability of the chain One day a link broke squarely off. The chain was sent to the blacksmith shop for repairs. . The smith called my atten tion to the fact that if he put any of the links on end upon the anvil a light blow of the hammer would break them into four pieces. He tried several of them, and they broke as easily as poor castiron. I asked him to put a link in the fire, heat it to a red heat, and let it cool gradually. He did so, and found it would not break then, but bend like good iron. I had the chain mended, and after emptying one of our large ladles of the molten iron, thus leaving it red hot, the chain was put into it to remain all night. That was done over three years ago. The chain has been in coustant us ever since, with no signs of weakness by crystallizing.
We served all our chains the same way, by heating them and cooling gradually, and have had no recurrence of this kind. I would recommend that the ladle shanks used about the foundry be treated the same way.
A very interesting fact was related to me not long since by 2 division master mechanic of the Lake Shore and Michigan Southern Railway. He had just made two fire boxes for a couple of his engines from steel r ate or homogeneous iron. They were completed, and the engines were ready to run steam had been got up in both, and found all right.
The following day the fireman of one was told to fire up wis engine, the same as he had fired the day before. After starting a pretty good fire, and seeing no signs of steam, he ran horror-stricken to tell his engineer that there was not a drop of water in the boiler, and that everything was red hot. The master mechanic, who happened to be there, quieted his fears by telling him to "never mind-just pull your fire and let the engine stand and cool off."
That was, I think he told me, ten years ago, and that firebox has been in use all the time, and is good to-day; while its mate, made of the same material, lasted but a few years before it cracked and became useless.
Although that fire-box was not crystallized by using, yet is it not more than probable that the same conditions existed in this metal that we find in iron and steel that have become brittle by long usage-it becomes what is called crystal lized?

There is no doubt that car axles become crystallized by long usage; but the time it takes to reach that point-when they are entirely unsafe to use-varies undoubtedly according to the good or bad quality of the iron. Some kinds of iron are brittle, and will soon fail, while others are of softer and more tenacious fiber, and require a longer time to crystal lize.

The above facts suggest to me the feasibility and utility of converting old car axles into good ones, by merely anneal ing them.

It is the practice of master mechanics of railroads to condemn axles that have been in service a certain number of years, if for no other reason than that of being crystallized, acting on the theory that such an axle is unsafe for further use.
They are taken out and cast into the scrap pile, to be sold to the junk dealers for about one-third the price of new ones.

Some master mechanics that I know do practice the annealing of old axles, but by the number known to be for sale as scrap, one would think but very few did so.

The practice now is to increase the capacity of freight cars from what they were formerly-ten and twelve tonsto fifteen and twenty tons, thus making it necessary to take out the small axles; but when confidence can be put in these annealed ones, there will be no objection to using in narrow gauge cars axles once under standard gauge cars.
The crystallization of cast iron to such an extent as to make it unsafe for further use is still a mooted question. Railroad men in the early history of that enterprise, before the use of fish plates-believed that the car wheel, by striking the head of the rail, would become crystallized-and were disposed to remove all wheels from under passenger coaches, after having been in service a certain length of time, to be worn out under freight cars. What the length of time is, beyond which it was considered unsafe to run them, was never definitely settled. I think the practice has quite gone out of use, and the belief that chilled car wheels will crystallize by running so as to become unsafe is not very generally entertained.
Old car wheels are used to some extent in the mixture of iron for new ones.
I have, for a period of sixteen years, watched the appearance of those old wheels, as they were broken up, and I have been unable to notice any difference that could be charged to the time in service. We sometimes find wheels that have been made twenty years-of course, the amount of service they had done could not be known. Wheels ten years old are quite common, but that time had wrought changes in the
metal was not perceptible by any means that I possessed And my belief is that car wheels, at least, do not grow weaker as they grow older by reason of crystallization. It was but recently we had at the foundry some old cast shaft ing, and I noticed it particularly when broken up for the
cupola, that there was.no appearance of change in the metal, cupola, that there was no appearance of change in the metal either by breaking or in looks, to indicate crystallization.

discussion.

In the after discussion of his paper, Mr. Bowler stated that he did not believe cast iron subject to crystallization; that during his long experience in the manufacture of car wheels where large numbers are broken up, he had never seen a case of crystallization among them. He thought car axles might be so affected and that wrought iron is more subject to it when used in a vertical position.
Mr. Dunham--Was not your chain subjected to unequal trains by passing over a pulley?
Mr. Bowler-It did not pass over a pulley.
Mr. Bidwell cited a case at the Chickering Piano Works, where a vertical chain had broken from crystallization, with out apparent cause, except what might be due to its vertica position.
Mr. Reuschel, of the Cleveland Bridge and Car Works, thought that iron never crystallized unless overstrained. He thought that car axles are being constantly overstrained by a force that cannot well be estimated. The passing of the wheels over rail heads was but a succession of blows that esult in overstrain, and crystallization follows.
Colonel Wilson, of the United States Harbor Improve ment, mentioned the fact that he recently condemned a num ber of tons of bolts and spikes before being used, becaus they were crystallized. They could not have been over strained.
Mr. Renschel-They were doubtless made from very poor iron at first.
Mr. Bidwell thought cold-drawn wire a good example o verstraining that does not produce crystaflization.
Mr. Porter, of the King Bridge Works, stated that the ex periments conducted by the United States Govern ment went to show that no crystallization takes place where iron is not trained beyond one-half its elastic limit.
Mr. Latimer, Chief Engineer of the N. Y., P. and O. R. R. said that the question was once asked at a meeting of his roadmasters: "Is it not a fact that iron lasts longer, that it will sustain more wear, by allowing it to rest one day in seven?" The answer was not given.

The Horse Power of Turbines.

The power of water is its meight multiplied by the velocity, and in order to illustrate we will suppose a turbine wheel, working under 15 feet head, will discharge 3,168 cubic feet of water per minute, and utilize 80 per cent of the full power of the water. Mulliply the cubic feet dis charged per minute by $62 \frac{1}{3}$, which is the number of pounds each cubic foot of water weighs at the average temperature and this product by height of head under which the wheels are working, and that product divided by 33,000 pounds, this number of pounds raised one foot high in one minut being one horse power, which will give the full horse power of 3,168 cubic feet per minute, under 15 feet head; and as no wheel will produce 100 per cent, the percentage the wheel in question is known to produce or utilize must be taken as the actual horse power, as in the example here given:
cubic feet per minute.
$621 / 3$ weight of one cubic foot.

$\overline{1056}$

$\begin{array}{r}6336 \\ 19008 \\ \hline\end{array}$
$\overline{197472}$ full weight of water.
5 feet head.
$\overline{987360}$
197472

$33000)$	
$\underset{26+000}{2962080(}$	8976 full value of water
80	per cent utilized.

32208071.8080 net horse power, or 80 per cent 297000
of the full power of water.

250800

198000
It will be seen that the effective horse power at 80 per cent of the full value of the water is 71.80 . We will now suppose the wheel had only utilized 60 per cent, then multi ply the full value, $89 \cdot 76$, by 60 , and the horse power would be 54%. If the wheel would utilize 75 per cent, the effect ive horse power would be $67 \cdot 32$. From the explanation and example given it can easily be ascertained what num ber of horse power any wheel will produce, with a given number of cubic feet of water per minute, on any head, provided the percentage the wheel in question will utilize i known.-STtout, Mills \& Temple.

New Process for Sewage.

The difficulty of dealing with the deposit technically known as "sludge," which has always and everywhere been a source of great trouble and inconvenience in treating town sewage by precipitation, has, it is claimed, been overcome by the Rivers Purification Association, Limited, at the Cov entry Sewage Works, at Whitley. The various processe
which have been tried by the association during the fiv ears they have had the disposal of the Coventry sewage in their hands, have hitherto yielded anything but satisfactory esults. The association tried, in succession, methods of drying the sludge by heat, and also by continuous rotary filiration. These processes, however, besides being costly did not dispose with sufficient rapidity of the twenty-five or thirty tons of sludge which are precipitated at the work daily, and they were therefore abandoned, being succeeded by the present system of " pressing."
Some two years ago a model press was erected at the works, and although this description of press failed to fully nswer the purpose for which it was intended, it has been very aptly described as the egg from which the process now adopted was hatched. The presses now in use were manu factured by Messrs. S. H. Johnson \& Co., of Stratford, and the manager is Mr. E. F. Coddington. The sewage flows through a rotary sieve, by which the solids are extracted. The rotary motion of the sieve causes the solids to fall to its center, from whence they are conveyed by an archime dean screw. The sewage, now free from heavy suspended matter, is chemically treated, and the precipitated matter called "sludge," is pumped into an iron trough which sup lies two cylinders, and is forced from these into the presse by one of Johnson's patent air compressors. Once within he presses, the pressure is kept constant and uniform, and the water of which the "sludge" is chiefly composed pours out in continuous streams, leaving, at the conclusion of the process, the "sludge" in the form of dry, firm sewage cakes, 3 feet by 3 feet, $11 / 4$ inches in thickness, and smelling aintly of ammonia. Thus, it is said, is performed in a few hours a task which was previously but imperfectly done in many months, and the sludge, which was before an almost unsalable commodity, now meets with a brisk demand, be ing readily purchased by farmers, one-large cultivator o the soil having recently ordered a thousand tons.-Building News.

To Take Out Milk and Coffee Stains

These stains are very difficult to remove, especially from light colored and finely finished goods. From woolen and mixed fabrics they are taken out by moistening them with mixture of one part glycerine, nine parts water, and one-hal part aqua ammonia. This mixture is applied to the goods by means of a brush, and allowed to remain for twelv hours (occasionally renewing the moistening). After thi time the stained pieces are pressed between cloth, and the rubbed with a clean rag. Drying, and if possible a little steaming, is generally sufficient to thoroughly renove the stains. Stains on silk garments which are dyed with delicat colors, or finely finished, are more difficult to remove. In this case five parts glycerine are mixed with five parts water and one-quarter part of ammonia added. Before using this mixture it should be tried on some part of the garmeut where it cannot be noticed, in order to see if the mixture will change color. If such is the case no ammonia should be added. If, on the contrary, no change takes place, or if after drying, the original color is restored, the above mix ture is applied with a soft brush, allowing it to remain on the stains for six or eight hours, and is then rubbed with a clean cloth. The remaining dry substance is then carefully taken off by means of a knife. The injured places are now brushed over with clean water, pressed between cloths and dried. If the stain is not then removed, a rubbing with dry bread will easily take it off. To restore the finish, a thin solution of gum arabic, or in many cases beer is preferred, is brushed on, then dried and carefully ironed. By careful manipulation these stains will be successfully removed.

old German Newspapers.

At the end of last year there were in circulation in Ger many 4,413 newspapers. Of these 98 were older than the present century. Among them the Frankfïrter Journal, 261 years old; the Magdebury Zeitung, 253 years old; the Leipziger Zeitung, 221 years old; the Jenaische Zeitung, 207 years the Augsburger Postzeitung, 195 years; the Gothaische Zeitung 190 years; the Vosetsche Zeitung, 159 years; the Berlin Intelli genzblatt, 128 years; the Kolnische Zeitung, 84 years. There are 200 newspapers averaging from 80 to 50 years; 1.127 averaging from 50 to 21 years; 1,542 between 20 and 6 years; and 1,380 between 5 years and 3 months old. Altogether there are 1,491 German newspapers more than 20 years old. That a newspaper's existence in Germany is often a very ephemeral one may be inferred from the fact that 20 per cent of the newspapers which circulated through the German post office in 1880 came first into existence within the same year, and the average existence of thos newspapers was not more than six months. Some have been more hardy, and have survived into the present year

Formation of alloys by Pressure.

W. Spring has shown that, when a mixture of bismuth filings, cadmium, and tin, in the proportions necessary for the formation of Wood's alloy, is subjected to a pressure of 7,500 atmospheres, the: mass thus obtained powdered and again subjected to the same pressure, a metallic block is formed which has all .the physical properties of the alloy Its specific gravity, color, hardness, brittleness, and fracture are the same; and when thrown into water heated to 70° it melts at once. In like manner Rose's metal was made by subjecting the proper mixture of lead, bismuth, and tin to high pressure. If zinc and copper filings are repeatedly subjected to pressure, a mass resembling brass is finally ob tained.-Berichte der deutsch. chem. Gesell.

engineering inventions

An Improvement in Boiler Flues.

Mr. Horace L. Trout, of Troutsville, Botetourt county Va., has patented an improved manner of attaching boile flues to the flue sheets, that is shown in the accompanying engraving, in which the flue sheets are of the ordinary con struction, each provided with a serics of opposite holes threaded on their peripheries. The flue for the passage of the products of combustion through the boiler is a straigh tube, with a thread cut exteriorly on both its ends. The flues are connected to the flue sheets by copper nuts threaded on the outside to engage with threads in the hole in the flue sheet and on the hole in the flue sheet, and on the inside to engage threads on the outside of the pipes. In the ordinary construction the flues are inserted in opposite holes in the flue plates, and the ends of the flues are spread out and bent over or riveted to the flue sheets, and if it becomes necessary to remove a flue a skilled workman must be employed. By this construction it will be seen that the fiues are detachable and can be inserted or removed by an ordinary workman, and they serve aiso as braces to the flue sheets. The inventor claims that by the employment of copper nuts a galvanic action is created between the copper nuts and the iron threads on the ends of the flue which prevents the iron thrcads from rusting, whereby their strength is impaired, and the copper nuts will not oxidize.

An Improved Car Coupling Device.

An invention for converting orāinary draw-bars of cars into automatic couplers with but little alteration of the draw bar, and in a simple and inexpensive manner, securing to trainmen all the benefits of automatic coupling, is shown in the annexed cut.

A is a draw bar, such as is in ordinary use on cars. In the bottom of the draw-bar is pivoted a vertical trisger-bar whose upper end projects through a slot cut in the top of the draw-bar just back of the pin hole. When this bar leans forward on its pivot it is in position to be struck by the entering link. When it moves back, however, it retires into a vertical recess made to receive it, so that the solid abutment of the draw-bar receive the main concussion of the link and the trigger-bar is protected. To the top of this bar is joined a latch that, when the coupling pin is raised, enters a hole nearits lowe end and holds it up to keep the pin steady and erect. When it is raised a detachable piece is placed upon the top of the draw-bar formed with an eye at its front end, and is connected at its back end to the trigger-bar, by which it is held in place, the eye encircling the pin and holding it in position to drop quickly down when the latch is re
moved. Various modifications of this device are shown in the drawings forming a part of the patent. For uncoupling the cars without gring between them, t o each end of the car is attached a bracket, which carries a pulley whose plane is parallel with the end of the car. To the pin is attached a chain which passes over the pulley to the outside of the car aud is held by a suitable fastening. To this chain, between the pulley and the pin, is fastened a ch.in that extends to the top of the car and is fastened, aud by either of these the pin may be raised.
This device is patented by Mr. Charles E. Macarthy, of Forsyth, Monroe County, Ga.

A New Car Coupling.

Mr. Charles P. Williams, of Summit Point, Jefferson county, W. Va., has patented an improved automatic car coupler, illustrated by the accompanying engraving, in which the drawbar, provided with drawheads, has the usual opening for the reception of draw links or hooks, This opening is enlarged at its rear end, ard is provided with opposite shoulders against which rest a rectangular plate, the plate being pressed against the shoulders by the tension of a spiral spring placed behind it, whereby an elastic bearing is furnished the link or drawhook in coupling cars. The drawheads are made semicircular on their upper and lower face, and the front end is curved. The drawhook is made of a rectangular plate provided with opposite shoulders near its rear end, and an arm adapted to enter the opening in the drawhead, and has a slot in its rear end for the passage of a coupling pin, which also passes through

suitable holes in the drawhead. To the upper and lower faces of the drawhook are secured blocks whose inner faces next to the drawhead are cut away with the same radius as the circle of the end of the head, so that the drawhooks will
be capable of a slight vertical motion on the arc of a circle whose center is the coupling pin. Their front faces are also cut in the arcs of vertical and horizontal circles, as shown. The forward end of the drawhook is rounded and provided on its upper surface with a curved plate, with a curved plate secured to it having a round convex edge extending from its rear part. A similar plate, except that its rear part is convex, is secured to the lower side of the drawhook By this construction the drawhooks are adapted to rise and lower for cars of different height, and when coupled the upper convex plate of one hook riding under the lower concave of the opposite hook. They couple automatically when the cars are pushed together, and are uncoupled by a cord attached to the drawhook and extending to the top of the car. It will also be seen that should the cars leave the track they uncouple, and one car does not drag others from the track.

MECHANICAL INVENTIONS.

Novel Lasting Jack.

A novel and ingenious device for lasting boots and shoes, shown in the accompanying drawing, is patented by Mr George W. Hutchins, of Dover, Strafford county, N. H.
A is a frame, one end of which fits against a shoe bench and has perforated lugs to receive screws that fasten it to the bench. In the sides and outer end of the frame are formed deep recesses, and the forward parts of the edge between these recesses, are curved so as to serve as a can to guide the lower end of a lever, D. The Tever is hinged to one end of a forked bar, which has a hub at its center to receive and work upon a spindle formed upon the frame, A The other end of the forked bar has an arm projecting in formed upon it, that has a hole at itsinner end to receive and work upon the upper part of thespindle, the forked bar being thus provided with two bearings to give it steadiness. To the end of this bar is hinged the lower end of an arm that has a concaved head formed on its upper end to receive and support the forward end or toc of the last.
The heel of the last is perforated to receive a pin formed upon the upper end of the lever, D. Into a hole in the lower end of the lever is secured a set screw, the end of which rests against the cam formed on the frame, A, so that by turning the set screw the lever will be adjusted to receive large or small lasts. A lasting bar, M , 中s pivot
 small lasts. A lasting bar, M, \& pivot ed to lugs formed on the under side of the rear-middle part of the frame, A , and to a lug formed on its upper part a rod is hinged that passes down through a slot in the middle of the frame, A, and its lower end i a attached to a treadle. To the upper part of the lasting bar is attached a curved arm hinged to the bar, and provided with prongs and springs holding the curved arm down and the hinged bar back, whereby the upper leather can be drawn into place upon the last. These devices are all adjustáble to different sized lasts.

An Improved Lifting Jack

An improvement in-lifting jacks, as shown in the accompanying engraving, is patented by Mr. Johnathaa Beihl, of Slippery Rock, Butler county, Pa.
The standard of the lifting jack is made in two parts, one part being formed with a channel extending from its upper to near its lower end, and the other part serving as a face plate to cover the channcl in the first part. In the channel is placed a rack bar which moves vertically, and which re ceives motion from a pinion journaled in plates secured to the face plate of the standard, and back of the plates is a slot in the face plate, through which the cogs of the pinion and of the rack bar engage. The shaft upon which the pinion is journaled is extended at one of its ends beyond the journal plate, and has a square enlargement, and a power lever is pivoted to this enlargement by a pin which passes through the lever and rests in a groove formed across one side of the enlargement. By this means the lever has a lateral motion to and from the pinion. The side of the pinion next to the lever isformed with projections with which the lever engages for turning the pinion to elevate the rack bar. Theopposite side of the pinion is formed with a ratchet, with which a pawl, that is pivoted in a notch formed in the upper part of the frame, engages for holding the pinion from backward movement and holding the rack bar and weight at any desired point. This jack is simple, compact, cheaply made, and easy to operate.

Frame and rreadle for Glass Moulds.

A novel and ingenious invention relating to frames and treadles for holding and closing the moulds in which articles of glass are made, has been recently patented by Mr. Niles Granger, of Saratoga Springs, Saratoga County, N. Y. The invention is illustrated by the annexed cut.
To an upright standard extending from a cast iron bed is attached a vertically divided bottle mould, the two halves of which are connected together at their lower ends by a hinge. The mouth end of the mould is upright when it is closed.

The mould section, C, has attached to its back a section of ball, which is free to work or be adjusted in a socket in he upright part of the frame, the whole being secured together and adjusted by a bolt. This adjustment of the mould provides for stting it in a true upright position, which is very esential for making good and perfect work. The opening and closing secion of the mould opens by its own weight when
 pressure is removed from a treadle with wbich it is con nected, and that closes and controls it. J.his treadle is made in part of two side arms, which rock on bearings attached to the upright of the frame, and which are combined at one end with an adjustable crosshead, G. This crosshead is used for closing the mould and for letting the opening section down easily when opening under the pressure of the treadle Arranged loosely upon the cross head is a grooved roller, in the groove of which the handle of the opening section of the mould rests, and by which the friction is reduced, and the roller being loose on its shaft and free to move, all sideways crowding of the mould is prevented.

A Cotton Cleaning Attachment for Gins

A device by which sand, dirt, or trash may be removed from cotton while it is being ginned is patented by Messrs Jesse W. Thames and Robert I. Riley, both of Greenville Butler County, Ala., and is shown in the annexed cut in which a is the saw cylinder, b the brush cylinder and c the flue of a cotton gin of ordinary construction.
In the fiue, c, and at a proper distance from the brush, is placed a cleaner, extending out at the back part of the gin and forming the bottom of the flue. The cleaner has taper ing side boards, the narrow ends of which are toward the back of the gin and are above the broader ends, and are con nected by an inclined transverse board.

A series of movable slats are journaled in the side boards and adapted to rock therein like slats in and blind, and beveled so as to fit closely upon each other when the slats are shut. A rod passes transversely under the middle of the slats and is con nected by a series of staples to eyes, one in each slat, whereby the slats are opened or closed in unison by moving the rod. A regulating screw which passes hrough the end board of the
cleaner is secured to the upper end of the movable rod by which the motion of the slats is regulated and adjusted. Below the slats is a receptacle, closed with properly secured loors at the bottom, and in the center of which is placed a board to prevent too strong a curreut of air from the brush cylinder in the back part of the cleaner. When the slats are opened the current of air generated by the brush cylinder will carry the sand and dirt through the openings into the receptacle below them, the cleaned cotton passing over th ops of them into the lint room.
By the use of this cleaner those who run public gins can suit any customer by ginning his cotton just as he desires it.

Machine for Filing Gin Saws.

The accompanying engraving illustrates an improved macbine for filing gin saws, patented by Mr. Elias W. South of Anderson Court House, Anderson county, S. C.
With this machine the saw cylinder to be sharpened is re moved from the gin and supported horizontally on trestles or other suitable manner, a plank being laid across the trestles in front of the saw cylinder for the support of the frame of the machine, pins on the under side of which pass through the plank and hold it in position. a is a vertical rectangular frame, to the sides of which are secured two curved arms opposite to each other. At the outer ends of their curves project two parallel straight arms, with an open ing between them for the introduction of severalof the saws of the saw cylin-
the the end of
the arms being
curved and curved and
joined sogether. A cranked shaft is journaled in he horizontal sides of the
rame, and has secured to it a flywheel of usual construction. An interiorly geared wheel journaled by a short vertical shaft to the upper horizontal bar of the frame is provided with a handle by which rotary motion is imparted to a gear which meshes with a small pinioi fast on the upper end of the crankshaft and imparts a rapid rotary motion to the shaft. A short pitman is journaled to the shaft, the outer end of which passes through a hole in the curved end of the lower file holder. The upper and lower file holders are suitably connected together, and are so arranged that they cross each other, and a spring is placed between the rear bent ends, whereby the files are kept pressed together when in operation. They also pass through a loose guide to hold them in a proper position
for their work. When the handle of the machine is turned a rapid vibratory motion is given to the files and the tooth of the saw is quickly and nicely filed.

electrical invention.

Apparatus for Continuous Production of Ozone.
The engraving shows an improved apparatus for the con tinuous production of ozone, which has lately been patented by Theodore J. Yost; of Mahwah, Bergen county, N. J. In the engraving, B is a galvanic battery, and C a motor, consisting of spring power clockwork. D is the ozonizer, and E is an induction coil. The ozonizer is a glass tube at tached at its inner end to a short metal tube, at its outer to the mouthpiece, c. A rod or wire is sustained centrally in the glass tube and covered by protecting material, put on in sections. The outer end of this wire connects with the induction coil, and a wire from the other end of the coil passes to the inner end of the glass tube, around which it is wound to near the outer end. Between
 the sections before mentioned) are placed disks of metal foil baving ser rated edges that allow passage of air. The induction coil connects to the battery, E. A fan blower, run by the motor, C, being set in motion, a continuous eurrent of air is forced through the ozonizer, and during its passage it is charged with ozone by the silent discharge of the electric current through the glass. The operations being automatic and continuous, a constant discharge of ozone takes place from the mouthpiece, c, and a comparatively small apparatus will answer all ordinary purposes.

AGRICULTURAL INVENTIONS

A New Cotton Stalk Cutter.

Among the new inventions we find a simple and ingenious device for cutting down cotton stalks, in preparing the ground for a new crop, that is patented by Mr. Francis M. Thompson, of McKinney, Collins county, Texas. It is clearly shown by the annexed engraving. A sled is constructed of such a width as to pass readily between the rows of stalks. And the lower parts of the runners are made thin, so that they will bed themselves in the ground to steady the sled against lateral movement. To the middle part of the front cross bar and at a little distance apart are hinged by bolts the forward ends of two adjustable bars, the rear ends of which are held at the desired distance apart by a cross bar located at the rear end of the sled and secured to it by pins or other suitable means. Several holes are formed in the adjustable bars and in the sled runners to receive pins, so that cutters can be adjusted to such a distance apart as the width of the rows may require. To the adjustable bars, a little in the rear of their centers, are securely attached the inner ends of two knives which incline to the rearward. They are also inclined downward, slightly, toward their outer ends, so that they will cut the stalks close to the ground as the machine is drawn forward between the rows. To the rear part of the sled is attached a platform for the driver while using the machine, and standards are provided to take hold of to give him more security. The device is intended to be drawn by one horse, or by two, driven tandem.

An Improved Plow

A novel arrangement of the parts of a plow is patented by Mr. Joseph George, of Fayetteville, Washington county, Ark. In the accompanying engraving a is the share and b the shaft bar of a plow, made in one piece. c is the landside, having a lug secured to its inner face which projects below its lower edge and is bolted to the share bar, whereby the land-side and share bar are secured to each other. The forward end of the landside is bent angularly to its plane, so as to form a wing through which a bolt passes, securing it to the mould board. The colter forms a continuation of the land-side, abuts against its front vertical edge, and projects beyond the mould
 board. It is provided with a front cutting edge and is bolted to the land-side and share bar. A brace having bent ends is attached at one end to the inner rear face of the share bar and at the other to the inner faces of the mould board and share. The handles are of usual construction, and bolted one to inner face of the land-side and the other to the mould board in the usual manner, and braces extend from the handles to the beam. The beam is curved near its end, so as to form a plow standard, and flattened out near its
lower end and bolted to the land-side and share bar. It will
be seen that by this construction the several parts of the be seen that by this construction the several parts of th
plow are securely attached to each other, and the arrange ment is compact.

An Improved Harrow.

An ingeniously constructed harrow, in which all its parts in its movements in any direction will conform to the undu lations of the ground, is patented by Messrs. Henry B . Burger and Joseph B. Simpson, of Fincastle, Botetourt county, Va., and is quite clearly shown in the accompanying engraving.
$a a$ are the outer beams of the harrow to which the teetb are attached, and forming a square harrow. Each beam is formed of angle iron, the flange, b, of the iron projecting upward on the outer edge of the beam, thus making a barrow beam stronger and lighter than the ordinary construction. The ends of the beams are perforated to receive hooks that project upwardly from opposite corners of a triangular metallic block. This block has a central socket extending its entire length, into which is inserted an adjustable rod, i, which passes thence through a hole in a flange projecting downward from the metallic plate, l (provided with a series of adjustable holes), into any one of which the threaded inner end of the rod, i, may be inserted and secured by a nut. The inner end of these plates are formed into downward projecting books, each of
 which engages with the side of a central opening made in a metallic block placed at the center of the barrow. Clevises arc secured to the outer ends of two of the rods, lying in line with each other. In the normal condition of the harrow the four beams form a square; but if it is desired to widen the harrow in one direction it may be readily accomplished by adjusting the inner ends of the rods, i, along the line in which the harrow is to be widened and placing them in boles nearer the outer ends of the plates, l. By this construction it will be seen that the outer harrow beams are pivoted to each other at the ends, and will conform to the undulations of the ground. The ooth of this harrow is triangular, the triangle being formed of sides of unequal length, and is attached to the side of the tooth holder by a bolt and nut passing tbrough holes in the tooth that hold it at either of its angles, and the tooth holder is bolted to the frame of the harrow.

New Portable Fence.

Mr. Oscar E. H. N. Reichling, of Marion, Grant county, Iowa, has patented an improved portable fence, that is easily erected or taken down and stands firmly when erected. The construction is shown by the accompanyiug cut. A base plate, A , is provided with a slot into which the lower end of the upright board, C , is placed. This board is provided with a series of apertures to receive the ends of transverse pins, D, wbich have a greater diameter in the middle than at
the ends. The opposite ends of the pins are passed into an upright board corresponding with he first, but which rests on the base plate. The lwo uprights
 are then pressed together through apertures provided for into the base plate hrough apertures provided for this purpose. The upright boards are prevented from coming together by the thickness of the middle part of the pin, D , and in the
opening between the boards are placed the slats which have a shoulder formed at each end that rests upon the pin, D, and prevents swaying endwise. The upper slat is provided with notches in its under edge into which the pins, D, pass and thus serves to bind the several posts together. The slats are stiffened by means of a board, H, resting upon and crossing them on one side, and provided with a loop at the top and bottom, through which a bar is passed resting on the other side. The base plate is held to the ground by wooden spikes driven through it, or by pins having heads that catch on the plate.
The slats of any panel can be opened at any time, conveniently and rapidly, by removing the board, H, and the rod. This is easily done, as none of the parts are nailed together.

A Combined Cotton Planter and Fertilize Distributer.

The device shown in the accompanying engraving is a peculiarly arranged and constructed cotton planter and fertilizer distributer combined. A A are wheels revolving on anaxle B , and having on the inner ends of their hubs notched bands. The axle, B, is made square next to its journaled ends, and upon its squared parts are placed clutch bars, D, which may be moved upon the axle to enter or be withdrawn from the notches in the bands of the hubs of the whe l_{1} to cause the wheels to carry the axle with them in their revolution, or to revolve on their journals. Theaxle,

B , is made round at its point of intersection with the frame, E , and its rounded parts revolve in bearings attached to the side bars of the frame, to the forward end of which is attached a tongue, and a hook to receive the draught. A hopper is placed over the middle part of the frame, E , and is attached at its corners to the upper end of four bars, I, the lower ends of which frame. The ends of the hopper ex-
frame to serve as ends to the discharge chamber. The sides of the discbarge chamber are hinged at their upper edges to the side bars of the frame, so that the opening may be larger or smaller for more or less seed or finer or coarser fertilizer to be distributed. To the square part of the axle within the hopper is attached a hub having radial arms, to force the seed or fertilizer into and out of the discharge chamber. To the middle forward part of the frame, E , is attached a plow to open a furrow to receive the seed, and to its rear is hinged a block to pack the sides of the furrow and prevent the soil from falling in. The furrow is filled and the seed is covered by a coverer attached to the rear part of the frame, E. By the above construction it will be seen tbat the machine may be used as a cart for carrying the fertilizer to the field by sliding the clutch bars along the axle so as not to engage with the hubs, and when the machine is at the field the clutch bars are made to engage with the hubs and the fertilizer distributed.

A Novel Check Row Corn Planter.

We find among the recent patents a novel device calculated to simplify and cheapen the construction, and insure accuracy in the operation of corn planters, of the class in which the seed dropping mechanism is operated by a cord or wire extending across the field. It is the invention of Mr. Lycurgus J. Bosworth, of Monmouth, Warren county, Ill., and is shown in the annexed cut. To the forward end of a frame, A, is attached a forked guide, to bring the cord into proper position for the balls attached to it at suitable distances to enter the guide channels attached to or formed upon the wheel, H. These channels allow the cords and balls to pass through freely, but have slots to their inner sides that will allow the cord, but not the balls, to pass through, and are made with an out ward bend, near their rear ends, for the balls to draw against and turn the wheel, H. To the rear end of the frame, A, is pivoted a forked guide, the arms of which are made so that the pressure of the cord may have sufficient leverage to turn it, and to its base is attached a double pawl to engage with shoulders formed upon the rim of the wheel, H, to prevent the wheel from rebounding out of position. The channels in the wheel, H, are so arranged that when the rear end of either is opposite the rear guide, the forward end of the other will be opposite the forward guide. "I'he whecl, H, is pivoted to a bearing attached to the frame, A, and to the lower end of the pivot is formed a crank to which is pivoted a seed dropping slide. With this construction the reciprocating motion of the wheel, H , will operate the slide and the seed will be dropped.

An Improved Skylight.

The accompanying engraving shows a peculiar construction, by which the metallic bars, cnrbs, and rafters of skylights are so adapted to each other that troublesome fitting is avoided, and strength, simplicity, and cheapness are secured. It is also formed so that the moisture resulting from condensation is amply provided for, and the glass securely held without the use of putty, at the same time allowing ree contraction and expansion without permitting the glass to rattle.
This very desirable result is accomplished by the inventor by making the ridge bars of metallic plates, so bent as to form upper shelves and lower ledges when they are riveted to a central vertical plate. The ridge bar is strengthened by

bracing plates reaching from the vertical plate to the upper shelves.
The rafter bars are also formed of bent plates having. upper ledges, and in the center of the sides water gutters are formed. These plates are also riveted togethers Upon the top of the rafter bars is placed a strip of fetwich han
been dipped in lead and oil; upon this felt the glass is placed and upon the glass another strip of felt. A hood is placed over the center of the rafters and ridge plates tha extends over the felting and glass, and is secured by any suitable means.
A curb is formed of a single piece of metal bent so as to inclose a chamber, and upon which the lower ends of the rafters rest. On its under side are formed angle shelves by which it is secured to the wall, and on its inner side are holes opposite the gutter on the side of the rafter through which the water of condensation escapes
The patentee of this device is Mr. Frederick H. Leadley, of St. Louis, Mo.

A Novel Check Row Seed Planter.

A novel check row planter, in which the seed-dropping device is operated by means of a cord or rope that is staked across the field, is shown in the annexed engraving. A is a portion of the planter to which is attached the runners and seed boxes. B is a bar secured to the forward part of the planter, of such length as to reach half way to the nearest planted row on each side, and is provided at each end with two sheaves so arranged as to inclose the cord, C, and allow

the knots on the cord to pass freely between them. At the rear of this bar are two crank levers, pivoted at their elbows to a suitable support, and having their adjacent ends pivoted together, and their opposite ends extended forward slightly beyond the bar, B. The forward ends of the crank levers are provided with journals on which are secured the loops of the guide arms, F , so that they shall be in line with the bar, B. These arms are constructed with loops at their upper ends, which are contracted at the bottom where friction rollers are placed, so that the cord, C , shall be allowed to pass freely through the contracted portions until one of its knots are drawn against the guide arm. The contracted portions obstruct the passage of the knots, so that as the planter moves forward they will be forcibly drawn against the guide arms, and the arms made to oscillate and allow the knots to pass through their loops at their larger portion. The lower ends of theguide arms are connected to the crank levers by rods that cross each other in the center, and are secured to the journaled end of the crank levers. For planting one row at a time, a dropping slide is connected to the crank levers so as to be moved back and forth on the longitudinal axis of the planter. For planting more than one row at a time, a third crank lever connected to a transverse dropping slide at one of its arms and to the former crank levers at the other is employed. By having two sheaves at each end of the bar, B , the necessity of changing the rope is avoided.
This ingenious and useful device is patented by Mr. Oliver L. Hall, of Parsons, Labette county, Kan.

A Band Cutting and Feeding Attachment for

Messrs. Samuel Caldwell and Jordan Burgess, of Green field, Highland county, Ohio, have patented a novel and ingenious improvement for cutting bands for and feeding thrashers. The accompanying engraving illustrates the device.

To the top bar of the frame, A, of a thrashing engine, and

in front of the cylinder, is hinged the inner end of a frame, D, which is supported in a horizontal position by inclined bars, E, that are attached at its outer end, and are in such position that their lower ends will rest in the angle between the front posts and the lower bars of the thrashing engine. The sides of the frames, D, have casing boards to prevent the grain from escaping laterally. Rollers are journaled to the outer end of the frame, D, and to the lower end of the inclined bars, E, over which passes an endless feed apron for carrying the grain to the thrashing cylinder. Beneath the inner part of the apron is placed a bottom to catch scattered grain, and also fan blowers, the discharge spout of which is of the same width of the endless apron, and is placed so as to direct the air blast beneath the apron and in the direction of the thrashing cylinder, thus preventing the grain from being carried back by the apron and clogging the machine. To the frame, D, at a little distance from its inner end, is journaled a shaft to which, at suitable dis tances, are secured circular cutters, K , made smooth-or serrated; as may be desired. The cutters are driven by a belt connected with the shaft of the cylinder, and are covered by a curved plate to prevent accidents. In using, the bundles are laid upon the outer part of the endless belt, and as they
are carried to the thrashing cylinder, their bands are cut by the rotating knives. The device is also hinged so as to be thrown upon the top of the thrasher for convenience in moving and to obtain access to the cylinder.

MISCELLANEOUS INVENTIONS.

An Improved sifter

Mr. Augustus J. Frank, of Warsaw, Hancock county, Ill., has patented an ingenious and useful device for sifting flour or other comminuted substances. The device is shown in the accompanying engraving. A is a cup having in its lower part a sieve of curved form, the curve forming an arc of a circle, the radius of which is equal to the distance between the sieve and a slot, a, formed in the upper part of the cup. The cup has a handle, and a bottom below the sieve if preferred. The slot, a, in the cup is curved, and has its convex side down. In the opposite side of the cup, A, but near the sieve, is a slot longer than $\mathrm{tb} \in$ slot,
 a, also having its convex side down. A funnel shaped vessel fits loosely into the cup, A, and is supported by a stud and the shaker rod, that have bearings in the above described slots. A scraper is attached to the inside vessel for the purpose of sweeping the flour or other material over the sieve. When flour is poured into the inner vessel, it falls upon the sieve, and the shaker rod is moved with a reciprocating motion, causing the scraper to pass over the sieve and moving the flour, thereby distributing and sifting it.

A Novel Street Car Coupling.

A coupling of novel construction, for attaching horses to street cars and that is convenient and safe. has been lately patented by Mr. Ole A. A. Möldal, of Chicago, Cook county, Ill., and is illustrated by the annexed engraving. The engraving shows the platform, dashboard, and drawbar, C, of a street car. The forward end of the drawbar is widened and flattened to serve as a support for the double-tree, and in the bar just back of the widened part is a hole for the coupling pin. On the draw bar. at a little distance in the rear of the pin hole, is formed an arm which is curved upward and forward, and in its forward end has a hole to receive tie coupling pin, the arm being of such length that the hole shall be directly over the nin hole of the draw bar Between the curved arm and the draw bar is sufficient space to allow the double tree to have the necessary play. The forarm is thickened and has arm is thickened and has side to receive the edge of
 side to receive the edge of
a disk pivoted to it in the rear of the pin hole-the and sur size as will enter an annular groove in the coupling pin, just below its head, and lock the pin securely in place. In one side of the disk is a recess of such size that when the disk is turned to bring the recess next the pin, the pin can be iuserted or withdrawn freely. The rod to which the disk is attached passes up through a guide hole in an arm attached to top rail of the dash board, and has a handle hinged toits upper end in such position that when the handle is turned down upon one side of the bar, the recess in the disk will be turned away from the pin and the pin locked in place, and the handle turned in an opposite direction, the pin can be inserted and removed. .The coupling pin is raised and lowered by a chain.

An Improved Folding Bed.

Messrs. Joseph Novak and Joseph Strobel, both of Chicago, Cook county, Ill., have patented certain novel and useful arrangements of parts of folding beds, which are shown in the accompanying engraving.
A is a bedstead which folds together at the center, the folding hinges of which are attached to the adjacent ends of the strip, C, hinged to the upper edges of the side-boards of the bedstead that are recessed to receive the said strips. When the bedstead is opened the strips, C, are turned down against the sides to lock it open. Latches are hinged to one part of the bottom of the bedstead in such a position tbat they will engage with catches attached to the bottom of the other part. The latches are held in gear with the catches by wire springs attached to them and to a hinging rod, with which the latches are rigidly attached. On the ends of the hinging rod are formed arms, which project in the oppositedirection from the latches, so that the latches can be raised by operating the arms
 by cords attached to them, which pass out through the bottom of the bedstead. The bedstead is supported upon legs having casters attached to their lower ends, and ars hinged at .their upper ends to supports attached to the bottom of the bed.
Brace rods are hinged to the lower ends of the legs and the bottom of the bedstead near its hinged joint. With
this construction the legs are in a vertical position when the bed is opened, and are held against the bottom of the bedstead when it is folded. N is a woven wire mattress, the respective ends. of which are attached to the bar, \mathbf{O}, and roller, P , and to the bar and roller are connected levers and springs, by which the mattress is given proper tension when the bedstead is open. The middle part of the mattress is supported by spiral springs secured to the bottom of the bedstead.

Paper Box.

The invention shown in the annexed engraving is a new construction of a folding box having its body and cover in one piece, so that it can be set up without paste or other adhesive material. The blank, of which the body portion of the box is formed, is cut so as to form the flaps, a, b, c, and the cover portion so as to form the flap, d, and the fastening flap. The blank is then scored in such a manner that corresponding square portions form the bottom and cover, and other corresponding rectangular portions form two sides of the box, the other two sides bethe other two sides be-
ing closed by the folding in of the flaps
 ing in of the flaps
of the main body of the box. The front side portion of the box has siots formed through it to receive the ends of the locking flaps. The flaps of the body and cover are perforated to receive a cord or tape to secure the box in a folded position. It will be seen that the box and cover are complete in one single piece, and that it can be cheaply made and easily set up for use without paste, and when unfolded lies in a perfectly flat con dition, occupying very small space for shipping or storing.

Chimney Cowl.

Mr. Charles S. Hempstead, of Masontown, Fayette County, Pa., has patented a new and useful improvement in chimney cowls that is shown in the annexed cut.
A is a vane attached to a chimney cowl, the cowl being attached to a chimney cap, which has an ornamental outline, and is formed with a circular collar on its upper side, and from its under side extend right angled flanges, that surround the chimney on the outside and rest upon its top, as shown. To the under side of the right angle flange on the top of the chimney is attached a downwardly bent bar that extends down into the chimney, in the bottom portion of which is formed a step in which the vertical spindle of the cowl is journaled. Upon the
upper side of the above upper side of the above
mentioned flange is placed an upwardly bent bar, which is perforated in its cen ter and forms the journal for the upper part of the cowl spindle which extends above the collar of the chimney cap, where it is reduced in size and forms the pivot for the arm of the vane. Upon the vane arm is placed a collar, J, which surrounds the collar of the chimney top and turns with the vane. The cowl is mounted on the upper edge of the collar, J , and is secured to it so that the cowl is adapted to be turned upon the collar for setting it, so that its opening will be toward or from the vane, as desired.

An Improved Wardrobe Bedstead.

In the accompanying engraving a novel and conveniently operated wardrobe bedstead is shown, which has lately been patented by Mr. Townsend Saxton, of Brooklyn, Kings County, N. Y.
In the engraving A is a head board, the sides, B, of which are made wide at their lower parts and gradually decrease to their upper ends. To the lower part is attached a weight which rests upon blocks secured to the sides and designed to hold the head board in place while the bed is raised or lowered. To the forward edges of the lower part of the sides, B , is attached a front board, C , from the upper edge of which a top board extends inward to such a position that the bottom of the side boards, F , will stand near it when they have been raised to a vertical position, and the space between them is closed by a moulding. The sides, F, are pivoted to the sides of the headboard by a rod at tached to its sides and to the bottom of the side boards at a litttle distance from their
 ends. The upper corners of the side boards are rounded to allow the end and bottom of the hoards to come as close as possible to thehead board. The ends of the side-boards are attached to the ends of a rod, J, upon which is placed a spiral spring, K, which is coiled in opposite directions from the center toward its ends. A loop is formed in the middle of the spring, through which and under the rod, J , is passed a rod, L , which passes
along the bottom of the bed, and its other end is passed through a staple in the bottom.
The ends of the spring, K, are extended downward to serve as levers, and to them are secured the spiral springs, O. This construction so balances the weight of the bedthat it is easily raised or lowered.
The foot-board is hinged to the bottom of the side-board, so that it stands at right angles to it when the bed is lowered, and by means of rods and a lever it automatically takes a position parallel to the bottom when the bed is folded, and serves as a cornice.

A Novel Tracing Desk.

Mr. Edward T. Gibson, of Fort Washakie, Sweetwater county, Wyoming Ter., has patented a transparent desk of novel construction for tracing purposes. This device (shown in the accompanying drawing) is a narrow table, upon which is supported an inclined desk, consisting of a three-sided rectangular base, upon which is secured in an inclined posi tion a frame, and a plate of glass is let into the frame. Near the lower edge of the frame is secured a strip which serves as a rest for a sheet of paper placed on the glass, and a similar piece placed above the strip will hold the two sheets together. To use the desk in making tracings from sheets of paper it is to be placed close in front of a window, with the upper border of the inclined glass plate and the open side or̂ the base toward the window. The window curtain, which should be opaque, is then lowered until it reaches the upper edge of the desk, so as to limit the entrance of the light to the open side. The object to be traced is then placed on the glass plate, and over it is placed the blank paper or lineu that is to receive the tracing. By this device the light illuminates the paper and object to be traced, so that a copy is easily taken.

An Ingenious Faucet

A new faucet that can be fastened in a barrel or cask, without causing a loss of any of its contents, has been recently patented by Mr. Gustav A. Naumann, of Newark, Essex county, N. J., and is shown in the annexed engrav ing. A screw plug, A, is provided with a flange, B, having two opposite notches for applying a key to screw it into the barrel head. It may be made beveled instead of with a thread and driven into the aperture. It is provided with a threaded aperture, D, into which a bent tube is screwed, that has a notch or recessed projection upward, when the bent end is downward. A valve, G, having a packing strip fitting over the inner end of the aperture, and is guided in its movements to and from this aperture by guides project

ing from the inner surface of the plug, and are united at the ends by a transverse piece. A screw on which the valve, G, is loosely mounted, is mounted in the transverse piece. The outer end of the valve screw has a head in which is a squared aperture to receive the squared end of a key. The plug, A, is preferably secured to the barrel when it is empty, and when it is secured the valve, G, rests against the aperture, D , and closes it. If any of the liquid is to be drawn the bent tube is screwed into the aperture, D , and the key is inserted in the aperture in the head of the valve screw, and when the key is turned the valve, G, will be moved, and the aperture opened, and when the key is reversed the valve will be closed.

Bushing for Barrels.

Mr. Thomas J. Loftus, of Sacramento, Sacramento county, Cal., has patented a device for preventing the aperture in barrel heads, into which the spigot is driven, from being unduly enlarged, that is clearly shown in the accompanying engraving.
A bushing made of any suitable metaī is provided with an external screw thread, and with a flange at its outer end: It is also provided with an annular recess on its inner surface, whereby an annular ridge will be formed at the outer and inner ends of the bushing. The recessed inner surface of the bushing is further provided with a series of circular grooves, forming projections toward the rear end of the bushing. The inner surface of the bushing is slightly beveled from the outer toward the inner end. A short tubular lining of wood or other suitable material is driven into the bushing untilits sides pass into the recess in the inner surface of the bushing, and the same will be held by the front ridge and the circular projections. The bushing is then screwed into the aperture projections. The bushing is then screwed into the aperture
in the barrel head. A cork or other stopper is driven into
the bushing, and when the barrel is to be tapped the cork is driven into the barrel by the spigot, and the packing of the bushing causes it to fit tightly, preventing leakage. If the
edges and relieve the friction. The extension portion or rim is composed of segment leaves, C C', fitted to slide radi ally, which, when
opening for the spigot becomes too large the packing of the bushing may be removed and replaced by a new one, and thus remedied without requiring a new head to the barrel.

Grain Drier.

A new and useful improvement in grain driers has re cently been patented by Mr. Henry R. Heffner, of Circle ville, Pickaway county, Ohio, and is shown in the accom panying drawing.
A is an uprighthollow cylinder of any desirable length or size, and is finely perforated, and it may be supported in an upright position by a suitable frame. Within this cylinder is placed concentrically a smaller cylinder, B, also finely perforated, and is connected with and supported from the cylinder, A, by bolts that also serve to distribute the grain as it passes through the space between the cylinders. To the upper end of the cylinder, A , is attached a hopper to guide the grain into the space between the cylinders, and to the upper end of the cylinder, B , is attached a conical top to prevent the grain from lodging on its top. In the lower part of the cylinder, A, are located slides by which the discharge opening can be regulated to detain the grain a longer or shorter time in the drier, as its dampness may require. The moisture expelled from the grain by the heat escapes through the perforations of the cylinders. When the grain is to be dried with hot air the air is introduced at the bottom of the cylinder, B, through the
 drawn out, fit form a complete rim around the rim around the
table. The segtable. The seg-
ments are placed alternately are placed
 and below the fixed table, A. The upper segments, C, rest on this table and are provided with headed pins that extend through slots formed in the table, by which the segments are guided, and also re ained in place when drawn out. The lower segments, C^{\prime}, move in apertures formed in the table rail, and are provided with headed pins passing through slots in the table, by which the rear ends of the segments are supported and their out ward movement limited. The rear portions of these segments are recessed and raised to the level of segment, C, after being drawn out, and to support them in this position slide blocks are placed beneath the raised segments. By placing the segments in two sets, above and below the table, space is obtained for closing together at their in ward movement; and the combined surface of each set being nearly equal to the fixed table, A, the extension more than doubles the surface of the table. The leaves may be drawn out one or more a a time, and extending the table in one or more directions. The revolving circular top is used for receiving dishes and allows them to be brought in front of each person readily.

This device is patented by Mr. John F. Schultz, of New York city.

A Novel Table Lear Support.

Messrs. Josiah H. Mosher and George E. Crane, of Port land, Ionia county, Mich., have patented a new table-lea support, of which the accompanying engraving is an illus tration. A is the arm or support for outer cylinder by an air tube connected with a heating cham ber. When the grain is dried by steam a steam-tight cylinder is suspended within the cylinder, B , to which steam enters through an opening in its lower end, through which passes a pipe that extends nearly to the upper end of the chamber. The cold air and water of condensation are drawn off through a small pipe also connected at the lower end of the cylinder, and passes out through the sides of the cylin ders, A B. With this device steam or air may be used, and the grain used without changing the construction.

An Improvement in Side-bar Vehicles.

A new thing in side bar vehicles has lately been patented by Mr. Charles E. Lee, of Louisville, Jefferson county, Ky., and is illustrated by the accompanying engraving. In the improved vehicle the side bars are each provided on its under face with a longitudinal groove, extending the entire length of the side bar, and adapted to receive tongues of T-shaped metallic plates, the bottom plates of which are secured to the under face of each of the side bars by suitable fastenings, thus greatly strengthening the side bars and increasing their rigidity.
On the under face of the side bars, near their ends, are placed springs, the upper and lower leaves of each of which are provided with ears at their outer ends, and are secured to the bars by clips. To the
ears of the springs is ears of the springs is
secured by cross bolt a cou pling, to the lower end of which is attached, by a longitudinal bolt, one end of a cross spring, the opposite end of the spring
 being secured to an opposite coupling similarly constructed. Wooden cross bars are secured to the middle of the cross springs by means of clips, and to these bars the body of the vehicle is secured. By this construction it will be seen that the body is adapted to move up and down by means of its spring connections with the side bar.
The head block is connected to the front end of the side bars on their under sides by clips which embrace the side bars and pass through the head block, and the rear end of the side bars are secured to the hind axle also by clips. By this construction the side springs are firmly attached to the side bars, head block, and hind axle, and the side bars are firmly secured to the front bolster and hind axle, forming a rigid frame, to which side and cross springs are attached.

An Extension Circular Table.

A novel and ingenious device, by which a circular dining table can be readily extended in size around its entire rim or in any portion of it, is shown in the accompanying engrav ing.
A is the main table fixed on legs and provided with a rail at and below its outer edge. At the center, in an aperture formed in the table and middle leg, is a tube that receives the pivot of a circular top piece, so that it is free to revolve. The tube rests at its lower end on a lever by which it, with the top, can be raised and lowered, and a suitable catch is provided at its outer end for retaining the lever in place. On provided at its outer end for retaining the lever in place. On e leaf, and B is a guide plate through which the free end of the rod moves. This plate is angular in form, and the horizontal portion is formed with a slot, and the vertical portion with an opening of greater width and con-
 nected with it, thus forming shoulders
at the vertex of the angle of the plate. The support is hinged to a plate, E, properly secured to the table-leaf. The main portion of the support is made of such a size as to pass freely the slot in the guide plate, but the outer end is en larged so as to almost fill the opening in the plate, and is formed with side stops, which, when the leaf of the table is raised, engage with the shoulders of the guide plate and hold the leaf in a horizontal position. To lower the leaf, it is only necessary to raise the outer end of the support so that the shoulders will disengage each other. When the leaf drops down the support will be held by the slot of the plate, in an inclined position ready to follow down the plate to automatically engage with its shoulders when the leaf is again raised

An Ingenious Car Truck.

The engraving is an illustration of railway car trucks of novel and ingenious construction, adapted for use upon rails without ties or upon any temporary railway having sharp curves either from a vertical or horizontal plane, such as may be laid upon an uneven surface without grading. To accomplish this result, truck frames that are swiveled independently of each other to opposite sides of the running gear, by means of bolts, pass through the ends of the bolsters. Each truck frame is provided with two wheels, arranged one in front of the other, and the wheels are constructed with a double fiange, adapted to overlap the rail on both sides, so that they shall be braced without the use of ties. The tread of the wheel is made slightly broader than the.rail, in order

that the wheels shall keep the track in turning a sharp curve. It is obvious that with this construction there is less wear and strain on the rails than where the trucks are rigidly connected together.

Each of the bolsters is provided with a reach that is hinged so as to oscillate vertically, and they overlap each other so as to be secured and adjusted by means of a bolt pass ing through perforations in both, and are braced on opposite sides by rods that are connected to the bolsters by fiexible joints. By this means the track frames are allowed to accommodate themselves to any undulations in the track without disturbing the position of the load.
It will be seen that this car truck may be used under exceptional conditions where almost any other truck would be useless, owing to the fact that a smooth and perfect track is a condition of their usefulness. This invention is patented by Messrs: Alanson A. Blackman, Elhanan Blackman, and Hyrcanus Blackman, all of Snohomish, Snohomish county, Washington Ter.

Busints amd ectomal.

The Ohargefor Insertion under this head is One Dollar

 a line for each insertion ; about eight words to a line. Advertisements must be received at publication office aseanly as Thursday morning to appear in next issue.
16 fl.Steam Yacht,very cheap. Box 10 , Bridgeton,N,J.

 Lathes. -20 inch swing, 8 foot bed, ready June 1. F.C. Excelsior Metallic and Steel Tapes. The most durable and the handiest made. General depot, Keuffel ad Esser, New York.novel without a plot in it would be as rare to find a stationer's stock without Esterbrook's Pens. Wanted, a Mechanical Draughtsman, acquainted with
stationary engine and general machine work. Machinst stationary engine and general machine work. Machinist
preferred. Address TTE. J., P. O. Box $\boldsymbol{\pi z 3}$, New York.
 H. W. Johns. Manufacturiny Company. New York.
GENTI.EMEN: Some of your Asbestos Roofng was GENTI.EMEN: Some of your Asbestos Roofng was used Rood order. The under side of the roof is exposed to
steam and acid kenerated in drying lumber. and a tem. steam and acid generated in drying lumber. and a tem-
perature of 255° beat; while the roof rafters and sheath-

 useless on our kilins. Yours very truis. L. Prine. Supt.
A thoronghly competent Foreman in an Organ FacDrop For
Drop Forgings. Billings \& Spencer Co
"T. New. 33 John St. New York, has sold and applied over Hifty million feet of his Prepared Roofng, the major
part being placed upon manufacturng estabishments."
 Agents Warted.- -None but inteliigent and energetn
need apply. Must furnish good recommendations, or nos
 given. Akents are now making from 810 to 815 a day.
Address, for terms, The Infalible Coin Scale Co., 287 Address, for terms, The
Broadwany, New York city.
Improved Skinner Portable Eng̣ines. Erie, Pa. Jas. F. Hotchkliss, 84 John St...N. Y.: Send me your
free book entitled " How to Keep Boilers Clean," con-
 Steel Stamps and Pattern Letters. The best made. J. Abbe Bolt Forsing Mobine Abbe Bolt Forging Machines and Palmer Power Ham.
mers a speciatty. s.C. Forsaith $\&$ Co., Manchester, N.H. Machinery for Light Manufacturing, on hand and For Power \& Economy, Alcott's Turbine, Mt. Holly, N. J. Combination Roll and Rubber Co., 27 Barclay st.,
N. \mathbf{y}. Wringer Rolls and Moulded Goods specialties. Presses \& Dies (fruit cans) Ayar Mach. Wks., Salem,N.J. Latest Improved Diamond Drills. Send for circ Wood-Worki ing Machinery of Improved Design and Workmanship. Cordesman. Egan \& Co., Cincinnati, 0 Supplement Catalogue,-Persons in pursuit of infortiffc subject, can have catalogue of contents of the Scrtific subject, can have catalogue of contents of the SCI-
ENTIFIC AMIRICAN SUPPLEMINT sent to them free.
The SUPPIEIEVTC The SUPPr, ignevt contains lengthy articles embracing the whole range of engineering, mechanics, and physi-
cal science. Address Munn \& Co.. Publishers, New York. Split Pulleys at low prices, and of same strength anci appear:unce as Whote Pulleys. Yocom \& Son's Shafting
Works. Drinker St., Philadelphia. Pa. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. List 27.-Description of 3,000 new and second-hand Machines, now ready tor distribution. Send stamp for
same. S.C.Forsaith \& Co.,Manchester,N.H.,and N.Y.city. Presses, Dies, Tools for working Sheet Metals, ctc.
Fruitand other Can 'Yools. E. W. Bliss, Brooklyn. N. Y. C. B. Rogers \& Co., Norwich, Conn., Wood Working tle Electio Lights. - Estimates given and contracts made. 631 of the Arc The Sweetland Chuck. See illus. adv., p. 270. Machine Knives for Wood-working Machinery, Book Binders, and Paper Mils. Also manufacturers of Solo4 to 40 H. P. Steam Engines. See adv. p. 285 Supplee Steam Engine. See adv. p. 221.
Saw Mill Machinery. Stearns Mfg. Co. See p. 286 See Bentel, Margedant \& Co.'s adv., page 304 Steam Hammers. Improved Hydraulic Jacks. and Tube
xpanders. R. Duageon. 24 Columbia St., New York.
Machine Diamonds. J. Dickinson, 64 Nassau St., N.
The Berryman Feed Water Heater and Purifier and Telegraph, Telephone, Elec. Light Supplies. See p. 3:6. 50,000 Sawyers wanted. Your full address for Emersond pages of valuable information. How to straighten
saws.etc. Emerson. Smith $\&$ Co., Beaver Falls, Pa.

Eagle Anvils, 10 cents per pound. Fully warranted For Pat. Safety Elevators, Hoisting Engines. Friction
Clutch Pulleys, Cut-off Coupling see Frisbie's ad. p. 304 . Elevators, Freight and Passenger, Shafting, Pulley. and Hangers. I. S. Graves \& Son, Rochester N. Y. For Heavy Punches, etc., see illustrated advertise-
ment of Hilles \& Jones, on page 304 . ment of Hilles \& Jones, on page 304.
Centrifugal Prmps, 100 to 35,000 gals. per min. See p. 304 . Barrel, Key, Hogshead, Stave Mach'y. See adv. p. 305 . Lehigh Valley Emery and Corundum Wheels are free
cutting, durable, and safe. Can be adapted to all kinds cutting, durable, and safe. Can be adapted to all kinds,
of work. Write for prices, stating sizes of wheels you se. Lehigh Valley Emery Wheel Co., Lehighton, Pa Minerad Lands Prospected, Artesian Wells Bored, by
Ya. Diamond Drill Co. Box 423. Pottsville, Pa. See p. 305 . Catters for Teeth of Gear Wheels formed entirely by
machinery. The Pratt \& Whitney Co. Hartford. Conn. Steam Pumps. See adv. Smith, Vaile \& Co., p. 300.

For best low price Planer and Matcher. and latest improved Sash, Door, and Blin4 Machinery, Send
catalegue to Rowley \& Hermance. Williamsport,' Pa. The only economical and practical Gas Engine in the market is the new "Otto" Silent. built by Schleiche
Schumm \& Co., Philadelphia. Pa. Send for circutar. Common Sense Dry Kiln. Adapted to drying of allma terlal where kina,etc., aryng boure Seep.300. The Porter-Allen High Speed Steam Engine. South-
work Foundry \& Mach. Co.,430 Washington A ve.,Phil.Pa.

NEW BOOKS AND PUBLICATIONS.

dication. By A. A. W. Tipton, M.D By Jacksonville, Illinois: The Author. 8vo,

 leather. \$4A revised and enlarged edition of Daniel Clark's treatise, first published in 1866. Since that date Dr.
Tipton has brought outseveral editions at his Tipton has brought out several editions at his own cost,
thus proving the fervency of his discipleship. He believes that the electric current, applied as Clark's theory directs, in connection with other remedies, is a valudirects, in connection. How far the theory bears the test
able curative agent. of practi
New York Water
of Public Works.
$8 v o$ cly.
Department
Commissioner Thompson's report on a proposed new aqueduct and storage reservoir for additional supply from Croton River, with detaled report of Isaac Newton, Chief Engineer of the Croton Aqueduct, and opinions of consulting engineers. The latter repo the present and possible scope of New York's water supply from the Croton Valley and the Housatonic River. It carries an excellent map.
How to Make Pictures: Easy Lessons for THe Amatedr Photographer. By
Henry Clay Price. New York: Scovill Henry Clay Price. New York: Scovill
The simplicity, cheapness, and portability of the apparatus employed in dry plate photography has enabled rravelers, students, and others, who wish to keep permanent memorials of scenery, buildings, or other ob-
jects of nature and art which may seem wortly of rejects of nature and art which may seem wortly of re-
membrance. This little handbook sufficiently describes membrance. This little handbook sufficiently describes
the apparatus used by such amateur photographers, and so much of the art of photography as they may need to know to make a good beginning.
Annual Report of the Fruit Growers, Association of the Province of On-
tario for the Year 1881. 8vo, pp. TARIO
136.

Annual Report of the Entomological FOR THE Year 1881 . 8vo, pp. 85. Tive Assembly.
tive
These two reports bound together make a creditable volume. The first indicates a promising interest and progress in Canadian fruit growing, forestry, and
kindred subjects. The second contains much useful inormation relative to Canadian insects.
A Systematic Handbook of Volumetric AnAlysis. By Francis Sutton, F.C.S.,
F.I.C. Philadelphia: Presley Blakiston. Cloth, pp. 471. \$5.
Working chemists need no introduction to this stan-
dard treatise. For this fourth edition the work has been carefully revised, and so far as the progress of chemis try has made necessary, rewritten.
American Chemical Journal. Edited, with the aid of chemists at home and
abroad, by Ira Remsen, Professor of Chemistry in the Johns Hopkins Uni-
versity. Baltimore: Published by the editor, 6 parts a year. pp. 400 to the 500 .
Price $\$ 3$. Single number, 50 cents. Price $\$ 3$. Single number, 50 cents.
The third year and volume of this valuable periodical search in chemistry its standing is unsurpassed in Eng lish. The frequent reviews of recent progress in the several departments of applied chemistry constitute a
Yensie Walton's Womanhood. By Mrs.
S. R. Graham Clark. Boston: D. Lothrop S. R. Graham
\& Co. $\quad \$ 1.50$.

Theauthor tells us that this is not a book for critics, but for the sorrowing, burdened toilers of her own sex, which bars an opinion here.
day-school library love story
Interiors and Interior Details. IntroNotes on Wood Finsish. By William
B. Tuthill. New York: W. T. Comstock. Quarto, cloth.' 52 plates. $\$ 7.50$. or architects and architectural designers, reproduce from original drawings by prominent architects in New York, Boston, Chicago, and other cities.
Report of the State Board of Health ON The Eridemic OF Diphtheria IN
Frederick City. Maryland. By C.
W. Chancellor, M.D., Secretary. BalW. Cha

The aim of the inquiry here reported upon was not
merely the abatement of the epidemic, but also such merely the abatement of the epidemic, but also such a
study of the conditions which invited and made it possible or might contribute to the general sanitation of the State. There is reason to fear that many towns,
naturally as favorably situated for health as Frederick City is, are more or less rapidly preparing for a similar scourge by a general neglect of sanitary precautions. Whitehead's American Pastry Cook. By Jessup Whitehead. Chicago
Hotel Reporter. Cloth. \$2.
Contains 814 tried receipts, plainly worded and given
even uncerlainty in following directions. It is more comprehensive than the title indicates, covering, in ad dition to fine pastries, ices, creams, and dessert dishes in
general cakes, and salads and cold dishes.
A Family Flight throdgh France, Germany, Norway, and Switzerland. By
Rev. E. E. Hale and Miss Susan Hale. Aboàd for Sunrise Lands. By
Edward A. Rand. Boston: D. Lothrop \& Co.
Two books of juvenile travel, profusely illustrated, and likely to be attractive to young readers, who will not suspect that the travels were invented to furnish a
thread for stringing a multitude of pictures unless they thread for stringing a multitude of pictures unless they
happen to get both books at once and see the sanue cuts happen to get both books at once and see the same cuts What is Bright's Disease? Its Cura-
bility. By Seth Pancoast, M.D. PhilaBILITY. By Seth Pancoas delphia: The Author. $\$ 1$
According to Dr. Pancoast's view Bright's disease in volves not the kidneys alone but the heart, lunge, and liver also, and the disease may exist for months be
fore albumen can be detected in the urine. fore albumen can be detected in the urine. The
"d isease is due to an ennervation of the nervo-vital energy." The first step toward cure is to correct or replace by normal action "the ennervation of the vital
energy centered in the organic nervous system." The energy centered in the organic nervous system." The
curability of the disease under timely ana proper treatment is strongly insisted upon.
The Century Magazine. New York, 1882.
The Century Company. Publisher: The Century Company.
Union Square. Price $\$ 3.50$.
The first bound volume of tbis splendid periodical (formerly Scribner's Magazine) presents a most attractive appearance so far as typography is concerned, while
the contents are in the highest degree valuable The volume contains over one thousand pages or fresh and interesting matter. adorned by hundreds of original engravings, embracing novels, short stories, poetry, essays. Siography, travels, iterary reviews. scientific notes, etc. magazine have been added and the pages have been enlarged. The circulation of the magazine has risen rom 120.000 to 134,000 , which sbows that the public re

HINTS 'TO CORRESPONDENTS
No attention will be paid to communications unless
accompanied with the full name and address of the writer.

iven to inquirers.

We renew our request that correspondents, in referring of former answers or articles, will be kind enough to of the question.
Correspondents whose inquiries do not appear after lished, they may conclude that, for Editor declines them.
Persons desiring
of a personal chars special information which is purely should remit from $\$ 1$ to $\$ 5$, according to the subject, as we cannol be expected to spend time and labor obtain such information without remuneration, Any numbers of the Scientific American Supple-
ment referred toin these columns may be had at this office. Price 10 cents each.
firce. Price 10 cents each
Correspondents sending
for examination, should be careful to distinctly mark or label their specimens so as to avoid error in their identi--
(1) L. K. B. writes: I send you to-day by mail a piece of lead pipe, laid about ten years ago some
three feet underground; the soil from which this piece came being " made ground" principally, as the pipe
was laid under railroad tracks. Will you kindly inform me through the columns of the Scientific AMERICAN (to which I am a subscriber), to what causes the holes in the pipe are to be attributed? A. The corrosion of the lead pipe was probably due to the action of water charged with carbonic acid.
(2) P. H. writes: I have seen the colors in woolen goods tested by soaking a small piece in a solu-
tion or acid of some kind, the test showiug what the tion or acid of some kind, the test showiug what the
colors would fade to if exposed to the sun. Can you colors would fade to if exposed to the sun. Can you
tell me what the acid or solution is? A. It is probably a solution of an alkaline sulphite slightly acetifled with oxalic acid. It could be
(3) T. W. says: I have a piece of carving in Babbitt metal, a family relic. I want to fill up the name plates are filled in with. The article must-stand the heat of summer sun. A. For red fllling: Mix with thick copal varnish enough vermilion to produce a thin paste. For black: use ordinary black japan mixed with a little ivory black. Apply with a small spatua, mion dry thoroughly before dressing.
(4) F. W. asks: Will you please describe the method of taking copies by the blue process? I notice in your issue of April 15, how to prepare the paper, but amate prepared paper nnder a clear ink tracing (on tracing cloth) or a glass negative, to sumlight for from five minutes to haif an hour, according to the strength of the light. Then remove to a dark room, and wash the paper in plenty of running water, and dry in the air (5) C. F. B. asks (1) for a simple and good way to soften steel hammers for drilling the handle holes. A. Heat them uniformly to a cherry red heat. and bury them in dry wood ashes, or better, pulverized
charcoal, and let them remain till cold. 2. What is the charcoal, and let chemreml thal best to . What is the 9 feet high, 4 feet diameter, with 61 tubes inside?
A. If you wish to clean the fire side of the tubes, use a rie brush or scraper; if the water side, it will depend
upon the deposit. If you could empty the woiler of water, close it tight, and admitsteam from another boiler; water, close thight, and ader hours the scale will rot and fall off. You must then use su
from the boiler.
(6) A. S. asks: 1. What constitutes the strength of the electro magnet? A. It is not definitely
known. 2. Does more wire known. 2. Does more wire on the spool make it
stronger, or does the size of the iron core make the stronger, or does the size of the iron core make the
strength, the electric power being the same? A. The strength, the electric power being the same? A. The
magnetic strength of an electro mangnet depends upon the size of the iron core, the number of turns of wire surrounding it, and the strength of current charging the
wire of this helix. In practice these helices are seldom wound to a diameter exceeding three times the diameter of the core, as what is thereby gained in magnetic moment is more than lost in increased resistance of
helix circuit. 3. Would two electro-magnets with a helix circuit. 3. Would two electro-magnets with a wire spool in each of the four helices equal in thickness othe diameter of the iron core, attract each othe armature? A. Yes, if unlike poles would attract an Would one electro-magnet, as per question three, be as strong or stronger than both if the wire in the first instance on the two were placed on only one? A. If the same current were employed, no. 5. Would the strength
of the magnet be enhanced by enlarging the ends of the of the magnet be enhanced by enlarging the ends of the
wire core? A. As we understand you, no. 6. Would
. an electro-magnet be made stronger by using several soft inner magnets in one? A. The advantage of this arranement woml not be great.
(7) S. P. G. writes: I want to make carbons for a Bunsen battery. I have tried gas coke
pounded fine and mixed with treacle, then pressed in an iron mould and burnt, but when cooled and removed from mould, are lighter in weight, and crumble away if pressed in the hand, compared to those one buys. Please inform me what are the ingredients of such carbons, how are the ingredients mixed, and after mixture what process do they undergo? Are they pressed and
heated (burned)? If so, to what extent? A. In the preparation of ordinary battery carbons it has lately been the practice to use gas tar as the cementing substance instead of saccharine matters, etc. The gas carbon is reduced to a powder, and this is uniformly mixed together with just enough of the tar to make a stiff smooth paste. The paste (or dough) is forced into the moulds under considerable pressure,then heated slowly at first,
and finally at very bright redness, When cooled the and finally at very bright redness. When cooled the rebaked. They can by these means be made very dense
(8) B. B. asks: Is there any process by (8) B. B. asks: Is there any process by
which rather thick paper can be rendered transparent? which rather thick paper can be rendered transparent?
A. It can be rendered quite translucent by saturating it (while warm) with Canada balsam or castor oil, but we
know of no process of treatment whereby it can be made transparent.
(9) L. G. C. writes: I have tried to make a plain gold ring out of an old watch case and broken jweiry, using a mould made of black lead crucible, in the shape I want for a ring, but I can't get the gold to dow so as to fill the mould. I have tried the gold at cold. Is there anything I can melt with the gold to makeit more of a liquid? A. Your gate is too small and not high enough to give pressure to the flowing
metal. If the two parts of the mould are rubbed to gether very close, the air cannot get out. Clampthem very lightly or cut air vents from the outside of the ring toward the top of the mould. A few drops of oil
will make the casting run clean. Put a litlle flux of soda or borax in the crucible to clear the metal. Heat of soapstis required to make the metal liqui. Moulds plain work, and fine sand moulds for pattern work.
(10) J. H. G. says, in answer D. McF. (page 251, No. 12): If he will keep the cloth well damp-
ened with a sponge ahead of his colors all the difficulties will be removed no matter how the color is mixed. (11) B. H., Jr., of Texas, asks how or where he can find a description of the process of extracting
oil from lemon peel. A. Consult U. S. and German Pharmacopøeias; also Spons' "Cyclopedia of Arts" (last edition).
(12) W. P. H. writes: I am using Venetian red paint on wood bowls designed for and covered with rustic work such as hanging baskets, etc. The paint is sually mized with water for cheapness, but what is
better is stale beer. I use it, but neither of above satisfles me, as it does not adhere, but comes off when the bowl is struck, dust fashion. We varnish afterwards, and that aids some in holding in place. Also, how can I get something cheap to varnish the goods with? Cheap vara gallon is what is used, but it never dries. I have thought polish of some kind could be produced cheaper. A. Try water glass as a vehicle for your colors (seepage disolving.). A cheap shellac varnish is prepared by dissolving six partsof shellac and one of borax in a small quantity of boiling water. Shellac dissolved in
(13) J. M. J. asks if a $3 / 4$ inch nut is large nough to hold a 50 inch saw on the arbor: the arbor is 2 inches where the saw goes on. A. The thread on the
arbor should be as large as possible, 8 or 10 threads to he inch 11/inchesthick with heavy wher it and the saw. Both collar and washer should be as arge as possible without interfering with the requirements of work to be done. The thread in nut and on arbor should be either right or left, so that any tendency of the saw to slip would screw the nut tighter, accordig to the way in which you wish the sawto run. Two ther ways are used in fastening the washer and saw
as not to turn: key the washer, or put two pins
(14) H. F. F. asks: Can you tell me of any solution that will change cast iron in appearance so it
will look like brass or green bronze? A. See "Electrobrassing and Bronzing," in SUPFLEMENT, No. 310.
(15) E. McL. asks: 1. Is there anything cheaper than alcohol which is suitable for chemical
manipulations-for burning in lamp? A. Methylic manipulations-for burning in lamp? A. Methylic
alcohol or crude wood naphtha is much cheaper and alcohot or crule
quite as useful.
(15) A. F. asks: Will you please inform me through your paper what preparation is used by map makers to cover the brass plate before immersing same in battery in order to produce lines in relief? A.
The varnish used is solution of purifed asphattum in The varnish used is a solution of puritied asphaltu
naphtha. Ordinary black japan is also employed.
(17) E. K. asks: 1. What could I mix with spelter for castings so as to make it less brittle? A Use about five per cent of tin and two per eent of cop. per as allog. 2. Referring to descipiton by telescope bject glass? A. 'The form of the ordinary conve lens is such as t) cause a slight decomposition of the rays passing through it, making the outtines of objects when viewed throngh it more or less indistinct or colored. These lenses, when corrected fir color by the sinperposition of properly ground con
glasses, are called achromatic or color free
(18) O. L. C. asks: 1. What proportion in bulk should the quantity of black oxide of manganes bear to the finely pounded carbon, as used in manga-
hese batteries, to procure the best results? A. About ne of carbon to one and three.ffthe of mangenes xide. 2. How long should a good mañganese batter last, allowing the sa--ammoniac solution is renewed a its strength weakens, if the bell the battery rings is ung, say, 100 times per day for two or three second each time-the battery to consist of two cells of the battery? A. At least four months, if the connections are
(19) F. S. W. asks: 1. Could you give me good receipt for stove polish, either liquid or solid A. The best stove polish we know of is pure graphite ing and sifting. 2. Also a receipt for a starch gloss have seen a ploss, and think it is made of borax and starch. Will that give a good gloss? A. See answer to otber correspondents, this page. 3. Do you know any
good remedy for bedbugs? A. Genuine Persian (Dalgood remedy for bedbugs? A. Genuine Persian (Dalmatian) insect powder is effective whe
(20) C. L. W. asks: Please give me direc tions for making a paste for fastening photographic prints to cards, one that will not stain the print. se a clear, well boiled, rather stiff starch paste to which has been added a few drops of clove oil. 2. Car the gelatine film be removed from a dry plate negative
(after having used it to print with) and the glass re (after having used it to print with) and the glass re
coated and used again? A. Yes. Use strong solution or bichromate of potash acidiffed with sulphuric acid.
(21) E. T. G. writes: I have dissolved some quicksilver in strong commercial nitric acid, and on tanding a day.a quantity of crystals appear in the bot
om of the flask. According to U. s. P. nitrate of mer cury does not crystallize. Now what have I in the flask It is not soluble in water, but in strong HNO_{3}. Please reply in the columns of your paper. A. The crystals are doubtless mercuric and mercurous nitrate and nitrate
with probably traces of mercuric chloride. The nitrate with probably traces of mercuric chloride. The nitrat
(22) J. H. Z. asks: Can you tell me how to starch collars, cuffs, etc.,. so that they will be stiff and
glossy, asthose you buy at furnishing stores? A. Add glossy, asthose you buy a furnishing stores? A. Add
to one quart of the well boiled (corn) starch three ounces of water glass, one ounce of gum aral
ouncea of loaf sugar.
(23) C. H. W. writes: In using knitting machines f fid some yarn breaks, which, if well oiled works all right; but the oil soils the paper boxes and min will not soil the paper I have tried soep, but do not succeed with it. A. Have you tried glycerine?
(24) M. I. writes: In order to oxidize the ceal in which our castings are packed, we use a solu action takes place, and where does the oxygen com from? A. Chlorides in aqueous liquids oxidize b virtue of the inclination of their positive element to form hydratese or double sals. In hese cases the oxy en is obtained from the water. 2. Cau Georgia iro
(25) D. P. S. asks: 1. Could you tell me o a good grease for greasing cartridges? Have been using
beef tallow, but it melts too easy. A. Try pure steari beef tallow, but it melts too easy. A. Try pure stear cicid or staarine. 2. Why does an ice boat sail faste
 214, and 3496, No. 220, Scientifio Ankrican Supple Ment.
(26) E. D. S. asks: Will you please inform he, through the Scientific American (1), how I can tain a glass lamp chimney green? I have a great dea writing to do evenings, and it hurts my eyes. sirupy) stained with chrome green. Let it dry thor aghly before uing on the lamp. 2 would ataind tobe do any good? A. Probably
(27) A. G., Jr., asks: Can you inform me o the composition of the hektograph or gelatin pad? A Use one ounce best gelatin (softened by soaking over
night in a little water) dissolved, by aid of heat over a night in a little water) dissolved. by aid of heat over ater bath in about six ounces of purest glycerine asing Itshould be heated for an hour or more in the water bath before pouring
(28) A. H. C. asks: Can you inform me of that is, to make it hard enough for a mould for metal A. Use ten per cent of alum in the water used for mix ing the plaster. Let the cast set slowly, and when properly set dry it in an oven.
(29) Referring to our answer to D. McF.
with give is very good, but. I have found that it is easier
and better in many cases to mix the colors with shellac arnish (shelac and alcohol) and not size the cloth
It makes a
(30) N. E. F. asks: Will distilled water in boiler foam? If the distilled water is not exposed to ater? A. If the distilled water has noner than rain ong enough in contact with the air to become properly erated it will thump and foam on frrst heating. O
arily this will not occur where rain water is ueed
(31) W: O. M. asks: Is there any rule laid own for working gears on all kinds of lathe, that is, for cutting (thread \&\%) There is generally an index on referring to the index. Is there any book on lathe work? A. In a three train gear, where A is the frst driver running at the same speed as the spindle, \mathbf{B} the
arrier or accommodation gear, and C Che screw he formula is $\frac{C}{A}$ (number of teeth) \times pitci of screw $=$ number of threads to the inch-or reverse if convenient, and multiply the number of teeth in the screw gear by number of teeth in the driving gear, which will give the number of threads required to the inch. In a four train gear, where A is the first driver running at the same seed as the spinde, B the irst receiver, C the second river (B and C being on the movable stau), D the ormulais $\left.\frac{\mathrm{B} \times \mathrm{D}}{\triangle \mathrm{D}}\right\} \times$ by the pitch of the screw= the numer of threads the lathe will cut to the inch. If (as in some lathes) the first driver runs at one half the speed of the spindle, the last product in both the above trains
must be multiplied by 2 . The books on lathe work are
 enerally defcient in this essential part. Consur
Deeigns aud Construcion in Machine Gearing." by Joynson; also "
Martin, London
(32) E. F. B. writes: It is said that putting lass jars into cold water will prevent them from crack ing fruit. Is this correct? A. No. Glass expand when heated, and if heated unequally is.liable to break In a jar of this description it is better to have the out
de or tue jar quite ary ana warm or no
(33) A. L. H. asks: What are the rules for roportioning the lenses of a terrestrial eyepiece for telescope, having given the power required, diameter
nd focus of the object glass? In the eyepiece deand focus of the object glass? In the eyepiece de scribed in No. 1 of the Scientific american Supple IENT (Fig. 3), is the second image, $a^{\prime} b^{\prime}$, a magnifec
mage of $a b$, or are the lenses, r, r, and ${ }^{\prime}$, used only invert the image, a b? I wish to increase a little the power of such an eyepiece. Is it necessary to chang all iovr of the elenses, or orly the one nearest
the eye? A. The best proportions for focal length of the lenses are $3,4,4,3$. The power is about he same as if the outer lenses were used alone separa tedfhal their focal distance. Plano-convex lenses
are generally used althou ghvariations from these form re used by different makers for special reasons, arising rom differeni formulas for correcting both aberrations The power can be varied slightly by changing the dis tance of r^{\prime} and s in Fig. 3, No. 1. SUPPLEMENT. The
imaze, $a^{\prime} b^{\prime}$ Fig. 3 , as above, may be varied also by varing the distance ofs and t, but ought not tointerfer with the general adjustment for achromatism. The
(34) R. W. asks: Is there a che
sfor distin. bers? mployed for this purpose. See articles on "Fibers," Chemical Technology
(35) F. A. L. asks: Can you tell me how to -move rust from tools, such as saws. chisels, etc.? A. If very rusty scour first with emery moistened with
sulphuric acid diluted with six volumes of water, rinse, dry, and finish with oil and emery flou
(36) A. L. W. asks: Can you tell me if were is anything (not costly) in which I can soak silk
oremove the color (brown) so that it can be recolore red. or so that it will remain light? A. You
strong solution of sulphurous acid in water.
(37) T. H. S. asks if as strong a weld in an can be made by hydraulic pressure as by ham
mering. A. Wrought iron can be welded by hydraulic pressure as perfectly as by hammering, provided yo make the time of contact as short as it is with the ham mer. It is the quick stroke that keeps up the heat on
he surface and makes what is called a smooth weld The slow hydraulic pressure would, no doubt, make the contact perfect
(38) E. H. writes: Having a well protected covered one-inch steam pipe connected at boiler dome
boiler supplying 70 horse power engine, pressure 65 pounds', the pipe is carried abont 400 feet; steam is ns used constantiy: condensation of steam takes place
too rapidy at terminus. Would you advise for the eam passing through a worm (12 inches diameter, eight ten rings) incased in an oven or heater to suy any way interfere or endanger working of boiler? A. Steam passing through such a heater world not in any
way endanger or interfere with the operation of way en
boiler.
(39) H. A. B. asks: What is the fastes Iry, and also in England? A. From Jersey City to Philadelphia. 90 miles, in 1 hour 50 minutes, and abou 54 miles per hour on English fast express. 2. What 19
the diameter of the driving wheels used upon the pas enger engines in Englandy A. In this country $53 / 2$ fee laimed that on the west Jersey rosd 70 miles per hou has been accomplished.
(40) W. G. S. writes: My engine is an up The steam supply pipe is only $114 / 4$ inches diameter. am working with only one cylinder. When beth are con-
nected they fill with water from the boiler. Is the
steam pipe too smail? Would that cause the cylinders to take water? A. The steam pipe would not cause the engine to take water. Probably the steam chamber or
capacity of your boiler is too small when usirg both capacity.
engines.
(41) H. H. asks: What has been the fastes ime made on railroads in Europe, and where? A. Lon London and South Eastern, 64 miles per hour.
(42) J. A. writes: In compressing a cubic ootof air at 63° into the space of half a cubic.foot, wil not its temperature be raised to 120° and its pressure to by radiation or otherwise? In short, what is the law of increase of temperature of air by compression, and contrary its decrease by expansion? Wind power he is cheap, though ynsteady, but might it not be utilized by raising heavy weights, and from the slowdescent which, by proper gearing, small but constant power be derived; or might not stout coiled springs be used in chinery or any known records of attempts in that line A. Air compressed at 60° two vols into one take theoretical temperature of 192° and a pressure of pounds per square inch; falling upon cooling to its nor mal temperature to 15 pounds pressure where provisio as made for cooling the air in the pump and dischar pipe, the pressure will be 4 voiumes to $1=30$ pounds, mes $1=60$ pounds, and so on. The contrar rom some normal temperature (say 60°), with variation in practice resulting from the absorption of heat by the surrounding material at the instant of expansion.
The decrease of heat from 60° when
one vol. is expanded to 116 vols., 64

$$
\begin{array}{rlrl}
& 13 \text { rols., } & 64^{\circ} \\
2 & " ، & 104^{\circ} \\
3 & " & 155^{\circ} \\
5 & " & 210^{\circ} \\
10 & " & 272^{\circ}
\end{array}
$$

r as above, to dis charge a constant stream of air from tank at a temperature of 60°, and under a pressure of 15 pounds, will lower the thermometer at the point of ying this to 40° below zero, outward influences modi mall this result somewhat in practice. A constant of a windmill, by pumping water into a reservoir, o compressing air into cylinders tor the purpose of driv ing a water or air engine; orby the winding up of heav
weights and distributing the power through a train of earing or pulleys; or by converting the power into ele ricity and storing it in stcrage batteries.
(43) W. L. G. asks: Referring to the article in and muriate of tin crystal or solution, the sume rticle? A. Protochloride ¢of tin or tin salt (stannous
chloride)refer to the same salt. It is also occasionally alled tin crystal. Tinliquor is stannic chloride, or a mix ure of the stannous and stannic chlorides (lower an eed before dipping? ceed before dipping? A. Brass may be most readily hot potash dip, and after rinsing in plenty of cold water dipping it momentarily in a cold mixture of equa parts of sulphuric and nitric acids and quickly rinsng again.
(44) E. E. O. asks: What circumferentia will it take to burst a disk of uniform thickne f castiron? of steel? Is the following formula for find ing the speed correct? $32_{\frac{1}{a}} \frac{V}{16_{1}^{-\frac{1}{10}}}$ in which L equals the ngth in feet of a bar of uniform size, which will support itself by its tensile strength? A. For cast iron
, 000 feet per minute: for steel, 35,000 feet minute. The formula that you give is a safe one, as it

Minerals, etc.-Specimens have been re eived from the following correspondents, and xamined, with the results stated
[OFFICIAL.]
INDEX OF INVENTIONS for which
Letters Patent of the United States were April 25, 1882,
AND EACH BEARING THAT DATE. A printed copy of the speciflcation and drawing of sny
patent in the annexed list. also or any patent issued
since 1866. will be furnished from this office for 25 cents. In ordering please state the number and date of the way. corner of Warren Street. New York city. We also furnish copias of patents granted prior to 1866 but at increased cost, as the sy.
printed, must be copied by hand.

Adjustable chair, J. Pursell. Alarm. See Knob alarm. Te
Album clasp, P. Hufeland..
Axle box, car, G. F. Godley...
Bag.f astener, w. B. Pu
Rag or stchel, R. Harris
Baking powder, manutacture of, A.
Bathing tub. cabinet, ,
Bed, H. Buckingha
Bed, H. Buckidgham.969, Bedstead, sofa, T. Soden......................... Bee hive, F. D. Torre .
Belt tightener, F. Snyder.

Bicycle stand, C. Wicksteed

Blinds. support for inside window. C. M. Young.. 2
Block. See ilictorial story block. Saw mill head
Bluing package, E. W. Gillett. 256.995
Board Board. See Wash board.
Boiler furnace, steam, c. I. Hall.... 257,000
Bolt. See Door bolt. Bolt. See Door bolt.
 Bottle stoppcr, S. S. Newton............................... 257,
Bottles. combined label, guide simp and wrappe Yor. J. Livor...................................... 257,136
Box. See Axie box. Maling box. Miter box. Box fastener, G. E. Crane........................... 20
Bracket. See Lamp bracket. Braid trimming, device for and method of form
ing, D. Henius........ ing, D. Henius.....
Brake. See Car brake.
Brick mactine, hammer, E. F. Andrews... Buckle, J. H. Wood 257,122 Buckwheat nulling machine, G. s. Cranson (r)....
Cable way, unaerground, H. Casebolt............. 256
Cilke and confectoonery machine, J. H. Mitchell. 25 Camera attachment, W. L. Brown................. 256,968 Can. See Oil can.
Can nozzle, shipping, Wilson \& Bools 257,120
Candies, shade or gobe holder for. D. Leary.
Car braze. J. H. Burks.
Car coupling C. G. A. Alexande
Car coupling M. .
Car coupling, M. Bergan..
Car coupling. C. K. Corare
Car coupling, C. K. Corarey
Car coupling,. . . Grover
Car coupling, n . T . Hubbell.
Car coupling, A. Rice
Car coupling. C. P. Willso
Car, stock. J. B. Calkins
Car wheel, 1 . E. Knauss.......................
Cand
railway, J. H. Rey-
Cars. lever for starting and moving, R. K. Evans. 256,
Carpet fastener, J. A. Cole 256.978
Carpet stretcher, w. . . Henderson......26,833, 256.829
Carriage wrench, E. A. Robbins 85,073
Carrier. See Hay carrier.
Case for preserving food. J. J. Hoyt................ 257,01

Chimney, J. M. Pattersou
Churn, J. Cochran, Jr.
Churn, Bover, E. C. Richardson. 256

Clock pendulums, mechanism for regulating.
Clothes line fastener, w. H. Josselyn
Coal and iron unloader. A. Beck
Coal screen, Dodge \& Righter.
Coat, waterproof, Landstre
Collar, horse. W. W. H. Hall
Colter, wheel, w. B. Youn
57,010

Comb. See Folding comb.
Cooler. See Mils cooler.
Corkscrew, H. L. Perryman 256,815
orn off the cob, machine for cutting green, W.
Sprague......................................

Corset clasp, D. H. Tierney... 257,106
257,085
Cotton press, M. M. scherer............................ 257,0799
Coupling. See Car couping.
Crusher. See Stone crusher
cultivator, T. Meikle..
Cultivator, sulky, J. W. Rockafellow................... 255, 25097,
Cuspidor, C. F. Marklend...257,137 2579
Dental tlask, M. H. Carpenter...........
Dental impression cup, J. V. McMann............... 257.038
Dental mallet, J. B. Odell256.850
Detachable handle for tea cups, etc., J. W. Davis. 256,983
Detecter. See Time detecter.
Digger. See Potato digger.
Door bolt, W. B. Purves .. 257,112
Door hanger, L. Terry
Doubl
E. Atwood....................................... 256.948

Drier. See Fruit drier.
Drilling machine, multiple, c. T. Parry 257.061
Electric communication, device for underground,
B. F. Teal..
Electric machine, dynamo, W. Hochhausen....... 257,007
Electric meter, C. V. Boys..........................256,965
H. S. Maxim.........
Electromagnetic escapement mech anism, J. M.
Gardiner

Gardiner..................................... 256,991
Elevator. See Platform elevator.
Elevator gate, automatic. J. Cusbing. 256,981
Elliptic springs, die for making, C. T. Schoen..... 257,
Engine. See Steam engine. Steam and com-
pressed air engine. Traction engine.
Eyeglass frame, F. A. Schorr................ 256,

Finger, scarf, and other jewelry rings. R. J. La
Grange
257,023

Fiask. Kee Dental flask.
Fodder holder. W. s. Tilghma
2577,107
258,931

Pump frame.
256,927
256,818

buildings, etc., apparatus for, B. J. 'Tavman... 257,
urnace. See Boiler furnace. Smoke consuming
urnace. See Boiler furnace. Smoke
furnace. Smoke purifying furnace

G．L．Biow		
uge．see planing gauge．Pressure gavge．	Ra	
	${ }_{\text {Rai }}^{\text {Rai }}$	Rade maris．
Gas infting apparat	Rail	
rrocess of and apparatus formanufacturing，	Rake	Ale and stout or porter，pale and strong，Rass，
Gate hanger J．Wadeleth．．．．．．．．．．．．．．．．．．．．．．．． 257.11	Ree	$\xrightarrow{\text { cigars．}}$ Cigars，
meraters．See ste		
Glicose，process of	Roller mill fee	
5，	Safe D．W．Smilu．	
		Flour，J．F．Imbs
Brain，ete		Medicinal pre
nd		ved
${ }^{256.935}$		
Hande．	see	${ }_{\text {Prea }}^{\text {Phe }}$
Eers，Lee Door hanger．Gate hanger．		
		Siters．four ．．T．Smit
		English
		From
	Seem	
Hay rake，horse，w．H．H		
Heating builidings app	Semil	
		H0\％
	${ }_{\text {sem }}^{\substack{\text { semea } \\ \text { She }}}$	
Hoops upon casks，machine for driving，M．E		
	sifter and reeentace．ass，Herrich δ Schaefer．．．．26．8．80，	
		Printina and bookbinding machine，H．P．Feister，Phila－
	enie	
		Bufalo．．．Y．
	108	
${ }_{\text {Lead }}^{\text {Lead and crayon }}$ Leather skiving	stam and	
		$\xrightarrow{\text { Water gas manuacture of，G．S．D Digight，New York }}$
Look．See Nut lokk．Wagan seat lock．		carrxtamment
		$\begin{array}{\|l\|l\|} \substack{\text { Ins } \\ \text { Bad }} \end{array}$
，88989		
999	${ }_{\text {coser }}^{\text {stort }}$	
	${ }_{\text {Taber }}^{\text {Table，O．}}$	
Maten，rricioion，w．H．P．Pitt．．．．．．．．．．．．．．．．．．．25， 26, sp	Table	
ubes		
dical	Teerraph wites，ap	
or．Seeiliectric		
See	Telep	
or，J．	${ }_{\text {Time }}^{\text {Time }}$	
		Sewing Machines，
Neecriter Thayer δ Heter		
	${ }_{\text {Tor }}^{\text {Tor }}$ mas	
	Traction enine， $0.0 . \mathrm{Frick}$	fifie of
mach	Trumpet tor raliway heads，J．M．smith．．．．．．．．．． 2 250．095	
reducing machine， B ．Hershe		
，		
dok		
	Val	
Mc		
	Vehice	
tor mill and other sto		
	${ }^{\text {Ven }}$	
	Varping ond beaming machines	
Pin．See Safety Pipe．See šheet		
eadiositale，W．H	25，094	
	w．e．	
and shaf		
mider		
（ex		工工
		United States Business Directorv
	DESIGNS．	

[^0]CHAMPION

\$66 free. Address H. HALLETT \& Co., Porlland, Me. TREATMENT OF WOOD WITH OZON-

Speaning Telephones.
THE ADJERICAN BELL TELEPHONE COMPANY
W.H. Fonbes, W. T. DRIVER, THEO.N.VAIL,
President.

 makers. setiers and users will be proceede.

Barnes, Patent Foot and Steam Power Machinery
Complete outftts for actual Workshop business. Lathe

ANCIENT PALACES OF UXMAL, MEX.

NEW Practical Life. \{The Key to Fortuaic
 DIGESTIVE AGENTS. BY .I. MILNER

DIPHTHERIA. - OBSERVATIONS ON the use of pilocarpin in diphtheria communicated to the
Stater 1 Boarr orealth of Minnesota. by Dr. Alfred
nuller. Contained

THE PARAGON SCHOOL DESK

QUARTZ-CRUSHING MACHINERY.-AN

KTYITSEIMIATIIOCK. Adapted to allsortsof Desks, Cash Dravers, etc. Its action simple enough
for a child of nine. May be setupon any sombination of any $1, \mathbf{2}, 3$, or 4
of its 50 numbers. Minlions of possible changes without ever being talken apart. No bother with keys. Security unequaled. Testimunials from consumers, and the best expertsindorse it most thighly.
This fine 1Ick, handsomely nickel-plated will be wailed free, on
receipt of $\$ \mathbf{5 . 0 0}$. To all points within the United States it will be sent by registered mail. Send Cashwithorder, by registere, letter or P. O. order.
Address as below. Uur Dial Locks are sold only by us or our agents.
 D. K. MILLER LOCK COMPANY,

821 Cherry Street
PHILADELPHIA
Holly Water Works, CITIES, VILIAGES, SUUBURBANTOWNS. HOLLY MFG, CO, LOCKPORT, N.Y.

OPIUM: $=$: $=$ BIMI

UVIM. B. HIOOPER de CO.,

 SHIPPING AND COMMISSION MERCHANTS,PROPRIETOR Cacson, A. T.
Guaymas, Mexico.
PROPRIETORS CUAYMAS MILLS. DEALERS IN LUMBER, SALT, ICE, ETC. Issue TELEGRAPHIC TRANSFERS and SIGHT DRAFTS, available in all principal
MINING MACHINERY, MATERIAL, AND SUPPLIES A SPECIALTY NEW YORK OFFICE-113 MAIDEN LANE, COR. PEARLST.

EJECTOR CONDENSER.

$\$ 5$ to $\$ 20 \begin{gathered}\text { perdaya hame. Samplesporth sfrree } \\ \text { Adress stuse }\end{gathered}$

Spark-Arresting Thrashing Engine Will has cut 10.000 feet pine lumber in ten hours

VOLNEY W. MASON \& C0.,
FRICTION PULLETS, CLUTCHES, and ELEVATORS,

manufactureis of
WIREROPE: THE MATINGCO WIRE ROPE, BRIDGE CABLES, SHIP RIGGING, Tramway Ropes, Champion Barbed Wire, etc.

WITIIRRY, RUGG \& RICHRDRSON Manfacturers

NEW YORK BELTING AND PACKING COMP'Y.
 EMERY

ROOT' NEW IRON BLOWEP.

posimivis Briasis. IRON REVOLVERS, PERFECTLY BALANCED, Has Fower Parts than any other Blower,
P. H. \& F. M. ROOTS, Manufacturers, s. S. TOWNSEND, GEERSVILLE, AND.

W ATCHMAKERS.
Before nuyting lattes see the "Whitaomb," made by
AMERICAN NATCH TOL Co., Waltham, Mass.

EVAPORATING FRUIT
 SWITZERLAND ENDORSES PENNSYLVANIA Pronouncing THE LAANCASTER WATCH "THE BEST WATCH MADE IN AMERICA. ${ }^{3}$

Conispure SHAFTING.

 15,000 CARPENTERS Now USE our
 HIGH-PRESSURE FIITERING PRESS.-

 KINGS ELASTC STEEL DRAFT TUUG.

COMPRESSED AIR LOCOMOTIVES.-

 BDILESO West Point Boiler Works,

Barf:Bower Rustless Iron Proocessis.

BOSTON GARTER $\mathrm{E}=\mathrm{F}=\mathrm{W}$ =2 = = $=$

 $3-3=$ GEORGE FROST E COBS
285 Devonshire Street, Boston, Mass. R. DOF SOON \& AMYOONS TOILET SOAPS
Leave no unpleasant odor on the hands. The popular kinds are
ELDDR FLOWER, IN $\frac{1}{2}$ LB. BARS,

OLD BROWN WINDSOR, IN PACKETS. Triple Handkerchief Extracts, Royal Windsor Toilet Water, Eau de Cologne,
Violet Nursery Powder, Rose Leaf Powder.
Acknowledged to be the best and most satis-
actory Toilet Articles in the world.
FOR SALE EVERYWHERE.

WHEELER'S PATENT WOOD FLLLER Fill the pores of wood perfectly, so that gmoth fnish
is obtained with one eoat of varnish.
Send

MACHINERY

 SENSTELONDON,BERPY₹:ORTON
THE BEST BAND SAWBLADE

 IRIDIUM:
THE HARDEST METAI KNOWN.

THE AMERICAN IRIDIUM CO., S. E. Corner Pearl and Plam Sts, Cincinnati, Ohio.

Mechanism for Working Pipe Oryan Bellows,
The best and most convenien arrangement in existence,

"BUCKEEE"
LAWM MOWER.

Steel Castings
 Holl Print Your Own int ind thent

ON 30 DAYS' TRIAL!

 ated pamphlet free. Adaress
VOLTAIC BELT CO., Marshall, Mich.

NEW HAVEN CHAIR Co. Now Haven, Ct
THE DINGEE \& CONARD CO's ROSES

ICE MAKING MACHINES, COLD AIR MACHINES, For Brewers, Pork Packers, Cold Sto
age Warehouses, Hospitals, etc. age Warehouses, Hospitals, etc. PICTET A ATVIFLCIAL ICE CO. (Limited),
P. O. Box 3083 Grenwrich Street,

Stevens' Roller Mills, Graddan rebicition of grain.

ERICSSON'S

Now Caloric Pumping Engino

 DELAMATER IRON WORIS No. 10 Cortlandl Street, New York, N. Y. KORTING UNIVERSAL INJECTOR qied intee Cmod HARTFORD
STEAM bへILER
Inspection \& Insuranee COMPANY
W. b. Franklin.v. Pres't. J. M. Allen, Pres'l. J. B. PIERCe. Sec'y.

9BOUM

§cientific Anmericau
The Most Popnlar Scientific Paper in the World. Only $\$ 3.20$ a Year, including postage. Weekly. 52 Numbers a Year.
This widely circulated and splendidly illustrated paper is pubilished weekly. Every number contains six-
teen pages of useful information, and a large number of original engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery,
New Inventions, Novelties in Mechanics, Manufactures New Inventistry, Electricity, Telegraphy, Photograuhy, ArchiChemistry, Electricity, Telegraphy, Photography, Archi-
tecture, Agriculture, Horticulture, Natural History, etc. All Classes of Readers find in the scien'rific American a popular resume of the best scientific in-
formation of the day; and it is the aim of the publishers to present it in an attractive form, a voiding as much as this journal arords a constant supply of instructive reading. It is promotive of knowledge and progress in
every community where it circulates. Terms of Subscription.-One copy of the ScienTerms of Subscription.-One copy of the SCIEN-
TIFII AmRICAN will be sent for one year -52 numberspostage prepaid, to any subscriber in the United States or Canada, on receipt of three dollars and twenty
cents by the publishers; six months, $\$ 1.60$; three cents by the
months, 81.00 .
Clubs.-One extra copy of the Scievtific Ameriat $\$ 3.20$ each; additional copies at same proportionate ra
One copy of the Scientific American and one copy
of the Scievtific American Supplement will be sent of the SCIETTIFIC AMERICAN SUPPLEMENT will be sent for one year, postage prepaid, to any subscriber in the
United States or Canada, on receipt of seven dollars by United States
The safest way to remit is by Postal Order, Draft, nr
Express. Money carefully placed inside of envelopes, Express. Money carefully placed inside of envelopes,
securely sealed, and correctly addressed, seldom goes astray, but is at the sender's risk. Address all letters

MIUTVIN \& CO.,
261 Broadway, New York. To Foreign Subscribers.- Under the facilities of
the Postal Union the ScIENTIFIC AMERTCAN is low sent the Postal Union, the SCIENTIFIC AMERICAN is now sent
by poost direct from New York, with regularity, to subscribers in Great Britain, India, Australia, and all other
British colonies; to France, Austria, Belgium, Germany, British colonies; to Erance, A ustria, Belgium, Germany,
Russia, and all other European States; Japan, Brazil, Mexico, and all States of Central and South A merica. \$4, gold, for SCIENTIFIC AMERICAN, one year ; \&9, gold, for both SCIENTIFIC AmERICAN and SUPPlement for
one year. This includes postage, which we pay. Remit one year. This includes postage, whis
by postal order or draft to order of

PRINTING INKES,

[^0]:

 ##

 4 MEITENTS
 ＝2 Messrs．Munn \＆Co．，in connection with the publica－
 tion of the Scientipic American．continne to examine Improvements，and $t c$ ，act ae Solicitors of Patents for Inventors．
 In this line of business they have bad over thirty years experience，and now have unequaled facilities
 for the Preparation of Patent Drawings，Specifications， and the Prosecution of Applications for Patents in the and the Prosecution of Applications for Patents in the
 United States，Canada，and Foreign Countries．Messrs． Munn \＆Co．also attend to the preparation of Caveats，
 Registration of Labels，Copyrights for Books，Labels， Reissues，Assignments，and Reports on Infringements of Patents．All business intrusted to them is done
 Werms．free of charge，on application，a namphet containing further information about Patents，and how to procure them；directions concerning Labels，Copy－
 rights，Designs，Patents．Appeals，Reissues，Inf ringe－ ments，Assignments，Rejected Cases，Hints on the Sale of Patents，etc．
 Foreign Patents．－We also send，free of charge，a
 Synopsis of Foreigi Patent Laws，showing the cost and Synopsis of Foreigi Patent Laws，showing the cost and
 method of securing patents in all the principal coun－ method of securing patents in all the principal coun－
 tries of the world．American inventors should bear in mind that，as a general rule，any invention that is valu－
 able to the patentee，in this country is worth equally as much in England and some other foreign countries． Five patents－embracing Canadian，English，German，
 French and Belgian－will secure to an inventor the ex－ clusive monopoly to his discovery among about one
 HUNDRED AND FIFTY MILLIONs of the most intelligent Hundred AND fifty millions of the most intelligent
 people in the world．The facilities of business and people in the world．The facilities of business and
 steam communication are such that patents can be ob－
 tained abroad by our citizens almost as easily as at home．The expense to apply for an English patent is $\$ 75$ ；German，$\$ 100$ ；French，$\$ 100$ ；Belgian，$\$ 100$ ；Cana－ dian．$\$ 50$ ．
 Copies of Patents．－Persons desiring any patent
 issued from 1836 to November 20，1866，can be supplied with offcial copies at reasonable cost．the price de－ pending upon the extent of drawings and length of specifcations．
 Any patent
 Any patent issued since November 20，1860，at which
 time the Parent Office comment time the Patent Office commenced printing the draw－
 ings and specifications，may be had by remitting to this office 25 cents．
 A copy of the claims of any patent issued since 1836 will be furnished for 25 cents．
 When ordering copies，please to remit for the same as above．and state name of patentee，title of inven－
 tion，and date of patent． A pamphlet，containing full directions for obtaining Reference Book，gilt edges，contains 140 pages and many engravings and tables important to every pat－
 entee and mechanic，and is a useful handbook of refer－ ence for everybody．Price 25 cents，mailed free．

 MONN \＆CO．，
 Publishers SCIENTIFIC AMERICAN， BRANCH OFFICE－Corner of \boldsymbol{F}^{\prime} and Tth Streetg， Washington，D．G．

