

A WEEKLY JOTRNAL OF PRACTTCAL INFORMATION, ART. SCIENCE. MECHANICS, CHEMISTRY AND MANUFACTURES.

NEW YORK, APRIL 29, 1882.

THE BLACKWELL'S ISLAND BRIDGE.

Few great engineering works have been so favorably conditioned by nature as the Ravenswood Bridge which has been projected and is now in process of construction at Blackwell's Island. Where eacis abutment is located solid rock is reached a short distance below the surface, and the anchorages at the termini of the bridge on Long Island and at New York are to be secured in forty feet of solid natural rock. On Blackwell's Island the anchorage will be in twelve feet of natural rock and re-enforced by forty feet of solid masonry.
The several-sections of the bridge being comparatively short, can be constructed with far less expense proportionately than a bridge having a single long span.
Such great natural advantages as these have not been found in connection with any other bridge in this country or in the world. These natural conditions alone will effect a saving of about ten millions of dollars in excavations and foundations, and shortened spans, all of the work being positive and straightforward; there being no unknown conditions to be developed as the work progresses. In our engraving we show the coffer-dam and hreakwater surrounding the excavations commenced at Ravenswood, L. I. The coffer dam is 140 feet long, and 70 feet wide. The breakwater is 162 feet long, and 85 feet wide. The piers are to be 60 feet wide and 120 feet long at the base, and 100 by 40 feet at the top. Each pier will support twèlve

stinutific Immrian.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at

No. 261 BROADWAY, NEW YORK.
o. D. MUNN.
A. E. BEACH

TEREIS FOR THE SCUENTIFIC AMERICAN One copy. one year postage included..
Clubs.-One extra copy of The Scientific American will be supplied gratis for every cuab of five subscribers at $\$ 3.20$ each : additional copies at same proportionate rate. Postage prepaid.
Remit by postal order. Address
MUNN \& CO

The Scientific American Supplemen

 Americain and suppiemprnt
reeeipt ot seven dolars. Both
as desired.

Scientific American Export Editiou,

NEW YORK, SATURDAY, APRIL 29, 1882.

TABLE OF CONTENTS OF
THE SCIENTIFIC AMERICAN SUPPLEMENT NO. 330,

or the Week ending April 29, 1882

Price 10 cents. For sale by all

TECHNOLOGY AND CHEMISTRY.-Practical Hints on the

II. ELECTRICITY, ETC.-Oil Tank Fires from Lidhtning, and Sugy

. ARCHTETURE.-Englethwaite, near Carlisle, England. Per-PHYSICSS-Solididication by Presure. 4 4igures. I. ASTRONOMY-Comets. Br Richard A. Proctor. 5 Agures,

ViI. MIICELLALANEOUS.- Pecan Nuts as a Souree of Revenu Chammiatrisi boardee
Californiu oil fileld.

charles darwin

Charles Robert Darwin, whose influence upon the curren of modern thought has been surpassed by no other scientific investigator, died at his residence near Orpington, England Wednesday, April 19
Mr. Darwin was born at Shrewsbury, England, February 12, 1809, inheriting rare qualities for scientific observation and philosophic thought. His father was a worthy though not eminent member of the Royal Society, and his grand father was the celebrated Erasmus Darwin, author of "The Botanic Garden." His maternal grandfather was the founder of the famous pottery works at Etruria, Josiah Wedgwood, also a member of the Royal Society. His early education was received at the public school in Shrewsbury, whence be passed to the University of Edinburgh, where he spent two years. He then went to Christ's College, Cambridge, where he was graduated in 1831. His bent for natural research was not diverted by his schooling; and soon after his graduatio he read a paper on marine zoology, giving such promise o scientific ability that he was offered the position of naturalis on the now historic Beagle, soon to start on a cruise of scientific exploration round the world. Five years were spent on this cruise, during which those suggestive observation were made which led to the development of a new theory of the origin of species
Returning from this voyage in 1836 Darwin made ready for publication his "Journal of Researches," and in 1840-4 he edited the "Zoology of the Voyage of the Beagle. Shortly after he published his classic works on "The Struc ture and Distribution of Coral Reefs." These works wer rapidly followed by "Geological Observations on Volcanic Islands," in 1844, and "Geological Observations in South America," in 1846. Meantime his contributions to scientific publications and the transactions of scientific societies were numerous and valuable, as they were throughout his long and active life. The two-volume "Monograph of the Family Cirripedia," was published in 1851 and 1853, and soon afte his two volumes on the fossil species of the same family. In 1853 the Royal Society a warded him the royal medal, and in 1859 he received the Wollaston medal of the Geological. His epoch marking "Origin of Species by Natural Selection," appeared the same year. The controversies provoked by this work probably did more to attract popular thought to questions of naurual science, añ to change the popular as well a scentific mode of regarding such topics, than any other influ ence of the century
The later works of Mr. Darwin bear evidence of his untir ing industry in collecting facts and his marvelous faculty for the rational interpretation of such facts. The work on the "Fertilization of Orchids by the Agency of Insects" ap peared in 1862; "Habits and Moyements of Climbing Plants" in 1865; "The Variation of Plants and Animals under Do mestication" in 1867; " The Descent of Man, and Selection in Relation to Sex" in 1871; "The Expression of Emotions in Man and Animal" in 1875; "Insectivorous Plants" in 1876; "The Effects of Cross and Self Fertilization in the Vegetable Kingdom" in 1877; "The Different Forms o Flowers and Plants of the Same Species" in 1880; and "The Formation of Vegetable Mould through the Action of Worms" in 1881.
This enormous volume of work has been accomplished by untiring industry, in spite of frequent illnesses which to most men would have been accounted sufficient cause for idleness. Personally Mr. Darwin was greatly loved by his social and scientific acquaintances, and his home life was the happiest. He leaves five sons and two daughters, all of superior ability and high characters.
His most eminent characteristic, however, has been an unswerving loyalty to truth as obtamed by exact observation and unprejudiced judgment, regardless of ridicule or mis representation. It is this, more than the revolution he has so largely belped to bring about in modern thought, or the admirable quality of the scientific work done by him, that makes his life one of the precious legacles of the nineteenth century.

THE LOSS OF THE ARCTIC SEARCH STEAMER

 RODGERSThe Arctic search steamer Rodgers, which was so suc cessful last summer io the exploration of Herald Island and Wrangell Island, has met with disaster at St. Lawrenc Bay Northern Siberia, whither she had gone for winte quarters. The Rodgers arrived in St. Lawrence Bay Octo ber 15, and was burned January 1, 1882. Intelligence of the loss was first received April 18, through Mr. Jackson Herald correspondent, with the party in search of the los crew of the Jeannette, who met, on the 6th, a courier from Mr. W. H. Gilder, of the Rodgers, who had reached Ver khoyansk, about four hundred miles north of Yakutsk. Mr Gilder had been sent on by Lieutenant Berry to announc the loss of his vessel and to appeal for belp for the officers and crew, thirty-six in number, who were awaiting supplies at Tiapka, in Eastern Siberia, near Cape Serdze, some two thousand miles from Yakutsk.
From the meager details so far given, it appears that endeavors to save the ship were made in vain. She lay within a short distance of the shore, hut the young ice could not bear the weight of the men, and a line from the ship to the shore was fixed with much difficulty. By this line and the boats the crew were all safely landed. The entire ship' company are in good health and spirits. There is no dan ger of their starving. Governor Tchernaieff has given orders to the Chukche chiefs to do all in their power to
assist the shipwrecked crew. Three months' provisions were saved from the ship. Tupkan is near Cape Serdze Kamen.

Society of Mechanical Engineers.

The annual convention of the American Society of Mechancal Engineers began in Philadelphia, April 19, Prof. R. H. Thurston, of the Stevens Institute, in the chair. The roll of membership now contains three hundred and twenty-five names. The first paper was read by W. R. Eckert, mining engineer, Comstock Mines, on "The Chronograph for Engineering Purposes, with the Hipp Escapement." The next was by Prof. Thurston on "The General Efficiency of the Steam Engine."
The afternoon was devoted to eulogies of the late Alexander H. Holley. An oration was delivered by James C. Bayles, after which speeches were made by Professor Thurston, Coleman Sellers, of Philadelphia; Eckley B. Coxe, of Luzerne County, Pa.; J. C. Hoadley, of Boston; R. W. Hunt, of Troy; William Metcalf, of Pittsburg; Charles T. Porter, of Philadelphia; J. T. Holloway, of Cleveland; L. B. Moore and W. E. Partridge, of New York city.

The Glossograph.

A speech recorder called a glossograph has been invented by A. Gentilli, of Vienna. It is described as a combination of delicate levers and blades, which, being placed upon the tongue and lips and under the nostrils of a speaker, are vibrated by the movements of the former and the breath flowng from the latter. This vibration is transmitted to pencils. These transcribe the several signs produced by the action of the tongue and lips and the breath from the nostrils upon a strip of paper moved by a mechanical arrangement, and thus a special system of writing, which may be termed lossography, is produced. This is based upon the principle of syllable construction and combination of consonants.

Hansom Cabs.

The first extensive introduction and use of Hansom cabs in this country is to take place in Philadelphia, Pa., in a short time, by the Pennsylvania Railroad Company. The cabs are to be constructed in the best manner after the English pattern, and a contract for thirty has been given to the enterprising Connecticut firm of carriage builders, Messrs. Hincks \& Johnson. The Pennsylvania Railroad Company intend by means of these cabs to transport passengers from their new depot to various parts of the city at very low price.
The experiment will be watched with interest, and, if successful, will probably lead to the extensive introduction of hese cabs in other cities

Dry Separation of Gold from Sánd.

A novel apparatus for separating gold from sand without the use of water was recently completed and tested in this city. It is intended for use in the placer regions of the West, Mexico, and Central America, where gold-bearing sand is found at a distance from water sufficient for bydraulic mining. The machine is about five feet in diameter, and is arranged to throw the sand by centrifugal force against a wall" of mercury, maintained in position by centrifugal action. In this way, it is claimed, every particle of gold is brought in contact with the mercury and amalgamated, while the sand is blown away by means of an air blast. The machine is said to clean a ton of sand in twenty minutes, and to be so thorough in its operation as to make it possible to work over with profit the tailings of mines worked by other systems. The power required to operate the machine is not given.

Melting Point of Fats.

The method adopted by the " Society for the Mineral Oil Industry," in Halle a. S. is to be preferred for the safest and most accurate results above ail other methods. Instead of determining the melting point they use the solidifying point as a basis for their results. The following method is recom. mended as giving accurate results for the direct determinà tion of the melting point: A cylinder having thin walls is heated in a beaker containing water or oil. In the cylinder there is a thermometer whose bulb is only partly dipped into the fat. The temperature is determined at the moment when the fat begins to become transparent.-J. Merz, in Chemiker Zeitung.

Relative Safety of Anæsthetics.

Dr. Ormsby, of the Meath Hospital, Dublin, has compiled the following table of the absolute and the relative mortality caused by the use of the leading anæsthetics. The table is based mainly on statistics gathered by Dr. Andrews of Chicago, and Dr. Richardson, of London

Agent employed.	Deaths.	Admins.	Deaths.	Admins
her.	4 in	92,815,	or 1 in	23,204
Chloroform	53 in	152,260,	or 1 i	2,873
isture of chloroform with ether	r 2 in	11,170,	or 1 i	5,588
chloride of mythy lene.	2 in	10,000,	or 1 i	5,000

Restoring Worn Coins.

Recently while Dr. A. H. Best, of Savannah, Ga., was silver-plating a small article with silver cyanide solution, he used an old Spanish silver coin as anode. The coin was worn perfectly smooth and had been hammered to twice its original size; yet in a little while after it was put in the bath every letter and figure became plainly visible. The date, 1800, though defaced so as to be beyond deciphering with a powerful glass, became plain.

ASPECTS OF THE PLANETS FOR MAY.

saturn
is evening star until the 6th, and wins the place of honor on the May annals, as he is the first of the five planets traveling to the same goal to reach conjunction with the sun. This prominent point in his course is reached on the 6th, at 3 o'clock in the morning. He is then, as the word conjunction implies, joined to the sun, rising and setting with him, completely hidden in his rays, and, of course, invisible. At that time the earth, the sun, and Saturn are in a straight line, with the sun in the center. Saturn is at his greatest distance from the earth, being more than ten hundred million miles away, instead of about eight hundred and thirty million miles, his distance at opposition.
Conjunction finishes Saturn's course as evening star. He then passes from the eastern to the western side of the sun, becomes morning star, and, about a month hence, may be seen shining faintly in the east not long before sunrise. He will move every day fartber from the sun and rise earlier, until, by the last of June, he will appear above the horizon as early as 2 o'clock, and become an object of constantly increasing interest to observers through the summer and autumn, presenting a brighter phase than he has done for thirty years. The eyes of the whole observing world will scan this superb planet with intense attention as he makes his way from conjunction to opposition, and if there is power in the telescope to learn anything new concerning his complex system it will be accomplished.
It is an interesting planetary event of the month that Sa turn and Neptune reach conjunction with the sun on the same day, the former at 3 o'clock in the morning and the latter at 6 o'clock in the afternoon. Therefore, a straight linedrawn from the earth through the sun and Saturn would, if extended, pass near the huge bulk of Neptune, the planet that travels on the system's remotest bounds, and is only exceeded in size by Jupiter and Saturn.

A close conjunction of Saturn and Neptune takes place at 8 o'clock on the morning of the 11th, Saturn being twentytwo minutes south. Neptune for months has been slowly gaining upon the steps of his brother planet, and has at last overtaken him. After the conjunction he will take the precedence, and be the first to make his advent in the morning sky. As he is unfortunately invisible, his course must be traced by the eye of fancy. Such is the precision of mathe matical calculation, and so simple are the laws that rule the solar scheme, that we are as sure of the point of space in the star depths occupied by this far-away Neptune as if he were as plainly discernible to the naked eye as the majestic sun from whom he borrows light to shine as a faint disk in our great telescopes.* Even the superb Saturn is as effectually blotted from our vision as his more distant brother planet. For a time his presence in the sky is only visible to the eye of imagination, which, gifted with transcendent power, cannot only. behold a pale star serenely following its appointed course amid the dazzling beams of the all-powerful sun, but can span the distance separating us from the Saturnian system with its rings and moons, and picture scenes that words are powerless to describe.
Saturn sets on the 1st of the month a few minutes after 7 o'clock; at the end of the month, he rises not far from half past 3 o'clock in the morning.

neptune

is evening star until the 6th, and then morning star for the rest of the month. He reaches his conjunction with the sun at 6 o'clock on the afternoon of the 6th, when, in his turn he comes into line with the sun and the earth, the sun being in the center. His distance, then, from us is more than twenty-eight hundred million miles. Incalculable as this distance is to finite powers it is more than probable that other planets pursue their yet undetected course beyond the vast sweep that marks his orbit.
The movements of Neptune and Saturn are so closely in terwoven during the month that the history of the one in cludes that of the other. For the brother planets trave almost side by side as they pass conjunction on the same day, meet and pass each other a few days later, and change places on the celestial track, Neptune now preceding and Saturn following.
Neptune sets on the 1st of the month about a quarter after 7 o'clock; at the end of the month he rises a few minutes be fore half past 3 o'clock in the morning.

JUPITER

is evening star until the 30th, when, at 3 o'clock in the morning, he takes his turn in coming into conjunction with the sun. Jupiter, the sun, and the earth are then in a straight line, with the sun in the center, the giant planet being nearly six hundred million miles from the earth. He is so much brighter than Saturn that he will be visible when nearer the sun, probably within a few days of conjunction, when he, too, will disappear from mortal vision, eclipsed in the sun's bright rays.
Before he is lost to sight he makes his farewell appearance in a charming tableau in the western sky; for, on the 5th, he pays his respects to Venus, fairest of the stars, passing fiftynine minutes south of her. The conjunction will be well worth seeing, for the two largest planets that grace the firmament will then be side by side, though they will not present the brilliant aspect that distinguishes their nearest approach to the earth. The planets set within a few minutes of each other, about half past 8 o'clock, nearly an hour and a half after the sun. Venus must be looked for about five degrees and Jupiter four degrees north of the sunset point. For an
hour this brilliant picture will be painted on the sky in a vivid coloring that will be beautiful to behold, one of the loveliest views of a month when the planets are in a condition of tireless activity.
Jupiter sets now at thirty-seven minutes past 8 o'clock; a the end of the month he rises nearly with the sun at half-past 4 o'clock in the morning.

mars

is evening star during the month, and his movements are devoid of incident. His brother planets have absorbed all the interest and left him to plod along with slow step and lessening luster toward the goal they have passed. On the 4th Mars is in aphelion, or his most distant point from the sun. On the 18th he passes through Præsepe, a cluster of stars in the constellation Cancer, and thus his position is easily identified.
Mars sets now at twenty minutes before 1 o'clock in the morning; at the end of the month he sets about half past 11 o'clock in the evening.

drands

is evening star, and, like Mars, is simply a looker-on while the other planets play their more active roles. He is moving slowly along in the constellation Leo, his position in the heavens differing slightly from that of last month. His present right ascension is 11 h .4 m ., and his declination is 6° 47^{\prime} north. Mars and Uranus will be, at the end of the month, the only planets traveling toward conjunction.
Uranus now sets a few minutes before 3 o'clock in the morning; at the close of the month he sets a quarter before 1 o'clock.
is evening star, and stands first on the list as the peerless representative of starry beauty. She is now a fascinating object in the western sky, growing brighter and larger at every successive appearance as she speeds on her eastward course and approaches the earth. She is in conjunction with Jupiter on the 5th, when, as we have already described, the fairest of the stars and the star of imperial Jove make a charming appearance in the glowing west. She is near Mercury on the 30 th, and the two inner planets will then be seen to rare advantage. All through the year Venus will reign first and foremost in the star-spangled firmament, not only for her great importance in connection with the transit, bu also for her own serene and transcendent loveliness.
Venus now sets at twenty-one minutes past 8 o'clock; at the close of the month she sets at twenty-two minutes past 9 o'clock.

mercury

is evening star after the 1st, and though we place him last on the list he plays a prominent part on the May records. On the 2 d he is in superior conjunction with the sun, when he passes to his eastern side and becomes evening star. He follows in the track of Venus, oscillating in a straight line east of the sun towards his eastern elongation. As his orbit is within that of Venus, and he is nearer the sun than Venus, he is never more than twenty-nine degrees from the sun at his elongation, while Venus is sometimes forty-seven degrees distant under similar conditions. Mercury, therefore, travel ing at a more rapid pace-for the nearer the sun the faster the planet travels-will overtake Venus on the 30th, the day before he reaches his eastern elongation. A rarely beautiful conjunction then takes piace between Mercury and Venus, the swift-footed planet passing a degree and three-quarters west-northwest of his fairer neighbor. The planets must be looked for in the northwest, Mercury four degrees and Venus hree degrees north of the sunset point. As they are above the horizon an hour and a half after sunset a fine view of the conjunction may be anticipated.
Mercury is in conjunction with both Saturn and Neptune on the 4th, passing about two degrees north, but all three planets are too near the sun to be visible.
Mercury is in conjunction with Jupiter on the 13th, when, as the planets do not set till after 8 o'clock, bright-eyed observers may see the smallest and the largest world of the sun's family only two degrees apart.
Mercury is in his descending node on the 2d, and in peri helion on the 7th.
Thus it will be seen that the fiery little planet traveling nearest the sun will not be idle as the month of May runs its course. The most favorable time in the whole year for seeing Mercury as evening star with the naked eye commences about the middle of the month and continues through the first part of June. Any painstaking observer with good visual power will be sure to find him east of the sun and about three degrees north of the sunset point, while the proximity of Jupier and Venus at the time of his conjunctions with them will e a sure guide to his position.
Mercury now rises about 5 o'clock in the morning; at the close of the month he sets at twenty-two minutes past 9 'clock in the evening.
the may moon
fulls on the 3d, and is not remarkable. But the new moon of the 17 th plays a distinguished part. She signalizes the the sun ement of her course by causing a total eclipse of the path of totality passing across the north of Africa, the southern part of Asia, and ending in the Pacinic Ocean.
The new moon also signalizes her course on the same day by a most interesting phenomenon.
the occultation of jupiter.
At twenty-four minutes after 7 o'clock, Washington time,
which means twelve minutes later New York time, and twenty-four minutes later Boston time, the monn, only six teen hours old, will pass directly over the planet Jupiter, and occult or hide him from view. As from new moon to full, the moon moves with the dark edge foremost, Jupiter will disappear at the dark limb, producing a startling effect as if a star were suddenly annihilated from the sky. There are few observers who will possess the practiced eye required for witnessing an occultation with the moon so near the sun. But we are assured that it can be done by those who know where to look both with the naked eye and by the aid of a rood opera glass or small telescope. Jupiter on that evenng will be $1^{\circ} 18^{\prime}$ north of the sunset point, 10° east of the sun, and will set about 8 o'clock. The occultation of a planet by the moon is a rare sight, and that of Jupiter by the slender crescent will be somethịg to remember for a lifetime. The moon seems to be satisfied with the production of a total solar eclipse and an occultation, and has nothing more to do with the planets during the month, except to pass at a respectful distance near Mars on the 22d and near Uranus on the 25th.
Telescopic observers will find interesting objects for observation. Venus preserves her gibbous phase, the illumined portion of her disk diminishing as she approaches the earth like the moon from the full to the last quarter.
Mercury, though a disappointing object in the telescope, takes on the same phase as he rapidly gains upon the slower moving Venus. The numerous conjunctions of the prominent planets present aspects of exceeding interest for amateur observers with small telescopes, and any amount of painstaking that results in a sight of the occultation of Jupiter will be abundantly rewarded.
It is seldom that so many grand celestial events occur within the compass of one short month. The conjunction of the three giant planets-Saturn, Neptune, and Jupiterwith the sun; the conjunction of Mercury with Saturn and Neptune on the same day; the conjunctions of Venus with Jupiter, Saturn with Neptune, Mercury with Jupiter, and Mercury with Venus within an unusually short period of time; the superior conjunction of mercury; the total eclipse of the sun; and the occultation of Jupiter by the moon indicate an extraordinary condition of planetary activity, and a brilliant succession of interesting incidents that will make tar gazing as delightful as it is instructive.
Wisely did ancient astronomers give the name of wanderers to the bright stars that are forever changing their places, now clustering near the sun, and now getting as far away from him as possible; now traveling in pairs and trios, and now as far apart as the east is from the west; now glowing in the twilight sky, and now heralding the approaching dawn.

And yet amid this apparent intricacy nothing in astronomy is more easy than to become familiar with the position and movement of each separate planet, and learn to recognize each member of the brotherhood by traits as characteristic as those in which friend differs from friend, while all the restless ways, the waxings and wanings, and the unremitting changes are but shining illustrations of the simple laws that hold the planets in their places and sway them in their courses in heavenly harmony around the great central sun.

Comet a of 1882.

Many observations have been made by me of the new Wells comet, the first observation being on the morning succeeding its discovery. From what was at first a faint object with moderate apertures, it. has steadily grown in brightness, until it can at this date be readily picked up with a telescope of three inches aperture, and afterward seen with a still smaller objective. My latest observation was made last evening, and although interfered with by the light of an exceptionally brilliant aurora, it showed a marked increase in brilliancy over previous observations. With its present rate of increase in size and brilliancy it must in a few weeks become a beautiful object even to the naked eye. As a matter of record I give herewith a drawing of its telescopic (inverted) appearance on the evening referred to, April 16, 1882.

It is now a very pretty telescopic comet. The head is bright and solid looking, the tail delicate and nearly straight. The head appears larger than the width of the tail immediately joining it, and has very much increased in apparent size since discovery.
The comet's approximate position on May 1 will be: Right ascension, 20 hours 38 minutes; north declination, 68 degrees 50 minutes. On May 9: R. A., 23 hours 5 minutes +74 degrees 27 minutes.

William R. Brooks.
Red House Observatory, Phelps, N. Y., April 17, 1882.

It Burning Lake,
It said that from one of the chief naphtha wells of Russia, the liquid shoots up as from a fountain, and has formed a lake four miles long and one and a quarter wide. Its depth is, however, only two feet. This enormous surface of inflammable liquid recently became ignited, and presented an imposing spectacle, the thick black clouds of smoke being lighted up by the lurid glare of the central column of flame, which rose to a great height. The smoke and heat were such as to render a nearer approach than one thousand yards' distance impracticable. Suitable means for extinguishing the fire were not at hand, and it was feared that the conflagration would spread underground in such a manner as to cause an explusion. This supposition led many inhabitants of the immediate vicinity to remove to a safer distance. The quantity of naphtha on fire was estimated at four and a half million cubic feet. The trees and buildings within three miles' distance were covered with thick soot, and this uripleasaut deposit appeared on persons' clothes, and even on the food in the adjacent houses. Not only was the naphtha itself burning, but the earth which was saturated with it was also on fire, and ten large estrblishments, founded at great expense for the development of the trade in the article, were destroyed.

Largest Gasometer.

The dimensions of the gasholder for South Metropolitan Gas Company, London, Eng., is as follows: Inner lift, 208 feet diameter, by 5 :3 feet 6 inches deep; middle lift, 211 feet diameser, by 53 feet 3 inches; outer lift 214 feet diameter. by 03 feet, thus having a total height of 159 feet 9 inches. This, it is said, is the greatest height and the largest capacity of any gasholder that has ever been made. There is, according to Mr..Rees (English Mechanic): another gasholder 220 feet diameter, but has only a height of 90 feet. It has a eapacity of $5,500,000$ cubic feet. The total weight of standards and loody for this gasholder is 1,400 tons.

Women's Silk Culture Association.

The second annual meeting of the Women's Silk Culture Association was held in Philadelphia, April 18. Among the exhibits was a piece of brocaded satin for a dress pattern to be presented to Mrs. Garfield. Fifty pounds of coccons, contributed from fourteen States, and yielding fourteen pounds of silk, were used in it. Some silk was also shown, spun by worms fed upon osage orange. Three pounds of the osage orange cocoons are said to yield one pound of silk. In her annual report the president asserted that enough had been accomplished to insure success to the movement inaugurated by the society.

NEW ELECTRIC LOG.

This apparatus provides for a continuous registration, on board the ship, of the actual distance traveled by her through the water. The distance run is shown on dials

Fig. 2.-KELWAY'S ELECTRIC LOG-THE RECORDER.
placed in the captain's calin and elsewhere; each indication being also announced on a single stroke electric bell within audible distance of the officer on watch. The electric log, which has received favorable attention from the Admiralty, seems calculated to be of service in navigation, scientific speed, trials of vessels, nautical surveying, the testing of various forms of screw propellers, and in naval range finding. The Kelway's electric log screw or rotator, which actuates the electrical portion, is placed in a cylinder below the bottom of the vessel, where, by a passage of the vessel through the water, it rotates in a body of water of uniform pressure or density, thus eliminating, even in the roughest weather, the well-known inaccuracies of ordinary towing logs, which are notably affected by the disturbing influence of the ship's propeller or by surface waves.
Fig. 1 shows the interior of the electric log. At its lower part is a sluice valve bolted to the bottcm of the vessel; the sluice valve is shown open and allowing the sea full access to the iron box, D D. This iron box is bolted to the upper flange of sluice valve, and is closed at its top by the metal plate, E, which effectually prevents the ingress of water to
the ship's hold. Through the stuffing box, F, in plate, E, passes the metal rod, G, the screw thread on which raises or lowers the metal cage, HH . To the bottom of this cage is affixed the cylinder, having its opening for the passage of water in a fore and aft direction or in a line with the keel of the vessel.
The passage of water through the cylinder causes the screw, R, to rotate with the spindle, L. On this spindle is

Fig. 1.-KELWAY'S ELECTRIC LOG.
also an endless screw which revolves, by the intervention of a wheel, the vertical spindle, M, which in its turn actuates a series of wheels in the box, N. The last of these wheels, termed the "mile" wheel, makes one revolution while the vessel passes through the water one nautical mile. On the spindle of this " mile" wheel is affixed a second wheel, having eight ratchet teeth; and these tecth, by moving a lever, cause an electric circuit to be completed-obviously eight times in the mile, the current passing througb the electric cable to the indicating dials and bells. Referring to the dial, Fig. 2, it will be seen that there are eighty graduations on the out side circle; and, as the pointer in front of the dial jumps one graduation at each completion of the electric circuit, one revolution of the larger pointer represents ten miles. Ten revolutions of this pointer cause the smaller one to make one revolution, recording one hundred miles. The mechanism of this dial is similar to a gas-meter index.

The Australian Drought

Late mails from Australia report the pre valence of fearful heat and drought. For several months scarcely any rain had fallen, and the heat in the inland districts had been terrific, the mercury once reaching 124° in such shade as was obtainable. Morning after morning, for weeks together, the sun had risen in a cloudless sky and set at night " like a huge red ball of fire at the edge of a copper dome." The losses of station owners are extraordinarily heavy, and the grain harvest will be below the average all over the continent, though in isolated districts the crop is a good one, owing to heavy local rainfalls. In Queensland the drought had broken up, and heavy floods had done much damage; at one station alone two thousand sheep had been drowned by a freshet. It has been said that Australia is a land of contradictions; this, according to the nineteen years' cycle theory, was to be a wet year; thus fa

NOVEL SLED.

The engraving shows a new iron sled recently patented by Mr. Asa S. Russell, of Ellenville, N. Y. The novelty in this device consists in a frame made of two bars of iron,

RUSSELL'S IMPROVED SLED.
each forming a runner. Each bar is attached to the fron of the board, and extends thence downward in a curve and passes back, forming the runner. At the back of the sled it is bent and extends upward, at an angle to the board to which it is fastened. It extends thence under the board diagonally across it until it meets and crosses the other ba at the center of the board, where the two are fastened to gether and to the board; it extends diagonally forward. downward, and outward to the opposite runner, on which its end rests, and to which it is fixed by a bolt.
In the engraving the board of the sled is indicated only in outline to show the form and arrangement of the ironwork more clearly.
This sled is very strong and entirely free from liability to twist and become loose jointed; it is, therefore, more durat ble than the ordinary sled. As the two parts may be readily bent over a form, the sled may be easily and cheaply made, and as several of the parts which are necessary in ordinary sleds are omitted in this, it may be made very light without impairing its other qualities

License Fees of officers of Steam Vessels.
The recent act of Congress reducing the iicense fees of officers of steam vessels was approved by the President, April 5. The new charge for certificates is uniformly fifty cents for all classes. A treasury circular, dated April 11, authorizes inspectors of steam vessels to refund to all masters, engineers, pilots, and mates, licensed on or since April 5, all sums in excess of fifty cents exacted from such officers for their licenses. The form of licenses now in use, indicat ing grades of officers, will be continued.

Tempering by Compression

The author heats metals, and especially steel, to a cherry ed, compresses them strongly, and keeps up the pressure til the mass is perfectly cold. The metal acquires an excessive hardness, and a striking fineness of grain. Steel thus treated acquires a coercitive force, which enables it to be come magnetic. The durability of this property requires to be studied.-M. Clémandot.

NEW GRAIN DRIER

The engraving shows an apparatus by which oats and ther grain may be dried by the direct application of the heat from the fire without being injuriously affected by the moke ascending therefrom. It is so arranged that the grain may be thoroughly dried while passing through it, without requiring any manual labor from the time it enters the machine till it is discharged.
In this drier there are two movable screens, placed one
dis drier there

BARCLAY'S GRAIN DRIER.

above the other and inclined in opposite directions, so that the grain which is supplied through the spont at the top of the chamber passes toward the rear of the drier on the upper screen and is delivered to the rear end of the lower screen, along which it passes to the discharge spout near the front of the furnace.
Each sereen forms the top of a wind chamber which recei ves air from a blower at the front of the furnace. The, wind passes from these trunks upward through the grain, and the heated air and products of combustion pass upward from the furnace over the grain on the lower screen, thence upward and forward over the top of the upper screen on its way to the flue. The screens are constantly agitated by wipers on the revolving vertical shaft at the rear of the drier
Although the smoke is admitted into the: space immediately over the grain it caunot come in contact with it, as the pressure of the heated air escaping through the perforations in the screens prevents so undesirable a result, while the heat from the smoke is fully utilized for the purpose of assisting in drying the grain.
This invention was recently patented by Mr. John Barclay, of Toronto, Canada.

NEW LIFE BOAT PLUG.

From time to time we hear of disasters at sea where the chances for saving life have been greatly lessened by the loss or misplacement of the boat stopper or plug, thus rendering the life boat useless. So important a consideration has this liability to loss of life become, that various contrivances have been invented and adopted, but all seem to have weak points and are more or less liable to get out of order. This device, which is styled by the inventor the "Emergency Life Newburg \mathbf{Y} a for it. It is exceedingly simple, very easily worked. and seems entirely trustworthy.
Fig. 1 represents the life boat plug; Fig. 2 is a sectional drawing of plug, showing the details of its construction; Fig. 3 showing its position in boat. On launching boat the cap is screwed down tight on leather washer, thus closing slots and preventing the inflow of water. On raising boat to davits, the cap is unscrewed as far as possible, thus opening slots for the outflow of water. The cap cannot come off, its movement being arrested by the flange in tube coming in contact with shoulder in cap, so there is no danger of loss or misplacement. The plug is made of brass, and is stout enough to withstand any knock or hard treatment that it is liable to receive. The slots are made larger than the actual capacity of tube allowance, being made for partial stoppage by floating matter.

Largest Fan in the World.

The ventilating fan at the St. Hilda Colliery, South Shields, is the largest machine of the kind in the world, the diameter of the wheel being fifty feet. The fan can be driven at a speed of fifty revolutions per minute, at which velocity the outer extremities of the blades travel at the rate of a mile and a half a minute-a speed which is estimated to produce a movement of air equal to 200,000 cubic feet per minute. Much of the air moved by this fan must be drawn through over fourteen miles of narrow underground passages.

It is driven by a pair of high pressure engines, each cylinder of which is three feet six inches in diameter, with a three foot six inch stroke. Two completely equipped and perfectly distinct engines are provided for the working of the fan, so that, in the case of a break down on the part of one of them, the other can at once be brought into action.

NEW ACOUSTIC TELEPHONE

We give an engraving of an improved acoustic telephone and telephone call signal, patented by Mr. John B. Bennett, of San Luis Obispo, Cal. This instrument may be placed in any desired position, and the line wire may extend in any required direction without making an angle at the instrument, and whichever way the instrument is turned the appearance will be the same. The great difficulty with other string telephones is that they are often incapable of being placed in the most convenient position. The curved speak ing tube-which is also used for hearing-terminates flush ing tube-which is also used for hearing-terminates flush
with the front side of the case, and so constructed that with the front side of the ca
any sound-wave entering its mouth is focused directly on the center of the diaphragm.

The instruments are furnished with a good and distinct automatic alarm, which is operated by turning a crank on the instrument, the operation being the same as that of operating a magneto bell. Turning the crank causes a hammer to strike rapidly and strongly against an eye in the diaphragm to which the line diaphragm to which the line
wire is attached, affording a loud and distinct alarm free from all the bother and expense of electricity. If wished for special purposes, a magneto call can be arranged within the case at slight expense in the place of the automatic call, and can be operated by the same crank.
These instruments are nicely finished, the mouth-piece, crank, and other parts being nickel-plated. This telephone for short distances less than a mile to a mile and a half, works clearly and satisfactorily. The inventor states that he has heard distinctly through a full mile and a half of line.
A new suspender has been devised by the same inventor by which the line is supported without interfering with its sound-conducting qualities. It is also capable of turning angles in the line without material loss of sound.
This telephone has the advantage of great simplicity, and transmits speech vaturally and loudly without the application of electricity and without the troubles attendant on its use.

For further information address the inventor as above.

BENNETT'S ACOUSTIC TELEPHONE.

 and a half hours behind time, and messages from this coun try six hours late. The wires between Chicago and St. Paul, Chicago and Milwaukee, and Chicago and Omaha were worked on the strength of atmospheric electricity with out batteries.
A Deer's Head with Fifty-eight Points.

A head of the white tailed American deer, bearing fifty eight points, was lately received in this city from San Antonio, Texas. This is three times as many as had been seen before in this part of the country. The deer was shot near the in this part of the country.
Banders range of mountains.

The Sun's Fuel.

The most brilliant auroral display since 1860 was that of Sunday night, April 16. The accompanying electric storm was uncommonly severe. The chief night operator in the Western Union Telegraph Company's building says that the wires began to be affected shortly after ten o'clock, and in half an hour all the wires, North, South, East, and West, were frequently interrupted. The greatest trouble was on the other routes were also badly affected. The aurora
would at one time rob the wires of the usual would at one time rob the wires of the usual current, and at

What keeps the majestic ball hot and bright? This has greatly engaged physicists and astronomers, and various have been their theories. If the sun shone only by mere combustion of its own materials, the calculation is that its fire would not last five thousand years. It is very kind of Dr. Siemens to come forward with an entirely new theory which holds out the hope that the men of science are all wrong with their dismal foreboding, and that the creation is not schemed on the poor footing of a German stove or a burban gas company. The learned ironmaster and physi- cist believes that the sun may very well go on illuminating and warming our world and the family of sister planets for an indefinite, if not infinite, time. He supposes interstellar space to be filled with an extremely attenuated hydrogen, and interplanetary space with denser gas, albeit more rarefied than the atmosphere drawn round each world. The sun, he thinks, whirl ing on its axis, draws into its poles the thin hydrogen, hydrocarbon, and oxygen of our sphere, and these, being kindled, are projected outward at his equator into space. The accepted view is that the heat and light there developed and radiated perish, as far as we are concerned, except for the small portion arrested by each solar satellite; but Dr. Siemens argues that this heat and light do their chief work in decomposing the carbonic oxide and watery vapor which were produced by the kindling at the solar poles, so that the sun itself perpetually renews its own supplies, and restores by its energy the waste matter which has fed that energy. The theory is much too technical and complicated to be here discussed, and we should offer a bad compliment to its ingenious author even to attempt such a task. Dr. Siemens, however, has had great experience with the phenomena of radiated heat, and his applicalions of the new view to the nature of the zodiacal light and of comets is particularly striking. Of course it is startling to hear of something in our own system which closely resembles perpetual motion; and those who maintain that everything comes to an end, and that all mechanical energy must be gradually degraded and metamorphosed, will be slow to receive the new sug-gestion.-London Telegraph.

Sound, Light, and Heat.
Prof. Tyudall lately delivered the second lecture of his course at the Royal Institution. The explanations given by Huyghens of the phenomena of reflection and another it would so increase it as to render the opening of \mid gi the wire necessary to keep the instruments from burning. This change was in some cases rapidly made, but in others a wire would be charged from ten to fifteen minutes at a time from the auroral current, which would then forsake it. From half-past eleven to twelve o'clock, while the electric storm was at its height, it was possible to work with Albany on a wire grounded at each end by means of the auroral current alone. A similar storm, but not as severe, was experienced about a year ago, during which a long special dispatch was sent from Albany on a wire without a battery. At one o'clock, on the Eastern and Southern routes, the wires were working better, but on those running West and North the interruption still continued. The interrup-
tion was the most continuous ever experienced. Business on and North the interruption still continued. The interrup-
tion was the most continuous ever experienced. Business on efraction, as well as of the properties of convergent and divergent lenses, had, he said, been fully verified by the progress of time and science. The lecturer showed that there are sound lenses also, and that the wave theory affords a no less adequate explanation of their properties. He demonstrated, by the test of the sensitive flame, that cotton net, because porous, transmits waves of sound, while the interposition of a non-porous body leaves the flame unaffected. Just as the passage of light was hindered by clouds, although the air and light of which these are made up were alike transparent, so acoustic clouds obstructed sound. Acoustic clouds onsisted of layers of heated air with intermediate layers less heated. The lecturer formed an artificial cloud of the less heated. The lecturer formed an artificial cloud of the
kind, which was shown to intercept sound; the sound was thus thrown back in minia- ture echoes. Another analogy between light and sound was brought out by comparing the solar spectrum with a scale of notes produced by striking a graduated series of tuving. forks. To illustrate Dr. Wollaston's observation, that certain sounds are inaudible to many ears, Professor Tyndall blew a small whistle, whose low though shrill note instantly agitated the sensitive flame, while full half of those present, as a scientist had predicted in conversation with the lecturer beforehand, heard notbing. Resemblances were also pointed out bet ween the absorption of light and that of sound. On the sound struck from one tuning.fork being quenched, it was proved to have been not annihilated, but simply absorbed by an adjacent fork. In like manthe Atlantic cables was also obstructed. At midnight \mid ner the yellow ray in the solar spectrum was absorbed by (Valentia time) messages to the United States were three sodium vapor as the metal passed under the eyes of the
udience into that form, leaving the place of that color in the spectrum marked by a black band.
Professor Tyndall concluded with an eloquent and generous tribute to the memory of his predecessor in the chair of Natural Philosophy at the Royal Institution at the beginning of our century, Dr. Thomas Young, who not onlyput into Champollion's hands the key to the Egyptian hieroglyphics, but anticipated by a score oí years Fresnel and Arago, as was urged in detail, in placing upon its true scientific basic the undulatory theory of light. The lecturer repeated Young's brilliant demonstration of the fact that the prismatic colors of the soap-bubble are in the exact ratio of the
density of the film, ranging from the white light where the cuticle is thickest to the violet ray as it darkens to black just at the bursting point.

engineering inventions.

In driving piling for railroads by a driver moved forward on the piles as the work proceeds it is essential that the piles be dressed and tenoned as rapidly as possible, in order that there be no delay in moving and working the driver. Mr. Andrus L. Gilbert, of Albany, N. Y., has patented an invention, the object of which is to dress the piles by machinery carried on the car of the pile-driver and driven by the same engine, so that the work can be done as fast as the piles are driven, the caps then put on, and the track for the car laid rapidly and with less than the usual expense. The same inventor has also recently invented and patented an improvement on pile-drivers used in the construction of railroads; the invention consists in the arrangement of parts for driving inclined piles. The car will carry an engine for driving the winding-drum, and in operation the car is moved forward to project the platform in front, and then by transverse adjustment of the platform the leaders are brought to place to drive the straight piles in succession. The leaders are then set at the required inclination, and the table turned first to one side and then to the other to drive the inclined piles in line with the straight piles. The work of driving is thus completed as the machine is advanced.
Mr. Christopher C. Bomberger, of Crocker Station, Mo., has patented an improved windmill, in which the wheel revolves in a horizontal plane, and is provided with wings which are kept in a vertical position during balf of the revolution, and in a horizontal position during the other half of the revolution by an ingeniously arranged mechanism. The wheel exposes a great

automatically

Mr. Thomas Keith, of New York city, has patented an improvement in endless-chain elevators for elevating or lowering and delivering freight on docks and vessels. The object of the invention is to provide for transfer of freight from a vessel to a dock, or the reverse, by arrangements that are practically automatic in their actions. The invention consists in a jointed frame apparatus that can be set to both elevate and convey the freight, so that no handling is required and convey the freight, so
between the vessel and dock.

An improved car-coupling, patented by Mr. Jefferson E. Barrett, of Mount Vernon, Iowa, consists in a draw-head having a U shaped groove in its upper surface, combined with a flat bar sliding in a vertical longitudinal slot in the draw-head, and provided with two lugs. The bar having levers pivoted thereto for raising and lowering it, the free ends of these levers pass through slots in plates provided with locking devices. When the vertically sliding bar is in the lowered position it holds the link in the groove in the draw-head, and it raises the link out of the groove in the draw-head when it is raised by means of the levers or the handle at its upper end.
Añ improvement in lubricators has been patented by Mr. Henry R. A. Boys, of Barrie, Ontario, Canada. This improvement relates generally to the class of lubricators for engine cylinders operated by condensing steam, a drop of water displacing a similar quantity of oil, which enters the steam-pipe and passes thence to the cylinder. The great advantage secured by the use of this form of lubricator is that the lubrication is carried on continuously, effecting a more perfect lubrication than can be secured in the ordinary lubricator, besides saving a large percentage of the oil.

An improvement in rotary steam engines has been patented by Messrs. George W. Wade and Joshua M. Wardell, of Cadillac, Mich. The object of this invention is to construct a cheap and durable engine and to economize steam in the application of power. The casing of the engine is ellipsoidal, and the rotating piston, which is set centrally in the casing, is provided with radial wings capable of sliding in and out of the piston, to follow the inner surface of the cylinder.
Mr. Leonard Anderson, of Painesville, O., has patented an improvement in locomotive valve-gear, which consists of a vertically fixed lever, pivoted on the main pin, knuckle-pin, or other point on the parallel rods, having pivoted to its head on horizontal horns or pius two forward extending rods, one of which connects by a pin with a perpendicular rocker-arm, to whose lower end is pivoted the valve rod, while the other forward extending rod connects with a fixed slotted arc that hangs nearly parallel with the rocker-arm, a pin in the end of the rod sliding in the slot of the arc. This pin serves as the ful crum on which the gear operates, and is adjustable by means of lever and suitable connections in the slot of the arc, whereby the cut-off may be varied and the steam reversed. Motion is transmitted to the gear by a quadrant-lever, fixed on the parallel rods.

Earthquake at Sea.

Capt. Horner, of the German ship Stella, from Bremen to Baltimore, arriving April 15, reports that on the morning of March 18, in latitude $37^{\circ} 21^{\prime}$ north, longitude $23^{\circ} 51^{\prime}$ west, his vessel suddenly halted in her course with a shock that gave to those below the impression that the ship had struck a rock. The weather was clear and the sea smooth and calm. Neither the chief mate, who was on the quarter-deck at the time, nor the look-out, could account for the strange occurrence. The captain ordered the heaving of the lead, but found no bottom at 100 fathoms. The pumps were sounded and the ship found to be tight. The shock lasted
only half a minute, after which the ship went on as before Capt. Horner himself we
signs of any obstructions.

Cuntermadate.

Converting Water into Steam Without Heat.

To the Editor of the Scientific American:

Reading your remarks concerning the instantaneous ex pansion of the water at the bursting of the boiler in Mr . Lawson's test, on page 230, it called to mind some experi ments at Ballston Spa, N. Y., some few years since, where a lot of boys were trying to make a great noise with a small gun in celebrating one Fourth of July. After using paper wads to but little effect, I suggested water. The gun had a caliber of about 1 inch, and some 12 inches long. We put in 2 ounces of rifle powder, then rammed down a good paper wad, then filled the bore up to within 2 inches of the nozzle with water, then put on another hard wad ; the gun being placed on a carriage, which elevated its nozzle about 22 degrees. Fearing explosion, we set a slow match, and ran away. The charge gave a loud report, sending the gun backward and over end some half dozen times. The water burst into vapor like a puff of steam from an engine, when the wind carried it away. This appears a very quick way of getting up steam; whether economical or not I am unable San
Sandy Hill, N. Y., April 17, 1882.

The Lawson Boiler Experiment.

To the Editor of the Scientific American:
In the boiler test by D. T. Lawson, described on page 230, did not the cutting away of the diaphragm and allowing the whole strain of supporting the heads to be sustained by the one inch stay rod, weaken the boiler sufficiently to account for it giving away at the 65 lb . less pressure than it sustained with the diaphragm intact? It so appears to
me, as in all probability it was the first point of rupture.

Ground Air as a Source of Disease

To the Editor of the Scientific American:
In connection with the article, "Cellars as Centers of Malaria," in your valuable paper of January 14, it may interest and benefit many of your readers to state a fact cb served by me in Berlin, Prussia, a few years since. It is this: Before building lots are about to pass into hands of intending intelligent occupants, they almost invariably first obtain a specimen of the air contained in the soil at the site of the intended dwelling for analysis, because it has been found that such air invariably fills the cellar, and if un wholesome causes disease. The fact observed by many farmers in this country, that certain cellars are unfit for the storage of meat, however well salted, and milk, is a furthe proof of necessity to use intelligent care in the selection of a building site.
Deloro, Ont.
F. Koerner.

Courtship and Marriage among the Choctaws of Mississippi.

The two thousand Choctaws still living in their ancestra homes in Mississippi, retain, in their pristine vigor, many of the usages of their ancestors. Among these are the methods employed in conducting a courtship and the marriage ceremony.
When a young Choctaw, of Kemper or Neshoba county, sees a maiden who pleases his fancy, he watches his oppor tunity until he finds her alone. He then approaches within a few yards of ber and gently casts a pebble toward her, so that it may fall at her feet. He may have to do this two or three times before he attracts the maiden's attention. If this pebble throwing is agreeable, she soon makes it manifest; if otherwise, a scornful look and a decided "ekwah" indicate that his suit is in vain. Sometimes instead of throwing pebbles the suitor enters the woman's cabin and lays his hat or handkerchief on her bed. This action is interpreted as desire on his part that she should be the sharer of his couch If the man's suit is acceptable the woman permits the hat to remain; but if she is unwilling to become his bride, it is removed instantly. The rejected suitor, in either method employed, knows that it is useless to press his suit, and beats as graceful a retreat as possible.

When a marriage is agreed upon, the lovers appoint a time and place for the ceremony. On the marriage day the friends and relatives of the prospective couple meet at their respective houses or villages, and thence march toward each other. When they arrive near the marriage ground-generally an intermediate space between the two villages-they halt within about a hundred yards of each other. The brothers of the woman then go across to the opposite party and bring forward the man and seat him on a blanket spread upon the marriage ground. The man's sisters then do likewise by going over and bringing forward the woman and seating her by the side of the man. Sometimes, to furnish a little merriment for the occasion, the woman is expected to break loose and run. Of course she is pursued, captured, and brought back. All parties now assemble around the expectant couple. A bag of bread is brought forward by the woman's relatives and deposited near her. In like man
posit it near him. These bags of provisions are lingering symbols of the primitive days when the man was the hunter to provide the household with game, and the woman was to raise corn for the bread and hominy. The man's friends and relatives now begin to throw presents upon the head and shoulders of the woman. These presents are of any kind that the donors choose to give, as articles of clothing, money, trinkets, ribbons, etc. As soon as thrown they are quickly snatched off by the woman's relatives and distributed among themselves. During all this time the couple sit very quietly and demurely, not a word spoken by either. When all the presents have been thrown and distributed, the couple, now man and wife, arise, the provisions from the bags are spread, and, just as in civilized life, the ceremony is rounded off with a festival. The festival over, the company disperse, and the gallant groom conducts his bride to his home, where they enter upon the toils and responsibilities of the future.Amer. Naturalist.

Tornadoes and How to Avold Them.

The Signal Service Bureau has in press a monograph, by Sergeant Finley, containing a review of the observations of six hundred tornadoes, with generalizations from the recorded facts and suggestions as to the methods which ought to be ollowed in the investigation of such storms.
The storm studies have occurred during the past 87 years in all parts of the country. From these it would appear that tornadoes occur most frequently in summer, and in the month of June. They have occurred, however, more frequently in April than in July, and in May and September than in August. Kansas is the State that has been most afflicted, and that notwithstanding the fact that the period during which tornadoes have visited it has been comparatively short. The State has had 62 tornadoes from 1859 to to 1881; Illinois has had 54 from 1854 to 1881; Missouri has had 44 from 1814 to 1881; New York has had 35 from 1831 to 1881; Georgia 33 from 1804 to 1881; Iowa 31 from 1854 to 1881; Ohio 28 from 18:23 to 1881, and Indiana 27 from 1852 to 1880 . The States and 'Territories that have had only one each from 1794 to 188 P are: Colorado, California, Indian Territory, Nevada, New Mexico, Montana, Rhode Island, West Virginia, and Wyoming. The storms occur most freWest Virginia, and Wyoming. The storms occur most fre-
quently from five to six in the afternoon, although there is no hour of the day that has been entirely free from them.
The average width of the path of destruction is 1,085 feet, and the storm cloud runs with a velocity of from twelve to sixty miles. The wind within the vortex sometimes attains a velocity of 800 miles an hour, the average velocity being 392 miles.
Among the most valuable suggestions of the paper are those with reference to the peculiarity of the movements of tornado clouds, contatning rules for arriving at their vio lence. A tornado cloud always has a center, and it always moves forward from west to east. It may, however, sway from side to side in its progressive movement. Changes in motion are sometimes very sudden. In the event of a sudden change the observer, who is east or south of east of the storm, should move quickly to the south. If he is northeast he should move to the north. If within a very short distance of the cloud the observer should run east, bearing to the south.

Woodpeckers and Bears Deceived by Telegraph.
At the Crystal Palace Electrical Exhibition, London, the Norwegian Telegraph Department exhibits two stuffed wondpeckers which have pierced a telegraph pole in search of food The explanation of this phenomenon, which is by no means uncommon in Norway, is as follows: The woodpecker feeds on insects which it finds under the bark of decayed trees; and it is supposed that the bird is deceived by the humming sound emitted by the telegraph post into the belief that the sound proceeds from the insects concealed in the wood; and that he is not undeceived until the perfora tion is complete, and daylight, instead of insects, is dis closed to the astonished and disappointed bird. Mr Nielson, the Chief Director of Telegraphs at Christiania, further states that bears are very troublesome to his department, as they not unfrequently scatter the heaps of stones which are used to support the posts. The bear's fondness for honey is supposed to explain this proceeding; and his operations are performed under the belief that the humming sound proceeds from a bees' nest buried in the earth.

Castrating Fish.

Attention has lately been called in Germany to an art that used to be secretly practiced in Germany and England by skilled carp breeders, but which seems to have been los during the present century. It was claimed by experts a hundred years or so ago, that castrated fish were as much su perior in flesh to the uncut as the capon is to the ordinary cock, or an ox to a bull. Recalling this practice, a writer in a German fishery paper (translated for the "Bulletin" of the U. S. Fish Commission) says: The nutritious matter which would otherwise have served for forming roe or milt will certainly cause a more rapid increase of flesh and fat, and therefore an equally rapid increase in the weight of the fish. For such experiments young, but full-grown, fish should be selected (perbaps two or three year old trout) whose generative matter has not yet been fully developed (the time for trout would, therefore, be April and May) None should engage in such experiments but those who possess the neengage in such experiments but
cessary leisure and knowledge.

Holland's Climax Hammerless Guns.

Among the more recent and successful competitors for the favor of sportsmen, in the matter of hammerless guns, are those made by Messrs. Holland \& Holland, of London. At the recent Sportsmen's Exhibition in that city these guns attracted a good deal of favorable attention and called out many commendations from experts who had given them the practical test of field service. The chief advantage claimed for these guns lies in their freedom from liability to accidental discharge. By a simple and clever device a safeiy block is always interposed between the hammer and the cap of the cartridge, except when the trigger is pulled, while the trigger is locked by a top safety bolt which may work automatically if desired. The setting out of the locks is so arranged that, in discharging the piece, before the sear can be pulled out of the tumbler-bent, and the hammer allowed to fall upon the striker, the trigger will have lifted the short arm of the safety bar far enough to clear the block out of the way of the falling hammer. In this way there is obtained, when the lock is in good order, an absolute security against accidental discharge, not only when the lock is bolted, but even when placed at full cock ready for firing. It is impossible for the jar given by the explosion of one barrel of a double gun to set off the lock of the other barrel, a matter of no small importance to sportsmen when using heavy charges. The locks are simple in construction, and can be taken off for cleaning or repairing, the same as an ordinary side lock. The pistons which raise the tumblers to full cock are under cover, and fit into circular holes so as to prevent the entrance of water to the lock. The gun is easily opened, yet has a sound and secure connection, having the top lever with a double bolt grip under the barrels, and when desired a third grip at the top-a triplex fastening which stands heavy shooting with large charges without any loosening or gaping of the action. A widely known contributor to the London Fiield ("Wildfowler"), who has used one of the Climax sporting guns for the last two years, firing about five thousand shots with it, says that he has never had a misfire or the slightest hitch with it. He describes it as one of the hardest bitting guns he has ever used.
Among the guns shown at the Sportsmen's Exhibition by this firm were some specially adapted for pigeon shooting. They were arranged with extra top grip, bare seven and a half pounds weight, to shoot four drachms powder and one and a quarter ounce shot, chambered to the three inch shell. The barrels are from English steel, Damascus, or from Whitworth fluid steel; choke bore. The duck guns shown were of three sizes; ten bore, chambered to take full length 'shell, and to shoot up to five and a half drachms powder; warranted to give good pattern and penetration at eighty yards; eight bore, shooting up to seven drachms; and four bore singles, thirteen to fifteen pounds, shooting ten drachms, and warranted to kill up to one hundred and fifty yards.

New York City Retuse.

A bill passed by the House of Representatives, April 10, makes it a misdemeanor, punishable by fine and imprisonment, to deposit ballast, street-sweepings, garbage, or other refuse in any of the navigable waters in or around New York Harbor. Such stuff, if dumped into the water, must be carried at least five miles out to sea.
The rule is a good and necessary one, and if properly carried out will put a stop to practices which are rapidly filling up the channels, and which, in summer, create grievous nuisances along the shores of the harbor and adjacent waters.
Another effect will be to bring into prominence and increase the demand for processes for destroying or utilizing street-sweepings, garbage, and similar refuse. It seems a pity to cast such materials into the sea, for they are rich in elements drawn from the soil, and which by good rights ought to go back to it.
The prohibition of dumping inshore will also make an immediate demand for self-dumping sea-going scows or boats capable of rùnning five miles out to sea in all sorts of weather. A very promising device of this sort was publicly tested a few days ago, in an improved form of the Barney self-dumping boat. A smaller boat on the same general plan, tried last year, failed to operate satisfactorily. The new boat is 110 feet long, 28 feet wide, and when loaded draws $91 / 2$ feet of water; she can carry 500 tons, has sharp bows and a rounded stern, and can, it is said, go out to sea with perfect safety in the severest weather. Her bull consists of two parts called pontoons, extending her entire length, hung at both ends and in the middle to heavy bridges, working upon hinges at the sides. The carrying space is between the pontoons, the interior surfaces of which, when in their fixed position, slope inward toward the keel, where they meet, forming a hold which has the shape of the letter V. It is 86 feet long. The confined space within the pontoons-not between them-serves to make them so buoyant that, when the vessel is empty, their position is naturally a closed one. They are locked together before loading, and are not unlocked until the dumping ground is reached. When this is done the load forces the pontoons apart at the bottom and it drops into the water. The pontoons are held in this position by the hand on the wheel. When that is relaxed their buoyancy brings them back together and they are relocked. The owners of the improved scow claim that it will save $\$ 60,000$ per year to the city if adopted.
At the trial the process of dumping and closing the scow is said to have taken ten minutes.

Relation of Fires to the weather.

A recent issue of the Chronicle discusses from an insurance point of view the probable influence of atmospheric conditions upon fire losses, the main factor considered being humidity. The discussion, which is a very suggestive, not to say important one, is not confined to the generally recog nized increase in local fires during specially protracted seasons of dry weather, but seeks rather to discover the broader relations of general rainfall throughout the United States, and the observed fluctuations in the aggregate fire losses, year by year and month by month "Assuming that the human hazard is a constant, and that the difference of states in respect to architecture and industry has been reduced by the law of average also to a constant, what is left to explain the increased or diminished aggregate fire loss of one year over previous years unless it be some meteorolcgical peculiarity?
Taking the statement of the precipitation, month by month, during the year ending with June, 1879, compared with the average for several previous years, as given in the last published report of the Cbief Signal Officer of the United States, and using it as a basis of comparison with the fire losses for the corresponding months as contrasted with the average losses in the same month of the two previous years, the Chronicle finds that an excess of humidity is steadily followed by a decrease in the fire loss, and a deficiency by corresponding increase in the fire loss.
The same relation between rainfall and fire loss is strongly indicated in tables showing the periods of greatest and least fire loss in California, where the contrast between the wet and the dry season is so sharply drawn. Notwithstanding the fact that the wet months cover the season-the California winter-when domestic fires are most employed, thereby increasing the relative fire hazard, the monthly mean of fire loss for the wet season is only about half that of the dry season.
From these and other tests the Chronicle deduces the fol lowing conclusions:
(1) That there is an interdependence between the humidity and the fire loss; (2) that whatever affects the rainfall, such as the destruction of forests, etc., will affect the fire loss (3) that there is a factor in the shape of an atmospheric hazard that should enter into the underwriter's calculations quite as well as the other elements of " moral" hazard, etc. (4) that there are localities peculiarly adapted by meteoro logical conditions to a high ratio of fire loss; (5) that this natural hazard should determine, as nearly as practicable, the architecture of such localities, their means of fire pro tection, and the proper rate of premium for risks there written.

Early Developed Power to Command.

The following list of great generals whose superior capacity was exhibited in early manhood, was compiled by the late Brevet Major-General Emory Upton:
Philip of Macedon ascended the throne at twenty-two, was the co
orty-seven.
Alexander the Great defeated the celebrated Theban band at Cheronea before arriving at the age of eighteen, ascended the throne at twenty, had conquered the world at twentyfive, and died at thirty-two.
Julius Cæsar commanded a fleet before Mitylene and distinguished himself before the age of twenty-two; completed his first war in Spain and was made consul before the age of forty; conquered Gaul, twice crossed the Rhine, and twice invaded Britain before the age of forty-five; won the battle of Plarsalia and obtained supreme power at fiftytwo. He died at fifty-six, the victor of five hundred battles and the conquerer of one thousand cities.
Hannibal was made commander-in-chief of the Carthaginian army in Spain at twenty-six, and had won all his great battles in Italy, concluding with Cannæ, at thirtyone.
Scipio Africanus, the elder, distinguished himself at the battle of Ticinus at sixteen, and at twenty-nine overthrew the power of Carthage at Zama.
Scipio Africanus, the younger, had conquered the other
Carthaginian armies and completed the destruction of Car thage at thirty-six.
Genghis-Khan achieved many of his victories and became emperor of the Monguls at forty.
Charlemagne was crowned king at twenty-six, was master of France and the larger part of Germany at twenty-nine, placed on his head the iron crown of Italy at thirty-two, and conquered Spain at thirty-six.
Gonsalvo de Cordova, the great captain, had gained a great reputation and was made commander-in-chief of the army of Italy at forty-one.
Henry IV., of France, was at the head of the Huguenot army at sixteen, became King of Navarre at nineteen, overthrew his enemies and became King of France before the age of forty.
Montecuculi, at the age of thirty-one, with 2,000 horse, attacked 10,000 Swedes and captured all their baggage and artillery; gained the victory of Triebel at thirty-two; defeated the Swedes and saved Denmark at forty-nine; and at fifty-three defeated the Turks in the battle of St. Gothard.
Saxe was a maréchal-de-camp at twenty-four, marshal of France at forty-four, and at forty-nine gained the famous
victory at Fontenoy.
Vauban, the great
Victory at Fontenoy.
Vaub, the great eng
at twenty-five, was maréchaldececamp at forty-three, and com. missaire-général of fortifications of France at forty-five.
Turenne, passing through the grades of captain, colonel, major-general, and lieutenant-general, became a marshal of France at thirty-two, and won all his distinction before forty.
The great Condé defeated the Spaniards at Rocroi at twenty-two, and won all his military fame before the age of twenty-five.
Prince Eugene, of Savoy, was colonei at twenty-one, ieutenant-field-marshal at twenty-four, and shortly after general-field-marshal. He gained the battle of Zenta at thirty-four, and co-operated with Marlborough at Blenheim at forty-one.
Peter the Great, of Russia, was proclaimed Czar at ten years of age, organized a large army at twenty, won the victory of Embach at thirty, founded St. Petersburg at thirtyone, and died at the age of fifty-five.
Charles XII. completed his first campaign against Denmark at eighteen, overthrew 80,000 Russians at Narva be fore nineteen, conquered Poland and Saxony at twenty-four, and died at thirty-six.
Frederick the Great ascended the throne at twenty-eight, terminated the first Silesian war at thirty, and the second at thirty-three. Ten years later, with a population of but $5,000,000$, he triumphed over a league of more than $100,000,000$ of people.
Cortes effected the conquest of Mexico and completed his military career before the age of thirty-six.
Pizarro completed the conquest of Peru at thirty-five, and died at forty.
Lord Clive distinguished himself at twenty-two, attained his greatest fame at thirty-five, and died at fifty.
Wolfe was conqueror of Quebec at thirty-two.
Napoleon was a major at twenty-four, general of brigade at twenty-five, and commander-in-chief of the army of Italy at twenty-six; achieved all his victories and was finally overthrown before the age of forty-four.

MECHANICAL INVENTIONS.

An improvement in machinery for untwisting and carding curled horse hair has been patented by Mr. Thomas Adcock, of Adelaide, South Australia. The object of this invention is to untwist ropes of horse hair and to card the hair by a continuous operation in one machine. This machine will perform the work much more rapidly and ietter than it can be done by hand. One, two, or more untwisters may be used as desired, and the machine driven by hand or other power. A novel motor has been patented by Mr. Samuel N. Silver, of Auburn, Me. The invention consists of one or more sliding and reciprocating cylinders, containing pistons held in hese cylinders by latches, which pistons are each adapted to slide on a central rod surrounded by a coil spring, to which pistons rocking arms are pivoted, which are loosely mounted on a shaft, these arms being provided with pawls or other suitable clutching devices for rotating the sbaft. When the cylinders are pressed downward the springs are brought in tension, and when the springs exert the power stored in hem they rotate the shaft.
An improvement in rolling mills has been patented by Mr. Wilhelm Wenstrom, of Orebro, Sweden. This invention relates to that class of rolling mills in which one pair of horizontar and one pair of vertical rolls are arranged to roll metal simultaneously upon four sides, and are made adjustable with relation to each other. The object of this in vention is to give the rolls an exact and steady motion under all circumstances, and to secure a compactness of construction and arrangement by which the bearings are adapted to withstand the required pressure without straining or displacement.
Mr. George A. White, of Halifax, Nova Scotia, has patented an improvement in circular knitting machines for the manufacture of tubular fabrics, particularly the class of band machines using double sets of needles for forming ribbed fabrics. The object of this invention is to render such machines more perfect in operation, and thus produce better fabrics with less labor and attention in the operation of the machine. The novel features consist particularly in the fender or latch opener and the cams for moving the needles.

A Good Suggestion.

The Avalanche, of Memphis, Tenn., contains a suggestion, made by a resident of that city, which is well worth carrying out. He would have in every stateroom on a steamer an electric bell connected with both the pilot house and the clerk's office. In case of threatened disaster the prompt awakening of all the passengers might save many lives. As the Avalanche says, a sudden alarm to roase all the sleeping passengers at once on the first discovery that the steamer is on fire would give the passengers a chance for their lives. There is always more or less dangerous delay when a mes senger undertakes to awaken the sleepers by knocking on the cabin doors, and there is the risk of the messenger looking out for his own safety instead of the safety of the passengers. People who travel are canvassing their chances to escape in case of fire, and it would be well for owners of steamers to provide all measures within their power to secure safety for their passengers. The same precautionary plan of simultaneously and suddenly awakening the sleeping guests of a hotel could also save precious time in case ing gues
of fire.

A NEW ORE MILL.

We give two engravings of a new and powerful grinding mill made by the Northwestern Fertilizing Company, Chicago, Ill., for grinding all hard substances, such as rock, iron ore, gold ore, cement, etc.

The advantages claimed for the mill are its great simplicity, its economy in grinding, a large capacity for work, and the complete adaptation of the mill to any class of grinding required. It is adjusted to any grade, either fine or coarse, by means of a simple set screw.
By a novel mechanical device, when large pieces of iron enter the mill the grinding faces open five inches and the iron is thrown out without any injury to the mill. The manufacturers inform us that its capacity for grinding rock to a sixty mesh screen is one ton per hour, twenty tons in twenty hours. The grinding faces are made of metal that resists the wear, but the chief advantage is in the construction of the mill which makes the rock pulverize itself ratber than by rubbing against the grinding faces. This is accomplished almost entirely by centrifugal action. The cost of repairs is very light, the grinding faces being capable of running three months ou rock without renewal.
It requires about twen-ty-five horse power to run the mill to its full capacity. No foundation is required, neither are bolts needed to hold the mill to place, its weight, which is $23,000 \mathrm{lb}$., being sufficient to hold it. When in position it is noiseless. It does its own crushing, and no preparation of the rock is required. The smaller engraving shows the mill closed ready for work. The larger one shows the mill open, with grinding faces exposed. The manufacturers have been running this mill on rock for the past eighteen montls, and they claim that the mill is unrivaled for capacity and economy in reducing gold, iron, or other ores to powder. They have recently pulverized iron ore with it, at the rate of one ton per hour, to a degree of fineness that would permit it to pass through a sixty mesh screen.

${ }^{6}$ Cuting the Key Log."

The first thing to be done is to find out where the jam occurred, and then to discover what is called the "key log," that is to say, the log which holds the base of the "jam." An old experienced "stream driver" is soon on the spot, for the news is soon carried up stream that there isa " jam" below. Every minute is of consequence, as logs are coming down and the "jam" increasing in strength. The "key $\log "$ being found, there is a cry for volunteers to cut it. Now, when you consider that there are some hundred big logs of timber forming

ORE MILL WITH SIDE REMOVED.

height than one-half of the length of the binged sections	brought down the whole jam of logs was a quiet young fel-	height than one-half
low, some twenty years of age. He stripped everything	forming the bedstead.	low, some twenty years of age. He stripped everything

save his drawers; a strong rope was placed under his arms, and a gang of smart young fellows held the end. The man shook hands with his comrades, and quietly walked out on the logs, ax in hand. I do not know how the loggy-road one felt, but I shall never forget my feelings. The man was quietly walking to what very likely might be his death. At any moment the jam might break of its own accord, and also, if he cut the key log, unless be instantly got out of the

Mr. Alfred Michaud, of Paris, France, has patented an improved permanent galvanic vat. By this improvement the expense necessary for setting up the apparatus and main taining it in working order is greatly reduced, the purity of the galvanic liquids is maintained, the galvanic action is regular and uninterrupted and its energy is increased, the manipulation is simplified, and, it is claimed, an economy of at least fifty per cent of the salts ordinarily employed is effected. The principal feature of the invention consists in a feeding device for sup plying new fluids con tinuously, and in a siphon arrangement for removing the spent liquid.
Mr. Joseph Fournier, Jr., of New York city, has patented an improved folding cabinet bed that may be raised or tipped upon one of its edges, so as to stand in a vertica position against the wall when not in use. When in a horizontal position for use the bedstead is sup ported upon leaves hinged to the ends of the bed stead, and these leaves are adapted to be closed or folded in, like doors, against the bottom of the bedstead, so as to give the hedstead the appearance of a wardrobe or cabine when tipped upon its edge.
An improvement in boxes, patented by Mr Charles Beiser, of Toledo, O., consists in a box pro vided with a two-part or divided slip lid, and in elastic connections of the divided lid with the body of the box, and of the lid sections with each other, whereby the lid sections are attached to the body
a dead silence while the keen ax was dropped with force and [and are automatically opened when the elastic connection skill on the pine log. Now the notch was near half through uniting them is rcleased.
the log, one or two more blows, and a crack was heard. The An improved straw-conveyer belt bas been patented by men got in all the slack of the rope that held the ax-man; Mr. Alton J. Park, Jr., of Virginia, Mo. The object of one more blow and there was a crash like thunder, and this invention is to prevent the straw from catching in be down came the wall of timber, to all appearances on the axman. Like many others, I rushed to help haul away the poor fellow, but to my great joy I saw him safe on the bank, certainly sadly bruised and bleeding from sundry wounds, but safe.-The Field.

MISCELLANEOOS INVENTIONS.

A novel folding bed has-been patented by Mr. Charles M. Morrison, of New York city. This invention relates to that class of folding beds which are hinged in the middle the parts folding toward each other and having the appearthe parts folding toward each other and having the appearance of a desk or chiffonnier when folded. The object of
the invention is to balance the bedstead without the use of ween the ends of the slats and the conveyer belt, and to secure the ends of the slats more effectually to the belt
Mr. Edward E. Schermerborn, of New York city, has patented a new and improved milling attachment for vises. The object of this invention is to furnish a handy, efficient, and labor-saving tool for the shop, for doing the work by hand that is usually done with files. It consists in a milling tool carried by adjustable devices, by which it may be attached to a vise or directly to the work.

Mr. John Brush, of Albany, Oregon, has patented an iminvention is to balance the bedstead without the usc of | | grain. In this machine all of the sieves are easily inserted |
| :--- | :--- | :--- | :--- | counter-weights, and to permit of making the legs of less $\begin{aligned} & \text { and removed, and the machine is readily adjusted for dif }\end{aligned}$ a dam, and the instant the key logis cut the whole fabric comes rusbingdown with a crush, you will see that unless the ax-man gets instantly away he is crushed to death. There are usually in a camp plenty of men ready to volunteer; for a man who cuts a key \log is looked upon by the rest of the loggers just as a soldier is by his regiment when he has done any act of bravery. The man I saw cut away a \log which of work. It runs lightly, and is easily and cheaply constructed.

A whip at tachment for horse powers bas been patented by Mr. J. L. Crawford of Pine Gord of Pine Grove, Miss. This inven-
tinn consists of a rod hav ing a crank and a whip the other, the the other, the
rod being attached to the levertowhich the horses are attached, the rod being adapted to be moved longitudinally to bring the whip into po sition for whipping ei ther horse.

the tile fish.

by daniel c. beard.
How little is really known, even by our most learned scientists of that wonderful country that lies hidden beneath the waves! What we know of its geography, aside from the summits of the mountains and highlands that are high enough to rear their heads into our world of air, is barely sufficient to mark out safe routes for vessels from point to point. I Of the creatures that dwell in this unknown region our knowledge is limited to such specimens as accident may cast up, or the fisher's net gather along its outer edge, or the dredge of the scientific explorer capture in its deptbs.
We can scarcely imagine creatures more hideously monstrous or more wonderfully beautiful than some of the known denizens of this immense world of the sea! For aught we know to the contrary the great seaserpent may yet prove to be a living reality, for has there not been within the last few years discovered, captured, classified, measured, and publicly exbibited a sea monster as horribly strange and terrible as the fiery dragon of fairy tale? What was once called the fabulous devilfish is now known to every school boy as the giant squid.
The discovery of a new and strange food fish need, then, be no surprising matter. Some threc years since a Yankee fisherman caught a number of fish whose odd triangular crest, or adipose fin on the nape of their veck, at once marked them as strangers, and created a stir among savants and naturalists; but if they were surprised at this sudden appearance of a new fish, they were more surprised and puzzled last month when the commanders of two vessels brought in reports of sailing through miles of dead carcasses of this newly-discovered fish, the Lopholatilus chamoleonticeps, or tile fish. Whence these mysterious strangers came, or what caused their wholesale slaughter, are questions we know not how to answer, but of the facts we bave sufficient proof.
A specimen of the tile fish that was sent to the U. S. National Museum measured thirty-three inches in length; the illustration accompanying this article was drawn from the Washington specimen.
We first hear of the "tile fish" from the report of Capt. William H. Kirby, of Gloucester, Mass, who took five hundred pounds of a remarkable fish, new to both fishermen and scientists, and forming a type of a new genus and species. These fish were caught on a codfish trawl eighty miles S. by E. of Noman's Land, lat. $40^{\circ} \mathrm{N}$., long. $70^{\circ} \mathrm{W}$., in eighty-four fatboms of water. According to Capt. Kirby the largest fish weighed fifty pounds.
We next learn of this fish from Capt Wm. Dempsey, also of Gloucester, Mass. who, in July, 1879, caught some with menhaden bait at a point fifty miles S . by E . of Noman's Land, in seventyfive fathoms of water, bottom hard clay; two miles in side there is nothing but a " green ooze on which no fish will live." Capt. Demp sey gives the following particulars of this lopholutilus: "Liver small, somewhat like that of a mackerel, and contains no: oil. Flesb oily, and soon rusts after splitting and drying. The stomach and intestines are small, the latter resembling those of an eel. The swim bladder is similar to that of the cod, and he adds that " the fish were very abundant and bit freely." The largest fish caught by Capt. Dempsey had a bifid nucleal crest.

Some of the first tile fish that were brought into Glouby Mr. Phillips, secretary Fish Culturist Society; Mr. John of the fin

Foord, president of the lchthyophagous Club, and Mr. Blackford. We next hear of this mysterious denizen of the deep from several of the daily papers. In their issue of the 23 d of March, there appeared accounts of immense numbers of dead fish that were seen by people aboard vessels that passed the southern end of St. George's Bank, New

THE TILE FISH.
fleshy prolongation upon each side of the labial fold ex tending backward beyond the angle of the mouth. For this genus we propose the name Lophotilus" (G. Brown Goode and Tarleton H. Bean, "Proceeding of U. S. National Museum.")

Fish Fodder for Cows.

Travelers in the country about North Cape, Norway, are apt to be amazed to see the natives eking out the scanty fodder for their cattle by giving their cows rations of dried fish. According to Captain Atwood, of Provincetown, Mass., the Cape Cod cows used to do better-or worse-and feed heartily upon raw fish. According to a statement by him, communicated to the Fish Commission by Isaac Hinckley, and printed in the Bulletin, the Provincetown cow being "'kept up" have lost the fish eating practice; but prior to the passage of the Massachusetts sta tute forbidding owners of cows to allow them to roam at will (which statute was enacted to protect di rectly the beach grass which cbecked the drifting of sand), the cows flocked to the shore while the fisher men were cleaning their catch These cows sought with avídity the entrails and swallowed them They seemed willing to eat the beads also, but lacked the ability to reduce their bulk sufficiently to allow of this.
A species of ling or blenny, weighing three pounds or more, and discarded by the fishermen, was freely eaten also by the cows.
Cows when first arriving at Pro vincetown from the rural districts refused fisb; but their owners, by adding minced fish to their cows'
cester were sent by Prof. Baird to Fish Commissioner Black- of violaceous and a narrow basal portion of whitish. Many ford, of Fulton Market. These fish were cooked and served of the rays have upon them a yellow stripe; there are some at the Windsor, and their qualities as a food-fish tested spots of the same color, especially upon the anterior portion

The following technical description of this fish is from Washington:
Radial Formula.-B. VI. ; D. VII. 15; A. III., 13; C. 18; P. II., 15; VI., 5; L. Lat. 93 L. Trans. $8+30$.

Color.-"The operculum, preoperculum, upper surface of head, and major portion of body have numerous greenishyellow spots, the largest of which are about one third as long as the eye. Upon the caudal rays are about eight stripes of the same color, some of them connected by cross blotches. The upper part of the body has a violaceous tint, and the lower parts are whitish, with some areas of yellow. The anal and ventral fins are whitish; the pectorals have the tint of the upper surface of the body, with some yellow upon their posterior surfaces; the soft dorsal has an upper broad ban

JERBOAS, OR LEAPING MICE.

violaceous and a narrow basal portion of whitish. Many f the fin.
' The species appears to be generically distinct from the already described species of the family Latilidæ, Gill. It is related by its few rayed vertical fins and other characters to the genus Latilus, as restricted by Gill, but is distinguished by the presence of a large adipose appendage upon the nape resembling the adipose fin of the Salmonidx, and by a larly called. It is found as far north as latitude 61°; its body rat, but in one species found in Middle A frica, the Pedeles cafer, or jumping hare, the bedy is as large as a rabbit The fur is soft and fine, a charming fawn color above and underneath a brilliant white
These little animals belong almost exclusively to the Old World, and are found in the deserts of Africa, Asia, and Eastern Europe. One single species is known in America as the Jacules hudsonian, or jumping mouse, as it is popu is about five inches in length, its tail a little longer, ending
in a hairy tuft, its color is reddish brown, shading into white beneath the body
There are two species found in Algeria; the Egyptian is the most common, and is represented in our illustration: the other species, the "Dipus hertipes," is rare, and inhabits the extreme southern part of the desert of Sahara; it is smaller, and its fur is more fine and white than the former species, the Egyptian jerboa, which may be taken as a type of this whole family. Its ears are two-thirds as long as its head; its stiff moustaches and the tufts of hair on its tail are brown at the base and white at the tip.
They live in colonies, and dig deep, far-spreading burrows in the ground
The Arabs catch them by digging into the burrows, in order to eat their flest, which is considered a great delicacy.
They are very timid animals, and it is only possible to catch them at that season of the year when the female bears her young. At that time, like the rabbits and other burrow. ing animals, she leaves the common burrows, and digs a new, isolated one for herself, where she can make her nest out of old rags or leaves
Even in captivity, the jerboa loves to construct a ;sort of bed for itself, on which it passes bours at a time, rolled up in a ball, or stretched out at full length on its back, like a human being. It is so skillful in unraveling anything with its claws and teeth, that in a short time it will make a downy mattress from an old rope or bit of muslin. It will gnaw through any kind of wood, and frequently will make a hole even in a stone wall, by scratching it with its sharp claws. It finds a double satisfaction in this work, for, besides gratifying its destructive instincts, it makes a pile of dust in which it loves to roll and jump about.
In spite of these babits they make very pleasant pets; they are bright and lively, perfectly gentle, and very affectionate. But they are delicate, and it is difficult to keep them alive even in warm climates.
They are clean and intelligent. "Of all the rodents I have had in captivity," writes Broehm, "the jerboas have given me the most pleasure. They have so many good qualities that all are delighted with them. They are so inoffensive, so gentle, and so gay, their poses are so varied and so curious, that I have spent long hours observing and playing with it."

The jerboa moves very rapidly, and in its native deserts even those swift dogs; the songhis, that catch the hare and the gazelle, cannot overtake it. It escapes pursuit as much by the irregularity of its course as by its quickness.
The dog jumps on it, and it suddenly springs to one side, and before the dog can recover, is already a dozen miles away to the right or left.
In all circumstances, whether springing or peacefully walking, the jerboa only uses its two strong hind legs; the fore legs are folded under its chin, and cannot be distinfore legs are folded under its chin, and cannot be distin-
guished without careful observation. They are only used guished without careful observation. They
to convey its food to the mouth.-La Nature.

The Origin of the Menhaden Industry.

Gaptain E. T. Deblois, of Portsmouth, R. I., has written for the Bulletin of the United States Fish Commission an account of the origin of the Menhaden industry, which, according to Professor Goode, throws new light upon several mooted questions, especially the date of the discovery of the value of menhaden oil, the origin of the manufacture of the oil, the application of pressure in the manufacture of fish oil and the invention of the purse seine. Captain Deblois says that as early as 1811 Christopher Barker and John Tallman began to make menhaden oil by the use of two iron pots upon the shore near Portsmouth, R. I. They boiled the fish, bailed them into hogsheads, and pressed out the oil by means of boards weighted with stones. The barreled oil was shipped to New York. The business was extended in 1814, and that fall two other men went into the business near by. These modest works were destroyed by a severe storm in 1815, and were not restored until 1818 or about that time.

In 1824 Mr . Barker built for use in cooking the fish a box $51 / 2$ feet high, 6 feet wide, and 8 feet long, with a fire box at one end and a flue running through the box.
Tallman built the first factory in which the fish were cooked by steam in wooden tanks some time before 1841, at which time the second was built on McGay's Point, near Portsmouth. The next year Tallman, in company with George Lambert, of East Cambridge, Mass., built a factory at the mouth of the Merrimac River, and soon after David Wells built one on the same plan near Greenfort, N. Y.
John Tallman (the first), with Jonathan Brownell and Christopher Barker, built the first purse seine in 1826 . It was 284 meshes deep and 65 fathoms long.
Charles Tuthil, of Greenport, was "the first to express, fish. The method of applying the pressure is not described.

Fish and "Meat" as Food.

There is some danger, says the Lancet, of the fish question falling out of memory. This is not to be tolerated after the interest which has been excited, and for some time maintained, in connection with this important phase of the food problem. Whatever may be the nutritious value of fish as food-and we believe that to be very great-it must be evident that a full and cheap supply of fish would react so as to produce a lowering of the price of butcher's meat. The
"purveyors," as they like to be called, are encouraged, and, "purveyors," as they like to be called, are encouraged, and, is nothing to compete with it as a staple of the common food of the people. A revival of the old and healthy habit of liv
ing largely on fish would place the meat supply on an en tirely new footing. This is manifest on the face of the facts; but what may not be equally apparent, though it is scarcely less noteworthy, is the consideration that nervous disease and weaknesses increase in a country as the population comes to live on the flesh of the warm-blooded animals: This is a point to which attention has not been adequately directed. "Meat"一using that term in its popular senseis highly stimulating, and supplies proportionally more exciting than actually nourishing pabulum to the nervous system. The meat eater lives at high pressure, and is, or ought to be, a peculiarly active organism, like a predatory animal, always on the alert, walking rapidly, and consum ing large quantities of oxygen, which are imperatively necessary for the safe disposal of his disassimilated material. In practice we find that the meat eater does not live up to the level of his food, and as a consequence he cannot, or does not, take in enough oxygen to satisfy the exigencies of his mode of life. Thereupon follow many, if not most, of the ills to which highly civilized and luxurious meat-eat ing classes are liable. This is a physiological view of the food question, and it has bearings on the question of fish supply which ought not to be neglected.

The Assimilation of Fat.

Most physiological text books teach that the fat of the body is not derived directly from the fat of the food. Bu from statistical analysis Hoffmann has arrived at the conclusion that the formed fat of the animal body arises not only from heterologous elements of the food, but also in part at least from ingested fat. Radzcejewsky concludes that the special destination of this fat is the intramuscular adipos tissue. A series of investigations, undertaken by Lebedeff in the clinical department of the pathological laboratory at Berlin, leads him also to the conclusion that the ingested fat is deposited uncbanged in the fatty tissue of the body Two dogs were kept fasting for a month, losing in the time about forty per cent of their weight. Previous experiments have shown that, under these circumstances, all the fat of the body disappears. The dogs were then fed on a diet which consisted of large quantities of fat foreign to thei own nature, and a scall quantity of flesh. Both dogs regained their normal weight in three weeks, and were then killed. One had been fed on linseed oil, and from its tis sues was obtained more than a kilogramme of fatty oil, which did not become solid at the freezing point of water, and which corresponded closely in chemical characters to linseed oil. The second dog was fed on mutton suet, which had a boiling point about $50^{\circ} \mathrm{C}$., and in its body, in the muscles, about the internal organs, and beneath the skin, form of fat was found which was almost identical with suet.
The organs of each dog were free from disease. Thus it would appear that ingested fat, even such as is foreign to the individual constitution, may yet become transformed directly into the fatty tissue of the animal. Other experi ments of the same investigator seem to show that this is true also of milk fat.-Lancet.

The Position and Movements of the Stomach.

According to Dr. Leshaft, the Professor of Anatomy at St. Petersburg, the statements current in anatomical text books regarding the normal position of the stomach are erroneous. He has made careful observations on the point in more than twelve hundred bodies, and has arrived at the following conclusions; The stomach does not, as is usually asserted, lie horizontally in the abdominal cavity, but vertically, so that the fundus touches the diaphragm; the smaller curvature and pylorus are to the right, and the arger curvature is to the left. Its position is in the left hypochondrium, and the situation of the pylorus is in the vertical line formed by a continuation of the right margin of the sternum. If the stomach is enlarged, no one part the disa the stomach is such that food entering it is moved toward the pylorus, where it can be most thoroughly mixed with the gastric juices, and it then passes back along the center of the cavity to the fundus, where the resistance is least. This movement of the food along the wall to the pylorus, and back again along the center, is rendered possible by the form of the organ, and it is probable that it is to this movement that the peculiar shape of the fundus is due. As is well known, the fundus is absent in newly-born children. Thus the shape of the stomach determines the long reten tion of food in the organ for the purposes of digestion, and its slow passage through the pylorus. If the transverse colon is distended with gas, it may rise to the left of the stomach, as high as the fourth intercostal space, and even as high as the fourth rib. If the coils of the small intestine are similarly distended, the lower part of the stomach may be pressed forward, and the stomach may assume a more oblique position. Even a large stomach, accustomed to dietetic repletion, maintains a vertical position, but the pylorus is moved a little upward and to the right.-The Lancet.

Foul Air in School Rooms.

It is seldom that an assembly room of any kind can be found in which the air is not overcharged with impurities. Some of the worst rooms we have known have been those in which the air ought to have been the purest, namely, school rooms. Yet it is seldom, we trust, that the conditions ob-
taining in school-rooms are quite as deleterious as those found recently in the Packer Institute, Brooklyn, a well endowed school for young women. In response to persistent complaiuts by the young ladies the Sanitary Engineer had the air of the class rooms analyzed, finding in some of them "'an amount of impurity present greater than in a crowded theater, in smoking cars, and three times as great as in the public schools of Boston and Philadelphia.'
Our contemporary pertinently remarks that such an institution "should be able to claim not only that it furnishes the means of mental culture, but that its pupils are supplied with at least as pure air as is found in the public schools of Boston and Philadelphia. Certainly, this is not a very high standard, but to secure it the amount of air supply in the Packer Institute must be quadrupled and the amount of heating surface largely increased."
A more outspoken statement of the case by the Times says that "there were two class-rooms in which the proportion of carbonic acid found in the air was twice as great as that present at 11 o'clock at night in the pit of two of the worst ventilated London theaters, and was only exceeded, according to Buck's tables, by that detected in a few German chools and in the English mines."
To send young people to study in such an atmosphere is imply criminal.

The Geoduck.

The following extract from a list of shells sent with some specimens to Mr. George W. Tryon, jr., the Conservator of the Conchological Section of the Academy of Natural Sci ences of Philadelphia, by Mr. Henry Hemphill, appears to me to be of importance as a contribution to economical science, and with Mr. Tryon's permission I am allowed to make use of it for publication.

Glycimeris generosa. Olympia, Washington Territory. 'I send you a fine large specimen of this species. Its flesh is, I think, the most delicious of any bivalve I have ever eaten, not excepting the best oysters.

- When first dug and laid upon its back, it resembles a fat plump duck. The edges of the shell do not meet, but are separated by a breast of flesh [the greatly thickened mantle] about three inches wide, one inch thick, and about a foot long, including about half of its siphon. This portion is cut into thin slices, rolled in meal, and fried. It is exceed ingly tender, juicy, and sweet, and about the consistency of crambled eggs, which it resembles very much in taste. The boys at Olympia call them 'Geoducks;' they dig them on a certain sand bar at extreme low tide, and sell them to a merchant who ships them to Portland, Oregon, where they readily sell at fair prices. The boys inform me that the Indians on the Sound call them Quenux, and dry them for food with the other clams."
To give the reader some idea of the animal, let him suppose that he has before him a buge soft-shelled clam, with a very thick mantle and a very stout siphon projecting from between the valves. From the habit of the animal it is clear that its propagation is effected in very much the same way as our own clam, and that the fry burrows into the sand and keeps the open end of the siphon projecting just above the surface.
The same methods of propagation would apply to both species. Artificial impregnation, which has been accom plished by the writer in the case of the clam, could no doubt be effected in this case. Then, with the proper incubator, or hatching-box, provided with a bibulous membrane interposed before the outlet, the water could flow through and out, without losing the eggs; shallow pans of sand could also be provided at the bottom of the box for the young to bury themselves in, just as has already been proposed in the case of the clam. This is a subject which merits the atten tion of all interested in keeping up the productiveness and richness of our American shell fisheries.-BulletinU.S. Fish Commission.

Magnetic Bricks.
It was lately observed by Herr Kepner, at Salzburg, in the Tyrol, that some old bricks had an attractive or repellent force on a compass. From each of eight varieties of clay in the neighborhood two bricks were moulded, and one of the two in each case was baked. The unbaked bricks had no action on a magnetic needle, but seven of the eight baked bricks proved polarly magnetic. Some further experiments have been made by Herren Kell and Trientl. Particles of powder of the magnetic bricks adhered to a Particles of powder of the magnetic bricks adhered to a
steel magnet. Breunerite, mica-slate, argillaceous ironsteel magnet. Breunerite, mica-slate, argilaceous iron
garnet, chlorite, and hornblende were, before heating, un magnetic, butintense heating produced a magnetic polarity, the axis of which seemed to be perpendicular to the plane of stratification.

An Electrical Balloter.
An electrical apparatus has been devised by a resident of Syracuse for recording votes cast in political and other societies. It provides a number of knobs hidden from all in the room except the person immediately before them Each knob represents a candidate, and the voter has merely to press whichever he chooses. At each touch a bell rings, thus making more than one vote by the same person impos sible without detection. All the bells ring alike. When the voting is finished a register on the side of the machine opposite the knolas is discovered, and the result of the bal lot is seen in plain figures.

Ancient Beads in Africa.
A writer in All the Year Round describes two classes of ancient beads much prized by the natives. They are of glass, one kind being opaque, the other clear but rough. They are called respectively Aggry and Popo beads. There are many varieties of Aggry, some more treasured than others; only one of Popo. Both are dug from the earth, where the corpse with which they were interred is thought to have long since perished. The Aggry is found along the to have long since perished. The Aggry is found along the
west coast, far into the interior. The Popo is rare in Ashwest coast, far into the interior. The Popo is rare in Ash-
anti and Fantiland, becoming more frequent near Lagos. It must not be understood, bowever, that either sort is common. The Birmingham manufacturers, and more especially the Venetian, have been trying many years to imitate the Aggry bead. To an English eye their success is perfect, but the youngest negro is not deceived. For all their science and study, for all the wondrous effects of the same kind which they have produced in transparent glass, Europeans cannot find the secret of running a colored pattern through and through the opaque substance exacted. They can make a facsimile of the surface, but that is all. The Popo bead has defied all attempts of imitation. Its peculiarity is that the glass looks blue in light, yellow in shadow. This change puzzles European workmen, who could turn out blue beads or yellow exactly like it, 10,000 of them, for a less sum than a single tiny cube of the real sort fetches. The best authorities suppose both kinds to have been of Egyptian manu-facture-ancient Egyptian, that is. Such glass is seldom or never found with mummies in the form of beads, but small bottles of material very similar are frequent enough. If this be so, it is not surprising that Aggries and Popos are not discovered in Egyptian tombs. Made for a savage commerce, the civilized manufacturers disdained to use them, and one would only expect to find deposits in the excavation of a merchant's warehouse or of a glass-blower's works. The of a merchant's warehouse or of a glass-blower's works. The
curious point of the matter is the evidence thus offered of a commerce very much wider than had been credited to Egypt. Chinese and Indian productions have long since been identified in the plunder of her tombs, and it would seem that sbe dealt, directly or indirectly, with negroid races on the shore of the Atlantic.
In a note on the Aggry (or Aggri) beads, lately read before the Anthropological Institute in London, Mr. J. E. Price said that they sell in Africa for more than their weight in gold, and on the Gold Coast are among the most valued of royal jewels. Mr. Price exhibited specimens of the beads recently discovered in Colchester, England. He thought their presence in England might be explained by the circumstance that when the Romans occupied the country they brought with them many African slaves, who, probably, wore necklaces with Aggry beads attached, and that when the slaves died their necklaces were buried with them.

The Boracic Acid Treatment of Diphtheria.
Dr. T. D. Harries, of Aberystwith, reports in the Lancet a very sưccessful treatment of diphtheria by the local application of boracic acid in solution. The solution is prepared and applied as follows:
Boracic acid, two drachms; glycerine, half an ounce; water, half an ounce-to be applied freely to the fauces every hour at first, diminishing in frequency with the disappearance of the deposit and general symptoms. The application should be continued for some days after the throat has hecome perfectly clean. If discontinued too abruptly, the deposit is almost certain to re-form, with a return of the general symptoms; and with the view of warding off this danger, I make it a rule to continue painting up to the eighth day, after which date the patient may be considered comparatively safe. The solution seems to have no injurious effect when swallowed, as I have frequently applied an ounce during twenty-four hours in the cases of children of from four to five years of age.

Chinese Method of Manufacturing Vermilion.

There are three vermilion works in Hong Kong, the method of manufacture being the same in each. The largest works consume about six thousand bottles of mercury annually, and it was in this one that the following operations
were witnessed: were witnessed:
First step.-A large, very thin iron pan, contaning a weighed quantity, about fourteen pounds, of sulphur, is placed over a slow fire, and two-thirds of a bottle of mercury added; as soon as the sulphur begins to melt, the mixture is vigorously stirred with an iron stirrer until it assumes a black pulverulent appearance with some melted sulphur floating on the surface; it is then removed from the fire, the remainder of the bottle of mercury added, and the whole well stirred. A little water is now poured over the mass, which rapidly cools it; the pan is immediately emptied, when it is again ready for the next batch. The whole operation does not last more than ten minutes. The resulting black powder is not a definite sulphide, as uncombined mercury can be seen throughout the whole mass; besides, the quantity of sulphur used is much in excess of the amount required for mercuric sulphide.
Second step. -The black powder obtained in the first step is placed in a semi-hemispherical iron pan, built in with brick, and having a fire-place beneath, covered over with broken pieces of porcelain. These are built up in a loose porous manner, so as to fill another semi-hemispherical iron pan, which is then placed over the fixed one and securely luted with clay, a large stone being placed on the top of it
to assist in keeping it in its place. The fire is then lighted and kept up for sixteen hours. The whole is then allowed
to cool When the top pan is removed the vermilion, together with the greater part of the broken porcelain, has a brownish-red and polished appearance, the broken surfaces being somewhat brighter and crystalline.
Third step.-The sublımed mass obtained in the second step is pounded in a mortar to a coarse powder, and then ground with water between two stones, somewhat after the manner of grinding corn. The resulting semi-fluid mass is transferred to large vats of water, and allowed to settle, the supernatant water removed, and the sediment dried at a gentle heat; when dry, it is again powdered, passed throug a sieve, and is then fit for the market.-H. Maccallum.

MISCELLANEOUS INVENTIONS.

Mr. Brooks French, of Fort Wayne, Ind., has patented a simple, easy-working, and effective stop action, by which there may be obtained a greater number and variety of stops with one stop drawer; also, to regulate and control the opening of the mutes by simple devices.
Mr. Rufus W. Blake, of Derby, Conn., has patented a bell attachment for organs, constructed in such a manner that it can be conveniently applied to the organs, and can be readily thrown into and out of gear with the mechanism of the organs.
A novel pencil sharpener has been patented by Mr. Franz F. Kullrich, of Berlin, Germany. The invention consists of two convex plates with roughened surfaces, and having a strip of felt or other fibrous or hairy material attached to their inner ends, which plates are hinged to each other or connected by a spring, so that they can be separated to admit the point of the pencil, and can be pressed together as the diameter of the pencil point is decreased, by rotating as the diameter of the pencil point is decreased, by
or twirling the point between the roughened plates.
Mr. Edmond A. G. D'A rgy, of Paris, France, has patented an improvement in the class of cigarette wrappers which are provided with a moisture-proof coating at one end; and it consists in constructing the wrapper and coated end or portion in one single piece, and in such manner that the wrappers shall be conveniently adapted for being put up in packages for use in making cigarettes at the convenience of the smoker. A cigarette paper which is made saliva-proof before being applied as a wrapper is adapted for making a better cigarette wrapper than can be made by applying a saliva-proof coating after the cigarette is made, since in the latter case the coating is liable to close the end of the cigar ette, and, owing to the fact that the coating cannot then be applied to the folded part of the wrapper, the protection thus sought cannot be secured so well as where the paper is prepared in the manner above described; and it is well known that the manufacture of cigarettes with a waterproof coating according to the usual methods has been found im-
practicable.
An improved flaxseed cleaner has been patented by Mr George Beal, of Gilman, Iowa. This in vention relates to machines for screening flaxseed for the separation of chaff and other impurities. In operation the screen is in a horizontal or slightly inclined position. The material is to be fed by a spout to the screen surface, and during the screen ing operation a body of material will be on the screen and be worked gradually toward the delivery end. The smaller particles-such as mustard and foxtail seeds-pass through screen and escape; the flaxseed pass through another screen and out at another opening, and the remaining material passes off by a separate spout. The material is supplied to the screen at a uniform rate, and moves forward slowly at a speed regulated by the rapidity and extent of vibration. This insures effective and thorough separation.

An improvement in quilting frames has been patented by Mr. John R. Sheldon, of Montiville, Conn. This invention relates to that class of quilting machines which carry the quilt under the needle arm of the sewing machine, and at the same time give it a transverse motion for stitching the pattern. It will form a perfect pattern and will stitch the ast seam in the quilt perfectly.
Mr. William F. Smith, of Overton, Texas, has patented an improved baling press, in which the bale box has the lower part of its ends made flexible and adapted to be elevated with the follower. The object of the invention is to faciritate the baling of cotton by simplifying the operation of introducing the cotton into the press.
An improved wagon hub has been patented by $\mathbf{M r}$. Angus McKellar of Fort Douglas, Utah Territory. This invention consists of such construction of the metallic hub that the hub is adapted to be used on light freight, farm, and other wagons having wooden axles, the same number of spokes being used in the wheel as is ordinarily used with the wooden bubs used on such wagons.
An improved tire cooler has been pate
An improved tire cooler has been patented by Mrs. Dora Ammerman, Thomas Baird and Ebenezer M. Foreman, of Fairmount, Ill. This invention consists of a suitable wheel supporting rack or bed fixed on connected rocking bars of novel design within a water box in such a manner that the wheel rack can be elevated or depressed at will by means of a lever, whereby a wheel, with its heated tire, may be plunged into and raised out of the water in the said box,
and the tire thereby quickly and evenly cooled.
An improved broom and scoop mechanism for evaporating
ans has been patented by Mr. Carl F. W. Schramm, of Brooklyn, N. Y. The object of this invention is to facilitate removing crystals and other solid matter from evaporat
ing pans, such as are used in the manufacture of soda and other substances. It consists in a brush or scoop mounted on the ends of arms of a revolving shaft journaled above an evaporating pan in such a manner that when the shaft revolves, the brush and scoop will be caused to sweep over the interior surface of the pan and remove the solid matter on the bottom of the pan into a suitable receptacle that is arranged outside of the pan.
Mr. Henry Morris, of Manchester, County of Lancaster, England, has patented a simple and efficient means of sig. naling between the stgnalman and the engine. driver by the use of a bell or gong, with or without an air whistle, conjointly with the application of the brake when air brakes are used, whether pressure or vacuum, or when electric brakes are applied, whereby the use of fog signals in foggy weather may be rendered unnecessary, the cost of them, and also the cost of plate-layers' wages for laying them, with all the attendant inconveniences, may be saved, and the use of the distance signal and cost of maintenance may, in many cases, be dispensed with, also to test automatically the bell or gong apparatus and the brake, and to indicate to the man in the signal cabin if his apparatus and connections are in order.
A novel embroidering machine has been patented by Mr . Alfred Heaven, of Manchester, County of Lancaster, Eng. land. The object of this invention is to secure circular, oval, or other figures of velvet, satin, or other material to cloth, so that the said figures may be embroidered by an ordinary embroidering-machine. The invention consists of a guide-bar provided with a series of recesses having central apertures, and also in the combination, with the guidebar provided with recesses and end apertures, of pins hinged to the carriage of the machine which carries the needle-holders, and adapted to enter the end apertures of the said guide-bar, whereby a series of figures is adapted to be held in alignment with and to be placed automatically upon the needles.

Bat Guano in Texas.

The progress of rallway extension in Western Texas has ed to the development of the beds of bat guano in certain caves in Uvalde county. A recent visitor sars that there are two of these bat-inhabited caves, which have been partially explored. The entrance to the smaller, or Cibolo Cave, is about 50 feet high and 25 feet wide. The passage widens gradually for a distance of about 250 feet, when the outer cave is reached. The bottom is of guano. The shape of the cave is like an inverted bowl. The walls are of limestone and unite nearly 200 feet above in a grand dome. The cave is as dark as Egypt. There appear to be neither stalagmites nor stalactites. This cave is 300 or 400 feet in diameter, and the floor is covered with about 30 feet of guano. In some parts it is believed to be much deeper. The atmosphere is very dry, and five years ago the guano caught fire, the whole surface being burned over to the depth of about four feet. Since then, eight feet of guano have been deposited, so that we have proof that the fertilzer is being deposited at the rate of more than a foot and a half a year. On the inner side of the outer cave, in the ide of the dome, about 120 feet from the floor, is an open ing about 6 by 8 feet in size. Through this all the bats go to an inner cave, which has never been explored. It is believed, however, to be very extensive, because of the im mense number of bats which daily sleep in it, and because at the time of the fire in the outer cave great quantities of smoke escaped through crevices in the rock near the Cibolo River, on the opposite side of the hill, two miles and a half from the main entrance. This inner cave is believed to be fully two miles long and very broad. The Uvalde Cave is said to be about six times as large as the Cibolo Cave. It differs from the latter in being moist instead of dry. There s no running water in either cave.
The district is quite hilly, and is composed altogether of a limestone formation. In the abrupt bills many small caves are known to exist, and all of them are inhabited by bats; but only the two mentioned, it is believed, are of suf ficient extent to warrant working for the guano deposits
The first shipment of guano was made from the Cibolo Cave but a short time ago. It is claimed that analysis shows the guano to be worth from $\$ 50$ to $\$ 60$ a ton. The Uvalde Cave deposit has not been touched. It is said that a factory for the production of sulphate of ammonia is to be set up at Uwalde by the company which ow ns and works the phosphate deposits at Charleston, S. C.

Removal of Metallic Particles from the Cornea.

The Glasgoro Medical Journal (February, p 150) quotes rom the Revista de Sciencas Medicas the following hint as to the treatment of foreign metallic bodies in the cornea. A blacksmith, whife forging a piece of iron, received in his left eye a splinter of the metal, every effort made according to the ordinary methods for its removal having failed, Dr. Rodriguez employed a wash consisting of rose water, 90 grammes; iodine, 0.05 gramme; potassium iodide, 0.05 gramme. The result was satisfactory, the particle of metal being converted into iodide of iron and dissolving out, and the cornea regaining its normal condition.
The Hudson River Tunnel has now reached a distance beneath the river of 839 feet in the North Tunnel, and in the South Tunnel 700 feet. The work is progressing at the rate of $41 / 2$ feet per day.

One of the most valuable and exhaustive contributions to tea literature which we remember to have seen, says the London Grocer, is that just published in the form of a cyclopedia, by Messrs. W. B. Whittingham, Gracechurch street, E. C. It consists mainly of compilations from the Indian Tea Gazette, a publication in Calcutta that has for a number of years been exclusively devoted to the consideration and discussion of all questions relating to tea in India, from the time of its earliest introduction there down to the latest periods of its importation here. The cultivation of the plant in the different districts and provinces, the selection of soils and manures, and buildings for its manufacture, etc., are all ably treated in this work; and as it deals thoroughly with the scientific, statistical, and domestic branches of the subject, it is a manual of information and instruction well deserving the attention of the tea planter, importer, dealer, and consumer.
In the ten years ending 1876 the imports and consumption of Indian tea in the United Kingdom increased from about $3,000,000$ pounds to $28,000,00$) pounds, and within the last Sive years the supply and demand have kept close pace together, till they have reached between $45,000,000$ and $46,000,000$ pounds! Imagine how this prodigious growth of the tea trade must have benefited the native Indian race and the country to which they belong. Our author says: "Hundreds of thousands of acres of land have been taken out of jungle and planted with tea. Districts hitherto deadly are fast becoming salubrious; coolies are in fair health, instead of dying off like sheep; and the tea industry, which was once looked upon as the last refuge for the destitute, is now viewed as a profession of the highest social rank.'
According to the cyclopedia: "We say that a green tea has a fine flavor, also that a congou has a fine flavor, but they are totally unlike." The volatile oil it contains gives to tea its flavor. The effect of this oil is to produce wakefulness; but, on the other hand, the best authorities declare that " theine," another property in tea, does not create sleeplessness, being of a nature to soothe and compose. Theine also supplies to the human system what it loses by fatigue. This property in coffee is called caffeine, and the driuking of it is attended with similar results; but at the same time it is well known that "green tea will produce effects on persons that black teas will not," and that there is a greater fermentation in black tea than in green. Tannin, which is a powerful astringent, is another ingredient in tea; when chewed it "puckers up the mouth," but it is thought by some that it aids digestion. "Tasting tea upon an empty stomach is injurious, producing a sense of weakuess, as if one had fasted a long while;" and "tea experts," who are at it all day, "are made exceedingly nervous." Some assert that there is nourishment in tea; others say that there is none, and that tea consumes food; while the book we quote from informs us that tea, like liquors and drugs, when taken moderately, will have one effect, but if consumed largely it will produce just the opposite.
With regard to the names of different sorts of teas and their meanings, we may state that "Pekoe" is a term from their meanings, we may state that "Pekoe" is a term from
the Chinese "Pai-hao"-White Down or Hair, because made from young spring leaf buds, while they are still covered with down. "Souchong" is from "Seao-chung," which means Little Sprouts. "Congou" is a corruption of "Kungfou," or labor; and "Hyson," or He-Chun, signifies Fair Spring; while the meaning of "Young Hyson" (Yu-chien) is, Before the Rains. The instructions for ' making tea " are likewise very useful, and cannot be too widely known; and retail grocers might render a service to their consumers by
giving them seasonable directions. In the first place, "tea should not be boiled, as the volatile oil will escape with the steam, and a much larger proportion of the tannic acid is extracted, leaving the infusion bitter." The best way to make tea is to have an earthenware teapot, which should be quite hot when the diling water upon the tea, which, after after pour in the boiling water upon the tea, which, after
"drawing" from seven to ten minutes, " is at the best point for drinking."
A sufficient quantity that is wanted for use directly should be made at the first drawing. The habit of filling the teapot a second or third time is not right, because the theine, which is quickly soluble in scalding water, will have escaped, so that those drinkers who are supplied from the second drawing will lose the most beneficial part of the tea, and will have instead "a decoction composed chiefly of tanuin." Churned tea, properly prepared with milk, is a beverage highly prized in Cashmere in entertaining visitors; and we are told that " the ladies there no doubt vent their grievances to sympathetic ears, discuss their bonnets and their babies, and talk scandal over this cur. in much the same way as their English sisters do over 'five o'clock tea.'

The Medical History of Houses.

A writer in a recent issue of the Lancet has broached the very sensible idea that some measures should be taken to furnish tenants with the medical history of their houses. It is well known that much disease is spread among families who are constantly changing their residences, hy the unsanitary conditions of apartments which they hire. In many
instances the houses are rented at low figures because of deinstances the houses are rented at low figures because of de-
fective drains, damp cellars, bad plumbing, unhealthful surroundings, or perhaps because of the previous babitation of them by persons afflicted with contagious diseases. It does not seem to be an impossibility for the health authorities
of the different towns to have a list of houses in which con-
tagious diseases have been known to occur, or in which conditions inimical to health are known to exist, for general reference by the pullic. Such a list would be of great value to the large number of families who are at this season of the year looking around for new homes. In all instances a
critical examination of the cellars and drains is more impor critical examination of the cellars and drains is more impor tant than the inspection of the parlors and upper floors. And yet, how seldom is this done, and how often the tenants suffer in consequence. If health boards would keep a black list of unhealthy houses the landlords of the same would find it to their interest to look more particularly to the the sanitary welfare of their tenants.-Medical Record.

Franco German War Statistics.

The official history of the " German-French war, 1870-71" has just been completed. The concluding part is filled with statistical information and carefully compiled summaries, which afford a clear conception of the magnitude of the forces which opposed each other in this greatest of all modern wars. The total strength of the German armies is shown by the following enormous figures-viz., 44,420 officers and $1,451,944$ men, of whom 33,101 officers and $1,113,254$ men have actually taken part in battle. During the armistice the German armies in France were again raised to their full war force, in order to recommence hos tilities at once if necessary. On March 1, 1871, there were 823,648 Germans on French soil, including non-combatants, and comprising a field force of 464,231 infantry, 55,562 cavalry and 1,674 guns, besides 105,272 infantry, 5,679 cavalry, and 68 guns on garrison duty in French forts and towns. Altogether Germany had $1,350,408$ men under arms at this time, while the French forces at the end of the armistice comprised $251,000 \mathrm{men}$ fit for field service.
The total loss of the Germans, including dead and wounded, was 6,247 officers (inclusive of 81 surgeons, 4 chaplains, and 3 paymasters) and 123,453 rank and file. Of these 17,572 fell on the field of battle, 10,710 died of their wounds, 316 lost their lives by accidents, and 30 committed suicide; total, 28,628, while 12,253 succumbed to disease (typhus, 6,965; dysentery, 2,000; lung affections, 500.) Thus of the total number of deaths-40,881-70 per cent died of wounds and only 30 per cent by disease, while during the campaign of 1866 nearly 60 per cent of all deaths were by disease.
The French losses will never be accurately known, and the [German] general staff's work can only state the numbers of the prisoners of war. Up to the middle of February, 1871, there had been taken to Germany 11,860 French officers and $371,981 \mathrm{men}$. At the fall of Paris 7,456 officers and 241,686 men surrendered, and 2,192 officers and 88,387 men had been forced to cross the Swiss frontier, so that a total of 21,508 officers and 702,054 men had laid down their arms to the conquerors. The Germans captured a total of 107 flags
and eagles, 1,915 field guns and mitrailleuses, 5,526 siege and heavy guns, and 855,000 small arms.
In the Sanitary Service of the German armies there were employed during the war 7,022 surgeons and physicians, 8,336 hospital assistants, 12,707 sick tenders, 7,800 sick bearers, 606 apothecaries with 254 assistants, 1,309 hospital officials, besides 523 officers and 8,398 men of the train and ambulance service, making a total of 46,955 persons. These were distributed throughout the field armies in 52 sanitary detachments, with 197 field hospitals, and 62 reserve hospitals and depots. In addition a large number of reserve hospitals and medical stations, with volunteer help, were established in all parts of Germany, numbering at the end of the war over 1,500. During the seven months of the campaign 290,000 patients were admitted into the field hospitals, while $812,0 \cdot 1$ were cared for in 368 reserve establishments. During the war the German field posts, with 2,140 officials, established 411 German post offices on French soil, through which were forwarded $101,267,500$ letters and postal cards, nearly $3,000,000$ newspapers, $2,500,000$ packages, and $263,000,000$ marks in ready money. The Field Telegraph Department covered the entire seat of war with its network,
which at the end of the campaign comprised 525 telegraph stations and 23,510 kilometers of wires.

Launch of Her Majesty's Ship Edinburgh.

The Edinburgh, lately launched, is 325 feet long, and 68 feet broad. Her present weight is 4,800 tons, but when she is equipped this will be increased to 9,150 tons. Her armament will be four 43 -ton breech loading guns in turrets, and four six-inch breech loading guns in the superstructure. She will have an indicated horse power of 6,000 , and a crew of 400 men . She will have ten Nordenfelt guns for defense against torpedo boats. In construction she is very much like the Ajax, launched at Pembroke a couple of years ago. Sbe has a central armor belt of three inches upon one inch, with nine and a half feet free board, and six feet depth below load water line. The armor is in two strips, the upper being 14 and the lower 18 inches thick, over a parallel breadth of four feet at the load water line, from which it tapers to eight inches. The semicircular ends of the belt, which are not so thick, are covered with protective plating
three inches thick. In the wake of the ports the armor is 16 and elsewhere 14 inches thick. The ram is forged as a part of the stem, beyond which it projects six and a half feet at about nine feet below water load line. There are protective decks three inches thick, four feet below load-water line, and extending two thirds of the length of the armor belt, and before and abaft it. These decks are protected
truck below water by cork chambers and coffer dams. The engines are supplied by Messrs. Humphreys \& Ten nant, of London, and are of 6,000 indicated horse power the screw being driven by an independent set of engines of 3,000 horse power. The Edinburgh's speed will be 14 knots.

New Jersey Industries.

According to the report of James Bishop, Chief of the Bureau of Statistics of Labor and Industry, New Jersey is ahead of all the other States of the Union combined in the production of silk goods. These goods are manufactured by eighty-four firms, in whose mills were consumed last year $1,572,078$ pounds of raw silk. The capital invested in the business is $\$ 7,524,200$, and the value of the product $\$ 18,058,210$, one dollar of capital annually reproducing $\$ 2.50$ in silk goods. The average number of hands employed was 14,152 , of whom 5,458 were men, 5,175 women, and 3,489 children. Their average earníngs per day were Men, $\$ 1.81$; women, $\$ 1.01$; children, $63_{17}^{\frac{7}{10}}$ cents. Skilled men received as high as $\$ 4$, and skilled women $\$ 2$ a day. In the entire United States there are 383 silk mills, employ ng 31,300 hands, who are paid $\$ 9,000,000$. These mills furnish 39 per cent of all the silk goods now used by us. Twenty years ago all but 13 per cent of the silk goods con umed in the United States were imported.
New Jersey holds the fifth place among the iron produc. ng States. Skilled mechanics earned $\$ 2.32$ per day and unskilled $\$ 1.21$. There was paid in wages $161 / \frac{1}{2}$ per cent of the value of the products manufactured- $\$ 10,341,896$.
In the hat factories, which produced 538,626 dozen hats, over 31 per cent of the total value of the product went to the employes. The average daily wages was: for men, $\$ 2.07$; for women, $\$ 1.06$; for children, 73.05 cents.
In the pottery industry, for every dollar of capital inested $\$ 1.12$ was produced. It gave employment to 3,682 persons. The average daily wages was $\$ 2.01$ for men, 88 cents for women, and 70 cents for children.
The brick, glass, and clay industries yielded $\$ 1.24$ for very dollar invested. Thirty-seven per cent went into the hands of the employes. The average daily wages of men varied from $\$ 2$ to $\$ 1.10$, those of women from $\$ 1$ to 75 cents, those of children from $\$ 1.121 / 2$ to 40 cents. Skilled workmen earned as bigh as $\$ 5$ a day.
Glass blowers and nail cutters were paid the highest wages, their yearly average earnings amounting to from $\$ 900$ to $\$ 1,080$.
Unskilled workmen made annual average earnings as follows: Employes in canning factories ($101 / 3$ hours), $\$ 237.50$; brick yard laborers (10 hours), $\$ 366.66$; oyster men (11 hours), $\$ 368.75$; puddlers' helpers ($111 / 2$ hours), $\$ 375$; natil factory feeders (boys, 10 hours), $\$ 287.50$; glass batch mixers (10 hours), $\$ 390$; glass packers ($91 / 2$ hours), $\$ 390.83$; railroad employes ($102 / 3$ hours), $\$ 399.29$; longshoremen (10 hours), $\$ 425$; miscellaneous iron workers ($91 / 4$ hours). $\$ 438$; miscellaneous glass workmen ($10 \frac{5}{6}$ hours), $\$ 383.89$; miscellaneous occupations (101/4 hours), \$457; laborers unclassified (101/3 ours), \$349.93.
In those industries where all or the greater part of the employes are women or children, the pay is not only comparatively small, but the hours of work are many, and, in general, as the number of hours increase the wages derease.
Of the 11,000 employes mentioned in the report the wages of 1,916 were increased last year, while those of 571 were reduced. The advance was among glass blowers, harness makers, hatters, iron moulders, shoemakers, trunk makers, machinists, printers, bricklayers, carpenters, masons, painters, and carriage makers. Among those who suffered a reduction were miners and jewelers, and the silk workers in some departments.
Farm wages averaged, without board, $\$ 22.39$; with board, $\$ 14.86$ a month. New England paid $\$ 22.76$, without boarć, per month, on yearly engagements, but the cost of subsistence there was $\$ 9$ a month, against $\$ 7.53$ in New Jersey.

Ataxy and Sewing Machines.

In the Union Medicale, M. Octave Guelliot contributes a valuable paper on two cases of locomotor ataxy in women employed on sewing machines. In hysterical women, working at the sewing machine seems to be, in certain cases, the occasional cause of the appearance of locomotor ataxy. The symptoms commence in the lower limbs and progress upward. Shooting pains traverse the limbs from below upward. Improvement is noticed when the patient rests, and it may last a long time. Working at the machine by means of a treadle probably acts chiefly by the concussion, which is diffused throughout the spinal cord. Therefore the continuous movement of the treadle is dangerous to the workwoman, and endeavors should be made to substitute some other motor for the foot power.

Fast ocean Steaming.

The Alaska, of the Guion line, appears to be the fastest of he steamers now plying between New York and Liverpool. On her last trip she left Queenstown on Sunday, April 9, at 1:50 P.M., and reached New York Harbor on Sunday, April 16, at 2:30 P.M.-actual time, 7 days 6 hours 20 minutes. The fastest run during any twenty-four hours was 419 miles. Her passengers might have attended church at Queenstown on the morning of Easter Sunday, and could have been present at divine service in this city the following Sunday evening, thus worshiping on one Sunday in Europe and on the following Sunday in the United States.

RHzinest and extomat.

The Chargefor Insertion under this head is One Dollar a line for each insertion ; about eight words to a line. Advertisements must be received at publication office as early as Thursday morning to appear in next issue

For Sale.-29 bound volumes of Scientific AmertCAN, commencing with vol. ii, September,1846. Address Full set United States Patent Office Reports, 1790 to 1871, for salscheap. G. M. Elliott, Lowell, Mass. Wanted-A Cane Mill; capacity 150 acres. F. R Carter, Chilton, Wis.
Wanted, by a Machine Shop located in Michigan, a frst-class Machinist. to take charge of Machine Depart ment: the principal work, Marine and Stationary EnShop, Box 773. New York.
The Largest Retail Clothing Business done in New York and Brooklyn is that of Baldwin, the Clothier, at
the northeast corner of Broadway and Canal Street, New York, and at the Baldwin Building."
Kochendoerfer \& Urie, General Brokers, 200 Broad-
ay, will attend to any business in New York for you.
Paragon Drawing Paper is the only reliable. Send
for samples. Keuffel \& Esser, 127 Fulton St., New York.
"T. New. 3? John St. New York, has sold and applied over tiftymillion feet of his Prepared Roofing, the major -scientific American.
Agents Warted.-None but intelligent and energetic need apply. Must furnish good recommendations, or no will be given up to May 15. 1882. Agents are now making wil be given up to May 15.182. Agents are now making
from $\$ 10$ to $\$ 15$ a day. Address, for terms, The InfalliCoin Scale Co., P. O. Box 2624, New York city.
Steam Pumps. See adv. Smith, Vaile \& Co., p. 23
Wanted-Iron Planer, about 40 inches square by 12 feet long, new or second-hand, at once. Send cuts and
cash price to Bentel, Margedant \& Co., Hamilton, Ohio.
Wanted-A live Salesman; a practical Sawyer and Machinist; one who can give unquestioned references
as to character, habits, and ability; one acquainted with he Southwest preferred. Address T. E. J., Box 773 , ew York
Pure Water furnished Cities, Paper Mills, Laundries, Steam Boilers, etc., by the Multifold System of the
Newark Filtering Co.., 177 Commerce St.. Newark, N. J.
Jas.F.Hotchkiss, 84 John St.. N. Y.: Send me your free book entitled "How to Keep Boilers Clean," con-
taining aseful information for steam users $\&$ engineers. Forward above by postal or letter; mention this paper. Steel Stamps and Pattern Letters. The best made. J.
F.w:Dorman, 21 German St., Baltimore. Catalogue free. Abbe Bolt Forging Machines and Palmer Power Ham mers a specialty. S.C. Forsaith \& Co., Manchester, N.H.
Machinery for Light Manufacturing, on hand and
built to order. E. E. Garvin \& Co., 139 Center St., N. Y. For Power \& Economy, Alcott's Turbine, Mt.Holly, N. J. Combination Roll and Rubber Co., 27 Barclay St.
N. Y. Wringer Rolls and Moulded Goods Specialties. Send for Pamphlet of Compilation of Tests of Turbine Water Wheels. Barber, Keiser \& Co., Allentown, Pa. Presses \& Dies (fruit cans) Ayar Mach.Wks., Salem, N.J Latest Improved Diamond Drills. Send for
to M. C. Bullock, 80 to 88 Market St., Chicago, Ill.
Wood Working Machinery of Improved Design and Workmanship. Cordesman, Egan \& Co., Cincinnati, 0 . Supplement Catalogue.-Persons in pursuit of infor-
nation on any special engineering. mechanical, or scienmation on any special engineering. mechanical, or scien-
tific subject, can bave catalogue of contents of the ScItiffc subject, can bave catalogue of contents of the Sci-
ENTIFIC AMERICAN SUPPLIGMENT sent to them free. The Suphicment contains lengthy articles embracing the whole range of engineering, mechanics, and physi-
cal science. Address Munn \& Co.. Publishers, New York. Split Pulleys at low prices, and of same strength anì
appearance as Whole Pulleys. Yocom \& Son's Shafting appearance as Whole Pulleys. Yocom \& Son's Shafting Presses \& Die...
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J.
List 27.-Description of 3,000 new and second-hand Machines, now ready for distribution. Send stamp for
same. S.C.Forsaith \& Co.,Manchester,N.H.,and N.Y.city. Presses, Dies, Tools for working Sheet Metals, etc. Saw Mill Machinery. Stearns Mfg. Co. See p. 221. Saw Mill Machinery. Stearns Mrg. Co. S
Supplee Steam Engine. See adv. p. 221.
The Berryman Feed Water Heater and Purifier and Feed Pump. I. B. Davis Patent. See illus. adv., p. 237.
For Pat. Safety Elevators, Hoisting Engines, Friction lutch Pulleys, Cur Coupling see Frisbe's ad, p 23 Mineral Lands Prospected, Artesian Wells Bored, by 4 to 40 H F. Steam Engines. See adv. p. 238.
Ball's Variable Cut-off Engine. See adv., page 252.
Fire Brick. Tile, and Clay Retorts, all shapes. Borgner O'Brien, M'f'rs, 23d St., above Race, Phila.. Pa.
Drop Forgings of Iron or Steel. See adv., page 252.
For best Portable Forges and Blacksmiths' Hand Blowers, address Buffalo Forge Co.. Buffalo, N. Y.
Paragon School Desk Extension Slides. See adv. p 253. Brass \& Copper in sheets, wire \& blanks. See ad, p. 253. The Chester Steel Castings Co., office 407 Library St.,
Philadelphia, Pa.. can prove by 15,000 Crank Shafts, and Philadelphia, Pa...can prove by 15,000 Crank Shafts, and 10,000 Gear Wheels. now in use, the superiority of their
Castings over all others. Circular and price list free.
Castings over all others. Circular and price list free.
The Improved Hydraulic Jacks. Punches, and Tube
Eagle Anvils, 10 cents per pound. Fully warranted.
'iight and Slack Barrel machinery a specialty. John pholl Granville Hydraulic Elevator Co., 1193 B’way, N. Y Latest and best books on Steam Engineering. S
stamp for catalogue. F. Keppy, Bridgeport. Conn. tamp for catalogue. F. Keppy, Bridgeport. Conn. Draughtsman's Sensitive Paper.T.H. McCollin, Phila.,Pa.
For Mill Mach'y \& Mill Furnishiug. see illus. adv. p. 252 . For Shafts, Pulleys, or Hangers. call and see stock
kept at 79 Liberty St., N. Y. Wm. Sellers $\&$ Co.

Diamond Saws. J. Dickinson, 64 Nassau St., N. Y. Lathes, Planers, Drills, with modern improvements. he Pratt \& Whitney Co., Hartford, Conn Catechism of the Locomotive, 625 pages, 250 engravngs. Most accurate, complete, and easily understood
book on the Locomotive. Price $\$ 2.50$. Send for catalogue
of railroad books. The Railroad Gazette, 73 B'way, N. Y. of railroad books. The Railroad Gazette, 73^{\prime} B'way, N.Y. Wm . Sellers \& Co., Phila., have introduce
njector, worked dy a singlemotion of a lever.
Common Sense Dry Kill. Adapted to drying of all ma Cial where kiln, etc., drying houses are used. See p. 20 . Improved Skinner Portable Engines. Erie, Pa. Patent Key Seat Cutter. See page 252.

HIN'IS 'TO CORRESPONDENTS.
No attention will be paid 1.0 communications unless accompanied with the full name and address of the
writer.
Names and addresses of correspondents wll not be
iven to inquirers.
We renew our request that correspondents, in referring former answers or articles, will be kind enough to ame the date of the paper and the page. or the number of the question.
Correspondents whose inquiries do not appear after a reasonable time should repeat them. If not then pubHished, they may conct
Editor declines them.
Persons des
Persons desiring special information which is purely should remit from $\$ 1$ to $\$ 5$, according to the subject as we cannol be expected to spend time and labor to obtain such information without remuneration.
Any numbers of the Scientific American Supplement referred to in these columns may be had at this Correspondere in ents each.
Correspondents sending samples of minerals, etc., label their specimens so as to avoid error in their identilabel thei
fication.
(1) G. B. M. asks: What solution is used by manufacturers to fasten the caoutchouc on clothes Suppiement No. 158.
(2) C. D. R. writes: 1. I am interested in water ditch for placer mining in the State of Oregon, satifactorily as yet; but I am informed that you have a book that will give me the necessary information. If so, I want it. A. Beardmore's "Hydraulic Tables" will give
information on these subjects. 2. I wish to run 150 information on these subjects. 2. I wish to run 150
to 200 inches of water, miner's measure (that is, water running through a 2 inch orifice with 6 inches from the center of the orifice to the level of the water, called a
pressure of 6 inches), through a pipe from the side of one hill across a depression to another hill. The water leaves the pipe 20 feet lower than it enters, and has to move 3,200 feet in the pipe, and passes
down hill 135 feet, and up hill 115 feet; thus there is 20 feet pressure. Now, what size pipe will it require to convey across this depression 150 inches of water: also, what sized pipe for 200 inches, and how
heavy iron should it be made thing that botiers. Will it make any difference to thing that botiers. Will it make any difference to down hill, a little larger than the other half? A A miner's inch is equal to the discharge of 1,56 ? cubic feet per minute under a head of 6 inches over the top of opening, 1 inch square; hence two miner's inches $=3 \cdot 124$ cubic feet per minute. According to calculation a $2 \% / 2$ nch diameter pipe, under the conditions given, will discharge 3.7 cubic feet per minute. Your pipe should e same diameter the whole length; and put to pipe should be larger. If the discharge opening is 2 inches square, it is four miner's inches, not two; in which case the pipe should be $31 / 2$ inches diameter.

communications received.

On a Maple Sugar Bush, By H. H.
On Railroad Ties. By W. A.
[FFFICIAL.$]$
INDEX OF INVENTIONS

Letters Patent of the United States were
Granted in the Week Ending April 4, 1882,
AND EACH BRARING THAT DATEE.
[Those marked (r) are reissued patents.]
A printed copy of the specification and drawing of any patent in the annexed list, also of any patent issued In ordering please state the number and date of the patent desired and remit to Munn \& Co 261 Broad way corner of Warren Street, New York city. We also furnish copies of patents granted prior to 1866; but at increased cost, as the specifleations not being printed, must be copied by hand.

Air compress garner, combi

Air machine, cold, H. F. Starbuck
Alkali, putting up caustic. B. T. Babbit t
Auger. earth, C. A. F. Peter
Bag fastener, C. w. Bradfor
Baling band, hay and cotton, w. s. Gordo
Balloon, C. P. Fest
Ballot box, 'r. F. Dodge.

Bar. See Boring bar.

Battery. See Thermo-electric battery. Bed bottom, spring. T. Burdick.
Bed, folding cot, C. J. Sundbeck

Butter case, J. K. Hamlin.
Butter, etc., wrapper and package for, S. H. Smith
Button, E. H. Royce et al..
Butter, etc., wrapper and
Button, E. H. Royce et al.
Button, cuff, D.
Button, cuff, D. Lubin
Calipers, E. C. Smith
Calipers, E. C. Smith....................
Can capping machinine, J. W. Winters
Candlestick, miner,
Capsules, machine for cutting off, wohnlich \&
Scholes
6...17,

Car brake, railway, E. P. Vinning (
Car coupling, S. Bray.
Car coupling, T. J. Hilliard.
Car coupling. G. Hollister
Car coupling. G. Hollister ...
Camping, I. B. Robbins.
Car heater, D. M. Kirkpatrick
Car spring, J. B. N. Berry....
arbureting air. process of and apparatus for
L. C. D'Ivernois.........
Carpet sweeper, R. Soper.
Carriage. child's, A. Heim

Carriage. child's, A. Heim
Carriage jack, W. J. Scott
Cartridge, H. McGee.
Cartridge primer, w. s. Smoot............................
Case. See Butter rase. Pocket case. Seed case.
Caster, salt, J. J. Kittel.
Chain, J. M. Dodge.....
Chain, ärive. J. M. Dodge..
Chain, drive, W. D. Ewart................................. 255,959,
Chain, drive, C. H. Low..
Charry see Opera chair. Reclining chair.
Christmas tree, imitation, A. Wengenroth
Churn, W. C. Burrows
Cigar coloring and flavoring machine. Bowman
Cigar coloring and flavoring machine. L. spindler
Clip. See Tramway clip.
Clutch, friction, A. M. Englis
Coffee, preparing tablets of. A. Von Hofmann
Coffee, process of and apparatus for roastin
Fleury \& Barker...........................
Collar cap, horse, A. Waugh..
Cooler. See Beer cooler.
Compound engine, J. B. Root
Corset. M. P. Bray
Cotton gin, R. M. Brooks.
Cotton gin, W. L. Crowso
Cotton, etc., machine for hulling and ginning.
L. Crowson
L. Crowson...
Coupling. SSe Car coupling. Thill coupling.

Cross section rod, S. B. Fis
Crusher. See Ore crusher

Cultit
Cultiv
Cultiv
Cultivator, L. L. Luppen.
Cultivator, C. W. Post
Cultivator tooth. J. M. Long......

Dental drill, c. M. Richmond.. 2556,665
Dental plugger. E. Ebi........... 255,955
Die. See Threading die.
Dish, covered,. . A. Parker....256,036. 25
Disintegrating grain, etc., machine for, F. Taggart 25
Door check, I. P. Poulson
Dramatic effects. apparatus for producing illu-
sory, J. W. Knell
Drier. See Eruit drier. Wheat drill.
Drill. See Dental drill. Whe
prill
Drill holding device. J. C. Titus..
Drying and pulverizing offal, etc., apparatus for,
J. F. Gubbins........................
Electric circuits, signaling on. D. H. \& L. C. Rice.
Electric generator and motor, J. H. Bunnell

Electrical distribution, system of, E. Thomson...
Elevated way, N. Newman..................
Elevator. See Pneumatic elevator. Water ele-
vator.
Elevator bucket, Calkins \& Woodhill.
Elevator safety brake, automatic. C. S. Longstreet
Engine. See Compound engine. Steam and hot air engine. Steam engine.
Fanning mill, P. Poyneer.

Floor for rolling mills, glass houses, etc.,W.Rogers
Flour packer, Barnard \& Leas..........
Flue cap for stove pipes, F. E. Heinig.
Fue cap for stove pipes, F.
Flue stopper. F. G. Arter .
Fruit basket
Fruit basket, C. E. Bartram
Fruit drier, J. M. Burgardt

Furnace front and door, T. Henderson............ 255,784
Game board, W. B. Siver 255,892
J. W. Hodges..000. 255,786
Gasalier. J. . Seaman
Gate. See Sliding gate.
Gate. See Sliding gate.
255,940
$.255,834$
Gear, platform, A. H. Beach
255,834
Generator. See Electric generator.
Glove or shoe clasp, F. J. Herrick 255,857
Gluing bers, method of and apparatus for,
Governor. engine, R. P. B.......
Governor, steam. J. J. Hahn...
Governor, steam., J. J. Hahn
Grain binder. P. F. Hodges.
. 255,861
255.760
255.973
255985
Governor, steam. J. J. Hahn ...
Grain binder. P. F. Hodges....
Grain
Grain binder cord tyer, J. H. Dean..................... 255,985

Grain separator, Herberg \& Claussen
Grappling iron, Michael \& Masten...
Grappling iron, Michael \& Masten
Grinding mill cooling mechanism, J. Fitzgerald...
Gun, breech-loading bomb, E. Pierce.
Gun, breech-loading bomb, E. Pierce.
Handle for pocket knives and other implement
B. A. Fiske
Harness, C. F. Wiesenmeyer,
Harrow, Burger \& Simpson

Harvester, corn, G. W. Irwin............. ..
Hat flanging machine. Plumb \& Marchant
Hat sweat and other corded edged fabrics, Hos
mer \& Lathrop................................. 255,993
Hay knife, G. r. Weymouth (r)................072.
Hay stacking apparatus, G. Richardson.... 255,887
Hay stacking apparatus, G. Richar
Heater. See Feed water heater.
Heating apparatus, N. w. Williames
Heating apparatus, N. W. Williames.
Heel plate, revoiving, J. L. Thomson
Hinge, Pfauntz \& Franck..
Hinge, spring, C. B. Clark

thorpe.......................255,956
Hoisting machine, A. Dobbie.
Hoisting machine, A. Dobbie 2555,844
Hoder. See Pen holder. Shoe holder.
Hoder. See Pen holder. Shoe holder.
Horses, check for. M. M. Nathanson 255,882
Hurseshoe, H. B. Band................................ 2559
Horseshoe fastening device. G. Bryden.......... 255.765
Hydraulic press, C Kimplen 255,872
Indicator. see Station indicator.

Indicator. See Station indicator.
Ingot mould shield, J. Pedder.................. 255.038
Injector, steam engine, S. Borland 255.920

Injector, steam engine, S. Borland 255,920
Insecticide compound. W. B. Nettle........... 555,883
Insulator for electrical conductors, A. C. Lewis... 255,800
Insulator for electrical co
Iron. See Grappling iron.
Jack. See Carriage
Jack. See Carriage jack.
Jewelry setting, H. B. Smith
Jewelry setting, , , B. Smith
Joint. See Railway joint.
Joint. See Railway joint.
Key for bolts. etc.. B. w. De Courcy 255,843
Knife. See Hay knife.
Knitting machine, J. Denton..
255,945
255.951

Knitting machine needles, manufacture of, S
Peberdy.
255,808
255,858
255,793
Label for animals, P. P. Johnston
Lacing for wearing apparel, bags, and other arti-

.. 255,866
.. 255,805

A. G. Paul.
Lamp burner, E. L. Bryant.......
Lamp, electric, N. S. Seith.
Lamp, electric, C. D. Jenney
Lamp, electric, C. D. Jenney.
Lamp, electric, J. J. Wood ...
Lamp, electric, J. J. Wood
Lapp, hanging. E C. Lawrence (r)..........
Lathe for turning irregular forms,
Lathe for turning irregular forms, E. Myers.....
Lead, apparatus for the manufacture of red, N.
$\underset{\text { Gregg }}{\substack{\text { Gren }}}$
Lever, interlocking, H. F. Cox
Lever, interlocking, H. F
Lifting jack, J. O. Joyce.
Lightning arrester. A. R. Prescott..
Link bending machine, metal, Evans \& Green
Lipks, manufacture of open, D Hults.
Load binder, s. S. Conklin..
Lock. See Nut lock. Nut and bolt lock.
Locomotive fire box, Kearney \& Hawley..
Loom shedding mechanism, R. B. Goodye
Loom shedding mechanism, R. B. Goodyear.
Loom shuttle, S. A. Dudley.....
Lounges, folding leg fixtu
Graeser....
Millstone, R. Moody..........
Mower and reaper knives, machine for sharpenMower and reaper knives,
ing. C. W. Henshaw.....
Mower, grass. E. Beckwith.Music scale and ehord indicator, C. H. Hauschel
Musical instrument. meehanical.J. I. Chase ...Musical instrument. meehanical. J. H. Chase ...Needle bars. device for the compensation of we
Nut lock, S. Gissinger..
Nut lock, A. L. Lincoln
Opera chair, Johnson \& De Souche
Optometer. G. D. Edmondson.

Paint burner. J. Irving Paper and pasteboard, method of and apparatus for manufacturing. N. Kaiser (r).	
	Washing machine. M.C. Malone................... 256.019
	t, W. Bunting, Jr
per making machines roll	
Rand	Water and moth repellant.
Parer, corer. slicer, and quarterer, apple, C. R. Heizmann	
n holder, E.	
ndulum. compen	ighing a
moulding an	
pestem and cigar hold	ell baile
ot gauge, T. S. Mil	Wh
Planing machine for planing thin pieces of wood, W. S. Holland 255,787	
nter and guano	Wool washer, F F G.
anter, corn. .J.	Yarns after dyeing, soft
Pianter, corn. M. Harris................................. 255,782	
Plaster! material. M. B. Church 255,937	
Plow attachment. Herberg \& Claussen.......... ... 255,981 Plow, sulky. 'I. T. Harrison . 255.977	
	Bottle. pickle, H. J. Hei
Plow, vineyard, A. C. Taylor 255,998	Carpet, E. Pe
Pneumatic elevator, C.E. Buell..................... 256,099 Pocketbook blank, Andrews \& Burk.. 256,094	Carpet, E. Fis
	Carpet, A. L. Hallida
Pocket case and cigar clipper, cornbined, A. P. Yates'.. \qquad	Fringe, G. S. Hensel
	Fringe, H. A. Kehre
Porcelain and china paste boxes, making, E. Leak 256,008	
Post. See Fence po	Toilet case. H. Pattber
Pot. See Thea and coffee pot.	Toy money box, Ky
Preserving food, A. Warner. 256,084	
Press. See Cider press. Hydraulic press.	
Pulley, gripping, D. W. Warren 255.827	
Pulverizer, W. S. Sharpneck............................ 255,890	DE MAR
Pump, M. Gayman.. -.......................... 255,966	
	Atomizers, Youn
Pump, W. D. Hooker............. 255.990 Pump, D. Johnson et al.... 255,792	Axle grease, A. J. Wis
Pump. mining. D. W. Brunton 255,928	Cigarettes, Teuscher \& G
Railway crossing. D. C. Pierce 255.811Railway rail joint, J. M. Adams................. 255,905	Medical compound, C. C. Br
	Needles, se
Railway rails. clamp for holding. 'v. J. Morden... 256,026	Oils for toile
Railway switch and signal locking apparatus, (. H. Jackson'. 255,998	
	Perfumery, Young, Ladd \& Coffin. $9,263,9,965.9 .267$ to 9,2
clining	Razors, W. H. De
Refrigerating room, H. A. Roberts................ 256,052	Thra
Retrigerator cooled by ammonia, etc., R. A. Messervey.. 258,023	Tobacco, plug and twist. Tobacco, plug and twist
Regulator. See Electric.light regulator. Retort furnace, spelter. D. W. Jansen.. 256.105	
	glish Patents Issued to Americ
Rod. See Cross section rod. Roller. See Field roller.	From March 31 to April 4. 1882, inclusive.
	Bed, E. S. Griffith,
Rolling mill for tapering spring points, W. Evans 255.958 Roofing plate, metal, J. Walter 256,083	
Rope machine. J. Harris..... 255,976	Dynamo
Rubber and other vulcanizable gums, moulding articles of India, C. Poppenhusen............... : 256,043	Electricity. generation of J. S. Williams, Riverton, N. Electro-magnetic apparatus, E. Weston, Newark. N. J
Rutling machine, W. Beaukler..................... 255.916	Hose for fire engines, T. S. Nowell, Bos
Saccharine juices, treatment of. Yates \& Degener 255.830	Knit goods, sewing. S. Borton, Philadelp
Saw jointer, circular. A Long........ 25f,u11	
Scoop, grocer's. J. J. Bradner 255,923Screw, C. D. Rogers 255,416	Screw, Am
Secondary voltaic cells, J. W. Swan.................. 256,070 Seed case, R. P. Carpenter................. 255,7\%1	Shingle, metal, K. Seaman. New York city
	Soap, manufacture of
Separator. See Grain separator.	Telegraph printing
Sewed fabrics. etc., machine for trimming hems	

Shirt, G. D. Hull..................
Shoe holder. W. P. Holliday
Shoe nails, making
Shoe nails, making, J. Hyslop, Jr....................
Shovel for lifting and sifting ashes, W. Enticott..
hutter, window, C. E. Garey
Sifter, ash, J. Wells ..
Skate, combined roller and runner. W. H. Rush-
Slate dressing machine, F. W
Slate washer, Gross.\& George
Sleigh, J. Jackso
Jones \& Woolse
melting furnace. C. IV. Bliss
Soldering machine, can...
Speculum, Autenrieth \& Thurston

cle spring.

Spur, A. Mc.:anus
Stamp. canceling and dating, G. W. Mevin
tand. See
Stand. See Dandy roll stand. Steam and hot air engine, E. G. Frykberg team engine, M. W. Hall. Steam engine, double cylinder. J. B. Root..
Stenographic machine, M. M. Bartholomew
\qquad
W. Aiken

```
Jewell.
```

tone, artiflicial, Chamberlain \& Comerer . tove, G. M. Bull
Stove, cook, Vining \& Quesnel.
tove, gas, J. h. baumgardne
tove, tailor's, J. R Burchfield
urcingle, E. Barnard
Tea and coffee pot, J. B. Daniel
Telegraph sounder, meehanical, J. H. Bunnell
Telephone exchange apparatus, C. E. Buell.
Thill coupling, A. Brown .
obateo eaves, device for sizing, J. D. Brubaker
oy, mechanical, J. W. Perkins
Tramway clip, rope, Abbott \&
ruck, barrel, J. K nudsen
Tuyere, J. E. Day.
alve star H. Berge
Vehicle reach, J. Le Roy.
Vehicle spring. W. Woiceuki
Ventilator. See Building ventilator.

WHAT WILL THE WEATHER BE TO-MORROW?
POOL'S SIGNAL SERVICE BAROMETER

PHYSIOLOGICAL ACTION OF TEA

 SEASICKNESS: HOW THF AFFECTION

MINERAL WOOL.

EHEPARDS GELLERRATED Screw Cutting Foot Lathe.

 ON 30 DAYS' TRIAL! Dr. Dye's Electro-Voltaic Belts, Suspensories,

 THE AIR OF STOVE HEATED ROOMS. -

$\$ 88$ A week to Agents. \$10 OUTFIT FREE.

THE DUPLEX INJECTOR.

 on compressed atr.-by w. H .

Wooo-working Machliery

Ess Universal Wood Workers, Planing, Matching,
Coulding Band and Scroll Sawing Machines,
Carriase, wagon and wheel Wagon and Wheel Machinery, etc.
BENTEL, MARCEDANT \& CO.,
HAMILTON, OHIO, U.S.A. PATENTS.

MESSRS. MUNN \& CO. in connection with the pab-

 lication of the Scientific American, continue to ex-amine Improvements, and to act as Solicitors of Patents for Inventors.
In this line of business they have had thirty-five
years' experience, and now have years' experience, and now have unequaled facilities for
the preparation of Patent Drawings, Specifications, and the prosecution of Applications for Patents in the United States, Canada, and Foreign Countries. Messs,
Munn \& Co. also attend to the preparation of Caveats, Copyrights for Books. Labels, Reissues, Assignments, and Reports on Infringements of Patents. All business intrusted to them is done with special care and promptness, on very reasonable terms.
A pampllet sent free of charge, on application, containing full information about Patents and how to procure them; directions concerning Labels, Copyrights. signments, Rejected Cases, Hints on the Sale of Pa tents, etc.
We also send. free of charge, a Synopsis of Foreign
Patent Laws, showing the cost and method of securing Patent Laws, showing the cost and method of secu
patents in all the principal countries of the world.
MUNN \& CO., Solicitors of Patents,
BRANCH OFJICE -Corner of F and 7th Streets,

Geo. W. Read \& Co, MAHOGANY, Cabinet GVoods. CUT AND PRESS DRIED

THINLUMBER,

CIGAR BOXES, Fanol Stock, Etc., Fto.

186 to 200 Lewis St., New York. HEAVY PuNcHES.SHEaRS, Boiler Shop Rolls, Radial Drills, Etc. HILLES \& JONES RUPTURE

[^0]cured without an operation or the Infrys truses inflicy

AIR METERS, MACHINERY

Reliable durable, And economical, will furnisha
orsepower with one thirluless fuel and water than any other
 ANY PRACTICAL DRAUCHTSMAN

PENNOCK'S PATENT ROAD MACHINE.
 Manufacturers of "Matchless" Dump.-scraper
S. PENNOCK \& SONS'

EJECTOR CONDENSER.

 \& B. HOLNES,

RUBBER BACK SQUARE PACKING.
For Packing the Piston Rods and Valve Stems of Steam Engines and Pumps.

of the packing which when in use, is in in contact with the Piston Rod
Nich
neps
This Packing is made in lengths of about 20 feet, and of all sizes from 14 to 2 inches square.
OHN H. CHEEVER, Treas.
NEW TORK BELTING PACKING CO., 29 Park SPECIAL NOTICE.-Owing to the recent great fire in the "World" Building, our ow York.

asbestos, chloride of calcium Sulphide of Antimony, Mangan CHROME ORE, PLUMBACO Ground Quercitron Bark, and Minerals CHARLES L. OUDESLUYS \& SON,

THE NEW OTTO SLLENT GAS ENGINE

WATCHMAKERS.
Before huying lathes se the "Whitcomb," made
AMERICA WATCH TooL CO., Waltham, Mass.

WIRE ROPE, BRIDGE CABLES, SHIP RIGGING Tramway Ropes, Champion Barbed Wire, etc. Onice and works:
WILKESBARRE, PA. $\}$ send for frice ist. $\left\{\begin{array}{l}\text { Office and Warenense } \\ \text { LIBERTY ST., NEW YORK }\end{array}\right.$

"BLAKE'S CHALLENCE" ROCK BREAKER.

 BLAKE CRUSHER CO., Sole Makers, New Haven, Conn.

Hard Rubber

 THE RUBBER COMB AND JEWELRY CO.
33 Mercer St., New York.

BOOKWALTER ENGINE Compact. Substantial, Econom-

TENTH CINCINNATI Industrial Exposition, -1882, Opens September 6, Closes October 7, grandost Exposition bullongas UTNITBIS STATPE. Exhibitors from every State in the Union. The Great National Exhibition

ART AND INDUSTRY.

WITHERBX, RUGG \& RICHA RDSON. Manufacturers
of Patent Wood Working Machinery of every descrip.

THE PORTER-ALLEN High Speed Steam Engine. SOUTHWARK FOUNDRY \& MACHINE CO.,
430 Washington Ave., Philadelphin, Pa.
 Horizontal Steam Engines,
 LAMBERTVILLE IRON WORKS,
 Surverors' Compasses, Pocket ompasses, \& Protractors
made as specialties.
A. W. Philo, PATENT QUICK SHAAPHRS Can be Changed while in Notion. E. GOULD \& EBERHAP.DT,

3aturtituments.
 Engravings may head advertisemenents at the same rate tisements must be received at publication office as early

and Shaped Diamond Carbon Points, Indifpensable for

 JOHN DICKIN 50 N, , 64 Nassau Street, New York.

Mechanism for Working Pipe Organ Bellows The best and most convenient arrangement in existence,
with out any expenses $\begin{aligned} & \text { ar } \\ & \text { tion and circulars, Julius Wagner, Inventors, for informa }\end{aligned}$ Reading. Pa.

R. LOOT, SON \& HATOON' TOILET SOAPS
Leave no unpleasant odor on the hands, The popular kinds are
ELDER FLOWER, IN $\frac{1}{2}$ LB. BARS,

OLD BROWN WINDSOR, IN PACEETS. Triple Handkerchief Extracts, Royal Windsor Toilet Water Lau de Cologne,
Violet Nursery Powder, Rose Leaf Powder. Acknowledged to be the best and most satisfactory Toilet Articles in the world. FOR SALE EVERYWHERE.

ROCK DRILLS \& AIR COMPRESSORS 1 PARK PLACE ROCK DRILL CO YOMK
THE J. L. MOTT IRON WORKS,

" BUCKEYE

 LAWN MOWER. M A ST, FOGOS © Sprinqfield, Oh
Send for catalogue.
MACHINISTS' TOOLS. Send for new illustrated catalogue. NEW HAVEN MANUGACTUL, \&CG CO

RELIABLE

 Address, for circular T

Sifilip pulis

 I円FEIGEITOIN, EA., IIIRPY AND CORTNDOU WHERES AND GRINDING MACHINERY.
For Sale by COOKE \& co., No. 6 Cortland St., New York R. W. REXFORD, No. 11 N. Gth St., Philadelphia, Pa.; M. F. PERIE Y, No. 43 South Canal Sto, Chicago, III.; FOX CORBRY \& PLACE M12 North Third St., St. Louis, Mo. San Francisco, Cal.; EXCELSIOR MFG. Co., St. Louis, Mo

THE SEIBERT CYLINDER OIL CUP CO.,

THE SEIBERT CYLINDER OIL CLP CO. 53 Oliver Street, Boston, Mass.

Stevens' Roller Mills, GRADUAL REDUCTION OF GRAIN THE JOHN Manufactured exclusively by

CameronSteam Pump.
Specially adapted for use in Gold, siviver Coal, and
Iron Minse also Generail Manufacturing and Firre Pumps.
 the a. S. cameron steam pump works,

まuidiview juswevidizu SIBLEY COLLEGE OF MECHANIC ARTS,

 Practical, including , raughting, wachine Construction,
Generalsop Workete. apply to the
PRESIDENT OF CORNEIL UNIVERSITY, Ithaca. N. Y.

D RUNKENNESS EASILY CURED,

GOLD MEDAL, PARIS, 1878. BAKER'S Breakifast Cocoa. Warranted absolutely pure Oocoa, from which the excess of Oilhas been removed. It has three with Starch, Arro and is therefore far more economistrengthening, easily digested, and admirably adapted for invalids as well as for persons in health.
Sold by Grocers everywhere.
W. BAKER \& CO Dorchester, Mass,

MORPHINE HABIT,
No pay till cured. Ten pay till cured. Ten
years, established, 1,000
Stared cured. State case.
Marsh,
Quincy, Mich.

Jarris Furnace Co. Patent setting for Steam Boilers Burns Screening
and Silack Coal without Blast. No. 7 Niver St., Bosto OPIUM****me failig A Treatise on their CA ING
Speedy cureesENT FREE. DR.J.C.
COLUMBIA BICYCLE

Is what every boy wants and what every man ought to have.

THE POPE M'F'G CO.,

IRON REVOLVERS, PERFECTLY BALANCEL, P. H. \& F. M. ROOTS, Manufacturers, COOKEWNSEND, Gen. Agt., 6 Cortland St., 8 Dey St.,
 OEND FOR PRICED NRI.

Boiler Feeder

Simple, Reliable, and Effective 40,000 IN ACTUAL USE. NATHAN \& IDREYFUS, Sole Manufacturers, NEW YORK. Send for Descriptive Catalogue KORTING UNIVERSAL INJECTOR
 $B_{B_{A}}$ W WOLLLG LIFT HOT WUATER
 HARTFORD
STEAM BOILER
Inspection \& Insurance COMPANY.
W. B. Franklin.V. Pres't. J. iv. ALLEN, Pres't. J. B. PIERCE. Sec'y.

HY.JOHISS ASBEESTOS LIQUID PAINTS

ASBESTOSROOFING: COVERINGS, SBE
 ASBESTOSSHEATHINGS,
H. W. JOHRS M'F'G CO. 87 Maiden Lane, New York.

ERICSSON'S

Ner Calici Paning ingine Simplest ELLINGS AND COUNTRY SEATS.
 DELAILATER IRON WORES No. 10 Cortlandt Street, New York, N. Y. Asbestos Lined Removable Covering

70

 L ${ }^{\text {Nigns }}$, name on 10c. $50^{\text {Elemant }}$ new deasifns the theMIRE ROPC

PRINTING INKS.

[^0]:

