a WEEKLY JOURNAL 0F PRACTICAL INFORMATION. ART. SCIENCE, MECHANICS, CHEMISTRY AND MANUFACTURES.
Vol. XLVI.-NO. 8.]
NEW YORK, FEBRUARY 25, 1882.
$\underset{[\text { POSTAGE PREPAID.] }}{\mathbf{\$ 3 . 2 0}} \mathbf{~ p e r ~ A n n u m ~}$

FRAGER'S WATER METER.

In 1872, M. Frager introduced to the notice of water supply companies a new water meter, which was very favor-
uncovers the orifice, O_{3}, and covers up the orifice, O_{4}. As stopping at the end of its travel, it displaces the slide valve, a consequence of these displacements the pressures are re- T^{\prime}, which uncovers O_{3} and covers O_{1}. Owing to this dis-
 been extensively used by the companies supplying water to ond cylinderful of water into the discharge pipe. Before moves toward the right, driving a third cylinderful of water various of the larger towns and cities of France. Recently the inventor has greatly modified the construcion of the apparatus, so that it is exceedingly simple, moderate in price, and is not influenced in its correct working by variations in pressure. The operation of this meter, which is shown in the annexed cuts, is as follows.
The water enters the meter through the inlet pipe, which empties at the top of the distributing box. It traverses a sieve, which serves to remove the larger impuri ties, and exerts its pressure against the slide valves, T and T^{\prime}. This pressure is transmitted to the measuring cylinders, C_{1} and C_{4}, from the cylinders, C_{2} and C_{3}, through the orifices, O_{1} and O_{4}, which stand open. Since, at the same instant, the orifices, O_{2} and O_{3}, are in communication with the outlet pipe through the intermedium of the ports of the slide valves which cover them, the spaces, C_{2} and C_{3}, are in a state of discharge, and the pistons, P and P^{\prime}, which separate these chambers from the first, tend to displace themselves toward the left. The piston, P^{\prime}, abutting against the end to the left, by the extremity of its rod, remains immovable; but P moves forward toward this same end, and, striking against it, admits a cylinderful of water into C_{1}, at the same time expelling a like quantity of water from C_{3}. Before reaching the limit of its travel, it displaces the slide valve, T^{\prime}, which

Fig. 1.- vertical section.
into the discharge pipe, displacing, on arrival at the end of its travel, the valve, T, and thus causing the expulsion of a fourth cylinderful of water by the piston, P^{\prime}
The different parts of the mechanism have now returned to their starting point, except the ratchet wheel, R, which has moved forward but one tooth, while the apparatus has been distributing the four cylinderfuls of water. This ratchet wheel actuates the clockwork which registers the quantity of water that passes through the meter. The movements just described take place as long as the inlet cock remains open.

It only remains to add a few complementary details.
Each piston, toward the end of its travel, actuates the valve which distributes the water into the other cylinder. To effect this the piston rod carries two cams, H_{1} and H_{3}, or H_{2} and H_{4}, which alternately act on the friction roller at the lower extremity of the controlling lever, L or L^{\prime}; the latter moving on the axle, A or A^{\prime}. The eccentric head of this axle is situated under the port of the slide valve (in a compartment separated from the one which operates to distribute the water) in such a manner that it pushes along the valve and carries it around the axle, now over the one. The mecbanism which trans mits motion to the clockwork is
[Continued on page 114.]

Fig. 2.-PLAN OF THE APPARATUS.-THE DOME REMOVED TO SHOW DISTRIBUTION.
Fig, 8.-HORIZONTAL SECTION THROUGH TAE AXIS OF THE PIBTONS.

Srimtifir Ammican.

ESTABLISHH:O 1845.

MUNN \& CO., Editors and Proprietors published weekly at

No. 261 BROADWAY, NEW YORK.
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.
One copy, one year postage included....
One copy, six months, postage included
Clubs.-One extra copy of THE SCIENTIfIC AMERICAN will oè supplied
gratis for every cub of five subscribers at $\$ 3.20$ each: additional copies at gratis for every cutub of five subscribers at $\$ 3.20$ each : additional copies
same proportionate rate. Postage prepaid. Remit by postal order. Address
MUNN \& CO., 261 Broadway, corner of Warren st_ det, New York.

The Scientife American Sixplement
is a distinct paper from the ScIENTIFIC AMERICAN. THE SUPPLEMENT sissued weekly. Every number contains 16 octavo pages, uniform in size
with Scientific American. Terms of subscription for Supplenvint $\$ 5.00$ a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all news dealers throughout the country.
Combined lRates. The ScIENTIFIC
will be sent for one year postage free, on american and Suppirmint papers to one address or different addresses as desired.
The safest way to remit is by draft, postal order, or registered letter.
Address MUNN \& CO 261 Broad way. corner of Warren street, New Y
Scientific American Export Edition.
The Scientific ambrican Export Edition is a large and splendid peridical, issued once a month. Each number ccntains about one hundred large quarto pages, profusely illustrated, embracing: (1.) Most of the
plates and pages of the four preceding weekly issues of the ScIk TIFIC Am:rican, with its splendid engravings and valuably Information ; (2.) Commercial, trade, and manufacturing announcements of leading house Terms for Export Edition, 85.00 a year, sent prepaid to any part of the artd. Single copies 50 cents. Manufacturers and others who desire
0 secure foreign trade may have large, and handsomely displayed an to secure foreign trade may have large. and handsomely disp
nouncements published in th's edition at a very moderate cost.
The SCIENTIFIC AMLlicican Export Edition has a large guaranteed circ hation in all commercial places throughout the world. Address MUNN

NEW YORK, SATURDAY, FEBRUARY 25, 1882.

TABLE OF CONTENTS OF
the scientific american supplement,
No. 321,
For the week ending February 25, 1882. Price 10 cents. For sale by all newsdealers.

1. ENGINEERING AND MECHANICS-NOtes on Cement.-Ship-

 III.

THE WILSON COORED MEAT PATENTS.

The decision of the judges in the cases of the Wilson Packing Company, of St. Louis, against certain Chicago and St. Louis meat canning companies for alleged infringements of the patents of William J. Wilson and John A. Wilson, appears in full in the Official Gazette for February 7 .
The cases were tried in the Circuit Court, Northern District of Illinois, before Judges Drummond and Blodgett, and were dismissed on the ground that the patents upon which they were based were void for want of novelty. The court also held that in all doubtful cases involving the validity of a patent the fact that the article made by the use of the pro cess described in the patent has been extensively sold is a consideration of great weight, but not enough in itself to sus. tain the patent. "The rights of the public are to be protected as well as those of individuals, and a monopoly should not be allowed unless the right to it is clearly shown
The most important questions in the case grew out of the patent of Wm. J. Wilson, reissued April 6, 1875, describing a process of preserving and packing cooked meats for transportation. The process as described consists in first cooking the meat by boiling in water, so that all the bone and gristle can be removed and the meat yet retain its natural grain and integrity. While yet warm with cooking the meat is pressed into a box or case with suitable apparatus, the pressure being sufficient to remove the air and all superfluous moisture, and make the meat form a solid cake. Then the box is sealed or closed air-tight upon the meat.
The court held that the cooking of meat in this way has always been known; that the sealing of the can is substantially the Appert process described in Durand's English patent in 1810; and that the process of pressing mest to re move moisture previous to packing is described in the Marshall patent of 1864. It was also employed by De Lignac in 1855; while cooked meats were canned by Lyman in 1869. The only possible novelty in the process described by Wilson in his original patent of 1874, was the packing of the meat while yet warm with cooking, and this specification (omitted from the reissued patent) cannot, the court held, fairly be considered patentable.
Another element of the case was the form of the can in which the meat was packed, the claims in controversy being the first and third of the John A. Wilson patent of 1877 , which claims covered substantially a can of pyramidal form with rounded corners with the ends slightly flaring to form shoulders against which the head or end pieces rest. The can might have any number of sides, four being preferred. The advantage of the pyramidal form lay in its discharging the meat (when opened at the larger end) in its discharg
in a sólid cake.
It was shown that this form of can was old. It was de scribed in the French patent of Emile Peltier, recorded in 1859; also that this was a form in common domestic use before the Wilson patent was obtained. In the opinion of the court the well-known glasses and moulds used by house keepers in domestic life for preserving jellies, boned turkey, head-cheese, etc., were all, from the very necessity of the uses to which they were applied, more or less flaring, conical, or pyramidal in shape, and made so, presumably, for the purpose of turning out or discharging the contentsin a solid cake.
Touching the specific construction of the Wilson cans, it was shown that the distinctive features, rounded corners and offset ends, were employed by Gibbie and Perl as early as 1872. The claim as to the form and construction of the can was, therefore, pronounced invalid for lack of novelty. And the same was true of the other claim In dispute touching the method of packing the meat by pressure, with subse-
quent sealing. Marshall had done the same in 1864, and Lyman in 1870. It was further shown that while the complainants did not confine themselves to the form and con struction of can described.in the patent on which the claim for infringement was based, the defendant's cans were in all cases made differently. They were made by turning a rim of the head down over the outside of the body or shell of the can and fastening the head with solder-a form of constructinn practically adopted by the plaintiffs also, "probably be-
cause all packers find they can make a can just as tight and cause all packers find they can make a can just as tight and useful, and more cheaply, by turning the head over the out
side of the shell than by following the exact description of the patent.'
The interests involved in these cases are very large; and in the decision of the Circuit Court is sustained by the Supreme Court, the result will be to throw open to public use a pro cess that has been made, by the naturally increasing demand
for preserved meats, the basis of a great industry which has for preserved meats, the basis of a great industry which ha been monopo lized by a few large establishments.

RAILROAD COLLISIONS AND THEIR DREVENTIVES. ROOM FOR INVENTION.

While every precaution which the block system or any other system can devise to prevent collision on our railroads should be encouraged or adopted, it nevertheless will be found impossible, if constant human vigilance is a necessary factor in the means of safety employed, to entirely avoid the
recurrence of this class of accidents. The greater the in crease of traffic, the greater the danger to which the travel ing public is exposed from collisions, and year by year the travel on our railroads increases. Trains following one another in rapid succession, and runniug at high rates of
speed on the same linesof rail, in the dark of night as well as speed on the same lines of rail, in the dark of night as well as
in the light of day, and with the same disregard of fog as of
a blinding snowstorm, court danger, and collisions similar to the late Spuyten Duyvil disaster will continue to occur. Collisions in fact, like the assassin's stab, are now more to be dreaded from the rear than from the front, and as human vigilance cannot be depended upon to avoid them, automatic means of securing safety controlled by the engine of a train in motion, or operative only by the undue or improper stoppage of it, should be devised, and, if only as useful aux iliaries, be generally adopted.
If, however, collisions cannot be altogether prevented, there is one thing that can be done to make such accidents less destructive of human life than they usually are, and that is to construct our railroad cars so that they will not crush or telescope. We have no desire to travel in trains-which shut up with all the ease of a well-constructed telescope whenever a little sudden resistance is brought to bear upon them. Railroad cars might be constructed so that they could not thus close up and pack one within the other, and from the frequency of these telescoping occurrences we have no hesitation in saying that either the style or construction of the cars now in use on our railroads is defective, so far as their liability and capacity to telescope is concerned, and that some radical change or improvement in the construction of them to avoid this danger is needed.
Furthermore, as the running of one train into the rear of another is now of such frequent occurrence, and as in such case it is generally only the last car or two of the advance or stalled train which are so badly damaged as to occasion any great sacrifice of life, why not make the last car of a train purely a safety one, a sort of buffer car to receive the sbock, and from which all passengers should be excluded? Such car need not necessarily be of special construction, provided it and all the cars in the train are of superior rigidity, and so built or framed that they cannot telescope; consequently the delay and inconvenience which attaches to the use of a rear car of different construction from the rest when makiug up a train would be avoided. Possibly in an overcrowded train there would be a strong temptation to use such car for other than its safety purpose, but this could be strictly prohibited until it ceased to be a rear car by the adding of another. Possibly, also, railroad companies might object on the ground that it was merely hauling dead weight for an emergency which might not occur, forgetful of the fact that in a single accident such precaution would be the means of saving many lives and economical in a pecuniary point of view by reducing claims for damages sustained.
Again, in view of the many burning accidents which have occurred, why should our railroad cars be made of the combustible material they now are, or not be provided with selfoperating extinguishing apparatus, or be otherwise heated than they are? But we do not care to pursue this subject further, excepting to remark that if native ingenuity is not sufficient to discover a block system in which the locomotive is the active agent, or to devise a car that will not telescope and when ignited furnish fuel for a fire to burn up human bodies, then we confess to having greatly over-estimated it, and shall be deceived if, in the near future, the means of safety we have suggested, or better ones, be not found, once the tide of invention sets in this humane direction.

THE PARK ROW FIRE.

The coroner's jury called together to discover the cause of the Park Row fire, find that the fire originated from an overtaxed flue near the front wall of the Nassau street entrance. Further, that the flue was improperly constructed and defective from age, and a recess or chase in the wall cut in close proximity to the flue after the completion of the building, had caused a fracture in the side wall of said flue; the elevator shaft which had recently been erected near the flue, or opposite to it, being a most efficient agent in distributing the flames through the whole building.
One important effect of the fire and the altending circumstances has been to draw public attention very forcibly to the crying need of more and better appliances for rescuing persons beset with flames and for enabling people to escape by their own efforts from burning buildings.
It was seen that an important building in the heart of a great city possessing what is supposed to be the most perfect and efficient fire and water service in the world-a building mainly devoted to business offices and occupied by adults, could be burned in the daytime, and so rapidly that the escape of all the tenants was impossible. It appeared also that the means at the command of the firemen for rescuing persons cut off by the flames were relatively less efficient than they were forty years ago. Their ladders were too short to reach above the third floor, and they had no appliances for getting ropes or other means of escape to the upper floors. A number of those who escaped the flames owed their salvation to the accidental occurrence of business signs nearly connecting with those on the front of an adjacent building, and to the skill and pluck of a passer-by (he black boy, Charles Wright), who climbed an icy telegraph pole and deached a wire stretching from it to the front of the burning building.
These startling discoveries have caused a generalawaken-ing-popular and official-to the neglect of life-saving ap. pliances hitherto, and have opened the way to the ready and cordial acceptance of any new devices which may be calculated to prevent similar disasters in the future. Among tlie devices called for are extension ladders ca;able of reaching to the upper floors of lofty buildings; means of throwing life-lines to any place where men, women, or children may
have taken temporary refuge from fire; less obtrusive and more efficient fire escapes, especially such as may be fixed at every window; means by which women and children may be safely lowered from the upper floors of any building, particularly those by which timid and feeble persons may lower themselves; devices for quickly raising rope ladders to any part of a building where they may be needed, or devices by which wire ladders may be stored at the eaves or cornices of buildings over every tier of windows, and dropped by means of appliances within easy reach of any and every window; parachutes; meaüs for quickly cutting a way opposing telegraph wires when ladders are to be raised, and so on almost endlessly. It is to be hoped that our inventors will not let the occasion pass without developing somethiag to remove the stain which the too frequent burn ing of helpless men, women, and children leaves upon our civilization.

ASPECTS OF THE PLANETS FOR MARCH.

venus
is evening star, and ranks first in importance on planetary records not only during the month, but during the year. She was in superior conjunction with the sun on the 20 th of February, when, passing to his eastern side, she commenced her course as evening star. She is now so near the sun as to be hidden in his rays, but as soon as she emerges from his close vicinity she will be a beautiful object in the evening sky, and will reign as queen of the stars in the western heavens until she reaches her inferior conjunction on the 6th of December. Her transit then occurs, the grand astronomical event of the year, and one of the greatest astronomical events of the nineteenth century. It will be safe to say that no object in the heavens will receive, during the year, anything like the attention that will be bestowed upon this peerless planet. Astronomershave been busy for years in getting ready for the transit, for the whole Western world, where the sky is clear, will be in the sunlight during some portion of the passage. The busy notes of preparation are now being sounded in many of the American observatories, where every aid that science can command will be utilized for the occasion, while European astronomers have already formed their plans, received appropriations for the great expenses to be incurred, and chosen stations which are best adapted for observation, as well as those that are at extreme distances from each other.
The phenomenon is not sublime and awe-inspiring, like a total eclipse of the sun; nor simply beautiful, like the conjunction of two planets; nor magnificent, like the telescopic Saturn. The naked eye observer, looking at the sun through smoked glass, will see a tiny black spot passing over his face. The telescopic observer will see a black round ball, as large as the full-grown moon, making its way across the great luminary. The phenomenon to the ordinary observer
will be only this and nothing more. But thousands of sciwill be only this and nothing more. But thousands of scientific observers will eagerly note, as if life depended upon the accuracy, the second when Venus touches the sun's edge, the moment when she is fully embarked upon his disk, the exact time of her passage, and the second when her retreat ing edge touches the sun's edge, as well as the time when the last contact occurs and the exhibition closes. There are two principal reasons for the importance attached to a transit of Venus. One is that it is considered the best means for determining the sun's distance; the other is that it is extremely rare in its occurrence.
Venus and Mercury are the only planets that can make transits across the sun, for their orbits are within that of the earth, and they are therefore called inferior or inner planets. In every synodic revolution, or when earth, planet, and star come into line, these planets must pass between us and the sun, the point being known as inferior conjunction. Venus accomplishes this period in five hundred and eighty-four days. But her orbit, or path, is inclined to the ecliptic or sun's path, and, at inferior conjunction, she ordinarily passes above or below the sun and is invisible. When she is in in ferior conjunction, and also at one of her nodes or crossing points, as in December, she passes directly between us and the sun and makes a transit. The transits at the descending node are in December, those at the ascending node in June. The intervals between are eight and two hundred and thirtyfive years. The transit of 1874 occurred eight years ago; the next transit after that of 1882 at the same node will be in 2117 . The last transit at the ascending node occurred in 1769 ; the next will occur in 2004.
When in 2004 the next transit of Venus after the coming one takes place, no human being who now treads the earth will be alive to see its passage. Nearly four generations of men will have lived and died before the brightest of the stars again passes between us and the sun when at one of her nodes. Observers will, therefore, witness an event to be remembered for a lifetime, and, for this reason, independent of its scientific importance, the phenomenon will be eagerly anticipated. If astronomers can agree in their calculations and make the transit. a means of accurately determining the sun's distance, a great feat will be accomplished. For the sun's distance from the earth is the unit or yardstick for measuring celestial distances outside of the solar system, and on its accuracy the whole celestial structure depends.
Venus will be prominent among themes for astronomical study during the year. She will be far enough from the sun to be picked up by careful observers during the last part of the month. She must be looked for about three degrees
north of the sunset point, and soon after sunset. She sets
ow at eight minutes before 6 o'clock, a few minutes after unset; at the end of the month she sets about six minutes fiter 7 o'clock.

uranus

is morning star until the 6th, when he comes into opposition with the sun and is numbered among the eveningstars. He is then at his nearest point to the earth, the sun, the earth, and Uranus being in a straight line, with the earth in the enter. At this time he is seen opposite the sun in the heavens, as the word opposition implies, rising when the sun ets, and setting when the sun rises. A far more important epoch than his opposition occurs also during the month. On the 25 th, be reaches his perihelion or nearest point to the sun, and is the second of the four great planets to reach this part of his course. Jupiter arrived at the goal in 1880, and Neptune and Saturn will take their turn in the near future.
The occurrence of the perihelia of the four giants of the system within a few years of each other is an event that has not happened for many centuries, and will not be repeated for many centuries to come.
Uranus was discovered by Herschel in 1781, the centennial nniversary of the discovery occurring last year. At perihelion he is one hundred and sixty million miles nearer the sun than at aphelion, and as his opposition and perihelion re nearly coincident he is just so much nearer the earth. Yet such is his immense distance that the approach will be hardly perceptible in appearance. It will be eighty-four years, the time of his revolution, before the conditions are repeated, and the present is, therefore, a favorable time for beholding the faintest and smallest of the visible planets. A keen-eyed observer will have no difficulty in finding him on a clear, moonless night, as he tracks his slow course in the constellation Leo. His right ascension is 11 h .8 m ., and bis declination is $6^{\circ} 23^{\prime}$ north. He shines as a star of the sixth magnitude, and must be looked for in a line with Regulus, he brilliant star in the handle of the Sickle, and forming a right angled triangle with Regulus and Denebola, a bright tar in the tail of Leo.
Uranus now rises at eleven minutes after 6 o'clock; at the end of the month he sets at eight minutes after 4 o'clock in the morning.

MERCURI

s morning star throughout the month. He reaches his greatest western elongation or most distant point from the sun on the 21st. He is then in one of the three favorable positions for observation as morning star that occur during the year. He will be an interesting object between the midde and close of the month, reigning alone as morning star, and lovely beyond description as he heralds the sun's approach. He must be looked for eleven degrees south of the sunrise point and about half an hour before sunrise. Mercury rises now at a quarter before 6 o'clock; at the close of the month he rises at 5 o'clock

aturn

is evening star, and is becoming an object of lesser interest, as growing dim in luster, and traveling from the earth he approaches conjunction with the sun, when for a time he will disappear from view. He passes the meridian at a quarter efore 4 o'clock in the afternoon, so that he is well advanced on his western course when twilight fades and hecomesinto view. Saturn sets now at half past 10 o'clock; at the close of the month he sets about a quarter before 9 o'clock.

NEPTUNE

is evening star, following closely after Saturn and boundfor the same goal-conjunction with the sun. He passes the
meridian only twenty-three minutes after Saturn. If his meridian only twenty-three minutes aftions, for he is only exceeded in size by Jupiter and Saturn, we should have great enjoyment in watching his movements as he threads his way between the two great giants of the system. But his diameer is not nearly half that of Jupiter, and he is more than five times as far away. Neptune sets now not far from 11 'clock in the evening; at the close of the month he sets a ew minutes after 9 o'clock.

JUPITER

s evening star, and, though still the brightest of the heavenly oost, is lessening in interest as his distance from the earth increases. He follows closely in the track of his two brother Neptune. He has lessened perceptibly in size and bright ness, for his disk now measures thirty-five seconds, while at opposition last November it measured forty-seven seconds Jupiter sets at half past 11 o'clock; at the end of the month t 10 o'clock.

MARS

evening star, and diminishing in interest as he travels on he long road that leads to his next opposition in January, 1884. He is, however, a beautiful member of the starry throng as looking down from the zenith in the early evening e beams with ruddy light and finds few rivals among the fixed stars. Mars now sets a few minutes after 3 o'clock in
the morning; at the end of the month a few minutes before 2 o'clock.
Interesting objects for telescopic study will not be wanting during the month. Uranus, through a good telescope, will come into view as a small full moon of a delicate sea-green int, and two of his four moons may be picked up. Jupiter till rewards the observer with a view of his northern belt, his southern red spot, and his equatorial white spot. Venus,
close to the sun, takes on the gibbous phase of the moon
just after the full. Mercury, at his western elongation, presents the aspect of the moon at her first quarter. Mars shows dimly his northern polar cap and the delicate markings of his oceans and seas.
The March moon fulls on the 4th, but her movements are not of special interest. The new moon of the 19th passes, on the 22d, near Saturn and Uranus, and on the 23d near Jupiter, when the evening sky with the three days' old crescent and the radiant planets will be fair to see.
The heavens present a delightful planetary picture during the month of March. Uranus, our far-off brother, reaches opposition and perihelion; Venus, at its close, will be seen in the glowing west just after sunset; Mercury will beam in the morning light; Saturn, Jupiter, and Mars will move in their appointed course as they approach the source of life and light. Thus, the planets as they track their devious path among the shining stars, not only illustrate with them the amazing beauty of the star-lit heavens, but also the variety that lends its never-failing charm to the science of astronomy.

Better Thermometers Wanted.

It would appear, from the following remarks by the London Engineer, that there was plenty of room for the discovery of improved thermometers, capable of correctly registering low temperatures.
Experiments at the Meteorological Observatory at Kew have proved that ordinary thermometers are "very wild" below the freezing point of water, and that the low temperatures announced as having been produced by apparatus for freezing meat on board ocean-going steamers are liable in some cases to serious question. Some of the thermometers used for the indications have been found to be inaccurate to the extent of more than $50^{\circ} \mathrm{Fah}$, and one was 100° out. A thermometer, a relic of one of the earlier Arctic expeditions, was recently tested at Kew. At $40^{\circ} \mathrm{Fab}$. it was 15° out, and at $100^{\circ} \mathrm{Fah}$. it was 30° wrong. The demand for trustworthy thermometers for circumpolar and northern meteorological stations, as well as for meat freezing machines and various scientific purposes, has induced the authorities at Kew to test the instruments at the temperature of melting mercury, the air thermometer being used for lower temperatures should exceptional circumstances require it.
The freezing point of mercury, $-37 \cdot 9^{\circ}$ Fah., was first determined by Dr. Balfour Stewart, and his observations were subsequently confirmed by other observers. Between the freezing points of water and mercury no intermediate fixed point is known, although methylchloride is supposed to furnish one. It is difficult to get this chloride in a solid state.
On Thursday, last week, for the testing of a thermometer to be used with meat freezing apparatus, also a thermometer for a meteorological station in Norway, about a pint of mercury was poured into a wooden cup, which cup was surrounded with a covering of boiler felt, which again bad an outside wooden cover. Solid carbonic acid was made in the usual way by the evaporation of some of the liquid carbonic acid from an iron bottle into which 200 gallons of the gas had been compressed. Lumps of the solid acid were then placed on the surface of the mercury, a little sulphuric ether was poured over them, then the lumps were pressed down into the mercury with a wooden spoon. This produced a hiss ing and a bubbling from the escape of carbonic acid gas. After the operation had been several times repeated, lumps of solid quicksilver began to form; some of them, rich in gas bubbles, floated at the top; others sank to the bottom, for mercury, unlike ice, is heavier than the liquid in which it is formed. The lumps, some of them hard and some soft, were constantly broken up as much as possible with the wooden spoon, the great object being to get a thick layer of soft mercurial paste at the bottom of the vessel in which to plunge the thermometers during the observations.

The whole operation appeared to the onlookers to be simple and easy enough, although in the last generation the freezing of even a small piece of mercury was considered such a wonderful feat. Four standard Kew thermometers were then placed in the mercurial paste, and those to be tested were inserted alongside, their errors in indication being written down on paper. The possibility of all four of the Kew thermometers going wrong at once is not to be supposed, consequently the values of the indications of the thermometers on trial are well tested.

Why Some Oysters are Green.

A great deal has been written in regard to the peculiar green character of European oysters, and in certain varieties of these shell-fish their value abroad seems to depend on the intensity of color. For those who like such green oysters it may be stated that there are Jocalities in the United States where oysters of the most pronounced verdigris tint can be obtained. Prof. Ryder has found that the coloring is not due in American oysters to the green diatoms on which the oysters largely feed, as was supposed by M. Puysegur to be the case in French waters. In experiment on the green color in Chesapeake Bay oysters, it was found, on drying the substance, that it faded out in time. Prof. Ryder is disposed to believe that it is composed of an immense number of glandular cells, containing chlorophyl, and is due to a vegetable parasite. In this method of coloration oysters would not differ from certain mussels which, as Prof. Leidy has
shown, owe their peculiar green tinge to the same substance.

FRAGERS WATER METER.
 [Continued from first page.]

also very simple. The lever, L, carries a pawl, Q, mov ing about a vertical axle. When the lever is placed toward the left the pawl engages with the ratchet, R, and causes it to move forward one tooth in pivoting itself around its own axis. When the lever turns backward the catch of the pawl becomes disengaged, and is carried back to its starting point by the action of the center of the ratchet wheel on the tail of the pawl. The ratchet wheel itself moves the clock work by means of an axle, which, after passing through a stuffing-box, enters the clockwork case. Finally, the meter is provided with an ingenious arrangement which allows the fact to be ascertained at any moment as to whether the apparatus is water-tight. To effect this object, the cams, H_{2} and H_{4}, of the piston, P^{\prime}, are made helicoidal in shape, so that if the piston rod (and consequently the cams) be revolved about half a turn to the left, the cam, H_{2}, in consequence of its peculiar shape, is thrown out of the way and no longer engages the lever, L ', to a sufficient degree to displace the slide valve, T. The piston, \mathbf{P}, will then remain pressed close up against the left end of the cylinder, and the piston, P^{\prime}, against the right end. The meter will thus stop working, and the flow of water will cease entirely if there be no leak. To set the meter in operation again, it is only necessary to move the stoppage eccentric back to its first position, when the helicoidal flange of the cam, H_{2}, acting on the lever, L^{\prime}, and displacing the slide valve, T, will put the apparatus in motion. If, after bringing back the stoppage eccentric to its proper position, it be immediately turned to the $l_{\text {eft, the apparatus begins operating }}$ and stops anew after distributing four cylinderfuls. It is easy then to ascertain: (1) Whether the meter has any leaks; and (2) whether the capacity of the four measuring cylinders is in proper accordance with the clockwork.
The apparatus is easily taken apart and put together again, and as regards construction, is exceed ingly strong. With the exception of the piston packing (which is rub ber), all the parts are of metal There is hardly any need of speak ing of the applications which may be made of the water meter. But there is one, however, which we consider proper to dwell on, since it offers to manufacturers a means of controlling the operations of their generators and engines. It is the measurement of the feed water.
By a special arrangement, the meter may be placed on the supply plpe of the feed pump. There is a safety valve provided for the pre vention of accidents, and a check valve for preventing back flow from the boiler. From the very con struction of the apparatus, it is able to work equally well with either hot or cold water. The exact knowledge of the quantity of wate vaporized by the boiler allows, by comparison with the weight of coal consumed during the same time, of ascertaining with the greatest cer tainty the cost per pound of steam, and of determining the choice of coal. Besides this, if the revolutions of the driving shaft of the engine be counted, the expense of steam per revolution of the flywheel may be estimated; and thus the movements of the engine can be regulated so as to prevent that increase in the consumption of fuel which follows an excess of speed. The use of the water meter and of the revolution counter results then in a considerable reduction in the expense of fuel, while at the same time it allows the behavior of the boilers and engine to be ascertained at any moment.

Boiler Explosion in Brooklyn

Just before noon, February 16, two of the three large boilers of the Brooklyn City Flour Mill exploded with great violence. The mill was situated at the foot of Fulton street, in close proximity to the terminus of many city railroads and to the landing place of the Fuiton Ferry; and though the neighborhood is usually thronged with people not more than a dozen persons were injured by the flying boilers and timbers. The engineer was killed. The exploded boilers were horizontal, 7 feet in diameter and 21 feet long. They were made in 1861, and were under the charge of the Hart ford Steam Boiler Inspection and Insurance Company a the time of the explosion. The boiler house, a one-story brick structure, about 25 x 50 feet, was entirely destroyed. It contained three boilers, one, built ten years ago, was thrown seventy-five feet, but remained unbroken; the other two were ruined. One of them, it is said, was hurled straigh upward as high as the third story of the main mill building The mill was owned by a company, of which General N W. Slocum is president, and the Jewell Brothers ar managers.

ELWERT \& MULLER-PACK'S APPARATUS FOR EXTRACTING AMMONIA FROM GAS LIQUORS
of condensation, aqueous vapor, with a portion of the hydrocarbons, free ammonia, and ammoniacal salts, are deposited, but the incondensed vapors escape and enter the charcoal purifiers.
The fluid deposited in the reservoir, which follows cooling. worm, assists toward the end of the operation, when the vapors are more fully charged' with ammoniacal salts, in washing the vapors and retaining the salts, and is sucked back to the upper boiler again each time that it is charged with gas liquor, this cold gas liquor producing a vacuum in he boiler, which vacuum at the same time causes a quicker disengagement of ammonia in the lower boiler
The application of the liquid in the reservoir has also the advantage of washing away any deposit left in the cooling. oil and succeeding pipes, as well as in the pipe directly connecting said reservoir with the upper boiler.
The charcoal purifiers absorb all the matters that would mpure the alkali, such as the hydrocarbons, and the purified vapor enters the condensing cistern, the pure water therein absorbing the vapor until it has gained the desired percentage of ammonia. The slight residue of incondensed vapor is conducted into the last condenser, where the remainder of the ammoniacal vapor is absorbed
After about four or five hours the lower boiler will have discharged all its ammonia, when the liquid is let out and the boiler again charged from the upper boiler, which is charged with crude liquor. During this time the purifiers may be repacked, and the liquid ammonia drawn off from the two last condensers, which must again be filled with the two last condensers, which must
the necessary quantity of fresh water.

Thus, from one charge, after four bours, about 200 lb . of white volatile alkali, marking 26° Baumé, are gained, perfectly pure, only needing to remain quiet several hours in order to deposit all the lime and magnesia alts caused by the water, if no dis tilled water is used
For 100 lb . alkali only 27 lb . of coke are required, and two men can easily run the whole apparatus. The entire process is of course more simplified and becomes more economical the larger the works, and it can safely be said tbat no apparatus is more efficient and gives purer products. In manufacturing on a large scale an allowance need be made for but one man per apparatus. As each apparatus can perform from five to six operations per day, a set of two apparatus can easily produce over two tons of ammonia daily.

Mescal and the Useful Agave
One thing at least peculiar to the American Indian diet is the mescal, derived from the roots of a species of century plant. On all the dry hills of the Colorado desert section, a species of this plant is met with, the Agave deserti, and when other food resources fail this is never wanting. As an article of diet it is prepared by exposing the thick porion of the plant at the root of the leaves, to a smothered roasting in a it filled with hot stones and covered ver with leaves and rubbish. When ufficiently cooled off the mass of
through a cooling worm or refrigerator, out of which a pipe conducts into a vessel provided with a safety-tube, where the apors condensed by the cooling coil are collected, and are ucked back to the upper boiler each time the latter is charged with crude liquors and lime
From the reservoir succeeding cooling coil a pipe enters series of four charcoal purifiers, thence into a condensing cistern, and from this again to an additional condenser, from which a pipe opens in the air. The two last condensers are each provided with emptying pipes and safety-tubes.
The action of the apparatus is now as follows: The efrigerator and the two last condensers being filled with cold water, and the charcoal purifiers charged, about one ton of gas liquor and the necessary milk of lime are introduced in the upper boiler, and this boiler emptied into the lower where the fire is started, the cock of the connecting pipe being closed again. The vapors now arising in the lower boiler will snon have expelled all the air in the apparatus, after which the upper boiler is again charged as at first, and the fire under the lower made active. The vapors now coming from the lower boiler and entering the upper through the bent tube will be forced through the perforationsin its horizontal part at the bottom of the boiler, and violently ggitate the fluid, thus advantageously substituting an agitator, and the vapors by rising will become purified and enriched with ammonia from the liquid.
The vapors are then conducted into the first condenser, a closed reservoir, which chiefly retains all the scum, and where also some of the ammoniacal salts are condensed, which all flow back to the upper boiler, while the concentrated vapors pass through the refrigerator or cooling-
worm, andthence to the second reservoir, where the products

ooked plants is ready for use, being cut in slices, which have

 dark mahogany color, and charged with a sugary juice, resembling molasses candy, and if equally clean, quite as palatable. This is greedily eaten, both as an article of diet and luxury, the only disagreeable consequences being a tendency to bowel complaints, especially when exclusively used. It is perhaps a matter of congratulation that none of our Indian tribes have addvanced so far in civilization as to learn the art of extracting alcoholic products from this plant, otherwise we might have less to say in praise of their peaceful character.A better use of this plant is that which is derived from its extile fibers, and here Indian skill and patience are exhibited in the various articles of netting and rope constructed from its leaves. All through the table lands of Mexico this textile fiber is extensively used, and brought into market in substantial fabrics, including bagging, matting, and occasionally fine textile work, colored by native dyes. And this naturally suggests the possibility of new branches of industry for California, where the plants can be grown without irrigation on the driest soil, and the present enormous tax on sacking for the shipment of grain be kept in the country.-San Francisco Bulletin

A Large Tumor

At the Hospital of the University of Pennsylvania, Febary 1 ?, Dr. William Goodall removed an ovarian tumor weighing 112 pounds. The patient, 31 years of age, weighed only 75 pounds after the operation. The doctor naively remarked that he had taken the woman from the tumor. There was a fair prospect that the patient would survive the

IMPROVEMENT IN REVOLVING FIRE ARMS.

The engraving shows an improvement in revolvers, of the class in which the cylinder is arranged to swing outward from its place in the frame, so as to expose the chambers in the cylinder for the insertion and removal of the cartridges or shells. The improvement consists in an ejector which automatically tbrows all the shells or cartridges from the cylinder which may be in the chambers when it is turned outward from the frame. A part of the frame is made to serve as the center-pin on which the cylinder revolves, it being arranged to swing on a pivot, the axis of which is parallel with the axis of the cylinder. There is an ejector arranged at the rear end of the cylinder to engage the heads of the several cartridges, and mechanism operated by the outward-swinging movement of the part of the frame which supports the cylinder, to give to the ejector the rear move ment to force the shells or cartridges from their respective chambers. The frame or receiver, A, is of substantially the usual out line, constructed with a recess for he cylinder B, and provided with the barrel C, hammer D, and lock mechanism, by which the cylinder is rotated to successively present he cartridges introduced into the chambers in line with the barrel for discharge.
On the swinging part E^{\prime}, above the pivot E^{2}, parallel with it and concentric with the cylinder, is the center-pin E^{3}, which forms the bearing on which the cylinder turns. This pin is made tubular or hollow. At the junction of the pin and the swinging part E^{\prime}, there is a projection or shield, e, which overlaps the adjacent part of the frame and prevents gas from entering at the joint. The cylinder is fitted upon its center-pin or bearing E^{3} so as to turn freely, and the relation of the parts is such that when the swinging part is closed, the cylinder is in its place of rest in the frame; but when the swinging part is turned away, as in Fig. 2, the cylinder moves out from its place in the
frame sufficiently far to expose the chambers for the insertion or removal of the cartridges or shells.
Within the center-pin E^{3} the ejector-rod F is arranged so as to move longitudinally.- On the rear end of this ejector rod the ejector-plate is arranged. This plate is of star shape, its arms extending outward between the chambers, and so that, when in its place in a recess in the rear end of the cylinder, these arms or part of the ejector-plate wil lie at the rear edge of the chamber, so that the heads of the cartridges inserted therein, or a portion of each, will rest on this plate, so that when the ejector is thrown outward, it will force the cartridges or shells from the chambers of the cylinder.
The ratchet by, which the cylinder is rotated, is attached to or made a part of the ejector-plate. 'To give the ejector the required rearward movement as the cylinder is turned outward, a follower, a, is arranged in the swinging part E^{\prime} parallel with the axis of the cylinder, and in line with the ejector-rod F, and bearing against its forward end, as seen in Fig. 1. This follower a is made eccentric to the centerpin against the ejector-rod, so that the rear movement of this follower will correspondingly force the ejector rearward.
Loose on the pivot E^{2} is a ring, b, seen front view in the small figure, which is free to turn on the spindle, yet will turn with it when the part E^{\prime} swings outward or inward On the front face of the ring b is a bevel segment-gear d, and
forward of this ring, in the swinging part E^{\prime}, is an $\operatorname{arm} \mathrm{H}$, upon a pivot, h, the axis of which is at right angles to the axis of the ring. This arm is shown detached in the small figure.
At the lower end of the arm H , and concentric with its pivot, is a segment, d^{\prime}, which works in the teeth d of the ing b. Their relative arrangement, as seen in Figs. 1 and 2, is so that their toothed portions $d d$ work together like a pair of bevel-pinions.
As seen in Fig. 1, the arm H is in its extreme forward position-that is, in place, with the ejector home. When the swinging part \mathbf{E}^{\prime} is turned outward, the ring b will turn with it, the center of motion of the swinging part being the xis of the ring. If, therefore, the movement of the ring b be not interrupted, it can have no effect whatever upon the $\operatorname{rarm} \mathrm{H}$; but if during the swinging movement the ring b be stopped, then, the swinging movement continuing, the

In order to meet the increasing demand for mild steel ship and boiler plates, and also to carry out the requisite tests-tensile-specified bỳ the Admiralty, Board of Trade, Lloyd's and Liverpool Registry, Bureau Veritas, etc., the Steel Company of Scotland found it necessary to have machine capable of getting through a great number of tensile tests in a comparatively short time with precision and accuracy, and also to save the delay and inconvenience to which shipbuilders and boiler-makers were subjected when the materials had to be tested at their own yards.
Through the inefficiency of the hand-moved machine at the works, the machine we illustrate was designed by Mr. Thomas Williamson, works manager to the Steel Company of Scotland, and was made by Messrs. Westray, Copeland \& Co., of Barrow-in-Furness. It has been in use for about two and a half years, and bas been found to fulfill all the requirements in a satisfactory man ner. The average number of tensile tests, for several months' actual work, was ninety per day of nine hours, or ten per hour, and the machine is capable of breaking one test piece every two minutes with perfectly accurate results, whence it becomes a question of measuring, checking, calculating, and reducing the strains per square inch, etc., in order to keep pace with the work of the machine. The labor has been reduced by one-half, while the work done has been increased about twothirds per day, thus effecting a great saving in time and labor.
The machine is driven by two hydraulic rams, the small one for forcing and the large one straining. The small forcing ram-pump -is worked by a screw driven by worm gear and strap by power from line shafting, which arrangement gives a steady flow of pressure in the large cylinder, and does away with the objectionable intermitten reciprocating action of the ordinary plunger pumps, which may affec the real accuracy of a test when teeth d^{\prime} of the arm H which are swinging upon the same strain has gone beyond the limit of elasticity. The capacity center as the swinging part, will be forced to travel through the then stationary teeth d on the ring, which will impart to the $\operatorname{arm} \mathrm{H}$ a movement on its center corresponding to the movement. of the swinging part on its center, which will turn the arm H rearward, in a plane parallel with the axis of the cylinder. The rear movement of the ejector must not occur until after the cylinder has been turned so far from the frame that the heads of all the cartridges are exposed outside the frame, and that its movement may commence at this time a shoulder, is made on the periphery of the ring b, and a corresponding shoulder on the frame below, so that as soon as the shoulder on the ring strikes the shoulder on the frame the further turning of the ring will be arrested. Then as the swinging part continues its movement to the position indicated in the smaller figure the ring will remain stationary, and the arm H will be turned from the position in Fig. 1, and force the ejector reairward from the cylinder, so as to discharge the shells. This invention was lately patented by Mr. William Mason, of Hartford, Conn.

Fine Drilling.

Professor Edward C. Pickering, of Harvard College, says that, in undertaking to measure the intensity of the light of the satellites of Mars, he had occasion to need an extremely small hole. A hole about the twenty five-hundredth part of small hole. A hole about the twoenty fiv
an inch in diameter was tinally secured.
f the forcing to the straining cylinder is such that the cubic contents of both are nearly equal, so that the displace ment is nearly the same at either side of the piston, the one forcing and the other drawing, the water leaving the bottom side of the large ram while it is being forced down on the top side; therefore, when a piece is being tested and it breaks, the water under the ram acts as a stop and so prevents it from falling through any distance, and thu causing a sudden jar on the ram or steelyard levers, which jar is injurious to the knife edges of the machine.
The levers are compound and of the first and third orders, are graded 100 to 1 , and balanced; the fulcrums have long knife bearing edges, viz., one inch equal to five tons, and are hardened to wear well. The traveling jockey weight, which is 10 cwt . standard imperial weight, runs on rollers guided by a groove, and can be worked automatically or by hand out and in on the main lever, which is just kept floating at the level of a finger pointer fixed to the column. The jockey weight is worked by a quick pitched screw through the center of the main lever, which is in turn worked by a pai of small tonthed wheels, one of which is fixed to the machine column, and the other to the lever and on the dead center of the first lever. The pitch line of the toothed wheels being exactly in a line with the dead center knife edge, the motion at this point is virtually nothing. It is at the same time at right angles to the line of knife edge, conse-

quently cannot disturb the sensitiveness of the steelyard the protective influence of vaccination is seen and proved in when in operation. The machine is fitted with strong steel links, the top one being on knife edges on the lever, and the bottom one receiving the screw for adjusting the length for the test pieces; the screw is secured inside the trunk of a large ram. The ends of the links for receiving the testpieces have round sockets with eircular glands let into them, into which are fitted the tapered grips, so that the rips can be adjusted and turned in either direction, either to stand across or lengthways of the machine. The machine is specially adapted for tensile testing, but can be easily made to do either compression or bending testing if required. The machine is compact and easily got at for repairs, examining and readjusting knife edges; it takes up little space, and the gearing, being a worm and screw driven by belts, is noiseless. The levers, links, and ram are made of Hallside steel.
Another machine of the same description has just been erected at the Steel Company of Scotland, Blochairn Works, Glasgow
Along with the testing machine it was deemed necessary to have a machine capable of preparing the requisite number of test-pieces to keep the testing machine fully employed and for this purpose the test-piece shaping machine was designed by Mr. Thomas Williamson, and made by Messrs. Joshua Buckton \& Co., Leeds. The pieces, about twenty five in number, of various thicknesses, and from one and one-half inches to two inches broad, just as they are cut at the shears, are put into the frame which forms a slide work ing across the bed of the machine; the pieces are roughed down and finished in one operation to a breadth of one inch to three-quarters of an inch; they require no filing up, except taking off the ragged edge, when they are ready for esting.
The average working of the machine is 150 test-pieces per day of nine hours. It is a strong, substantial machine, and has given great satisfaction both at Blochairn and Newton, and can prepare more than double the usual number of test-pieces at half the former cost, so that it forms a valu able adjunct to the lever testing machine. --The Engineer.
of Ame
There is promise that many doubtful points in the natura bistory and physiology of oysters will be cleared up by the work now going on at the Philadelphia Academy of Sciences under the direction of Prof. John A. Ryder. The observa tions of Prof. Brooks (already described in these pages) seemed to show that the reproduction of American oysterssome of them at least, is a radically different process from that of the European oyster, or else that European observers had erred in deciding the oyster to have both sexes in one animal. Professor Ryder has been supplied with Chesapeake oysters by Mr. Ferguson, Commissioner of Fisheries for Maryland, and with a variety of European oysters by Mr. Blackford, of the New York Fish Commission, includ ng those known as Mulford natives, Burnham natives, Mulbles, and Colne oysters, coming from England, and the Scotch, Dutch, French, and Angio-Portuguese oysters.
The Dutch oysters have a thin covering, the lower valve quite convex, the upper flat, and the outline fairly circular, while the Burnham and Mulford natives the French and Scotch shells, approach more nearly to our own forms. As a rule, there are, however, marked differences in the shell when opened, so much as to make them quite evident, hough even $t o$ this there are exceptions.
In the American oyster the great muscle has a distinct purplish color on the shell. In the majority of European oysters there is no color. A French or Dutch oyster may be opened, and, although just where this muscle has been imbedded on the nacre a slight depression is visible, there is no color. Again, the outline of this muscle on the shell differs in European oysters. It is not broad, like a thumb-mark, as it may be roughly described, as found in our own oysters, but it is elongated, longer than it is broad. The exception to this want of color on the shell was found in oysters of Portuguese origin. There does, however, exist some slight differences in the structure of this muscle, and it appears to adhere on both sides in European oysters rather more tenaciously than in American oysters.
The Portuguese oysters transplanted into English waters presented the greatest differences of shell. The lower valve is exceedingly deep, resembling a miniature gravy boat. An oyster about three inches long had at its hinged end a depth of over an inch. This cup-like base necessitated, on the part of the oyster, a complete upward turn of the covering valve, so that in a perfect specimen the curve in the outline was very conspicuous.

In the structural form of the oyster it is said that Prof. Ryder has made some important discoveries, which will undoubtedly attract the attention of microscopists. The reproduction of these oysters is still under investigation. It would seem, h:owever, that in the Anglo-Portuguese oysters transplanted to English from Portuguese waters-the reproobserved by Prof are sam

[^0]manner beyond all cavil. At Highgate, during an expe rience of forty years, no nurse or servant, having been re vaccinated, has ever coniracted the disease, and evidence of the same character I san myself bring forward, for durin he whole time that I have had charge of the fever hospital, more than a thousand cases of smallpox have passed unde my care, yet no servant, nurse, porter, or other person en gaged there has, after revaccination, ever taken it, though exposed daily to infection in its most concentrated form One woman, a laundress, who escaped vaccination, took the disease and died; one nurse, who some ycars before had suffered from smallpox, and was then considered protected, had a very mild attack; and this summer a workman, who did not live on the premises, but came in to work as painter, was not vaccinated, and had rather a severe attack and still more recently a servant, who by an oversight was aliowed to go about her work three days before being vacci nated, had, before the latter had run its course, a slight abortive attack. Again, among all the students who, during the past two years, have attended the hospital for clinica nstruction, not one has suffered, all having been revacci nated before being permitted to enter the smallpox wards And in their case the false argument which opponents of vaccination have brought forward to explain the immunity enjoyed by nurses and others in attendance on the sick, viz., that constant intercourse and exposure to infection renders them proof against it by the system becoming inured to the poison, cannot be applied, as these gentlemen attend the hospital only a few hours once a week. I defy the most enthusiastic or conscientious of anti-vaccinators to produce evidence like this on his side of the question, or to bring forward even half-a-dozen persons, choose them whence he may, who have not been protected against smallpox, and expose them as the students are exposed, without more or ess of the number taking the disease. Facts such as these should convert the most ardent anti-vaccinator from his olly, and convince him that a weapon of defense so powerful as vaccination should not be left to the pleasure of the individual, but that the State has the right and duty to look after its most thorough performance.-London Times.

Improved Secondary Battery.

We learn from the Metalarbeiter that a modification of the Planté battery has been constructed by M. De Pezzer, in which a maximum of intensity is combined with a minimum quantity of lead. The negative electrode is a very thin sheet of lead, not exceeding one millimeter in thickness, while the positive plate is not more than two-thirds of a millimeter thick. The projecting portions of the plate which serve for connections are, however, somewhat thicker. Besides, two like pairs were employed, each consisting of two leaden plates of the same thickness, but one of them had twice as large a surface as the other. These pairs were both charged in the same manner, but they were so arranged that in one case the plate with the larger surface served as positive element, and in the other pair it was made the negative element. Repeated experiments made in this way showed that thepair in which the plate with the larger surface formed the negative electrode collected more electricity than the other pair in four consecutive continuances, and that the discharge of the pair with the large negative plates took at least an hour, while in the pair in which the positive plate had the larger surface it only lasted for half an hour.
Finally, what seems more surprising at first sight, in a bat tery in which both plates were as large as the big plates in the battery just described, the results were not so good as the pair with the large negative and smaller positive plates. Acting upon these results, De Pezzer changed the construc tion of his battery as follows: The surface of the positiv leaden plate was only made half as large as that of the nega tive, and at the same time a number of cuts were made in it. The arrangement of the cells was the same as in Plantés secondary battery, but the weight of battery to collect a cer tain quantity of electricity is less than with the former con struction. Ducretet uses plates with indentations made by the rolls.

RECENT INVENTION.

An improved wheel cultivator has been patented by Mr Francis O. Williams, of North Cohocton, N. Y. The object of this invention is a sulky or wheel gang cultivator or shovel plow for tilling corn or potatoes, or anything planted in pow. It is light, durable, of easy draught, and can be easily used upon side hills.

Antimerulion

Dr. Zerener has given this classical name to a preparatio much used and recommended abroad for preventing mould mildew, and dry rot. When properly employed it hinder the appearance of dry rot, merulius destruens, and serves to destroy it. The substance is made in three forms. The liquid preparation of $30^{\circ} \mathrm{B}$. is made of boracic acid, common salt, and silica, and is applied by means of a brush or pencil to woodwork and masonry. In factories where moist fumes and vapors are evolved, which favor the production of mould and fungus, this acts as a protection for the build ing. The so-called doubly prepared antimerulion consist of infusorial silica, with the aldition of 20 per cent of boracic acid ; it is to be scattered in moist or damp places. The simple dry antimerulion contains, besides the infusoria
pecially for protecting moist places from mould, for insulating material, and to exclude the atmospheric air and terrestrial warmth-that is for ice cellars, ice chests, water pipes, and heating arrangements. In places where mould and dry rot are feared the dry antimerulion is packed in. It is better to expose these places to the air and paint them thoroughly with the liquid substance and then repeat the application annually. The two first-named substances are furnished by the chemical factory of G. Schallehn, in Magde. burg, at 57 cents per 100 pounds; and the last named, or solid compound, at half this price.
The name, of course, is derived from merulius, a kind of dry rot or powder post, against which it claims to be a specific.

Purification of Naphthaline.

by prof. g. lunge

It is well known that the whitest naphthaline turns red by longer or shorter exposure to the air, and this indicates impurities. The naphthol manufacturers, however, demand a naphthaline which is as pure as possible chemically, and which remains white. The author published in the Berichte, of Berlin, a simple method of purification based upon the assumption that reddening of naphthaline was analogous to that of phenoi (carbolic acid). The very purest phenol does not turn red, and it is only in the presence of traces of the higher homologues that the redness appears in a longer or shorter time. Therefore the use of an oxidizing agent seemed to be indicated for use in purifying naphthaline, and it led to the desired end in a simple manner.
The crude naphthaline is mostly obtained from the oil that remains after treatment with soda lye for the purpose of separating the phenol. In such oils the treatment with acid can be begun at once, but naphthaline which has been ob tained directiy from the tar oil by crystallizing it out, should first be treated with alkalies.

The crude naphthaline is melted and a certain quantity of sulphuric acid added to it. On a large scale 5 or 10 per cent of acid, of $66^{\circ} \mathrm{B}$., is sufficient; but if acid of 60° is used of course proportionately more is required. When the liquid naphthaline and acid have been well mixed and stirred, 5 per cent of finely ground pyrolusite (binoxide of manganese), or better still, the regenerated oxide of manganese (from the Weldon process) is gradually added and the mixture heated fifteen or twenty minutes in a water bath, It is then allowed to cool and the cake of naphthaline is washed several times with water, then a little soda is added to the wash water, and then it is again washed in clean water. The naphthaline thus prepared is finally distilled. When purified in this way it has kept perfectly white, according to Lunge, for eight or nine months.
In this country, where the water gas process is so exten sively employed, a comparatively pure naphthaline is ob tained as a waste product, and if treated as directed by Prof. Lunge would, no doubt, be an excellent material fo making naphthol and other derivatives.

A Theater Smoke Escape.

A Chicago paper describes the recent testing of a smoke escape in use in one of the theaters in that city:

A number of caldrons, such as the one used by the witches in the cave scene of ' Macbeth,' were loaded up with red and blue fire, and a quantity of combustible mate rial thrown in, creating a dense smoke, sufficient to spread terror throughout any audience. The curtain was lowered until the entire space behind it was enveloped. Then, at a word given, it was lifted, the doors of the auditorium were thrown open, the valve was pulled onen, and at once the thick mass of smoke began to pour upward through the aperture. The quantity of smoke which found a way into the auditorium was trifling, and in less than two minutes the stage itself was relieved of what had collected. The experi ment was repeated once more, and with still more satisfac tory results. A brief explanation will suffice to acquaint the public with its value. An immense funnel rises from the ceiling above the stage to some twenty feet above the roof and is securely fixed there by a beam running crosswise. At the lower end of this funnel is a valve, which is opened by means of wire pulleys, two extending to the side doors of the stage and one to each of the entracces to the auditorium, the handles being so placed that any one can pull them. In case the stage should be wrapped in flames so that the stage hands could not reach them, the handles at the auditorium doors can be worked. And even should these fail, the wood work in the valve would be the first to give out. The result would be that a tremendous draught would be created, throwing the volume of smoke and flame up through the funnel, and giving the audience time to escape before the fire began to reach the body of the theater."

George Jardine.

George Jardine, the well-known builder of church organs, died recently at his residence in this city, at the age of eighty-one. Mr. Jardine was of English birth. He came o this country in 1837, where his brother, John Jardine, had already established himself as a piano manufacturer. The organs built by Mr. Jardine alone, or associated with his sons, are known in every part of the country. Among the larger and finer examples are those in the Fifth Avenue Cathedral, St. George's Church, and the Fifth Avenue Pres byterian Church, of this city; the Brooklyn Tabernacle; and the Mobile and Pittsburg Cathedrals.

The Speed and Carrying Capacity of Screw Steamships.
This was the title of a lecture given lately by Mr. William Denny, Dumbarton, under the auspices of the Greenock
Philosophical Society. The lecture was delivered before a Philosophical Society. The lecture was delivered before a
large audience, in the Greenock Watt Institute, the oc casion being the anniversary commemoration of the birth of James Watt, Greenock's great townsman. The results of an elaborate analysis of the Clyde and east coast vessels, with respect to weights and dimensions, were exhibited in a set of tables placed before the audience, the data for which had been supplied to Mr. Denny by various shipbuilders These showed that the ratio of structural weights to load displacement was greater in the Clyde vessels than in those of the east coast by 18 per cent, thus affording a proportionate advantage in the matter of carrying power to the eas coast vessels. In enumerating the causes for this, the lec turer criticised what he considered to be errors on the part of shipowners in determining the proportions of steamers, and of the registration societies in fixing the scantlings. On the latter head, he said that, from a long experience of submitting sections to Lloyd's, he found that the principle upon which they went was that, although a builder mignt propose an arrangement by which at the same time the weight of a certain portion of the structure was decreased and its rigidity and strength increased, he was required to put the economical weight into some other portion of the structure or to add it to some portion of the rearranged part, the principle being that no builder must be allowed to build a given ship of less weight than his neighbors, even although by the application of his thought and intelligence he could do this not only without disadvantageous results, but with actual advantage. He was not going to blame Lloyd's society or any other registration society for this, because their duties were so delicate in the way of seeing fair play between one builder and another that they were obliged, even at the risk of efficiency, to adopt principles which should secure them from the suspicion of unfairness. Proceeding to speak of the structural character of ships, Mr. Denny said, it at the present moment they desired to see material employed with the greatest economy, and at the same time completely fulfilling its purposes, they must not go to the mercantile marine, but to torpedo boat builders, to the wonderful light structures of the Admiralty, or to the equally light structures produced by private builders free from the control of the registration societies for light draught steamers.
With regard to proportions, the lecturer said that it would be well if owners clearly understood that a steamer of 55 feet moulded breadth must have, as a minimum for efficiency, a moulded draught of about 28 , or, if she were to get full justice, say 30 feet; and a steamer of 60 feet beam should have a minimum moulded draught of 30 feet, or better, of 33 feet. That there were some dock proprietors who had received wiser advice upon this point than many shipowners was evidenced by the fact that the new docks which it was proposed to construct at Tilbury, on the Thames, were to have clear draughts of water of 30 feet and upward. Steamers were increasing in size, and the least costly increase for weight-carrying, and up to certain point for speed, was in beam, provided.sufficient draught could be obtained Steamers would follow their natural course of development, and it would be for dock proprietors, river trustees, and harbor boards to see that their docks, rivers, and harbors were of such depth as to permit them to favor steamers so
developed. He believed it was found daily more difficult to build the larger types of Atlantic steamers rigid enough for the service even with the great percentage of their displace ment devoted to structural weight. A reaction would set in against their extreme proportions and absolute length. When that happened beam would be increased as a consequence, draught increased, and distinct preference accorded to ports having great draughts of water. Besides, the great draught of water and comparative shortness of a steamer were more favorable to the efficiency of the screw, by keeping it well immersed, than an enormous length with shaliow draught, which told very much against the screw's efficiency. So mportant was this matter that the White Star Line tried to overcome the difficulty by a mechanical arrangement. It could only really be overcome by an increased draught' o water, and formed thus another argument in its favor.
Detailing his idea of the best form of ships for the future, as exemplified in ships for the great Atlantic trade, Mr. Denny said: "Having secured machinery of the highest possible praclical weight for the power to be developed, and at the same time, of the highest possible present economy they had to secure a hull of such strength and rigidity as would sustain both the sea strain to which it must be sub ject and the vibration due to powerful machinery and propellers. They might decide at once that the material to be employed was steel, as being that from which they could obtain the greatest amount of strength and reliability, with the least possible weight. They must, further, decide upon the dimensions of the steamer to be employed, and while, in doing this, supplying a form of little resistance, they must if possible, supply a form which would make the smallest calls upon them for weights of construction. He had already shown them that extreme actual length was unfavorable to the realization of such wishes. He did not think that either the City of Rome, the Servia, or the Alaska was a type of the future vessel, either for speed or cargo carrying. He was convinced that the steamer which was to do the express Atlantic work would be a vessel of what might be called at the present time moderate length-that was a vessel which
would not only be shorter that the City of Rome, but shorter than the Servia, and shorter than the Alaska, which, of the three steamers, so far as be could learn, came nearest the type he had in view. He believed the steamer to do this work would be under 500 feet in length between perpendiculars. What her other dimensions should be would have to be fixed by experi
thought.

American Shipbuilding.

A leading daily paper, having spoken of shipbuilding as a lost art in this country, a correspondent, who speaks with information, denies the charge, and says:
There are at the present time not less than 23,000 Amerian built steamers and saifing vessels engaged in the coastwise, lake, and river trade of the United States. These American built vessels cost from $\$ 1,250,000$ each downward, according to the service required, the highest priced being engaged in the Long Island Sound and Hudson River service. Some of the coastwise steamers are staunch sea going vessels of 2,000 tons and upward, equal to any of their size in the world. There are about 167 American built ocean steamers, from 2,000 to 5,000 tons burden, in service be tween the ports of the United States and England, China, Japan, Australia, and Central and South America. To keep up this fleet of 23,000 American built vessels, and to provide for the increase made necessary by the rapid growth of the country, requires about 5,003 new American built vessels every year. American built sea-going steamers have displaced English steamers between New York and Cuba and ${ }^{-}$Mexico-notably the Alexandre and other lines.
American shipbuirders are competing successfully with English builders even in foreign countries. South America comes to the United States for nearly all its steamers. One firm on the Delaware has built 29 iron and steel steamers or the river Amazon alone, and have the thirtieth at their vard nearly finished. The same firm has built 7 steamers or service on the Orinoco, and some 60 steamers altogether for South America and Mexico, and has 11 vessels now on the stocks and on hand-3 for the United States Government, 1 steel steamer and 1 iron steamer and $\boldsymbol{6}$ steel barges for South America. It is also a well-known fact that the governments of England, France, and Russia have recently purchased torpedo boats, steam launches, and vedette boats the United States
One more example and I am done. In 1861 our navy consisted of 34 old wooden war steamers, 48 old wooden sailing war vessels, or 82 old wooden vessels altogether. In a little over three years' time it was increased to 836 vessels, of which 63 were ironclads and 102 unarmored cruisers. The wners of our private iron steamship yards contributed a leet of 165 monitors, ironclads, and unarmored iron cruisers. This was the first ironclad fleet in the world, and was copied by all maritime nations. If need be our builders can again
put a fleet of vessels afloat that other nations will be glad to copy.

The Slate Pencil in Marble Cutting.

An English sculptor says that he has found the slate pencil of great use as an aid and guide in the progress of work ing a statue in marble
Its usefulness arises from the fact that the tint of lines and shading made with it on the marble bears extremely close resemblance to that of the shadows produced by actual cuttings, thus, by this means, enabling the sculptor to see he effect of what he proposes to do. In this fashion, tentatively, with the slate pencil he can sketch on his marble in progress the further forms and refinements he would introduce, which afterwards he can carry out, as far as he approves, by following them in actual execution, thereby escaping the peril of a too free use of his chisel in the first instance.
In an oil painting, if an error be made, the color may be altered or removed, and the requisite variation introduced; but marble once cut away cannot be restored, and the deficiency admits of no satisfactory remedy. Therefore, any method which will enable the sculptor to escape this danger by affording him the opportunity of previously testing the effect of what he proposes, without actually cutting it in, may well be thought worthy of consideration.
The forcible markings of lead pencil or black chark, which are so much more powerful than the shadows of marble, and different in tone, while they are appropriately used by the master sculptor to indicate to his workmen distinctly on the marble what he wants done, are, on that very account, unsuitable to imitate and test the effect of proposed cuttings. Also the markings made with these materials are more permanent than those of slate pencil, and thus also perhaps more fitting for the direction of assistants. But, on the other hand, when the service sought is tentative, then even the easy brushing away of the slate pencil marks is convenient, as they thus may be the more readily altered until the effect desired is obtained. This quality, combined with the special and far more important advantage of the tint of slate pencil on marble so exactly counterfeiting its shadows, may well recommend it to the sculptor in making preliminary tests of the further details he seeks to introduce in his work when it has come into his own hands from those of his assistants. It pioneers and denotes the way for the chisel to advance, and acts like a cautious guide to avert' a possible catastrophe; as a heedless, ill-considered, or impatient stroke with the hammer and chisel may at any time

Mr. William B. Turman, of Waldron, Ark., has patented an improved slide valve, which consists in the combination with the steam chest provided with supply and exhaust ports, guide straps, and adjustable pack strips, of a valve provided with an entrance port, interior steam chamber, exhaust ports, an opening between the exhaust ports, and projections on its top and one side.
An improved means for connecting and disconnecting cars from their traction rope has been patented by Mr. William Norris, of Cambridge, Ohio. It consists in peculiar means for connecting the cars to the endless traveling cable, and in the means for automatically disconnecting the cars from the cable at the end of the route without the necessity of stopping the engine which drives said cable.
Mr. Reuben Jones, of Mountville, Ga., has patented an improvement in car couplings, which consists of a drawhead pivoted in a draw-bar, and adapted to be raised or lowered by a lever operated from the side of the car to couple cars of different heights, the draw-head of one car, carrying a coupling link, striking the draw-head of the car to be coupied and forcing back a slide supporting a coupling pin until the hole in the slide registers with the hole in the draw-head, and the coupling pin falls by gravity through the link, coupling the cars.

The Improvement of the Mississippi River.
In a voluminous report the Mississippi Commission describe a plan by which they believe the low river channelway, from Cairo to the mouth of the river, can be narrowed to an approximately uniform width of 3000 feet, by revetments and dikes, and declares that this plan will establish and maintain a continuous low river channel not less than ten feet deep.
Proceeding upon the assumption that the work from Cairo to Vicksburg will cost one fourth of the whole, the commission estimates that the cost of the entire improvement will be $\$ 33,000,000$. One member does not regard this estimate as sufficient. The commission then estimates that $\$ 4,120,000$ will be required for continuing the work in the next fiscal year. This is for that part of the river below Cairo.
The members of the commission do not agree as to the utility of levees as a means of deepening the channel or improving navigation. Levees have never been erected on the banks of the river except for the special purpose of protecting the lands from overflow. The commission has caused eighty-three borings to be made in the course of the bed of the river, in order to ascertain whether the bed consists of layers of tenacious blue clay, belonging to the tertiary formation, and is, therefore, of a practically permanent character. Most of the borings were more than 100 feet in depth, and some exceeded 200 feet, but in only twenty-two cases were the alluvial strata pierced and the underlying tertiary beds reached. The mean depth of the alluvial beds is 131 feet below high water, and the underlying layers are of clay and sand, with beds of lignite. They would not offer great resistance to erosion, if it should become necessary to reach them, for the clays contain much sand. The commission does not expect that in any part of the stream it will be necessary to disturb these lower layers.

How to Apply the Soda Remedy in Burns and Scalds.

It is now many years ago (see the London Medical Gazette of March, 1844) that the author of this paper, while engaged in some investigations as to the qualities and effects of the alkalies in inflammations of the skin, etc., was fortunate enough to discover that a saline lotion, or saturated solution of the bicarbonated soda in either plain water or camphorated water, if applied speedily, or as soon as possible, to a burned or scalded part, was most effectual in immediately relieving the acute burning pain; and when the burn was only superficial, or not severe, removing all pain in the course of a very short time; having also the very great advantage of cleanliness, and, if applied at once, of preventing the usual consequences-a painful blistering of the skin, separation of the epidermis, and perhaps more or less of suppuration.
For this purpose, all that is necessary is to cut a piece of lint, or old soft rag, or even thick blotting paper, of a size
sufficient to cover the burned or scalded parts, and to keep it constantly well wetted with the sodaic lotion so as to prevent its drying. By this means, it usually happens that all pain ceases in from a quarter to half an hour, or even in much less time.

When the main part of a limb, such as the hand and forearm or the foot and leg, has been burned, it is best, when
practicable, to plunge the part at once into a jug, or pail, or practicable, to plunge the part at once into a jug, or pail, or
other convenient vessel filled with the soda lotion, and keep it there until the pain subsides; or the limb may be swathed or encircled with a surgeon's cotton bandage previously soaked in the saturated solution, and kept constantly wetted with it, the relief being usually immediate, provided the solution be saturated and cold.

What is now usually sold as bicarbonate of soda is what I have commonly used and recommended; although this is well known to vary much in quality according to where it
is manufactured-but it will be found to answer the pur pose, althored-but it will be found to answer the pur on, the common carbonate being too caustic to depended that a large proportion of medical practitioners are still unaware of the remarkable qualities of this easily applied remedy, which recommends itself for obvious reasons. $-F$. Peppercorne, in Popular Science Monthly.

IMPROVEMENT IN WRINGERS.

The engraving represents a novel arrangement of clothes wringer and bench, recently patented by Mr. James K. Dugdale, of Richmond, Ind. - In this device the weight of the tub and its contents are utilized for creating pressure between the two rollers of the wringer. The rollers are journaled in vertical posts hinged to the bench frame, and the cross bar which bears upon the movable journal boxes of the upper roll is connected by rods with levers hinged to opposite sides of the bench. Upon the top of these levers there is a platform adapted to receive a tub or other receptacle for clothes and water.

DUGDALE'S IMPROVED WRINGER.

The hinges by which the levers are connected with the frame are made adjustable, so that any desired degree of pressure may be brought to bear upon the clotbes between the rolls. The forward end of the platform is guided by a pin working in a slotted plate projecting from the end of the bench. At the opposite end of the bench there is a folding rack for supporting a clothes-basket for receiving the goods as they are passed through the rolls. This rack is capable of being extended or contracted to suit circum stances. The rolls are provided with an inclined apron or water trough which returns all of the water to the tuband prevents slopping. The machine is well calculated for practical use, and is capable of being folded compactly, as shown in Fig. 8; for storage or shipment.

IMPROVED FIRE-EXTINGUISHING APPARATUS

We give an engraving of a fire-extinguisher adapted . an engraving of a fire-extinguisher ado truck if accidentally left open. The invention consists of receive one or more streams
engines, and to discharge the water in a single solid stream, which is found to be much more effective and capable of reaching through greater distances than the several streams used separately.
The nozzle, A, consists of three portions-the butt, a, barrel, b, and tip, c. The nozzle is screwed to the barrel, so that it can be removed or exchanged for a larger or smaller one. The butt is fitted at its end with a number of screw nipples or tubes, e, for connection of the hose pipes. Within the butt, valves, e^{\prime}, are fitted to close over the apertures by internal pressure, so that water cannot escape by the nipples not in use. The butt is also formed with a socket that receives the end of a lever or handle, g, by which the nozzle is manipulated.
The nozzle is mounted on a truck, and a forward truck is provided for supporting the forward end of the nozzle. This truck is fitted with a short reach having a socket in its end for receiving a long
reach attached to the main
truck. In going to and from the place of use the forward truck will be used, and for that purpose a draught pole and a driver's seat are fitted on the truck. When the fire is reached the forward truck is to be removed, the manipu lating lever is put in place, and two or more lines of hose are connected to the nipples, and the device is aimed by

LYNCH'S FIRE-EXTINGUISHING APPARATUS.
manipulation of the handle, and a solid strea
he smaller streams is discharged at one point.
To protect the operators the truck is provided with shield or screen, D, consisting of a frame covered with canvas and strengthened by rope or wire braces. The side bars of the frame are hinged or jointed, so that the shield can be folded compactly when not in use. A hose pipe with a spray nozzle is connected with the nozzle to keep the shield wet. These arrangements allow the firemen to approach closely to the fire with the nozzle.
This invention was recently patented by Mr. Daniel B Lynch, of Grass Valley, Cal.

MISCELLANEOUS INVENTIONS

An improvement in electric lamps, patented by Mr. Lud wig K. Böhm, of New York city, relates to electric lamps of the arc type, in which the carbons are contained in vacuum chambers of glass. The object of this invention is to provide for convenient renewal of the carbon and insure uniform feed of the positive carbon to compensate for waste, to which ends the invention consists in a carbon holder of novel construction, combined with a separable vacuum chamber. The same inventor has also patented an improvement in electric lamps of the class in which an incan descing carbon is employed in a vacuum chamber, the object being to allow the use of straight carbons and to facilitate the introduction of the carbons and sealing of the wires.
An improved electric lamp has been patented by Mr. Ed win M. Fox, of New York city. This improvement relates to electric lamps of that kind which give light by the incan descence of a piece of carbon contained in the vacuum chamber.
Mr. Lambert F. Fouts, of Greenfield, Iowa, has patented an improved switch board foruse in connection with annunciator or burglar alarms. The several doors and windows of a dwelling, hotel, or other structure, or any other desired points, are connected in a closed circuit with a battery, an alarm, and the switch board, the latter having a pivoted but ton and fixed post for each door or point in the circuit. When a "break" is made-as, for instance, when a door is opened-it may be located by moving one or more of said buttons until the restoration of the circuit through branch wires connected with the aforesaid posts and the consequent arrest of the alarm give the required indications.
Messrs. Josiah Austin and Rossco Chamberlain, of East Liberty, Ohio, have patented a gate which can be opened and closed by the vehicle which passes through it without compelling the driver to alight. It is au improvement upon that form of automatic gate in which a toothed bsr acts upon a set of segmental teeth connected with the gate post to open or close the gate by the longitudinal movement of the sliding toothed bar, which is actuated by rods on opposite sides of the gate connected with double-cranked shafts that are struck and deflected by the vehicle wheels.
An improved axle-box cover has been patented by Mr. Daniel A. Bolt, of Stillwater, Minn. The object of this invention is to provide an efficient, easily-operated, and cheaply constructed lid or cover for the axle boxes of railroad and similar trucks, and one having such construction and arrangement that it will close from the jar or motion of the rrangement that it will close from the jar or motion of the truck if accidentally left open. The invention consists of
side pieces or facings, which are cast with or secured upon
lar projections formed in the grooves or ways to hold the lid tightly in place when closed and to prevent all rattling of the lid when the cars are in motion.

REVOLVING TELEGRAPH TABLI

The engraving shows an improved revolving telegraph able patented by Mr. John L. Garber, of Greenville, Ohio. The table is divided by glass partitions into a series of subdivisions for the several sets of instruments. Each compartment of the table requires four strips or rings of metal around the central post, a separate insulated wire leading

garber's revolving telegraph table.

from each ring to their respective instruments on the table, the wires being placed in a shallow groove directly back of the rings and metal collar. The central post revolves in the central hollow leg of the table, and the hollow leg is provided with a series of contact springs, consisting of a segmental plate attached to a countersunk stem fitting into a socket and pressed against the plates or rings of the central post by a spiral spring, these contact springs or their sockets are connected with the local battery or main line: To the under side of the table is fastened a perforated ring, into the aperture of which a vertical locking bar fits, which is pressed upward by a suitable spring, and can be withdrawn by depressing a foot lever on the under side of the ase frame of the table
For conveniently illuminating the different sections of the able a lamp or gas burner is mounted at the intersection of he glass partition of the table When the operator wishes to use any certain set of instruments he depresses the foot lever, which permits the table to be turned until the desired set of instruments is in front of the operator, who does not leave his seat. The foot lever being released the table is locked in position. This table may be arranged fortwo, three, or more sets of instruments, the number of rings and contact springs varying accordingly
The advantages of this device will be apparent to telegraphic engineers and operators. The removal or insertion of switch plugs or the turning of switches is entirely avoided, the necessary changes being made automatically as the table is turned.

A Six-legged Cow.

A cow with two extra and useless legs was shown in Washington Market the other day. She came from Colorado, where she was found in a herd of cattle on the plains. The extra lege grew from the shoulders and were shaped like hind legs. The leg on the right side, terminating in an elongated hoof, measured 26 inches, and was at least 20 the face of the box, formed with the grooves or ways in \mid inches from the ground. The leg on the left side measured which the cover or lid moves, and with projections at their upper ends for limiting the upward movement of the cover or lid, in combination with the lid formed with a bar or rod across its lower end, the sides of the lid being formed with cams or wedge-shaped projections to correspond with simi-

16 inches, and was about 30 inches from the ground and evidently undeveloped. Looking from the tail of the animal toward the head the spine assumed a zigzag line, and the buttocks were widely separated, while the hips were unusubuttocks were

NOVEL PASSENGER HEAD REST.

We give an engraving of an improved passenger head res lately patented by Mr. Ernest Scharpe, of New Orleans, La The cylindrical tube or pillow, B, has closed ends, B B , each having a central projection, one of which is made hollow and provided with an air-tight cap, d. The lower section, A, is made wedge-shaped, with top portion, D , concaved through out its whole length to fit snugly against the upper section The length of the two sections are about equal, and the lower, like the upper one, is provided with end projections or pipes, f, for the introduction of air, which is prevented from escaping by air-tight caps, g. The two sections are connected together by means of links, as shown in Fig. 1; the links being so constructed as to permit the free rota tion of the cylindrical pillow on its end projections or axes. The two sections connected in this way are ar ranged in a vertical or inclined position against the back of a car seat in sucha way that the cylindrical tube or pil

SCHARPE'S PASSENGER HEAD REST

low, B, receives the head in its resting position, while the wedge-shaped section will conform to the back. The con caved portion of the section, A, will prevent the cylindrica pıllow, B, from descending, and at the same time retain its position.
This rest, because of its elasticity, adjusts itself to the curves of the head, neck, and trunk, affording a means of rest in a partially upright position, and the peculiar connection between the two sections admits of revolving the cylindrical pillow to present a cool surface to the head of the user when desired.
When not in use the sections are disconnected and the air is expelled from each, thus forming a small package which can be carried in the pocket or made to occupy but a small space in a valise or other receptacle.

THE FORCE OF A CROCODILE'S JAW.
Some unique experiments have lately been made in France, on the strength of the masseter muscles of the crocodile (a muscle passing from the cheek bone to the lower jaw). M. Paul Bert received ten gigantic crocodiles (Crocodilus galeatus) from Saigon which were transported alive to France in enormous cages weighing over 3,000 kilo grammes. Some of these cro codiles measured ten feet, and weighed about 154 lb .
The reader can easily understand how difficult it must be to manage such ferocious animals in a laboratory; and it was only by the assistance of the managers of the $Z_{\text {oolo }}$ gical Gardens that this dan gerous task was accomplished.
In order to measure the strength of the masseter muscle of the crocodile's jaw the animal was firmly fastened to a table attached to the floor the lower jaw was fixed immovably by cords to the table; the upper jaw was then at tached to a cord, fastened by a screw ring to a beam in the roof. There was a dynamometer placed on this cord, so that when the animal was irritated or given an electric shock, the upper jaw pulled on he cord, and registered

EXPERIMENT TO DETERMINE THE POWER OF A CROCODILE'S JAW.
of the jaw muscles, which equals $1,540 \mathrm{lb}$. As this experi ment was performed on a crocodile already weakened by cold and fatigue, its force when in its natural conditions of life must be enormous.
This power of 308 lb . represents a power applied over the whole surface of the crocodile's mouth. In reality it is first used by the enormous teeth that overlap the others in the front of the jaw, and by a simple calculation the pressure of these teeth is estimated to be equal to the pressure of 400 atmospheres. The power of the crocodile's jaw was compared with that of an ordinary dog weighing about 44 lb ., whose jaw was measured in the same way. A force of 72 lb. was obtained, which, when multiplied like the crocodile's, was found to equal the pressure of 100 atmospheres. In comparing the weight to the jaw force of these two animals it is found that a crocodile is one-third stronger, weight for weight, than a dog. $-L a$ Nature.

Pole Roads

Pole roads for logging purposes are, says the Northoestern Lumberman the simplest among the many forms of road which lumbermen find convenient and necessary in the prosecution of log ging operations, when snow and ice roads are not available. They can be con structed in any locality where the ground is reasonably level, and are particularly adapted to such locations as present a sandy or fairly firm soil. They consist of long, small peeled poles, the longer the better, from four to five inches in diame ter at the top, to eight or ten inches at the butt end. The more evenly they carry their size from butt to top, the better the road. The ends of the butts, and as well of the tops, are long scarfed, and pinned together with suitable hard wood or strong pins, of one and a half or two inches in diameter, according to the size of the timber through which they are to be driven. Tops should be scarfed.to tops, and butts to butts, in order to provide a perfect bed ding of all parts in the ground. If the scarfing is done so as to cause the poles to lie naturally on the ground when in place, the pins should be long enough penetrate the earth to some distance
fastening or anchoring usually provided
astening or ancho
The wheels of the car are concave or V-shaped, and as they pass over the rails naturally force them to maintain their proper distances from each other, while preventing them from spreading apart. It will take but a few trips of a loaded car over these poles to bed them in the earth, when spreading is practically out of the question. The wheels must, in their concave surface, be adapted to the general size of the poles to be used, and if larger poles are employed, or large butts are used, the ax must be used in hewing off enough of the surplus wood to give the wheels a sure bearing. Any kind of timber which carries its size well may be employed, and if a pole gives out it is easily replaced. But comparatively little grading is requisite, although it is obvious that the more level the top of the track is kept, the less friction is encountered;
ciently firm to prevent the poles from becoming too deeply embedded, cross-ties of poles may be used, but as a rule they are more harm than advantage, as they tend to prevent the self-adjustment of the track for which the concave wheels would naturally provide.

IMPROVED CARPET STRETCHER.

The engraving represents a simple and effective carpet stretcher recently patented by Mr. Michael Winter, Sr., of Union City, Ind. It consists of two bars of wood pierced with holes at short intervals throughout one-half their length, and pivoted upon a bolt having a wing nut by which the two bars may be clamped together.
One of the bars is provided with a toothed plate at its free end to be inserted into the fabric of the carpet, the other bar has a cushion upon its free end, to be placed against the base board on the side of the room opposite that toward which the carpet is stretched. The boles are near enough to each other to admit of adapting the stretcher to a room of any size by changing the bolt from one set of holes to another.

WINTER'S CARPET STRETCHER

The operation of the stretcher is very simple; the cushioned end of the device is placed against the base-board, and while the two bars are at an angle with each other the toothed plate is inserted in the carpet near the edge to be carried toward the wall; the angle formed by the bars is now flattened until the carpet is sufficiently stretched. If the bars are depressed so that they are parallel to each other they will remain in position without locking; but if the bars remain at an angle it will be necessary to clamy them to gether by means of the boit.
The advantage of this stretcher over those in common use will be apparent to any one having had experience in putting down carpets. It stretches the carpet throughout its entire width, and requires very little exertion to put any desired amount of strain on the carpet.

MECHANICAL INVENTIONS.

A machine for sawing lumber or boards into certain standard lengths known in the trade as, for example, "twelvefoot" lengths, "fourteen-foot" lengths, or lengths denomi nated by the number of feet has been patented by Mr Willard B. Swartwout, of Three Rivers, Mich. The invention consists in a novel combination of certain devices, whereby provision is made for automatically feeding the lumber to the saws and adjusting the saws so as o cause them to cut the lum ber in the desired lengths.
Mr. Henry H. Norrington of West Bay City, Mich., has patented an improvement in the class of punches or perforating stamps designed for use in banking and other similar establish ments for the purpose of puncturing or cutting out portions of a cbeck or other written instrument, and thereby preventing fraud by alteration of such instrument to cause it to express a higher value than was originally intended.
Mr. Martin W. Speulda, of Springfield, Ill., has patented an improvement in fare registers of that class which are to dynamometer.
With a crocodile weighing 120 lb . the force obtained was about 308 lb . avoirdupois. This does not equal the actual strength, for as the dynamometer is necessarily placed at the end of the snout, it is really at the end of a long lever, and must be measured by finding the distance between the jaw muscle and the end of the jaw, to show the real force
for this reason it is well to bed the butts enough to bring be carried by the conductor, and operated as each fare is them level with the bedded tops. No cross-tying is em- received to register the number of fares taken. This regisployed, and so solid are these roads that, in many sec- ter has a pull bar which gives a step-by-step movement to a tions, light locomotives are run upon them. With these train of wheels bearing numbered dials, and simultaneously general points stated, any man who comprehends the rings a bell at each movement.
conditions under wbich concave wheels may be kept from Mr. Samuel C. Robinson, of Pemberton, O., has patented running off through nounting the poles should have no a ditching machine which is an improvement on a ditching difficulty in building a pole road. If the soil is not suffi- machine for which Letters Patent were granted to the same
inventor June 28, 1881, No. 243,624; and it consists, first, in joints properly coupled, and carried along the cellars entirely inclosing both sides of the ditching wheel with suit- . sight, or in trenches easily accessible, should be used." able plates, to prevent the ingress of dirt into the wheel, and dishing said plates from the rim of the ditching wheel to its center, whereby the thickness of the ditching wheel is greatest at its rim, and the side plates will not interfere with the sides of the ditch in excavating it.
A novel device for dressing saw teeth has been patented by Mr. Edmund Holderman, of Liberty Mills, Ind. The object of this invention is to give uniform set to saw teeth after having been set and filed. The invention consisis in a bar of metal having set screws and an adjustable guard for gauging the degree of set in saw teeth, and suitable clamping devices for holding a reversible file at any desired angle of inclination.
An improved cloth-cutting machine has been patented by Mr. Nathan B. Rafelson, of New York city. This invention consists in a press cutter frame provided with rollers which move upon a track along the sides of a table of any desired length and a combination of cutting blades, by which an entire pattern may be cut by a single operation. The invention further consists in an arrangement of spiral springs for preventing the cloth from being disarranged by the withdrawal of the knives
Mr. James H. Peters, of Nechesville, Texas, has patented an improvement in cloth-measuring reels, designed principally for measuring bagging, carpets, etc. The invention consists in the peculiar combination and arrangement of the cutting board with two standards, whereby the cutting board is made to act as a sufficient brace for the frame as well as to perform the offices of a cutting board.
Mr. John A. Quick, of Palestine, Texas, has patented a spring tensioned sash balance by which the top sash may be held in close contact with the top of the window frame or adjusted at a lowered position without hoisting the bottom sash.

HOW DWELLING HOUSES ARE POISONED.

A timely and important meeting of the New York Academy of Medicine was held the other evening to consider certain domestic causes of disease and death. The paper of the evening was by Mr. Charles F. Wingate, on "Practical Points in Plumbing." and the unsanitary condiiion of most city houses was discussed by Dr. Fordyce Barker, Dr Willard Parker, Professor Doremus, and others. Introducing the essayist, Dr. Barker spoke at considerable length upon the very general prevalence of disease traceable to bad plumbing, and of the frequent loss of life in consequence of defective pipes and the absence of traps in sewer connections.
Mr. Wingate described some of the more common and disastrous defects in plumbing and the means for detecting and correcting them.

HOW AND WHERE TO LOOK FOR DEFECTIVE PLUMBING.
"The first point," he said, "is how to examine a
cuse. Every part of the plumbing must be exposed to view or tested, and things are usually found different from what they have been represented. The peppermint test is one of the first. An ounce of oil of peppermint in a pail of water is poured into the openings of the plumbing fixtures at the upper part of the house. If the smell of peppermint escapes by a leak this shows that sewer gas would also escape. A second point is the quality of the
details of the plumbing work details of the plumbing work. A single portion of the work, one joint of a pipe, will tell a practiced plumber the capacity of the workman. If a house is deficient in its minor details, it will be found generally bad. A direct leak from a pipe will be shown by holding a candle near it. The practiced nose can tell a leak in a short time, and by the density of the smell from a roof pipe it can be learned whether there is a trap in the pipe to the sewer. The sanitary engineer goes first to the cellar and looks at the sources of damp. These are manifold both in the city and country rain and snow blow in; there is leakage from the water pipes and areas, and there is the refrigerator waste. I visited a house in Boston where all the rain water and refrigerator waste were soaking into the soil, and the house. in addition, was on low made-ground on the Back Bay. I saw here a novel phenomenon; the ground was so damp that the whole of the yard was covered with a fine moss. Dangerous as this dampness was, it was hard to convince the occupant, because there had been no sickness in the house, and the owner considered me an impostor.

Another source of danger is from broken or leaky underground drains. Most houses have underground drains which are made of tiles laid by ignorant workmen, and I have seldom or never found a drain which was not in a defective condition. Even in Memphis the new drains were not absolutely tight, on account of the extra pitch in some cases, and of breaks. Then the soil becomes saturated with the worst kind of sewage. In Boston I have found many drain pipes without the proper pitch or flusb. Some pitched toward the houses instead of the sewers; others were choked with grease, or there were no sewer connections at all. The plumber sometimes ran the drain over a rock, up and down, or ended it on one side, continuing on the other, or connected
two sections of six-inch pipe by a two sections of six-inch pipe by a four-inch pipe. A break or stoppage means such a deadly deposit of sewage as ac-
cumulated under a house I examined near Murray Hill. It wis taken by a family last spring, who, in a few months, nearly all fell sick. The gentleman said that on opening the register in his bedroom he was almost choked by a pecu-
sources of sewage poison.
After mentioning the risks arising from undrained made land and lands lying near the water level, Mr. Wingate traced the history of plumbing evils in New York city from the introduction of Croton water and the nécessary development of the sewer system. In 1849 there were only 72 miles f sewers in New York; now there are 341 miles, Many the first sewers were only sewers in name, having been laid to carry off kitchen waste alone. They were merely rough stone drains uncemented and open, so that when used to receive sewage they rapidly polluted the soil, and became simple store-houses of sewage. Down to a very late date many of the sewers of New York were constructed of inferior material and imperfectly laid. Badly burned bricks, bogus cement, and sand that was half loam were used in making them, while, especially under Ring rule, the conractors who laid them executed their work in the cheapest and most culpable manner. Few of the best sewers are really tight, while the majority leak at every joint, and thus

> le system is an enormous source of soil po How foul air passes through walls.

Mr. Wingate's paper was followed by a number of expe rimental illustrations of the permeability of brick aud stone by these obtrusi ve and poisonous gases, and of the ease with which some gases pass through water. The experiments were made by Dr. Doremus, who said, "What must we do, if we have these gases in our sewers? If these are cut off from our houses by water traps, it does no good; the gases will pass througl! the water. We must have chemicals in the trap that will decompose the gases. Chlorine is the great agent, the 'ring breaker,' that will decompose hydrogen gas and every form of poison. Suppose there is a case of scarlet fever in a house, and the walls become impregnated with the poison. Chlorine or some other gas should be generated that will decompose the poison on the wall. In 186.5 the ship Atlanta arrived at this port with a number of cholera patients. Sixty of her passengers had already died. At the request of the Health Physician of the city, and by the authority of Mayor Gunther and Dr. Swinburne, the Health Officer, the Atlanta and all other vessels entering the Narrows were treated with chlorine. bromine, and other active agents. This was so effective that not a single case of cholera occurred in New York or its vicinity

Dr. Agnew has informed me that about thirty years ago the north wing of the old New York Hospital hecame unfit for use in consequence of its walls having become saturated with disease through the reception of a large number of ship-fever patients. Ventilation was tried, but in vain. The walls were scraped, but many of the workmen sickened, and one at least died. At the Lincoln County Hospital, in England, the walls became magazines of disease in the same way. They were gutted and replastered, but it did no good. They then were treated according to the Hebraic system, and torn down to the very foundation. A few years ago certain wards in Bellevue Hospital were found impure, ausing pyæmia. At the request of the Commissioners of Charity and Correction I attempted to purify them by the use of chlorine gas. I generated nearly three tons of thi in these wards during many weeks. Every few months now the chlorine treatment, in a less vigorous form, is employed.
"Dr. James R. Wood stated, three years after the commence ment of this treatment, that no case of pyæmia had origi nated in the wards since it had been adopted. I think we are warranted in saying that, owing to the porous character of all walls and the decomposing power of certain gases, we can purify not only the walls but the very stones of any edifice, if only the treatment is heroic."
Dr. Willard Parker recited the experience of the physicians at Bellevue Hospital when the ship fever prevailed in 1846. The death rate was fearful, yet the hospital became so crowded that many patients had to be treated in tents under the trees in the yard. Nearly all the unhoused patients ecovered. Similarly, when a ship load of infected penple were driven ashore at Perth Amboy, though nearly every
case on shipboard resulted in death, not one of the sick exposed to the weather, under anvas shelters, failed to recover. It was a foul-air disease, and fresh air cured it. Dr. Parker added:
' We are living in the wrong kind of buildings, and everything is wrong. Previous to the introduction of roton water in this city, I don't remember a single case of which resembled diphtheria, now and then. It is a disease which depends on malaria, or bad air. It attacks families and goes through all the members. I had a friend, a physician, who depended on his cellar for all the air for his furnace. His six children were all stricken with this disease. and all of them died. And there are cases of that description every where. I say that if we have diphtheria, there is something wrong about our sewers. If I were to build house, I would not bave it connected in any way with a
sewer. I should construct a sort of annex, where have all the sewers, closets, and all the pipes of the houses. I suppose most of you would object to having a vault filled with dead bodies a few yards from your house, and conected with it by a pipe. Yet this is practically what we do with our sewers. Water is no protection from themfrom the germs of poison which generate and live in the

Pertinent remarks were also made by Drs. Vanderpoel and Janeway. Speaking of the portability of diphtheritic poison, the latter mentioned a remarkable case in his own practice. A child had died from diphtheria in a fine iouse in Brooklyn, and the parents with two others went South. At Pilatka, the trunks were unpacked, and there was taken out for a child a toy rabbit which the dead child had used for a plaything. In three days the child was taken with diphtheria, of which there were no other cases there, and in five days was dead; and the other child, a few weeks later, succumbed to the disease at a place in the interior of Florida where diphtheria had been unknown. The germs were conveyed by the rabbit and in clothing.

Engineers, Club of Philadelphia.

At the meeting, February 4, Mr. William A. Cooper presented a description of the progress in methods and contrivances for uniting the ends of rails-a subject of much thought among engineers, as the hundreds of patent fish-plates, chairs, nat locks, etc., show. From wooden rails spiked to sleepers embedded in the ground, an advance was made, about 1765 , to iron straps nailed upon the wood to diminish wear. In 1767, at the Colebrookdale, England, Iron Works, cast iron rails 4 inches wide by $13 / 4$ inches thick by 5 feet long, were laıd. In 1789 cast iron rails are said to have been set and bolted in cast iron chairs fastened to sleepers, and, in England, the general method of.wedging or bolting the rails to chairs fastened to the ties, has continued to be the general practice

In early American railroading. the strap rail of "snakehead" celebrity was used for economical reasons, bat soon abandoned for the T-rail. In 1847 the fish-plate or splice bar, which has superseded in this country all other means of fastening, was designed. It consisted of a pair of plates, 18 inches by 3 inches by three-quarters inch, bolted over joint by four bolts, two to each rail, with oval bolt holes to admit of expansion and contraction in the rail. A later improvement was the use of angle plates, giving greater support to rail and larger bearing surface, and admitting the spike slot in the plate, instead of the rail, to prevent creeping.
The secretary presented, on behalf of Mr. Howard Constable, a description of pneumatic pulverizer, which consists, in brief, of a chamber into which are introduced two injector nozzles, opposite each other, and each connected with a funnel for the reception of the material to be pulverized. By the expulsion of superheated steam through the injectors. the material, previously crushed to about the size of a pea, is forced into collision in the chamber, and about 95 per cent thereof is thereby reduced to fine dust and carried by the exhaust into a settling chamber, the tailings being collected in the bottom of the chamber and returned to the funnels. By a 20 horse boiler, 120 pounds pressure, $11 / 4$ tons per hour have been pulverized, and it is expected to increase this to 2 tons per hour by a pressure of 200 pounds, and take the place of a 20 stamp mill which weighs about 4,000 pounds, while this machine proper weighs about 100 pounds only. Specimens of quartz, in crushed fragments and powder, were submitted-the latter being almost entirely composed of an impalpable dust. It is designed to make use of this machine for pulverization in general.

Action of Hydraulic Cements upon Embedded

Metals.

John C. Trautwine, C.E., in a communication to the Railroad Gazètte, dated Philadelphia, January 21, 1882, says:

The fact that this important subject has of late been brought somewhat prominently before the notice of civil engineers and builders induces me to send you the results of ten years' trial by myself. The hydraulic cements used were English, Portland, and Louisville (Kentucky), besides which I tried plaster of Paris, both pure and mixed. with equal measures of the cements. All were of about the consistency of common mortar; and all were kept in an upper room during the ten years, unexposed to moisture other than that of the indoor atmosphere

The metals were partly embedded in the pastes and partly projecting from them. They consisted of cut iron nails (some of which were galvanized), smooth iron wire nails, brass in both sheet and wire, zinc in sheet, copper wire, and solid cylinders of lead, three-eighths inch diameter.

The result at the end of ten years was that all the metals in both of the neat cements were absolutely unchanged; and the same was the case with those in the plaster of Paris, with the excention of the ungalvauized nails, which had become covered with a thin coat of rust: as were also those in the mixtures of plaster and cement, but to a less degree.

This experience leads to the inference (already suggested by others) that moisture or dampness is the injurious agent in those cases of corrosion of iron and lead laid in cement that have lately appeared in the journals; and that if dampness can be absolutely excluded, both cement and lime mortar will probabily protect from injury all the metals employed in ordinary constructions. for an indefinite time.

Such entire exclusion of dampness may at times be somewhat difficult of attainment; for capillary attraction alone (unaided by hydrostatic pressure) will cause water to rise several inches in well-hardened cement; and it would be difficult to assign limits to its penetration when aided by a high head of water. Rain water is well known to percolate througb many feet in depth of brickwork or masonry laid in lime mortar, even when it consists partly of cement."

How Aluminum is Obtained

A mixture of ground aluminous clay (ordinary clay, but of a good quality) and soda ash (carbonate of sodium) are heated in a furnace, aluminate of soda and silico-aluminate of soda being formed. The fused mass is then broken into pieces and thrown into an iron tank containing water; the mass is frequently stirred, and finally allowed to settle.
The aluminate of soda (being soluble in water) is dissolved while the silico-aluminate of soda (being insoluble in water) sinks to the bottom of the tank, with any peroxide of iron that may be present in the clay.
The liquid is then drawn off, and carbonic acid gas passed through the solution. This decomposes the aluminate of soda, forming carbonate of soda and pure alumina hydrate. Thus:
$\overbrace{\begin{array}{c}\text { Aluminate } \\ \text { of Soda. }\end{array}}^{2 \mathrm{INaO}_{2}}+\overbrace{\begin{array}{c}\text { Carbonic } \\ \text { Acid Gas. }\end{array}}^{\mathrm{CO}_{2}}+\overbrace{\text { Water. }}^{3 \mathrm{H}_{2} \mathrm{O}}=\underbrace{\mathrm{Na}_{2} \mathrm{CO}_{3}}_{\begin{array}{c}\text { Carbonate } \\ \text { of Soda. }\end{array}}+\underbrace{2 \mathrm{Al}(\mathrm{OH})_{3}}_{\begin{array}{c}\text { Alumina } \\ \text { Hydrate. }\end{array}}$
The alumina hydrate is then dried, mixed with chloride of sodium (common salt), and charcoal or coke, and formed into balls about the size of an orange. These balls are then taken and put into a vertical earthen retort and heated to redness; then a stream of chlorine gas is passed through them. The chlorine combines with the alumina (being greatly helped by the charcoal), and forms chloride of aluminum, which unites with the sodium chloride (common salt), and distills over or sublimes as double chloride of aluminum and sodium, thus
$\overbrace{\text { Alumina. }}^{\mathrm{Al}_{2} \mathrm{O}_{3}}+\overbrace{\begin{array}{c}\text { Common } \\ \text { Salt. }\end{array}}^{2 \mathrm{NaCl}}+\overbrace{\text { Coke. }}^{3 \mathrm{C}}+\overbrace{\text { Chlorine. }}^{3 \mathrm{Cl}_{2}}=-\overbrace{\begin{array}{c}\text { Carbonic } \\ \text { Oxide } \\ \text { Gas. }\end{array}}^{3 \mathrm{CO}}+\underbrace{2 \mathrm{AlNaCl}_{4}}_{\begin{array}{c}\text { Donble } \\ \text { Alloride of } \\ \text { Aluminam } \\ \text { and Sod ium }\end{array}}$
Ten parts of the double chloride of aluminum and sodium thus formed is mixed with five parts of kryolite (a double fluoride of aluminum and sodium, found in Greenland), which serve as a flux, both-in a state of fine powder, and to this mix ture is added two parts of (metallic) sodium in small pieces.
The whole is now introduced on to the hearth of a re verberatory furnace, previously beated to the required degree, when a violent reaction ensues. The dampers are then closed, and all parts of the furnace kept as close as possible, to prevent access of air. This causes the mass to completely fuse. When the action has subsided and the decomposition is completed the furnace is tapped and the metal and slag re run into suitable moulds. Most of the aluminum col lects in the bottom of the mould. Above this are two layers of slag, the top layer being sodium chloride (common salt), the middle layer being less fusible than the top, and consist ing chiefly of fluoride of aluminum, in which small globules of aluminum are mechanically held, which are recovered by pulverization and sifting of the slag.
The following equation will show the reaction that takes place in the above reduction. Thus:

$\underbrace{\mathrm{AlNaCl}_{4}}_{\begin{array}{c}\text { Double } \\ \text { Aloride of } \\ \text { Aluminum }\end{array}}+\overbrace{\begin{array}{c}\text { Kryolite, } \\ \text { or Cryolite. }\end{array}}^{\mathrm{AlNaF}_{3}}+\overbrace{\text { Sodium. }}^{6 \mathrm{Na}}=\overbrace{\begin{array}{c}\text { Aln- } \\ \text { minum. }\end{array}}^{2 \mathrm{Al}}+\overbrace{\begin{array}{c}\text { Common } \\ \text { Salt. }\end{array}}^{4 \mathrm{NaCl}}+\overbrace{\begin{array}{c}\text { Fluoride } \\ \text { of } \\ \text { Alumi- }\end{array}}^{4 \mathrm{NaF}}$ Aluminum and Sodium

There are other methods, but this, says Mr. G. W. Gray in Knooledge, gives the purest metal, and is one generally used in England and France. Messrs. J. Lowthian Bell \& Co. (or Messrs, Bell Bros.), at Washington, near Newcastle on-Tyne, manufactured aluminum on a large scale for several years, but gave it up a few years since, owing to it not paying so well as was first anticipated, and also on account of the limited demand for the metal. I think they used the above method.

Glucose from Cassava.

For some time past rumors have been current here of a company being in process of formation with a view of manufacturing glucose from cassava, but after careful inquiry, we have not been able to trace them to a reliable source We have no hesitation, however, says the Confectioners Journal, in saying that such a company is contemplated at an early day, and this fact adds interest to the plant which seems destined to take a promivent part in the development of the confectionery trade, and calls for more than a passing notice from us as to the nature of cassava, its habitat and its merits as a saccharine producing material. All confectioners know that glucose has iecome a very important article of commerce during the past few years, and the consumption of it has reached 200,000 tons in this country alnne, and large quantity is annually exported. It has been made here tofore from corn, which has advanced so much this year a to make this much-needed article quite expensive. The demand for it is very large and exceeds the supply. Hereto fore the profits of manufacturing it have been very great at the rate paid for corn during the past few years. During the trial of a recent lawsuit in New York it came out in the evidence that the Buffalo Grape Sugar Company sold to one agency $\$ 100,000$ worth of grape sugar, or glucose, per month That company is now using nearly 6,000 bushels of corn every day in the week. A bushel of corn weighing fifty-six pounds will yield thirty pounds of sugar or glucose; the
average net profit on a bushel of corn is between forty and average net profit on a bushel of corn is between forty and fifty cents, since when the price has materially advanced. Sugar Company over $\$ 1,00), 030$ a year, on a capital now invested of $\$ 4,000,000$. The manufactured glucose is used chiefly for making table sirups, candies, for brewing pur poses, as food for bees, and making artificial honey. It is esti
mated that $11,000,000$ bushels of corn will be used this year
by the various manufactories of this product in this country The average production of corn in the States of Pennsyl the the bushel is 30 pounds, or 1,050 pounds to the acre. Well authenticated evidence is at hand to the effect that 20 tons of cassava to the acre is no unusual crop in Florida. This would, at 56 pounds to the bushel, give a yield of over 700 bushels per acre, and, at the rate of 30 pounds of glucose per bushel, would produce over 21,000 pounds of glucose per acre. A comparison of the yield of glucose from corn and cassava from a large area is as follows: 1,000 acres of corn yields about 500 tons of glucose; 1,000 acres of cassava yields about 10,000 tons of glucose.
The method of cultivation is generally as follows: The ground is prepared as for planting corn, the seed (which consists of a section of the stalk containing an eye) is set in the sandy soil spaced about two feet, in rows three feet apart. When about eighteen inches high the field is cultivated in order to raise the soil about the base of the stalk, which affords a better support to the plant.
The leaves of the branching top shade the ground, and prevent the formation of weeds and evaporation of surface moisture. No irrigation is required, as the moisture is continually supplied to the tubers by capillary attraction. The tubers grow somewhat similar to the sweet potato, radiating from the base of the plant and lying generally horizontal. They may be utilized in about six months after planting, and will continue to grow without deterioration for a period of two years or upward, developing to such an extent that tubers weig bing from sixty to eighty pounds have frequently been taken from the soil. The harvesting of the crop is very simple: The stalk is raised and tubers extracted by simply pulling them from the loose soil. The plant may be again inserted, when it will produce new roots. The earth in this case is the storehouse from which the supply is extracted as required, with the advantage of the crop increasing in value as long as it remains therein, whereas in corn there is a season for harvesting, storing, handling, and re bandling before it comes to the hands of the manufacturer. Cassava may be removed from the ground any day in the 365, and carried to the mill for direct treatment. For many years the root has been raised in Florida and used for many purposes. The plants are natives of South America. The roots (tubers) may be preserved for food purposes, by being simply cleaned, sliced, and dried; from such dried slices manioc or cassava meal, used for cassava bread, etc., is prepared by simply grating. The starch is separated and prepared for food under the name of Brazilian arrow-root, and this, when agglomerated together into pellets on hot plates, forms the tapioca of commerce.
The glucose made from cassava is of fine body and flavor

NEW INVENTIONS

An improved cuff or collar fastening has been patented by Mr. Mahlon Loomis, of Lynchburg, Va. This invention consists in a strip of metal bent at each end in opposite directions to form spring hooks, having the inner surfaces roughened or serrated and the curved portions corrugated.
An improved nose feed bag for auimals has been patented by Mr. Charles J. Gustaveson, of Salt Lake City, Utah Ter. This nose bag has a supporter having two or more cross stays on the lower end for protecting the perforated bottom. The latter is made removable so that the device may be used as a muzzle.
An improved horse collar pad has been patented by Mr. Friderick F. Kanne, of Waterville, Minn. This mproved pad can readily be applied to or removed from a collar; only the lugs of the arched frame rest on the horse's neck, and they are covered by a double thickness of leather The pad will adapt itself to the neck of any horse, and the collar cannot become misplaced in its seat in the curved frame. There is an air chamber for the free circ
urved arched frame and the pad.
An improvement in end gates for wagons has been patented by Mr. Stephen D. Davis, of Malvern, Iowa. This invention relates to end gates for wagons, which are adapted to be let down to form boards or extensions to facilitate the use of a shovel in the removal of corn, poratoes, etc., with which the wagon may be loaded.
An improvervent in that method of closing bottles and jars in which the stoyper is made in two parts with holes through both parts that are closed by bringing these two parts together, has been patented by Mr. James D. Foster, of London, Ky. It consists in combining with the neck of a jar two circular disks of equal diameter having flat sides with holes through them, which holes are arranged out of registration, and one of which disks is forced down flat upon the other to close the holes in the same and form practically but a single stopper, and with which two disks is preferably combined a top coat ing of wax or cement.
Mr. Charles A. Kilpatrick, of Athens (Orcut Creek P. O.), Pa., has patented an improved adjustable instrument for planing and smoothing the edges of soles of boots and shoes. It consists in a handle with a bend or knee in the middle, and provided at this hend and on the under side with a curved kuife and a gauge adjustable in the direction of the length of the handle: A sliding gauge, moving at right angles to the length of the handle, is held on the side of the same by a suitable screw.
An improved machine for spinning and reeling silk has been patented by Mr. Joseph E. Tynan, of Paterson, N. J.
These improvements relate to machines for spinning and
reeling silk. The usual process is to spin or twist two or more threads of unspun silk to form a single warp, which is afterward reeled into skeins by a separate machine. The object of the improvements is to perfect both the spinning and reeling mechanism, and further, to combine them in one machine, so that the operations can be successively performed without the time and labor required for pooling the silk after spinning.
An improved car coupling has been patented by Mr. Moses Robeson, of Galena, Kan. The object of this invention is to provide a car coupling by means of which two cars can be coupled together and uncoupled without running them together while the liuk is being adjusted, thereby avoiding danger to life and limb in coupling cars.

A New Sleep-Producing. Agent.
According to the Medical Record Professor C. Binz, in a series of articles contributed to the Berliner Klinische Wochen schrift, announces the discovery of nerve-depressing and sleep-producing properties in ozone.
The accepted view regarding this gas has been that it is very easily decomposed, nascent oxygen being set free; that it is extremely irritating on this account to the tissues, acting much like chlorine, and that it cannot be absorbed by the blood. Binz, however, shows that, in proper quantities, it is not irritating, can be inhaled and absorbed, producing, as he claims, peculiar effects on the nervous system.

The gas was generated by the sparks of an electrical bat tery containing four of Bunsen's elements. The ozonized air was conducted by a tube through chloride of calcium. It was then carried by a tube either to a large air-tight glass bell, in which an animal was placed, or to a mask which was worn by the persons who inhaled it. Animals were first tried. If a strong and long-continued dose of the ozone wa supplied, the usual symptoms of laryngeal and tracheal catarrh with strangulation and death occurred. If supplied in more diluted quantities for less than two hours, sleep or a lethargic condition was produced. Frogs, rabbits, and kit tens, reacted best. The latter would, in the course of ten or fifteen minutes, become quiet and then lie down and appa rently sleep. Shaking the jar would not arouse them. When removed and supplied with fresh air, however, they soon re turned to their normal condition. Several animals were killed after having been in this condition, and no changes in the air passages or other tissues noted. Precautions were taken and experiments made to show that there was no car bonic acid poisoning and no introduction of nitrous oxide gas. The animais could, as a rule, be kept in the bell-ja for two hours before any symptoms of irritation appeared, even of the outer parts of the air passages.
The experiments were then tried upon human beings. Dr Hugo Schultz was the first to submit himself. Subsequently five other gentlemen inhaled the gas. Three of them were put to sleep by it, the others were slightly stupefied or otherwise depressed. The time required for bringing on sleep varied between six and sixteen minutes. The sensa tions during this time were very agreeabic. After removal of the gas the sleeper would awake within half a minute generally sooner. It was suggested that in one quite suscep tible person the condition was a hypnotic one, but inhalation in the same way of pure air produced no effect. After awaking there was some feeling of fatigue, but this soon passed away
Large and prolonged doses of the gas produced sensations of nausea, dizziness, and strangling. But the diluted ozone was breathed for over half an hour without harm. Binż states that in too small amounts no effect is gotten; in too large ones, irritation is produced. He compares its action in this respect to that of alcohol when given. Prof. Binz claims no practical results from his discovery as it stands at present, but thinks that like every new scientlfic truth it may have eventually some useful bearing,

Coloring Metals.

Metallic objects may be colored by immersing them in a bath formed of 640 grains of lead acetate dissolved in 3,450 grains of water and warmed to from 38° to $90^{\circ} \mathrm{Fah}$. This mixture gives a precipitate of lead in black flakes, and when the object is plunged into the bath the precipitate deposits on it. The color given depends on the thickness of the skin, and care should be taken to treat the object gradually, so as to get a uniform tint. Iron treated thus acquires a bluish aspect like steel; zinc, on the other hand, becomes brown.
On using an equal quantity of sulphuric acid instead of lead acetate, and warming a little more than in the first case, common bronze may be colored red or green with a very durable skin. Imitations of marble are obtained by covering bronze objects, warmed to 100° Fah., with a solution of lead thickened with gum tragacanth, and afterward submitting them to the action of the above-mentioned precipitate of lead.

Do Bees tinjure Grapes?

At the late annual meeting of the Northeastern Beekeep ers' Association, the charge that bees injure grapes was dis cussed with some feeling. Two bills have been introduced in the California Legislature to forbid the keeping of bees because of the damage they are said to do to the ripening grapes. The northeastern beekeepers were unanimous in the opinion that honey bees never puncture the skin of the grape, though they frequent the vines to suck the juices of grapes already injured by birds or other insects. This it was claimed has been demonstrated by careful tests. Black ants are the chief mischief makers.

3usiness amd entioutl

The Chargefor Insertion under this head is One Dollar a line 'or each insertion ; about eight words to a line. avertisements must be received at publication office

The Universal Calculator.-A novel labor-saving machine for solving questions in arithmetic and mensura-
tion without mental labor. The most tedious problems tion without mental labor. The most tedious problems
solved in less than half a minute. Invaluable to engineers, mechanics, and business men. Sent free for $\$ 1$. abbe Bolt Forging Machines and Palmer Power HamFor Walrus Leather Bull N 1 For Walrus Leather, Bull Neck Emery, Glue, Crocus,
and Composition, write Greene, Tweed $\&$ Co.,New York. I want cheap method of drying 15 tons sawdust per
day. Address Allan Sterling, Room 52,35 Broadway,N.Y. Machinery for Light Manufacturing, on hand and built to order. E. E. Garvin \& Co., 139 Center St., N. Y. The Newark Filtering Co., of Newark, N. J, are fill-
ing orders from eities and manufacturers for their
"Multifold Filters."
-teel Name Stamps, 15 cts. per letter; Steel Figures, $\$ 1$ The newly perfected pure Asbestos Steam Rope Packing made by the H . W. Johns M'f'g Co.. 87 Maiden Lane,
New York, is the most perfect and coupact article of the kind we have ever seen. Its success cannot be doubted, as it can be
produced.

Elm Boards Wanted.-C. Ledig, 13 Peck Slip, N. Y. Oar goods rank first for quality, safety, and durabil-
ity. Please compare them with any other make, and if not found better and cheaper quality considered, we
will bear the expenses of the trial, Lehigh Valley will bear the expenses of the
Emery Wheel Co., Lehighton, Pa.
To Stop Leaks in Boiler Tubes, use Quinn's Pat. F'erles. Address S. M. Co., So. Newmarket, N. H.
Light and Fine Machinery and Tools to Order. Lathe Malleable and Gray Iron Castings to order, by Capital Malleable and Gray Iron Castings to
City Malleable Iron Co., Albany, N, Y.
For Power \& Economy, Alcott's Turbine, Mt.Holly, N. J. Combination Roll and Rubber Co., 27 Barclay St
N. Y. Wringer Rolls and Moulded Goods Specialties. Send for Pamphlet of Compilation of Tests of Turbine Presses \& Dies (fruit cans) Ayar Mach.Wks., Salem,N. Latest Improved Diamond Drills. Send for circular Wood-Working Machinery of Improved Der Workmanship. Cordesman, Egan \& Co., Cincinnati, 0 "How to Keep Boilers Clean," and other valuable information for steam users and engineers. Book
sixty-four pages, published by Jas. F. Hotchkiss, John St.. New York, mailed free to any address.
Peck's Patent Drop Press. See adv., page 94.
Supplement Catalogue.-Persons in pursuit of infor-
mation on any special engineering. mechanical, or scienmation on any special engineering, mechanical, or scien-
tiftc subject, can have catalogue of contents of the SciThe SUPPI the whole range of engineering, mechanics, and physi-
cal science. Address Munn \& Co.. Publishers, New York.
Diamond Drills, J. Dickınson, 64 Nassau St., N.
Split Pulleys at low prices, and of same strength and
appearanceas Whole Pulleys. Yocom \& Son's Shafting Works, Drinker St., Philadelphia. Pa
Malleable and Gray Iron Castings, all descriptions, by
Erie Malleable Iron Company, limited. Erie, Pa. Presses \& Dies. Ferracute Mached. Erie, Pa
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. Corrugated Wrought lron for Tires on Traction En-
gines, etc. Sole mfrs., H. Lloya, Son \& Co., Pittsb'g, Pa. Supplee Steam Engine. See adv. p. 93.
List 27 .-Description of 3,000 new and second-hand Machines, now ready for distribution. Send stamp for
same. S.C.Forsaith \& Co.,Manchester,N.H.,and N.Y.city. Presses, Dies, Tools for working Sheet Metals, etc.
Fruitand other Can 1'ools. E. W. Bliss. Brooklyn, N. Y. Improved Skinner Portable Engines. Erie, Pa.
C. B. Rogers \& Co., Norwich, Conn.. Wood Working Machinery of every kind. See adv., page 77.
The Sweetland Chuck. See illus. adv ${ }_{n}$.
The Sweetland Chuck. See illus. adv. p. 78.
Electric Lights.-Thomson Houston System of the Are
pe. Estimates given and contracts Machine Knives for Wood-working Machinery, Book
Binders, and Paper Mills. Also manufacturers of Binders, and Paper Mills. Also manufacturers or Solo
man's P'arallel Vise, Taylor. Stiles \& Co.,Riegelsville.N.J. Lightn: :g Screw Plates and Labor-saving Tools, p. 93. For Rubber Packing, Soapstone Packing, Empir For the Garden and Farm.-A great variety of Seeds and Implements. Send for catalogue. A.
Allen \& Co., P. O. Box 376 . New York city.
Cope \& Maxwell M'f'g Co.'s Pump adv., page 108.
The Berryman Feed Water Heater and Purifier and
Feed Pump. I. B. Davis' Patent. See illus. adv., p. 110 . See Bentel, Margedant \& Co.'s adv., page 110. steam Hammers,Improved Hydraulic Jaciss. and Tube Kxpanders. R. Dudgeon. ${ }^{2} 4$ Columbia St., New York.
T'elegraph, Telephone, Elec. Light Supplies. See p. 109.
50,000 Sawyers wanted. Your full address for Emer-
son's Hand Book of Saws (free). Over 100 illustrations son's Hand Book of Saws (free). Over 100 illustrations
and pages of valuable information. How to straighten
sass, etc. Emerson. Smith \& Co, Beaver Falls, Eagle Anvils, 10 cents per pound. Fully warranted. For Pat. Safety Elevators, Hoisting Engines, Friction Peerless Colors for Mortar. French, Richards \& Co 40 ('allowhill St., Philadelphia, Pa
Suw Mill Machinery. Stearns Mfg. Co. See p. 93. Elevators, Freight and Passenger, Shafting, Pulley and Hangers. L. S. Graves \& Son, Rochester, N. Y.
Gould \& Eberhardt's Maohinists' Tools. See adv., p. 108. Gear Wheels for Models (list free); Experimental
Work, etc. D. Gilbert \& Son, 212 Chester St., Phila., Pa. Work, etc. D. Gilbert \& Son, 212 Chester St., Phila., Pa
Barrel, Key, Hogshead, Stave Mach'y. See adv. p. 110.

For Heavy Punches, etc., see
ment of Hilles \& Jones, on page 108 The Medart Pat. Wrought Rim Pulley. See adv., p. 109 Pays well on small investment. - Stereopticons, Magic Lanterns, and Views illustrating every subject for public
exhibiiions. Lanterns for colleges, Sunday schools, and home amusement. 116 page illustrated catalogue free
McAllister, Manufacturing Optician, 49 Nassau St., N. \mathbf{Y} Engines, 10 to 50 H. P., $\$ 250$ to $\$ 500$. See adv., p. 109 Catechism of the Locomotive, 625 pages, 250 engrav-
ings. Mosi accurate, complete. and easily understood ngs. Mosi accurate, complete. and easily understogu Safety Boilers. See Harrison Boiler Works adv., p. 109 Mineral Lands Prospected, Artesian Wells Bored, by Lathes, Planers, Drills, with modern improvements For best low price
For best low price Planer and Matcner. and latest
mproved Sash, Door, and Blind Machinery, improved Sash, Door, and Blind Machinery, Send to
catalogue to Rowley \& Hermance. Williamsport, Pa. Portable Power Drills. See Stow Shaft adv., p. 108. The only economical and practical Gas Engine in the market is the new "Otto" Silent, built by Schleicher.
Schumm \& Co., Philadelphia, Pa. Send for circular.
Common Sense Dry Kiln. Adapted to drying of all ma-
terial where kiln, etc, drying houses are The Porter work Foundry \& Mach. Co.,430 Washi ngton Ave., Phila.P. Ore Breaker, Crusher, and Pulverizer. Smaller sizes 4 to 40 H P. Steam Engines. See adv. p. 108.

HIN'IS TO CORRESPONDENTS.
No attention with be paid to communications unles accompanied with the full name and address of the Names and addre
Werenew our request that correspondents, in referring to former answers or articles, will be kind enough to
name the date of the paper and the page, or the number of the question.
Correspondents whose inquiries do not appear after a reasonable time should repeat them. If not then pubished, they may conclude that, for good reasons, the Editor declines them.
Persons desiring special information which is purely of a personal character, and not of general interest,
should remit from $\$ 1$ to $\$ 5$, according to the subject as we cannol be expected to spend time and labor to obtain such information without remuneration
Any numbers of the Scientific American Supple-
MENT referred to in these columns may be had at this MENT referred to in these columns may be had at this
office. Price 10 cents each. office. Price 10 cents each.
Correspondents sending samples of minerals, etc. for examination, should be careful to distinctly mark or
label their specimens so as to avoid error in their dentification.
To our Correspondents.-The destruction of ourold offices by fire January 31, 1882, caused the loss of a
considerable number of inquiries from correspondents considerable number of inquiries from correspondents
and of our replies thereto, which we had in hand for publication. Those of our friends who find their in why; and they will oblige the editor by repeating thei inquiries without delay
(1) E. M. F. asks: Can you give good re ceipts for makirg indelible aniline black iuks, for use
in marking linen with a pen? A. Dissolve 1 oz. in marking linen with a pen? A. Dissolve 1 oz . of
cupric chloride in $31 / 2 \mathrm{oz}$. of distilled water, and add 11 cupric chloride in $31 / 2 \mathrm{oz}$. of distilled water, and add $11 /$
oz. of common salt, and $11 / 8$ oz. aqua ammonia (C. P.) One volume of this solution is then mixed with four chlorate solution prepared as follows: Aniline hydro solution (gum 1 oz ., water 2 oz), $21 / 2 \mathrm{oz}$.; glycerine, $11 /$ oz. The greenish liquid resulting is an excellent in delible ink for linen, although the characters written with it do not develop a full black color until after exposure to the air for a day or two if not hot pressed.
The following is Puscher's formula for a similar ink: The following is Puscher's formula for a sis by weight
Dissolve 4 parts of aniline black in 16 parts by of alcohol, with 60 drops of strong (pure) hydrochloric weight of water in which 6 parts of gum arabic have

(2) M. S. asks: 1. Please give a recespt for preparing a good gold colored bronze for use on japander), 4 oz .; borax and niter, each 2 oz.; corrosive sublimate, $1 / 4$ oz.; make ali into a thick paste with oil, and fuse together. 2. Can you tell us of a good way to reproduce faded photographs, faded paper prints? A.
The foilowing method is simple and in most cases quite The following method is simple and in most cases quite
effective: Put the card in warm water until the paper print may b removed from the card backing without fecrly. Hang und the paper in a warm place until per fectly dry, and then immerse it in a quantity of melted
white wax. As soon as it has become thoroughly im white wax. As soon as it has become thoroughly im-
pregnated with the wax it is pressed under a hot iron to remove excess of the latter, and rubbed with a tuft of
cotton. This operation deepens the contrasts of the picture and brings out many minor deta ls previous:y nvisible, the yellowish whites being rendered more ransparent, while the half tones and shadows retain pared may then be used in preparing a negative which may be employed for printing in the usual way
(3) E. W. F. asks: Can you give receipts for the dips used in imparting light fancy or vari-colA. Dissolve 4 ozes hyposulphite of soda in $11 / 2$ pints A. Dissolve 4 oz. hyposulphite of soda in $11 / 2$ pints
water, and add a solution of 1 oz . lead acetate in $11 / 2$ pints of water. The metals to be colored are placed in
this liquid, which is then ษradually heated to the boiling point. This treatment produces on clean iron a light brass become successively red, scarlet, deep blue, light brass become successively red, scarlet, deep blue, light
blue, bluish white, and finally white with a tinge of red.

This dip has little effect on lead or tin. By repiacing the acetate of lead in the solutionby sulphate of copper, brass becomes first of a rosy tint, then green, and
finally an iridescent brown color. Zinc does not color in this liquid; it reduces and precipitates the copper as a dark brown sponge, but if boiled in a dip containing both the lead and copper salts, it becomes covered with black adherent crust, which may be improved by
coating with a thin wax lacquer. Sometimes these coating with a thin wax lacquer. Sometimes these
liquids are thickened with gum tragacanth and applied liquids are thickened piates with a brush to form designs, etc., and the plates are then heated to 212° Fah., and rinsed o effects are produced.
(4) I. M. McP. asks for a receipt for coat ing wood to make blackboards for school purposes, etc A: To make one gallon of the paint take 10 oz . of pul
verized and sifted pumice stone, 6 oz . powdered rotte tone (or infusorial silica), 34 lb . of good lampblack and alcohol enough to form with these a thick paste, whic must be well rubbed and ground together. Then dis solve 14 oz . of shellac in the remainder of the galion alcohol, by digestion and agitation, and finally mix this varnish and the paste together. It is applied to th board with a brush, care being taken to keep the pain well stirred so that the pumice stone will not settle allowed to dry thoronghly before the second is put on The second coat should be applied so as not to disturb or rub off any portion of the first. One gallon of square yards of blackboard. When the paint is to be put on plastered walls the wall should be previously coated with glue size-glue, 1 lb .; water, 1 gallon; lamp-
(5) B. W. S. writes: I wish to draw wat from a sixteen foot head, through hydrant, the conne tion between the two being $11 / 4$ inches-lead pipe of
the kind known as "extra light." Will this pipe the kind known as "extra light." Will this pipe stand
the pressure without fear of bursting? A. Your pipe the pressure without fear of bursting? A. Your pipe
would stand the pressure of 16 feet head, but probably would stand the pressure of 16 feet head, but probably
would not stand in connection with a hydrant, when day a and subjer we started and stopped many mer." If the pipe is to be thus used we would advise ger one.
(6) J. T. asks: 1. Does a glass water gauge bstain full boiler pressure? If so, why does it no
burst? A. Yes. It does not burst because the tube is small and thick. 2. Is there any difference in efficiency between one gallon of water raised to 100 pounds steam
and 100 gallons raised to same pressure? same conditions the work should be nearly in propor
(7) H. M. asks: 1 . How high will 50 pound pressure to the inch in a force pamp throw water from a quarter inch nozzle? A. A quarter inch nozzle,
about 44 feet. 2. Or what size stream from nozzle about 44 feet. 2 . Or what size stream from nozz
under
50
pounds The larger the stream the higher the jet, if the pressure be maintained. If the nozzle were three-quarters inch
the height would be about double that from a quarthe height wou
terinch nozzle.
(8) E. F. T. would like to know if it is tocessary for a steam pump to have a vacuum chamber to lift water at any distance? If not, will you please
explain? A. It is not necessary. The air chamber is put on to prevent shocks or "water hammer" in the suction pipe.
(9) M. S. asks: 1. Would it be safe to run our 18×36 inch engine 80 revolutions per minute-fly
wheel 14 feet diameter, 6 tons weight; ensine is now running 70 revolutions? How much more power would weget: steam 90 pounds, 5 inch steam pipe, 6 inch ex
haust? A. Yes; if well proportioned and balanced With same pressure of steam the increase of power is proportion to revolutions.
(10) D. D. D. asks: 1. What is the proper proportion and area of steam and exhaust ports for a pressure 200 revolutins cylinder, minute? A. Steam port one-tenth area of piston, exhaust one-sixth seventh area of piston. 2. What area steam pipes and
exhaust pipes should have to area of cylinder? A. Reexhaust pipes should have to area of
fer to rule in Supplement No. 253 .
(11) D. F. H. asks: What kind of barome ters are used by the Signal Corps, U. S. A.? A. Both
(12) J. K. \& S. write: The length of my drain is 165 feet, total fall is 832 feet; the question we
wish answered is this: our creek is often full from bank to bank, and we want to know if the water escap ing from, say, a half inch pipe, with a pressure of 100
pounds to the inch, will fiow away through a sewer pipe with fall of 832 feet when creek is full The fall to top of bank, or when our creek is high, is 4.25 feet: will the high water retard the flow enough so tha the 4 inch pipe will not take it away fast enough? We are compelled to put in our water motor on first floor
and we do not want to put in motor unless we can ge and wedo not want to put in motor unless we can ge
the waste water as it flows from a Tuerk's water moto fast enough so as not to inconvenience us or overflow.
A. Yes; your 4 inch drain will carry off the water with 4. Yes; your 4 inch drat fall in 165 feet
(13) H. S. N. asks: What cause or cause might produce a collapse of a flue in a steam boiler? A.
The flue not being a true cylinder. or different thicknesses of iron used in the different parts of the flu might cause it. Flues as usually made are not per
fectly true cylinders, therefore extreme pressure will produce collapse.
(14) W. F. L. writes: 1. I have charge of a small to generate sufficient steam to pull the load at the speed desired. The cylinders have two inches clearance at each end. Can I fill a portion of this space inches thick, and thus save steam? A. Yes. 2 One of the steam chests has a hole in it where the stuffing box joins the chest, three-sixteenths by half an inch in size on outside, but larger on the inside. Can I fill it with
the material of which rust joints are made (salammo-

niac and iron borings), and make a durable job? A No. Can you not drill out the hole and put in a top

 (15) H. E. writes: I would like to ask you electric bell, and what size wire is used? A. Common ron will do if well annealed. Use No. 22 wire.(16) W. A. P. asks: 1. Can you give me a scheme for making volumetric estimations of silica or silicates in lead and iron ores? None of the works a
hand give any information on this sulject. A. W kr.ow of no good practical way of determining silica by the volumetric method. Silica is usually estimated gravimetrically. Consult Thorp's "Quantitative Chemi cal Analysis." 2. I am using charcoal fuel and a common water jacket furnace. What are the reactions, and why is limestone used in the following charges: Orelead sulphide, 2 per cent; arsenic, 1 per cent; zin
lead, 74 per cent; silica, 5 per cent: charge-ore 100 Ib . imestone 24 lb . iron ore (perox ide, 62 per cent ron per cent silica), 68 lb .; charcoal, 40 lb .? A. Lime (o limestone which becomes lime in the furnace) is an
alkaline flux combining with and rendering fluid the silicates and silicious earths contained in the ore and uel, thus releasing the metallic burden and aiding the reduction by the iron and carbonic oxide. According to the analysis given the lime charge in this case seem
(17) W. S. asks: Can you tell me the way make scagliola, an imitation of marble? A. See (18) P. D. asks: 1. What does gas tar owe its preserving qualities to? A. Chiefly to the presence
in it of small quantities of carbolic acid or phenol, in it of small quantities of carbolic acid or phenol,
creosote, and similar substances. 2. What late elemen tary works on chemistry do you recommend? A. Connlt Fownes' "Elements of Chemistry," Barker"
"Text Book of Chemistry," Youman's "Class Book of Chemistry," Cooke's "New Chemistry." Address the
book dealers who advertise in this paper.
(19) J. H. \& Son ask: How can we remove rom ordinary rubber tubing its objectionable smell
A. Boil the tubing for a few minutes in water contain ng about 5 per cent of caustic potash, rinse well in ho water, and then immerse for about half an hour in cold water containing 3 per cent of hydrochloric acid Finally rinse thoroughly in running water.
(20) G. H. asks: What can be used in mor not appear to "fill the bill" will the substance calle chymogene (about which I know nothing) do this? A We know of no practical substitute for salt in this con-
nection. Glycerine would prevent the freezing if used nection. Glycerine would prevent the freezing if used
in sufficient quantity, but it would be apt to greatly rein sufficient quantity, but it would be apt to greatly re-
tard the setting. Chymogene is a very light distillate of petroleum, and could not be used in mortar as pro posed
(21) E. J. E. writes: 1. I wish to silver he outside of a lot of lamp globes, so as to make mir rors of them. Can you tell me how silvering on such rections for silvering glass in Supplement, No. 252 diCannot the electric light be produced from a galvanic battery? If so, why are dynamo machines used? A A battery can be used for purposes of electric lighting
but it is vastly more expensive to maintain than the dynamo, and does not afford as constant a current.
(22) H. P. asks: Can you tell me how sul phur can be deodorized? A. The characteristic
(23) H. L. K. asks: Can you give me a reor paste to unite glue,and other cements, page 2510, Supplement No
(24) E. H. R. asks: 1. Can you tell me of an expeditioas and efficient way to clean the inside of the barrels of a breech-loading shot gun? A. If the piece is quite dirty use a small cylindrical brass wire scratch brush (obtainable in the market), then apply a little oil and fine emery with a rag and steel or woodien rod,
wiping out occasionally with a clean slightly oiled rag. Finally remove as much of the oil as possible with a clean dry rag. 2. What is the best way to remove rust and prevent its formation on such a piece? A To remove the rust (if the metal has not been badly eaten into) rub the parts well with emery flour and good sperm not be coctior chamois leather. The use of acids can piece thoroughly, warm it, rub over every part pure re ined sperm oil, then wip ϵ asclean as possible with a dry cloth, and keep dry. 3. Will coal oil injuriously affect
the barrels of such a gun? A. Not if the piece is well
iped afterward
(25) E. N. H. asks: 1. What is a gond waterproof varnish for brass models, something that will
dry quickly? A. Trythe following: Shellac, 3 oz.; alcodry quickly? A. Trythe following: Shellac, 1 oz.; acic
hol dissolve by digestion and agitation in a cov use. Wer, and dilute with alcohol if not thin en igh fo 2. What would you recommend to clean fine mathematical instruments? A. The unlacquered parts may be brightened by rubbing them with a piece of chamois leathcr and jeweler's rouge; the lacquered parts alcohol. When lacquered brass or iron work has beome badly discolored it is usually necessary to remove clean the surface of the-metal, and relacquer it.
(26) R. E. R. writes: The beams under the foor of my room (second story) are 3 inches by 8 inches, ire to place a lathe in the middle of the flor (standing ength way with the beams), which, with appurtenances will weigh about 700 pounds. Will the floor sustain such weight easily? How much will it sustain? Will the vibration caused by the treadle motion make any difference as to the safety? A. Yes; the flocr will carry it if there is not much other load, but will be likely to viYour girders should be not less than 12 or 14 inches Your
deep.
(27) G. W. I. writes: Please state the difference of draught of two cars of same dimensions and
weight, one running on a two foot gauge track and the weight, one running on a two foot gauge track and the
other on a four foot gange? A. On four foot gaugcas the running gear will be he
greater-with same size of wheels
(28) W. P. T. writes: We have four boilers, 20 feet long and 48 inches in diameter, set in a battery with steam drum, carrying 80 pounds steam. We have
two engines coupled together on one shaft and supplied two engines coupled together on one shaft and selppied
with one steam pipe and one governor. The steam pipe with one steam pipe and one governor. The steam pipe
branches, atter passing the governor,one branch running to each engine of course. The engine cylinders are each 16 inches in diameter and have 20 inch stroke of piston. The governor is the same distance from each en-
gine, $i . e$, . 3 feet, but is 53 feet from the governor to the steam drum, with two square turns between the Qovernor and steam drum. The engines have common
slide valves, and run 160 revoiutions per minute. The slide valves, and run 160 revoiutions per minute. The
steam feed pipe 15
5 inches in diameter and governor is a 5 inch one, made by Allen Governor Company. Now the question is: Is the feed pipe large enough to supply the engines fully in hard labor, or do we lose pipe? And how large should the steam pipe be to get the best result? A. If you use a cut-oif on your
engines, the pipa is large enough. If you work whole engines, the pipz is large enough. If you work whole
stroke, it would be necessary to apply an indicator to determine whether the pipe is too small. Your loss of if any, must be small
(29) J. H. R. asks (1) how far apart steam pipes $21 /$ inches in diameter should be from outside to
outside in order to obtain the best results from the fire (soft coal). A. You do not state whether the fire is outside or inside the tubes. If outside, they can b placed at such a distance as necessary for draught, and
this will depend upon arrangement of flues. If inside not less than $3 / 4$ inch, and would be better if $7 /$ or 1 inch 2. How much higher should the end of a twelve foo pipe be at one end than at the other to allow the steam
to escape freely? A. A rise of one inch to the foot win to escape freely? A. A rise of one inch to the foot will
answer well. But more would be better if there is intense fire. 3. At which end of the pipes should the fire be placed, the highest or the lower end, to get the best
effect of the fires greatest pressure it would be sate to carry steam in lapweighing 23 pounds to the foot? A. 200 to 250 pound per square inch. 5 . How many pounds is about th greatest strain threads will bear in Seller's system of serew threads and nuts? A. The strength of the thread
is intended to equal that of the bolt, if the nut fits well and is equal in thickness to the diameter of the bolt.
(30) J. C. L. asks: Do you know of any material or substance that is perfectiy transparent (simi. lar to glass) yet imper
rays 2 a alkaline color? A. We know of no such substance.
(31) C. J. asks: Which would afford the greatest amount of power at the same pressure of steam.
say 60 lb. to square inch, two engines $31 / 2$ by 8 nch say 60 lb . to square inch, two engines, $31 / \mathrm{by} 8$ inc
stroke, both connected to one shaft, inch, to work from same shaft? What would be the difference in the power and also in fuel? The boiler is 54 inches long bv 32 inches diameter: 34 two inch tabes;
locomotive type. A. The 7 inch cylinder by 8 inch locomotive type. A. The 7 inch cylinder by 8 inch stroke would give double the power (with same pressure
and speed) that would be given by two cylinders $31 / 2$ by 8 inch; stroke, and with slightly greater economy of
fuel
(32) J. L. writes: I should like a receip for a cement that will do for kerosene lamps. Can
you give me a receipt through your columns? you give me a receipt through your columns?
tried plaster of Paris and various other things, but without success. A. Plaster of Paris made into a
paste with a sirupy solution (aqueous) of water glass, paste with a sirupy solution (aqueous) of water glass,
and used immediately, makes a very good cement for and used immediately, makes a very good cement for
this purpose. Hot soft soap is used in connection with plaster in a similar manner for this purpose. See "Cements," page 2510, Supplement No. 158 .
(33) W. G. B. asks: Will you kindly tell me how to make the common liquid ammonia and alcohol of commerce; also camphor in small quan-
tities? A. Dissolve about 10 pounds of sugar in 5 gallons of water; add a little yeast, and set aside in an open vessel in a, cool place to ferment. As soon as the fermentaton subsides put the liquid in a retort and apply heat
When the liquid begins to boil attach a coil of small copper pipe so as to receive the steam or vapor, and immerse this coil in a tub of cold water so that the vapors into a receiver. The spirit thus obtained will contain much alcohol. It is rectified by careful redistillation, and called alcohol. To make liquid ammonia mix 10 pounds
powdered sal-ammoniac with about 6 pounds pure lime (previously dry slaked); put this misture into an iron retort, and apply a moderate heat. Pass the ammonia gas given off through a series of bottles half filled with cold water; the water will absorb the gas, and when enough of the gas has thus been absorbed the water in
the bottles becomes aqua ammona (ammonia water) Consult Wagner's "Chemical Technology" and the United States Pharmacopecia.
(34) C. H. B. asks: What can be used as a substitute for glycerine in printer's rollers besides
sugar or molasses? A. We know of nothing that sugar or molasses? A. We know of nothing that
could be used with ad vantage as a a substitute for these in this connection
(35) H. A. L. asks: 1 . How shallI go to work to make an electric light? A see "Simple Electric Llight cal will soften silver enough to join two pieces together A. We know of no chemical that will soften silver s that it may be joined. Silver solder is usually em ployed for joining pieces of the metal. 3. Will com. mon sweet oil do in plact of olive on for
oul as described in No. 318 : A. Yes.
(36) C. A. C. writes: On page 208 of Scernce Recorrd for 1875 is a description of a new artifif siar ight 1 have been to considerabe expense in mak-
tng it, but can only get a very dim light, and the
smoke is very hard to get rid of, there being so much of plants of the class known as leguminous. More than
it. 1 used oul of vitriol, supposing it to be sulphuric
forty varieties of peas and beans are cultivated acid. Will you please advise me as to what the trouble
 referred to is not designed top produce a very briliant
light. The faint blue flame, however, possesses sufficient light. The faint blue flame, however, possessess sufficient
actinic power to make it, in some cases, serviceable for photographic purposes. A glass chimney can be made o confine and conduct the smoke to a flue. The greater portion of the products of combustion are readily ab-
sorbable in moist slaked lime. Common sulphuric acid mmercially known as oil of vitriol.
(37) M. N. writes: I want to make a larg slab of artificial marble. Can you inform me of a com-
position for such which will become as hard and strong position for such which will become angard anc strong
as marble itself? A. Try the following: Reduce marhe dust or white limestone to a very fine powder by fourth its weight of zinc oxide (zinc white) and one eighth its weight of Portland cement, and mix thor oughly into a thick paste with a sufficient quantity of a hot aqueous solution of water-glass. containing about 40 per cent of the glass. Mould the paste under pres. sure while warm, and expose the moulded form for a Week or ten days to warm dry air, before finishing. Se Water-glass," page 16, vol. xlv.
(38) J. A. H. asks: 1. Can soapstone round fine be monlded into different shapes by mixing with some ingredient, and hardened for bricking or or Soapstone powder mixed with water-glass (see Surpie IrNT No. 317) can be moulded when moist into varions forms, which, when dried, become quite hard and
closely resemble the natural stone. This artificial stone does not, however, stand heat as well as the native rock 2. From what quarries do the New York dealers pro cure their soapstone? A. Chiefly from Vermont and the Carolinas. For the other information you should address some dealer in soapstone. 3. Will the quarry
widen sas you go down? A. We have no means of judg. ng-probably not
(39) D. J. C. asks: Will you please state hat are the proper ingredients and proportions and
ow to mix and apply them to brick work, to stain the atter to represent red brick? A. The colo" is clear red ocher or Indian red, and the vehicle a thirty-five or forty per cent aqueous solution of good soda water glass
(see SUPPLEMENT, No. 317). The pigment and vehicl (see SUPPLement, No. 317). The pigment and vehicle
must be well ground together. It is preferably used hot.
(40) R. E. N. asks: How can I make oxy gen to use with the appliance described in STPPLEMENT
No. 20, 1876, under the head of "Soldering." by George I. Hopkins? A. See page 5013, Supplement, No. 314 (41) D. L. asks: Will you kindly give me a receipt for making printer's composition rollers for power cylinder presses? A. An equal quantity of con-
centrated dycerine and good glue are weighed out ; the centrated glycerine and good glue are weighed out; the
glue is softened by soaking it over night in a little col glue is softened by soaking it over night in a little cold
water, and then dissolved in the glycerine by aid of heat over a waterbath. The heating is continued for several hours to expel the water taken up by the glue in
softening, and then poured into the oiled metal moulds. A small quantity resin soap is added to the composition by same makers, and sometimes part of the glycerine substituted by molasses.
Minerals, etc.-Specimens have been received from the following correspondents, and examined, with the results stated:
A. A. St. J.-We cannot undertake to analyze the
abstance-it is a complex mixture of drugs and organic ubstances.-M. B. -The crystals are calcite-lime carbonate; the rock is dolorite trap.-F. F. \& W. F.- 1 . Barium sulphate or heavy spar-used to some extent by
paint manufacturers. 2. An impure quartzose sand containing films of mica and a small quantity of iron quire an analysis. We cannot tell what it is composed of by an examination.-A. E. A.-It appears to be chiefly composed of cork dust, chalk, plaster of Paris,

NEW BOOKS AND PUBLICATIONS.

The Food of the Japanese People. By General of Japan. Yokohama. 1881 . Among the many reports returned to the State De partment at Washington by our consular agents abroad this report on the food of the Japanese epeople is of ex
ceptional interest. The subject has been investigated with a thoroughness which makes the report a scientific
monograph of no mean order; and the subject tiself has especial interest in its bearing on the question how far especial interest in its bearing an enarecteristics of national life are determined by a people's food. It has happened that most if not all of
the more forceful and active nations of the west have been large consumers of meat. So markedly has this been the case that $1 t$ is commonly accepted as a truth practically demonstrated that a well fed, capable, pro
gressive people must of necessity consume a a large proportion of animal food. It gives this theory something or a set-back to learn that the most ant astions, the Yankees of the East, as they have
orien been called, are almost exclusively eaters of vegetable food. The masses do not eat meat simply because they
cannot afford to eat it. Beef cattle are scarce, and mut ton and pork still scarcer. Domestic poultry and wild fowl are so costly that even the well-t-d-do partake of
them sparingly and only on special occasions. Fish are comparatively plentiful and are more largely eaten; so that it is estimated that half the people eat fish every perhaps once or twice a month. Nevertheless the food of the masses is nine parts out of ten vegetable. Ye the Japanese are well fed, and though of small stature, are weil developed physically, and capable of sustain-
ing severe and long-continued mental and bodily labor. ing severe and long-continued mental and bodily labor
Ther physical and intellectual superiority to the riceeating Bengalese-so far as determined by the nature of to the prominent place given to highly nitrogeno
plants of the class known as leguminous. More tha
forty varieties of peas and beans are cultivated. Th which plays solarge a part in the national diet. After
rice the cereals most cultivated are in order -barley, rice the cereals most cultivated are in order-barley,
miller, wheat, rye, and Indan corn. The sweet potato miller, wheat, rye, and Indan corn. The sweet potato
takes the first place among tubers, the annual product being sixteen million bushels. This crop is rivaled by chat of the large white and highly odorous radish known
as " daikou." Carrots, turnips, parsnips and the like as "daikou." Carrots, turnips, parsnips, and the like
are very largely eaten. The entire list of food plants are very largely eaten. The entire ist of food plant
covers a dozen long columns. Most of them have no western equivalents, though many of them no doubt might be profitably introduced among us. The manner of preparing a number of the leading articles is given according to the practice of the chief cook of a native eating establishment. The value of the copy of the re port transmitted to us by Mr. Van Buren has bee greatly augmented by extension. It has been inte Japanese life numerous photographic illustrations Japanese hire, which give one, so to speak, an insia peasantry, the arisan classes, the mer teachers, professional storytellers, and the rest. Among the characteristic features of these views of the Japanes at home, in the field, journeying or pleasure taking one cannot but notice the general expression of good humor uipon the faces of the men, however ugly they may seem to our western eyes, the amiability, sometimes
real beauty, of the women folk; and the comfortable open-eyed serenity of the babies.

The Universal Calculator, With Direc Tions for Using it. By W. H. Wythe
Red Bank, N. J. very simple and ingenious application of the princ pe of the slide rule to a circular chart of several scale with two movable arms. One arm is fixed to a central isk, against which the other arm bears with frictio nough to cause it to be retained in any desired position together around the concentric scales. By simple and obvious applications of the rules of proportion all arith metical problems involving multiplication, division, even powers and roots, percentages, and so on-in shor the vast majority of the problems that come before the artisan or the business man, can be quickly solved by an easy mechanical process. Any one who has much
figuring to do would be likely to find it a very helpful time and labor saving instrument.
awker's American Flour Mill Direc tory for 1882. Milwaukee. Wis. The intelligence and care with which Mr. Cawker's
work is done was attested in the directory of flour mill wners prepared by him last year. This edition he considers an improvement on the last. It gives the names and post ofice adaresses of all the four mill

he Use of Tobacco. By J. I. D. Hinds,
Ph.D. Lebanon, Tenn. Private print. Ph.D. Lebanon, T
16 mo , cloth, pp. 38.
An exceptionally temperate discussion of the tobacco socially considered. The tone of the argumentily, an socially considered. The tone of the argument against
the use of tobacco is calm, and more than usually cogent in that it avoids extravagant assertion and rant. It is a good book to put into the hands of youth.
[OFFICIAL.]
INDEX OF INVENTIONS
Letters Patent of the United States wer Granted in the Week Ending January 31, 1882 ,
AND EACH BEARING THAT DATE [Those marked (r) are reissued patents.]

A printed copy of the specification and drawing of any patent in the annexed list, also of any patent issued since 1866 , will be furnished from this office for 25 cents.
In ordering please state the number and date of the patent desired and remit to Munn \& Co., 261 Broadway, corner of Warren Street, New York city. We but at increased cost, as the specifications not being printed, must be copied by hand.

Box. See Blacking box. Miter box
Bracelet, J. V. Diefenthale

Brush. fue, J. N. Gibson
Bung, H. F. Gaines..... ...
Burglar alarm. S. D. .ake....
Burner. See Vapor burner.
253,096
252,880
Button fast ening, G. IV. Prenti
Buttons, attaching, S. D. Jorda
Can. See Eruit can. Oil can.
Can capping rachine, J.
Cans, sealing, F. B. Ginn.
Cane, cigar 253,03
Car brakey, G. W. Fri.........
Car coupling, J. L. GriffinCar coupling, S. A. Perry...........

Car motor. spring, w. T. LarimoreCar running gear, railw| 253,011 |
| :--- |
| $.253,031$ |
| 233 |

253.050
252,965
253.072Car'starter, L. Helm ..
Cars, etc.. apparatus for ventilating, J. Arkell 252.863
253,149
Cars, pin and
McGuire.
Carding mach252,890
shaw \& Cunningham.253,065
Caster, furniture, W. T. Kosinski. 252,954
Chain, ornamental, S. David son 253,001
253,013
Chandelier hanger, G. w. 252,980
252,919
ing, D. W. Williams
Cheese vat, G. H. Simo
Chuck for screw mach252,917
Churn, F. .. Stebbins
Cigar dasher, R. S. BridgmaCigar mould press, G. VollkommerClothes rack, W. H. McKenzie.252,948
253,122
252,995
253,135Clutch and
lutch, friction, J. Smith.Cock, cylinder drain, J. B burning. C. TaylorCoffee roasting drain, J. B. Mooney
Coffer dam, H. P. Kirkham
Conductors, laying subterranean, H. E. L
Converter plant, Bessemer, A. L. Hoiley
ooking apparatus, steam, J. H. Linney
Corn husking machine. F. Ohma
Cornice, window, C. P. KlingenbCorset. M. E. Field
Cot, folding, Murray \& Baker (r).
253,183Cotton. etc., machiner10,0
Coupling. See Car coupling. Thill coupling.etc., J. w. Rogers253,105
rusher. See separating, F. G. Butler. 253.155
ultivator, M. T. HancockDirect acting engine, A. Thomson...... 252,913Distilation of coal tar, Trewby \& Fenner........... 222,9931
Dour check, Boldt \& Vogel...................... . 252,993Draught equalizer, F Vogel.....
Dredge winder, S. W. Dan
Dredging machine, z. Wil
Drill
${ }_{253,074}^{253,11}$
Egg preserving apparatus, K. H. Loomis.
Ejector, steam and air, S. E. Hewes (r)... 233.074
10,023
253.032
Electric lighting apparatus, J. B. Fuller
Electroplating with platinum and silv 253,15
Elevator. See Hydrau lic eleva
Elevator, C. w . Baldwin (r)..... 10,017Engine. See Direct acting engine. O............
engine. Traction engine. Wind engine.
Envelope opener, W. A. De Caindry 252.93
Evaporating pan. H. B. Stevens............... 253,124Fabaporating pan. See Fringed fabric.Fan, fly, A. Cloyd...
Farm gate, D. SpercFaucet, filterाug, W. M.
Fence, A. R. Stormont
Fence wire strana, baFile, bill, c. W. Hayes..................................Filter, C. L. Rldgwa $253,103,25$
Finger and scarf ring,Finger ring
Engel.
Engel..
Fire alarm,
Fire escape, H. F. Gaines.........
Fire extinguisher, C. w. Talcott. Fire screen and fender. combinedFishing reel, Ohaver \& O' Bannon............
Fluting and sad iron, combined,Fluting and sad iron, combined, H. R. EllisFodder press, F. M. Bacon
Folding table,Folding table, N. J. erolaman................................. 252,
Forgings to steam hammers, device for pres.
Frame. See Picture frame253,088
Frunged can, F. B. Ginn

Finn | 252,87 |
| :--- |
| 253,03 |
| 253,16 |

Hat holder, S. E. Browning............................
Hat nap bands, apparatus for forming, J. R. Rus-
 Hinge, awning blind, E. P.
Hinge, spring, W. Hull (r) Hinge, spring,
Hoe, J. L. Hudson
Hoo, Je. Hudson....
Hee Blacking Dox holder. Hat holder.
Mop holder. Pillow sham holder. Mop holder. Pillow sham
Hook. See Wardrobe hook.
Horse detacher, A. Plözzky. Horse detacher, A. Plönzky.
Hab, wagon, , A. Hudgens.
Hydrant, S. C. Mathews. Hydrant, S. K. C. Mathews
Hydraulic elevator, W. E. Hale..
Hydraulic elevator, Hydraulic elevator, G. L. Pierce.
Indicator. See Visual indicator. Indicator. See Visual indicator.
Insulator and protector for underground lines W. A. French..... S..........
Journal bearing, G. J. Shimer...
Knitting machine. J. By field .. Knitting machine. J. By field
Knob alarm, door, W. F. Cook.... Lamp, electric, J. B. Fuller....... Lamp shade and chimney,
Latch and lock, o. Ewers...
Leather shaving and white Buzzell
Lemon squeezer, J. Fanning ..
Lightning arrester, T. A hearn Lock. See Nut lock.
Locomotive furnace, T. A. Buckland .
Locomotive stock alarm, W. A. Place.
 Matress, spring, A. Schenk.................... Stebbins..
Mill. See Roller mill. Rolling mill. Windill.
Mine water, apparatus for purify ing, T. Shaw.... Mining apparatus, o. S. Presbry ..
Miter box, J. W. Angus.... Miter box, J. W. Angus...
Mitten and the art of knit Mitten and the art of knitting the same.J. Nelso Motion, yoke for converting, M. Schultz
Motive power, E. H. Drake Motor. See Car motor. Music leaf turner, A. Ifeilprin......................
Musical instrument, mechanical, O. Spaethe Nut lock, L. D. Best..
Nut lock, C. H. Denis
Oil can, C. B. Wilson
Oil cheth

 $\&$ W. H. Hoyt.Oseillatingengine. I. Griscom. Overalls, C. Adler
Overalis, C. Ader
Package carrier or eleator, end less. o. N. Eaton
Packing valve stems for steam and other engines Pan. See Evaporating pan.
Paper matrix for stereotyping, B. B. Huntoon...
Photographers, background frame for, G. H Richards
Picture sham holder J. J. Kelsey
Pillow sham holder, J. J.
Pillow sham holder, J.A.
Pipe. See Tobaceo pipe.
Pipe cutter, A. Saunders (r)
Planter, eorn, L. Scofield.
Planter, eorn, L. Scof
Plow, B. S. Benson \ldots
Plow. F. B. Hunt
Plow. Y. B. Hunt..
Plow, P. Petersen.
Plow, N. Sanders.
Plows, device for attaching roller colters to. H Pocket guard, F. W. Brooks...
Pole, vehicle, II. H. Richards.

Printing press, J. M. Jones......
Pulley, sasb cord, J. K. Clark ...
Pump, Johns \& Gage.
pump, force, M. L. G. Whe.e.er...
Punehing machine, w. C. Barr
Quartz crusher, C. P. Stanford...
Rack. See clothes rack.
Railway brake, fluid pressure, A. Wenger........
Railway brakes, electric apparatus for working Railway, cable, W. McCall....
Railway spike, J. H. Morgan Railway spike, J. H. Morgan
Railway switch, T. H. Fennell Railway tracks, machinery for laying, D. S. Moor Reamer. A. Saunders.... Reel. See Fishing reel. Regenerative furnace, W. Swindell.
Register. See Gun
Register. See Gun register.
Relay and sounder, C. G. Burk Ring. See Finger ring. Finger and scarf ring. Rod. See Stair rod.
Roller mill. N. W. Holt Roller mill. N. W. Holt. .
Rolling mill, J. Thomas. Running gear, Buckler \&
Saddle tree, M. Sedlacek.

Scouring coffee, Hungerford

Scraper, road, S. Pennock (r)
screen.
Screw machine, metal,
Seat. See Wagon seat.

Sewing muchin. Erwin.
 Sewing machine needle hole. W. W. Abbott

wing machine. wax thread, D. H. Campbe
Shade, revolving prismatic,
Sheller. See Corn shiler.
Sodium hypossulphite, appar
ing, whitmore \& Pratt.
Pole edge burnishin

```
                ..........
                    ..........
```

Vapor burner, J. F. Church..
Vat. See Cheese vat.
Vehicle, G. M. F. Molesworth.:
Vehicle two-wheeled, 0 . Iobert.
Vehicle two-wheeled, o. Hebert.
Violin shoulder rell for, scott \&
Violin shoulder rest, F. L. Becker..
Wagon seat, S. Bowers
Wagon tail board, L. A. Bringier.
Wardrobe hook, R. Hayden
Watch, A. Heberle...
Water closet. D. T. Bostel
Water closet, W. M. Sack..
Water pipe valve, W. Kaiser
Wire stretcher, H. H. Hutchins........
Wood pulp, manufacture of, G. Wern
DESIGNS.
12838,148
$.252,889$
2
$9 \begin{aligned} & \text { Wood pulp, manufacture } \\ & \text { Wrench, w. O'Connell, J }\end{aligned}$
Carpet. H. Christ.
Carpet, H. Erbs.
carpet, W. J. Gadsby..
Carpet, R. P. Hemming
Carpet, E. Poole........
Carpet, C. W.
Clock, F. H. Hotchkiss
Jorset, I. Rosenberg
Jlate,
Plass, C. G. Summers...
TRADE MARKS.
Bitters, A. F. Dennler
Brandy, Martell \& Co.........
Cigarettes, P. A. Estanillo...
Cigarettes, Kinney Tob
Cigars, Alles \& Fisher
Cigars, M. Jané..
Cigars, J. Valdés
Cigars, cheroots,
Company
Cigs, cheroots, cigarettes, and smoking tobacco,
Kinney Tobacco Company..........9,070, 9.073 , 9,
Cigars, cigarettes, cheroots, and plug, smozing, an
chewing tobacco, Kinney Tobacco Company..
Cigars, cigarettes, $9.069,9,072$,
Kinney Tobacco Company..
igars and cigarettes, cheroots, smok
ing tobaceo, and snuff, L. C. Frey
Cigars. cigarettes, cheroots, smoking and chewing
${ }^{253,1}$
$.253,109$
252,874

2533,078
253,019
253,020
253,025

Oils, machine, W. McBain.
Perfumery and Florida wat
 all other goods refined, distilled, made, or com-
pounded from crude, Cleveland Refining Company............................. $\ldots ~$
Sewing cotton and thread, J. Brook \& Brothers.... Soap, J. B. Williams \& Co.......................... ... 9,062
Whisky, D. A. Jenrings........ 9.057 English Patents Issued to Americans. From January 24 to January 27, 1882, inclusive
Aniline, producing, E. D. Kendall, Brooklyn, N. Y. Bolt for securing rails, T. J. Bush, Lexington, K Electric cables, , P. B. Delany, New York city.
Electrical conductor, H. A. Clark, Boston, Mass. Electric light, Union E. M. Co., New York city.
Firearm, W. Trabue, Louisville, Ky. Fire extinguisher, H. S. Maxim, Brooklyn, Y.
Horses, apparatus for driving, E. W. Johnson, Bosto Mass.
Piano player, automatic, c. N. Andrews, Boston, Mass. Pen, stylographic, G. I. Carleton, New York
Railway signal, W. W. Gary, Boston, Mass. Sewing machine, brogress of, J. McAdams, Boston, Mass.
Ships, arresting pren
Sping Spinning machine spindles; G. H. Miller, Pawtucket, K. I.
'Telephone transmitter, J. Olmstead, N. Y. Wind instruments, Autophone Company, Ithaca, N.
Window supporter, P. W. Blythe. Boston, Mass. gatroxis mentr. Inside Page, each insertion -- $\boldsymbol{g} \boldsymbol{5}$ cents a line
Back Page, each insertion $\mathbf{- 1 . 0 0}$ a line. Engravings may hear advertisements at the same rat
per line by measurement. as the letter press. Adver
tisements must be received at publication office as early as Thursday morning to appear in next issue.

Reliable Live Canvassing Agents

 SONOROUS VIBRATIONS, PRESENTA-

 VACCINATION OF ANIMALS.-By Prof. Pasteur. An address before the. Internatic al Medical
Contress, rringinto notice a new advance in the etuy
of Microbiefas applied to the prevention of transmissibl

HIRAM SIBLEY \& CO.

logue for 1882, containing a-
full descritive Price-List of
Flower, Field
SEEDS
Cid Immortelles, Gladiolus,
anilies, Roses, Plants, Garden
Implements. Beautifully illus-
ROCHESTER,N.V. \& CHICAGO,ILL

MINERAL WOOL.
minkal Wool.
Hzivizwaz?

THE BIGEEST THMWG OUT Hismetid Rook
SAWS How to straighten and gumall dinds. Adidress.

 CONSTRUCTION OF STEREOSCOPE WATCHES.

CYPRIEN M TESSIE DU MOT AY - BY

105 Elegant New Stilif Coramo Cards. name in Gold and
PATENTS SOLD

= PATENTS.

MAssin. MUNN \& CO., in connection with the pubmino of he scientific ambrican, continue to exfor Inventors.
In this line of business they have had thirty-five vears' experience, and now have unequaled facilities for the preparation of Patent Drawings, Specifications, and the prosecution of Applications for Patents in the Mnited States, Canada, and Foreign Countries. Messrs. Copyrights for Books, Labels, Reissues, Assignments,
and Reports on Infringements of Patents. All business intrusted to them is done with special care and promptness, on very reasonable terms.
A pamphiet sent free of charge, on application, containing ful information about atents and how opro
cure them; directions concerning Iabels, Copyrights. Designs, Patents, Appeals, Reissues, Infringements, As. signments, Rejected Cases, Hints on the Sale of Pa-
We alko send, free of charge, a Synopsis of Foreign Patent Laws, showing the cost and method of securing
patents in all the principal countries of the world. MUNN \& Co., Solicitors of Patents, BRANCH oficce ${ }^{261 \text { Broadway, New York. }}$-Corner of \mathbf{F} and 7 th streeta,

Every Man His Own Mechanic.
 WATCHMAKERS.
Before buying lathes, see the "Whitcomb," made
MERICAN WATCH TOOL CO., Waltham, Mass.
Hancock Inspirator,
THE BEST BOILER FEEDER KNOWN. Over 22,000 in use on Locomotive, Sta THE HANCOCK INSPIRATOR CO.,
$15 c$ cer

Steel Castings

ROOFINC.

ENG MOSS ENGRAYING CO. 535 PEARL ST. NE WFYORK. Box 2 	

WOODWORKING MACHINERY,

MTRERPD manteactureins of
WIREROPE: T GUPRING CO WIRE ROPE, BRIDGE CABLES, SHIP RIGGING,

Holly Water Works,
 ноLI MFG. CO., LOckPORT, N.Y.
 300 Chaice . Foticar Selections for Autoraph

VOSS'S INDUCTION ELECTRICA

NEW YORK BELTINGAND PACKING COMP'Y.

(EMERY WHEELS

\qquad jois n.

ROCK BREAKERS AND ORE CRUSHERS.

Every Mechanic Needs a Good Knife, and Here It Is!

ROOT'S NEW IRON BLOWER. (1)

POSTITVE BTASB IRON REVOLVERS, PERFECTLY BALANCED, P. H. \& F. M. ROOTS, Manufacturers,

 SEND FOR PRICED CATALOGUE.
 SPEAKING TELEPHONES. the anerican behi telephove conpany

OPIUM HABIT EASILY CURED!

an of diphtheria-by

volatey w. mason \& co.
PRICTION PULLEYS, CLUTCHES. and ELEVATORS:

Gold, Silver, and Nickel Plating.

 THE BAKER BLOWER.

The rerolvinf parts are
accurately Ba alancel.
wimbrinm itar
 ON 30 DAYS' TRIAL! Dr. Dye's Electro-Voltaic Belts, Suspensories,

voltaic belt CO., Marshall, Mich.

Aluertisements

RESPONSIBLE AGENTS WANIED.

New York Beting \& Packing Co. SPEGIAL NOTICE.
Owing to the GREAT FIREF in the "World" building, our Warehouse has been removed to INO. 29 PAFIE FROT, a few doors from our old stand. TOOPBM PATEINT
Asbestos Lined Removable Covering
 LITTLE WONDER.

EJECTORS

Elevating Water anll Conreving Linuils

 Nes, Chemical Works, etc. send for illus. catalogue
NATHAN E DREYTUS,

ICE MAKING MACHINES, COLD AIR MACHINES,
For Brewers, Pork Packers, Cold Stor age Warehouses, Hospitals, etc. Send for Illustrated and descriptive circliars
PICTET ARTIFIClat ICE CO. (limited),
142 Greenwich Street,

ERICSSON'S
Nev Caloric Pumining Engine
DWELLINGS AND COUNTRY SEATS. Simplest cheapest, and most economical pumping engine
for domestic purposes. Any servant girl can operate
fuso DELAMATER IRON WORES No. 10 Cortianult Street, Nev Tork
 $\underset{\text { DENCE }}{\text { W. A. H. HAR }}$ I. PROVIDENCE, R, HA RiRIS-CORIMNS ENGINE Stevens' Roller Mills, gradual reduction of grain THE JOHN Manufactured exclusively by

STANDARD WASHER-SCRUBBER

and Shaped Diamond Carbon Points, indispensable for
Truing Porcelain, Hardened Steel, Chilled Iron, and Paper Calender Ropllis. Practical Mechanics and Paper
Makersusing them pronounce thin a marvel of the age
fore facioncy and dranily doing that which no steel
tool can do. After turning the Rolls, when inspected by
now xtensively used in Rolling and Paper. Mills. aothe
no whis
in thisountry and in Europe
to JOHN DICKINSON, 64 Nassau Street, New York.
BLISS'S AMERICAN WONDER PEA.

Slafts, Pilleys, Hangiam, Etc. WIM. SELLEERS \& COM, COM York. Pyrometers, $\stackrel{\text { For showing hat }}{\text { gent }}$

"The 1876 Injector."

MACHINISTS' TOOLS.
 new haven mand Now Haven, con

COLUMBIA BICYCLE
 THE POPE M'FGG CO, 597 Washington St., Boston, Mass.

IRIDIUIM:

THE HARDEST METAL KNOWN.
 the american irititm co., KORTING UNIVERSAL INJECTOR

 HARTFORD
STEAM BOILER
Inspection \& Insurance COMPANY
W. B. Franilin.V. Pres't. J. M. Alden. Pres't J. B. PIERCE. Sec'y

RRADIEYS GUSHIONED HAMMER
 bradieyrgompany syracusen
 C. J. GODFREY \& SON | USE MACDINER Y |
| :--- |
| Made by BROWN |
| $M F G$ CO., |
 Pryy

§rientific Americam
The Most Popnlar Scientific Paper in the World. Only \$3.20 a Year, including postage. Weelily.

This widely circulated and splendidy illustrate paper is published weekly. Every number contains six
teen pages of useful information, and a large number of original engravings of new inventions and discóveries, representing Engineering Works, Steam Machinery, Chemistry, Electricity, Telegraphy, Photography, ArchiAll Classes of Readers find in the Scievtiric AMERICAN a popular resume of the best scientific in formation of the day; and it is the aim of the publishers to present it in an attractive form, avoiding as much as possible abstruse terms. To every intelligent mind,
this journal affords a constant supply of instructive reading. It is promotive of knowledge and progress in every community where it circulates. Terms of Subscription.-One copy of the SCIEN-
TIFIC AMERICAN will be sent for one year -52 numberspostage prepaid, to any subscriber in the United States or Cants by the publishers; six months, $\$ 1.60$, thre cents by the
months, $\$ 1.00$.
Clubs.- One extra copy of the SCIENTIFIC AMERI-
CAN will be supplied gratis for every club of five subscriber at $\$ 3.20$, rate. or one year, postage prepaid, to any subscriber in the United States or Canada, on receipt of seven dollars by the publishers.
The safest way to remit is by Postal Order, Draft, or
Express. M oney carefully placed inside of envelo securely seaied, and correctly addressed, seldom goes astray, but is at the sender's risk. Address all letter MIUNTN \& CO

261 Broadway, New York. To Foreign Subscribers.-Under the facilities of by post direct from New York, with regularity, to sub British colonies; to France, Austria, Belgium, Germany. Russia, and all other European States; Japan, Brazil. Mexico, and all States of Central and South A merica
Terms, when sent to foreign countries, Canada excepted, \$4, gold, for SCIENTIFIC AMERICAN, one year: $\$ 9$ gold
for both Scientific AMERICAN and SUPPIEMENT for one year. This includes postage, which we pay. Rem
by postal order or draft to order of
MUNN \& Co 261 Broadway, New York.
PRINTING INKS.

[^0]: The Protecuive Effect of Vaccination.
 Dr. Henry Tomkins, medical superintendent of the fever hospital belonging to the Manchester Royal Infirmary at Monsall, in a paper which he read recently at Owens College, said: "The most striking of all evidence is, perhaps, that derived from the smallpox hospitals themselves. Here

