a Weekly journal of practical information. art. science. mechanics, chemistry and manufactures.

THE HUDSON RIVER TUNNEL-NEW YORK END.
The work of excavating the railway tunnel under the Hudson River between New York and Jersey City is going on rapidly and successfully. The working on the Jersey side proceeds in the manner heretofore described and illustrated in this paper, both headings of the (double) tunnel having been advanced two or three hundred feet since our last mention of the work. The headings are now about eight hundred feet from the entrance, the material to be pierced remaining the same-a more or less tenacious river silt.
The sinking of the caisson on the New York side, at the oot of Morton street, is progressing satisfactorily. The caisson is now down nearly to its final position, the mode of working presenting no strikingly novel features, though here have been some changes in details, to adapt the pro cesses employed on the other side of the river to the different material encountered here. On the Jersey side the earth, as our readers know, is a compact clay. On this side of the river the caisson has to be sunk through sand and gravel carrying small bowlders. The clay is puddled to a creamy consistency and forced to the surface by the pressure of air maintained in the tunnels. The sand, on the contrary, is blown out dry, the coarser gravel and stones being hoisted out in buckets by a method to be described further on.
A view of the outside of the caisson and its sur-
feet by 29 feet 6 inches; top, 46 feet by 27 feet 6 inches; height, 26 feet. The interior space, 23 feet high, is divided by a floor, as shown in Fig. 2. The excavation is made in the lower space, the mixed sand and gravel being shoveled to the foot of the pipe shown on the left. The rush of air up the pipe carries all the finer material. The coarser stuff is raised to the floor above, shoveled into the cylindrical ceptacle shown in the engraving, and then raised to the urface through a shaft at the top
When the door leading into the caisson is open the air pressure keeps the door to the shaft firmly closed. When a sufficient amount of gravel and stones has been shoveled in, the door (before which the workman stands in Fig. 2) is closed, and the excess of air in the lock is allowed to escape hrough a valve into the shaft. When the pressure is reduced to that of the outer air the haft door opens, and he workmen proceed o hoist in buckets the material to be removed. This coarse material is used to fill in the cribwork over the caisson.

At the bead of the ladder, in the upper right-hand corner of Fig. 2, is the passage to the air lock used by

4
aqueous structure. We have the largest wooden caisson ever used and it cost less money. We have long since demonstrated the practicability of the work, and can no longer be taken by surprise in any difficulty."
At the bottom of our illustration is a sectional drawing of the river and its bed, showing the line of the tunnel and the progress made; also the nature of the material to be encountered. As the greatest depth of the river is near the New York shore, the grade at this end is steep.

Srientific Ammiran.

HSTABLISHED 1845.
MINNN \& CO, Editors and Proprietors.

PUBLISHED FEEKLI AT
 NO. B'Y PARK ROW: NEW YORK.

O. D. MUNN.
A. E. BEACH.

TERINS FOR THE SCIENTIFIC AMERICAN.

 One copy, one year postage included....One copy, six months, postage included
One copy, six months, postage included 160.160
Clubs.-One extra copy of THE SCIENTIFIC AmERICAN will be supplie gratis for every cuub of five subse ibers at $\$ 3.20$ each : additional copies a same proportionate rate. Postage prepaid.

The Scientific
The Scientific American Supplement
is a distinct paper from the Scientificamerican. The SUPpl.Ement
is issued weekly. Every number contains 16 octavo pages, uniform in siz with ScI ENTIFIC AMERICAN. Terms of subscription for SUPPLEMVNT,
and with SCIENTIFIC AMERICAN. Terms of subscription for SUPPLEMENT,
$\$ 5.00$ a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all news dealers throughout the country.
Combined lates. -The ScIENTIFTC
Combined Rates. - The Scientifte American and Suppiempnt
will be sent for one year postage free, on
receipt of seven dollars. Both will be sent for one year postage tree, on receipt of
papers to one address or different addresses as desired.
The safest way to remit is by draft postal order, or registered letter.
Address MUNN \& CO . 27 Park Address MUNN \& CO.. 37 Park Row, N

NEW YORK, SATURDAY, FEBRUARY 4, 1882.

TABLE OF CONTENTS OF

THE SCIENTIFIC AMERICAN SUPPLEMENT,

 NO. 318,
For the week endine February 4, 1882

Price 10 cents. For sale by all newsdealers.

CRIMINAL NEGLECT IN RAILWAY MANAGEMENT.
On the evening of January 13, an Albany express train on the Hudson River Railroad, drawn by two locomotives and bound for New York, was stopped by an accidental or unauthorized application of the air brakes just after the train had passed a sharp curve and a deep rock cut near Spuyten Duyvil Station, at the upper end of New York Island. The rear of the arrested train was shortly after run into by a regular train known as a Tarrytown special, also bound for New York. The rear car of the express train was wrecked by the collision and quickly fired lyy an overturned stove. Seve-
ral passengers were instantly killed, and others, caught and ral passengers were instantly killed, and others, caught and eight lives were lost, including that of Senator Wagner, in ventor of the drawing room cars which go by his name.
A very careful investigation of the conditions and causes of the disaster was made by a coroner's jury, largely composed of civil and mechanical engineers, resulting in a verdict which is quite exceptional in its sweeping condemnation of the conduct of the trainmen and the manarers of the road, who were individually held responsible for the loss of life through their criminal neglect of duty.
Specially remarkable and encouraging are the findings of the jury relative to the culpability of the superintendent of the road and the officers of the New York Central and Hudson River Railroad Company: the former in neglecting to provide efficient safeguards against accident at a peculiarly dangerous part of the road; the latter in neglecting to provide suitable implements for the rescue of passengers in danger, and proper means for extinguishing fires on the trains, and in not establishing the competency of their em ployes ly proper mental and physical examinations to test their qualifications for the responsible and critical duties imposed upon them.

And, as a further expression of their opinion, the jury affirm that, with the experience of fifty years of railroad management, and with the appliances in general use for the prevention of like disasters, there appears to be no palliation whatever for the criminal carelessness and disregard for human life exliibited by the employes of the company. The conduct of these employes removed this calamity from the chapter of accidents, making the result of destructive agencies at work as much a certainty as the discharge of a piece of artillery. The only surprise is that the slaughter was not greater. It coulel not well have been less."
The evidence by which the justness of this verdict was supported and made imperative was not only overwhelming in its sufficiency, but it clearly indicated a general indifference to the safety of passengers on the part of the co iductor and the rear brakeman of the express train, and the super intendent of the road, that is little less than appalling
It remains to be seen whether the action of the grand jury and the courts in criminal proceedings against the guilty parties will be such as to discourage similar misconduct and negl
the future
The safety of the arrested train in an unusually dangerous position devolved upon a train man who could not read, and who testified that, out of forty-five or fifty similar stoppages of the train while he had beeu rear man, he had gone back to flag following trains not more than four or five times, and then without instruction from the conductor of the train This time he did not go back, and the disaster was an immediate result.
After the collision the loss of several lives might have been prevented had the train carried water buckets or other means of extinguishing fire, or axes to enable those unhurt to open the side of the burning car and release those who were wounded or caught in the wreckage. Or the fire itself might have been prevented had the heating apparatus of the car been of a safer sort. Still better, all liability to collision under such circumstances might have been prevented (at least not left to the hazard of an incompetent and negligent trainman) by the use of inventions well known to railway managers, or which would be well known were it not thei deliberate policy to refuse to consider patented invention (the use of which would involve payment of royalty to the patentees) unless personally interested in the patents.
It is too much to expect that the action of the courts in this case will be such as to convince railway managers and superintendents of the impolicy of the course they now pur sue with respect to inventions designed solely to increase the safety of passengers. But one natural effect of easily avoidable slaughters like that at Spuyten Duyvil is to ren der the public mpatient of delays in the adoption of safety appliances; and while it would not be wise to dictate what specific devices shall or shall nct be used on the railways, laws may be passed, in consequence of such accidents, so increasing the penalties for killing or maiming passenger where well known precautions have not been taken to pre vent such disaster, that railway managers will not dare to run the risk of not employing them.

SOLID PETROLEUM

The conversion of petroleum into a solid and safe sub stance for transportation seems to be attracting considerable attention in foreign countries where no pipe lines exist. A St. Petersburg paper says: How shall we transport petroleum? is to-day the most important question for all branches of the naphtha industry, and no less so for the consumers who live at a distance from the wells. All the methods of transporting petroleum hitherto in use, whether
that are placed on ships or cars, possess disadvantages which are sufficiently well known, especially as regards leakage and evaporation, and also the great danger from fire.
These misfortunes which afflict so severely both dealers and consumers and increase the cost of an article of such importance in domestic economy, have been banished at a sin gle stroke by the discovery of a German named Dittmar who has succeeded in converting liquid petroleum into a solid substance. As early as 1872 the idea arose in A merica of solidifying petroleum so as to put it into a more suitable form for transportation, and in that year no less than twelve patents were taken out for this object without any single one of them being found practical. What a range such a discovery would cover, as would change petroleum into a solid wax-like body, can scarcely be conceived of, especially for the Caucasian naphtha industry, where there is a lack of suitable wood for making the barrels, which has a very serious effect upon the industry. The Moscow Zeitung also contains a thorough discussion of the new invention.
Solid petroleum has not yet come into market because the patents have not yet been issued, but a company has been formed in Russia for carrying out the invention. The cost of conversion is not to cost over six kopecs per pud, while the barrels, which will then be superfluous, inciease the price of petroleum by 55 kopecs, but the leakage, which would no longer take place, is included in this. It may be added that solid petroleum can be readily converted into the fluid form for pouring into lamps.
To this and other remarks that have appeared in the tech nical journals the Russian Pharmaceutical Zeitschrift adds the following explanations from the pen of E. Johanson. He found that petroleum when heated would take up a certain quantity of dry soap, and that the solution on cooling would form a jelly, which when ignited drops off in pieces that soon go out like burning sealing wax. Dilute acids, like acetic acid, restore the fluid condition (evidently owing to a decomposition of the soap). In this way he explains all that has been asserted and claimed for the solid petroleum.
Only one and a balf per cent of soap is required to form a gelatinous mass like opodeldoc, but with three per cent of soap it is much more firm. In this operation there separates a small quantity of liquid products that do not become solid, and which probably consist of the lower boiling constitu ents of petroleum. The presence of these in the solid mass is, of course, dangerous, and still more so be cause it always has to be liquefied before it is used. The contents of the wooden boxes used in transportation will soon ooze through the wood and becoming mixed with air will give off explo sive vapors. On this account the author comes to the conclusion that the advantages of solid petroleum are entirely imaginary, as being a tedinus, troublesome, expensive, and dangerous operation.

THE STOCK CAR COMPETITION.

A pamphlet report of the "Doings of the American Humane Association," at its annual meeting last fall, gives in full the report of the judges on the $\$ 5,000$ prize offered by the association for an improved cattle car. It will be found an interesting if not an instructive document to all who took an interest in the competition or retain an interest in the questinns of humanity, health, and economy involved in the ransportation of live stock.
It will be remembered that the judges decided that none of the designs offered in competition met the conditions of the award, and accordingly no prize was given. The money which lad been subscribed for the purpose, with accrued interest, remains in the hands of trustees to be used in aiding the introduction of improved stock cars and in such other ways as may best secure the end desired by the subscriber to the fund.
The principal fact brought out by the competition and the nvestigation of cattle car patents that it called out, was that inventors had already pretty thoroughly covered the ground; in other words, when cattle suffer hunger, thirst, and othe injury on the way to market it is not for lack of devices to prevent such injuries, but because the in ventors of improved cars and appliances have not been able to get the railwas companies to use them.
The report mentions a number of plans and models which were submitted for an opinion of their value, with a distinct provision that they were not in competition, therr owners holding them at a higher figure than $\$ 5,000$. Besides these 636 different competitors submitted 710 models and plans. A large portion of the models and drawings were very crude but some were finely finished and executed. Every State and Territory in the Union was represented, except the Ter ritories of Washington and New Mexico. England, Russia, and Switzerland were also represented, while the Dominion of Canada contributed liberally. Illinois sent 51 models and 18 plans; Pennsylvania sent 47 models and 27 plans; New York sent 43 models and 15 plans; Olio sent 37 models and 18 plans; Indiana sent 21 models and 13 plans; Massachusetts sent 19 models and 26 plans; Michigan was the seventh Iowa eighth, Missouri ninth, and Minnesota tenth in the number of contributions. Among the competitors were eight women, from the same number of States. One competitor was a young lad of fourteen years; and one model was sent by a man who stated that he had never even seen a rilroad train in his life! Seven competitors were preach-

To test the originality of the plans and $m \circ$ odels they Lad o be first compared with the descriptions and claims of the to be first compared with the descriptions and claims of the
111 patents upon stock cars and appliances granted since the
first stock car patent was issued to Lee Swearingen, May 29
1860. All these patents were critically analyzed, and ab stracts were made of their peculiarities. The improvements shown in them were chiefly on partitions or stalls; on feed troughs; on water reservoirs and water mains; on food bins and hay racks; on food lofts; on stanchions for securing the animals; on different methods of tying them; on double decks, for smaller animals; on sprinkling apparatus for keeping the animals cool, and a large number of minor de vices. The list of the more important contrivances given in the judges' report indicates the thoroughness with which in ventors had considered the problems involved, and suggests the thought that had the committee made these investiga tions before the prize was offered and published the results in their first circular, as an indication of work to be avoided, they would have saved the judges a vast amount of labor, and the competitors for the prize a vast amount of fruitless effort in reinventing what others had already patented. The same inventive effort more intelligently put forth might have yielded much more that would have been novel and useful. Incidentally, we may remark that perhaps the chief source of disappointment and waste of time experienced by inventors may be found in their lack of knowledge of what previcus inventors have done. Reinvention may be a good school for the young inventor, but it does not pay as a business. The proverbial " poor devil of an inventor" is usually a man who continually exercises his wits-sometimes very inge niously-in working out problems already solved or proved insoluble. Such unsuccessful inventorsalmost al ways skip the first step in profitable invention, which is to find out exactly what needs to be done and whether the thing is worth doing.
The next work of the judges was to treat the competing plans as they had treated the pre-existing patents. It was soon found that the material to be dealt with contained com paratively few leading ideas, and these were in lines already well worked out. Many had peculiar, often ingenious arrangements, noticeable mainly for their impracticability Lack of novelty, however, appears to have been the princi pal cause of failure to win the prize. A number of the noncompeting devices would seem to have shown more positive elements of merit, especially those for improved methods of feed and watering. These the inventors were unwilling to part with for the amount of the prize. Of the rest the judges part w
say:
"' $T h$
' That after rejecting all designs which did not meet the conditions in other respects, and those which were mani festly impracticable, and those which consisted merely of old and well known devices, it was found that of the remainder there were absolutely none which had not been in some way shown, described, or co vered in the patents already granted. There were very many ingenious devices presented (many of them, of themselves, patentable) aud many designs which were undoubtedly new and original with the competi tors who sent them to us; but the stubborn fact remained that, behind them all were the broad, underlying claims of some patent or patents, redering it manifestly imprudent for the American Humane Association to purchase any one of them."
They add, "as their deliberate conviction, forced upon them against their will, that it is hardly possible for any inventor, no matter how skilled he may be, to invent a successful stock car, in which siock can be properly separated so that they can lie down and rest, and in which they can be
fed and watered, while in motion, without such car infringing on some one or more of the patents granted previous t February 1, 1881, or even previous to January 1, 1831.
The competition, however, the judges think, was not without good results in drawing attention to the subject of the crying need of kinder treatment of live stock in transit. It remains to be seen whether public opinion will be strong enough to induce or compel the great stock-carrying companies to make use of existing appliances, which would ap pear to be sufficient to do away with most of the evils com plained of by the association.

plating cotton with silk.

A method of depositing silk upon cotton or linen thread, not unlike that of electroplating iron or brass wire, has been devised by Hosemann and Ungenad. Instead of silk, wool or feather down may be deposited upon the thread, from an
alkaline solution, without the aid of pressure or electricity. Thread prepared in this way not only looks like silk, wool ttc., but can be dyed, bleached, and dressed like real silk or wool. Silk can also be deposited upon silk, or wool upon wool, so as to improve the quality. Even colored silk, wool, or down can be deposited.
The silk solution is prepared, says the Deutsche Industrie Zeitung, by putting 2 or 3 pounds of silk waste and ravelings into 100 pounds of clear caustic soda or potash solu tion of about 36° Baumé. On warming the solution the silk rapidly dissolves. It is next diluted with more or less dis tilled water, according as a heavy or light layer of silk is to be deposited on the thread. In the first silk bath, in which the yarn or fiber that is to be treated is brought, it is advantageons to dissolve a little good tallow, then boil it up and tir well.
The wool solution is made in the same way. Stiffening like gelatine can be put into the bath at the same time. If
colored wool or silk is dissolved it will be deposited in the same color, of a bright shade, upon the fiber, and thus color it too. After the material that is to be covered has been in
the solution a certain length of time, it is taken out and
dried, and these operations repeated several times, begin ning with a strong solution, and each time using a weaker ne. Finally the goods are left for two hours in a strong bath of sulphuric acid, being moved around in it, and then carefully rinsed out into water. The solutions may be used
cold, lukewarm, or hot, according to the character of the fiber. If the operation is begun in a hot bath, a cooler one is used next, and lastly a cold one. Yarn and fabrics which have been covered with silk are afterwards pressed hot, beaten, stretched, etc., as is customary with siiks, in order to bring out the gloss and luster.
By this process dull, lusterless, and low price silks can be greatly improved by treating them with a solution of handsomer silk of better luster. If silk is repeatedly treated with this solution of silk its weight can be considerably increased. The precipitated silk adheres firmly and perma nently to all kinds of fibers. Fabrics or fibers of flax and cotton, when treated with the solution of wool, acquire the appearance, touch, and feel of carded wool, while China grass and hackled flax has the appearance of worsted.
A very peculiar effect can be obtained by treating it first with a solution of silk and then with wool solution or the everse. In one case we get a silken surface dotted with dul spots of velvet, and in the other a velvety surface with silky glitter. By selecting suitable solutions of each the two can be mixed and applied together. Feathers and down can be dissolved and then precipitated together from the alkaline bath upon spun fibers and yarn just as silk and wool are. In these feather solutions the textile fibers become covered with small lamellæ and particles which give it the appear ance of real feathers. The introduction of this method of converting cotton into wool would afford a new use for woolen shoddy.
P. N .

MARINE ECONOMY.

In an article published in the Journal of the Franklin In stitute, Chief Engineer Isherwood shows that the yacht-built teamer Dispatch, lately purchased for the United States Navy, has such proportions of hull that " no engine power was expended in overcoming the resistance of the water to displacement by the progress of the vessel. That is to say, the difference between the power exerted by the fore body of the vessel in raising the displaced water from the center of gravity of the greatest immersed transverse section of the vessel to the general water level, and the power exerted upon the after body of the vessel in the direction of its motion by the ascending column of water caused by the forward movement of the vessel, were sensibly equal.
It appears from the elaborate description of the Dispatch iven in this article, that she is extremely sharp and bas a ong after body and two bilge keels. Her length is 174 feet, breadth $251 / 2$ feet; mean draught of water 12 feet, greatest mmersed transverse section exclusive of bilge keels $1861 / 2$ quare feet, displacement 55214 tons; total immersed or wetted surface 5,516 square feet. It will be observed that her length is equal to 6.82 times her breadth.
She has 100 square feet of grate, and 2,214 square feet of heating surface in her boilers which are of the internal fur nace horizontal tubular type.
Her engines are condensing vertical and direct acting, having two cylinders $331 / 2$ inches diameter by 33 inches troke of piston, fitted with link reversing gear and an independent adjustable slide cut-off valve. It will be observed that her cylinders were "square." The volume of steam required to fill the clearances and steam passages is 6.97 per centum of that which is required to fill the cylinders with the pistons in place. She has a four blade true screw, 11 feet diameter with a pitch of 19_{10}^{9} feet.
The average performace of the Dispatch in the waters of the Potomac River and Chesapeake Bay under the conditions of ordinary practice, and embracing the whole of her steaming from November 8, 1880, to March 30, 1881, are given in a table, from which it appears that with steam at 491/3 pounds per gauge, vacuum $251 / 2$ inches, cutting off at $0 \cdot 112$, about one-ninth of the stroke from the commencement, she made $9 \frac{9}{10}$ knots per hour, her screw making $591 / 2$ revolutions per minute, and losing 15 per centum of its speed in slip. Thís is the average for 358 hours' steaming in smooth water, when she displaced slightly more than the above first statement, viz., 559 tons, including bilge keels. The cost in fuel was 39882 pounds of anthracite per indicated horse power per hour. The speed of this fine model was not as great as one would be led to expect from the statement of Mr. Isherwood ahove quoted and his description; neither was it as great as at an official trial made with her in Chesapeake Bay, of four and a half hours in one direction, and then four and a half hours in the opposite direction in traight lines, to ascertain her maximum speed in smooth water and its cost in fuel. On this trial a speed of $103 / 4$ knots
was attained with cut-off at the same point and throttle wide open; cost in fuel about the same as in practice. The results ff the trial as well as of her practical operations are rather disappointing, since she appears to be of such perfect proportions none could be more so, indicating that there is something wrong about her screw. Still, accurate and complete data from unbiased sources are very scarce and very valuable to the engineer.
Mr. Isherwood's remarksupon the results rel ite almost entirely to the great cost of the power in fuel, which reaches four pounds almost per horse power per hour.

The cause," he says, "will be found, as might be exected, in the enormous cylinder refrigeration due to the
work of expansion by steam of high initial pressure largely expanding, the point of cutting off being a little beyond oneninth of the stroke of the pistons from the commencement. Under these circumstances, when saturated steam is used with simple engines having cylinders of very moderate dimensions, without steam jackets, as in the Dispatch, the cylinder condensation is excessive and entirely defeats the conomy which might be obtained from the same measure of expansion employed with superheated steam in steam jacketed cylinders of large dimensions. In fact, saturated steam cut off at one-ninth of the stroke of the piston, in cylinders like those of the Dispatch, produces no greater econo"
sion."

It must be borne in mind, however, that although the steam was cut off at about one-ninth of the stroke, yet owing to the volume of nearly seven per centum of the whole cylinder volume of steam in the parts and clearances the steam was expanded only 5.88 times, as stated in the tables of data.
The great importance of cylinder condensation is shown by the following astonishing statement: "The results from the indicator diagrams show that during about the first ninth of the stroke of the pistons, about $571 / 2$ per centum of all the steam entering the cylinders was condensed by their surfaces; including, of course, the surfaces in the steam passages up to the valves."
This is somewhat less strange when, after some discussion, it is shown that " when the pistons reached the end of their stroke the steam supplied by the re-evaporation was sufficient to leave only 22 per centum of the quantity generated in the boilers condensed; so that a large portion of the expansion part of the indicator diagram was due to this re-evaporation."
It seems to be rather an important omission in discussing the grade of expansion that the item of ports and clearances is not given a more important place. Whatever effect this would have had on the above conclusions it certainly shows the important difference in this case between expanding the steam nine times due to cut-off without parts and clearances and a little less than six times when their contents are included.
It will appear perhaps that these cylinders, being very short, ought to be kept at a higher temperature than would obtain in larger and narrower ones, with the same piston speed, initial pressure, and grade of expansion, but it is also a fact that it is impracticable to reduce the value of the ports and clearances for short cylinders to the same ratio of the cylinder volume that is possible in longer ones, which is a very important consideration when discussing the matter of expansion.

A Fog Bow before Sunrise.

The phenomenon of the ordinary rainbow is familiar to every observer of nature. White fog bows, or "fog eaters," as they are called by the sailors, are frequently visible in localities favorable for their formation; and they are generally regarded as indications of clearing weather. A fog bow was observed, writes Mr. H. C. Hovey, on the morning of the 8th of January, from my residence on Fair Haven Heights, near the estuary of the Quinnipiac River, and about 100 feet above the sea level. No rain was noticeable in any quarter, but the valleys were filled with fog, above which the hill tops stood like islands. At exactly ten minutes before sunrise (due at $7: 26 \mathrm{~A} . \mathrm{M}$.), on looking northwest I saw a brilliant arch of prismatic colors spanning the East Rock Range, the highest point of which is 350 feet above the sea. As the sun arose the arch dimiuished in height and vividness, and by the time the orb was visible in the morning sky, the fog bow had vanished.

How the Aurora is Formed.

In a recent lecture by Professor W. Grylls Adams, recently published, the following theory is propounded to account for the observed interrelation of earth currents, magnetic storms, aurora and sun spots. Professor Adams assumes the sun to be a magnet, and infers that changes in his mag netism affect the magnetism of the earth. Further, the sun and moon, by dragging the atmosphere toward them as the earth revolves, may cause that friction between air and earth, and also that evaporation, which together may generate the supply of positive electricity in the air and negative in the earth. "Again," he says, "these tides in the atmosphere will cause the mass of it to lag behind the re volving solid earth, and at a height of thirty or forty miles we have a layer of air which, for air, is a comparatively good conductor of electricity. Here, then, we have, not a lagging of the magnet hehind the conductor, but a lagging of the conductor behind the magnet, and hence, according to the laws of Faraday, we may expect a current or a gradual heaping up of electricity in the air in the opposite direction to the earth's crust." Thus, the regular tidal-waves in the atmosphere would cause the gradual transfer of positive electricity from the poles toward the equator, either as it current or a mass of air statically charged. "When the air is charged up to discharging point we may get the sudden discharges, such as the aurora, in the air and the earth current in the earth; and since the conducting layer of air ap proaches nearer to the earth in the colder polar regions, possibly within twenty miles of the earth's surface it may be found that the discharge of the aurora may even take place from earth to air by gradual, slow discharge, aided, as it may be, by the state of moisture of the air, and by change of temperature and other causes."

IMPROVED SHOVEL PLOW.

The engraving shows an improved shovel plow lately patented by Mr. George S. Agee, of Mint Hill, Osage County, Mo.
In this plow a horizontal bar or beam is welded or bolted to the lower part of the shovel, and is bolted to the end of the curved beam. The upper end of the shovel is se cured to au arm of the plow becin by a bolt, as shown in the sectional view, Fig. 2
The handles of the plow are made adjustable to suit pursons of different height. The bar extending backward from the shovel insures great steadiness in the running of the plow. The forward end of the beam is widened and has three or more holes for receiving the clevis bolt. This arrangement permits o adjusting the plow at any required depth, and when so adjusted it will plow at a uni form depth
All of the parts of this plow, with the ex eption of the bandles, are made of iron or steel, and it is carefully designed with a view o strength, durability, ease of handling; and it is especially adapted to working in trashy ground, as it will not clog under any cir cumstances.

A Beautiful Grass.

From Mr. Andrew Curtis, Peabody, Mass., we bave recently received specimens of a most beautiful and useful grass growing in Mr. Curtis' locality. It is the Phalaris anarensis, and is a native, as its name indicates, of the Canary Islands. It is closely reated to the ribhon grass, or striped grass of our gardens, Phalaris arindinacea, which is a native of swamps. The specimens received from Mr. Curtis are about two feet high, wih short, thick, beautiful heads, somewhat re sembling the heads of some varieties of millet canary birds, mod that from the forty bushels may dut peracre. Cattle are also very fond of the gras nd lay, but the yield has not been usually se large as to attract much attention to it as a forage grass. It produces flowers, according to Mr. Flint's treatise on grasses, in July and August. It must be quite desirable for winter bouquets as it is showy, and retains its color well.-N. E. Farmer.

IMPROVED WIRE FENCE.

The engraving shows an improved wire fence lately patented by Mr. Edward Ruane, of Center Rutland, Rut land County, Vt. This fence is made entirely of metal, and is contrived so that it may be rapidly erected and will maintain its shape in all weathers and under all ordinary circumstances.
A general view of a portion of a fence of this kind is shown in Fig. 1. Figs. 2 and 3 show a portion of one of the posts with the locking device in section in Fig. 3. Fig. 4 is a horizontal section of the past. Fig. 5 shows the end of one of the wires or strips of which the fence panels are formed, and Fig. 6 shows the spring expansion joint and the manner of fastening the strips or wires.
The hollow cast iron posts, A, are provided with as many hollow projections, E , as there are strands or wires in the fence. These projections are provided will bolt slots large enough at the upper end to receive the nuts of the small bolts, and small enough at the lower end to received only the body of the bolt. The fastening of the wire consists of two small plates embracing the wire or strip and clamped against the projection, E , by the small bolt. One of the plates has a small flange formed on its upper edge to protect the joint.
The strips, B, of which the fence panels are formed are of steel, with barbs formed upon the upper and lower edges by cutting diagonally into the edge and bending the pointed piece outward, so as to stand at nearly a right angle with the strip. The ends of the strips, B, are split for a short distance, and may be bent to attach them to a post or to the curved springs, C , as. shown in Fig. 6. These springs compensate for the expansion and contraction of the strips, and while they always keep the strips straight and iaut they prevent any undue strain from coming on the wires or posts. The bot- |is to provide a carcrupling by means of which two cars toms of the posts are of two kinds, one in the form of a can be coupled together and uncoupled without running cone with wings, as shown in the engraving; the other is provided with a removable socket, into which the lower end of the post is inserted and locked by a species of bayonet joint.
This fence may be cheaply made, is easily erected, and possesses the quality of durability, beside being plainly visi ble to animals. This, as every farmer knows, is a matter of great importance.

ENGINEERING INVENTIONS.

An improvement in car couplings, patented by Mr. Reube Jones, of Mountville, Ga., consists of a draw head pivoted in a draw bar, and adapted to be raised or lowered by a lever operated from the side of the car to couple cars of dit ferent heights, the draw head of one car, carrying a coupling link, striking the draw head of the car to be coupled and forcing back a slide supporting a coupling pin until the hole in the slide registers with the hole in the draw head, and the coupling pin falls by gravity through the link, coupling the cars.
An improved snow plow has been patented by Mr. William

AGEE'S IMPROVED PLOW

. Osborne, of Kansas City, Mo. The object of this in vention is to effect the removal of deep snow from railroad racks. The surface of the plow in contact with the suow is kept hot, so that the snow will slide off the surface freely, and will be more or less melted, so as to pack and remain n place when thrown from the track. The plow consist of a frame, inner iron plates, coils of steam pipes, and an outer sheet iron casing.
An improved ditching machine has been patented by Mr. Samuel C. Robinson, of Pemberton, Ohio. This invention relates to improvements in a ditching machine for which Letters Patent were granted to the same inventer June 28, 1881, No. 243,624; and it consists in entirely inelosing both sides of the ditching wheel with suitable plates, to prevent the ingress of dirt into the wheel, and disling the plates rom the rim of the ditching wheel to its center, whereby the thickness of the ditching wheel is greatest at its rim, and the side plates will not interfere with the sides of the ditch in excavating it
An improved car coupling has been patented by Mr. Moses Robeson, of Galena, Kan. The object of this; invention

To construct gutters in cow stables so as to insure cleanli-

 ess the Ohio Farmer says:First drive in your largest or longest cow, and chain her p in the back stall; next, drive in your smallest or shortest cow in the front stall. Then give them meal or other feed in their mangers, and while they are quietly and comfortably eating, seeing that they are standing squarely on their feet, carefully mark the position of the hind feet upon the ground, and draw a line between these points across the entire stable. This line will mark the position for the front edge of the manure gutter or trough. Back of this line dig out a square ditch, 16 inches wide and 8 or 10 deep. Into this drop your prank gutter, which should be made of two-inch plank. The bottom plank should be 12 or 16 inches wide, and the sides from 6 to 8 inches wide, according to the method adopted of spiking them together, so as to leave your manure gutter full 12 inches wide in the clear, and not less than 6 or 8 inches deep. The top of his trough must be well braced at intervals of 8 feet to prevent the pressure of the earth from forcing in the side planks and thus making the gutter too narrow at the top. These gutters must be well cleaned every day while the cows are out for water and exercise, and a slight sprinkliug of chaff or short straw shaken over the bottom for an absorbent, and to keep the cows' tails out of the liquid manure when lying down. The gutter must lave an inclination from the back part of the stable to the front, and a free discharge through the wall of the barn into the barnyard, where other absorbent matter should be ready to receive it. No littering of these gutters would be necessary, were it not for the fact that the passage of the liquid manure will be more or less obstructed or clogged by the solid manure after the stables have been occupied several hours. The platform on which the cows are to stand and lie should also have a slight inclination to the manure gutter. The proper length of this platform I have found to range from six feet in length for the longest cow down to five feet long for the shortest cow. Back of the manure gutter should be a passage way or walk of suitable width for the wheelbarrow and the milkers. These distances will determine the proper dimensions for a cow stable, which is not less than twelve feet in depth, and of any length desired, actording to the size of the barn or the number of cows. The width of the stalls should be from three to four feet. The next best method which I have seen practiced of keeping cows clean in winter is to leave them unchained in box stalls six by eight or ten feet, keeping them well cleaned and ittered every day.

Straw in the Manger.
It is not at all difficult to rot down a straw pile, and by so doing to germinate and kill most of the weed seeds contained therein; by making the stack very flat, so as to catch much water, it rots rapidly, and so soon as it gets once thoroughly wetted, by repiling, it soon heats and decays. But the stack or pile of straw at best only contains carbon and silica in quantities, and these are the most common and least valuable of all the elements of plant food. The quantity of potash, nitrogen, and phosphoric acid is very small indeed, and there is no method by which this pile of straw can in any way be changed into manure containing any more of these valuable elements than were in the stack originally. If we tread this pile down it will only be a pile of wet straw, and if we rot it ever so thoroughly it will only be a smaller pile of thoroughly rotted straw, and at best little better than so much swamp muck. It is onlyby the use of straw as an absorbent, and as a coarse food for fattening animals, and by using with it much rich food, such as corn, bran, oil, or cotton seed meal, etc., that we can change it into a manure that shall really be very valuable to use, and that will largely increase the crops where used. We must not expect that we can raise large crops of grain year after year, and sell the most valuable part, and by any method turn the straw into a manure that shall keep up the fertility of the soil, if we manure only with straw we must expect to grow only straw upon the land. It is unfortunate for any man to be so situated that he cannot afford to raise stock to eat up and trad down the straw, and to be fed richer foods, so as to make a full supply of rich manure. With any system of farming we now have, the land must, sooner or later, become exhausted and cease to yield profitable crops if we fail to return to the soil the essential elements of plant food removed in such crops.-J. S. Woodward, in N. Y. Tribune.

KOHLER'S EXTINGUISHER FOR ARGAND BURNERS

The engraving shows a very simple and effective extin guisher for kerosene lamps, recently patented by Mr. C. H Kohler, of 235 Superior Street, Cleveland, Ohio. The devic answers the double purpose: First, of an extinguisher for use whenever it is desired to put out the light in th safest and most convenient manner without blowing into the chimney or turning down the wick-either of these methods being very dangerous; and, second, of an automatic extinguisher, which insures the instantaneous putting out of the light should the lamp be turned over, thus pre venting the fires which are so frequently caused by kerosene lamps being upset
Many of the accidents resulting in the destruction of life and property might have been avoided lad this safety device been used.

ROHLER'S EXTINGUISHER FOR ARGAND BURNERS,
Fig. 1 shows a lamp with the improvement attached; Fig 2 is a sectional view, showing the manner of operating the device by hand; and Fig. 3 shows a lamp partly overturned, with the extinguisher being operated automatically.
A sleeve is fitted over the outer side of the wick tube and connected by a wire arm with a smaller tube within the wick tube. The lower end of this tube rests upon a support inside the wick tube. Air to supply the flame is admitted to this tube through an opening in its side. A lever pivoted in the side of the burner extends into a slot in the inner movable tube, and has at its outer end an eye, to which is attached a chain carrying at its opposite end a small metallic ball having sufficient weıght to move the connected sleeve and ube so that whenever the ball is dis placed from its socket, in case the lamp placed from its socket, in case the lamp should be overturned, it drops, and in its
fall raises the extinguishing devics and huts off the supply of air to the flame, which then goes out instantly. To insure a direct pull on the lever, the chain passes through an eye formed on the end of a wire projecting from the side of the burner. To operate the device by hand, all that is required is to press on the lever.

IMPROVED DRILLING MACHINE.

We give an engraving of an improved machine for operating vertically reciprocating rock drills for sinking wells, prospecting for minerals, etc. A walking beam is fulcrumed in the upper portion of the derrick, and connected at one end to the drill rope, the other end being connected with a rope that is alternately drawn up and released to give a vertically reciprocating motion to the drill.
At the lower end of the derrick there is a frame formed of four upright parallel bars, two of them being integral with the derrick bars. These bars are conrected together at the top and bottom, forming the frame. In the upper part of this frame the winding frame is journaled. Below this is the crank shaft, having a large spur wheel, which is driven by a small spur wheel on the lower shaft; the latter reoeives its motion from the tumbling rod cf the horse power.

The crank on the middle shaft consists of a straight bar of iron connected at the middle with the shaft, and carrying a slide which moves freely on it, and is conuected with the operating rope extending upward to the walking beam. When the crank completes, or nearly completes, a half revolution after the walking beam is moved so as to aise the drill, the slide slips to the upper of the crank bar and allows the drill to descend. This operation is repeated each half. revolution without lost motion, without any swinging or whipping of the drill rope, and without sudden strains or jerking on the horse traces or machine.
The winding drum receives its motion from the lower shaft through an endless chain, and the lower chain wheel and the small spur wheel are loose upon the driving shaft, and both are capable of being engaged by clutches operated by the hand lever.
This derrick can be used for boring as well as drilling.
The machine is very simple, and possesses all of the qualities necessary to make it effective and economical of power. It is compact and portable, and may be set up and operated with very little trouble.
This drilling apparatus is the invention of Mr. William W. Giles, of Washington, D. C. For further particulars address the United States Manufacturing Company, Washington, D. C.

MISCELLANEOUS INVENTIONS

Mr. Martin W. Speulda, of Springfield, Ill., has patented an improvement in fare registers of that class which are to be carried by the conductor, and operated as each fare is received, to register the number of fares taken. The inven tion operates upon a common general principle, in that it has a pull bar which gives a step-by-step movement to a train of wheels bearing numbered dials, and simultaneously rings a bell at each movement.
An improved nose feed bag has been patented by Mr. Charles J. Gustaveson, of Salt Lake City, Utah Ter. This invention relates to nose feed bags which have perforated bottoms; and the improvement consists in a perforated bottom, in combination with a supporter having protecting cross-stays.
Messrs. Ira Robbins, of Camden, N. J., and David Heston, of Philadelphia, Pa., have patented improvements in machines for grounding wall paper before printing. It consists of devices by means of which the pressure of the im. pression roll on the paper in contact with the grounding roll may be increased or diminished, as desired.
Mr. George W. Golay, of Middle Grove, Mo., has patented improvements in devices for increasing or lengthening the throw of the connecting rod of reciprocating engines, which onsists in the peculiar arrang
of the well-known lazy tongs.
An improvement in sleighs has been patented by Mr . Theodore F. Westervelt, of Mount Pleasant, Mich. The object of this invention is to construct a sleigh in such man ner that greater strength shall be secured to the several parts than is possible where the timbers are mortised, and at the same time repairs can be easily and cheaply made. The invention consists in a sleigh having sockets of peculiar conned with the sockets for supporting the cross beams
An improvement in electric lamps has been patented by Mr. Ludwig K. Böhm, of New York

An improved fishing rod has been patented by Mr. Thoma H. Chubb, of Post Mills, Vt. The invention consists in com bining braid, cords, and ferrules with the circumferentially rooved butt of a fishing rod
An improved cuff or collar fastening has been patented by Mr. Mahlon Loomis, of Lynchburg, Va. This invention con sists in a strip of metal bent at each end in opposite direc tions to form spring hooks, having the inner surfaces roughened or serrated and the curved portions corrugated
Mr. Ludwig K. Böhm, of New York city, has patented an electric lamp of the arc type, in which the carbons are contained in a vacuum chamber of glass. The object of this invention is to provide for convenient renewal of the carbon and insure uniform feed of the positive carbon to compensate for waste. The invention consists in a carbon holder of novel construction, combined with a separable vacuum chamber.

IMPROVED HORSESHOE.
The engraving shows an improved horseshoe having calks that can be readily applied or removed as may be required The shoe is provided at the heel and toe with permanent lugs of wedge form, which are adapted to recesses of simi lar form in the calks. Calks of any required form may be

used in connection with this shoe. They are held in place by pins passing through both lug and calk.
The form of calk may be either smooth or sharp. It has ample strength, and is not liable to be broken. Use tends to tighten the calks on the shoe, and, as there is no wear on the lugs, the shoe will last a long time, the calks being renewed from time to time.
This simple device permits of changing the calks at any ime and place without special tools or appliances.
This useful invention was recentiy patented by Mr. Fran cis T. Robinson, of Lauraville, Md.

Underground Telegraph Wires

This subject is one that may be called new to the great mass of people in the United States, but it is an old subject to practical telegraphers. The first telegraph line built in the United States, which was from Baltimore to Washing ton, was underground. It did not work until it was placed pole above ground, as at present. Telegraph builder ever since been trying to ascertain some means or inven
 ges which are does above ground, without the disadvan difficulties in this have been eagerly sought to be overcome, and ever since the practical working of the electrical tele graph we constantly hear of some new invention or contriv has been discovered in Europe or America that allow underground wires in a cable, or tube, or coating, losure of some kind, to work as easily and as well underground as if placed above ground on poles. We may emphatically say that, up to the presen time, they have all fallen far sbort of what has been claimed and expected of them and that in many instances and circumstances they are an absolute failure, when the most useful and practical instruments for transmission are to be used, and also in long lines. Germany has been laying underground "compound submarine cables" rather recklessly without knowing their durability, and it is thought by practical electricians that, when one wire of the compound series fails, which it may do in a few years, their experiment will be a costly one. It is already proved that there is much loss of speed, and diff culties of sensitiveness and induction and loss of powers of transmission, although the lines are comparatively short. It is eminently a war telegraph system—safety in war, slow in peace. These are the elec trical difficulties which are unknown and unheard of by the popular ear. They effectually consist of the non-user or aboli tion of the automatic instruments by
which many hundred words are transmitted and recorded in a minute, and also the abolition of the duplex and qua druplex instruments (by means of the latter four messages are sent over one wire at one time, thus answering the pur pose of four distinct wires), and the duplex answering for two distinct wires, and last of all, which has suddenly come upon us, the telephone, with its still more sensitive apparatus.
After all these electrical difficulties are overcome or dispensed with, the practical difficulties still remain, the main one being that of cost, while convenience must also be con sidered.
In this practical age convenience is regarded more than cost in many instances. In this instance the cost of placing all telegraph lines under ground in cities and towns with anything like the present convenience and facilities will be such as to make it too expensive for popular use, which in the end would be a practical prohibition of its use.
Without detailing the manner of its construction in Lon don, which is on the elevated railroads and taken down at stations, and Paris, which is in its sewers, we can say that none of the advantages and modes of its construction in those cities exists in any of our American cities.
We will take New York city as an example. In Paris there are only 80 miles of underground lines. In New York city there are 9,000 miles of line in the streets and on house-tops Of these over 3,500 belong to and are used by the Metropolitan Telephone Company. The Gold and Stock Telegraph Company have many miles upon which the automatic instruments are used. The Western Union has 1,200 miles of wire, of which only about 300 miles are on the main trunk lines, and the remaining 900 supply the little local offices. It is the many local offices and places where instruments are se that is to be considered in this question of laying under ground cables. If one man in a block desired communica tion by telephone, or the use of the Messenger Telegraph or Stock Indicator, the whole expense of digging a trench from the main office must be considered. This would greatly narrow their use. The expense for digging the trench for one wire only would be almost as great as for many of them. Then again there must be places near together on the lines by which any wire could be taken out for repair and replaced if necessary.
The Western Union Telegraph Company has now three lines of underground cables in New York city. They ar in three iron tubes about three inches in diameter each, and lead from the main office of the company to Pier 18, foot of Cortlandt street, North River. In these three tubes is a cable of thirty wires each. These are conducted under the Hudson River to Jersey City.
When first laid, about five years ago, there were only the two tubes and the two cables in them. The expense of lay ing them from the main office to the river was at the rate of $\$ 15,000$ per mile, the cables each costing at the rate of $\$ 5,250$ per mile. About one year ago some of the wires in the cable failed to act, and one cable was entirely taken out and replaced by a new one. Another tube and cable was also then placed in the trench. The expense of often replacing must also be considered, for if some of them fail it may be necessary to entirely renew the cable. The sum of $\$ 7,500$ per mile for laying underground cables is great when compared with the cost of a line of poles in the city, which rarely exceeds $\$ 150$ per mile, capable of carrying many wires. In places where smaller and shorter poles can be used the expense is very much less, even as low as $\$ 75$ per mile in cities, and much less in the country. Increase of expense implies a necessary increase of rates. The interest on the cost of a mile of underground line will be suf cient to build at least four new lines the same length every year, which will last from twelve to fifteen years each, the wire costing only $\$ 15$ per mile.
The popular objection urged against the present system is that the poles and wires are "unsightly." When this is closely examined it shows it to be mere clap-trap and with out any reasonable foundation, and it will more strongly apply to every means of economical and convenient carry ing of merchandise and passengers in cities, without any of the chief annoyances which appertain to the latter.
Surely, the means of the conveyance of intelligence is as important and as great convenience in a community as the conveyance of persons and of merchandise. Indeed, this mode of carrying news saves much personal travel by messenger or otherwise.
The day has not yet arrived when underground telegraph lines in American cities will prove a convenience and be a popular success, as some will try to make others as well as themselves believe. The facts of science are stubborn things and cannot be removed or dispensed with by pupu lar opinion or legislation. -Journal of the Telegraph.

M. Gaiffess Sulphate of Copper Battery.

This is an improvement on the Daniell element, and is in tended to put a stop to the reaction of the zinc on the sul phate of copper when the circuit is open The apparatus consists of a glass cell, at the upper part of which is the zinc, constructed as in a Calland element. The central vessel has a porous upper portion fixed upon a non-porous lower portion, which may consist of an ordinary drinking glass. The copper cylinder placed in the central cell has a prolongation which is bent down so as to reach down to the bottom of the outer cell, where it terminates in a ring. This element is charged by means of a concentrated solution of zinc sulphate of magnesium sulphate, while some crystals of copper sul-
phate are placed in the bottom of the central cell. On dis solving, the copper sulphate first saturates the liquid in the non-porous part of the central cell, and when the copper solution reaches above the top of the non porous part it tra verses the porous cell, and falls, in virtue of its superior density, to the bottom of the outer cell, beyond the reach of the zinc. This passage of the copper sulphate is effected slowly, and the circuit may be left open for weeks without any deposit of copper being perceived on the zinc. When the circuit is closed this element first reduces the sulphate of copper which has fallen to the bottom of the outer cell, the liquid in which soon resumes its original purity, and the action then continues as in an ordinary Daniell element.

RHEOMETRIC APPARATUS

by marcel deprez.
As an example of the arrangements of rheometric apparatus belonging to the different classes cited in a preceding article, I shall describe two instruments that I had con structed some time ago. The first of these (Fig. 1) consists of a soft iron needle mounted on a horizontal axis movable

about two knife edges, and inclosed within a galvanometric helix, B B. The helix is placed within a pair of large bobbins, A A, wound with a wire of pretty large diameter, into which is sent a current from a Bunsen pile. The axis of the ron needle termitates at C in an index, and in a system of small masses movabie on screws, the purpose of which is to balance the whcle.
To employ this instrument, there is first sent into the wire of the bobbins, A A, a current from some energetic and constant source, such as a Bunsen element. The result is that the soft iron needle becomes magnetized to saturation, and places itself spontaneously in such a manner as to coincide with the axis of the bobbins, A A; but it is proper to emark, also, that it is directed at the same time as magnetzed. If, afterwards, the galvanometric helix, B B, be put in relation with any source whatever, the needle will behave ike the magnetized needle of an ordinary galvanometer, and its deflection will depend upon the intensity of the second current and of the directing force developed on it by the bobbins, A A. Now, this directing force may be rendered as feeble as may be desired in two ways: (1) by in reasing the diameter of the bobbins, $\mathrm{A} A$; and (2) by actng upon one of the regulating masses in such a way as to place the center of gravity over the axis of rotation until the equilibrium is almost indifferent, when the bobbins, A A, will be traversed by a magnetizing current, while the botbins, B B, will be traversed by none at all.

It will be seen, then, that this instrument is a galvano meter in which the needle may be magnetized with great energy, while the directing force may be rendered very feeble, these being conditions that we always try as much as possible to obtain.
It will also be seen that it constitutes likewise a compare of currents; that is to say, an apparatus giving the relation of the intensities of two currents and not their absolute value. In fact, if two currents are simultaneously sent, one nto the bobbins, A A, and the other into the galvanometric helix, B B, and if care bas been taken to destroy every species of foreign directing force, by causing the center of ravity of the movable system to coincide with the axis of meridian, the soft iron needle will assume a position of equilibrium, which will not change whether each of the cur
rents be doubled, tripled, or quadrupled. But this position of equilibrium will change, on the contrary, if the intensity of a single oue of the currents be altered. In order to demonstrate this property experimentally, the two bobbins, A A, B B, may be united in derivation on a same curve: when, the law of the division of the current between the two bobbins depending only on their respective resistances, the deflection of the needle will be seen to remain the same as long as these respective resistances are not altered, what ever be the inteusity of the total current. If, on the contrary, by any means whatever, the resistance of one of them be altered, the position of equilibrium of the needle will im. mediately change. Owing to this property, this instrument might become a measurer of resistance which should indt cate, by a simple reading, the resistance of a wire into which was sent a current of any intensity whatever.*
Becquerel's Balance, modified.-The second instrument is based on the same principle as the Becquerel balance. It consists (Fig. 2) of a powerful magnet, A A, whose arms are surrounded by the two bobbins, B B, in such a way that the distance between the pole of each arm and the lower armature of the corresponding bobbin is equal to about a third of the total length of the latter. The two bobbins are mutually interdependent, and are connected with a knife edge, C, supported by the small lever arm of a steel yard, C F , whose long arm carries a weighing slide, F , to which may be hooked a supplementary weight, G. The magnet is stationary and the bobbins movable, and receive the current, either through mercury cups or through a very fine and flexible wire, wound in the shape of a helix, whose elastic force is altogether feeble and yet constant. This apparatus possesses an advantage over the Becquerel balance in having a very intense magnetic field, while in the latter the magnets are formed of small iron bars 4 to 5 millimeters in diameter. It might be objected that the weight of the bobbins being much more considerable than that of the bars of the Becquerel balance, there would be lost, as a consequence of this surcharge imposed on the balance, the benefit resulting from the increase of the mechanical action of the current. But it is necessary to remark that the weight of the entire movable portions of the balance is greater than that of the movable bobbins, and that, consequently, in these two instruments, the balance is placed perceptibly under the same conditions of sensitiveness, while the absolute mechanical effort, at an equal intensity with the current, is much greater in this apparatus than in that of Becquerel. The model shown in Fig 2, although roughly constructed, has in fact exhibited a remarkable sensitiveness. I think, then, that this apparatus, when better made, might render genuine services. La Lumière Electrique.

MECHANICAL INVENTIONS

An improvement in machines for making dough into cakes has been patented ry Mr. Daniel M Holmes, of Cincinnati, O. The object of the inventor is to secure an even and constant feed and pressure to the valves and cutters. With the use of the ordinary dough box and plunger in cake macbines considerable time is lost in the intermittent action of the feed. Mr. Holmes has, therefore, provided means of accomplishing ail even and constant feed and delivery, whereby the time usually consumed in recharging the machine is saved, and a consequently larger yield of goods in a given time is effected.

Mr. Henry H. Norrington, of W Bay City, Mich., has patented an improvement in the class of punches or perfo. rating stamps designed for use in banking and other similar establishments for the purpose of puncturing or cutting out portions of a check or other written instrument to prevent fraud by alteration. This inventor has obtained Letters Patent of the United States for stamps or punches of this class, and the present invention is in the main an improvement upon that which forms the subject of patent N o. 223,161, granted to the same inventor December 30, 1879.
Messrs. Levi L. Lukens, of Chester, and Henry Holcroft, of Media, Pa., have patented an improvement in shuttle boxes for looms which consists in a peculiar construction and arrangement of the parts, by which the second spindle, as ordinarily used, is dispensed with, which permits of an increasing width of the picker strap. There are other points in the invention which cannot be described without an engraving.

An improvement in the class of machines adapted for sol dering the heads of paint cans and other cylindrical vessels to their bodies has been patented by Mr. Henry R. Robbins, of Baltimore, Md. It is more particularly an improvement in machines which are adapted for using solder wire, the latter being wound upon a reel, from which it may be drawn off as required and fed into contact with the heated soldering irons and can seams. In this machine the wire reels and mechanism for drawing off the wire are operated simulta neously with the rotation of the can by means of friction gearing, which is put in operation by treadle mechanism. The soldering appliances are also arranged for a certain simultaneous and automatic action. The soldering irons are pivoted and adapted to vibrate between the can-holders and an open furnace, so that they may be swung forward to press on the can seams, and backward to enter the furnace, where they are heated preparatory to the next operation
An improved car brake, patented by Messrs. William A. Kearney and Joseph G.. Davis, of Logansport, Ind., consists in a novel arrangement of a cam for drawing the brake chain

- Mr. Carpentier has recently constructed a resistance measurer bared
with an mereasing leverage, and in levers, pawls, and ratchets for operating the brake.
Mr. William W. Whitmore, of Defiance, O., has patented improvements in that class of tire setters and coolers in which a table carrying a wheel is raised and lowered in a tank containing water to cool and set the tire. The inventor dispenses with the center post ordinarily employed, and is readily enabled by operating the lever to immerse the table and wheel in the water in the tank and hold it in any desired position.
An improved vehicle axle has been patented by Mr. Henry Dugan, of Mount Pleasant, Mich. This invention consists in an axle having a bearing thimble screwed on its outer end and a sleeve with an annular shoulder screwed on the inner end of the beveled part of the axle, passing into the axle box, the axle box being held on the axle by a threaded col lar screwed into the rear end of the box and resting against the shoulder of the sleeve at the inner end of the beveled part of the axle.
A lifting-jack for wagons, of improved and simplified con struction, has been patented by Mr. John C. Beard, of New tonville, Ind. This invention consists of a bifurcated up right frame carrying a vertically sliding bar, provided at its upper end with a stepped head-block, the bar and head-block being adapted to be raised and supported in its elevated posi tion for holding the load by a hand lever pivoted at its end to the vertically moving bar, in connection with a swinging connecting bar pivoted to the frame and to the lever.

The Dangers of Hydrofluoric Acid.

[The subject of this distressing accident was Mr. Robbins, assistant in the chemical laboratory of the Institute of Technology, Boston, Mass. The patient is a man of very acute observation as well as a considerable degree of medical information, and 1 urged him to prepare an account of his experience with this acid, as it was the first case of injury of this kind I had ever seen. He acceded to my equest, and the following paper, with a few unimportan cbanges, is his own account of this rare occurrence.

Albert N. Blodgett.]
Fluorine as an element is as yet unknown, it never having been isolated. The reason of this is that it is so destructive to all apparatus used for the purpose. It has been studied in its compounds and reactions, and its atomic weight has been determined indirectly. It is the only ele ment which has no known compound with oxygen. It unites with many other elements as a monatomic acid radical, and forms fluorides and also forms quite a number of double salts. Nearly all these compounds affect glass in the presence of moisture. Its hydride is a strong acid like that of chlorine and \cdot is a gas. It dissolves many of the metals to form fluorides, is easily absorbed by water, and the liquid acid is obtained by saturating distilled water with the gas. It has little effect upon platinum or lead, and is transported in gutta percha bottles as it affects neither this nor wax nor paraffine, but its action upon other organic substances is often very energetic. I once attempted to redistilt some of this acid as it is formed in these bottles, but neglected to dilute it one half as is usually done when it is wished to condense it without a freezing mixture. When heated, the gas began to come over without condensing. It charred the wooded box which surrounded the receiver and dissolved and volatilized a picce of writing paper which was exposed to it, leaving only a slight film of a gelatinous substance, probably the gum from the sizing of the paper. Concerning the action of this acid upon animal tissues little is known. Wurtz's dictionary gives the fullest account of it which I have been able to find. He says, in substance, that it corrodes the skin, giving rise to insufferable pain, and produces a deep ulcer which is very difficult to heal small drops of it being sufficient to produce white and painful blisters. I had not read this, and was not aware of the great severity of the action of this acid, and I carelessly used the stump of a match, the wood of which was saturated with the acid above referred to, to remove the lime, etc., from the surface of a piece of porcelain so as to obtain the freest action on the part where I desired to etch a hcle through it. When I first noticed that it was getting upon my fingers I washed them and greased them with tallow, and thinking they were sufficienolly protected I went on with my work. For about an hour and a half I had the match in my fingers the greatest part of the time. Just before I got the hole through I noticed that the ends of my forefinger and thumb were beginning to be unsensitive, and felt a curious sort of dull pain that perhaps might best be described by saying that my fingers "hurt" a little. When hrough, I washed them well, applied dilute ammonia water and washed that off, and then applied bicarbonate of soda, but these measures did not relieve the pain from soon becoming very uncomfortable, and I dressed the fingers in a mix ture of linseed oil and lime water, as it felt more like a burn than anything else. This was done between eleven and twelve A. M. That afternoon I made an organic combustion, and the pain gradually increased till toward the last it seemed a question whether the furnace or my fingers were hotter. In the evening I began to feel alarmed, and conulted Dr. Blodgett.

At this time the ends of the fingers were white and very hard, so hard indeed as to dull the scalpel with which he endeavored to cut away some of the skin. The action was still going on; and as the depth to which it had penetrated could not be determined a dressing of cold cream was applied, and later vaseline was used, but neither seemed to
allay the steady increase of the pain, which now most nearly esembled the sensation of a burn when held near the fire The only relief obtained was by the application of cold, and this was only partial, and the only variation in it was from bad to worse, and at last it became the most severe pain I can imagine, and it was not till four o'clock the next morning, and with the aid of one hundred and ten drops of audanum, that I was enabled to obtain sufficient relief for broken nap. The next day the pain had subsided and the acid had penetrated quite a distance below the skin, render ing the flesh totally insensible and hard, having abstracted all the water from it. The other fingers were only slightly wollen, and the swelling did not extend back as far as the hand, showing that the blood was not poisoned at all. My usual good health was only temporarily and slightly impaired by the laudanum, but no other medicine was given. The course of treatment was to remove the destroyed tissue. This it was thought best not to do with the knife, but poul tices, alternating with frequent soakings in very hot water were constantly employed, which proved effectual, although slow in its operation, it being fully twenty days from the time of the injury till the slough was all removed. It was very dry and tough, and by no means inclined to separate from the surrounding tissues. In four weeks I abandoned all dressings to the fingers and was able to use them a little. Only a small permanent loss of tissue has resulted, but now, after three months, the scars are tender and the sensation is perhaps permanently destroyed. This agrees with the action of this acid as stated by Wurtz, especially as regards the pain, but he does not mention the very important fact that no pain is felt for some time after contact with the acid, which in my case was between one and one and a half hours, and by this time the surface has become so hard that it is difficult, if not impossible, to check the action underneath, so that the danage is for the most part done before one finds t out.

The difficulty in healing appears to consist in removing the slough, as it heals very quickly when this is out of the way, and after the first siege of pain, which is a long and severe one, the sore is no more painful than any other of equal size. I think that should I meet the same accident again I should lose no time in washing it off as thoroughly as possible and then apply water glass if this were accessible; if not, I should use an alkali, and if possible soak the part in water as hot as could be borne, and apply cold cream or some other dressing which will keep the part soft and also exclude the air.

I have also heard of two other persons who have had misfortune with this acid. They were Dr. C. F. Folsom and a Mr. Lodge. The latter had the end of his thumb badly burned. It was three months in healing, and quite a loss of substance resulted. I think that books on chemistry and teachers of the science should give greater precautions as to the use of this dangerous reagent. From the fact that this acid so effectually hardens animal tissue without distorting it, I think it might perhaps be employed by the his tologists as a hardening agent for the soft tissues, especially of the nervous system, as a means of preparing them for microscopical study. I having never known this experiment to be tried, and it would be necessary to use it in very dilute form, but as far as my own observation extends, the action on the tissues would be exactly what is desired."Boston. Med. and Surg. Journal.

NEW COIN SCALE.

The return to hard money as a circulating medium bas iven to counterfeiters a new field for operation, which they have occupied and are energetically working. All gold coins

McNALLY'S COIN SCALE AND COUNTERFEIT COIN DETECTER.
and the larger silver coins are counterfeited extensively, and genuine coins are debased to a considerable extent. It is said that there are in circulation in the United States over two million of dollars' worth of spurious and altered coins. Counterfeit, altered, and light coins are detected by three methods, by weighing, by measuring the thickness, and by measuring the diameter.
We give an engraving of an instrument that applies these three tests at one operation. The operation is obvious, the slot is exactly filled by a coin of standard size, and the scale is tipped by a coin having the standard weight

The slots are marked for the various kinds of coin, and the scale is adapted to both gold and silver.
This device is indorsed by bankers and business men generally, and by the United States Treasurer, by the chief cierk of the Post Office Department, and by a large number of influential and prominent business men.
For further information address J. T. McNally \& Co. 311 Broadway, New York city.

Mast, Foos \& Co., manufacturers, Springfield, O., wer awarded the large gold medal on the "iron turbine" wind engine at the exposition lately held at Adelaide, South Aus tralia, for superior merit. This medal is of the finest Aus tralian gold, and very valuaable.

Nature of the Diphtheritic Contagium

In the spring of 1880, Drs. H. C. Wood and H. F. Formad, under the auspices of the National Board of Health, began a series of experiments upon rabbits with a view of determining the nature of the contagium of diphtheria. The avimals were inoculated with diphtheritic membrang taken from the throats of human patients.
In the course of these researches, it was determined that there is nothing specific in the production of false membrane in the trachea, and that traumatic pseudo-membrane accurately resembles the diphtheritic, except that micrococci are not quite so abundant in it. The experimenters conclude that the disease produced by the diphtheritic inoculation was really rabbit diphtheria, because the poison giving rise to it, the symptoms during life, and the post-mortem lesions were identical. In addition to this, the contagiousness of the disease was retained. They accept the experiments of Curtis and Satterthwaite, showing that the infectious character of diphtheria depends upon the solid particles of the membrane; furthermore, their researches lead them to conclude that the micrococci are in close relation with the essential poison of diphtheria, being either the virus itself or the producers of it. The results of culture of these bacteria lead them also to assert that there is no difference between the micrococci of simple sore throat and those of diphtheria, except in activity of reproduction; the two are the same organism, existing under different conòitions. Drs. Wood and Formad believe that the vitality under artificial culture is in direct proportion to the malignancy of the case from which the plant is taken. They have suc ceeded in producing diphtheria by the inoculation of cul tured micrococci, but never with those of a generation late than the second
M. Pasteur has indicated that an inert organism may be come virulent, and vice versa, and in the same way they believe themselves able to prove that the micrococci of the mouth are really identical in species with those of diphtheria. That oxygen may be potent in converting a viru lent into a non-virulent organism, they regard as probable from the effects of exposure of dry membrane. The micrococंci of a catarrhal angina or trachitis may, under favorable circumstances, be transformed into micrococci of diphtheria and a self-generated diphtheria (i.e., endemic) ensue, or ex ternal conditions may favor the transformation of inactive into active organisms, and these may lodge in the trachea and also cause diphtheria (i. e., epidemic). In the first instance, the disease may spread by organisms exhaled by the breath. Diphtheria will vary in contagiousness accord ng to the development of the virus-malignant diphtheria will be more contagious than the mild endemic form. The conditions outside of the body which favor the transforma tion of inactive into active micrococci, and agents destroy ing these organisms, remain yet to be studied.-Phila. Med. Times.

A New Method of Embalming Bodies and Preserving Tissues.

Dr. Virodtzeff (Balsamirovanie, xi., 164, st. Petersburg 1881) recommends the following preparation as an effi cient agent in he embalming of bodies and the preser vation of tissues: Thymol, 5 parts; alcohol, 45 parts; gly cerine, 2,160 parts; water, 1,080 parts.
It is cheap, innocuous, free from unpleasant odor, pos sesses the property of keeping the body soft, elastic, fresh, and life-like, and does not ruin instruments. Thymol is selected as being superior to other antiseptics, and glycerine is added, both on account of its own preservative qualities and to retard the evaporation of the fluid. For the prepara tion of tissues the same solution is employed. If the cadaver be quite lean, or the tissues very delicate, equal parts of water and glycerine (1,620 of each) are combined with the above quantities of thymol and alcohol. To inject a body, half its weight of the fluid is necessary. A properly em balmed cadaver may be preserved indefinitely under ordinary circumstances, gradually shrinking and mummifying without putrefaction. Specimens are either to be injected with or macerated in this fluid. Maceration must not be too prolonged-the appearance of the specimen should act as a guide. The part, after having been thoroughly cleansed in water, and prepared, may then be exposed for months to the air without losing its consistency, form, and color. Perma nent specimens may be inclosed in a hermetically sealed glass vessel containing a little of the same solution. The Medical Record says that Dr. Peabody has used this preserv ing fluid, with excellent results, in the New York Hospital Museum.

The Cedars of Lebanon.

Regulations were lately issued by Rustem Pasha for the guidance of travelers and others visiting the Cedars of Lebanon. These venerable trees have now been fenced in, but, with certain restrictions, they will continue to be acces sible to all who wish to inspect them. In future no encamp ments will be permitted within the inclosure, except in the part marked out for that purpose by the keeper, nor may any cooking or camp fires be lighted near the trees. a regu lation that has been rendered specially necessary by the par tial destruction by fire of three of the largest cedars. Lastly, no animals will be allowed to enter the inclosure and the keeper of the ground has orders to hold the drago mans and tourists' guides responsible for any infraction of the rejulations.

EXPLOSION OF TWO BOILERS AT PITTSBURG, PA. According to one or more witnesses, it appears that these
On the 9th of December, about five o'clock, P.M., the two, which were over the same fire, and had a separate steam heavy, dull sound of a disastrous boiler explosion reverbe- drum and a mud drum, shown in Fig. 4, common to the rated among the hills of the busy city of Pittsburg, Pa. three composing the second set, were made for and used on Two boilers of the nine composing the steam system of the a river steamer, the Carrie Brooks, which formerly ran Keystone.Rolling.Mills, shown in Fig. 1, situated in the Fourteenth Ward of the city, exploded with astonishing vi olence, causing the death of two workmen, injury to ten others, and the total wreck of the boiler house and adjacent blacksmith's shop, as well as a portion of a building beonging to a neighboring cop per works.
Cornelius Dunn, the fire man, who was at the rear of the boilers, was instantly kiiled; Alvas Gideon, a blacksmith's helper, at work in the smithy, was shockingly injured; and John Price, a pud dler, whose skull was crushed died the second day after the explosion. Although the cit izens of Pittsburg and of the iron regions in its vicinity are not strangers to the de structive effects of boiler ex plosions, yet this double dis aster completely bewildered the average native observer; and, judging from the dura

Fig. 1.-VIEW OF THE INTERIOR OF THE BOILER HOUSE OF THE REYSTONE ROLLING MILLS, SHOWING THE ARRANGEMENT OF THE BOILERS BEFORE THE EXPLOSION.
tested them at 170 pounds, and reported them as old boilers requiring repairs, which baving been made by putting seve ral half-sheet patches, and perbaps some whole sheets, upon heir undersides, according to his direction, they were, a that time, allowed to be used at 125 pounds per squareinch. Their history from 18.2 to 1879 is not clear, perhaps they then were on the steame Carrie Brooks.
On the 22d of April, 1881 they were last officially in spected as active boilers, in their places at the Keyston Rolling Mills, and allowed 120 pounds per square inch as shown by the official cer tificate. Theengineer though he was allowed 125 pounds as he was the year before, be cause the safety valve had no been changed to 120 .
The above history is condensed from the sworn state ments made before the coro ner as they were reported for the Pittsburg Despatch. Now if we apply to this case the practical facts, that prudent boiler insurance companies in this country, according to their published tables, would only allow 66 pounds pressure for an old 42 -inch shell one quarter inch thick,* having no important visible defects, and that the Manchester(England) been repeatedly adjourned in order to obtain new expert tes-| between Pittsburg, Pa., and Zanesville, Ohio. But, accord- Board of Trade rule would allow but 60 pounds, less than timony and facts, it appears to have thoroughly puzzled both ing to another witness, the proprietor of a spice mill in half what had veen officially permitted in this case, it seem the witnesses and the court, whose duty and evident desire Pittsburg, it appears that they were new when put into his almost a waste of time to further argue the question of are to explain the casualty and place the responsibility. mill in 1866. His testimony shows that althougb he used causes of the explosion.
A short history of the case, accompanied by our illustra- them at only 40 pounds pressure, that being all he required, But there are in every manufacturing community a large tions, will show that the task of the coroner, so far as the cause is concerned, ought not to be very difficult, since the cause is not obscure when sought for by means of a systematic study of all the phenomena, without bias caused by local or personal interests or preconceived and fixed opinions on the subject of boiler explosions.
The exploded boilers, num bered 5 and 6 in Figs. 3 and 4, were of the common twoflue type, with flues about 15 inches diameter, quarte inch thick, and shells origi ally of the same thickness, 42 inches diameter, and 24 feet long, made in twelve rings or courses of plates, two plates to each course. They

Fig. 3.-VIEW OF THE REAR OF THE BOILERS class of practical men who still hold to a variety of old theories on the subject of boiler explosions, and they were unusually well represented before the coroner in this case. In fact, each one of the more common old theories, mysterious and otherwise, had there a zealous champion.
It seems, therefore, important to sketch and answer the most specious of these theo ries but the space is not now available for such a review It may be found, from tim to time, under the head of " Steam Boiler Notes," in the Scientific American.

The accompanying large andscape, Fig. 2, and the diagram, Figs. 5 and 6 (which were allowed, by the city inspector's certificate, to carry 120 | yet they were "all the time giving out," and he became dis- is a plan of the works), constitute a pretty full graphical de pounds of steam pressure, but the evidence shows that it gusted, and sold them for $\$ 100$ each to a dealer in such scription of the scene of the explosion. On these illustrarequired 130 pounds to run the mills at full speed, and that goods, in 1872 . They were bought by the National Tube tions may be traced the distribution of the fragments of they were working at about 125 pounds at the moment of Company, in 1879, and placed in the Keystone Mills on the the explosion.

the two exploded boilers. Nos. 5 and 6, in the landscape, are the principal fragments, being 16 feet of the length of each of the boilers, which were not broken except at their separating line
Figs. 1 and 3 show the arrangement of the nine boilers, the former the front and the latter the rear view, as the stood before the explosion. Fig. 4 shows the underside of the two exploded boilers and the lines of rupture, also their relation to boiler No. 4, belonging to the same set. It was two feet longer, and had eleven patches on ts bottom.
It will be observed that the middle battery of boilers had two furnaces, a wall between Nos. 4 and 5 boilers form ing the division. All the boilers rested upon stand pipes or legs, which con nected them to their respective mud drums at the rear, and upon the fire front castings at their front ends.
The middle battery was supplied with water through the pipe, G, Fig 4. The end of the steam drum which was attached to the two exploded boil ers is seen at E, while F is the mud drum, common to these three boilers. A patch, consisting of about half a plate, had been put into the shell upon which the stand pipe of No. 5 boiler was riveted, A B, Fig. 4. The loca tion of the initial rupture is prett well established by the appeamnce of this plate, which is breken through the stand pipe opening and around the cir cle of rivets that secured the flange of the stand pipe to the boiler shell. The weakness here is indicated by old cracks on the line A B , and around the fractured edge between the rivets, and by external corrosion of the patch which had been kept wet from the leaks through the cracks and the flange joint. This part is shown enlarged in Fig. 7. These leaks -as no doubt others were that had from time to time called for repairs-was caused by feeding cold water in large intermittent doses in former yetrs. This bad habit was occasionally practiced up to the day of the explosion.
When the main mill engine was running, water moderately heated could be had from the tubular heater, H, Fig. 1, through which the exbaust steam passed; but when the engine was stopped, cold water only could be had, which was fed to the three batteries of boilers alternately as they required it, by a large Blake steam pump, perhaps in large volumes rapidly introduced. Its cooling and contracting

NLARGED SKETCH OF STAND PIPE AND PATCH.-A B, INITIAL RUPTURE.-C, OLD FRACTURE IN SHELL PATCH THROUGH FLANGE RIVET HOLE.
quality of the patch and the extraordinary internal pressure developed the weakness which gradually increased till the limit of endurance was reached. On the day of the explo ion these boilers were shut off for repairs. Two hours, or ess, before the explosion the flange of the stand pipe (see Fig. 7) had been calked to stop a leak. The boilers were then filled with water to the second gauge, and steain was raised. The boilers were then left in charge o: Fireman Dunn, who was directed to feed the water up to threc gauges. Now, when the patch on No. 6 boiler suddenly "burst open on the line A B, Figs. 4, 8, etc., the steam gauge hac jus

[^0]The pressure of the issuing water was, therefore, about qual to that of a vertical water column 300 feet high, and its temperature was about 355° Fahr. There were nearly 600 cubic feet of free steam in the steam space of the nine boil ers, and, supposing the steam valves to be all open, this tremendous volume of steam, at 127 pounds pressure, in-
to so shock the overloaded weak structure as to cause it to break on a line correspondiug to A B through the stand pipe opening. No. 5 boiler now opened in the same manner as No. 6 had done, and six tons of highly heated water, that the two broken boilers contained, now relieved of pressure the two broken boilers contained, now relieved of pressure
by the instantaneous escape of the free steam, expanded with explosive rapidity, giving out, in falling from 355° to the atmospheric boiling point 212°, 143 units per pound of water. Each pound of the 12,000 pounds of water gave out force enough to raise $143 \times 772=110,396$ pounds one foot high. The grand total of power given out in less than a sec ond of time was therefore $110,396 \times$ $12,000=1,324,752,000$ foot pounds, force quite sufficient to accomplish the observed destruction, even though large percentum of it was diffused in the air, upon which it reacted almost as violently as exploding and detonat ing compounds do.
It has been repeatedly demonstrated both by accidental and by experimen tal boiler explosions, that empty hot boilers do not accomplish a tenth part of the destruction that is done by boil ers containing large volumes of water at a temperature due to the pressure.
There was no evidence of a lack of water in these boilers. They were carefully examined by a Scientific American representative. Moreover we have the sworn statement of more than one uninjured competent witnes that the gauges were tried a few min utes before the explosion, and water showed itself at the upper one

The boilers were in the care of two engineers and two firemen of long experience, in two watches for the twenty four hours, each one of whom firmly believed that his life depended BOILER. E E, etc., PARTS OP BROKEN BOILERS.
stantly moved with lightning speed toward this opening pressing only the portion of water that lay immediately in its path out at the now enlarging opening, the free ends of the broken ring of plates, a, Fig. 4, 8, etc., spread out cumscribed areas between rigid supports, or may be at the transverse seams.

The chief aim of these expurienced men was to look out for plenty of water and then plenty of pressure to move the machinery at maximum velocity, which one of them swore could only be done with 130 pounds of steam.
Four rear courses of boilers, Nos. 5 and 6, torn as indicated in Fig. 4, together with corresponding lengths of the four flues, were distributed in about twenty pieces to the right and left of the rear of their site, and the unbroken principal sections, 16 feet of the front ends of both boilers, were thrown as indicated on the landscape at 5 and 6 , and plan at E E, etc.

The plate, a, Figs. 4 and 8, sailed over and entirely clear of the main mill and landed on the coal pile near the river. This piece was easily identified as the plate a of No. 6 boiler by the marks of recent calking at the stand pipe flange. The main section of the same boiler, No. 5, was identified by the gauge cock openings in the front head; the other boiler which exploded, being the middle one, had none. The principal section of No. 6 boiler flew directly to the front and struck a building belonging tothe neighboring copper works. The corresponding section of No. 5 was di verted by some incident in the progress of the explosion, so that it took a direction some 30° or 40° to the left, front, and upward over the small church and a dwelling on the slope of the high bluff. It struck almost exactly head foremost against the heavy retaining wall of the street above the buildings, and turning to the front its rear end was flattened against the same wall, and it then landed in the small ravine, as shown at 5 on the large landscape.
The rocfs of the buildings to the rearward of the boilers were covered with débris and dried marks of dirty water, pieces of boiler and bricks, all of which point to the same conclusion as to the quantity of water that escaped from the boilers.

Boiler No. 4, the unbroken one of this battery, tumbled over into the pit occupied formerly by Nos. 5 and 6, and lay upon its side in such a manner that most of the water it contained was still there on removing the man-bole plate after the explosion.
The representative of the Scientific American who ex amined this wreck procured several pieces of the iron, which

RING OF PLATES FIRST TORN OFF.-A B. THE INITIAL RUPTURE.
were easily broken off with a common wrench, indicating its brittle character
The pieces shown full size, Fiy. 9, and also on a smaller scale in Fig. 7, were obtained by cutting off the rivet heads that held them to the flange of the stand pipe, as shown.
They are pieces of the patch, and have, at c, a sample of the oid cracks that existed before the explosion. These cracks were filled in places with lime scale deposited from the water.
The conclesion is almost inevitable, after careful study-
That these two boilers exploded in succession so rapid as to be practically simultaneous, beginning at the weak line A B of No. 6 boiler.
That they contained the usual supply of water.
That the pressure was too great for boilers of their size and thickness of iron.
That the use of cold feed water has hastened the deterioration of the poor iron, causing cracks and leaks, from which external corrosion arose, and that the force stored in the water of these two boilers by its sudden liberation through sufficient openings caused the destruction observed.
It is, therefore, strongly recommended that heavier and stronger material be used for boilers of this size and pressure; that regular and continuous feeding of hot water be practiced; and that more care be exercised by inspectors and those in charge of steam boilers in searching for and immediately repairing dangerous defects.
The fact that the proprietors of the Keystone Rolling Mills have ordered first-class steel boilers to fill the places of the exploded ones indicates that they appreciated the recom mendations of the Scientific American representative, who explained to their superintendent the causes of the failure of these old boilers.

Chinese Method of Manufacturing Vermilion.

by hugh maccallum.
There are three vermilion works in Hong Kong, the method of manufacture being exactly the same in each. The largest works consume about six thousand bottles of mercury annually, and it was in this one that the following operations were witnessed:
First Step.-A large, very thin iron pan, containing weighed quantity, about fourteen pounds, of sulphur, is placed over a slow fire, and two-thirds of a bottle of mercury added; as soon as the sulphur begins to melt the mixture is vigorously stirred with an iron stirrer until it assumes black pulverulent appearance with some melted sulphur floating on the surface; it is then removed from the fire and the remainder of the bottle of mercury added, the whole well stirred. A little water is now poured over the mass, which rapidly cools it; the pan is immediately emptied, when it is again ready for the next batch. The whole operation does not last more than ten minutes. The resulting black powder is not a definite sulphide, as uncombined mercury can be seen throughout the whole mass; besides, the quantity of sulphur used is much in excess of the amount required to form mercuric sulphide.
Second Step. -The black powder obtained in the first step is placed in a semi-hemispherical iron pan, built in with brick, and baving a fireplace beneath, covered over with broken pieces of porcelain. These are built up in a loose porous manner, so as to fill another semi-hemispherical iron pan, which is then placed over the fixed one and securely luted with clay, a large stone being placed on the top of it to assist in keeping it in its place. The fire is then lighted and kept up for sixteen hours. The whole is then allowed to cool. When the top pan is removed the vermilion, together with the greater part of the broken porcelain, is attached to it in a coherent mass, which is easily separated into its component parts. The surfaces of the vermilion which were attached to the porcelain have a brownish red and polished appearance, the broken surfaces being somewhat brighter and crystalline.
Third Step.-The sublimed mass obtained in the second step is pounded in a mortar to a coarse powder, and then ground with water between two stones, somewhat after the manner of grinding corn. The resulting semi-fluid mass is transferred to large vats of water, and allowed to settle, the supernatant water removed, and the sediment dried at a gentle heat; when dry it is again powdered, passed through sieve, and is then fit for the market.-Pro. Pharm. Soc.

BOTANICAL NOTES.

The Color of Spring Flowers.-In a contribution to the Science Review, on the color of sping flowers, Mr. A. W. Bennett states that out of a list of sixty-four species, 40.5 per cent are white, 20.3 per cent yellow, $17 \cdot 4$ per cent blue or violet, and 7.8 per cent pink. Thus the white and yellow flowers would appear to preponderate. He accounts for this by the fact that white flowers owe their color to the presence of air in the celis of the petals, and that the yellow flowers of spring, such as Tussilago farfara, Eranthis hyemalis, Primulus, Cheiranthus, etc., owe their color to xanthine, a solid pigment, probably a modification of chlorophyl, only slowly soluble in alcohol and potash. The predomi nance of flowers of brighter hues during summer and
autumn he considers to be due to the presence of coloring matters which require a strong light and a high temperature for their production, particularly the red coloring matter, as shown by Batalin. The effect of light is shown by a reference to the flora of Switzerland, in which the larger portion of red, pink, and blue flowers in spring is remarkable. H.
mountain air, and consequently more intense light. On this account, and because of the spring being a month later than at lower elevations, the alpine flowers are more brightly colored. This explanation is confirmed by Siemens' recent experiments with the electric light.
White-fruited Blackberries.-Mr. G. M. Wilber, in a note in the Torrey Botanical Bulletin, reports that in two localities in Dutchess County, in this State, he has detected plants of the common blackberry (Rubus villosus) bearing berries that were perfectly white when ripe, and that were as sweet and pleasant to the taste as the usual black fruit of the same species. Some of the bushes having been transplanted were found to produce the albine berries in succeeding years.
Superabundance of Pollen in Indian Corn.-Prof. C. E. Bessey says, in the American Naturalist: "Nature evidently intends to secure the fertilization of the young ovules in the Indian corn (zea mais) beyond all chance of failure. In the autumn of 1875 I made a large number of careful counts and estimates, which resulted in fixing upon twenty-five hundred as the average number of pollen grains in each anther. Each panicle of male flowers (the "tassel") was found by careful estimates to contain about 7,200 stamens, so that the number of pollen grains produced by each plant is about eighteen millions. Allowing two ears, of one thousand kernels each, to each plant (a very high estimate), there are still nine thousand pollen grains for every ovule to be fertilized!

What is an Apple?-Is an apple a fruit? It is generally regarded so; but, botanically speaking, a fruit is that part of a plant which contains the seeds, and it is nothing else. The core of an apple, then, according to this, is the true fruit, for that is the part that contains the pips, and the pips are
the seeds it is a cartilaginous five-lobed capsule splitting the seeds It is a cartilaginous five-lobed capsule splitting "these botanists are; they leave on their plates the fruit, and they eat something which they say is not the fruit! What is that something which is not the fruit? To answer this question to his own personal satisfaction
the reader should see before him a flower of an apple or pear in the earliest stage of its growth, and he should trace in other stages, from this earliest condition to the ripe state, the growth of the apple or the pear." A careful examination of this kind, says our author, will "enable him to discover that he flesh of the apple or pear is nothing whatever but the end of the flower stalk, which gradually swells out into a succulent mass, and which holds embedded within it the true fruit -the core. What in ordinary language is called the fruit is, then, only the swollen flower stalk. Alechemillas and siræas, peaches and cherries, are not to be $h d$ in flower just now, else a cut down through the center of the fircher of these would reveal the cup-like stalk encircling the young fruit in the center, just as a pill is inclosed within pill box. Now, suppose the cup to be fleshy, and so thick as to come in contact with the fruit, and we have exactly the condition of an apple. So, then, to say that the core of an apple is the true fruit, and the flesh thereof the dilated flower stalk, is no dogma to be accepted as an article of faith, but it is a statement which any one with a pair of eyes, ordinarily nimble fingers, and a little patience, can, at the proper season verify for himself.

To be able to ecognize the core of an apple as the fruit proper, and to see n the flesh of the apple a swollen flower stalk, is not to in dulge in a mere botanical technicality, as some might at first be inclined to suppose; but it affords a means of ascertaining a truth, and, as such, of opening up possibilities of future utility and development; for truth is never barren of result -the sterility lies with the man who does not avail himself of the truth so far as he can. Deep thoughts to be evolved from the castaway core of an apple!"

Dried Foods.

At present we export to Europe about $6,000,000$ pounds of evaporated apples. The process is extremely simple. The ruit is "cored" and sliced into pieces one-sixteenth of an inch in thickness; it is then exposed to sulphur fumes, which arrest all fermentation. and then to a dry and hot blast of air, which reduces it to about half its original weight. The sulphur fumigation prevents the fruit from becoming dark, and after drying it is almost as white as when first cut. Simple as is this process, it costs about twice as much as drying the fruit in the sun, but such is the saving in weight and
flavor that it is preferred, and evaporated apples sell to day flavor that it is preferred, and evaporated apples sell to day in the European markets for fifteen cents a pound
An old produce dealer interested in the European export rade told an Eeening Post reporter that, in view of the stounding magnitude of the export trade in food products, it would not be surprising to hear of attempts at compressing
or drying every product of the country. The same process as that applied to apples has been used with some success with peaches, and some berries that can be grown cheaply, and as the export of dried food products increases the import is constantly decreasing. The raisins from California promise o drive all foreign raisins out of our markets. There are ineyards of hundreds of acres in Placer, El Dorado, Los Angeles, San Diego, and other counties, given up to growing and drying grapes, partly by evaporation and partly by sun heat.
Another recent use of the evaporation process applied to ood products concerns the preparation of codfish for Europe, and especially for tropical ciimates. The business has been established in this city about six months. The persons who use the process assert that ninety per cent of the weight of a
until the fish product becomes a sort of fine dry meal, a substance is obtained which can be packed in boxes and ex ported, one pound of the evaporated cod being equal to ten pounds of fresh cod, so far as nutritive properties go. The company which is engaged in the business has factories on the coast of Maine and at Gloucester, Mass.

Wet and Dry Thunderstorms.

A correspondent of the London Times, writing from the Transvaal, South Africa, says: "Every afternoon tremendous storms of thunder and lightning burst upon us. These were of two kinds, the wet and the dry. The first is harmless, though noisy; the second exceedingly dangerous. During the dry thunderstorms, which were prevalent toward the end of October, the lightning seemed quite stupef ying. It was unaccompanied by either wind or rain. The angry flashes were followed almost simultaneously by awful crashes of thunder, which seemed to shake the earth. One or two tents were struck, and the grass was set fire to in several places within sight of our camps, but no life was lost, only some arms damaged. The dry thunderstorms were soon followed by wet ones. The rain, mixed up with enormous hailstones, soused the thirsty earth, and every little crack on the veidt bore its burdeu of water to the Vaal, which rose and became impassable."

Oxygen as a Source of Energy.

As is well known, however, the highest temperatures are obtained by combustion-that is, by the combination of other bodies with oxygen. Since oxygen is continually inhaled and consumed by animals during life, we are obliged to consider this as the source of heat and force. We have here a problem which is open to discussion, namely, whether the energy liberated by the combustion was originally contained in the oxygen or in the other substances. It appears as if the latter assumption was generally accepted; at least, statements are often met with, such as, for instance, that coal contains the heat of the sun which has been stored up during thousands of years. Although we cannot at present, with the means at our disposal, definitely solve this problem, it can at least be sbown that the statement has little in its favor. The decomposition of carbonic acid by the influence of the light and heat of the sun is effected in such a manner that the carbon is employed in the formation of the compounds of which the plant is built up, while the oxygen escapes into the atmosphere. Now, we know that solids contain the least energy, because it must be supplied to them in the form of heat in order to convert them into the liquid or gaseous state, while, on the contrary, heat must be withdrawn from gases to condense them to liquids or solids. Oxygen is one of the most permanent gases, and must therefore possess an enormous amount of energy, while carbon, on the other hand, being one of the most difficultly diffusible and volatile bodies, can only contain a little energy. This makes it extremely probable that the force of the sun, taken up by the plants, is not stored in their bodies, but in the free oxygen of the atmosphere. Hence the latter is to be considered as the inexhaustible source of power on which man and animals draw, and in the carbon we possess a valuable aid for making this energy, contained in the oxygen, available.-EdmundDrechsel, in Popular Science Monthly.

RECENT INVENTIONS.

An improved whip has been patented by Messis. Henry Mullen and James Noble, Jr., of Westfield, Mass. The core of this whip is formed of a leather or rawhide piece at the butt and a whalebone piece at the lash end, so that the advantage of a whalebone whip is retained, while the cost is greatly reduced.

An improvement in fishing reels has been paterited by Mr. John Palmer, of New York city. The invention consists of a fishing reel provided with an extensible crank for increasing the length of leverage when necessary when reeling in the line, the extension arm being adapted to be withdrawn to shorten the lever to ordinary length while casting out the line.

Mr. John Owen Smith, of Savannah, Ga., has patented a means for protecting windows or doors against burglars. It consists in a strong protective frame of metal or wood, provided with lugs at the top, adapted to enter seats formed in plates in the sides of the window frame, and provided with tongues of metal at the bottom, projecting at right angles to the frame inwardly, and adapted to enter horizontal holes in the window sill and be locked by set screws or pins inside.

An improved combined button lap and stay for garments has been patented by Mr.David W. Thompson, of Englewood, III. The invention consists in the combination, with the garment or body piece baving simply a straight slit cut in it where the opening is to be, of a single piece of material, which, when folded and stitched to the sides of said slit, constitutes both an upper and under button lap or fly, a facing, and a stay for re-enforcing the bottom of the opening, making a finished piece of work without raw edges. An improved process of making skinless furs and articles thereof has been patented by Messrs. Charles Koch, Jr., and Charles E. Burgmüller, of Newark, N. J. By this process the inventors are enabled to produce real fur without the pelt or skin of the animal. The process is such that articles of apparel, such as caps, collars, muffs, and the like, of any shape or style, may be made in the manufacture of the fur, and the articles may be made seamless, and fur may be left and the articles may be made seamless, and fur may be left
upon both the inside and outside of the articles, if desired,

Removing Prints from their Mounts.

It is by no means an unusual circumstance that, for some reason or other, it becomes necessary to remove a photograph from its mount. Possibly it is mounted on the page of an album, and it may be desired to frame it or transfer it to
another; or, on the contrary it may be framed and it is desirable to place it in an album; or, again, the style of frame and mount is not in accord with others with which it is to lang, or, what is by no means improbable, the print has faded, and it becomes necessary to replace it with a fresh one, retaining the original mount, which may bear an autograph that it is important to preserve.
Now, the removal of a print from its mount-as, no doubt, many from experience are aware-frequently proves to be by no means such a simple operation as at first sight it may appear, and the attempt of ten leads to the destruction of a valuable picture, or-what in some cases is an equal misfortune -the original mount is injured to such an extent that it becomes worthless.
If we could always ascertain the mountant employed much trouble would be saved, as we should then at once know how to proceed. In the present instance we shall assume that we are entirely ignorant of it. The first thing to do, supposing the print to be framed, is to take it out, and, if it be in a cut out mount, to remove that. If the print were framed by a photographer, in all probability it would be simply secured to the mount by strips of gum paper; but if by a pictureframe maker or a professional mounter, it will, no doubt, be glued to the mount, in which case, unless care be taken in separating it, the picture may be torn at the edges. The best plan is to gently force it away from the mount by passing the blade of a palette knife round the opening from the inside. After removal the picture is closely examined to see if any clew can be obtained as to the kind of cement with which it is attached. If it be "rough mounted," probably some of it may have exuded from the edges, and then its color may serve as a guide; for if it be dark in color it is no donbt either glue or dextrine, and if the former it may be detected by wetting it with saliva, when its well known odor will be developed.
Indiarubber las been so little employed as a mountant that the probability of that having been used is somewhat remote; yet it may have been. In that case, if the picture have been but recently mounted, it may sometimes be removed by raising one corner with the point of a penknife, and then gently peeling it off; or, if the mounting be of an old date, possible the India-rubber may have perished, and then its removal is easy enough. Failing this the picture must be saturated with benzole, and this will soften the rubber and permit of an easy removal. If the mount be of plate paper the benzole is better applied from the back.
We will now suppose that India-rubber was not the mountant employed; therefore the print should be immersed in clean cold water, where it may be allowed to soak for an hour or two, trying it from time to time to see if the mount ant has softened at all. If so, a longer immersion will, n 0 doubt, allow of its removal. If, on the contrary, after seve ral hours' soaking the cement show no signs of yielding, the print should be put into warm water for a quarter of an hour or so, when, if the mountant be glue or gelatine, the print and mount will be easily separated.
With this treatment most of those materials that are em ployed for mounting photographs will have yielded, but there are some kinds of starch which will obstinately resist it -even after many hours' soaking in both hot and cold water. When we get an obstinate case such as this, it is bet ter to abandon the idea of removing the print from the mount, but to reverse the order of procedure and remove the mount from the print. Doubtless, from the prolonged soak ing, the mount itself will have shown signs of succumbing, and we, therefore, proceed to separate the sheets of paper of which it is composed (one by one) until we get to the lastthat to which the print is attached. It is now removed from the water, placed face downward on a plate of glass, and flooded with warm water. The paper is now abraded and carefully rubbed off, bit by bit, with the finger, and with care and patience it may be entirely removed without injury to the picture.
Supposing the print has been mounted in an album, the treatment above described cannot be applied. We must, therefore, proceed as follows: First get two plates of tin, or pieces of waterproof paper (such as are employed in copying book -), somewhat larger than the pages, and several sheets of damp, white blotting-paper a little smaller. Now place several sheets of the latter at the back and front of the leaf carrying the print, inclose the whole between the tin plates, and put them under pressure. The tin plates will effectu ally protect the other leaves of the album from the moisture. After resting for an hour or two (during which time the blotting paper must be kept damp), if the print cannot be removed the blotting-paper should be ironed with a hot laun dry iron. After this treatment the print can no doubt be easily removed, and any adherent cement cleaned off with a soft sponge and warm water. The leaf is then pressed be tween several thicknesses of dry blotting paper; after which
sponged both back and front with strong alcohol, and again sponged both back and front with strong alcohol, and again
blotted off. If this treatment be repeated several times the alcohol will remove the greater of the water, and the leaf when dry will not be nearly so much cockled as if it were allowed to dry spontaneously.
It sometimes happens that it is necessary to remove a print which has faded from its mount, and the latter may contain a title or an autograph, which it is impossible to replace.

Under these circumstances we proceed in much the same
manner as with the album, taking care, however, that the manner as with the album, taking care, however, that the
blotting-paper as well as the water with which it is moist ened is scrupulously clean, as plate paper is most easily soiled. In an obstinate case, the print being of no valve, it may be rubbed off piecemeal, as was recommended for re moving the last sleet of paper, when the mount had to be destroyed. After the print has been "coaxed off" the mar in of the mount slould be thoroughly wetted, and then dried between sheets of blotting-paper, which will keep it
flat. In putting prints on mounts that heve flat. In putting prints on mounts that have borne other pic tures care should be taken that they are trimmed a trifle larger than the old ones, so that they overlap the spaca pre. viously occupied.-Brit. Journul of Photography.

How to Avoid Dangers in Electric Lighting.
The Boston Manufacturers' Mutual Fire Insurance Com pany is engaged in making a thorough investigation as to the alleged dangers which may occur from the electric ligit and other matters connected therewith. The company makes the following observatious in a recent preliminary re port:
The danger of the arc lamp itself, unless protected above and below, has already been stated, and is easily provided against. The dangers of contact with telegraph, telephone, or electric watch clock wires, are too obvious and well
known to call for further warning, and are all readily guarded against in a well organized mill yard.
There is another danger, which may also be easily avoided but of which notice should be taken at once by every member using an electric arc light, or contemplating such use; namely, it appears that, if the wire conveying the current is suddenly fractured while the dynamo machine is in opera tion, the voltaic arc is extended while the ends of the wire are separating, through several feet of distance, varying according to the power of the machine; that is to say, if the wire is broken at such a place that one end can fall or separate from the other, the voltaic arc, or what would be calfed in common speech the electric spark, will follow from one broken end to the other, from one to six feet, according broken end to the other, from one t.
to the power of the current generated.
If in that distance the current should pass through or come in contact with wood or any combustible material, especially loose stock of fibrous material, fire would instantly occur. Such an arc might also and probably would be dangerous to life, if a person were exposed to it.
A fracture of the wire may be occasioned by the breaking of a belt, by the rupture of machinery, by a careless mechanic working in the neighborlood of the wire, and by many other causes which will be obvious to every member
The greatest care should, therefore, be taken in choosing the position of the wires; and they should never be carried along the underside of the beams and transverse thereto, or in any proximity to belts, shafting or pipes.
The danger of suspended wires, exposed to the action of machinery, will be apparent. We are not yet fully prepared to suggest the true method of placing wires and protecting them, but, having indicated the danger, would ask suggestions from those who have used the electric light, in order to enable us to work out the proper instructions.
It may be suggested that the wires should be carried upon the walls out of reach of contact, and across the mill upon or protected by the beams but insulated therefrom.
In dye houses, bleacheries, print works, paper mills, and ther works where wet processes are in use, the greatest care must be taken that the two wires do not come in contact with the same surface of damp or wet wood, as in such case cross arc may be formed upon the wood; and it appears that, if common salt is in the water, and perhaps other salts, the danger of a cross arc upon the wood is very much increased. Salt being used in whitewash, a damp surface of wood whitened may be most dangerous. By "cross arc" is meant the diversion of the electric current from one wire to another across the damp or wet woodwork.
It is suggested that this danger may be avoided wholly by carrying the wire from the machine to the lamp over a separate beam or surface of wood from that on which the other wire is carried a way from the lamp.
It may be added that we have not yet found any cause of danger of fire, from the use of the electric method of lighting, which may not be avoided, if the right method and proper care be used in putting up and operating the appara tus; but electricity is a force which cannot be too carefully controlled, directed, and watched, if generated in currents of considerable intensity.
It will take yet a considerable time to obtain all the necessary information for making a full report upon this impor tant subject, and our final report may not be submitted for some weeks.
We add also one word of caution. Our members should be careful with whom they deal, and be perfectly sure not only of good and safe work, but also of the responsibility of the contracting parties, both with respect to the character of the work and of immunity from loss, in view of the fact that the whole subject may be said to be shingled over with patents.

Medical Fees in London.

I believe that it is now the labit of the principal London physicians to charge three guineas (\$15) for a visit at the house of the patient, two guineas ($\$ 10$) for the first visit of a patient to the physician's office, and one guinea (\$5) for a
subsequent visit there. After all, a man who is believed to
have special talents for healing is right to charge highly for it. The abuse seems to me to be this: whereas any physi-
cian may clarge more than a guinea, no physician is allowed by the etiquette of the profession to charge less, and yet probably there are many clever young physicians who now have very little practice, and would themselves gain and benefit others, were they allowed to charge half a guinea.London Trutth.

Fire-Resisting Construction.
It is a common error to suppose that stone and brick and iron are the only materials capable of resisting fire. The brick arch and cast iron girder system has been found hopelessly defective-in fact positively mischievous, and the only way of rendering iron safe was not discovered till large factories and buildings had been wrecked. Then it was found that the weakness of the system resided in the exposed lower flanges of such girders, and it was not long after the incasing of the iron work with some refractory material, such as concrete or fireclay, suggested itself. Concurrently with the notion tiat nothing is safer than iron, is the belief often held that wood is the most destructible of all materials. In reply to those who distrust wooden construction, we may refer to some plans which have been proposed to render wooden flooring resistive of the action of fire, but which appear to have escaped attention.
One of these is to construct solid timber floors, composed of ordinary joists placed close to each other, and spiked or screwed at intervals with bolts. The bolts are fixed alternately. To form a key for the plastering angular grooves are cut under each joist, these grooves forming a series of dovetails. In a similar manner stairs can be formed by a series of joists screwed or spiked together, which are cut to the form of the soffit, the later being prepared for plastering by grooves. This system of construction was introduced by Messrs. Evans \& Swain. With regard to partitions, the French plan of constructing them with quarterings, filled in with rough stone rubble, then lathed on each side with strong laths, and a coat of phaster applied and pressed through the vacuities from each side, ought to be more generally employed. In the construction of roofs the solid system of concrete or of layers of fibrous material covered with earth and sand, as used by some Eastern nations, have undoubted merits over the timber and hollow roof systems used by moderu builders, which readily invite fire. Solid concrete flats laid on iron joists, or iron joists fixed to the inclination of the roof, and then filled in with concrete on the French system, covered with Claridge's asphalt, would render our large buildings comparatively safe from the destructive ravages of flames which now find their way through the roof.

Wood and concrete are not so much used together as they might be. In floors, as well as in roofs, the timbers might be filled in with concrete. Mr. Marrable adopted a very simple method of constructing floors. Instead of the wooden joists being cut to the usual rectangular section they were cut diagonally of a wedge-shaped form and placed at about eighteen inches apart, the wide end being placed downward. Upon these concrete was filled iu upon a wooden centering, and the joists performed the office of skewbacks for the concrete. Another form of floor, suitable for warehouses, offices, and small dwellings, is composed of wood joists with a lower flange, these flanges being made also of wood rabbeted close together, forming a boarded ceiling in appearance below. This ceiling could be painted. Such a timber floor resists an outbreak of fire for some time, and is very strong. We do not now consider the many excellent, though more costly, systems of flooring of iron and concrete, or iron incased with fireclay or embedded in concrete, such as the Dennett, the Hyatt, and Moreland systems, our object being to show that timber can be used with good effect to resist as well as to court the flames. A solid impermeable surface or floor covered with asphalt has been kuown to resist the flames for hours, and by imprisoning it the danger of a conflagration is lessened. It is this principle which has given to the concrete floors their invulnerable character. The value of doors of concrete, such as those erected by Mr. Lascelles, and wrought iron sliding doors, are great, and for security against the extension of fire surpass the sheet iron doors provided by the Building Act.-Buildiny News.

Tractive Force upon Macadamized Roads. Mass., to ascertain the tractive force requisite to movestreet Mass., to ascertain the tractive force requisite to movestreet
cars and vehicles on a macadamized road. The apparatus cars and vehicles on a macadamized road. The apparatus
used consisted of an inclined plane, at the upper end of which was an iron wheel, over which passed a rope. A loaded box car, weighing, with its contents, $12,820 \mathrm{lb}$., was drawn up the grade by a weight of 970 lb . suspended at the other end of the rope. The empty car, weighing $4,820 \mathrm{lh}$., was drawn up the same grade by a weight of 283 lb . A smaller box car weighing when empty $2,730 \mathrm{lb}$., was occupied by fourteen persons, and drawn up by 339 lb ., and when unoccupied by 176 lb . An ordinary load of sand on a macadamized road was started by 514 lb ., and an empty hack, weighing $1,550 \mathrm{lb}$. by 196 lb . The same hack, with four passengers inside, required 230 lb . to move it. On a level road the load of sand was started by 240 lb ., while the large box car yielded to 56 lb . These experiments were made by a horse railroad company to prove that their work was not unusually severe for the horses, and the result wes was not unusually sevgre for the horses, and
declared to have been altogether satisfactory.

The Art of Seeing $\begin{gathered}\text { Stereoscopic Pictures Without a } \\ \text { Stercoscope. }\end{gathered}$
In order to describe in what manner any individual pos sessing eyes in fair condition may be able to bring both pic tures of a stereoscopic card into one, it is not at all necessary to go into the somewhat abstruse question of the conver gence of the optic axes, which, although necessary if we were discussing binocular vision in the abstract, is not so when giving, as we propose to do, simple directions by which the stereoscopic effect may be seen without the stereo scope.
The eyes must, first of all, be tutored, by giving them a somewhat simple lesson to perform. The way by which we have invariably succeeded best in this tuition of the eyes is to make two bold ink marks, such as a cross, at a distance of an inch apart, upon a sheet of white paper, and within a half inch of the upper edge of the sheet. Now, upon a sec ond sheet of paper make another single mark, similar to the two others. We prefer a cross for this purpose, although any other form will answer. Hold this latter sheet about twenty inches from the eyes, which must then be directed to the cross. While this is being done, hold the other paper, with its two marks, about half way between the eyes and the single cross sheet. Upon looking intently at the single or more distant mark the mind will soon become conscious of there now appearing to be three crosses upon the nearer sheet. Should they not coalesce immediately, move the paper a little way near to or further from the eyes till they do so.
It is now requisite that the eyes be diverted from the distant mark to the central one of the three that are apparent on the nearer paper, and after a minute's practice this can readily be done. The next step in advance is to practice upon a card having two similar crosses at a much greater distance apart than the former pair; and when these can be with facility brought into one, in doing which it may be necessary to hold them at a greater distance away than in the former case, then may a stereoscopic slide be substituted.
At first it is best to employ a stereoscopic picture specially selected for the purpose-one having a well-defined bold object in the center, such as a tree. Not only so, but it will be advantageous to cut this picture into two halves and remove a piece from the center, so as to bring the objects much closer together than is usually the case; for the nearer the two pictures are together the more easy will it be for the eyes to unite them by the process described. There will be three pictures visible, but the center one, being composed o the other two, will stand out in full stereoscopic relief.
While examining this divided photographic picture upon a table, as soon as the eyes have acquired facility in indi vidualizing every detail in them, the halves may be slowly separated; and if, during this operation, the eyes are fixed upon one point of the scene depicted, a separation to the extent of the distance between the two eyes may be made.
Should there be more difficulty in getting the photographs to combine than was experienced in the case of the two ink crosses let them be treated as in the original experiment; that is to say, hold up the single cross sheet at a distance of thirty or forty inches, and hold up the pictures at eighteen or twenty inches away. Now look at "he cross until you
realize that the slide which intervenes contains three pic tures, and let the eyes be then gently transferred from the contemplation of the cross to the center figure on the stereoscopic slide, which will be in the same line of vision.
After this art has been acquired it will not again be for gotten, and it will afford a high degree of pleasure to its possessor, who, when turning over a quantity of stereoscoptic pictures on the table of a friend, or when examining them in the window of a store, can realize their full beauty without requiring to use an instrument. - Photo. Times.

The Great Desert of Sahara.

In a paper which Dr. Oscar Lenz contributes to the Zeitschrift of the Berlin Geographical Society, he gives an authentic account of the results of his journey across the Sahara, from Tanger to Timbuctoo, and thence to Senegambia. The real journey was begun at Marrakesh, at the northern foot of the Atlas Mountains, where Dr. Lenz laid in his stores of provisions and changed his name and dress, traveling further under the disguise of a Turkish military surgeon. He crossed the Atlas and the Anti-A tlas in a southwestern direction. The Atlas consists, first, of a series of hills belonging to the Tertiary and Cretaceous formations, then of a wide plateau of red sandstone, probably Triassic, and of the chief range which consists of clay-slates with extensive iron ores. The pass of Bibauan is 1,250 meters above the sea level, and it is surrounded with peaks about 4,000 meters high, while the Wad Sus Valley at its foot is but 150 meters above the sea. The Anti-Atlas consists of Palæozoic strata.

On May 5, 1880, Dr. Lenz reached Tenduf, a small town founded some thirty years ago, and promising to acquire great importance as a station for caravans. The northern part of the Sahara is a plateau, 400 meters high, consisting of horizontal Devonian strata, which contain numerous fos sils.
On May 15 Dr. Lenz crossed the moving sand dunes of Igidi, a wide tract, where he observed the interesting phenomenon of musical sand, a sound like that of a trumpet being produced by the friction of the small grains of quartz. But amidst these moving dunes it is not uncommon to find
some grazing places for camels, as well as flocks of gazelle and antelopes. At El Eglab Dr. Lenz found granite and porphyry, and was fortunate enough to have rain. Thence the character of the desert becomes more varied, the route
crossing sometimes sandy and sometimes stony tracts of sand dunes, with several dry river beds running east and west between them.
On May 29 he reached the salt works of Taudeni, and visited the ruins of a very ancient town, where numerous stone implements have been found. Here he crossed a depression of the desert only 145 to 170 meters high, while the remainder of the desert usually reaches as much as 250 to 300 meters above the sea level, and he remarks that throughout his journey he did not meet with depressions below the sea level. The schemes for flooding the Sahara are therefore hopeless and misleading. The landscape remained the same until the wide Alfa fields, which extend north of Arauan. This little town is situated amidst sand dunes devoid of vegeation, owing to the hot southern winds. Four days later Dr. Lenz was in Timbuctoo, whence he proceeded west to St. Louis.
During his forty-three days' travel through the Sahara Dr. Lenz observed that the temperature was not excessive; it usually was from 34° to 36° Celsius, and only in the Igidi region it reached 45°. The wind blew mostly from the northwest, and it was only south of Taudeni that the traveler xperienced the hot south winds (edrash) of the desert. As o the theory of northeastern trade-winds being the cause of the formation of the desert, Dr. Lenz remarks that he never observed such a wind, nor did his men; it must be stopped by the billy tracts of the north. Another important remark of Dr. Lenz is what be makes with respect to the frequent description of the Sahara as a sea bed. Of course it was under the sea, but during the Devonian, Cretaceous, and Tertiary periods; as to the sand which covers it now, it has othing to do with the sea; it is the product of destruction of sandstones by atmospheric agencies. Northern Africa was not always a desert, and the causes of its being so now must be sought for, not in geological, but in meteorological influ-ences.-Nature.

A Perfect Apple Tre

By н. с. ноver.
The apple tree has long been a favorite. That ancient otanist, Solomon, mentions it as conspicuous for beauty among the trees of the wood," and other oriental writers have named it along with the graceful palm and noble citron. Apples have been cultivated on the soil of Great Britain ever since the time of the Roman invasion; and it is said that there are now known to be as many as 2,000 varieties, some of which are successfully growंn as far South s New Zealand, while others thrive as far orth as the 65th degree of latitude. The fruit is universally appreciated, and each variety has its admirers, from the globular, aromatic pippin, down to the painted Siberian crab. And yet, among all the thousands of trees now growing, how rarely do you see one that is shapely and symmetrical!
The perfect apple tree of which an account is here given is a specimen of the hearty, juicy, old-fashioned Vandeveer pippin. It was selected with care by my father, in 1838, and transplanted to a sunny, sheltered spot, near his home in Crawfordsville, Ind. The virgin forest had just been removed from the fertile soil amid which its roots were placed; and throughout its career it has been plentifully watered by the overflow from two ample roofs.
The law of spiral growth, so often distorted, has been beautifully wrought out in this individual tree. The reader is probably aware that the leaves on every tree follow a definite arrangement on the stem. The plan is bighly complex in pines and cedars, but simple in the apple tree. Fasten a thread to a leaf and pass it from one to another, in the same direction, and it will go twice around the stem before reaching a leaf situated exactly above the first. The divergence of the second leaf from the first is 144°, or twofifths of a circle; there is the same distance between the second and the third, and so on to the sixth, which is directly above the first. This is what is known as the generating spiral.

The leaf is the builder of the tree. It hangs out its inch or two of oval green in the air for breath and sunshine, and drinks in the dew and the rain, conveying the result of its vegetable chemistry to a permanent place in the substance of the tree. From the heart of each leaf a cord goes into the fiber of the wood, which is only a binding and knitting together of many leaf cords, and when the leaves shrivel and fall, these cords remain as their monuments. As Ruskin has said, "Behold how fair, how far prolonged in arch and aisle, the avenues of the valleys, the fringes of the hills, the joy of man, the comfort of all living creatures, the glory of the earth, they are but the monuments of those poor leaves that flit faintly past us to die.'
It is evident that, unless the orderly procedure of nature be in some way disturbed, each twig, branch, and bough, and the very structure of the trunk itself, should conform to this law of spiral development, the entire fabric being reared fter the plan marked out by the first five leaves.
And thus it is, in the fine old tree here held $u p$ as an example of what a tree is capable of becoming. All its conditions have favored a symmetrical and uninterrupted devel opment. Hence oue can trace the spirals from the ground to the outmost bough, except where they lose themselves by being knotted together.
Five buttressed roots, each one foot in diameter, mark the
emergence of the tree from the ground. The circumference of the trunk immediately above them is nine feet; and it is made of five distinct strands, like those of a rope, twisted around each other, until at the height of six feet from the ground, and exactly over each corresponding root, each strand puts forth a branch. The girth of the tree, midway, is eight feet; but just below the whorl of branches it increases to nine again. The branches, five in number and arranged in a spiral, measure at the point of divergence respectively, threefeet, three feet and six inches, three feet and eight inches, four feet, and four feet six inches. The height of the entire tree is about forty feet. The diameter of its canopy from north to south is forty-three feet; and from east to west it is forty-five feet.
It should be added that this patriarchal apple tree enjoys a green and fruitful old age; being still a prolific bearer, although it has stood where it now is for forty-four years, and is probably as much as forty-six years old.

Fertilizer Experiments.

In the discussion on fertilizers, at the recent meeting at Newtown, Conn., Mr. Sedgewick, of Cornwall, said he thought that Dr. Atwater's experiments had saved the farmers a great amount of money by teaching fertilizer manufacturers that less nitrogen is required for many crops than had formerly been supposed. Nitrogen is the most costly ingredient used in commercial fertilizers, and the most difficult at the present time to obtain. It would be wasteful, therefore, to use a greater quantity than is really needed, and such waste is exceedingly costly to the farmer. As it is found that less nitrogen is required, the price of fertilizers has been gradually dropping in market, and this gain is greatly to the benefit of the farmer. It enables him to buy more, and to use more with a fair prospect of obtaining a profit. One objection to the use of guano, he believed, was that it contains a larger percentage of nitrogen than is needed, and consequently a larger p:oportion than farmers can afford to pay for. A saving of one per cent in the amount of nitrogen in a ton of fertilizer will cheapen the cost about four dollars. He thought the most profitable way to use fertilizers is in connection with stable manure, the fertilizers being compounded in such a way as to make the manure and fertilizer together just meet the wants of the crops to be grown. Exactly how the nitrogen is taken by plants, he did not attempt to explain, but it is evident that soil which is well filled with the tops and roots of clover and other plants contains a large amount of nitrogen that the growing crop will in some way appropriate. - New England Farmer.

How to Make Peppermint Drops.

Take a convenient quantity of dry granulated sugar; place it in a pan having a lip from which the contents may be poured or dropped; add a very little water, just enough to make the sugar a stiff paste, two ounces of water to a pound of sugar being about the right proportion; set it over the fire and allow it to nearly boil, keeping it continually stirred; it must not actually come to a full boil, but must be removed from the fire just as the bubbles denoting the boiling point is reached begin to rise. Allow the sirup to cool a little, stirring all the time; add strong essence of peppermint to suit the taste, and drop on tins, or sheets of smooth white paper. The dropping is performed by tilting the vessel slightly, so that the contents will slow! y run out, and with a small piece of stiff wire the drops may be stroked off on to the tins or paper. They should then be kept in a warm place for a few hours to dry. If desired, a little red coloring may be added just previous to dropping, or a portion may be dropped in a plain white form, and the remainder cossred.
There is no reason why peppermint skould alone beused with this form of candy, but confectioners usually confine themselves to this flavor. Any flavor may be added, and a great variety of palatable sweets made in the same manner. If desired, these drops may be acidulated by the use of a little tartaric acid and flavored with lemon, pineapple, or banana. In the season of fruits, delicious drops may be made by substituting the juice of fresh fruits, as strawberry, raspberry, etc., for the water, and otherwise proceeding as directed.-Confectioner and Baker.

Effect of Electric Lighting on the Demand for Gas. The Journal of Gas Lighting, in a review of the past year, says: "Perhaps the most positive and abiding result of the rage for electric lighting in public streets is the increase of gas consumption which inevitably follows the removal of the electric lamps, or is insisted upon in districts adjacent to those occupied by the electricians. The old style of street lighting, with five foot burners, or even worse, will no longer satisfy the public in busy thoroughfares. More light is demanded even from gas, and there is consequently a large and growing use for high-power gas burners. It is fortunate for the interests of gas lighting that the opportunity has not been allowed to pass fruitlessly by the manufacturers of gas lamps. Numerous inventors, such as Herr Frederick Siemens, Messrs. Sugg, Bray, Wigham, and, latest of all, Mr. Douglass,have demonstrated that the modern demand for better means of lighting is capable of being amply satisfied by ordinary coal gas alone. Whether electric lighting eventually succeeds in establishing itself or nor, it is certain that it has given a great impetus to the business of certain that it has given a gre
gas lighting in the past year.

The Ohargefor Insertion under this head is One Dollar a line for each insertion; about eight words to a line. Advertisements must be received at publication office as early as Thursday morning to appear in next issue.

ATLaNTA, GA., Dec. 24, 1881. H. W. Johns M'g Co., 87 Maiden Lane, New York.
DEAR SIR : . . The warehouse (300×300) in Columbus. G.a., was covered with your roofing, ordered by Col.
w. L. Salisbury, some ten years ago, and it is now apparW. L. Salisbury, some ten years ago,
ently as good as new. Yours truly,

Granvill J. 'r. Warnock, M.D.
Granville Hydraulic Elevator Co., 1193 B'way, N. Y. Will Manufacturers of Baking Powder Tins send their ditsburg. Pa To Stop Leaks in Boiler Tubes, use Quinn's Pat
ules. Address S. M. Co., So. Newmarket, N. H.
The Universal Calculator.-A novel labor-saving machine for solving questions in arithmetic and mensura-
ion without mental labor. The most tedious problems olved in less than half a minute. Invaluable to engineers, mechanics, and business men. Sent free for $\$ 1$.
d for circular. Address W.H. Wythe, Red Bank, N.J.
Wanted.-A Scientific Inventor to improve a secured Patent Imitation Ostrich Feather. A fortune for the
right party. Address, in real name, "Feather," Box 773 , right party.
The Berryman Feed Water Heater and Purifier and Feed Pump. I. B. Davis' Patent. See illus. adv., p. 44. Light and Fine Machinery and Tools to Order. Lat
atalogue for stamp. E. O. Chase, Newark, N. J.
For Machinists and Apprentices.-The Student's Illustrated Guide to Practical Draughting. Sent on receipt of
$\$ 1$. T.P.Pemberton, 142 Greenwich St. P.O.Box 3083 ,N.Y. Chemist's Pocket Book.-For Chemical Manufacturfis, Metallurgists, Dyers, Distillers, Brewers, Sugar Refiners, Photographers, etc. By Thomas Bayley. \$2, man
free. E. \& F. N. spon, 446 Broome St., New York.
Patent Wanted.-I want to buy whole or part interest, $\underset{\text { York. }}{\text { or man }}$
Manufacturers, Steam Boiler Owners, Towns and Cities desiring pure water, send for circular to the wa ntong Co., Newark, N.
For Sale Cheap-6 Lathes, 28 Engines, 4 Bolt Cutters, \& \& Smith, Clevel'd, Malleable and Gray Iron Castings to order, by Capital ty liable Iron Co., Albany, N. Y.
For Power \& Economy, Alcott's Turbine, Mt.Holly, N. J. Combination Roll and Rubber Co., 27 Barclay St., Lightning Screw Plates and Labor-saving Tools, p. 30 Send for Pamphlet of Compilation of Tests of Turbin
Water Wheels. Barber, Keiser \& Co., Allentown, Pa. List of Machinists in United States and Canada, just
compiled; price. 10 . A. C. Farley \& Co., Philadelphia. Presses \& Dies (fruit cans) Ayar Mach.Wks., Salem,N.J. Latest Improved Diamond Drills. Send for circula M. C. Bullock, 80 to 88 Market St., Chicago, III. Wood Working Machinery of Improved Design and
Workmanship. Cordesman, Egan \& Co., Cincinnati, 0 . Workmanship. Cordesman, Egan \& Co., Cincinnati, 0.
Abbe Boit Forging Machines and Palmer Po ver HamAbbe Bolt Forging Machines and Palmer Po ver Ham
mers a specialty. $\mathbf{S .}$. C. Forsaith \& Co.. Manchester, N. H
"How to Keep Boilers Clean," and other valuable in formation for steam users and engineers. Book
sixty-foür pages, published by Jas. F. Hotchkiss. sixty-four pages, published by Jas. E. Hotes.
John St.. New York, mailed free to any address.
Supplement Catalogue.-Persons in pursuit of information on any special engineering. mechanical, or scien-
tific subject, can have catalogue of contents of the ScIentific american supplement sent to them free The SUPPLEmevt contains lengthy articles embracing
the whole range of engineering, mechanics, and physithe whole range of engineering, mechanics, and physi-
cal science. Address Munn \& Co.. Publishers, New York Split Pulleys at low prices, and of same strength and
appearance as Whole Pulleys. Yocom \& Son's Shafting Works, Drinker St., Philadelphia, Pa
Malleable and Gray Iron Castings, all descriptions, by
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. Corrugated Wrought Iron for Tires on Traction En-
sines, etc. Sole mfrs, H . Lloya, Son \& Co., Pittsb, F , Pa.
Presses, Dies, Tools for working Sheet Metals, etc Fruitand other Can T'ools. E. W. Bliss. Brooklyn, N. Y
Cope \& Maxwell M'f'g Co.'s Pump adv., page 45.
Saw Mill Machinery. Stearns Mfg. Co. See p. 29.
List 27.-Description of 3,000 new and second-hand
Machines, now ready for distribution. Send stamp for
.
Supplee Steam Engine. See adv. p. 30.
Peck's Patent Drop Press. See adv., page
Peck's Patent Drop Press. See adv., page 30.
For Pat. Safety Elevators, Hoisting Engines, Friction
Clatch Puleys, Cut-off Coupling. see Frisbie's ad. p. 45.
Safety Boilers. See Harrison Boiler Works adv., p. 44.
Mineral Lands Prospected, Artesian Wells Borod, by
Pa. Diamond Drill Co. Box 423. Pottsville, Pa. See p. 45 . Improved Skinner Portable Engines. Erie, Pa For best Portable Forges and Blacksmiths' Han
Blowers, address Buffalo Forge Co., Buffalo, N. Y.
The Brown Automatic Cut-off Engine; unexcelled for workmanship, economy, and durability. Write for in
formation. C. H. Brown \& Co., Fitchburg, Mass.
Ball's Variable Cut-off Engine. See adv., page 60. Paragon School Desk Extension Slides. See adv. p. 61. Fire Brick, Tile, and Clay Retorts, all shapes. Borgne
\& 'Brien, N'f'rs, 23d St., above Race, Phila., Pa. Brass \& Copper in sheets, wire \& blanks. See ad. p. 61. Clark \& Heald Machine Co. See adv., p. 62.
The Chester Steel Castings Co., office 407 Library St. Philadelphia, Pa... can prove by 15.000 Crank Shafts, and
10,00 Gear Wheels. now in use, the superiority of their castings over all others. Circular and price list free. Millstone Dressing Diamonds. Simple, effective, an
durable. J. Dickinson, 64 Nassau street, New York. The Improved Hydraulic Jacks. Punches, and Tub Expanders. R. Dudgeon, 24 Coiumbia St., New York. tc. Sold in ingots or castings. See adv., p. 61 .

Geiser's Patent Grain Thrasher, Peerless, Portable, Tight and Slack Barrer Mfg. Co., Wapiaty John reenwood \& Co., Rochester, N. Y. See illus. adv. p. 60. For the manufacture of metallic shells. cups, ferrules,
blanks, and any and all kinds of small press and stamped work in copper, brass, zinc, iron. or tin, address C.J. God frey \& Son, Union City, Conn. The manufacture of smal
wares, notions. and novelties in the above line, a spe cialty. See advertisement on page 62 .
For Wairus Leather, Bull Neck Emer
For Wairus Leather, Bull Neck Emery, Glue, Crocus Magic Lanterns and Stereopticons of all kinds and prices. Views illustrating every subject for public ex-
hibitions, Sunday schools, colleges, and home entertainhint. 116 page illustrated catalogue free. McAllister
ment Manufacturing Optician, 49 Nassau St., New York.
For Mill Mach's \& Mill Furnishing.McCollin,Phila.,Pa For Mill Mach'y \& Mill Furnishing, see illus. adv. p. 60 New Economizer Portable Engine. See illus. adv. p. 62.
Renshaw's Ratchet for Square and Taper Shank Drills. e 1
For Shafts, Pulleys, or Hangers, call and see stoc
kept at 79 Liberty St., N. Y. Wm. Sellers \& Co. Wm . Sellers \& Co Phil Wm. Sellers \& Co., Phila., have introduced a new Common Sense Dry Kiln. Aden Common Sense Dry Kiln. Adapted to drying of all maThe Porter-Allen High Speed Steam Engine. South Skinner's Chuck. Universal, and Eccentric. See p. 61. For Rubber Packing, Soap stone Packing, Empire
Packing, and all kinds, write Greene, Tweed \& Co., N.Y. Don't buy a Steam Pump until you have written Val

HINTS 'TO CORRESPONDENTS. No attention will be paid to communications unless writer.
Names and addresses of correspondents will not be iven to inquirers.
We renew our request that correspondents, in referring to former answers or articles, will be kind enough to name the date of the paper and thepage, or the numbe of the question.
Correspondents whose inquiries do not appear afte a reasonable time should repeat them. If not then pub
lished, they may conclude that, for good reasons, the Editor declines them.
Persons desiring special information which is purely of a personal character, and not of general interest, should remit from $\$ 1$ to $\$ 5$, according to the subject, as we cannol be expected to spend time and lah
obtain such information without remuneration. obtain such information without remuneration.
Any numbers of the Scientipic American SuppleIENT referred to in these columns may be had at this office. Price 10 cents each.
cor examination, should be careful to distinctly mark. label their specimens so as to avoid error in their identi fication.
(1) J. L. asks: Is there a composition which, when applied to the ends of soft wood, will ill up the pores and leave a soft rubber-like surface A. Try the following: Fuse together over a water
bath and mix together equal parts of glue size and and mix together equal parts of glycerine. Continue the heating for several hours, and use hot. Almost any of the ordinary pig.
(2) M. T. asks: Will you please describe a simple or inexpensive method of producing chlorine in mas or be prepared for fonomically by heating in a stone ware or glass retort a misture composed of common salt, 10 parts (by weight); manganese dioxide (black oxide), 8 parts; sulphuric acid, 24 parts; water, 12 parts. When this gas is passed through cold water, the water
dissolves a considerable portion of it, and the solution (chlorine water) may be employed instead of the gas for
(3) G. W. K. asks: 1. Is there not a rule by which I can calculate the centrifugal force of governor balls when number of revolutions per minute and
diameter of circle described by center of balls and weight of balls is known? A. Yes, you will find rules for governors in many works on the steam engine:
"Haswell's Pocket Book," and " Templeton's Engineer's Common place Book." 2. With a common plain slide valve, and pressure in boiler at eighty pounds, how many pounds would it probably reqnire to be applied to valve connecting rod for each squareinch of valve
surface? A. About one-fourth the unbalanced presure.
(4) E. E. B. asks: How can I cure tobacco for chewing after it has dried? It was taken from the p in hanks of a months ago and hung in a barn tied You will find this information in Stupplements, Nos. 133 and 126. 2. I bave a telephone running from house to shop, a distance of aboat 50 feet. I use very fine
brass wire; the diaphragms are of tin type, and common wooden mouthpieces. It goes very well when the wire
whe the diaphragms are of tin type, and common is wet, but when it is dry it rings, so that it is hard to understand. Will you tell me how to remedy it?
Use a finer wire cable cord for your telephone.
Minerals, etc.-Specimens have been received from the following correspondents, and examined, with the results stated
A. B. C., P. M.-It is a common variety of fossilifer-

COMMUNICATION RECEIVED.
C.

INDEX OF INVENTIONS for which
Letters Patent of the United States wer Granted in the Week Ending

January 10, 1882.
AND EACH BEARING THAT DATEE. [Those marked (r) are reissued patents.]

A printed copy of the specification and drawing of any patent in the annexed list, also of any patent. issued nce 1866 , will be furnished from this office for 25 cents. in ordering please state the number and date of the patent desired and remit to Munn \& Co., 37 Park Row, New York city. We also furnish copies of patents cations not being printed, must be copied by hand.

Baling press, L.

Baling press, G. K. Rice
Bar. See Grate bar.
Bed lounge, J. D. W.
Bedstead, W. P. Miler..........
Beehive, H. L. T. Overbey...
Bell, gong. F. W. Brocksiep

ells, striking mechanism for electric, G. E.
Belt. driving, T. Jack
Berth, self-leveling, A. M. Crosby
Bevel and try square, C. Thomas
Bicycle seat, C. H. Veeder.......
Blasting powder. W. R. Quina
Blotter, rotary, W. H. Kelly.
Boat raising and lowering apparatus, R. H. Ear
Boiler. See Clothes boiler. Stam Boiler. See Clothes boiler. Steam boiler.
Boiler furnace, stationary, Harris \& Farr
Boiler furnace, steam, M. C. Jones.
Bolster spring, C. A. Howard.........
Book clasp, adjustable, A.C. Hafely.
Book rack, R. W. Myers..........................
ting. C. B. Webb...................
Boot or shoe sole. J. D. Stoddard
Bottle stopper, E. Aldom..
Bottle stoper
Bottle stopper and fastener, A. E. Rich
Box. See Axle box. Match box. Post
Box or basket, J. M. \& S. H. Gardner.
Bracelet, etc., J. Stanley ..
Brake. See Car brake. Ele
Brake. See Car brake. Elect.......................
Brick and fireproof lining for furnato brake.
Brick and freproof lining for furn
Ulsmann
Brick and other kilns, s. W. Bickley
Brush making tool, A. P. Smith................
Building blocks, manufacture of, J. J. Schilling Burglar alarm, J. Giles.
Burglar alarm, cut out, w..........
Burial case, J. Askins......
Butchering apparatus, G. F. . Dickininson
Buthon attachment, C. Newburgh...
Button attachment, ,. Newburgh....
Can for ivory black, etc., W. D. Cart
Can for ivory black, etc., W. D. Carter.............
Capstan, combined steam and hand power, H.
Car brake, Mills \& Isbister.
Car coupling, R. H. Dowling
Car coupling, J. C. Fowler. .
Car coupling, McMurray
Car roof, H. Aldridge (r
Car, stock, G. J. Cline
cars, draught and buffing apparatus for railwa
F. W. Marston....
Carriage button. W. .

Carrier. See Grain carrier. Trace earrier.
Case. See Burial case.
Caster, trunk, J. J. Cowell
Chair. See Folding chair. Gynecolo.
Rocking chair. Tilting chair.
Rocking chair. Tilting chair.
Chandelier, C. f. Jacobsen (r).
Chandelier, C. F . Jacobsen (r).
Churn, J. F. Ferguson
Chute, coal, J. D. Pettit
Cigarette bolder. G. Rodriguez..............
Clasp. See Album clasp. Book clask.
Clasp. See Album clasp. Bo
Clothes boiler, C. B. Veronee...
Clover huller, Jones \& Kiefer
Clutch, friction, s.s. Coork.......................
Coal, apparatus for unloading, w. Ilett.
Coal, apparatus for unloading, w. Ilett................
Collars, combined shoulder and neck pad fo
horse, J. R. Hamilton....
Coloring matter, manufacture of blue, J. H. Steb

Cotton chopper. J. L. Hughes.
Coupling. See Car coupling.
coupling. Tubing coupling.
Crushing ores, etc.
Cuff. I. P. Turner..
Cuff. I. P. Turner.............

Cuffholder, J. F. Guigno
Cultivator, O. O. Booth
Cultivator, F. O. William
Cultivator tooth, w. A. Van Brunt
Curtain roller support. H. Farley.
Curtain roller support. H. F
Die. See Screw setting die.
Direct acting ent
Direct acting engine,,
Door spring, C. B. Clark
Door spring, C. B. Clark...............
Drill, J. W. Webber
Drying kiln, G. F. Sp
Drying kiln, G. F. Speer...............................
Dyestuff or coloring matter, purple,
bins Jr........................
Eaves trough hanger. w. Hatch
Eaves trough hanger. W. Hatch
Egg tray machine,Schroder \&
Electric cable, W. J. Philps...

Floor covering, C. T. \& V. E. Meyer..................121, 252
Flour, etc., machinery for dressing and siftin Thompson \& Williamson....................... 252.298
Foling chair \& C. Flint... Forge, portable. C. Hammelmann........................ 252,2,
Frame. See Thrashing and clover hulling ma
Frame. See thrashing and clover huling
chine frame.
Fruit picker and tree trimmer. W. Mustart........ 252,
Fruit press, F. F. N. Marais........................ 252,2
Furnace. See Boiler furnace. Hot air furnace.
252.129
252.233

Furnace doors, device for opening, J. A. Carr..... 252. 188
Furnace grate. McClave \& Price................. 25\%:049
Furnace grate. McClave \& Price................... 252.049
Furniture, packing fastener for, M. E. McMaster.
Gas trap J. W. Rogers......................... 252.258
Gas trap, J. W. Rogers..
Gate roler, C. B. Rice.......
Gearing, flexible, A. S. Gear
252,253
252,088
Generator. See Steam generator.
Glycerine from soap lyes, recovery of, c. Thomas

overnor, steam engine, J. E.
Grain binder, J. M. MeMaster.....252,236, 2
Grain binder tension, C. Colahan.
Grain carrier, J. S. Davis
Grain drill point, 1. J. Shults
Grain scourer, D. Mann
Grate bar, T. F. Van Keur
Grinding and polishing machine, J. L. T
Grinding mill, S. P. Walling
Grinding mill, feed, O. E. Winge
Grinding mill feed regulator
Guard. See Saw guard.
Gynecological chair, G. W
Handle for manure forks
Hanger. See Eaves trough h
Hame, J. W.
Harness and trace coupling. G. W. Hunter
Harness check hook, H. C. Buell
Harrow, T. M
Harrow, G. A. Paddock
Harvesting machine, D. W. Entr
Hay and grain cap, J. W. Ang
Hay rack, J. M. Diffendafer
Heater. See Feed wat
Heating apparatus, L. T. Terwillige
Heel nailing machine, H. A. Hender
Heel trimmer, Moulton \& Adams.
Hinge, spring, w. H. Williams
nose ring, E. Majo
ogs, apparatus for catching Lowry \& Crawford.

252.007
Holder. See Cigarette holde........................ Coin holder. Cuf
holder. Label holder. Pen holder. Strap

Hook. See Harness check hook. Snap hook.
Hoop dressing machine, S. R. Garner 252,20
Horse hoof pad, w. F. Raymond.............. 252,251
Horseshoe. R. A. Goodenough.................. 252,210
Hot air furnace, W. P. Brewin................... 252,01
Huller. See Clover huller.

Horseshoe. R. A. Goodenough............................. 252,210
Hot air furnace, W. P. Brewin................... 252,01
Huller. See Clover huller.
Ice cream freezer, M. Richeimer.................... 252,25
Ice machine and refrigerating apparatus. T. \& C.
Indicator. See Speed indicator.
Indicator lock, , M. McNeven.......................
Insulated electrical conductor, w. H. Sawye...................................... 2552,166
Iron, manufacture of sheet, w. D. Wood........
Joint. See Universal joint.
Kiln. See Drying kiln.
Label holder, H. F. Clinton..............
Labeling machine, packet, G. Pritchard.. Lamp, J. M. Dexter..........................
Lamp, bracket and standard, J. H. White. Lamp, electric, A. G. Holcombe.
Lamp, electric,
Lamp, electrical, A. J. B. Cance
Lamp. miner's, D. D. Williams...
Lamp, safety car, C. E. Granniss ...
Lathe, railway car axle, A. Gordon.

Lock. see Indicator lock. Nut lock. Trace lock.
Lubricator. See Shutte race lubricator.
Match box and cigar cutter, combined, C. F. Pierce 252,056

Measure. pocket tape, E. P. Haff. 252,101
Mechanical movement. R. E. Breed... 252,176

Mechanical movement, H. Lord.................. 252,21
Medical use, electrical apparatus for, J. Butler... 252,1
heter. See Water meter.
Russell 252,144
Miners, etc., prospecting tool for, J. B. T. Chase . 252,184
Mining implement. T. M. Gallaher................ 252,206
Motion. device for converting reciprocating into
otor. See Churn motor.
Mouse trap, B. L. Norton.
Nut lock, D. P. Prescott.
Nuts upon bolts, locking, A. R. Cla
Oven, baker's. E. A. C. Petersen.
Pad. See Horse hoof pad.
Paint for roofs, J, R. Barnard.
Paper machine dandy roli, D. Mck........ 252,171
Paper scoring and cutting machine, J. C. Marshall 252.114
Peanut picker and cleaner, E. H. Powell.. 252.136
Pen holder. reservoir, 'T. A. Hearson 252,034
Piano sounding board attachment, J. G. Seebold. 252,146 .
Picker. See Fruit picker. Peanut picker.
Planter, corn, C. U. Crandall.
lanter, corn, L. Scofield
ow, M. Cooper (r)..
Plow, W. A. Estes
Plow, J. S. \& E C.
ost office box. Temple \& Pierce.
post Offce box, C. . Thompson..
owder. See Blasting powder.
fflce box, C. S. Thompson.
er. See Blasting powder.
See Blasting powder

ROSE'S MACHINIST.

The Compleie Praciliaal Machinist:

WIRE ROPE, BRIDGE CABLES, SHIP RIGGING, Tramway Ropes, Champion Barbed Wire, etc.

Special Machines for Car Workand and the latest improved
Wood Working Sachinery of aill kinds.
MACHINERY

ON 30 DAYS' TRIAL!
Dr. Dye's Electro-Voltaic Belts, Suspensories,

 voltaic belt co.. Marshall, Mich. Whmurichictisw

WATCHMAKERS
Before buying lathes, see the "Whitcomb," made by
AMERICAN ATCH TOOL CO., Waltham, Mass.

RUPTURE

 THE NEW ÓTIO SILEN'I GAS ENGINE

MACHINISTS' TOOLS.
Send for new illustrated catalogue.
Lathes, Plariars, Drills, \&o. new haven mandeaghering co.,

BLAKE'S CHALLENGE " ROCK BREAKER.

Steam Fitters' \& Plumbers' Supplies
STURTEVANT'S FAN BLOWERS

PATENT QUICK SHJAAPERES Canbe Changed while in Ho Can be Changed while in Motion.
E. GOULD \& EBERHARDT,

SpEcial Machivary toiss, Experimextai
DO YOUR OWN PRINTIHG
 H. HOOVER, Phila., Pa

FORSTER'S RRUSHER AND CRUSHER AND PULVERIZER

IRON REVOLVERS, PERFECTLY BALANCEU, Has Fewer Parts than any other Blower. P. H. \& F. M. ROOTS, Manufacturers
 SEND FOR PRICED CATALOGUE.

WTTHERBT, RUGG\& RTCHARDSON Manufactarers
ICE MAKING MACHINES, COLD AIR MACHINES,
For Brewers, Pork Packers, Cold Stor
age Warehouses, age W arehouses, Hospitals, etc.
 P. O. Box 3083. Greeuwich itr teet, Yorls City, N. \mathbf{Y}

$\$ 72$ outfit free. \$12a day at home easily made. cossly

THE SCOVILL
"Pop" Safety Valve, $\underset{\text { For Locomotive, Stationary Marine, and Portable }}{\text { SIMPLE, RELIA BLE, DURA BLE }}$ or THE HANCOCK INSPIRATOR CO.

TELEPHON ES Sor private fines
salurtitisments．

 RESPONSIBLE AGENTS WANTED，

DePalas＇Pressure Moderator SAVTBE 20 to 50 per cent．in Gas Bills． HOWARD MFG．CO．， 364 ，Broadway，New York．

 COLUMBIA BICYCLE Ts what every ooy wants and
what every man ought to have
Send 3c．stamp for illustrated
catalogue，with price lists and full THE POPE M＇F＇G CO．， 597 Washington St．，Boston，Nass
HY．JOHIS asezsios LIQUID PAINTS

ASBESTOSROOFING COVERINGS asbestositheam padikin

H．W．JOHNS M＇F＇G CO 87 Maiden Lane，New York

FRIEDMANN＇S PATENT INJECTOR，

Boiler Feeder

simple，Reliable，and Efective

40，000 IN ACTUAL USE． NATHAN \＆DREYFUS，
Sole Manufacturers，NEW YORK End for Descriptive Catalogu

T．M．NAGIME

Manufacturer of
Portable，Stationary $\stackrel{\text { and }}{\text { Agricultura }}$
STMAMM mNGGINMB： THERMOMETERS Burventers．Dhe
MIRE ROPE

Lefigigh Valley Binay Winel Co， エ円エIIGFITOIN，PA．
 and grinding machinery．
For Sale by COOKE \＆co．，No． 6 Cortland St．，New York For Sale by COOKE No co．，N． 6 Cortland St．，New York；
R．M．REXFORD，No．11 N．Gth St．，Philadelphia，Pa．；
M．F．PERICY，No． 43 South Canal St．，Chicago，Ill．；FOX， CORBY \＆CO．，No．31＇North Third St．，St．Louis，Mo San Francisco，Cal．

Pyrometers，For shoming hat of

HOLD \quad FOR BEST Send for Price ist
JOHN Hor．Land，Mfr．， 9 We st 4th St．，Cincinnati．

Stevens＇Roller Mills， GRADUAL REDUUCTION OF GRAIN． THE JOHN T．NOYE MFG．CO．，Buffalo，N．Y．

$\underset{\text { proved Time Detector }}{\text { prent }}$

IRIDIUIM：

THE HARDEST METAL KNOWN．
 THE A MERICAN IRIDIUM CO S．E．Corner Pearl and Plum Sts，Cincimati，Ohi WM．A．HARRIS PROVIDENGE，A．HARRRIS， H Aitisitionhis Exive With Harris＇Patented Imp
alR GUNS GIVEN AWAY！NOW IS YOUR CHANCE！
Send three cent stamp for one of our circulars．From among the number thus received，we will，on March 15,
impartialy select sixamen，the owners of which will each be presented with a fritcclass＂wimproved Nickel
Plated dir Gun． PRICES

椱取BOILER FEEDER．
 D．E．RICE， 1 Atwater Street，Detroit，Mich Nateand Screw，Paraliel，Leg Vises
 Asbestos Lined Removable Covering，

Target Air Cuns．

Especially adapted for target practice．Fqually suited for touching up
trespassing catas and dogs，killing rats and small game．Our guns are extremel

ERICSSON＇S

Neer Calici Puming gigial DWELLLINGS AND COUNTRY SEATS．
implest cheapest，and most economical pumping engine or domestic purposes．Any servant prir can operate
absolutely safe．Send for circulars and price lists．
DELAMATER IRON WORKS C．H．DELAMATER \＆CO．，Proprietors，

LIVERMORE＇S NEW

Jarvis Furnace Co

ROCK DRIIIS \& AIR COMPRESSORS
INGERSOLL ROCK DRILL CO.
NORKK
PARKACE
 SENT BY MAIL ON RECEIPT OF FIFTY CENTS．
Address Join A．ROERLIVGS SONS，Manufactur－

[^0]: IIEW OF UNDER SIDES OF THE SECOND SET OF BOILERS.-Nos. 5 and 6, EXPLODED BOILERS, ON WHICH ARE SEEN THE LINES OF OF Nos. 5 and 6.-F, THE MUD DRUM OF THE SET. G , THE FEED
 PIPE.

