

A WEEKLY JOURNAL OF PRACTICAL INFORMATION. ART. SCIENCE. MECHANICS. CHEMISTRY AND MANUFACTURES. Vol. NLVI.-NG. 4.

Sixientific Ammicam.

STABLISHED 1845

MUNN \& CO, Editors and Proprietors.

publisaed weekly at

NO. B'Y PARK ROW, NEW YORK.
O. D. MUNN.

TELRMS FOR THE SCIENTIFIC AMERICAN. One copy, one year postage included.
One copy, six months, postage included $\mathbf{1} 60$ gratis for every club of five subscribers at $\$ 3.20$ each : additional copies at same proportionate rate. Postage prepaid.

emit by postal orde.

Address
UNN \& CO., 37 Park Row, Ne
The Scientific American Supplement is issuad weekly. Every number contains 16 octavo pages, uniform in size
with SciEnTIFIC AMERICAN. Terms of subseription with SCIENTIFIC AMERICAN. Terms of subscription for SUPPLEMinNT,
$\$ 5.00$ a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all news dealers throughout the country.
Combined Rates. - The Scientifte American and Suppifment
will be sent for one year postage tree, on papers to one address or different addresses as desired. The sufest way to remit is by draft postal order, or registered letter.
Address MUNN \& CO. 37 Park Row, N. Y.
sciene
Scientific American Export Edition.
The SCIENTIFIC AmvRICAN Export Edition is a large and splendid peri-
odical, issued once a month. Each number cantains about one large quarto pages, profusely illustrated, embracing. (1.) Most of the plates and pages of the four preceding weekly issues of the SCuM TIFI AMURICAN, with its splendid engravings and valuable information:
Commercial, trade, and manufacturing announcements of leading hou Commercial, trade, and manufacturing announcements of leading houses,
Terms for Export Edition, 85.00 a year, sent prepaid to any part of the Terms for Export Edition, 85.00 year, sent prepaid to any part of the
world. Single copies 50 cents. Manufacturers and others who desire to secure foreign trade may have large. and handsomely displayed announcements published in this edition at a very moderate cost.
The ScIEvTIFIC AMcrican Exnort Edition has a large guara lation in all commercial places throughout the world. Address MUN Co. st lark Row, New York

NEW YORK, SATURDAY, JANUARY 28, 1882.

TABLE OF CONTENTS OF

THE SCIENTIFIC AMERICAN SUPPLEMENT, NO. 317,

For the Week ending January 28, 1882 . Price 10 cents. For sale by all newsdealers.
I. ENGINEERING AND MECHA NICS.-Compound Air Locomotive. The Beaumont Improv
Railways. 9 figures....
comotive Engines
Continuous steel girder bridge to cross the Firth of Forth. Comparative Diagrams of Large span Railway Bridges ures. New Continuous Girder Bridge for Firth of Forth - HigBridge over the Forth.-Poughkeepsie Bridge.-St. Louis Bridge.-
Kuilenburg Bridge.-Bridge over the Vaal, Mel Bridge.- Britannia Bridge.-Douro Bridge.-Niagara Suspen-
mel sion Bridge.--Saltash Bridge ...
Amateur Mechanics. Easily made slide rest ; 3 tigures. - Boring for gear cutting; 1 figure. - Method of graduating index plates; 1 for gear cutting; ifure.-. Method of graduating index plates; 1
tigure.-Apparatus for gear cutting; 4 flgures. - Transmitting and converting motion; 7 figures.-Hints on model making....
II. TECHNOLOGY AND CHEMISTRY.-Firework Formulæ.-C ored lights.-Colored fikes.-Stars.-Rockets, etc. 34 recipes......
Colored Lights in Parlor Theatricals. Apparatus and formula Colored Lights in Parlor Theatricals. Apparatus and formule...
Popalar Science of Colors. By Johannes Hirrlenger.-Mixing colors.-Brown pigments.-Gray pigments.-Harmony of colors. -Discord of colors. - Phenomena of gradual contrast. -Phenomena of simultaneous contact..
Waterprooffing Cloth.-L
mann's process.-Townsend's process.-Other processes...................... About Photo-I ithography
Mr. Muybridge's Photographs of Animals in Motion.
A. New Method for the Determination of Molecular weinghts, and the Results obtained by It.-An elaborate and extended investiWater Glass
The Preservation of Eggs
III. AGRICULTURE, ETC.-Tea.-Its culture and uses.-How to make a a ood cup of tea..............................
What to Do with Stones. -The use of stones for drains, for road-
ways, etc. . ways, etc
IV. A RCHITECTURE, ETC.--suggestions in -Architecture:-Houses Leicester.-Perspective and pians
V. HOME DECOR ATION.-Pseudo-Ceramics.-8 figures.-How to Mother-of-Pearl and Pearl Inlaying

FRAUDULENT CLAIMS IN REISSUED PATENTS.

There are hopeful indications that a final stop may be put to the fraudulent acquisition of patent rights by means of reissues, the most fruitful source of complaint against the working of the Patent Office.
A characteristic illustration of this sort of proceeding was brought out in a case lately decided in the United States Supreme Court. A patent was taken out in 1860 for an alleged improvement in lamps. The patent described a combination of devices, including two domes, one over the other, elevated above a perforated cap through which a wick tube and a vapor tube ascended. It was claimed that this combination of devices, especially including the two domes (which admitted the external air between them for producing a more perfect combustion), would allow a chimney to be dispensed with. The invention was a failure, but the inventor and others found that a single dome, used with a chimney, would be a real improvement; and for fifteen years such lamps, as undisputed common property, were manufactured in large numbers for burnine kerosene.

Notwithstanding its rent worthlessness, a reissue of the patent was ask obtained in 1873, extending th time, but, as would appear, without any material change in the claims. Meantime, the holder of the patent (not the original patentee) had discovered that, had it covered only a single dome to be used with a chimney, the patent would have been valuable, whereupon another reissue was sought and obtained in 1876, the amended claims being made to cover the very thing the original patentee professed to avoid and dispense with. The object, of course, was to make all manu facturers of kerosene lamps tributary to the assignee of the extended patent
Suit was brought in the Circuit Court of the United States for the District of Connecticut by the holder of the extended patent, Edward Miller \& Company, against the Bridgeport Brass Company, to restrain the infringement of the patent and for an account of profits, etc. The court dismissed the bill on the ground that the second reissue was not for the invention claimed in the original patent. The case was appealed to the Supreme Court of the United States, and the decision of the Circuit was sustained.
In his decision Mr. Justice Bradley comments upon the case and upon the matter of reissued patents in a manner which indicates a clear determination on the part of the Court to discourage, so far as possible, further proceedings of this nature.
After pointing out the effrontery of claiming in the reissue a combination involving the specific device which it was the avowed purpose of the inventor to dispense with, the court points out another grave objection to the validity of the reissued patent, namely, that the suggestion of inadvertence and mistake in the original specification was a mere pretence, " too bald for human credence," or if not, the mis take was so obvious as to be instantly discernible, and the right to have it corrected was abandoned by unreasonable delay. "If two years' public enjoyment of an invention, with the consent. and allowance of the inventor, is evidence of abandonment and a bar to an application for a patent, a public disclaimer in the patent itself should be construed equally favorably to the public. Nothing but a clear mis take or inadvertence, and a speedy application for its correction, is admissible when it is sought merely to enlarge a claim."
After tracing the historical development of the abuses which have arisen under the laws granting reissues, the court observes that it is clear that it was not the special purpose of the legislation on this subject to authorize the surrender of patents for the purpose of reissuing them with broader and more comprehensive claims, although under the general terms of the law such a reissue may be made where it clearly appears that an actual mistake has inadver tently been made. But, adds the court, by a curious mis application of the law it has come to be principally resorted to for the purpose of enlarging and expanding patent claims This is clearly wrong, except where an actual mistake ha occurred, not from a mere error of judgment (for that may be rectified by appeal), but a real bona-fide mistake jnad vertently committed; such, a court of chancery, in cases within its ordinary jurisdiction, would correct. The court adds Reissues for the enlargement of claims should be the exception and not the rule. And when, if a claim is too narrow, that is, if it does not contain all that the patentee is entitled to, the defect is apparent on the face of the patent, and can be discovered as soon as that document is taken out of its envelope and opened, there can be no valid excuse for delay in asking to have it corrected. Every independent inventor, every mechanic, every citizen, is affected by such delay, and by the issue of a new patent with a broader and mo comprehensive claim. The granting of a reissue for such a purpose, after an unreasonable delay, is clearly a abuse of the power to grant reissues, and may justly be de clared illegal and void. It will not do for the patentee to wait until other inventors have produced new forms of im provement, and then, with the new light thus acquired under pretense of inadvertence and mistake, apply for such an enlargement of his claim as to make it embrace these new
forms. Such a process of expansion carried on indefinitely, without regard to lapse of time, would operate most unjustly against the public, and is totally unauthorized by the law In such a case, even he who has rights, and sleeps upon them, justly loses them."
izing claims in reissues has been the source of serious wrong to the public and of hazard to the entire patent system. The Patent Office, as well as honest inventors and the public at large, is interested in having it stopped.

LOSSES BY FIRE IN 1881

It is estimated that the losses by fire in the year 1881 are considerably in excess of any previous year, and that on ac count of the competition among fire insurance solicitors and their companies the fire insurance business of the country has, in the aggregate, been a losing business. The fire haz ard has been, with many unscrupulous companies, a second ary consideration, and they have insured anything at more than its value for the sake of the premium, which is practically offering a bonus for incendiarism. Indeed some insur ance men go so far as to say that six-tenths of all the fires that occur are of incendiary origin. Another importan cause of destructive fires is faulty buildings, especially in villages and smaller cities, where they are built of wood without the least regard to protection against fire either from without or from within.
The Fireman's Journal publishes a list of 350 large fires that occurred in this country in the eleven months next pre ceding December, 1881. It foats up nearly $\$ 50,000,000$ althoush it includes only those recorded fires that caused lose of $\$ 50,000$ or more. The average loss by each fire ap pars to be $\$ 145,000$.
There is also a list of 122 fires in December which has such recorded fires as caused a loss of $\$ 10,000$ and upward. The aggregate of this list is $\$ 7,500,000$, and the average loss caused by each is $\$ 61,500$.
Of unrecorded fires and those causing a loss of less than 10,000 , there was probably enough to make the Decembe total as much as $\$ 10,000,000$
At this monthly rate, and making due allowance for the eason of the year, it appears that not less than $\$ 100,000,000$ orth of property was destroyed by fire in the year 1881 in the United States, the territories, and the provinces.
A notable feature of the list is the very large percentag of the losses set against the various manufacturing indus ies. If this list was extended so as to include the smalle stablishments that have been wholly destroyed, and the les destructive fires in large mills and factories that have oc curred during the year, no doubt the proportion would be greatly increased.

As it is, the list for eleven-twelfths of the year does not include losses less than $\$ 50,000$. Perhaps three-fourths of the fires in all kinds of factories and workshops caused ave age losses much less than that amount.
What we can glean from these lists is that there were over sixty woodworking establishments that suffered losses greater than $\$ 50,000$, amounting in the aggregate to $\$ 5,750,000$.
Establishments that grind or clean grain, causing the dif fusion of fine carbonaceous dust in the closed rooms, stand next in number and in aggregate of losses. There wer twenty-five of this class, including grist and flouring mills, breweries, distilleries, and elevators, their losses amounting to $\$ 3,000,000$. Twenty-five cotton, woolen, and flax mills and cordage works were burned, the loss being $\$ 2,500,000$. Of oil works and lard rendering establishments there are in the lists twenty, whose losses foot up also $\$ 2,500,000$.

LEFT-HANDED GENEROSITY

A year or two ago a Scotch firm of shipbuilders estab lished what was widely noticed at the time as a "generous scheme of , awards to workmen in their employ who should invent or introduce any new machine or hand tool, or im prove any existing tool, or make any other change of mean or methods calculated to improve or cheapen the work of their shipyard. The policy was good, though, if our memory serves, it was characterized by shrewdness rather than generosity, since the granting of the award was conditioned upon the surrender by the inventor to the company o the right to use the new invention without further charge The plan seems to have worked well for the company, wh "have been encouraged to amend the scheme" in two im portant particulars. They now announce that should an nvention or improvement be worthy of a greater reward than the sum ($\$ 50$) originally fixed, the firm will either rant a bigher sum, or, should the invention be considered worthy of being protected by patent, pay the inventor $\$ 50$ and assist him pecuniarily in disposing of his patent or i completing it, at the same time reserving to the firm the right of using such invention themselves free from the pay ment of any royalty for patent rights.
These offers still keep well within the bounds of prudence, and indicate a sharp outlook for the main chance. The firm enjoy in consequence the pleasure of being generally lauded for generosity. We shall not be surprised if they discove In time that it will pay them to still further encourage the nventive faculty and habit among their workmen, if not by assisting them to take out patents for their inventions, at least without reserving any right of use without payment of royalty. Assistance so rendered might fairly be accredited to generosity; and yct, from a strictly selfish point of view the generosity would pay handsomely, for the habit of constantly seeking better and more economical methods of working could not fail to make any workman more valuáble to his employer, even if it did not lead him to invent anything worth patenting.

BOILER EXPLOSIONS IN 1881

The number of boiler explosions in 1881 that have been of sufficient importance to attract the attention of local press reporters is not as great by about half a dozen as was reported in 1880. But the number is quite sufficient, being 160 explosions, by which about 250 persons were killed or fatally injured and died soon after from the effects of their injuries, while over 300 more were seriously but not fatally injured.
Of these explosions almost exactly thirty per centum were in mills that use light and quick burning fuel, sawmills standing far ahead of any of the class in number and disasstanding far ahead of any of the class in number and disas-
trous results. The class includes besides sawmills, all such trous results. The class includes besides sawmills, all such
as use the refuse timber and shavings from wood cutting machinery, and should also include such thrashing engine boilers as are fired with straw. But it is not practicable to separate such for the purpose of classification from others that use coal for fuel. It is probable that one-third of all the steam boilers that explode with destructive violence are such as use flashy, quick burning fuel. The furnace doors of such boilers must be often opened, and in the case of green sawdust the draught must be strong, so that when the furnace doors are opened a sudden chill of the furnace plates is caused by the inrushing cold air. The effect of the sudden coaling of parts of the boiler is to unduly contract and strain them, the contraction being resisted by those parts that are not so suddenly cooled. In long cylinder flue boilers, externally fired with flashy fuel, the contraction of the bottom of the shell is resisted by the rigid internal flues. Then the strain causes slight bending of the head flanges, if they have pliable wrought iron heads; or if heavy unyielding cast iron heads, then the strain caused by the contraction of the lower side of the shell is concentrated at the transverse seams, the weakest of which will yield and begin to leak, or it will pull in two between the rivet holes, perhaps one-third the way round the boiler before exploding.
The strains on the flanges of wrought iron heads from contraction of the bottom of the shell of this type of boiler, which contraction is resisted by the rigid internal flues, causes bending at the angle of the flange, and the strained and yielding line near the angle of the flange is at once attacked by the boiler water. The slightimperceptible motion is sufficient to crack off any lime scale that may have been deposited from the water and lay bare the disturbed molecules of the iron, and they are acted on over a larger area than when undisturbed, and with only a small area, that which lies in the general surface of the plate, exposed to chemical action of the water.
The weak line becomes weaker with every recurrence of the motion, and if the weak line is sufficiently long it may give way suddenly on the whole weak line, when an explosion may occur immediately on the escape of the free steam which presses on the highly heated water.
Weaknesses caused from this or any one of the many causes of deterioration of boilers, are, however, not necessary conditions for an explosion. In fact it has been often remarked, and with propriety, "the stronger the boiler the greater the destruction." But it is plain that the force must be greater than the resistance to it when the boiler breaks open. It is only necessary to prevent the escape of the heat by radiation from the exterior surface of a boiler and through all steam outlets, and to continue the fire in the furnace at a temperature higher than that of the boiler water in order to effect a continued gradual increase of heat and of pressure in the boiler. This may be done sufficiently to accomplish the destructive explosion of the strongest boiler by fastening down the safety valve, closing the steam stop valves, and keeping up a moderate fire in the furnace. It is by the accidental arrangement of these conditions that many, perhaps most, explosions of strong boilers that occur are brought about.
It is fair to conclude that farmers and lumbermen who undertake to run their own steam boilers are more likely to make the fatal mistake than almost any other class of steam users. Thereforé we need not wonder that so large a proportion as 33 per cent of boiler explosions are in saw and lumber mills.
Next in order of their numbers and effects come the ex plosions in iron works of various kinds. Something less than 11 per centum of the exploded boilers were in this class of manufactories. The most notable explosions have been in rolling mills and furnaces, but for convenience in classification, boiler shops, machine shops, and foundries are in cluded in this class.
The most important, however, and the most numerous ex. plosions in this class, are iron manufactories proper, and it is threse that give this class its right to have this second place in the order of classification, and to these the reader's attention is invited.
Most of the boilers used in iron works in this country are externally fired, although there are a few of the English Rastrick and a few upright flue boilers still in use.
Of the externally fired varieties there are the plain cylinder, the cylinder flue, the cylinder tubular, and the French double cylinder boilers. In iron furnaces it is a common practice to heat the boilers by means of the waste gases from the furnace, and for this purpose the furnace top is closed with a cast iron cover, and a large pipe is let into the side near the top, which conducts the gases to the chamber beneath the boilers, when sufficient air is sometimes admitted o complete the combustion of the gases and heat the boillo com
ers.
The sulphurous vapors from the contents of the furnaces
are condensed by contact with the cool parts of the boilers and corrosion sometimes goes on very rapidly, especially near the feed water inlet. Leaks occur, and the moisture from them increases the activity of the corrosive agents, and
if not repaired the plates are soon reduced to such a wea if not repaired the plates are soon reduced to such a weak
condition that they give way. Now, if the break is of consid erable extent, giving way suddenly, an explosion may be the result. It is a common saying among engineers that a weak boiler will not explode, but will simply blow out at the weak place, and relieve itself without breaking into frag ments. It is true that weak places of smallish area, and sur rounded by rigid stays or parts of full strength, often do
blow out in this manner, causing damage only to such obblow out in this manner, causing damage only to such ob-
jects or persons as happen to be in range of the escaping tream of water at the moment; but it is also true that if the weak place happens to be of such extent and so located as to break with a suap and make a large opening through which the free steam instantly escapes, the explosion of the highly-heated water may break the boiler into fragments more or less completely, accordive to the relative quantity of water, its temperature, the $\%$ and location of the initial opening, and the direction in whe escaping wate acts on the unsupported plates. But the conditions are so various that it is the veriest quackery to predict a specific et of results in any given case.
Puddling and reheating furnace boilers are often placed so that the gas from the burning coal is driven first through the reverberating chamber, where the ore, the bloom, or the iron pile, as the case may be, is placed to be heated; thence urged by a blast fan, it enters the chamber beneath the boiler or in case of the upright flue boiler it enters the flue or flues which pass upward to the stack.
If the intensely heated gases impinge directly on a limited area of the boiler shell or flues in a concentrated blowpipe stream, it is sometimes impossible for the iron to transmit the heat to the water as rapidly as it is delivered by the blast on the small area of the iron plate. The iron may thus become weakened by being crystallized, and especially if a seam is thus exposed; because there the lap not only doubles the thickness of the metal between the hot gases and the water, but also there is less rapid transmission on account of imper fect co

Sudden cooling of long externally heated boilers that are insufficiently or improperly supported causes' very severe strains on the shells of iron works boilers. They are some times as much as twenty diameters in length, and when such boilers have three or more supports the distortion caused by the unequal heating sometimes throws the entire weight upon the middle and end supports alternately as the boilers are heated and cooled.
Overpressure, generally accidental, has, no doubt, contributed a full quota to disastrous explosions of iron works boilers. Safety valves that "breathe" a little on occasions, indicating to the unpracticed or thoughtless attendants that they are ready to take care of the steam in case the demand for it is stopped by the sudden shutting down of the works, are not always capable of opening sufficiently to discharge the full volume that may be produced by an active fire. One such safety valve is often expected to relieve three, four, or half a dozen large boilers with steam outlets closed and heavy fires burning. Then, if any one of the lot has a sufficiently extensive weakness, no one who knows and thinks about the conditions would be astonished if the weak boiler should blow up and break its nearest neighbor, which inturn might reak the next one if no sufficient masonry was there to preent it.
In one case, eight boilers in a lot of ten, in a sawmill, are reported to have been blown to pieces in the past year. And a few years ago nine boilers likewise exploded in an iron-makng establishment in Ohio.
There is a prevailing idea among attendants of steam boilers, more especially those in iron works, that no boiler will explode while there is sufficient water in it to prevent verheating of the fire surfaces, and this idea is entertained by many intelligent iron masters, which is unfortunate, because they naturally take less precautions in keeping a full safety margin of strength in their boilers than in keeping a full supply of water, perhaps the colder when pumped in the better.
Railroad locomotives usually stand near the head of the list, generally in the third place, but this year only about even per centum of the explosions have been locomotives; thirteen only have bee
Portable engine boilers
Portable engine boilers, hnisters, pile drivers, and thrash ing machines stand third in this year's classification, which is not surprising in view of the extended introduction of agricultural and thrashing engines.
In distilleries, breweries, soap and candle works, and the like, there have been eleven boiler explnsions
In steam heating and drying and in dwellings there have been seven cases of disaster.
In bleacheries, dyeing, digesting, and other works where steam and water are used in vessels remote from the generator, there have been six cases of destructive explosions There have been during the past ten years as many as thirty-
five or forty of this class of explosions. This fact, if known five or forty of this class of explosions. This fact, if known
and understood by those who believe in explosions from low water alone, ought to shake their faith in their own creed, since there can be no such thing as overheating of plates about a steam chamber remote from the generator and
all respects similar to those of steam generators. They burst and fly in a similar way, the destruction usually corresponding to the amount of the contained water and its temperature, the same as in a generating vessel that 1 s exposed to the fire. It is not probable, however, that so great a percentage of this class go to pieces as is found among generators, because they are not exposed to so many deteriorating influences as regular steam boilers are. There bave been enough, however, to fully establish the fact that it is not necessary that a boiler should be empty or partly so in order to pro duce a destructive explosion.
In the ninth item in this classification, viz., paper mills, flour mills, grist mills, and grain elevators, there have been five explosions.
In the tenth-cotton, woolen, and knitting mills-four; in mines, oil wells, etc., three; while there have been nine explosions in other mills and works not characterized in the press reports.
recapitulation.

Explosions in 188	
(1) Sawing, planing, and woodworking mills.	
(2) Iron works	
(3) Portables, thrashers, hoisters, etc	
(4) Steamers, tugboats, etc....	
(5) Locomotives	
(6) Distilleries, breweries, soap works	
(7) Dwelling, steam heating and drying.	7
(8) Bleaching, boiling, digesting, and dyeing	
(9) Grist, flour, and paper mills, and grain elevators.	
(10) Cotton, woolen, and knitting mills and factories.	
(11) Mines, oil wells, and works	
(12) Mills and works not classified and those not characterized	
	160
mber of persons killed	250

ELECTRICAL SHEEP SHEARS.

Mr. Edison has referred to us a communication from New Zealand in which the writer sets forth at length the pressing need of some means of shearing sheep evenly, rapidly, and without risk of hurting the animal. Sheep raising, it will be remembered, is most largely carried on in sparsely inhab ited districts where skillful shearers are bard to get.
The writer appeals to Mr. Edison, thinking that an elec trical apparatus might be made to answer, the cutting to be done by means of a wire highly heated by an electric cur. rent. The length of the heated wire or cutter would have to be about three inches.
The use of an incandescent wire of platinum for cutting has been entirely successful in surgery, in removing tumors and other diseased or morbid growths, and there is a possibility that it might answer for cutting wool. Whether the heated wire would injure the wool, or whether the accumulation of ash would speedily make the cutter inoperative, are questions which trial alone can decide.
Some years ago patents were taken out for a method of felling timber by the use of wire electrically heated, but when the method was put to practical test it failed, as the ash of the burnt wood soon surrounded the wire with a fireproof shield.
Whether a similar difficulty would arise from the coating of the wire with wool ash and charred wool on applying the method to wool cutting, and whether this or other possible difficulties can be easily overcome in an electrical shearer, can be determined only by trial.

A Curious Appearance of the Moon.

A singular appearance of the moon was observed by several residents of Lebanon, Conn., on the evening of July 3. The moon, almost full, was about three-quarters of an hour high. An observer says: " Two pyramidal luminous protuberances appeared on the moon's upper limb. They were not large, but gave the moon a look strikingly like that of a horned owl or the head of an English bull terrier. These points were a little darker than the rest of the moon's face. They slowly faded away a few moments after their appearance, the one on the right and southeasterly quarter disappearing first. About three minutes after their disappearance two black triangular notches were seen on the edge of the lower half of the moon. These points gradually moved toward each other along the moon's edge, and seemed to be cutting off or obliterating nearly a quarter of its surface, until they finally met, when the moon's face instantly assumed its normal appearance. When the notches were nearing each other the part of the moon seen between them was in the form of a dove's tail."

Table of Early American Patents.

In the January issue of the Journal of the Franklin Institute, is a useful "chronological table of American patents granted between 1825 and 1859," prepared by the librarian granted between 1825 and $1859, "$ p.
of the institute, Mr. E. Hiltebrand.
The period covered was one of great activity and origi nality among American inventors, and thougb the Journal table is not exhaustive (since it includes only such patents as were mentioned in the issues of the Journal during the period covered), it is likely to be of use to many.

A Year's Production of Window Glass.

At a meeting of the American Association of Window Glass Manufacturers lately in Washington, the product of the past year was reported to have been nearly $2,250,000$ boxes, valued at about $\$ 6,000,000$. The demand for con sumption has taken the entire product.

At a recent meeting of the Engineers' Club of Philadelphia, Mr. John E. Codman exhibited drawings of and described Nicholson's fire escape, which consists of a fire proof brick tower, octagonal externally and cylindrical in ternally, with central shaft about 18 inches diameter, around which is formed a winding passage, of a U-shaped section 2 feet 3 inch $\approx s$ in width, with smooth or glazed surface, and inclined at angle of 35°, with retarding curves of less gradient. Fireproof doors would connect with each floor and roof, and a vestibule with the surface of the ground b. low. It is intended that those escaping shall assume a sitting posture on entering the spiral and slide to the bottom, and it is claimed to be safer than other escapes for those un accustomed to ladders, or weakened by fright or excitement

IMPROVEMENT IN STEAMBOATS

Every boatman knows that the angle and depth at which the wheels of steamers strike the water affect very greatly their speed and power of propulsion, involving as a conse quence the questions of time and consumption of fuel The loading and unloading of a vessel alter the dip of the paddle; the heavier the load the greater the dip and angle, destrosing the effective power of the engine. To remedy this difficulty many devices have been planned, the best of which are only partially effective, all more or less complicated, and the additional machinery being very liable to get out of order. The most common plan for side-whee boats is the feathering wheel, which makes each paddle strike the water at right angles, but when deep in the water the power is applied at a great disadvantage, and too much of the wheel submerged for effective use.
A wheel large in proportion to the size of the boat and capacity is generally accepted as a solution of the difficulty the vessel being constructed so that the load will not sink her below a line of effective working power. In sternwheel boats the load is mainly carried on the bow, so that they do not run on an even keel, and the resistance of the water through which they plow their way is greatly increased. Other craft of this kind raise and lower the wheels by seve ral devices not applicable to large and powerful boats.
Mr. Robert L. Stevens, of Albany, Oregon, has recently patented a device which raises and lowers the wheels of either side on steri-wheel boats, so that whether the vessel be loaded or unloaded the paddle will strike at the most effective angle and depth, securing the grea'est speed with a minimum of power, while the driving engines are not interfered with. This is effected by a series of screw shafts arranged for simultaneous movement by the driving engine, and they do not detract from the strength of the wheel or boat. The arrangement is not complicated, and adds but comparatively little to the weight.
The advantages of this improvement are many. The wheels and engines of large boats can be made smaller and driven faster, economizing weight and fuel, the destructive jar of an overloaded boat and its powerful engine obviated, increasing the durability of both. They can be deeply loaded without changing the paddles to a smaller diameter, as is often done on the Mississippi. They can be built deeper and longer, doubling or tripling their capacity in deep rivers. With light loads they can run up the shallow rivers at full speed, and thus avoid expensive transfers of freight, and their draught only limited by the depth of the rivers in which they ply. For example, a vessel drawing twelve feet of water when loaded with 1,000 tons, could start from New Orleans, leave portions of her freight at the great centers of commerce, and with a light load left, say 150 tons, and drawing three and a balf fect drawing three and a balf feet or less, mount the swift and shat low tributaries of the Mississippi carrying freight directly to its destination instead of transfer ring it to a steamer of lighter draught.
The paddle wheel and its haft are supported at the stern of the vessel, as shown in the engraving, by boxes which are formed with side flanges enter ing grooves formed in fixed posts, so that the boxes are free to be raised and lowered. Screw shafts, supported at the top and bottom, pass through the inter nally threaded flanges of the boxes, so that the boxes with he wheel and shaft are sus teined by the screws. On the ower ends of the screws, at each side, there are bevel gear wheel meshing with similar gears on shafts that are fitted longitudinally of the vessel at each side.
The cylinders are bung for oscillation on trunnions, and the slides are connected to the cylinders so as to retain their proper relative position. A screw is fitted in connection with a nut on each slide. for swinging the slide and cylinder and sustaining them. All of the screws are connected for simultaneous operation. The movement being in an arc
from the trunnions, the screws and bevel gearing are proportioned to obtain the variation in movement. To allow rertical movement of the boxes the piston and eccentric rods are fitted with right and left hand screw turn buckles, so that the rods can be lengthened and shortened
The invention can be applied in connection with side paddlewheels and beam engines by changing the relative position of the parts.

IMPROVEMENT IN LIGHTHOUSE LANTERNS.

The engraving represents a novel lighthouse lantern re ently patented by Mr. Oliver Cook, of Darien (Rowayton P. O.), Conn.
 COOK's LIGHTHOUSE LANTERN.

The lantern is provided with a glass dome or cover, and a concave ring reflector in a gimbal, provided with clamping crew pivots to hold it in any desired position.
The tower of the lighthouse is constructed in the ordinary manner, and supports the lantern, the sides of which are made of glass, secured to a frame attacbed to the top of the tower. The top of the lantern or lamp chamber is made of glass, arched in the form of a dome, and supported by the lantern frame. The glass dome may be made in cne piece or in sections, as may be desired. The lamp is of the ordi nary description. The reflector is a circular concave disk with a bole through its center, through which the flame of the lamp projects.
The pivots of the gimbal are screws which permit of clamp ing the rings of the gimbal in place when the reflector is ad justed in the proper position to throw the light vertically or

that may fall into the open upper ends of the pipes cannot flow into the lantern, but will escape through small tubes connected with the pipes at their angles. The air to sup port combustion is admitted through openings in the bottom of the lantern.
This invention was suggested to the inventor by seeing the ights of New York city reflected from the clouds fifty miles distant from his home
This style of lantern will enable vessels coming in from he sea to get the bearing of the harbors in dangerous weather much sooner than they could with the old form of light house
These lights could be made to flash, or they may be colored to distinguish them from other lights.

RECENT INVENTIONS.

Mr. Josiah Wormuth, of Kinney's Four Corners, N. Y. has patented an improvement in the class of farm fences in which the rails or boards forming the panels are supported by means of wires attached to the posts. Boards, rails, or poles are used to form the panels, and instead of posts se in holes dug in the ground the inventor uses stakes which are sharpened to adapt them for driving, greatly facilitate he erection of the fence or its removal from one place t another. The invention relates particularly to the manuer of applying and securing the wires to the posts or stakes In addition to forming the eyes to receive the rails, th larger lonps depend below the rails so that the weight of he rails causes a direct downward pull on the nails, and the pull or strain is mainly lateral, so far as relates to the lower nail of a pair. The result is, that the nails and wire are subjected to less strain, so that the nails retain their hold in the post longer, and the wire may be of smaller size, and will remain intact or unbroken for a longer time A novel toilet fan has been patented by Mr. James C Stirrat, of Brooklyn (E. D.), N. Y. The object of this invention is to provide a new and improved fan which can also be used as a new and very amusing toy. The inven tion consists in a fan made of a circular or polygonal sheet of pasteboard, metal, or other suitable material, suitably ornamented, and pivoted on the fan stick or handle so as to revolve freely on its pivot. It is provided with a central ring, and a series of radial lines dividing it into a number of equal or unequal spaces, which may contain advertisements, etc., or they may contain mottoes, verses, names, letters etc., or pictures of animals, nursery scenes, etc. It wil fford children and others much amusement to revolve the fan and observe to which space the pointer points when the fan stops.
Mr. Amant H. Ohmann-Dumesnil, of St. Louis, Mo., has invented an improved device for holding stair carpet in such manner that it can be removed or replaced and fastencd onveniently and quickly, The invention consists of a latch provided on its under side with one or more studs or pins and pivoted to a prismatical or beveled plate or block which is secured to the riser and tread at the angle formed by.the same, the carpet being placed over this block and held in place by the latch, which is closed down upon the block, the pins passing through the carpet in to apertures in the block, the latch being locked by a spring or a pivoted catch.
An improvement in lead pencil holders has been patented by Mr. Edward Wei-senborn, of Hoboken, N. J. The oliject of this invention is to facilitate and cheapen the manu facture of lead pencil bolders of that class in which the lead is held by a spring-pressed divided point.
Mr. Henry H. Welch, of Cin cinnati, O., has patented an im proved car switcb manipula:o which is especially adapted to street car switches. The object of the invention is to enable the driver of the car, by means of suitable attachments to the front of the car, to operate the switch Mr. Frank N. Forster, of Buf falo, N. Y., has patented an im provement in tanks for storing petroleum, the object being to protect the tanksfrom the effect of lightning. It is well known that a rising quantity of gase attracts lightning; this invento has, therefore, taken all possible precaution to prevent the escap of gases from the oil tank. If considerable quantities of gas accumulate in the tank and the pressure increases, a valve is opened by the pressure, and the gases are conducted to place ome distance from the tank

STEVENS' IMPROVEMENT IN STEAMBOATS.

By this construction the light may be thrown upwar against the clouds, and will be reflected by the clouds so that it can be seen at a much greater distance than is possi le when the light is thrown from the lantern in a horizontal direction. The adjustment of the reflector depends upon the state of the air. The gas from the lamp escapes from the lantern through two or more elbow pipes. The lower arm of these pipes incline slighlly downward, so that any rain
, of the flames into the tank
An improved chain-work for jewelry, formed of interlock ing spiral wires and crossbars in every other coil, the side edges of the crossbars and wires being folded oyer the brody of the chain-work, so that soldering is rendered unnecessary and polished crossbars may be employed, has been patented by Mr. Emile Vieille, of Providence, R. I.

Mr. Lawrence W. Chadwick, of Shenandoah Iron Works, Va., has patented an improved sectional steam boiler, composed of several horizontal water and steam chambers set one above the other within a casing or shell closely fitting against their edges and supported and connected by vertical and horizontal water circulating pipes and T's, the chambers having vertical openings through them, that serve as flues for the passage of the products of combustion; and it consists, also, in combination with the chambers and tubes, of a fireplace, water front, and of novel pipe coupling devices.
An improvement in car couplings has been patented by Mr. Samuel A. V. Hartwell, of Valley Center, Kan. The invention consists of the combination of a draw-head having a sliding cap for regulating the size of the coupling entrance, a notched coupling pin for adjusting the link, and a flat link having grooved ends.
Mr. Noah Jacobsohn, of New York city, has patented an underground street, the object of which is to facilitate the removal of street sweepings and refusegarbage, ashes, snow, etc., and to provide a road for the vehicles for removing these sweepings, garbage, etc., whereby the streets can be easily and economically kept clean. The invention consists in an underground road or street occupying a part or the entire width of the street, and having a roof of grating flush with the ordinary street, through which the sweepings, snow, garbage, etc, are swept or dumped into the cars or carts on a track of the underground road
An improved spark arrester has been patented by Mr . David Wiser, of Plymouth, Ind. This invention is an improvement upon the spark arresters described and claimed in Letters Patent Nos. 165,919 and 210,828 , which were granted to the same inventor July 20, 1875, and December 10, 1878, respectively. The improvement renders the device more adaptable to smoke stacks which are straight. The spark arrester will return to the fire box a considerable portion of the smoke and gases, where they will be consumed and utilized as fuel.
Mr. Frederick Shriver, of Grand Rapids, Mich., has patented a steam generator which has the base burning feature embodied in it, and which is designed for low pressure heating purposes and for domestic work, and which has no tube or crown sheet to protect by a fixed water line. The invention consists of an upright boiler of U-shaped cross section, having a double shell inclosing the water space, curved in such a manner that one shell or wall forms the exterior of the boiler and the walls of the interior central fuel reservoir, while the other and concentric shell forms the walls of the interior smoke flue of the boiler, through which pass the heat and products of combustion, thereby forming an interior and an exterior water chamber connected with each other.
An improved car coupling has been patented by Mr. John Cochran, Jr., of Millwood, Mo. The car coupling is constructed with wide bumper heads, with two pairs of links, a pair of pins, slotted sliding bars, connected with a pin of each pair, and pivoted lifting bars connected with the slotted sliding bars and swinging trip blocks, whereby the cars will be coupled automatically as they are run together.
Mr. Frederick A. Fargo, of Pine Woods, N. Y., has patented a hop picker's measure or box that may be easily taken apart for stowing away in small space and for transportation, and easily set up for use.

The Anthracite Product of 1881 .

The official report of the anthracite tonnage of the Pennsylvania railroads for the past year shows a traffic of $28,500,016$ tons, an increase of $5,052,774$ tons as compared with the previous year. Of this amount the Philadelphia and Reading Railroad carried $6,940,823$ tons, the Lehigh Valley Railroad $5,721,869$ tons, the Central Railroad of New Jersey 4,085,423 tons, the Delaware, Lackawanna and West ern Railroad 4,338,968 tons, the Delaware and Hudson Canal Company $3,211,496$ tons, the Pennsylvania Railroad 2,211,363 tons, the Pennsylvania Coal Company $1,475,385$ tons, the New York, Lake Erie and Western Railroad 465,230 tons. Of the total production, $48 \cdot 96$ per cent was from the Wyoming region, 18.58 per cent from the Lehigh region, and $32 \cdot 46$ per cent from the Schuylkill region. The stock of coal on hand at tide water shipping points was 497,024 tons.

A Characteristic of American Life.

In the summer of 1836 a barefooted boy was on his way to Honesdale, Pat, walking the tow-path of the Delaware and Hudson Canal. When four miles from Port Jervis, and still forty miles from his destination, he was overtaken by a canal boat. He was asked to jump aboard the boat and ride, which he did. On the boat was a Scotch family, just landed in America, who were on their way to the Pennsylvania coal fields. One of its members was a boy the same age of the young pedestrian, eleven years. A strong friendship grew up between the two boys by the time they reached Honesdale. The Scotch family went on to Carbondale, the center of the Lackawanna coal field. The boy who had been given the ride in the boat obtained employment on the canal. His friend, the Scotch boy, worked in the mines for a short time as mule boy. Both he and the former barefoot boy rose in the company's service. The Scotch boy of forty-six years Hudson Canal Company, His friend the other boy is Col F. Young, General Manager of the company, and President F. Young, General Manager of the company, and Prest
of its Albany and Susquehanna Railroad system. - Sun.

THE MOLTICHARGE CANNON FOR COAST AND HARBOR

 DEFENSE.It would seem to be the rule in military as well as in other arts, that radical improvements are more apt to be made by non-professionals than by those whose lives are devoted to the particular art or service improved. The latter perfect the means and methods which they are educated to use they do not revolutionize them. It is the outside inventor who sees where radically novel changes can be advantage ously made. Freedom from professional bias is often, in

LOADING THE LYMAN-HASKELL GUN.
deed, a prerequisite for successful effort in invention. And it may be that the professional prejudice which the inventor of striking boldness and originality is sure to encounter is one of the conditions of a thoroughly practical development of his ideas.
When the stress of war was upon the country, twenty years ago, the attention of our inventive minds was largely directed to the production and development of military and naval devices, some of which, like the revolving turret, the breech loading rifle, and the magazine gun, had been dor mant, so to speak, for years. Other ideas, equally revolu-

tionary in character, were suggested by the needs of the time, but the war was happily ended before they could be developed. Among these was the idea of increasing the efficiency of firearms, particularly heavy guns, by what is now known as the accelerating principle. Since then the originaì idea of Mr. Lyman has been developed and practically applied by Mr. Haskell, in the multicharge cannon, the construction and mounting of which are illustrated in the work as radical changes and improvements in military and
naval operations as were effected by those other American inventions-magazine guns, torpedoes, revolving forts, iron clads, and the rest.
In the contest between the increasing weight and power of cannon and the resisting strength of more and more heavily armored defenses, two radically different lines of effort have been followed. Within the profession, capacity in guns to hurl heavy projectiles at great velocity has been sought for by increasing the size and strength of the gun; by chambering the breech to make room for a large volume of powder to be exploded, and by moulding the powder to secure accelerating combustion, slow at first to start the projectile, then more and more rapid to burn all the powder and attain the maximum pressure while the projectile was passing through the gun. By these improvements it has been found possible to increase the charge of powder to onefifth the weight of the projectile, enabling a properly constructed gun to deliver a shot with such force and velocity as to cause it to penetrate somewhat more than as many inches of iron as the diameter of the bore of the gun meas ures. Under the most favorable conditions the heaviest armstrong gun (100 -tons) bas penetrated nearly one and a half calibers, or about two feet of wrought iron, with a caliber of seventeen inches. Increase of efficiency is secured on the accelerating principle by devices for firing successive charges of powder behind the ball while the ball is passing through the gun. In this way the projectile is thrown by the explosive force of more than its weight of powder, or five to ten times as much as can be burnt behind a ball by the conventional method.
The inventors claim that, notwithstanding the greatly in creased charge of powder under the new principle, the maxi mum pressure within the gun is not increased. By the old method almost all the strain is upon the metal about the breech of the gun, while by the new the strain is distributed along the entire length of the gun. As a natural consequence of the increased charge a longer and heavier projectile can be employed, and the increased velocity with which it leaves the gun enables it to penetrate iron armor to a depth from four to ten times the caliber of the gun, according to the number of accelerating charges.
Two official tests of the efficiency of multicharge guns have been made before boards of officers of the army and navy, some of the experiments being made for range, others for penetration, and still others for initial velocity. On every point the reports show a decided superiority in favor of the multicharge guns, compared with other guns of equal or greater weight. So marked is the superiority of the ac celerating principle that General John W. Newton, U. S. A., calculates that a 10 -inch accelerating gun would be as efflcient as the 81 ton (16 -inch) Armstrong gun, and nearly as efiicient as the 100 -ton (17 -inch) Armstrong, winile the latter would be surpassed in inefficiency by a 12 -inch Lymen Haskell gun. In the matter of cost and the expedition with which guns of a required penetration could be furnished the advantage seems to be as markedly on the side of the multicharge guns.
A still further advantage is promised by the new system in the relatively smaller cost of mounting, whether on land or water. The cost of a Duilio, carrying a 100 -ton gun-the most powerful vessel afloat-would suffice for the building and arming of several small swift steamers armed with cheaper and lighter but equally efficient accelerating guns, while the larger craft would present a much better mark to hit than her smaller adversaries. In like manner a few properly mounted accelerating guns of ten or twelve miles range, commanding any of our harbors, would make them practically inaccessible to the most powerful war ships that could be floated.
In the Scientific American, of November 12, 1881, was described the casting of a 6 -inch Lyman and Haskell gun at the foundry of the Reading Iron Company. The gun will be finished next spring. It will be twenty-five feet long, and will throw a shot weighing 150 pounds, with a total charge of 130 pounds of powder, or more than four times the weight of powder used with a shot of the same weight in the best guns now in use. A longitudinal section of this gun, show ing the supplementary powder pockets, appears in Fig. 2. - The gun will be loaded with 18 pounds of hexagonal powder in the breech, and 28 pounds of finer powder in each of the pockets. The breech charge is intended to overcome the inertia of the ball without straining the gun. As the ball passes the openings to the several pockets the heated gases fire the supplementary charges, increasing the velocity of the projectile to 4,000 feet a second when it leaves the muzzle of the gun, or more than double the velocity attain able by guns of ordinary construction, a velocity safficient, it is calculated, to carry the projectile twelve miles, or to enable it to penetrate two feet of wrought iron at a distance of 200 yards. The explosion takes place in tough steel backed by strong cast iron. The manner of charging the breech chamber and the several pockets is shown in the smaller cuts.

Touching the practicability of the methods of loading and firing guns on this principle, as developed by Messrs. Lyman \& Haskell, we have the testimony of General Newton to the effect that no doubts are entertained by experts that the gas check can be made perfectly efficient, while, in his opinion, the loading of the pocketscan be made as expeditious as the loading of the breech
The contractors for the construction of the gun we have illustrated are Messrs. Pancoast \& Tarr, agents in this city for the Reading Iron Company.

Goats to Protect Sheep

To the Editor of the Scientific American:

Page 16 of your issue of January 14 contains an ex tract from the New York Sun, advising the public that the farmers of portions of New Jersey protect their sheep with goats. It is to be hoped, for the sheep's sake, that no farm ers outside of New Jersey will ever follow their example. I once owned a beautiful Angora buck and ewe, and as he was the " best man" in the neighborhood, I trained the pair to range with my sheep for the latter's protection. This buck could jump any fence in the county, and could climb any tree growing in the corner of a rail fence by first getting on the fence and then into the tree. In quite a short time every wether I had was as good a jumper as the Angora buck, and had I not converted them into mutton I would have had valuable flock of sheep ruined. Kill the dogs, but keep the sheep and goats separate here as well as hereafter
D. W. A.

Washington, D. C., January, 1882.

The Question to Mr. Lawson Answered.

To the Editor of the Scientific American
In No. 1, vol. xlvi., Scientific American, your corre spondent, E. H. Rood, states that a locomotive, usually car rying 80 to 100 pounds steam, "was going through the woods on a roadway built for logging purposes, and ran under a leaning tree which had fallen since the last trip before made, and the smokestack, safety valve, etc, were knocked clean off. The water spouted forty feet in the air, and the boile was emptied in short order, but there was no explosion Now, if the water explosion theory is correct, why was no there an explosion in this case?"
The danger of explosion does not arise from suddenly opening the valve, but from the instant check to the burst ing voater by quickly closing it. In this case the valve was opened without any danger of closing by a slight relief of pressure. It was opened "to stay." If Mr. Rood will care fully read the account of my experimental explosion as pub lished in No. 313, Scientific American Supplement, he will see what is claimed by what he terms the " water explo sion" theory.

Wellsville, O., 1882.
D. T. Lawson.

To the Editor of the Scientific American

I beg leave through your columns to call the attention of inventors to a much-needed machine. It is well known that the settlers on the great Western prairies suffer great inconvenience on account of the scarcity of fuel, and yet have all the elements of an excellent fuel in the immense quantity of prairie grass about them on every hand. A' simple machine that will spin prairie hay into hard solid knots or rolls of suitable size for fuel would certainly meet with a great demand. Prairie hay is now largely used for fuel by being twisted into knots by hand. This is slow work, besides it can be done much better by means of, say, a small foot-power machine. Inventors, try your hands.
C. F. H.

A Miner's Ingenuity.

James McGlynn, a miner in the Hallenback Colliery, a Wilkesharre, Pa., has found recreation and amusement dur ing the spare time of the past nine years in the construction of an elaborate clock. As described by a reporter of the New York Times, the clock stands about nine feet high, and is incased in an elabcrately carved case of black walnut, consisting of 406 pieces of perfect finish. Each of these pieces was turned in the mine by the enthusiastic miner with a tool that would make a cabinet-maker smile, being nothing less than a broken saw file.
In addition to the 400 turned pieces in black walnut which comprise the framework of the clock, it has 63 mov ing figures, actuated by machinery, so deftly arranged as to produce interesting historical and biblical scenes. It is the intention of the miner-mechanic to make the number of figures a hundred as soon as his means, which are rather limited, shall afford such an additional outlay.
The front of the clock shows three balconies, rising above a massive and elegantly carved pedestal and upon these the moving figures appear. The lower balcony shows a proces sion of Continental soldiers, headed by a mounted general and marching past, while the old Liberty Bell proclaims its welcome notes of freedom. A sentinel salutes the Continentals as they pass, and just at the moment a door is opened from an upper balcony and reveals Molly Pitcher, with her cannon, which she fires with startling and realistic effect. T'o show how well the maker of the clock has considered the details of his handiwork, he has placed a small revolving fan in the clock, to be actuated after the fring of Molly's cannon, for the purpose of clearing out the powder Molly's cannon, for the purpose of clearing out the powder
smoke. Simultaneous with this the portraits of the twenty Presidents of the United States pass in panoramic view on a balcony just above the patriotic tableau, of which Molly Pitcher is the central figure, and Thomas Jefferson holds up the Declaration of Independence. The apostolic procession is similar to those hitherto seen in such clocks. The Twelve Apostles file past, Satan appears, and the cock crows in. warning to. Peter. A figure of justice raises her large representation of Death iells off the minutes upon a
bell. When one sees the clock, the tools with which it was which support not only a cross-vaulted arch, but also bear made, and hears the miner's story of how he bought the the pillars that extend to the upper story. wood for it bit by bit as he could afford from his spare change, he is sensibly impressed with human possibilities. The figures used in the biblical and historical illustrations were cast by McGlynn in moulds of his own design, and there is very little in the entire clock that did not come from his hands.

Vegetation in Arctic Siberia.

Baron Nordenskjöld, in his account of the voyage of the Vega, gives glimpses of the vegetation found at the extreme north of the Asiatic continent. At the mouth of the Yenisei, for instance, as on.all other Siberian rivers running formed of loose, earthy layers, is also quite low and often marshy, while, on the other hand, the eastern strand consists of a steep bank, ten or twenty meters high, which sists of a steep bank, ten or twenty meters high, which
north of the limit of trees is distributed in a remarkable way into pyramidal-pointed mounds. On the slopes of this steep bank and in several of the tundra valleys there is an ex ceedingly rich vegetation. which 100 kilometers south of Yefremo-Kamen forms actual thickets of flowering plants, while the tundra itself is overgrown with a scanty carpet, consisting more of mosses than of grasses. Willows of little height go as far north as Port Dickson ($73^{\circ} 30^{\prime}$ N.L.), the dwarf birch (Betula nana, L.) is met with, though only as a bush creeping along the ground, at Cape Schaitanskoj (72 $8 \prime$ N.L.); and in 1875, on the ice mixed soil of the tundra,
ripe cloudberries were gathered. Very lux iant alders ripe cloudberries were gathered. Very lux iant alders
(Alnaster fruticosus, Ledeb.) occur already at Mesenkin (71° 28^{\prime} N.L.), and the Briochov Islands (70° to 71° N.L.) are i several places covered with rich and luxuriant thickets o bushes.
But the limit of trees proper is considered to begin first at he great bend which the river makes in $69^{\circ} 40^{\prime}$ N.L., a little north of Dudino. Here the hills are covered with a sort of wood consisting of half-withered, gray, moss-grown larches Larix sibirica), which seldom reach a height of more than seven to ten meters, and which much less deserve the name of trees than the luxuriant alder bushes which grow nearly 2° further north. But some few miles south of this place, and still far north of the Arctic circle, the pine forest becomes tall. Here begins a veritable forest, the greatest the earth has to show, extending with little interruption from the Ural to the neighborbood of the Sea of Ochotsk, and from the fifty-eighth or fifty-ninth degree of latitude to far north of the Arctic circle, that is to say, about one thouand kilometers from north to south, and perhaps four times s much from east to west. It is a primeval forest of enor mous extent, nearly untouched by the ax of the cultivator but at many places devastated by extensive forest fires.
On the high eastern bank of the Yenisei the forest begins mmediately at the river bank. It consists principally of pines; the cembra pine (Pinus cembra, L.), valued for its seeds, enormous larches, the nearly awl-formed Siberian pine (Pinus sibirica, Ledeb.), the fir (Pinus obovata, Turcz.), nd scattered trees of the common pine (Pinus sylvestris L.). Most of these already north of the Arctic circle reach colossal size, but in such a case are often here, far from all forestry, gray and half dried up with age. Between the trees the ground is covered with a labyrinth of fallen branches and stems. Nearly everywhere the fallen stems are covered, often concealed, by a luxuriant bed of mosses, while tree lichens, probably in consequence of the dry nland climate of Siberia, occur sparingly. The pines erefore, want the shaggy covering common in Sweden, among the pines is distinguished by an uncommon blinding whiteness.

Cement-Beton and Artificial Stone

At an assembly of German cement makers, Von Froideville made a report, which was published in the Thonindus trie Zeitung, in which he said:
A good cement does not crack, and even in a northern climate is able to resist the weather, supposing it has bee properly mixed. If too much water has been used, so that a glassy crust forms on the surface, and the whole mass is not homogeneous, the cement checks or cracks, and as soon as hair cracks appear moisture enters and the frost com pletely destroys it. A second fault is when the cement strikes out, which it ought not to do. Cement can be colored nicely and permanently with suitable colors, but quite good deal of color is necessary if it is required to entirely hide the natural color of the cement and give it the exact color desired. The addition a coloring to cement makes it more friable and softer, so that it takes comparatively more cement than without the color. Cement is only just coming to be understood in practice, but, on the other hand architects are too distrustful of artificial stone
For several years artificial stone for curbstones and stree cutters have been made at Potsdam, and have lasted well The gutter stones are very cleanly and neat, and the fear that frost and the pressure of the earth on both sides would destroy them have proven unfounded.
Granite, when broken up fine, imparts to cement a very considerable strength similar to gravel, but the pieces of stone being heavier settle and interfere with its manufacture. On the other hand, the addition of granite to cement without any sand makes an excellent material. In the

When marble is combined with cement without the addition of any sand, blocks are obtained of such strength that they are capable of receivi, g a fine polish, but cement must first assume the strength of stone. The problem was pre sented of building a stairs with steps 40 inches long, set into the masonry 8 inches at one end, each step having a height of $61 / 2$ inches, and a total width of $141 / 2$ inches. Experi mental blocks were prepared, ard at the end of six weeks four steps were put up for trial. Railroad iron was piled up on the steps, and the weight gradually increased until it reached 5,940 pounds. The steps held out, but no more could be put on because the masonry began to yield. The load was left on the steps for three days and nights witbou any injury. The steps subsequently remained unaffected. By adding pieces of marble to the cement different kinds of stone were imitated, with a saving of expense equal to nearly one-half the cost of real granite work.
A considerable quantity of cement is used for the flooring f terrace work. The manufacture of old Roman marble mosaics for parquettes and floors has rested many centuries and has only recently been revived. The Italians make ground bed or beton strata from puzzolana, or hydraulic lime, and pieces of brick, and lay the mass also in brick dust. Portland cement answers much better than these for joining the pieces of marble and such like, and can also be employed for mosaic plates and tiles.
Cement-beton-coarse gravel with cement below, fine sand with cement on top-is a pleasant and durable material used more and more every year for sidewalks and such like pur poses. But many other things have been made of it-build ing objects, floor and cellar coverings, vaults, cattle cribs stables, and even whole houses, as well as a series of bridges, that are both good and cheap.
At the meeting referred to, where this report was made one firm in Amœneburg, near Bilbrich, exhibited photo graphs of a bridge which they had made for the Dusseldurf exhibition, while a Frankfort firm showed the plans and pictures of another beton bridge, also at Dusseldorf. It wa planned by Loehr, and the arch had a breadth of 73 feet and spring of only 71 inches. The thickness of the arch at the counterfort was 14 inches, and 18 inches at the top. Th arch was constructed after the counterfort was done, Apri 4, 1881, by four cement workers and twenty hod carrier nd helpers in eight hours. It was tested May 25 by a one sided load on half the arch of 400 kilos per square meter, or about 80 pounds per square foot, without injury. It was then thrown open to the public, and was in use during the whole time of the exhibition.
Another firm had erected two large two-story farmhouse in Lauenburg, each 166 feet long and 76 feet wide, with an verage height of 25 feet, all of beton. The walls were 8 inches thick on the first floor, strengthened every 10 or 15 feet with an extra thickness of 4 inches more, while the second floor had walls of only about 7 inches in thickness The mixture employed consisted of 1 part of cement, 2 parts of sand, and 6 parts of gravel. The work occupied two months.
Buildings of a similar sort have been in use for some time n our own country, but have not met with much favor as a rule, notwithstanding their cheapness. Perhaps improved materials and more care in mixing, as well as in construc ion, may raise beton to the dignity of brick in section where large stones are scarce. The latter condition is wan ing hereabouts.

Comedones.

The black points, flesh worms, or comedones, which are found in the face, and especially near the nostrils, are not at all produced by the accumulation of the particles of dirt or dust, as has generally been believed, but by pigmentary matter which is soluble in acids. It is known, in fact, that black comedones which accompany acne often appear not only on persons exposed to dust or rather careless of their person, but also on chlorotic young girls who live in good circumstances. Besides, observation shows that the disco oration not only exists on the surface of old comedones, but descends always to the lower parts. Accepting this fact, Unna has used successfully acids in the treatment of comedones. He generally prescribes: Kaolin, 4 parts; glycerine, 3 parts; acetic acid, 2 parts, with or with the addition of a small quantity of some ethereal oil. With this pomade he covers the parts affected in the evening, and if need be during the day, After several days all the comedones can be easily expressed, most of them even come out by washing the parts with pumicestone soap. The same results can be obtained by bandaging the parts affected for a long time ith vinegar, lemon juice, or diluted hydrochloric acid.
The author concludes by saying that the acids act like osmetics, as they transform the black color into a brown and yellow shade and destroy it gradually altogether; they produce a quicker desquamation of the horny bed which interrupts the exit of the comedones and brings to the surface the glandular opening.-Archives de Virchow.

Photography of Gas Flames.

Gas fitters have recently made a most useful application of photography. They photograph the gas flames given by different burners or jets, so that a customer can see if the shape and form of a light will suit him before he gives his order.' As the flames are, moreover, depicted "life-size," the purchaser can always tell whether his jet is up to the the purcha
standard,

The Sawmill Changes of a Century

Among the most marvelous of the many wonderful thing which distinguish the United States from other nations, ar the results which have grown out of the possessions of immense forests of valuable timber, in stimulating inventive genius.to the preparation of an article of building material so cheap as to enable the poorest to have a comfortable home, while at the same time so excellent in character as to be no only suited, but indispensable, to the working classes. Those more readily accessible regions of the continent which pos sessed these forest growths in the greatest abundance were among the first to receive large accessions to their popula tion, drawn together at those centers which presented the easiest access to cheap building material, not less than for their personal safety from a savage foe. It was not until the demand for lumber far exceeded the ability of the "greatest" mills of half a century ago to supply, leading the manufac turers to feel the need of a more extended system of produc tion, that the star of empire made any progress westward, or it became a possibility to settle upon the prairies of the West, or to develop the mineral resources which have already shown our nation to be the peer of, if it does not excel, a others in the extent of its possessions. To possess is to need And the cheap building material which the cheap mills of the days long gone by enabled a scanty population to utilize, stimulated a more extended immigration, with its increase needs, as well as a higher order of inventive genius to in crease the supply.
The mills of the olden time were, first, the windmill, with its uncertain power, scarce exceeding that of the men who ran the pit saws which were then in a measure superseded, and whose indignation at the effort to lessen their manual labor caused them to mob the owner and tear down his ma-
chinery. Second, the adaptation of a current water-wheel of scarcely greater power, if more reliable, run by the natural current of a small stream. Next came the simple flutter wheel, to impart motion to which required the building of dams to hold large bodies of water, which should at all times be available. But for large operations the flutter-wheel was found to possess too little power, and the overshot or under shot wheel became a necessity, to be superseded later by the adaptation of turbine-wheels, now so much in favor with mill owners who control water power. For the first fifty years of our national growth, as well as during the preced
ing portion of the world's history, none of the mills were equipped with anything more than a single upright saw working in a gate, and when another saw was added, as the inceptive idea of the gang, which quickly succeeded with its large number of saws, words could scarcely express the as tonis

Up to this time, all the lumber which was manufactured had been edged upon the top of the log after it was turned had been edged upon the top of the log after it was turned
down; an auxiliary saw was not thought of, for the buzz saw, just beginning to be used, was considered a most dan gerous piece of machinery. But the increased manufacture growing out of an increase in the power and an in crease in the number of saws, led to the introduction of the small circular or "buzz" saw, which was at once found to
nearly double the capacity of the mill. It is needless for us to enlarge upon the introduction of steam power in the saw mill, or to follow the original idea of an engine, 6×8 inches, attached to the lower end of the pitman or saw gate, through attached to the lower end of the pitman or saw gate, through
its successive stages of development and enlargement to the present time, when the Corliss, or Estes, or other well-known engines, of a power from ten to one hundred times greater capacity than was the original device, are by the thousand in number engaged in turning out lumber, each in one sea son aggregating a greater manufacture than were all the sawmills of the country combined at a period scarcely fifty years in the past.
The old gate saw was superseded by the mulay, with reduction of friction equal to thirty or fifty per cent in crease in cutting capacity. The mulay gave way to the cir cular, and with its introduction may be dated the commence ment of an era which has been prolific of innovation,
improvement, and advantage to the sawmill world. As the use of the circular became better understood, and men be came expert in so dressing it as to make true lines and smooth surfaces, they found themselves able to produce more lumber in the rough than they could properly edge and prepare for market. The old edging-table could not keep up with the cut of the saw. This was remedied by the introduction of gang edgers, which no mill doing any considerable busi ness could now dispense with. Now the work of the main saw could be safely increased, for the gang-or, as it was a first known, "double"-edger was abundantly able to keep
pace with it, and while at first a capacity equal to 1,000 feet per hour was doubtfully claimed, later developments have shown in not a few instances an entire season's work at the rate of $6,0<0$ feet per hour.
This increase in capacity called for a more speedy method of handling the logs on the carriage, and the lumber as it left the saw, and a multitude of inventive minds were con centrated on mill dogs, which should successfully take the place of the lever and pike, driven by a mallet, and the modern sawmill could not now be operated with the original
method of dogging the log. The "nigger," for turning the method of dogging the log. The "nigger," for turning the \log on the carriage, as well as rolling it on the skids, has superseded the cant-hook and muscular power formerly relied upon, while the lumber, as it leaves the saw, drops upon a system of live rollers, which does the work to much
hard worked "off-bearer," who could not in these days by any possib
upon him.
Plenty of lumber, cheaply manufactured and sold at reasonable prices, has enabled the settling up of a nation at the rate of nearly fifty per cent increase of population during each decade. This in turn has demanded a network of railroads, and carriage by them has not as yet been reduced to a science, which enables us to believe that rates have reached a minimum which they will realize in the future. The manufacturer of lumber, bearing this in mind, must reduce he weight of his product to the lowest possible point, and the trimmer became a prime necessity as an economizer, not less than for an advantage in an æsthetic point of view. And the old gang mill, from its origival adaptation of two saws, hung in a cumbrous frame, upon monstrous posts which headed in a weigh beam, made from the largest stick foundatious, shaking the structure and the surrounding country, and keeping the machinery about one-half the time in the repair shop from its everlasting jar, has been displaced by the neat, effective, and comparatively noiseless devices of more modern times, developing a sawing capacity of which the fondest anticipation of the original inventor of the idea had not the remotest conception. The heavy weigh-beams have disappeared, the monstrous wooden posts have given way to equally advantageous and strong but less cumber some and more sightly iron supports, resting upon founda The old, stiff, and full-of-friction gate has been superseded by oscillating slides, giving to the saws the same motion which the pit sawyer seeks to obtain in order to accomplish the most work with the least outlay of strength.
Time would fail us to trace out all the changes which quarter of a century has developed in the sawmill. Should a Rip Van Winkle of the last century be suddenly awakened from his long sleep, still dreaming of the last act of dogging the log on his old-fashioned carriage, in the old mill, when he took long naps between the cuts, and esteemed a production of 1,000 feet per day something to brag of, and open his eyes on the floor of a modern mill of the smallest size, he would truly think that the world had turned upside down, and if he saw the army of men carrying off a quarter of million feet of boards per day from the saws of some of the larger mills, he would not believe the evidence of his senses.
All has changed; the water-wheel has given place to the steam engine; the single small cylinder boiler, to the mon strous tubular or flue in large batteries; the upright saws in a gate, to the mulay and the circular; the two-saw gang, to a forty-saw; the rag-wheel, to the steam feed, adding countless possibilities to the ability of the circular saw to cut up logs; the single buzz saw, to the double edger; the rough end lumber, to the well trimmed; the vast piles of
worthless slabs, to a useful article of lath and pickets; and the final débris, in many localities, to usefulness in the manufacture of other commercial articles. The pioneer knew noth ing of lath and shingle manufacture; live rolls had not entered his noddle; gang slab cutters would have been by him pro-
nounced an invention of the devil to feed the flames of his nounced an invention of the devil to feed the flames of his insatiable furnace. Endless chains would have had no use
in his mill economy; saw sharpeners and gummers would have had no value in his eyes, for he could cut all the lum ber he expected to, and find plenty of time for dressing his saws by hand.
The modern sawmill is indeed full of improvements, down to the last device for sorting by machinery. The production in one day, by one saw, of more lumber than was
accounted the work of a year in former times, is not only accounted the work of a year in former times, is not only
the result of the genius of invention such as marks the spirit of the age, but has rendered possible the remarkable development of the youngest in the sisterhood of nations, forming no unimportant factor in the influence of this country among the people of the earth. All hail to the modern sawmill and the wise intelligence of nearly every man who is con nected with it, either in the production of logs from the forests or the manufacture and sale of lumber, for each pro gressive step in the march of improvement has reduced the cost of manufacturing lumber, keeping pace with the inevi table increase in the cost of timber; due to the gradual de cadence of the forests!--Northwestern Lumberman

Shipping at San Francisco.

A correspondent of the Tribune, writing from San Fran cisco, under date of December 18, says: It is a fine sight to see the wheat fleet lying at anchor here, or taking on cargoes the wharves. There are ninety vessels now in port. They are the finest specimens of naval architecture afloat, at leas
mong sailing vessels, and are of many different type among sailing vessels, and are of many different types. The bandsomest are undoubtedly the oak ships lately built in
New England. These vessels have very tall and slender spars and long yards, graceful hulls, and a style that elicits admiration at sight. No handsomer vessels are ever seen here than such ships as the Samaria, the A. J. Fuller, the Harvey Mills, and their sisters from the down-east yards. The British iron clippers come next. They are very seldom f large size. They average about " 1,100 tons register Along with the great ships in port here there are seen many smaller ones of Pacific coast construction which are as well
worth looking at as any. The Pacific coast lumber schooner worth looking at as any. The Pacific coast lumber schoone
is the most beautiful craft of its rig in the whole country The builders have made the evolution of this craft a spe cialty. They are as a rule keel schooners. The fore foot is cut away under the water like that of a yacht. The fore
body is long and sharp, and the after body short and full but with hollow water lines. The stern is elliptical and
broad, and the top-sides fall lower from amidships away off with a grace, seldom, if ever, seen in a schooner on the At lantic coast, and not often matched in a yacht. These schooners are often loaded down until the water runs over the deck; but whether light or loaded they make remark ably fast trips. With all their speed, they have an astonish ing amount of stability, and they cruise along the coast northwards, on the return voyages, for lumber, without a pound of ballast or freight in them, carrying every yard of canvas there is in their outfit. Wheu vessels of this model re put into the wheat trade the famous clipper of the olden times will certainly be surpassed for beauty and possibly for speed. There are eight hundred vessels now owned in the district of San Francisco, and a majority of them are of this class and model.

NEW INVENTIONS

An improvement in shoes, patented by Mr. Daniel B. Felter, of Newark, N. J., is designed to simplify the con struction of single-sole or turn shoes provided with a spring The invention consists in a single-sole or turn shoe made by sewing the upper to the front part of the sole and to the spring, and then turning the upper and nailing the rear par of the sole to the spring.
An improved invalid bedstead has been patented by Mr. A sahel J. Goodwin, of Brookline, Mass. The improvemen relates to the devices used for raising and lowering the hinged sections of invalid bedsteads, and are designed to obtain grea power by conveniently operated mechanism. The invention onsists in a rack and pinion combined with a cam on which the hinged section is supported; also, in a pawl for retaining he parts in position mgainst downward pressure.
Mr. Martin Hubbell, of Mount Kisco, N. Y., has patented clevis with a longitudinal groove in the inner edge of its nd slot, and with a series of notches, forming teeth, in the opposite edge, this clevis being pivoted in the ordinary man ner to a plow beam. The extremity of the latter is provided with a series of vertical grooves. The clevis and the ring re placed in the desired position, and are locked in the same by means of a key fitting in the slot of the clevis.
Mr. George A. Ramseyer. of Dobbs Ferry, N. Y., has patented an improved piano stool. This invention relate to the mode of securing the elevating screw and guide to the seat, and has for its object to obtain a firm and durable con nection and a saving in the expense of manufacture.
Mr. Magnus J. Palson, of Elizabeth, N. J., has patented an improved machine for dressing fish-that is, to remove the head, entrails, and backbone-thus preparing the fish for salting and packing it for shipment. The machine is pro ided with a jointed reciprocating plate, upon which the fish is placed, and is held firmly by spring clamps, which ar pened automatically to receive the fish by a beveled fork, heart plate, and two fixed converging bars, between which the head of the fish is held, so that it can be cut off by an automatically released spring knife, that is drawn upward by a chain attached to a pulley on the main driving shaft of the machine, this shaft being provided with two cranks ex tending in directly opposite directions, one of these crank being connected by a suitaile connecting rod with the slid ng plate for receiving the fish, and the other opposite crank connected in a like manner with a reciprocating fram sliding above and in opposite direction to the fish holding plate, which upper sliding frame is provided with knives and scoops, that adjust themselves automatically, according t the size of the fish, and rip open its belly, tear out th ntrails and backbone, and cut the latter off athalf its length and also tear out the liver and throw it into a chute. The fish is seized by a hook attached to a sliding plate connected with the upper sliding knife frame, and pulled out from be it slides
In the treatment of gold and silver ores containing coppe the object is to obtain a matte or regulus which shall con tain all the valuable metals. It is, however, found that with he usual methods the slag contains a certain a mount of gold and silver, which is lost. To obviate this loss, by insuring a more complete separation of the precious metals, Mr Richard Pearce, of Denver, Col., has patented a process n smelting ores of gold and silver by precipitating the particles of gold and silver held in suspension after the smelting is completed by throwingupon the slag as soon as the charge is perfectly smelted fine powdered oxide of copper, then closing the furnace a short time before drawing the slag. The effect of this application is that a reaction takes plac between the oxide of copper and particles of gold and sil ver, in whatever combination they may exist, and a ric heavy matte is formed, which descends and carries with it the precious metals.
A novel exhibiting-bracket for stuffed animals has been patented by Mr. James Hobson, of Ann Arbor, Mich. -The nvention consists of a wire twisted to form a slot, bent upwardly to form a projection, twisted downwardly to form loop, and having one end passed into a name plate or block Mr. Charles E. Trask, of Hastings, Mich., has patented n improved electric clock, wherein the impulse is given alternately by two magnets and the movement controlled by a pendulum. The objects of the invention are to provide for ready and accurate adjustment, to obtain equal tension on the vibrating armatures, to simplify the circuit closing devices, and to obtain the required movement of the im pulse lever by a limited movement of the armatures.

Mr. Thomas Trebell, of Limehouse, County of Middlesex, England, has patented a paint for ships' bottoms and other submerged ssructures, consisting of rosin oil, black lead, French chalk. white zinc, oxide of iron, and tall.,w, mixed with turpentine, linseed oil, rosin, Gallipoli oil, tallow, shel lac dissolved in alcohol, Venetian red, red lead, zinc paint, and tar spirit.
An improvement in the class of police nippers which are employed for seizing and holding the wrists or arms of pri soners, and the curved jaws of which are so connected that the movement of one of them in opening or closing it will cause a like movement of the other, has been patented by Mr. John B. Craig, of St. Louis, Mo.

horizontal steam engine with automatic sidde

 valve cut-0ff.In the construction of steam engines, the progress of improvement has been steady rather than remarkable; for since the steam engine left the hands of James Wett, who invented bepand condensation, expansion, steam jacket ing, superheating, and the governor it has advanced principally by im provement in details and construction, and not so much by the development of new principles. At the present time there are certain excellences souglit after by nearly every builder of steam engines, namely, economy of fuel, regularity of speed, simplicity of construction, durability, and freedom from derangement, the greatest power with a given size of cylinder and pressure of steam, and, lastly, elegance of design and finish. In stationary engines we find an infinite variety o construction-some of unsymmetrical
form, roughly constructed, with slight finish; and, again others having every improvement that is considered really such by the designer, with elaborate finish, and beautiful but simple mechanism.
As an illustration of the latter class, the horizontal engine, with an automatic slide valve cut-off, constructed by Mr. Robert Whitehill, of Newburg, N. Y., may be considered an excellent one. By the accompanying engraving it will be seen that the general appearance of this engine is attractive in design, correct in proportions, and compact. But among its best features is the simple and positive automatic slide valve cut-off, which can be adapted to any plain slide valve engine with excellent results. From direct experiment it has been proved that with the use of this valve an increase of twenty per cent of power is gained, and a more perfect regularity of speed is secured
This engine has three valves-the main valve, the cut-off valve, and the "grid" or governor valve. The main valve is the same as usually employed, and regulates the admission and exbaust. It can be adjusted independently of the cut-off valve. The "cut-off," or intermediate valve, slides on the back of the main valve, and is provided with a number of ports which are controlled by the governor valve.
The main and intermediate valves are driven by eccentric, in the usual manner, the intermediate having a motion coincident with the piston.
The cut-off valves are attached to the governor in such a manner that the governor, in rising by reason of an increase of speed, thrusts the valves apart and effects a cut-off or closure of the stem closure of the steam ports in the intermeperiod of the stroke. If the speed of the governor is decreased the cut-off valves are brought closer together and steam is admitted to the piston for a longer portion of the
stroke. The range of the cut-off is from the closest point improved means for holding the bite-block in the bite-cham to full stroke, therefore when the engine is at a standstill the cut-off is out of action entirely, and the engine can be started at almost any point of the stroke
Above is given a certified copy of an indicator card taken from a 16×36 engine, fitted with this cut-off, at the American Institute Fair, and is a proof of the efficiency of the mechauism.
For further information address the builder; as above, a Newburg, N. Y., or at 142 Greenwich street, New York.

HORIZONTAL ENGINE CONSTRUCTED BY ROBERT WHITEHILL, NEWBURG, N. Y.
er, and the point of contact of the roller with the recip rocating head or tool holder, to increase the compression as the operating tools are doing their work, and in so combin ing the frame of a machine which supports its operative parts with an upright post or standard that the compressive force exerted by the operating parts shall be increased by the addition of theentire weight of the frame and operating parts.
Mr.
Mr. Elmer P. Newman, of Dimondale, Mich., has pa tented a metallic hub for vehicles having such construction that all escape of oil from the outer end of the axle is pre vented, the hub being of cheap and simplified construction and adapted to be held upon the axle by a nut and collar fitted upon the axle at the rear end of the hub.
An improvement in pipe tongs has been patented by Mr Deloss Worden, of Oil City, Pa . This invention is an im provement upon the improved pipe tongs shown and described in Letters Patent No. 240,067, granted to the same
ber, such construction as to the relative size of the bite-block and bite-chamber that the durability of the block is increased, and such construction of the bite-tong and its chamber that any length of bite-block may be used for increasing the bearing surface of the bite-block upon the pipe, and thus removing all danger of crushing the pipe.
An improved mode of setting saw teeth by means of rotal ing wheels provided with projections for engagement with the teeth of the saw, has been patented by Mr. Emamuel

Larson, of South Pueblo, Col. When the machine is prop erty adjusted the setting of a saw is simply a matter of rolling it through the machine.
Mr. George F. Sawyer, of Liberty, Texas, has patented an improvement in bench planes. The object of this invention is to prevent dulling the cutting edge of a plane iron by the backward movements of the plane. The improvement consists in a stirrup pivoted to the sides of the plane in such a manner that the transverse piece of the stirrup passes through a transverse groove in the under surface of the plane, this groove increasing in height toward the rear of the plane, so that when the plane is drawn backward it will be slightly raised by this stirrup, so that the cutting edge of the plane iron cannot slide on the board being planed.

The shaw Locomotive

The Hinkley Locomotive Works of Bnston, Mass., have lately built a locomotive after the designs of Henry F. Shaw, of Roxbury, Mass., inteuded to obviate those strains on the frame of the ordi nary locomotive that are caused by the alternating thrusts of the unbalanced moving parts on each side of the ma chine. The impulse of the change of direction of the heavy side of wheel, etc., is in a "fore-and-aft" direction on cne side of the engine, while it is ver tical, either upward or downward, as the case may be, on the other side at the same instant, the former tending to rack the frame and the later cause late ral oscillations, which it actually does, more or less, to the great damage of the road bed. The effect is far greater if the engine is rocking from side to side than what would be due to the simple impulse of the preponderating

Mr. Atley W. Ale, of Caro, Mich., has patented an improved door and sash clamp for clamping tables, or benches for holding doors and sashes during the process of manufac ture. The invention consists in a novel combination o levers and locking devices, whereby the door or sash can be clamped equally upon all sides and at one operation.
An improvement in mechanical movements Y The bject of this invention is to provide mechanical movement which, in their operation, shall exert great force of compression in the performance of any kind of work. The invention, which has its principal application to punching and shearing machinery, consists in supporting a roller provided with a pin or ax'e on. one end between a reciprocating plunger and a cam lever, so that the pin shall move in an inclined or curved mortise in the frame of the machine, and gradually nearer to a right line with the fulcrum of the

INDICATOR CARD TAKEN FROM A 16x36 ENGINE,

 weight of the reciprocating and revolving parts. The plan the Shaw locomotive is to place a duplicate set of revolv ing and reciprocating parts on either side of the engine, so connected that one set on each side will be thrusting in the same direction at the same instant, and thus tend to correc this hitherto unavoidable objection to outside cylinder loco motives
A trial trip was recently made with this new machine on the Camden and Atlantic railroad. The Philadelphia Inquirer gives the following as the dimensions of the four cylinders, etc. : They are " $101 / 2$ inches in diameter, 24 inches stroke, equal to a $147 / 8 \times 24$ of the ordinary locomotive. The cylinders are placed side by side in the same place. Four cylinders are contained within two castings, and do not increase the width of the locomotive as much as might at first be supposed.
"One slide valve admits and exhausts steam to and from each pair of cylinders, which are placed side by side; the valves are operated by the usual link motion and rock arm (as is customary upon ordinary locomotives), thus avoiding the complication that would arise from the use of a separate slide valve ío each cylinder. This engine, when running cannotbe distinguished from the ordinary 10 comotive having only two cylinders, as the steam is taken and exhausted from the opposite ends of two cyliu ders simultaneously.

- Many experiment have been made in balancing, reciprocat ing with rotating parts to run steadily will each other, on locomo tive engines, as they are now built, involv ing some of the finest mechanical calculation; but all of them havo been unsuccess ful.
" This locomotive is built for fast running, and it is claimed that there is an increase in the area of wearing surfaces, perfect ba lancing of the revolving parts, due to divid-
ing the work between four steam cylinders. One of the remarkable tests that have been applied to this locomotive is to place it on four jack screws and elevate it clear of the track, and then to open the throttle valve and run the engine at a speed of two hundred and seventy-five revolutions per minute in this position without disturbing it, while an ordinary locomotive in this position would be disturbed at three revolutions per minute
"The time made between Camden and Atlantic was seventy-seven minutes, which included two stoppages of six
minutes at Egg Harbor and Absecon, the actual running time being seventy-one minutes. The fastest mile was made in fifty-eight seconds, and two consecutive miles, each fiftynine seconds, three cars on the train."

IMPROVED ICE MACHINE.

We give an engraving of a new machine for manufacturing ice on a commerciai scale, which possesses many points of novelty and interest. It is the invention of Mr. D. L. Holden, of Philadelphia, the well-known inventor of ice machinery. The cooling agent employed in this machine is ammonia, which is manipulated in much the same way as is usual in this class of machines; but there are several improvements on pumps, valves, etc., which add greatly to the perfection and efficiency of the machine
The freezing, as will be observed by reference to the engraving, takes place in a chamber, A, thoroughly protected against external heat and provided with a hollow central shaft, D , arranged to receive the non-congealable liquid from above and the water to be frozen from below.
Around this central shaft, and some distance from it, there

In starting the machine the aqua ammonia. is warmed in the still, W^{1}, and drawn through the dehydrator, W^{2}, and drier, W^{3}, by the pump, R, and forced through the cooling coils, L, where it is condensed, and from which it is conveyed to the reservoir, Q , in a liquid form.
After this reservoir is once filled the valves of the pipes leading to the pumps are changed so that the cycle is from the pipes, V , in which the liquid ammonia is expanded into gas, to the pump, thence to the coolers, L, thence back to the reservoir, Q
This machine is continuous in its action, and easy to manage.
The enginesand pumps used in this machine are duplex, and so arranged that either pump or engine can be stopped and the other continue to work. The pump pistons are converted into valves, and are as automatic as a slide valve. This is an important feature that will be appreciated by users of pneumatic pumps. The improvement in valves, connections, etc., is of great value, making them, as we are informed, absolutely ammonia tight
Perhaps the greatest improvement is the method by which
sedimentary matters brought into it by the current of the water may be trapped off and prevented from passing through the head gates of the race. The invention consists in forming a trap in the bottom of the race which comma nicates with waste gates made in the side walls of the race. A central unloading car, specially designed for dumping earth on railroads, has been patented by Mr. Joseph S. Halsey, of Lebanon, Ohio. The invention consists of a car having a platform constructed in longitudinal sections, pivoted at their ends within inclined slots made in the car sills in such a maner that when the platforms are elevated at their outer edges the weight of the load will cause their pivots to slide down the incline of the slots and depress the platforms at their inner edges, so that the load will be centrally dumped through an opening along the entire length of the platform. An improvement in stamp mills has been patented by Mr. Frederick L. Preston, of Walworth County, Wis. The improvements relate to mills for crushing and pulverizing ores, and have for their object to furnish a simple, durable, and inexpensive mill. This mill consists of a V-shaped grating adapted to receive the angular faceof a heaw hammer which

HOLDEN'S NEW ICE MACHINE

are two concentric metal walls, C , resting in a circular trough, F, for receiving the non-congealable liquid, and in the center of the space between the plates, C , there are vertical pipes, V , in which the liquid ammonia is expanded into gas. Above these pipes, and in communication with the upper portion of the hollow central shaft by a pipe, H, there are two rose nozzles which receive a supply of the non-congealable liquid from the trough, F, througb the pipes, G, I, the circulation being maintained by the pump, O.
The water to be frozen is forced by a pump, P , through the lower portion of the hollow shaft, D, and through the nozzles carried by the tubular arm, G. The water is directed in a streane against the circular wall plates, C, upon which it freezes and forms the foundation of the solid coating of ice that gradually forms within and outside of the walls, C.
When the cylinders of ice bave acquired the desired thickness they are sawed up into rings by the circular saws which are carried by the shafts, $i i$; one set of saws being arranged for the inner cylinder of ice and another set for the outer cylinder.
The ice is loosened from the circular walls by temporarily elevating the temperature of the non-congealable liquid sufficiently to detach it. The ice is then cut into cubes and discharged through chutes in the bottom of the chamber.
the water is frozen, insuring perfect clearness and great rapidity in making the ice. The uncongealable fluid performs a double function; first, it conducts the heat from the water to be frozen through the iron plates; it refrigerates the room down to a low degree of temperature, and by this means causes surface freezing, thus permitting of freezing ice twelve inches thick in twenty-four hours, whereas by the old system of conduction alone it required from six to eight days.

The water flows in a stream upon the freezing surface in officient quantities to allow a surplus to run down and fall in the tank or pan beneath, washing off all air bubbles and other foreign substance, leaving the ice perfectly transparent and as hard as Kennebeo ice

ENGINEERING INVENTIONS.

A machine by which cuts on railroads can be cleared of snow rapidly and without the labor of shoveling, has been patented by Mr. Wayne Choate, of Glenwood, Iowa. The invention consists, essentially, in oscillating boxes and mov able end gates, by which the snow is first gathered and then mped

Mr. Gordon Land, of Alamosa, Col, has patented an | Mr. Gordon Land, of Alamosa, Col, has patented an | $\begin{array}{l}\text { bined in } \\ \text { improvement in water races in which the sand and all other }\end{array}$ |
| ---: | :--- |
| together. | |

crushes the ore as it is ralsed by wipers or friction rollers carried by the shaft of the machine
An improvement in duplex steam engines has been patented by Mr. George Aab, of Bronklyn, N. Y. The invention consists in consstructing a duplex steam engine with the piston rod of the one cylinder connected with the valve of the other cylinder by an arm, a connecting rod, and a crank arm, whereby the movement of the piston rod of each cylinder will shift the valve of the other cylinder
Mr. John W. Thomason, of Salado, Texas, has patented an improvement in car couplings, which consists of certain devices whereby the coupling pin raised in the drawhead is supported until the drawheads strike each other in coupling, when the coupling pin falls by gravity. The invention also consists of devices whereby a link or pin may be raised separately or both raised simultaneously, as the case may require.

A novel rotary engine, patented by Mr. David O. Holman, of Adams, N. Y., consists in a new form of the cylinder and piston, and certain details connected therewith, whereby an engine is produced which will run with equal facility in both directions. It is what is practically two engines combined in one, which may be used either separately or both

MISCELLANEOUS INVENTIONS

A machine for sawing lumber or boards into certain standard lengths known in the trade, as, for example, twelve-foot" lengths, "fourteen-foot". lengths, or lengths denominated by the number of feet, has been patented by invention consists in a novel arangement of certain devices, whereby provision is made for automatically feeding the lumber to the saws and adjusting the saws so that they will cut the lumber in the desired lengths.
An improved flushing valve has been patented by Mr. David Thompson, of Leeds, County of York, England. This flushing valve is for use with water closets and at other places, combining simplicity and certainty of action in the supply of a definite and exact quantity of water each time the bandle is lifted, whatever the extent, height, or time of lifting may be, and the prevention of any increased supply, however long the handle may be held up. The invention consists in the combination, with a valve, of a float and ratchet, whereby the closing movement of the valve is governed.
Mr. Charles M. Tyler, of Indianapolis, Ind., has patented a bill file constructed of a spring wire, having one or more ring-coi's and one or more slotted elastic holders for paper
fasteners, whereby bills and other papers can be securely fasteners, whereby bills and other papers can be securely held and readily fastened together.
An improved washing, machine, patented by Mr. Harrison Anderson, of Eddyville, Iowa, consists of a tub, a skeleton cylinder pivoted in the tub to receive the clothes, and a beating mechanism to knock the clothes back into the water as they are raised by the revolution of the cylinder.
An improved mitering machine has been patented by Mr. Thendore E. King, of Westport, Conn. This invention consists of a pair of upright jaws for guiding the saw, which jaws are mounted on the extremity of a pivoted lever that is attached to the under side of a suitable bench or support, the construction being such that when the lever is moved laterally by the operator the guide jaws and saw will be correspondingly moved, so that the angle of the miter may be quickly changed, as desired.

A novel tool handle attachment has been patented by Mr. John L. Coleman, Jr., of Wattsborough, Va. The object of this invention is to provide an attachment for handles by means of which all farm tools, such as shovels, hoes, forks, and the like, may be attached to and used with the same handle. The invention consists of a slotted semi-cylindrical head, in combination with a diagonally-bored handle socket having a concaved end in which the semi-cylindrical head fits, the tools being provided with suitable shanks for engagement with a T-headed bolt or rod which passes through the slot in the head and the diagonal bore in the socket and receives a nut above a shoulder formed on the upper side of the soaket, against which the nut comes for tightening and holding the tool securely.
An improved ankle support for skates has been patented hy Mr. Ellwood G. Macomber, of Portsmouth, R. I. The plate of the skate with a socket, in which is secured the bent lower end of an upright rod, to the upper end of which is attached a divided leg band, one leaf or section of which is closed by the pressure of a spiral spring carried on the upright rod, the degree of pressure of the spring being made adjustable, as desired.
A safety snap hook which may be quickly and easily attached to a leather rein without the use of brads or thread, has been patented by Mr. Winfield S. Truitt, of Weston, Ky. The invention consists in two hooks combined in a peculiar manner, and provided with serrated clamping jaws for attaching it to a leather rein.

An improvement in portable fences has been patented by Mr. Joel Heacock, of Marlborough, O. The object of this invention is to improve the construction of the fence for which Letters Patent were granted to the \cdot same inventor
January 18, 1881. The improvement makes it stronger and January 18, 1881
more durable.

Mr. Charles T. Wright, of Bodega, Cal., has patented an improved crank handle. The object of this invention is to facilitate the attachment of handles to hand wheels or cranks of machinery of any description, and to provide means for the lubrication of the internal parts of the handles, which are constructed to avoid blistering or otherwise injuring the hand of the operator. The invention consists of a handle hollowed longitudinally and containing a heade bolt, the shoulders of the head of said bolt acting against
shoulders formed by an enlargement of the cavity in the handle, which enlarged cavity is closed by a screw plug or cap at the outer end of the handle, the inner end of the headed bolt carrying a jam nut and an outer nut, between which the crank is held, an oil chamber being also provided between the outer cap and the head of the bolt.
Mr. Sewell J. Cilley, of Gonic, N. H., has patented an improvement in belt pulleys, which consists in forming the periphery of the pulley with holes, passages, or ducts fo the escape of air from between the belt and the pulley and
to roughen the surface of the pulley to increase the frictional contact of the belt. The invention also consists in grooving or incising the periphery of the pulley from or
near the center of the belt surface diagonally to the edges to decrease the tendency of the belt to run off from the pulley
A drawbridge which can be readily operated, and will be equally balanced and self-sustained when partially or wholly opened in a manner to relieve the main bridge from latera strain and rack, has been patented by Mr. Elias A. Wible, of

Brighton, Cal. The invention consists in a double draw composed of two binged sections operated simultaneously
by cogged segments, also in a. system of bracing whereby by cogged segments, also in a system of b
the weight is equally divided and balanced.

Malleable Cast Iron

A recent number of the Polytechnisches Notizblatt contains the following brief description of thalleable cast iron, its history, preparation, and properties:
The discovery that cast iron could be rendered malleable and tenacious by a subsequent withdrawal of the carbon, was made more than two centuries ago, but seems to have gradually sunk into oblivion and been forgotten. This seems almost incomprehensible in comparison with the great advantages offered by this material. When we contemplate with what difficulty wrought iron can be shaped and converted into complicate forms, and, on the other hand, how almost absolutely useless cast iron is for parts of machinery, owing to its being so brittle, we might have supposed that the discovery of a material in which should
be united the advantages of both without possessing their disadvantages, would mark a new era in mechanics. Nevertheless the discovery had been in so far forgotten that at the beginning of the present century it was patented anew in England, and from that date its production was slowly revived.

It is well known that the brittleness of cast iron is a result of the high percentage of carbon that it contains, and which at the same time renders it fusible. The small quan tity of carbon in wrought iron causes it to be very tenacious and tough, but unfortunately injures or destroys its fusibility. The manufacture of malleable cast iron consists in removing a portion of the carbon from the finished article after it has called a tempering furnace, where the casting is placed in contact with some substance rich in oxygen, and then heated to a red heat. The carbon of the iron unites with the liberated oxygen and escapes as carbonic oxide gas, and the result is a material poorer in carbon and consequently extraordinarily tough.
For the purpose of tempering the pieces of cast iron are put in a cast iron vessel on a layer of this oxidizing sub stance and the intervening spaces filled with the same Among the substances employed for oxidizing the carbon are the oxide of zinc, brown and red hematite, and hammers lag or scales, the red hematite being the most frequently used. The duration of the process varies between twenty four and ninety-six hours, depending first on the dimensions of the casting to be tempered, and, secondly, upon the degree of softening desired. The limits in this latter respec are very wide, since with proper mixtures of iron it is pos sible to absorb all the carbon, or all but a slight trace of it The proper choice of iron is difficult, since many kind of iron, owing to the presence of other substances therein are not fit for tempering. For example, the presence of proportion of manganese will entirely prevent decarburation, because of the manganese in it. The presence of much crystalline graphite (gray iron) is just as injurious in another direction, for either it will not burn at all or it causes hollow spaces and cavities within the casting. The best iron is one free from manganese and containing amorphous car
bon as white cast iron. In this respect, however, views dif fer, and the manufacture of malleable castings depend chiefly on practical experience.
This tempered or softened iron, if the material was wel selected, makes a valuable iron which is but slightly inferior in strength to wrought iron. It can easily be worked with files and chisels, can be readily polished, and at a dull red heat can be wrought and welded. At the Halle exposition held in 1881 there was, says a paper published there, an in eresting collection of articles made from this material which shows that it is capable of a great variety of uses It is stated that the surface of cast iron can be tempere y immersion in aqua regia diluted with water.
P. N.

Fireproof Paper and Ink.

According to a German paper a very promising success has been attained recently in the manufacture of fireproof paper and ink. In making the paper ninety-five parts of asbestos was used with five parts of wood fiber; these by aid of glue water and borax, were made into a pulp which yielded a fine, smooth paper which could be used for writing purposes. It had the unusual quality of sustaining he influence of a white heat without injury. Fireproof printing and writing inks were made by combining platinum chloride, oil of lavender, and lampblack and varnish. These ingredients produced a printing ink, and when a writing fluid was wanted, Chinese or India ink and gum arabic were added to the mixture. Ten parts of the dry platinum chloride, 25 parts of the oil of lavender, and 30 of arnish are reported by a local writer to yield a good print ing ink of this valuable kind when mixed with a small
quantity of lampblack and varnish. When the paper printed with the compound is ignited the platinum salt i reduced to a metallic state and becomes a coating of a brownish black color. A free flowing ink for writing on the fireproof paper with an ordinary metallic pen may be obtained, says the same authority, by using 5 parts of the dry chloride of platinum with 15 parts of oil of lavender 15 parts of Chinese ink, and 1 part of gum arabic, adding thereto 64 parts of When the paper is ignited ant
being written upon with this ink, the platinum ingredient causes the writing to appear transparent, and, as a consequence, it is claimed that such writiug as has become black or illegible will become readily legible again during the process of heating the paper. Colors for painting may also be made fireproof by mixing commercial metallic colors with the chloride of platinum and painter's varnish, adding an ordinary aquarelle pigment to strengthen the "covering power" of the color. These fireproof paints or colors can be easily used in the same manner as the common water colors, and it is claimed they will resist the destructive influence of great heat quite as successfully as the fireproof printing and writing inks just referred to.

Wool Sorters, Disease.

Mr. Spear has recently published his official report, which establishes the identity of the wool-scrters' disease with anthrax. The symptomatology and anatomy of this affection are fully discussed, and certain interesting observations are advanced in regard to its pathology. The usual classification of anthrax into an "external" and "internal" form is observed throughout the report. In many instances, however, there is a wide divergence from the development and progress of typical cases. The malignant pustule may appear, not as an initial lesion, but as a local manifestation of constitutional infection, and a " minor pustule" is apt to attack the hands of those working on infectious material, a pustuie very different from the typical form, but closely resembling the lesion resulting from only partially success ful inoculation of anthrax virus upon carnivorous animals and similar to that produced by Pasteur's "attenuated virus" in the herbivora. In the other variety of the dis ease, the anthrax fever, still more important deviations from the accepted type are described, and although the German and French observers look upon the affection as almost always fatal, Mr. Spear concludes that only a moderate number of cases terminate unfavorably. Again, while one man may be stricken down by a rapidly fatal malady, his com rade, working in the same material, may also be affected, but by a form of the disease which stops short of the severer symptoms, and ultimately goes on to recovery.

The histories of long-continued malaise, also, among wool orters are numerous. The symptoms are much like those of the prodromal stage of acute infection-headache, depres sion, nausea, dimness of sight, cramps, restless sleep, with the occasional appearance of cutaneous eruptions, petechiæ, boils, or herpes. At times an apparent periodicity is ob served in the subjective symptoms. Such manifestations may occasionally occur as prodromata of an acute attack of the disease; more often, however, they disappear sponta neously. The author admits the possibility of a chronic anthracoid poisoning, the analogue of which may be found in malarial disease. The operation of the virus from its very inception is peculiarly inconstant. Incubation may be deferred by long periods of latency; full development may be delayed by prolonged and intermittent prodromata; of ten the disease aborts. At first, and for a variable time, the virus is " barely able to prolong its existence;" either the removal of unknown obstacles, however, or the addition to the blood, or secretions, of agents promoting the develop ment of the poison, or both these contingencies, enables the infectious material to exert its full sway, and the disease to un its fatal course. To explain the unequal receptivity to the poison, Mr. Spear revives an old theory, that of the eat ing of more or less crude vegetables and fruit. Guided by the well-known predilection of this contagium for herbivor ous animals, and by the fact that flesh-fed rats prove refrac tory to inoculation with anthrax virus, while the same rat fed on vegetables quickly succumb, the author was led to inquire into the alimentation of the wool sorters who had suffered from acute attacks of anthrax fever. He found that in nearly every case in which information was obtain able, the development of urgent symptoms had supervened upon the ingestion of an unusual quantity of vegetable food in some form or other. Again, in several cases of remission of the symptoms, a relapse seemed to follow the eating o, vegetable food. In Constantinople also, where the external form of the disease is well known, the eating of vegetables and fruit during an attack is regarded as "especially dan gerous." The evidence appears to be strong and circumstan ial so far as such evidence can be. The experiments of Feser are now very generally accepted by Continental author ities as indicating that the relative immunity of the carni vora is not inherent to the genus, but is influenced by the nature of their food. The immunity of the foetus is now regarded as dependent on the fact that it is really a carnivo rous animal, not on any filtering action of the placenta. As Mr. Spear says: "It is conceivable that alimentary sub stances may bring about in the body such chemical or mor phological changes as will render its fluids a richer field for the proliferation of disease germs."-British Medicai Jour nal.

Project to Pipe Gas Two Hundred and Fifty miles.

A company of well known capitalists have organized the "Gas Light Transportation Company," to mine coal and manufacture gas in Pennsylvania, "and pipe the gas to Eastern cities. A director of the company recently said that they propose to erect gas works that will manufactur $40,000,000$ feet of gas per day: This would require $1,460,000$ ons of coal annually. The coal can be bought at the mine for 55 cents per ton, but the gas companies pay $\$ 4.62$ per
ton for it. They save something by the sale of coke, tar,
and ammoniacal liquor, so that their coal costs them $\$ 3.14$ per ton, or 32 cents a thousand cubic feet of gas manufac tured. One great saving expected by the new company is in the cost of coal and in the transportation. Another saving will come, they think, from the freshness of the coal, since coal newly mined produces more and better gas than coal that has been exposed to the air and weather. The cost of pumping the gas is offset by the value of the coke. The deterioration of gas in the long pipe they expect to counterbalance by making the gas extra rich at first. The pipe is to be of iron, six feet in diameter, laid in hydraulic cement.

AGRICULTURAL INVENTIONS

Mr. Sheldon B. Parker, of Groton, N. Y., has patented an improved potato digger, consisting of a carriage carrying a curved or angular bar provided with digging teeth and hinged at its ends adjustably to plates attached to the axle, the curved or angular bar provided with gathering teeth and hinged at its ends adjustably to the axle, and the two levers for regulating the pitch of the teeth, whereby the potatoes and the soil in which they are embedded are raised, and the potatoes are separated from the soil and collected along the center of the row.
An improved plow has been patented by Mr. Isaac V. Newsom, of Mount Meigs, Ala. The object of this invention is to facilitate the adjustment of plows and promote conve nience in repairing them. The plow standard is made in two parts, or is slotted longitudinally, to receive the beam in its upper part and the plow fastening bolt in its lower part. The standard is hinged by a bolt, at or near its middle, to a metal block bolted to the lower side of the beam so that this standard can be adjusted to regulate the pitch of the plow.

An improved sulky plow has been patented by Mr. George Applegate, of Yoncalla, Oregon. The object of the invention is to provide means whereby the depth and width of the furrow cut by the plow may be easily regulated and the plow controlled while in motion, and to provide a plow of light construction and draught, and one which can be easily turned at the corners, and capable of such manipulation as to adapt it for plowing in indirect lines or curves.
An improved flax puller has been patented by Mr. Samuel W. Gaines, of Scio, Oregon. In using the machine, as it is moved forward the flax is clamped between reel bars and a padded drum, and is pulled by the reel and drum and deposited upon a platform whence it can be raked off by hand, or by an automatic mechanism connected with and driven from the driving parts of the machine.

The Geology of the Lake Region of New York. At a recent meeting of the New York Academy of Sci ences, Dr. Lawrence Johnson read an interesting paper on the "Parallel Drift-hills of Western New York." A glance at the topography of the western section of the State shows a series of long and narrow lakes, among which may be mentionied Skaneateles, Cayuga, and Seneca as perhaps the most important. These bodies of water vary from a few to one hundred miles in length, and are of extreme depth, considering their breadth, which is often not more than four or five miles, and at points even less. They lie in cup-shaped valleys between series of hills whose general direction is from north to south. They are connected by a stream of water called at different points Duck River, the Clyde, and so on, which finally turns the flank of the great limestone formation of the Niagara and empties into Lake- Ontario. After minutely describing the surface of the section and noticing the extreme comparative depth of the lakes, varying from 400 to 630 feet, Dr. Johnson proceeded to consider the question of their formation, rejecting, for many reasons, the theory that they were excavated by icebergs. The section, embracing from 800 to 1,000 square miles, was one of great interest, the speaker said, because no such ranges of drift-hills had been elsewhere noticed on this continent, save possibly by Sir William Logan, who described a somewhat similar formation high up on the Ottawa River in Canada, whose ranges lay north and south in the same manner. Dr. Johnson advanced the hypothesis that the whole section he had described was once nearly covered with water, and there were evidences, as, for example, in the marshes north of Cayuga Lake, that they had formerly extended further northward. The tamarack tree grew in great abundance in these marshes on the north, and the nature of the strata beneath was such as to show that they were formerly parts of the bodies of water that they joined. It would be noticed by the listener that the long axes of the small lakes he had described, while pointing in the same general direction, all converged at such angles that they would meet, if continued on the map, in the great peninsula of Labrador, which was now believed to have been the mother of a vast prehistoric series of glaciers concerned in the formation and modification of the tract lying to the south and southwest. Lake Ontario was evidently formed by the same tremendous glacier that excavated the basin of Lake Erie.

Ceramoid.

Dr. R. Martin, of Sonneberg, in Thuringia, has invented a substance which is said to resemble matt porcelain biscuit and faience, and has the ring of ceramic products. The process employed by him consists in mixing the clay with burning. The objects made of it, especially doll heads, key escutcheons, vases; etc., are made of clay, mixed with in-
fusorial earth, cellulose, or fibrous substance, and .cither pressed in plaster moulds or made by pouring the thick paste
into moulds, and then, after they are taken out of the mould, they are dipped in a solution of water glass. Owing to the capillarity of the substance mixed with the clay the water glass solution is rapidly absorbed by.the substance and soon penetrates the entire mass, and when it hardens the muss resembles stone.
To color the article at the same time the paste is colored and poured or pressed into the form, and then the ground mass poured in as in making terra-cotta, where the fine parts are first filled up with prepared clay, which can be col ored at will, and then filled out with ordinary clay that has not been elutriated.
It is well known that silicate of alumina, and also clay when mixed with water glass solution, hardens and does no readily get soft in water. The strength and durability and power of resisting water is not, of course, equal to that which can be attained by burning.
W. I. G. Z.

A PHOSPHORESCENT CORAL AND OTHER MARINE PHOS-ANIMALS.

The appearance of phosphorescent light among corals is f extremely rare occurrence, and during a long residence

in the coral country, and of continued observation, the phenomenon was only observed once, and that in the genu Caryophilla. The specimen was first seen from the loat in about thirty feet of water, and brought up by diving, by the writer, and immediately placed in a jar of water, and finally transferred to an aquarium that had been built so that the tide rose and fell in it. Here the beautiful specimen was lodged, so that every movement of the animal could be observed. It had five branches, each one forming a cell showing beautiful radiating plates, striated exter nally, and collected into a solid conical polyparium fixed t the base.
The appearance of the animal when extended, though extremely attractive, did not come up to the one described by Professor Johnson, of London. "When taken," he says, referring to one dredged in deep water by Professor Travers, "the animal was scarcely visible, being contracted; when ated circles of bright apple green, the one marginal and outside the tentacula, the other at some distance from the transverse and linear mouth.
In the specimen kept by the writer the green was ouly faintly observed; and when the animal was within its cell the color of the mass was more inclined to yellowish brown, while two of the branches were denuded of animal matter and were pure white
The situation of the coral was about a foot under the surface, and a platform had been arranged so that the doing the light was first seen. At first we thought it might have been the phosphorescent flash of some minute acaleph myriads of which were floating about, but to remove all doubt a glass funnel, slightly tinted, was gently lowered down over it, and a second later a slight flash illuminated it, and then another, showing a faint light that made small objects visible in the immediate vicinity of the polyp ; and at one time a pteropod was suddenly thrown into a brilliant
light when within a few inches of it. The flashes seemed light when within a few inches of it. The flashes seemed
to be intermittent, and to pervade the entire face of the cell in much the same fashion as does the light of the firefly the surface of that insect. By lowering a black glass near it an the glass, an oval illuminated of the reflection which was on
of a silver quarter, and the color of the spark yellow, with perhıps a bluish tint.
In the accompanying illustration we have a.tempted to merely show the size and appearance of the illumination as it appeared twelve inches under water. The cause of this curious phenomenonis probably the same here, in a general sense, as in other forms. Perhaps there are special organs as has been suspected in some of the acelphs, or it may be due to some fatty degeneration of the parts. In the sea pens (Pennatulidoe) the same phenomenon has been noticed, and a recent Arctic exploration discovered one of these curious creatures growing about four feet in height in wate nearly a mile deep. The one known to science as Regilla reniformis is a rich purple species found off the coast of South Carolina. According to Agassiz it is remarkably phosphorescent, showing a golden-green light of wonderful softness. Another-the Pennatula phosphorea-is found in European waters of a rich red-purple color. Dr. Grant, in speaking of them, says: "A more singular and beautiful spectacle could hardly be conceived than that of a deep purple (P. phosphorea), with all its delicate transparent polypi expanded and emitting their usual brilliant phosphorescent light, sailing through the still and dark abyss, by the regu lar and synchronous palsations of the minute fringed arms of the whole polypi."
Linnæus says that " the phosphorescent sea pens which cover the bottom of the ocean cast so strong a light that it is easy to count the fishes and worms of various kinds that sport among them.
One observer has been fortunate in discovering evidence of phosphorescent light in the boring mollusk pholas, having seen a faint flame or light playing about the entrance to its retreat; but the most wonderful of all the light-givers of the ocean are certain forms of ascidians. A compound one, the Pyrosoma, has been found, in the shape of a barrel. nearly five feet in length-an aggregation of many thousands of individuals. Huxley says of this interesting form: " The ascidiarium of Pyrosoma has the form of a hollow cylinder, rounded and closed at one end, truncated and open at the other, formed of a firm and transparent texture, in which the zooids are arranged in whorls; their oval apertures open on the exterior surface, and their atrial apertures into the interior of the cylinder. The hæmal aspect of each zooid is turned toward the closed end of the cylinder. The branchial sac has the ordinary structure, and each zooid is pro vided with a testis and with an ovisac containing a single ovum." To move along each zooid draws in water through its oval aperture and discharges it into the interior of the cylinder. The effect of so many currents being forced out of the open end propels the whole mass ahead in the direc tion it happens to take. Each of these zooids sometimes shines with a brilliant flame, so that at a distance through the water they have the appearance of great fire balls moving to and fro. The naturalist Bennet thus speaks of them: "I threw the towing net over the stern of the ship, which soon cleaved through the brilliant mass, the disturbance causing strong flashes of light to be emitted. On taking the towing net in it was found to be half filled with Pyrosoma atlanticum, which shone with a beautiful pale greenish light. After the mass had been passed through by the ship the light was still seen astern. The second occasion of my meeting these creatures," he says, "was in high latitude and during the winter season. It was on the 19th of August, the weather dark and gloomy, with light breezes from north north-east, in lat. $40^{\circ} 30^{\prime} \mathrm{S}$. and $138^{\circ} 3^{\prime} \mathrm{E}$. long., at the west entrance of Bass's Straits, and about eight o'clock, when the ship's wake was perceived to be luminous, while scintil lations of the same light were abundant all around. To ascertain the cause I threw the towing net overboard, and in twenty minutes succeeded in capturing several pyrosoma which gave out their usual pale green light; and it was no doubt detached groups of these animals which were the occasion of the lights in question.

Humboldt also attests to the wonders of the colony of animals: "Only imagine," he says, " the superb spectacle we enjoyed when, in the evening from six to eleven o'clock, a continuous band of those living globes of fire was passing near our vessel. With the light which they diffused we could distinguish at a depth of fifteen feet the individuals of thymnus, pelamys, and sardon, which have followed us these several weeks, notwithstanding the celerity with which we sailed. Among these are other free swimming asci dians, as the salpa-animals that join in long bands, and from the masthead look like fiery serpents, winding their way through the sea. Myriads of jelly fishes add to the wonders of this submarine festival, and oval forms of red, blue, yellow, and green tints are seen rising and fallingveritable constellations of the sea; while the waves, clarged with disconnected masses, break and roll away, lighting up the darkness with a ghastly glare that is reflected by the masts, sails, and rigging, that cast strange shadows over the deck and sea. The office of this strange light is mere specu lation, as some fishes show the same, and many forms from great depths of the ocean. It has been surmised that its purpose is to provide light for those regions never to be explored and of utter darkness.
Teie boiler of the. Missjou Soap and Candle Works, on Sixteenth street, between Folsom and Harrison streets, San Francisco, Cal., blew up about 4 o'clock A.M., December 7. as demolished. The buiding, which was $\$ 50,000$ wa more or less damaged.

为usiness and ecronat.

The Chargefor Insertion under this head is one Dollar a line for tach insertion; about tight worrss to a line.
Advertisements Advertisements must \quad e received at publication offtce
asearly as Tlurssay morning to appear in next issue.
See Baker's Telephone adv., p. 44, last number. The Berryman Feed Water Heater and Purifier and
Feed Pump. . B. Baris' Patent. See illus. adve p. 41 Feed Pump. I. B. Davis' Patent. See illus. adv., p. 4 ,
Light and Fine Machinery and Tools to Order. Lathe Light and Fine Machinery and Tools to Order.
catalogue for stamp. E. o. Chase, Newark, N. J. Manufacturess of Drain rite Machinery will
send address to C. G. Metzler, COMumbus, Kan nd adaress to C. Q. Medrer, Columbus, Kan For Machinists and Apprentices.-The Student's Illustrated Guide to Practical Draughting. Sent on receipt of
\$1. T.P.Pemberton, 142 Greenwich St. P.O.Box 3083 ,N.Y. Our poods speak for themselves, and a trial will conOur goods speak or themselves, and a trial wil con-
vinee the most skeptical cf theni superiorit over all
others. Lehigh valley Emery Whel Co..Lehighton, Pa. Wanted. - A Second-hand Bicycle, about 46 in. wheel. Address, with price, Box 31, Phoenix, Arizona. Caution to Manufacturers and Others.-The attention of those interested is called to the fact that materials
for covering hot air and steam pipes, boiless, etco., which
 W.Johs. 87 Maiden LLane, N. N. Y. Who is the inventor
and patentee of genuine asbestos materials, comprising and patentee of genuine asbestos materials, comprisisg
paints, roofing, steam packing, millooard sheathings, ett. Chemist's Pocket Book.-For Chemical Manufacturers, Metallurgists. Dyers, Distillers. Brewers, Sugar Re--
fners, Photographers, etc. finers, Photographers, etc. By. Thomas Bayley. ${ }^{2}$.2,
free. E. \&i. F. spon, 46 Broome St., New York. Patent Wanted.-I want to buy whole or part interest,
or manufacture on royatt. Addaress H. C. Lyon, New or man
York.
Man
Manufacturers, Steam Boiler Owners, Towns and
Cities desiring pure Cities desiring, pure water, send fat
Mewark Filtering Co., Newark. N. J.
For Sale Cheap-6 Lathes. 2 Planers. 5 Upright Drills, For Sale Cheap-6 Lathes.2 Planers. 5 Upright Drills,
Fowler Press. All on hand. York $\&$ Smith, clevel'a, 0 Malleable and Gray Iron Castings to order, by Capital
City Malleable Iron Co., Alloany, N. \mathbf{Y}.
Electric Lights.-Thomson Houston System of the Arc
type Ertimates given and contracts made, 631 Arch,Phil. For Power \& Economy, Alcott's Turbine, Mt.Holly, N. Combination Roll and Rubber Co., 27 Barclay St.
N. Y. Wringer Rolls and Moulded Goods specialties. Lightning Screw Plates and Labor-saving Tools, p. 30. Send for Pamphlet of Compilation of Tests of Turbine List of Machinists in United States and Canada, ju compiled ; price, 810. A. C. Farley \& Co.. Philadelphia (nl Latest Improved Diamond Drills. Send for cii
to M. M. Bullock, 80 to 88 Market St., Chicago, Ill. Wood Working Machinery of Improved Design and The Medart Pat. Wrought Rim Pulley. See adv., p. 44. Abbe Bolt Forging Machines and Palmer Po ver Ham-
mersa specialty s. C.Forsaith $\&$ C Co...Manchester, N. H. For Belt Studs, Belt Hooks. Belt Couplers, Belt PunThe Sweetland Chuck. See illus. adv, p. 450. "How to Keep Boilers Clean," and other valuable formation for steam users and engineers. Book of
sixty-form. pazes. publishea by Jas. F. Hotchkiss. 84 sixty-forr. papes. published by Jas. F. Hotch
John St. New York, mailed free to any address. 4 to 40 H. P. Steaim.Engines. See adv. p. 382. Supplement Catalogue.-Persons in pursuit of infor
mation on any special engineering. mechanical, or scien
 ENTIFIC AMERICAN SUPPLEMENT sent to them free.
The SUPPIEMEMT contains lengthy artices embracing
 Rollstone Mac. Co.'s Wood WorkingMacb'y ad. p. 12. Split Pulleys at low prices, and of same strength an appearrance as whole Pulless, focom \& son's Shatting appenrane ase shole Pulleys. Yocom
Works. Drinker St., Philadelphia. Pa.
See Bentel, Margedant \& Co.'s adv., page 46 . Malleable and Gray Iron Castings, all descriptions, by Erie Malleable Iron Company, limited. Erie, Pa.
Presses \& Dies. Ferracute Mach.Co., Bridgeton, N. J. Corrugated Wrought Iron for Tires on Traction En-
gines, etc. sole mfrs, H. Lloyd, son \& Co., Pittsbg. Pa. Presses, Dies, Tools for working Sheet Metals, etc. Fruit and other Can Yools. E. W. Biss. Brooklyn. N.
Cope \& Maxwell Mr'g Co.'s Pump advr, page 45 . C. B. Rogers \& Co.. Norwich, Conn.. Wood Working Machinery of every kind. See adv., page 412. Saw Mill Machinery. Stearns Mfg. Co. See p. 29. List 27. -Description of 3,000 new and second-hand
Machines, now ready tor distribution. Send stamp for Machines, now ready for distribution. Send stamp for
same. S.C.Forsaith \& Co.,Manchester,N.H., and N.Y.city. Supplee Steam Engine. See adv. p. 30 .
Machine Knives for Wood-working Machinery, Book Binders, and Paper Mills. Also manufacturers of Solo-
man's Parallel Vise. Taylor. Stiles \&Co..Riegelsville.N.J
Peck's Patent Drop Press. See adv., page 30. Peck's Patent Drop Press. See adv., page 30.
Diamond Tools. J. Dickinson. 64 Nassau St., N. Y steam Hammers. Improved Hydraulic Jacks. and Tube 50,000 Sawyers wanted. Your full address for Emerson's Hand Book of saws frree.. Over 1100 illustrations
and pages of valuable information. How to straighten saws, etc. Emerson, Smith \& Co.., Beaver rails, Fa . 46.
Telegraph, Telephone, Elec. Light Supplies. See p. 46. For Pat. Safety Elevators, Hoisting Engines, Friction
Clutch Pulless, Cut-orf Coupling. see Frisbies ad. p. 45, Eagle Anvils, 10 cents per pound. Fully warranted. Peerless Colors for Mortar. French, Richards \& Co.,
410 callownill St., Philadelpha, Pa.
Gear Wheis for Models (list free); Experimental Work, ete. D. Gilbert \& Son, 212 Chester St.. Phila.. Pa. Gould \& Eberhardt's Machinists' Tools. See adv., p. 45.
Elivatoor, Frilyht and Passenger, Shafting, Pulleys and Hangers. I. S. Graves \& son. Rochester, M. Y.
For Leather, Rubher. or Cotton Belting. Linen Hose For Leather, Rubher. or Cotton Belting. Linen Hose
or Rubber Hose, write Greene. Tweed \& Coo.. N. Y.

Engines, 10 to 50 H. P., $\$ 250^{\circ}$ to $\$ 500$. See adv., p. 46. Metallic Letters and Figures, to put on Foundry Parterns, all sizes. H. W. Knight, Seneca Falls, N. Y.
Pays well on small investment.-Stereopticons, Magic Lanterns. and Views Illustrating every subject for public home amusement. 116 page illustrated catalogue free.
McAllister, Manufacturing Optician, 9 N Nassau St., N. \mathbf{Y}. Barrel, Key, Hogshead, Stave Mach'y. See adv. p. 45. Upright Self-feeding Hand Driling Machine. Excel-
lent construction. Pratt \& Whitney Co, Hartford,Conn lent construction. Pratt \& Whitney Co., Hartora,Conn. Mineral Lands Prospected, Artesian Wells Bored, by
Pa. Diamond Drill Co. Box 423. Pottsville. Pa. see p.45. Catechism of the Locomotive, 625 pages, 250 engra ings. The most aceurate, oomplete. and easily under-
stood book on the Loocmotive. rrice 42.50 . Send for Broadway, New York.
For best low price Planer and Matcner. and latest
mproved Sash, Door, and Blini 1 Machinery Catalogue to Rowley $\&$ Hermance. Williamsport, Pa. Improved Skinner Portable Engines. Erie, Pa. The Porter-Allen High Speed Steam Engine. South-
work Foundry \& Mach. Co. 430 Washington Av,.Phila.P. The only economical and practical Gas Engine in the market is the new "Otto" Silent. built by Schletcher.
Schumm $\&$ Co., Philadelphia. Pa. Send for circular. Ore Breaker, Crusher, and Pulverizer. Smaller sizes Portable Power Drills. See Stow Shaft adv, p. 45. For Heavy Punches, etc., see illustrated ad vertise-

NET BOOKS AND PUBLICATIONS

 ond Annual Report of the stateBoard of
Health, Lunacy, and CHARITY of Massachuserts. 1880 . Supplement containing Report and
Puperson Public Health. Boston. 1881. Paperson Public Heall. Boston. 1881 . The general report is brief, the buik of the volume field River and Miller's River; the Separate System of Sewage; Intermittent Fever in Massachusetts; School,
house Sanitation: and the Health of Towns, with special eference to the Epidemic at Adams and the Sanitary Condition of Holyoke.
Mechanical Industries Explained. By Alexander W
A scrappy sort of book for "the rising youth of both sexes,", describing brieffy a number of industrial pro-
cesses, chiefly mechanical. The information is ar as it goes mechanical. The information is good so al than in his "chemical industries," is not particu arly well suited for juvenile reading.
Dangers to Health: a Pictorial Guide
to Domestic Sanitary Defects. By
T. Pridgin Teale. Philadelphia: Presley ${ }_{\text {Thakiston }}$
A model book for its purpose. Indeed it is safe to understood illustrations of sanitary defects in hous drains, sewer connections, and the rest, will do more to open the eyes of householders, plumbers, and builders, to dangers to health through dishonest and ignorant work in sanitary appliances, than months of study of ordinary treatises on sanitary engineering and domestic
economy. It is a book worthy of the widest circula tion.
Practical Lessons in Architectural Drawrict. 33 full page plates and 33
woodcuts. By Wm. B. Tuthill. New

Assuming some knowledge of architectural drawing ples in several classes of construction, how to make working drawings and write the specifications for build-
ings. The examples give plans, elevations, sections, frave, brick
A New Systex of Ventiation. By Henry
A. Gouge. New York: D. Van Nos. trand:
Describes the principles, methods, and results of Gouge's system of ventiation, and contains a large amount of usetul information and suggestion touching $\stackrel{a}{\text { air. }}$
esident Garfield and Education. Hiram College Memorial. By B. A.
Hinsdale, President Hiram College. BosHinsdale, President Hiram C
ton: James R. Osgood \& Co.
A memorial volume of special interest to those who
knew Mr. Garfield as schoolmate, teacher, and towns man. E Open Fire Place in all Ages. By
J. Pickering Putnam. Boston.: James
R. Osgood $\begin{aligned} & \text { Co. Quarto, cloth. }\end{aligned}$ \$4. An enlarged and very handsome edition of Mr. Putnam's volume pubished last year. The illustayions
have been increased to over 300, comprising many conhave been increased to over 300, comprising many con-
tributions of specially fine and artistic work by modern architects as w,
earlier builders.
Steam Heating for Buildings. or Hints To STEAM FITTERS. By William J.
Baldwin. New York: John Wiley \& Sons.
A straightforward, p ,
The Ironmonger's Diary and Text For 1882. London: Office of the Ironmonger.
The fourteenth issue of the diary carries, in addition to its record pages and nsual freight of advertisements, a summary of the British census of last year and an Ilustrated review (not aliogether impartial
The Photographic Amateur. By J. Traill Taylor. New Yo.
turing Company.
The author's editorial experience in connection with
vice in the preparation of this manual. He tells what he has to say with commendabl) directness,and in terms
which the amateur student of the art cannot fail to which the amateur student of the art cannot fail to
readily understand. Special attention is given to dry plate photography.
El Mal DEL Pinto. Por Gustavo Ruiz y
Sandoval, Medico
de la Escuela de Sandoval, Medico de la Escuela de
Mexico. Mexico. 1881 . thi
In this very important contribution to medical
science, which has been honored by a prize from the science, which has been honored by a prize from the
Mexican Academy of Medicine, the author gives a very Mexican Academy of Medicine, the author gives a very
exhuustive study of a peculiar skin disease, which, although usually regarded as confined to Mexico, here stated to be also prevalent in several parts o Central and South America. The disease (mal del pinto, or "blue stain," as it has been called in English is a
contagious one, and manifests itself in the form of contagious one, and manifests itself in the form of
white, blue, or red patches on the feet, hands, and face, white, blue, or red patches on the feet, hande, and ant as
forming painful ulcerations, and giving the patient, as we should judge from the colored plates accompanying the memoir, a very unsightly appearance. In the more advanced stages the affection is accompanied by a sickening odor, the digestive faculty becomeses impaired, the patient loses flesh and strength, and betakes himself to
his hed, not to sleep, however, for extreme wakefulness is one of the symptoms of this stage. The cause of the endemic has not hitherto been well understood, but Dr. Ruiz in the work before us shows pretty conctu
sively from his microscopic examinations that it be longs to the category of zymotic diseases, and is pro duced by a fungus which he nemes microsporum hidah goense. The affection appears to have no limit to its
duration, and is cured only after long treatment by induration, and is cured only after long treatment by in-
ternal and topical remedies, leaving its traces then In ternal and topical remedies, leaving its traces then in
the form of whitish cicartices. As a prophylactic the the form of whitish cicatrices. As a prophylactic the
doctor recommends thar greater attention be paid to doctor recommens
matters of cleanliness, public and private, and that cer tain forms of vegetable food, such as mairely avoided. The memoir is finely illustrated, and is accompanied by a map showing the zone occupted by the disease
Boletin de la Sociedad de Geografia y Estadistica. Mexico. 1881.
The number before us of the Mexican Geographica of vol. v., contains several papers of more than ordinary value and interest, chief among which may be
mentioned an important archeological memoir by Sr. montined an important archæological memoir by sr
Jose Ma. Reyes, wherein is traced the history of the
ime and especially to the territory now occupied by the ne especialy to the territory now occupied by the
Repubic if Mesico. The paper is well illustrated, and gives evidence of great painstaking research on the part of its author. TTe otber papers are: "A Synop-
tical View of the Sate of San Luis Potosi,"
with varitical View of the Sate of San Luis Potosi," with vari-
ous historical, geooraphical, statistical, and governmental data, by Sro. Rafael del Castillo; and an elaborate "History of the Beneficiary Institutions in Mexico," by sr. Juan de D. Peza.
The American Chemical Journal. Edited
by Professor Ira Remsen, of the Johns
,
This. ably.conducted journal, now in its third volume, has occupect a prominent place in the esial iterature
of chemistry from its very beginning. Each number chemistry from its very beginining. Each number
contains original articles by prominent American and foreign chemists, reviews of works relating to chemical science, reports of progress in the various departments
of chemstry and iems of general interest to chemists. The journal is a model of typorraphical excellence is published in numbers of from 64 to 80 pages, six numbers forming a volume, at the subscription price of

(2) (3)

HINT'S TO CORRESPUNDENTS,
No attention will be paid to communications unless accompanied with the full name and address of the
writer. writer.
Names
.
Names and addre
Eiven to inquirires.
We renew our request that correspondents, in referring
We renew our request that correspondents, in referring
to former answers or articles, will be kind enongh to name the date of the paper and the page, or the number of the question.
Correspondents whose inquiries do not appear after
r reasonable time should repeat them. If not a reasonable time should repeat them. If not then pub-
lished, they may conclude that, for good reasons, the lished, they may concl
Editor declines them.
Persons desiring special information which is purely of a personal character, and not of general interess, as we camno be expected to spend time and labor obtain such information without remuneration Any numbers of the Scientific American ScpplemeNT referred to in these col
office. Price 10 cents each.
ofice. Price 1 cents each.
Corespondents sending samples of minerals, for examination, should be careful to distinctly mark of label their specimens so as to avoid error in their identi labe the
fication.
(1) E. C. B. asks: 1. Can I put anything on wood to prevent it from becoming water soaked without changing the natural color of the wood more
than varnish would? If so, what and how done $\%$ A. than varnish would $\%$ If so, what and how done $\%$ A.
You can try the following process: Digest the wood Por twenty-four hours or more in a hot solution com-
posed of 1 pound of soap (white soap) dissolved in gallons of soft water, and then for several hours in a solution of $21 / 2$ pounds of alum in 2 gallons of water.
Finally rinse in running water and dry. 2 . If I boil Finaly yrinse in running water and dry. 2. If I boil
articles made of wood in linseed oil can I put a finish on it, or will the oil prevent me? A. You may encoun-
ter some diffculty in polishing wood that has been ter some difitcalty in po
boiled in oil as proposed.
(2) J. C. S. writes: Will you please give me your opinion in regard to this new proservative "ozone," advertisea in the papers8,
(3) W. St. asks: Is there any apparatus by which piecess of mineral or other substance of pea size
be heated by a continuous stream of hot air to from 280° to to 350° Fah.? A An stream or ho air tion and employing hot air in the way proposed could be constructed without difflcully. It might resemble in mee respects that employed in heating air for " " hot
blast " iron smelting furnaces. We think of no similar pparatus in use. (4) E. C. B. asks: Please give me the wire like inclosed sample that has been injured by exin an oven? A. The wire can be japanned in the way
you propose. See "Japanning and Japans," in SurpIEou propose.
(5) S. P. C. asks: Will you please state the difference, if any, between " "galvanized," "mar-
blized," and "" granite" ware " wholesome to be usei for cooking purposes? A. Galvanized iron, so-called, is iron that has been coated with zinc by immersing the clear iron in the melted zinc. "Mariron ware that has been are technical a vitrified porce. lain-like composition of certain earthy silicates-the vitrifcation being accomplished by heating the coated articles in a muffe furnace or kiln. These latter wares are, as now manufactured, unobjectionable. The gal-
(6) R. A. C. asks: Has double refraction, as exhibited by Iceland spar, ever been explained! I am unable to ina the explanation in any of the treatises on optics which I have seen. I can explain and demonstrate it in several ways. A. The cause of double re-
fraction is not a mystery. You will find the mater explained on page 325, vol. xlv., "The Nature, Formation, and Uses of the Nicol Prism."
(7) S. E. W. writes: I am running a circular ww mill with 2% horse power engine, 14 inches stroke making $16 G$ revolutions per minute. Would like to oband spre power by increasing size of pulley on mandrel, and speeding up engine sufficiently to keep up same relative speed of saw. Can 1 with safety increase
speed of engine 20 to 25 revolutions per minute? Have already increased speed of engine about 20 revolutions and would like to oadd about 20 to 25 more, making in all about 180 revolutions.
(8) L. D. writes; We have a boiler, 6 feet diameter, 12 feet long, with 1323 -inch flues, the grate
surface is 4 feet long by 4 feet 6 inches wide, and 92 inches from boiler; bridge wall 12 inches from boiler; rear or back wall is 14 inches from end of boiler. We have brick chimney, 85 feet high by 40 inches square inside, in which is a damper 24 feet up from floor, or about 10 feet above bridging, which we can close to any desired opening. Now, if we burn coal we burn about $5,500 \mathrm{lb}$. per day, and then we use only about one-thirdof the
power of engine; if we burn shavings from planing machines and sawdust from our factory, which is a sash, door, and blind factory, and a general wood worker, we can keep steam easier. Our freman some way or another hurry; he then fired a while that way, and found that he would burn a good less fuel by leaving the furnace doors open. He then told me aboat it, and I examined
it and found it as he stated. Our engine is anz30 slide valve; the air holes below grates are two, 111×18 side valve; the air holes below grates are two, $141 / 2118$
each. Now please tell us what is wrong. A. There is nothing particularly wrong, though we think you would no better with either wood shavings or coal by re-
ducing the throat of the flue at the back end of the ducing the throat of the flue at the back end of the
boiler from 12 inches height to 8 inches. You do not boiler from 12 inches height to 8 inches. You do not get air enough to the gases of your fuel. Put a lining
plate to your turnace door, then drill in the door about plate to your furnace door; then drill in the door about
eighth holes, 1 inch diameter, and the lining with as many ave-ixteenths inch or three-eighths inch holes as you
can well put in. It will not then be necessary to leave the door open.
(9) D. D. D. writes: I am sinking a shaft hrough rock prospecting, and the water bothers me a great deal coming up through the holes we bore to blast
with. Will you please inform me through your paper some cheap method of blasting so the water would not cartridges? A. Cartridges of dynamite or nitroglycerine are waterproof, and are generally employed for such purposes. See our advertising columns for ad
(10) J. M. writes: 1. By putting iron and copper in contact, and allowing these metals to remain
so, what effect would be produced on each either corrode sooner, or otherwise? A. Under such conditions, if exposed to moisture, the metals form a galvanic pair, and the copper would in a measure be protected from corrosion at the expense of the iron: in other words, the iron would corrode faster than if not in contact with the copper. 2 . In the event of zinc in-
tervening would there be any change in the results tervening would there be any change in the result. A .
The zinc being the more positive of the series would be more rapidly oxidized, the other metals being to a certain extent protected thereby.
(11) J. J. writes: Turtles may he kept for four or five months headed in a cask three parts filled
with salt water if the bung is left out. About a quarter of the salt water should be drawn off and replaced by fresh salt water once every month or two, if in the tropics. One which was treated in this way in a a $20-$ gallon cask was pronounced by a turtle dealer in LonIt realized one shilling and two pence per pound live weight.
(12) C. H. L. asks: 1. What oil or substance conld I use to mix with asphalt (Trinidad) to
make a paint to be used cold; which conld dry or evaporate, leaving the asphalt in nearly its natural state, so it would not run or soften under inftuence of sun's rayss?
Naphtha and turpentine are not satisfactory. Yould Naphtha and turpentine are not satisfaciory. Hould
resin oil answer? Am not familiar with its qualities. A. Common asphaltum contains moisture "nd volatile substances which must be eliminated before a good paration of such a varnish see answer to E. H. L., page

293(17), vol. xlv. Resin oil can be used in connection with the litumen, but a diluent, such as turpentine or
naphtha, will be necessary. 2. After painting a roof, say with asphalt or coal tar, what wash cheap white preferred) could I use over the asphalt, etc., to absorb the sun's rays? Wish some article in powdered form (so to as reeded for use. A. As we understand you, fine
chaik or potter's clay could be used. 3. I also inclose chaik or potter's clay could be used. 3. I also inclose sampit of saturated felt or paper. Would like to know,
if possible. with what substance the felt is saturated. if possible. with what substance the felt is saturated.
A. The felt is saturated with crude coal tar from gas distillation.
(13) N. L. writes: I made the induction coildescribed in the Scientifio A merican Supplement, No. 160 , and it proves very satisfactory. Now I want
to know if it will give satisfaction to produce electric light? What kind of regulator can I use? Can I use the Brush electric light regulator, described in Stuplement, No. 162 . How many of the copper and zinc batteries must I use? A. You cannot produce an electric light of any power with an induction coil. Use a dynamo
maciline or battery. For a description of these and of he best kinds of lamps for regulators,see SuPPLEMENTs, Nos. 157, 158, 159, 162. 222, 224, and 225.
Electric Light Apparatus," in No. 149 .
(14) F. H. N. asks: 1. Where will I find complete directions for making a simple electric machine for electro plating and for electric light? A. See SUPPLEMENT, No. 161. 2. I have a gravity battery, the cells
of which are 5×7 inches. What kind of a aolution should I put in them? A. Put in $11 / 2 \mathrm{lb}$. of sulphate of copper and fill the cell with water. 3. Could a tank be made of any very close grained hard wood for silver solution?
A. No; wood of any kind gradually reacts on silver solutions and reduces them. See "Silver Plating," in Supplement, No. 310
(15) J. T. G. writes: My trouble is that my files rust after lying wrapped up in papers for some
time. My method of putting them through after hard time. My methor of putting them through after hard
ening is as follows: They are first put in dilute muriatic acid, then scrubbed with sand and water, then rinsed in clean running water and put in strong lime water, rinsed well in this and put before a fire to dry; the drying takes one minute to the one pound weight. After being dried the lime is brushed out of the teeth and they are
oiled with castor oil, sometimes extra lard oil, but they will rust no matter which oil we use, and they turn brown after coming out of the lime, or before getting o the lime, although they are put through as quick as possible. What I want to know: is muriatic ac d the best for cleaning files, and is there anything I can put in the lime that will destroy the acid and keep them clean and not liable to rust after being put through. Or can you give a better method of putting them through
than the way I describe? Any information you can give.through your valuable paper,the Scientific American, will be thankfully received by me. A. Rinse off theacid (nuriatic) quickly in running water before put.
ting in the lime water. Have the lime water boiling ting in the lime water. Have the lime water boiling.
The heated metal will dry spontaneously on removing it The heated metal will dry spontaneously on removing it from this dip. Use lard, paraffine, or mineral sperm oils or a mixture of these. If the oil is put
(16) G. B. writes: Is ozone made cheap enough to sell as an article of merchandise, and in what form is it best adapted to arrest all forms of decay?
A. No; ©zone or allotropic oxygen has only been oberved as a gas. It has never been obtained in a conozone appears to be sulphurous acid, or rather a pre-
paration readily yielding that substance under favorparation readi
(17) J. G. D. asks for a receipt for making glue joint for wood work that is insoluble in wate A. You will find several good receipts for waterproo
glue or cements under "Cements," in SUPPLEMENT, No
(18) R. S. asks: 1. Is it as hard to fire on ome ocean steamers as on a locomotive? What is the difference? A. Yes; and in hot weather, worse. 2. In large passenger steamers and merchant steamers what
are the hours? A. When running, the hours are, generally,for long voyages,four hours on duty and eight hours off. On shorter routes, the "watch" is generally the length of the sun. 3. What pay,and are they in the same
standing as the crew or sailors? standing as the crew or sailors? A. From $\$ 30$ to $\$ 40$ per month. Firemen generally rate above deck hands
(19) J. B. R. asks: Which is right: to blow the whistle, thenstart the machinery, in a manufactory or start the engine first and then blow the whistle? A
Blow your whistle after your engine is in full operation. 2. A says that thediameter of a worm being larger or maller increases or diminishes the speed of the worm gear the same as in spur gears or pulleys. B
not so. Which is correct? A. B is correct.
(20) J. H. F. asks: Has any substitute been used with advantage for the lims cylinders in the oxyhydrogen light? How would magnesite answer?
A. See answer to J. A. L. (2), No. 1, current volume. Magnesite ground, pressed. into form and calcined, can be employed instead of lime, but the cylinder so pre-
pared would not stand the mechanical action of the flame as well as clear hard burned lime.
(31) A. P. S. asks: Will you let me know if there is any way to mend a crack in the face of a radiator? A. 'Try the iron cem
page 2510, SUPPLEMENT No. 158.
(22) C P. K. asks for the best method of drying and sifting gravel for polishing sand. A. If large quanties are to be operated upon, a revolving
cylinder over a fire, like a coffee roaster, would be good for the drying process. To this cylinder, laid at an augle and to its lowest end, attach wire gauze or gratug, with sections of different size mesh-the
finest mesh next the drying cylinder-and under these finest mesh next the drying cylinder-and und
sections place pans to catch what falls through.
(23) H. A. S. asks: 1. At what speed should a No. 4 blower be driven for a twenty-six inch
cupolap A. 1,800 to 2,000 revolutions per minute. 2 . How far should it be placed from the cupola, and why?

15 to 60 feet. 3. Does it make any difference if the
blower is on the floor blower is on the floor above the cupola and run the
flues down? A. The blower should not be above the cupola, but rather below it, so that in case of stopping
(24) C. F. D. asks: 1. Is there any differ ence between one hundred pounds to square inch
steam pressure and one hundred pounds pressure? A. No. 2. If any difference, which tries the strength of boiler most? A. There is no difference, at the temperature of the steam than when cold. 3. 3 .
at What is the difference. and why is there a difference? What cold water pressure should a boiler stand to be
safe at 100 pounds steam? A. By government rule it ould be tested to 150 pounds.
(25) J. B. P. asks: What is the average net proft on tanning a hide, the hemlock bark costing
about $\$ 6$ per cord? Of course, I know that sole harnes kip. and calf require different amounts of bark. A. It is impo country. During the war, $\$ 1$ a hide was made in some instances on sole leather tanning, but for the last year or two the business of tanning all kinds of upper leather has been a very close one, many old houses claiming that it has been done at a loss; while latterly sole-leather tanneries are making but the smallest mar gin of profit. The business is not one to embark in any time with a view to speculative profits, in any
ocality, any more than is that of farming and $\$ 6$ locality, any more than is that of farming, and $\$ 6$ is
above the average costof hemlock bark, unless delivered in cities.
(26) W. D. S. asks: $1 . W$ bat is the highest working pressure it would be safo to carry on a boile onstructed of mercury flasks, as described in Scien tific american Supplement, No. 182. A. If pro
perly connected, we think 200 pounds safely; but when perly connected, we think 200 pounds safely; but whe
complete they should be tested by water pressure to 50 per cent more than the greatest steam pressure you inboiler? A Not well. 3. Would I have to pay twent five dollars for a license if I used it in a boat sixteen or eighteen feet long: A. Yes; you would have to under-
(27) J. A. asks: Will you please inform me how to repair a bell that is cracked? Can I saw
down the crack and fill with copper or brass, and make it hold and ring all right? It is a large bell, and is racked about eight inches long. Please inform me what pose. The only thing to be done is to drill a hole at the end of the crack, and cut down the crack to the hole with a saw, so that the edyes of the crack will not touch each other in vibrating. This will enable the bell to ing, but it will not restore its original sound.
(28) C. H. asks: How much pressure will boiler stand, 20 inches long by 8 inches diameter,made thick, without any flues? A. By government rule 11 pounds per square incb; but as galvanized iron of this hickness is generally inferior quality, would not
(29) J. E. K. asks: 1. What size screw pro peller shall I use for steam launch 16 feet long, $51 / 2$ beam,
engine $23 / 4$? A. 18 to 22 unches diamet engine 234 ? A. 18 to 22 inches diameter. 2. Will the boat for my own uses A. Your forense if I ru gularly inspected and the fees paid, same as any other
(30) A. P. J. writes: I am speeding up a cir-
(J0) A. P. J. writes: I am speeding up a cir power and to saw cleft wood. I have a flywheel, 18
inches in diameter, weighing 80 pounds, to go on saw mandrel 3 feet long. How many revolutions shou.d the saw make, and what the size of mandrel? A. I riven by power hee saw might make 1.600 to 1,800 revolutions per minute. If you driveat any such speed you
want no flywheel on the saw mandrel. The size of he eye of the saw will give size of the mandrel.
(31) R. W. D. asks (1) what the scale on the zinc in a Calland battery is; how can it be got rid f; and how often it should be removed. A. It is com Whaty composed of zinc, iron, and copper oxides. 2. magnet wire per 1,000 feet? A. About 210 ohms. 3 . In your answer to S. S. MPg. Co. (4), page 11, curren cyanide of potas., or does the former act as well a the latter? A. Either will answer, but the ferrocyanide preferred by many.
(32) C. S. G. writes: I have a number of asy plan of tanning them with the fur on for makin carriage robe. A. Wash the skins in water, and cleanse wem thoroughly by scraping or rubbing. Then rub Alum, powdered $9 /$ pounds: salt and coarse whe meal, each one pound; sour milk, q s. to form a thin pasie. When the skin will absorb no more of this preparation, spread a layer of the latter over it (on the fesh side), and fold up the skin with the flesh surfaces ogether and put it away in a cool place for a day Repeat this pasting and rubbing each day for a wee Finally, thoroughly wash the skin in running wate drain bruch over it (flesh side) a strong solution alum in water, and hang it up to dry. The dry skin is softened by rolling and pounding it with mallet or rub bing and stretching it with a flexible tool. It is com-
monly finished by rubbing down the flesh side with (33) A. B. writes: Please give me a recipe for coloring chip straw black. I have tried severa eceipts, but instead of the braid being a nice black it has a purple tint. What I want is jet black like the imported goods. Thisbraid is used in the manufacture ng can I consults A. Use a small quantity of water sulphate,and two-fliths pound verdigris. Put the straw
into the boiling liquid for half an hour and then expose to the air for a like length of time, repeating this treat-
ment for several hours, or until, on rinsing, the straw is found to have developed a suitable black. The color deepens considerably when the dyed straw is exposed moist for several hours to the air. See practical dyeing receipts in SUPPLEmENTs, Nos. 249, 207, 185, 228, 231,
and 53 .
(34) W. J. W. asks how to bronze zinc et work A Coat the metal with very thin gold size, fret work. A. Coat the metal with very thin gold size, of red bronze (bronze powder) dry, and burnish. Bronze ket.
(35) F. B. L. asks: 1 . What is the cause of the snapping and cracking in steam pipes? A. Condensation of steam in the pipes. 2. What books are here published devoted wholly or principaly to
steam fiting? A. See "Roper's Engineer's Hand Book." Also " Baldwin's Steam Heating.
(36) A. S. writes: The statement has been made that the piston speed of engines,large and small,is now, or has been until lately, practically the same; this has been disputed. Will you please give the facts in the case, givfug limits of speed of engines. say 8 inches by 16 inches, axd 48 inches, by 96 inches or larger, and also state whether or not the tendency is to increase overformer practice? A. The tendency of late years has been to increased speed. Formerly the average speed of piston was about 300 feet; it is now probably not less than 450 feet. Of course the speeds are generally suited to the work. Some run up to 709 feet and

COMMUNICATION RECEIVED.
On the Ocean Packet Line. By J. W. N.
[OFFICIAL.]
INDEX OF INVENTIONS
Letters Patent of the United States Granted in the Week Ending January 3, 1881 ,
AND EACH BEARING TMATT DA'TE.
[Those marked (r) are reissued patents.]
A printed copy of the specification and drawing of any parent in the annexed list, also of any patent issued In ordor, will be furnished from this office for 25 cents: patent desired state the number and dat ork Row New York city. We also furnish copies of patents granted prior to 1866; but at increased cost, as the spec

Acids, removing flocculent matter from spent, E

 Album clasp, H. Landsber
Amalgamator, W. Moller
Amalgamator, W. Molle
Automatic gate. R. F. Hageman
Axle box, car, G. F. Godley......
Axle box Jack, car, E. Robinson

Baling press, G. W. Watchelder
Baling press, P. K. Dederick
Basin plug, J. . Ludwig.....
Bed, sofa, J. K. Stockton
Bed spring, C. H. McCreer
Bed, spring
Bed, spring. A. B. Ramey.
Beehive, C. Howard......

Block. See tackle block. Toy building blocks.
Board. See Vehicle spring board. Wash board
Boat detaching apparatus,
Boiler. See Marine boiler.
Boiler furn

Boiler furnace, steam, Bolt. See Flour bot. Book, blank,
 Boit. See Flour boit. Book, bank, A.J. Maxwell (r).

Book, portfolio scrap, A. L. Colt
Boot, moccasin, J. L. Coombs..
Boring machine, B. F. Allen....
Bottle cooler, C. H. Laufkotter
Bottle cooler, C. H. Laufkotter
Bottle stopper, J. B. Crawford
Bottle stopper,
Bottle stopper, G. F. Hoeffer........................... 251, 251,
Bottle stopper, s. s. Newton............ 251,922, 251,
Bottle stopper. \mathbf{O}. Redmond....
Bottle stopper, self-closing, D. Berry

```
Brace. See Shoulder bre
Brake. See Car brake.
```

Bridge. lock and signal, turn, F. w. Cooibaugh.
Brushes, paint, whitewash, and other, J. A. Brushes, pai
D. Read.

	Furnace. See Bagasse furnace. Boiler furnaee Hydrocarbon furnace. Puddling furnace.
251,823	urnace, J. Flannery.
251,855	Furnace for burning
251,901	etc., portable, S. Bevi
251.914	Furnace grate, G. E Palmer
251.72	Furnaces, apparatus for injecting
251,8	into, A. J. simmons.
251,869	naces. mechanism fo
251,930	to, D. Rensha
9,9	Gas governor, $\mathrm{N}: \mathbf{M}$. Gar
	Gas lighter, electric. C. D.
251,701	Gas regulator, I. : P. Blair
251,990	Gate. See Automatie gate
251,763	Gate, l'atterson \& Palmer
251,786	Glass to imitate wood,
	Glycerine from soap liquor, manufacturing Battershall.
	Gold from quartz and rock tallings, apparatus for
	separating,
${ }^{251,716}$	Governor ani indicator for fluid pressure brakes,
251,824	Governor for cottongins, L. D.
	Grader for ärains, G. F. W.
	Grain binder, D. McPherso
251,690	Grain cleaner, W. C. Holm
	Grain cleaner, W. Williamson
251,791	Grain drill, R. C. Morr
	Grinding grain, roller mill fo
	Hair pin, M. T.
251.998	Hame and collar coupl
251,832	Harmonica, automatic
251,686	Harrow. sulky, C. La
251,902	Harvester, W. A. Wood
251,838	Harvester binder, S. D. Lock
	Harvesters, swathing attachment
251,923	Tschop
251,	Hat bodies, making and uniting bats to, w. A.
251,819	
	Hat clasp, W. Ewing
	Heater. See W
	Hinge, gate, M. B. Hud
251,	Holdback. vehicle, A. J. Bacon
	Holder. See Dish holder. Music holder. Ticket holder.
	Hook. See Snap hook. Whiffletree hook.
	Hose carrier C. Calahan
251,722	Hub, vehicle, J. R. Poston................ 251,794
	Hub, wheel. R. W. \& D. Davis
251,811	Hydrocarbon burner. E. A. Edwards
	Hydrocarbou furnace, M. Zeek
251,839	
251,70	Indicator. See station indicato
251,940	Ink fountain and pen holder, com
251,979	bleday.
251,931	laying horn, etc.,
251.739	See Axle box
251,695	or lifting jack.
251,957	Joint. S
	Kettle, steam jacket. E.
251,9	Knife. See Edge trimming mach
251,806	Knnb attachment. J. W. You
251,96	Label band for dry goods packages, B. E. Kingman
251,704	Ladder attachment, J. D. \& L. M. Nort
	Lamp, M. Cziner....... 251,
	Lamp. E. Köh
	Lamp, c. R
	L

Gliassware, J. Dalzell
trade marks Accordions, w. Spaethe Chocolate, milk, Basley \& McAlvanah tine Company........................
Cotton yarns and cloth, Globe Yarn Mils. Decorative fabric, certain, J. R. Whitley Flax lint, W. G. Taylor...
Garvanized sheet iron, St. Louis stamping
tats and caps, Steinfeld, Kernwood \& C Hats and caps, Steinfeld
Liniment, J. W. Aitken.
Medicinal preparation, certain, T. E. King
pany.............................. aints and pigments, Hore, Barnett \&.Co Photographic prints, E. \& H. T. Anthony \& Co... Soap, A. B. Gillett.
Thread, Clark Thread Company

English Patents Issued to Americans. From December 27 to December 30, 1881, inclusive Brushes, W. H. Miles. New York citty.
Electric clock, C. E. Buell, New Haven ire extinguisher, H. S. Maxim. Brooklyn, N. Y Gores. gussets, etc., S. Florsheim, Chicago. Ill. Grain shifting apparatus, W. H. Power, New York city Harmonica, M. Harris, New York city.
Leather dressing machine, F. B. Batch Musical Mastrument. M. Harris, New York city Musical instrument. Automatic Music Pape
Boston, Mass. Refrigerator. G. C. Roberts. New Y̌urk city. Shoe machinery, G. W. Copeland. Malden, Mass.
Steam engine valve, S. A. Goodwin. I'hiadelphia, teamships for carrying fruit, G. A. Cochrane, N. Timepieces, W.E. Doolittle, West Haven, Conn
 CN EXPERIENCED CIVIL, MINING, AND MECHAA

TO GLASS MANUFACTURERS

© $\mathfrak{b e}$

 Sixux

NEW YORK, JANUARY, 1882
The Sun for 1881 consumed four million on hundred and ninety-four thousand three hundred nd ninety-one $(4,194,391)$ pounds of printing paper in its Daily, Sunday, and Weekly editions. This is equal to sixty million seven hundred and even $(60,772,677)$ copies of the daily size
The actual circulation for the past year was:
Daily,
39,701,161
Sunday, - - 7,037,604
This gives for each day in the year the followin verage:
Copies of the Daily edition, 126,841 Copies of the Sunday edition, 135,339 Copies of the Weekly edition, 67,273
The Sun has advertising space to sell. In the Daily and Sunday editions its price for ordinary advertisements is 40 cents per agate line. Pre $\$ 2.50$ per line. In the Weekly 50 cents an agate line of space; no extra charge for display Preferred positions 75 cents to $\$ 2$ per line.
At this price advertising in the several editions
of THe Sun is cheaper than its publisher has ever been able to obtain in any other medium, and he has spent hundreds of thousands of dollars in making known The Sun, and the advantages it offers to the business community.
The Sun is published every day in the year, at
Nos. 166, 168, and 170 Nassau Street, New York City.
I. W. ENGLAND, Publisher.

SHORTHAND Withe thormuh)

PERIN BAND SAW BLADES,
 SLATE MACHINERY WANTED.

MINERAL WOOL.

FOR IRON AND STEEL MEN.

THE PHENOMENA OF FLUORESCENE.

The American Popular Dictionary, $\$ 1.00$

PATENTS SOLDE

PRACTICAL DRAUGHTSMAN'S Book of Industrial Design, machinits And engineers DRAWING COMPANION.

Every Mechanic Needs a Good Knife, and Here It Is!

THE BAKER BLOWEF,

 WILRALHAM.
ORos, a send for our catalogue. ea PUNGED WORF of every deserpition, Dies an

MAC

Shafts, Pilless, Hangers, Etc.

 MACHINERY WIPER CLOTHS!

Clotheri
 uston keep the room neater, and cost nom ore to thi 600483
 MACHINISTS' TOOLS.

 NEW HAVEN MANUFACTURING CO.,

WATCHMAKERS.
Before buying lathes, see the "Whitcomb," made b
AMERICAN WATCH TOOL Co., Waltham, Mass.

MACHINERY

$\$ 5$ to $\$ 20 \begin{gathered}\text { ner day at home. Samples worth } 55 \text { free } \\ \text { Address STINson }\end{gathered}$

Rysion

 songs, One Cent Trach

GOLD
 PENS

The CALLI-GRAPHICS Pen
 Who care to preserve their individuality in writ ping. BROADE, TODD \& BARD, UR Goods are sold by first-Class dealers.

WIREROPE: THETINGCO. WIRE ROPE, BRIDGE CABLES, SHIP RIGGING,

Tramway Ropes, Champion Barbed Wire, etc, Office and Works
WHKESBARRE, P
FOUND THE STEAMI PUMPS MADE BY VALLEY MI ACHINE CO., Are the best in the world for B

ROCK BREAKERS AND ORE CRUSHERS.

ROOT'S NEW IRON BLOWER

IRON REVOLVERS, PERFECTLY BALANCED, Has Fewer Parts than any other Blower. P. \& F. M. ROOTS, Manufacturers
 SEND FOR PRICED CATALOGUE.

SMWILONDNBERPYZORTON THE BESTBANDSAWBLADE

VOLNEY W. MASON \& CO.,
FRICTION PULLEYS, CLUTCHES, and ELEVATORS,

OPIUM

TOMANUFACTURERS.

ON 30 DAYS' TRIAL! r. Dye's Electro-Voltaic Belts, Suspensories, And or her Electical Applincess Th, MEN
 voltaic belit co., Marshall, mich.

 OPIUM HABIT EASIIY CURED! cold Silver and Nickel Platine A Trade easily learned. Costs little to start. The
The
A. Arade easi, ly learned. Costs little to start. The
Electro-later sGuide..nd Gold and siller, both book
sent free for three stamps. All information free.

 E＇ngravings may head advertisements at the same rate
per line，by measurement，as the letter pres． per line，oy measirement as the letter r reess．Adver
tise ments inust be recived at publication offce as early
as Thursday morning to appear in next issue．

DePalos Presssire Moderator ※AV®® 20 to 50 per cent．in Gas Bills． HOW ARD MFC．CO．， 364 Broadway，New York．

ARLINGTON N．J．BUILDS SU SPENSION BRIDGES
Pyrometers，For showing heat o

Stevens＇Roller Mills， GRADUAL REDUCTION OF GRAIN $\frac{\text { THE JOHN T．NoYE MFG．CO．．Bu Balo，} n . ~ y}{\text { M }}$

Guaranteed to make more steam with
less fuel than any other way of feeding
ocilers．Send for circular．Agents D．E．RICE，

HW．JOHIS susespas

 LIQUID PAINTS| ASBESTOSROOFFING COVERINGS，
 |
| :---: |
| ASBESTOS WICR PACKINGM， |
| |
| BES |
| |
| | |
| |
| |

SPEAKING TELEPHONES． THE AMERICAN BELLL TLLEPHIONE COMPAN
W．H．Forbes，W．R．DRIVER，ThEO．N．VAI， Alexander raham liell＇s patent of March 7 ， 1866

 thers company also owns and controls all the thener
telenhonic inventions ot Bell，Edison，Berliner，Gray
Blake，Phelps，Watson．and others．
 All telephones obtained except from this company，or
its authorized licensees．are inf ringements，and the
makers selers．and users will beproeed agan
Information AMERICAN BELIC TELEEPHONE COMM
9S Milk Stieet，Boston，Mass．

Steel Castings

ESECTORS
Elevating Water and ConTeying Liquids

 NATHAN \＆DREYFUS，
 For cleaning Bolier Tubes TUBE CLEANER．

IRIDIUM：

THE HARDEST METAL KNOWN
 THE ANERICAN IRIDIUM CO． s．E．Corner Pearl and Plam Sts，Cincinnati，Ohio THE COMMON SENSE DRY KILN．

Establ＇d EACLE ANVILS． 1843 Solid CAsT STEELL Face and Horn．Are Fully War
ranted．Retail Price， 10 cts per lb．

Model Engines． CASTINGS

SHAFTS PULEESTHANE MA

 ICE MAKING MACHINES， COLD AIR MACHINES， For Brewers，Pork Packers，ColdStor
age Warehouses，Hospitals and for ILLUSTLIATED AND，DESCRIPTITEIS，etc． PICTET ARTIFIC1AL ICE CO．（Limited），

Hancock Inspirator， THE BEST BOILER FEEDER KNOWN． Over 22，000 in use on Locomotive，Sta
tionary，Marine，and Portable Boilers THE HANCOCK INSPIRATOR CO．，

ELECTRIC LIGHT

THE FULLER ELIECTRICALI COMPANY，having perfected their system of Electric Lighting，are prepared to Machines and Eroved Gramps，either for single light or for from 2 to 20 lights in one circuit．
This apparatus is unexcelled for durability，steadiness
of light，and economy of power，and reauires less attention than any other．
the fuller electrical company， 44 East Fourteenth Street，NEW YoRK．

Holly Water Works， CITIES，VILIAGEES，SUBBRBAN TOWNS， HOLLY MFG．CO，LOCKPORT，N．Y．

 HELIOGRAPHIC
BLUE PROCESS PAPER． KeUffel \＆EsSER，NEW york．

ERICSSON＇S
New Caloric Pumping Engine
DWELLINGS AND COUNTRY SEATS．
Simplest eheapest，and most economical pumping engine
for or ormestic ourroses．Any servant grim can operate．
Absolutely safe．Send for circulars and price lists．
DELAMATER IRON WORKS
C．H．DELAMATER © Co．，Proprieotrs，
No． 10 Cortlandt Street，New York，N．Y．
Leffel Water Wheels，
Prices Greatly Reduced， 0 8000 in successfu：operation． 10 FNE NEW PAMPELET FOR 1879， James Leffel \＆Co， Ino Liberty St．，N．Y． PROVIDENGE，R．HARRRIS，

WIPHERBP，RUGG \＆RICHARDSON，Manufacturers of Patent Wod Working Machinery of every desorip
tion．Fraclities unsurpssed．Shop formerly ocupled
by B．Ball \＆Co．Worcester，Mass．Send for Catalozue．

KORTING UNIVERSAL Double Tube Injector， FOR BOILER FEEDING。
 HARTFORD
STEAM BOILER
Inspection \＆Insurance COMPANY
W．b．pranilin，V．Pres＇t．J．in．allen．Pres＇t． J．B．PIERCE．Sec＇y．

BR RADLEYS GUSHIONED HAMMER

MILLER＇S FRIEND．

¥rientific Amexicam
The Most Popnlar Scientific Paper in the World． Only $\$ 3.20$ a Year，including postage．Weekly．
This widely circulated and splendicly illustrate paper is published weekly．Fvery number contains six original engravings of new inventions and discoveries epresenting Engineering Works，Steam Machinery Chemistry，Electricity，Telegraphy Plotography，Arch cture，Agriculture，Horticulture，Natural History，etc American a popular resume of the best scientific in formation of the day；and it is the aim of the publisher to present it in an attractive form，avoiding as much as possible abstruse terms．To every，intelligent mind，
this journal affords a constant supply of instructive reading．It is promotive of knowledge and progress in Termis of subscription．－One copy of the ScIes－ TIFIC AM Firican will be sent for one year－ 52 numbers－
postage prepaid，to any subscriber in the United States or Canada，on receipt of three dollars and tweut cents by the
months，$\$ 1.00$ ．
Clubs．－One extra cony of the Scievtific Ameri－ at $\$ 3.20$ each；additional for everyclub of flve subscriber rate．
One
One copy of the Scientific Anerican and one copy
of the Scientific American Supplenent will be sent for one year，postage prepaid，to any subscriber in the
United States or Canada，on receipt of seven dollars by the publishers．
The safest way to remit is by Postal Order，Draft，or sexpress．Money carefully placed inside of envelopes astray，but is at the sender＇s risk．Address all letters and make all orders，drafts，etc．，payable to

MIUNTN \＆CO．
37 Park Row，New York．
To Foreign Subscribers．－Under the facilities of
the Postal Union，the Scurvtific Ambrican is now sent by post direct from New York，with regularity，to suh
scribers in Great Britain，Indla，Australia，and all othe British colonies：to France，Austr a，Belgium，Germany Russia，and all other European States；Japan，Brazil． Terms，when sent to foreign countries，Canada excerted \＄4，gold，for SCIENTIFIC AMELICAN，one year；$\$ 9$ ，gold， one year．This includes postage，which we pay．Remit PRINTING INKS．

