A WEEKLY JOURNAL OF PRACTICAL INFORVATION, ART, SCIENCE, MECHANICS, CHEMISTRY AND MANUFACTURES.

AMERICAN INDUSTRIES.-NO. 79 . the manufacture of candles.
It is only the history of the modern candle that is writtenthe graceful, sightly, and tapering cylinder which burns with clear white and brilliant light; that neither smokes nor " drips;"

DIPPING CANDLES THE OLD METHOD. yellow light, their smoke, their unpleasant odor, and their frequent need of attention from a deft hand and the old-fashioned snuffers. One quarter of the nineteenth century had followed its predecessors before it occurred to man that tallow can dles might be made hard enough to keep the year round without melting, that the smoke was caused by imperfect combustion, that the substance which hindered perfect burning might be removed from the fat, and that a simple method might be contrived to make snuffing unnecessary. These remedies, simple as they were, had to wait for riper scientific know riper scientific know-
ledge than even the $s a$ vants of the last century possessed. A condition
precedent was a knowledge of the nature of fats and of that energetic display of chemical action which we now call combustion.
The progressive steps in candle-making from the age of the primeval savage up to the

[Continued on page 386.]

Šixutitic ©

ESTABLISHED 1845.
MUNN \& CO , Editors and Proprietors.

NO. 3 'Y PARK ROW, NEW YORK

0. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCLICNTIFIC AMERICAN.

 One copy one year postage included.
 same proortionate rate. Postage prepaid.
Remit by postal order. Address

The Sientific American Supplement is a distinct paper from the Scievtific American. The SUPpiempnt
 $\$ 5.00$ a eear, postage paid, to subseribers. Single copies, 10 cents. Sold by all news dealers throughout the conntry.
Contbi ined Rantes.
Combined Rates. - The Scientific American and Suppitempat will be sent for one year postage free. on receipt of seven dolars. Bot
papers to one address or different addresses as desired. The sifest way to remit is by dratesess as desired Address MUNN \& CO 37 Park Row. N. Y.

Scientifc American Export Edition. The Scientipic amirican Export Edition is a large and splendid pert large quarto vages, mrofusely illustrated, embracing: (1.) Most of the plates and pages of the four preceding weekly issues of the scmevtific AMERICAN, with its splendid engravings and valuable in formation: (2.
Commercial, trade, and manufacturing announcements of leading houses. Terms for Export Edition, 85.00 a yerr, sent prepaid to any nart of the world. Single copies 50 cents. Manufacturers and others who desire to secure foreign trade may have large. and handsomely displayed an nouncements published in this edition at a very moderate cost.
The SciFvific AMvich Exnort Edition has alarge guarin
 co. ${ }_{3} \mathrm{i}$ l'ark Row, New York.

NEW YORK, SATURDAY, DECEMBER 17, 1881.

table of contents of

THE SCIENTIFIC AMERICAN SUPPLEMENT

 NO. 311,
For the week ending December 17, 1881 .

Price 10 cents. For sale by all newsdealers.

1. ENGINEERING AND MECHANICS.-Amateur Mechanics.-How to make a useful lathe at small cost.-Drills and drilling.-Tem-
pering.-Centering and steadying.-Chucking. -40 illustrations, with many figures, showing lathes, tools, processes, etc.. The Fontaine Locomotive.- Both sides of the controversy touchof locomotive engine--Articles from the scientific Amenican of locomotive engine-Articles from the scientific American
and the Railroad Gazette, with letters from the General Manager and the Mechanical superintendent of the Canada Southern Railroad.......
The st.
The St. Gothard Tunnel.-An interesting account of the enterThe Manufacture of Wood Pulp. The mechanical method.-The Metal Castings of Insects, Flowers, ets.-Uses of wood flber. .. Metal Castings of Insects, Flowers, etc................ ${ }^{\text {.......... }}$ 59
Practical Notes on Plumbing. By P. J. DAvies. (Continued from No. 309. .)-Underhanded joints.-Rolled joints.-Pneumatic tube joints.-Bad shaped joints.- Branch joints.-Bolt or Tommy.Slope branch joints.-Soil pipe branches.-Soldering branch joints. -Wiping branch joints, horizontal into upright, taft, flange, and ectricity hight heat arc Accumulator.
E:ectrical Novelties at the Paris Electrical Exhibition... son exhibit. (Incandescent lighting system.--steam dynamo-elec tric machine.-Microtasimeter.--Odoroscope.-Webermeter.-Elec-pyrophone- -The Maxim system of electric lighting.-Uniform time service--Electric lighthouses.-Electric cables.-Electric photography.-Exhibits of MM Boivin, Lemoine, and Somzee. The Cummings periphery contact key for telegraphy.-Advantages of Bjerknes' apparatus
fic TECHNOLOGY AND CHEMISTR Y.-The
Solution of Chlorine in Water. By M. Maris............
The MTH
The Manufacture of Water Gas. By G. E. STEvenson. Improve. ments in the Lowe-Strong Process.- The Strong-Quaglio and
Dwight Apparatus. 1 figure.. Coniine and its Compounds.
IV. Astronomy, ETC.-Meteors. Meteoric showers.-Height of metenrs.-History of meteoric observations.- Falls of meteorites. -The shower of the Leonides.-Relation of meteors to comets.dust. Growth of the earth by meteoric additions.-The zodiacal light.-Origin of meteors - Meteors a a source of solar heat.-The meteoric theory of solar heat insumficient.
The Arctic Expeditions.
The Arctic Expeditions. The Corwin and the Jeannette...

- NATURAL HISTORY.-Migration of Birds at Night.

A New species of Shrew Mouse. 1 figure...
The American Horse. By E.L BERTHOUD
A Defense of Horse Clipping..
Darwin on the
Tree Planting.
V1. PHYsics.- Ball Holes in Glass.
KEY Drops Floating on the Surface of Water. By Prof. OsBORNB
\qquad

SOME GREAT ENGINEERING PROJECTS

The shoriening of commercial routes by means of ship railways and ship canals seems to be the great ambition of the engineers of to-day.
In addition to the De Lesseps Ship Canal at Panama, the Eads Ship Railway at Tehuantepec, the Florida Ship Canal the Chesapeake and Delaware Ship Canal, the Cape Cod Canal, and others in the interior of this country, there are several other important projects of iike nature under way or in prospect in various parts of the world. The old pro ject of connecting the Bay of Fundy and Baie Verte, on the Gulf of St. Lawrence, across the Isthmus of Chignecto, has lately taken new form. It is now proposed to make the connection by a ship railway eighteen miles long, thus mak ing a short cut for navigation between the United States and the ports on the St. Lawrence Gulf and River, and saving the long and dangerous voyage around Nova Scotia.
The projector of the ship railway, Mr. H. G. C. Ketchum writes us that the plan grew out of a desire to save lockag and a deep channel in the design of the Baie Verte Canal His first plan was to lift vessels by hydraulic power on pon toons and then float them through the canal. The idea the occurred that they might as well be lifted to the surface of the ground and hauled across the neck of land on rails. Th road may be level and perfectly straight from end to end The plan has been submitted to the Dominion Governmen and is favorably entertained. Mr. Ketchum has issued an interesting pamphlet relative to the project, which may be considered at greater length elsewhere.
Across the ocean the construction of the tunnel under the British Channel, connecting England with the Continent is being prosecuted with an energy which is indicative of ultimate success, and thus far no obstacles bave been enceuntered to make the undertaking a difficult or exceptionally hazardous one.
In France the connection of the Atlantic with the Medi erranean by a ship canal, to save the long and stormy voy age around the Spanish Peninsula, is under serious consideration, and the Council-General of the Seine have just adopted a resolution approving of the project.
The ship canal across the Isthmus of Corinth, in Greece to shorten the route to Constantinople and the ports of the Black Sea, has, we believe, been definitely determined upon In the far East a bolder and more important project is in contemplation, with a view to sbortening the commercial route to China and Japan by six Bundred miles or more. At the head of the Malay Peninsula is the Isthmus of Kraw connecting Upper with Lower Siam; and by the cutting of a ship canal at this point, about thirty miles in length, the need of sailing around the peninsula might be obviated. At Kraw, the Malayan Peninsula, which stretches soutbward for five hundred miles to Singapore, is at its narrowest breadth, and the distance across from the side of the Indian Ocean to that of the China Seas is further decreased by the existence of natural waterways for some distance inland from both shores. From side to side it is no more than fifty miles, and the Pakchan River, on the western coast, and the Htassay on the eastern, afford the ready means of further reducing it. The distance, therefore, over which it would be necessary to cut a canal would probably not ex ceed thirty miles. The neighboring districts are known to be fertile and to contain great mineral wealth. A tin min ing company has been established for more than ten year at Malewon, on the Pakchan, and gold has been found in the neighboring stream of the Lenya. So far as known the engineering difficulties are not of a stupendous character, and political drawbacks and considerations fortunately do not exist.
The French appear to have taken the lead in proposing this important commercial short-cut, and, if the opinion of the London Iimes is well fuunded, the Government of Br tish India will not decline to actively participate in its exe cution.

RAILROAD ACCIDENTS

Railroad statistics show that there were an ususual num ber of accidents attended with fatal results on Amorica railroads during the year ending October 31, 1881. They foot up 1,492 accidents, by which 397 persons were killed and 1,687 more were injured, being a monthly average of 124 accidents, 33 killed, and 141 injured.
The month of October, as reported by the Railroad

Gazette, shows a greater number of accidents than the monthly average for the year, although the fatality wa slightly less, the total for the month being 131 accidents, 31 persons killed, and 133 more injured. Of the October acci dents, 51 were collisions, 77 derailments, 2 boiler explosions and 1 fire. More than half the number of mishaps, where the time of day was reported, happened in the daytime, which appears to be remarkable, although it is said to be not an uncommon thing for more train accidents to occur in day light than in the night time.
January took the lead in number of accidents, 223 having occurred in that month, while the greatest number of fatal casualties were in September, namely, 56 killed.
There were no less than four successful attempts at train wrecking in October. In one case obstructions were put on the track, in another a. rail was removed, and in two more switches were misplaced. In only one case were the wreck having lost his life in the wreck
Six broken bridges are in the record for the month, an
unusually large namber. One of these had its abutments washed out, and in two other cases they were small wooden bridges.

TERRIBLE BOILER EXPLOSION IN OHIO.

The new Daytou Wheel Works, one of the finest manufac tories of light vehicle wheels in this country, owned and occupied by Pinueo \& Daniels, Dayton, Ohin, was, on Octo ber.25, the scene of a most astonishing and lamentable boiler explosion.
Three persons were killed, a number severely injured, and xtensive damage was done to the works.
Henry Rokel, the only man in the fire-room at the time of the explosion, which took place at the noon hour, was blown into the fuel room and fatally mangled. Katie Makley, a girl of thirteen years of age, was killed by a flying brick while at play with her companions in St. Joseph's schoolyard, a square away from the boiler house. A young man

Plan of Dayton Wheel Works - (C, rear end of boiler. D, girdle of plates. E, front end of boiler. F, boiler No. 1.)
of seventeen years of age, named Mostbaum, was so badly injured that he died soon after the accident. He was eating his dinner in the yard. Peter Aplin, the engineer, formerly railroad engineer, but in the employ of this firm since 185\%, in their old works and their new, was in the engine room oiling his engine and preparing to start up the machinery. He was thrown among the ruins badly bruised and cut about the upper part of his body, but able to dig himself out. A number of others were injured. There were fifty or sixuy workmen in the main building.
The plan of the works and the distribution of the parts of the broken boiler are shown in the diagram, Fig. 1. The four story main building and the wings, all of brick, are shown in Fig. 2. Other buildings, including a large dry. house, shown in the foreground of the diagram Fig. 1, are mitted from Fig. 2 for the sake of clearness of illustration. The one story building (Fig. 2) in the angle was the boiler house, in which were two horizontal tubular boilers, 5 feet diameter by 16 feet long, each containing 46 flues, 4 inches

Dayton Wheel Woriss before explosion.
diameter, full length of the bniler. The steam drums, shown in Fig. 3, were 24 inches diameter by 7 feet long, upon which were attached the safety valves and steam connections, as shown. Each boiler had also a mud drum, 18 inchesdiameter by about 6 feet long, seen in Fig. 5.
The shells of these boilers had double riveted longitudinal seams, were new less than a year before the explosion, and originally had the appearance of being what they were intended by both makers and users to be-sample pieces of workmanship. The iron was five sixteenths charcoal brand, slightly under thickness, ranging from $02!$ inch to 0.30 inch, and said to have a tensile strength of $55,0 \div 0$ pounds to the square inch; meaning simply that a strip 1 inch wide, $0 \cdot 29$ inch thick. would break, if steadily pulled without shock, torsion, or bending, under a force of ($35.000 \times 0.29=$) 15,950 pounds acting in a direct lipe parallel to the plane of the strip, as in a testing machine, for example.
These boilers were provided with the usual attachments, including two steam gauges, one in the fire-room and one in
the engine room. They had, however, a common attachment to the boilers, not shown in the engravings. The water was fed into the front ends of the boilers and blown out from the rear end of the mud drums. There were two 4 -inch safety valves, each having its own separate stand pipe communicating directly with the steam chamber of each boiler, as it properly should do.

3

Interior of Boiler Honse
The boilers were tested at a pressure of 140 pounds and put in operation about the beginning of 1881 . The fuel used was chips, shavings, and refuse of hard dry timber from the factory, which was stored in the fireproof fuel room, shown at the right of Fig. 3. The steam was distributed at a supposed maximum pressure of 80 to 90 pounds through 6 -inch main steam pipes to a 20 -inch by 42 -inch automatic cut-off engine running at 69 revolutions per minute. Direct steam was also used for the dry-houses and for warming the work rooms. The duty of the engine was to drive a large lot of imp:oved hub, spoke, and felly machinery for making light carriage wheels.
A.bout 12:45 P.M., October 25, the destruction shown in Fig. 4 suddenly took place, caused by the bursting of the shell of right hand or No. 2 boiler. The primary rupture began at the left-hand side, or toward No. 1, on the line A B,

Boiler Explosion at Dayton Wheel Works.
Figs. 5 and 8, just below the overlapping end of the plate at the seam; the secondary rupture, taking the course indicated by the irregular lines in Fig. 5, which extended entirely around the boiler, the force of the expanding water, gushing from this long and suddenly made opening, tore off and flattened out the girdle of plates shown in Fig. 8, and 9,000

Boiler No. 2, showing initial rupture, A B. and secondary lines of uipture running round the boiler.
pounds of water, more or less, practically exploded simultaneously with its release, giving out as much as 100 heat units per pound of water, each unit capable of raising 772 pounds one foot higl. The force, then, including the free steam fromboth boilers, would probably exceed 500 millions of foot-pounds, which may be considered ample when set free in the fraction of a second to produce the observed free in
effects.

Relating to the cause of the initial rupture a quotation from the Dayton Journal is admissible, though it should be taken with caution, as there are several obvious errors in the article. That paper reports the engineer as baving said:
"At 12:25 o'clock he had three full gauges of water, and the steam had run down to 75 pounds. In the morning he had carried 90 pounds."
Again, after he had directed Rokel to put fuel in the furnaces so as to keep the fire from dying out, he is reported as having said he "saw that the engine room gauge showed 80 pounds of steam in the engine room, and Rokel cried out to me in the boiler room that the gauge there indicated 75 pounds."
The engineer continues: "The boiler was scaled pretty thick, and I had tried to get as much of it off as I could, but I think the scaies had crystallized (the iron?), and thus caused the explosion. This boiler always leaked at this place, and I felt that it was dangerous, so it was repaired last week. It was placed in the house last December, and appeared It was pl
strong."
The repairs were, calking a longitudinal seam on the other, right-hand, side of the boiler shell, at I, Fig. 8, near the rear head, which had given warnings of its frail condition, while the seam, A B, might not have leaked before rupture took place.
The fact in the case is that the initial defect was a partial fracture just at the edge of the lap, A B, plainly indicated by the different colors on the fractured edge; old black oxide

Rear end of boiler after explosion. Rear end of boiler before explosion
extending in places nearly half across the fractured edge, indicating brittle, "cold short" iron. And the same is seen at the seam where the marks of the calking tool plainly indi at the seam where the marks of the calking tool plainly indi-
cate the location of the leak spoken of by the engineer as cate the location of the leak spoken of by the engineer as
having lately been repaired "because he felt that it was having lately been repaired "because he felt that it wa
dangerous," I, Fig. 8.
The parts of No. 2 boiler are shown on plan, Fig. 1, C being the rear end in the yard of a dwelling 150 feet from the boiler house, shown on a larger scale, Figs. 6 and 6^{\prime}. D, Fig. 1, is the position of the girdle of plates, enlarged in Fig. 8. E is the point where the front end lay with the dead Rokel, shown enlarged in Fig. 7. F, Fig. 1, shows the position of No. 1, the unbroken boiler, which turned end for end and tore off the corner of the dry-house in the foreground of the plan.
Experts, and especially professional boiler experts, are accustomed to ask steam users to believe that the use of steam can be made safe, and that there is no mystery in boiler explosions; that they are the result of carelessness, ignorance, bad iron, or bad workmanship; but it seems rather discouraging to such as desire to get an idea when they may safely continue to use their boilers, to be put of with such stuff as that contained in the following certificate, which we quote from a local newspaper:
"We, the undersigned, at the request of Messrs. E. H. thorough \& Co., and Messrs. Pinneo \& Daniels, have made 25,1881 , and find the iron in the boiler to be first-class, made by the Licking Rolling Mill Company, and the work manship good. We are satisfied that Messrs. Pinneo \& Daniels took all due pains and spared no expense in having their boiler fitted up in first-class shape, and had provided more than ordinary means for the safety of their boilers, and cannot see that any blame can be attached to Messrs. Brownell \& Co. as makers, or Messrs. Pinneo \& Danicls. We find that Mr. Peter Aplin bears the name of a careful and expe rienced engineer, and one of the best in the city. By testing one of the steam gauges, we find it worked correctly We find no indications of low water. We find it impossible to determine the cause of the explosion.

Aid Collins,
Of the Hartford Steam Boiler Inspection and Insurance Company.

John L. Pfat,
Of the Swift Iron and Steel Works. J. H. Vaile,

Of Smith, Vaile \& Co. Simon Sparks, M. M.,
With Woodsum Machine Company."
The owners of these new and apparently well made and thoroughly equipped boilers ought not to be told that it is impossible to determine the cause for the explosion. They n common with most thinking men, no doubt believe that there was a sufficient cause, which somebody ought to be able to explain.

Although a greater pressure than 80 or 90 pounds is not needed to account for this destruction, yet it is not improb able that the pressure, even with two steam gauges them selves in order, and two safety valves of ample size, might have been much above the indications reported. The gaug pipe common to both gauges being accidentally obstructed is all that we require, together with the faulty safety valves, which are illustrated on an enlarged scale in Fig. 9, to fatally

mislead an observer as to the pressure actually endured by the boilers, both of which were in use at the time of the accident. With perfect safety valves, the boilers being sound and good, the hardest firing would not have dan gerously increased the pressure, even though the temporary fireman was densely ignorant of the duties of a boiler attendant.
Referring to the cut (Fig. 9) it will be seen that the safety valves were broad disks with three short guide rings and a broad seat. The short blunt stem or teat on which the lever rests is seen to be very close to the lever pivot, barely two inches. These teats were not turned, and might or migh not be in the axis of the valve. If the point upon which th lever rests is not central, then a uniform pressure upon the disk below would raise only the side having the large radius, and "jam" the rings fast in the seat or guide ring. Once in that plight the current of steam toward the cres cent-shaped opening would impinge on the rings and tend to increase the difficulty without materially reileving the boilers of pressure. One of these valves bore marks of having been jammed in this way so as to bruise the guide ings.
The Scientific American has made a careful examina tion of the exploded boiler of Messrs. Pinneo \& Daniels, and

Girdie of plates torn from No. 2 ooiler. A B, line of initial rupture. locality of leak mentioned by the engineer.
finds that the explosion was due to the bad quality of the iron at the line AB ; that the plate at this point was brittle hat this brittle iron was subjected to slight hinge-bending motions, caused by variations of pressure on the flattened portion of the boiler at the broad seam; that these motions tended to crack the poor iron; that the plate at the line A B showed the existence of a crack of older date than the explosion; that the steam pressure indicated by the engine

Details of Safety Valve.
room gauge was sufficient to cause the explosion, in view ot the cracked and impoverished nature of the iron.

Speed of the Servia.

The new Cunard steamer Servia was tested for speed November 19. The vessel was repeatedly run at the measured mile, and ultimately taken out into the channel and run back bet ween the Cumbrae and Clock lighthouses, a distance of $153 /$ statute miles, the result of the day being that she attained the remarkable speed of $201 / 2$ statute miles per hour, having on board 2,500 tons of dead weight.

THE MANUFACTURE OF CANDLES

[Continued from first page.]

 nineteenth century were not many. First the pine knot, then the oil nuts on a skewer-which is now the means of illuminating used by the Otaheitans and Society Islanders, who are not far behind the rural housewife of not long ago, who gathered rushes, peeled them on one side, and soaked the pith in the skimmings of the bacon pot, or our mothers, who hung a row of wicks of cotton yarn upon a stick, and dipped the wicks into the melted tallow prepared only by the removal of the membranes, etc., in the shape of cracklings. The operation had to be repeated several times, until sufficient tallow had hardened around the wick to make a not very shapely cylinder, the sticks being supported, while the tallow cooled, by parallel bean poles or quilting frames. Dipping day then was not looked forward to with pleasure by the cleanly housewife: it was dirty work at best-the bitsene, it was bound to affer unless kitchen floor was bound

THE BLEACH. mite the
medium for the poor of large cities, and for all classes in small towns and villages where there are either insufficient or no gas works. Country hotels and taverns are arge consumers, and the preference of many people for candles over lamps, as portable lights, keeps up a constant de mand in all sections. Candles likewise ar the true aristocrats among illuminators, and the renaissance in art taste which holds no illuminating medium to be quite so beautiful and effective as the candle for dinner tables and party and ball rooms, calls for an extensive manufacture of fin grades. Now, it is not the beauty of the polished brass or silver candelabrum alon which makes appeal to the æsthetic judg ment, for, except the yet imperfect electri light, no illuminator can give so pure and white a light as a perfect candle. The finest fruit of science applied to the onc homely industry is the stearic acid mould candle of to-day, which is not only quite as handsome in appearance as the wax er commanded his chaplain to supply wax in sufficient quanti- to a great extent usurped the place of the more costly light
 weather, mould candles just coming into use. In those days the construction of kettles specially adapted to melting the tallow and keeping it at an even temperature, and a contrivance for expediting the dipping by putting the rods with the rows of looped wicks upon a revolving rack, marked substantially all the ad-

might have twelve divisions marked across it." Each of these divisions burned one-third of an hour, so that the six candles lasted one day
The discovery of gas lighting and improvements in lamps have done much to curtail the manufacture of candles, but it is yet a vast industry. An estimate of the consumption in the United States places it at twenty-two millions pounds annually. Candles are still the staple illuminating

CUTTING AND CARRYING OFF.

SCRAPING OFF SURPLUS
States and Territories of the Pacific slope, the high temperature of the mines demanding a very bard and pure candle. The old candle would be entirely useless here, for tallow melts at from 90° to 104° Fab., and the temperature of the deep Fab., and the temperature of the deep
mines of Nevada often reaches 120° and even 130°. A good stearic acid candle will withstand a temperature of from 15° to 10° more than this.
To the vast manufactory of Procter \& Gamble, in Cincinnati, the most complete and extensive on this continent, we go for our illustrations and our description of their process, for there the most recent and most perfect of scientific and mechanical appliauces are kept at work, and the latest of scientific research is constantly utìlized. More than one hundred thousand candles are sent out from this factory every day, which, if moulded into one candle, would make it eleven miles in length. Every step of the process through which they pass, from the time the fats are deposited into the emptying room until the pretty cylinders, snugly packed in boxes, are sent to all parts of the world, is full either of interest to the student or entertainment to the simply curious. For the edification of the seeker after knowledge as well as those whose curiosity interests them in wishing to know"how to make candles," we will give both the scientific and the mechanical means of candle-making.

The stearic acid candle, which is now the principal candle of trade, represents the high-water mark of the progress in candle-making which began fifty years ago. Unlike its primitive predecessor, the tallow dip, it is a product of scientific study, and one of the many triumphs of philosophic chemistry. The movement which philosophic chemistry. The movement which
effected a complete revolution in the industry, effected a complete revolution in the industry,
and ran a rapid growth after once it was started, and ran a rapid growth after once it was started,
was an outcome of the discoveries of M.E. Chevreul, the French chemist, published to the world in 1823, in his book, "Recherches sur les Corps Gras, d'origine animale." In it lies the foundation of all our present knowledge of the chemistry of fatty oils, and this knowledge is the starting point of modern candle-making. Chevreul established the scientific fact that, as a rule, all fatty oils, both liquid and solid, are neutral compounds of glycerine and the so-called fatty acids. ln tallow and other candle fats. these acids are stearic and nleic. A third acid, called margaric, also enters in small propor tions, but it occupies very little attention. Stearic acid is a crystalline substance, unctuous tis the touch, but not greasy. It melts at a temperature a little short of 150°, and when burned through a wick gives out a white and clean light. Oleic acid is liquid at common temperatures, and was the cause of the melting of the old tallow candles at a temperature 51° lower than is withstood by pure stearic acid. The glycerine base caused them to burn yellow, and to smoke with an offensive odor. The discovery of the chemical properties of these constituent elements of candle fat led
with a single step to the fundamental idea of the

RAISING THE CANDLES

MOULDING.
lowering the temperature of the acid before pouring it into the mould, and in heating the mould to receive it. Improvements were also successively made in the methods of pre paring the fat, and when, finally, America ingenuity was brought to bear upon the me chanical side of the problem, a machine wa developed out of Sieur de Brez's last-century mould that has marvelously simplified and cheapened the manufacture of candles. The purification of the fat had done much to improve the combustion, and the smoke had been abolish ed; the flame, too, had become much brighter and clearer, and the snuffing of the wick had be come less necessary, for, the combustion being more perfect, the wick, whose only duty is to conduct the oil to the flame, was more nearly consumed. A little attention to the making o wicks soon banished the snuffers and the snuff tray to the curiosity shops of the antiquaries.
The old-fashioned wicks were simply twisted Cambaceres conceived the plan of plaiting them with one strand drawn tighter than the others In the candle the wick is kept straight by the hardened fat, but, when released by the flame, the tightened strand draws the end of the wick ove to one side, so that it is brought in contact with the outer envelope of the flame, where the com bustion is most perfect because of the liberal supply of oxygen received from the air, and thus the wick is continuously consumed. The pro cess is helped by steeping the wick in boraci acid, in order that a glassy bead may be formed at the end of the wick, and drop off by its own weight. This plan was suggested by De Milly in 1830.
Fortunately, a promenade through the factory in fancy is attended with consequences much less disagreeable than the actual walk, for all that

POLISHING.
part of the process which is scientifically the most interesting is carried on amidst environments that are not the most inviting to a visitor who is afraid of greasy floors and unc tuous vats. The mould ing, polishing, and pack ing, however, have pictur esque phases which appea
improvement in candle-making: the oleic acid and glyce of stearic acid candle-making was almost annihilated.|to even a dainty æsthetical sense. Three processes are rine are deleterious to the candle, and must be removed; and \mid Better study found a simple and harmless remedy to lie in $\left.\right|_{\text {necessary in the preparation of the fat for the mould. }}$ all the steps since taken-and they followed hard on the heels of the first-have looked to the doing of this in the most expeditious and cheap manner, and the perfection of the moulding machinery. Naturally the first processes were chemical, but they put a great obstacle of costliness in the way of the manufacture which almost proved fatal. The early industry, after surmounting this difficulty by combining mechanical means with chemical in separating and puritying the fats, again came near suffering shipwreck from another cause. It was found by the French chandlers, to whom belongs much credit for developing as well as originating the modern method, that the stearic acid on cooling in the mould crystallized, and the candles became unsightly, brittle, and uneven of combustion. The remedy appeared to lie in breaking the grain of the acid, and this was done by the introduction of a powder. Unfortunately, white arsenic was the powder chosen, and the result was so noticeably injurious to health that Chevreul's discoveries were brought into disrepute, and the early art
 The glycerine must be removed, the acids must be freed from the new base com bined in getting rid of the old, and the solid acids must be separated from the iquid. In the first process the principle followed is the law in chemistry, according to which a strong base under favorable conditions will separate a weaker one from its acids by combining with the acids and taking the place of the weaker base. The fat is thereby saponified, a soap being formed, which is next decomposed, the fatty acids liberated and then separated In this last process begins the employmen of mechanical instead of cnemical means, for, though repeated dilutions would effect a more perfect separation of the acids, the plan pursued is quicker, cheaper, and sufficiently effective for the purpose desired The saponification of the fat is accom plished in an apparatus called, in chan dler's parlance, the "digester." It consists of a copper cylinder inclosed within an iron one, and a pump arranged to force the contents of the inner cylinder from the bottom to the top. Into this the fat, which
bas been melted out of the barrels by steam, is run and is mixed with lime and water. The mixture is kept at a heat of $600^{\circ} \mathrm{Fab}$. by steam which is let into the outer cylinder at a pressure of two hundred and fifty pounds to the square inch. The water, being the heavier, sinks to the bottom of the copper cylinder, whence it is pumped and thrown on a perforated plate above the fat, that it may fall through it in many little streams. This agitation is kept up for eight or nine hours, after which it is found that the lime has united with the fat acids and formed a soap, while the water has consorted with the dissociated glycerine. The contents of the cylinder, after being permitted to remain at rest for a time, separate into two strata, the lime soap on top, the crude glycerine and water below. These are blown off to separate vats by the power of steam. It is from the caudle factories that the enormous supply of glycerine comes, which is now a very important article of tride. A few years ago it was wasted; now it is sent to the manufacturing chemist, who purifies it by distillation and filtration through bone charcoal, and puts it upon the market. It is put to a great variety of uses, many of which depend upon its peculiar properties of non-volatility and absorption of atmospheric moisture. Harness makers and leather workers use it in making leather pliable; it is put into gas meters because it does not freeze except at a very low temperature; modelers keep their clay studies moist with it; tobacconists sweeten chewing tobacco with it, aud ladies apply it to their hands and faces to soften the skin. Much of it goes into the manufacture of the terrible explosive nitro-glycerine, which is made by treating it with a mixture of sulphuric and nitric acid, or concentrated nitric acid. Not less than three pre acid has been removed. They now succeed to a second million two hundred thousand pounds of glycerine are pro- iron plates that are kept hot by steam. Still wrapped in duced by the candle factories and utilized every year in this country, and yet so late as the year 1854 it was counted as worthless, and was run off into the sewers.
When the French chandlers first began the manufacture of the new-process candles, and for a long while after, they permitted the lime soap to become hard, and then ground it up in order to dissociate the lime from the fat acids. Now this is done without delay, the liquid soap being run into lead-lined vats with a proportion of sulphuric acid added Tbe chemical principle involved is the same as in the more laborious process of saponification; the glycerine base has been supplanted by the lime base, and this must now be got rid of. The sulphuric acid takes bold of the lime, forming sulphate of lime, and the acids float off free. In these vats, between which the paths are narrow and the walks greasy, the liquid settles in three strata-the first, the fat acids, now free of their base, but still mingled; the second, an acid water; the third, sulphate of lime, a waste. They are easily drawn off without mixing, and the fat acids, by washing in boiling water, are cleaned of all traces of the sulphuric acid, and we are now done with the chemical pro cesses, and our product is a fat which contains the solid and the liquid acids. If cooled rapidly or kept agitated while cooling, the acids become so intermingled that they caunot be separated by mechanical means, which at this tage of manufacture must replace the chemical, on the score of cheapness. If the fat is cooled very slowly, however, it has been found that the solid acids will crystallize, while the liquid acid, the oleic which it is desired to banish, will lie snugly ensconced between the crystals, to be afterward forced out by heavy pressure.
The cooling of the fat is a slow process. It is run into shallow pans, lined with enamel to prevent the acids from eating the metal, and permitted to remain in a warm room two or three days. These pans are arranged in sections, like alcoves in a library, one row of pans underneath the other, and each extending a slight dist:unce alternately to front or rear leyond the one above it. The hot fat is conducted over the top of the alcove in a wooden chute, and the filling of all the pans down to the floor is accomplished by taking a plug from the chute immediately over the top pan. When this is full it overflows at the front end by means of the slight depression made at that end, and the overflow is caught by the pan below, and so on down to the bottom. When the fat is become hard i_{i} is a cake of a brown, greasy mass, not unlike unrefined maple sugar. The discoloration comes from the oleic acid, which permeates the whole cake and can
be forced from between the crystals of the hard acids by be forced from between the crystals of the
pressure with the thumb. The cakes are wrapped in heavy woolen cloths, piled into hydraulic presses between iron plates, and the pressure applied. A dark oil gushes from the woolen, pours over the edges of the plates, and is caught up beneath the press to be used in soap-making. The cakes have now been squeezed down to les than two-thirds of their original thickness. and the mass presents a yellowish-white appearance. By breaking it, its crystailine texture can still be seen despite the fact that the shape of the crystals has been ruined by the pressure it has undergone. They are still somewhat greasy to the touch, for in this first pressure only fifty per cent of the

STAMPING.
purified, sometimes colored, and brought to the temperature requisite for moulding. Utility is here, of course, the guiding consideration, but the group of big and little tubs, with the men moving among them, is not without its picturesque element. Upon the edges, and hanging from the spouts at which the moulder fills his double-lipped can, the candle fat has hardencd in fantastic shapes, with surfaces of ivory-like smoothness and sheen. The floor of the room is covered with moulds. In these moulds there is little remaining of the group of tin tubes through which the domestic candle maker, who had got beyond dips a few years ago, laboriously drew her wicks, to fasten them below with a knot, and above by looping them over little sticks. The tubes are now fixed in a frame having troughs along the top, into which they all open. They end below with the shoulder of the candle, and the moulds for the tips are the upper ends of piston rods, which, by a rack and pinion, are forced upward through the tubes to expel the candles, and which, when at rest, fall snugly into the shoulders. These rods are hoilow, and the wicks pass continuously through them from bobbins placed in the floor of the frame. Care is exercised to have the fat at a temperature just above the melting point, to heat the mouid to receive it, and immediately to cool it rapidly by forcing around the tubes a blast of cold air, so that the fat shall not erystallize as it did in the panning. When the candles are hard, the surplus fat in the troughs is removed, and a few turns of a handle forces them upward out of the moulds and into a rack placed on top of the machine to receive them. The lower board of the receiving rack is slightly shifted, so that the edges of the openings through which the candles pass catch the shoulders of the candles, and prevent them from drop ping back into the moulds with the piston rods. These rods in expelling the candles draw up with them wicks for the in expelling the candles draw up with them wicks for the
next pouring, and in falling back into position pull the wicks taut and into place through the middle of the tubes. wicks taut and into place through the middle of the tubes.
The candles in the rack are left until the next mouldful is The candles in the rack are left until the next mouldful is
cold; then the wicks are cut by passing a knile between the mould frame and the rack, and they are emptied into boxes, which are mounted on trucks, and pushed from mould to mould. Bleaching, polishing, stamping, and packing are all that remain to be done. The first process takes place in the adjoining room already mentioned; a few hours of sunlight bleaches the yellowish tinge out of the fat. Common grades are then rubbed with cloths and packed; better grades are polished by a machine, into one end of which they are fed by one woman, while another packs them into boxes from by one woman, while another packs them into boxes from
the other. The process is very simple: a grooved cylinder receives the candles from the feeder, and after carrying them past a revolving saw, which cuts off the butts eveoly, deposits them upon a bed plate between the rods of an end less frame with linked sides, kept in motion by cog wheels. Over this bed plate they roll under a revolving buffer, which gives them a vigorous brushing from end to end, and gives them the beautiful porcelain finish as they pass toward the end where they roll off into the packer's box. All grades are stamped with the name of the maker, and in some instances the trade name of the candle, "Composite," etc This stamp is melted into them by a branding iron as they This stamp is melted into them by a branding iron as they
pass through a small machine, which, like the polisher, is pass through a small mac
fed by a grooved cylinder.

MISCELLANEOUS INVENTIONS.

Mr. John B. Casley, of Coolville, Ohio, has patented an improvement in metal ronfing. This invention relates to that class of metal roots in which the ends of the sheets are bent upward to form flinges which are held on the roof by anchors. The invention consists in the combination, with flanged roofing plates, of an auchor provided with one or flanged roofing plates, of an anchor provided with one or
more prongs at the upper end and with an enlargement or more prongs at the upper end and with an enlargement or
bead at the inner end. This anchor is passed into a slit or bead at the iuner end. This anchor is passed into a slit or
cut in the edge of the roofing strips or boards, the enlarged part or bead resting against the inner surface thereof, whereas the prongs project above the flanges of the metal sheets, and are then bent down over these flanges. The flanges may be bent one over the other, or the joint may be covered by a cap. By this inventiou the plates are held firmly by the anchors, and can be attached to the builling very rapidly and conveniently. The plates can be attached to the sides of a house in the same manner.

A very efficient carpet stretcher has been patented by Mr. David G. Rulon, of Monmouth, Ill. In this device a clutch bar, which lies flat upon the carpet, and has inclined steel points that catch into the latter, is convected by cords or chains with a rear bar, which is provided with steel noints that pass through the carpet and into the floor. The clutch bar is moved forward to stretch the carpet by a lever having a stecl point that sticks into the floor, said lever passing through a loop in a draw cord, that rests by its loop in any one of a series of hooks on the lever, while the ends of the cord are connected with the clutch bar by draw rods, which keep
said bar from turning. After the carpet has been fully stretched, the clutch bar is carried over and behind the rear bar, out of the way, to provide for tacking the carpet down near the wall.
An improved spring lock earring has been patented by Mr. Fred R. Bassett, of Paw Paw, Mich. The invention consists in hinging the hook to the pendant, and providing a spring for holding the hook open or closed, the hook being formed with square faces at the pivot for the impingement of one end of the spring upon either one of said faces, accordingly as the hook is thrown open or closed. This improvement not only gives greater convenience in attaching, fastening, and removing the ring from the ear, but less gold wire is required for the hooks, no eye is needed for fast ening the end of the hook, and the hook is not liable to be broken, as it does not have to be bent every time the ring is inserted and removed from the ear, as is the case with the ordinary style of hooks.
An improved sofa bed, which is free from complicated devices to adapt it for use as a sofa or a bed, and which may be so adapted without unduly stretching or crowding its uplolstering, has been patented by Mr. Herman A. W. Maercklein, of Hartford, Conn. In this improvement the hinged back and main frame of the sofa have combined with them hinged plates, which, when raised or closed, hold the back in a vertical positicn, and, when lowered, permit
the back to occupy a horizontal one. The stationary sofa arms and the lowering back have also combined with them bolsters hinged to said arms at their rear ends and avoiding the appearance of a hinge joint at the sofa front. Further more, the back and seat are connected by hinges having pin joints on a line with the tops of the springs in the seat whereby all undue crowding and stretching of the springs are avoided.
Mr. King G. Streeter, of Littleton, N. H., has patented a very neat and durable glove fastening. In this device a tubular shank, having an eye on its outer end, is secured to the glove on one side of the wrist opening. Through this eye is loosely fitted a wire bent in reverse directions at its opposite ends, which latter have knobs that prevent the wire from dropping out of the eye. In using the fastener, one end of the wire is passed through the button hole in the glove wrist, and said rod or wire then used as a lever to draw the parts of the glove wrist together. The other end of the rod is next passed through the button hole, and the rod afterwards adjusted to bring its central portion within the eye. The button hcle is fitted with an oblong eyelet to prevent the glove wrist from being worn or torn around the button hole.
A simple and inexpensive fastening for bats and bonnets, which may be secured in position without the use of needle and thread, has been patented by Mrs. Josephine A. McK. Bouvier, of Denter, Col. The invention consists in a but ton having a portion of its back cut away to form an open-
ing, and the remaining portion of said hack provided with ing, and the remaining portion of said hack provided with
a keyhole slot, which communicates with said opening, a keyhole slot, which communicates with said opening,
and is adapted to receive a knotted cord. This cord, which may be elastic, being thus secured at its onc end, without sewing to the button, may be attached at its other end to the hat by a clasp, and said button, when securing the hat to the head, be passed through a looped cord secured to the other side of the hat by clasp or otherwise.
An improved ore concentrator, which is designed to be connected with crushing rolls or other crushing machines, or to receive the ore directly from them, has been patented
by Mr. William Thurmond, of Rosita, Col. In this concentrator a V-shaped box set slightly inclining from a horizontal position, and formed with an enlarged cylindrical chamher at its narrowest evd. is connected at said end with an exhaust fan and provided at its opposite end with a current regulating slide. Within the V -shaped chamber of the box is a rocking or vibrating frame, having screens of various degrees of fineness for separating the different grades of crushed ore, while the dust and lighter particles are drawn out by the fan. Chutes in the bottom of the box conduct the graded ore to suitable receptacles, and a separate chute
carries off the yangue. Ore concentrators thus constructed carries off the gangue. Ore concentrators t
are said to perform their work perfectly.
An improved tire-tightener, which operates by expanding the felly of a wheel to completely fill the tire and thus firmly unites the felly and the tire, has been patented by Mr. Benjamin F. Carlon, of Red Oak, Iowa. The device consists of two arms having jaws and binding screws at their outer ends to receive and hold the felly, which arms are pivoted to a forked swivel head loosely mounted in the top of a capstan head on a screw which fits into a threaded aperture of a
pedestal or base that rests aganst the hub of the wheel pedestal or base that rests against the hub of the wheel
between the spokes. By turning in a given direction the capstan head of the screw the felly will be expanded as required, and washers can be passed into the joint to fill up the space between the ends of the fellies. This useful con. trivance may also be used as a jack to lift wagous and other loads.

An improvement in photographic apparatus, which possesses both novelty and merit, has been patented by Mr David H. Houston, of Cambria, Wis. The object of this
invention is to facilitate taking a number of photographic views successfully and in a slort time. The invention consists in a camera with a receptacle or box at its inner end containing a roll of sensitized paper or other suitable tissue, and an empty reel, upon which the sensitized band is wound as rapidly as it has been acted upon by the light, thus obtain-
which is afterward divided as required. Said band is arranged to pass from the supply roll to the take-up reel, over rollers at a suitable distance apart and through slots in front of the box. On the shaft of one of these rullers is a pointer for indicating the amount of tissue drawn to form one negative, and a perforator on said roller for indicating the dividing points in the band for a series of negatives.
The end pieces of the front end frame of the bellows of the camera also is arranged to swing on the sliding side pieces of the bellows box.

Curious Freak of a Dog.

To the Editor of the Scientific American:
Being a constant and close reader of your valuable paper, and having gleaned many curious and instructive facts of natural history from its pages, it has occurred to me that he following freak of a dog which we own would not uninteresting to some of your readers.
"Simmons" (that is the dog's name) is very remarkable for her sagacity, and often excites remark by the "reason ableness" of her actions. She is a constant companion of the boys, and seems to consider herself one of them. She has been a mother three times; the third time some ten days or so ago. At her two former accouchements she did herself credit by the respectable size of the family she brought to light; but this last time she gave birth to but one pup. Two or three days before the birth of this pup there was a litter of kittens born on the place. Simmons, disgusted at the smallness of her family, and evidently thinking that the cat had more than her share, captured one of the kittens in the absence of the old cat, and carried it in her mouth to where she kept her pup, and deposited it in her basket. In a short time she was suckling both the pup and kitten, who were
hard at work side by side. The next day the kitten was taken away in the absence of Simmons, but on her return she hunted up her adopted child and brought it back to her basket, where it has remained until now. Simmons has now been nursing the kitten for more than a week, the kitten seeming to be perfectly salisfied with her foster-mother. This may not be an isolated case of the kind, yet it is nevertheless remarkable.
H. U. Onderdonk, M.d.

College of St. James, Washington Co., Md, Nov., 1881.

Rain ot Spider webs.

To the Editor of the Steientific American:
I notice in the Scientific American of November 26, 1881, an article headed a "Rain of Spider Webs." This rain occurred in Wisconsin in the latter part of October. It might be interesting to refer to auother locality and another date, where and when a similar shower was seen. In this place (Bloomington, Indiana), on October 9, about two ρ° clock, my attention was called to the number of spider lines streaming from a telegraph wire running from the house at a height of about eighteen feet from the ground. At this time I did not notice any in the air, but going along the road I observed some webs on the fences, but not in
great numbers. Returuing to the house a little before five great numbers. Returuing to the house a little before five o'clock, we found the telegraph wire almost fringed with them; every two or three inches, as far as we could see, there were streamers of cobwebs of from four or five inches in length to about fifteen feet, all directed nearly horizontally toward the south. We now saw in the air many lines detached, drifting southward in constantly varying curves. These lines were plaiuly visible at a distance of over two hundred yards, glancing in sunlight reflected from or in flected by them. We observed, also, several tufts or "parachutes" Hoating with the spider lines.
I find recorded in my notebook another instance of the same kind. It occurred September 20, 1874. Noticed the appearance about five o'clock. The air at this time was filled with dust, the season being very dry. The long waving lines of light, whose general direction was nearly verti cal, were seen drifting from north to south nearly parallel o the ground. They could be seen at the same distance as
hose already described. We watched them till sunset, for those already described. We watched them till sunset; for
a few minutes but few could be seen, then the number a few minutes but few could be seen, then the number
would increase, but upon the whole there seemed to be no diminution as long as the sun shone upon them. The tufts of gathered coboobs were more numerous than in the showe of October 9.
Bloomington, Ind., Nov. 22, 1881.
Cast Iron Flat Heads for Boilers.
To the Editor of the Scientific American:
As the question of the safety of cast iron "flat" boiler the surf cylindrical boilers appears again to have come to in past years by bulders of hish standing in proportioning n pat
The proportions of one builder are as follows: For boile 24 inches diameter, heads $11 / 2$ inches thick; for boiler 28 inches diameter, heads $11 / 2$ inches thick; for boiler 30 inches diameter, heads $13 / 4$ inches thick:for boiler 36 inches diameter, heads $21 / 8$ inches thick; and of another extensive builder: For boiler 30 inches diameter, heads $11 / 2$ inches thick; for boiler 36 inches dlameter, heads $13 / 4$ inches thick; for boiler 42 inches diameter, heads 2 inches thick.
I have also examined the heads of old boilers which had
been in use for years carrying 80 lb . steam, heads 36 inches diameter and $13 / 8$ inches thick; and of others in use for sears carrying 110 lb . steam, heads 36 inches diameter and $5 / 8$ incles thick.

Observer.
[The above dita is furnished to us by an experienced steam engineer, and is brought out, we presume, by the recent publication, in the Scientific American Supplement, No. 308, of Mr. W. Barnet Le Van's letter relative to the Gaffney boiler explosion, Philadelphia. In that letter Mr. Le Vau states, among other things, that no competent engineer would approve of flat cast iron heads, especially 36 inches diameter and 2 inches thick. We think that Mr. Le Van is greatly mistaken. If the information we have received is correct a very large proportion of all the ordinary cylinder boilers now running have flat heads, have been run for many years in safety, and were originally, and are still, approved by competent engineers.-EDs.]

An American Triumph in Electric Lighting.

To the Editor of the Scientific American
Sir: I have been somewhat surprised to find that no mention was made, except in the foreign papers, of an extraordinary test of electric lights made during the Electric Exhibition at Paris. It was a test made for the Credit Lyonnais, the great French financial institution, who were negoiating for the Brush patents for France, and consisted in running two 40-light machines in series burning 38 lights each, 76 lights in all, on a twenty mile circuit, 16 hours a day for 30 days. The lights, during the whole period, burned with great steadiness, and the test was so satisfactory that, at its conclusion, the patents for France were purchased for between $\$ 400.000$ and $\$ 500,000$. This is the largest sum that has been paid, I understand, for any electric light patents of any American inventor. The French company, I was told in Paris, had already begun an immense manufactory for the manufacture of apparatus.
C. C. Ruthrauff

Cleveland, Ohio, Nov. 25, 1881.

Fall of a Meteorite in England

A stonefail took place at 3:35 P.M., on March 14, 1881, a mile and three-quarters from Middlesborough, in Yorkshire, along the branch line of the Northeastern Railway from Middlesborough to Guisborough, at a place known as Pennyman's Siding, on the railway. The fall was accompanied by the usual thunder-like report, not heard at the place where the meteorite struck the earth, but as far off as Northallerton and Welbury, in Yorkshire.
Some workmen's attention on the railway was drawn for about four seconds to a whirring noise overhead, followed mmediately by a heavy thud in the ground near them; and on searching in the direction indicated by the sound, they ound the stone, about three minutes afterwards, at the Wottom of a hole eleven or twelve inches deep, which had formed almost vertically through an inch of coke ballast and through thin growing turf and stony clay below at the foot of the slight embankment of the railway, four yards from the nearest line of rails, nineteen yards from the signal box of the siding, and forty eight yards from the place where they stiod when they heard the sound. The forem:n barrated the occurrence, and placed the stone in the hands f the engineer of the Darlington district of the railway Mr. Cudworth, in whose possession it now remains as pro ,erty of the railway company; but it was sulimitted to me on March 25 for examination, and on Saturday, March 36 , I visited the place of fall with Messrs. Cudworth and Ellinor, and the workmen under them, and with some scientific friends. A photograph of the site, and of the group of men finding the stone, has since beeu made, and steps are beiug taken for preserving the hole in the ground in a box fitted and screwed together round the earth about it, which will be thus bodily removed.
The stone weighs 3 lb .8 oz .83 grains, and is of a low pyramidal shape like an upper oyster shell, 3 in . thick and rather less than $6 \mathrm{in} . \mathrm{x} 5 \mathrm{in}$. in length and breadth. The interior is visible at points of the frayed edge and is gray, with very little interspersed grains of iron pyrites, and apparently no iron; and a magnet is not sensibly affected by the mass. Its specific gravity roughly determined is a little greater than 30 . The flat back surface of the meteorite is covered with a rough brown crust, while the blunt conical front surface is deeply scored and furrowed radially from the center, and polished like fresh molten slag and of a leadgray color.
The singular form and contour of the stone make it very desirable that, whatever provision is finally made for it preservation and mineralogical examination and descrip tion, it should not undergo more defacement from its original integrity than is absolutely necessary.-Monthly Notices R. A. S.

Lead in Bromide of Potassium

Maschke has found bromide of potassium in the market which is contaminated with lead. It is soluble to a clear lquid only after addition of an acid; the larger crystals are emarkable by their transparency and their form, being a compound of octahedra and cubes. In testing for lead, sul phuric acid cannot be used, since the resulting sulphate of lead is soluble in bromide of potassium. But if hydrosul. phuric acid or sulphide of ammonium is used, no doubt can arise.-Pharm. Zeit.

STEAM BOILER NOTES.

On the 14th of October a locomotive used for yard work on the Wabash, St. Louis, and Pacific Railroad was damaged by the explosion of its boiler while crossing the Mississippi River at Keokuk, Iowa. The forward part of the boiler was blown open and torn in pieces, the bridge was considerably damaged, and three men who were in the cab were slightly injured. The boiler has the reputation of being more than twenty years old. The engineer says it gave way while the water stood at the upper gauge cock, and under a pressure of 120 pounds of steam
Perhaps he is right. Hundreds of boilers have done relatively the same thing. Doubts might arise in the minds of thoughtful practical readers as to the perfect condition of his safety valve, the accuracy of his steam gauge, by which the safety valve may have been adjusted, and the time that elapsed after his noting its indication and before the explosion. It is not necessary, however, in order to account for explosions of this class, to suspect that other conditions existed than those stated by this engineer. It is the result of natural laws and perfectly in accordance with practical experience that this twenty year old steam boiler should have acquired an obscure weakness of sufficient extent and so located as to allow a plate of its shell loaded with an internal pressure of nearly eight tons to the square foot to turn outward, as a door pressed by a high wind might burst open from steady depreciation of its fastenings, or as a flood-gate might give way when the rising pressure had overcome its resisting power. These similes are intended as illustrative of the manner of the breaking merely, and here the similarity ends, because the effect of the explosive expansion, the libe rated water having a temperature of 138° Fah. above the atmospheric boiling point, is more like that of the burning of gunpowder than of winds or floods. The effects that follow its sudden release are similar to those that follow the firing of the powder.
On the morning of the 26th of October the engine of a freight train on the Indiana, Bloomington, and Western Road exploded its boiler just as it was starting from Champaign, Ill., with a freight train. The force of the explosion was downward, lifting the engine from the track and throwing it over. The fireman was fatally scalded and a brakeman hurt.
The boiler of a sugar house on John Dymond's plantation at Belair, Plaquemines Parish, La., exploded November 24 completely wrecking the boiler house and badly wounding the following persons, who were taken to New Orleans by the steamer Daisey, and sent to the Charity Hospital: Joseph Meinker, foreman, leg broken and badly scalded, and Martin von Miller, Henry Clade, John McNorton, Edgar Batleye Charles Creeland, and Ned Dunham, all badly scalded.
The October issue of the Hartford Steam Boiler Inspection and Insurance Company's circular contains the reports of their inspectors for the month of August, whicn shows that the total number of visits of inspection made during the month was 1,815 , and the whole number of boilers inspected was 3,539 . Of this number 1,289 were thoroughly examined both externally and internally, and 419 others were subjected to the hydrostatic test.
The whole number of defects found was 1,414, of which number 388, or nearly 28 per cent, were dangerous.
The detailed statement of the defects is given, which includes the notable items of 140 fractured plates, morethan half of which were considered dangerous; 33 water gauges were defective; 18 safety valves were overloaded; and 121 steam gauges defective; while 40 boilers were found having no steam gauges whatever.
Although the modern steam gauge is now considered almost as much a necessity as the safety valve itself, yet it is ques. tionable whether, as it is now often found telling a false story about the pressure in the boiler, it is not actually a dangerous appliance. It certainly should be kept in good order and be be of tentested, not only in its working range of indications, but above the limit, where it is very important that it should work freely. It is probable that the Hartford Company's inspectors rely upon the safety valves that have been adjusted by their own standard gauge, rather than upon such delicate and variable things as spring gauges. This is inferred from the fact that some of their risks have been continued from year to year on boilers having no pressure gauges at all. Time was within the remembrance of engineers now living when spring steam gauges were almost unknown. The safety valve was often consulted in those days, and was prompt to answer.

A New Variety of Glass.

A Vienna chemist has recertly discovered a new variety of glass. It does not contain any silica, boric acid, potash, soda, lime, or lead, and is likely to attract the attention of all professional persons on account of its peculiar composition. Externally it is exactly similar to glass, but its luster is higher and it has a greater refraction, of equal hardness, perfectly white, clear, transparent, can be ground and polished, completely insoluble in water, neutral, and it is only attacked by hydrochloric or nitric acid, and is not affected by hydrofluoric acid. It is easily fusible in the flame of a candle, and can be made of any color. Its most im-
portant property is that it can be readily fused on to zinc, portant property is that it can be readily fused on to zinc,
brass, and iron. It can also be used for the glazing of articles of glass and porcelain. As hydrofluoric acid has no effect on the new glass it is likely to find employment for many technical purposes.-Wiener Gewerbe Zeitung.

IMPROVED SHUTTER FASTENER

The engraving shows an improved fastener for blinds, shutters, and doors, which is so arranged that the inside catch for holding the shutter closed serves as a means for unfastening the outside catch from its wall loop. The inside catch can be locked securely with or without a key, but can not be unlocked without the proper key.
Fig. 1 is a perspective view of a door, door frame, and a portion of the outside wall of a building, showing the improvement applied to the door; Fig. 2 is a view showing the locking bolt, pawl, and springs inside of the frame or case; Fig. 3 is an inside view of the back plate; Fig. 4 is a
detail of the pivoted ends of the two catches and a part of the back plate of the case.
The frame or case of the fastening is composed of a rectangular box and a back plate. Inside of the case is a dog, A, provided with a spring, a locking bolt, B, and spring. The case has a keyhole and a slot for receiving the shank of the inside catch, C , and a slot for the neck of a knob or finger catch attached to the dog, A. On the back of the plate are two flanges to which are pivoted the inside catch,
, and directly above it the outside catch, D, as shown in Fig. 4. This catch extends through the shutter, and is lesigned for engaging with a wall loop and holding the shut ter open. By raising the inside catch, C, the outside catch can be freed from its loop. The shank of catch, C, passes

ayer's shutter fastener.

reely through the casing, and has a loop for the finger, and hook with a beveled nose to engage with the sill piece. The boit, B, is pivoted in the middle, and has a right angular notch in one end to engage with the shank of catch C, as shown in Fig. 2, and safely lock this catch down.
The tapered end of the bolt, B, is designed to engage in notch made in the edge of the dog, A, when the bolt, B, can only be moved by means of the key.
To unlock the bolt it is obvious that the key must be used, and when the bolt is held in an unlocked position to allow catch, C, to play freely, the tapered end of the bolt will be engaged by a shoulder near the free end of the dog. W hen the shutter is closed and the catch, C , is engaged with the ill piece by simply raising slightly the knob attached to the dog, A, the bolt, B, will lock the catch, so that it cannot be released from the sill piece except by the key.
This invention was recently patented by Mr. Henry B. Ayer, who should be addressed care of J. Hennessey \& Bro. 123 Magazine street, New Orleans, La.

A New Steamship Project.-To Europe in Five Days A project is on foot in this city to establish a purely American line of fast passenger steamers to ply between New York and some port on the British coast. The plan, according to its projector, Mr. Jacob Lorillard, is to build ships which will take passengers from New York Monday morning and place them in London before Saturday night, making the trip from land to land in five or five and a half days.
Mr. Lorillard said to a Times reporter: "Our vessels will be 500 feet long, and will be built of steel to reduce weight They will be provided with power three times as great in proportion to their displacement as is obtained by ships now afloat. These features mean speed. They will be divided into watertight compartments, rendering them absolutely unsinkable. There will be fifty such compartments in each ship. That means safety. We shall carry no freight of any sort. We shall provide no accommodations for emigrants. Everything is to be in first-class style. Our vessels will be
virtually floating palaces. What Pullman's paılor coaches are in the railway service our ships will be on the ocean. "We shall build three ships to start with. Each ship wiil have accommodations for 500 passengers, and each will probably cost over $\$ 1,000,000$, probably $\$ 1,250,000$. As yet it is impossible to quote exact figures. The estimates we desire are not yet given us. We shall not run to Liverpool. Our landing place will be Milford Haven, in Wales, which is 200 miles nearer London than is Liverpool. Its harbor, too, can be entered on all tides. Upon this side of the ocean we shall save thousands of dollars yearly by the fact that we shall be able to escape wharfage assessments. Carrying only passengers, it will be our plan to anchor in mid-stream, as do men-of-war, and have shore communication by mean of tenders. Lying off the Battery, we would be as easily accessible as are vessels at the city piers."

When will you be ready for business?" asked the reporter.
" By the spring of 1883, but not before. Our vessels are yet to be built, and the greater part of our arrangements in other matters are still incomplete. But by the date I mention we shall certainly be in perfect readiness. Our success is assured so far as capital goes."
The line will be called the " American Express Line."

PROPOSED STORAGE OF LIGHTNING.

A correspondent suggests that Faure batteries be connected with lightning rods to accumulate the electricity of storms In this way, he thinks, a vast amount of electricity might be stored for mechanical uses, " with results exceeding any be stored for mechanical uses, " with results
thing ever dreamed of in perpetual motion."
There are several objections to the plan.
In the first place an electrical condenser would be better adapted for the storage of the high tension currents de veloped in storms than the Faure battery is. The metal plates and acidulated water of the Faure battery would form so good a conductor for lightning that very little chemical work would be done in it; and it is this chemical work by the electric current which "charges" the battery, and thus prepares it for the subsequent redevelopment of electric energy under proper conditions. Experiments which we have made with the high tension currents developed by a Holtz machine show that such currents do have an appreciable effect upon the Faure battery, but the quantity of energy stored is comparatively very small.
By the use of condensers lightning might be stored, but such high tension electricity is as ill adapted for the operation of mechanical motors as dynamite is as a fuel for the steam engine.
Even if the sudden and violent energy of lightning could all be locked up by chemical action, and subsequently rede veloped in a quantity current, as in the Faure battery, the quantity of electricity to be had from storms is too small to pay for storage.
In one of his experimental investigations, Faraday determined that to decompose a grain of acidulated water an electric current powerful enough to keep red hot a platinum wire one one-hundred-and-fourth part of an inch in thickness, must be sent through the water for the space of three minutes and three-quarters.
This quantity of electricity he shows to be equal to 800,000 charges of a Leyden battery of fifteen jars, each containing 184 square inches of glass coated on both sides, equiva lent to a "powerful flash of lightning." In other words the quantity of electricity involved in the lightning stroke-and it is quantity alone that is available for mechanical use-is very small.
In another connection Mr. Faraday demonstrates the fact that the electricity which decomposes a certain quantity of matter-a grain of water, for example-is exactly equal to that which is evolved by the decomposition of the same matter. An ordinary galvanic cell, therefore, must evolve as large a quantity of electricity as would suffice for a respectable storm. For so small a quantity of electricity it obviously would not pay to set an expensive trap in the form of Faure batteries and lightning rods, even if the electricity of storms could all be captured that way. It would be vastly cheaper to generate the same quantity of electricity by means of galvanic batteries; and there are many cheaper sources of mechanical energy than the galvanic battery is.

Lead in Cider and Vinegar.

A recent report of the Connecticut State Board of Health mentions a remarkable series of cases of lead poisoning in Fairfield County, of that State. The source of the poison was finally traced to the barrels which the thrifty farmers had used for the storage of cider. The barrels had been used for holding boiled linseed oil. Some of the litharge (oxide of lead) employed in preparing the oil had been deposited on the inside of the barrels as a sedimentary coating, which the cider had dissolved. Obviously the proportion of dissolved lead was increased when the cider was kept long enough to turn to vinegar. In this case, as in so many others, the evil wrought by want of thought was serious if not fatal.

The Otto Gas Engines at Paris.
In the distribution of awards at the Exhibition of Electricity, in Paris, the Otto motor received a gold medal, the highest a ward given to machines of this class. As an indication of the success of these motors, it is said that over seven thousand of them have been put in operation during the past four years.

AMATEDR MECHANICS

SOME THINGS IN bURNISHED bras
The old and commendable fashion of making ornamental objects from solid hand-wrought metal is being revived to a wonderful extent. Steel, iron, brass, and copper are wrought into a thousand beautiful and useful forms, and the gilded and tinsel objects of recent days are now set aside for substantial and elegant solid cast and hand-wrought aside for substantial and elegant solid castand hand-wrought
ornaments. It will require only a suggestion to set the ornaments. It will require only a suggestion to set the
amateur mechanic at work at this sort of thing, when his dwelling will soon be adorned with articles that will be the more valuable for having been produced at home.
Brass tubing and rods of round hexagonal and octagona section, plain and perforated strips of different widths and thick. nesses, half round and nesses, half round and semi-hexagonal strips,
and brass buttons, and brass buttons,
knobs, and nails of knobs, and nails of
various shapes, may be purchased, so that the amateur will readily find available materials for the kind of work suggested. Half-inch square tubes, strips of brass half an inch by brass half an inch by
one-sixth of an inch, a one-sixth of an inch, a
few brass buttons, and a few knobs, are required for the easel shown in Fig. 1. The tubes may be draw filed, then finished with the different grades of emery paper with oil, or they may be poor they may be po-
lished on an emery lished on an emery
wheel, and the final wheel, and the final
finish may be imparted by using the finest French emery paper with oil.
When two tubes cross each other they may be halved together pre cisely as in wood-work and may be fastened and may be fastened
by soldering with soft by sold
solder.
When the end of tube abuts against the side of another tube it may be fastened solid enough for all practical purposes by soft soldering by meaus of a blowpipe. Of course the joint may be brazed the joint may be brazed
or soldered with silver or soldered with silver
solder, but as great solder, but as great
strength is not required it is unnecessary to take that amount of trouble.
A very good way of fastening is to solder a plug in the end of the tube that abuts against the side of another the side of another
tube, and to put a tube, and to put a
screw laterally through one into the plug in the other. In this case it is well to leave a slight feather on opposite sides of the abutting tube to engage the corners of the tube to which it is attached.
The scrolls should be attached by means of small screws. The panels consist of thin pieces of board covered with velvet or plush of any suitable color
They are inserted from the back, and are provfded with a tacks soldered to the back. The patches of color are pronumber of large convex nails. The support for the picture is movable up and down on the side pieces of the easel, and may be secured at any desired point by the milled screws.
The frame shown in Fig. 2 will require no special description. The main portion of it is made of square brass tubing The side bars are made of round brass rods with turned end pieces, as shown. The mat of thin wood is covered with velvet or plush. The picture and glass are placed behind the mat; the latter is provided with small brass ears, which are fastened to the back of the frame by screws. The knobs at the top, bottom, and sides of the frame and easel are turned and attached with solder.
Fig. 3 shows a tripod stand for a nautilus shell, with an ornamental shell placed below it in the center of the plate, cut from one are tur
forming the triangular base. Fig. 4 shows a clock case, con sisting of an ordinary box of suitable size covered with plush or velvet, and inclosed in a frame of brass.
mor these articles may be lacquered, but they present more elegant appearance if the metal is left unprotected and cleaned occasionally with rottenstone and oil.
There is hardly any limit to the number of elegant and useful articles that may be made of such materials, with the expenditure of little thought and labor. fom square brass tubing split lengthwise through diagon ally opposite corners. The lower portion of the frame con

sists of a wide band of brass, having a light bead soldered to its upper edge and a heavy bead soldered to its lower edge. A number of the brass nails are placed at regular intervals and rail at the top is made of hexagonal brass tubing, and the to improved switch signal. The object of this invention i smali balusters are turned from brass rods. The paletteand bridges by an alarm on approaching engines, and thereby	small balusters are turned from brass rods. The palette and	bridges by an alarm on approaching engines, and thereby
brushes are sawed from a plate of brass, and attached by	obtain security against accident additional to the usual sig-	nals. The improve ment consists in the combination, with the switch-operating me chanism, of a turning chanism, of a turning

dog located near the dog located near the
rails, and used in con rails, and used in con-
nection with a gongoperating lever on the engine.
Mr. John A. Hudgens, of Pine Bluff, Ark., has patented an improved hub, having a tapering metallic axle box provided with a circular shoulder near its inner end against which the inner hub collar abuts when the wheel is put together. The portion of the periphery of the axle boxwhich receives the hub collars or the hub collars o flanges and spokes, is made polygonal in form, and the remain ing outer portion of the axle box is made cylindrical and screw threaded on its outer surface to receive the nut which holds all to gether.

Mr. Augustus P. Nance, of Batesville Ark., has patented a cotton cultivator by which several rows o drills of cotton may be cultivated at a time, whereby unnecessary expense of time and labor may be saved. The invention consist The invention consist in two parallel hor zontal beams, support ed upon two double runners arranged nea their ends, and a series of knives and plows which are adjustably secured to the two beams. The beams for general use will be about forty-four inches in length, and are secured to the tops of the runners and connected with each other by clips. The runners are só constructed that they will rest upon the ground only at their forward and rear ends, the intervening space being occupied by the knives and plows.
An improved grain cleaning machine has been patented by Mr. Baxter Wright, of Mar shall, Minn. This intain improvements in grain-cleaning devices of that typer in duced by different colors of sealing wax. Four brass nails which one or more inclined sieves are provided with a series re inserted around the dial to relieve the blank spaces on of check boards, which, reaching nearly to the sieve, retard the plush. The clock and it pacilitate eliminstion of the removed from the brass frame when it is desired to clean cockle and small seed, by causing them to pass through the the latter.
The table shown in Fig. 5 is of the same general character as the other articles, and will not, therefore, need parti cular description. The central portion is of three-quarter inch round brass tubing. The legs are of five-cighth square ringed Fig. 6 shows different kinds of panels. The balusters in cut from sheet metal. said sieve, while the clean grain passes out at the end of the screen.
A valuable improvement in electric lamps has been pa tented by Messrs. Edwin M. Fox and Ludwig K. Böhm, of New York city. This improvement relates to electric lamps in which vacuum chambers are employed, and its object is to facilitate the insertion and removal of the carbon, as well as the operation of drawing the vacuum, and to dispense with the usual operation of sealing the drawing nipple by melting. For these purposes the invention consists in the
combination of a vacuum chamber formed with a neck and a sealing plug or stopper, having its longitudinal axis coincident with the longitudinal axis of the neck, and bearing the conducting wires; both the stopper and the neck being formed with openings arranged to be turned into or out of registration to permit the lamp to be first exhausted and then sealed.
Mr. James F. King, of Aubrey, Kan., has patented an improved cultivator shovel. In this improvement, the point of the shovel is securely held in position by causing it to form a beveled joint with the lower end of the upper plate. and backing the latter and the point, by a supporting plate riveted to the upper plate and bolted to the point, and the whole secured to the standard of the plow by a bolt passing through both plates. This forms a very strong construction of the shovel, and provides alike for the ready substitution of a new plow point when necessary, and for the replacement of either of the piates, or vemoval of the whole from the standard.

An improved water-indicating gauge cock device, which serves to indicate with greater accuracy the depti of water in the boiler, regardless of any deviation from a horizontal position of the boiler, has been patented by Mr. Joseph B. Snyder, of Montpelier, Olio. The invention consists in a combination with a boiler, having a plate arranged to separate the water from the steam space of the boiler and provided with upwardly projecting steam distributing tubes, of a series of water gauges attached to pipes placed above and below said plate and extending about half way into the boiler.
Mr. George A. Deitz, of Denver, Col., Las patented an improved method of preserving grapes, which consists in packing or embedding them in carbonized wheat bran or hulls, which substance has a disinfecting quality and tends to exclude the air and prevents its circulation, as well as maintains a comparatively eren temperature. Grapes thus packed will be preserved a longer time and in better condition than when packed in other fine material commonly employed heretoforc-such, for example, as sawdust, uncar bonized bran, fine cut paper, and kiln dried meal.
Mr. David W. Lloyd, of Pittsburg, Pa., has patented an improved metal lathing and furring. The invention relates to metal lathing and furring to be applied to ceilings or walls having iron girders for the purpose of holding the
plaster, to which girders woodeu laths cannot be applied, or plaster, to which girders woodeu laths cannot be applied, or
to which it may not be desirable to apply wood on account of fire risks. The invention consists of metal furring strips appled transversely to the girders and laving dovetail notches in their edges, with which are combined laths made of sheet metal bent into a dovetail shape in transverse section, said laths being slipped endwise into the notches in the edges of the furring, and being firmly held in a trans verse relation therein, wit hout nails or other special fastenings. This forms a very simple and secure construction and provides for the proper retention of the plastering.
An improved axle lubricator has been patented by Mr. Isaac N. Snedecor, of Gainesville, Ala. This invention relates to axle lubricators for railway cars in which the oil is conveyed from a reservoir beneath the axle to one
above it by means of a suitable rotating device attached to above it by means of a suitable rotating device attached to the end of the axle. Therefore, in lubricators of this de been sufficient to strain or displace the rotating device, and the supply of oil has usually been more copious than neces. sary. The present improvement obviates these defects, besides being otherwise advantageous. It consists in a brush wheel fitted on a pin in the end of the axle so as to rotate with it, and held up against the end of the axle by a spring, but capable of movement along the pin. The brushes on this wheel strike a pin in the upper reservoir to discharge the oil, and a diagonally grooved box distributes it over the bearing.
Mr. Albert C. Ellithorpe, of Chicago, Ill., has patented a very efficient safety device for elevators. The invention generally consists in a combination, with an elevator car provided with a brake mechanism, of an auxiliary aur shaft, a cage moving up and down within said shaft and provided with an upper and lower valve operated by the resistance of air in the shaft, and a counection between the cage and elevator car adiapted to be broken or detached by the resistance
of the air when an accelerated speed is imparted to the car either from breakage of the lifting rope or other cause. In the event of the elevator car moving with too great velocity downward, a corresponding increase of velocity is imparted to the cage upward, and the resistance of the air in the shaft causes the valves in the cage to prevent air contained in the upper closed portion of the shaft from passing the cage, thereby producing a strain on the cage which breaks its cable and causes the brakes on the car to be applied. A valve at the bottom of the shaft, opening upward, admits arr to prevent a vacuum when the cage is moving upward,
and assists in establishing an air cushion when the care descends too rapidy.
Mr. Peter D. Graham, of Black Hawk, Col., has patented a combined calipers, rule, and beam compass. In this inventoon the calipers are formed with an arm extending backward from the joint which unites their legs. The outer end of this arm is formed or provided with a pointed extension which may be used as one of the legs of a beam compass by screwing the extension arm of the calipers on to a screwthreaded reduced portion of the end of a measuring rule, a sliding scriber or leg with caliper attachment being fitted for adjustment on the rule to complete the beam compass. By removing the calipers from the rule, then they and the rule
may be used separately, and the pointed extension of the calipers' arm, when made detachable, may be used as a scratch awl. This makes a convenient combination of several instruments used in the same trade.
Mr. Henry H. Thorp, of New York city, has patented a valuable improvement in types for curved or sloping-line work. In ordinary types the letters are formed on bodies of irregular widths bearing no special proportions to each other; hence, when set up in curved or sloping lines they cannot be justified with the ordinary quads that are used in straigltline work, accordingly the work of setting types of the ordinary construction in curved or sloping lines is very tedious. The object of this invention is to produce, witl types in position, curved and serpentine lines by casting the faces of some of the types in different positions on the type bodies and the types of runningwise widths that are muliples in one way and fractions in another of certain units. The invention consists in forming the type bodies according to their faces or letters of runningwise widths that are multiples of a measure of which the wilth of the body having the narrowest letter represents the unit, the wider type bodies narrowest letter represents the unit, the wider type bodies
being cast or formed of ruuningwise widths increasing regularly in eighths, quarters, or other regular multiples of the unit, these widths of the type bodies being also fractions of their bodywise heights.

The Origin of the Guillotine.

The Journal has frequently called attention to the Scien iffic American, not only as a paper specially devoted to science, but as a weekly newspaper that abounds in what may be styled the cream of interesting general news.
In the Scientific American of November 5 the following tem is published:

- a medifial guillotine.

" The Chapel Bridge, at Lucerne, contains a mediæval painting representing the persecution of the Helvetian Christians under the pagan emperors of Rome. On the right side of the picture a number of Christians are being burled into a river, perbaps the Reuss. On the left side a very evident guillotine is erected; one Cluristian lies with his head on the block, and the huge iron is just about to be let drop upon him, while a number of headless bodies lie around with the heads close beside them. It is commonly believed that this decapitating macline was the invention of Dr. Guillotin, a French physician, and member of the National Assembly of 1789. The Lucerne painting was made at a much earlier dite."
According to Gibbon, the most severe persecution of the Christians occurred toward the close of the reign of Diocletian, who reigned twenty years, and resigned on 1st May A.D. 300.

The painting at Lucerne probably refers to the persecu ions of this period, when many of the Christians were beheaded; and this would, therefore, appear to be the earliest indication of the guillotine.
In Camden's " Britannia," translated by Edmund Gibson, and published in 1695, a large folio of over 1,200 pages, written by Camden nearly three hundred years ago, and devoted by him to what was then the antiquities of England, a pages 726 and 727 , the following interesting description of the
'But nothing is more remarkable than their methods of proceeding against Felons; which, in short, was this: That if a Felon was taken within the Liberty with Goods stolen out of the Liberties or Precincts of the Forest of Hardwoick, Le should, after their Markets or Meeting days within the
town of Halifax next after his apprehension, be taken to te town of Halifax, next after his apprehension, be taken to the Gibbet there, and have his head cut off from his body. But then the fact must be certain; for he must either be taken handlabend, i.e., having his hand in, or being in the very act of stealing; or backberond, i. e., having the thing stolen either upon his back, or somewhere about him, without giving any probable account how he came by it; or lastly, confesson'd, owning that he stole the thing for which he wa accused.
The cause, therefore, must be only theft, and that manunon some of the foresaid evidences. The value of the thing stolen must likewise amount to above $13 d$.ob. for if the value was found only so much, and no more, by this Custom he should not dye for it.

He was first brought before the Bailiff of Halifax, who presently summoned the Frithborgers, within several Towns of the Forest; and being found guilty, within a week, was
brought to the Scaffold. The Ax was drawn up by a pulley, and fasten'd with a pin to the side of the Scaffold. If it was an horse, an ox, or any other creature, that was stolen;
it was brought along with him to the place of execution, and it was brought along with him to the place of execution, and fastened to the cord by a pin that stay'd the block. So that when the time of execution came (which was known by the Jurors holding up one of their hands) the Bailiff or his Ser vant whipping the beast, the pin was plucked out, and execution done. But if it was not done by a beast, then the Bailiff or his Servant cut the rope.
"But the manner of execution will be better apprehended by the following draught of it."
Immediately following there is shown on page 727 a pic ure which is in itself a curiosity, showing.
A. A. The Scaffold.
"B. The piece of wood wherein the Axe is fixed.
"C. The Axe.

D. The Pully by which the Axe is drawn up. E. The Malefactor who lyes to be beheaded.
 " E . The Malefactor who lyes to be beheaded.

" F. The pin to which the Rope is ty'd that draws up the Axe."
The foregoing extracts are copied by word, by letter, and punctuation, according to the text, by which it will be noted that the important nouns are spel'ed with a capital letter; that Ax is spelled both with and without an e at the end; that the word horse has an prefixed; that die is spelled dye, and ' d for $e d$, etc.
The title of this imposing and interesting work is "Camden's britannia, newly translated into English, with large additions and improvements, pi:blished by Edmund Gibson, of Queen's College, in Oxford, and this description of the guillotine is one of the "additions" by the translator. The original work was first published in Latin about the year 1583. In twenty years this important work went through six editions, the result of twenty years of personal research in almost every county in England. The translation by Gibson was published in 1595.-Bucyrus (O.) Journal.

The Duration of Life.

From a paper read before the Investigators and Physicians, at their Salzburg meeting, by Weismann, the Chemiker Zeitung makes the following extracts:
In the first balf of his address the speaker endeavored to show that the very great difference in the duration of animal life did not depend solely upon the anatomical and physiological proportions of their bodies (size, complicate structure, early maturity, etc.), but that it depended far more upon the exact accommodation to its conditions of life in the different species, and that in the course of the formation of new species corresponding to changes in the conditions of life it may be lengthened or shortened.
The second half of the paper discussed the manner in which we may suppose such an accommodation to the conditions to exist.
If we inquire what are the mechanical changes which may cause a lengthening or a shoriening of the duration of life, it will lead us to one of the most difficult of all physiological problems, namely, what is the reason of death taking place -why must an animal die?
It is well established that in the higher animals the vital processes are combined with a change in the morphological elements of most of the tissues, and it is but natural to seek or a cause of death in a limit to the multiplying power of the cells, which does not, of course, exclude the idea that death may occur much sooner too.
Upon this hypothesis it would follow that there is a certain normal number of cell generations for each species although varied within wide limits), and that the maximum iength of life is governed by this. We do not comprehend why one cell must divide or segment itself ten times, a thousand times, or a hundred thousand times, and then the process should cease. This subdivision and segmentation, from a plysiological standpoint, could continue for ever.
It is only by considering it from the utilitarian standpoint, upon the ground of expediency, that we can understand the necessity of death, and the same ground favors the utmost shortening of life. The individual by contact with the outer world around becomes worn and used up, so that it would be indispensable that it be replaced by new and more perfect ones, even if it contained within itself the power of living on or ever.
It does not, however, follow from the expediency of death that internal causes, lying in the very nature of life itself,
should be excluded, as, for example, the floating of ice on water is expedient (answering a purpose), but at the same time depends upon its molecular structure.
Still Weismann does not believe that a definite limit has been set upon life simply because it, from its very nature, could not be endless, but that it is limited because the unlimited duration of the individual would be an inerpedient lux$u r y$, and he considers death to be a phenomenon of aecommodation. The power of living for ever has been lost because was no longer necessary.
Death is not an attribute that belongs to all organisms; there are many of the lower organisms which, although they can be destroyed, are not compelled to die. In the division of the amœobæ we cannot call it death, for where is the corpse? Let us suppose an amœbba to possess consciousness; it would then on dividing say to itself: "I ha re cut off from myself a daughter." I do not doubt that each half would myself a daughter." I do not doubt that each half would
think that the other half was the daughter, and would look think that the other half was the daug
upon itself as the original individual.
If, then, death is necessary for the higher animals, why not for the lower? Are they not decimated by their enemies? Do they suffer no defects? Do they not wear out? In the lower organisms there is but one alternative: complete integrity or total destruction; they cannot suffer a normal death because the individual is identical with the propagating cell. In the multicellular organisms there are different kinds of cells, so that death is possible, and we see that it follows.
The kind and quantity of propagation does unt depend merely upon the nutrition of the ceils, but also upon their specific nature, as seen most distinctly in the phenomenon of inheritance, and it is a necessary sequence of this view, if we look upon death as foreordained, because it is the inherited end of that segmentation process whose beginning was the sulcation. (Cells multiply by subdivision, but before this takes place they become furrowed, or sulcated, at the point where division subsequeutly takes place.)
C. Z.

MECHANICAL INVENTIONS

Mr. John G. Carnahan, of Oxford, Ind., has patented an improvement in stem-winding watches which is both sim ple and efficient. The invention relates to that class of stem winding watches in which the winding and hand-setting mechanism is engaged with the gearing for winding up the mainspring and the gearing for setting the hands by the longitudinal movement of the stem. In the present inven tion, when it is desired to set the hands, the stem is first drawn out, which causes a collar on the inner end of it to bear on a stud in the shorter arm of a two-armed curved lever and so depress the long arm of the latter, which turns a yoke and disengages the gearing from the mainspring arbor, and connects an independent wheel with the hand setting train to which motion is imparted by turning the stem. As soon as pulling on the stem ceases the yoke is thrown back to its place by a spring. Normally another wheel, carried by the yoke, meshes with the arbor wheel of the mainspring, and is thus always ready for winding by pressing down upon and turning the stem.
Au improved cotton gin has been patented by Mr. Joseph Kopfler, of Amite City, La. In this improved gin the power is applied by band and pulley to the saw shaft, and he brush cylinder which operates in connection with the saw is driven by frictional contact of pulleys fast on the slafts of the saw and brush cylinders. To vary the pressure of these pulleys one upon the other, and to relieve them from contact when required, the bearings of the brush shaft are adjustable by means of a cam lever. This not only provides for wear of the driving surfaces of the two pulleys, but saves much wear by readily permitting of the stop. page of the brush cylinder. Combined with the brush cylinder is a picker to straighten the fibers of cotton passing through the gin. This picker, which is armed with rear wardly-projecting spikes that are swept by the brushes, is driven by band and pulley from the saw slaft, and is par ially inclosed by a shield which is constructed so as to present no salieut angles to interfere with the brush in its evolving movement.
Messrs. Stillman W. Robinson and Lewis C. Kiser, of Columbus, O., have patented an improved air compressor. The frame of this machine is of triangular form, containing
the air receiver withiu it and having four cylinders arranged at the corners of it, two of which are for air and two for steam, and a single shaft located at the apex of it. This slaft is provided at its opposite ends with cranks, each of which is conuected with a pair of eylinders at one end of the compressor, which cranks are arranged to secure equalization of power and resistance. Such arrangement of parts is both compact and efficient. In this arrangement, also, two connecting rods are combiued with a single crank by means of a block rigidly connected to one of the rods and turning upon the crank pin, and carrying also the joint pin for the ther connecting rod, whereby frictional resistance is re duced. Furthermore, the air cylinder and eduction pipes have combined with them pockets containing the induction and eduction valves and passages, which pockets are mad detachable and interchangeable to facilitate repair
Mr. Christopher Lewis, of Columbus, Ohio, has patented an improved continuous rolling mill. This invention relates to mills for rolling rails, girders, plates, etc., and its object is to permit more rapid working and to reduce the manual labor ordinarily incident, thereto. The invention is an improvement in that class of rolling mills in which several pairs of rolls have their alternate pairs arranged to be run in reverse direction to those next adjacent, and in which a laterally adjustable carriage takes the rail and transfers it from one pair of rolls to the next, so that it is passed through one pair of rolls in one direction and is returned through the next pair of rolls in the reverse direction. The invention contemplates the taking of a piece of steel from the furnace in the shape of a bloom and entering it between the first pair of rolls, whence it proceeds on through the machine without handling and comes out a perfect rail; and to this end the improvement cousists in combining the series of rolls whose alternate pairs have a reversed movement with a set of carriages of constantly increasing length, a set of tracks for carrying them from the line of one pair of roll to the next, and a corresponding set of piston rods and steam cylinders grouped together at one side of the machine, which piston rods connect with the carriages to shift them at the will of the engineer in charge. The invention also comprises means for causing the ingot or unfinished rail to be fed forward to the rolls after the carriages bring them uccessively into line with the rolls; and also means for turning over the article being rolled to suit the different positions in which it may be required to be passed through the rolls.
Mr. James A. Bonsack, of Bousack's, Va., has patented an improved cigarette machine. This invention 15 an im provement upon a previously patented machine by the same party, and which comprised a combination of a concave with suitably covered rollers, and also a reciprocating belt for distributing and spreading the tobacco for a uniform and homogeneous feed, also a peculiar tapering tube having an endless belt passing tbrough it for receiving the tobacco and causing it to be curled up longitudinally to form a filler likewise a second endless belt, that carried the filler and a strip of paper through another tube that wrapped the paper around the filler and held it while being pasted. The present invention consists in a combination with a toothed distributing roller and a double concave, of a touthed roller at the entering side of the concave, for co-operation with
the latter, to feed the stock to the distribuling roller an prevent it from piling up on the outside. It also comprise a brush at the delivery end of the spreading belt and it reciprocating frame, for preventing the adhesion of tobacco to said belt; likewise a toothed belt operating in combina tion with toothed and plain rollers, to prevent piling; also pressing roller for forcing the tobacco down between the teeth of the belt before passing beneath the concave; and a trough-like device for forming a continuous filler, composed of three endiess belts and a pressing contrivance, backing strips applied to said belts, and pulleys for distending the latter. The invention also includes a holder for the cigar ette and means for projecting said holder and the cigarett during the operation of cutting the latter
Mr. John H. Munson, of New York city, has patented an mprovement in button-hole sewing machines. The object of this invention is twofold, namely, first, to avoid the inconvenience and expense of the breaking of the friction spring which bears on the carrier plate of a button hole sewing machine, to hold said plate steady during the movement of it, which breakage has been due to the gradually increas ing pressure as the work advances; and, secondly, to apply the requisite friction to the carrier plate before the sewin commences, and thereby avoid that unsteadiness of the car-
rier plate and irregularity of the sew.ng at the commencement of the button-hole, whicl takes place when the frictio spring is fitted so that it does not touch the carrier plate til after the sewing has commenced. To these ends the inven tion consists in a friction arm pivoted to the bed plate, and bearing at its free end on the sliding carrier plate, by the action of a spiral spring contained in a socket that is fixed on the bed plate. This arm is so arranged that it bears on the carrier plate in a direction at right angles to the first or straight movement of said plate, so that the spring acts before the sewing commences. Said spring is arranged around a pin pivoted to the under side of the friction arm and is held between a flange on the pin and the bottom of the hole in the socket. By this construction the required pressure can be obtained without risk of breakage, and the proper working of the machine is facilitated.

Live Millers.

The title chosen for this article is an American phrase, but not the less expressive on that account. We have certainly no desire to aid in the Americanizing of our institutions or our language, but we should be very happy if, to any extent we could be instrumental in infusing into the minds of the millers of the United Kingdom sume portion, and the more the better, of that energy which the Americans inherit from ourselves, and which, greatly to their credit, they have improved upon. The phrase is used by our brethren across the Atlantic not as expressive of vitality in the ordinary physical sense, but as indicative of the possession of a keen ensitiveness to all the influences which affect the trade with which they are identified, and a lively appreciation of the varied circumstances which, at any and all times, go to the ,romotion of its interests, or which may militate against hem. That all the American millers are "live" in the pecific sense referred to cannot, we suspect, be affirmed, or "Sleepy Hollows" still exist in that favored region of the world, just as they did when poor, simple, henpecked ne'er-do-wellish RipVan Winkle took that memorable "nap" of his. There are, however, a very large and constantly ncreasing number of millers in the United States who ar "live" in the strictest sense of the term as the Americans use it.
To how many of those in the United Kingdom can it be applied in a sense equally strict? We are happy to think tha their number is large, and that within the last few years thei liveliness has been getting more robust, while their number have been gradually increasing. There are indeed few millers in the country who are not "live" in the sense of looking fter what they conceive to be their true interests. They strive to get the best price they can for their flour, and to obtain the raw material of their manufacture in the cheap-
est possible markets. They entertain thoroughly orthodox vews on forward sales and long credits, although, a fter th manner of human nature generally, their practice in these particulars occasionally gets the better of their theoretical principles, much to their loss. They have a virtuous horror at anything savoring of laxity in the due return of sacks, and in commercial matters they have the fullest assurance that they know how many beans make five.
To be a thoroughly "live" miller in the present day, when forces have to be contended with which up to within a few years were, if not actualy non-existent, so quiescent as not to disturb the steady current of the trade, requires the posses sield the members of the trade from the pitfalls of forward sales, long credits, and sack keepers. To be thoroughly "live," a miller at the present time must have the fullest ppreciation of the changes which bave taken place in the circumstances and conditions of the trade, not merely in his wn country, but in every country where milling ranks as chief industry. The history of our cotton manufactures hows how fortunes were made, and the wealth of the counry increased by the skill of cur manufacturers and operatives in utilizing the raw material of the Southern States of America, and selling the manufactured products to Americans and other nations. It is not at all likely that our millers will attempt to do with wheat what our Lancashire mill owners did so successfully with cotton; but it need not be
said that it is necessary that they should keep themselves thoroughly au courant with reference not only to the price of wheat in the various wheat-growing regions of the worl but with the conditions under which it is cultivated, the natural enemies with which it has to contend during it growth, the average surplus of the material which the dif ferent countries have at their disposal for export, the facili ies which exist for its transportation to our markets, and the rates at which transport can be effected.
The "live" miller must be a diligent reader, in order that his mind may be stored with facts bearing upon his trade in all its departments. Reading is, in a very special sense, the bread which sustains his vitality in a trade aspect, and if it is uot systematic and sustained, but by fits and starts, to fill up an unoccupied bour or pass an evening which hangs heavy on his hands, his vitality will suffer.
In order fairly to appreciate the changes which have been effected on the circumstances and conditions of his trade, the miller to be really "live" must have recourse to reading because, as a rule, he cannot devote the time which would be necessary to acquire the requisite knowledge at first hand Even supposing this could be done, he would require to be constantly on the move to keep his information abreast o the progress which is aow going on with such rapid stride that the novelty of this year stands a great chance of being obsolete next. Books, and more especially the journals devoted to his trade, which photograph every step of the pro gressive march, are his towers of observation, from which, without leaving the precincts of his study, and incurring the expense, the fatigue, and the dangers incident to long and frequently repeated journeys, he can scan the entire field of milling practice and ascertain how and in what respects that of his foreign rivals differs from his own. Possessed of this knowledge, the "live" miller feels lis vitality quickened, and as he studies the means used by his rivals for the pur pose of securing the results they severally desiderate, he beeomes conscious of an accession of energy which enables him to adopt measures of combating their rivalry with, at all events, a fair certainty of success.
The motto of "live" millers is "Never say die." They feel that what is possible for others can always, at the very least, be attempted by themselves. If they become con vinced that they have been pursuing a wrong course, they console themselves with the comforting proverb, " It is neve too late to mend." If wrong, they had, up to the other day the entire trade for company, and being readers, they know at what precise point they discovered that a new path had been opened up, which was declired to be the only right and safe one, and they have sufficient data to enable them to decide, with some approximation to correctness, what degree of truth there is in the allegation. It is the "live" miller only who las the wisdom to know when he is wrong and the courage to take the requisite steps to put himself right, if he possibly can
Although "it is never too late to mend," he does not defer the reformative effort a moment after he is convinced that amendment is indispensable. He may-for is he not human -lave a lingering affection for the path he has traveled in so long, and with much comfort and profit to himself, just as one has an affection for the old suit of clothes, which has almost become part of one's self, rather than for brand-new garments, which suggest no higher or moretender ideas than the tailor and the tailor's bill; but he screws his "courage to the sticking place," and discards the well-worn paths just as he lays aside-perhaps with the sentimental tribut f a sigh-the well-worn garments. He cannot afford to gratify prepossessions which tug at his heart to the detri ment of his purse, and although the masic of the mill stones may be sweet to his ears, he throws them aside the momen his commercial sense is convinced that rollers or dismembraors are means for the production of flour for which there will be a larger demand and a higher price than for that pro uced by mill-stones.

Live millers," so far as trade matters are concerned obey the dictates of science rather than those of sentiment For them the age of faith is no longer existent, and howeve positive may be the dogma and venerable the dogmatist they insist on the subjection of both to the crucial test of nvestigation. They object to nothing merely because it is new, and they discard nothing because it is old. "What can it do?" is their question to anything recommended for their acceptance, and if the answer is demonstrably satis factory, acceptance is the result. They are pre-eminently anti-rule-of-thumb men, but they are equally impatient of cientific theories until they have been proved to harmoniz with sound and profitable practice. They haveno objection to spend money in trying experiments if these give prim ucie promise of success, but they have a very decided excep tion to "leaps in the dark," which in most cases result in loss of time and loss of cash, a double waste for which there is no recompense. "Live millers," in fact, are men of sense as well as men of science, who take a pride in their trade, not only asit is the method of making, if not in all cases fortunes or them, but fair competences; they also take a pride in it sa means of bringing the higher powers of their mind into that healthy play which yields the highest form of enjoy ment which reasonable men can desire. They no doub regard their mills as money-making slops, but they also con emplate them in another aspect, viz., as establishments in which processes are carried forward related to the manufac ture of a material which constitutes the most important fac or in the alimentation of civilized mankind.-London

The Chargefor Insertion under this head is One Dollar a linefor eachl insertion; about eight words to a line Advertisements must be reccived at publication office as early as Thuursday morning to appear in next issue.
Interesting to Manufacturers and Others.-The worldWide reputation of A sbestos steam Pipe and Boiler Cov
erings, Rooting, etce, has induced unscrupulous person to sell and apply worthless articles. representine them
as being made of Asbestos. The use of Asbestos in as being made of Isbestos. The use of Asbestos in
these and other materials for structural and mechanical these and other materials for structural and mechanical only by the H. W. Johns Manufacturing Co., 87 Maiden
Lane. New York. This Company have recently perLane, New York. This Company have recently pertos Milliboards, Sheathing. and Paper of a quality supe-
rior to any ever before produced. The Asbestos Mill-
board is well known by engineers throughout the world rior to any ever before produced. The Asbestos Mir-
board is well known by engineers throughout the world
as being the only indestructible material for forming as being the only indestructible material for forming
gaskets for "manhole plates," "cylinder heads, etc. Thin dering wooden buildings, partitions, floors, etc., fire-
proof. They have also perfected the manufacture of an improved Steam Packing composed entirely of As bestos in all sizes, from that of lamp wick to a rope \quad
two and a half inches in diameter, which is rapidly su perseding all other kinds of steam packing. This Compersedre also the sole manufacturers of the genuine As-
bestos Liquid Paints, which not only command the bestos Liquid Paints, which not only commat are also
highest price of any paints in this country, but shipped abroad in large quantities. Their descsiptive
catalogue is fall of interesting matter pertaining to the various uses of the wonder ful mineral A sbesto
The Hollowware Cleaner Company, of Harvey, New Brunswick, are making an ingenious Cleaner for Lamp Chimneys, etc. It consists of a spear-shaped rubber bag
mounted on a handle. It inflates with air after intromounted on a handie. It inflates with air after intro-
duction within the chimney, and cleans every part thoroughly and quickly.
For Sale.-Patent of a simple and durable Plaiting Machine, making automatically and rapidly side space
and box plaiting in all kinds of material. W. H. Bramand box plaiting in all kinds of m
hall. 128 Chambers St., New York.
Transits and Levels, second-hand, wanted. Send
size, and name of maker, to Keuffel \& Esser, New York Lightning Screw Plates and Labor-saving Tools, p. 380 . The Czar Revolver, advertised in another column, is of $\$ 300$ cash for ent. pat. of Egg Beater. See illus. Sci. Amer., vol. xili., page 115. Pure Grain Nickel, Rolled and Cast Anodes, Nickel
Salts. Greene, Tweed \&Co. 118 Chambers St., New York. For Sale. -1 Engine Lathe, Fitchburg, $71 / \mathrm{ft}$. x 15 in ;
price, $\$: 50.1$ Iron Planer, planes $71 / 2 \mathrm{ft}$ x 34 in. x 30 in . price, $\$ \overline{5} 50$. Address Concord Axle Co., Fisherville, N. H. Workshop Receipts.-A reliable Handbook for Manu-
facturers a nd Mechanics. $\$ 2$, mail free. Ornamental Penman and Signwriter sher cents. E \& F. N. Spon, 446 Broome St., New York. For Sale.- P
cherd, Tenn.
Presses \& Dies (fruit cans) Ayar Mach.Wks., Salem,N.J. Mailed free. Catalogue of Books for Engineers. Theoretical and
New York.
Latest Improved Diamond Drills. Send for circular
to M.C. Bullock, 80 to 88 Market St., Chicago, Ill. Telegraphic, Electrical, and Telephone Supplies, Telegraph Instruments, Electric Bells, Batteries, Magnets, Wires. Carbons, Zincs, and Electrical Materials of every
description. Hlustrated catalogue and price list, 72
pages, free to any address. J. H. Bunnell \& Co.. 112 description.
pages, free to a
Liberty St., N. Y.
Wood-Working Machinery of Improved Design and
Workmanship. Cordesman, Egan \& Co., Cincinnati, o. Abbe Bolt Forging Machines and Palmer Po ver Ham-
mers a specialty. S. C. Forsaith mers a specialty. s. C.Forsaith \& Co.., Manchester, N. H.
Foot Lathes, Fret Saws,6c. 90 pp. E.Brown,Lowell,Mass.
"How to Keep Boilers Clean," and other valuable information for steam users and engineers. Book of
sixty-four pages. published by Jas. F. Hotchkiss, 84 sixty-four pages, published by Jas. F. Hotco
John St.. New York, mailed free to any address. Supplement Catalogue.-Persons in pursuit of infor-
mation on any special engineering. mechanical, or scienmation on any special engineering, mechanical, or scien-
tific subject., can have catalogue of contents of the SCI-
ENTIFIC AMERICAA SUPPIEME ENTIFIC AMERICAN SUPPLEMENT sent to them free.
The SUPPIEMENT contains lengthy articles embracing the whole range of engineering, mechanics, and physi-
cal science. Address Munn \& Co.. Publishers, New York. Punching Presses \& Shears for Metal-workers, Power
Drill Presses. all sizes. Power and Foot Lathes. Low Prices. Peerless
Pure Oak Leather Belting. C. W. Arny \& Son, Manufacturers. Philadelphia. Correspondence solicited.
The Bent constructed low priced Engines are built by The Best constructed low priced Engines are built by Split Pulleys at low prices, and of same strength and
appearance as Whole Pulleys. Yocom \& Son's Shafting appearance as Whole Pulleys. Yo
Works, Drinker St., Philadelphia.
C. B. Rogers \& Co., Norwich, Conn., Wood Working
Machinery of every kind. See adv., page 348 . Mallexble and Gray Iron Castings, all descriptions, by
Erie Malleable Iron Company, limited Erie Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. The New Lace Cutter saves cost on each side. Leather
cut. Sample by mail, 50 cts. Greene,Tweed \& Co.,N. \mathbf{Y}. Corrugated Wrought Iron for Tires on Traction En-
gines, etc. Sole mfrs., H. Lloyd, Son \& Co., Pittsb'g, Pa. Best Oak Tanned Leather Belting. Wm. F. Fore paugh, Jr. \& Bros., 53l Jefferson st., Philadelphia, Fa, Presses, Dies, Tools for working Sheet Metals, etc.
Fruitand other Can T'ools. E. W. Bliss, Brooklyn, N. Y. Improved Skinner Portable Engines. Erie, Pa Learn Telegraphy. Out if complete, $\$ 4.50$. Catalogue
free. J. H. Bunnell \& Co., 112 Liberty St., N. Y. List 27 -Description., List 27.-Description of 3,000 new and second-hand
Machines, now ready for distribution. Send stamp for Machines. now ready for distribution. Send stamp for
same. S.C.Forsaith \& Co.,Manchester,N.H., and N.Y.city. For Pat. Safety Elevators, Hoisting Engines. Friction Safety Boilers. See Harrison Boiler Works adv., p. 349 Mineral Lands Prospected, Artesian Wells Bored, by
Pa. Diamond Drill Co. Box 423, Pottsville, Pa. see p. 348 .
A.ax Metals for Locomotive Bozese, Journal Bee
etc. sold in ingots or castings. See adv., p. 365. The Sweetland Chuck. See illus. adv., p. 366 . Machine Knives for Wood-working Machinery, Book Binders, and Paper Mills. Also manufacturers of Solo-
man's Parallel Vise, Taylor. Stiles \& Co..Riegelsville.N.J. Skinner's Chuck. Universal, and Eccentric. See p. 365 For Machinists' Tools, see Whitcomb's adv., p. 366. Peerless Colors for Mortar. French, Richards \& Co. The Twin
The Twin Rotary Pump. See adv., p. 350.
Millstone Dressing Diamonds. Simple, effective,
durable. J. Dickinson, 64 Nassau street, New York. steam Hammers, Improved Hydraulic Jacks, and T 50,000 St. R. Dudgeon, 24 Columbia St., New York. 50,000 Sawyers wanted. Your full address for Emer
n's Hand Book of Saws (free). Over 100 illustration son's Hand Book of Saws (free). Over 100 illustrations
and pages of valuable information. How to straighten saws, etc. Emerson, Smith \& Co., Beaver Falls, Pa.
Telegraph, Telephone, Elec. Light Supplies. See p. 380 Gear Wheels for Models (list free); Experimenta
Work, etc. D. Gilbert \& Son, 212 Chester St., Phila., Pa ould \& Eberhardt's Machinists' Tools. See adv, p. 382 Elevators, Freight and Passenger, Shaiting, Pulle
and IIangers. I. S. Graves \& Son. Rochester, N. Y. The Medart Pat. Wrought Rim Pulley. See adv., p. 382 For Heavy Punches, etc., see illustrated ad vertise ment of Hilles \& Jones, on page 381
Centrifugal Pumps, 100 to 35,000 gals. per min. See p. 381 Pays well on small investment.-Stereopticons, Magic Lanterns, and Views illustrating every subject for public
exhibitions. Lanterns for colleges, Sunday schools, and home amusement. 116 page illustrated catalogue free Barrel, Key, Hogshead, Stave Mach'y. See adv. p. 381. Sewing Machines and Gun Machinery in Variety e Pratt \& Whitney Co Hartford, Con
Portable Power Drills. See Stow Shaft adv., p. 380. For best low price Planer and Matcher. and latest catalogue to Rowley \& Hermance. Williamsport, Pa. Draughtsman's Senstive Paper.T.H.McCollin,Phila., The Porter-Allen High Speed Steam Engine. South-
work Foundry \& Mach.Co.. 430 Washington Av.,Phila P See Bentel, Margedant \& Co.'s adv., page 382 The only economical and practical Gas Engine in the The only economical and practical Gas Engine in the
market is the new "Otto" Silent, built by Schleicher. Rollstone Mac. Co.'s Wood WorkingMach'y ad. p. 382. Ore Breaker, Crusher, and Pulverizer. Smaller sizes Electric Lights.-Tho pe. Estimates - Thomson Houston System of the A 4to $\mathbf{4 0}$ H. P. Steam Engines. See adv. p. 382.

 HINTS TO CORRESPONDENTS.

No attention will be paid to communications unles
Names and addresses of correspondents will not be
ven to inquirers,
We renew our request that correspondents, in referring
former answers or articles, will be kind to former answers or articles, will be kind enough to name the date of the paper and the page, or the number
of the question. asonable time should repeat them. If not then pub lished, they may conclude that, for good reasons, the Editor declines them.
Persons desiring special information which is purely of a personal character, and not of general interest as we cannol from $\$ 1$ to $\$ 5$, according to the subject, as we cannol be expected to spend time and
obtain such information without remuneration.
any numbers of the Scientific American Supp MENT referred to in these columns may be had at this office. Price 10 cents each.
Correspondents sending samples of minerals, etc.,
for examination should be careful to distinctly mark or for examination should be careful to distinctly mark or fication.
(1) G. D. wants to know what is meant by the term 10 lines, 16 lines, 17 lines, etc., used in connec
tion with watches and telescopes? A. A line is onetwelfth of an inch, and is usually employed in measurng the diameter of lenses, watch glasses, etc.
(2) W. and D. ask: How will it be best for us to attach two engines of unequal size to a
counter shaft, each to have only its share of the load at varying strain, such as saw mill work? The engines are 7×10 and 8×12; each has its own boiler and will carry different pressures of steam-say 80 and 100 lb . steam pressure. A. All that is necessary in this case is to
proportion the driven pulleys so that when the shaft to which they are attached revolves at its regular rate, the driven pulleys will have the same peripheral speed as their respective driving wheels whenrunning at their
(3) L. D. S., of Ill., says: I have just put an iron force pump in a well, on a galvanized iron pipe
Was recommended to use the galvanized iron, so as to prevent the iron from rusting and giving a taste to the water. Now I am told by parties who appear to have
some knowledge on the subject, that the galvanized some knowledge on the subject, that the galvanized
iron is poisonous. Will you be kind enough to give your advice on the subject through the Scientific
American? What kind of a stock or pipe would you attach to an iron force pump? A. The safest pipes ar those of plain iron. Galvanized iron pipes should not
be used for conducting driuking water, as the zinc disbe used for conducting driuking water, as the zinc dis-
solves and the water containing it is poisonous. We have heretofore published accounts of fatal results from
the use of such galvanized iron pipes in the vicinity of the use of such galvanized iron pipes in the vicinity o
Boston, Mass. In the case of our correspondent per haps the length of his pump pipe is so small that bad
results would not ensue, provided care is taken not to
use the water that has been standing for any length of use the water th
time in the pipe.
(4) R. E. E. asks: How can a round stick 1 inch in diameter, 3 feet 7 inches long, be bent on circle the diameter of which is 38 inches? We have
tried to bend them of ash, but one-third breaks in tried to bend them of ash, but one-third breaks in
bending. We want to make them of beech and birch Can you inform us how we may bend them without breaking? A. Submit the wood to the action of boiling water for twelve hours, then bend over a suitable form and clamp in position until dry.
(5) J. A. P. asks: 1. Is there any cheap resemble that of very fine emery paper? A. It may be done by etching, by first stippling the surface with wax or some other protective coating. A sand blast would
probably be cheaper if the steel were required in any probably be cheaper if the steel were required in any
quantities. 2. In what way can I coat a netal rod with rubber? A. Dip it in a solution of rubber in bisulphid an alsodo it by coating the rod with cement and drawing over it rubber tubing
(6) B. T. H. asks: Is the quantity or in ensity current required to work a telegraph line with ments? A. It depends upon the resistance of the mag
nets of the instrumenis. If they are of low resistance nets of the instrumenis.
(7) W. W. asks: Does any action on the zinc in the gravity batt-ry take place when the circuit
is broken? A Yes; there is more or less local action.
(8) W. M. asks: Can you give a good receipt for a cement to glue cloth to wood? I want to
put a new cloth on my library table. A. See Cements, put a new cloth on my library tab
(9) J. W. J. writes: In preparing a Faure secondary battery, should the red lead be allowed to
dry before the strips are rolled into a coil? A. No. (10) S. L. G. asks: 1 . How many feet of pipe, twelve feet long and two inches inside diameter, will be required to obtain eight horse power, the water
to be in the pipe and the pipes in the flame? A. If to be in the pipe and the pipes in the flame? A. If pipes are twelve feet long, you will require twenty-four
pipes. 2. How thick should the pipes be to allow a pipes. 2. Hew thick should the pipes be to allow a
margin of 50 per cent for safety? A. Ordinary lapmargin of 50 per cent for safety. A. Ordinar.
welded water and steam pipes are amply strong. want the pipes to be horizontal. Would bridges b cessary to prevent sagging. A. If horizontal they should
have a central support; but placed horizontal the steam formed cannotreadily escape, and if the heat is strong there will be risk of burning the pipes. 4. At what
temperature does water boil in half an atmosphere? A. 180° Fahrenheit
(11) J. B. H. says: I have some plaster casts of jaws and teeth which I wish to duplicate. It
is very dificult to do this in plaster. Is there not some is very difficult to do this in plaster. Is there not some
elastic gelatine compound which will take the shape and pull off, which will answer as a matrix? A. Gela tine moulds are prepared from glue and glycerine. Digest good glue over night in just enougb cold water to cover it, and dissolve this by aid of heat over a salt
water bath in a quantity of concentrated glycerine water bath in a quantity of concentrated glycerine
equal to that of glue taken.- Continue the heating for equal to that of glue taken. - Continue the heating for
half an hour, then pour into pattern. The outside of
these molds these mond dipay of potash in one pint of water, and exposing for half an hour to strong sunlight.
(12) D. R. writes: I heat my office with live steam from the boiler, and have to carry it some the mill where heat is not needed and where the air is very cold owing to the outside doors being more or less open all day, and I find the steam condenses a great
deal in passing through this cold room.' I want somedeal in passing through this cold room. I want some-
thing to cover them with that will prevent a considerthing to cover them with that will prevent a consider-
able of this condensing. I want something that I can mix up and put on myself. Would common clay, put in a wooden box, answer: A. Perfectly dry sand may be employed advantageously in the way you suggest. Coal ashes answer very well
(13) C. H. W. asks: What would be the effect of forcing a succession of charges, one at a time
into the cylinder of any of the different forms of ex plosive engines (as the Otto gas engine or the Brayton
oil vapor engine), and exploding cach charge by itsel oil vapor engine), and exploding each charge by itself
and preventing any escape of the gases resulting from and preventing any escape of the gases resulting from
the explosion? 1. Would the pressure accumulate and prevent the esplosion of the charge? A. The pressur charge under the circumstances. 2. Would the pressure increase and cause the gases resulting from the explo-
sion to condense? A. The gases produced would condense
(14) J. K. writes: I send this day some what minerals they contain, if any, and whether they are worth an assay, and also what minerals such looktains no minerals of value.
(15) T. and H. ask: Can you give me receipt for a cement for securing rubber to cast o
malleable iron that will stick hard, also that can b washed in hot water without injury? A. Try the fol lowing: Melt together in an iron potequal parts of gutta percha and shellac. Apply hot.
page 2510, SUPPLEMENT, No. 158.
(16) H. W. B. writes: In your issue of November 19, you give an article on poison. A friend
and I, to decide a dispute, are anxious to ascertain the shortest time that twenty grains of cyanide of potassium
will ki a a person in-that is to say, how soon he will will ki I a person in-that is to say, how soon he will
be absolutely dead. A. Under ordinary circumstances insensibility and death would probably take place lowed. The action of the poison is rarely delayed more

than a few mintes.

(17) R. M. says: In this week's Notes and will kill the scale bug on his orchard trees. If he will
and the larger limbs. and as much as convenient on the kill this pest and ch good besides
(18) E.M. says: Referring to your answe to E. M. (3), page 330, current volume (receipt for liquid of ounces polish), it should read $1 / 21 \mathrm{lb}$. of shellac instea uantity. $(11 / 2 \mathrm{lb})$ of shellac it make that with this ing for shoes, liable to be too strongly heated. It will not stand freezing.
(19) F. R. G. asks: 1. What is the size of innaction coils used in connection with the tele-
 isting of a bundle of fine wires. The primary wir nsists of four layers of No. Wh wire. The spool is fille $\begin{aligned} & \text { with No. 36 wire. } \\ & \text { generally used } 8 \\ & \text { A. . In that sizes of wire are }\end{aligned}$
dison transmiter the coil is much larger, being about $41 / 2$ inches long, $11 / 2$ inches diameter, with a $11 / 2$ inch core of fine iron wires. The primary consists of four laye
is of No. 34 or No. 36 wire.
(20) A. G. asks: How is japanner's gold size prepared? A. One gallon of linseed oil is boiled in a capacious pot for two hours: eleven ounces each then gradually sifted in while the ounces of coppera constantly stirred from the bottom up. When the oi has been boiling about three hours, and the driers ar nd mixed with three and a half pints of raw oil, continue the heating and stirring for about five hours, or untilit hangs in strings from the ladle yet drops in Jumps. Let the contents of the pot cool down some what, then mix it with three gallons of oil of turpen-
tine (away from any flame or fire). This gold size ought tine (away from any flame or fire). This gold size ough to dry in ifteen minutes or less under favorable condi-
tions. It improves by keeping when properiy prepared.
(21) W. H. H. asks: By what process are A. The aniline or coal tar dyes are employed for this and spirit) of the appropriate color A bath of tannin in water before dyeing renders the substance mor easily and perfectly colorable. For red or reddish shades an after-bath of chloride of tin is frequently mployed to bring out the color
(22) S. H. asks: How much copper steam pipe surface is required to evaporate 2,400 pounds of
saturated salt water per hoor? A. About one thousand (23) f. T. (23) E. T. S. asks: What will remove the ink put on the page of a book by a rubber hand stamp four years ago? It is both blue and red, and is an
niline ink. I have tried sulphuric, nitric, muriatic aniline ink. I have tried sulphuric, nitric, muriatic, go. A. Try the following: Digest half a pint of water with three-quarters of a pound of fresh chloride of lime he clear liquid and mix it with about one-fourth it olume of strong acetic acid. The solution can not be ept for any length of time.
(24) J. S. W. asks: What kind of sizing will hold gold bronze on paper and bristol board so the bronze will not rub off? A. Bronzing gold size is japanner's gold size (see answer to A. G.), kept till ver
bright and tough from age, and then mixed with a littl bright and tough from age, and then mized wit
(about 10 per cent) of very old carriage varnish
(25) J. P. M. says: We draw our wate upply for our boilers from the river, and the water ha ils and acias mixed in it from the mills up stream. Can you suggest any way to obtain relief from the tanks, let it settle for a few hours after filling them tap twelve inches above the bottom of the tanks, lettin he water pass slowly through a barrel filled with coarse and fine gravel and limestone or marble, the
water passing in at the bottom and flowing out of the water passing in
top of the filter.
(26) F. M. writes: Will you please be good enough to decide the following qnestion: Which has the most power: an engine 12x 2 , or an engine 12×24,
steam 80 lb ., other things being the same in both; the piston running the same number of feet per minute on A. The difference in useful inch, and that by a 12 inch by steam engine, each making the same piston speed, using saturation, and expanding (including ports and clear ances) in the same ratio, will not be perceptible in prac tice. Experiments have been made that indicated gain in short stroke engines, on account of less cylin
der condensation; but it is probable that only the most careful experiments, following great exactness in con struction of ports, clearances, and cut-off, would make the gain perceptible in this case.
(27) J. H. R. asks (1) how to change the For instance, I have sulphuric acid of sulphuric acid change it to acid of 66° ? A. The only practical way to
concentrate sulphuric acid is by evaporatingoff the excess of water over a fire. Vessels of platinum and lead are used to hold the hot acid. Where small quantities of the acia are to be concentrated glass vessels may be
employed. 2. Will the same hydrometer do for sul employed. 2. Will the same hydrometer do for sul
phuric as for nitric or muriatic acid? A. Yes. 3 How is potash crystallized? A. Evaporate the aqueou solution to complete dryness over a water or sand bath; then heat the mass to fusion in a clean iron pan ove the fire, cover it securely, and let it cool slowly. 4. Will
not wrought iron answer as well as cast iron for field (28) J. T. C. says: 1. I have tried to make the phosphorescent paint noticed in SUPPLEment of January 18, 1879, but after repeated trials have had n success, and do not know to what to ascribe my falures
Can you give me any additional particulars? A. See used strontium chloride instead of strontium carbonate

Will that make any material difference? A. Strontium
chloride is not sultable for the purpose; use the carchloride
bonate.
(29) A. S. P. writes: Please answer through Scientific Americian what is the best method of wash ng white zinc paint, soap, or borax, or what? A. Use
a moderately stiff brush, and a weak hot solution of a moderately stiff brush, and a weak hot solution o
sal-soda followed immediately by plenty of cold water
(30) E. E. M. asks: 1. Will you please give me a recipe for making a good indelible ink to b ased with a pen? A. Dissolve asphaltum in any essenlamp black. A little benzole will give the ink greate lamp black. A little benzole will give the ink greate
fluidity, 2. Is osmium or any other metal infusible If not, at what temperature does it fuse? A. Osmium can be fused by means of the oxyhydrogen blow pipe Cr electric arc, but under such conditions the liquid volatilizes as rapidly as formed, so that it can hardly be said to liquefy. Osmium is the most ref ractory of metals. Teen gravity? A. In the black pulverulent state its specific gravity is about 10; but when heated to the fusing point of rhodium it acqures a density of $21 \cdot 4-$ at a stil higher temperature it volatilizes. 4. Who was the dis coverer of nitrogen and whence its name? A. N (ni
trogen) was discovered by Rutherford in 1772. The trogen) was discovered by Rutherford in 1772. The
name was derived from niter, of which it is an essentia name was de
constituent.
(31) W. F. E. asks: What are the ingredi ents required to make a good durable waterproof liquid stove polish. I have seen some such polish, and wish to off and give an offensive smell at the first fire, and should a sample stove be out in a shower the polish ought to re sist the action of the water. A. You can try the follow ing: Purified black lead (graphite) reduced to a very fine powder, one pound; per chloride of iron, half an ounce. Moisten with just enough water to form a stiff paste and mix intimately by trituration in a mortar, and gradu ally add water sufic
Shake before using
(32) W. C. B. asks: Can you furnish me with any process or formula for bleaching and dendorzing dark or off colors of tallow and grease? A. The
following treatment is recommended: Briskly agitate the fused grease with about three per cent of sulphuric acid and two per cent of a saturated aqueous solution of bisulphite of soda. Then run the mixture into a deep narrow cylindrical vessel, and agitate the whole violentiy by dry steam injected in small quantity at the bott 1 m . for half an hour or more. Run off, let cool slowly, and
while still fluid draw off the clear portion-without diswhile still fluid draw off the clear portion-without dis. with about twenty per cent of water and let stand to separate and harden.
(33) E. S. R. asks: What is the preparation used for silver plating spoons and table ware, etc., an posts, page 81, vol. xliv., and column of Business an Personal.
(34) C. B. asks: Can you tell me where can find practical inf urmation on gilding and electro plating: A. You will find a comprehensive paper on
the subject of electroplating and gildng in Scientipic American Supplement, No. 310.
(35) W. A. M. asks: How can I print in gold or silver letters on black cotton tape? A. Us printer's gold size with the type (see answer to other
correspondent on this subject), and, when partly dry correspondent on this subject), and, when
dust the printed parts with gold bronze.

Minerals, etc.-Specimens have been received from the following correspondents, and examined, with the results stated:
W. W. D. -1 . The clay is quite impure, but if bnrned would probably make good soft brick. 2. Mar Schistose rock carrying a little copper carbonate.-S. M. C.-They are crystals of quartz-not precious stones but sometimes when very clear and well formed marketable in small lots.-J. R. E.-Syenitic rock bearing
red hematite iron ore.

INDEX OF INVENTIONS

Letters Patent of the United states were Granted in the Week Ending

November 15, 1881,

AND EACH BEARING THAT DAPE. [Those marked (r) are reissued patents.]

A printed copy of the speciffeation and drawing of an atent in the annexed list, also of any patent issue In ordering please state the number and date of the patent desired and remit to Munn \& Co., 37 Park Row New York city. We also furnish copies of patents granted prior to 1866; but at increased cost, as the spe

Addıng machine, P. C. Forreste
Ash chute for buildings. G. A. F
Axle and axle box, P. K. Hughes.
Axle box, car. S. A. Bemis (r)..........
Bails, die for forming. A. R. Byrket
Banls, die for forming, A. R. Byr
Basin. Iavatory. C. E. Robinson
Battery. See Galvanic battery. Voltaic battery.
Bedstead, E. M. Brown
Bench dog. C. P. Whitman
Bicycle. F. iv. Bacon....
Billiard table,
Boat. J. Dean
Botler. See Ster
Botler pedestal, G. Beck.
Boiler tube joint, J. A. Re

Boot and shoe sole burnishing machine, c. H.
Trask Boot and shoe sole pricking machine. J. . . Wiggin
Boot and shoe upper protector, Glazier $\&$ Tayte. Boots and shoes, manufacture of, M. M. Hally... Bottle, repper, H. J. White....
Box. See Fruit and berry box.
Boxes, slate frames, etc., bent corner for, C. J. Higgins..................... Brake. See Car brake
essels, cover for sap, C. D Buckle, Drury \& Van Camp
suckle and loop, harness, M. W. Lynch Buggy top. S. N. Lennon
Buildings. construction of, J. B. Love Burner. See Vapor burner.
Butter package, E. Hayward
Button or stud, N. Nelson (r).....
Button, sleeve, C. M. Underwood
Buttons, apparatus for trimming the circumfer
ential edges of, Kennedy \& Diss.
Can. See Shipping can.
an jacket. C. Riessner
Cant hook, A. Sanfor
Car brake, B. Cade..
Car brake, Sampson \& Echoonov
Car coupling, s. A. V. Hartwell
ar coupling, S. A. V. Hartwell
Car coupltng, J. B. \& H. H. McCart
Car couplng, Phillips \& Cox....
Car coupling. J. W. Thomason.
Car coupling. G. W. Whittington..........
Car coupling, automatic, M. R. Hubbell.
Car ventilation. passenger, T. P. Kinsey
Carriage, baby. J. L. Finn.....
Carriage spring, G. B. Saladee.
Carriage spring, G. B. Saladee.................
Carriage steps, forming, w. W. Knowles
Carriage top, child's, J. A. Cranda
Cartridge loading implement, F. G. Farnham.
hair. See Swinging cbair.
Check hook, C. B. Payne (r)
Churn, A. P. Frederick
Cigar and pipe lighter. C. A. Haskins.
Cigarette machine, C. Boyce.
Cigarette machine, C. Boyce......................
Clamp. See Door and sash clamp. Sash cor
clamp.
cleaner. See Knife cleaner.
Cloakk, I. Leja..............
Clock, calendar, B. B. Lewis.
Clock, calendar, B. B. Lewis
lothes drier, Ellis \& Pierce.................
Coffee mill. J. Deubel ..

Coffee pot. R. S. Wilson.

Compressible cast metal pipe, J. A. A. Reed Cop winder, C. F. Ritchel
Corset, J. Hilborn.
Corset, J. Hiborn..
Corset stay, C. A. Williams
Cot, folding. C. L. Ames
Coupling. See Car coupping. Thill coupling.
crank handle C.
Crank handle, C. T. Wright
Crate. See Poultry crate.
ut-off mechanism, M. Jacker
utter. See Vegetable and plant cutter Cylindrical power, automatic, T. E. H
Damper, stovepipe, J. H. Goodfellow.
Dead centers, device for overcoming,
Dental bracket. J. D. Clark.
Dental bracket, J. D. Clark.............
Diamond cutting machine, A. Hessels
Diamond cutting machine, A. Hessels.............
Diamonds in metalic plates for stone saws, secur
Diamonds in metallic plates for stone saws, secur
ing, Lucas \& Keys.. inger. See Potato dig
Digger. See Potato digger.
Direct acting engine, A. H. Wagner................ 24
Door and sash clamp, A. W. Ale................ 249
Door and sash clamp, A. W. Ale.......
Draught regulator, White \& Cornell.
Drier. See Clo seed and fertilizer dropper
Dropper. See Ser

 Electric light, C. E. Ball.
Electric machine. dynamo, C. P. Jürgensen..
lectric manine, . .
Electric machine, dynamo, A. Wirsching.
Electric pad. J. L. . Rowe
 \& Pumphrey
Elevator. See sawdust elevator.
Engine. See Direct acting engine. Rotary en gine. Steam engine. 'Traction engine.
Evaporator. See Fruit evaporator. Evaporator. See Fruut evaporator.
Explosive compound, T. Varney.... Eyeglass spring, G. W. Phenix. Eyelet, A. Delkescamp...
Faucet, self-closing, Boyle \& Huber. Faucet, self-closing, Feed drier, E. Roa
Fence, T. G. Brook
Fence, barbed, I). Hepp.....................
Fence wire stretcher, E. M. Crandal (r).
File, bill, C. M. Tyler
Firearm, breech-loading, D. B. Duncan.
Fire extinguisher, automatic, F. Gri
Fish dressing machine, M.J. Palson
Flour, manufacturing, M. Harmon
Fluids, apparatus for separating, G. De Laval.
Flushing valve D. Thompson
Frame. See Bedstead frame.
Fruit and berry box. C. W. Weston..
Fruit evaporator, H. C. Grover.....
Fruit evaporator, H. C. Grover....
Fruit picker, H. M. Crider........
Fume arrester, J. V. Woodhouse.
Furnace. See Coke furnace.
Furnaces, preparing, indurating, and solidifyin calcareous lining materials for, J. Reese....... Galvanic battery. A. C. Harris .
Garbage receptacle, V. Borst. Garbage receptacle, v. Borst...
Gas scrubber, hot, C. W. Isbell. Generator. See Vinezar generator Gran binder. L. Miller...........................
Grain binders, bundle compressor for, L. Miller Grain binders, bundle compressor for, L. Miller. Gymnastums, spring board for, F. Medart......... 2499,47 Hame, J. B. Law.....................
Handle. See Crank handle. Hanner. See Eav ough hange Harness pad plate, J. Thomas...
Harvester binder S. D. Locke .. Harvester binder. S. D. Locke
Harvester binders. tension device for, L. Miller. Harvester binders. tension device for, L. Miller..
Hasp lock. J. E. Young.
Hat and coat rack, J. R. Palmenberg

249,701
2949

Hay press, L. B. Lathrop....
Head covering. R. Gray (r).
 Holder. See Sponge holder
Hook. See Cant hook
Horseshoe, J.D. Billings
Hub for vehicles, metallic, E. P. Newman,
Hub for vehicles, metallic, E. P. Newma
lnhaler, medicinal. J. W. Snyder.......
Jack. See Railway jack. Wagon jack.
Jack. See Railway jack. Wagon jack
Jack for metal lasts, S. Mawhinny....
Jack for metal lasts, S. Mawhinny

Joint. See Boiler tube joint. Pipe joint.

Journal and box, W. H. Foye.
Knife cleaner. E. Ferguson....
Knıfe cleaner. E. Ferguson.
Ladder, step. J. G. Moomy...
Lamp, carriage, O. W. Swirt....
Lamp, electric. P. Jablochkoff r)
Lamp, electric light, H. F. Joel.
Lamp. hollow stem, D. C. Ripley
Lamp. hollow stem, D. C. Ripley
Lamps. apparatus for suspending, raising, an
Lamps. apparatus for suspending, raising, and
lowering electric, J. F. Behn................... 24
Leather stuffing machine, F. Carl............. 24,
Leather stuanng machine, F. Car
Light. See Electric light.
Lightning rod, H. W. Spang (r)..
Liquids. package for holding and transporting. H
Mattullath
Looms, back standard for gauze weaving, J.Latu
Lubricator, W. P. Phillips.
Mains. machine for tapping, D. T. Hubbell
Malting apparatus, grain, w. Andrew ..
Mattress, woven wire, T. \mathbf{T}
Meter. See Grain meter.
Milk and cheese vat, A. H. Snyder
Mill. See Coffee mill. Rolling mill. Stamp mil.
Windmill. Windmill.
Millstones,feeder and separator for, J. Hutchison 249,628
Mitering machine. T. E. King................. 243,63
Mitering machine. T. E. King................... .
Motor. See Steam motor.
Musical instruments, device for mechanically

Optometer. A.L. Smith...
Overshoe, A. . Hubbard
Overshoe. L. Piles.........................
Packets of powdered materials, etc., for sale
paratus for makeking up, G. . Pritchard
Packing for stuffing box
Pad. See Electric pad.
Pad. See Electric pad.
Pantaloons. J. II. Douglass
Parer, corer, and slicer, ap
Parer, potato, J . E. Hoft.
Passenger reg ister,
Passenger register, G.D.
Picker.
Pipe. See Compressible cast metal pipe
Pipe. Soint, o. I. W. Wietz....
Plane, edge, C. A. Kile
Plane, edge, C. A. Kilpatrick..
Plow. J. J. Holland..........

Plow, wheeled, G. T. Drake........................... 249.50
Plows, welding steel points to cast iron, J. Griftith 249.51
Pool table P P Ryan
Pool. See Coffee pot.
Pot. See Coffee pot.
Potato digger, S. B. Park
Potato peeler, II. Law (r)....
Poultry crate, T. L. Blanford
Powder. See Tooth Powder.
Press. See Hay press.
Press. See Hay press.
Printing press apheet delivering apparatus,

Protector. See Boot and shoe upper protector.
Pulleys, etc., process of and machine for cover
ing, w. Howard.......

Pump, L. Bouvier
Pump, J. E. Maynadier..
Pump, double acting force, H. P. Minot
Pump, force, E. Ericson
Pump, force, E. Ericson.
Pump or exhausting

249.688	Pump or exhausting apparatus, S..........................
249,539	Pumps, stop valve for house, J. E. Boyle.

249.5747	$\begin{array}{c}\text { Pyraxiline, etc., drying apparatus for treating, J. } \\ \text { B. }\end{array}$
B. Edson	

Railway crossing, F. C. Weir....
..249,705,

8	$\begin{array}{l}\text { Railway frog, J. A. \& A. H. Howland } \\ \text { Raiway frog, F. C. Weir } \\ \text { Railway jack, Shoudy \& Licher...... }\end{array}$.

Railway signal, J. L. Poalk...
Railway switch, L. C. Weldin.............................
Railway switches, head chair for, W. A. Cooper.
Railway tie,
Railway wrecking frog, J. L. L Owens.
Railways, snow excavator for, W. Cho
Register. See Passenger register.
Regulator. See Draught
Rein supporter for harness, J. Jaege
Revolver, W. Mason.....
Rolling mill. D. B. Oliver
Rotary engine, D.O. Holman
Rowing, apparatus for practice, J. R. Lomas..........

Rudders to vessels, attaching,
Sash cord clamp, C. J. Scheelky.
Sash cord guide. A. Millar.
Saw guide, G.H. Zschech..
Saw set, E. Larson.
Saw set, E. Larson....................
Sawdust elevator, McIntyre \& Parish
Scale, W. W. Reynold
Seal lock, H. Clarke....
249.460
Seat. See Theater, etc., seat.
249,719

Seed, preparing cotton, T. Taylor.
Sewing machine, T. A. Macaulay.
249,614 Sewing machine, M. schwalbach ...
Sewing machine, Steward \& Dimond
Sewing machine, w. W. Wells.........
Sewing machine cabinet, D. H. Coles.
Sewing machine rumfing attachment, J. S. S. Baker.
Shipping can, safety, M. F. Bell..
Shirt, J. Sample, Jr.............
Shoe, waterproof, M. R. B. Bissel......
Sifter, coal and ash, J. Bullock....
Signal. See Railway signal.
Sirup dasher, automatic, R.
Skate, W. A. Sutton......
Skate,
249.633
Skate, W.A. S.
249.972
Skate, roller, w. A. Sutton.
Soap, machine for shaping

| 249472 | Soap, machine for shaping, O' Keeffe \& Robertson |
| :--- | :--- | :--- |
| 249,655 | Soap, manufacture of, De La | Soap, machine for shaping, o'Keeffe \& Robertson

Soap, manufacture of, De La V Vega \& D'Oliveria..
Soap, soft, T. W. Nichols

Sponge holder for slate pencils, Coles \& Luck
hurst..............
Spoon and ladle, L. P. Cottle.
spring. See
249,583
249,459 Spring, See Carriage spring. Eyeglass spring. Stamp mill. F. L. Presten...................
Stand. See Switch stand. Wash stand. steam boiler, N. W. Pratt 249670,296
 team engine, compound, Babcock, Wilcox \&
Pratt.. 249
 H. Edgerly (r). 249.567
team or heating air, apparatus for superheating 9,927
249,527
S. N. Carvalho....................................tocking supporter, J. L. Mootove, cooking, J. M. Killin
tove grate, J. Ringe
tove grate, J. Ringen.....
tove, heating, M. C. Hawle Stove urn, 1 . M. Ryder.... trainer for liquid vessels, H. C. Alden2499,51 249,4 $\begin{aligned} & \text { upporter. See Rein supporter. Stocking sup- } \\ & \text { porter. } \\ & \text { winging chair, P. Johnson...... } 249,530\end{aligned}$ Swinging chair, P. Johnson.....
Switch. See Railway switch. 249,530 Switch stand, , F. C. Weir...................
Table. See Billiard table. Pool table 249,706

elephone, D. H. Fitch
Telephone circuits, switch board for, G. L. An-
ders 249,445

hill coupling, 1. R. Dunning..... 249558
249,599
Tie. See Railway tie.
Tire tightener. T. Dillon
obacco apparatus for resweating, J. W. W. Cooke........ 249.59 Tool handle attachment, J. L. Coleman. Jr......... 249.58
24,
ooth, artiticial, J. O. Flower.................... 249 , 24 Tooth powder, W. Doepp 249,96
Toy suspension bridge, W. W. Barnes. 29944
Toy trundle, H. T. Hembold.... 2195 race carrier, J. Thomas.... 249.5 Traction engine, B. S. Benson 249,451
$.249,508$
Tricycles, spead attachment for, Howard \& Stal
Valve, F. Grinnell.................
Valve and valve seat, combined, L. W. 'Truesdel

DESIGNS.

arpet, ©. Magee....................................... 12,57 Umbrella or parasol cover, W. A. Drown.. ..12,56. 12,570 Wall paper, E. Leissnèr...................... 12,571
 Wall paper, E. Leissnèr............................... 12,512 Watch case, H. Untermeyer1273, 12,574

TRADE MARKS

Agricultural implements and machines, certat
Collins Company...
Beer, bottled, American Beer and Ale Bottling
Company.... ... 8, 8,
Bitters, J. E. Ri Dout
Blacksmiths' and machinists' tools, all kinds of,
Wiley \& Russell Manufacturing Company......
Cambrics, R. D. Wood \& Sons
Canued goods, certain. J. H. W. Huckins \& Co.....
Canued goods, certain. J. H. W. Huckins \& Co...... 8.8
Clothing, boys'. A. Shuman \& Co.................... 8, 8,8
Cotton goods, A. McLean.... 8,8
Cotton piece goods, Amoskeag Manufacturing Com-
pany.. $8,846, ~ 8,8$,
Cotton piece goods, Langdon Manufacturing Com-
pany. \ldots............ 8.8
Drygoods, fancy. E. Flax land................... 8,8
Earth working tools, certain. Collins Company..... 8,8
Erygooas, fancy. E. Flax land....................... $8,8,8$
Earth working tools, certain. Collins Company.... 8,8,
Edge tools, certain. Collins Company8,829 to 8.8
Linen fabrics, G. Riggs 8,8
Meats and hams, cured, w. G. Bell \& Co........ 8,8
Medical compound for diseases of the skin, w.
Mulchahey
Pencils and rubber erasers, G. Sch wanhäusser.....
Pencils and rubber erasers, drawinglead, G.Schwan
häusser .. 8.8
Pencils, lead, E. Faber.
Quicksilver flasks. Quicksilver Mining Company..................8. 8,81
Razors, knives, and scissors, W. Brokhahne

Saws, H. Disston \& Sons....................8.862 to 8. 8.
Shirts, collars and cuffs, J. McDonald, Jr. 8,
Sta
Stationery. E. Faber..........
Stove, certain kind of, Magee Furnace Company...
Studs, shirt, Horton, Angell \& Co..................... 8,8
Tobacco pouches. India-rubber. G. Coles 8,8

NEW BOOKS AND PUBLICATIONS.

Little Folks' Everyday Book. Edited by
Amanda B. Harris. Boston: D. Lothrop Amanda B. Harris. Boston: D. Lothro
\& Co. Price $\$ 1.00$.
This little volume, prepared upon the plan of the birth day books which are so popular nowadays, is destined
to win merit and good favor wherever it goes. It conto win merit and good favor wherever it goes. It contains a picture, a verse, and a blank for every day of the year, together with twelve full page pictures in
color, representing the various months of the year, signed by G. F. Barnes.

Address G. W. Turner \& Ross, Manuf'rs and Importers of Firearms, 16 \& 17 Dock Square, Boston, Mass.

HELIOGRAPHIC BLUE PROCESS PAPER.

SPECIAL MACHINERY, TOOIS, EXPERIMGNTAL
Warkete. S. MGHENRY, 927 Fibert St., Philadelp hia,

㘓SHEPARD'S CLLLEBRATED

 SECOND •HAND ENGINES \& BOILERS young For Locke, tituenilie, penv. BLACKSMITHS

是
CLARK'S RUBBER WHEELS ,

ROCK BREAKERS AND ORE GRUSHERS.

FOUNDVALLEYMACHINE CO. Are the best in the world for Boiler Feeding

LEXICONIC ORTHOGRAPHY,
The Great Literary Prize Contest Appropriately Dedicated, ,By L. Lum Smith,
 President.

 THE LATEST NOVELTY IN THE

 The intial ne ORIENTAL CASKET,

 one imabitant of each of the ty states and Territories.

THE ACEENTS' HERALD

 me exactly as below, and it will be attended to within five minutes.)
L. LUM SMITH (Pigeon Hole 6096 A), Philadelphia, Pa.

 Engrazings may head advertisements at the same rate

CET THE BEST AND CHEAPEST.
 PERIN BAND SAW BLADES,

INVENTIORS

 E. L. RICHARDS \& CO., BAND SAW Rat Ratent Proess. Send fors samul mineral wool.

What will the Weather be To-morrow?	
-	Thitamemet
,	wath

12c. "A yione from Mothers Graven:

 inventors and purchasers of patents,

A CHEAP AND EFFECTIVE FINISHED

IMPORTANT BOOKS
Clock and Watch Makers and Jewe'ers.

 DTW The above, or any of our books, sent by mail, at
the publiciation prices, free of postage, to any address in GOI A Special List of Important Books for Jewelers logues, covering every branch of science applied to the
Arts, ${ }^{\text {ent, }}$ feeof potstae, to any one in any part of the
world who will furnish his address.

 NEW ELEMENTS Of HANDRAILING. RUPTURE

 MACHINISTS' TOOLS. Send or new ilisustatee catalagse.
Lathes,
.

ROOFINC.

 SENDTOLONDON,BERRYZORTON THE BEST BAND SAVBLADE WATCHMAKERS.

MACHINERY

of every description. 121 Chambers and 103 Reade Sts.
New York, THEGEORGE L'LACE MACHINERY AGENCY.
 PENSIONS Fivor, fatherdiz mothers or

 DRUNK ENNESS OPIIIM XGEIDEIT

HEAR YE DEAF!

 andex
Shafts, Pillegs, Hevgies, Etc.

000000000
 Profitable to Everybody

 0Farms, Lawns, Cattle, Buildings Gardens, Fruits, Horses, Dairying, Flowers, Grains, Sheep, Swine, Orchards, Cotton, Poultry, Bees. House-
keepers, $\}$
City, village, Conntry. \quad Y Youth \& BEST RURAL and FAMILY JOURNAL in the WORLD:

American Agriculturist,

 A Thousand Original Engravings and Sketches, of Labor-saving, Labor-belping Contrivances. to aid Out-door and In
door Work ; fine Engravings of Animals, Plants, Flowers. Implements, Houses Out buildings, with many plensing, instructive Pictures for Young and Old....Full o Most Useful Information,
 Instructive, Practical, thoroughly Reliable. No one can read a Volume wit.
out getting many Hintsand Suggestions that will each richly repay the small cost.

Many Humbugs Exposed.
For 30 years the Anerican Agriculturist thas constantly investigated and exposed multitudes of Humbugs and Swinding schemes, and thus saved its DISTINGUISHED CONTRIBUTORS: Besides a strong Editorial force, and many contributions from all parts of
the country, the following are among the Special Contributors:

ROOT'S NEW IRON BLOWER.
 RON REVOLVERS, PERFECTLY BALANCED Has Fewer Parts than any other Blower. P. H. \& F. M. ROOTS, Manufacturers, - TOW: CONNERSVILLE, IND

 SEND FOR PRICED CATAL

MACHENERYESEPOT

Holly Water Works, cities, viliages sibierban towns.

HOLLY MFG. GO., LOCKPORT, N.Y.

WITHERBY, RUGG \& RICHARDSON. Manufacturers

"'The 1876 Injector."

 ENGINE. factured by fonm Enine Co. water hlevator. or steam Jet pinp
 made. state for what purpose wanted, and write of

Foreman Wanted for Rednction Works

MOSS ENGRA VING CO THE LARGEST ESTABLISHMENT OF THE KIND IN THE WORLD.

\$5. The Wonderful Mechanical Piano-ette, \$5.

THE STEARNS MANUFACTURING CO., SAW MILL MACHINERY

VOLNEY W. MASON \& CO FRICTION PULLEYS, CLUTCHES, and ELEVATORS

 C. (About eifht words to a line.)
隹
FOR SALE OR RENT.

[^0]

ERICSSON'S

Nev Calici Pinuilig figine
DWELLINGS AND COUNTRY SEATSS. Simplest cheapest, and most economical pumping engine
for domestic perposes. Any servant yirl can operate.
Absolutely safe. Send for circurans and price lists. DELAMATER IRON WORKS C. H. DELAMATER © Co., Proprietors,
. 10 Cortlandt Street, New York, N. Y

BEAUTIFUL HOLIEAY PRESENT. DR. SCOTT'S ELECTRIC BRUSHES. metraordinary ofriz.

During the next 30 days, any Drug or Fancy Store will let you have either the Hair or Flesh Brush on trial, and if they fail to Cure Headache, Neuralgia, Rheumatic Pains, etc., in a few minutes, or quickly Cure Dandruff, Falling Hair, and Baldness, take them back in good con-
dition and the Price will be refunded. They are not Wire, but Pure Bristle Brushes. Sent on the same terms, postpaid, on receipt of three dollars, by GEO. A. SCOTT, 8t\% Broadway, New York.

EUECTORS
Elevating Water anld Conlvejilly Liquils

Sole Manufacturers,
THE COMMON SENSE DRY KILN.

MAKES A SHADED MARK OF TWO COLORS A TA SIN-
GLE

Steè Castings

 Sendfor Circulard Price List of COPE \& MAXWELL M'F'G CO'S STEAMPPUMPS ${ }^{\text {T }}$ BOILER FEEDERS.

WOODWORKING MACHINERY,

ELECTRIC LIGHT.

THE FULLER ELECTRICAL COMPANY, having perfected their system of Electric Lighting. are prepared t.
furnish the Improved Gramme Dynamo Electric Machines and Electric Lamps, either for single lights torm to 20 lights in one circuit. This apparatus is unexcelled for durability, steadiness THE FULLER ELECTRICAL COMPANY, 44 East Fourteenth Street, NEW YorR.

GOLD

 PENS. The CALLI-CRAPHIC, ${ }^{\text {Pc. }}$ MABIE, TODD \& BARD,

THE BAKER BLOWER.
v 1 ?

The revolving parts ar arranted Snperior to any WILBRABAMH BROS,
2318 Frankford Avenue SEND FOR OUR CATALOGUE. PA KORTING UNIVERSAL Double Tube Injector, FOR BOLEER FEEDING
 HARTFORD
STEAM BOILER Inspection \& Insurance COMPANY
W.b. franilin.V. Pres't. J.m. AhaEN. Pres't. J. B. PIERCE, Sec'y

PRADEVS CISHIONED HAMMER ans

 Stevens' Roller Mills, GRADUAL REDURCTION OF GRAIN. JOHN T. NOYE © OONs., BUFFALO, N. Y. ICE AT 1.00 PERTON.

\square
 Model Engines.

Complete sets of
Estald EAGLE ANVILS. 1843 ranted. Retail Price, 10 cts. per 1 b .
LITTLE WONDER.

Working Moodels
\qquad
Steam Fitters' \& Plumbers' Supplies
sturtevaris, FAN BLOWERS.

IRIDIUM:

THE HARDEST METAL KNOWN Not attacked by neids or nikaliess not oxidized ohn Holland's process (patented May 10, 1881) by
THE AMERICAN IRIDIUM CO. s. E. Corner Pearl and Plam Sts, Cincinnati, Ohio
 Leffel Water Wheels, rim Prices Greatly Reduced.
8000 in successful operation.
 James Leffel \& Coi,

[^0]: Largest Belt Ever Made!
 Isoroux

