

THE REMOVAL OF FLOOD ROCK, NEW YORK, BY TUNNELING.

Stinutifit ${ }^{\text {Gmmeriran. }}$

HSTABLISHED 1845.

MUNN \& CO., Editors and Proprietors.
PUBLISHED TEEKLY AT
NO. B'Y PARK ROW NEW YORK.
o. D. MUNN.
. e. beach.
TERMS FOR THE SCIENTIFIC AMERICAN One copy one year postage included..
One copy. six months, postage included
Clubs.-One extra copy of The Scientific American will be supplied gratis for every club of five subscribers at
Remit by postal order
MUNN \& CO., 37 Park Row, New York.
The Scientific American Supplement
a distinct paper from the Scientific American. THE SUPPLEmENT is issuad weekly. Every number contains 16 octavo pages, uniform in size with Scientific american. Terms of subscription for Supplemint, 5.00 a year, postage paid, to subscribers. Single copies, 10 cents. Sold by
news dealers throughout the country. Combined Rates. - The Scientific
will be sent for one year postage free, on receipt of seven dollars. Both papers to one address or different addresses as desired
The safest way to remit is by draft postal
Address MUNN \& CO., 37 Park Row, N. Y.
Scientific American Export Edition.
The Scientific Ambrican Export Edition is a large and splendid periodical, issued once a month. Each number contains about one hundred
large quarto pages, profusely illustrated, embracing : (1.) Most of the plates and pages of the four preceding weekly issuas of the SCIENTIFIC Commercial, trade, and manufacturing announcements of leading houses. T rms for Export Edition, 85.00 a year, sent prepaid to any part of the
world. Single conies 50 cents. Manu facturers and others who desire world. Single copies 50 cents. Manu facturers and ot hers who desire
to secure foreign trade may have large. and handsomely displayed anto secure foreign trade may have large, and handsomely disp,
nouncements published in this edition at a very moderate cost. nouncements published in this edition at a very moderate cost.
The SCIENTIFIC AM MLICAN Exnort Edition has a large guaranteed circulation in all commercial places throughout the world. Address MUNN
CO. 37 I lark Row, New York. co. 3 i l'ark Row, New York.

NEW YORK, SATURDAY, SEPTEMBER 24, 1881.

TABLE OF CONTENTS OF
the scientific american supplement, NO. 299,

For the Week ending September 24, 1881.

 Price 10 cents. For sale by all newsdealers.

 Anses $\begin{gathered}\text { Ansis of } \\ \text { Nitrate of } A m y l\end{gathered}$.
II. ELECTRIUITY ETC.-TMe Elicetric Might in Earnock Colliery

- AGRICULTVURE, ETC.-The Cultivation of Pyrethrum and Manu-

STORAGE OF HEAT

Among the many curious phenomena connected with rystallizable metallic salts, especially those of the alkaline bodies, one of the most interesting is the great influence exer cised upon temperature during the solution of such crystals. It is known that when, for example, a glassful of crushed sulphate of soda (Glauber's salts) is sprinkled with muriatic acid, it becomes liquid, and its solution is accompanied by a degree of cold sointense as to cause any water placed therein, in a second vessel, to freeze; and almost every schoolboy is aware that when common salt is allowed to become dissolved
with a quantity of snow or crushed ice the temperature is reduced many degrees below the freezing point. Withou going into the subject of the conservation or even the corre lation of force, which underlies all actions of this nature, it may be stated that by reversing the experiments just cited heat is produced. Take a thin glass bottle, fill it nearly full of hot water, and dissolve in it sulphate of soda to satura ion; then, while nearly boiling, cork it tightly and allow it o get quite cold. It will be seen that no crystallization takes place, although the water is supersaturated. Now remov the cork, and speedily the whole becomes a solid mass. What we desire here to be noted is that the act of solidification is accompanied by heat, a fact palpable to any one grasping the bottle.
The presence in water of solid bodies, no matter in how fine a state of division, does not alter its boiling point; but no sooner is a crystallizable salt dissolved in water than the boiling point is at once raised, and different salts raise it to different degrees. By direct experiment Professor Tomlinson ascertained that by making saturated solutions of the following salts the boiling point was raised from 212° Fah. to that degree placed opposite to each:

Acetate of soda	256 degrees.	
Nitrate of soda	. 246	"
Nitrate of potash	238	"
Sal ammoniac	236	"
Common salt.	224	"
Sulphate of magnesia	222	"
Alum. .		"
Chlorate of potash..		"
Sulphate of copper.	216	"
Sulphate of iron..	216	"
Acetate of lead.	. 215	"
Sulphate of soda	213	"

An examination of this table shows that there is one salt which far excels all others in its property of raising the boil ing point, namely, acetate of soda
Quite recently an invention of an interesting nature has been made in which this salt is the chief factor; an inven. tion which, divested of scientific language, may be stated to consist of the property of the acetate to absorb heat when subjected to it for some time and then to give it out afterward over a prolonged period-in effect to store up heat, which, owing to crystalline changes in the salt itself during the act of cooling, is continued to be evolved from the latent into an active form. That this is the case is indicated by the fact that the vessel containing the salt, after having been two hours removed from the source of heat, has its temperature raised about 6 degrees Fah. during the third hour by its own inner forces alone.
The physical principle upon which this curious invention is based is old and well known, although the application of the principle is novel. The form in which we have obtained specimen "heater" consists of a somewhat large flask formed of thin sheet brass having its mouth soldered up, for it is never intended to be opened. There is also a metallic loop by which to suspend it in the vessel of boiling water from which it is to derive its store of heat. The length of time required for immersion in the hot water depends upon the size of the heater; for example, if it be so small as to be suitable for being carried in a lady's muff, by which to keep her hands warm, four or five minutes will suffice; but if, on the other hand, the dimensions be such as enact the part of a foot warmer, this time would have to be increased by six or eight times. There are some so large as to require immer sion in boiling water for an hour before they are fully charged with all the heat they are capable of storing.
While the length of time over which heat is given out depends entirely upon the dimensions of the flask containing the acetate of soda, it may be roughly estimated as about four times as long as hot water will retain its heat. A foot warmer which upon removal from a vessel of hot water was found to register 153° Fah., at the end of eleven hours registered 111°. The most sudden fall took place during the 1 first two hours, after which the temperature rose a few degrees, gradually subsiding afterward until it became quite cold. In the case just adduced the foot warmer fell from $1: 33^{\circ}$ to 126° in two hours; it then rose during the next hour to 131°, taking eight hours to fall from 131° to 111°, which it did with uniform regularity.
There are various purposes to which M. Ancelin, of France, the inventor of this new application of acetate of soda, intends to apply it. One or two have been hinted at in course of these remarks; others, such as keeping food or dishes warm at a distance from a fire, will suggest them selves.

The Upper Ohio River steamer Telegraph lately left Huntington, W. Va., with twenty car loads of freight on board, drawing $31 / 2$ feet of water. The Telegraph is one of
the finest and fastest passenger steamers on the river. Her the finest and fastest passenger steamers on the river. Her
length is 290 feet.

OPENING OF GREAT INDUSTRIAL EXHIBITIONS, BOSTON

Boston has for many years had an annual Industrial Exhibition of some importance, under the auspices of the "Massachusetts Charitable Mechanic Association." This year it will have two of these " grand fairs," one having been inaugurated Aug. 18, and the other promising to open its doors Sept. 13.
The one first in progress is under the auspices of the "Manufacturers' and Mechanics' Institute," which is in some sense an offshoot or rival of the older organization, though only in a friendly way, and the result is that Eastern industries and progress will be represented in these fairs more completely than ever before, as the men at the head of each have worked hard to make the best show possible. Two large and beautiful buildings have been erected, both of them with some architectural pretensions, the newer association, however, having the largest, covering five acres of ground, and giving with the galleries nearly ten acres of floor space, and the Exhibition now open is much more imposing than any the country has had since the Centennial. There are so many specialties of great interest to all inventors, mechanics, and manufacturers, as well as the general public, in any great show of this kind, that it is ditticult to pick out for mention only such things as would be novelties to one who had kept fully abreast of the progress of invention and the improvements in machinery. The fair is, however, particularly representative of the cotton and woolen factories and machine shops of New England. The great corporations of Lawrence, Lowell, and Fall River, Mass., Manchester and Nashua, N. H., Providence, R. I., and other places have on exhibition probably the best display of their productions that was ever made. But to properly appreciate the variety and beauty of the fabrics they must be compared with those made at the same mills or imported from abroad only a few years ago, when the greatly enlarged capabilities and improved workmanship of the factories to-day stand out in high relief.
In the machinery for the manufacture of these goods the exhibition presents a comparatively small assortment, although covering some important and recent improvements in looms, carders, and mules. The deficiency in this department is due to the fact that many who would otherwise exhibit here are to be fully represented at Atlanta, but it will be somewhat amended in a few days by the tardy ones who are late in putting up some novelties in cotton and woolen spinning.
In the boot and shoe manufacture the Exhibition leaves nothing to be desired. This is by far the leading feature of the show and attracts crowds of visitors, for never before was this industry, in all its departments, so completely arranged to give the public ample opportunity for an examination into the way in which boots and shoes are made. By a happy conceit also, an aged shoemaker, working by hand after the old style and sitting on a shoemaker's bench which uad been used by two workmen for a hundred years, occu pies a prominent position, as he laboriously "pegs away in the midst of these modern surroundings." About 100 men work here, the machinery running from 9 A.M. till 9 P.M., and the production being about 600 pairs a day.
The leather comes to the Exhibition building direct from the tanneries and currying shops, the sole leather in sides and bundles, and the upper in rolls. The latter is all cut out by hand after patterns, as the workman has to examine the leather carefully to see that particularly strong and good parts come on the vamp or forepart of the boot or shoe. The soles, insoles, and taps are died out by machines which, to an outsider, look far larger than they need be, but this is so that a whole side may come under a cutter's eye at once, and he can place his die so as to save stock, cutting first the thickest parts into outsoles, and the remainder into taps, insoles, and heels.
The uppers, after cutting, are wet, and then passed through a powerful machine which crimps and forms them, drawing the leather out so that it can be lasted easily into proper shape. There are four of these machines. The fronts and backs of the uppers are thea sewed together by a machine, which, after a long process of development, has been made about perfect for this kind of work; after which, with the inner sole, it is taken to a lasting machine, and these two parts made temporarily firm over the last. This last part of the work is something for which inventors have long been trying to perfect machinery, but nothing so far brought out has yet been generally adopted, and the machine here in use for this purpose leaves much to be desired.
After the boot or shoe has been lasted there are four differ ent ways shown here of putting on the sole-screwing on with brass screw wire, pegging, sewing direct through from inside to outside, and sewing on with a welt in imitation of hand work. The brass screwing makes the firmest fastening for heavy work, while it does not make the sole unduly stiff and hard; the wire is actually screwed in, so that it does not break and tear the leather. The pegging machine has long been a familiar object at exhibitions, but it is always interesting to the public. The putting on of the bottom with a welt requires two machines, one of which works with a curved needle in a section of a circle, the inner sole, upper, and welt being first sewed, and then the outsole to the welt. This machinery has been improved through several years, until the goods made by it are now meeting with consider. able public favor, for they meet that demand for flexibility with firmness of sole which many people think are only surely obtained with handwork.

For the trimming, blacking and staining, buffing, and age of the law would be presumed to be abandoned by th burnishing of the soles and heels, a number of very ingenious machines are kept at work; but an entirely new thing in the finishing process is a treeing machine, here shown for the first time. It is so arranged that a dozen boots can be operated on at a time and moderately heated by steam while on the trees, so that the stuffing is warmed through with the leather, and the boot can be made to look, as one manufac turer said, "a dollar a case better."
Of the arrangement of goods and machinery, alike for convenience of access, facility in operating, and effectiveness of appearance, as well as the general management of the Exhibition, it may be said that too much praise cannot be awarded the officers and the executive committee. They are public-spirited men, manufacturers and merchants who have inaugurated the enterprise for the pride they have in Buston and in New England manufactures, and in such a spirit they are carrying it on

promotions in the patent office.

The following changes were made in the staff of the Patent Office, July 1, 1881:
Marcellus Gardner, of New York; John W. Babson, of Maine; and Schuyler Duryee: from fourth class clerkships to be chiefs of division-salary $\$ 2,000$.
Samuel B. Roane, of New York; Reuben S. Parks, of Ohio; and Louis W. Sinsabaugh, of Ohio: from second assistant examiner, to be first assistant examiner-salary $\$ 1,800$
David G. Purman, of Wisconsin; Marshall B. Cushman of Massachusetts; Edward M. Bentley, of Connecticut and Albert C. Fowler, of District of Columbia: from third assistant examiner to be second assistant examiner salary $\$ 1,600$.
William L. Augenbaugh, of Ohio, from first class clerk to be second assistant examiner-salary $\$ 1,600$.
The following have been promoted or newly appointed to the office of third assistant examiner-salary $\$ 1,400$: John W. Clements, District Columbia, from second class clerk; James B. Littlewood, of Illinois, from first class clerk; Rufus A. Morrison, of Pennsylvania, from copyist; Robert G Read of Pennsylvania, and Walter F. Rogers, of Pennsyl vania, new appointments. George R. Byington, of Cincin nati, promoted from first to second class clerk-salary $\$ 1,400$
The following have been promoted to first class clerkship -salary $\$ 1.200$: William Hendlay, District Columbia; Fred erick W. Crocker, New York; St. Clair F. Sutherland Mississippi; Frank P. McLean, New Hampshire; Thoma Hoge, Pennsylvania; Mrs. Frank R. Lybrand, Ohio; Daniel Clarke, Maryland
Frederick R. Gantt, from draughtsman, at $\$ 1,000$, to skilled draughtsman-salary $\$ 1,200$.
The following rise from copyist, at $\$ 900$, to first classsalary $\$ 1,200$: Henry E. Baker, of Mississippi; Julia C. Dowell, North Carolina; Milnor R. Sullivan, Ohio; Frank M. Ward, District Columbia; Thompson J. Hudson, Ohio George H. Evans, District Columbia. To a salary of $\$ 1,000$ the following: Gormond Crandall, New York; William B Atkinson, District Columbia; William A. Redmond, District Columbia; James M. Pollard, Louisiana; Thomas H. Mitchell, Tennessee; Archibald McNaught, Wisconsin Mrs. Mabel Hatch, New Hampshire; William H. Chapman Ohio; Thomas R. Stuart, California, to draughtsman.

reviving old rejected cases,

Under the former practice of the Patent Office cases occurred in which widely established industries, worked fo years free of any patent, were suddenly injured and crushed by the unexpected reissue and grant of some aged, long slumbering, rejected case.
It would appear from a recent decision by the present Commissioner of Patents, Mr. Marble, that he is not one of those who favor such revivals.
In a recent appeal to the Commissioner of Patents, in the case of F. W. Smith, applicant for a patent for a sweat eather, it appeared that the application was originally filed and rejected in 1871. In 1879, nearly eight years having elapsed, the inventor files a new application, intending there by to revive the old case.

The Commissioner says

"The law applicable to this case is section 32 of the act of 1870 (Rev. Stats., sec. 4,894), which reads as follows:
' All applications for patents shall be completed and prepared for examination within two years after the filing of he application, and in default thereof or upon failure of the applicant to prosecute the same within two years after an action thereiu, of which notice shall have been given to th applicant, they shall be regarded as abandoned by the parties thereto, unless it be shown to the satisfaction of the
Commissioner of Patents that such delay was unavoidable.'
"'The authorities cited in behalf of Smith (Colgate vs.
"The authorities cited in behalf of Smith (Colgate vs
Western Union, Smith vs. Dental Vulcanite Company, and others) to show that this diligence has been reasonable, and that he has not abandoned the invention, were cases under the law of 1836, and are therefore inapplicable to the present case. Under that law an application might be renewed after lapse of any period of time unless it appear that the inven
tion had been in the meantime abandoned (Bell vs. Daniel, tion had been in the meantime abandoned (Bell vs. Daniel, 1
Bond, 212), and that, too, though the first application had Bond, 212), and that, too, though the first applicatio
been withdrawn. (Godfrey us. Eames, 1 Wall., 317.)
" The present law was devised to overcome the many evils which had sprung up under this practice, and provided that
parties at the expiration of six months from the date of the passage of the act, unless in the meantime they should be renewed (section 35, second proviso), and that for the future all applications for patents not prosecuted within two year after any action therein shall be presumed to be abandone by the parties, unless it shall be shown to the satisfaction of the Commissioner of Patentsthat the delay was unavoidable I am not aware that this section of the law has as yet received judicial attention, but I find no difficulty in discovering the application of the law to the facts of this case. It is clear that only an extraordinary combination of circumstance could unavoidably prevent an inventor from taking some step in connectín
eight years.

Attaching full credit to the statements of the affiants tha mith was continuously in straightened circumstances, and that he expressed at various times his desire to obtain patent for his invention, I do not find that at any time he made any serious efforts to abtain assistance in prosecuting his application, or that it is clear, as a matter of fact, that it was his constant intention to renew the application or pro cure a patent for his invention.

I must hold that Smith's application, filed in 1871, wa abandoned by operation of section 4,894 of the Revised Sta tutes, and that he must stand upon his present date of tiling.

STEAM-BOILER NOTES.

The percentage of active steam boilers that violently explode with fatal effect is not at any time very large; statis iics show that there is but about one in two thousand annually of those in use in England, equal to one per cent in twenty years. The number of cases, therefore, that may be actually observed by any one person in a lifetime that is devoted to he common business of life is very small, so, there being not more than one person in a thousand of those who do observe hese accidents who is capable of forming a reasonable opinion as to the cause, and not more than one in a hundred thousand who, being capable, does actually see and study more than his quota of cases, it is not strange that there are differences of opinion that result in bickering and recrimination among those who are accustomed to have thei opinions respected and who have set up in the business of eaching a branch of engineering that they themselves have not practically studied.
The number of persons who attempt to make a thoroug study of boiler explosions that have the opportunity to see one in the act is still smaller, and perhaps not a single one qualified by previous experience and by scientific attainments to be a good judge, and devoting sufficient time to the subject, has even favored the public with his views.
It seems to be a defect in the means of getting information hat the informants are not reliable, being frightened out of their wits by the explosion or interested in making out that they had done their duty faithfully in the management before it occurred, and their testimony is, therefore, of the most unreliable sort, although they appear while giving it before juries to be respectable and reliable witnesses. Many times, perhaps most often, a careful examination of the remains of the boiler and its attachments would show that some of them are mistaken; that without a reversal of the aws of nature their statements could not be true; but being accepted, the whole thing becomes an inexplicable mystery. Some theory must be applied to the case by the wiseacre who should have carefully examined every detail of the wreck and eliminated all impossible and contradictory ele ments before giving their opinions as experts, weighing carefully all the possibilities and discarding all alleged depend on human acts, perceptions, or emotions.

DR. HEATH'S DISCOVERIES IN SOUTH america.

In the Scientific American of June 18, 1881. an account was given of the successful journey of Dr. E. R. Heath down the previously unexplored portion of the Beni River, Bolivia, and his discovery of abundant rubber and cinclion forests there. The Kansas City Revievo for September con ains further particulars of the expedition, compiled from Dr. Heath's letters to his brother in that city, with a sketch map of the part of the river now for the first time opened up to geography and commerce.
Dr. Heath writes that the news of his successful passage through the country of the cannibals spread like wildfire New rubber forests are to the people of that region what new gold fields are to the inhabitants of North America and immediately something like a stampede occurred Everybody talked "Beni," and 10,000 men had gone down oo the new rubber region. Last year the export of rubbe from the Beni was 15,000 pounds; this year it will be 750,000 pounds; and next year it will probably rise to ,250,000.
Dr. Heath has proved himself to be not only an enthusiastic but an exceedingly piucky and capable explorer. He writes that he intends to return home this fall to organize an expedition for exploring the Madre de Dios, a river much arger and longer than the Beni, and quite as little known His plan is to begin his survey at the ancient Inca capital of Cuzco, in Peru, and descend the Madre de Dios from its smallest beginnings, spending at least two years in the work. Besides the work of exploration he hopes to discover rich deposits of the precious metals, new forests of cinchona trees, valuable textile and medicinal plants, rubber forests, and other contributions to commerce and science.

The Exhibition of Electric Light at Paris.

the Editor of the Scientific American

The first public exhibition of eiectric light, which took place on the evening of Saturday, Aug. 27th, was, in many respects, a failure, but few of the systems being in good order, and many of them unable to be exhibited at all. Not withstanding this fact, those who were present were forced to admire the brilliant display of the new and wonderful progress of electric lighting, and to speculate upon its uture career.
It is thought by some, it is true, that the gas companies will be encouraged rather than otherwise by the exhibition of electric light, and will have confidence in their security for some time to come; but whether electricity is to take the place of gas or not, depends in a great measure upon the final decision of the general opinion of the public. At the pres ent moment I am inclined to be of the same opinion as the ga companies themselves. Those portions of the exhibition of lights which are worth mentioning, are first, and above all, the Siemens and Halske lamps. It is only fair to say that here was nothing in the whole exhibition to compare in brilliancy and effect with the luster of the two great lamps of this firm. The Jablochkoff lamps which we have heretofore so much admired were quite thrown in the shade and actually had a mean appearance before these exquisite burners Next in order to the Siemens and Halske lights must be mentioned those of Brush. This was a truly fine display and attracted general admiration and wonder, not only on account of the great number and perfect working order of the lamps, but also because that the system is said to be by far the least expensive, and, therefore, the most practical on exhibition. Next in order may be mentioned the Jaspa lamps, with immense reflectors. These lamps gave a very agreeable, steady light, and for some purposes may be co sidered very practical. Before going further, I must speak of a new system which gave great satisfaction and was much admired by the visitors, viz., that of the Austrian engineer, Gulcher.
This exhibition consisted of eight fine lamps, which gave steady, soft, mellowy light of a yellow color and of great strength.
The light of the Siemens and Halske firm, as also that of Brush and of Jaspar, is more white in color
The exposition of the Swan and Edison and Maxim lamps of incandescence afforded a particular surprise and pleasure to those who had not heretofore witnessed them They gave an impression of elegance and taste which re called vividly to mind the candle chandeliers of our ances ors, which still retain the post of honor in many European mansions. But of the practicability of these systems we are not yet informed.
To the unprejudiced eye of the general spectator there were no other systems on exhibition which were worthy of note. However, as we have said, many of the lamps of other systems were not yet in order, and there may be occaion for a different opinion in future, in case some of these unfinished systems should excel those we have named.
The French department was a cause of regret and wonder as far as regards their exhibition of lights, that department being quite thrown in shadow by the more successful and brilliant foreign departments
The light-house, which was intended as a great addition to the general display, proved in fact to be a perfect nuisance its colored, revolving lights casting a ghastly and ominous shade over the different systems of lamps in the gallery and prohibiting the spectator from forming any just estimate of their value.
Some of those systems which were ill worked made most ludicrous display, puffing and winking, now darting fire, now presenting a mere dull coal to the looker on, sume times even going entirely out.
Finally, whatever else may be said in favor of electric ight, there remains one serious and insurmountable objec tion to it, which will place one half the human race in direct opposition to its adoption, and that is, that it lays bare all the secrets and defects of the complexion, nay, even adds hideousness to it, whereas the mellow gaslight added many a charm and smoothed many a wrinkle.
Whether our scientists and speculators in the scientific mines will take this last-mentioned fact into consideration remains to be seen. One thing is sure, the pleasure felt in gazing upon the electric lights is much destroyed by the dis agreeable feeling experienced in looking upon each other though it must not be forgotten that the incandescent lamps are an exception in this respect, and, therefore, if practical in other respects, will no doubt take the palm for all indoo use.

Gustave Glaser.

Look Out for the Pilgrim

A mysterious star, called the Pilgrim, which was observed iu 945,1264 , and 1572 , is expected by astronomers to appear before long. It was described in 1572 as brighter that Jupiter, and "such was its brilliancy that persons were able to detect it at noon in a clear sky, and at night when the ky was so overcast as to hide all other stars." If it appears it will probably be visible for several weeks in the constella tion of Cassiopeia

Deep Shaft in Victoria.-The Melbourne Age state hat the Magdala shaft, Stowell, has a total depth from the surface of 2,930 feet, or 1,566 feet below sea level. This is the deepest shaft in Victoria.

INSTANTANEOUS PHOTOGRAPHY.

We are indebted to Gen. Henry L. Abbot, U.S.A., in charge of the -Engineer School of Application, Willet's Point, N. Y., for copies of photographs illustrating the remarkable sensitiveness of photo-gelatine plates, which we will briefly describe. It became necessary, one day, at Willet's point to destroy a worthless mule, and the subject was made the occasion of giving useful instruction to the military class there stationed. The mule was placed in proper position before a photo camera and duly focused. Upon the animal's forehead a cotton bag was tied containing six ounces of dynamite. The lide of the camera was supported by a fuse; the camera fuse and the dynamite on the mule's head being connected in the same electrical circuit, as shown by the wires in our engraving. On pressing the key so as to send the electricity through the wires, both he fuse and the dynamite were simultaneously fired the camera slide and the head of the animal fell nearly together. The photo-sensitive plate was impressed with a picture of the headless creature, still standing, before its body had time to fall.
Fig. 1 of our illustrations shows the animal, camera and electrical wires in position for firing. Fig. 2 shows the ppearance of the animal after the explosion, as taken on the photo plate. The experiment was made June 6 last.

The Bah
The new data lately obtained by the United States coast and geodetic steamer Blake, Commander J. R.

Fig. 1.-INSTANTANEOUS PHOTOGRAPHY.-BEFORE THE EXPLOSION. shows that the Bahama banks extend in an almost where the tree was 12 feet through. The Commercial adds and polishing. of the of the evel plateau, nearly 200 miles wide, off the Carolinas, and drawing to a point at Cape Hatteras, only twenty-five miles off shore there being nearly two thousand fathoms. The arerage depth on the plateau was found to be a little ove four hundred fathoms.

A Costly Dog Collar.

A San Francisco jeweler has lately made for a noted trick dog a collar described as follows:
The collar is made in twenty-four sections, comprising quartz, petrified wood, and silver silicates, such as never have been worked before, representing in their natural form perfect Japanese characters. Six of the sections are made in cabinet work representing fifty-seven different mines, with all the colors of quartz-black, pink, white, and greenish casts of every kind. At each end of the collar the section is of carbonate of silver with malahite streaks; then in regular rder silver quartz; cabinets with minerals from different mines; then petrified wood and gold quartz until the center is reached, which is a large, oval-shaped cabinet with different ores, and the name of the dog, "Zip," in solid gold letters covered with Japanese crystal As a pecimen of California work manship this is undoubtedly he finest that has yet been seen, both for beauty of design and excellence of workmanship, every prominent mine on the whole coast from Tombstone, Arizona, to Silver City, Idaho, being represented. The fastening is a lock of solid gold inlaid with platina.

Rapid Town Making.

About the middle of August
a stampede took place from Deadwood, Central City, and five centuries old. There were to be distinctly seen over 300 Lead City, Dakota, to a new and wonderfully promising rings, and it is not known how long since it completed it silver region about ten miles from Deadwood. A town was laid out, lots drawn for by all present, rules of government agreed to, and the place named "West Virginia City." In forty-eight hours the town contained nearly one thousand in habitants, and nine saloons were in operation. On the third
growth, as it has been dead for many years.

MECHANICAL INVENTIONS

An improved elevator and carrier has been patented by
day two faro banks were opened, restaurants were started, consists of novel devices for holding the carrier in place nd, to cap the climax, on the fourth day the first copy of a while loading, for unlocking the carrier so that it may be aily newspaper, called the Carbonate Reporter, was issued. moved on its track.
Fifty buildings were erected in one.week, and as high as An improved petticoat pipe fastsuer has been patented by $\$ 500$ paid for building lots. The town promises to be per manent, as there have been many rich finds.

Kentucky's Biggest Tree Felled.
The Louisville Commercial reports the felling of Kentucky's
rgest tree near Carr's. The tree measured 18 feet in diam
argest tree near Carr's. The tree measured 18 feet in diame-
Pr Mr. Patrick J. Cleary, of Golden, Col. The object of the
invention is to provide a secure, rapid, and convenient method of attaching, supporting, and removing the petti coat pipe in a locomotive smoke stack.
An improved cotton press has been patented by Mr. Theophilus Griffin, of Scotland Neck, N. C. The invention con sists in a novel arrangemen and combination of ropes and windlasses, whereby great power is obtained

William Lay, of Atlanta Ga., has patented a cheap simple, and economical wate motor that can be operated with a small quantity and bu slight fall of water. The in vention is designed as an im provement on the water mo tors for which Letters Paten No. 223,930 and No. 227,023 were issued to the same in ventor January 27, 1880, and April 27, 1880, respectively.
An improved machine for making shoe buttons has been patented by Mr. Marcus M Rhodes, of Taunton, Mass These improvements relate to machines for forming the heads of the buttons from papier mâché blanks, cutting off the wire blanks, and form ing the eyes and pressing th button heads upon the shank of the eyes automatically and by successive operations in proper order.

A machine for beating and polishing rice has been pa tented by Mr. Jacob R. Sam ple, of Summit, Miss. The object of this invention is t er at the base. The cut was made 6 feet above the ground, facilitate the semoval of the

From the cut to the first limb can be made eight good Mr. Lewis R. Budd, of Cambridge, Texas, has patented length rail-cuts, each 10 feet long, which would split enough improvements in moulds for constructing earth and stone rails to feuce a small farm. The first limb was nearly a half fences; and it consists of a mould or guide for a solid fence dozen feet in diameter, and it would have, by itself, made a made of sod and earth, or stone and earth, or other material very large saw log. Nearly all the small limbs had fallen An improved hoisting machine, patented by Mr. William and decayed away. Its plank measurement is computed at B. Padgett, of Batesville, Ark., consists in a novel arrange nearly 50,000 feet, besides several limbs that would make, ment, a platform, a hollow screw shaft, a series of wind altogether, 25 cords of wood. On the day of the felling a lasses, a rope or chain, and a series of pulleys, whereby prolarge concourse of people marched from Vanceburg to the vision is made for raising and lowering weights, and for place. Colonel W. S. Rand, an able speaker, was the orator other purposes,
prace. Col
of the day. He and others, qualified to be good judges of Mr. William W. Hills, of Cadillac, Mich., has patented

Fig. 2.-INSTANTANEOUS PHOTOGRAPHY.-AFTER THE EXPLOSION
. Daniel Dockstader, of Fonda, N. Y. The invention $\begin{aligned} & \text { stop beads, parting strips, nor } \\ & \text { for attaching the cord or chain. }\end{aligned}$

Ans improved sash cord fastener has been patented by essrs. Thomas P. Dunne and Paul Rath, of New York The object of this invention is to facilitate the attach ing of the sash cord from which the balancing weigh is suspended to the sash in such a manner that neither the stop beads, parting strips, nor the sashes need be removed improve the construction of cant hooks in such a manne as to make them stronger and more convenient and service able.

A machine for attaching tags to plug tobacco has been patented by Mr. August Mar kert, of Jersey City, N. J The invention consists in vertically sliding platform provided with suitablegauges etc., pressed upward by springs, and provided with a removable longitudinal strip with apertures of the same size and shape as the tags, into which a series of verti cal posts of the base of the machine project. The tag are placed upon the uppe end surfaces of the posts with the prongs projecting up ward, and the strips of pape and pieces of plug tobacco are placed upon the platform upon which the piece of tobacco, and consequently the platform also, are depressed, and as the posts are rigid the tobacco can only be depressed until it rests on the posts; but by this operation the prong of the tags have been forced into the tobacco.

ELECTRIC FLYING MACHINE.

The improvements recently made in electric motors have suggested to the eminent French electrician, M. Gaston Tissandier, the idea of employing these machines to propel air balloons. They can be used in connection with M. Planté's secondary couples, which store a large amount of electric nergy and weigh relatively little. Such a motor pos sesses great advantages. There is no danger of firsesses great advantages. There is no danger of fir-
ing the volume of hydrogen above, and it has a ing the volume of hydrogen above, and it has a
constant weight, there being no decrease by comconstant
bustion.
In making his experiments M. Tissandier employed a small oblong balloon ending in conical points. This balloon, which is like that used by M. Giffard, is 3 m . long by $1 \cdot 30 \mathrm{~m}$. in diameter, and has a volume of about 2200 liters. Inflated with pure hydrogen it has an ascensional force of 2 kilogrammes.
It is worked by a small electric motor resembling the Siemens dynamo, and weighing 220 grammes. This works a light propeller 40 inches in diameter. This motor is suspended below the balloon, and will propel the balloon for several miles with a Planté element of 220 grammes, while with a secondary couple weighing $1 \cdot 300$ kilogrammes the duration of its rotation is considerably increased. Under these conditions the armature turns 6.5 times a second, and acts as a propeller, giving the balloon a speed of 1 m . a second during more than 40 minutes. With two secondary elements, a propeller 60 inches in diameter can be used, which will propel the balloon at the rate of 2 m . a second during 10 minutes; and with three elements a speed of 3 m . can be obtained.
These experiments took place in the "Conservatoire des Arts et Metiers," at Paris, in a large hall, where the balloon could move freely, restrained only by a light rope dragging behind it, which served at the same time to guide and to measure its speed.
The working power of the electric motor was measured by the simple method of lifting weights. A secondary element, and afterwards wo elements together, were attached to the motor, and it was found that the swiftness of the revolutions varied according to the weight lifted.
This little motor, when developing a maximum of energy with a single element, produced a force of 90 grammes at a speed of 5 revolutions a second. With two elements a speed of 12 revolutions a second was obtained and a power of 420 grammes. With three elements the power was 1 kilogramme.
In working with two elements, if the speed is reduced to 5 or 6 revolutions a second, the power is also reduced, and, on the other hand, if the speed becomes greater than that which corresponds to the maximum power, the working force is correspond ingly reduced. For example, if the speed obtained is 14 or 15 revolutions a second, the power is only 375 grammes. The manner this trial balloon acted, and the speed obtained with the propeller, afford a very satisfactory outlook for aerial navigation, as it must be remembered that in balloons the surface does not increase with the volume, consequently the results obtained with larger balloons would be still more favorable.
In working condition an electric motor equal to 6 horse power and weighing $3: 0$ kilogrammes, with 900 kilogrammes of secondary elements, would easily carry 1,200 kilogrammes when attached to
3,000 cubic meters, elongated in hape like those used in 1852 by M. Giffard, and in 1872 by M. Dupuy de Lôme. This balloon would be 40 m . long by 13.50 m . ould be 40 m . long by $13 \cdot 50 \mathrm{~m}$ wide across the center, and it scensional force would be abou ,300 kilogrammes. It would weigh, with all its accessories, 1,200 kilogrammes; so there would remain for the voyagers and for ballast over 1,000 kilo grammes. In calm weather this balloon, worked by an armature of 5 to 6 m . in diameter, would btain a speed of 20 kilogramme n hour and in windy weath ould be powerful pough to move out of the direct line of he air current.*
Of course, this balloon could only go for a limited time but that could easily be decided by experiments, in which result even more favorable might be obtained by making the motor and piles especially light for this purpose.
Until now no balloon haseve been really steered, that is, has

* Of course the idea of guiding bal loons against strong winds belongs to
Utopia; but for shorl voyages, such a Utopia; but for short voyages, such a would be very valuable to be able to steer the balloon.
ever returned to its point of departure after having navi gated the atmosphere at the will of its pilot. Necessarily such voyages can only take place in calm air and during short time; but the essential point is that they have succeeded at all; and no physicist can deny that the electric motor and the secondary piles have solved the problem of aerial navigation.

PROPELLER OF ELECTRIC FLYING MACHINE.

Southern New Jersey Sinking

Professor George H. Cook, State Geologist of New Jersey, concludes that the land in Cape Nlay and Cumberland counties is gradually but certainly sinking. From knowledge now in his possession he estimates that the surface has settled about eight feet during the last hundred years. During a recent visit he declared it his intention to test the matter by placing stone posts in the ground at certain localities, record of which should be kept so as to insure their being

ELECTRIC FLYING MACHINE
found at any future time, said stones to be so set and marked with reference to their height above the sea level that it may be positively ascertained whether this portion of the State is becoming lower, and at what rate.

The Alphabet in Prehistoric America

At the recent Science Convention, at Cincinnati, Major Wm. S. Beebe, of Brooklyn, read a very sugges tive paper on the inscribed records of the Mound Builders, especially those discovered at Piqua, Ohio and Davenport, Iowa. The former were on tablets of earthenwere, the latter inscribed slates. On the Piqua tablets the characters are in horizontal lines and in four of these lines they were, in each case six in number. In the fifth and remaining instanc there were five, but this arrangement was some dis tance, in the longitudinal direction of the tablet from the group first mentioned, which were in both cases written in couples.
One of the Davenport slates was inscribed on one side, the other on both. The stoneinscribed on but one side bore on its surface a series of concentric circles Between the outer two of these were twelve equi distant signs, presumably the zodiacal signs. Th slate had two perforations on one of its edges, evidently for suspension.
Major Beebe claimed that the Piqua inscriptions are the names of the eight zodiacal signs on the Davenport slate, excepting Capricornus, Aries, Cancer, and Libra, which four signs are represented by four initial letters on the back of one of the Piqua tablets, and which representing the north, west south, and east respectively, and corresponding to the Tucatec Bacobs, or world holders, as they were called, and to which a peculiar importance is at tached.
The forms of the Piqua letters are almost precisely those that occur about the Mediterranean, and whose phonetic values have been determined by Alois Hess. Major Beebe believes that he has been able to trace each form of letter to aboriginal Ame rican picture symbols, in which the same signifi cance obtains in both European and American forms. Having fixed the significance of these letters, he has, he says, deciphered the inscription on the stone from the Grave Creek Mound, West Vir ginia, and that on the Pemberton ax. In all these cases the names deciphered refer to certain stellar combinations, and in the case of the slates and tab lets, which are perforated, were probably in the nature of charms. In the case of the Pemberton ax part of the inscription is read with the edge of the axup, the remainder with the edge down, and this inscription, too, probably, had reference to some rite or species of divination in which the ax played an important part.
A very significant feature in regard to this ax is, that the names read on the ax, when held with the edge up and down, have been preserved with the change of but one letter by an Esquimau tribe in Northwest America as the names of their deities of good and evil respectively whereas the ax itself was found at Pemberton, N. J. Th generally prevalent idea as to the relation of the Esquimaux and preglacial man makes this incident peculiarly suggestive.

The Crater of Kilauea
Tourists to Kilauea will remember certain active pools of lava, the North and South lake which ordinarily bubbled and tossed a fiery flood at a depth of about 120 feet below the floor of the great crater. Now, says the Honolulu Advertiser of July 26 , these lakes have all been filled up, and there have arisen peaks and cones of hard lava that rise over 100 feet above the south bank of the great crater, which is about 1,000 feet high. But there has burst forth a new open ing in the great crater floor no far distant from the old lakes, new lake, almost round in form, about 600 feet across, and 70 feet in depth, in ordinary stages, be low the surrounding brink. Here the great Hawaiian volcano pre sents the most varied fantastic play of liquid lava. Sometimes it almost seems to steep, and the disappointed visitor looks down into a black valley, and observe a smoking pit giving no mor evidence of combustion than tar kiln. The surface present a dark silver gray hue, with a dark sine Bray hue, with satiny shine. This is a crust o quiescent lava, and the observe who has expected to have his sense of wonder strained to speechlessness says: "Is this all?" No! look! the frozen glassy lake is alive. What a
heave in the center-some mighty beast lifting up that floor!
Now a wave runs round the incrusted marge, and there is an outburst, a blood-red fount, gushing and bubbling from one of earth's arteries. The broad disk of the lake heaves and trembles. Fitful caseous flashes flit across. The moving floor cracks. A serrated fissure, like the suture of a skull, runs from marge to marge, and quick, darting treaks, sudden cracks of the crust, shoot across in all directions. These serrated streaks are at first rosy lines on the ray surface, then they widen like crimson ribbons, broad ening to the view. They undulate with the billowy motion of the whole upheaving surface. Another crimson fount prings up along the now fretting and roaring sim of the lake, and another and another of the wildly up-leaping fountains of fire toss high their gory crests, even casting gouts and clots of the red spray that fall and harden nea the observer's feet. By this time the spirit of our inferno is aroused. The fierce red lake is all boil and leap and roar. It is more than the roar of sea surfs. The surging tide of he molten earth sounds a deeper bass than any note of the ea; and the heaved-up crust, broken into fragments, i churned and dissolved in the boiling flood. The roaring gulf is now, indeed, a vortex of indescribable glories and terrors.

DE COMBETTE'S SOLAR WATCH

Sun dials are of two kinds: in one the hour is indicated by the inclination of the shadow, and in the other it is shown by its length. The inventor of the very simple mode
The arrangement of the "watch" is as follows: To the sides of a block of mahogany are affixed four clasps, which serve for holding in place the cards upon which are inscribed the different months. In the engraving, we have the car for the months of May, June, and July. Over the top o the block extends a rubber band which is fixed to the sides by means of rings. A third ring, through which the band passes, serves for holding the apparatus. A steel needle hav ing an aperture at one extremity serves for projecting the shadow on the card.
To use the apparatus, the unperforated end of the needle is placed between the wood and the rubber, on the line of the day of the month. Thus, in the cut it is on the line o the 15 th and 20 th of June. The apparatus is then held by the ring, and turned to the right or to the left until the shadow ex actly coincides with the line. The luminous point projected by the eye of the needle indicates at the right the hour for the morning, and to the left that for the afternoon. It will be

de combette's solar watch

at once seen, on reading the card, that on the 20th of June the sun is at its greatest elevation, and that on the 25th it is at the same height as on the 15th; and that on the 1st of July it is at the same height as on the 10th and 50 th of June, etc.

The figure to the right shows the apparatus inclosed in its case.-La Nature.

Scientific Exploration of the Northwest

It is said on good authority that the Northern Pacific Railroad Company and the Oregon Railway and Navigation Company have united in putting a scientific exploring ex pedition into the field, for the purpose of examining into the mineral, agricultural, and other resources of the territory tributary to the two companies between Lake Superior and the Pacific coast. Prof. Raphael Pumpelly, until now in charge of the coal and iron department of the late national census, has been appointed chief of the expedition, and he has already started for Montana to examine the principal mining districts in that Territory. The work of the expedition will extend through several years.

SELF-REGISTERING TARGET

The target here illustrated is the inveution of Dr. Wilson, f Hawkhurst, Eng. It consists of a sufficiently thick plate of iron, out of which six circular disks or concentric flat faced rings of necessary breadth are made, as seen at Fig. 1 The rings must be of such diameters that there shall be clear opening all round between each of them of about threesixteenths of an inch or a quarter of an inch, so that the d:sk rings-see Fig. 2, back of target-hang by hooks of sufficient length on the cross rod, K K, and work on it, as an easy joint, may move backwards and forwards without

touching each other. They support in pairs-with the ex ception of No. 5-one of the disk rings, which form the face of the target, F F support ring $2 ; \mathrm{D}$ E, $\mathrm{D}^{1} \mathrm{E}^{1}$, support rings marked 3 ; $\mathrm{BC}, \mathrm{B}^{1} \mathrm{C}^{1}$, rings marked 4 ; and A supports 5 , the bullseye. When the bullet hits the face of one of the disk rings, it swings back, but, by the ring's own natural weight, it immediately rights itself, and falls back into its original position. Tue spots, 123456 , are nipples or tongues. One is fixed in the back of each of the disk rings; and when the ring is suddenly forced back, its nip ple plunges into a small hole-see Fig. 3-opposite, to cor resp nin in the strong plank, A A, faced with iron, behind the target, and to which the target is fixed. The holes in A A, Fig. 3, are also marked 1 to 6 ; into these the nipple plunges deep enough to touch the sensitive needle, and through thi medium sets a signaling apparatus in motion. The sensitive needle must be sufficiently dec p in each hole to be entirely protected against any accidental breaking and flying about of pieces of the bullet. The electric apparatus can be made safe behind the broad plank, A A. On the inside of the crossbar, B B, Fig. 3, a short distance behind the target disk, there are pads or buffers, to deafen the harsh sound of the iron disk in dashing against an iron sur face, and also to prevent the disk ring being thrown back too far by the impact of the bullet. In Fig. 1, 5 represents the bullseye; then 4 and 3 are each divided into two rings. If the bullet strikes on the opening between 5 and the inner ring 4, forcing both back, it would not be a bullseye, but the best position on 4 ; if on the inner ring of 4 only, it would be a more valuable position than if it struck on the opening between the two rings marked 4 , forcing both back but this position of the shot again would be still more valuable than if the bullet hit the outer 4 ring only. These hits would point out a relative value, say equal to $43 / 4,41 / 2,41 / 4$, 4, yet all equal to 4, but showing a difference, and they can be recorded with unfailing accuracy in the firing point at the moment the bullet hits the target. The rings marked 3 may be divided in the same manner. Thus eleven differ ent values of hits may be recorded by this target. The hooks by which the disk rings hang require to be consider ably bent outwards, all except F F, to allow the rings to swing sufficiently far back, and not touch any of the other's hooks.

Trade Schools in New York

In the fall of 1880, under a joint arrangement between Richard T. Auchmuty, of this city, and the trustees of the Metropolitan Museum of Art, a technical school for the in dustrial education of artisans in the elements of mechanics and of design was established in a building specially erected and presented by Mr. Auchmuty for the purpose, and situated in First Avenue, near Sixty-eighth street. The school at once drew a large attendance. Classes were.formed for practical instruction in drawing and design, decoration in distemper, modeling and carving, carriage draughting and plumbing, and no less than 143 pupils were enrolled. The school was open day and evening. Lectures were given by specialists in the trades and arts, but a prime feature was made of shop instruction by foremen and journeymen from factories in this city.
Since the schools were closed last spring a wealthy gen leman of this city has given $\$ 50,000$ to the Metropolitan Museum of Art, to be devoted to the advancement of art education. lt has, therefore, been deemed best to withdraw the art classes from the building at Sixty-eighth street and to establish them on an independent basis at Glass Hall, in Thirty-fourth street. The artisan classes will remain in the Sixty-eighth street building, and be known as the New York Trade Schools. The school for the decorative arts will be under charge of Mr. John Buckingham, former manager of the schools, and the trade schools will be under the superhad charge last winter of the classes in plumbing and sanitary engineering.

The course of instruction for the coming year will em brace many new features. There is a large and well ap pointed workshop, where instruction will be given in the manual branches of the trades. Attached to this workshop will be a collection of the articles and materials used in plumbing. It is proposed to make this collection as com plete as possible. Dr. Chandler, president of the Board of Health, and Professor Egleston, of the School of Mines of Columbia College, will take part in the series of lectures to be given to the class.
These trade schools are not intended to be either a chari table or a money making institution, the charges being based on the actual cost of the instruction given.

a DEADLY FLY.-NEW CASE OF MYIASIS OBSERVED

 IN THE ARGENTINE REPUBLICMr. P. Auguste Conil has recently described, in the $A n$ nales des Sciences Naturelles, some new cases of myiasis ob served by him in the province of Cordoba (Argentine Re public). This affection, which is nearly always fatal, is brought about by a fly, Calliphora anthropophaga, Conil, represented herewith, and which, depositing its eggs in the nostrils of an individual, lays the germsof a horrible malady We will allow Mr. Conil to describe in his own words one of the cases that he witnessed:
-The house situated alongside of mine is occupied by Mr. Auguste Ortiz, whose family lives at Totoral, a village lying sixty miles to the north of Cordoba, very near the line of railway connecting the latter with Tucuman. One of hi isters, Josefa Ortiz, aged 18, was taken sick, and experienced o acute pains that she decided to consult a physician, who fter questioning and examining her, said that she had a attack of angina and treated ber for that affection. In spit of all the remedies administered, the pains, far from ceasing increased in intensity, and the mother, justly alarmed, wrote to her son to consult another practitioner at Cordoba
"He went at once to Dr.Lesbini, and gave him all the details that he had just received in regard to his sister's case. On Sunday, January 5, 1879, Josefa began to complain of in supportable itching in the right nostril, and, on the same day, had several attacks of bleeding at the nose. The day following she experienced violent pains in her face, nape of he neck, and throat. The physician in attendance, finding that he had made a wrong diagnosis, advised that the patient should be sent to Cordoba in order that she might be within reach of remedies and medical skill

Larva. natural size.-2. The same enlarged, side view.-3. The perfect insect, na
enlarged.
' On the 14th of January her palate was perforated, and two arvæ, accompanied by matter, came out of her mouth Having smelled a branch of basil, eighty larvæ, pretty wel developed, escaped from her right nostril. The pains becoming more and more violent, Auguste Ortiz was notified and at once left for Totoral. Having arrived at home his sister's state seemed to him to be so grave that he resolved to tak her with him to the city. He narrated in all its details the consultation that he had had with Dr. Lesbini, and said that, according to the opinion of the latter, Josefa's trouble was produced by larvæ, which, in the egg state, had beeu de posited in her nostrils by a fly. The relatives of the patient, notwithstanding the eighty-two larvæ expelled, could not believe such an assertion, as it appeared impossible that the worms that' they had seen could come from a fly. They doubted it all the more, too, because the patient asserted that no fly had entered her nose.
" Struck by what she had heard, one of the sisters of the
sick girl, and younger than she, stated that on the evening preceding a fly had entered her left nostril, and, since in the evening she had begun to experience the same symptoms as those exhibited at first by Josefa, the family began to think that Dr. Lesbini might be right. The trip was therefore resoived upon, and it was decided that Eliza should be one of the party, a decision to which she undoubtedly owes her life. On Saturday, January 18, at ten minutes past twelve the patient took the train. At the station Jesus-Maria she got out and walked around for a moment; this was at about half past one. When the train reached the station General Paz, at ten minutes before three, the patient's state was so much worse that her family was thrown into the greatest inquietude lest she should not arrive alive at her destination. At three o'clock, when the train started, the patient became senseless, and, shortly after leaving the station, she expired in her mother's arms. The corpse, having been taken to the brother's house, was examined by Dr. Lesbini and two of his confreres, who had been at once summoned. The former desired to make an autopsy, but the family was formally opposed to it.
"Dr. Lesbini's diagnosis was fully confirmed by the larve which came from the mouth and nasal fosse of the patient, as well as by the perforation of the palate. There is no doubt, then, that Josefa died from the malady under consideration, myiasis, and that it was caused by the larvæ of Calliphora anthropophaga, which probably penetrated the brain and lungs."
After citing a large number of similar cases, Mr. Conil gives a careful study of the larva and perfect state of the dangerous insect.
'Resuming the data which precede," says Mr. Conil, it results that: an egg of the fly deposited on the 15th of Jan uary in the nasal fossa of Eliza Ortiz, hatched and had already, four and a half days afterward, attained a length of one-fifth of an inch; the larva had attained its entire growth and had transformed into a pupa eight and a half days after the egg was laid: and, finally, eleven days were sufficient for the pupa to perfect its forms and become transformed into a perfect insect. This makes in all nineteen days and a half for the cycle of its different metamorphoses.
"If we consider the quantity of eggs that each female of the diptera under consideration is capable of laying at one time, we shall be astonished at the relatively small number of cases of myiasis that occur, even taking into account that many cases cannot be ascertained by science and consequently are ignored. That the fly does not multiply to a greater extent, seeing its wonderful fecundity, must be due to the fact that some enemy holds it in check and prevents a multiplication which would be so pernicious to our species. What the enemy is the future will probably tell us; I hope so, at least, and if it is possible, I propose, next summer, to pursue my observations on the diptera, and to apply myself specially to biological olservations.

Michigan Frogs and Frog Hunting.

The marshes between Detroit and Lake St. Clair are the resort of millions of frogs; and it is asserted that more frogs are sold in Detroit than in any other city of its size. During the frog season heavy shipments are made to New York, Roston, and other Eastern cities. The Free Press, which pronounces the commercial frog as suspicious as a wolf, as wild as a deer, and as shrewd as a fox, describes the work of frog hunting as follows:
"Most of the frogs are caught for this market by men One or two boyshave some fame as successful frog catchers, but it has been demonstrated that the average boy lacks the necessary qualificatious to make the business of any profit
to him. We know of one old fisherman and hunter who to him. We know of one old fisherman and hunter who
has followed the frog catching business for the last twelve years, and he has sometimes made it pay as high as $\$ 15$ per week. While there is only one way of killing a goose there are several ways of killing a frog. Frog hunting would be a great financial success if the jumpers woald take a seat on a log and permit a man to walk up and crack 'em over the head with a club, but the frog is utterly opposed to any such proceeding. His eagle eye detects the enemy afar off, and the approach must be cautious. The outfit consists of a frog spear, a hook and line, a fish pole with a pointed iron in the end, and sometimes a small shotgun is taken along. First discover your frog. He may be sitting on a log ten feet from shore. He feels quite safe at that distance and will probably wait for developments. The hook and line can be used here. The line is stout and the hook big enough to hold a twenty pound bass. The idea is to fish for the frog without bait. A careful hand will maneuver the line until the hook is under the frog's throat, and then a sudden jerk takes him off his meditative roost and gives him into the power of his enemy. The spear, which is provided with a long handle, can sometimes be used, though a frog will dodge a sudden thrust as quick as a pickerel. If the shot gun is used it is with a light charge of powder and very fine shot, and the head is the point aimed at. Some of the froggers work the banks and are provided with boats, but success dependsa grod deal on circumstances. A good hunter has been known to bag 200 frogs per day, but three or four dozen legs are called a fair day's catch. A frog will pro bably live ten or fifteen years if steering clear of accidents. They are not worth eatching until they are two years old,
and are not "prime" until they and are not "prime" until they reach the age of five. A
frog sees his palmy days from five to ten. Before reaching five he is giddy and thoughtless. After that he settles down to a life of ease and contentment, and the days come
and go and leave him no sorrow. Frogs have been caugh in the St. Clair marshes weighing as high as seven pounds and having legs almost like drumsticks. One was caught beam at nine, and one weighing only half a pound less was on exlibition at the Central Market last spring. Frog hunters say that the game they pursue is a weather bureau in himself. Before a storm he can be found only in certain localities. When there is to be a dry spell he seeks certain other localities. If the day is to be cool and cloudy his altitude betrays it. If it is to be hot and sultry the frog remains below. During a thunderstorm he is " on deck" to witness the display, and is then off his guard to such a degree that he is often killed with a club. His natural enemies are man, several species of birds, three or four species of fish, and one or two kinds of animals, and the fact that he manages to dodge all for years is proof enough that his lack of brains has been more than made good by his supple legs."

REMOVAL OF FLOOD ROCK, NEW YORK CITY.

The work of mining the seven acres of Hell Gate, known as Flood Rock, which is illustrated on our first page, was planned and barely commenced by Gen. Newton, U. S. Engineers, before his successful explosion of the extensive mine under Hallet's Point Reef, which took place Sept. 24, 1876, a full illustrated account of which appeared in the Scientific American of October 14, 1876, preceded by an illustrated history of the inception and progress of the work in current numbers of earlier dates. By this important ope. ration there has been secured a clear navigable channel of 26 feet depth at low water, in place of the dangerous and dreaded whirlpool, called by the early Dutch settlers of New York "Horl Gatt," meaning whirl passage, which has become Hell Gate by modern usage. The name is now applied to the area including F'lood Rock and other neighboring reefs.
The present work, begun in 1876, was suspended for want
of appropriations during the whole of the fiscal year ending June 30, 1878.
Flood Rock is a ledge of gneiss, of about the same compo ition as Hallet's Point Reef, located about 1,000 feet north westerly from Hallet's Point, at Astoria, L. I., where the machinery plant for miuing that reef was located.
The summit of Flood Rock, as seen in the engraving, formerly appeared at all times above water. Its form was such that, by building upon it suitable retaining walls and cribs, an area of about a quarter of an acre was prepared for the necessary buildings and a hoisting tower at the opening of the shaft, which has been sunk from the apex of the ledge to a depth of about 75 feet, as shown in the section of the mine in our engraving.
The rock, as it was removed, was at first deposited by dumping scows in a deep hole off Ninety-second street, till it was filled to a desirable level. It is now being deposited between Little and Great Mill Rocks, an interval of about 300 feet, which with the rocks will form the western side or breakwater to the new channel formed by the removal of Flood Rock. This was included in Gen. Newton's original project for the improvement of Hell Gate.
A network of galleries, to plan of which is shown in the engraving, now extends under nearly five acres of Flood Rock. When the excavation is completed, piers only of sufficient size and in ample number to support the roof will emain.
The piers are then to be drilled, charged with sufficient explosives to break them down, and then fired simultaneously, when the whole mined area of the river bottom, shown by the fine cross lines now known as Flood Rock, is expected to sink into the mine, and after dredging, form new channel of 26 feet depth at mean low water.
The amount of explosive to be employed was originally estimated at an equivalent of 100,000 pounds of nitro-glyce rine.
The amount used at the former explosion at Hallet's Point was 52,000 pounds of explosive placed in 172 piers. The mine was fired by the touch of a child's hand, and Hallet's Reef was no more. There have since been dredged from this demolished reef a total of $72,084,078$ gross tons of refuse and only a few shoal points now remain, mostly near the and on
shore.
The
The galleries thus far completed at Flood Rock have a total length of $13,528 \cdot 08$ lineal feet, from which $39,608 \cdot 38$ cubic feet of rock, measured in the original solid form, have been removed.
At the present rate of progress the mining will be completed about the close of 1883.
The machinery by means of which this important work is carried on is of the most approved types of modern mining appliances, and as much as possible of the labor is performed by steam, the prime motive agent. There are four large boilers, three of the horizontal two-flue type, 6 feet diameter by 24 feet long, set in brick, and externally fired, and one of the fire-box tubular or locomotive type. They
have an aggregate of 140 square feet of fire grates, equal, at maximum rate of combustion with natural draught, to about 400 horse power.
The steam is maintained at 60 pounds constantly, but in a part only of this system of boilers, one or more being at all times available for cleaning and repairs. They furnish steam to the following engines and heating pipes: Five upright air compressors, steam cylinders, $9^{\prime \prime}$ by $18^{\prime \prime}$, which supply ai
to the small drilling engines (30 in all, a part only in use all the time), air pressure of 55 pounds per square inch; one double winding engine, having two cylinders $16^{\prime \prime} \times 24^{\prime \prime}$ geared to a 7 -foot winding drum by spur gearing about 1 to 7 , which raises and dumps automatically into scows all the mined rock; one upright ventilating engine cylinder, $122^{\prime \prime} \times 18^{\prime \prime}$, driv ing a fan 12 feet diameter; one small upright shop engine driving the machine shop and four smiths' fires; and one mall double-cylinder freight hoister.
There are two ten-inch Worthington duplex mining pumps, one of which at about 75 to 80 strokes per minute, serves to drain the mines in the present condition of the leaks.
There are also three boiler feed-pumps and a special Knowles circulating pump, 8 -inch water piston.
The drying chamber in the main gallery is also supplied with steam for the purpose of drying the clothing of the workmen.
The exhaust steam from all these engines is condensed in a large Lighthall surface condenser, and about two-thirds of the original feed water is returned in a purified condition and at about 100° F. to the boilers; when new and unusual leaks are developed by the blasts the second pump is used till they can be plugged by the miners, the parts thus plugsed must be then approached from another direction.
The water is all taken to the pump well below the central gallery, through drains cut below the general floor level of the mine, thus leaving the gallery floors comfortably dry for the workmen.
There are now about 200 men, comprising miners, me chanics, and laborers, engaged on this work, in three shifts or watches of eight hours each, using from 20 to 30 drilling engines, which are driven by compressed air distributed from the five compressing engines through a large main, and maller branch air pipes to the headings where each air-drill ing engine has its separate flexible pipe.
Holes something over two inches diameter are now being made, each about four feet deep, at the rate of $31 \cdot 72$ feet per shift, by each active drill.
The blasting is done at night; the explosive used is No. 2 extra giant powder; as many as 300 holes have been fired (charges about one pound weight)in a single night, and then the ventilating fan, located at the top of the shaft, is run at its maximum rate, displacing about 50,000 cubic feet of air per minute.
Careful and experienced pioneers explore the galleries fter each blast and test the walls and roof, and remove all loose rocks before the drillers and mining laborers return to work where blasting has been going on.
The detached rock is loaded upon small cars on $21 / 2$-foot gauge tracks and drawn to the shaft by mules, a number of which are stabled permanently in a chamber set apart for heir use.
The cars are run upon a tilting cradle, which is pivoted pon the sill of the hoisting cage, and firmly secured to the cradles so that they may be safely dumped into the iron-clad chute at the top of the hoist-way, whence the rocks slide into he dumping scow alongside. The descending empty car counterbalances an equivalent weight of the ascending load in the adjoining lift, thus practically eliminating the cost of hoisting the cars as dead weight. The loaded scows are taken by a powerful tugboat to the dumping ground, the present state of which requires unloading upon dump cars upon the dike, as it is shown, nearly filling the space between
ing.
The
The history of the Hallet's Point mine, which may be found fully illustrated in the Scientific American of August 21, 1875, Sept. 30 and Oct. 14, 1876, shows the comparative cost of hand and machine drilling by compressed ir to be 95 cents per foot for the former, and 36 to 37 cents for the latter.
The distribution of the whole cost of miniug was then as follows:

The disposal of the rock from the new mine, which involves the use of a tugboat and dumping scows, modifies the distribution of the cost, making the item of dumping 7.17 per cent., while the incidental item which includes cost of superintendence is reduced to $10 \cdot 4$, or less than half that in the old work.
The works at Flood Rock are in charge of Gen. John Newton, U. S. A.

Imitation Amber.

Considerable quantities of beautiful objects of artificial mber are now being produced in Vienna. The substance employed in its manufacture is chiefly colophony or resin obtained by decomposition of turpentine, though several other ingredients are used to give it the requisite qualities. The imitation is said to be perfect, and the production has even the electric properties of amber. Ingenious manufac turers have even introduced into the substance foreign bodies, insects, etc., to make the similarity more striking. Natural amber requires a temperature of 285 to 287 degrees C . to fuse it, while the imitation becomes liquid at a much lower temperature.

A Fatal Torpedo Explosion at Newport
Recently two officers of the torpedo school at Newport R. I., Lieutenant Commander Edes and Lieutenant Spauld ing, were killed by the untimely explosion of a torpedo which they were placing in the harbor. According to the official report of Captain Thomas Selfridge, in charge of the torpedo station, the deceased officers were carrying out a torpedo in a small boat, when it exploded. The class had been previously instructed in all the details of the operation, and a diagram drawn that each one could see how the wires should lead, and special cautions had been given by the instructor, Lieutenant Commander Bradford. The torpedo was first to be planted. Then, of the two wires, one was to be connected to a circuit closing buoy, and the other to a firing circuit on shore. They had been cautioned not to make these connections after the torpedo was dropped until they had come ashore. As a further precaution, the wire connecting the firing battery with the torpedo in the electrical building was also disconnected, making three breaks, any one of which would make it impossible to fire the tor pedo. It seems that the first torpedo planted by these officers became leaky, and in taking it up they cut the wires of the old torpedo without breaking the shore connections In planting the new torpeds, being in a hurry, they pulled out and took up the wires from the water and connected it (the torpedo), supposing the connection in the electrical building was broken. It appears that Lieutenant Com mander Caldwell, supposing, as should have been the case that the connections of the torpedo were broken, joined this connection in the electrical building. The terrible re sult followed.

SPINNING ATTACHMENT FOR SEWING MACHINES.

The engraving represents a very simple spinning device

 which can readily be attached to a sewing machine, and replaces the cumbersome spinning wheel generally used with tiand machines for spinning. Fig. 1 is a perspective view of the device applied to a sewing machine, and Tig. 2 is a sectional view of the outer journal of the spindle.A clamp, \mathbf{A}, is secured to the leg of the sewing machine by thumb screws, and supports the spindle, C, flier, B, and the spool. The end of the spindle is furnished with a hol low flaring mouth
To fit the attachment for operation the clamp, \mathbf{A}, is to be attached to the legs beneath the table and directly over the driving wheel, with the spindle projecting in a horizontal direction, with space enough for the flier to clear the table. The bracket which supports the outer end of the spindle is then to be screwed into the table directly over and in line with the mouthpiece of the spindle. A tension band is passed around the grooved pulley of spooland secured to the table. The object of this band is to prevent the spool from turning as fast as the flier, and it can be made to turn as fast as required for taking up the thread by tightening or slack

ening the band by means of screws. The.driving band is passed around the driving wheel of the sewing machine and around the cone pulley, D.
This attachment will readily do all the work of the ordi nary spinning wheels much faster, and it is much easier to work than spinning wheels. The attachment saves the neces sity of having a spiuning wheel where there is a sewing machine in use.
In many parts of the country a spinning wheel is just as much a necessity in every family as a sewing machine; but with this attachment to the sewing machine the large wheel will not be required.
For preparing yarn for crochet work and knitting the spinning and twisting attachment is especially useful.
This invention was recently patented by Mr. J. C. Blackett

All communications in regard to the invention should be addressed to Mr. J. R. Blackett, Caledonia Mines, Cape Breton, Nova Scotia.

AN IMPROVED BATTERY.

The engraving shows an improved galvanic battery lately patented by Mr. A. Floyd Delafield, of New York city This battery is provided with means for increasing the trength of the current by producing a more or less rapid circulation of the solution in contact with the elements by mechanical means, operated by hand or by a motor. This is accomplished practically by fitting the negative element upon a shaft for revolution between the zinc plates, and for

increasing the effect the revolving disk is made in spiral form, something like a screw propeller, so that it creates a circulation of solution in the cell, thus continuously depolariz ng the elements.

Pictet's New Steamer.

The Geneva correspondent of the London Times gives the ollowing details concerning Professor Raoul Pictet's model steamer, which he expects to drive at the rate of 40 miles an hour:
Her dimensions are 16 meters long and 350 meters wide. When lying at anchor she will draw 33 centimeters fore and 44 centimeters aft; at full speed, 1 centimeter forward and 16 centimeters aft. The engine will be placed amidships, from which point to the stern the screw slaft and the keel form an inclined plane; the bows are long, tapering, and wedge-shaped. Professor Pictet reckons that his invention will lead to a great saving of fuel, inasmuch as a steamer built on his plan, after being started with, say, 100 horse power, maybe kept up full speed with an expenditure of force equal to 30 horses. The form of the hull, on which the maintenance of the ship's equilibrium will depend, cannot be explained without a diagram. Professor Pictet is quite confident in the success of his invention, and his scientific previous achievements bave been so remarkable that many people who cannot follow his reasoning have no hesi many people who cannot follow his
tation in accenting his conclusions.

The Improvement of the Mississippi River.
The construction committee of the Mississippi River Com mission, consisting of General Q. A. Gillmore, Major C. R Suter, and Mr. B. M. Harrod, has for several months past been holding monthly meetings in St . Louis for the purpose of hastening the preparation of the outfit required for a vig. orous prosecution of work under the appropriation of $\$ 1,000,000$ made at the last session of Congress, all of which will be expended on the river below the mouth of the Ohio. will be expended on the river below the mouth of the Ohio.
As bad navigation on that portion of the river is invariably As bad navigation on that portion of the river is invariably
due to excessive widths produced by caving banks in concave bends, the first thing to be done is to stop this caving by suitable works of bank protection, such as a brush mat tress weighted with stone or some other species of revetment or covering extending down from the crest of the bank into deep water. The next step will be to narrow the stream to such widths between the high river banks that the current, with the increased velocity produced by the narrowing, will scour out and maintain. even during the low river stages, the depths required for navigation. This will be done by contracting the stream, usually at point opposite the concave bends, through the agency of light, permeable dikes, placed either longitudinally or transversely to the shore, or both. These dikes, composed of brush hurdles, or of wire and brush screens, or some similar de vice, will allow the water to pass through them with more or less freedom, and, by cbecking without arresting the current, will convert large areas next the shore into stilling or settling basins, within which the river itself is expected, during the flood stage, to build up new banks and establish new and advanced shore lines by constantly depositing the solid matter which it trausports, but which the unimpeded
flow would carry down to the Gulf of Mexico. Works of this general character will be begun as soon as the working plant is ready upon nearly seventy miles in length of the worst navigation below Cairo, namely, about forty miles on the Plum Point stretch, above Memphis, and thirty miles in the vicinity of Lake Providence, above Vicksburg. Nothing will be done upon the levees. It is expected that work will begin about October 1

The National Telephone Exchange Association.
The third semi-annual convention of this association was held in Saratoga, the second week in September. There were present at the first seswion 250 delegates, of whom 100 represented telephone companies. Among the prominent delegates were:
G. L. Wiley, assistant general superintendent of the Met ropolitan Telephone and Telegraph Company; W. A. Childs and Francis Shaw, of the Law Telegraph Company; Henry W . Pope, of the Staten Island Telephone Company; Henry Metzger, general manager of the Pittsburg Telephone Company; William Sargent, the general superintendent and electrician of the Bell Telephone Company, of Philadelphia; Mr. Goodyear, representing L. Tillottson. C. B. Hotchkiss, John A. Roebling, Wasbburn \& Moen, and other firms were represented. Among the subjects for discussion were these: The latest improvements in all the instruments used; underground wires; wire construction and kinds of wires; also a report on electrical disturbances interfering with the telephone service.

IMPROVEMENT IN TELEPHONES

The engraving shows an improved telephone transmitter and receiver recently patented by Mr. J. A. Lakin, of Westfield Mass. This instrument is especially intended for mills, railroad offices, and other places wherein much local noise disturbs the successful operation of the common telephone now in gene ral use. This instrument consists of a square box, in which are placed both a transmitting and a receiving diaphragm. are placed both a transmitting and a receiving dapbragm From the receiving diaphragm chamber two sound tube extend to be received one in each ear. They are kept in place by a small spiral spring, tending to draw the tubes together, and thus keep the small rubber caps on the ends of the sound tubes in place in the ear. These caps shut out all extraneous sounds and confine the sounds of the receiving telephone, so that their full effect is felt on the ear.
The lower part of the box, as seen in the drawing, contains the transmitter, which is made very sensitive. It is claimed that this instrument will talk two hundred miles or mame
Pressing the button, as shown in the cut, brings the battery into circuit with the transmitter. The inventor of this instrument has given much time and study to the construction of telephones, beginning as early as 1869, although, as he informs us, most of his attention bas been given to acoustics.

LAKIN'S TRANSMITTING AND RECEIVING ELECTRIC TELEPHONE.

For further information address J. A. Lakin, Westfield,

 Mass.
NEW INVENTIONS

Mr. Henry Grabach, of Clyde, O., has patented an im provement in the manufacture ef boots and shoes, which consists in securing the counter stiffener to the shortened lining by a line of stitches around its edge, the lining of heel portion terminating at the edge connection, so that the friction of the beel of the foot comes upon the stiffener and portion of the usual lining is saved.
Mr. John Murray, of New York city, has patented a toy avings bank for children, so constructed as to connect amusement with the operation of depositing money in the banks. The invention consists in a toy savings bank having a slotted base with a money receiving compartment at its rear
end, and at its forward end the figure of a tree having a slot in its rear side, the figures of a dog and cat connected with the base and tree by slides and springs, and a trip lever, whereby the weight of a coin dropped upon the said trip lever will release the dog, and the forward movement of the dog will release the cat, which will then run up the tree.
Mr. John S. Powers, of New Burlington, Ind., has patented an improved water gate, consisting of a base frame secured to the bottom of the stream, an inclined frame hinged at its upper stream end to the base frame, and supported at its down stream end by hinged standards having a crossbar attached to their upper ends, and wheels pivoted to their lower ends, and the stops attached to the base frame for the wheels of the supporting standards to rest against, so that the passage of animals will be prevented and the gate will be lowered to the bottom of the stream by a rise of water or an accumulation of rubbish
An improved horse collar fastening has been patented by Mr. Samuel Peters, of Sydney, Nova Scotia, Canada. The object of this invention is to provide the extremities of the horse collar with a fastening whereby the collar can be conveniently opened and closed. and thereby readily adjusted to or removed from the neck of the animal.
Messrs. Frederick H. Hubbard and John J. Ashley, of Brooklyn, N. Y., have patented an electric plaster which is an improvement on that class of healing plasters which are designed to have the curative properties supplemented or increased by electrical cur rents.
Mr. Hamline Q. French, of New York city, has patented an improvement in the construction of roofs for vaults, mausoleums, and structures of similar character built of stone and intended for burial purposes. The object of this invention is to obtain a building without vertical joints, and one held together and locked at the roof, so that by the locking and the weight of the roof the structure shall be made as enduring as the material of which it is built.
An improvement in window-cleaning chairs has been patented by Mrs. Anna Dormitzer, of New York city. This invention is designed as an improvement on the window. cleaning chair for which Letters Patent of the United States Nos. 200,441, 206,935, 206,936 , and 219,234 were granted and issued to the same inventor, respectively, February 19 and August 13, 1878, and September 2, 1879, and its object is to further simplify the construction of the chair, and make it less expensive and more complete and durable.
An improved store counter seat has been patented by Mr. Willis M. Corwin, of Glen Cove, N. Y. The invention consists in a store counter seat in which a bar carrying the seat is provided with a catch recess, a hinged bar pressed forward by a spring to carry the seat beneath the counter, a catch bar to engage with the recess of the seat bar to hold the seat in place when under pressure, and a spring to raise the.seat bar from the catch plate when the pressure upon the seat is removed, so that he seat when released from pressure will be carried in under the counter automatically. Mr. Jacob Katzenberg, of New York city, has patented an attachment for button hole and embroidery sewing machines for use in laying cords along the edges of button holes for the purpose of filling out or raising the stitches that surround it, thus producing more finished and durable work.
An improved baling press has been patented by Mr. Alpeus D. Chanuell, of Sabetha, Kan. Thisimprovement consists in the com. bination, with two hoppers and two baling boxes, of hinged doors, hinged connecting bar, and the hand lever, whereby the hay in the hoppers can be forced into the baling boxes to be carried forward by followers.
Messis. William F. Miller and Charles W. Stover, of Tipton, Iowa, bave patented a hog cholera compound consist ing of turpentine one pint, spirits of camphor one pint, cayenne pepper one half of an ounce, and carbolic acid one half of an ounce.
The revenue laws extending the bonding of whisky from one to three years make it necessary to increase the number or capacity of bonded warehouses, and it is desirable that the racks in such houses should combine great storage capacity with cheapness of construction. The most approved method of construction at present is to set up rows of upright timbers within the house, about three feet apart in one direction, and brace or hold them together with iron bolts and rods having nuts on each end, and to lay on these bolts and rods the stringers in one tier above another for supporting the barrels of whisky. Mr. Thomas J. Pottinger, of Gethsemane, Ky., has patented an improved whisky rack for bonded warehouses which reduces the cost of bonded warehouses for storing whisky.
Mr. William F. Leach, of St. Clair, Mich., has patented a portable steam auger having a rotary steam engine to ope rate the boring tool, handles for carrying and holding the engine, a breastplate for forcing the boring tool forward to

W. Buck, of Freehold, N. J. The object of this inven tion is to prevent the bluffs or banks of a sea beach from being washed away by the waves or covered with sand.

SEVRES URN

The engraving on this page shows a very elaborate urn from the porcelain factory at Sèvres. Both design and ornamentation are so well shown in the cut as to require no comment.

The Root of the Cotton Plant.

The value of the cotton plant (Gossypium herbaceum) has been increased by the discovery that the bark of the roots yield a promising dyestuff. Mr. W. C. Staehl reports that when the bark of cotton root is exhausted by alcohol of the specific gravity of 0.84 , a dark reddish-brown liquid is obtained, which, when distilled to recover the spirit, leaves a resinous matter which amounts to 8 per cent of the original weight of the bark The new product thus obtained appear black and shining, but when pulverized takes the color of cochineal. It dissolves in 14 parts of alcohol, 15 parts of chloroform, and 122 parts of benzol. It dissolves also in caustic alkalies, and is precipitated from these solutions by acids. Hydrate of potash colors green. Sulphuric acid dissolves it with a red-brown color.

Drying Hay by Artificial Means.

The system of drying hay- by artificial heat, devised by Mr. W. A. Gibbs, of Gillwell Park, Chingford, Essex, has been before the public several years, and though its adop. tion has made slow progress, it is now being used by several well known agriculturists. Since the construction of the apparatus was first publicly described it has received several improvements, and it is now constructed with a single vibrating trougb, along which the hay gradually traverses; the coke furnaces are combined in one with the trough, and shaking and vibrating mechanism upon two pairs of road wheels for easy transport, and the width has been reduced to seven feet.
A writer in the London Times recently saw the machine at work, and says that grass from a water meadow was being put through the apparatus, encountering at first a hot blast of about 400°, which drives off the moisture in steam, following through other streams of less heated air. and being delivered in a condition of finished aromatic hay of rich green color. Each load of more than two tons was put through in fifty-five minutes, or a slightly longer time than it took a man to load it in the field. One feature, he says, in Mr. Gibbs' machine is its value for converting injured hay into good, wholesome hay, the fans blowing out dust and must, while the sulphurous gas from the burning coke is believed to destroy the germs of microscopic life which may be the cause of disease in live stor:k fed upon foul hay. It is suggested that were these hay driers in the hands of men who let out thrashing machines, and could work them at a time of year when little thrashing remains to be done, they would save an immense acreage of hay every season in splendid condition. Another system, which promises to be of even higher economic value, has recently, however, been described as in successful use for several seasons by Mr. Neilson, and more recently by Mr. Knowles, of Colston Bassett Hall, Bingham, near Not. tingham. This system consists in thoroughly tedding and lightly scattering the grass as soon as cut by a machine, and so expose it to the withering action of the air, whether under sunshine or showers. In about two days the green hay, without any turning or other labor expended upon it, and whether wet or not, is, in its half-made condition, carted and stacked. The rick at once begins to ferment and heat, and the heat so generated is employed to finish the process of hay-making. The temperature to which the hay is allowed to rise is regulated, and the means employed for this and for draining off all the superfluous moisture have been thus described:
In the raised base or staddle on which the rick is to stand, whether that is an ironwork structure or raised earth, is laid an airtight pipe, which may be of earthenware, of from three inches to six inches diameter, joined with cement, and this tube or air passage communicates with a vertical one in the center of the staddle, and rising a short distance to the center of the height of the rick. An exhaust fan connected with the horizontal part of the pipe is situated at a short distance from the stack, in a building or otherwise. In case of a long rick, the horizontal pipe is continued along the middle of the staddle, and two vertical pipes are used. Each aperture at the junction of the vertical and horizontal pipes is fitted with a sliding damper, and can be opened or closed by a rod extending outside the bottom of the rick. In stacking the hay a vertical air shaft or chimney is formed over each aperture, by the commion method of drawing up a sack of straw or a round chaff basket as the building of the rick proceeds; but these ventilating flues are carried up to enly half the height of the stack. When the exhaust fan is set in motion, drawing air from the underground pipe and rarefying the air in the chimney, the replacement of that air can come only by currents penetrating the rick from the outside walls and roof, and gradually converging into the chimney in the center. By this exhaustion of the hot air and moisture out of the middle of the mass, cold air is induced to enter the stack at all points and to seek the central flue, bearing with it the excess of heat and the moisture, and cooling the whole substance of the rick. Very little power is required to drive a fan of the necessary size, and Mr. Knowles' five horse steam engine drives the fan when giving out a mere fractional part of its power. One borse, working a fan by means of an ordinary horse gear and intermediate motion, will do weil; and two men turning a corndressing machine fan, arranged in connection with the air tube, have been able to accomplish all that was wanted for cooling a stack. With a gentle exhaust, the atmospheric air is caused to permeate every part of the rick in ample quan tity for keeping down the temperature of the fermenting grass.
The writer referred to says: "Mr. Knowles has brought the internal temperature of a large rick from 130° down to 90° in the short period of forty minutes. In the rick while
building he lays at various heights wooden tubes of bore large enough to admit a thermometer to be introduced on lath, these tubes reaching horizontally from the outside to the center; and thus the heat of all portions of the stack can be examined. A temperature of 100° is considered the maximum at which it is advisable to let the fermentation work, the fan being set in operation as soon as the temperature approaches this. The same provision of air ducts and a manually operated exhaust fan has been employed with advantage in keeping barley and other corn stacks from heat ing."
This system of drying half-made hay or dry coru deserve to be made generally known, not only because of the large quantities of crops which may be saved by it, but because of the remarkable economy of labor which it secures. The system should, moreover, afford our agricultural implement makers an additional article of manufacture, by means of which the system might be carried out with facility.

England Life Two Generations Ago.
Recently Mr. P. T. Barnum gave to his native village, Bethel, Conn., a bronze fountain costing $\$ 10,000$. At the presentation Mr. Barnum described with rare felicity the manner of living to which he was born. He said:
"I can see as if but yesterday our hard-working mothers hatcheling their flax, carding their tow and wool, spinning, reeling, and weaving it into fabrics for bedding and clothing or all the family of both sexes. The same good mothers did the knitting, darning, mending, washing, ironing, cooking, soap and candle making, picked the geese, milked the cows, made butter and cheese, and did many other things for the support of the family. We babies of 1810 , when at home, were dressed in tow frocks, and the garments of our elders were not much superior, except on Sunday, when they wore their 'go-to-meeting clothes' of homespun and linseywoolsey. Rain water was caught and used for washing, while that for drinking and cooking was drawn from wells with their 'old oaken buckets' and long poles and wellsweeps.
"The first water works ever built in Bethel were got up by my father and Capt. Noah Ferry for their own exclusive use about 1820, 60 years ago. I distinctly remember seeing the lead pipes made in Capt. Ferry's barn. The water wa brought from the spring belouging to Esquire Benjami Hoyt, on Hoyt's Hill.
"Fire was kept over night by banking up the brands in ashes in the fireplace, and if it went out, one neighbor would visit arrother about daylight the next morning with a pair of tongs to borrow a coal of fire to kindle with. Our candles were of tallow, home-made, usually with dark tow wicks In summer nearly all retired to rest at early dark, without ighting a candle except upon extraordinary occasions. Home-made soft-soap was used for washing hands, faces and everything else. Families in ordinary circumstances ate heir meals on trenchers (wooden plates). As I grew older our family and others got an extravagant streak, discarded
the trenchers, and rose to the dignity of pewter plates and the trenchers, and rose to the dignity of pewter plates and
leaden spoons. Tin peddlers, who traveled through the leaden sporns. Tin peddlers, who traveled through the
country with their wagons, supplied these and other luxuries. Our food consisted chiefly of boiled and baked beans, bean porridge, coarse rye bread, apple sauce, hasty pudding, eaten in milk, of which we all had plenty. The elder portion of the family ate meat twice a day, had plenty of vegetables, fish of their own catching, occasionally big clams, which were cheap in those days, and shad in their season - these were brought from Norwalk and Bridgeport by fish and clam peddlers. Uncle Caleb Morgan, of Wolfpits or Puppytown, was our only butcher. He peddled his meat through Bethel once a week. It consisted mostly of veal, lamb, mutton, or fresh pork, seldom bringing more than one kind at a time. Probably he did not bave beef oftener than once a month. Many families kept sleep, pigs, and poultry, and one or more cows. They had plenty of plain, substantial food. Droves of hogs ran at large in the streets of Bethel.
'Our dinner several times each week consisted of 'pot luck,' which was corned beef, salt pork, and vegetables, all boiled together in the same big iron pot hanging from the crane, which was supplied with the iron hooks and trammels, and swung in and out of the huge fireplace. In the same pot with the salt pork, salt beef, potatoes, turnips, parsnips, beets, carrots, cabbage, and sometimes onions, was placed an Indian pudding, consisting of plain Indian meal mixed in water, pretty thick, salted and poured into home-made brown linen bag, which was tied at the top.

When dinner was ready the Indian pudding was first taken from the pot, slipped out of the bag, and eaten with molasses. Then followed the 'pot luck.' I confess I like to this day the old fashioned 'boiled dinner,' but doubt whether I should relish a sweetened dessert before my meat. Rows of sausages, called 'links,' hung in the garret, were dried, and lasted all winter.
"There were but few wagons or carriages in Bethel when I was a boy. Our grists of grain were taken to the mill in bags, on horseback, and the women rode to church on Sundays, and around the country on week days on horseback, usually on a cushion called a pillion, fastened behind the saddle, the husband, father, brother, or lover riding in front on the saddle. The country doctor visited his patients on horseback, carrying his saddle bags, containing calomel, jalap, Epsom salts, lancets, and a 'turnkey;' those being the principal aids in relieving the sick. Nearly every person, sick or well, was bled every spring."

In Mr. Barnum's boyhood the richest man in town w

 ctually worth as much as $\$ 3,000$
California silk Exhibits.

In view of the new life which silk culture is assuming, is worthy of note that the exhibits of silk winding appl ances and silk products are very rich in this year's Mechan ics' Fair, San Francisco. The Mining and Scientific Press says: First are the handsome and well filled cases of Joseph Neumann, a pioneer in California silk culture and manufacture. His position is on the main floor, near the musicians' stand. His exhibit is an unusually large one, occupying one elevated glass stand and a glass case. Bot in variety and quantity of cocoons and raw silk, the dis play is remarkably good, and reflects great credit upon the exhibitor for the care, perseverance, and expense he has gone to in endeavoring to build up this industry in Califor nia. Several pyramids representing the silkworms spin ning their cocoons are shown, besides over twenty cases of cocoons, all raised in this State. These latter represen many different varieties, from the smallest up to the full size of the French annual. The specimens of raw silk exhibited are very fine, and establish, as clearly as it is possible to do, that the silk manufactured from the worm bred in this State is, in its raw condition, equal to that
of any country in the world. Mr. Neumann, through his own unaided individual efforts, has done much to establish his, and he is deserving of every praise for it. Inter spersed among his exhibits are the different medals (nine in all) that have been awarded his exhibits in other places and countries, the whole constituting a well arranged display of silkworm productions and the marks of appreciation extended toward them by others.
The two other exhibits of silk may be found adjoining each other in the east gallery. One of these is by the California Silk Culture Association, which is the name chosen by a large number of energetic and public spirited ladies or their society, which is now the most active agency in awaking new interest in silk culture. The society has already enlisted a large number of ladies in different parts of the State in sericultural experiments, and the results hus far obtained are very encouraging. The exhibit of the Silk Culture Association is very comprehensive. It con nd Chin, a collection of wild silkworm moths from Indi and China, as also a number of the ordinary kinds. They
are the property of Dr. Behr, of this city. In cocoons, the inest exhibit is that made by Mrs. S. A. Sellers, of Antioch. It is made under the auspices of the association, and comprises the following different varieties, all of California growth: French annual, Japanese annual, and bivoltines. The French annual cocoons are considered the best for manufacture, being also the largest. The bivoltines, or, a the name signifies, bi-annuals, are the smallest varieties In addition to the cocoons, Mrs. Sellers exhibits a lot in different colors of reeled raw and floss silk, together with a number of silkworm eggs and moths. The display is a very complete one, occupying one entire large case, an would do credit to any exhibition in the world. The othe exhibitors in the stall of the California Silk Culture Asso ciation are Mrs. Keeney and Mrs. McLean, of San Rafael Mrs. Dodson, of Red Bluff; Mrs. James G. Whitney, San Francisco; Mrs. F. Dennis, Sutter Creek; and Mr. Bettle heim, of Antioch. The newly invented frame for silkworms o wind cocoons, the idea of Felix Gillett, of Nevada City, is worthy of notice, as are two very fine specimens of the California wild silkworm moth. It is stated that a ver imilar kind of moth to the California one is found in some portions of Tartary, and that the people make from it rough silk cloth that gives unending wear. Garments made rom it have been handed down by the Tartars from genera tion to generation, from time immemorial. Mrs. T. H. Hit tell, the indefatigable Secretary of the California Silk Cul ture Association, has some interesting old German illusrated works treating of the silkworm and silk culture, and Miss Mary Wackenreuder, of San Bruno, has a very pretty mitation in wax of the mulberry tree, and the silkworms feeding. The operation of reeling the silk from the cocons nay be seen on Wednesday and Saturday afternoons.
One of the most striking displays in the pavilion is that of the California Silk Manufacturing Company, of this city. It consists of a large upright glass case filled with silk manufactures, chiefly spool silk. There is an architectural method of showing this spool silk, which shows much skill, and presents a charming effect. An excellent imitation of the State Capitol at Sacramento, and the steps approaching thereto and the lawns approaching it, is all made of silk manufacture. The building is wholly of spools of selected colors and embracing all kinds of silk thread.

New Dental Alloy Amalgam.

Dr. Henry S. Chase, of St. Louis, Mo., in a paper read before the Wisconsin State Dental Society, says his new alloy is made as follows: Melt forty pennyweights of pure silver; add to this thirty penny weights pure tin; stir it, then add five pennyweights of antimony and five pennyweights of pure tears of zinc. When mixed, add thirty penny weights of pure tin again; stir, and throw on the surface o the "melt" one half ounce of beeswax to burn off; and while burning, pour the "melt" into the cup of a vulcaniz ing flask to cool. Cut it up with very coarse file. Remove every particle of iron with horseshoe magnet. This amal
gam must be washed in alcohol while mixing with mer cury. Squeeze it in dry buckskin. This amalgam is whiter
for washing, and takes less mercury. Squeezing injures some amalgams; it does not hurt this. The amalgam pellets
must be dry when placed in the cavity. This amalgam remains very white in the mouth. If all the tin should be melted at once, the antimony and zinc would never melt. If the antimony and zinc are put in the melted silver before the tin, then the antimony and zinc will burn up or oxidize.

Three-high Rollers.

The Lauth three-high mill, for rolling sheet iron or steel and plates, is rapidly gaining in favor in Germany, Belgium, and France. In the beginning, as Daelen reports in the Zeitschrift des Vereins Deutscher Ingenieure, some trouble was experienced by reason of the fact that the middle roll wore rapidly. This was caused by the adhesion of cinder to the roll, and its being passed through over and over again. This has been done a way with by suitable stripping devices. Krupp has built a sheet mill for steel, having $26 \cdot 4$ inch top and bottom rolls and 152 inch middle roll, the maximum thickness of plates entering the rolls being 0.5 inch. In turning out 0.06 inch sheets, the engine makes 60 revolutions; it makes 50 for 004 -inch sheets, 40 for 0.03 inch sheets, and 30 revolutions below that gauge. The engine has an automatic Corliss gear, a $37 \cdot 6$ inch cylinder, and $62 \cdot 80$ inch stroke. A Lauth three-high plate train at the same works has 35.6 inch top and bottom rolls, and a steel 17.80 inch middle roll, which is raised and lowered mechanically before every pass. The mill is run at the rate of 50 to 60 revolutions per minute.

Rapid Progress in Texas.

A special statistical edition of the Galveston Neors shows hat 1,634 miles of railway have been completed in Texas within a year, and that within two years 41 additional owns of commercial importance have been reached by rail or have sprung into existence, and that the value of the State's products has increased from $\$ 57,820,141$ in 1878-79 to $\$ 95,960,930$ in $1880-81$. The amount and value of the chief staples of the State for the past year are: Cotton, $1,260,247$ bales; value, $\$ 56,711,115$; wool, $20,671,839$ pounds; value, $\$ 4,754,522$; hides, $12,262,052$ pounds; value, $\$ 1,471,446$; cattle, 781.874 head; value, $\$ 15.923 .018$; horses and mules, 28,175 head; value, $\$ 1,408,750$; grain, 39,665 car loads; value, $\$ 6,941,375$; lumber, 278,609,542 feet; value, $\$ 5,572,191$; cotton seed cake and oil, $\$ 1,242,315$; miscellaneous products, $\$ 1,344,728$; sugar and molasses, $\$ 591,470$. Total value, $\$ 95,960,930$.
There has been expended during the year for railroad construction within the State something like $\$ 20,000,000$, which added to the above would give a grand total of $\$ 115,960,930$ as the sum derived by Texas to the credit of its industrial and agricultural resources, or fully double that of the year 1878-79.

An Electric Storm at Sea

The German war schooner Nautilus reports passing through a singular storm while crossing the South Pacific from Tahiti to Sydney, Australia.
On the afternoon oí May 11, the whole heavens appearec to be enveloped in cloud, which made it so dark that the. crew could scarcely see the leugth of the ship. The thun. der became deafening, and the flashes of lightning almos blinded the sailors' eyes. All around the vessel the light ning was striking the water, so that persons on board ex pected the vessel itself would be hit. But this they wer spared. The effect, however, was singular and grand, anc at times the vessel appeared to be in flames in several places at once. Bolts of lightning on several occasions fell to the water within 20 or 40 yards of the ship's side. While this peculiar storm lasted very little rain fell and the sea was almost entirely still.

Reversing the wheels.

Experiments lately made at Blackburn with a train made up in imitation of that of the express which ran into the train standing in Blackburn Station, to test the statement of the driver that he reversed his engine as soon as he found the brakes did not check his train, are of some interest, though they elicited the fact that the reversal of an engine of a train running at a high velocity has but a very small effect in reducing the speed. A high speed was attained, and the engine was reversed a quarter of a mile bef ore reaching the station, but the train ran through the station at about twenty miles an hour, and had to be stopped by the brakes. Locomotive driving wheels, when running the reverse way, are not effective in stopping a train. The experiment shows how little can be gained by reversing an engine under such circumstances.

The Largest Land owner on the Continent
Colonel Dan Murphy, of Halleck's Station, Elko County, came to California in 1844, and may be said to have made the country pay him well for his time. He is now probably the largest private land owner on this continent. He has $4,000,000$ acres of land in one body in Mexico, 60,000 in Nevada, and 23,000 in California. His Mexican grant he bought four years ago for $\$ 200,000$, or five cents an acre. It is sixty miles long and covers a beautiful country of lill and valley, pine timber, and meadow land. It comes within twelve miles of the city of Durango, which is to be a station on the Mexican Central. Mr. Murphy raises wheat on his California land, and cattle on that in Nevada. He got 55,000 sacks last year, and ships 6,000 head of cattie a year right along.-Reno Gazette.

A Japanese Earthquake Record for 2,000 Years. The Japan Gazette prints a translation from a noted O-Jishin Neudarki, giving a calendar of earthquakes in Japan ${ }^{-}$ for 2,000 years. A summary of the record is printed in the San Francisco Bulletin of July 25.
The first entry in the Japanese chronology is 295 years B.C.: ".In the fifth year of the reign of Kôrei-tei, the seventh Emperor, the earth in the province of O-mi sank down, and in one night was changed into a lake. During the same night Fujiyami was upheaved. This was the first earthquake." The presumption is that this was the first of which there is any authentic record in Japan. We here have the origin of the famous and sacred mountain of Japan, provided the account is correct. An earthquake which made a part of one province into a lake, and raised a mountain nearly 17,000 feet high, certainly ought to have an authentic record. It is known that a mountain was lifted out of the plains in one of the States of Mexico in comparatively modern times. The next notation is about the year 412 A.D., when there was a "strong earthquake." Here is an interval of about 700 years in which no convulsion was severe enough to make a part of the ancient record, or if so the record as now read is silent. From the year 600 A . D. earthquakes were frequent Coming down to the year 976, the record says there was " the greatest earthquake that ever took place, and the shaking continued for over 200 days." In the year 1510 it is noted that the shaking continued 75 days, and during this time a stone portal of one of the great temples was broken down.
A great earthquake is noted in 1595, during which a large temple was destroyed. In 1703 "the earth shook for 200 days in Kuanto, or the eight Eastern Provinces." In 1707 a great earthquake took place in Osaka. "Men and women escaped into boats, but they were all drowned by the sudden rising of the waves." In the southern and northern divisions of the town, 620 dwelling houses were destroyed by the shock. The number of the killed in the southern division was 3,620 ; in the northern, 2,331. The number of the killed by the waves in the southern division was 12,000 souls, and in the northern 12,$030 ; 22$ bridges were destroyed, and the waves rolled up with thousands of ships as far as Dôtombori. The number of the killed was counted in all at 29,981. At this time blue mud gushed forth along he shores of' the Provinces of Kii, Ise, Mikawa, and Totomi and many lives were destroyed by the sudden rolling in of high waves. Fujiyama shook and erupted. Ashes fell in the neighboring country. At this time Hôyeizan was created. Hôyeizan is a parasitic cone on one side of Mount Fuji.
The intervening earthquakes are not here noted, because there is no statement of any destructive results. In 1751 an earthquake is noted at Takata. "During this time the mountain slipped down, and 10,000 lives were lost." Dur ing the earthquake of 1847 many persons were killed. In 1854 there was a severe shock. "The dead were innumerable. Those who died by the high waves at Okata wer numbered at over $6,000 . "$ A list of the townsand provinces is given where the earthquake was the most severe. This was apparently the greatest earthquake ever known in Japan:

In Osaka, a great many ships were destroyed and per sons kilied by the high waves which rose after the earthquake. In the river Aiikawa, 174 junks and 180 boats of various descriptions and 150 persons were destroyed. In the river Kidzukawa 590 junks were destroyed. Up to he 11th day of the 11th month (18.54, December 30) ove 600 bodies were drawn out of the river. Counting the dead of various provinces there were over 6,000. In every part of the city buildings of various descriptions, such as Buddihist and Shinto temples, towers, bridges, theaters, etc., were destroyed and burned. Consequently in many quarters of the city a vast number of human beings died. The sea shores and river sides were damaged, and ships of every kind were destroyed, while the men who were in them almost without exception lost their lives. In the neighbor ing countries or villages the damage was equally great. The commencement of the shake was at half past the fifth hour hat is, at 9 o'clock in the morning of the 12th. From this hour the shaking continued almost unceasingly until 4 o'clock in the afternoon of the 13th day, when the greatest shock occurred. After this no more severe shocks were felt. Several buildings were destroyed and men were killed. At Nagoya, in the Province of Owari, the shaking was severe on the 4 th and 5th days of the 11th month (1854, Dec. 23 and 24). Great numbers of houses were destroyed, many being attacked by waves. High waves of about twenty feet in height rolled over the rice fields of Chitagori, and in three places large dikes were injured. Houses at Susaki, O-i, Kamezaki, etc., were destroyed. In Yawata, in the Province of O-mi, buildings of various descriptions, such as dwelling houses, Buddhist and Shinto temples, etc., were leveled to the ground. The damages in Hikone and Nagahama were about equal. The damages in Samegai were also great. Mount Yorozan slipped down, and the clear water of the neighboring streams became muddy. Seven or eight tenths of Kano and O-gaki were also injured. More than one-half the houses in Sunomata suffered, and mud gushed forth from fissures in the earth. Two-tenths of Hagiwara and eight-tenths of Inaba were also destroyed. In a village between Niizaka and Nakago the earth was split to a depth of four or five feet, and the level of the earth was made uneven. Yokosuka, between Okitsu and Yejiri, was half destroyed. Shimidsu, a harbor between Yejiri and Fuchui, was very much damaged. The
houses were all reduced to ashes and taken by the waves far ut to sea."
A list of about fifty places is given where the waves were very high and a great deal of destruction was wrought. The earthquakes appear to have lasted through the latter half of the year 1854. The earth opened in seams several feet wide or miles in extent, provinces were inundated, cattle and men destroyed. As late as December 23 of that year it is noted that great waves rolled up the rivers, and a great number of ships were destroyed. At Yusa 600 houses were wept away by the waves. At the village of Hiroura, out of about 1,000 houses, all but three were carried by the waves out to sea. In a number of other villages it is noted that half the houses were carried away by the waves. Then follows another list of towns where the earthquakes of that month or the tidal waves were the most destructive:
'Shook actively in Kojima, in the Province of Awa, and the seventh part of the city was destroyed or else burned by fire. High waves rolled up in Tanabe and Kumano, in the Province of Kii, and all the ships which were near the shore and on the river banks were thrown up and utterly wrecked. Waves equal in force to these attacked several other places In some villages not only the houses but also the animal were swept entirely away."

The record ends with 1854

The British Science Association.

The annual meeting of the British Association for the Advancement of Science began in York, England, August 31. It is known as the jubilee meeting, the first meeting of the association having been held in the same city just fifty years ago. It has met in York but once since, in 1844. An
interesting feature of the jubilee gathering is a loan collecion in which the instruments of scientific research used hal a century ago will be contrasted with those now in use, with as complete a chain of intermediate links as can be obtained. Below is a list of the presiding officers of the association from 1831 to 1881, with the places of meeting:

The results of an inquiry into this subject are given in a ecent number of the Elsass-Lothringische Volkschule, showing that myopia is greatly spreading amid the boys and irls of the German schools, the mischief being more marked as the children get up into the higher classes of the schools. The number of shortsighted in the elementary classes was 5 to 11 per cent (the examination embracing 10,000 children); in the higher schools forgirls the proportion was from 10 to 24 per cent; in the realschulen, between 20 and 40 per cent; in the gymnasia, between 30 and 55 ; and in the two highest classes of all, between 35 and 88 per cent. A physician at Tübingen has found in an examination of 600 students of heology 79 per cent suffering from myopia, and he attributes his frequency to the small, crabbed print of the dictionaries No doubt, also, a large proportion of the children's short sightedness arises from defective living and bad sanitary conditions. In connection with this branch of the subject may be mentioned the report of a society at Leipsic for enabling children under this condition of life to be sent either to the seaside or the country. During 1880 there were 13
children sent away, namely, 67 boys and 64 girls. Of these 19 were forwarded to the Ergerbirge, and the remainder to the baths at Frankenhausen, in Thuringia. During the six weeks of the stay the average weight of each child increased o about $11 / 4$ kilogrammes, the measurement of the chest in nearly every case was also increased, and the sight of many perceptibly improved. The expense of the visit per child was about £2 13s.

RECENT INVENTIONS

Mr. Charles O. Nyqvist, of Brooklyn, N. Y., has patented an improved storm rudder which enables seamen to readily control their vessels should the rudder become unshipped or disabled in a storm. The invention consists in placing rudders on the sides of vessels, and in arranging suitable mechanism for operating the rudders, whereby the vessel can be guided and controlled should the ordinary rudder become disabled.
An improved car coupling has been patented by Mr. George Holforty, of Sedgwick, Kan. The invention con sists of a vertically sliding spring-actuated connecting bolt which engages with the head of the connecting link upon three sides, the bolt being adapted to move in ways formed in the drawhead.
Mr. William H. Howland, of San Francisco, Cal., has patented an improvement in machines for grinding ore. These improvements relate to machines for grinding ore, either wet or dry, and for griuding paints and other materials. The inventor makes use of a pan-shaped receptacle for the material with a ring-shaped bed, and fixed around a central shaft carrying the driver. The driver consists of a conical sleeve, to which the grinding blocks are hung, so as to be thrown out centrifugally by rotation of the driver A pipe supplies air or water within the driver, from which it passes to the grinding surface, and acts to carry the ore or other material outward.
An improved fish and game trap has been patented by Messrs. Gottlieb Rentz and Frank. H. Herzog, of Quincy, Ill. This invention consists in a wire with hooks at the ends, and a spring coil in the middle, forming two shanks, which are provided with short bends to receive the end of a spring trigger when the two shanks are crossed. When the animal bites or nibbles at the bait the spring trigger snaps upward, thus releasing the spring shanks, which are forced apart in the mouth of the animal.
An improvement in bottle washers has been patented by Mr. Lawrence Wagner, of Jefferson City, Mo. The object of this invention is to provide a safe, speedy, and simple method of cleaning bottles.
Mr. Armand Muller Jacobs, of Moscow, Russia, has patented a process of preparing a mordant for use with alizarine in dyeing in turkey red color, which consists, first, in uniting about two hundred and twenty parts of oil or fat and fifty parts of sulphuric acid, the mixture being stirred and fifty parts of sulphuric acid, the mixture being stirred
for about three hours until a temperature of 30° to 45° for about three hours until a temperature of 30 to 40°
Reaumur is reached, and then left at rest for about twelve Reaumur is reached, and then left at rest for about twelve
hours; secondly, adding to this mixture a watery solution of crystallized soda, and allowing the whole to stand about twenty-four hours; thirdly, drawing off the neutralized oil and adding about twenty-six parts of aqua ammonia.
An improved temporary binder has been patented by Mr . George H. Reynolds, of New York City. The invention consists in combining with a book cover a stiffener having strips, flanged plates apertured and attached to covers at each end, metallic strips that are passed into the folds of the papers, and a slotted studded tube carrying a spring catch.

An improved millstone face has been patented by Mr. George A. Coles, of Middletown, Conn. The object of the invention is to save middlings by preventing the granules formed in the furrows from being crushed or pulverized by the lands as the middlings make their way toward the skirts of the stones. The invention consists in connecting the main furrows of a millstone by channels made at right angles to a given radius of the face of the stone, and being limited in extent by the furrows and distributed over the working surface of the stone from the bosom to the skirt.
An improved dish cleaner and drainer has been patented by Mr. Samuel B. Luckett, of Knightstown, Ind. The invention consists in constructing a dish washing and drying apparatus, with a base frame, posts, and a top frame having dish receiving notches, a pan to receive the drip water, longitudinal bars for supporting cups while drying, a hinged angular plate or apron for supporting dishes while being washed, and a perforated pan for supporting knives and forks while drying.
Mr. Bat Smith, of Spanish Camp, Texas, has patented a composition for preserving wood, consisting of coal-tar, crude carbolic acid, and crude pyroligneous acid.
Mr. John H. Gramps, of Stone Arabia, N. Y., has invented a holder for use with ordinary hand lamps, by which such lamps can be securely held on sewing machines, tables, etc., and at other places where there is liability of the lamps being upset. The invention consists in a combined clamp and adjustable hoider adapted for being secured to the edge of a table, and for holding the lamp in any position re quired.
Mr. Gamaliel King, of Westfield, Mass, has patented an improved whip formed of a central cord and sectional rat tan cover
An improved rein holder has been patented by Mr. Edward C. Clarke, of Circleville, Ohio. This is a device to be attached to the dashboard, seat, or other part of a carriage or other conveyance for holding the reins.

cusines amd extsual.

The Charge for Insertion under this head is one Dollar a line for each insertion; about eight words to a line. Advertisements must be received at publication office Centrifugal Pumps, 100 to 35,000 galss. per min. See p. 189 . Wanted-Bids for Lighting the Streets of Hazleton,
 Cook's Infusorial Earth. A superior quality. Apply
to D. Judson Cook, Drakeville, Moris Co, N. J. The American Electric.Co. and Proprietors and Manufacturers of the Thomson Houston System of
Lighting of the Are Style. New Britain, Conn.
Hoe and Shovel Factories send address to M. W Electric Lights.-Thomson Houston system of the Irch, Philadelphia.
Draughtsman's Sensitive Paper. Thos. H. McCollin, Dhaughtsman
Philadelphia, Pa.
"How to Keep Boilers Clean,", and other valuable in
formation for steam users and engineers. Book of sisty-four pares. published ob JJas. F. Hotct. Hkiss.
John St.. New York, mailed free to any address. Valuable Patent for sale.-Automatic cigar Liguter.
Crook, Herring $\&$ Co, Alden Crushers. Westinghouse Mach. Co., Pittsb'g, Pa Abbe Bolt Forging Machines and Palmer Power Ham.
mer a specialty. s. C. Forsaith \& Co. Manchester Y . Supplement Catalogue.-Persons in pursuit of information on any special engineering. mechanical, or scienentific american Supplement sent to them free.
The SUPLIEMENT contains lengthy articles embracing the whole range of engineering, mechanics, and physi-
cal science. Address Munn \& Co.. Publishers, New York.
Combination Roil and Rubber Co., 27 Barclay St.,
N. Y. Wringer Rolls and Moulded Goods Spectalties. N. Y. Wringer Rolls and Moulded Goods Specialties.
Punching Presses \& Shears for Metal-workers, Power Punching Presses \& Shears for Metal-workers, Power
Drill Presses. \$25 upward. Power \& Foot Iathes. Low
Prices. Peerless Punch \& Shear Co 115 S. Liberty St, Improved Skinner Portable Engines. Erie, Pa. The Eureka Mower cuts a six foot swath easier than a side cut mower cuts four feet, and leaves the cut grass
standing light and loose, curing in half the time. Send
for circular. Eurekal Mower Company, Towanda, Pa. For Machinists' Toools, see Whitcomb's adv., p. 173. Pure Oak Leather Belting. C. W. Arny \& Son, Ma Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. Split Pulleys at low prices, and of same strength and appearance as Whole Pulleys. Yocon
Works, Drinker St., :'hiladelphia. Pa.
Wood-Working Machinery of Improved Design and Experts in Patent Causes and Mechanical Counsel.
Park Benjamin \& Bro. 50 Astor H ouse. New York. Malleable and Gray Iron Castings, ail descriptions, by Erie Malleable Iron Company, limited, Erie, Pa
National Steel Tube Cleaner for boiler tubes. Adjust-
able,durable. Chalmers-Spence Co.,10.Cortlandt St.,N.Y. Corrugated Wrought Iron for Tires on Traction EnBines, etc. sole mirs., H. Lloya, son \& Co., Pittsb'. Pa. Nickel Plating.-Sole manufacturers cast nickel an tc. Hanson \& Van Winkle, Newark, N. J., and 92 and 94 Liberty St., New York.
Presses, Dies, Tools for working Sheet Metals, etc.
Fruit and other Can ף.ools. For Pat. Safety Elevators, Hoisting Engines. Friction Clutch Pulleys, Cut-off Coupling. see Frisbie's ad. p. 158.
Safety Boilers. See Harrison Boiler Works adv.. p. 157. Long \& Allstatter Co.'s Power Punch. See adv., p. 158. Mineral Lands Prospected, Artesian Welis Bored, by
Pa. Diamond Drill Co. Box 423 . Pottsville. Pa. See p. 156 . Rollstone Mac. Co.'s Wood WorkingMach'y ad. p. 157. The Sweetland Chuck. See illus. adv., p. 172. Machine Knives for Wood-working Machinery, Book
Binders, and Paper Mills. Also manufacturers of Soloman's Parallel Vise, Taylor. Stiles \&Co...Riegelsville.N.J.
Skinner's Chuck. Universal, and Eccentric. See p. 173 See Bentel, Margedant \& Co.'s adv., page 189 Cope \& Maxwell M'f'g Co.'s Pump adv., page 189. Diamond Drills, J. Dickinson. 64 Nassau St., N. Y. Steam Hammers. Iupproved Hydraulic Jacks. and Tuu
Mspanders. R. Dudgeon. 24 Columbia St., New York. $\mathbf{3 0 , 0 0 0}$ Sawyers wanted. Your full address for Emer-
son's Hand Book of saws (free). Over 100) illustrations and pages of valuable information. How to straighten Rolled Nickel Anodes, Grain Nickel, Nickel Sa Telegraph, Telephone, Elec. Light Supplies. See p. Telegraph, Telephone, Elec. Light Suppies. See p. 189.
Elevators, Freight and Passengar. Shaiting, Pulleys
and Hangers. I. S. Graves \& Son, Rochester, N. Y. Gear Wheeis for Models (list free); Experimental Gould \& Eberhardt's Machinists' Tools. See adv., p. 190. Turkey Emery,Star Glue,Pumice, Walrus Leather. Polish4 to 40 H P. Steam Engines. See adv. p. 189. The Medart Pat. Wrought Rim Pulley. See adv., p. 189. For Heavy Punchès, etc., see illustrated advertiseCombl Puch \& Sherss Univeral
bertville Iron Work, Lambertsville, Nathe Chucks. LamUpright Self-feeding Hand Drilling Machine. ExcelCatechism of the Locomotive. 625 pages, 250 engravCatechism of the Locomotive. 625 pages, 250 engrav-
ngs. The most accurate, complete. and easily under-
tood book on the Locomotive. Price \$2.50. Send for tood book on the Locomotive. Price 82.50 . Send for

For best low price Planer and Matcher, and latest
improved sash, Door, and Blind Machinery, Send tor improved Sash, Door, and Blind Machinery, Send for
catalogue to Rowley \& Hermance. Williamsport, Pa. The only economical and practical Gas Engine in the arket is the new "Otto" Silent, built by Schlerar.
Schumm \& Co., Philadelphia. Pa. Send for circular. The Porter-Allen High Speed Steam Engine. South ork Foundry \& Mach. Co.,430 Washington Av.,Phil.Pa Ore Breaker
in by horse power. See p. 189. Totten \& Co., Pittsbur.

HINTIS TO CORRESPONDENTS
No attention will be paid to communications unless writer.
given to inquirers.
We renew our request that correspondents, in referring to former answers or articles, will be kind enongh to
name the date of the paper and the of the question.
Correspondents whose inquiries do nor appear after a reasonable time should repeat them. If not then pub-
lished, they may conclude that, for good reasons, the lished, they may concl
Editor declines them.
Editor declines them.
Persons desiring special information which is purely of a personal character, and not of general interest,
should remit from $\$ 1$ to $\$ 5$, according to the subject, should remit from $\$ 1$ to $\$ 5$, according to the subject, obtain such information without remuneration.
Any numbers of the ScIENTIFIC American Supplement referred to in these col
office. Price 10 cents each.
(1) T. H. S. writes: I have put up some rolled shafting, and some of it runs untrue. Can you
inform me of any easy method of straightening it without taking it down? A. Only by using a portable press, or by drawing it with a bammer on the hollow side The former mode is the best.
(2) S. E. R. asks: What capacity or what difference would there be in two boilers, one being 56 inches diameter, 18 feet long, the other .56 inches
diameter, 12 feet long. How much larger is the 18 foot than the 12 foot-is it a half or a third? A. The 18 foot boiler, if properly proportioned, would be about 25 per cent more than the 12 foot, and should be more
economical. It shonld have larger tubes than for 12 feet
ngth
(3) S. W. B. asks: What ought to be the size and length of flue, and the size, height, and dis-
tance from engine. of chimney, to secure proper draught for an engine rated at, 20 horse power and supplied by
two boilers, the furvaces of which are 5 feet 7 inches wide and $221 / 1 /$ inches high?
and about 50 feet in height. 26 or 28 ir inches square
2. Will a difference of an inch or two in the level of the two boilers affect their working materially
(4) G. G. asks: 1 . What is the average weight of an English locomotive? A. 30 to 35 tons. 2.
Which is the better adapted to attain the maximum amount of speed, the American or the English locomo-
(5) J. W. S. asks: 1. What is the best regular time made on any railroad in the United States? A. From Jersey city to Philadelphia, 98 miles, in 1 hour
50 minutes. 2. What is the weight of the heaviest locomotive in the United States? A. About 40 tons.
(6) W. W. S. H. asks: 1. What is the rule forfinding the horse power of a steam engine? A. You
are referred to rule in SUPPIEMENT, No. 253. 2. Also the rule for ascertaining the pressure of steam in a boiler where there is no steam gauge? A. By measur-
ing the safety valve and calculating the pressure from
it
7) E. S. H. asks is glass as great a nonconductor of heat as any substance known. A. Glass
is, relatively speaking, a good conductor of heat. Dry wool, feathers, dry saw dust, charcoal, confined air, (8) A. G. O. asks (1) whether there is any perfectly pure and free-from-lead zinc (No. 20) made
in this country, and where it is manufactured. A. Zinc manufactured by the New Jersey Zinc Company, near Franklin, is pure or nearly so. 2. What is the best pro-
cess to detect lead in zinc? A. Dissolve a fragment of the metal in hot dilute hydrochloric acid, and pass hydrogen sulphide (gas) into the liquid until the later
smells strongly of the gas. If lead is present a black precipitate will be observed.
(9) P. G. R. writes: Can you give me a recipe for a good durable brown wash for fences ? A.
Try the following: White lime. $1 / 2$ hushel; hydraulic Try the following: White lime. $1 / 2$ hushel; hydraulic
cement, 3 pecks; umber and ocher, each 10 lb ; Venetian red, 1 lb .; lampblack, $1 / 4 \mathrm{lb}$. Slake the lime, shake
up the lampblack with a little vinegar, mix well toup the lampblack with a little vinegar, mix well together, add the cement, and fill the barrel with water. ting on. A larger proportion of ocher will give it a darker It is said that the coating will look well after five years, exposure to the weather without removing.
(10) E. S. N. writes: Within a month or so heard in this vicinity of the action of certain boilers which might give some light on explosions similar to was telling about his going into a mill for which he furnished the boilers. and on looking under the boilers found them all red hot for eight or ten feet back from the front. He called the manager and told him his boilers were empty. "Oh. no," he said, "they are that way quite frequently; it's all right." The boilers are 5 inch shell, four inch tubes, 16 feet long, fired with sawdust to mind an experiment made by an engineer in a flouror mind an experiment made by an engineer in a flour-
ing mill here. He carried a pipe through the front head
of boiler,within an inch of the bottom, running in three quite frequently when firing hard, clear, ary steam would issue from said valve when opened, showing that no water was in contact with bottom of boiler.
This was a tubular 7 -foot or 8 -foot shell. This may not be anything new to many, but was to me. A. It is no uncommon for badly proportioned boilers, with bad circulation and under hard firing, for the water to lift tem-
porarily from the metal; but it is dangerous, and , in the porarily from the metal; but it is dangerous, and, in
case you mention, may occur once too many times.
(11) W. B. H. writes: A note in your pape of the last issue by W. L., No. 12, on page 123, referrin to the cement or whitewash used on the White House a Washington, has induced me to ask you to answertwo or
three questions through your valuable paper. They are as three questions through your valuable paper. They are a
follows: 1. Would the application of one, two, or mor coats of that cement stop the leaking of a tin roof so put on as to leak badlys A. The coating will hardly answer the purpose. 2. Will you give a statement of
the materials of which it is composed, and the proportion of each, and how made, whether by heating, boil ing, or cold; and how applied, whether hot or cold A. See "A Durable Whitewash," page 5\%, curren
volume. 3. If that volume. 3 . If that will not answer, can you tel
me what will stop the leaks without a new roof? A Give the roof one or more good coats, when dry, good roofing paint-red ocher ground in oil.
(12) F. C. H. asks: Can an "American ocomotive, consuming from 50 to 60 lb . coal per hour n last issue tionary engine? A. It depends upon the efficiency of the boiler. Boilers evaporate 6 to 9 lb . water per pound of coal, and if the train is so heavy as to require
50 lb . coal, per mile-then $50 \times 8=400 \mathrm{lb}$. water. Light trains of course require less coal and water-some not re than one half the above
(13) J. A. W. writes: 1. I blow my boiler out clean once a week. Is it best to let it dry over night and put cold water in the next day, or put water, at
100°, in from tank immediately after blowing off? A. 100°, in from tank immediately after blowing off? A.
Let the boiler cool.
2. Is there any method of preventing a safety valve from sticking other than frequent trials? A. A safety valve should be examined and
cleaned frequently. Some forms are more apt to stick than others.
(14) G. H. H. asks: 1. At what part of the stroke does the steam cut off in a link motion locomotive engine, when she is said to work on full stroke?
A. Usaally about seven-eighths the stroke. 2. Does it take the same quantity of fuel to convert a given quantity of water into steam in a boiler under a high pres-
sure, say, at 100 lb . to square inch, as it does at the sure, say, at 100 lb . to square inch, as it does at the at-
mospheric pressure? A. Approximately, but not exactly
(15) E. N. M. writes: I notice that there have been a great many rotary steam engines inventen,
but at the same time there are but very few used but at the same time there are but very few used. use of that class of engine? A. The principal objec-
tion is, that they cannot be kept tight. Another is tion is, that they cannot be kept tight. Another is
that the working steam expansively cannot be readily secured, and they are not economical
(16) J. M. C. asks: Can you give me formula for a cement to be placed under the patch,
covering a rent in a large boiler? It must be watercovering a rent in a large boiler? It must be water-
tight and not affected by heat. A. A mixture of white tight and not affected by heat. A. A mixture of white
and red lead, with very fine iron borings, the whole and red lead, with very fine iron bori
made into a stiff putty with linseed oil.
(17) G. G. asks: Is there any way to re move iron rust from cloth? A. If the cloth is uncolred moisten the stained parts with hyter and warmed Thoroughly rinse the cloth in plenty of cold water afterwards. It is nearly impossible to remove such stains from some colored fabrics.
(18) J. S. asks for an effectual remedy for the extermination of red ants. They abound in dry
sandy localities, and during the summer months become sandy localities, and during the summer months become I know of, but ail fail in accomplishing permanent re-
sults. A. The judicious use. of a small quantity of oil of urpentine will often drive a a a small the pests. It may be injected into cracks and crevices in closets and else where from an ordinary sewing machine oil can.
(19) S. C. asks: Can you tell me what to do to kill the borers in pine flooring? The floor is fifty
years old and perfectly sound until acout two years ago, years old and perfectly sound until acout two years ago,
when the borers got in from pine wood stored under when the borers got in from pine wood stored under
the house. A. Try turpentine as directed in answer to the house. A. T
J. S., this page.
(20) J. H. W. writes: I tried to marble on paper per instructions in Scientific American Supplement, but the colors sank to the bottom. What
the cause? I used Venetian red and lampblack. burnt the lampblack to free it from grease. I cannot very fine with the vehicle and floated on to the wate carefully-not mixed with it. The marbling must be done immediately after the floating is accomplished 2. Will a helix or electro-magnet increase the force of the current from a battery? A. As we understand your
question, no. 3. In using a battery for medical purquestion, no. 3. In using a battery for medical pur-
poses, is an electro-magnet of any benefit? Is a heli poses, is an electro-magnet of any benefit? Is a helix
of any benefit? Which is better? A. Your question is tension for medical use can be obtained from either magneto electric machine or induction apparatus whe properly constructed, the electricity from both sources
possessing similar qualities. The induction apparatu is more easily managed, and is for that reason usually referred.
(21) J. G. W. asks as to the composition of rollers for a printing press. A. Best white glue and concentrated glycerine, equal parts. Soften the glue by it. Strain off excess of water, heat the glycerine ver a salt water bath, add the glue, and stir until the over is all dissolved. Continue the heat for ceveral
glue
the composition get cold, and remelt it several times
before at last pouring into the well oiled brass cylinder mould. Give the composition plenty of time to coo (22) C. S. M. asks if young trees about sixinches in diameter can be moved. If so, what is the
right time to do it and the best way? A. Easily. Move right time to do it and the best way? A. Easily. Move in winter, when the earth is frozen about the roots,
Move as large a block of earth with the roots as can be handled
(23) W. T. B. asks for a receipt for taking copying ink stains out of linen shirt bosoms and white duck vests, etc. A. Make a strong solution of good
bleaching powder (chlorinated lime) in cold water and apply to the stains; then apply a strong aqueous solu tion of oxalic acid (cold). Repeat if necessary until the stains disappear, then rinse thoroughly in cold water. (24) W. L. asks: 1. In the preservation of eggs, mentioned in the Scientific American, No. 1 ,
July, 1881 , will the eggs keep as long in the lime pickle as they would if packed in powdered charcoal after being dipped in paraffine? A. The charcoal is the best . How should the pickle be made? A. Add lime and salt in about the proportion of half a pound each for
every bucket of water. 3. Would there be any risk in keeping eggs by this process for a year or more? A. If the eggs are well covered with paraffine as directed there will be little danger provided they are stored in a cool place where the temperature does not change much. 4. Would they keep as well in a room well ven tilated as they would if put in a cellar? A. The cellar
is best. 5. Where can an incubator be bought? A. See is best. 5. Where can an incubator be bought? A. See spondents. 6. How and Personal and Hints to Corre be made? A. See Incubator and Incubation, in Sup piements Nos. 26 and 64.
(25) C. P. asks how to make the yeast, and Che quantity to put to each gallon of hop beer
Summer Beverages, in SUPPLEMENT, No. 192.
(26) C. T. F. asks: Can you inform me how I can get a light of glass that will stand the heat I want to put the glass in an iron box in which I am 300° to articles which I am going to subject to about of 300° A. Good very well without softening. It will not break nnder the condition if the precaution is taken to heat it gradually and uniformly at first.
(27) H. A. F. writes: I have at my fisheries a large lot of fish offal and fish not merchantable
which I would like to convert into guano or fertilizer in some cheap way. A. Pass the refuse through a mincing machine and expose it in layers about three inches deep in a kiln heated to about 300° Fah., until properly weight of is sometimes mixed with ihree times its weight of dry earth
vitriol before drying.
(28) J. T. asks for the best polish for flax or hemp twines, that is, what composition mixed in starch will give a twine a glossy appearance? A. Try
the following: To 1 lb . starch add (at blood heat) blood lbumen, 2 oz.; water-glass (sirupy). 3 oz; curd soap, $1 / 4$ oz., (dissolved in warm water). Beat together and
let it stand forty-elght hours or more before applying.
(29) C. G. says, in answer to W. W. C., page 26 (24), current volume: "If he will lick over the writing with a moist tongue, the writing, after the paper
has become dry, cannot be effaced even with India-rub is not very nice but is very effectual."
(30) G. K. S. writes: In your issue of August 20, 1881, you describe an improved hectograph. (after once using the by explaining how the negative the gelatine to be used a second time? A. Remelt the pad, skim off any floating matters, and let it cool again before using.
(31) C. G. asks: 1. Is there any book published on working and tempering steel, as practiced in he die maker's trade? A. There is no single work scattered through various cyclopedias and works on mechanics. There is great need of a really practical work on working and tempering steel. We can suggest no better way for you to gel the information you desire
than to obtain it from practical men who have had long experience in the business. 2. If there is, where can it be obtained, and the price? A. Such books as are published can be obtained from dooksellers who advertise in our columns. 3. What is the best protection for a steel worker to wear over his eyes? Where can it be
bought? A. Probably a pair of good goggles with bought: A. Probably a pair of good goggles with
rather thick $\begin{aligned} & \text { wasses would answer your purpose. These }\end{aligned}$ may be purchased from any optician in this city.
(32) W. H. L. asks: 1. Will you please tell ne if there is any way to remove the stain made by bichromate of potassa, after it has been exposed to sunlight? A. If the substance will hear it use a solution of
1 oz. caustic potassa dissolved in 3 oz of water, oz. caustic potassa dissolved in 3 oz. of water, and
atter rinsing, a small quantity of strong warm acetic acid. 2. Is there any good method of removing freckles? If so, please give it. A. We know of no very satisfacory remedy other than bathing the skin frequently with fresh cream and protecting it from strong sunlight and wind. 3. What is the accepted theory in regard to a fect vacuum? A Probably not I consiced a perthat a perfect vacuum is insulator to heat If so how do we get the sun's heat? A. Heat and light pass unimpeded through vacua, that is, space practically devoid of air, aqueots vapor, or other ponderable substance. 5. Will electricity pass through a perfect
vacuum? I know it will pass through the vacuum made by air pumps. A. No
(33) D. C. B. asks: 1. Would you please inform me through Scientific A merican wat ingredi-
ents and proportion of same compose hectograph described August 20, page 116 of Scientific American ? A. Soften 1 oz . of fine gelatine by soaking it over night in a small quantity of soft cold water. Press out excess oz. of concentrated glycerine ky heating over a hot water oz. of concentrated glycerine by heating over a hot water
bath for an hour or so. See article on copying pads,
page 100, vol. xlii. 2. What make of printer's ink is Comb. See Curry-comb. used in process ? A. Best letterpress ink. 3. Can ink
be rubbed from pad as in the ordinary copygraph ? A. be rubb
No.
(34) J. A. S. asks: Is there any known chemical which will render rope or cloth incombustible
or partly so? A. Saturate 'he fibers with a solution of 1 lb . crude tungstate of soda in a gallon of hot water.
(35) F. A. asks how to draw water from a distan. You understand the well is about 15 feet from the place where I want to place the pump, and the well is about 40 feet deep. A. Your pump should be not more than 24 to 28 feet above the surface of the wate in the well, therefore you must place the pump in the
weil and arrange a mode of working it at the point of well and arrange a mode of working it at the point of delivery. Or sink the pump in the earth
depth, and lead pipe from it to the well.
Minerals, etc.-Specimens have been re ceived from the following correspondents, and examined. with the results stated:
E. C. C.-Schistose rock containing a little iron oxide -probably manganiferous.-G. F. B.-Iron pyritesiron sulphide-no value.
[OFFICIAL.
INDEX OF INVENTIONS

Letters Patent of the United States wer

 Granted in the Week Ending August 23. 1881
ND EACH BEARING THAT DATE

 Those marked (r) are reissued patents.]A printed copy of the specification and drawing of any patent in the annexed list, also of any patent issued since 1866 , will be furnished from this office for 25 cents. In ordering please state the number and date of the patent desired and remit to Munn \& Co., 37 Park Row New York city. We also furnish copies of patent fications not being printed, must be copied by hand.

Abdominal supporter, R. H. Benson...... otherwise attemperating, H. Wils
Air brake, railway, C. L. Lorraine.... Air-cooling machine, J. P. \& O. G. Burnham. Air for ventilating and other purposes, apparatus for withdrawing or forcing,
Alarm. See Low water alarm.
nchor, D. Urch...
Animal trap, D. Lake........................... Bag lock, C. Ritchmann.
ea of yarn, T. Finigan Bathing mat, H. H. Mansfield.
Bare
Battery. See Combination battery
Bed, folding wardrobe, E. N. Dorin
Bedstead, sofa, J. A. McGee
Bell, gong, A. G. Golding...
Bellows covering, J. P. Walters
Belt, galvanic. .f. C. Warner
Billiard cue tip, Spencer \& Wilki
Bit brace, ratchet, N. Spofford
Blasting rock, etc.. J. W . Reid.
Blasting rock, etc., J. W. Reid.........
Boiler and pipe covering, E. Ainswort
Boiler and pipe covering, E. Ainswort
Boring machine, wood, A. Williams..
Bottle stopper, H. F. Clev
Box. See Wooden box
Brace. Spe Bit brace.
Bracelet, W. H. Ball...
Brake. See Car brake. Wagon brake
Brake rod, E. Ebi....
Broach, 1 Tirpiseh
Burner. See Vapor burner
Butter worker. E. Stout.
Buttoner Cuter, T. McDonough
Cane and auricle, combined walking, G. G. Smit Cannon, G. H. Ferriss
Cans, ear to fasten wooden jackets to J. H.
Car brake, R. D. Chatterton.
Car brake, G. w. Laraway...
Car coupling, L. P. P. Bayliff et
Car coupling, F. H.
Car coupling, H. A. Engman
Car couppling, T. B. Knowles.
Car coupling , S. E. Maxon...
Car coupling, s. E. Maxon
Car coupling, P. Pelton...
Car coupling. G. W. vunk
Car hailway work, A. Bybee
Car, sleeping, P. B. Coffin...
Car, stock. C. S. \& J. N. War
Car wheel mould, J. Forbes.

Case. See Type case.
Caster, W. E. Mannt
Chain, driving and carring, C. W. Levaliley
Checks. etc., preparation of bankers,
Checks. etc., preparation of bankers', Dupre
Cigar machine, J. E. Schmalz.
Cigar perforator, H. Jaworski.
Clamp. See ironing board clam
Clock, astronomical, J. L. Blair.
Closet seat, J. P. Hannan
Clothes drier, T. Liddon..
Coffee apparatus for extracting, J. Niese
Coffee, method of and apparatus for collecting
the aromatic and volatile substances from,
the aromatic and volatile substances from, R.
S. Jennings...................
Coffee roaster, E. P. Walling.

Collar and hames, combined, T. Broderic
Color, azo, J. Schuncko.
Coloring matter, azo, H. Baum

Comb. See Curry-comb.
Combination battery, T. Schmauser........246.036,
Corn from the cob, machine for removing green, T. S. Lewis (r)
Cotton-ginning

Cotton-ginning machinery..............................
Coupling. See Car coupling. Hose coupling. pling. See C. Ching
Thil coupling.

cultivator, cotton, S. . . Bro
cultivator hoe B B Grin
altivator hoe, B. Grifil
Cup. See sponge cup.
Curry-comb, W. E. Lawrence
Curtain fixture, L. Erikson...

ner cutter. Stalk cutter
Damper plate and reflector,
Dentist's vulcanizing flask, E. T. Starr 245,946
Desk and
Distilling wood, etc., apparatus for, C. J. т.
Burcey.........
Dors, hanging sliding, B. Knop
Drier. See Clothes drier
Drier, C. H. Hersey......
Egg packet, W. H.
Ejector, H. Coll
Elastic fabric, w. Martin.
Electric light regulator, W. Hochhausen
Electric lighting apparatus. J. Best
Electric regulator, Sawye \& Stret
Electric regulator, Sawyer \&
Ellipsograph, L. H. McComb.
Engine. See Locomotive engine. Traction
Engine. See Locomotive engine. Tract
engine. Steam engine. Wind engine.
Excelsior carrier and mixer, F. A. Cushman
Excelsior carrier and mixer, F. A. Cushman
Extension table, R. W. Ruscheweyh.......
Fabric. See Elastic fabric. Knitted fabric
Fanning mill, H. E. Keeler.
Farm gate, J. H. Cover....
Farm gate, H. w.
Feed water regulator, s. C. Sal
Feeder for horses, L. M. Marr.
Fence, portable, D. T. Hazen.
Fence wire, barbed, G
Filter, B. Goldmann.
Firearm, breech loading, H. Watkey
Fire extinguisher, automatic, o. C. Heath. Fishing reel, L. A. Kiefer
Flask. See dentist's vulc
Flask. See dentist's vulcanizing fl........
Flatirons. etc.. apparatus for heating
Flute, harmonica, W. T. Atkins.........
Fountain. See Wash boller fountain.
Hop frame.
Furnace. See Glass melting and blowing fur-
rnace. See Glass melting and blowing fur-
nace. Locomotive furnace. Ore desulphuriz-
nace. Locomotive furnace.
ing and chlorodizing furnace.
Furnace for heating blanks for bolts, etc., G. H.
webb
Furnace grate bar, J. C. Knoeppel.
Furnace raking attachment, T. B. Howe............
Furniture, apron for fronts or sides of, F. R. Fast.

Gas by electricity, apparatus for lighting and ex-
tinguishing, J. P. Tirrell (r)............
Gas revulatar, carbureted. C. W. Soule..
Gate. See Farm gate.
Gelatine, preparing the skins of smalla animals for the manufacture of, Milligan \& Dennis........
Glass melting and blowing furnace, D. Fetters....
Glove, E. v. Whitaker
Glove, E. V. Whitaker...............................
Glucose from grain, manufacturing, williams \&
Alberger...........
Glue, etc... manufacturing, E. Lesser.............
Gluing attachment for matching machines, H. M.

Grain an liquid meter, oscillating, J. Thomas ...
Grain shocking machine, A. Dick.
Grate bar, J. C. Knoeppel
Gravel, etc.. apparatus for excavating and screen-
Gun barrels. uniting double, H. Piepe
Harrow, w. J. Campbell
Harrow, W. J. Campbell.........
Harrow, E. D. \& O. B. Reynolds
Harrow, spring tooth, C. La
Harvester reel, W. R. Iow.

Hay rake and tedder, combin
Header, M. N. Laufenburg.
Header, See Car heater.
Heater.
Heating and drying apparatus, A. G.Smith.
Heating and drying apparatus, A. G. Smith.....
Hides and skins, compound for preserving,
wickersheimer............................
Hoe, S. D. Hubbard
Holder. See Photographic plate holder. Rein
holder holder.
Honeycomb foundations, machine for manufac-
Hop frame, C. Griffin...
Horseshoe, Braffett \& Buschma
Hose coupling, F. Hickman
Hose coupling, F. Hickman
Ice breaker, G. M. Mils.....
Inhalor and respirator, A. Carlston.......................
Interlockingswitch and signal apparatus, G.
inghouse, Jr.................
Ironing board clamp, P. sbea
Jack. See Lifting jack.
Jar carrier, B. Goodyea
Jaw trap, N. H. Lindley.
Key. See Telegraph key.
Kiln or mutfe for pottery, etc., T. Stier............
Knitted fabric and machinery for manufacturing
Knitted fabric and machinery for manufacturing
the same, G. Upton.............................
Kitting machine needle, latched, w.o. Daniels.
Knob rose, Montague \& Booker...................
Lacing or whang needle. J. \& M. N. Anderson...
Lacing or whang needle. J. \& M.
Lamp attachment, S. S. Newton.
Lamp bowls, blowing, F. Rhind
Lamp bowis, blowing, F. Rhind......
Lamp burner, E. B. Requa.........
Lamp, electric. J. J. \& T. J. McTighe
Lamp, electric. J. J. \&T. J. M
Lamp standard, F. Rhind.....
Last, boot and sh.
Last, boot and shoe,
Lathe dog. J. Doyle.
Lathing to iron frames of buildings, fastening
wire, R. T. Brown.............
Leather, stuffng, Reed \& Winch
Lifting jack, C. H. Sears........
Lifting jack, C. H. Sears.........
Lock. See Bag lock. Nut lock.
Lock and lateh, F. Keil....
Locomotive engine, F. M. Stevens...
Lncomotive furnace, T. A. Buckland................
Loom temple, J. B. Eisenma
Low water alarm for steam boilers, T. Hamilton. Lubricator. See Steam engine lubricator.
Magnecto-electric machine, \mathbf{O}. Heikel ...

Mail bag catcher, C. I. Kimball.
Manure, artiflcial, L. Graf Mash preparing apparatus, H. D.........e.

Mat. See Bathing mat. Stove mat. | Mat. See Bathing mat. Stove mat. |
| :--- | :--- | Mattress spring, N. \& J. Nelson

Meter. See Grain meter. Grain and liquid | | $\begin{array}{l}\text { Mill. See Fanning mill. Windmill. }\end{array}$ |
| :--- | :--- | Millstone dress, B. D. Sanders

Mirror, hand, K. L. Zeiun
Mould. See Car wheel mould. Mould. See Car wheel mould.
Moulding from plaster of Paris, composition for

 Motor. See spring motor.
Nut cracker, M. Renz...
Nut lock, G. D. Hampshie
Nut lock, L. C. McAllister.
Nut lock, Walker \& Elliott.
Nut trimming device, G. H.
Oil can tip, N. B. Dennys...
oil can tip, N. B. Dennys
Ond separating the same from solvents, puri
fying vegetabie, F . X. Byerley..............
fying vegetabie, ,. . X. Byerley................

Ore separating and amalgamating machine, T
Timby....
Organ reed, J. H. Dowling.
Packing, piston, A. Hampe............................ 245.
Packing, piston rod, C. E. Bartlett............
Packing, piston rod. E. P. Monroe
Pail, dinner, L. A. A. Garrett............................
Pail ears. device for making. E. I. H. E. \& J. T.
Whitehouse....
Paper, manufacture of, Richardson \& Smith......
Paper stock, apparatus for boiling and digesting,
H. Coker...............
Paper, tobacco, F. Funke ..

Paper, tobacco, F. Funke ..
Parer, apple, C. R. Heizmann.
Pen, perforating, J. Trainer.
Pen, perforating, J. Trainer.............................
Petroleum, solidifying crude and refined, P. Dit
$\underset{\text { Photographic plate holder, E. B. Ives }}{\text { mat............................. }}$
Picture frame, J. II. Caterso
Pipe. See Tobacco pipe.
Pipes, belt joint for coupling, H. G. Dennis.
Planter and seeding machine, II. Farmer.
Planter check rower, corn, L. B. Berrien.
Planter, corn, Lindsay \& Miner...
Planter, hand corn, w. T. Rogers
Planter, hand corn, w. T. Rogers........................
Planters, automatic seed dropping mechanism for
corn, H. Moeller et al
Plow standard, F. B. Manly
Plow standard, F. B. Manly........
Plow, wheel, E. D. \& O. B. Reynolds
Plows and harrows, sulky attachment for, E. M
Pocketbook or wallet, J.
Pottery apparater........... same, G. Ligowsky.......
Press. See Printing press.
Pressure regulator, N. Curtis.........................
Printing machine cushioning device, C. Potter, Jr.
Printing
Printing press, plate, R. Neale
Projectile. H. Carr............................
Pulley in cable roads, depression, H. Root.......
Pulley in cable roads,
Pump, T. W. Davies.
Pump, W. He Young................
Pump bucket, chain, H. B. usler

Pumps from air, apparatus for freeing, J. H.
Blessing $\ldots . .$.
Pyroxyline, manufacture of Iplastic compounds
from Ho
from, Hogeson
Railway signal, Harper \& Bryan................
Railway signal, electric, R. . Jennings....
Railor switc,

Reflector, B. B. Schneider...........................
Regulator. See Electric regulator. Gaslight regu-
lator. Gas regulator.
Rein holder, J. S. Holmes...
Roaster. See Coffee roaster
Ruchings, machinefor making, W. T. Hose
Saddle, harness, J. H. Carrick.
Salt boiling apparatus, S. D. Gilson..
Sandpapering machine, P. Barker (r).
Sash cord fastener, F. E. Ege (r).
Sash fastener, J. B. Yeagley
Sash fastener, J. B. Yeagley....
Sash, window, H. Wocher......
Saw, fire-wood drag. W. Warme
Saw, fre-wood drac, W. Warmoth.........
Sa ws, pring attachment for, E. Mioberg.
Scale, balance. A. V. Abbott..
Scarf fastener, \mathbf{E} H. Foote...
Screen. See window screen.
seal, metallic, E. J. Brooks..
Seat. See closet seat.
Sewer trap, J. F. O'Grady
Sewer trap, J. F. O'Grady..............
Sewing machine, Corey \& Muther
Sewing machine, Corey \&
Sewing machine, . Elliott....
Sewing machine, C. M. Hine.
Sewing machine ruffing and gathering attach
ment, J. M. Griest
Shears manufacture of, E. A. Longdon..
Sheet metal tube,
Shirt, J. B. See....
Shutter worker, F. H. Mo......
Signal. See Railway signal.
signal. See Rail way signal.
Skate, roller, M. C. Henley..
Sled, bob, A. D. Washburn
Sap, manufacture of, Jaffe \& Darmstaedter..
Soap
Soap package, Schultz \& Hoge.
Soldering machine, N. Jeneins.
Soldering machine, N. Jeneins....
Soldernishing machine, J.w. Maioy. 245.963
Spindle bolster and step, Butterick \& Flanders
Spinning wheel, F. voegili.....................
Sponge cup, E. J. Stellwagen
Sponge cup, E. J. Stelwagen........................
Spring. See Carriage spring. Mattress spring.
Spring motor J. . P. Powell.
Spring. motor. J. B. Powewll..
Stalk cutter, J. C. Sebring .
Stalk cutter, J. C. Sebri
Stalk rake, H. Grebe.
Stalk rake, H. Grebe.
Steam engine. E.S. Winchester.
Steam engine, lubricator, automatic, H. H. W. West-
inghouse
inghouse................
Steam table. F. Lanagan.
Steam table. F. Lanagan.
Steering apparatus, T. B.
Stone pick, T. T. Thomas

246,148	Stopper. See Bottle stopper
246,121	
Stove fire basket	

Stove fire basket, W. H. Loomis.
Stove, gas, C. A. Brodribb.......
Stove, heating, I. A. sheppard
Stove leg fastening, R. A. Friedmann246,227
Stove mat for coffee pots and other uensils,
Stove mat for coffee pots and other utensils, E. C
Zumwalt........
Stove, oil, J. F. Quimby........
Straps or ropes, device for holding, T. H. Eulass.
Strawherry runner cutter, C. O. Rockwell
246,271
245,974
266,105
Strawberry runner cutter, C. O. Rock well …..... 246,20
Sugar, manufacturing crystallizable grape, wil-
Sugar, manufacturing rystallizable grape, wil-
liams \& Alberger (r) 9,850
Supporter. See Abdominal supporter.
Sweep rake, G. A. MCSurley................... 246,0
Switch. See Interlocking switch. Telephone
switch. Railway switch.
Table. See Extension table. Steam table.
Table, G. F. Sargent................................. 246.217
Table leaf support, G. Ahrens................. 245.926

Tablet, writingort, G. Ahrens.
Tanket, writing. J. F. Malet
Tank waters of slaughter houses, etc., treatment
Telegraph cables, mercury terminal for, w. R.
Patterson
Telegraph, duplex, w. v. Miller.
Telegraph, duplex, W. V. Miller
Telegraph, fre, I. B. Livingston
Telegraph key, M. W. Goodyear.
Telegraph, ke, 1. B. Livingston 2464,16
Telegraph key, M. W. Goodyear. 25,94
Telegraph, quadrupiex, Thompson \& Seldon... ... 246.24
Telegraph wire jointer, F. \& J. A. Crich …....... 246,08
Telephone central office apparatus, W. H. Sawyer 2462

relephone central offce apparatus, W. H. Sawyer 246,2
Telephone switch, M. G. Kellogg, 246,27

Thawing frozen pipes, apparat
Thill coupling. L. Harris......
Thill couplings, anti-rattler for W.................
Thimble skein. W. O. Foster...............
Tide and current breaker, I. A. Sylvester
Tile machine, F. Frary......................
Time circuit closer, electric, \mathbf{D}.
Tobacco pipe. J. I. Van Riper
Top spinning device, J. G. Kiah
Top spinning device, J. G. Kian
Traction engine, F. F. Landis.
Traction wheel, C. B. Bostwick
Traction wheel, C. B. Bostwick........................ 2446, 246,06
Trap. See Animal trap. Jaw trap. Sewer trap
Trap, J. L. Symonds

Tube. See Sheet metal tube
'Iype case, L. H. Miller....
Valve. balanced piston, W.L................
Valve, mechanism for locomotives. F.
Valve, mechanism for locomotives. F. M. Stevens 246,23
Valve stem support, Monroe \& osgood.. 245,96
Vapor burner, Born \& Dunsha.............
Vehicle gear, McBride \& Haisten...

Vehicle wheel, D. Murray
Velocipede, E. C. F. Otto
velocipede railway, J. 'I. Ferre
Velocipede railway,
Vaftla ior, A. Kind
W. G. Patton
Waffe iron, A. G. Patton
Wagon brake, R. Rutter
Wagon gear, W. T. Shaver
Wagon running gear, B. M Wagons, circle iron support for, S. S. Hurlbut..... 244, 24,13
Wash boiler fountain. 1 .T. Whitcomb......... 246,05 Washer. See Ore washer.
Washing machine, J. Lewis.......
Washing machine, G. F. Murken
Washing machine, J. H. Woodberry et al............ 246.18 24626
Washing machines, frame for supporting, W. M. 246.11
Watchmaker's tool. A. W. Bush.....................
watch movements, implement for removing
broken screws from. W. H. Blaisdell.....
broken serews from. W. H. Blaisdell.... 2
Water tubing, W. F. Moulton............... 2
Wheel. See spinning wheel. Vehicle wheel.
Traction wheel.
Whiffetree, A. Fasig............................ 246,10
Whip core and whip, C. F. Shepard............. 246.04

windmill, w. H. King.
Windmill, J. M. May....... ...
Window screen. J. Koch...........
Wire, apparatus for removing surplus coating
metal from, J. A. \& F. Crich ...
 Wood splitting machine, C. E. Grandy............ 246.12
W ooden box, s. W. Shelden... 246,04
Woven fabrics, machine for forming pile on, G.
Woven fabrics, machine for forming pile on, G.
W. Griffin................................ 246,0
DESIGNS.

TRADE MARKS.
Beer and ale, J. M. Moore
Brooms. wire, M. C. Isaacs
Brooms. wire, M. C. IIsaacs ..
Buttons. A. \& D. Flesh.......
Carbon or lampblack, P. Neff.
Carbon or lampblack, P. Neff...
Crackers, cakes, jumbles. snaps, and biscuits,
Dozier-Weyl Cracker Company
Dozier-Weyl Cracker Company 8
Cure for corns, bunions, warts, and callous flesh,
Jahne \& Co..599
8loves and mittens, I. Parker \& Co...............592
Medicinal preparations, certain, M. D. Conklin \&
Co...
Medicinal preparations, pills, and biters, proprie-
tary, H. L. Hatch

Pen and pocket knives, J. Russell Cutlery Co.
Soap, S Strunz.
Soap, laundry,
Soap, laundry, Lautz Bros. \& Co............ 8.589
Starch, R. Johnson \& Son........: 8,58
Toys, India-rubber, Althof, Bergmann \& Co... . 8,58
Wine, sherry, Duff, Gordon \& Co.. 8,587

English Patents Issued to Americans.

From August 19 to August 23, 1881, inclusive
Butter worker. R. Whinnerah. Leadville, Col. Fastener for gloves, etc., A. Hopten. New York city.
Pottery, manufacture of. G. Tigowski, Cincinnati, \mathbf{O}. Pottery, manufacture of. G. Ligowski, Ci
Pulverizer, J. C. Anderson, Chicago, Ill.
Puiverizer, J. A. Anderson, Chicago,
Sewing machine, W. Webster, San Francisco, Cal.
Soldering tool, W. Braidwoon, New York eity. Target. G. Ligowski. Cincinnati, o
Trowsers clip, , C. C. Noble. New Britain, Conn.
Tunneling appara tus, A. . Blackman Nashville Tunneling apparatus, A. L. Blackman, Nashville, Tenn.
Wave power apparatus, I. L. Roberts, Jacksonville, Fla.

5in21 Engravings free! free! fre!

The Steam pumps made by EASTHAMPTON, MASS.,
are the best in the world for Boiler Feeding Are the best in the world for Boile and othor purposes.

THE ALLOYS OF MANGANESE. - A

IT PA Ys to sell our Hand-Printing Ruber stamps
 EGYPTIAN ANTIQUITIES. - AN IN

GREAT IMPROVEMENTS CRUSHING AND GRINDING

FRUIT SIRUPS.-BY ADOLPH G

TEXAS

AREANSAS AND IOOUISIANNA. CHEAP HOMES FOR ALL!

50,000 Laborers can get Immediate Employment, at Good Wages, THE SOUTHF-WESTRERN IMMMIGRATION CO.

THE MANUFACTURE OF GE GASS FOR

Hancock Inspirator, THE BEST BOILER FEEDER KNOWN. Over 22,000 in use on Locomotive, Sta- tionary, Marine, and Portable Boijers. THE HANCOCK INSPIRATOR CO.,

facturing purposes. Plot 226660 . One th
ing. fronting n three streets. A Adress
W. S. P. PRENTIEE. Prentice Stores,

 CONSTITUTIONAL DISEASES. - BY Which the Joun Roosa, M.D An int interesting paper in
Arsasses the value of glasses in the

WANTED,

About a 100 H. P. Engine, with modern improvements
to run a Flour Mil.
lequired to have regular motion ande eonomical in use of steam. Also, scalles for Rail
road Track of not less capacit than twenty tons
Address R. D. JOHNSON, Box 578 , Cumberland, Md.
THE TELECTROSCOPE.-BY M. SEN LECQ. Description in detail, accompanied by illustra-
tionsof an anparatus intened to transmitto ad istance
throurh a telegraphic wire, pietures taken on the plat
 RAPID BREATHING AS A PAIN OB tunder in Surrerr, Obstetrics, and the General Practice
of Medicine and Dentistry. 1 By Dr. W. G. A. Bon will
on

RONCALLI'S MELOGRAPH.-DESCRIP
 THE GUENON MILK MIRROR -THE external marks by which maty be known the amount o
milk a cow will
hield

PERIN BAND SAW BLADES,

 PRESERVATION OF WOOD, WITH

 KEUFFEL \& ESSER'S, NEW YORK

Shafts, Pulleys, Hangers, Eitc.

 ASPHALTUM. - A COMPREHENSIVE

屚
 CAVEATS, COPYRIGHTS, LABEL

 Messrs. Munn \& Co., in connection with the publicatior of the ScIENTIFIC AMERICAN. continue to examineImprovements and t act as solicitors of Patents for

In this line of business they have had over thirry years' experience. and now have unequaled facilities for the Preparation of Patent Drawings, Specifications and the Prosecution of Applications for Patents in the
United States Canada and Foreign Countries. Messrs. United \& Co also also attend to the preparation of Caveats, Registration of Labels, Copyrights for Books, Labels, Reissues. Assignments, and Reports on Infringements
of Patents. All business intrusted to them is done with special care and promptness, on We send, free of charge. on application, a pamphlef ontaining further information about Patents, and how ights, Deeigns, Patents. Appeals, Reissues, Infringe ments, Assignments, Rejected Cases, Hints on the Sale Patents, e
Foreiyn Patents.-We also send, free of charge, a method of securing patents in all the principal countries of the world. A merican inventors should bear in mind that, as a general rule, any invention that is ralumuch in England and some other foreign countries. Five patents-embracing Canadian, English, German French, and Belgian-will secure to an inventor the ex-
Cusive monoply to his discovery among about ons clusive monopoly to his discovery among about one
HUNDRED AND FIFTY MILILoNs of the most inteligent people in the world. The facilities of business and
steam communication are such that patents can be obtained abroad by oar citizens almost as easily as at at
home. The expense to apply for $\$ 75$; German, $\$ 100$; French, $\$ 100$; Belgian, $\$ 100$; Cana

Copies of Patents.-Persons desiring any patent Copies of Patents.- - Persons desiring any palen
issued from 1836 to November 20.1866 , can be supplied with official copies at reas.nable cost, the price de
pending upon the extent of drawings and length of speciif cations.
Any patent issued since November 20, 1866, at which time the Patent office commenced printing the draw-
ings and specifications, may be had by remitting to this office 25 cents. wili be furnished for 25 cents. When ordering copies. please to remit for the same
as above. and state name of patentee, title of inven A pamphlet, containing full directions for obtaining United States patents, sent free. A handsomely bound Reference Book, gilt edges, contains 40 pages and
many engravings and tables important to every pat entee 2 nd mechanic, and is a useful handbook of refer .
$\xrightarrow{\text { MUNN } \& ~ C O ., ~}$
Publighers SCIENTIFIC AMERICAN. BRANCH ofFICE-Corner of t' and Tith Streets,

ROSE'S MACHINIST. The Complete Practical Machinist
 CONTENTS

EPPS'S COCOA

 BREAKFAST."By a thorough knowledge of the natural laws which lected Cocoa, Mr. Epps has provided our brear of wast tablise any heavy doctors' bills. It is by the judicious use use ou round us ready to oftack wherever there is foating weak orrselves well fortified with pure blood and and a properly
nourished frame Coivil Sevevice Gazettio. Sold in tin
Made simply with bolling water or milk. Sold

JAMES EPPS \& CO.,
New York and Chicago Depots, SMITH

OPTICAL TELEGGRAPHY. - DESCRIP

T. M. INAGGİ卫,

MACHINERY

BOILER PEEDERS AND PJIMING MACHINERY Sen for new IIIustrateo Cate

PATENTS SOLD
Parciners

RUBBER BACK SQUARE PACKING.
represents that part of t the packing which, when in use, is in contact with the Piston Rod
the elastic back which keeps the part $\&$ against the rod with sufficient pressure to be
"his Packiog is made in lengths of about 20 feet, and of all sizes from $1 / 4$ to 2 inches square.
JOHN H. CHEEVER, Treas. NEW YORK BELTING \& PACKING CO., $37 \& 38$ Park Row, New York.

McKean, newhall \& borie,
Philadelphia (Lovering) Sugar Refinery

 RUPTURE

 ROOFINC.

 W. c. wReN's
Pat. Gpate Bar, Manufactured by Dagle Iron Foundry
ELLE Eagle Iron Foundry
$\mathbf{8 1 6}$ RACE STr., PHILADELPHIA

IRON REVOLVERS, PERFECTLY BALANCED Has Fewer Parts than any other Blower. P. H. \& F. M. ROOTS, Manufacturers,
 SEND FOR PRICED CATALOGUE

WITHEREX. RUGG \& RICHARDSON. Manufacturer
 SIMPLE HOLTZ ELECTRICAL MA

 nanied by a escriptions ofit largenumber of highy inter
eating and instructive experiments in static eiectricit
which may be

\section*{ ALCOHOL IN NATURE-A DETAILED the Agronomic Institute, France. which led to the

unexpected discovery that alconoi exists everywhere
distributed throughout rature-in the earth, water, an

 | | |
| :---: | :---: |

Holly Water Works, CITIES, VILI, AGES, SUBURBAN TOWNS.

HOLLY MF G. CO, LOCKPORT, N.Y.

stationary ato portable Enginge

 VOLNEY W. MASON \& CO.
FRICTION PULLETS, CLUTCHES. and ELEVATORS

textile fibers under the micro

NOMORE USE FOROLILNMAGHINERY

Sifilispulive

Pond's Tools,

DAVID W. POND, Worcester, Mass. MACHINISTS' TOOLS.

Lathes, Planers, Drills, \&c.

Special Machines for Car vork, and dhe
WOọd Working Machinery of ail kinds.

LIVE FOXES WANTED,
STOP: wiswidiluhrh HOME TREATMEXT. NO CHARGE FOR
CONSULTATION. The feartul effects of CONSULTATION. The fearful effects of
Catarlh on the system can le stopped. Childs
Catrrrh Treatment is the only known means Rev. T. P. CHILDS. Troy, O. WATER ELEVATOR, OR STEAM JET PUMP

ELECTRIC LIGHT.
THE FULLER ELECTRRICALC COMPANY, having perfected th-ir system of Electric Lighting, are prepared to
funnish the Improved Gramme Dynamo Electric
Machines aud Electric Caums, either for single lights Machines and Electric lamps, either for single lights or for from 2 to 20 lights in one circut. This apparatus is unexcel led for durability, steadiness
of lighti, and economy of power, and requires los. of light, and economy of

THE FULLER ELECTRICAL COMPANY, 44 East Fourtenith Streot, NEW YoRK.
Establ'd EACLE ANVILS. 1843. Solid CAST STEEL Face and H
ranted. Retail Price, 10 cts per lb.
Double Screw, Parallee, Leg Vises.

HARTFORD

 MILLER'S FRIEND.

STEAM BOILER Inspection \& Insurance COMPANY
W. b. Franklin.V. Pres't. J. m. alden. Pres't. J. B. Pierce. Sec'y.

Jarvis Furnace Co.

THE NONESSCCH TTURBINE

PRADLEYS GUSHIONED HAMMER

deadifyzcompany SYRacuse

cerns emploging night
watchnen. Send for int
cularsto E. IMHAUSER,
vew York.

The Cameron Steam Pump,

GOIID, BIIVDESIGNED FORUEIN COAI, AIVDIIOIN MIIINES,
ALSO FOR GENERAL MANUFACTEURING AND FITETETETME
Pumpe turnished with Address THE A.S. CAMERON STEAM PUMP WORKS,

ERICSSON'S

New Claoric P Pmining Engine $\underset{\text { Fimplest cheapest, and most economical pumping engine }}{\text { DOR }}$ Simplest cheapest, and most economical pumping engine
for domestic purposes. An servant pirl can operate
Absind
DELANATER IRON WORFS No. 10 Cortland Street Now Yort, $\mathbf{N} \mathbf{y}$ No. 10 Cortand Street, New York, N.

 GRADUAL REDỨCTION OF GRAIN. JOHN T. NOYE \& SONS, BUFFALO, N. Y. Jenkins' Patent Packing and Valves.
 joint where directions were followed. Jenking' Valves
are warranted steam tipht and are made of the best
steam nuetal. JENKINS BROS.. 71 John St., New York.

The MIackinnon

 Colmubia Bicyoles.
 mem
with riders, and their superiority
in beauty, structure, and fnish
is acknowledged by al
catalogue, with
THE POPE MFG. CO,
 Stevens' Roller Mills,

ETECTORS
Herading Watitr alin Canyefing Liniuis

NATHAN \& DREYFUS, Sole Manufacturers,
STILESUUSTABIE INCLANE PRESSES
TO INVENTORS
Hovaril limanaduring bo.

```
                                    (inCORPORATED,
```

3648365 Broadway, New York.

PATENTED NOVELTIES yankee notions,
 F EVERY DESCRIPTION

 AMPLE CAPITAL.Latest Improved Machinery. CONNECTIONS WITH ALL WHOLESALE MERCHANTS the United states and canada. Agents in Foreign Countries.
Correspondence without charge. with all wh Miden

Scrientific Americam

The Most Popular Scieutific Paper in the World VOLUME XLV. NEW SERIES. COMMENCES JULY 1. Only $\$ 3.20$ a Year, including postage. Weekly.
52 Numbers a Year. This widely circulated and splendidy illustrated paper is pubished weekly. Every number contains six-
tecn pages or useful information, and al larye number of orivinalal engraviangus of new inventions and discoveries,
representing Engineering Works, steam Machinery New Inventions, Novelties in Mechanics, Manufactures, Chemistry, Flectricity, Telegraphy, Photography, Archi-
tecture, Agriculture, Horticulture, Natural History, etc. All Classes of Reariers find in The Scientific
AMricas a popular resume of the best sctentific in AMERLCAN a popular resume of the best scientific in-
formation of the day; and it is the aim of the publishers
to present it in an attractive form, a voiding as much as possible abstruse terms. To every intelligent mind,
this journal affords a constant supply of instructive reading. It is promotive of knowledge and progress in every community where it circulates.
Terms of Subscription.-One copy of THe ScienTIFIC Americas will be sent for one year- 52 numbers-
postage prepaid, to any subscriber in the United States postage prepaid, to any subscriber in the United States
or Canada, on receipt of three dollars and twenty or canada, on receipt of hy the publishers; six months, $\$ 1.60$; three
cents
months, $\$ 1.00$. months, 81.00 .
Clubs.-One extra copy of THE SCIENTIFIC AMERI-
OAN will be supplied gratis for every club of fivesubscribers CAN will be supplied gratis for every club of fivesubscribers
at $\$ \$.20$ each; additional copies at same proportionate

One copy of The Scievtific American and one copy of THE SCIEMTIFIC AMERICAN SUPPLEMENT will be sent for one year, postage prepaid, to any subscriber in the
United States or Canada, on receipt of seven dollars by the publishers.
The safest way to remit is by Postal Order, Draft, or
Express. Man Express. Money carefully placed inside of envelopes, astray, but is at the sender's risk. Address all letters

MUNN \& CO.,
37 Park Row, New York. To Foreign Subscribers.-Under the acilities of
the Postal Unor, the ScIEvTIFIC AMERICAN Is now sent by post ditect from NewYork,with regularity,to os. bscrib-
ers in Great Britain, Inda, Australia, and all other ere in Great Britain, Indra, Australia, and all othe
British colonies; to France, Austria, Belgium, Germany, Russia, and all other European States; Japan, Brazil,
Mexico, and all States of Central and South America. Terms, when sent to foreign countries, Canada excepted,
$\$ 4$, gold, for ScIENTIFIC AMERIC AN, 1 year ; $\$ 9$, gold, for \$4, gold, for SCIENTIFIC AMERICAN, 1 year; ;9, gold, for
both SCIENTITIC AMERICAN and SUPIEMENT for 1
year. This includes postage, which we pay. Remit by postal order ordraft postage, which we pay. Remit bs

PRINTINTG INKES:

