
[Entered at the Post Ofllee of New York, N. Y... as Second Class Matter.]
A WEEKLY JOURNAL OF PRACTICAL INFORMATION. ART SCIENCE. MECHANICS. CHEMISTRY AND MANUFACTURES.

NEW YORK. JUNE 25, 1881.

Siphons.

At a recent meeting of the Polytechnic Association of the American Institute the president, Mr. T. D. Stetson, detailed some experiments which he had recently made.
The ordinary siphon, consisting of a simple bent tube, act by the difference of length of the two columns of liquid There is a tendency to form a vacuum at the top of the tube The superior gravity of the longest raises the shorter column by the atmospheric pressure. The partial vacuum results in the liberation of the small quantity of air always contained in the water, and the formation of what is known as an air trap.
In attempting to avoid this difficulty by the use of a large vessel or air receiver some curious results were obtained.
The first object was to make a self-emptying air chamber. The plan adopted to accomplish this result was to carry both pipes into the air chamber, and take one to the very top, where it was turned over in such a way as to make a fall of water through the air space when the siphon was in operation. This plan would in all probability be successful in a perfectly constructed apparatus. In order, however, to observe the operation, Mr. Stetson bad made the air chamber of glass, and he found himself unable to preserve a perfectly tight joint sufficiently long to determine the question definitely.
A siphon having a large chamber at the bend, into which one pipe enters at a much higher level than the other, he found developed, with just sufficient air inclosed, the very unexpected property of acting like a check valve. It opposes a greater resistance to the passage of water in one direction than in the other-the difference in resistance depending on the difference of area between the water surface in the chamber and that in the pipe entering at the highest level. In draining marshes on a large or small scale, in draining any area subject to tidal fluctuations or fluctuations from freshets, especially in connecting a cellar drain with the sewer where the sewer is liable to rise and make a back-flow under extraordinary circumstances, this offers a valuable means for opordinary circumstances, this offers a valuable means for op-
posing the return flow of the water. By properly propor-
tioning the chamber to the pipe, the excess of head necessary
to force the water through the wrong way could be made almost anything we please.
Mr. Sutton said that siphons are very interesting pieces of apparatus and work very curiously. In the early days in California, where capital was abundant but the means limited, siphons were often used to drain mines in the gravel, especially when they came to the bed rock, and tunnels would be necessary to drain the water off in the ordinary way from a rock basin. In such cases the siphons were used to take the water over the " rim of the bed rock."
These siphons almost always stopped working after a little, from an accumulation of air in the bend. They always stopped, in fact, save when they were put in by experienced men. The speaker then detailed an instance where heputin a siphon going over a rim of rock some 150 feet in length The outside end was of iron pipe, but the inside end wa rubber hose. As the works were carried further in, some 250 feet of rubberhose was added; the head being very small there was but slight tendency to collapse. At each end a stop valve was placed, and at the highest point there wasan air chamber. This was formed of an empty whisky cask, which was a thing easily got and adapted to the purpose. The cask and siphon were filled through a tunnel at the top, the valve on the top of the cask was then closed and the others opened, and the siphon would commence to work. It was necessary to have two valves, one at each end of the pipe, because at that time they could not buy in San Francisco a pump capable of filling the pipe. At night the whole was shut off, and in the morning it was started long enough before work began to properly reduce the water level. The air chamber would fill with air in about two hours, but just hefore it was supposed to be filled the valves were shut and the barrel filled up again with water through the tunnel

ATTRACTIVE SUBURBAN RESIDENCES

Very much has been done by our architects and builders during recent years to develop artistic individuality and
ings of suburban residences of the more expensive sort. Yet it is still too much the fashion to carry into semi-rural neighborhoods, where ground space is reasonably cheap, the unbroken blocks of houses characteristic of the city, and made necessary there by the high cost of land.
The outskirts of our cities, where garden and lawn spaces are not luxuries beyond the means of the moderately well-to-do, show a serious lack of dwellings intermediate in character between the city block and the detached residence, though the need of such homes must be wide and urgent. When the average business man seeks a home at a distance from the center of trafic, he does not want to find it in a row of houses which might as well have been planned for and set up in the heart of the city. Though unable to own or hire a detached house, he is not unwilling to pay for a reasonable amount of land not built upon, provided it is properly used to enhance the beauty and healthfulness of his home. For such reasons we are inclined to think that there is a large opportunity for capitalists and speculative builders to make good investments in dwellings of the class described, in many suburban localities made accessible to the business men of New York and other cities, by the increasing means of rapid transit everywhere prevailing.
The accompanying illustration, showing the elevation and rounds of a section of three villas, 1 rom a block of nine residences in Hanover, Germany, gives a good idea of what he suburban homes we have in mind might look like.
The second engraving shows the plans of the main floors, and the artistic manner in which the grounds are laid out. With such changes of plan as would be required to adapt them to the needs of American bouseholds, such dwellings, we believe, would sell readily or rent to desirable tenants at rates that would make them as profitable to the builder or owner as delightful to the occupants. In size the houses are well suited for the majority of well-to-do American families, such for example as make up a large part of the population of Brooklyn; and their architectural beauty seaks for itself. The cost of the houses need not be great; [Continued on page 402.]

SUGGESTIONS IN ARCHITECTURE-GROUP OF ORNAMENTAL VILLAS AND GROUNDS,

Srientific gmoritam.

MUNN \& CO., Editors and Proprietors.
published weerly at
NO. B' PARK ROW, NEW YORK.
o. D. MUNN.

TELRMS FOR THE SCIENTIFIC AMERICAN. One copy. one year postage included..
One copy, six months, postage included
One copy, six months, postage icluded 160
Clubs.-One extra copy of THE SCIENTIFIC AM ERICAN will be supplied gratis for every cuut of five subscribers at $\$ 3.20$ each : additional copies at
same proportionate rate. Postage prepaid. Remit by postal order. Address

The Scientific American Supplement

Scientific American Export Edition.

NEW YORK, SATURDAY, JUNE 25, 1881.

TABLE OF CONTENTS OF

THE SCIENTIFIC AMERICAN SUPPLEMENT INO. 286,

For the Week ending June 25, 1881.
Price 10 cents. For sale by all newsdealers.

 $\mathrm{E}=\mathrm{w}=\mathrm{w}=\mathrm{L}$ F"usuma
II. ${ }^{\text {I }}$

TECHNOLOGY AND CHEMISTRY.-The Constituent Parts of
Leather. The composition of different leethers exhibited at the
Paris Exhibition- Amount of leather produced by difterent the

GEOGRAPHY, GEOLOGY, ETC.-Petroleum and Coal in Vene-

VI. Mepicine And irgirive- Meaical Uses of Pigs...

\qquad

printing ink.

A few years ago the preparation of printing ink was con sidered a part of the printer's trade; now there are very few printers who have more than a remote idea as to the compo sition or preparation of the inks they use.
The manufacture of such inks has of late years developed into a distinct industry, employing hundreds of thousands of dollars capital, and turning out hundreds of tons of ink annually.
The basis of all ordinary priuting inks, from the cheap poster and news to the finer lithographic and plate inks, is a varnish, prepared from oils, chiefly linseed, although nut oil is sometimes used, and rosin oil frequently introduced in the cheaper grades.
Where linseed oil is used this varnish is practically anhy aride of linoleic acid, the fatty constituents of the oil-gly cerine, palmatine, etc.-having been volatilized by heat. For the better class of inks old oil is preferred. It is usually purified by heating it for several hours by injected steam or otherwise, with oil of vitriol (sulphuric acid) diluted with bout three times its weight of water. The acid solution hav ing been drawn off the oil is washed by agitation with boiling water, and, after standing to allow the latter to separate, is run off into storing vessels. From these the oil is transferred to iron caldrons provided with stirring apparatusand covers. A moderate fire in a small furnace beneath gradu ally heats the oil, which only half fills the vessel (to prevent accident by foaming) and the stirring apparatus is set in motion. The moisture in the oil is gradually dissipated, and as the temperature approaches $570^{\circ} \mathrm{Fah}$., an inflamma ble vapor or smoke begins to escape from the boiling oil; a scrap of burning paper secured in the cleft of a long stick is thrust into the smoke, which is thereby ignited. The fire below is drawn and smothered; the oil, or rather the gases given off by the oil, are allowed to blaze, the combustion being kept within bounds by partly covering the pot if necessary. Samples of the oil are taken out from time to time and tested by cooling a few drops on a plate of glas or tile. When the drops thus chilled glaze over quickly and draw out into strings of about half an inch between the
fingers, the flame is extinguished by putting the cover tightly fingers, the flame is extinguished by putting the cover tightly
over the pot. The oil is then again heated over a moderate over the pot. The oil is then again heated over a moderate
fire to the boiling point, and the heat and stirring kept up for several hours, small quantities of drier being introduced by some manufacturers.
Varnishes of several degrees of thickness-from greater or less boiling-are prepared in this way to satisfy the requirements of the different kinds or grades of ink, and to thinner ink being required in cold than in warm climates
For black letter-press ink the color and character are usu ally imparted to the varnish by the incorporation with it of lampblack or carbon black, Prussian blue, indigo, resin, and soap. The proportion of these vary according to the purpose for which the ink is intended. The following will serve as an illustration of the composition of a good letter-
press ink: Varnish (prepared as above), 1 gallon; resin, 4 pounds; brown resin soap, $1 \frac{1}{6}$ pounds; purified lampblack, 5 pounds; Prussian blue and indigo, each $13 / 4$ ounces.
In compounding the ink the resin is finely powdered and gradually stirred into the varnish, made hot enough to melt and dissolve it. The soap, previously cut into thin slices, dried, and rubbed into fine crumbs, is next introduced, a very little at a time, as the moisture it still retains is apt to occasion a violent commotion as it is driven out by contac with the hot varnish. The addition of soap to printing ink increases the sharpness of the print and tends to preven smearing or clouding of the work. The mixture, after cool ing somewhat, is poured over the lampblack, and finely powdered blue pigments placed in the bottom of a suitable ves sel, and the whole is well stirred together and then ground in a paint mill until reduced to a very fine, smooth, and uniform paste.
The quality of such inks depends largely upon the tho roughness with which the pigments are incorporated with the paste by grinding.
Lithographic inks are simply very fine printing inks made somewhat more fluid than required for letter-press or cut work. The ink used for engraved or plate work is usually a heavy printing ink made with ivory black, or ivory and carbon blacks, instead of lampblack.
4555 Colored printing inks are made from fine, clear linseed oil, boiled into a varnish as above described, and appropri ate pigments. The pigments used are carmine, lakes, ver milion, red lead, Indian and Venetian reds, chrome yellow chrome orange or red sienna, gallstone, Roman and yellow ochers, verdigris, indigo, Prussian blue, Antwerp blue, ultramarine, luster, umber, sepia, and various mixtures of these A very fine printing ink may be prepared without burn ing, and the risks attending boiling oil may be avoided, by using the following receipt: Balsam of capivi, 9 ounces; resin soap, dry, 3 ounces; lampblack, purified, 3 ounces; Prus sian blue, $11 / 4$ ounces; Indian red, $3 / 4$ ounce; creosote, 3 drops Grind all together on a stone slab, with a muller, to a very smooth and uniform paste. Any of the colors above enu merated may be substituted for the lampblack and other pigments in the above formula to produce colored inks
and is said to yield a very clear and fine bas been used, properly prepared: Venice turpentine, 21/4 ounces; soap, in thick paste, $21 / 2$ ounces; olein, rectified, 1 ounce; carbon black, $1 / 4$ ounces; Paris blue, $1 / 4$ ounce; oxalic acid, $1 / 8$

The three last ingredients are mixed into a paste. The urpentine and olein are mixed at a gentle heat, the soap and carbon then introduced, and, after cooling, the blue paste is added, the whole being ground beneath a muller to a very fine and smooth paste.
The following are patented inks. Colophonic tar, 14 ounds; lampblack, 3 pounds; indigo, 8 ounces; Indian red, 4 ounces; yellow resin soap, 1 pound.
The colophonic tar referred to is the residuum from the distillation of rosin for rosin oil.
Linseed oil, 40 gallons; litharge, 4 pounds; lead acetate, 2 pounds.
The oil is heated to about $600^{\circ} \mathrm{Fah}$., for from forty-eight to sixty-five hours according to quality of varnish required, the lead salts being added as driers. To each gallon of this varnish, 4 pounds of gum copal is added and dissolved. For common news ink the proportions are as follows: Of the above varnish, 15 pounds; rosin, 10 pounds; soap, brown esin, 2 pounds; lampblack, $51 / 2$ pounds.
A fine ink, suitable for use with rubber type, is prepared from nigrosine, soluble, 1 ounce; gly cerine, pure, $41 / 2$ ounces; soap, white curd, $1 / 4$ ounce; water, q. s.
The nigrosine, finely powdered, is mixed into a stiff paste with the water, hot, and after standing a few hours this is mixed with the glycerine and soap, and the paste rubbed down with a muller on a hot stone slab.
For colored inks of this description the nigrosine may be ubstituted by almost any of the soluble coal tar dyes.

THE PROBLEM OF HEALTHY WATER.

Much complaint has arisen within the last two months, in this city, about the quality of the Croton water. It was alleged that it had a fishy taste that was far from agreeable, and apprehensions were expressed that it might be unfit for use. The Board of Health promptly had it anayzzed and published the results. They were reassuring, and the public were told that they could drink all they desired with impunity. While this assertion was made on the strength of the analysis, it was fortified by the fact that no disease had been traced to the Croton, although it had been complained of for several weeks before the publication of the analysis. The timely investigation seems to have quieted the alarm, aud in this way probably considerable good was done. Whether it proved auything concerning the water is another question.
A chemist or scientific man who takes the position of a non-alarmist where he can at all conscientiously do so, does much better than one who raises the cry of danger on a small provocation. This last has been done recently at the meetings of a certain social science association in the matter of adulteration. A certain person gave a formidable category of substances used for the purpose. It did not matter to him that some of the adulterants were more expensive than the original substances; he put them down in his list just he same.
But the question we are thinking of is whether the analyis proved that the Croton water was good. Water analysis simple enough in its practice, but what is the verdict as to its value? Where it is necessary to know if water can be used for a steam boiler the determination of its solid mineral constituents can be made close enough without trouble. Even in this determination of the total mineral matters there are difficulties as yet unsolved. After the water is evaporated to dryness the organic matter is disposed of by ignition. In this iguition, however, some of the nitrates and carbonates present will be decomposed, and cannot be restored to precisely their original state. No question on its face seems simpler and is so hard in reality. Still, it can be done closely enough for practical purposes.
A reliable determination of the character of the organic matter, which was the vital point in our case, is unknown. All authorities admit its difficulty. Those who have their own methods uphold them, but still consider it an intricate question. The total nitrocen and albuminoid nitrogen found by the methods used by Dr. Waller are of value to a limited extent only. Water of a most dangerous character might pass the ordeal of such an analysis much better than a safe fluid. The above tests in this case bad a certain comparative value, as they were made in a regular series of Croton water analyses. It is from this point of view that they appear best. We do not doubt that on inquiry it would be found that it was their comparative value that the analyst would most insist on. It is easily conceivable that a water from the same source might acquire an additional amount of dangerous impurity and suffer a greater loss of innocuous organic substance at the same time. In such a case it would analyze better. It would have less organic matter and less nitrogen of both types. Yet it would be more dangerous, and the comparative value of the analysis vould be nil.
The dreaded impurities are the fermentable substances and living organisms, or rather germs. Some years ago a simple test for urea, founded on its fermentation, appeared in our scientific journafs. It was suggested as useful to distinguish contaminations of water with coal gas liquor and sewage respectively. Both these substances produce or contain ammonia, so that a test to distinguish the orngin of that ammonia was very desirable. Here is a hint of what would be a grand achievement in water analysis; a reliable and practicable determination of the fermentable constituents. By the use of different reagents they might be distin guished from each other, just as the ammoniacal contam nation due to gas liquor was distinguished from that due to
sewage in the case just mentioned. Any animal or vege table forms, too, might be classified into harmless and harmful ones. This would be the basis of a germ analysis.
The first of these suggestions may be carried out in the future, but so far it has not been realized. It is fraught with difficulties, among others the dilution in the water, and the easy destruction in laboratory operations of the substance.
The microscopic examination can, however, be even now conducted with some intelligibility, and might be made to yield valuable results.
Some authorities claim that a simple determination of oxygen required to oxidize the organic matter is enough. Others say the total organic matter is the essential thing. Some prescribe an analysis by combustion of the organic matter; others a determination of the two nitrogens or ammonias, total and albuminoid, in the wet way. "Wher doctors disagree who shall decide?" says the proverb
The problem is stated. A real valid method for the analysis of water is the want. The disagreement of experts among themselves proves that all must be dealing in uncertainties. Chemists would like nothing better than to see the vexed questions of their profession settled. They do not like uncertainties. They all wish to be positivists in science. In all the field of analytical chemistry there is hardly a more puzzling question than the above.

GEORGE STEPHENSON

The centenary of the birth of George Stephenson, "th father of railways," was celebrated in England, June 9.
Stephenson was born at Wylam, eight miles from New-castle-on Tyne. His father was fireman at the near by colliery engine house. His mother was the daughter of a dyer. At eight years of age Stephenson herded cattle for a neighbor for a shilling a week, part of his duty being to shut the gates of the tramway from the pit, when the wagons passed, to keep the cows from straying. One of his early amusements was the modeling of an engine and winding machine like the one bis father tended. At fourteen he was made assistant fireman, earning one shilling a day. Three years after he jumped his father's position and became engine man. At this time he could neither read nor write, but he knew his engine and critically studied its coustruction and working. About this period an old Scotch school master helped him to overcome the mystery of letters. At twenty-one he married, and after the birth of his son Robert, a year later, he removed to West Moor Colliery, Killingworth, where his wife soon died. For distraction in his bereavement he went to Montrose, Scotland, to superintend the working of a Boulton and Watts engine. He found the engine out of gear and the works choked, but soon had matters straightened and the machinery in proper working order. A year later his father was blinded by an accident; he was drawn in the militia for the Continental wars, and his pros pects looked dark enough. To relieve his father's destitu tion and purchase exemption from army service used up his scanty savings, and he seriously contemplated emigration as bis only chance for success in life.
The question of steam transit was becoming prominent during the early years of the century, and naturally enlisted the attention of Stephenson. The early locomotive makers contemplated engines for hauling wagons over common roads only; but Stephenson-thanks, no doubt, to his early observation of the advantages of rails while gate closer and cattle herder-foresaw that the road of the future must be railroad, and planned his first locomotive accordingly.
In the fall of 1822 he constructed for the Hetton Colliery Company a short railroad, upon which, on the 18th of November, his locomotive hauled a load of sixty-four tons at the rate of four miles an hour. This demonstration of the feasibility of railways led at once to the Darlington and Stockton railway project, which won for Stephenson in Parliament and elsewhere the reputation of being a maniac leader of lunatics and fools. In spite of opposition the road was opened for traffic September 27, 1825, with Stephenson as engine driver.
The subsequent battie of the railway for leave to be, and of the locomotive for toleration after the railway was grudgingly accepted, is familiar history. No man ever fought a grander fight against popular and professional prejudice and ignorance, or developed in the fight a manlier character. His mental capacity rose with every great emergency, while his native shrewdness and solid sense ever kept him from undertaking the really impossible or impracticable, however extravagant or absurd his projects may have seemed to men of smaller capacity. What he knew he knew by personal mastery, not by hearsay; and without presumption or arrogance he was able by sterling intellectual power and suresigltedness, backed by the hardest of hard work, to demonstrate the correctness of his ideas and to accomplish undertakings which involved the severest problems of railway engineering.
The moral of his life is clear, and should be pondered by every young mechanic. There is no condition in life, however hard or humble, which may not furnish the stepping stones to the most successful career. Had Stephenson been surrounded by wealth and educational privileges in early life, he might still have become a great man; but lacking his special experience as tramway gate tender aad engine tender, dreary and discouraging as it may have seemed at the time, it is hardly possible that he would ever bave been the pioneer of one of the most important and influential social and industrial movements of the race.

TWO RECENT BOILER EXPLOSIONS

We give on a nother page an illustrated report of the解 nean wag Jacob Brandow on the $2 d$ of June. The engi the fireman, was badly scalded. The cause of the catastrophe is plainly shown in the report of our expert, namely, bad construction of the water leg of the boiler, from which eakaye and corrosion ensued
The boiler explosion which took place at the dye works of Messrs. Gaffney \& Co., Philadelphia, on the 1st of June, resulting in the death of three persons and the destruction of buildings, has caused considerable comment among steam engineers. This boiler was one of a nest of three, was of the ordinary cylindrical type, 30 feet long, 36 inches diameter, with flat cast iron heads, havinga large central man hole in the front head. The Hartford Boiler Inspection and Insurance Company had examined the boiler not long prior to the explosion, and pronounced it perfectly safe or the work and pressure required.
From the evidence before the coroner's jury it would eem the safety valves were set to blow off at 60 lb ., and usually did blow at about that pressure, or not exceeding 62 lb . But precisely what the pressure was at the time of he explosion does not appear. The explosion lifted the boiler from its place and sent it like a rocket over into the next block, where it landed without particular injury to its shell.
The front cast iron head was found broken into several pieces, the lines of fracture radiating from the man bole. This seems to indicate that it was the weakness of the cast ron head that caused the mischief.
The testimony of several experts was introduced before the coroncr's jury, showing that flat cast iron heads, althongh extensively used, are necessarily unsafe and dangerous, a they are apt to have hidden flaws; and one of the experts, Mr. Le Van, expressed the opinion that the two remaining boilers, which are of similar construction, are liable to blow p at any moment for the same reason, namely, cast iron heads. On this evidence the jury went the whole figure, and ceusured the Hartford Inspection Company in the strongest erms, declaring that its agents were negligent and incompe ent when they inspected and certified that this boiler was safe.
We have in type for our next number a full report of this
explosion, with engravings taken from photographs, which will very fully set forth the nature of the catastrophe, and perhaps afford some useful suggestions for the guidance of engineers and inspectors.

concentrating or storing up electricity.

Several years ago M. G. Plante, of France, made a se ondary electrical battery, in which the electrical power of several ordinary cells could be concentrated or stored up within one cell, and the electrical force so gathered could be used when wanted. This battery consisted of two elec trodes made of sheet lead, separated by strings of rubber and placed in dilute sulphuric acid.
To charge this battery its poles were connected with an ordinary Bunsen orDaniell cell. During the operation of charging, one of the electrodes oxidizes, a brown coating of perox ide of lead soon showing itself thereon, and the metallic appearance disappears entirely; the other clectrode also changes in appearance, its surface becoming covered with a powdery gray coating. When thus charged the secondary battery was capable of delivering an electric current of very much greater force than an ordinary cell of same size. This secondary battery is capable of charge and discharge indefinitely. M. Faure has lately improved upon the Planté battery, by painting the lead sheets with red lead. Simple as the improvement is, the resulting effects are quite remarkable, the storing capacity and delivery of the battery being greatly increased. The chemical action that takes place is substa tially the same as in the original Planté battery.
It is stated that one of M. Faure's secondary batteries, weighing 165 pounds, is capable of delivering a force equal to one horse power during a period of one hour. If this is so it would bring the weight of an electromotor and battery
of one horse power within a gross weight of 200 pounds of one horse power within a gross weight of 200 pounds, he production of a cariage propelled by electricity, conve nient and economical in use.
For the benefit of those who desire to try this interesting electrical contrivance, we give on another page an illustration in explanation of some recent impromptu experiments on the subject lately made in our office. Any intelligent person who has at hand a few sheets of lead may readily onstruct the new battery.
Professor Sir William Thomson, of Glasgow University, who has lately experimented with these new batteries, mentions the use of one of the cells, weighing 18 pounds, which Professor George Buchanan took with him in his carriage and successfully employed in removing a tumor from a child's tongue by heating a platinum wire. To haveaccomplished the same effect by the ordinary electrical means would have required the setting up of several voltaic cells, and involved much inconvenience. Professor Thomson many practical uses. He speaks as follows
"The largest useful application is waiting just now for the Faure battery, and I hope that a very minimum time will be allowed to pass until the hattery supnlied for this application is to do for electric light what a water cistern in
a house does for an inconstant water supply. A little battery of seven boxes suffices to give the incandescence in the Swan or Edison lights to the extent of one hundred candles for six burs without any perceptible diminution of brilliancy. Thus, instead of needing a gas engine or steam engine to be kept at work as long as the light is wanted, with the liability of the light failing at any moment through the slipping of the belt or any other breakdown or stoppage of the machinery, and instead of the wasteful inactivity during the hours of the day or night when the light is not needed, The engine may be kept going all day and stopped at night, or it may be kept going day and night, which undoubtedly will be the most economical plan when the electric light comes into general enough use.

Another very important application of the accumulator is or the electric lighting of steamships. A dynamo-electric machine of very moderate magnitude and expense, driven by a belt from a drum on the main shaft, working through the twenty-four hours, will keep a Faure accumulator full, and thus, notwithstanding the irregularities of the specd of the engine at sea, or the occasional stoppages, the supply of electricity will always be ready to feed the Swan or Edison lamps in the engine rooms and cabins, or arc lights for the mast-head, and red and green side lamps, with more certainty and regularity than have yet been achieved in the gas supply for any house on terra firma."

American Science Association.

The Thirtieth Annual Meeting of the American Association for the Advancement of Science will be held in Cincin. nati, beginning August 17. It is expected that the changes in the constitution proposed at Boston last year will be ratified, and the association reorganized in eight sections of equal standing, each having its own presiding officer, secretary, and committee. The proposed divisions are:
Section A-Physics; Section B-Astronomy and Pure Mathematics; Section C-Chemistry, including its applications to Agriculture and the Arts; Section D-Mechanical Science; Section E-Geology and Geography; Section F-Biology; Section G-Anthropology; Section H-Economic Science and Statistics. Also, I-A Permanent Subsection of Microscopy
Arrangements are to be made for excursions of the anthropological section to some of the prehistoric mounds and relics in Ohio, including Fort Ancient, at Madisonville. The headquarters of the association and the offices of the local committee will be at Music Hall.

Through Railway Connection Under New York.
A company has been organized to connect by a tunnel railway the Hudson River Tunnel and the railroads which enter the city from the north and east by way of the Fourth Avenue improvement. The route will be from the outlet of the Hudson River Tunnel, under Wooster Street and University Place, to Fourteenth Street, thence by a curve under that street to Fourth Avenue, under which it will run to Forty-second Street. It is to be a double track road at least eighteen feet below the surface. The object is to carry freight and ultimately passengers under the city to New Jersey, so that cars may run direct from Boston or Montreal to New Orleans, Charleston, and other Southern cities without the annoyance and delay of a New York transfer.

Asbestos in the Black Hills.

Among the new discoveries made within the past few months is a large body of asbestos. This was discovered by Mr. T. B. Leavenworth, about six miles from Deadwood City. The croppings can be traced for nearly three hundred feet, while a large body of it has already been unearthed. Tests have been made which prove that this body of asbestos is equal to any yet discovered in America. It may be that this mineral will not come into immediate use, adds the Pioneer, but the day is not far distant when it will become an article of export from the Hills.

New Remedy for Baldness.
In cases of confirmed baldness the new remedy proposed is to remove the scalp, bit by bit, and substitute, by skin grafting, pieces of healthy scalp, taken from the heads of young persons. The success which has heretofore attended operations of this nature in cases of scalp wounds gives a promising outlook for this new mode of curing baldness; and perhaps the day is not far distant when the shining pates of our venerable fathers will bloom with the flowing locks of youth.

The Largest Grain Elevator.

The new elevator just completed ncar South Ferry, Brooklyn, is described as the largest in the country. It has been over a year in building, and has cost nearly $\$ 2,000,000$. It has a storage capacity of $2,500,000$ bushels, besides superior transfer facilities and dockage for half a dozen vessels, which can load at one time. The machinery is contained in an independent engine house and three enormous towers. The warehouse proper consists of a large number of separate fireproof stores.

Mr. William Clark, who died at Philadelphia last week, in the 91 st year of his age, was one of the oldest manufacturers of mathematical and nautical instruments in the country. He was born in England, and came to this country in 1820. Two of Mr. Clark's sons are engaged in the mathematical department of the Coast Survey Office at Washington.

ATTRACTIVE SUBURBAN RESIDENCES

[Continued from first page.]

and the present price of building plots in good localities in Brooklyn is such as to justify the devotion of the space allowed for architectural effects and ornamental grounds. We call to mind the brow of the hill near Prospect Park, overlooking the Bay of New York, as a site particularly well adapted for this style of houses; and there is no end of equally suitable places in the upper part of New York and along the Hudson River
All the buildings in the block from which our illustration was taken are in the same style of architecture, "Italian was taken are in the same style of architecture, "Italian Renaissance," but no two are exactly
Professor H. Köhler, wisely abstaining from profuse or elaborate ornamentation, has secured a charming architectural effect by the elegant proportions and graceful arrangement of the parts of each and all the buildings.
The houses shown are of brick covered with cement, painted of old ivory color, the sills, lintels, cornices, columns, etc., being of freestone. The crestings, capitals, rosettes, vases, balusters, medallions, and statuary are of terracotta, closely resembling the freestone in color. The chimneys are also of terra-cotta, with small caps, as heavy chimneys would have marred the architectural effect.
Our manufacturers of terracotta ornaments and architectural fittings are now supplying artistic wares in such abundance and at such prices that builders are able to produce almost any effect desired at comparatively small expense.
The cost of buildings like those we have chosen for illustration, might doubtless be diminished without injury to the architectural effect by substituting terra-cotta for the freestone trimmings, to a greater extent than are used in the Hanoverian structures above described.
We hope to learn that some capitalist or builder has taken a hint from our illustrations, re-engraved from our German contemporary he Zeitschrift des Architecten und Ingenieur Vereins au Hannover, and have commenced a block of buildings after the plan shown in the perspective view, with a spacious ornamental court yard in front, after the manner illustrated.
The iron railing, the reader will observe, is a pattern so chaste and ornamental that it almost comes under the head of art work, and so in the details of the entire structure a degree of harmony is observable which does not character ize the works of some of our most distinguished architects, whose talents are employed on more pretentious and costly houses.

The Balloon House

The name giveu to this mode of construction indicates its lightness and total want of any heavy element of solidity Yet it undoubtedly possesses strength, and the facility with which it can be put together gives it a peculiar claim on the man who desires to save time, labor, and money, in the erection of a ready home which possesses the capability of being rendered comfortable.
Frame together at the angles a stout sill, say four by six inches, which has been bored on the under side with an auger at six places (at the four corners and midway of the length). Set this sill on six stout cedar posts, driven four feet into the ground.
Next, nail up, at each of the four corners, a pair of boards abutting each other; and, to strengthen these, temporarily nail on the inner angle of each pair of board blocks at a couple of feet apart. This doue, and the height of the house being decided upon, chalk that height on the upper ends of these corner boards just crected. Set a piece of scantling, three inches thick by four inches wide, along from corner to corner of end, and nail the upright boards to it. Do the same at the other end. Now connect these two end pieces by similar pieces across the front and rear, halved down and spiked on the end pieces at their angle of meeting. Proceed to board up the four sides, nailing them securely at bnttom and top. Measure off for the location of doors and windows, and nail up boards where their frames are to be secured. When the flooring of the joists is all in place, and the boarding of the walls all up, then fit in and nail the window and door frames in their places.
Meantime the roof may be constructed. Run the ceiling joists out two feet beyond the walls, nailing them on to the front and rear pieces, and spike the rafters to the sides of
them, at their ends; also spiking the rafters to one another at their tops. Or, better still, saw off and nail them to a ridge board set on edge from gable to gable. This plan
 Also, instead of spiking the lower ends of the rafters to the projecting ceiling joists, nail flooring boarding across these joists, out to their ends, and saw off the ends of the rafters, so as to fit down on this boarding, and spike them firmly down through it into the ceiling joists. Thisplan will effect ually inclose the eaves without any further trouble. In the other case, the eaves will require to be boarded up under the ceiling joists.
ceiling joists.
Saw off all the projecting ends of the upright boards of
in the nearest village, brought home, and put up, when bricks or bricklayers to build a flue may prove a serious, if not insurmountable, want. Where it becomes necessary to make a continuation, two of these drain pipes can be joined together by basswood splints secured with wire, and then coating this connection with mortar of wood ashes, clay, and sand.-N. W. Lumberman.

RECENT INVENTIONS

An improved plow sulky has been patented by Mr. Henry Weber, Jr., of Grand Meadow, Minn. This sulky is provided with improved adjusting and controlling devices. Messrs. John A. Moore and James W. Brown, of Wond ville, Tenn., have patented a fireescape which can be converted into a door shutter, window blind, or ladder at will; it consists of a hinged frame from which the lazy-tongs are suspended, and within which they may be closed up by suitable devices to form a blind or shutter, said fire-escape frame being hinged to a door or window frame so as to swing outward and inward, after the manner of an ordinary blind or shutter. Mr. Millard F. Lemonnier, of Ida Grove, Iowa, has patented a sieve for thrashing machines so constructed as to cause the air blast from the fan blower to act more effectively to clean the grain than sieves constructed in the ordinary manner. It consists of a board ihreefourths of an inch in thickness, having holes from three-eighths to four-eighths of an inch in diameter formed through it, and having inclined grooves formed in its lower side at the sides of the holes toward the fan blower, by which the air blast is guidedinto and deflected through the holes.
Alice B. Wood, of Beaver Dam, Wis., has patented a corn popper formed of two hemispheres of wire work or netting, which are hinged to each other and are provided with a device for locking them together. One of the hemispheres is attached to a rod passing longitudinally through a wooden cylindrical bandle, and is provided with an arm at the end for turning the rod so as to revolve the ball containing the corn.
An improvement in shirts has been patented by Mr. Julius Herzog, of New York city. The invention consists in a chest-protecting shield combined with a dress shirt, as a permanent portion thereof, and in a manner not to interfere with the work of starching and ironing the shirt bosom. and also to allow of unequal shrinkage of the material.
A portable wire stock fence, suitable for temporarily inclosing large tracts of land in grazing districts,

PLAN OF VILLA AND GROUNDS

the walls, level with the upper edge of the ceiling joists; against weath it. In order to make the construction perfectiy ters, small in themselves, yet of infinite importance in mak ing a house comfortable
Board over the roof, and afterward saw out the hole for the chimney flue.
If stoves are used, it is not necessary to build a chimney. Construct a flue resting on the ceiling joists, or on a stout frame resting on the flooring joists below, and have one or two stovepipe holes with thimbles in. If two, or even three stovepipes enter it, the size of the flue may be sixteen by twelve inches. If but one is to be provided for, eight inches by twelve will be sufficient. The frame on which this flue stands may be five or six feet high, and be inclosed so as to form a closet or locker. Cover all the external joints of the boarding with slips two inches wide and an inch and a quarter thick, planing off their outer corners. Cover the inner joints with rough slips, and these will answer for furring whereon to nail the lathing for plastering.
These slips on both sides of the inch boarding tend to stiffen it very much. On the exterior they abut against a baseboard below, and a fascia board above.
The roof is usually shingled on rough boarding, and the exterior may be painted and sanded. The strips or battens, as well as the trimmings around doors and windows, may be of a darker tint, or even be a direct contrast.
In order to make these balloon houses warmer, they should be lined with thick brown paper on the inside of the boarding before the inside furring is nailed on.
A material called building paper is largely manufactured for this purpose, and may be had in any quantity in all the cities of the Union. It may be advisable, in this as in other cheap modes of it into batting, and roll it into a lap or roll, with paper or cotta drain pipes for that purpose. These can often be had ting
where it is often necessary to remove cattle from one pasture where it is often necessary to another, has been patented by Mr. Charles S. Giger, of Highland, Ill. The improvement consists in a removable fence support of novel and peculiar construction, adapted for holding the barbed wires of a slock fence in position. The modern forms of school seats and seat backs are constructed of a series of slats tongued and grooved to match and glued together, and secured to cross pieces or hinge rons by means of screws or otherwise. This means of fastening the slats has proved unsatisfactory, chiefly on account of the shrinkage of the wood, which leaves widening gaps between the slats that cannot be conveniently closed. Mr. Asbury Moore, of Sidney, Ohio, has patented an improvement intended to remedy this defect. This inventor inserts a rigid iron rod through the slats at each end of the seat and back, and applies a screw nut to the ends of the rods, for drawing the slats closer together to compensate for shrinkage. The rods are likewise attached to iron ribs by means of iron ties of peculiar construction.
An improvement in metallic loops for holding a hame tug and trace together to prevent the buckle connecting the two from becoming' disengaged, has been patented by Mr. Gerhard Freese, of Bloomington, Ill. It consists in a metal loop of quadrangular shape, slightly tapering or contracted at one end, and provided with lugs of peculiar arrangement on the inner sides for wedging and holding the tug.
Mr. Sylvester W. Sheldon, of New York city has patented a barrel cover, so constructed as to be conveniently handled and kept in place upon a barrel while having their upper and lower sides level, so that they can be packed in small space for storage and transportation.
Mr. Thomas F. Dunn, of Saccarappa, Me., has patented a machine for making cotton batting, so constructed as to reit into batting, and roll it into a lap or roll, with paper or ting

NOVEL DEVICE FOR WATERING ANIMALS
The device shown in the annexed cut furnishes a constant supply of clean water and prevents waste, and is therefor well adapted for watering animals, and especially hogs. A barrel, B, is sunk into the ground, and is connected with a lank, A, or a pond or water main, by a subterranean pipe C, which projects a few inches into the bottom of the barrel A pivoted gate or valve rests upon the end of this pipe, and the other end of the valve is connected with a float, E , which is so arranged that when the barrel is filled the end of the pipe, C, is closed by the action of the float; but as the animal begins to driuk the level of the water in the bar

device for watering animals

el decreases, the float, E, fallswith the water, and opens th valve at the end of the pipe, C , admitting fresh water from the tank until the barrel is again filled.

STEAM TUGBOAT EXPLOSION.

by s. n. hartwell.
The sketches which I herewith submit are intended to illustrate the accident, if a blow-out may be so designated that happened to the boiler of the steam tug Jacob Brandow in the lower bay of New York, on the $2 d$ of June. The perspective sketch (Fig. 1) represents the boiler lying on it side, which position has no reference to the effect of the blow-out, but it is so placed for the purpose of showing the location of the rupture and its relation to adjacent parts of the boiler. It will be seen that the boiler is of the double furnace tugboat type, a variation of the fire-box form common in the towing practice of this city and vicinity. Its principal dimensions are: Diameter, 7 feet; length, 15 feet dome, 4 feet diameter by 5 fcet high. Two furnaces, each $341 / 2$ by 72 inches horizontal measurement; height above grates, about 30 inches. There are 10 flues, 5 to each fur nace, through which the gases pass directly forward to the smoke connection, whence they return by 75 tubes to the up-take (or front connection) and chimney. The flues first mentioned are to each furnace: one 12 inches, three 8 in ches, and one 7 inches diameter. The boiler was made of five-sixteenth iron plates, by a reputable city manufacturer, in 18a7, since when, about seventeen months ago, it was fitted with new furnace sides and put in thorough repair The workmanship and material appear to be the best. No stamp indicating the tensile quality of the iron was observed, however, upon the plates. The steam pressure allowed by the government certificate is 65 pounds by the gange; and there was one common lever safety valve, by which steam was supposed to escape when the limit of pressure was reached.
About 6:30 P. M. on the 2 d of Junc, while steaming at the usual working pressure-something less than 65 lb .piece of one of the new sides blew out, apparently starting at the pointa Figs. 1 and 2, where the iron is now but about half its original thickness, bamely $0 \cdot 15$ 5 (originally 0312). The sketch, Fig. 2, gives an idea of its pro portion and present shape. At other points, as b and c, the thickness is respectively $0 \cdot 185$ and 0165 inch . On the side, e, at the margin of the piece, is observed the peculiar defect called star corrosion, indicated by radiating ines at the stay holes. This condition is often found on the water side of stayed flat surfaces that have been subjected to a sufficient pressure to puff the plates between the stays, giving it the appearance (in less degree) of a mattress. This has the effect of opening the texture of the plate around the stay hole, which goes and comes as the pressure falls and rises radial lines of corrosion are formed, deepening and widenng toward the hole with each successive motion, till leaks and finally ruptures occur. When there is a considerable area of overloaded plate stayed insufficiently, one stay head pulls through, and the rest, being overpowered by a sudden accession of load, give way successively, and a sufficient body of water escapes, the reaction and expansion of which produces the phenomenou knowu as an explosion. In this case, however, the star corrosion may be considered as an indication rather than a cause of the weakness, for appear-
nces indicate that the initial rupture was along the othe margin of this piece, along the lap of the seam where a coninuous groove had resulted from corrosion on the fire side of the plate, and having progressed faster, probably from unobserved leaks, gave way first. The sketch, Fig. 3, shows the construction of the parts on a larger scale. The leak that caused the corrosion of the fire side of the plate was probably only a sweating leak, which is the most dangerous because it is most likely to escape observation. If this had been a case of a dripping leak probably the surface below the seam would have suffered most, and perhaps have give way instead of that above the seam
The effect of this blow-out was an opening of about half a square foot of area, through which the water was forced with terrific power, beginning at a theoretical velocity of about 100 feet per second and ending at something like half that, sup posing that none of the free steam escaped from the stean room through the intervening water. Sixty cubic feet o water would thus escape in about two or three seconds, allow ing for obstructions in the furnace, and everything movable would be driven before it, as was the case. The enginee who was supposed to be in the fire room, made his way to the deck probably nearly dead, and was lost overboard. The fireman, his son, who was on the top of the boiler, in the act of shuttiug off the steam jet, was badly injured The fire upon the starboard grates and coals in the fire room were blown against the woodwork abaft the engine and against the engine itself with a force sufficient to abrade the whitewash and paint with which these parts were orna mented. Government certificates and officers' licenses, that were duly posted according to law, were sadly defaced, but no serious damage was done to the boat, as would mos likely have happened if the weak area had been of sufficient extent to have allowed of the instantaneous escape of the boiler contents.
The government certificate of inspection, which is the form approved February 11, 1880, expires on the 30th of July, 1881, indicating that about ten months had elapsed since the boiler was inspected. It shows, also, that the hul was built of wood in 1864, and that the boiler, rebuilt in 1880, was built in 1867, as stated above. Other memorand a in the certificate, are: one safety valve, one steam gauge, ne low water gauge, one fusible plug, and three gauge cocks. The certificate was signed by Austin Joyce, Inspect or of Hulls, and John K. Mathews, Inspector of Boilers. Mr. William Tebo, the polite owner the Brando and umber of turs beside her, offered every facility to the writer for obtaining the sketches and other memoranda em bodied in this report, and being himself a practical engineer, ndicated, by his personal attentions and sentiments ex pressed, a desire to inform his fellow engineers, through the press, just how it happened. A thorough reinspection is to ake place in a few days, when he will promptly and cheerfully do to the boat just what the government inspector direct.

The American Institute's Semi-centennial.
This year's fair of the American Institute, of the City of New York, will be the fiftieth of these useful exhibitions he desire of the directors is to celebrate the occasion by a exceptionally full presentation of novel inventions, machin
emerge from the sewers and join those placed upon poles. The cable made of the twisted wires is attached firmly to the arched roof or top of the sewer, and thus raised above all interference from water, except in case of floods. Th cables are laid by men enveloped in rubber clothing and provided with safety lanterns, provision being made for conducting fresh air to the workmen by means of India rubber tubes attached to their rubber suits. The wires are passed down through the man holes of the sewers.

VELOCIPEDE CARRIAGE.

The engraving shows a light and compact velocipede car

velocipede carriage.

rage of German invention, calculated for easy and com ortable riding and capable of carrying light baggage. The rider sits in an easy chair above the forward axle, an grasps the guiding handles attached to this axle. The feet rest upon pedals connected by rods with cranks on the rea xle. By the alternate movement of the pedals the carriag is propelled. A lantern is carried in front, and a canopy covers the head of the rider

NEW INVENTIONS

Mr. George W. Mason, of Sharon, Pa., has patented composition of matter to be used for making artiticial stone and consisting of pitch made from gas-tar, cement, plaste f Paris, lime, ground cinders, ground ore, ground oyste shells, fine ashes, pulverized dry clay, dry sawdust, ground late, ground stone, sand and pebbles, and molten brimstone An improved harvester guard finger has been patented by Mr. Elisha S. Snyder, of Snyder's Mills, West Va. The nvention consists in a sectional guard finger constructed with two reversible plates, each having two cutting edges, the plates being arranged to engage with the sickle knives, and held in position by a removable top section provided with beveled edges, which may be utilized by inserting sckle having inverted knives.
Mr. Charles A. Pennington, of Champaign, Ill., has pa ented an improvement in tield corn huskers which consis in the peculiar construction of the revolving husking rolls, between which the cornstalks are forced and the ear cornstalks are forced and the ear
wheel for feeding the stalks carrying wheel for feeding the stalks carrying
the ears between the husking rolls. The machine is provided with a fende and guard for the stalks, for the pur pose of holding and guiding them while the corn is being husked.
Mr. James H. Palm, of Lexington O., has patented an improved devic for raising and lowering the front end of a clevis pivoted to the forward end of a plow beam, whereby the plow can be made to plow deeper or shallower it consists of a clevis having its op posite arms pivoted to a plow bean on each side near its forward end, and provided with a cross rod, to which slotted tongue carrying a pin is hinged, the pin on the tongue engaging in cam groove in a wheel provided with a crank shaft extending back parallel with the beam.

An, improvement in shovel plow blades has been patented by Mr. Henr A. Ridley, of Newport, Ark. The ob ject of this invention is to facilitate th enlargement and contraction of shovel
character of the work to be done may
ery, and industrial products. Their announcement of the "Semi-Centennial," on another page, we commend to the attention and co-operation of our inventors and manufac turers.

Telegraph Cables in Sewers.
An important experiment looking to the disuse of teleraph poles in cities is being made in Washington, D. C. by the Mutual Union Telegraph Company. Havingreceived permission to run their wires through the common sewer of the city the company began the work of placing the wires June 6. The wires which are needed for the city ser vice and for connection with lines outside the city are wisted cable form and covered with a non conductor and waterproof coating. Outside the city limits these wires

BOILER EXPLOSTON

equire, and also to facilitate repairing the blades.

Mr. Jacob G. Walton, of Davilla, Texas, has patented an mproved cotton planter baving a vibrating agitator which is used in combination with a hopper.

The tower clock of the First Presbyterian Church, New rk, N. J., lately stopped. The town time-keeper found in the wheels of the clock a tangled mass of hay, twine, grass cotton, and feathers, amounting to nearly half a peck. A pair of birds had entered the tower through a hole in the dial and attempted to build a nest in the machinery of the clock. The slow revolution of the wheels tore their work to pieces, and they kept on reconstructing it until they stopped the wheels.
little, and, when continued around the stem, makes a small ring at the lower end of the nipple. A continuation of
this brings out the flange. Large nipples are cemented seamed, and flanged, and then turned inside out, as they were cut with the print within.
When finished, the nipples, formers, and all are packed in shallow pans half filled with talc. The packing in itself is quite an art, as there must be economy of space, and as a quick thrust must be given to each one, in order to force little talc between the stems of the former and the nipple, to prevent the flange from adhering to the stem. When packed they are taken away to the heater, where, after being filled full of talc, the pan is loaded upon a car and run into the heater. The "chalk room," in which the nipple pans are filled, is provided with tables, under which are large bins. Below the level of the table tops are a set of sieves, and into these the pans of vulcanized nipples and talc are and into these the pans of vulcanized nipples and talc are pour
Taking the nipples off from the former is oftentimes very hard work. Especially is this true of small nipples. Then it is that the "cots" come in place and save many tender fingersfrom blistering. But after the knack of slipping them off has been learned, it is wonderfully easier. A short sea son of scouring in the cylinders is next in order, after whic the nipples go to the potash boiler.
The punching of the boles in the crown of the nipple is done by hand. Small punchers are set in standards at each table. The nipple is placed upon the punch and liit firmly with a small wooden mallet. The rapidity with which many of the makers punch the nipples is surprising. For a finishing touch the girls take them again in hand, pack them in paper boxes, and the nipple is ready for market.
A curious part of the process of nipple making is the care he girls take of their finger nails. These before all other tools are a necessity. If brittle the utmost care in trimming is taken, and they are washed, scrubbed, and oiled with daily solıcitude. A cracked nail is a calamity, as no seaming at all an be done until it is grown to the proper length.
Black nipples, after being washed frequently, have grayish dirty tinge, which is removed by dipping them in a liquid black
Nipples, instead of being always made by hand, as in the oregoing, are frequently "dipped ;" that is, the former is plunged into a cement made of rubber dissolved in some solvent, and then dried. This being repeated until a suit able coating is obtained, when the flange is rolled as in othe iipples. They are also made in moulds. Finger cots and other rubber articles of similar shape are cut, cemented, and made over formers in the same manner as nipples.-Rubbe

Era.

MISCELLANEOUS INVENTIONS

Mr. William Slow, of New York city, has patented an improved strainer for the outlets of tubs and basins which can be removed from the washer of the outlet of a tank, tub, or basin, for the purpose of clearing it in case it becomes clogged. The invention consists in the combination with a washer having an internally-threaded neck, of a strainer having an externally threaded vertical flange capable of receiving a plug. It is readily removed by means of a small key or wrench furnished with it, when it can be cleaned and the waste pipe can be readily cleaned when the strainer is removed. The strainer may consist of an apertured plate, or of netting, or of two bars, as may be desired.
An improved tracheotome has been patented by Mr. Lewis J. Lyman, of Manhattan, Kan. The improvement relates to surgical instruments for use in opening the trachea in cases of membranous croup, or in any case when it is necessary to practice tracheotony. The object of this invention is to provide for more easily effecting an entrance to the trachea than can be done by instruments heretofore in use, and for retaining the instrument in proper place after insertion. The invention consists in a blade of peculiar shape upon a spring arm fitted between two spring-holding arms that are formed with T-ends, and also in a catch for simultaneously securing and loosening the spring-arms.
Mr. Charles W. Posten, of Boone, Iowa, has patented an mproved washing machine, which consists of a circular vessel formed of two cones united at their bases, and is provided with a shaft attached to the apex of each cone, and resting on suitable bearings in the sides of a tub or tank adapted to receive it. The double conical vessel has numerous perforations and indentations all over its surface.
An amusing toy bank for children has been patented by Mr. John Murray, of New York city. The invention consists in the combination, with the head that forms the body of the bank, of the tongue and the inclined and weighted pivoted bar carrying the tongue, whereby the weight of a penny placed upon the tongue will turn the pivoted bar and cause the tongue to pass into the head and drop the penny into the interior of the head.
An improved sash holder, patented by Mr. John H. Lynch, of Lowell, Mass., consists in a roller wheel pivoted in jour nals sliding horizontally in the lugs of a plate attached to the outer surface of one of the side rails of a sash, which wheei is pressed against the pulley stile of the window frame by a spring, and is provided on one of its sides with a ring of ratchet teeth, which engage with like teeth of a peripherically ratcheted wheel lonsely mounted on the shaft of the rubber wheel, which ratchet wheel is acted upon by a spring pawl, that permits both the ratchet wheel and rubber wheel to
rotate when the sash is being raised, but locks the ratchet wheel and the rubber wheel as soon as the sash is released, wheel is wheel can rotate, thus permitting the sash to descend.
An improved device for drying fruit and vegetables and evaporating liquids has been patented by Mr. John A. Warner, of Furnaceville, N. Y. The invention consists of two upright fixed cylinders placed concentrically one within the other, the outer cylinder having rollers fixed on itsinner face in such a position as to form a disconnected spiral track for the outer ends of the evaporating trays, and the inner cylinder being provided around its outer face with a continuous spiral for the inner ends of the evaporating trays.
An improved draught equalizer has been patented by Mr. Albion Wheeler, of Ridgeway, Iowa. The invention consists of a novel arrangement of levers in combination with the tongue and stay or bed-rest of the machine.
An improvement in magnets for separating iron chips patented by Mr. George E. Bowers, of Fitchburg, Mass., cousists of a magnet having a straight core and helices wound in opposite directions inclosed in a tube or hollow cylinder that is attached to one pole of the magnet, and also provided with a switch, whereby the direction of the current around a portion of the magnet can be reversed, so as to demagnetize the core and cylinder and thereby release the chips.
An improvement in storing compressed air or other gas in vessels has been patented by Mr. Alexander James, of Edinburgh, Scotland. The invention relates more particularly to a method and means for storing compressed air for motive power for locomotives or cars for railroads. The invention consists in a method of compressing air wherein the adhesive attraction of an absorbent material or materials is made to assist in reducing the volumes of gascous bodies in confined spaces or inclosures.
Mr. Jabez Smith, of Sabula, Iowa, has patented a sling for throwing missiles, such as stones, bullets, etc., by hand, with considerable force. It consists in a band of rubber or other elastic material having a pocket to receive the missile in the middle, the ends of this elastic band or equivalent being attached to the ends of the prongs of a fork provided with a suitable handle.
An improved stove leg has been patented by Mr. Wiiliam R. Fenerty, of Louisville, Ky. This invention consists in casting the lower edge of the stove with a downwardlyinclined flange having undercut projections on the inside thereof, in combination with the leg cast with a surrounding shoulder to support the weight of the stove, and with an upwardly inclined shank the side ends of which are beveled to correspond with the undercut projections, forming a dovetail therewith, the leg being also provided with a central stud for locking the leg to the flange of the stove.
An improved life-preserver has been patented by Mr. John Thompson, of Victoria, British Columbia, Canada. The invention consists of a series of floats so hinged to a belt that is to be fastened around the body that when not in use the floats hang perpendicularly from the belt, and when the device is in use the floats extend radially and at right angles rom the belt and lock themselves in position.
An improved method of improving the appearance of furs, patented by Mr. Lucinius Havasy, of New York city, consists in attaching the tips or outer ends of feathers to the fur in such a manner that these feather tips will appear between the hairs of the fur, and will produce various effects, accordng to the position in which the fur is held.

Agricultural Notes

LAWN GRASs.

The very best grass I have made use of for a lawn is un uestionably orchard grass. But then to make it effectual or this purpose no half-way measures should be practiced preparing the ground, sowing the seed, and cutting the rass. The soil should be rich, in fine tilth, and free from weeds. The best preparation of it is to cultivate it in potaoes or some other hoed crop the preceding year. If this can be taken off in August, carly or late, according to climate. the seed may be safely sown in that month, if not, leave it till the following spring, and then put it in as early as possible. Plow, harrown very fine, and level the ground. Then sow at least at the rate of four bushels per acre, so that the ground can be thickly stocked. If this is not done the grass forms tussocks, and these spoil the beauty of the lawn. Never sow clover or any other sced with this for a lawn but one may do so with clover only for a field crop if desired, as both are ready at the same time to cut for hay, which, to have it tender and sucuulent, should be in the earliest of blossoming. After sowing brush the surface nicely and then roll. Cut the grass as often as it gets about four inches high. This keeps it from growing coarse, and makes a closer. firmer sod. This grass is the first to shoot up in the spring, and the last to turn brown in late autumn or during the winter. Ray grass, if treated in the above manner, comes next to orchard grass in making a superior lawn.-Correspondence Country Gentlemar.

sowing seeds.

In sowing grass and vegetable seeds remember Mr. Peter Henderson's caution about " firming the ground " By press ing the roots about the soil they germinate quicker and the young roots more readily take a firm hold upon the soil. The neglect of this process may cause the loss of the crop if the season should prove dry.

CTRTR

The Wrongs of American Inventors

 The Wrongs of AmericanTo the Editor of the Scientific American
I would respectfully direct your attention to the flagrant wrong done American inventors by foreign governments, in that any person can patent in those countries inventions of Americans, while our government protects these foreign inventors by refusing to grant a patent, only to the inventor himself.
Oftentimes the American inventor is poor, perhaps ha spent years of time and all he could snatch from his daily pittance to get his American patent, and is too poor to paten at once his invention in foreign countries. The unscrupuous capitalist here or abroad, like a bird of prey, stands ready to seize the opportunity and reaps vast benefits, whil the American receives nothing for his life-long efforts.
Every American inventor is bound by principles of self protection to insist and demand that Congress shall right this matter and put the American on the same footing as the foreign inventor, and refuse to grant patents to foreign inventors until foreign governments sball by legal enactment destroy the custom of importing American inventions and despoiling poor American inventors. Let something be done in this matter to adjust this unfairness against the Ameri can.

Troy, N. Y., May, 1881.
[We think that if our correspondent will study the subject a little further he may reach a different conclusion: 1. In nearly all foreign countries the patent is granted only to the inventor-England is the chief exception. 2. With a little perseverance any inventor, even if poor, who holds a really good invention, can find partners who will be glad to pay the expenses of obtaining foreign patents. 3. We wish our correspondent would mention individually some of the un scrupulous capitalists he refers to. That many American in ventions are manufactured abroad is true. But in general, where the inventor fails to share in the benefits, it is becaus he did not wish to take any steps to do so, but voluntarily abandoned the field to others. 4. The American invento stands on the same fonting as other inventors in nearly all countries where patents are granted. There is no unfairness, maginary on the part of our correspondent.-Ens.]

The Tables of Reqnault and Rankine

To the Editor of the Scientific American
On page 228 of the current volume of the Scientific american, in a brief memorandum referring to the last ses sion of the American Society of Mechanical Engineers at Hartford, I am reported as stating that the tables of Reg aault and of Rankine are not exact " under all conditions." The statement as printed does not at all convey the ide which it was intended to present.
My statement was in effect that Regnault's tables were the result of empirical (i. e., experimental) work; that exactnes was secured by extraordinary precaution in experiment and by graphically representing results, thus securing a correct statement of the law of variation of pressures with temperatures, and that formulas were then fitted to the case which formulas very accurately represent that law. I further remarked than Rankine's formula so accurately states the law that its errors lie within the limits of the most exact observation.
I am correctly reported as endeavoring to impress upon engineers the importance of making their practice "depend upon observations derived from the actual conditions of the special cases in hand," as the Scientific American puts it

Hoboken, N. J., May 20, 1881.

Comet A 1881.

To the Editor of the Scientific American
In the current issue of your valuable paper an article upon Swift's latest comet implies that no one else had seen the same, so far as known, but the discoverer. Permit me to say that I had the pleasure of securing two good observa tions of it on the mornings of May 3d and 4th (it being discovered on the morning of May 1st), and which at the time were the first observations reported to the discoverer as he informed me, from other astronomers. Prof. Chan dler, then at Portland, Maine, also secured observations of it and immediately issued an ephemeris. It was seen at the Harvard College Observatory, also at Dun Echt, Scotland Yesterday I received from the president of the Boston Scientific Society observations and elements of the comet, made by M. Eugen Block, of the Observatory of Odessa, Russia.
Its position at discovery was 0 hour 0 minute R. A., $3 r^{\circ}$ north declination. When first seen by me it was about 2° southeast of that point, which shows its direction and rate o motion. It is now invisible, but may become visible again upon the other side of the sun.

William R. Broogs.

Red House Observatory,

Phelps, N. Y., June 7, 1881.
Details of the destruction of the British gun boat Doter in the Straits of Magellan show that the condensing boiler exploded, and that the shock exploded a quantity of gun cotton stored in the forward magazine.

MECHANICAL INVENTIONS

Mr. John D. Smith, of Fayetteville, N. C., has patented screw for a carpenter's bench vise, which consists of a cylindrical wooden body and a metal rod coiled spirally around it and partly embedded in its surface.
An improved spring power motor for working sewing and other small machines bas been patented by Mr. Truman H Baldwin, of Baraboo, Wis. This motor attachment is adapted for imparting about twenty thousand revolutions at each winding to the shaft on which the balance wheel is mounted, and the inventor claims the winding may be effected with comparative ease by means of the lever. The motor is compact in form, and may be quickly attached to or detached from the sewing machine
An improvement in water wheels, patented by Mr. Thomas B. Van Pelt, of Carterville, Mo., consists in the peculiar construction of two or more water wheels mounted on the same horizontal shaft, and revolving in a flume provided with stationary counter buckets or inclined plates secured to the inner face of the cylindrical flume between the buckets, and guiding the water, after having acted on a wate wheel, to the next.
Mr. Alonzo J. Simmons, of Raysville, Ind., has patented an attachment for furnace doors, which consists in the combination of a perforated steam pipe arranged withm the furnace near the door opening and connected with the steam space of the boiler, and a valve to regulate the admission of steam to the perforated portion of the steam pipe, the steam pipe being arranged to direct a sheet of steam across the furnace door opening to prevent the cooling of the furnace by the entrance of cold air.

Cost of Public isuildings.

An experienced architect and surveyor, on the 19th of February, 1879, prepared and presented to General Meigs Quartermaster-General, the estimate which follows of the cost of various public and private buildings in this country, the comparison being by cubic feet, external dimensions:

Buildings.	Cubic Feet.	Total Cost.	$\begin{gathered} \text { Cost per } \\ \text { Counic froot } \\ \text { Cents. } \end{gathered}$
Snb-Treasury and Post Offlce, Boston, Mass	2,671,338	\$2,080,507	77.88
San Francisco, Cal.	1,680,995	1,500,000	99 24
Post Offlce, Cairo, Ill	441,376	271,081	61.00
Postofice, Columbia, s.c.	587,916	381,900	64.95
Moinas, Iowailing Des	33,987	221,437	53.48
ville, Tenn	542,362	398,847	73.53
son, Wis.	541,483	329359	60.83
ited States Building, og-	447,585	216,576	48.38
	654,103	334,000	51.01
ited States Building, P	524,886	392,215	14.72
	600,000	475,000	79 1-6
Staats Zeitung, New York	508,000	475,100	9352
Western Union Teiegrainh,	1,330,00	1,40,000	105.22
Masonic Yemple, New York	1,800,00	000	
Centennial Building, Shep herd's, cor. 12th and Pa	1,800,000	1,900,00	
Add to this the United States National Museum, Fireington, D. C.	931,728 843,611	246,073 250,000	26.41 68 $6 \frac{1}{4}$

Fireless Locomotives

Improvements in detail have been made by M. Leon Franca, who lately read a paper on the subject before the French Association for the Advancement of Science, from which we glean the following particulars: The locomotive is provided with a tank containing water at a sufficiently high temperature (203° Cent., equal to 397° Fahr.) to produce the necessary quantity of steam for the journey. The water is heated at the starting point by means of a jet of steam at high pressure produced by a stationary boiler. As the boiling point increases with the pressure, it follows that, in a closed vessel, the greater the heat the higher the pressure attained. If the heating be effected by a jet of steam, as in he present case, the steam fills the space abo ressure T apply this principle it is sufficient that the tank stand a pressure of from two to fifteen atmospheres 30 to 225 pounds per square inch). The steam from the stationary boiler fills hree parts of the receiverand agitates the water sufficiently to distribute the heat uniformly. When an equilibrium of pressure between the boiler and the receiver is attained the cocks are turned off. The locomotive is then in running order, ebullition taking place directly communication is opened between the tank and the cylinders.
In practice the initial temperature may attain 200° Cent. 392° Fahr.), which corresponds to fifteen atmospheres or 225 pounds per square inch. The final pressure must be suf ficient to take the train up the steepest gradient to be en countered. The tank or receiver is made of steel plates, and may contain over 1,800 liters (396 gallons). After leaving the receiver the steam passes into an intermediate chamber, which allows the steam to expand so as to enter the cylinders at a uniform pressure, indenendent of that in the tank or re ceiver. The exhaust steam is not utilized as in the ordinary locomotive, because there is no fire to urge, but escapes into n air condenser which is a closed cylindrical vessel traversed by more than 600 tubes open at both ends. The water of

condensation passes into a tank, whence it is afterward with

 drawn as feed water. The diameter of the cylinders is 23 centimeters (9 inches), and the length of stroke 25 centime ters ($97 / 8$ inches), the working parts not differing from those of ordinary engines. The weight of the engine running light is $63 / 4$ tons; and the tractive power is from $343 \mathrm{kilos}(63 / 4$ cwt.) to 1,031 kilos (1 ton), according to the pressure. In the event of an unusual resistance being encountered on the road it is sufficient to act, by a rod and lever, on the inter mediate or equalizing chamber, so as to give a temporary in crease of pressure on the pistons. At a speed of 12 kilo meters ($71 / 2$ miles) an hour, the wheels, which are 75 centi meters (1 foot $51 / 2$ inches) in diameter, make 86 revolutions a minute. With a stationary boiler of about 50 square meters (538 square feet) of heating surface, a working pressure may be maintained in the locomotive for seventeen or eighteen minutes. The consumption of fuel is found by experiment to be less for a given duty than is the case of ordinary loco motives. In a line of 10 kilometers (over 6 miles), the work ing expenses, including repairs and depreciation of stock amounted to $45 \frac{1}{2}$ centimes per kilometer--say 7d. a mile run.
Nitric Acid.

This is one of the most important chemical agencies em ployed in the arts and manufacturing; agencies due to the property which it possesses of yielding very frecly a notable proportion of its oxygen to substances having an affinity fo the same, a property which renders it one of the most ener getic of oxidizing agents. On this account, as well as be cause of its cheapness, its use for oxidizing purposes in the aboratory is very extensive.
Its property of energetically dissolving many of the com mon metals renders it useful in etching steel, copper bronze, and the like. In the manufacture of sulphuric acid it is introduced for the purpose of effecting the oxidation of he sulphurous acid given off in the burning of sulphur, or roasting of pyrites, to sulphuric acid. It has the property f yielding, with certain organic substances, what are calle nitro-compounds, which are of great value in the arts. So for example, nitro cellulose (gun cotton), nitro-glycerine nitro-benzole, nitro-mannite, and a number of analogou products are found. Owing to its powerful oxidizin action, it acts powerfully upon coloring matters, and on this account has some important applications in dyeing. By prolonged treatment with nitric acid, starch, cellulose (wood fiber), and sugar, are converted into oxalic acid; very dilute acid converts starch into dextrine. The fact that it will not attack gold, while energetically dissolving nearly all the other metals, has long been taken advantage of in the art in assaying and metallurgy, to separate gold from silver and base metals.
Nitric acid is employed in the chemical industries in great quantities in the manufacture of an immense number of chemical products, in addition to those we have already named. Of these, some of the more important are: the pre paration of picric acid from carbolic acid, naphthaline yel ow from naphthaline; the manufacture of nitro-benzole nitro toluol, and phthalic acid; the preparation of nitrate of silver (lunar caustic), arsenic acid, fulminate of mercury and, generally speaking, of the salts known as nitrates.
This acid is now manufactured chiefly from the nitrate of soda brought in great quantities from Chili and Peru, and is effected by decomposing this salt by sulphuric acid.-Min ing Journal.

Spontaneous Combustion by Nitric Acid
In consequence of the burning of a freight car during the fall of 1879, on one of the railways in Baden, which was sus pected to have been caused by nitric acid, Professor R. Haas of Carlsruhe, was called upon by the government to report whether that acid could produce combustion or not. In the experiments made to solve this question the conditions which might be supposed to exist in freight cars containing nitric acid were imitated as far as possible. Small boxes of a capacity of 10 to 16 quarts were charged with variable pro portions of hay, straw, tow, and blotting paper-all of which substances are used in packing-and placed within larger boxes, while the space between them was filled with hay or tow, to prevent too rapid a radiation of heat, becaus the experiments were to be conducted in the open air, and the outer box at the same time represented the walls of railway car. The material contained in the inner box was now saturated with acid, and rather tightly compressed, so hat when the cover was put on it was pretty well filled. t first reddish and afterwards whitish vapors were give off, finally a distinct smoke. On lifting the cover strongly glowing patches could be seen, which rapidly increased al through the contents, and which broke out in bright flames n access of free air or gentle fanning.
With red fuming acid, or with acid of specific gravity $1 \cdot 48$, these results were obtained very rapidly and within a few minutes. With ordinary acid, of specific gravity $1 \cdot 39$, it required somewhat more time, and the action was less energetic in the beginning; but, in three different trials, after about twenty minutes the same result was finally obtained, provided the material was packed tightly in the box and was thoroughly saturated in its successive layers.
It seems quite probable that even a weaker acid can produce the same result in larger bulk and during warm weather in a confined space which prevents rapid cooling. Hitherto it has often been doubted that spontaneous combustion could be caused under such circumstances, but the above experiments and results are certainly incontrovertible.

NEW FASTENER FOR GRAIN-CAR DOORS

The great failing in grain car doors as ordinarily made is their liability to become loosened so as to allow grain to escape. When doors are nailed to compensate for defects in their fasteners, the doors soon become destroyed and the jambs or casings are permanently injured.
W^{T} e give an engraving of a grain-car door fastening which remedies these defects and permits of fastening the door quickly and securely, and in such a manner as to avail of the jarring of the car to tighten the fastenings rather than loosen them. The inventor of this fastener has been for many years a shipper of grain, and being familiar with the defects of other doors, and knowing the requirements of the case, has devised the door shown in the illus ration, which is believed to overcome all of the difficulties hitherto experienced, and to be capable of closing car so that the grain cannot leak from the door; in fact, the greater the amount of jarring the more firmly does the door become fastened. The fastenings are upon the outside and in plain view, aud the door can be loos ened and lifted as easily as an ordinary gate is opened. It will be seen hat its constuction is inexpensive and that it may be readily applied to ,ld cars, not only furnishing a com plete door, but also supplying a proector for the door jambs
In the engraving, A is the door jamb, and B is a false jamb, made of angle iron and having its inner face beveled or inclined from within outward. C is a wedge-shaped block having on one face projection on which a cam, D, is pivoted, and on the opposite face two rojecting lugs, which enter corre ponding inclined sockets in the door, E, to steady the blocks, C , in position. On the inside of the door, E , are secured vertical panels or braces for
strengthening it. The cams, D, are held in place by bolts, F , that pass diagonally through the block, C , door, E , and a wedge shaped washer, G, which is on the inner face of the panel.
The cams, D, have their semicircular or rounded edges beveled to correspond with the bevel of the false jambs, B, so that when turned and forced down against the bevel of the false jambs, B, as shown in Fig. 1, the cams will draw the door outward and hold it firmly against the outer faces of the jambs. By striking up the cams the door is loosened, and can then b pried up for the re moval of the grain from the car by in serting the end o bar under one of the steps of the block, fixed of trai yt the lower y at the lower edg of the door, a suit ble fulcrum being placed in posi ion for the prying bar
It will be seen that the false jambs B, and beveled dres of the cams, D, form opposit nclined planes, tha will continue to bear the same rela ion to each other and together ope ate to hold the door tightly closed however great be the wear on hem.

This invention was lately patent ed by Mr. Aaron Burntrager, of Mul
berry, Ind., who may be addressed for further information.

STORING OF ELECTRICITY

One of the latest and most interesting of electrical novel ties is the improvement in the secondary battery of Gaston Planté, by M. Faure, which has been brought to the notice of the scientific world by the accounts of the transportation f a box of "electric energy" from Paris to Glasortation the purpose of having it submitted to Sir William Thomson, the eminent electrician, for tests and measurements. The results of this experiment have been pronounced wonderful, but no facts bave yet been made public which afford

a basis for an estimate as to the commercial value of the

 nvention.An extemporized Faure secondary battery of small dimen he Scieven operation for sevthourh no extended test have been made as very promising. We give below an account of the experiment for the benefit of such of our readers as may desire to investigate the subject.

In attempting to follow M. Faure's plan of construction

rent is much quicker and more satisfactory. The method followed in building up these secondary elements was as follows:
After cutting out a sufficient number of lead plaies, pieces of canton flannel, 15 inches long and $71 / 2$ inches wide, were cut, and finally as many sheets of blotting paper, $71 / 2$ nches square, as there were lead plates were provided.
The next step was to prcpare a thick paint of red lead by mixing the dry pigment with water containing one-tenth by mixing the dry pigment with water containing one-tenth
of sulphuric acid. This paint had a consistency of paste, and was applied thickly to one side of the shcet of lead with a common flat paint brush. The canton flannel having been painted to within one-quarter inch of all its edges on the nap side, the lead was laid, painted side down upon the painted canton flannel, when the other side of the lead was painted and the cloth was neatly folded over the lead, completely enveloping it with the exception of the earat the top, and projecting about one-quarter inch beyond all of the edges of the lead. The lead with its envelope was then laid upon a level board, and another plate was prepared in the same manner and placed over the first, with an intervening layer of blotting paper, and with the ear placed opposite the ear of the first. Other lead plates were added in the same way, with the interposed sheet of blotting paper and with the ears alternating in position, as indicated in Fig. 2. When ten plates had been placed together in this manner they were clamped together with two or three elastic bands, and the ears were brought together and passed through a slit in the wooden cover of the containing cell and bent down upon the top of the cover, as shown in Fig. 1. They were then pierced and traversed by the were then pierced and traversed by the
screw of a binding post which enters the wood. In this way each pole of the

BURNTRAGER'S GRAIN-CAR DOOR FASTENER

 lement was furnished with a binding post, and at the sameTherefore the battery was constructed of square plates of lead, each having an ear projecting upward from one side or attachment to a binding post. This plan succeeded very well, the flat plates having the advantage of retaining a great quantity of red lead and of being easily formed into a ompact pile. time firmly secured to the cover. The cell was then partly or wholly filled with acidulated water-water 10 parts, sul phuric acid 1 part -and after the cloth and blotting pape had become saturated the element was connected with four gravity cells. In one hour the element had stored electricity fficient $11 /$ inche to work a magnet strongly, and to run at a high rate of speed for fifteen minutes a small electric motor, that requires at least ten g!avity cells to operate it. After this prelimi nary experiment a number of the new secondary elements were prepared in the same way and charged separately with a dynamo electric machine. One clement of ten plates, after receiving the current from the dynamo, for ten minutes operated the small motor above referred to for something over threc hours.

Another ten min utes' application of the current from the dynamo charged it, so that after cighteen hours of rest it yielded a current which seemed as strong as when it was first charged on the previous day; but a time test but a that it was incapable of running the motor for quite so long a time as when

STORING ELECTRICITY.-THE NEW SECONDARY BATTERY.

small electric motor. Fig. 2 shows the method of combining the plates. Fig. 3 shows how a battery may be arranged with a commutator for combining the elements for tension or quantity, and Figs. 4 and 5 are respectively longitudinal and transverse sections of the commutator. The plates employed in the experimental battery were of pure lead foil, having the thickness of a postal card, a width of 7 inches, a height of $71 / 8$ inches, with an ear projecting from the top $11 / 2$ inches wide and 3 inches high. The total effectquarace on both sides and edges of each plate is 100 quare inches. Ten such plates are sufficient for a single lement for ordinary uses, and such an element may be fairly charged by means of four gravity cells, but a stronger cur-
the current is used soon after storing. However, it proved hat a large quantity of electricity could be stored and retained for a considerable time
Six elements of ten plales each can be readily charged with the smallest current that can be obtained from a two light dynamo machine; that is, a current that will not support a single arc light will easily charge the number of elements, and they will readily support a single Reynier or Werdernann lamp.
For general experimental purposes the battery may be conveniently arranged as shown in Fig. 3. Each pole of each element is connected through the cover to a spring which is bent upward at right angles. The springs of the
two opposite poles of the battery touch upon opposite sides of a commutator cylinder supported a short distance above the top of the box.
mountains on the island, where there are no springs or streams, and the only dependence of animal life for water is necessarily upon the irregular and uncertain rain showers.
It may be mentioned that the tortoise are of different species, though they may have the same habit in respect of carrying water. The famous edible species of the coast of the Pacific and Indies, of which the headquarters is at Gallapagos Islands, is the Testudo Indica. They grow to five six, and even seven hundred pounds or more. Those found in this State are smaller, and are the Agassii species, first described some years ago by Dr. J. G. Cooper, if we recollect aright. Those Mr. Redding describes from the Gallapagos were offered water while on the ship, but refused it. Yet when killed they all contained water. The place they inhabit is a dry one, lacking water. It may be that they go to the high places and obtain it from the vegetation, the same as our species does.-MininıI and Scientific Press. on a median line between the metal With this device all that is necessary to connect the elements for intensity is to turn the commutator through a quarter of a revolution.
It is too early to speak with any degree of confidence in regard to the capabilities of this new battery, but it seems suscep tible of a great number of very useful applications.
For general experimental work its advantages are obvious. For electric lighting on a small scale it appears practicable, since a larger secondary battery may be charged by a small battery dur ing the night and day for use during the evening. For use in connection with small electric motors for domestic purposes it would seem to have another ap plication. For galvano-cautery it may serve a good purpose and there are a thousand use equiring only a brief expend ure of considerible which would allow a large mar in of time for the accumulations of electricity, where this bat tery may be advantageously ap plied.
The action of the battery is thus described in one of the English journals: "When a curren is passed into this cell the mini um on one plate is reduced to metallic lead, that on the other is oxidized to a state of peroxide These actions are reversed whil the charged eell is discharging itself."

A Water Carrying Tortoise

At a meeting of the California Academy of Sciences the other evening, a very fine specimen of the desert land tortoise, from Cajon Pass, San Bernardino County, in this State, was re ceived. The specimen had been carefully prepared, and was a large as an ordinary bucket. The tortoise is a native of the arid regions of California and Ari zona, and Prof E T Cox wh was present, related a curious circumstance connected with it.

He found on dissecting one of them that it carried on each side a membrane, attached to the in ner portion of the shell, in which was about a pint of clear water the whole amount being about a quart. He was of opinion that this water was derived from the secretions of the giant barrel cactus, on which the tortoise feeds. This cactus contains a great deal of water
The tortoise is found in sections of country where there is no water, and where there is no vegetation but the cactus. A traveler suffering from thirst could, in an emergency, supply himself with water by killing a tortoise. They are highly prized by Mexicans, who make from them a delicious soup. The foxes of the desert attack the tortoise and finally overcome it by dragging them at times for miles.
B. B. Redding said he would try to obtain a live one for the Academy, in order that its habits and peculiarities may be carefully observed and noted. Heinstanced being on the Gallapagos Islands in 1849, and assisting in the capture of 92 land tortoises, varying from 450 to 600 pounds in weight, which the vessel brought to San Francisco and sold for more money than the whole cargo of lumber netted at that time. They were two months on board the vessel, yet ate nothing, and those killed had in them considerable quantities of pure water. They live on the high lava rocks, which rise as

SLENDER DRAGON FLY.

Minute Disease Organisms.

The organisms described by Pasteur as the origin of epi demics and contagious diseases are so minute and few com pared with the multiplying swarms of bacteria, etc., pervading all generating solutions, that it becomes necessary to provide a means of eliminating the masses of infusoria from solutions to be studied under the microscope. These microroa haunt even the clearest water at times. M. Certes sug gests the use of osmic acid as a sure means of killing them without destroying their tissues. He dips a glass rod into the solution to be examined, and then into $11 / 2$ per cent solution of the acid; washing this in a narrow test tube of distilled water, it is easy to collect what is necessary.

Good bricks are unquestionably the best building mate ial used. They come nearer to being fireproof than any other substance. Iron is treacherous and almost worthless better as a support in case of fire than iron

THE SLENDER DRAGON FLY.
There are many species of dragon flies, all similar in their babits. They are properly named, being among the most voracious and cruel of insects, and even in their preliminary tages they exhibit their predatory disposition. In their larval and pupal state they inhabit the water, and are found in most streams, propelling themselves along by a very simple apparatus. They breathe by means of the oxygen which is extracted from the water, the liquid passing into and out of their body through a gill at the end of the tail. After giving up its oxygen the water is violently expelled, thereby forcng the insect forward
The lower lip is jointed and can be extended about an inch. When at rest it may be folded, and can be protruded and withdrawn. It is furnished with a pair of forceps at the end, so that it may be able to grasp objects. This creature remains for some ten or eleven months in the preliminary stages of existence before developing into the perfect i_{1} sect.
Our engraving represents the slender dragon fly (Lestes). The male has a light gray encircling band around the middle part of the emerald-green body, the brown or black wing marking. have almost a white edge, and it has two large pointed teeth at the inner edge of the clasping pincers.
The manner in which this species lay their eggs has been observed by Siebold, on the borders of a pond overgrown with rushes, and is shown in the engraving.
After the pairing the male clasps the female firmly by the neck and controls her movements. Both fly in this condi tion with outstretched bodies, lighting upon the water plants and appearing to be animated by one will. Frequently the male settles down on the top of one of the rushes; in this case the female curves her body, and placing the point of it behind the feet, pushes the sabre-formed egg-depositing instrument from out its horny sheath and presses it into the outer skin of the rush. As soon as this is done she creeps down the rush a single step, piercing another place with this apparatus, and continues to work in this manner, drawing the male after her, until the bottom of the rush is reached. Then both fly away to another rush and repeat the operation. Upon the stalks worked upon in this manner there mav be perceived rows of whitish yellow spots. A strip of the skin of the rush is ripped up from the top to the bottom by this operation, but is pressed back again by the convex part of the apparatus after it is withdrawn. In almost every one of these pierced places an egg is found deposited in the back part of the roomy air cells of the rush, with its pointed dark-brown end crowded into the inner part of the principal crevice; the somewhat thicker rounded end is of a pale-yellow color and projects into the cell. Sometimes no egg is found hehind the pierced place in the rush; in this case it is probable that no time was given to the female to deposit one, for the male often flies up berore the whole length of the stalk is traversed. Pairs of these insects have been observed upon the rushes which grow up out of the water. This does not prevent, them from pursuing their accustomed way to the base of the plants. They both disappear under the surface of the water, having previously laid their four wings close gether.
If the female betakes herself to the water the male quickly follows after, and she does not begin her work until he is quite surrounded by water. He bends the back part of his body into a position like that of the female, so that all the pairs that have been observed under water form a double curve with their bodies. A thin stratum of air clings to their bodies, their legs, and wings, which they use without doubt for breathing, for they will remain under water half an hour, for here as on the land they descend in the pond to the base of the rush. When they have reached the bottom they creep up the stalk again and fly away. It often happens that when one pair are alre dy upona rush
under the water another pair betake themselves to the water 'Professor Comes, and this confirms the opinion of Fraas, upon the same side of the rush. In this case the upper The author has classed the plants in alphabetical order, and pair turn to the opposite side of the stalk, and thus they carry on their work unhindered. At the approach of an observerthey fly away, apparently disturbed in their work, but when they are under water they can only be disquieted to a certain degree. If they are touched they clasp the stalk morc firmly, and if still further disturbed they creep up the stalk more quickly than usual in order to fly away. The pierced places in the stalk spread out into a brown spot under the water. The larva emerge from the pointed end of the egg.
Nearly all dragon flies are brilliantly colored, but the colors fade with their life, and in a few bours after death the most brilliant dragon fly will have faded to a blackish brown.-Brehm's Animal Life.

NATURAL HISTORY NOTES

The Seventeen-Year Locust.-Professor C. V. Riley states in the American Naturalist that the present year will be marked by a quite extended appearance of this interesting insect, both a seventeen and a thirteen year brood simultaneously appearing. These two locusts agree in every respect except in the time required for their full development. The last simultancous appearance of the two broods was in 1860, and their appearance the present year will doubtless give entomologists a chance to perfect their knowledge as to the geographical range of the insects. Pupæ have already been reported either near or upon the surface of the ground in several localities. The thirteen-year brood is by far the more extended, and occurs very generally throughout the Southern States, both east and west of the Mississippi.
Electrical Insects.-Entomologists inform us that a few insects are known which have the power, like the electrical eel (Gymnotus), of giving slight electrical shocks to those who handle them. Kirby and Spence, in their Entomology, describe one of these insects, the Reduvius serratus, known in the West Indies as the "wheel bug," and state it can communicate a shock to the person whose flesh it touches. Two instauces of effects upon the human system resembling lectric shocks, produced by insects, have been communi cated to the Entomological Society by Mr. Yarrell: one men-
tioned in a letter from Lady de Grey, of Grobz, in which the tioned in a letter from Ladyde Grey, of Grobz, in which the
shock was caused by a beetle, one of the Elaterida, and extended from the hand to the elbow on suddenly touching the insect; the other caused by a large hairy lepidopterous caterpillar, picked up in South America by Captain Blake ney, R.N., who felt on touching it a sensation extending up his arm similar to an electric shock of such force that he lost the use of his arm for a time, and his life was even considered in danger by his medical attendant.
Grooth of Plants in Oil.-M. Van Tieghem has quite ecently discovered, and communicated to the Bulletin of the Botanical Society of France, the curious fact that many of the lower plants (Ascomycetes, Mucorini, etc.) can live and sometimes fruit very well when they develop in oil alone and far removed from all contact with the atmosphere. Unpurified oils are sown with a quantity of spores, and then, if a slightly moist substance be immersed in the oil, it becomes covered with vegetation. The common mould, Penicillium glaucum, among others, develops in oil and fructifies very well in the midst of the liquid, but to make the spores germinate requires the introduction of a small quantity of water at first. These plants germinate owing to the oxygen dissolved in the oil, and they possess the property of forming water at the expense of the clements of the oil. species of yeast cultivated under such conditious has the property of extensively saponifying the oil in which it develops, without the disengagement of gases.
The Flora of Pompeii.-In 1851, the botanist Schouw pub lished in his book, "Dic Erde, dic Pflanzen und der Mensch," some facts relating to the plants represented on the frescoes of Pompcii. In a recently published work by Professor Horace Comes, "Iliustrazione delle Piante rappresentate nei dipinti Pompciani," the author has passed in review no les than fifty species which are represented on the frescoes, and which he was enabled to identify, and twenty concerning which he is in doubt. Among the identified species are several that have never been mentioned by other writers on the subject; for example: Althea rosea (holly hock), Chrysanthemum coronarium, Lajenaria vulgaris (calabash), and Narcissus pseudo narcissus (daffodil). The Althoa, wel enough known by the ancients to have a place on their
frescoes, may well have been the "arborescent mallow" of frescoes, may well have been the "arborescent mallow" of
which Theophrastus speaks, and which has been referred to Lavatera arborea, although its full growth is attained in a few months, according to the Greek author. Narcissus pseudo-narcissus corresponds in its emetic properties with the "Narcissus genus alterum herbaceum" of Pliny. The he frescoes, and it is to this species, and not to a Boletus nor to Russula integra, that Pliny refers in the passage " Fu
It appears from the frescoes that in the time of Pliny the naturalist, the Romans possessed through acclimatization, or at all events knew with certainty, plants foreign to Italy. Among these are the Lagenaria, cited above, the peach tree Acacia nilotica, Platanus orientalis (plane tree), Tamarix indica, etc. Onc of the pictures represents the Papyrus and Nelumbium speciosum, along with the hippopotamus. Morus nigra (black mulberry) is among the plants recognized by
devoted to each one an article in which he recalls the prinreferred to it. He believes the huakindos of Homer to have been Gladiolus segetum, and the hyacinthus of Pliny, lris germanica.
A Nero American Fern.-The many lovers aud collectors of ferns will be interested to know that another new species has recently been added to the list of the Pacific Coast forms. This time it is a Cheilanthes-a very beautiful species-and it has been named by Mr. G. E. Davenport (who describes and gives a very beautiful figure of it in the June number of the Torrey Botanical Bulletin), C. Parishii, in honor of its discoverer, Mr. W. F. Parish, of San Bernardino, Cal. It was detected in the crevices of rocks on a hill in San Diego county. Nothing definite is as yet known of its abundance, but Mr. Parish thinks that it is probably scarce, as he could find but two or three plants.

AGRICULTURAL INVENTIONS.

An improved sack or flexible receptacle for cotton, wool, and other substances, has been patented by Mr. Milledge B. Wever, of Johnston's Depot, S. C. The sack is attached to and envelops a jointed extensible frame that may be so adjusted as to distend it and support it in upright position thus enabling it to be filled quickly and easily.
An improved stalk and weed roller and cutter has been patented by Mr. Henry II. Spencer, of Mound City, Ill. This machine is so constructed that the knives are at rest or have no reciprocating movement until, in the revolution of the cylinder, they arrive underneath the axle, when they are made, by cam-and-gear mechanism, to make a quick stroke, thus instantly severing the stalks or wecds upon which the whole weight of the machine is at that moment imposed The knives are instantly retracted after such stroke by means of springs suitably arranged for the purpose.
Mr. Lewis Shepard, of Mace, Ind., has patented an improved harrow that can be conveniently adjusted to adapt it for various kinds of work. The harrow is made in two parts, each of which is made in the shape of what is known as the " A " harrow.
An improved hopple or device for confining the legs of horses or other grazing quadrupeds, so as to hamper their motion and thus restrain their wandering, has been patente by Mr. Charles J. Gustaveson, of Salt Lake City, Utah Ter

How Hides are Taken off and Salted.

In the abattoirs of this city the flayers of cattle use in taking off the hides a knife with a straight back and a keen edge, broad at the haft, but tapering up almost into a point at the end. The hoofs are first taken off at the first joint, a piece of the loose flesh at the throat cut out, an incision made in the neck, and the knife run down through the mid dle of the belly and the center of the lower side of the hai tail. The animal, which, up to this time, has been lying on its back, is inclined a little to one side, being supported in that pusition by a prop under the downwardly-inclining fore quarter. Beginning at the neck, the flayer runs his knife carefully along until the hide is taken nearly off the side which is uppermost, then the animal is rolled over on that side and propped up as at the beginning, and the same flayng operation is repeated on the part which was downward at first. Next a wooden support, about four feet long, six inches deep, and two inches wide, having a large iron book in the middle adapted to be fastened to a rope for hoisting purposes, is run through incisions made in the hind legs just above the first joint; the rope is adjusted to the hook, and the carcass lifted up by a windlass, when the projecting ends of the joist are supported by cross beams about nine fect from the floor, and the body hangs suspended therefrom. One of the workmen now grasps those portions of the hide which have been taken off the sides of the animal near the neck, and another takes a large butcher's cleaver, and using the back, not the edge of the instrument, by repeated blows frees he skin from the rest of the carcass, while it is pulled off by the first workman. Great care is exercised in the process
of flaying, as the workmen are subject to a fine for each cut of flaying, as the work
and score on the hide.
When freshly taken off the hide is worth about 8 cent per pound. In this state it is sold to the salters with the pates and tails on. The salters place them in beds of about 600 each. The floor of the salt room is generally cemented, and the bottom layer of the hides is laid with the hair side down; the salt is then sprinkled on the flesh side, and another ayer is put down in like manner until the bed is complete The hides are usually left in the salt from ten days to two weeks. The salt used must be of good quality and ground rather fine, as in case a lump of even the size of an egg is left upon the flesh side it will eat into the hair of the hide placed above it and very seriously detract from its value. It takes about 180 bushels of salt, worth from 32 cents to 35 cents per bushel, to each pack of 600 hides. When the hides are taken out of salt they are well shaken and folded, first doubled lengthwise, and then wrapped up in four or five folds. In some cases salters contract their hides to tanners by the month or year, and settlements are made at the end of each month on the basis of the average ruling price during that period. It is now, bowever, becoming customary for them to sell each lot to the tanner or dealer who will pay the highest figure at the time of delivery.
In some of the abattoirs where the butchers do not do their
own salting, the salters hire the pens and make no charge to the slaughterers, but receive the hoofs of all the animals killed in lieu of other compensation. In the Jersey City abattoir the salters pay $\$ 1,000$ per annum for each pen,
affording accommodation for fifteen animals at a time.-Shoe and Leather Reporter.

Sugar trom Rags.

The newspapers have lately taken up the subject of making sugar from rags, and some of them seem to regard it as a new invention. This, however, is by no means the case. It has been long known to chemists that if vegetable fiber, such as that of cotton, flax, etc., be submitted to the action of sulphuric acid, it is converted into soluble starch or dextrine, and this is readily convertible into sugar. The ordinary process of malting is simply a conversion of the starch of the barley into sugar by the agency of a ferment called "diastase," which is for med in the barley, and is so effective that only one five-hundredth part is sufficient to set up the action by which the insoluble starch is converted into dextrine, and then into sugar. This occurs when the grain of barley is sown in the ground, and is the natural operation by which the germ is fed: the germ baving neither mouth nor stomach, cannot take solid food like the original starch granules which surround it in the seed; but when that starch is converted into sugar, the baby plant can absorb it, and continues to absorb it until its rootlets and first leaf are formed. By this time the sugar is all used up, but the plant is now able to obtain its nourishment from the ground by its root, and from the carbonic acid of the air by its green leaf or leaves.
Such is the ordinary life history, not only of the barley plant, but of all others. The starch is to the plant germ f If the sugar were ready formed in the seed it would be dissolved away at once by the water in the soil, and the germ would perish prematurely, but by the exquisite chemistry of nature the conversion of the insoluble starch into the soluble food of the germ goes on just so fast as the germ can use it, and thus the supply is kept up till the young plant can shift for itself. The maltster forces the natural process, and then kills the germ by roasting the seed when he has obtained the maximum amount of sugar.
Fruits also are sugar factories, in which is conducted the whole process of making sugar from rags, the fiber of the rags being represented by the fiber of the unripe fruit. Every boy who has struggled to eat an unripe apple or pear knows that the unwholesome luxury is what he calls "woody," as well as sour. The chemist describes it similarly. His technical name for the tough material is "woody fiber," under which name he includes nearly all the fibrous materials of the vegetable world, for they all have fundamentally a similar chemical composition. This woody fiber is made up of carbon and the elements of water. Starch and sugar are composed of the same elements, their differences of properties being due to differences of arrangement and proportions of the constituent elements. Thus the change of insoluble starch into dextrine, and dextrine into sugar, or the change of woody fiber into dextrine and sugar, are effected by very small modifications of chemical composition
We all know that the unripe apple or pear is sour, or that it contains an acid as well as the woody matter. Now, this appears to act after the manner of the sulphuric acid that the chemist applies to the rags, but it acts more slowly and more effectively. The sweetest of pears are gathered when hard and quite unfit for eating, but by simply setting them aside and giving this acid time enough to do its work, the hard fibrous substance becomes converted into a delicious, sweet, juicy pulp.
The natural chemistry here has a great advantage over the artificial operation, seeing that the natural acid either becomes itself converted into sugar or combines with the basic substances in the fruit, forming wholesome salts. Not so the sulphuric acid of the chemist. He must get rid of this from his rag sugar; and herein lies the difficulty of the process. The writer tried the experiment more than twenty years ago, using lime for the purpose of removing the sulphuric acid, but found that in removing the sulphate of lime he lost much of the sugar which this solid absorbed, and from which it could only be removed by great dilution, and then not completely. To do this practically would cost so much that the rag sugar would be far dearer than that which nature beneficently manufactures by similarly, but more effectively, acting upon the fibers of the sugar cane or beet root.
There is little risk of the sugar trade being disturbed, or of the paper makers being deprived of their raw material, by the rivalry of rag sugar, though the chemist may display n a show glass some crystals that he has made from one of his own worn-out shirts. - London Grocer.

A Good Word for Cast Iron Stoves.

For some time Prof. Ira Remsen, of Johns Hopkins University, has been investigating for the National Board of Health, the alleged danger to health in apartments heated by hot air furnaces and cast iron stoves. The results of the investigation, Prof. Remsen tells the Baltimore American, "cannot well be given in a few words, but in general, it may be said that there is practically not much danger from carbonic oxide involved in the use of hot air furnaces and carbonic oxide in

The C'harge for Insertion under this head is One Dollar a linefor each insertion ; about eight words to a line. a linefor each insertion; about eight words to a line. as early as Tluursday morning to appear in next issue.

Berryman Feed Water Heater. See illus. adv., p. 396 A Great Bargain in Guis is offered by C. Folsom, for hirty years a well known New York gun dealer. Baxter Wrenches fit peculiar corners. Indispensable
to first-class mechanics. Greene, Tweed \& Co., N. Y. to abbe Bolt Forging Machines and Palmer Power Hammers a specialty. S. C. Forsaith \& Co., Manchester, N. H. Suffer no longer. Relief is always obtained by the
German Corn Remover; certain and harmless. Druggists. A simple means to keep disease away is to use Van A simple means to
Beil's " Rye and Rock."
R. J. W.-Froth or scum in your boilers caused by sediment in water from driven wells, entirely obviated
without loss of water, by Hotch ${ }^{2}$ iss' Mechanical Boiler without loss of water, by Hotchkiss' Mechanical Boil
Cleaner. Send for circular. 84 John St.. New York. Wanted.-Good Party to Manufacture and Sell New
Store seat, like that mentioned pase 374 this paper Store Seat, like that mentioned paye
Wood or iron. S., P. O. Box 1973, Phila.
Wanted.--A party with capital and facilities to manufacture a line of standard, heavy machinery. - Address,
giving name and location of works, Earnest, Box 772 ,N.Y. Wanted.-To manufacture and introduce to the hard Wanted.-- o manufacture and introduce to the hard-
ware trade, articles principally or wholly of gray iron Linen Hose, Rubber Hose,Cotton Belting, Rubber Belt ing. Leather Belting. Greene, Tweed \& Co., 118 Cham-
bers St., N. Y. Before visiting yourshoemaker get a bottle of German
Corn Remover; you can secure a much nicer fit; 25 cents. Wanted-Some light article to manufacture as a speCialty; in wood preferred. Van Cleve \& Stilwell, 68 N. J.
R. R. Wanted-A quantity of second-hand light T Rail, in good condition. S. L. Rockwell, Jordan, N. Y
List 26.-Description of 2,500 new and second-hand
Machines, now ready for distribution. Send stamp for Machines, now ready for distribution. Send stamp for
the same. S. C. Forsaith \& Co., Manchester, N. H. Combination Roll and Rubber Co., 27 Barclay St., .Y. Wringer Roll and Tarred Roofing and Sheathing Felts. A. Wiskeman,
Paterson, N. J. Punching Presses \& Shears for Metal-workers, Power Drill Presses. $\$ 25$ upward. Power \& Foot Lathes. Low
Prices. Peerless I'unch \& Shear Co.,115S.Liberty St.,N.Y. Improved Skinner Portable Engines. Erie, Pa.
"Rival" Steam Pumps for Hot or Cold Water; $\$ 32$ The Eureka Mower cuts a six foot swath easier than a side cut mower cuts four feet, and leaves the cut grass standing light and loose, curing in half the time. Send for circular. Eureka Mower Company, Towanda, Pa. The Newell Universal Mill Co., Office 34 Cortlandt St., Grinder for crushing ores and grinding phosphates, bone, Grinder for crushing ores and grinding phosphates, bone,
plaster. dyewoods, and a:l gummy and sticky substances. Circulars and prices formarded upon request.
Pure Oak Leather Belting. C. W. Arny \& Son, Ma-
nufacturers. Philadel nufacturers. Philadelphia. Correspondence solicited.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. Wood Working Machinery of Improved Design and Workmanship. Cordesman, Egan \& Co., Cincinnati, 0 . Experts in Patent Causes and Mechanical Counsel. Split Puleys Bro. Split Pulleys at iow prices, and of same strength and
appearance as Whole Pulleys. Yocom \& Son's Shafting Works, Drinker St., Philadelphia, Pa.
Malleable and Gray Iron Castings, all descriptions, by Erie Malleable Iron Company, limited. Erie, P' National Steei Tube Cleaner for boiler tubes. Adjust
able,durable. Chalmers-Spence Co.,10Cortlandt St, N Y Corrugated Wrought Iron for Tires on Traction En-
 Best Oak T'anned Leather Belting. Wm. F. Fore Wright's Patent Steam Engine, with automatic cut off. The best engine made. For prices, address William
Wright, Manufacturer, Newburgh. N. \mathbf{Y}. Nickel Plating. --ole manufacturers cast nickel anetc. Hanson \& V Van Winkle, Newark, N. J., and 92 and 94 Liberty St., New York.
Presses, Dies, Tools for working Sheet Metals, etc.
Fruit and other Can Tools. E. W. Bliss. Brooklyn N. Y. Peck's Patent Drop Press. See. adv., page 366.
Long \& Allstatter Co.'s Power Punch. See adv., p. 365. For Mill Mach'y \& Mill Furnishug. see illus. adv. p.364. Saw Mill Machinery. Stearns Mrg. Co. Sce p. 3E . For Sequeira Water Meter, see adv. on page 364. For Machinists' Tools, see Whitcomb's adv., p. 364 Clark Rubber Wheels adv. See page 380
For Pat. Safety Elevators, Hoisting Engines. Friction Safety Boilers. See Herrison Boiler Works adr, pri. Mineral Lands Prospected, Artesian Wells Bored, by Rollstone Mac. Co.'s Wood Working $\underline{1}$ Mack's see p. 381 Fire Brick. Tile, and Clay Retorts, all shapes. Borgner Turbine Wheels; Mill Mach'y. O.J.Bollinger, York, Pa For best Portable Forges and Blacksmiths' Hand The Brown Automatic Cut-off Engine; unexcelled for workmanship, economy, and durability. Write for in
formation. C. H. Brown \& Co., Fitchburg Mass.
Brass \& Copper in sheets. wire \& blanks. See ad. p. 398. The Chester Steel Castings Co., office 407 Library St,
Philadelphia, Pat. can prove by 15,000 Crank Shafts, and Philadelphia, P'... can prove by 15,000 Crank Shafts, and
10.000 Gear w heels, now in use, the superiority of thei Castings over all others. (Ircular and price list free.
Cate Cope \& Maxwell M'f'g Co.'s Pump adv., page 397.

The Improved Hydraulic Jacks, Punches, and Tub xpanders. R. Dudgeon, 24 Columbia St., New York.
Eagle Anvils, 10 cents per pound. Fully warranted. Geiser's Patent Grain Thrasher, Peerless, Portable,
nd Iraction Engine. Geiser M'f'g Co., Waynesboro. Pa Houston's Sash Dovetailing Machine. See ad., p.398 Comb'd Punch \& Shears; Universal Lathe Chucks. Lam bertvile Iron Norks, Lambertvile, N.J. See ad. p.381.
Pat. Steam Hoisting Mach'y. See illus. adv., p. 398. ew Economizer Portable Engine. See illus. adv. p. 396 Fine Taps and Dies in Cases for Jewelers, Dentists,
amateurs. The Pratt \& Whitney Co., Hartford, Conn. Rue's New "Little Giant" Injector is much praised Rue's New "Little Giant" njector is much praised Rue Manufacturing Co., Philadelphia, Pa
Diamond Planers. J. Dickinson, 64 Nassau St., N. Y For Shafts, Pulleys, or Hangers, call and see stock pt at 79 Liberty st. N. Y. Wm. Sellers \& Co
Wm. Sellers \& Co., Phila., have introduced a new The Sweetland Chuck. See illus. adv., p. 396 Machine Knives for Wood-working Machinery, Book Machine Knives for Wood-working Machinery, Book
Binders, and Paper Mills. Also manufacturers of Soloman's l'arallel Vise, Taylor. Stiles \& Co...Riegelsville.N.J. Skinner's Chuck. Universal, and Eccentric. See p. 397 Don't buy a Steam Pump until you
Wren's Patent Grate Bar. See adv. page 597.
Use the Vacuuun Oils. The best car, lubricating, en gine, and cylinder oils. made. Address Vacuum Oil Co.,
No. 3 Rochester Savings Bank, Rochester, N. Y. Lightning Screw Plates and Labor-saving Tools, p. 396

HINTS TO CORRESPONDENTS.
No attention will be paid to communications unless No att
accomp
writer.

Names and addresses of correspondents will not be given to inquirers.
to former answers or articles, will be kind enourr to name the date of the paper and the page, or the number of the question.
Correspondents whose inquiries do not appear after reasonable time should repeat them. If not then pub lished, they may conc
Editor declines them.
Persons desiring
Persons desiring special information which is purely a personal character, and not of general interest,
bould remit from $\$ 1$ to $\$ 5$, according to the subject, as we cannol be expected to spend time and labor to obtain such information without remuneration
Any numbers of the Scientific American SuppleMENT referred to in these columns may be had at this
office. Price 10 con
(1) F. M. E. asks for the composition of the inks used for stamp ribbons, such as are used on type writing machines. I have such a writer, but have
not used it for two years, for the reason that I cannot not used it for two years, for the reason that I cannot
re-ink the ribbons. A. Dissolve 1 oz. of best soluble nigrosine in 4 oz . of hot glycerine by triturating together in a hot mortar, and add $1 / 4$ oz. of soap previously made into a tbick paste by triturating and
macerating it with a small quantily of hot water. Rab macerating it with a emal
this well into the ribbon.
(2) S. W. asks: What ingredient can be mixed with lime whitewash to prevent it turniug yellow in rainy or damp weather when used on outside work
A. See answer to O. E. C., page 375 (40), current volume (3) W. L. S. asks for what purpose lamp-
back is used. S. asks for what phat is the marke value? A. It is extensively used in the preparation of various black paints, varnishes, japans, printing, marking, stenciling, and transfer inks. Address the dealer
in paints and colors. See column of Business and Personal and Hints to Correspondents.
(4) B. W. B. asks how to make an ink that when first written, cannot be seen, but, when applied to of cobalt (pure) in soft water. 2. Also an ink that after a certain time after it is written disappears. A. We cannot give you a rece
SuPplement, No. 158.
(5) H. G. F. asks for a remedy for mildew in sailcloth exposed to rain and sun. Something more potent than lime water, but not too expensive? A.
Saturate the cloth with a strong hot solution of soap press out excess of the liquid, and digest for six hours or more in a solution of alum i ib., in water 1 gallon, Rinse in plenty of clean water before drying.
of lead is sometimes used instead of the alum.
(6) In answer to L. M. and others, C. M. says: The price of soap is regulated by the cost of
materials employed, provided the manufacturer is fully competent in the art of soap making. My own experi pound for materials, and a pure tallow soap $41 / 3$ cents a pound.
(7) L. B. writes: I wish to stencil some letters and figures around an ordinary white opaque glass globe (for gas). What kind of paint can I use that
will not run and will not wash off ? A. Try good black japan varnish, thinned with turpentine if necessary. (8) A. B. asks: 1. How much sulphuric acid, chaik, and water, or sulphuric acid, marble, and water. or, sulphuric acid, bicarbonates of soda, and
water is necessary to make ten square feet of carbonic water is necessary to make ten square feet of carbonic
acid gas? A. Under ordinary conditions of tempera ture a aid pressure ten cubic feet of carbonic acid gas wil require, in practice, $31 / 2$ pounds of goodchalk or marble
4 pounds of sulphuric acid and $11 /$ gallons of water: or $23 / 4$ pounds of bicarbonate of sola, $11 / 2$ pounds of sul phuric acid, and about 3 quarts of water. 2. Does strong
pressure hinder the development of the carbonic acid
gas ? A. The reaction by which the gas is produced gas? A. The reaction by which the gas is produced
takes place under pressure the same as when the matetakes place under pressure the same as when the mate-
rials are exposed in an open vessel. 3 . What is the best elastic material to resist the action of the mineral acids? A. Vulcanized rubber.
(9) W. J. B. asks: Will the common type used in printing stand to be heated hot enough to prin injury ? A. With care, yes. 2. Will the recipe given to W. S. P., in No. 23, do for lettering cloth book backs?
A. Yes.
(10) A. B. B. asks (1) for a receipt for mak ing a cement for cementing stone to wood. A. Mel and mix together equal parts of pitch, gutta percha,
and shellac. Usehot. See Cements in Suprlement No. 157. 2. Of what is hydraulic cement made? A It is prepared by strongly calcining an argillo-siliciou limestone or by calcining an intimate mixture of finely-
ground lime, or limestone, clay, and sand. See Gillmore's ". Cements and Mortars." 3. What is used for making artificial marble for tops of stands, etc.? A The materials used are lime, lime carbonate, barytes zinc white, and waterglas. Some of the stone is hardened by immersing it in a strong sclution of chloride of calcium. For minerals, see under appropri
te heading. te heading.
[OFFICIAL.]
INDEX OF INVENTIONS
Letters Patent of the United States w
May 24, 1881
AND EACH BEARING THAT DATE
[Those marked (r) are reissued patents.]
A printed copy of the speciffcation and drawing of any patent in the annexed list, also of any patent issued since 1866 , will be furnished from this office for one dol-
lar. In ordering please state the number and date of the patent desired and remit to Munn \& Co., 37 rark Row New York city. We also furnish copies of patents
granted prior to 1866 ; but at increased cost, as the speciflcations not being printed, must be copied by hand.
Abdominal supporter, S. A. Richardson...
Aging and purifying whisky, G. Goewey
.241 .883
Air compressing apparatus, S. W. Hudson..
Air compres

241.883
241,966

Air compressor and faucet, S. A. Livingston....
Air compressor valve, J. Cla, ton...................
Air fountain and air cooling apparatus, iv.

A nnunciator, electric, W. H. Sawy
Anti-freezing closet. J. B. Gordon
Anti-freezing closet. J. B. Gordo
Automatic gate, H. W. Ludlow.
Axle, vehicle, J. Howell.
Barn frame, U. Sherman.
Basin, wash, C. E . Robin
Basket, Osborn.

Bed bottom, spring, L. C. B.
Bed bottom, spring. . A.
Beer cooler, W. D. Barden.
Beer cooler, W. D. Barden..............................
Belt, device fur throwing on and off a, A. C. Mit
cheil................................
Beltts, takeup for waist, E. D. Bean
Beltina
Belting, machine for making laps on, C. H. Westo
Billiard table, J. Dockstader
Billiard table, J. Dockstader.
Billiard table, E. J. sause....
Biliard table, E. J. Sause
Bird cage perch, H. . Dammon
Bit stock, J. W. Brittin.
Bit stock, J. W. Brittin..........
Blackink compound, G. E. Milla

Boot and shoe, E.L. Sprague....
Boot and shoe edge trimming
Helms.... ...
Bottle washer, A. Von Schade
Bottles, attaching caps to. $\bar{\xi}$.
Bottles, attaching caps to. E.
Bowing alley, F. Suess.....
Bracelet fastening, G. H. So
Bridge, A. W. Brenner.....
Buckle trace P.
Buckle, trace, P. Miller
Butter cutter, J. Mune
Butter, jar ior packing and
Button, collar. N. Nudge...
Button hook, W. Haikyard....
Candles

Car coupling. W. E. Thompson....
Car door fastening. grain, A Burnt
Car door, freight, J. Christiansen.
Car door, freight, J. Christia
Car, sieeping, F. W. Hunter
Car wincow ,
Car wincow,
Carding mach
Carpenter's gauge, W. A. Jam
Carpet cleaner, J. \& F. Cook.
Cartridge shells, machine for heading, J. H. Gill
Caster, furniture, J. D. Bucshout . .
Cain, drive, J. M. Dodge,
Chain inks ornamental, B
Chart rack, W. C. Cadwel
Chill, ©. Anderson.

Chimney, w. Raab Chucks, jaw for lath

Churn, E. A. Smyth drill, F. Chillingworth. ${ }_{241,88}^{242,04}$
Churn dashers, mechanism for piving a combined
don....................
gar box. J. A. Smith..
Cigar box, J. A. Smith.....
Cigar lighter, W. W. Batcl
Clock dial. L. E. Jerome..
Clothes pin, S. D. Fry ...
Cottin Landles, attaching, w. o. Heller.
oilar and tie, combined, F. C. Marston.
Condenser, injector, J. Wheelock
Conveyer. W. D. Ewart
Cooking vessel covar, ©. M. Knight
Cork, poultry, J. IV. Cooley.
Cornice. pole angle piece. W. H Edsall
Cotton press, L. G. Peel
Cotton press, L. G. Peel.
Cuff. R. S. Norton.
Cuff. R. S. Norton.
Cultivator and har

Curd from buttermilk, preparing, w. Cooley.
Curtain fixture, Nix $\&$ Mclelland Curtain fifxture, Nix \& McClelland
Curtain fixture, F. E. Wagner

for, J. A. Mcecrear

Ditching machine. J. H. Omwak
Door check, J. J. Sch1euter
Door hanger, H. E. Richard
Door hanger, H. E. Richards
Door spring, W. W. Robinso
Doubling machin
Door spring, w. W. Robinson....................... 241.88
Doubling machines, etc., drop wire for, C. E. Clark 241,88
Doubling machines, etc.,
Dyeing, H. W. Vaughan.
Dyeing fbrous material.

Ease, I. A. Shields.....
Egg beater, H. P. Brooks
Emery whel
Emery wheel dresser, C. E. Roberts.
End gate, wagon, S. . Fry
End gate, wagon, S. D. Fry....
Exercising machine, C. A. Te
Exercising machine, C. A. Terry
Faucet, beer, E. J. Rubottom
Felt fabric to imitate seal skiv, Waring \& Brush. Fence barb, wire, , , Brinton
Fence, link, E. M. Crandal
Fence, link, E. M. Crandal
Fence wire stretcher, IV. H. Rugh
241,79
242.04
Fence wire stretcher, IV. H. Rugh............................242.04
Fertilizers, treating phosphates for, G. A. Liebig. 241,86
Fiber tor spinning, etc.., machine for the reduc-
tion of vegetable, $\mathrm{H} . \mathrm{B}$. Meech.................. 24,
Files or rasps. machine for cutting, J. J. White... Fire arm lock, F. W. Hood.....
Fire extinguisher, A. M. Burrit
Fire extinguisher, A. M. Burrit . .
fire exinguisher spinkler, A.
Fireplace heater, J. B. Oldershaw

Fish plate and joint. O. T. Bedell.
Fish scaler, Schaal \& Harbaugh.
241,93
241,90
242,05
Fruit and vegetable evaporator, Bowen \& Potter. 242,05
Fruit picker. A. J. Ferris.
Fruit picker. A. J. Ferris................ 241,14
Funnel for flling sacks or bags,
Gas apparatus, hydrocarbon, P. . . Fitzua . . .
Funnel for filling sacks or bags, R. B. Dula 241.94
Gas apparatus, hydrocarbon, P. J. Fitzgeraid..... 241,95
Gas lighting device, W. W. Batchelder.......... $21 /$ 21/
Gear wheel cutter, E. L. Parsons................ 241,87
Gear wheel cutter, E. L. Parsons....................
Gear wheel, mechanism for supporting a, w. ©.
Collyer.................................
Glass conveyer and setter, plate, I. Lackey........
Glass or china ware utensils, connecting parts of,
J. Story (r)....................
Glassware while finishing, tool for holding, R. D.

Glove exhibitor, F. B. Spooner.
Glove, husking, J. F. Glidden.
Glove, husking, J. F. Glidde
Grain binder, C. Jewel (r)
Grain binder, J. P. Monroe
Grain binders, binding head for, S. D. Locke
Grain drill, R. Chesnut.....................
uano and dropping cotton seed,
Gun. accelerating. J. R. Haskell......................... 242.03
Gun
Gun wads, machine for greasing, ... P. P. Salisbury.
Harness shaft lug, w. W. Armington...........
Harness shaft lug, W.
Harrow, T. J. Hubbell
Harrow and cultivator, wheel, schuster \& Schau
Harvester binder, W. W. Coats....
Harvester sickle bar, V. R. Ostrom
Harvester sickle bar, V. R. Ostrom
Harvesting machine, S. D. Locke
Heating furnace, J.
Heel, J. Tibbets..
Hog nose cutter,
Holdback, M. Mille
Hoofs, trimming ani......,
Hoop machine, C. M. Clancy
Horse hoof pad, A.J.
Horse rake, R. Illwood
Horse toe weight, R. Kin
Horseshoe, N. P. Benson
 Hose reel,
Jewelry, manuf. of cabinet, w. A. L. L. Miller (r)
Journal bearing, anti-friction, J. H. Langley. Journal bearing, anti-friction, J. H. Langley.

Key fastener, A. F. . O. Osterbe.	Key fastener, A. F. S. Osterbe:g.
King bolt, A. W. Tryon.....	

Kitchen implement. J. W. Ross

Knob attachment, w. H. Gonne....................
Knock down box, w. O'Connor..............
Lacing stud G. W. Prentice........... 242,039 to
Lacing stud, G. W. Prentice
Lacing stud, F. A. Smith, Jr
Lamp burner, C. Votti.......
Lamp. electric, F. Salathé et
Lamp fixture, extension, N. L. Bradey et al.
Lathe attachment. L. C. Barnes
Lawn rake J. boring and reaming, S. Graves.
Lawn rake, J. B. Morgan......
Leather splitting machine, G. L. Tyle
Life saving apparatus, J. Wormle
Lifting jack. H. W. Goodwin.
Lock case, 1 H . L. Spiegel.
Lock case, M. Levice, steam engine, A. Craft.
Lubricating paste and pencil, T. Colgan..... Mail bag, S. Smith.......
Mail bag, E. P. Teeters
\qquad
of, N. J. Galland......
Marble or stone, artifial, Thompson \& Cunning-

Mash tub, c. Kaestner ..
Mat, Maccellian
Mat, MacLellan \& J Jones................
Match, continuous, W. W. Batchelde
Matting, constructing, MacLellan \& Jon Mechanical motor, Kis
Milk can, P.S. Smout.
Milk feed regulator, W. Frederick,
Mill feeding device, F. W. Kepner
Millstone driver, F. Nayo........

Mixer and sifter, H. W. Davis.....
Monkey wrench, A. K. Sheppard..

Mosquito bar supporter, J. steiner Motion and power. etc.., communicating, I. Holden 2441.86
Motion. device for converting, J. S. Lamar..... 2420 Musical instrument. nechanical, Kelly \& Chase... Nailing machine, S. Shephe
Nitro-glycerine compounds, preparing, G. S. Dean 241,99
Nut, adjustabee, J. Theobald 241,87
Nut machine, J. Lowry...... 21,

Ordnance wad, J. R. Haskel
Ore washer. B. A. Peirce.................
Oven sheff, automatic, M. V . W.
Overalls. Loewenstein \& Van Baalen
Paint composition.
Painting roofs, etc.. compound for. A. F. \& G.
Hawt horn..........
Paddlewheel, A. F. Rodgers.
Padlock, permutation. I. P. T.
Padlock, permutation. I. I. Turner
Paper bag, A. F. Edson
Paper bag machine. Paper bag machine. E. B.
Paper gauge, R. Smith .

G

	Slilhouettes, app. for taking...... 24
counter, new........... ${ }^{299}$ boring machine, new...... ${ }_{30}^{57}$	
	Sound in water, velelocity of
hets, grinding bai	Speciatie
jernor for wiste water pipes.	
	Steam la
H	
	Strane fanterest of.........io

m

Moor, whi, improved.........
Mountain R. R. system, Edoux

$\stackrel{\mathbf{N}}{\mathrm{N}, \text { curiou }}$

T

MISCELLANY.

$\stackrel{c}{c}$

	Inv	
		Mining exhibition, Denver.... Mining machinery, out fit for.
		$\xrightarrow{\mathrm{Mar}}$
, illomininat		
. 11 stemaland		
esw		
,ramerican, ${ }^{\text {nen }}$		
Spopid		
logical survey of Pen	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|} \hline \text { Irid } \\ \text { Iro } \end{array}$	
Glass me		N
$\begin{gathered} \text { Gilass } \\ \text { Glas } \\ \text { Gilas } \\ \text { Hasst } \end{gathered}$		
Glass, toe emb	Ju	
ass, tuugh		
		ntia
deand	E	
Goid, drawing on japan		
Goid minng, subaqueous		
Gold, to deposit on glass......(24) 2		
Governor for waste water pipes.. 1		Noises in the sun, hearin Nozzle, fire, a, trial of...
n, charges for		NY to Ph
ann, heavy ship	La	
	${ }_{\text {L }}^{\text {Lamp or }}$	
	La	
Gun,multicharge, French, for the Pacific 2.	Lawd race	$\xrightarrow{\text { Boomer, } \text { L, Prai }}$
	Lea	Byrne,
$\begin{aligned} & \text { nipobata } \\ & \text { nta } \end{aligned}$		Clar
csasa		
H		
		Worth
ande, new	Lemur vary	Odors, body to
	Leucoderma, a cas	
rve	Life, 1ongesugges	${ }_{\text {ond }}^{\text {oil }}$
	lifh	Oili, wast
Harvesters, double tongu		Oils, ana
Health of cities....................... 59 Health statistics, comparative... 213	Lightning	oomargarin
Hearing, on aids to $\ldots \ldots \ldots \ldots \ldots \ldots . . .292$ Heat, absorption of.................. 297	Limete,	Oive on,
	Lime in agr	Opinm, ho
	Lilimethe	Opodeldo
Heath's discove	Lobsters.	Optics. phe
		Optometer, imp
	Looc	(rchid huntrng
$\begin{aligned} & \text { daenite, the new } \\ & \text { age, improyed } \end{aligned}$		
		Owen Paper Corupa Xxyen from bleach
screamer, the	Lump tshh, the....................... ${ }^{*}$	Oysters, raw è....iit Ozoneanathe
tots domesicate		
rse-power of toil		
Crses, Wentucky		Packingand
Hospital, new, a \qquad $\underset{\substack{2,010 \\ 402}}{ }$		
keepers, suysesti	Magct lant	Paint for w
	Magic mirrors	Paint, trore
manity v v. fanaticl	Malaria, miduwn	Paper nul
	Malleale castug	
	Mandesenentot.	
drogen to make	Mantle,	Papiermache. Parame asa
I		
	Mastodon, theor frece	Parstee, Foor's,
Ice fastor, ' eeorgia............: 137		
Illummnating gas, cost of.........: 1920		Patent funds, surplu
		Patent tront
trial condition		
Indusstral soce ors iiuin	M	
		Pavements, glacier.e....
prom	$\left\lvert\, \begin{gathered} \text { Mel } \\ \text { Mel } \\ \text { nel } \end{gathered}\right.$	
Ingenuit of tremen..........iid ${ }_{218}^{166}$		ma
Ink, printing..................... ${ }^{9}{ }^{400}$		
Ink, to remove from parchment(10)378 Ink, vanadium 377		
\ldots		
Insects strengh of		
	1000	

Pbotograthic emulsisons.		
Photographic process, nes		
	Shoe machin	
Pbotopbonic, etce,disisoove	Shr	
	(in	
	Stas, spacimg	
	Sllk	
	Sllk growing in A	
	man	
Pine. yellow, of the South	American	
corrod		
	sout	
	to to	
	r, to re	,
Plants, insectivorous, in Florida.		net destes.ueit
	Sky, bue,	a, the
num		
Pisonous if		
5,		
	malpox, reeent facts about..... 39	Two hundreat yea
Ame	e, benenicial efiec	
	moweresssity	
	Eoap, animproved..............074 ${ }^{248}$	
		\mathbf{v}
Pount-net, iron pier, proposed...		$\begin{aligned} & \text { Vace } \\ & \text { Yace } \end{aligned}$
Preserving fluid, Wickersheimer's 25	Soold	Vacine lymph, and
	Soldering ${ }^{\text {Solder }}$	
		se.richly
	$\frac{1}{4 x}$	ipede, h
		Vine zataratataic
		Voicanic tobideers
	eand champron beetie $*$ \% 29	vorage, Jong, in a mm
	Steam, wastefulnessin the useo.	\mathbf{w}
		Wagon orake improved
R		
	steel,	Water clos
y y cor	Steel, harrenin	
		Water elev
R'waystation inst.toth. tunnel 185	otyping	W
	Stomach, the	Water meter. ${ }^{\text {dipproved }}$
try zulture to soften.	ken	Water press, loss of in h
	stor	${ }_{\text {Water }}{ }_{\text {Water, }}$ Croton,
	Stov	Water, offensive
crrcular saw, the	Stoves, ciz	$\frac{\text { Water, alum }}{\mathbf{W}} \mathrm{W}$ ater, salt
		Water, test for.
Region, an interesting.	Sturgeon famil Suburban resid	Water velocil
		$\begin{aligned} & \text { Waterin } \\ & \text { Water } \\ & \text { Water } \end{aligned}$
nces, attract		$\begin{aligned} & W_{j a i ~}^{\text {a }} \end{aligned}$
nent		Wate
r, disap		
${ }_{\text {r }}$		w
${ }^{\text {Road }}$		Weather prophecies
	Sun,	
		well
		weer What Wha
Rust prevented, new 321		
s		$\begin{aligned} & \text { Whe } \text { Whe } \\ & \text { When } \end{aligned}$
		Wher
	Tea, American, mproving........ 36	$\begin{aligned} & \text { White } \\ & \text { white } \end{aligned}$
		Whoopin cougid
Salts of vazadium...	Telegraph cabie in	Wind, the
Sandford, Dir.,the	Telegraph wires in ci	
崖y merton		wro
dss, new		
	Teleemone centrel	Woo
	Teienone me messages, aut. record. 313	wo
tin		
(en	T	
Sea cat, the,		
der		
unding, instrument		
Seat for shop girls, a,	Tel	
		Writing papers, manuf. of.....izit,
	TTeles	
		\mathbf{r}
		.

Parer, corer, and slicer, apple, E. H. Burghardt. Pen, stylographic fountain, A. T. Cross (r).. Photophonic receiver, Bell \& Tainter.
Pianoforte damper attachment Pianoforte damper attachment, W. Haubne
Picture and clothes hook, M. F. Jones Picture and clothes hook, A. R. Jones Pitcher, sirup, Miller \& Berry

Planter, corn, T.J. Sidener..

Plow, IIolbrook \& Moulton.Plow. root cutting, F. B. Snod
Plow, sulky, R. Ellwood........
Ponton and dock, R. Turnbull Propelling apparatus, vessel, W. I.
Prope Propelling vessels, D.
Pump, J. J. Gardner Railway signal, G.II.. R Railway signal, electrical, J. B. Johnson
 Refrigerator, B. Farnum Refrigerator, window, T. W. Specht.
Retort for reducing tals, D. D. Tecnnyson.
Rheostat, S. D. Field Rheostat, S. D. Field...
Holl. W. R. Schürmann Roiling angle iron, roll for, J.....
Loof, metallic, W. G. Hyndman. Roofing, metal, J. o. Vogel.
 Sash cord guide, J. Rick.
Sash fastener, C. Hinz Saw mill, reciprocating, Gowan \& Williams
Sawing machine, drag, L. H. \& I Sawing machine, wood, W. H. Scale, ad justing, A. Westermaier Scarf, J. H. F'leiseh Scarf, neck, J. H. Fleis
Scissors, J. Klaucke Scissors, J. Klaucke
Scraper, road, Smith \& Strong Screw machine, metal, A.
Seal lock, G. A. Ellssorta Seeding machine, c. Busse..................................
Sewage, apparatus for carrying off, Creuzbaur \& Cewer gas, apparatus for consuming, W. H. Ogilvie Sewing machine, J. R. Perkins Sewing machine rutton hole, J. A. Brautigam. . Sewing machine ruffing attachment, F. B. ZaJ (r)
Sewing machine tension J. M. Griest Shaft supporter, D. Hugendubler.. Krueger..........

Sifter, ash, C. H. Starin Size, manufacture of, E.

 Slatefastener, J. G. Hill.Snow plow, A. P. Farrar
Sole edge burnishing machine, w...........
spark arrester, H. McKenzie
Spikes, manufacture of, G. F
Spinning, doubling, and twisting machine, Se Spinning machines, roller stand for, J. Essex. Spittuon, dental, J. R. Finney Stone, etc.. composition for cleaning, c. o. \& Stove, railway car, May Suspenders, J. A. Adamso Suspenders, W. A. McFarlane.
Switch board, McCoy \& Sylvest Telegraphic purposes, running lines of condu tors for, Dodson \& Ege.
Telephone, contact, E. Berliner Telephone secrecy switch. E. T. Gillilan Thermo-e'ectric battery, P. Higgs.... Thill coupling, T. A. Watrou Tile. drain, E. M. Crandal ..
Tire cooling trestle, Bartlo Tíre cooling trestle, Bartlow \& Ault. Tool rest, C. E. :'ollard......
Tool. universal, w. H. Thay Torch. gas lighting, E. P. Gleaso
Torpedo, grave, T. N. Howell (r) Towboat, A. McDougall
Truck, J. Taylor
Truck, adjustable stove, N. H. Long. Type case, A. A. Low (r)...
Urinal, bed, E. B. Hopkins. Vehicle body brace, J. Jensen.. Vehicle, two-wheeled, F. Ballard
Vehicle wheel, U. Götzenbrüge Veneer fabric. R. S. Jennings Ventilating scuttle for buildings, etc., L. A. A. Gouch Wagon box rub iron, J. K. Sander Wagon brake, R. Rutt Wash board, w. E o ostorn....
Washing machine, T. . Mille Washing machine, T. A. Miller.......
Washing machine, cloth, o. O. Reilly Water can, A. II. Merrill,
Water elevator, J. H. Bo Water elevator, tide, R. Cre
Water meter, J. A. Ares.. Windlass for vessels of naviga Windlass, ship's, J. M. V. Ilgenfrit Windmill, N. Prince
Wood working m

Wrench, H. F. Read

DESIGNS.
Carriage body, C. H. Palmer, Jr...
Cloth, nap surface of. F. Samson.. Cloth, nap surface of. F. Samso
Fireplace lining. J. A. Read ...
Lamp fount, F. R. Seidensticker Lamp hook, M. B. Willecx....
Oil cloth, C. T.\& V. E. Meyer. Ornament for ladies' we Scaro shield, T. J. Flagg. Tobacco, plug, Gra
Toy, R. A. Smith..

241,
${ }^{9}$,
241,
241
241
241
241
.241
24
24

91,716
2411854
241,99
241,980

Apparel, ladies'and children's wearing, Siegel Bros. 8,266
Beer, bottled lager Shaten Island Bottling Company 8.266 Beer, bottled lager, Staten Island Bottling Company 8,266
Butter, G. W. Simpson.....8,262, 8.276
B. Butter, G. W. Simpson.......262, 8.276
Butter, hermetically sealed, G. T. Simpson....... 8,261
Cement, adhesive Van Cement, adhesive, Van Stan Stratena Company..... 8,269
Cigars, cigarettes, and smoking and chewing tobacco, Straiton \& Storm............................
Cigars, cigarettes, and smoking tobacco, T. H. Hall. Cigarettes. T. H. Hall....
Corsets, J. M. Van
$8,243,8,245$,
8,246
$8, \ldots .244$
8,24
Corsets, M . Van Orden
Cutlery, including razors, shears, scisors, pen
knives, and pocket knives, Friedmann \& Lau
knives, an
terjung.
ruits, jellies,
Fruits, jellies, and catsup, preserved and canned.
Gloves. G. Lisner...........................
Horseshoe nails, Fowler Nail Company
Lime fruit, preparations from the. 11. S. Evans......
Liniment, renovating powders, and colic medicine
T. H. Jackson

Organs, Mason \& Hamlin Organ Company..........
Seeding machines, grain, Hoosier Drill Company. Soap, McCullough Soap Company.

Tobacco, cigars, and cigarettes, chewing and smok-
ing, Goodwin \& Co
ing, Goodwin \& Co.....
Tobacco, cigars, and cigarettes, smoking and chew-
ing, Goodwin \& Co
ing, Goodwin \& Co 8
Tobacco, cigars, cigaretes, and snuff, smoking and
chewing, Marburg brothers. $\quad 8 . \ldots \ldots \ldots$.
Tobacco, cigars, cigarettes, and snuff, smoking and fine cut chewing. Marl)urg B Bothers
Tobacco, smoking, Marburg Brothers
Tobacco, smoking, R. W.Oliver..............260,
Tobacco, snuff, and cigarettes, smoking and chew

 English Patents Issued to Americ
From May 20 to May 24,1881 , inclusive. Angle bars, apparatus for beveling, W. Highfield, Philadelphia, Pa.
xle box, w. G.
Bag, paper, L. G. Fisher, Jr., Chicago, Ill. Chronograph, A. Lugrin, et al., New York city.
Cigar machine, O. Hammersein, New York city. Cigar machine, o. Hammerstein, New York city.
Electrical cable, P. B. Delany, New York city.
Fire escape J. R. Winters et al. Chambersburg, Pa Fire escape, J. R. Winterg et al., Chambersburg, Pa.
Hair. preparation of, J. G. Stevens, Jersey Cuty. N. J. Hair. preparation of, J. G. Stevens, Jersey C'ty, N.J.
Nitro-glycerine compound, G. S. Dean, San Fran., Cal. Nitro-glycerine compound, G. S. Dean, San
Ore, utilization of, E. Samuel, Philadelphia, Pa Ore, utilization of, E. Samuel, Philadelphia, Pa.
Sewing machines, D. H. Campbell, Pawtucket, R. I.
Sewing machines, D. H. Campbell, Pawtucket, R. I. Skate, roller, C. M. Raymond, Boston, Mass,
Skin shaver, H. A. House et al., Bridgeport, Skin shaver, H. A. House et al., Bridgeport, Conn.
Steam engines, J. W. Chisolm, Brooklyn, N. Y. Steam engines, J. W. Chisolm, Broc
Trunk, F. H. Ransom, Buffalo, N. Y

Gilucthementi.

 Inside Page, each insertion - - 95 cents a line.Bacls Page, each insertion - $\$ \mathbf{\$ 1 . 0 0}$ a line.
 Engravings may head advertisements at the same rate
per line by measurement as the letter press. Adver-
tisements must be received at publication office as early QUMIGIN'S
Iopeler Holtz Bletriciel Madinire

CERTAIN IN OPERATION.
 By the Toepler Holtz Mi achine "statical", electricity
may be applied in in medical pratice with the same ease
and certainty as galvanism. Send for circular. JAMES W. QUEEN \& CO., 924 Chestnut Street, Philadelphia, Pa

家 OO YOROW PPIHTIUS H. HOOVER, Phila, Pa PATENTS.

MESSRS. MUNN \& CO., in connection with the pub-
lication of the ScIENTIFIC American, continue to exlication of the sientific
amine Improvements, and to

amine Improv for Inventors.

In the the the ty five years expereriece, and now have onecualed decelities for
the preparation of Patent D Drawings, specifications, and the prosection of appications for Patents in the
United States C Cinada, and Frevign Countries. Messrs. United States, Canada, and Foreign Countries. Messrs
 Conyright for books. Labels, Reissues, Assigments,
and Reports on on Infringements of Patents. All business intrusteat to them is done with special care and prompt ness, on very reasonable terms.
A pamphlet sent free of charge, on application, con-
taining full information about Patents and how to procure them; directions concerning Labels, Copyrights Desigus, Patents, Appeals, Reissues, Irfrigements, As signments, Rejected Cases, Hints on the Sale of Pa tents, etc.
We also
Patent Laws, free of charge, a Synopsis of Foreign Patent Laws, showing the cost and method of securing MUNN \& CO., Solicitors of Patents, 37 Park Row, New York.
BRANCH OFTICE.-Corner of F and 7 th Streets,
Washington, D. C.

The Literary

 Revolution.

Wanted enoril
 GLUCOSE-A COLLECTION OF VAL

 TYphoid FEVER-A CLINical LEC

YOUNG MEN READ THIS

We wil send on rriuL (before purchasing
Dr. Joy's celebrated Electric Devices, Tnvented by Pror ionsilas A. Jov or the Unt
 Th TELEPHONE Mork one milo The

Manckworn M, P. O. Box 633. Metal Patterns. etc Gray Iron Castings,
south Norwalk, Conn

Scienificicanil Praticial Buks
RECENTLY PUBLISHED.
Will-Tables of Qualtitative Chemical Analysis, with an
Introductory Chapter on the Course A Analysis. By
Prof. Heinrich Will of Giessen, Germany. Third

 Cristiani-A Technical Treatise on Soap and Candles.
with Glane at the Industry of Fats and oins. By R:
s. Cristiani, Chemist. IIustrated by 176 Engraving.
Svo.
sive.

 HENRY CAREY BAIRD \& COOM
Industrial PNublishers Booksellers, and Mmporters,
810 WALNUT STREET, PELLADELPHIA, PA.

STEL STMMES

Pond's Tools, DAVID W. PNOND, Worcester, Mass.

 market. Send for illustrated catalogass plane price in the the
ROWLEY \& HERMANCE, Williamsport, Pa.

LadY AeENTS WANTED.

Ahead of all Competition.

TEN SIZES FOR HAND USE. Weighing from 21 to 51 lbs.
THREE SIZES FOR HORSE POWER. GRAHAM, EMLEN \& PASSMORE, 631 Market St., Philadelphia, Pa. PAYNESS AUTOMATIC ENGINES.

Reliable, Iurable, and economical, will furnish a
horsepowerwith one-third less fuel and water than any other

 THE WALLACE DIAMOND CARBONS,

Cet These Good Books

The standard, beautiful, and incomparably cheap books of the Literary Revolution are in demand far beyond our resources for manufacturing them. We must manufac-
ture and sell quickly immense editions of these books in order that we may afford
 books for which we are having most urgent demands. If, therefore, you want any of the books named below, order them promptly, as we shall after a few days cease
Books 2 Cents.

Books 3 Cents.

Books 5 Cents.
 Books 10 Cents.

Books 15 Cents.

Books 25 Cents.

cicill

Books 35 Cents.

Books 40 Gents. cill

Books 50 Cents.

 American Patriotism.-
Geikic, Lite of Christ.
Smith's Bible Dictionary.
an

A Cyclopaedia War.

 QUICK, BEFORE THE WAR IS OVER. Specimen pages free.
s,000 Booksellers $\begin{gathered}\text { ations. or supply our publi- Terms to Clubs } \\ \text { cations }\end{gathered}$

AMERICAN BOOK EXCHANGE, JoHN B, ALDEN, MANAERR

NEW YORK BELTING AND PACKING COMP'Y.

Roots' New Iron Blower.

POSITIVE BLAST

 IRON REVOLVERS, PERFECTLY BALANCED is simpler, and has fewer parts than any other blower. P. H. \& F. M. ROOTS, Manuf'rs, CONNERSVILLE, IND. S. S. TOWNSEND, Gen. Agt., $\left\{\begin{array}{l}6 \text { Cortlandt St., } \\ 8 \\ 8 \\ \text { Dey }\end{array}\right.$ $\left.\begin{array}{l}\text { WM. COOKE, Selling Agt., } 6 \text { Cortlandt Street, } \\ \text { JAS. BEGGS \& CO., Selling Agts., } 8 \text { Dey Street, }\end{array}\right\}$ YORK. Lesend for Priced catalogue.

THE SCOVILL
"Pop" Safety Valve,
 Send for descriptive circulars and price lists to
THE HANCOCK INSPIRATOR CO. BOSTON, MASS

 $\$ 72$ A Werke.

Geo. W. Read \& Con.,
MAHOGAN Y,
Cabinet VVoods.
CUT AND PRESS DRIED
THIN LUMBER,
CIGAR BOXES, Panel stock, Etc., Ftc.

186 to 200 Lewis St., New York.

New York Ice Machine Company, ${ }_{115}$ Broadway, New York, Room 78. LOW PRESSURE BINARY Absopption system

GOOD INK

TO TNVENTIORS AND MANUFACTURERS

The Semi-Centennial Exhibition
 Intending exhibitors must make early appelicetion te
secuure proper space and classification. For blank
and

気-PATENT QUICK

 SHAPERS Can be Changed while in Motion. E. GOULD \& EBERHARDT,

EsSAF ON INVENTIONS-Hom to Make aroatabi

T. M. INAGIE,
 Portable, Stationary Agricultural
ETBAMI FINGINTE.
H.W.Johis' SBEsifis LlQuid paints ER COVERINOS Steam Packings, Milil Board, Gaskets, H. W. Johns Mf'g Co, 87 Miditn Lane, N. Y.

[^0]

Mill Stones and Corn Mi\|ls.

PICE ATTB1.OD PER TON.

 TELEP HONE Latast, Dest.t. Tatented

 TODD \& RAFFERTY, PATERSON, N. J., Engineer and Machinist,
 The New Baxter Patent Portable Steam Engine PRINTING PRESSES

 1 Horse Power, $\$ 150 \mid 11 / 2$ Horse Power, $\$ 190$ | 2 | Horse Power, | 245 | $21 / 2$ Horse Power, |
| :--- | :--- | :--- | :--- |
| 3 | 275 | | |
| 3 | Horse Power, | 290 | 4 |

J. C. TODD, Paterson, N. J., Or No. 10 Barclay St., New York.
BOYLE ICE MACHINE CO. Ice Machines
Refrigerating Apparatus.
No. 10 N. Jefierson Street, chicago, Ill.

Colmbia Bicycle.
A permanent, practical road and elegant appearance excite iversal admiration. It is care and confident the money to be attained in page catalogue with price list and full information. THE POPE MFG. CO, Washington St.,
MACHINISTS' TOOLS
Send for new inustratec catalague. Lathes, Planers, Drills, \&o. NEW HAVEN MANUGAGHURINGico

DUC'S ELEVATOR BUCKET,

THOS. F. ROWLAND, Sole Manufacturer, Brooklyn, N. Y.
bole col coverings. Patent "AIR SPACE"' Method ANBESTOS MATERIALS,
 STUTMERING cured by Rate's appliances. Send fo
description to SIMPSON CO., Box 2 多6, New York. © s3 Press

"BLAKE'S CHALLENGE" ROCK BREAKER.

ERICSSON'S

Neer Cancicic Puninic higine
DWELLINGS AND COUNTRY SEATS.
 DELAMATER IRON WORKS C. H. Delamater \& Co., Proprietors,
No. 10 Corthandt Street, New York, N. Y.

FILIEDMANN'S PATENT INJECTOR,
Boiler Feeder Simple, Reliable, and Effective.
40,000 IN ACTUAL USE. NATHAN $\&$ IDREYEUS, Sole Manufacturers, NEW YORK ROOFING.

Sifis politi

WEx+1

FORSTER'S CRUSHER AND CRUSHER AND PULVERIZER,

CATALOGUED.
THE FOLLOWING MANUFACTURERS ARE PRO MINENT IN THEIR RESPECTIVE LINES; IN

Mire rope

 HOISTING ENGINES.
COPELAND \& BACON
VALVES AND FIRE HYDRANTS.
THELUDLOW VALVE M'F'G ©O.,
ROCK DRILLS \& AIR COMPRESSGRS.
INGERSOLL ROCK DRILL CO.,
1 1-2 Park Place,

- New Establ'd EACLE ANVILS. 1843 $\underset{\text { Solid CAST STEEL Face and Horn. Are Fully War- }}{\text { ranted }}$ Double Screw, Parallel, Leg Vises.

 EXETER Matcinine wor Steam Engines, Blowers, and
stram Hinating Apparatus.
 The Greatest Rock Breaker on Earth
 STEARNS SAW MILLS.
 The Howard Manufacturing Co. Address, No. 364 Broad ayy, NEW YORK, manufacture and introdvce PATENTED NOVELTIES.
Parker's Pocket Scale.

CAN BE CARRIED IN THE VEST POCKET PRICE 25 CENTS.
KORTING'S UNIVERSAL INJECTORS
 HARTFORD
STEAM BOILER
Inspection \& Insurance COMPANY
W. b. PRankili,V. Pres't. J. II. ALLEN, Pres't. J. B. PIERCE, Sec'y

COLD PEASS. JoHy HoLLAND, Mfrr, 19 West 4th for Price List tincinnati. Jenkins' Patent Packing and Valves
 Jarvis Furnace Co

THE J. L. MOTT IRON WORKS,

PRINTINTG INKKES

[^0]:

